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Abstract 

Agricultural policies across the world aim to increase agricultural productivity and to improve the 

environmental sustainability of farming (Sterly et al., 2018). In the European Union (EU), market 

deregulations require farms to cope with increased cost pressure and price volatility. In subsistence 

economies, imperfect credit markets have been identified as a major obstacle to farm productivity 

growth. At the same time, there is long-standing concern that current farming practices cause envi-

ronmental harm (Tilman et al., 2002). Thus, the EU and countries world-wide implemented agri-

environmental programmes that aim to incentivise farmers to adopt more sustainable practices. The 

goal of this dissertation is to provide empirical evidence on farm production responses to policy 

developments that are related to agricultural productivity and environmental sustainability.  

To this end, the dissertation presents four empirical studies that aim to contribute to the understanding 

of micro-level production behaviour with respect to agricultural policy developments. The first em-

pirical study is concerned with the effects of sugar market deregulation on farm profitability and 

productivity. This sector is particularly relevant, as it has been the last heavily regulated agricultural 

market in the EU. The empirical results show that resource reallocation has contributed to sector 

productivity growth following a reform in 2006 and that the reallocation efficiency varies across 

regions with distinct ownership structures in the sugar processing industry. The second study 

measures diversification economies in the dairy sector, which also underwent significant deregulation 

efforts in the past decade. The results confirm that diversification can be an effective strategy to foster 

competitiveness in dairy farming. Furthermore, the study shows that small farms tend to benefit from 

diversification between milk and livestock production, whereas large farms are better off diversifying 

between milk and crop production. The third empirical study shifts the attention to subsistence farm-

ing in rural China. In developing regions, access to credits is essential for smallholder farms to benefit 

from the increasing market orientation of agricultural policies (FAO, 2002). The empirical results 

suggest that relaxing credit constraints improves productivity via both technical efficiency gains and 

technical change. While the first three studies are largely concerned with farm productivity and eco-

nomic performance, the fourth study examines farm production responses to agri-environmental pol-

icies. Based on a structural profit function model, this study presents elasticities of output supply, 

input demand and land allocation with respect to agri-environmental subsidies. The results indicate 

that current EU agri-environmental programmes reduce fertiliser use and shift crop production from 

cereals to protein crops. Finally, two supplementary studies investigate the relationships between 

different farming practices and environmental sustainability. Overall, the results of this dissertation 

underline the importance of the empirical evaluation of agricultural policy developments that con-

siders the heterogeneity of farms and the specifics of the markets in which they operate.  



 

 

Zusammenfassung 

Weltweit zielt Agrarpolitik darauf ab, die landwirtschaftliche Produktivität zu steigern und die öko-

logische Nachhaltigkeit der Landwirtschaft zu verbessern (Sterly et al., 2018). In der Europäischen 

Union (EU) erfordern Marktderegulierungen von den landwirtschaftlichen Betrieben, mit erhöhten 

Kostendruck und Preisschwankungen umzugehen. In Subsistenzwirtschaften wurden unvollständige 

Kreditmärkte als erhebliches Hindernis für das Wachstum der landwirtschaftlichen Produktivität 

identifiziert. Gleichzeitig besteht seit langem die Sorge, dass derzeitige landwirtschaftliche Praktiken 

Umweltschäden verursachen (Tilman et al., 2002). So haben die EU und Länder auf der ganzen Welt 

Agrarumweltprogramme eingeführt, die BetriebsleiterInnen Anreize bieten sollen, nachhaltigere 

Praktiken anzuwenden. Ziel dieser Dissertation ist es, empirische Belege für die Reaktionen land-

wirtschaftlicher Betriebe auf politische Entwicklungen zu liefern, die sich auf die landwirtschaftliche 

Produktivität und die Umweltnachhaltigkeit beziehen. 

Dazu präsentiert die Dissertation vier empirische Studien, die zum Verständnis mikroökonomischer 

Produktionsentscheidungen in Folge aktueller agrarpolitischer Entwicklungen beitragen sollen. Die 

erste empirische Studie befasst sich mit den Auswirkungen der Deregulierung des Zuckermarktes 

auf die Profitabilität und Produktivität landwirtschaftlicher Betriebe. Dieser Sektor ist besonders re-

levant, da er den letzten stark regulierten Agrarmarkt in der EU darstellte. Die empirischen Ergeb-

nisse zeigen, dass eine Reallokation der Ressourcen nach der Marktreform in 2006 zum Produktivi-

tätswachstum des Sektors beigetragen hat und dass die Effizienz dieser Reallokation in Regionen mit 

verschiedenen Eigentümerstrukturen in der zuckerverarbeitenden Industrie unterschiedlich stark aus-

geprägt ist. Die zweite Studie analysiert Diversifizierungseffekte im Milchsektor, einem weiteren 

Sektor, der in den letzten zehn Jahren erhebliche Deregulierungsmaßnahmen erfahren hat. Die Er-

gebnisse bestätigen, dass Diversifizierung eine wirksame Strategie zur Steigerung der Wettbewerbs-

fähigkeit in der Milchviehhaltung sein kann. Die Studie zeigt auch, dass kleine Betriebe von einer 

Diversifizierung zwischen Milch- und Tierproduktion profitieren, während es für große Betriebe loh-

nenswert ist, die Betriebszweige Milch- und Pflanzenproduktion zu kombinieren. Die dritte empiri-

sche Studie verlagert die Aufmerksamkeit auf die Subsistenz-Landwirtschaft im ländlichen China. 

In Entwicklungsregionen ist der Kreditzugang für Kleinbauern essentiell ist, um von einer zuneh-

menden Marktorientierung der Agrarpolitik zu profitieren (FAO, 2002). Die empirischen Resultate 

dieser Studie weisen darauf hin, dass eine Lockerung der Kreditbeschränkung die landwirtschaftliche 

Produktivität durch Steigerung der technischen Effizienz sowie durch technischen Wandel verbessert.  

Während sich die ersten drei Studien insbesondere mit der Produktivität und der Wirtschaftlichkeit 

landwirtschaftlicher Betriebe befassen, betrachtet die vierte Studie landwirtschaftliche Produktions-
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entscheidungen in Folge agrarumweltpolitischer Anreize. Basierend auf einem strukturellen Gewinn-

funktionsmodell werden in dieser Studie die Elastizitäten von Produktionsangebot, Faktornachfrage 

und Anbauentscheidungen in Bezug auf Agrarumweltzahlungen dargestellt. Die Ergebnisse zeigen, 

dass aktuelle EU-Agrarumweltprogramme den Düngemittelverbrauch reduzieren und die Pflanzen-

produktion von Getreide auf Eiweißpflanzen verlagern. Abschließend werden in zwei ergänzenden 

Studien die Zusammenhänge zwischen unterschiedlichen landwirtschaftlichen Praktiken und ökolo-

gischer Nachhaltigkeit untersucht. Insgesamt unterstreichen die Ergebnisse dieser Dissertation die 

Bedeutung einer empirischen Bewertung der agrarpolitischen Entwicklungen unter Berücksichti-

gung der Heterogenität der landwirtschaftlichen Betriebe sowie der Märkte, in denen sie agieren.  

 

 





 

 

Part I 

 

Introduction 

 

 





 

 

1  

Agricultural Policy and Producer Implications 

Contrary to other sectors, agricultural production is exposed to natural influences that are mostly 

beyond the individual producers' control, such as weather conditions or pest pressure. Furthermore, 

the prices of agricultural commodities are substantially more volatile than the prices of other com-

modities. At the same time, agricultural production relates to critical questions that affect the entire 

society. First, a substantial growth in food production is needed to meet future food demand (Fouré, 

Bénassy-Quéré and Fontagné, 2013). Taking into account both population and economic growth, 

Gouel and Guimbard (2019) estimate that the demand for food will increase by 47 % until 2050. 

Second, agricultural production is inherently related to producer and consumer welfare through in-

come and food price effects. Globally, nearly 30 % of the workforce is employed in agriculture, the 

majority being located in developing regions. Thus, increasing agricultural productivity is essential 

to reducing poverty among smallholder farm households (Irz et al., 2001) and to enhancing overall 

economic growth via structural transformation (Bustos, Caprettini and Ponticelli, 2016). Third, farm-

ing and food production also relate to environmental sustainability. At present, agriculture is one of 

the largest producers of environmental pressures and significantly contributes to climate change, bi-

odiversity loss, soil erosion and water pollution (Foley et al., 2011).  

For these reasons, agricultural policies all over the world aim to tackle a wide range of problems and 

developments related to agricultural and food production. There is broad consensus that the sector 

must become more productive and environmentally sustainable (OECD, 2020a, p. 19). The following 

chapter provides an overview of global agricultural policies in this regard. Since the empirical studies 

contained in this dissertation focus on the European Union (EU) and the People's Republic of China 

(hereafter, "China"), Chapter 1.2 highlights agricultural policy developments in these regions. Fi-

nally, I summarise the empirical literature on the farm-level effects of these policy developments in 

Chapter 1.3.  

1.1  Overview of global agricultural policies 

Heterogeneous climatic and economic conditions make the agricultural sector highly diverse across 

countries. Nevertheless, challenges are broadly the same across the globe: "lagging farm incomes, 

increasing resource constraints (land, water) and environmental concerns (including climate), and a 

rapidly increasing future food demand" (Sterly et al., 2018, p. 13). In nearly all countries, agriculture 

and food policies involve large government interventions. The Organisation for Economic Co-oper-

ation and Development (OECD) distinguishes between producer support (market price support and 
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budgetary transfers to producers), consumer support (market and budgetary transfers to consumers) 

and general services support such as infrastructure investments or knowledge and innovation systems 

(OECD, 2016) and provides estimates of different support categories for 37 OECD countries, five 

non-OECD EU Member States, and twelve emerging economies.1 In 2019, the total support estimate 

in these countries amounted to EUR 530 billion (OECD, 2020b). As shown in Figure 1-1, support to 

producers (Producer Support Estimate, PSE) accounts for the largest part of support. The figure also 

reveals a significant increase in agricultural support payments between 2008 and 2015, primarily 

driven by growing producer support. This development is largely caused by changes in emerging 

economies, where total support payments increased more than tenfold in this period. Relative to their 

gross domestic product (GDP), however, the selected emerging countries allocated on average 

0.35 % to agricultural support agriculture while OECD countries spent 0.59 % in 2019 (OECD, 

2020b).  

The largest portion of producer support is contributed by market price support and payments based 

on output or unconstrained input use, even though they slightly declined from 73 % in the period 

2000–2002 to 69 % in the period 2017–2019. These measures are considered as the potentially most 

distorting forms of support, as they "have the greatest tendency to retain farmers in uncompetitive 

and low-income activities, harm the environment, stifle innovation, slow structural and inter-gener-

ational change, and weaken resilience" (OECD, 2020a). Domestic market support results in gaps 

between farm-gate prices and world market prices. In the period 2017–2019, producers received 

prices 6 % higher than world market prices at the global average, compared to nearly 14 % in the 

period 2000–2002 (OECD, 2020a), implying a slow trend away from the most protective towards 

more market-oriented policies. The highest gaps between farm-gate and world market prices in the 

past years have been observed for rice, sugar, wheat and milk (Sterly et al., 2018). For example, sugar 

producers in the EU and the US have received prices between two and three times the world market 

price, making sugar one of the most distorted commodity markets in the world (Elobeid and Beghin, 

2006). The deregulation of the EU sugar market, starting with a market reform in 2006 until the 

abolishment of the sugar quota in 2017, resulted in declining prices for EU sugar producers. In Chap-

ter 3, we empirically show how this policy development affected the productivity and profitability of 

sugar beet farming. The dairy sector has been another commodity sector highly distorted by global 

agricultural policies (Knips, 2005). Similar to the sugar market, production quotas for milk produc-

tion in the EU have been abolished in 2015. Chapter 4 evaluates diversification economies in dairy 

farming that may help dairy farms cope with the increased competition. 

 
1 The included emerging countries are Argentina, Brazil, China, Costa Rica, India, Indonesia, Kazakhstan, the 

Philippines, the Russian Federation, South Africa, Ukraine and Viet Nam.  
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Figure 1-1. Estimates of support to agriculture in the OECD and 12 emerging countries 

(Source of data: OECD, 2020b) 

Credit concessions constitute another globally important form of farm support. These policies aim to 

improve the credit access for farmers by reducing interest rates, the extension of repayment periods, 

debt write-offs or government guarantees on agricultural loans (OECD, 2016). In Brazil, agricultural 

credit is considered the major policy instrument for family farms, while other countries with im-

portant shares of credit support in the agricultural budget include Costa Rica, Canada, Australia, and 

Argentina (OECD, 2020a). In the United States, the Department of Agriculture guarantees the repay-

ment of loans to banks, allowing new entrants into agriculture and helping farmers with limited re-

sources (Sterly et al., 2018). Limited access to financial resources is a major challenge especially, but 

not exclusively, for smallholder farms in developing and emerging countries. While past studies 

showed that improving credit access increases the partial productivity of smallholder farming (for 

example, in terms of revenues per unit of land), we show that this is also the case for the total factor 

productivity (TFP) using the empirical case of rural China (see Chapter 5).  

Countries across the globe are also increasingly implementing policy measures that address the chal-

lenge of the environmental sustainability of agriculture. The focus of such policies is mainly on mit-

igating the negative environmental impacts of agriculture (DeBoe et al., 2020). As summarised by 

Sterly et al. (2018), minimum standards in land management and animal husbandry have been intro-

duced or revised, and increased interest in organic farming and the promotion of biofuels and bio-

material has been observed. An important policy area in this context is the regulation of agricultural 

chemicals. As indicated by OECD (2020a), Argentina, Brazil and the EU implemented new regula-

tions on the approval or use of pesticides in 2019. Individual EU member countries have introduced 

regulations to reduce nitrogen runoffs and ammonia emissions, and Japan amended its Fertiliser Reg-

ulation Act in the same year. Other countries, such as Australia, China, and India, introduced 

-300

-200

-100

0

100

200

300

400

500

600

700
B

ill
io

n
 E

U
R

Producer Support Estimate (PSE) Consumer Support Estimate (CSE)

General Services Support Estimate (GSSE) Total Support Estimate (TSE)



6 | Chapter 1 

 

measures to reduce the use of all chemical inputs (OECD, 2020a). Chapter 6 provides empirical 

evidence on the extent to which green policies, such as agri-environmental schemes (AES), affect 

fertiliser usage in the EU.  

Finally, reducing the impact of agriculture on climate change has gained increasing attention in global 

agricultural policies. The OECD (2020a) summarises major policy developments in this area: While 

many countries have prioritised the mitigation of greenhouse gas (GHG) emissions, only New Zea-

land and Ireland introduced legally binding targets for the reduction of agricultural GHGs. The EU 

presented strategies to achieve net zero GHG emissions by 2050. Individual member countries im-

plemented national climate change or climate change adaptation plans that include agriculture, or 

introduced programmes designed to reduce agricultural GHG emissions. Targets to reduce GHG 

emissions from the agricultural sector are also set by Korea, and the government of Norway negoti-

ated a climate agreement for agriculture with farmers' organisations. Support to climate change ad-

aptation is especially provided by Mexico (information on weather forecast and most appropriate 

adaptation practices), Costa Rica (credit system to respond to climate change related disasters) and 

the United States of America (better equipment of farmers to reduce the environmental footprint of 

US agriculture) (OECD, 2020a). Lamb et al. (2016) advocate for land-sparing strategies (i.e., in-

creasing agricultural yields and restoring natural habitats on spared land) to reduce agricultural emis-

sions. Along these lines, we find that GHG emission efficiency in dairy farming can be improved by 

supporting sustainable intensification in Stetter, Wimmer and Sauer (2020). The structural type of 

agriculture, however, does not seem to have an essential impact on sustainable farming practices: 

contrary to anecdotal beliefs, we show in Wuepper, Wimmer and Sauer (2020) that small family 

farming does not unequivocally lead to the adoption of more environmentally friendly farming prac-

tices compared to large, industrial farming.   

1.2 Agricultural policy trends in the EU and China 

This subchapter provides a more detailed description of agricultural policy developments in the EU 

and China, two regions where farmers faced significant structural and policy changes in the last dec-

ade. The EU and China are major agricultural producers, accounting for 9 and 33 % of worldwide 

gross production value in 2016, respectively (FAOSTAT, 2020). With 2 % in the EU and 8 % in China 

(ILOSTAT, 2020), however, the share of agriculture in total GDP is significantly different between 

the regions. At the same time, the share of agriculture in employment is 5 % in the EU and 28 % in 

China (ILOSTAT, 2020), indicating considerably higher agricultural labour productivity in the for-

mer. Figure 1-2 compares overall producer support in percentage of gross farm receipts (%PSE) 

between China and the EU. Since 1992, %PSE has largely decreased in the EU and increased in 

China. However, the support in China remains below the level in the EU. The focus of the EU agri-

cultural policy was on supporting farmers since the implementation of the Common Agricultural 
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Policy (CAP) in 1962. China's agricultural policy shifted from taxing to subsidising and protecting 

agriculture only in the last decade (Huang, J. and Yang, 2017). Recognising the market distorting 

effects of price intervention programmes, both the EU and China have shifted their policies from 

market support to direct payment programmes. Both regions are also increasingly implementing pol-

icies that promote the environmental sustainability of agricultural production. The following sections 

give short overviews on the development of agricultural policies in the EU (1.2.1) and China (1.2.2).  

 

Figure 1-2. Producer support in % of gross farm receipts in China and the EU, 1992–2019 

(Source of data: OECD, 2020b) 

1.2.1 Agricultural policy development in the EU 

The CAP is the EU's main instrument to steer agricultural production. Today, its budget amounts to 

EUR 59 billion per year, or nearly 40 % of the EU total budget. Since its implementation in 1962, 

the CAP has developed through several reforms to align with changing societal demands (Pe’er et 

al., 2017). In the 1950s, a major concern in Europe was to increase food production (Fennell, 1973). 

Thus, the primary objectives of the CAP, specified in article 39 in the Treaty of Rome in 1957, were 

to provide a fair and stable income to farmers and to ensure food supply at reasonable prices. To 

achieve this, the main policy measure in the early years of the CAP was price support for domestic 

producers. However, the choice of price support without structural policies has faced criticism from 

its beginnings as it contradicted the goal of reasonable food prices, could not solve the farm income 

problem and created overproduction (Zobbe, 2001). In the 1980s, supply controls were introduced 

to address increasing production surpluses and the associated increasing budget demands. These ef-

forts included the introduction of milk quotas in 1984 and of the set-aside incentive scheme in 1988. 

Requiring farmers to take part of their land out of production, the set-aside programme sought to 

provide environmental benefits in addition to reducing overproduction. With the MacSharry reform 

in 1992, the CAP shifted from market support to producer support to align the CAP with the standards 
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of the World Trade Organization (WTO) (Pe’er and Lakner, 2020). In particular, coupled price sup-

ports for cereals and beef were reduced and compensated for by direct payments to farmers (Sterly 

et al., 2018). Taking into account increasing environmental concerns, direct payments were made 

contingent on minimum standards regarding the environment, safety and animal health. As these 

direct payments were based on a farm's area allocation to different crops, they were not fully decou-

pled from production. Thus, the process of decoupling of payments was continued with the Fischler 

Reform in 2003 by introducing the Single Payment Scheme in 2005 (Klaiber, Salhofer and Thomp-

son, 2017). As opposed to preceding direct payments, payments under this scheme are based on the 

farm's or the region's historical entitlements or a hybrid model thereof (Klaiber, Salhofer and Thomp-

son, 2017). To further address environmental challenges, 30 % of these payments were linked to 

greening measures that go beyond the minimum standards of good agricultural practice with the latest 

reform in 2013: crop diversification, maintenance of permanent pastures, and promotion of Ecolog-

ical Focus Areas (Pe’er et al., 2017). During this reform period (2014–2020), two of the EU's most 

distorting agricultural policy instruments were phased out: the milk production quota in 2014 and the 

sugar production quota in 2017.  

Figure 1-3 summarises the most important steps in the history of the CAP, illustrating the gradual 

shift from the policy focus on food security and producer support towards sustainability concerns 

and policy efficiency. Nonetheless, it remains important to acknowledge that up to today, direct pay-

ments aimed primarily at securing farmers' income are accountable for 70 % of the CAP budget 

(Pe’er and Lakner, 2020).  

 

Figure 1-3. Historical development of the CAP since 1962 

(Source: Adopted from the European Commission by Sterly et al., 2018, p. 21) 
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1.2.2 Agricultural policy development in China 

The agricultural policy framework emerges from several documents that are periodically released by 

the Chinese government. The 13th Five-Year Plan issued by the government presents key orientations 

of agricultural policies for the period 2016–2020, focusing on agricultural modernisation, such as 

supporting the development of new types of agribusiness or strengthening the adoption and use of 

information technologies (OECD, 2020a). In addition, the annually released "Policy Document No. 

1" classifies agricultural and rural development as top priority (OECD, 2020a).  

Between 2003 and 2013, the average farm size in China increased from 0.57 to 0.78 hectare (Huang, 

J. and Ding, 2016). Despite the recent emergence of land cooperatives and company-run farms, Chi-

nese agriculture is still characterised by small-scale farming. China's agricultural sector has under-

gone substantial changes since the late 1970s, resulting in annual growth rates of 4.6 % over more 

than three decades (Huang, J. and Yang, 2017). According to these authors, the growth was driven 

by institutional reforms (implementation of the household responsibility system in 1978), technology 

changes through public R&D investments, market reforms and trade liberalisation. The market and 

trade reforms included a reduction of average import tariff rates from 42 to 24 % between 1992 and 

1998 before China's accession to the WTO in 2001 (Baylis, Fan and Nogueira, 2019). Nevertheless, 

the agricultural sector in China faces significant challenges today. Similar to the global perspective 

discussed above, the main challenges are lagging farmers' income, threats on food security, and en-

vironmental degradation. For example, the rural income was about 2.7 times below the urban income 

in 2014 and 60 million people lived under poverty in the same year (Huang, J. and Yang, 2017). At 

the same time, increasing rural labour wages reduce the international competitiveness of Chinese 

agriculture (Wang, X. et al., 2016). As a result, China became a net food importer in 2004, raising 

concerns on food security (Huang, J. and Yang, 2017). Finally, the growth of the agricultural sector 

in the past decades came at the cost of environmental sustainability (Zhang, F., Chen, X. and Vi-

tousek, 2013; Lu, Y. et al., 2015).  

Various policy measures have been introduced in recent years to address these challenges: In 2004, 

direct subsidies were introduced to improve farmers' income and food security. These include direct 

grain subsidies, input subsidies, subsidies for purchasing agricultural machinery, and subsidies for 

credit (Huang, J. and Yang, 2017; OECD, 2020a). The main sources of income support for farmers, 

however, are price intervention programmes. Minimum purchase prices for rice and wheat were in-

troduced in 2004 and 2006, respectively. In the following years, the Temporary Storage Programme 

was introduced for maize, soybean, rapeseed, cotton and sugar. Increasing price support between 

2009 and 2014 resulted in large price gaps between domestic and global prices, costly storage build-

ing for the government, and economic disadvantages for domestic downstream industries (e.g. live-

stock sector or textile or garment industries) (Huang, J. and Yang, 2017). Thus, price intervention for 
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soybean and cotton was replaced by the target price policy, under which farmers are compensated by 

payments covering the difference between pre-determined target prices and actual market prices. 

Regarding maize production, a pilot reform was introduced in 2016 that replaced price supports by 

direct payments based on the area planted (Huang, J. and Yang, 2017; OECD, 2020a). This policy 

trend to shift from market support to producer support is similar to the process in the CAP of the EU, 

which started with the MacSharry reform in 1992. The OECD (2019) concludes that payments based 

on area planted reflect the policy trend towards long-term productivity growth and sustainability and 

recommends to further decouple production from subsidies by making the latter conditional on a 

historical area basis and on environmentally-friendly production practices.  

Such agri-environmental objectives are currently addressed in the National Agricultural Sustainable 

Development Plan for the period 2015–2030 (OECD, 2020a). It involves natural resource protection, 

environmentally friendly farming practices and focusing on the quality and efficiency of production. 

Plans to control GHG emission are also included in the 13th Five-Year Plan, including the reduction 

of methane emissions in the agricultural sector. China also released commitments to reduce GHG 

emissions in response to its ratification of the Paris Agreement on Climate Change and follows a zero 

growth strategy in fertiliser and pesticide use (OECD, 2020a). Soil quality degradation has also been 

recognised as a result of the excessive use of modern inputs (Liu, Y., Wen and Liu, X., 2013). To 

monitor and improve the soil quality, the Soil Pollution Prevention and Control Law was introduced 

in 2019, and payments are due if farmland is returned to forests and if degraded grassland is excluded 

from grazing (OECD, 2020a).  

1.3 Microeconomic evidence on policy developments 

Governmental policies affect microeconomic decision-making by changing prices and incentives for 

firms, for example via regulations, tariffs, taxes or subsidies. By setting the framework under which 

firms maximise profits or utility, these policies aim to affect firm's production behaviour, such as 

supply of outputs, demand for inputs, choice of technology and innovation activities. The empirical 

assessment of the effects of agricultural policies is particularly important, as they affect a heteroge-

neous group of actors (e.g. farmers and buyers) and commonly involve multiple goals (e.g. compet-

itiveness and sustainability). As stated by Esposti and Sotte (2013), the increasing complexity of 

agricultural policies requires a careful evaluation of the effects with respect to the stated objectives. 

Thus, rigorous empirical insights into the behaviour and response of farmers to changing policies are 

needed to support evidence-based policymaking (e.g. Sauer and Vrolijk, 2019).2  

 
2 Evidence-based policy-making seeks to use objective evidence about what works to design policy measures. 

While the idea to inform decisions by knowledge is not new, the concept has gained increasing attention in the 

field of social sciences in the 1990s (Marchi, Lucertini and Tsoukiàs, 2016). 
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As described in Chapter 1, agricultural policies around the world, including the EU and China, tend 

to be shifted away from the most protective towards more market-oriented measures. The first step 

towards market orientation is often the reduction of trade barriers and price support measures. As 

documented in various empirical works, such policy reforms shift productive activities from less 

productive firms towards more productive ones, increasing the aggregate productivity of the sector 

(see, e.g. Eslava et al., 2004 for the manufacturing sector in Colombia and Frick and Sauer, 2018 for 

the dairy farm sector in Germany). Individual farmers also benefit from increased allocative effi-

ciency if the production portfolio is based on market prices, as shown by Brauw, Huang, J. and 

Rozelle (2004) for trade liberalisation in China.  

Chapter 1.2 further outlined that both the EU and China have (partially) replaced trade barriers and 

price support measures by area-related direct payments to compensate farmers for potential income 

losses. While such policies allow prices to be determined by market forces, they still impact produc-

tion decisions as they incentivise farmers to grow crops with the highest area payments (see, e.g., 

Lacroix and Thomas, 2011). With the CAP reform in 2003, the EU went one step further and decou-

pled agricultural payments from production decisions (see Chapter 1.2.1). Empirical studies address-

ing decoupled payments from a microeconomic perspective show that these payments affect output 

decisions only marginally (e.g. Burfisher, Robinson, S. and Thierfelder, 2000; Goodwin and Mishra, 

2006; Weber, J. G. and Key, 2012). However, as shown by Serra (2006) and Sckokai and Moro 

(2006), decoupled payments may affect output supply and input demand by reducing the degree of 

risk faced by the farmers. The risk aversion of farmers has been quantified using experimental meth-

ods by Menapace, Colson and Raffaelli (2013), for example.  

Although market price support and subsidies linked to production levels are considered harmful for 

the environment (OECD, 2020a), far less empirical studies exist that assess the effect of the policy 

development towards more market orientation on sustainability. The study by Laborde Debucquet et 

al. (2020) suggests that overall productivity growth has only a small effect on environmental sustain-

ability due to a rebound effect caused by an expansion of output, and that policies that directly target 

environmental benefits are more effective. For example, it has been shown that AES in the EU suc-

cessfully reduce the purchase of fertiliser and pesticides (e.g. Pufahl and Weiss, C. R., 2009; Arata 

and Sckokai, 2016). Mennig and Sauer (2020) find that AES participation reduces the productivity 

of dairy farms, but no significant effect was found for crop farms. From a microeconomic perspective, 

agri-environmental programmes are most efficient if the marginal revenue from project participation 

equals the marginal cost (including forgone market income). If a programme requires only minor 

changes in the farm production plan, farmers gain from windfall effects, reducing the cost-effective-

ness of the programme (Chabé-Ferret and Subervie, 2013).  
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To benefit from the trend towards more market orientation and open trade, it is particularly important 

for farms in developing and emerging countries to increase productivity as they compete with farmers 

abroad. Improving credit access is essential to achieve this (FAO, 2002). As described in Chapter 

1.1, preferential credits are an important policy tool to support farmers. Microeconomic models show 

that under binding credit constraints, the marginal value product of the inputs is higher than the price 

of inputs, resulting in suboptimal input usage (Petrick, 2004). In line with this theoretical result, the 

empirical literature finds that credit access increases production (Feder et al., 1990; Foltz, 2004; 

Briggeman, Towe and Morehart, 2009; Petrick, 2004), investment (Foltz, 2004; Carter and Olinto, 

2003; Berhane and Gardebroek, 2011), partial productivity (Guirkinger and Boucher, 2008; Dong, 

Lu, J. and Featherstone, 2012; Reyes et al., 2012; Ciaian, Fałkowski and Kancs, 2012) and household 

consumption (Berhane and Gardebroek, 2011).  

1.4 Aims, scope and structure of this thesis 

As discussed above, countries across the world face similar challenges in the agricultural sector, 

including lagging farm incomes, increasing food demand, and environmental concerns (Sterly et al., 

2018). The OECD (2020a) concludes that the agricultural sector must become more productive and 

environmentally sustainable to meet these challenges. Thus, empirical research is required to assess 

how current agricultural policies affect farmers' performance and production strategies. In this dis-

sertation, I analyse agricultural sectors that have been subject to large deregulation measures in the 

past years from a farm-level perspective, focusing on competitiveness and productivity as well as 

environmental sustainability effects. The primary objective of the dissertation is to provide empirical 

insights into farm responses to changing policy environments in order to inform evidence-based pol-

icymaking.  

The four embedded empirical studies (Chapters 3 – 6) address farm performance and management 

strategies in different policy contexts. Based on microeconomic production theory, econometric tech-

niques are used to obtain theoretically consistent and unbiased estimates, from which implications 

for both policy and management are derived. The studies address different farming sectors at various 

geographic levels: Bavaria, Germany, three selected EU member states and China.  

The empirical studies contribute to the existing literature on agricultural policy and production deci-

sions in several ways. As outlined in the previous chapter, there is empirical evidence that market 

deregulation promotes structural change and results in higher aggregate productivity. However, the 

effects of the EU sugar market deregulation on farm performance and resource reallocation have not 

been studied yet. Chapter 3 closes this gap in the literature by examining the effects of the 2006 

sugar market reform on profitability and (aggregate) productivity of sugar beet producing farms. 

Furthermore, the literature shows that decoupled subsidies are less market distorting than output price 
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support. In turn, the trend away from most protective measures requires farmers to increase their 

competitiveness to remain in business. Chapter 4 shows that on-farm diversification can be an ef-

fective strategy to reduce production costs. The empirical case of this study is dairy farming, the 

second sector besides the sugar market that experienced large deregulation measures in the EU in the 

last decade. For smallholder farms in developing countries, improving credit access to increase 

productivity is essential to benefit from increased market orientation (FAO, 2002). Existing literature 

shows that improving credit access can increase land and labour productivity of farms. However, 

these partial productivity measures do not consider changes in other inputs, and empirical evidence 

on credit access and total factor productivity is scarce. Therefore, Chapter 5 contributes to the liter-

ature by assessing the effect of improved credit access on TFP, using data from a field experiment in 

rural China.  

While higher productivity can contribute to environmental sustainability as it allows to produce the 

same amount of output with less resources, the remaining studies address environmental outcomes 

more directly. Chapter 6 evaluates the effect of green policies in the EU on farm-level output- and 

input decisions as well as area allocation. This study extends the literature by showing that current 

agri-environmental schemes reduce cereal and maize production in favour of protein crops and that 

production elasticities vary substantially across the three selected countries (France, Germany and 

the UK). Finally, two supplementary studies examine how different farm practices and structures 

are related to environmental sustainability: intensive vs. extensive farming technologies and small 

family farming vs. large industrial farming.  

Table 1-1 summarises the four empirical studies embedded in the dissertation as well as the two 

supplementary articles that have been co-authored by the author of this dissertation. The table speci-

fies each article's main research question, the empirical case and data as well as the applied methods. 

The remainder of the dissertation is organised as follows. Chapter 2 introduces the methodological 

approaches applied in the empirical work. Chapters 3 ‒ 6 present the embedded empirical studies, 

which address producer implications of agricultural policy developments at various regional levels 

(Bavaria, Germany, EU, China) and various sectors (dairy farming, sugar beet production, crop farm-

ing, small-scale and subsistence agriculture). Chapter 7 summarises all six empirical studies (four 

embedded and two supplementary studies), highlighting authors' contributions. Finally, Chapter 8 

provides a discussion across all dissertation topics in relation to the existing literature and concludes 

by providing policy implications, limitations and scope for further research.   
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Table 1-1. Overview of the empirical studies  

Title Main research question Empirical case / data Methods 

   a) Empirical studies embedded in the dissertation 

1. Profitability Develop-

ment and Resource Real-

location: The Case of 

Sugar Beet Farming in 

Germany 

(Chapter 3) 

What is the impact of the 

2006 sugar market re-

form on aggregate 

productivity in beet pro-

duction? 

German crop farms with 

sugar beet production; 

Farm accountancy data 

from 2004 to 2013 

Theoretically consistent 

index approach to com-

pute productivity and 

profitability change; Sys-

tem generalised method-

of-moment (GMM) esti-

mator to identify drivers 

of resource reallocation 

2. Diversification Econo-

mies in Dairy Farming – 

Empirical Evidence from 

Germany 

(Chapter 4) 

What is the cost-saving 

potential of farm diversi-

fication in dairy farming? 

Bavarian dairy farms; 

Farm accountancy data 

from 2000 to 2014 

Input distance function 

approach; Bayesian esti-

mation technique to im-

pose theoretical con-

sistency; Two-stage least 

square fixed effects in-

strumental variable re-

gression to explain cost 

complementarities 

3. Credit Access and 

Farm Productivity:  

Evidence  from a Field 

Experiment in Rural 

China 

(Chapter 5) 

What is the causal effect 

of credit access on total 

factor productivity? 

 

Smallholder farms in five 

provinces in China; 

Household panel data 

from a survey in 2010, 

2012 and 2014 

Production function and 

frontier approaches to es-

timate productivity / 

productivity growth. Lev-

insohn-Petrin (2003) 

proxy-variable approach 

to control for endogene-

ity; Difference-in-differ-

ence estimation to iden-

tify treatment effects 

4. Green Policies and 

Farm Production Deci-

sions in Selected EU 

Member States 

(Chapter 6) 

How do agri-environ-

mental subsidies affect 

production choices and 

land allocation between 

crops? 

Crop farms in France, 

Germany and the UK; 

Farm accountancy data 

from 1995–2016 

Profit function approach 

with Cholesky factorisa-

tion to impose theoretical 

consistency; System of 

profit equations estimated 

with iterated feasible 

generalised nonlinear 

squares 

   b) Additional co-authored articles cited in the dissertation 

5. Is small family farm-

ing more environmentally 

sustainable? Evidence 

from a spatial regression 

discontinuity design in 

Germany 

(Summary in Chapter 7) 

Do small family farms 

use more environmen-

tally sustainable farming 

practices than their larger 

counterparts? 

German farms (focus on 

farms within 130 km of 

the historical inner-Ger-

man border for identifica-

tion purposes); Farm 

Structure Survey in 2010 

Regression discontinuity 

design to identify the 

causal effect of small 

family farming on vari-

ous farm practices 

6. Production Intensity 

and Emission Efficiency 

– A Latent-Class Meta-

frontier Approach 

(Summary in Chapter 7)  

 

How do intensive and ex-

tensive production tech-

nologies compare in 

GHG emission effi-

ciency? 

Bavarian dairy farms; 

farm accountancy data 

from 2005 to 2014 

Eco-efficiency concept 

combined with latent 

class stochastic frontier 

analysis, followed by sto-

chastic meta-frontier esti-

mation 



 

 

2  

Conceptual Framework and Methodological  

Overview  

Insights into production technologies and behaviour of producers are essential to evaluate how poli-

cies and market conditions affect production and performance. Hence, the empirical studies in this 

dissertation largely rely on applied production analysis. This chapter presents an overview of the 

applied methods, focusing on both microeconomic production theory and econometric applications.  

2.1 History of thought 

Starting with the work by Cobb and Douglas (1928), production functions were used to study the 

functional distribution of income between capital and labour at the macroeconomic level (Greene, 

2008). At the microeconomic level, empirical production studies were pioneered by Dean (1951), 

Johnston, J. (1960) and Nerlove (1963), all focusing on cost rather than production functions. In his 

seminal work, Nerlove (1963) highlighted the dual relationship between cost and production func-

tions and laid the groundwork for investigating production measures such as factor-demand and sup-

ply elasticities, input substitutability, or economies of size, scale and scope.  

While the early production and cost function literature was primarily interested in describing the 

production structure, Debreu (1951) and Farrell (1957) developed the notion that firms may deviate 

from the frontier isoquant. Aigner and Chu (1968) combined parametric estimation and linear pro-

gramming techniques to find parameter values that envelope the observed data. In their seminal pa-

pers, Aigner, Lovell and Schmidt, P. (1977) and Meeusen and van Den Broeck (1977) proposed to 

estimate the stochastic frontier model with parametric distributional assumptions for the composite 

error term. These models have been extended in various ways, and many specifications for different 

inefficiency distributions exist. For example, Pitt and Lee (1981) propose a random effects model 

with time invariant inefficiency to take advantage of panel data. Battese and Coelli (1992) propose a 

time-varying inefficiency model by describing firm-specific inefficiency term as a function of time. 

Battese and Coelli (1995) extended the model to include inefficiency determinants. More recent var-

iants of the stochastic frontier model focus on the separation of time-invariant inefficiency and firm 

heterogeneity, such as the Kumbhakar, Lien and Hardaker (2014) model.  

Besides stochastic frontier models, deterministic approaches to constructing the frontier exist. The 

most common technique is data envelopment analysis. The fundamental difference between the sto-

chastic and the deterministic approach is that the latter generates the frontier by observed data, so 
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that some firms are efficient by construction. Since the empirical studies in this dissertation all make 

use of stochastic approaches, the deterministic ones are not described further.  

2.2 Primal and dual approaches 

Primal production models consider combinations of output and input vectors measured in physical 

quantities, which are feasible given the underlying technology. Typical examples are the production 

function or various forms of distance functions. With the primal approach, the underlying technology 

can be described without making any assumption about the economic behaviour of the firm (Coelli 

et al., 2005, p. 47). Dual models, on the other hand, involve economic variables (e.g. prices, costs, 

revenues, or profits) and the choice of the model depends on the appropriate behavioural assumption. 

For example, if the behavioural objective of cost minimisation is made, the technology can be repre-

sented by the cost function. The duality theory, pioneered by Shephard (1953), describes the link 

between the production model and the various economic models (Färe and Primont, 1995). Since 

both approaches are applied in the empirical studies of the dissertation, they are described in more 

detail in the following.  

2.2.1 Primal approach 

The production function describes the physical transformation of inputs (such as material, labour, 

capital) into outputs. Formally, a production function is a mathematical representation of the tech-

nology that converts inputs into outputs. In the single output case, this is 

 𝑞 = 𝑓(𝑥), (2-1) 

where 𝑞 denotes output and 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑗)′ is a 𝑗 × 1 vector of inputs.  

As described in Chambers (1988), a well-defined production function is characterised by the follow-

ing properties: 

a) Non-negativity: 𝑓(𝑥) is finite, non-negative, real-valued and single-valued for all non-nega-

tive and finite 𝑥 

b) Weak essentiality: 𝑓(0) = 0, i.e. the production of positive output is impossible without the 

use of at least one input 

c) Monotonicity in 𝑥: 𝑓(𝑥0) ≥ 𝑓(𝑥1) for 𝑥0 > 𝑥1 (i.e., non-decreasing in 𝑥) 

d) Differentiability: 𝑓(𝑥) is continuous and twice-differentiable everywhere 

e) Quasi-concavity in 𝑥: The input requirement set 𝑉(𝑦) = {𝑥|𝑓(𝑥) ≥ 𝑦} is a convex set, im-

plying quasi-concavity of 𝑓(𝑥)  

f) Non-emptiness: The set 𝑉(𝑦) is closed and non-empty for any 𝑦 > 0 
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Some of these properties are illustrated in the left panel of Figure 2-1. The non-negativity condition 

is satisfied since 𝑞 are non-negative and finite real numbers for all 𝑥 on the horizontal axis. Weak 

essentiality is also fulfilled as the function includes the origin. Furthermore, the function is mono-

tonically increasing in 𝑥, implying that an increase in inputs leads to a non-negative change in out-

puts, or marginal products 𝑀𝑃𝑖 = 𝜕𝑓(𝑥)/𝜕𝑥𝑖 are non-negative. In some real-world settings, how-

ever, the monotonicity condition may be violated due to an overuse of certain inputs. In agriculture, 

for example, fertiliser may reduce the output if it is used excessively. Concavity is violated between 

the origin and the first horizontal curve in Figure 2-1. Coelli et al. (2005) call the segment of the 

production function where all theoretical properties are satisfied the economically feasible region of 

production, because it is expected that rational behaving decision-makers will choose a production 

plan that lies within this segment. However, due to regulatory matters or restricted access to certain 

inputs (e.g. land in the agricultural case), firms may well be located in a region with increasing mar-

ginal products.  

  

Figure 2-1. Production function with one output and two inputs (left) and production frontier with 

technical efficiency (right)  

(Sources: Kumbhakar, Wang, H.-J. and Horncastle, 2015, p. 11 and Coelli et al., 2005, p. 4) 

The production function in equation (2-1) represents the average expected output given input quan-

tities. As such, it does not account for the fact that some firms may be inefficient. By contrast, the 

production frontier represents the maximum attainable output given inputs: 

 𝑞 = 𝑓(𝑥) × 𝑇𝐸   , (2-2) 

where 0 < 𝑇𝐸 ≤ 1 represents technical efficiency. In the right panel of Figure 2-1, firms 𝐵 and 𝐶 are 

operated at the production frontier and hence are technically efficient (𝑇𝐸 = 1). Firm 𝐴, on the other 

hand, is technically inefficient (𝑇𝐸 < 1). For example, it could expand output without altering its 

input use by moving towards firm 𝐵 (output-oriented view) or reduce inputs whithout changing the 

output produced by moving towards firm 𝐶 (input-oriented view).   
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A limitation of the production function and frontier approaches is that they only accommodate single-

output technologies. With multiple outputs, the technology can be represented in form of distance 

functions. For this purpose, the production possibility set is defined as the combination of all tech-

nologically feasible input and output combinations. Under the assumption of weak disposability of 

outputs, the technology set can be specified by the Shephard (1953, 1970) output distance function 

(ODF) as  

 𝐷𝑂(𝑞, 𝑥) = inf
𝜃

{𝜃 > 0:
𝑞

𝜃
𝜖 𝑃(𝑥)}  . (2-3) 

In equation (2-3), 𝑃(𝑥) is the set of producible outputs for the input vector 𝑥. The use of infimum 

rather than minimum is necessary because the minimum may not be achieved if 𝑞 is a vector of 

multiple outputs (Färe and Primont, 1995, p. 9). Under weak disposability of outputs, the ODF fully 

characterises the producible output set, i.e. 𝑞 ∈ 𝑃(𝑥) if and only if 𝐷𝑂(𝑞, 𝑥) ≤ 1.  

Analogously, the Shephard (1953, 1970) input distance function (IDF) describes how the input vector 

can be proportionally contracted, holding the output vector constant: 

 𝐷𝐼(𝑞, 𝑥) = sup
𝜆

{𝜆 > 0:  
𝑥

𝜆
𝜖 𝑉(𝑞)}  ,   (2-4) 

where 𝑉(𝑞) is the input requirement set for producing the output vector 𝑞. Since the input vector 

belongs to the input isoquant if and only if 𝐷𝐼(𝑞, 𝑥) = 1, the IDF exactly characterises the input 

isoquant. If weak disposability of inputs is assumed, the entire input requirement set can be charac-

terised by the IDF (Färe and Primont, 1995, p. 21). Because the IDF is applied in the second empirical 

study of this dissertation (Chapter 4), its properties are described here in more detail. From the theo-

retical considerations of the production technology set, several properties of a well-behaved IDF can 

be derived (Färe and Primont, 1995; Coelli et al., 2005): 

a) Weak essentiality: 𝐷𝐼(0, 𝑥) = 0 for all 𝑥 in ℝ+
𝑁 

b) Monotonicity: 𝜕𝐷𝐼(𝑞, 𝑥)/𝜕𝑥𝑖 ≥ 0; : 𝜕𝐷𝐼(𝑞, 𝑥)/𝜕𝑞𝑖 ≤ 0  (i.e., non-decreasing in 𝑥 and non-

decreasing in 𝑞) 

c) Linear homogeneity: For 𝜔 > 0, 𝐷𝐼(𝑞, 𝜔𝑥) = 𝜔𝐷𝐼(𝑞, 𝑥) 

d) Concavity in 𝑥 (due to convexity of the input requirement set) 

e) Quasi-concavity in 𝑞 (due to the convexity of the producible output set) 

f) If the input vector 𝑥 belongs to the input requirement set (𝑥 ∈ 𝐿(𝑞)), then 𝐷𝐼(𝑞, 𝑥) ≥ 1 

g) If the input vector belongs to the boundary of the input requirement set, then 𝐷𝐼(𝑞, 𝑥) = 1 

Monotonicity in 𝑥 and 𝑞 requires the first derivative of the IDF with respect to 𝑥 to be positive and 

the first derivative with respect to 𝑦 to be negative. Concavity in 𝑥 follows from the convexity of the 

input requirement set. It requires the Hessian matrix of the IDF to be negative semidefinite (see 
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Technical Appendix). Quasi-concavity in 𝑞 requires the principal minors of the bordered Hessian 

matrix to be non-positive. This property follows from the convexity of the producible output set, 

which is not always assumed in empirical applications, such as in Coelli and Perelman (2000), Ne-

moto and Furumatsu (2014) or Kumbhakar, Wang, H.-J. and Horncastle (2015).  

Figure 2-2 illustrates the IDF for different input and output quantities. The black curve indicates the 

input isoquant with 𝐷𝐼(𝑞, 𝑥) = 1. Firms located on this curve are technically efficient. Firms located 

on the dark grey area are technically inefficient (𝐷𝐼(𝑞, 𝑥) > 1) while the surface in light grey indi-

cates the technologically infeasible area (𝐷𝐼(𝑞, 𝑥) < 1). It can also be seen that the distance measure 

is increasing in inputs (left panel) and decreasing in outputs (right panel).  

 

 

 

 

Figure 2-2. Graphical illustration of input distance functions for different input quantities (left) and 

output quantities (right) 

(Source: Henningsen, 2019, pp. 293 and 296) 

It is noteworthy that the inverse of the input distance measure returns the input-oriented measure of 

technical efficiency in Debreu (1951) and Farrell (1957). Besides efficiency measurement, distance 

functions are also useful to derive and decompose productivity indices. Chapter 2.3 below describes 

this in detail.  

2.2.2 Dual approach 

Under the assumption of cost-minimising behaviour, the technology can also be represented by the 

cost function. That is, the cost function can be used to study the characteristics of the underlying 

technology. The cost function defines the minimal cost involved for any predetermined output 𝑞 given 

input prices 𝑤: 

 𝑐(𝑤, 𝑞) = min
𝑥≥0

{𝑤′𝑥: 𝑥 ∈ 𝑉(𝑞)} (2-5) 

Equation (2-5) shows that the cost function incorporates technological restrictions. By definition, a 

well-defined cost function is non-negative (i.e., 𝑐(𝑤, 𝑞) > 0 for 𝑤 > 0 and 𝑞 > 0), non-decreasing 



20 | Chapter 2  

 

 

in 𝑤 (i.e., if 𝑤1 > 𝑤2, then 𝑐(𝑤1, 𝑞) ≥ 𝑐(𝑤2, 𝑞)), concave and continuous in 𝑤, positively linearly 

homogeneous (i.e., for 𝜇 > 0, 𝑐(𝜇𝑤, 𝑞) = 𝜇𝑐(𝑤, 𝑞)), non-decreasing in 𝑞 (i.e., if 𝑞1 ≥ 𝑞2, then 

𝑐(𝑤, 𝑞1) ≥ 𝑐(𝑤, 𝑞2)), and involves no fixed costs (i.e., 𝑐(𝑤, 0) = 0) (Chambers, 1988, pp. 50-56). 

Under these conditions, the dual relationship between the IDF and the cost function can be described 

as (Färe and Primont, 1995, p. 47): 

 𝐶(𝑞,𝑤) = min
x≥0

{𝑤 ′𝑥:𝐷𝐼(𝑥, 𝑞) ≥ 1} (2-6) 

Because of the dual relationship between the IDF and the cost function, it is possible to derive cost 

function parameters from IDF parameters and vice versa. For example, Hajargasht, Coelli and Rao 

(2008) use the envelope theorem and Shephard's (1953) lemma to recover the matrix of cost function 

second-order derivatives from the IDF: 

 𝐶𝑞𝑞 = 𝐶{𝐷𝑞𝐷𝑞
′ − 𝐷𝑞𝑞 + 𝐷𝑞𝑥[𝐷𝑥𝑥 + 𝐷𝑥𝐷𝑥

′ ]−1𝐷𝑥𝑞}   , (2-7) 

where subscripts indicate derivatives. In the second empirical study (Chapter 4), we use this relation-

ship to estimate cost complementarities between various output pairs based on an IDF specification.  

In other applications, it may be more reasonable to assume a profit-maximizing behaviour of firms, 

i.e. both inputs and outputs are chosen by the decision-maker. Under this assumption, the technology 

can be represented by the profit function. The profit function defines the maximum attainable profit 

given output prices 𝑝 and input prices 𝑤: 

 𝜋(𝑝,𝑤) = max
𝑦≥0

𝑝′𝑞 − 𝑐(𝑤, 𝑞) (2-8) 

Representing the profit function in this way illustrates that profit maximisation involves cost mini-

misation. (Chambers, 1988, p. 121). Drawing upon the properties of a well-behaved cost function, it 

can be shown that a well-behaved profit function is non-negative (i.e., 𝜋(𝑝,𝑤) > 0 for 𝑝 > 0 and 

𝑤 > 0), non-decreasing in 𝑝 (i.e., if 𝑝1 > 𝑝2, then 𝜋(𝑝1, 𝑤) ≥ 𝜋(𝑝2, 𝑤)), convex and continuous in 

(𝑝, 𝑤), positively linearly homogeneous (i.e., for 𝜇 > 0, 𝜋(𝜇𝑝, 𝜇𝑤) = 𝜇𝜋(𝑝,𝑤)), and non-increasing 

in 𝑤 (i.e., if 𝑤1 ≥ 𝑤2, then  𝜋(𝑤1, 𝑝) ≤ 𝜋(𝑤2, 𝑝)) (Chambers, 1988, pp. 121-124). Further, if 

𝜋(𝑝,𝑤) is differentiable in 𝑝 and 𝑤, Hotelling's (1932) lemma implies that the partial derivatives of 

the profit function with respect to the output (input) price are the profit-maximising supply and de-

rived demand functions: 

 𝑞(𝑝,𝑤) =
𝜕𝜋(𝑝,𝑤)

𝜕𝑝
 (2-9) 

 𝑥(𝑝,𝑤) = −
𝜕𝜋(𝑝,𝑤)

𝜕𝑤
 (2-10) 

Thus, specification of the profit function allows deriving well-behaved supply and demand equations. 

Convexity of the profit function ensures that the output supply functions are increasing in 𝑝 and input 
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demand functions are decreasing in 𝑤. The fourth empirical study (Chapter 6) employs this approach 

to estimate the supply and demand elasticities of crop farms in selected EU member countries in the 

context of agri-environmental policies.  

2.3 Productivity and profitability 

Productivity is an important concept to measure and compare the performance of firms. Essentially, 

productivity measures how much output is produced from a given set of inputs. Partial productivity 

measures include output per unit of labour (i.e., labour productivity) or output per unit of land (i.e., 

land productivity or yield). However, partial productivity measures are incomplete as they do not 

consider the use of other inputs, such as other capital inputs or materials. Since partial productivity 

measures are affected by the use of the excluded inputs, measures of total factor productivity are 

more suitable for performance measurement (e.g. Coelli et al., 2005, p. 62; Syverson, 2011). For-

mally, TFP is defined as the ratio of aggregate outputs (𝑄) to aggregate inputs (𝑋): 

 𝑇𝐹𝑃 =
𝑄

𝑋
 (2-11) 

One possibility to aggregate inputs and outputs is in terms of values. This requires the use of appro-

priate price indices so that differences in productivity are not confounded by differences in prices. A 

comprehensive discussion of appropriate price indices is provided in O'Donnell (2012a). Another 

way of aggregation is to use output elasticities as weights for inputs. For example, with 𝐾 production 

inputs 𝑋𝑘𝑖𝑡 and output 𝑄𝑖𝑡, TFP can be defined as (e.g. Syverson, 2011) 

 𝑇𝐹𝑃𝑖𝑡 = 𝐴𝑖𝑡 =
𝑄𝑖𝑡

𝑋1𝑖𝑡
𝛼1 + 𝑋2𝑖𝑡

𝛼2 + ⋯+ 𝑋𝐾𝑖𝑡
𝛼𝐾

   , (2-12) 

where 𝑖 and 𝑡 are subscripts for production units and time, 𝛼𝑘 denotes the 𝑘-th input's output elasticity 

and 𝐴𝑖𝑡 is a factor-neutral shifter of the production function. As such, TFP indicates variations in the 

firms' output that are not explained by differences in input use.  

In empirical work, the interest often lies in measuring productivity change rather than productivity 

levels. A straightforward way is to compare input changes to output changes using input and output 

quantity indices, such as Laspeyres, Paasche or Törnqvist indices. TFP indices based on output and 

input changes are summarised under the term Hicks-Moorsteen indices (Diewert, 1992; Coelli et al., 

2005, p. 66). Another popular method to measure productivity change between production units and 

over time is the Malmquist TFP index. It was introduced by Caves, Christensen and Diewert (1982), 

who proposed a TFP index based on Malmquist IDFs and ODFs. The output-oriented Malmquist TFP 

index between period 𝑠 and period 𝑡 is defined as the geometric average of two distance measures 

based on period-𝑡 and period-𝑠 technologies (Coelli et al., 2005, p. 68): 
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 𝑚𝑜(𝑞𝑠, 𝑞𝑡 , 𝑥𝑠, 𝑥𝑡) = [
𝐷𝑠

𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑠
𝑂(𝑞𝑠, 𝑥𝑠)

×
𝐷𝑡

𝑂(𝑞𝑡 , 𝑥𝑡)

𝐷𝑡
𝑂(𝑞𝑠, 𝑥𝑠)

]

0.5

 (2-13) 

If firms are allowed to be inefficient, i.e. 𝐷𝑠
𝑂(𝑞𝑠, 𝑥𝑠) ≤ 1 and 𝐷𝑡

𝑂(𝑞𝑠, 𝑥𝑠) ≤ 1, the index in (2-13) can 

be decomposed as (Coelli et al., 2005, p. 70): 

 𝑚𝑜(𝑞𝑠, 𝑞𝑡 , 𝑥𝑠, 𝑥𝑡) =
𝐷𝑡

𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑠
𝑂(𝑞𝑠, 𝑥𝑠)

× [
𝐷𝑠

𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑡
𝑂(𝑞𝑡, 𝑥𝑡)

×
𝐷𝑠

𝑂(𝑞𝑠, 𝑥𝑠)

𝐷𝑡
𝑂(𝑞𝑠, 𝑥𝑠)

]

0.5

   , (2-14) 

where the first term represents technical efficiency change (TEC) and the term in square brackets 

represents technical change (TC). Thus, the Malmquist TFP index captures TEC and TC as sources 

of productivity change. Indeed, these are the only sources of productivity change if the technology 

exhibits constant returns to scale (RTS). However, if the technology is characterised by varying RTS, 

productivity is also affected by the scale of production (Balk, 2001). Output-oriented scale efficiency 

is described as the ratio between the output distance value relative to the (hypothetical) constant-

returns-technology (𝐷𝑡
∗𝑂

) and the output distance value relative to the (actual) constant-returns-tech-

nology (𝐷𝑡
𝑂) (Balk, 2001, p. 165):  

 𝑆𝐸𝑡
𝑂(𝑞, 𝑥) =

𝐷𝑡
∗𝑂(𝑞, 𝑥)

𝐷𝑡
𝑂(𝑞, 𝑥)

  (2-15) 

Scale efficiency change (SEC) is then defined as the ratio of scale efficiency between two periods. 

Using again the geometric average of both reference technologies results in the following measure 

for scale efficiency change: 

 𝑆𝐸𝐶 = [
𝐷𝑡

𝑂(𝑞𝑡, 𝑥𝑡)/𝐷𝑡
∗𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑡
𝑂(𝑞𝑠, 𝑥𝑠)/𝐷𝑡

∗𝑂(𝑞𝑠, 𝑥𝑠)
×

𝐷𝑠
𝑂(𝑞𝑡, 𝑥𝑡)/𝐷𝑠

∗𝑂(𝑞𝑡 , 𝑥𝑡)

𝐷𝑠
𝑂(𝑞𝑠, 𝑥𝑠)/𝐷𝑠

∗𝑂(𝑞𝑠, 𝑥𝑠)
]

0.5

 (2-16) 

Taken together, the individual components of productivity growth can be summarised as an index for 

TFP change (TFPI) as follows:3 

 

𝑇𝐹𝑃𝐼 =
𝐷𝑡

𝑂(𝑞𝑡, 𝑥𝑡)

𝑑𝑠
𝑂(𝑞𝑠, 𝑥𝑠)

× [
𝐷𝑠

𝑂(𝑞𝑡 , 𝑥𝑡)

𝐷𝑡
𝑂(𝑞𝑡 , 𝑥𝑡)

×
𝐷𝑠

𝑂(𝑞𝑠, 𝑥𝑠)

𝐷𝑡
𝑂(𝑞𝑠, 𝑥𝑠)

]

0.5

× [
𝐷𝑡

𝑂(𝑞𝑡, 𝑥𝑡)/𝐷𝑡
∗𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑡
𝑂(𝑞𝑠, 𝑥𝑠)/𝐷𝑡

∗𝑂(𝑞𝑠, 𝑥𝑠)
×

𝐷𝑠
𝑂(𝑞𝑡, 𝑥𝑡)/𝐷𝑠

∗𝑂(𝑞𝑡, 𝑥𝑡)

𝐷𝑠
𝑂(𝑞𝑠, 𝑥𝑠)/𝐷𝑠

∗𝑂(𝑞𝑠, 𝑥𝑠)
]

0.5

 

= 𝑇𝐸𝐶 × 𝑇𝐶 × 𝑆𝐸𝐶 

(2-17) 

The obtained productivity index can be evaluated using either explicit distance measures or deriva-

tive-based techniques (Coelli et al., 2005, p. 300). In empirical study 3 (Chapter 5), we use derivative-

 
3 Another source of productivity change, which is not discussed here for reasons of space, is output mix effi-

ciency. This concept is discussed in Balk (2001) and O'Donnell (2012b), for example.  
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based techniques to decompose productivity change into the three components of TEC, TC and SEC, 

following Kumbhakar and Lovell (2000), Alvarez, del Corral and Tauer (2012) and Mennig and 

Sauer (2020). 

The focus so far was on output and input quantities to measure productivity and productivity change. 

Profitability, on the other hand, includes price information and is defined as the ratio of revenue over 

cost: 

 𝑃𝑅𝑂𝐹 =
𝑄 × 𝑃

𝑋 × 𝑊
   , (2-18) 

where 𝑃 and 𝑊 denote aggregate prices. A straightforward index to compare profitability across two 

periods 𝑠 and 𝑡 is (O'Donnell, 2012b) 

 𝑃𝑅𝑂𝐹𝐼𝑠𝑡 =
𝑃𝑅𝑂𝐹𝑡

𝑃𝑅𝑂𝐹𝑠
=

𝑄𝑡 × 𝑃𝑡

𝑋𝑡 × 𝑊𝑡
×

𝑋𝑠 × 𝑊𝑠

𝑄𝑠 × 𝑃𝑠
=

𝑃𝐼𝑠𝑡
𝑊𝐼𝑠𝑡

×
𝑄𝐼𝑠𝑡
𝑋𝐼𝑠𝑡

= 𝑇𝑇𝐼𝑠𝑡 × 𝑇𝑃𝐹𝐼𝑠𝑡  . (2-19) 

Thus, profitability change can simply be decomposed into a terms of trade (TT) index and a produc-

tivity index. From equation (2-19), it is also clear that if firms face the same input and output prices, 

differences in profitability reflect differences in productivity. 

Figure 2-3 illustrates the relationship between productivity, efficiency, and profitability. The curve 

passing through the origin and firms 𝐸, 𝐾, and 𝐺 represents the production frontier, indicating the 

maximum output that can be obtained with a given amount of inputs under a given technology. Firm 

𝐴 is technically inefficient, because it is operated below the production frontier. Productivity is given 

by the ratio of outputs to inputs, i.e. by the slope of a line from the origin through the firm’s point of 

production. In the present example, firm 𝐸 maximises productivity, followed by firms 𝐾, 𝐺 and 𝐴. 

Profits, on the contrary, are maximised where the isoprofit line 𝑞 =
𝜋𝑖𝑡

∗

𝑃𝑖𝑡
+

𝑊𝑜𝑡

𝑃𝑖𝑡
× 𝑋 is tangent to the 

production frontier (firm 𝐾). For lower ratios of input to output prices, the profit maximising point 

would move from firm 𝐾 towards firm 𝐸 as the slope of the isoprofit line becomes steeper. Thus, this 

example illustrates that higher productivity does not necessarily lead to increased profit, and that less 

favourable ratios of output and input prices imply that firms with profit-maximising behaviour move 

towards the productivity-maximising point of production.  
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Figure 2-3. Productivity, profitability, and efficiency  

(Source: O'Donnell, 2012b)  

Evaluating and decomposing profitability changes allows examining whether profitability changes 

are driven by productivity changes or by external factors such as input and output prices. Policy 

changes, such as replacing protective agricultural policies by more market oriented ones, often affect 

prices faced by domestic farms. Therefore, both profitability and productivity changes are important 

in the evaluation of policy changes. The first empirical study in this dissertation (Chapter 3) evaluates 

such changes in sugar beet farming after the 2006 sugar market reform.  

2.4 Econometric methods  

To estimate the stochastic production frontier following Aigner, Lovell and Schmidt, P. (1977) and 

Meeusen and van Den Broeck (1977), it can be written it in its parametric form using panel data: 

 
ln 𝑞𝑖𝑡 = 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

= 𝑥𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 

(2-20) 

where 𝑥𝑖𝑡 is a vector inputs used by the 𝑖-th firm at time 𝑡 in logarithmic form; 𝛽 is a vector of 

unknown parameters to be estimated; 𝑣𝑖𝑡 is an idiosyncratic error term accounting for omitted vari-

ables, measurement errors and functional form misspecifications; and 𝑢𝑖𝑡 is a non-negative one-sided 

error term associated with technical inefficiency. By imposing linear homogeneity in inputs and de-

fining ln𝐷𝑖
𝑖𝑡 = 𝑢𝑖𝑡, the IDF can also be written in the form of a stochastic frontier model (see Chap-

ter 4 in detail):  
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 − ln𝑥1𝑖𝑡
= 𝑓 (

𝑥𝑖𝑡

𝑥1𝑖𝑡

, 𝑞𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − ln 𝐷𝑖
𝑖𝑡 (2-21) 

Equations (2-20) and (2-21) can be estimated with maximum likelihood techniques by making as-

sumptions on the distributions of the error terms. The inefficiency term can be assumed either time-

invariant (Pitt and Lee, 1981) or time-varying (Battese and Coelli, 1992) and it can also be modelled 

as a function of exogenous variables (Battese and Coelli, 1995). In Chapter 5, we employ the 

Kumbhakar, Lien and Hardaker (2014) model that separates firm heterogeneity from persisting and 

time-varying inefficiency.  

Introduced by van Den Broeck et al. (1994), stochastic frontier models can also be estimated using 

Bayesian methods (see Technical Appendix), as applied and explained in detail in Chapter 4. Bayes-

ian estimation techniques are particularly useful to incorporate restrictions such as regularity condi-

tions, as will be discussed in 2.4.2 below. Before that, I describe how endogeneity concerns are ad-

dressed in this dissertation.  

2.4.1 Endogeneity in production models 

Endogeneity in production frontier models arises if any of the independent variables (i.e. production 

inputs) are correlated with any of the two (or both) error terms (Amsler, Prokhorov and Schmidt, P., 

2017). Unobserved productivity shocks are common reasons for correlations between inputs and the 

error term 𝑣𝑖𝑡 if producers respond to positive shocks with higher input use, for example. As a rem-

edy, Olley and Pakes (1996) suggested to proxy unobserved productivity shocks with investment in 

the estimation of production functions. Levinsohn and Petrin (2003) proposed to use intermediate 

inputs instead, since investment often occurs with a time lag and takes the value zero for a large 

portion of observations in many data sets. In the third empirical study (Chapter 5), we apply this 

approach to the estimation of a production function for smallholder farms in rural China.  

Regarding the estimation of the IDF in (2-21) as a special form of stochastic frontiers, input ratios 

are exogenous under the assumption of allocative efficiency (Kumbhakar, 2013; Sipiläinen, 

Kumbhakar and Lien, 2014; Tsionas, Kumbhakar and Malikov, 2015). However, if the inefficiency 

term 𝑢𝑖𝑡 reflects management skills, input and output quantities will be correlated with 𝑢𝑖𝑡 so that 

ordinary least squares (OLS) estimators are biased. In Chapter 4, we therefore follow Griffiths, W. 

E. and Hajargasht (2016) to explicitly model the correlation between time-invariant firm averages of 

outputs and input ratios. As such, the model is an extension of the Mundlak (1978) random effects 

model with correlated effects.  
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2.4.2 Theoretical consistency of production models 

To specify the relationships between the economic variables, a functional form has to be chosen as 

an approximation to the true (but unknown) technical relationship between inputs and outputs. Lau 

(1986) provides five criteria to guide the selection of the functional form: theoretical consistency 

(capability to possess the theoretical properties introduced in 2.2), domain of applicability (the set of 

independent variables where theoretical consistency is satisfied), flexibility (a function is second-

order flexible if it provides a second-order Taylor's approximation to any arbitrary function), compu-

tational facility (e.g. linearity in parameters) and factual conformity (consistency with known empir-

ical facts). Theoretical consistency is particularly important to facilitate a meaningful economic in-

terpretation of the econometric results (see Sauer, 2006; Sauer, Frohberg and Hockmann, 2006). In 

practice, it is not guaranteed that econometrically estimated functions are consistent to economic 

theory. However, different econometric techniques exist to impose curvature on the estimated func-

tions, for example by using ex post procedures (e.g. Henningsen and Henning, 2009), constrained 

maximum likelihood methods (e.g. Bokusheva and Hockmann, 2006) or Bayesian Markov chain 

Monte Carlo (MCMC) techniques (e.g. O'Donnell and Coelli, 2005).  

In this dissertation, two different techniques are used to impose regularity conditions on the primal 

IDF (Chapter 4) and on the dual profit function (Chapter 6). The selection was made based on the 

functional forms of the respective functions applied. The IDF applied in Chapter 4 is estimated using 

a translog functional form, introduced by Christensen, Jorgenson and Lau (1971, 1973) because it is 

second-order flexible (Diewert, 1974) and it can easily be transformed to its estimable form of equa-

tion (2-21) by imposing linear homogeneity. However, the translog functional form cannot be re-

stricted to globally satisfy monotonicity without destroying its flexibility (Diewert and Wales, 1987). 

Therefore, we use a Bayesian estimation technique to impose regularity on selected data points to 

make the function theoretically consistent at a large share of data points while maintaining its flexi-

bility. This is along the lines of  Ryan and Wales (2000), who demonstrate that imposing concavity 

at a single data point can result in satisfaction of concavity at most data points in the sample. In 

particular, we restrict the posterior probability of the unknown parameters by assigning a likelihood 

value of zero to all parameter draws that violate either monotonicity or concavity conditions at the 

selected data points as proposed by Terrell (1996) and Griffiths, W. E., O'Donnell and Cruz (2000) 

for the case of cost functions. O'Donnell and Coelli (2005) provide an extension to distance functions, 

using a random-walk Metropolis-Hastings algorithm.  

The profit function in Chapter 6 is estimated using a normalised quadratic functional form suggested 

by Berndt, Fuss and Waverman (1977). This functional form is flexible, linear homogeneous and has 

a Hessian matrix of constants (e.g. Shumway, 1983). In addition, it accommodates negative profit 
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values as opposed to the translog functional form (Moschini, 1988). The constant Hessian matrix 

allows imposing convexity globally without sacrificing its flexibility.  

To be convex in prices, the Hessian matrix of second-order derivatives of the profit function must be 

positive semidefinite (see Technical Appendix). As shown by Lau (1978), every positive semidefinite 

matrix 𝑨 has a Cholesky factorisation with non-negative Cholesky values in the form 𝑨 = 𝑳𝑫𝑳′, 

where 𝑳 is a unit lower triangular matrix, 𝑳′ is its transpose and 𝑫 is a diagonal matrix holding the 

Cholesky values 𝑑𝑖: 

 𝑨 = 𝑳𝑫𝑹 = 𝑳𝑫𝑳′ = [

1 0
𝐿21 1

⋯
0
0

  ⋮    ⋮ ⋱ ⋮
𝐿𝑁1 𝐿𝑁2 ⋯ 1

] × [

𝑑1 0
0 𝑑2

⋯
0
0

⋮    ⋮ ⋱ ⋮
0   0 ⋯ 𝑑𝑁

] × [

1 𝐿21

0 1
⋯

𝐿𝑁1

𝐿𝑁2

⋮   ⋮ ⋱ ⋮
0 0 ⋯ 1

] (2-22) 

Therefore, to impose convexity on the profit function, it is sufficient to constrain the Cholesky values 

to be non-negative (Lau, 1978). Alternatively, for positive Cholesky values, one can split the diagonal 

matrix 𝑫 evenly between 𝑳 and 𝑳′ and write the Cholesky factorisation as 𝑨 = 𝑪𝑪′, where 𝑪 is a 

lower triangular matrix with elements 𝑎𝑗𝑖 = 0 for 𝑖 < 𝑗 (Strang, 1976, p. 241). Then, estimating the 

reparametrised model with parameters in 𝑪 instead of parameters in 𝑨 yields the convex profit func-

tion. This technique is due to Wiley, Schmidt, W. H. and Bramble (1973) and was adopted to the 

estimation of cost functions by Diewert and Wales (1987). As noted by Diewert and Wales (1987), 

the procedure is equivalent to the one suggested by Lau (1978).  

For example, with three outputs or inputs, the Hessian matrix of second-order derivatives of a quad-

ratic profit function can be decomposed as 

 

𝑨 = [

𝛼11 𝛼12

𝛼12 𝛼22

𝛼13

𝛼23
𝛼13 𝛼23 𝛼33

] = [
𝛾11 0 0
𝛾12 𝛾22 0
𝛾13 𝛾23 𝛾33

] × [

𝛾11 𝛾12 𝛾13

0 𝛾22 𝛾23

0 0 𝛾33

] 

= [

𝛾11𝛾11 𝛾11𝛾12 𝛾11𝛾13

𝛾11𝛾12 (𝛾12𝛾12 + 𝛾22𝛾22) (𝛾12𝛾13 + 𝛾22𝛾23)

𝛾11𝛾13 (𝛾12𝛾13 + 𝛾22𝛾23) (𝛾13𝛾13 + 𝛾23𝛾23 + 𝛾33𝛾33)
] = 𝑪𝑪′  . 

(2-23) 

For estimation of the profit function with convexity imposed, the quadratic terms of the regression 

equation are then written as 𝑛′(𝑪𝑪′)𝑛, where 𝑛 are output or input prices (i.e., netput prices).  

The described conceptual framework and empirical methods are used in the following four empirical 

studies to examine farm-level responses to agricultural policy developments. Chapter 3 uses an in-

dex-based approach to measure productivity and profitability. Chapter 4 and 5 employ primal pro-

duction models (IDF and production functions/frontiers, respectively) while Chapter 6 applies the 

dual profit function. In all chapters, particular attention is paid to the economic consistency of the 

estimated econometric models.  
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Profitability Development and Resource Realloca-

tion: The Case of Sugar Beet Farming in Germany 

 

Abstract. Following the 2006 reform of the European Union sugar market, and in anticipation of the 

quota abolition, a reallocation of sugar production has occurred. Using a Lowe quantity index, we 

evaluate the productivity and profitability of sugar beet farming in Germany from 2004 to 2013. The 

results show that an increase in total factor productivity partly compensated for losses in terms of 

trade. Moreover, the contribution of production reallocation to sector productivity growth varied 

across regions with distinct ownership structures of sugar processing companies. These findings have 

implications for policy and industry, as it transitions to a liberalised market.  

Keywords: Beet production, Lowe index, resource reallocation, sector productivity, sugar 

market reform, terms of trade 
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* This article is published as Wimmer, S. and Sauer, J. (2020). Profitability Development and Re-

source Reallocation: The Case of Sugar Beet Farming in Germany. Journal of Agricultural Econom-

ics 71(3): 816–837 under a Creative Commons License, which permits use, distribution and repro-

duction in any medium, provided the original work is properly cited. The version of record is availa-

ble online at: https://doi.org/10.1111/1477-9552.12373. Stefan Wimmer is the main author of this 

contribution. He developed the research idea and the study design, performed the statistical analysis 

and wrote the article. Johannes Sauer improved the article with his feedback and suggestions through-

out the entire process.  
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3.1 Introduction 

The abolition of the sugar quota in 2017 constitutes a turning point for the sugar sector in the Euro-

pean Union (EU). Because the industry is now allowed to produce unlimited amounts of sugar, the 

demand for sugar beet is expected to increase, at least in the short term. On the other hand, domestic 

sugar prices are increasingly linked to world market prices, which have been far below the EU’s 

sugar price in the EU in the past. In addition, production and use of isoglucose (high-fructose corn 

syrup) as a substitute increases the economic pressure on the sugar beet industry. Therefore, questions 

arise about the EU sugar sector’s response to the new market situation without quota and whether 

sugar beet farming will remain profitable in the future. To prepare the sector for an era without quotas, 

a reform of EU sugar policies was implemented in 2006. Most importantly, minimum prices for sugar 

and sugar beets were stepwise reduced, and a voluntary restructuring scheme was introduced to buy 

back production quotas from sugar companies. The goal of the reform was to encourage less com-

petitive manufacturers to reduce production (e,g, Szajner et al., 2016). Substantial consolidation in 

the EU sugar sector has taken place with a decline in the number of sugar processing factories by 

42 % between 2005/06 and 2015/16 while the harvested area dropped by 69 % and beet production 

declined by only 30 % (CEFS, 2016). 

While increased sugar beet yields indicate productivity gains in sugar beet production, output per 

area of land is only a partial measure of productivity that ignores the use of other inputs such as seed 

or labour. Our objective is twofold. First, we evaluate changes in profitability and total factor produc-

tivity (TFP) for sugar beet production in Germany during the deregulation of the EU sugar market, 

both at the individual farm level and at the aggregate level. Second, we examine the role of delivery 

rights with respect to productivity-enhancing resource reallocation. Generally, policy reforms in-

crease sector productivity if productive activities shift from less productive firms towards more pro-

ductive ones (e.g. Eslava et al., 2004). Thus, it can be expected that resource reallocation is more 

efficient in regions where delivery rights can be effectively traded among farmers. 

To achieve these objectives, we use farm-level data for German sugar beet producers from the EU 

Farm Accountancy Data Network (FADN) for the years 2004 to 2013. We decompose profitability 

change into TFP change and changes in terms of trade (TT) using a Lowe quantity index proposed 

by O'Donnell (2012b). This index is particularly suitable to our application because it allows con-

sistent comparison across time and space. We then evaluate the contribution of average farm produc-

tivity change (within-effect) and reallocation of production between farms with distinct productivity 

levels (between-effect) on aggregate productivity growth, and test whether the contribution of the 

between-effect has increased after the 2006 reform. 

O'Donnell (2012b) applied the Lowe index to decompose agricultural profitability change into 

changes in TFP and TT using state-level data in the US. The results illustrate that declines in TT are 
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associated with increases in TFP, in line with profit-maximising behaviour of farms. More recently, 

the index has been applied by Mugera, Langemeier and Ojede (2016) to investigate sources of farm-

level profitability change in a sample of Kansas dairy farms. They find that TFP change is the main 

driver of profitability change at the farm level. The effect of market deregulation on aggregate produc-

tivity change and reallocation of activities has been studied by Frick and Sauer (2018) for the dairy 

sector. They provide evidence that abolition of milk quota contributed to a more efficient resource 

allocation across dairy farms and thus increased sector productivity. Previous studies concerned with 

sugar market liberalisation primarily analyse production and trade effects ex ante (e.g. Elobeid and 

Beghin, 2006; Frandsen, 2003; Gohin and Bureau, 2006; Poonyth, 2000). To the best of our 

knowledge, only two studies address production responses and profitability at the farm-level. For a 

sample of Belgian sugar beet farms in 2002, Buysse et al. (2007) predict that Belgian sugar beet 

production will decline by 13 % in response to the 2006 reform, reducing aggregate farm gross mar-

gins by 8 %. Bogetoft et al. (2007) show that under an efficient quota allocation, EU market liberal-

isation would lead to a 25 % decline in Danish sugar beet production while aggregate profits were 

predicted to fall by 70 %. In a different context, Wu, Devadoss and Lu, Y. (2003) study technical 

efficiency of sugar beet farms in Idaho, and Thirtle (1999) and Amadi, Piesse and Thirtle (2004) 

compute changes in TFP for sugar beet from 1954 to 1996 in the UK.  

Our article contributes to the literature in three ways. First, we investigate farm-level changes in 

profitability and productivity following the 2006 reform from an ex post perspective. Second, we 

examine the effect of deregulation in the sugar market on resource reallocation and sector productiv-

ity in beet production, which has attracted little attention in previous literature. Third, our empirical 

case of Germany provides unique insights into how the delivery relationships between farmers and 

processing factories may affect the reallocation process, because the three major sugar processing 

companies differ in their ownership structures and, as a result, have different mechanisms to allocate 

delivery rights to farmers. The results are also relevant in the larger European context, as Germany is 

one of the EU’s major sugar producers besides France, the UK and Poland, and the pace of the sec-

tor’s consolidation process has been similar to the EU-15 average (see section 2). 

The article is structured as follows. In the next section, we provide a brief description of the history 

of EU sugar policies. The economic framework in Section 3.3 describes our methods to compute 

profitability change and to decompose aggregate productivity into the within- and between-effects. 

Section 3.4 outlines the empirical framework, including the evaluation of drivers of resource reallo-

cation with a particular focus on delivery relationships. In Section 3.5, we describe the data and 

Section 3.6 presents the results. Finally, Section 3.7 discusses the results and offers implications for 

policy and industry. 
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3.2 Sugar policy in the European Union 

The EU’s common market organisation (CMO) for the sugar sector was introduced in 1968 to stabi-

lise the sugar market and to ensure living standards for EU sugar beet growers.4 Along with quanti-

tative supply restrictions imposed by a sugar quota system, support prices for producers were set at 

a level substantially higher than the world market price. The quota was subdivided into A- and B-

quota, and the minimum price for sugar beet produced for A-quota was set at a higher level than the 

minimum price for beet produced for B-quota. A-quota sugar was primarily used for domestic con-

sumption, but the remaining sugar was exported with subsidies (Poonyth, 2000). Further, out-of-

quota sugar (C-sugar) could be exported at the world market price or carried over to the following 

year. By EU legislation, the supply quota was distributed across Member States, which allocated A- 

and B-quota across processing factories. The factories, in turn, issued delivery rights to beet growers 

(Burrell et al., 2014). 

Entering into force in 1995, the Uruguay Round Agreement on Agriculture required the EU to limit 

subsidised sugar exports, while the quota system and price mechanisms remained in place (Frandsen, 

2003; Poonyth, 2000). Sugar policies remained largely unchanged despite major CAP reforms in the 

past decades. However, in 2005, the WTO ruled that C-sugar exports do not qualify as unsubsidised 

even though they were sold at world-market prices. The members of the WTO panel argued that 

minimum prices for A- and B-sugar cross-subsidises the production of C-sugar by covering the fac-

tories’ fixed costs (Burrell et al., 2014; Gohin and Bureau, 2006). As a result, the EU implemented a 

significant reform of the sugar policies in 2006.  

This reform involved the replacement of public intervention storage, the conflation of A- and B-

quotas, and the introduction of a limit on out-of-quota sugar exports. Most importantly, the minimum 

prices for white sugar and quota beet were gradually reduced by 36 % and 20 %, respectively. To 

compensate for their income loss, farmers received 64 % of the price cut as part of the single farm 

payment. Since Germany has adopted the dynamic hybrid model for implementation of the single 

payment scheme, entitlements within a region were harmonised over time. Therefore, not only beet 

growers, but also farms without sugar beet production benefited from this compensation. Further, a 

voluntary compensation system worth €5.4 billion was introduced to facilitate the restructuring of 

the sector. With this programme, the EU offered to buy back quota at fixed prices (e.g. 730 EUR/tonne 

in the marketing year 2006/07) from sugar companies that – in turn – had to compensate farmers who 

lost delivery rights following this restructuring process. Germany, for example, returned 15.2 % of 

their quota, amounting to more than 500,000 tonnes of sugar. Other countries, such as Bulgaria, 

Ireland and Latvia, ceased sugar production completely. In total, the EU sugar quota decreased from 

 
4 Council regulations No 1009/67EEC 
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17.5 to 13.3 million tonnes between 2006/07 and 2010/11 (Burrell et al., 2014). Because the EU-

wide quota reduction was sufficient to comply with WTO regulations, the Commission refrained 

from further mandatory quota cuts (Nolte, Buysse and van Huylenbroeck, 2012). Finally, supply 

quotas were prolonged in the 2006 reform until 2015 with no commitment for further renewal in the 

2006 reform. The understanding in the market was that quotas would be abolished thereafter (Burrell 

et al., 2014). 

With the 2013 CAP reform, a final decision was made to abolish the quota system in 2017, along 

with minimum prices and export restrictions, to further liberalise the EU sugar sector. Thus, while 

sugar companies were encouraged to reduce production in the 2006 reform, they are now allowed to 

increase production beyond their former quota levels. In an ex ante analysis, Nolte, Buysse and van 

Huylenbroeck (2012) forecast that EU sugar production would increase from 13.3 (excluding out-

of-quota sugar) to 15.5 million tonnes by 2019/20 without the quota system. Along with the sugar 

quota abolition, restrictions on the production of isoglucose are also repealed. The European Com-

mission estimates that isoglucose production in the EU will increase to 10 % of the sweetener market 

by 2026 (DG AGRI and JRC, 2016), which is about twice as much as before the quota abolition. 

Notwithstanding the elimination of quota, delivery rights continue to be used to coordinate the supply 

and demand of sugar beet between processing companies and beet growers. The sugar processing 

companies differ in their approaches to the issue and distribution of delivery rights due to different 

organisational forms (see below). 

Figure 3-1 illustrates price movements in the EU domestic market, compared to world market prices, 

between 2006 and 2019 as well as EU reference prices. While the 2006 EU price for white sugar was 

almost twice as high as the world market price, it dropped after implementation of the 2006 reform 

but then recovered after 2010 with an increase of the world market price. Now, EU and world market 

sugar prices are increasingly linked to each other. 

The deregulation of the sugar market had a significant impact on the structure of the EU sugar indus-

try. According to the European Association of Sugar Manufacturers (CEFS, 2016), the number of 

sugar processing factories in the EU declined from 189 in 2005/06 to 109 in 2015/16 (42 %). In the 

same period, beet production declined by 30 % from 128 million tonnes to 89 million tonnes, and 

sugar production went down by 25 %, from 20 million tonnes to 15 million tonnes (including out-

of- quota production). In Germany, the number of factories decreased by 23 %, beet production by 

11 %, and sugar production by 27 % (CEFS, 2016). 
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Figure 3-1. The EU reference price and white sugar market price, compared with the World Price 

London No. 5  

Source: Committee for the Common Organisation of Agricultural Markets, 27 February 2019. 

3.3 Economic framework 

3.3.1 Profitability and productivity 

The link between productivity and profitability is illustrated in Figure 3-2, where (aggregate) output 

is plotted against (aggregate) input. The curve through the origin and points 𝐴, 𝐵 and 𝐶 represents 

the production frontier. The points 𝐴, 𝐵 and 𝐶 represent the output-input combinations of three dif-

ferent farms (or one farm in three periods). Productivity is given by the ratio of aggregate output 𝑄 

to aggregate input 𝑋. In the present example, farm 𝐴 maximises productivity. In contrast, profitability 

is maximised where the isoprofit line is tangent to the production frontier (farm 𝐵). On the other 

hand, farm 𝐶 is both less productive and less profitable than farm 𝐵. Note that the slope of the iso-

profit line varies with the ratio of input prices to output prices: If input prices increase more than 

output prices, the slope becomes steeper, moving profit-maximising farm 𝐵 closer to the productiv-

ity-maximising point of production. 
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Figure 3-2. Productivity and profitability 

With aggregate output price 𝑃 and input price 𝑊, profitability of farm 𝑖 in period 𝑡 is defined as 

𝑃𝑅𝑂𝐹𝑖𝑡 = (𝑃𝑖𝑡𝑄𝑖𝑡) / (𝑊𝑖𝑡𝑋𝑖𝑡). Comparing the profitability of farm 𝑖 in period 𝑡 with the profitability 

of farm ℎ in period 𝑠, the profitability index is defined as (O'Donnell, 2012b): 

 
𝑃𝑅𝑂𝐹𝐼ℎ𝑠𝑖𝑡 =

𝑃𝑅𝑂𝐹𝑖𝑡

𝑃𝑅𝑂𝐹ℎ𝑠

=
𝑃𝑖𝑡𝑄𝑖𝑡

𝑊𝑖𝑡𝑋𝑖𝑡

×
𝑊ℎ𝑠𝑋ℎ𝑠

𝑃ℎ𝑠𝑄ℎ𝑠

 

=
𝑃𝐼ℎ𝑠𝑖𝑡

𝑊𝐼ℎ𝑠𝑖𝑡

×
𝑄𝐼ℎ𝑠𝑖𝑡

𝑋𝐼ℎ𝑠𝑖𝑡

= 𝑇𝑇𝐼𝑠ℎ𝑖𝑡 × 𝑇𝐹𝑃𝐼ℎ𝑠𝑖𝑡 

 (3-1) 

Equation (3-1) shows that the profitability index can be decomposed into a productivity index and an 

index for terms of trade. In our empirical application to sugar beet production, we consider one output 

(sugar beet) and multiple inputs. Therefore, only inputs have to be aggregated to calculate the TFP 

index in equation (3-1). We use a linear aggregator function that O'Donnell (2012b) attributes to 

Lowe (1822). O'Donnell (2012a) shows that in contrast to the commonly used Laspeyres, Paasche, 

Fisher and Tornqvist indices and their EKS5 counterparts, the Lowe index satisfies all economically 

relevant axioms from index number theory, including the transitivity and identity axioms. These two 

axioms guarantee that direct and indirect comparisons of two observations yield the same value 

change and that the index takes a value of one if respective outputs and inputs are unchanged between 

two observations. Therefore, the Lowe index is particularly useful for our comparisons of sugar beet 

productivity and profitability across both time and space. Conceptually, the Lowe quantity index 

consists of values for different baskets of goods, evaluated using the same set of reference prices. For 

one output (sugar beet) and multiple inputs, we obtain: 

 
5 Named after Eltetö and Köves (1964) and Szulc (1964) who computed unweighted geometric averages of 

Fisher indices to ensure transitivity. 
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𝑄𝐼ℎ𝑠𝑖𝑡 =
𝑞

𝑖𝑡

𝑞
ℎ𝑠

 

𝑋𝐼ℎ𝑠𝑖𝑡 =
𝑋(𝑥𝑖𝑡)

𝑋(𝑥ℎ𝑠)
=

𝑤0
′ 𝑥𝑖𝑡

𝑤0
′ 𝑥ℎ𝑠

 

𝑇𝐹𝑃𝐼ℎ𝑠𝑖𝑡 =
𝑄𝐼ℎ𝑠𝑖𝑡

𝑋𝐼ℎ𝑠𝑖𝑡

=
𝑞

𝑖𝑡

𝑞
ℎ𝑠

× 
𝑤0

′ 𝑥ℎ𝑠

𝑤0
′ 𝑥𝑖𝑡

 

(3-2) 

An important decision to be made is the choice of the reference prices. O'Donnell (2012b) uses sam-

ple mean values as reference prices 𝑤0 and emphasises that the chosen prices should reflect the rel-

ative importance that decision-makers place on different outputs and inputs. Mugera, Langemeier 

and Ojede (2016) use the farm with maximum TFP in a certain year as reference farm. In our analysis, 

reference prices are sample median values because of their robustness in the presence of possible 

outliers. 

3.3.2 Productivity decomposition 

As noted by Mahler (1994), rigidities in the quota market have prevented an efficient reallocation of 

beet production for a long time. To investigate if resource allocation became more efficient after the 

2006 reform, we decompose TFP following Olley and Pakes (1996) where sector productivity at time 

𝑡 is defined as an output share-weighted average of firm-level productivity. We define output share 

as the portion of sugar beet produced by an individual farm in the respective region. Given produc-

tivity (𝑇𝐹𝑃𝑖𝑡) and output share (𝜎𝑖𝑡) of farm 𝑖 at year 𝑖, sector-level productivity 𝑇𝐹𝑃𝑡  is decomposed 

as follows: 

 𝑇𝐹𝑃𝑡 = ∑𝜎𝑖𝑡𝑇𝐹𝑃𝑖𝑡 = 𝑇𝐹𝑃̅̅ ̅̅ ̅
𝑡

𝑁

𝑖=1

+ ∑(𝜎𝑖𝑡 − 𝜎̅𝑡)

𝑁

𝑖=1

(𝑇𝐹𝑃𝑖𝑡 − 𝑇𝐹𝑃̅̅ ̅̅ ̅̅
𝑡)  (3-3) 

The first term represents the unweighted mean productivity of farms in a specific year (within-effect), 

and the second term is denoted as a covariance term (between-effect). If there is no correlation be-

tween productivity and output share, the covariance term is zero and sector-level productivity is equal 

to the average, unweighted firm-level productivity. If more productive farms have a higher market 

share than less productive farms, sector-level productivity exceeds the unweighted average. On the 

other hand, if more productive farms hold a lower market share than their counterparts, sector-level 

productivity is below the unweighted average. This representation provides a straightforward way to 

derive the sources of sector productivity growth over time: changes in unweighted, average produc-

tivity describe changes generated within farms (‘within-change’), while changes in the covariance 

term reflect productivity change stemming from reallocation of market shares (‘between-change’). 

In other words, it analyses the relative contribution of growth at the farm level, e.g. due to technical 
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progress or an increase in production efficiency, and growth by reallocating production away from 

less productive towards more productive farms. 

3.4 Empirical implementation 

3.4.1 Allocation of inputs 

As usual in data from bookkeeping records, our data do not report input use for individual crops but 

aggregated over all farm outputs. Focusing on specialised sugar beet farms only – as in Wu, Devadoss 

and Lu, Y. (2003) – is not possible because farms are restricted to planting beet on no more than 30 % 

of their utilised agricultural area. To calculate TFP for an individual crop6, we need to estimate input 

allocation among individual crops. For variable inputs (crop specific inputs and other inputs), we 

employ the ‘behavioural approach’ proposed by Just et al. (1990) exploiting the fact that land allo-

cation per crop is observed in the data set.7 The underlying assumption is that farmers make decisions 

on land allocation and the ratio between variable inputs and land, while they behave as if the produc-

tion technology is characterised by constant returns to scale. They are assumed to receive and follow 

similar recommendations by, for example, extension services (in terms of ‘quantity per hectare’), and 

deviations from the average ratios are possible due to seasonal (e.g. economic or weather conditions) 

and farm-specific (e.g. soil quality and farmers’ ability or perceptions) variations.8 Thus, the total use 

of input j, which is observed in the data set, can be expressed as (Just et al., 1990): 

 𝑋𝑗𝑖𝑡 = ∑[𝑎𝑘𝑗 + 𝛽𝑗𝑖 + 𝛾𝑗𝑡] × 𝐿𝑘𝑖𝑡 + 𝜖𝑗𝑖𝑡

𝐾

𝑘=1

  , (3-4) 

where 𝑎𝑘𝑗 denotes the average use of input 𝑗 for producing the 𝑘𝑡ℎ  output, 𝛽𝑗𝑖  is the 𝑖𝑡ℎ farm’s devi-

ation, and 𝛾𝑗𝑡 captures the time effect. Furthermore, 𝐿𝑘𝑖𝑡 is the land used to produce crop 𝑘 by farm 𝑖 

in year 𝑡, and 𝜖𝑗𝑖𝑡 is the error term to account for statistical noise. After estimating (3-4) using ordinary 

least squares (OLS) regression, the allocation of input j to crop k is calculated as 

 𝑋̂𝑘𝑗𝑖𝑡 = [𝛼̂𝑘𝑗 + 𝛽̂𝑗𝑖 + 𝛾𝑗𝑡]𝐿𝑘𝑖𝑡    . (3-5) 

At this point, it must be emphasised that farm heterogeneity may cause endogeneity problems in 

input allocation equations (Carpentier and Letort, 2012). For example, farmers whose input use for 

 
6 It is more common to find crop-specific TFP measures at the aggregate level, for example in Jin et al. (2002) 

who possess data on crop-specific inputs for Chinese provinces. In the non-agricultural sector, Cherchye et al. 

(2013) and Walheer (2019) estimate product-specific productivity with observed input allocations. 
7 More recently, this approach has been applied by Serra et al. (2009)  
8 An alternative approach is to model input use as a function of input and output prices based on profit-max-

imising behaviour. This approach and its results are outlined in Appendix 2. The resulting crop-specific input 

usage shows unreasonably large standard deviations. The rigid specification ruling out substitution between 

inputs may be one reason for these econometric results. We opt for the behavioural approach because it yields 

far more reasonable crop-specific input usage (see section 5). 
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a specific crop is above the population’s average may allocate less land to this crop because it is less 

profitable to them. In this case, crop-specific input use affects land allocation, and thus the acreage 

levels in equation (3-4) would be correlated with the error term. However, if crop margins within 

farms are positively related, the heterogeneity bias does not significantly affect individual acreage 

decisions. Given the lack of valid instruments for individual acreage levels, we are not able to test 

for the potential endogeneity. We trust that the heterogeneity bias has only a limited impact on the 

results, as was also the case in the empirical application in Carpentier and Letort (2012). Neverthe-

less, this qualification must be kept in mind when interpreting the results. For fixed inputs (labour 

and capital), on the other hand, we use revenue shares from sugar beet as weights similar to Foster, 

Haltiwanger and Syverson (2008) and Collard-Wexler and Loecker (2015). With observed revenue 

shares, however, we would endogenously obtain higher values of TFP in times of low prices. There-

fore, to avoid misleading conclusions about productivity and profitability development, we calculate 

revenue shares using each farm’s average crop prices over the whole period of the study.9 

3.4.2 Drivers of resource reallocation 

The delivery relationship between beet growers and sugar processing factories differs across German 

regions. Three major sugar companies, distinguished by their ownership structure, operate sugar fac-

tories in Germany. Südzucker (henceforth company 1) and Nordzucker (company 2) are joint-stock 

companies (in German: Aktiengesellschaft) that mainly run factories in southern and northern Ger-

many, respectively. The stocks of company 1 are publicly traded and the major shareholder is a farm-

ers’ cooperative. In exchange for their capital contribution to the sugar company, the farmers hold 

delivery rights, which can be sold or lent out to other farmers. In contrast, the stocks of company 2 

are not publicly traded, and delivery rights arise only from stock possession. Finally, Pfeifer & 

Langen (company 3) is a private business that operates sugar factories in the west of Germany. Even 

though delivery rights are usually linked to agricultural land, there is no binding commitment to any 

capital contributions. From economic theory, resource allocation is most efficient if there is a free 

market for delivery rights. Thus, we expect to find productivity-enhancing reallocation primarily in 

the catchment areas of company 1 where delivery rights can be traded and of company 3 where 

delivery rights are not linked to capital contributions. 

 

 

 
9 As a robustness check, we applied the behavioural approach by Just et al. (1990) for fixed inputs as well, 

making the same assumption as for variable inputs. This procedure did not change any of the main results. 
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To explore the potentially different effect of the sugar reform in 2006 on resource reallocation, we 

regress the farm-level covariance term (𝐶𝑜𝑣𝑖𝑡 = (𝑇𝐹𝑃𝑖𝑡 − 𝑇𝐹𝑃̅̅ ̅̅ ̅̅
𝑡)(𝜎𝑖𝑡 − 𝜎̅𝑡)) on a set of explanatory 

variables, motivated by Lin, Y.-C. and Huang, T.-H. (2012) and Frick and Sauer (2018):10 

 

𝐶𝑜𝑣𝑖𝑡 = 𝛽
0
+ 𝛽

1
× 𝐶𝑜𝑣𝑖,𝑡−1 + 𝛽

2
× 𝐶𝑜𝑚𝑝1𝑖 + 𝛽

3
× 𝐶𝑜𝑚𝑝3𝑖 

+ 𝛽4 × (𝐶𝑜𝑚𝑝1𝑖 × 𝑃𝑜𝑠𝑡 − 𝑟𝑒𝑓𝑜𝑟𝑚𝑡) + 𝛽5 × (𝐶𝑜𝑚𝑝3𝑖 × 𝑃𝑜𝑠𝑡 − 𝑟𝑒𝑓𝑜𝑟𝑚𝑡) 

+𝛽6 × 𝑈𝐴𝐴𝑖𝑡 + 𝛽7 × 𝑆ℎ𝑏𝑒𝑒𝑡𝑖𝑡 + ∑ 𝛽𝑡 × 𝑌𝑒𝑎𝑟𝑡 + 𝜖𝑖𝑡

𝑡

  

(3-6) 

The dependent variable (𝐶𝑜𝑣𝑖𝑡) represents the contribution of resource allocation towards sector 

productivity for each farm observation. A higher value represents more efficient resource allocation 

(i.e. more productive farms hold a higher market share). Therefore, a positive coefficient of explana-

tory variables indicates a positive relationship with resource allocation. We include the lagged value 

of the covariance term (𝐶𝑜𝑣𝑖,𝑡−1) as explanatory variable, because we expect both productivity and 

market shares to be persistent over time due to the use of long-term delivery rights. Further, 𝐶𝑜𝑚𝑝1 

and 𝐶𝑜𝑚𝑝3 are dummy variables for the catchment areas of company 1 and company 3 (e.g. 

𝐶𝑜𝑚𝑝1 =  1 if the farm is located in the catchment area of company 1, 0 otherwise). Our primary 

interest lies in the heterogeneous effect of the 2006 market reform across the catchment areas of the 

three companies, represented by interaction terms between dummy variables for the reform (𝑃𝑜𝑠𝑡 −

𝑟𝑒𝑓𝑜𝑟𝑚 =  1 if year > 2006, 0 otherwise) and catchment areas. Company 2 is used as reference, so 

that parameters 𝛽4 and 𝛽5 capture the heterogeneous effects of the 2006 reform on productivity-en-

hancing production reallocation in the catchment areas of companies 1 and 3 in comparison to the 

catchment area of company 2. We further control for the utilised agricultural area (𝑈𝐴𝐴) as a proxy 

for farm size and for the share of farmland devoted to sugar beet production (𝑆ℎ𝑏𝑒𝑒𝑡). Finally, we 

include a set of year dummies. The 𝜖𝑖𝑡 is a composite error term, consisting of fixed effects, 𝜇𝑖, and 

idiosyncratic shocks, 𝜐𝑖𝑡. 

Using lagged values of the dependent variable as regressors induces endogeneity because the lagged 

variable is correlated with the fixed effect 𝜇𝑖 (Nickell, 1981). In addition, utilised agricultural area 

and land share of sugar beet may be endogenous in our specification, because the covariance term 

includes a performance measure (productivity). Consequently, estimating (3-6) with OLS methods 

would yield biased estimates. Arellano and Bond (1991) and Blundell and Bond (1998) designed 

GMM estimators that are particularly useful when there are no instrumental variable candidates avail-

able other than lagged values of endogenous variables (Roodman, 2009). We employ the system-

GMM approach by Blundell and Bond (1998), because it is more efficient and allows inclusion of 

time-invariant regressors, so that the linear terms of catchment areas in our model specification are 

 
10 Lin, Y.-C. and Huang, T.-H. (2012) use cross-sectoral rather than firm-level covariances. 
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not omitted. With this system-GMM procedure, the levels equation in (3-6) is simultaneously esti-

mated with its first-difference transformation, where endogenous variables are instrumented with 

first-differenced lagged variables. However, the lagged variables are only valid instruments if there 

is no autocorrelation between the idiosyncratic error terms (e.g. Roodman, 2009). To make sure that 

this is the case in our estimation, we employ the Arellano and Bond (1991) test for autocorrelation. 

Finally, we use the Sargan (1958) and Hansen (1982) tests of overidentifying restrictions to confirm 

that the used instruments are uncorrelated to the error term. 

3.5 Sample and data description 

For the empirical analysis, we use farm accountancy data for specialised crop farms in Germany 

obtained from the EU Farm Accounting Data Network (FADN) covering the years 2004 to 2013 and 

amounting to a total of 16,717 observations. In our time period, 1,940 farms produce sugar beet at 

least once. Of these farms, 87 % produce beet in every year, 12 % cease beet production and 4 % 

start beet production.11 In total, there are 8,749 farm observations with sugar beet production. The 

average yield of sugar beet varies between 57 tonnes per hectare in 2006 and 73 tonnes per hectare 

in 2011 and the yearly fluctuations are very similar to the population averages in Germany. 

Farm-level productivity and profitability of sugar beet production are calculated considering five 

inputs and their respective price indices: land, labour, capital, crop-specific inputs (seed, fertiliser 

and pesticides), and other inputs (fuel, electricity, contract work, insurance and other farming over-

heads).12 Land is measured in hectares and labour is measured in annual working hours, including 

both paid and unpaid labour. Capital usage is proxied by depreciation costs. Crop-specific inputs and 

other inputs are also measured in costs. All monetary values are deflated using agricultural price 

indices from the German statistics agency (Destatis) to obtain implicit quantities. 

The price for sugar beet is directly observed in the data set. Input price indices for crop-specific inputs 

and other inputs are computed using weighted average cost shares. The price for capital is calculated 

as the sum of the rental price of acquisition, measured by dividing the financial expenses by the debt, 

and the rate of depreciation obtained by dividing depreciation costs by the initial value of capital 

(Frahan et al., 2011). Finally, prices for land (both owned and rented) and labour (both paid and 

unpaid) are calculated as district-specific (NUTS 2) values using the farm-level data on land rental 

prices and prices for hired labour, respectively. In both cases, farm-level prices below the 5 % and 

 
11 The shares add up to slightly more than 100 because some farms seize and start again or vice versa during the study 

period. 
12 Another source of (opportunity) costs can arise from the possession of delivery rights. While they do play a role for the 

farmers in making production decisions, they are not included in our measure of productivity and profitability, which 

only considers the use (and thus cost) of physical inputs and outputs. 
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above the 95 % percentiles are not included in the calculation of regional averages to be robust 

against potential outliers. 

Summary statistics for the variables used in the analysis are provided in Table 3-1. The use of crop-

specific inputs and other variable inputs were estimated using equations (3-4) and (3-5) based on our 

entire FADN sample (n = 16,717) to exploit as much information as possible. We report the estimated 

per hectare use (implicit quantities, or constant costs, measured in EUR) of these inputs for distinct 

crop categories in Table 3-5 in the Appendix. Below this table, we present cost estimates by a con-

tribution margin calculator provided by the Bavarian State Research Center for Agriculture (LfL) for 

Bavaria. Our estimates are in line with these values, both in absolute terms and relative values across 

crop categories. We therefore trust that the estimated quantities are reliable. 

Table 3-1. Summary statistics for variables used in the analysis 

Variable Mean Std. Dev. Minimum Maximum 

Sugar beet output (tonnes) 1,172.4 1,471.9 12.0 26,892.0 

Sugar beet area 18.5 23.5 0.2 428.7 

Labour (hours) 1,141.0 1,755.2 8.1 52,405.4 

Capital (cEUR) 7,806.7 10,387.2 0.0 199,121.0 

Crop-specific inputs (cEUR) 15,625.3 19,032.7 149.0 29,4102.8 

Other variable inputs (cEUR) 11,135.7 14,623.5 88.0 28,4538.9 

Price for sugar beets (EUR/tonne) 43.7 10.4 14.8 142.0 

Rental price for land (EUR/ha) 286.9 93.0 100.8 590.3 

Price of labour (EUR/hour) 9.0 1.4 3.9 12.7 

Price of capital (EUR) 0.1 0.1 0.0 0.7 

Price index for crop-specific inputs 1.0 0.1 0.7 1.3 

Price index of other inputs 1.0 0.1 0.8 1.2 

Utilised agricultural area 258.7 480.5 3.9 5,745.5 

Share of land allocated to sugar beet 0.1 0.1 0.0 1.0 

Note: n= 8,749; cEUR is constant Euros with base year = 2010. 
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3.6 Results 

The unweighted averages of profitability and its components are presented in Table 3-2. We also 

report yield levels (tonnes per hectare land) for two reasons. First, beet output and land devoted to 

beet production are both directly observed in the data set and thus land productivity can be computed 

without estimating input allocations. Second, yield is an intuitive measure often used for benchmark-

ing by farmers and stakeholders. This measure is inconclusive because it neglects changes in the use 

of other inputs and therefore does not allow conclusions about farm performance. However, it may 

be used as approximation, and it is interesting to see whether land productivity growth is offset by an 

increased use (or cost) of other inputs. 

The profitability levels can be interpreted as quota rent, because they represent the residual profit 

after accounting for all variable and fixed inputs. Values above unity indicate that sugar beet produc-

tion values exceed sugar beet production costs. This was the case in all years except for the four years 

following the 2006 reform (i.e. 2007– 2010). The year 2008 was the least profitable year for sugar 

beet farming in Germany, with a profitability level 35.0 % ((0.911.40)/1.40) below its 2004 level. 

During the period 2004–2008, terms of trade sharply decreased at an average rate of 9.7 %, and 

recovered after 2010 along with increasing profitability levels. This observation suggests that changes 

in profitability were largely driven by changes in terms of trade during the study period. TFP, on the 

other hand, shows an increasing trend. Declines in TFP (2004–2006, 2009–2010, and 2011–2013) 

were accompanied by yield declines, illustrating the important role of land productivity in determin-

ing TFP. Overall, profitability was 15.1 % lower in 2013 compared to 2004, despite a 15.1 % growth 

in TFP, at the sample mean. 

Table 3-2. Unweighted averages of profitability, terms of trade, TFP and yield 

Year PROF TT TFP Yield (t/ha) 

2004 1.40 (0.41) 1.43 (0.27) 1.00 (0.28) 59.67 (11.55) 

2005 1.27 (0.38) 1.31 (0.26) 0.99 (0.28) 58.98 (11.41) 

2006 1.10 (0.33) 1.16 (0.21) 0.95 (0.27) 57.36 (12.84) 

2007 0.96 (0.28) 0.95 (0.20) 1.03 (0.31) 62.23 (13.14) 

2008 0.91 (0.26) 0.88 (0.20) 1.07 (0.33) 60.92 (14.18) 

2009 0.98 (0.29) 0.85 (0.21) 1.19 (0.34) 67.16 (13.36) 

2010 0.92 (0.28) 0.84 (0.21) 1.11 (0.30) 63.90 (12.96) 

2011 1.22 (0.32) 1.00 (0.19) 1.25 (0.33) 73.03 (13.42) 

2012 1.24 (0.31) 1.05 (0.20) 1.21 (0.30) 69.58 (12.00) 

2013 1.19 (0.34) 1.05 (0.22) 1.15 (0.29) 66.22 (13.71) 

Note: n = 8749; Standard deviations are in parentheses; PROF is profitability, TT is terms 

of trade, TFP is total factor productivity. 
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The changes in TFP, profitability and terms of trade are illustrated in Figure 3-3, separated by catch-

ment areas of the three sugar companies. These indices compare productivity, profitability and terms 

of trade to their respective values in 2004. Since it is not indicated in the data which factory farms 

deliver their beets to, we assume that each farm delivers beets to its nearest factory and exclude farms 

that are located at border regions.13 This reduces the sample size from 8,749 to 6,107 observations. 

The figure shows that profitability closely followed changes in terms of trade in all regions. Further, 

it is seen that increasing TFP compensated for the loss in terms of trade. In particular, the considerable 

TFP growth between 2006 and 2009 counteracted profitability losses in all regions. As a result, prof-

itability level in 2013 equals the profitability level in 2004 even though terms of trade are 20 % below 

the initial level in catchment area 1. In catchment areas 2 and 3, by contrast, sugar beet profitability 

in 2013 is about 20 % and 10 % below 2004 levels, respectively. Terms of trade, on the other hand, 

are 22 % below 2004 levels in 2013. Thus, reduced terms of trade were fully compensated by TFP 

growth in catchment area 1 and partly compensated in catchment areas 2 and 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
13 The procedure was assessed to be appropriate by experts from sugar beet farming associations. 
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Figure 3-3. Changes in total factor productivity, profitability and terms of trade by catchment areas 
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3.6.1 Sector productivity 

Table 3-3 reports levels of sector productivity, the within-effect (unweighted average sugar beet TFP) 

and the between-effect (the effect of resource allocation). The values of the average TFP are from 

Table 2. The positive values of the between-effect mean that – throughout the study period – farms 

with more productive beet production hold larger market shares than farms with lower sugar beet 

TFP. Therefore, sector TFP is above the unweighted average TFP in all years. Further, it can be seen 

that there was an increase in the between-effect in the years immediately after the 2006 reform. This 

indicates that resource allocation positively contributed towards sector productivity in these years. 

However, the value of this term is relatively unstable after the year 2009. Therefore, we cannot de-

finitively say whether resource allocation continues to be significantly more efficient in recent years. 

On average, at least, the covariance term takes higher values after 2006 compared to the years pre-

vious to the reform, providing some support for the hypothesis that the reform contributed to an 

increase in sector productivity. 

Figure 3-4 visualises the development of sector productivity, decomposed into the within-farm com-

ponent and the between-farm component, along with profitability and terms of trade. The figure un-

derlines that the contribution of the between-effect towards sector productivity became slightly more 

important after the 2006 reform, and that productivity growth worked against unfavourable price 

developments. Overall, the within-effect played a larger role in the determination of sector produc-

tivity changes than the between-effect. We investigate the contributions of the two effects over time 

in more detail in the following section, segmented by catchment areas of the three main sugar com-

panies in Germany. 

Table 3-3. Decomposition of aggregate sugar beet TFP 

Year Sector TFP Within-effect Between-effect 

2004 1.12 1.00 (89.57 %) 0.12 (10.43 %) 

2005 1.10 0.99 (90.25 %) 0.11 (9.75 %) 

2006 1.04 0.95 (91.02 %) 0.09 (8.88 %) 

2007 1.17 1.03 (88.43 %) 0.14 (11.57 %) 

2008 1.21 1.07 (88.50 %) 0.14 (11.50 %) 

2009 1.32 1.19 (90.05 %) 0.13 (9.95 %) 

2010 1.22 1.11 (91.22 %) 0.11 (8.78 %) 

2011 1.39 1.25 (90.15 %) 0.14 (9.85 %) 

2012 1.31 1.21 (92.06 %) 0.10 (7.87 %) 

2013 1.26 1.15 (91.10 %) 0.11 (8.90 %) 

Note: n = 8749; Numbers in parantheses are shares of sector productivity. 
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Figure 3-4. Productivity decomposition, terms of trade and profitability 

 

3.6.2 Reallocation and ownership structure 

To describe the association between ownership structures of sugar companies and the resource allo-

cation across sugar beet growers, we calculated the decomposition of productivity in (3-3) separately 

for farms within catchment areas of different sugar companies. Changes in sector productivity, as 

well as the contributions of the within-effect and the between-effect, are illustrated in Figure 3-5. The 

2004 value of catchment area of company 1 is used as the base value for all indices. The upper panel 

shows that sector productivity of beet growing in the catchment area of company 1 was below that 

in the areas of companies 2 and 3 throughout the data period. Comparing the three panels, it becomes 

clear that sector productivity growth was largely driven by average farm productivity growth in all 

regions. The contribution of the between effect is far less pronounced. 

The bottom panel shows that the between-effect in the catchment area of company 2 was consistently 

below that of farms in the catchment areas of the other two sugar companies, indicating that the 

contribution of resource allocation to sector productivity was lowest in the catchment area of the 

company with the least transparent market for stocks and delivery rights. In the other two regions, a 

sudden increase in the contribution of resource reallocation to sector productivity growth is observed 

after 2006, the year the sugar market reform was implemented. However, a decline in the between- 

effect occurred towards the end of the study period, especially within the catchment area of the com-

pany 3. This is surprising because it implies that more productive farms lost market shares, or that 

farms with higher market shares suddenly become less productive.  
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Figure 3-5. Contributors to sector productivity growth by catchment area 
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One possible explanation is that productivity differences between farms can vary because of produc-

tion uncertainty and weather fluctuations. Further, the data show that average TFP levels as well as 

farm-level heterogeneity in TFP were considerably lower in 2012 than in 2011, in particular for com-

pany 3, giving less scope for sector productivity gains from efficient allocation. Nevertheless, the 

results indicate that resource allocation became on average more efficient after the 2006 reform. We 

performed the sectoral analysis for profitability levels as well. The results are shown in Figure 3-6 in 

the Appendix. It is plausible that the between-effect resembles the one from the productivity decom-

position, as productivity change is, along with price changes, a component of profitability change. 

The changes in the between-effect, however, fluctuate more than those observed from the productivity 

decomposition, as they are confounded by year-to-year variations in the terms of trade.14 

The results of the system-GMM estimation for the model in (3-6), reported in Table 3-4, allow us to 

draw statistical inferences about resource allocation in sugar beet farming. Both the Sargan (1958) 

and Hansen (1982) tests of overidentifying restrictions and the Arellano and Bond (1991) test of 

second-order autocorrelation show the desired results, namely that the null hypotheses of joint valid-

ity of instruments and no autocorrelation cannot be rejected at the usual levels of significance. The 

statistically significant estimate for the lagged covariance term confirms the expected persistency of 

the farm-level between-effect. The positive estimate for company 1 indicates that resource allocation 

is on average more efficient in its catchment area compared to the catchment area of company 2, even 

though the difference is only statistically significant at the 10 % level. This difference increased after 

the 2006 reform, as indicated by the significantly positive coefficient for the interaction term between 

the post-reform dummy variable and company 1. Both the coefficient for company 3 and its interac-

tion term with the post-reform dummy are statistically insignificant. However, they are jointly sig-

nificant at the 10 % significance level (p-value = 0.066), implying that resource allocation after the 

2006 reform is more efficient in the catchment area of company 3 compared to the catchment area of 

company 2. Overall, the regression results show that the contribution of resource reallocation towards 

sector productivity growth after the 2006 reform was significantly higher in the catchment area of 

companies 1 and 3 compared to company 2. Finally, utilised agricultural area is positively related to 

the covariance term, while specialisation in sugar beet production is not statistically significant. 

 

 

 
14 Foster, Haltiwanger and Syverson (2008) compare the effects of productivity, prices and idiosyncratic de-

mand on firms’ survival in the manufacturing sector. Noting that more productive firms tend to charge lower 

prices, they use physical productivity as instrument for firm-level prices to estimate the demand function and 

derive producer-specific demand shocks. In our empirical case of sugar beet production, producers are price 

takers and demand shocks can be assumed to affect competing producers equally. Thus, we focus on cross-farm 

variation in productivity when analysing resource reallocation.  
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Table 3-4. Effect of the 2006 reform on productivity-enhancing resource reallocation 

Variable Coefficient Std. Err. z-statistic 

One-period lag of cov 0.661 *** 0.217 3.04 

Company 1 4.21E-05 * 2.40E-05 1.76 

Company 3 1.85E-05 
 

1.92E-05 0.96 

Post-reform x company 1 4.11E-05 ** 2.05E-05 2.00 

Post-reform x company 3 2.63E-05 
 

2.43E-05 1.08 

Utilized agricultural area 5.76E-07 * 3.12E-07 1.85 

Land share sugar beets 4.79E-04 
 

4.10E-04 1.17 

Year 2005 7.15E-05 *** 2.68E-05 2.66 

Year 2006 2.68E-05 
 

3.35E-05 0.80 

Year 2007 6.88E-05 *** 1.64E-05 4.20 

Year 2008 8.41E-05 *** 1.99E-05 4.23 

Year 2009 -2.89E-05 
 

2.21E-05 -1.31 

Year 2010 -7.39E-06 
 

1.01E-05 -0.73 

Year 2011 1.79E-05 
 

1.09E-05 1.64 

Year 2012 7.98E-07 
 

1.10E-05 0.07 

Year 2013 reference year 

Constant -1.77E-04 
 

1.17E-04 -1.52 

Nr. of observations 4527 
   

Nr. of farms 1045 
   

Nr. of instruments 50 
   

Wald test for overall significance 

   Chi-squared 124.63 *** 
  

   P-value 0.000 
   

Arrelano-Bond test of 2nd order autocorrelation 

   Z-statistic -0.48 
   

   P-value 0.63 
   

Sargan test of overidentifying restrictions 

   Chi squared 38.61 
   

   P-value 0.269 
   

Hansen test of overidentifying restrictions 

   Chi squared 38.37 
   

   P-value 0.278 
   

Note: ***, ** and * indicate 1 %, 5 % and 10 % significance levels, respectively. The depend-

ent variable is the covariance term, representing the between-effect on sector productivity. The 

first year of the data is omitted due to the inclusion of the lagged value of the dependent vari-

able. Catchment area of company 2 serves as reference for the policy effect. Results are ob-

tained using the Blundell and Bond (1998) estimator with fifth and higher lags of endogeneous 

variables being used as instruments. 
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3.7 Discussion and conclusion 

In this article, we examined changes in profitability and productivity of sugar beet farming in Ger-

many over a 10-year period from 2004 to 2013. We decomposed profitability of sugar beet farming 

into total factor productivity (TFP) and terms of trade effects using a Lowe quantity index that allows 

consistent comparisons across times and space (O'Donnell, 2012b, 2012a). The results show that av-

erage sugar beet profitability in Germany decreased between 2004 and 2008 due to unfavourable 

price developments and recovered after 2010. This is in line with the low EU market prices for white 

sugar in the years following the 2006 reform. From 2007 to 2010, the average production value of 

sugar beet was below production cost, underlining the importance of single farm payments, which 

were increased to compensate farmers for the losses as a consequence of a reduction in the minimum 

price. We also observe that TFP growth partly compensated losses in terms of trade. Regarding the 

magnitude of TFP growth, there are very few comparable studies in the literature on sugar beet TFP 

growth because productivity is usually measured at the farm rather than the crop level. Two excep-

tions are Thirtle (1999) and Amadi, Piesse and Thirtle (2004), who use crop-specific input data for 

sugar beet to calculate partial and TFP indices. Thirtle (1999) finds that TFP in sugar beet production 

increased by 2.7 % per year between 1954 and 1992. Amadi, Piesse and Thirtle (2004) use more 

recent data from the same data source to analyse growth rates between 1970 to 1996. According to 

their estimates, TFP growth rate in the UK was 3.39 % per annum. Both studies measure the expo-

nential growth rate, which is obtained by regressing the natural logarithm of TFP on a time trend. 

Applying this procedure to our TFP values, we obtain an annual growth rate of 2.83 % between 2004 

and 2013, which lies between the findings of Thirtle (1999) and Amadi, Piesse and Thirtle (2004). 

We further find that the contribution of production reallocation on sector productivity growth was 

rather low. This contradicts our expectation that liberalisation of the market would make resource 

reallocation more attractive. However, two mechanisms might have worked against this expectation. 

First, even though minimum prices for sugar beet were reduced, actual prices remained largely above 

the minimum, especially after 2009. Second, transaction costs for trading delivery rights quota trade 

may have hampered reallocation of production. To further investigate this, we compared three sub-

regions in Germany where the dominating sugar companies differ in the mechanisms of delivery 

rights transfer between farms. Using a system-GMM estimator to control for potential endogeneity, 

we find the productivity-enhancing effect of the reform was higher in the regions where delivery 

rights can be traded between sugar beet growers (company 1) and where delivery rights are not linked 

to capital contributions (company 3). 

In terms of implications for policy and industry, the results demonstrate how essential TFP growth is 

for maintaining beet profitability in periods of low sugar prices. As suggested by the results, a flexible 

and market-based approach to coordinate production allocation can be beneficial for aggregate TFP 
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growth. For the industry, higher aggregate beet productivity would improve the competitiveness of 

the industry if it is reflected in lower beet prices. Generally, aggregate productivity is maximised if 

delivery rights are allocated to farmers who value them the most (assuming equal prices among 

farms), e.g. via auction markets (see Bogetoft et al., 2007). However, even though policy encouraged 

farmers to give up delivery rights through the voluntary restructuring scheme, the magnitude of the 

observed gain in our empirical example is relatively small. Thus, it is not clear whether additional 

administrative costs for more effectively distributing delivery rights will actually be covered by the 

associated gains. Considering within-farm productivity growth as the main determinant of aggregate 

productivity growth during the study period, promoting research and development remains an im-

portant tool to support the sector in times without sugar quota. In this context, we must note that full-

time farm enterprises are overrepresented in the FADN data we use in our analysis. Hence, the aver-

age farm size in our sample is considerably larger than the German average. If small farms are on 

average less productive and more likely to give up or transfer delivery rights, then our results for the 

productivity-enhancing effect of the reform can be viewed as a lower bound measure. 

There are at least three avenues for future research in this area. First, the study could be extended to 

further countries, especially countries where delivery rights are more easily transferred than in Ger-

many. Second, a stronger causal linkage could be established. For instance, one could collect data 

from farms that are located at the border region of factories run by different companies and compare 

the contribution of production allocation towards sector productivity between farms that deliver to 

different companies. This could be done in a regression discontinuity framework (e.g. Hahn, Todd 

and Klaauw, 2001). Third, one could further disentangle the farm-level productivity changes into 

technical change and various measures of efficiency changes, as well as weather effects (see, e.g., 

Njuki, Bravo-Ureta, B. E. and O'Donnell, 2018). Identification of the main drivers of productivity 

and profitability changes at the farm level would provide additional insight into how the competitive-

ness of the sector can be increased. 
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Appendix 

Appendix 1: Table and Figure 

 

Table 3-5. Estimated per hectare use of variable inputs for distinct crop categories 

  

Crop-specific 

inputs (cEUR) 

Other variable 

inputs (cEUR) 

Sum  

(cEUR) Obs. 

Sugar beet 857.05 655.54 1,512.59 8,749 

 
(250.59) (266.27) (451.84) 

 
Cereals (e.g. wheat,  467.00 436.99 903.98 16,004 

   barley, grain maize) (408.05) (355.60) (692.47) 
 

Other field crops (potatoes,  526.02 393.52 919.53 13,565 

   legumes, oilseed) (357.02) (387.65) (678.60) 
 

Forage crops (e.g. corn 275.45 479.43 754.88 12,454 

   silage) (341.01) (397.25) (672.39) 
 

Vegetables, wine,  829.92 747.66 1,577.58 3,869 

   permanent crops (970.50) (1019.51) (1806.86) 
 

Total 519.91 500.34 1,020.25 16,717 

  (528.11) (565.84) (996.32)   

Note: cEUR is constant Euros with base year = 2010. Standard deviations are in parentheses. 

Variable input costs provided by LFL are: EUR 1630 for sugar beet, EUR 870 for wheat, 

EUR 2790 for potatoes, EUR 660 for peas, EUR 910 for canola, EUR 990 for corn silage; for 

the last category, it is difficult to find representative examples (as also indicated by the large 

standard deviation). Categories are based on FADN standard results. 

 

  



Sugar Beet Profitability and Reallocation | 55 

 

 

 
Figure 3-6. Contributors to sector profitability growth by catchment areas. 

Note: Decomposition obtained with 𝑃𝑅𝑂𝐹𝑡 = ∑ 𝜎𝑖𝑡𝑃𝑅𝑂𝐹𝑖𝑡 = 𝑃𝑅𝑂𝐹̅̅ ̅̅ ̅̅ ̅̅
𝑡 + ∑ (𝜎𝑖𝑡 −𝑁

𝑖=1
𝑁
𝑖=1

𝜎̅𝑡)(𝑃𝑅𝑂𝐹𝑖𝑡 − 𝑃𝑅𝑂𝐹̅̅ ̅̅ ̅̅ ̅̅
𝑡). 
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Appendix 2: Behavioural Approach for Input Allocation 

The profit maximisation approach for crop-specific input allocation relies on the assumption that 

farmers allocate variable inputs across a given amount of land in a profit-maximising way.  At the 

optimum, input prices equal the marginal products for each crop produced multiplied with by output 

price of the corresponding crop: 

 𝑊𝑗𝑖𝑡 = 𝑃𝑘𝑖𝑡
𝜕𝑓𝑘𝑖𝑡

𝜕𝑋𝑘𝑗𝑖𝑡

, 𝑘 = 1,… , 𝐾; 𝑗 = 1,… , 𝐽 (5-A1) 

Using elasticities 𝑒𝑘𝑗𝑖𝑡 = (𝜕𝑘𝑖𝑡/𝜕𝑋𝑘𝑗𝑖𝑡 × (𝑋𝑘𝑗𝑖𝑡/𝑄𝑘𝑖𝑡) , Just et al. (1990) show that the first order 

conditions can be rewritten as: 

 𝑋𝑘𝑗𝑖𝑡 =
𝑅𝑘𝑖𝑡

𝑊𝑗𝑖𝑡

× 𝑒𝑘𝑗𝑖𝑡   ,  (5-A2) 

where 𝑅 represents revenue. Letting elasticities vary across farms, crops and time, the authors derive 

the estimable form for crop-specific input allocation: 

 𝑋𝑘𝑗𝑖𝑡 = ∑[𝛼𝑘𝑗 + 𝛽𝑗𝑖 + 𝛾𝑗𝑡]

𝐾

𝑘=1

×
𝑅𝑘𝑖𝑡

𝑊𝑗𝑖𝑡

+ 𝜉𝑗𝑖𝑡   ,  (5-A3) 

where again 𝛼𝑘𝑗 denotes the crop effect, 𝛽𝑗𝑖 is the farm effect and 𝛾𝑗𝑡 is the time effect. The estimated 

parameters can then be used to calculate profit maximising crop-specific input use: 

 𝑋̂𝑘𝑗𝑖𝑡 = 𝛼̂𝑘𝑗 + 𝛽̂𝑗𝑖 + 𝛾𝑗𝑡

𝑅𝑘𝑖𝑡

𝑊𝑗𝑖𝑡

  .  (5-A4) 

Applying this method to our data, we obtain the following per hectare input use: 

Table 3-6. Estimated per hectare use using the behavioural approach 

  

Crop-specific 

inputs (cEUR) 

Other variable 

inputs (cEUR) 

Sum  

(cEUR) Obs. 

Sugar beet 1402.07 1481.19 2,883.25 8,749 

 
(450.24) (599.69) (963.66) 

 
Cereals (e.g. wheat,  384.86 326.14 711.00 16,004 

   barley, grain maize) (157.11) (204.43) (302.72) 
 

Other field crops (potatoes,  686.80 938.24 1,625.04 13,565 

   legumes, oilseed) (10996.74) (26585.12) (37406.17) 
 

Forage crops (e.g. corn 72.13 91.72 163.85 12,454 

   silage) (303.18) (362.55) (652.14) 
 

Vegetables, wine,  1237.95 1469.54 2,707.49 3,869 

   permanent crops (2332.65) (2716.19) (4595.24) 
 

Total 517.92 494.08 1,012.00 16,717 

  (581.34) (582.58) (1065.78)   

Note: cEUR is constant Euros with base year = 2010; standard deviations are in parentheses 
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Diversification Economies in Dairy Farming ‒  

Empirical Evidence from Germany  

 

Abstract. This article explores how farm size is related to economic benefits from diversification. 

Using a data set pertaining to Bavarian dairy farms (2000–2014), we estimate an input distance func-

tion (IDF) to derive cost complementarities between distinct outputs. A Bayesian estimation tech-

nique is used to improve the theoretical consistency of the IDF. The results show that small dairy 

farms are more likely to benefit from diversification between milk and livestock production, while 

larger farms tend to benefit from diversification between milk and crop production. Both managerial 

and policy implications are discussed. 

Keywords: Bayesian estimation, cost complementarities, farm diversification, input distance 

function, regularity conditions 
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4.1 Introduction 

The optimal production structure of firms in terms of size and degree of specialisation has been a 

central question in economics for decades. Especially in the agricultural sector, a significant struc-

tural change has been observed in recent years. While the number of farms in the EU-28 decreased 

by 28 per cent from 14.5 million in 2005 to 10.5 million in 2016, the average farm size increased by 

40 per cent from 11.9 to 16.6 hectares (Eurostat, 2019). This trend towards larger but fewer farms is 

often viewed critically by society. In order to slow down structural change and to support rural de-

velopment, the European Union (EU) promotes farm activities going beyond agricultural production 

such as farm tourism or direct marketing. However, the concept of diversification is not limited to 

activities taking place outside agricultural production. Since our primary interest is in structural 

change for agriculture, which is commonly defined by the number of farms and the average farm size 

expressed in utilised agricultural area, we focus on farm diversification within agricultural produc-

tion, for example the joint production of livestock products and cash crops.  

This article aims to investigate how structural change interacts with diversification economies. Spe-

cifically, we ask the question whether the pattern of diversification economies varies across farm size. 

For example, one could expect that large farms benefit from different output combinations compared 

to small farms due to labour-saving technologies or different skill requirements. If this were true, 

structural change would not only imply larger farms but also farms with different output composi-

tions. To empirically test for diversification economies, we apply a stochastic input distance function 

(IDF) to a sample of dairy farms in Bavaria, a federal state in southern Germany, distinguishing 

between four farm outputs: milk; livestock production (i.e. meat); crops; and other outputs such as 

energy production, farm tourism, or the provision of contract services. Diversification economies are 

then measured as cost complementarities between individual outputs, which are obtained from the 

estimated parameters of the IDF (Hajargasht, Coelli and Rao, 2008). We trust that the results from 

our empirical study are relevant for the entire European dairy sector, because approximately 23 per 

cent of the milk in Germany and 5 per cent of the milk in the EU-28 were produced in Bavaria in 

2017. Moreover, the number of specialised dairy farms, both in Bavaria and in the EU-28, decreased 

by an annual average rate of three per cent between 2005 and 2016 (Eurostat, 2019), indicating a 

similar pace of structural change in Bavaria and the EU average.  

Farm diversification has been widely investigated for decades. Pope (1967) described farm diversi-

fication as a portfolio problem where the optimal choice depends on the decision maker’s preference 

for risk and feasible production sets. Consistent with risk theory, Pope and Prescott (1980) found that 

wealthier farmers and corporations are more specialised. Mishra, El‐Osta and Sandretto, C. L. (2004) 

found a positive relationship between farm enterprise diversification and sole ownership, and a neg-
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ative relationship between diversification and off-farm income. Chavas and Di Falco (2012) esti-

mated the role of economies of scope as well as production risk management in diversification-re-

lated decisions at the farm-level in Ethiopia where no other insurance mechanism was available. In 

our article, we focus on cost savings through output diversification that occurs from the technological 

relationships of outputs and inputs. As shown by Chambers and Voica (2017), production decisions 

do not depend on risk preferences if off-farm income opportunities are available and functioning 

financial markets exist. These may be reasonable assumptions in the context of farms in Bavaria, 

where more than 60 per cent of farms are operated part-time. However, if the assumption of func-

tioning financial markets does not hold, risk-averse farmers may choose a different output and input 

mix than risk-neutral farmers (see, e.g., Kumbhakar, 2002). Hence, we emphasise that diversification 

can still be a strategy to reduce risk, but other opportunities such as hedging, insurance, contracting 

or the use of risk-reducing inputs also exist (Just and Pope, 2003). As discussed below, our method-

ology does not rely on the assumption of cost-minimising behaviour. 

A popular approach to empirically measure diversification benefits is estimating economies of scope 

based on a cost function approach. Economies of scope exist when costs can be saved by jointly 

producing multiple outputs (Baumol, Panzar and Willig, 1988). For example, Fernandez-Cornejo et 

al. (1992) found economies of scope between various combinations of milk, cattle, crop, and hog 

production in Germany. Wu and Prato (2006) showed that scope economies exist between crop and 

livestock production in Missouri, U.S.A., even though they are challenged by a reduction of alloca-

tive efficiency due to joint production. Melhim and Shumway (2011) found that the degree of scope 

economies decreases with farm size, implying that larger farms have fewer incentives to diversify 

their production compared to smaller farms. Studies estimating economies of scope for non-agricul-

tural sectors include Cantos and Maudos (2001), Farsi, Fetz and Filippini (2007), and Triebs et al. 

(2016). Estimating a cost function to elicit scope economies is problematic if input price data are not 

accessible or lack sufficient variation across firms. Thus, several studies that measure diversification 

economies have preferred to make use of a distance function as an alternative approach to model 

multi-output technologies. However, these studies mainly focused on output complementarities (or 

synergies), which does not consider cost-minimising input use adjustments on the farms when alter-

ing output compositions. Hence, it is only a lower-bound estimate of scope economies (Coelli and 

Fleming, 2004). For instance, Coelli and Fleming (2004) evaluated diversification economies be-

tween coffee, subsistence food and cash food production for Papua New Guinea; Morrison Paul and 

Nehring (2005) assessed the impact of output complementarities on farm performance in the United 

States; and Chavas and Di Falco (2012) found complementarities among different field crops for 

Ethiopian farms. 

 



60 | Chapter 4 

 

 

Contrary to these studies, we exploit the duality relationship between the cost function and the IDF 

to evaluate cost complementarities between distinct outputs as proposed by Hajargasht, Coelli and 

Rao (2008). To the best of our knowledge, Fleming and Lien (2009) is the only study that applies 

this method to the farm sector.15 They estimate cost complementarities in Norwegian agriculture, 

restricting the analysis to the sample mean of the data. We extend the literature by providing an in-

depth analysis of cost complementarities at the farm-level, allowing us to derive implications on the 

pattern of diversification economies across farm size and to identify farm characteristics that may 

enhance or prevent farms from operating at the optimal level of output combination. Our second 

contribution is the imposition of regularity conditions on the IDF using a Bayesian estimation frame-

work following O'Donnell and Coelli (2005), which improves its consistency to economic theory. 

This is particularly important in this application, as the derivation of cost complementarities from the 

parameters of an IDF depends on duality theory.  

The remainder of the article is organised as follows. In Section 4.2, we describe the conceptual frame-

work of diversification economies and the duality relationship between cost and IDF functions. Sec-

tion 4.3 presents the data and descriptive statistics. The empirical framework, including the imposi-

tion of regularity conditions on the IDF, is introduced in Section  4.4. The results are presented and 

discussed in Section 4.5 and Section 4.6 concludes.  

4.2 Conceptual framework 

The analysis of economies of multi-product firms has drawn a lot of attention since the seminal works 

by Baumol (1977), Willig (1979) and Baumol, Panzar and Willig (1988). These authors define econ-

omies of scope to exist when costs for a multi-output firm are lower than costs for multiple firms 

producing the same amount of output separately, i.e., 

 𝐶 (∑ 𝑞𝑚
𝑚

, 𝑤) <  ∑ 𝐶(𝑞𝑚, 𝑤)
𝑚

   , (4-1) 

where 𝐶 denotes costs, 𝑞𝑚 is the 𝑚-th output, and 𝑤 is a vector of input prices. This definition of 

economies of scope compares the production cost of diversified firms with the production cost of 

fully specialised firms. Chavas and Kim (2010) provide an extended version for the evaluation of 

economies of diversification allowing for partial specialisation and also for specialisation in a subset 

of outputs. In our paper, we focus on cost complementarities between distinct outputs, which Coelli 

et al. (2005, p. 30) call product-specific economies of scope: 

 
15 A related concept is firm flexibility, which contains the primal measure for economies of scope by Hajargasht, 

Coelli and Rao (2008) as one component (Renner, Glauben and Hockmann, 2014). The application in Renner, 

Glauben and Hockmann (2014) is to farms in Poland. 
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 𝐶𝑜𝑚𝑝𝑚𝑛 =
𝜕2𝐶(𝑞,𝑤)

𝜕𝑞𝑚𝜕𝑞𝑛
, 𝑚 ≠ 𝑛 (4-2) 

Equation (4-2) describes how the marginal costs of producing one good respond to producing an 

additional unit of another good. If this expression is negative for a specific firm, the firm experiences 

cost complementarities between outputs 𝑚 and 𝑛. As shown by Baumol, Panzar and Willig (1988, 

pp. 75-79), cost complementarities are a sufficient condition for the existence of economies of scope 

as defined by equation (4-1). They arise from the presence of public inputs that can be used for dif-

ferent production processes without additional costs, once they are acquired for the production of 

one good (e.g. managerial knowledge). Another source of scope economies is the presence of shared 

inputs (Baumol, Panzar and Willig, 1988), representing the role of fixed costs and their changes under 

alternative specialisation schemes. Thus, even without cost complementarities, economies of scope 

may exist. Nevertheless, evaluating cost complementarities in (4-2) is preferred over the direct esti-

mation of economies of scope in (4-1) in our empirical application for several reasons. First, it does 

not require evaluating the estimated function outside the data range in situations where only diversi-

fied firms are observed (e.g. Saal et al., 2013). Second, it allows the use of functional forms that 

cannot accommodate zero values, such as the popular translog function. Third, the measure in (4-2) 

can be estimated based on the first and second derivatives of the IDF following Hajargasht, Coelli 

and Rao (2008). Estimating a cost function is problematic if input price data are not accessible (e.g., 

the price of capital) or if they lack variation across firms. For the empirical case used in this study, 

national price indices are available for several inputs but no price data exists at a sub-regional or even 

at the firm-level. In fact, it is reasonable to assume that input prices do not significantly differ within 

an individual German state. Additionally, estimating the IDF does not require us to make behavioural 

assumptions such as profit maximisation or cost minimisation (e.g. Coelli et al., 2005, p. 47). We 

therefore use the duality relationship between the cost function and the IDF to recover cost comple-

mentarities defined in equation (4-2) from the IDF (Hajargasht, Coelli and Rao, 2008).  

The Shephard (1953, 1970) IDF describes the degree to which a firm can contract its input vector 

such that a given output can be produced. To define the IDF, let 𝑞 𝜖 𝑅+
𝑁 be a firm’s output vector and 

𝑥 𝜖 𝑅+
𝑁 its vector of inputs. Then, the input requirement set 𝐿(𝑞) of the production technology 𝑇 is 

given by 

 𝐿(𝑞) = {𝑥: (𝑞, 𝑥) 𝜖 𝑇} . (4-3) 

The IDF is formally represented by 

 𝐷𝐼(𝑞, 𝑥) = 𝑚𝑎𝑥 {𝜆:  
𝑥

𝜆
𝜖 𝐿(𝑞)} . (4-4) 
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In equation (4-4), λ is a scalar between 1 and infinity. Firms with λ = 1 are technically efficient, 

because they operate on the boundary of the input requirement set. If λ > 1, it is possible to produce 

the same amount of output with less input and therefore these firms are characterised as technically 

inefficient. If inputs are weakly disposable, the IDF is a perfect representation of the production 

technology (Färe and Primont, 1995). It is also reciprocal to the Farrell (1957) measure of input-

oriented technical efficiency. The duality of IDFs and cost functions relies on theoretical properties 

of the IDF. To be consistent with economic theory, it must be non-decreasing in inputs, non-increas-

ing in outputs, homogenous of degree 1 in inputs, and concave in inputs (e.g. Coelli and Perelman, 

1999; Kumbhakar et al., 2008; Hirsch et al., 2020).16 As our measurement approach depends on the 

duality principle, we put a particular focus on these regularity conditions in our empirical analysis. 

To derive an expression for the second order derivatives of the cost function from the IDF, Hajar-

gasht, Coelli and Rao (2008) use the following dual relationship: 

 𝐶(𝑞, 𝑤) = 𝑚𝑖𝑛{𝑤′𝑥: 𝐷𝐼(𝑥, 𝑞) ≥ 1} (4-5) 

Making use of Shephard’s (1953) lemma (𝑥 = 𝐶𝑤(𝑞, 𝑤)) and the envelope theorem, Hajargasht, 

Coelli and Rao (2008) show that the matrix of cost function second order derivatives, 𝐶𝑞𝑞, is given 

by 

 𝐶𝑞𝑞 = 𝐶{𝐷𝑞𝐷𝑞
′ − 𝐷𝑞𝑞 + 𝐷𝑞𝑥[𝐷𝑥𝑥 + 𝐷𝑥𝐷𝑥

′ ]−1𝐷𝑞𝑥}   , (4-6) 

where 𝐷𝑥 and 𝐷𝑞 are vectors of first derivatives with respect to 𝑥 and 𝑞, respectively, and 𝐷𝑞𝑥, 𝐷𝑥𝑥, 

and 𝐷𝑞𝑞 are matrices of second-order derivatives. In conjunction with equation (4-2), cost comple-

mentarities between outputs 𝑚 and 𝑛 exist if   

 

1

𝐶
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⋮
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< 0,𝑚 ≠ 𝑛   , 

(4-7) 

where 𝐾 is the number of inputs. It is worth emphasising that the second order partial derivatives of 

the distance function with respect to two distinct outputs are interpreted as diversification economies 

or output synergies by Coelli and Fleming (2004) to differentiate from scope economies. While the 

 
16 Quasi-concavity in outputs is also often listed as regularity condition of the IDF.  However, while concavity 

in inputs is derived from the convexity of the input requirement set, quasi-concavity is derived from the con-

vexity of the producible output set (e.g. Nemoto and Furumatsu, 2014). The latter is not necessarily assumed 

in our sample of dairy farms, nor is it assumed for the derivation of the dual measure of economies of scope in 

Hajargasht, Coelli and Rao (2008).  
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simple measure of the second-order derivative assumes the input mix to be fixed (Coelli and Fleming, 

2004), the expression in (4-7) allows variable inputs to be adjusted to the cost-minimising input mix.  

4.3 Sample and descriptive statistics 

Accounting data for farms located in Bavaria, a federal state in the southeast of Germany, were ob-

tained from the Bavarian State Research Centre for Agriculture for the years 2000–2014. These data 

are annually collected based on a rotating sample consisting of commercial farms as part of the Ger-

man contribution to the EU Farm Accountancy Data Network. To ensure that the sample is repre-

sentative for commercial agricultural holdings, it is stratified according to region, type of specialisa-

tion and economic size. Following Kellermann and Salhofer (2014) and Frick and Sauer (2018), we 

consider dairy farms as farms that obtained at least two-thirds of total revenue from dairy production 

and more than two-thirds thereof from milk sales at the yearly average. This ensures a rather homog-

enous technology for the econometric estimation of the IDF but still provides a considerable range 

of farming activities for the evaluation of diversification economies. Farms with no more than two 

consecutive observations are dismissed to properly account for farm heterogeneity in the empirical 

estimation. Finally, 24 farm observations were identified by the BACON algorithm (Billor, Hadi and 

Velleman, 2000), which detects outliers in multivariate data based on Mahalanobis distances (Weber, 

S., 2010). Farms with at least one outlier appearance were dismissed from the sample, as well as 

farms with less than five cows or less than five hectares to exclude “hobby” farms. The resulting 

(unbalanced) panel dataset consists of 1,647 farms and a total of 18,772 observations. Figure 4-1 

illustrates farm-level revenue shares of different production activities over the whole data period. 

Milk production accounted for the major portion of farm revenue with a 70.9 per cent share, on 

average. Livestock sales intrinsically linked to milk production (mainly calves and old dairy cows) 

and revenue from downstream fattening of cattle contributed 15.4 per cent and 4.4 per cent of total 

farm revenue, respectively. A very small portion of farms were also engaged in the production of 

other animals such as hogs or chickens, but their contribution to total farm revenue was almost zero 

(0.8 per cent). Even though nearly half of the farms produced crops for sale, their revenue contribu-

tion was also rather small. On average, crop sales accounted for 3.5 per cent of total revenue. Finally, 

all other outputs – including the provision of services, tourism, or electricity – contributed to about 

5.0 per cent of total farm revenue, on average.  
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Figure 4-1. Farm-level revenue shares from different outputs (2000–2014) 

 

For the estimation of the empirical model, we aggregated the outputs into four main groups: milk 

production (𝑄1), livestock production (𝑄2), crop production for sale (𝑄3) and other output (𝑄4). 

Inputs were aggregated into five categories. Land (𝑋1) is measured in hectares of utilised agricultural 

area. Labour (𝑋2) reflects the number of annual working units. Intermediate inputs (𝑋3) capture 

expenses on animal-specific inputs (e.g., feed and veterinary inputs), crop-specific inputs (e.g., seed, 

fertiliser, pesticides, and other crop material), and other inputs such as electricity, fuel, or heating 

material. Cows (𝑋4) represent the yearly average number of dairy cows on the farm. Finally, capital 

(𝑋5) is proxied by depreciation costs (e.g. Sauer and Latacz-Lohmann, 2015; Mennig and Sauer, 

2020). All outputs and monetary inputs are measured in terms of revenues or expenses, respectively, 

deflated by their specific nationwide price indices from the Destatis database with 2010 being used 

as the base year. This way, we obtain implicit quantities, which also reflect quality differences. As 

discussed in Reinhard, Lovell and Thijssen (1999), dividing the revenue (or expenses) by price indi-

ces, which do not vary across farms, cancels out price differences that result from variations in qual-

ity. This is particularly important in milk production, as the farm-gate milk price varies according to 

fat and protein content of the milk. The summary statistics of all variables used in the analysis – 

including farm and farmers' specific characteristics – are presented in Table 4-1. 

 

 

 

      Milk        Dairy        Cattle         Other       Crops       Other 

                    w/o milk                    Livestock                    output 
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Table 4-1. Summary statistics for variables used in the analysis 

Variables Unit Mean St. Dev. Min Max 

Milk 1,000 c€ 84.76   50.91 0.34 599.02 

Livestock 1,000 c€ 22.90 14.78 0.28 276.93 

Crops 1,000 c€ 5.22 11.10 0.00 156.67 

Other output 1,000 c€ 3.27 6.02 0.00 367.11 

Land ha 44.63 25.23 5.56 291.77 

Labour AWU 1.57 0.46 0.25 4.97 

Interm. inputs 1,000 c€ 45.69 26.95 4.20 284.70 

Cows Amount 38.00 18.27 5.00 182.24 

Capital 1,000 c€ 25.18 16.76 0.01 152.06 

Farmer’s age  48.55 9.69 19.00 92.00 

Higher educ. 1 if farmer has higher agricul-

tural education (master crafts-

man diploma or university de-

gree), 0 otherwise 

0.27 0.45 0.00 1.00 

Full-time 1 if farm is operated full-time, 0 

otherwise 

0.95 0.22 0.00 1.00 

Rev. share milk Percentage 0.71 0.11 0.01 0.99 

Rev. share live-

stock 

Percentage 0.21 0.08 0.01 0.84 

Rev. share crops Percentage 0.04 0.06 0.00 0.65 

Rev. share other 

outputs 

Percentage 0.05 0.07 0.00 0.68 

Share grassland Percentage 0.58 0.29 0.00 1.00 

Avg. field size ha 3.70 3.28 0.01 71.49 

n = 18,772 

Note: c€ = constant Euros (2010), ha = hectares, AWU = annual working units 

4.4 Empirical framework 

4.4.1 Estimation of input distance function 

To empirically estimate the IDF in a parametric framework, it has to be transformed, since the dis-

tance 𝐷𝐼 is not observable. Following Lovell et al. (1994), we normalise 𝐷𝐼 by one of the inputs to 

impose linear homogeneity with respect to inputs as required by economic theory. Homogeneity im-

plies that 𝐷𝐼(𝑞, 𝜔𝑥) = 𝜔𝐷𝐼(𝑞, 𝑥) for any 𝜔 > 0. Using land (𝑥1) as normalising factor and setting 

𝜔 = 1/𝑥1 yields 𝐷𝐼 (𝑞,
𝑥

𝑥1
) = 𝐷𝐼(𝑞, 𝑥)/𝑥1. For the translog functional form with four outputs 𝑞 and 

five inputs 𝑥, this implies  
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𝑡=2001

𝑦𝑒𝑎𝑟𝑡 = 𝑇𝐿(∙)   , 

(4-8) 

where subscripts 𝑖 and 𝑡 denote farm and time. In addition to input and output variables, we control 

for farm and farmers’ specific characteristics (age, education, whether or not the farm is operated 

full-time, and agro-ecological zones to reflect differences in soil quality) in the vector 𝑟 and for year-

specific effects in the dummy variables 𝑦𝑒𝑎𝑟𝑡. The coefficients 𝛼, 𝛽, 𝛾, 𝜁 and 𝛿 are parameters to be 

estimated. Because of its logarithmic form, equation (4-8) can be rearranged to the estimable form 

 −𝑙𝑛 𝑥1𝑖𝑡 = 𝑇𝐿(∙) − 𝑢𝑖𝑡 + 𝑣𝑖𝑡   , (4-9) 

where 𝑣𝑖𝑡 is an independently and identically distributed error term with a mean of zero and a vari-

ance of 𝜎𝑣
2, and 𝑢𝑖𝑡 = ln𝐷𝑖𝑡

𝐼  is a one-sided error term that is also independently and identically dis-

tributed but truncated at the mean to reflect inefficiency. The standard error term 𝑣𝑖𝑡 captures omitted 

variables (such as weather influences), measurement errors, and functional form errors. To allow 

firm-specific technical inefficiency to vary over time, we adopt the approach proposed by Battese and 

Coelli (1992) by modelling 𝑢𝑖𝑡 = (𝑢𝑖 exp(−𝜂(𝑡 − 𝑇))), where 𝜂 is another parameter to be esti-

mated.  

The translog functional form is widely used in the estimation of Shephard distance functions because 

of its flexibility and the ease of the imposition of homogeneity (see, e.g., Coelli and Perelman, 2000; 

Plastina and Lence, 2018; Hirsch et al., 2020).17 A significant drawback is that it cannot accommodate 

zero values in any of the output and input variables. While evaluating cost complementarities does 

not require plugging in zero values into the estimated distance function (see also Saal et al., 2013), 

there are farms in our sample that do not produce all of the four outputs. To facilitate the logarithmic 

transformation, some studies replace zero values with arbitrarily small positive values (e.g. Morrison 

Paul, Johnston, W. E. and Frengley, 2000). Battese (1997) argues that this procedure causes biased 

estimates if there is a significant number of observations with zero values and proposes the inclusion 

of dummy variables indicating whether a specific variable is zero or greater than zero. We follow this 

approach and define 𝑑𝑐𝑟𝑜𝑝𝑠 =  0 if 𝑦𝑐𝑟𝑜𝑝𝑠 >  0 and 𝑑𝑐𝑟𝑜𝑝𝑠 = 1 if 𝑦𝑐𝑟𝑜𝑝𝑠 =  0. The logarithm of crop 

 
17 The quadratic functional form, by contrast, permits the imposition of the translation property and is therefore 

preferred for the directional distance function defined by Chambers, Chung and Färe (1996, 1998). A compar-

ison between a translog Shephard (1953, 1970) distance function and a quadratic directional distance function 

is provided in Färe, Martins-Filho and Vardanyan (2010). 
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output is then constructed as ln 𝑞𝑐𝑟𝑜𝑝𝑠 = ln(𝑚𝑎𝑥(𝑞𝑐𝑟𝑜𝑝𝑠, 𝑑𝑐𝑟𝑜𝑝𝑠)). The same method is applied to 

the output category of other output. Recent applications of this approach include Villano et al. (2015) 

and Katuwal, Calkin and Hand (2016) for estimating stochastic frontiers and Rasmussen (2010) and 

Qushim et al. (2018) for estimating IDFs.18 

4.4.2 Bayesian estimation technique 

To empirically estimate the IDF in (4-9), we selected a Bayesian framework for two reasons: First, 

the dual measure of economies of scope as defined in equation (4-7) is a complex non-linear function 

of the estimated parameters of the IDF. The Bayesian approach provides a more convenient way to 

compute standard deviations for the resulting scope measures compared to the frequentist approach, 

as it allows us calculating credibility intervals based on the results from numerous successive draws 

from the posterior distribution. Second, the Bayesian approach offers an intuitively appealing method 

to impose regularity conditions on a translog IDF without sacrificing the flexibility of the functional 

form (O'Donnell and Coelli, 2005). We adopt a stochastic frontier model with farm-specific individ-

ual effects as described in Koop (2003). Following this approach, we use independent Normal-

Gamma priors for the coefficients of the IDF and a hierarchical prior for the inefficiencies. The inef-

ficiency parameter follows an exponential distribution. For a more rigorous explanation of the priors 

used, please refer to Koop (2003, p. 170). The likelihood function depends on distributional assump-

tions for the error terms. In the following, 𝑇𝑖 denotes the number of observations for the i-th farm to 

account for the unbalanced panel data set, 𝜄𝑇 is a T-vector of ones, and ℎ is the error precision 1/𝜎2. 

The standard error assumptions are: 𝑣𝑖 is normally distributed around 0𝑇 with the covariance ma-

trix ℎ−1𝐼𝑇; 𝑣𝑖 and 𝑣𝑗 are independent for 𝑖 ≠ j, and all variables are independent of the error terms. 

In the stochastic frontier model, it is further assumed that 𝑢𝑖 and 𝑣𝑗 are independent of each other for 

all 𝑖 and 𝑗. These assumptions imply the likelihood function  

 𝑝(𝑌|𝛽, ℎ, 𝑢) =  ∏
ℎ

𝑇𝑖
2

(2𝜋)
𝑇𝑖
2

𝑁

𝑖=1

 {𝑒𝑥𝑝 [−
ℎ

2
(𝑦𝑖 − 𝑋𝑖𝛽 + 𝑢𝑖𝜄𝑇)′(𝑦𝑖 − 𝑋𝑖𝛽 + 𝑢𝑖𝜄𝑇)]}   , (4-10) 

where the dependent variable is represented by 𝑌, 𝑋 is the vector of independent variables, and 𝛽 is 

the vector of unknown parameters to be estimated. Statistical inference about the marginal posterior 

distributions of 𝛽 is made by repeatedly drawing sample observations from the posterior distribution 

𝑝(𝛽|𝑌) using MCMC based methods. A burn-in period of 5,000 replications followed by 10,000 

sampling replications proved to be sufficient for model convergence and provided consistent esti-

mates for the parameters of interest.  

 
18 We also estimated the IDF for the subsample of farms producing all four outputs and found that the estimated 

parameters and corresponding elasticities are very similar. The results are available from the authors upon re-

quest.  
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In the unrestricted model, we make use of the basic Gibbs sampler, a sampling algorithm that draws 

from the joint posterior density by sampling from a series of conditional posteriors  (see Gelfand and 

Smith, A. F. M. (1990) for a detailed explanation). In the restricted version of the model, we employ 

a Metropolis-Hastings algorithm that assigns zero weights to all likelihood values for proposed vec-

tors of parameters where the monotonicity or curvature conditions are violated as described in 

O'Donnell and Coelli (2005). To be non-increasing (non-decreasing) in outputs (inputs), the first or-

dinary derivatives of the translog IDF have to be non-positive (non-negative): 
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For the function to be concave in x, the following Hessian matrix must be negative-semidefinite: 
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𝛿𝑘𝑙 = 1 𝑖𝑓 𝑘 = 𝑙, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

(4-13) 

In the estimation procedure, we impose concavity by restricting the 𝑘𝑡ℎ-order principle minors (a 

total number of 31) of the Hessian matrix to be non-positive for k odd and non-negative for k even 

(Simon and Blume, 1994, p. 514). Note that the functional form is an approximation to the unknown 

true functional form that has been chosen because of its flexibility. If inputs and outputs are weakly 

disposable, the true functional form cannot be translog, because the translog IDF is never globally 

non-decreasing in inputs and non-increasing in outputs.19 Therefore, to maintain the flexibility of the 

function, we impose regularity on selected representative data points only. Ryan and Wales (2000) 

argue that imposing constraints on an appropriate reference point can lead to a satisfaction of the 

regularity conditions at most data points in the sample. When imposing the conditions on the sample 

mean of each variable, we observed only a minor improvement in the adherence to the regularity 

conditions. Motivated by Griffiths, W. E., O'Donnell and Cruz (2000), who imposed the regularity 

conditions on 23 representative price points in a cost function framework, we then chose to divide 

 
19 For a translog function to globally satisfy curvature and monotonicity, it must reduce to a Cobb-Douglas 

function. 
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each input and output variable into their nine data deciles. This choice proved computationally fea-

sible, maintained the flexibility of the functional form, and resulted in considerable improvement to 

the amount of farm observations satisfying regularity conditions. The procedure was empirically im-

plemented based on Griffin and Steel, M. F. J. (2007) using the rjags package of the statistical soft-

ware R (Plummer, Stukalov and Denwood, 2019).  

4.4.3 Endogeneity in distance functions 

Concerns have been raised in the literature regarding performing an unbiased estimation of distance 

functions – or stochastic frontiers in general – since the explanatory variables could be correlated 

with the error terms 𝑢 and 𝑣. As noted above, the economic formulation of distance functions does 

not rely on behavioural assumptions. Econometrically, however, we have to consider that some var-

iables may be endogenous. In the estimable form of the IDF (equation (4-9)), input ratios and output 

levels appear as regressors. Therefore, when estimating the IDF, it is often assumed that outputs are 

predetermined and firms chose inputs to minimise costs (e.g. Renner, Glauben and Hockmann, 2014 

in the agricultural sector). In this case, outputs are exogenous and inputs are endogenous. The ratios 

of inputs, on the other hand, are exogenous if allocative inefficiencies do not exist (Kumbhakar, 2013; 

Sipiläinen, Kumbhakar and Lien, 2014; Tsionas, Kumbhakar and Malikov, 2015).20 For example, 

Tsionas, Kumbhakar and Malikov (2015) demonstrate that input demand functions are functions of 

input price ratios and outputs, which are both exogenous under cost minimisation, and that input 

ratios are affected neither by the inefficiency term nor by stochastic productivity shocks. This result 

is in line with earlier studies by Schmidt, P. (1988) and Mundlak (1996) who argue that input ratios 

are exogenous even under expected profit maximisation (see also Brümmer, Glauben and Thijssen, 

2002). Sipiläinen, Kumbhakar and Lien (2014) further demonstrate that even without making any 

behavioural assumptions, ratios of assumingly endogenous variables are not endogenous if they are 

affected by 𝑢 and 𝑣 in the same way. Output levels, on the other hand, may be considered exogenous 

if they are limited by a production quota (Kumbhakar, 2013), as it was the case for the main output 

(milk) during the data period of our empirical application. This argument has been used in Frahan et 

al. (2011) for the use of a cost function to represent the production technology of dairy farms, for 

example. Contrary to many previous studies, we do not want to rely on the assumption of cost mini-

mising behaviour in the estimation of the IDF, especially given risk considerations in the choice of 

the output portfolio, as discussed above. Moreover,  Kumbhakar (2013) argues that results from IDF 

models may be biased if the inefficiency term 𝑢 reflects management skills which are known by the 

 
20 In the presence of allocative inefficiencies, the authors state that input ratios are not exogenous. However, 

allocative efficiency is implicitly assumed in the derivation of cost complementarities from the IDF in Hajar-

gasht, Coelli and Rao (2008). 
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producer but unknown to the econometrician. In this case, input and output quantities would be cor-

related with 𝑢 and the results would suffer from simultaneity bias. Therefore, we check for endoge-

neity in the estimation of the IDF by following Griffiths, W. E. and Hajargasht (2016) who propose 

Bayesian estimation tools for dealing with endogeneity in stochastic frontier models.21 Specifically, 

the inefficiency term is transformed so that it takes a lognormal distribution, which is then explained 

by time-invariant farm averages of outputs and input ratios denoted by the vectors 𝑞̅ and 𝑥̅̃, respec-

tively: 

 𝐻(𝑢𝑖) = 𝜌0 + 𝜌𝑞𝑞̅𝑖 + 𝜌𝑥̃ 𝑥̅̃𝑖 + 𝑒𝑖 (4-14) 

The error term 𝑒𝑖 is assumed to satisfy 𝑒𝑖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜆2) and 𝐻(𝑢𝑖) = ln(𝑢𝑖) ensures that 𝑢𝑖 has a 

lognormal distribution. As such, the model is an extension of the Mundlak (1978) random effects 

model with correlated effects, which has been more recently used to account for endogeneity by 

Chavas and Di Falco (2012), for example. In our application, the posterior standard deviations for 

the parameters 𝜌𝑞 and 𝜌𝑥̃ are quite large compared to their posterior means (see Table 4-7 in the 

Appendix), which points towards exogenous regressors (Griffiths, W. E. and Hajargasht, 2016). 

Hence, we conclude that the distance function can be estimated using conventional stochastic frontier 

techniques as, for example, in Renner, Glauben and Hockmann (2014), Hailu and James Deaton 

(2016), and Plastina and Lence (2018).22 

4.4.4 Explaining cost complementarities 

After estimating cost complementarities for each farm observation using equation (4-7), we explore 

their relationship to selected farm-specific factors. We are particularly interested in the effect of farm 

size in order to assess how the structural change towards larger farms affects diversification econo-

mies. Farm size (𝑠𝑖𝑧𝑒) is proxied with the number of dairy cows. We further control for the degree 

of specialisation (𝑠𝑝𝑒𝑐), since highly specialised farms are likely to benefit more from increasing the 

level of diversification compared to farms that are already diversified. When explaining cost com-

plementarities between milk and livestock, we use the revenue share of milk as a proxy for speciali-

sation. For the output pairs milk-crops and milk-other output, we use the share of the second output 

 
21 Other strategies to deal with endogeneity in stochastic frontier analysis include estimation of equation sys-

tems using GMM techniques (Kumbhakar, Asche and Tveteras, 2013), Cholesky decomposition of the error 

term (Kutlu, 2010; Tran and Tsionas, 2013) or use of the copula formula (Amsler, Prokhorov and Schmidt, P., 

2016). The advantages and disadvantages of each of them are discussed in Orea and Zofío (2017).  
22 Plastina and Lence (2018) develop a four-equation system that consists of the IDF and instrumented input 

quantity ratios to account for possible endogeneity. Consistent with our results, they find that cross-equation 

correlations are of minor importance and continue the analysis with the results from the single-equation IDF 

model. 
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to avoid misconceptions about its importance in the output portfolio.23 Additional explanatory vari-

ables are the share of grassland (𝑠ℎ𝑔𝑟𝑎𝑠𝑠), average field size (𝑓𝑖𝑒𝑙𝑑𝑠𝑖𝑧𝑒), the farmer’s age (𝑎𝑔𝑒), 

and two dummy variables indicating whether the farmer has a higher agricultural education24 (𝑒𝑑𝑢𝑐) 

and whether the farm is operated full-time (𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒). Finally, a time variable (𝑡𝑖𝑚𝑒) is included to 

test whether farms approached a more optimal level of diversification over time. Thus, the equation 

to be estimated takes the following form: 

 

𝑐𝑜𝑚𝑝𝑚𝑛 = 𝜑0 + 𝜑1 𝑠𝑖𝑧𝑒 + 𝜑2 𝑠𝑖𝑧𝑒
2 + 𝜑3 𝑠𝑝𝑒𝑐 + 𝜑4 𝑠ℎ𝑔𝑟𝑎𝑠𝑠

+ 𝜑5 𝑓𝑖𝑒𝑙𝑑𝑠𝑖𝑧𝑒 + 𝜑6 𝑎𝑔𝑒 + 𝜑7 𝑒𝑑𝑢𝑐 + 𝜑8 𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒

+ 𝜑9𝑡𝑖𝑚𝑒 + 𝜖, 𝑚 ≠ 𝑛 

(4-15) 

where 𝑐𝑜𝑚𝑝𝑚𝑛 denotes complementarity between two distinct outputs 𝑚 and 𝑛, 𝜑s are parameters 

to be estimated and 𝜖 is the error term. Time and farm subscripts have been omitted to avoid nota-

tional clutter. Equation (4-15) is estimated as fixed effects model to account for time-invariant unob-

served variables. Nevertheless, farm size and level of diversification may be endogenous, since they 

are likely chosen by the farmer in response to experienced cost complementarities. If this were true, 

the error term would be correlated with these variables and OLS regression would yield biased pa-

rameter estimates. Therefore, we follow Hirsch et al. (2020) and examine which of these variables 

are indeed endogenous by applying the Davidson and Mackinnon (1993) test for exogeneity, an aug-

mented Durbin-Wu-Hausman test. Exogeneity is tested by regressing potentially endogenous varia-

bles on all exogenous variables. Then, the residual is included in the regression of the original model. 

If the parameter estimate of the residual is statistically significant, the null hypothesis of exogeneity 

is rejected. In this case, we use time lags of the identified endogenous variables as instruments in a 

two-stage least squares fixed effects instrumental variable (IV-FE) regression. To make sure that the 

lagged variables are valid instruments, we assess whether the instruments are orthogonal to the errors 

using the Sargan-Hansen test of over-identifying restrictions (Sargan, 1958; Hansen, 1982). The rel-

evance of the instruments is evaluated using the minimum eigenvalue statistic (Cragg and Donald, 

1993). To obtain heteroscedasticity-robust estimates, standard errors are clustered at the farm level. 

4.5 Results and discussion 

4.5.1 Input distance function and regularity 

Prior to estimation of the IDF, all inputs and outputs have been divided by their means so that first-

order coefficients can be interpreted as elasticities at the sample mean. Table 4-6 in the Appendix 

presents the posterior means and 95 per cent credibility intervals for the IDF parameters obtained 

 
23 For example, the revenue share of milk could be relatively low even if the share of the other output (e.g. 

crops) is also low, if the farm produces a larger share of livestock or other outputs. 
24 i.e., a master craftsman diploma or university degree 
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from Bayesian MCMC simulation for both the unrestricted and the restricted model. The land varia-

ble is used as numeraire, and parameters for variables containing the numeraire are recovered after 

the estimation by making use of the homogeneity conditions as outlined in Coelli and Perelman 

(1999), for example. The posterior means of the first-order coefficients show the expected signs and 

the parameter estimates only marginally differ between the unrestricted and restricted model: a one-

per cent-increase in milk production decreases the distance to the efficient border by 0.49 per cent in 

both the unrestricted and restricted model at the sample mean, all other variables being held constant. 

With respect to inputs, a one per cent-increase in land (𝑥1), for example, is associated with a 0.21 per 

cent increase in the distance in both models. The main differences between the restricted and the 

unrestricted model are visible in the input cross terms – especially in the squared terms of land and 

cows, respectively – and in the interaction term between land and labour. In both models, technical 

efficiency is around 0.75 at the sample mean, indicating that – holding input use constant – the aver-

age farm could increase output by 25 per cent if it was fully efficient. Finally, the technology shows 

increasing returns to scale (RTS = 1.81) at the sample mean. The magnitude is similar to other studies 

evaluating economies of scale based on IDFs. For example, Atsbeha, Kristofersson and Rickertsen 

(2012) report RTS = 1.57 for a sample of Icelandic dairy farms and Sipiläinen, Kumbhakar and Lien 

(2014) find RTS = 1.51 for Norwegian and RTS = 1.71 for Finnish dairy farms. Moreover, Nehring 

et al. (2009) estimate scale elasticities (the inverse of our measure of RTS) of 0.65 (i.e., RTS = 1.54) 

for conventional and 0.44 (i.e., RTS = 2.27) for pasture-based dairy farms at the sample mean. For 

German dairy farms, and using output distance functions, Brümmer, Glauben and Thijssen (2002) 

find slightly increasing returns to scale (RTS=1.08) and Skevas, Emvalomatis and Brümmer (2018) 

slightly decreasing returns to scale (RTS=0.88). While RTS in our study are considerably higher, it 

must be noted that dairy farms in our Bavarian sample are considerably smaller than the German 

average. For example, dairy farms in Skevas, Emvalomatis and Brümmer (2018) produce 42 per cent 

more milk than farms in our sample.  

The descriptive statistics of farm-level distance elasticities with respect to outputs and inputs are 

displayed in Table 4-2, along with the percentage of regularity violations of monotonicity and con-

cavity. Recall that in the restricted model, the regularity conditions have not been imposed at all 

observations but only at the sample mean and nine data quantiles to maintain the flexibility of the 

function. While the violations of the monotonicity condition are quite similar between the two mod-

els, there is a substantial improvement in the curvature of the function: the share of data points where 

the function is not concave in inputs decreases from 28 per cent in the unrestricted model to 6 per 

cent in the restricted one. In total, imposing regularity conditions on the IDF cuts the share of obser-

vations inconsistent with economic theory in half, from 40 per cent to 19 per cent. The similarity of 

the parameters and elasticities in the unrestricted and restricted version of the model indicate that the 
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imposed regularity conditions are true and that duality results can be used to recover cost comple-

mentarities from the parameter estimates of the IDF. In the following, we therefore discuss the results 

from the restricted model only.  

Table 4-2. Farm-level elasticities of the input distance function and regularity violations 

  
Unrestricted Model 

    Mean Std. Dev. Min Max Vio (%) 

Monotonicity in outputs 15.52 % 

 
Milk -0.4878 0.0560 -0.7102 0.1380 0.01 % 

 
Livestock -0.0414 0.0187 -0.2185 0.0462 1.62 % 

 
Crops -0.0136 0.0050 -0.0343 0.0217 2.64 % 

 
Other output -0.0032 0.0029 -0.0168 0.0143 13.20 % 

Monotonicity in inputs 2.56 % 

 
Land 0.2023 0.0349 -0.0973 0.3228 0.01 % 

 
Labour 0.1786 0.0436 0.0133 0.5029 0.00 % 

 
Intermediates 0.1853 0.0272 0.0301 0.3021 0.00 % 

 
Cows 0.4204 0.0277 0.2238 0.5780 0.00 % 

 
Capital 0.0134 0.0065 -0.0444 0.0430 2.55 % 

Concavity in inputs 28.36 % 

Total violations 40.41 % 

  
Restricted Model 

    Mean Std. Dev. Min Max Vio (%) 

Monotonicity in outputs 14.07 % 

 
Milk -0.4881 0.0555 -0.7110 0.1410 0.01 % 

 
Livestock -0.0415 0.0202 -0.2293 0.0526 2.08 % 

 
Crops -0.0134 0.0051 -0.0361 0.0206 2.63 % 

 
Other output -0.0036 0.0027 -0.0209 0.0123 10.40 % 

Monotonicity in inputs 0.58 % 

 
Land 0.2029 0.0368 -0.0694 0.3270 0.01 % 

 
Labour 0.1782 0.0404 0.0275 0.4785 0.00 % 

 
Intermediates 0.1840 0.0270 0.0284 0.3043 0.00 % 

 
Cows 0.4197 0.0273 0.2368 0.5760 0.00 % 

 
Capital 0.0153 0.0048 -0.0355 0.0337 0.58 % 

Concavity in inputs 5.73 % 

Total violations 19.14 % 

n = 18,772 

Note: Vio (%) is the share of farm observations with regularity violations. 
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4.5.2 Presence of cost complementarities 

The Bayesian estimates for cost complementarities at the sample mean are presented in Table 4-3.25 

The results show that the probability of negative values of cost complementarities between milk and 

livestock production is slightly above five per cent. In other words, there is statistical evidence that 

marginal costs of milk production increase with additional output of livestock at the sample mean, 

i.e. it is convenient for the average farm in our sample to increase specialisation towards milk pro-

duction and to reduce the engagement in cattle feeding. As explained above, economies of scope may 

still exist if they arise from sharable inputs, such as farm buildings, which is likely in the case of 

dairy production and downstream fattening. Further, no cost complementarities are found for the 

joint production of milk and crops at the sample mean. This could be explained by the distinct 

knowledge and skills required for the production of crops for sale and roughage as main feed input 

for dairy farms in Bavaria. In contrast, the joint production of livestock and crops results in cost 

savings, when evaluated at the sample mean (P>0.95). This makes intuitive sense, because crops 

produced for sale can also be used for downstream fattening of cattle, so these two products have 

related production processes and require similar management skills as public input. Moreover, crop 

production may benefit from high quality nutrients in form of manure, and farmers may use side 

products of crop production as feed for animals. This results in cost reductions through external econ-

omies (Teece, 1980).  

Table 4-3. Cost complementarities evaluated at the sample mean 

  Mean      Median       Std. Dev. 95 % CrI P(Compmn<0) 

Milk-livest. 5.55E-06 5.33E-06 3.75E-06 -1.23E-06 1.34E-05 0.0572 

Milk-crops 1.33E-05 1.32E-05 4.71E-06 4.26E-06 2.30E-05 0.0026 

Milk-other 2.33E-06 2.26E-06 6.20E-06 -1.01E-05 1.47E-05 0.3481 

Livestock-crops -2.51E-05 -2.51E-05 1.22E-05 -5.02E-05 -1.79E-06 0.9813 

Livestock-other  -1.73E-05 -1.70E-05 1.56E-05 -4.94E-05 1.26E-05 0.8679 

Crops-other 1.74E-05 1.80E-05 2.30E-05 -2.93E-05 5.97E-05 0.2170 

Note: CrI and P are credibility interval and probability, respectively, both calculated based on 10,000 successive 

draws of the posterior distribution; Compmn represents cost complementarities between outputs m and n, with 

negative values indicating that costs can be saved by increasing diversification.  

 

 

 
25 The magnitude of these estimates depend on the measurement units of inputs and outputs, because they affect 

the scale of the first and second derivatives of the IDF. Our measure of cost complementarities can be converted 

to percentage terms using the formula (𝐶𝑞1𝑞2/ 𝐶) × (𝑞2/ −𝐷𝑞1). For example, a 1 %-increase in the output level 

of livestock corresponds to a 0.02 %-increase in MC of milk at the sample mean.  
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For the analysis at the individual farm-level, we only focus on observations that satisfy the regularity 

conditions as in Hirsch et al. (2020) to avoid misleading interpretations (Sauer, 2006; Henningsen 

and Henning, 2009). Table 4-4 shows that negative values of cost complementarities –indicating cost 

savings – between milk and livestock production are present for nine per cent of observations. That 

is, for 91 per cent of farms in the sample, the marginal costs of milk production are increasing in 

response to an increase in the production of livestock. Only one per cent of the farms benefit from 

jointly producing milk and crops, and five per cent benefit from the joint production of crops and 

other outputs, such as provision of services, tourism, or electricity. For a higher number of farms (26 

per cent), it is convenient to jointly produce milk and other outputs, and the vast majority benefits 

from combining livestock and crop production as well as production of livestock and other outputs.  

Table 4-4. Cost complementarities at the farm level  

 

Nr. of 

obs. Mean Median Std. Dev. Min Max 

Compmn 

<0 (%) 

Milk-livestock 15,179 1.56E-05 5.94E-06 2.49E-04 -1.66E-02 2.28E-02 9.41 % 

Milk-crops 7,197 2.23E-05 1.12E-05 8.81E-05 -3.53E-03 3.14E-03 1.22 % 

Milk-other 10,761 1.18E-05 2.12E-06 6.53E-04 -6.08E-03 5.78E-02 25.51 % 

Livestock-crops 7,197 -9.88E-05 -1.87E-05 4.63E-04 -1.70E-02 1.39E-03 99.93 % 

Livestock-other 10,761 -9.32E-05 -2.40E-05 4.84E-04 -2.82E-02 1.31E-02 99.69 % 

Crops-other 5,507 8.01E-05 1.46E-05 4.21E-04 -1.66E-02 9.02E-03 4.87 % 

Note: Compmn represents cost complementarities between outputs m and n, with negative values indicating 

that costs can be saved by increasing diversification. Only farm observations without regularity violations are 

included. 

4.5.3 Patterns of cost complementarities 

We now investigate the link between cost complementarities and the size of dairy farms as well as 

the level of diversification. This allows us to assess how farm size is related to economic benefits 

from diversification between specific outputs. Specifically, we would like to answer the question 

whether cost complementarities for various output pairs differs between small and large dairy farms. 

To visualise the relationship, cost complementarities for all output pairs that involve milk production 

– the main output of the farms in the sample – are plotted against the number of dairy cows on the 

farm and revenue shares of the corresponding output in Figures 4-2 – 4-4 in the Appendix. Following 

Abrate and Erbetta (2010), we categorise the observations according to the sign of the cost comple-

mentarities. Negative values of cost complementarities indicate that marginal costs of producing one 

good (e.g. milk) are decreasing when the output level of another good (e.g. livestock) is increased, 

i.e. increasing diversification is convenient. On the other hand, positive values of cost complemen-

tarities indicate that marginal costs of producing one good increase in response to increasing the 

output level of another good. Figure 4-2 illustrates cost complementarities between milk and live-

stock production. Most farm observations with negative values of cost complementarities – i.e. those 
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that would benefit from increasing diversification – have a share of livestock revenues below 15-20 

per cent. Above this threshold, we almost exclusively find observations with positive values of cost 

complementarities. The plot therefore indicates an optimal output share of livestock production 

around 15-20 per cent.26 It is also visible that the vast majority of farm observations with negative 

values of cost complementarities have a herd size smaller than 50 cows. Larger farms seem to expe-

rience mainly increasing costs from diversification.  

With respect to cost complementarities between milk and crops, Figure 4-3 indicates that cost savings 

from joint production are only realised when the crop revenue share is slightly above zero. Nearly 

all farms with a higher share of crop revenue could save costs by reducing crop production in favour 

of increased milk production. A similar pattern is found for the output pair of milk and other products 

(Figure 4-4). Again, most farms experiencing cost savings from the joint production gain a very small 

portion of revenue from other outputs.  

Next, we use regression analysis to make statistical inference about the effect of farm size on the 

value of cost complementarities (the graphical display only distinguishes positive and negative val-

ues). Each column in Table 4-5 presents the estimation results from equation (4-15) for explaining 

cost complementarities between the three output pairs that include milk, the main output of dairy 

farms in the sample. The Davidson-MacKinnon test indicates that the degree of specialisation (i.e., 

the revenue shares) is endogenous in columns (1) and (2) and that farm size (as proxied with the 

number of dairy cows) is endogenous in column (3). Therefore, we use IV-FE regression in all mod-

els. The number of lags has been selected according to the Cragg-Donald weak identification test and 

the Sargan-Hansen overidentification test. Due to the test results, we trust that that the instruments 

are adequately selected to mitigate endogeneity concerns.  

 

 

 

 

 

 

 

 
26 This threshold is similar to what Abrate and Erbetta (2010) found in their study on the output mix in airport 

companies. 
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Table 4-5. Determinants of cost complementarities (IV-FE regression) 

Variable 
 

Cost compl. 

Milk-livestock 

(1) 

Cost compl. 

Milk-crops 

(2) 

Cost compl. 

Milk-other 

(3) 

Number of cows 3.08E-06*** -2.37E-07 1.52E-08 

 
(9.90E-07) (1.84E-07) (2.95E-07) 

Number of cows squared -1.73E-08*** 1.99E-09** -5.24E-10 

 
(5.90E-09) (9.23E-10) (1.38E-09) 

Rev. share milk -3.13E-04*** – – 

 
(8.43E-05) – – 

Rev. share crops – 3.16E-05 – 

 
– (3.32E-05) – 

Rev. share other output – – 3.21E-05*** 

 
– – (8.34E-06) 

Share grassland 6.15E-06 2.23E-05*** -9.85E-06 

 
(1.09E-05) (8.48E-06) (6.21E-06) 

Avg. field size -7.19E-07* -8.51E-07 1.16E-06 

 
(3.99E-07) (5.38E-07) (9.78E-07) 

Age -1.14E-07 -5.24E-08 -2.13E-08 

 
(8.41E-08) (4.90E-08) (6.91E-08) 

Higher educ -5.64E-06 3.11E-07 -3.80E-07 

 
(3.50E-06) (1.04E-06) 2.18E-06 

Fulltime -1.31E-05** -3.38E-06 -5.87E-06 

 
(6.33E-06) (5.85E-06) (1.46E-05) 

Time trend -5.70E-07** -8.97E-07*** 2.70E-07 

 
(2.72E-07) (2.79E-07) (2.20E-07) 

Constant 1.62E-04*** 3.13E-05*** 3.70E-06 

 
(3.44E-05) (1.10E-05) (1.65E-05) 

Nr. of observations 7477 5063 6218 

Nr. of farms 1284 859 1153 

Endogenous variablesa 

 
Revenue share 

 
Revenue share 

 

Nr. of cows, Nr. of 
cows sq. 

Instruments (lags) 4–5 2–3 3–4 

Weak identification test 
   

   Cragg-Donald Wald F statistic 8.26 44.01 151.46 

   Critical value 7.25 7.25 6.28 

Overidentification test 
   

   Sargan-Hansen statistic 1.273 0.852 4.240 

   p-value 0.259 0.356 0.120 

Note: Dependent variable is cost complementarities. Recall that negative values indicate that joint production 

is convenient. Heteroscedasticity-consistent standard errors (clustered at the farm level) are in parentheses. 

The common significance levels are used: *** = 1 %, ** = 5 %, and * = 10 %; aAccording to Davidson-

MacKinnon test for exogeneity. 
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The parameter estimates in column (1) show that cost complementarities between milk and livestock 

production are increasing in the number of dairy cows at a decreasing rate. Since negative values of 

cost complementarities indicate that cost savings are realised by jointly producing the two outputs, 

this finding provides evidence that small farms benefit more from diversifying between milk and 

livestock production than larger farms. A potential explanation is that the combination of milk and 

livestock production is less capital-intensive than, for example, the combination of milk and crop 

production. Since smaller dairy farms tend to be less capital- but more labour-intensive, they may 

make better use of human capital as common input to milk and livestock, resulting in cost savings 

when these two products are jointly produced. Further, the parameter estimate for revenue share of 

milk is negative at the one per cent level of statistical significance. Thus, dairy farms with a high 

share of milk revenue benefit from increasing livestock production (i.e., increasing diversification), 

while farms with a lower share of milk revenue can benefit from increasing milk output (i.e., reducing 

diversification). This finding is consistent with Figure 4-2 in the Appendix and implies that there is 

an ‘optimal level’ of diversification in terms of production costs.  

The estimation results for explaining cost complementarities between milk and crop production are 

presented in column (2). The parameter estimates for the linear and quadratic terms of dairy cows are 

jointly significant at the five per cent level (p-value = 0.0136). This finding indicates that large dairy 

farms are more likely to benefit from jointly producing milk and crops than small farms – contrary 

to the result for the output pair milk and livestock. As discussed above, the joint production of milk 

and crops may be more capital-intensive. Dairy farms with larger herd sizes may adopt technologies 

that are less labour-intensive (e.g. automatic milking or feeding systems), and thus more time is 

available for engaging in crop production, for example. On the other hand, small farms may face 

higher management costs when engaging in two production areas that require distinct sets of skills, 

and thus do not benefit when jointly producing milk and crops. The coefficient for revenue share of 

crops takes the expected sign (higher share of crop revenues leads to more positive values of cost 

complementarities between milk and crop production) but is not statistically significant.  

Finally, cost complementarities between milk and other outputs are not affected by farm size (see 

column (3)). This may be due to the fact that other outputs comprises a range of products and cost 

complementarities between its individual components and the remaining outputs may be mixed and 

therefore cancel each other out. The share of revenue share of other outputs is positively related to 

the value of cost complementarities at the one per cent level of statistical significance. Again, this 

result confirms that dairy farms that are already highly diversified are less likely to realise additional 

cost savings from a further increase of the diversification level (see also Figure 4-4).  
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Some interesting results also arise from the parameter estimates of the farm and farmers’ character-

istics, which are included in the model as control variables. Primarily, the share of grassland is sta-

tistically different from zero at the 1 per cent level in column (2): a higher share of grassland is 

associated with less cost savings from the joint production of milk and crops. This is intuitive, be-

cause farms with high grassland shares are restricted in their production of cash crops, and hence 

they are better off by specialising in milk production. Farmer's age and education seem not to be 

related to the values of cost complementarities, but farms with larger average field size and those 

operated full-time are more likely to realise cost savings from jointly producing milk and livestock. 

Finally, the time trend reveals that farms move towards a situation characterised by cost-savings from 

joint production of milk and livestock as well as milk and crops over time. This observation provides 

support that farms improve their output portfolio with respect to the main farm outputs milk, live-

stock, and crops.  

4.6 Conclusions 

In this study, we examined cost complementarities between different farm outputs for a representative 

sample of Bavarian dairy farms. Cost complementarities are commonly evaluated using cost func-

tions, but the empirical estimation is problematic if input price data is not available, as it is usually 

the case with farm-level accountancy data. Therefore, we follow the approach by Hajargasht, Coelli 

and Rao (2008), which exploits the duality relationship between cost functions and IDFs to recover 

parameters of the cost function from its dual IDF. Since duality relies on theoretical conditions such 

as monotonicity and curvature, we estimate the IDF in a Bayesian framework, which allows us to 

impose these regularity conditions (O'Donnell and Coelli, 2005). To maintain the flexibility of the 

functional form of the IDF approximation, we impose monotonicity in inputs and outputs and con-

cavity in inputs on representative data points rather than the full sample, which results in the reduc-

tion of observations that are inconsistent with economic theory from 40 per cent to 19 per cent.  

Cost complementarities describe the change in the marginal costs of producing one good in response 

to increasing the production level of another output. Evaluated at the sample mean, we find negative 

values of cost complementarities (i.e., costs can be saved by increasing diversification) between live-

stock and crop production, but positive values for the output pairs milk and livestock as well as milk 

and crops. These findings are in contrast to Fleming and Lien (2009) who do not detect any significant 

cost complementarities in a sample of Norwegian dairy farms. A farm-level analysis shows that 

highly specialised farms are more likely to realise cost savings from increasing the level of diversi-

fication than highly diversified farms, indicating that there is an optimal level of diversification in 

terms of associated production costs. Further, the results show that the value of cost complementari-

ties between milk and livestock are increasing in size, but the value of cost complementarities be-

tween milk and crop production are decreasing in size. In other words, larger farms tend to benefit 
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from jointly producing milk and crops, while smaller farms are more likely to benefit from diversifi-

cation between milk and livestock production. Even though livestock production is an inherent by-

product of milk production, the farmer can chose to sell side-products (i.e., male calves) immediately 

or to engage in down-stream fattening of the calves. The longer the calves are kept for downstream 

fattening, the higher is the revenue from livestock sale, and the higher is the level of diversification 

between milk and livestock products. This study reveals that feeding cattle is especially attractive for 

smaller farms as it allows them to reduce the marginal costs of milk production.  

Overall, the results show that diversification benefits vary across farm size, and different output com-

binations are favourable for dairy farms with distinct herd sizes. These findings suggest that the pre-

ferred composition of individual farm output will change in the context of structural change in agri-

culture with the trend towards larger but fewer farms. The results imply that farm size needs to be 

taken into account in the formulation of policies related to supporting optimal farm structure. Cur-

rently, the German government supports farm diversification beyond primary agricultural production 

– such as farm tourism, direct marketing, or energy production – to improve the competitiveness of 

farms. Our study provides empirical evidence that for the dairy sector, small farms can be effectively 

supported by promoting diversification within primary agricultural production – in particular the joint 

production of milk and livestock. This could be achieved by subsidising investments into barns serv-

ing downstream fattening of cattle.  

While cost complementarities provide useful insights into the benefits of diversification, they fail to 

detect economies of scope when they are exclusively due to shared inputs (Baumol, Panzar and Wil-

lig, 1988; Färe and Karagiannis, 2018). Hence, a limitation of our study is that it does not account 

for the role of fixed costs. Future empirical research on diversification economies should therefore 

address the importance of cost complementarities as a source of scope economies, for example by 

measuring the cost reduction generated by output complementarities under different diversification 

schemes. To this end, data on farms specialising in different output categories is needed. Finally, it 

must be noted that cost minimisation must not be the primary goal of dairy farmers. In contrast, they 

may maximise revenue or profit or – more generally – utility. While the concept of IDFs does not 

make any assumptions on the managerial behaviour of farmers, the performance of farmers should 

not be evaluated based on costs when their managerial behaviour is different (O'Donnell, 2018). In 

this article, we use the concept of costs as an indicator for farm competitiveness. If productivity 

maximisation is on the policy agenda, the effect of diversification on total factor productivity should 

be considered, which is subject to further research.  
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Appendix 

Table 4-6. Bayesian estimates for unrestricted and restricted input distance functions 

 Unrestricted Model  Restricted Model 

Parameter 

Posterior  

   mean 

St.   

   Dev. 95 % CrI 

 Posterior  

  mean 

St.  

  Dev. 95 % CrI 

𝛼0 (Constant) 0.4238 0.0319 0.3817 0.4877  0.3803 0.0125 0.3602 0.4053 

 (Dummy for 𝑌3 = 0) 0.0156 0.0021 0.0114 0.0196  0.0151 0.0021 0.0111 0.0192 

 (Dummy for 𝑌4 = 0) 0.0076 0.0016 0.0046 0.0107  0.0087 0.0015 0.0057 0.0117 

𝛼1  (Milk output) -0.4945 0.0038 -0.5018 -0.4866  -0.4942 0.0038 -0.5023 -0.4866 

𝛼2  (Livestock output) -0.0421 0.0022 -0.0465 -0.0378  -0.0418 0.0022 -0.0464 -0.0377 

𝛼3  (Crop output) -0.0137 0.0011 -0.0158 -0.0116  -0.0134 0.0011 -0.0157 -0.0113 

𝛼4  (Other output) -0.0038 0.0007 -0.0053 -0.0024  -0.0040 0.0007 -0.0055 -0.0026 

𝛽1  (Land)  0.2133 0.0049 0.2040 0.2229  0.2124 0.0048 0.2032 0.2218 

𝛽2  (Labour)  0.1676 0.0034 0.1610 0.1744  0.1697 0.0032 0.1633 0.1761 

𝛽3  (Intermediate inputs)  0.1898 0.0039 0.1821 0.1973  0.1881 0.0042 0.1797 0.1962 

𝛽4  (Cows)  0.4149 0.0052 0.4048 0.4251  0.4137 0.0052 0.4036 0.4241 

𝛽5  (Capital)  0.0145 0.0022 0.0103 0.0187  0.0161 0.0020 0.0123 0.0202 

𝛼11(Output interactions) -0.1131 0.0045 -0.1220 -0.1041  -0.1145 0.0041 -0.1228 -0.1066 

𝛼12  0.0358 0.0031 0.0293 0.0418  0.0377 0.0032 0.0318 0.0445 

𝛼13  0.0019 0.0014 -0.0008 0.0046  0.0023 0.0014 -0.0004 0.0051 

𝛼14  0.0020 0.0010 -0.0001 0.0041  0.0031 0.0010 0.0012 0.0052 

𝛼22  -0.0297 0.0033 -0.0360 -0.0233  -0.0294 0.0031 -0.0355 -0.0233 

𝛼23  0.0028 0.0011 0.0006 0.0049  0.0032 0.0011 0.0011 0.0053 

𝛼24  0.0000 0.0008 -0.0016 0.0016  0.0008 0.0008 -0.0007 0.0024 

𝛼33  -0.0038 0.0004 -0.0047 -0.0030  -0.0038 0.0004 -0.0047 -0.0029 

𝛼34  -0.0008 0.0003 -0.0015 -0.0002  -0.0005 0.0003 -0.0011 0.0000 

𝛼44  -0.0017 0.0004 -0.0025 -0.0009  -0.0016 0.0004 -0.0023 -0.0009 

𝛽11(Input interactions) 0.0427 0.0120 0.0193 0.0661  0.0752 0.0099 0.0556 0.0944 

𝛽12  -0.0011 0.0085 -0.0180 0.0155  -0.0199 0.0068 -0.0327 -0.0067 

𝛽13  -0.0119 0.0089 -0.0292 0.0061  -0.0177 0.0083 -0.0336 -0.0009 

𝛽14  -0.0402 0.0109 -0.0617 -0.0191  -0.0419 0.0111 -0.0653 -0.0219 

𝛽15  0.0105 0.0041 0.0024 0.0185  0.0043 0.0032 -0.0022 0.0104 

𝛽22  0.0580 0.0110 0.0361 0.0790  0.0605 0.0108 0.0398 0.0810 

𝛽23  -0.0383 0.0086 -0.0550 -0.0216  -0.0353 0.0079 -0.0511 -0.0208 

𝛽24  -0.0089 0.0109 -0.0297 0.0127  0.0000 0.0095 -0.0183 0.0178 

𝛽25  -0.0097 0.0038 -0.0172 -0.0023  -0.0052 0.0033 -0.0120 0.0008 

𝛽33  0.0783 0.0113 0.0562 0.1007  0.0784 0.0113 0.0559 0.0995 

𝛽34  -0.0256 0.0107 -0.0475 -0.0051  -0.0238 0.0098 -0.0445 -0.0011 

𝛽35  -0.0025 0.0044 -0.0110 0.0059  -0.0016 0.0036 -0.0082 0.0051 

𝛽44  0.0810 0.0156 0.0516 0.1128  0.0697 0.0146 0.0419 0.1001 

𝛽45  -0.0063 0.0048 -0.0158 0.0030  -0.0041 0.0044 -0.0127 0.0047 

𝛽55  0.0079 0.0017 0.0046 0.0112  0.0067 0.0016 0.0035 0.0100 

𝛾11 (Outp-inp. interact.) 0.0648 0.0059 0.0533 0.0768  0.0598 0.0056 0.0489 0.0707 

𝛾12  -0.0509 0.0059 -0.0623 -0.0390  -0.0499 0.0062 -0.0620 -0.0378 

𝛾13  -0.0211 0.0057 -0.0321 -0.0102  -0.0216 0.0056 -0.0319 -0.0107 

𝛾14  0.0099 0.0070 -0.0036 0.0240  0.0131 0.0066 -0.0002 0.0250 

𝛾15  -0.0027 0.0029 -0.0081 0.0030  -0.0013 0.0028 -0.0067 0.0041 

𝛾21  -0.0117 0.0043 -0.0200 -0.0034  -0.0173 0.0040 -0.0252 -0.0095 

𝛾22  0.0253 0.0046 0.0166 0.0343  0.0307 0.0044 0.0218 0.0393 

𝛾23  0.0128 0.0047 0.0035 0.0220  0.0138 0.0048 0.0043 0.0233 

𝛾24  -0.0273 0.0054 -0.0378 -0.0164  -0.0289 0.0054 -0.0401 -0.0194 

(continued on next page) 
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Table 3-6. (continued) 

 Unrestricted Model  Restricted Model 

 

Posterior  

   mean 

St.   

   Dev. 95 % CrI  

Posterior  

   mean 

St.   

   Dev. 95 % CrI 

𝛾25  0.0009 0.0024 -0.0039 0.0054  0.0017 0.0023 -0.0030 0.0060 

𝛾31  0.0009 0.0017 -0.0026 0.0043  -0.0004 0.0016 -0.0036 0.0027 

𝛾32  0.0007 0.0018 -0.0029 0.0043  0.0021 0.0017 -0.0012 0.0053 

𝛾33  -0.0033 0.0020 -0.0072 0.0006  -0.0035 0.0020 -0.0076 0.0003 

𝛾34  0.0024 0.0024 -0.0022 0.0072  0.0027 0.0023 -0.0018 0.0075 

𝛾35  -0.0007 0.0011 -0.0028 0.0014  -0.0009 0.0010 -0.0028 0.0010 

𝛾41  0.0008 0.0012 -0.0016 0.0033  -0.0006 0.0012 -0.0030 0.0018 

𝛾42  -0.0010 0.0014 -0.0038 0.0018  0.0019 0.0013 -0.0006 0.0044 

𝛾43  -0.0005 0.0015 -0.0034 0.0023  -0.0010 0.0014 -0.0038 0.0018 

𝛾44  0.0016 0.0018 -0.0020 0.0049  0.0007 0.0017 -0.0025 0.0041 

𝛾45  -0.0009 0.0008 -0.0024 0.0007  -0.0010 0.0008 -0.0025 0.0005 

𝜁1 (Age of farmer)  -0.0007 0.0001 -0.0008 -0.0005  -0.0006 0.0001 -0.0008 -0.0005 

𝜁2 (1 if farmer holds   

  higher education degree)  -0.0019 0.0034 -0.0084 0.0047  -0.0004 0.0036 -0.0075 0.0065 

𝜁3 (1 if farm is operated  

  full-time)  -0.1593 0.0054 -0.1700 -0.1482  -0.1566 0.0054 -0.1681 -0.1471 

𝜁4 (Region 1) 0.0192 0.0333 -0.0554 0.0675  0.0595 0.0141 0.0343 0.0865 

𝜁5 (Region 2) 0.0376 0.0306 -0.0274 0.0834  0.0768 0.0113 0.0538 0.0986 

𝜁6 (Region 3) 0.0158 0.0314 -0.0497 0.0663  0.0525 0.0135 0.0255 0.0781 

𝜁7 (Region 4) -0.0169 0.0312 -0.0830 0.0347  0.0228 0.0123 0.0003 0.0472 

𝜁8 (Region 5) 0.1712 0.0327 0.1039 0.2261  0.2132 0.0184 0.1789 0.2499 

𝜁9 (Region 6) -0.0218 0.0449 -0.1067 0.0709  0.0281 0.0516 -0.0479 0.1313 

𝜁10 (Region 7) -0.0969 0.0308 -0.1590 -0.0501  -0.0592 0.0131 -0.0822 -0.0331 

𝜁11 (Region 8) -0.0491 0.0317 -0.1177 -0.0004  -0.0108 0.0135 -0.0343 0.0198 

𝜁12 (Region 9) -0.0463 0.0324 -0.1100 0.0062  -0.0101 0.0153 -0.0412 0.0189 

𝜁13 (Region 10) -0.0030 0.0314 -0.0691 0.0468  0.0376 0.0129 0.0137 0.0630 

𝜁14 (Region 11) -0.0919 0.0321 -0.1598 -0.0401  -0.0523 0.0203 -0.0918 -0.0137 

𝛿2001 (Year dummies) 0.0183 0.0027 0.0131 0.0236  0.0186 0.0026 0.0135 0.0235 

𝛿2002  0.0813 0.0027 0.0759 0.0867  0.0818 0.0027 0.0765 0.0871 

𝛿2003  0.0679 0.0028 0.0625 0.0733  0.0684 0.0027 0.0632 0.0736 

𝛿2004  0.0520 0.0028 0.0463 0.0574  0.0525 0.0027 0.0474 0.0579 

𝛿2005  0.1121 0.0030 0.1061 0.1179  0.1128 0.0028 0.1075 0.1183 

𝛿2006  0.1054 0.0030 0.0993 0.1112  0.1063 0.0028 0.1009 0.1115 

𝛿2007  0.0071 0.0031 0.0007 0.0132  0.0077 0.0028 0.0022 0.0132 

𝛿2008  0.2300 0.0036 0.2228 0.2370  0.2312 0.0033 0.2249 0.2378 

𝛿2009  0.1379 0.0036 0.1306 0.1449  0.1394 0.0032 0.1333 0.1459 

𝛿2010  0.0125 0.0037 0.0048 0.0195  0.0136 0.0032 0.0075 0.0199 

𝛿2011  0.0934 0.0040 0.0851 0.1008  0.0949 0.0035 0.0882 0.1019 

𝛿2012  0.1413 0.0042 0.1328 0.1493  0.1431 0.0037 0.1360 0.1506 

𝛿2013  0.0369 0.0045 0.0278 0.0452  0.0388 0.0040 0.0310 0.0467 

𝛿2014  0.2094 0.0050 0.1994 0.2188  0.2115 0.0044 0.2033 0.2205 

𝜂  0.0161 0.0009 0.0144 0.0178  0.0164 0.0008 0.0149 0.0180 

𝜆  3.0001 0.0912 2.8298 3.1825  2.9776 0.0880 2.8140 3.1549 

𝜎2  0.0036 0.0000 0.0035 0.0036  0.0036 0.0000 0.0035 0.0036 

Returns to scale   

 = −1/∑ 𝛼𝑚
4
𝑚=1  1.8047 0.0139 1.7787 1.8335  1.8070 0.0143 1.7784 1.8341 

Mean of TE 0.7505     0.7474    

Note: CrI is credibility interval, calculated based on 10,000 successive draws from the posterior distribution 

after a burn-in period of 5,000 draws 
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Table 4-7. Bayesian estimates for the unrestricted IDF with endogeneity 

Parameter 

Posterior  

   mean 

St.   

   Dev. 95 % CrI 

𝛼0 (Constant) 0.5018 0.0284 0.4584 0.5453 

 (Dummy for 𝑌3 = 0) 0.0134 0.0020 0.0093 0.0175 

 (Dummy for 𝑌4 = 0) 0.0072 0.0015 0.0042 0.0102 

𝛼1  (Milk output) -0.4835 0.0037 -0.4905 -0.4761 

𝛼2  (Livestock output) -0.0405 0.0021 -0.0447 -0.0363 

𝛼3  (Crop output) -0.0129 0.0010 -0.0148 -0.0109 

𝛼4  (Other output) -0.0040 0.0007 -0.0054 -0.0026 

𝛽1  (Land)  0.2161 0.0048 0.2066 0.2255 

𝛽2  (Labour)  0.1685 0.0034 0.1616 0.1753 

𝛽3  (Intermediate inputs)  0.1894 0.0040 0.1818 0.1974 

𝛽4  (Cows)  0.4106 0.0051 0.4007 0.4204 

𝛽5  (Capital)  0.0155 0.0022 0.0114 0.0198 

𝛼11(Output interactions) -0.1157 0.0042 -0.1236 -0.1072 

𝛼12  0.0288 0.0031 0.0229 0.0350 

𝛼13  0.0021 0.0014 -0.0005 0.0048 

𝛼14  0.0024 0.0010 0.0003 0.0044 

𝛼22  -0.0277 0.0031 -0.0337 -0.0216 

𝛼23  0.0024 0.0011 0.0003 0.0045 

𝛼24  0.0001 0.0008 -0.0014 0.0017 

𝛼33  -0.0035 0.0004 -0.0043 -0.0027 

𝛼34  -0.0008 0.0003 -0.0015 -0.0002 

𝛼44  -0.0018 0.0004 -0.0026 -0.0010 

𝛽11(Input interactions) 0.0375 0.0118 0.0141 0.0607 

𝛽12  -0.0036 0.0080 -0.0195 0.0119 

𝛽13  -0.0081 0.0087 -0.0248 0.0093 

𝛽14  -0.0324 0.0105 -0.0528 -0.0118 

𝛽15  0.0066 0.0041 -0.0016 0.0147 

𝛽22  0.0491 0.0109 0.0278 0.0703 

𝛽23  -0.0342 0.0085 -0.0511 -0.0179 

𝛽24  -0.0074 0.0109 -0.0289 0.0138 

𝛽25  -0.0040 0.0039 -0.0115 0.0038 

𝛽33  0.0768 0.0106 0.0566 0.0974 

𝛽34  -0.0314 0.0103 -0.0512 -0.0113 

𝛽35  -0.0032 0.0044 -0.0118 0.0051 

𝛽44  0.0794 0.0159 0.0472 0.1103 

𝛽45  -0.0083 0.0053 -0.0186 0.0019 

𝛽55  0.0089 0.0016 0.0057 0.0121 

𝛾11(Outp-inp. interact.) 0.0547 0.0055 0.0438 0.0654 

𝛾12  -0.0525 0.0058 -0.0639 -0.0411 

𝛾13  -0.0182 0.0055 -0.0285 -0.0070 

(continued on next page) 
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Table 3-7. (continued) 

Parameter 

Posterior  

   mean 

St.   

   Dev. 95 % CrI Parameter 

𝛾14  0.0188 0.0066 0.0061 0.0319 

𝛾15  -0.0028 0.0030 -0.0086 0.0030 

𝛾21  -0.0159 0.0042 -0.0241 -0.0075 

𝛾22  0.0237 0.0045 0.0148 0.0329 

𝛾23  0.0142 0.0046 0.0051 0.0230 

𝛾24  -0.0217 0.0051 -0.0316 -0.0118 

𝛾25  -0.0003 0.0023 -0.0046 0.0042 

𝛾31  0.0003 0.0017 -0.0031 0.0036 

𝛾32  0.0011 0.0018 -0.0024 0.0047 

𝛾33  -0.0051 0.0020 -0.0089 -0.0013 

𝛾34  0.0049 0.0024 0.0003 0.0096 

𝛾35  -0.0011 0.0010 -0.0032 0.0009 

𝛾41  0.0011 0.0012 -0.0012 0.0035 

𝛾42  -0.0009 0.0014 -0.0037 0.0020 

𝛾43  -0.0009 0.0015 -0.0038 0.0019 

𝛾44  0.0015 0.0017 -0.0019 0.0049 

𝛾45  -0.0008 0.0008 -0.0023 0.0007 

𝜁1 (Age of farmer)  -0.0007 0.0001 -0.0008 -0.0005 

𝜁2 (1 if farmer holds   

  higher education degree)  

-0.0041 0.0034 -0.0106 0.0027 

𝜁3 (1 if farm is operated  

  full-time)  

-0.1380 0.0056 -0.1498 -0.1275 

Regional dummies (not reported) 

Year dummies (not reported) 

𝜂  0.0183 0.0009 0.0166 0.0199 

𝜆  1.9962 0.0038 1.9862 1.9999 

𝜎2  0.0034 0.0000 0.0033 0.0035 

𝜌0 -0.7104 0.0241 -0.7558 -0.6621 

𝜌𝑞1
   -0.0347 0.0477 -0.1250 0.0608 

𝜌𝑞2
 0.0187 0.0368 -0.0541 0.0907 

𝜌𝑞3
 0.0087 0.0168 -0.0248 0.0415 

𝜌𝑞4
 0.0074 0.0135 -0.0188 0.0334 

𝜌𝑥2
 -0.0322 0.0620 -0.1523 0.0864 

𝜌𝑥3
 -0.0040 0.0598 -0.1195 0.1120 

𝜌𝑥4
 0.0624 0.0797 -0.0923 0.2204 

𝜌𝑥5
 0.0223 0.0343 -0.0454 0.0897 

Note: CrI is credibility interval, calculated based on 10,000 successive draws from 

the posterior distribution after a burn-in period of 5,000 draws 
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Figure 4-2. Cost complementarities between milk and livestock 

Note: Negative (positive) values of cost complementarities indicate that marginal costs of produc-

ing one good decrease (increase) in response to increasing the production level of another good. 

 

 

Figure 4-3. Cost complementarities between between milk and crops 

Note: Negative (positive) values of cost complementarities indicate that marginal costs of produc-

ing one good decrease (increase) in response to increasing the production level of another good. 
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Figure 4-4. Cost complementarities between milk and other outputs 

Note: Negative (positive) values of cost complementarities indicate that marginal costs of produc-

ing one good decrease (increase) in response to increasing the production level of another good. 

 

 

 

 

 

 



 

 

5  

 

Credit Access and Farm Productivity:  

Evidence from a Field Experiment in Rural China 

 

Abstract. Credit constraints have been one of the main obstacles for poor rural households to escape 

poverty in developing countries. The literature shows that access to credit improves smallholder farm 

performance in terms of yield or other partial productivity measures. The implications may be mis-

leading since partial productivity measures do not account for changes in all inputs. Using a unique 

randomised controlled trial of agricultural microcredits in rural China over four years (2010–2014), 

we estimate total factor productivity (TFP) based on an endogeneity-robust production function ap-

proach. In addition, we decompose TFP growth into its components of technical efficiency change, 

technical change and scale efficiency change with a production frontier approach. The results show 

that improved credit access causes higher agricultural outputs and productivity gains over a wide 

range of measures. These effects are homogeneous across socio-demographic variables and initial 

resource endowments. The productivity gains are driven by increasing technical efficiency and tech-

nical changes. The effect on technical change is shown to increase four years after the intervention.   

Keywords: Microfinance, randomised control trial, smallholder credit access, stochastic pro-

duction frontier, total factor productivity 
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5.1 Introduction 

Lack of credit access has long been recognised as a barrier for smallholder farmers to increase wel-

fare (Carter, 1989; Feder et al., 1990). In their household models, Singh, Squire and Strauss (1986) 

show that consumption and production decisions are independent if liquidity is available at a given 

price. Liquidity is crucial in agricultural production because of the time lag between input expenses 

and cash income. However, as well known from Stiglitz and Weiss, A. (1981), credit rationing arises 

from asymmetric information and adverse selection, which is often observed in credit markets. If the 

credit constraints are binding, smallholder farms use less than optimal levels of inputs in order to 

smooth consumption, which reduces agricultural output. The relationship between credit access and 

yield – or output per unit of land – has been studied by a large body of literature (e.g. Carter, 1989; 

Feder et al., 1990; Guirkinger and Boucher, 2008; Dong, Lu, J. and Featherstone, 2012; Hossain, M. 

et al., 2019), while faced with two main challenges. 

First, partial productivity measures (e.g. land productivity or labour productivity) are incomplete, 

because they are affected by the use of the excluded inputs (Syverson, 2011). For example, yield can 

be increased by intensifying the use of materials (e.g. seed, fertiliser), labour or capital assets. By 

contrast, total factor productivity (TFP) considers changes in all inputs used in the production process 

and hence reflects unit costs of production more closely (Fuglie, 2015). Hence, to understand the 

welfare impact of improved credit access, it is important to evaluate TFP in addition to partial produc-

tivity measures. Moreover, changes in TFP can be decomposed into technical efficiency changes 

(TEC), technical change (TC), and scale change (SEC), which allows to identify sources of produc-

tivity changes and hence design and target policy measures more effectively.  

Second, studies concerned with the effects of credit constraints often face econometric challenges to 

identify the causal effect of credit access rather than correlations. As noted by Feder et al. (1990), the 

effect of credit for liquidity-constrained households is expected to be different from their uncon-

strained counterparts. Moreover, more productive farms may be more likely to receive credits than 

less productive ones, for example if they can present more collaterals to potential lenders. Therefore, 

causal inference is complicated by the fact that credit is not randomly assigned among farm operators 

but farmers with credit access may systematically differ from farmers who face credit constraints. To 

overcome this problem, studies mostly exploit the between-variations as their identification strategy 

based on cross sectional data, and use of switching regression models, the Heckman (1979) selection 

model, semi-parametric matching models or random trend models. This strand of the literature finds 

that credit access increases production (Briggeman, Towe and Morehart, 2009; Feder et al., 1990; 

Foltz, 2004; Petrick, 2004), investment (Berhane and Gardebroek, 2011; Carter and Olinto, 2003; 

Foltz, 2004), partial productivity (Ciaian, Fałkowski and Kancs, 2012; Dong, Lu, J. and Featherstone, 

2012; Guirkinger and Boucher, 2008; Reyes et al., 2012) and household consumption (Berhane and 
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Gardebroek, 2011), and promotes technology adoption (Abate et al., 2016; Theriault, Smale and 

Haider, 2017) and increases crop specialisation (Mulwa and Visser, 2020). The existing findings 

could be biased if the household’s or farm’s unobservable characteristics (or time-varying unob-

served heterogeneity in the case of panel data) confound the relationship between credit access and 

productivity.  

Another strand of the literature investigates correlations between credit access (or credit uptake) and 

technical efficiency in a production frontier framework. The results in these studies, however, are 

ambiguous: in various developing countries, Battese and Broca (1997) find a negative relation be-

tween credit constraints and technical efficiency, Liu, Y. and Myers (2009), Hazarika and Alwang 

(2003), and Nguyen et al. (2018) find no correlation, and Shrestha, R. B. et al. (2016) find a positive 

association. Owing to data constraints, these studies are not able to identify the causal link between 

credit access and productivity, which may explain the divergence of the results.  

The purpose of the present study is to examine the causal impact of access to agricultural microcredit 

on total factor productivity (TFP) of smallholder farms. Our article makes two contributions to the 

literature on the impact of relaxing credit constraints on smallholder farms’ productivity by integrat-

ing the two lines of research summarised above. First, we estimate TFP using both the Solow residual 

approach and a Malmquist TFP index consisting of technical efficiency changes, technical change 

and scale change. To facilitate comparisons to previous studies in the field, we also report the effects 

on partial productivity measures. Estimating and decomposing TFP into its components allows us to 

identify the causal effect of improved credit access on each component. Identifying the sources of 

productivity is important for policymakers to tailor public spending to the regional needs. We are not 

aware of a previous study that has done so in assessment of the productivity effects of credit con-

straints. Second, we examine the dynamic causal relationship between improved credit access and 

TFP (and its components). The data comes from a field experiment in five provinces in the People’s 

Republic of China (hereafter “China”) that has been implemented from 2010–2014. We use a differ-

ence-In-Difference (DID) strategy to estimate the Intent-To-Treat (ITT) effect of the microcredit pro-

gramme, which has been introduced in randomly selected villages, on TFP and its components. To 

the best of our knowledge, Jimi et al. (2019) are the only authors that use data from a randomised 

controlled trial to estimate the causal effect of credit access on productivity and efficiency. Using data 

from 3,292 households surveyed in 2012 and one follow-up in 2014, they find that the microcredit 

programme improved productivity through both technological changes and increases in technical 

efficiency. Our analysis deviates as our data stem from a randomised controlled trial with two follow-

ups over four years and therefore allow us to differentiate between short and long-term productivity 

or efficiency gains of improved credit access. Moreover, we use a more flexible form for the produc-

tion function to allow for non-linearities in inputs and to test for scale efficiency changes, and we 
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account for endogenous input usage. Finally, combined with our decomposed TFP, our analysis 

shows how different components of TFP would respond to credit access differently over time.  

Our article also speaks to the estimates for productivity growth among smallholder farms and adds 

new evidence to developing countries. Owing to data availability, most agricultural TFP studies have 

focused on high-income countries (Fuglie, 2015). Using regional data provided by the FAO, Fuglie 

estimates in a series of papers (e.g. 2008, 2012, 2015) that TFP growth in developing countries ac-

celerated in recent decades, primarily driven by Brazil and China. However, since these data do not 

include cost shares or production elasticities, they must be imputed from other country-level studies 

to measure changes in TFP. Maue, Burke and Emerick (2020), by contrast, use household-level data 

to estimate productivity dispersion and persistence for smallholder farms in four countries in Sub-

Saharan Africa. We add to this literature by providing TFP estimates for smallholder farms in rural 

China based on a detailed household-level data set that allows us to identify the sources of produc-

tivity change over time.  

We find that technical change was the primary source of productivity growth in our sample of Chinese 

smallholder farms over the period 2010–2014. Relaxing the credit constraint significantly improved 

both partial productivity and TFP of farm households in the treated villages and the results are robust 

across a wide range of production function specifications. Using the Levinsohn-Petrin (2003) esti-

mator, we find that output elasticities differ when accounting for endogenous input choice, while 

derived productivity measures were only slightly affected. Finally, the results suggest that improved 

credit access positively contributed to TFP growth via gains in technical efficiency and technical 

change, and that the positive effect on technical change accumulates over time.  

The remainder of the article is organised as follows. In Section 5.2, we describe the Village Fund, a 

microcredit programme for smallholders in rural China that provides the data for our study. Section 

5.3 presents the data and descriptive sample statistics including baseline balance tests. The empirical 

estimation and the identification strategy are outlined in Section 5.4, before the results are presented 

and discussed in Section 5.5. Section 5.6 concludes and offers policy implications. 
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5.2 Programme background and experimental design 

Like in other developing countries, access to formal loans has long been limited and insufficient for 

rural households in China.27 By 2006, there were 3,302 out of 34,461 towns (9.6 %) having not set 

up any formal financial branch, and 8,231 towns (23.9 %) had only set up one branch. At the village 

level, there had been about 520,000 out of 585,451 administrative villages accessing formal financial 

services by 2014, leaving 11.2 % of villages without accessing formal credits. The China Financial 

Service Report 2008 published by the People’s Bank of China suggests that only 78 million out of 

230 million rural households (33.2 %) obtained formal loans in 2007, despite half of rural households 

being in demand of credits; the average loan size was 2,673 yuan per borrowing rural household 

(equivalent to 907 yuan per rural household).28  

The presented numbers indicate that formal loans are not sufficient to meet the household demand. 

Despite increasing average loans borrowed by rural households, more than half of loans were bor-

rowed from relatives or friends that are usually free from interests and more convenient to have 

compared with formal credits, as indicated by Figure 5-4 in the Appendix. The Figure also shows that 

38–54 % of total loans were used for production purposes between 1995 and 2009. Moreover, 10–

14 % of production costs relied on loans regardless of the loan sources.  

Formal financial services are particularly limited in poor rural areas. As shown in Figure 5-4, the size 

of household loans in poor counties (denoted by the grey dash line) was only two thirds of that of an 

average rural household (denoted by the total length of the bar) in 2002. This proportion dropped 

continuously to one third in 2009. Even though the government introduced the poverty-alleviation 

loans in 1986 particularly for poor rural population, according to the Ministry of Finance, only 

0.72 % of about 40,000 sample households in the official Poverty Monitoring Household Survey 

obtained poverty-alleviation loans in 2001 with an average size of 17.03 yuan per household.29 Only 

0.60 % of poor households whose income was lower than the national poverty line obtained the loans 

with an average size of 8.77 yuan. The loans received by poor households accounted for merely 

9.67 % of the total poverty-alleviation loans. Production costs were 318.33 yuan per capita among 

poor households, of which 116.84 yuan per capita (36.7 %) were loans from any source. Assuming 

1.66 yuan (=17.03 yuan / 9.67 %) as an average poor household’s poverty-alleviation loans, it is 

 
27 The figures in this paragraph are authors' compilation and computation of official data in China Statistical 

Yearbooks published by the National Bureau of Statistics, the Distribution of China Rural Financial Services 

released by the China Banking and Insurance Regulatory Commission in 2007, and the China Financial Service 

Report (2008, 2010, 2012 and 2014) published by the People’s Bank of China (i.e., the central bank of China).  
28 1 yuan = 0.148 USD on average in 2010 
29 The figures in this and the next two sentences are from the report of the Ministry of Finance, available in 

Chinese at http://nys.mof.gov.cn/zhengfuxinxi/bgtDiaoCheYan-

Jiu_1_1_1_1_2/200806/t20080619_47086.html [accessed January 30, 2020] 

 

http://nys.mof.gov.cn/zhengfuxinxi/bgtDiaoCheYanJiu_1_1_1_1_2/200806/t20080619_47086.html
http://nys.mof.gov.cn/zhengfuxinxi/bgtDiaoCheYanJiu_1_1_1_1_2/200806/t20080619_47086.html
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obvious that formal microcredits in form of poverty-alleviation loans only counted 1.42 % 

(=1.66/116.84) of per capita borrowed production costs and 0.52 % (=1.66/318.33) of per capita total 

production costs.  

To improve rural finance especially for 128,000 poor villages listed by different levels of government, 

the State Council piloted the Village Fund (one for each administrative village) in 2006 in 140 ad-

ministrative villages across 14 out of 23 Chinese provinces. By the end of 2009 (before we conducted 

the experiment in 2010), the Village Fund had been set up in 9,003 administrative villages. This 

number is equivalent to a coverage rate of 6 % among listed administrative villages by the State 

Council. The coverage rate rose to 15 % of listed poor villages in 2014 when our experiment ended.  

The central government’s fiscal budget of poverty alleviation invests 150,000 yuan to each Village 

Fund. Villagers vote for members of the Village Fund Committee who determine the participation 

fees to the Fund and terms of loans (e.g., the interest rate, the length and amount of lending, repay-

ment methods, and penalties for defaults) and manage the lending. The Fund committee sets up vil-

lage-specific terms under the guidelines of the State Council. That is: (i) households have to pay 

participation fees (100–500 yuan per household to be determined by the Fund Committee) to join the 

Village Fund, but the fees are waived for poor households whose annual net income per capita is 

lower than the national poverty line; (ii) a loan should not be larger than 5,000 yuan with the length 

being no longer than 12 months; (iii) loans can only be used in income-generating activities, typically 

agricultural production given the local context, without negative influences on the village environ-

ment; (iv) lending is made on a rotating basis within a borrowing group including five to seven par-

ticipating households; (v) lending is made on group liability without collaterals; (vi) poor and female 

participants are endowed with priority to loan allocation. After the Committee sets up village-specific 

terms, households pay the participation fees, join the Village Fund, and form their own borrowing 

group on the voluntary basis. In this sense, the Village Fund is most likely to be a rotating credit 

association.  

To evaluate the impact of the Village Fund for poor areas, we collaborated with the State Council 

Leading Group Office of Poverty Alleviation and Development (CPAD) and conducted an experi-

ment starting in 2010. To this end, we selected five sample provinces covering coastal, central and 

western regions (see Figure 5-5 in the Appendix), which include 5 out of 11 ultra-poor clusters des-

ignated by the State Council. Two poor counties in each province and five poor villages in each 

county were selected according to households’ net income per capita and other socioeconomic indi-

cators. In each sample county, we assigned treatment to three villages randomly, while two villages 

for control. 30 households, representing both the poor and affluence in the village, were randomly 

selected within each village according to the equal distance in a name list of all households ordered 

by family wealth. After the baseline interview at the household and village levels in August 2010, 
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the CPAD of the State Council immediately set up and injected 150,000 yuan into the Village Fund 

in each of the 30 treatment villages during September–October 2010, while the 20 control villages 

did not receive any intervention. By comparison, according to the official Poverty Monitoring House-

hold Survey, the village average size of the poverty-alleviation loans was only 38,000 yuan in 2009. 

The experiment provided treatment villages formal credits exogenously and substantially. We con-

ducted two follow-up surveys in July 2012 and August 2014, respectively. After July 2012, 10 orig-

inal control villages became treated, while 2 treatment villages withdrew the Fund. Therefore, in the 

end-line survey in 2014, there were 12 control villages (of which 10 were always part of the control 

group over the period 2010–2014) and 38 treatment villages (of which 28 were always part of the 

treatment group). The CPAD together with provincial and county governments helped treatment vil-

lages establish the Village Fund Committee and trained the committee members for the guidelines of 

the Village Fund and necessary financial and accounting knowledge and skills. The Fund Committee 

set up specific regulations and terms and submitted them to the county governments that would ar-

chive and approve those documents. The Fund Committee members attended regular trainings and 

meetings held by provincial governments and uploaded every transaction to the fund system man-

aged and monitored by the CPAD. Throughout the four-year project period, the central and provincial 

officials closely monitored and checked the operation and management of the Village Fund to avoid 

local corruption or collusion.  

Among treatment villages, the average size of the Village Fund was 182,700 yuan, of which the State 

Council’s fiscal injection counted 86.8 %. The remaining 12.39 % came from households’ contribu-

tions in terms of participation fees and 0.81 % were other contributions from the society. The average 

participation fee was 286 yuan per household. The annual interest rates ranged between 6–11 %. In 

the meanwhile, the People’s Bank of China set the benchmark interest rate of 6 to 12-month loans at 

5.56 % on 20 October 2010; and the Rural Credit Cooperatives – the main source of formal credits 

to an average rural households – were allowed to set up their own interest rates between 0.9 and 2.3 

times as low/high as this benchmark level. Thus, the Village Fund was not more costly, but rather 

more accessible than the prevailing formal credits at the time of experiment. Each Fund Committees 

specified their own loan size between 1,000 and 5,000 yuan in their respective Village Fund regula-

tions. For an average household in the listed poor counties in 2009, a 12-month loan of 5,000 yuan 

could cover its annual productive costs including purchases of productive assets.30  

 

 
30 As seen in the last row of Table A 1, 4,698 yuan per household ≈ (1,013.10 yuan per capita of productive 

costs + 105.47 yuan per capita of purchases of productive assets) x 4.2 family members as an average household 

size 
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5.3 Data and descriptive statistics  

In the baseline interview in 2010, 1,500 households were interviewed, of whom 900 households 

resided in 30 treatment villages. 1,351 (90 %) households were repeatedly interviewed in 2012 and 

1,323 (88 %) again in 2014. Hence, the annualised attrition rate is 5.2 %, which is lower than that in 

many other longitudinal surveys in developing countries (e.g. 7 % in Brazil, 6 % in South Africa and 

an average of 10 % in developing countries according to Barrientos and Mase (2012) and Dercon 

and Shapiro, J. S. (2007))31. To ensure consistent estimates of the production function, we dismissed 

households that reported negative or zero values for agricultural production in at least one year, 

households that reported an unrealistically high number of production value32, and households for 

which only one observation was available. The final sample used for our analysis consists of 1,256 

households with a total of 3,569 observations over three survey waves, which is 86 % of the original 

sample size. In 2010, 755 households were in the treatment villages, while 501 households were in 

the controlled villages. In 2012, after the second treatment wave, 1,020 households were treated and 

236 were controls. Thus, the ratios of households in treatment over control villages (1.5 in 2010 and 

4 in 2012) are maintained after the data cleaning.  

To check if there are systematic differences between the control and the treatment group in the re-

maining sample, we regress all covariates on a dummy variable that indicates the treatment status 

after the baseline survey in 2010, standard errors being clustered at the village level. Because the 

number of clusters (50) is relatively small, we bootstrap standard errors following the suggestion by 

Cameron, Gelbach and Miller (2008). Table 5-1 shows the means and standard deviations of the 

collected data in columns 1 and 2, respectively, and the regression coefficients and p-values in col-

umns 3 and 4, respectively. If treatment was truly random across villages, there should be no signif-

icant differences between the treated and control households. All p-values are above 0.10, providing 

support for the hypothesis that randomisation was successful. The descriptive statistics show that the 

majority of households are headed by males (93 %) at an average age of 52. Furthermore, household 

heads have on average 5.94 years of education. The relatively low share of household consumption 

for food indicates that the majority of households in the sample rely on subsistence farming. Agri-

cultural production value and input expenses (the definitions are explained in detail below) are also 

equally balanced between the treatment and control group. Finally, 20 % of households report in 

2010 that they have no access to credit. 77 % indicate that they have access to informal loans, and 

only 35 % report that they have access to formal loans. Nevertheless, outstanding debts and total 

loans are relatively high, compared to yearly household consumption. 

 
31 We used a probit specification to regress whether the household disappeared in any follow-ups on various 

household characteristics, village traits and the county dummies. The estimators are insignificantly different 

from zero, both individually and jointly. Thus, we trust that attrition is broadly random.  
32 In particular, we removed 87 observations that indicated revenues above the 99th percentile 
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Table 5-1. Baseline balance 

 
 

Control Group Treatment-Control  

 
 

Mean 

(1) 

SD 

(2) 

Coeff. 

(3) 

p-value 

(4) 

 

Household demographics      

 Household head is female (1 if yes, 0  

  otherwise) 

0.07 0.26 -0.02 0.17  

 Age of household head  52.13 11.35 0.86 0.53  

 Household size 4.33 1.54 -0.15 0.47  

 Education of household head 5.94 3.74 -0.40 0.31  

Income and consumption      

 Household income (CN¥) 13,333.79 16,242.45 -1,767.25 0.35  

 Household food consumption (CN¥) 276.61 241.65 -17.71 0.47  

 Household total consumption (CN¥) 6,395.64 14,956.61 -634.42 0.56  

Agricultural outputs and inputs      

 Crop production value (CN¥) 3,785.52 3,684.67 517.57 0.45  

 Livestock production value (CN¥) 1,819.63 3,234.67 -39.60 0.92  

 Agricultural land (mu) 6.12 7.99 0.38 0.80  

 Labour input (index) 24.85 11.17 -1.01 0.30  

 Crop-specific inputs (CN¥) 1,330.29 1,282.02 250.27 0.47  

 Animal-specific inputs (CN¥) 1,378.27 3,141.92 -209.88 0.46  

 Productive assets (CN¥) 3,073.88 17,488.78 -320.05 0.80  

Credit access      

 Access to any type of loan (1 if yes, 0  

  otherwise) 

0.80 0.40 -0.01 0.83  

 Access to informal loan (1 if yes, 0  

  otherwise) 

0.77 0.42 0.00 0.92  

 Access to formal loan (1 if yes, 0 oth- 

  erwise) 

0.35 0.48 -0.08 0.11  

 Total loans (CN¥) 10,734.41 43,075.43 -3,188.79 0.21  

Note: 501 households are in the control group, 755 households in the treatment group. Coefficients and p-values 

in columns (3) and (4) are from a regression of the respective variable on a dummy variable that indicates 

treatment (1 if yes, 0 otherwise). Standard errors are clustered at the village level and bootstrapped with 400 

repetitions. The respondents reported their annual income in 2009 as the baseline took place in mid of 2010, 

while other variables were asked for their values in 2010. The asterisks ***, **, and * indicate significance 

levels at 0.01, 0.05, and 0.10, respectively. 
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To facilitate estimation of the production technology, we aggregate crop production value and live-

stock production value to one output variable. We divide monetary values by provincial input price 

indices obtained from the National Development and Reform Commission of China to convert rev-

enues to implicit quantities. The data contains quantities and prices for 38 crop categories.33 Most 

households report prices even if the entire output is consumed within the households. For those that 

do not report prices, we calculate the village or town average prices. The individual crop value is then 

computed as the product of quantities produced (both for home consumption and sale) multiplied 

with the price. As for animal production, the production values are calculated as the sum of sales, 

self-consumption, stolen animals, and inventory changes net of animal purchases for pigs, poultry, 

sheep, big livestock (e.g. cattle), and other livestock. We further add the production value of wool, 

cashmere, milk, eggs, and other livestock output, which is again calculated physical output multiplied 

with market prices. In our sample, most farm households produce crop and livestock simultaneously. 

For 33 % of observations, the value share of crop production exceeds 95 %. We use a binary variable 

for farm type in our production function estimation to account for potential differences in the pro-

duction technology.  

The inputs considered are cultivated land, family labour, material usage (both for crops and animal 

production) and capital. Land use is measured in mu.34 If the reported land use is zero or missing 

(4 % of observations), we replace it with the household's average land use in other years. Unfortu-

nately, the data does not directly report labour devoted to agricultural production. Hence, we calculate 

a labour index based on the number of months each household member stays at home and the reported 

frequency in productive activities. We trust that this index adequately reflects the amount of agricul-

tural family labour, since family members typically help with family agriculture when staying at 

home, including those returning from migration or school. Material inputs consist of both crop-spe-

cific inputs (seed, fertiliser, pesticides, and hired labour and machinery) and animal-specific inputs 

(fodder, medical costs, and hired labour). Finally, capital summarises productive assets such as trac-

tors, farm implements, handcarts, or threshing machines. Crop-specific, animal-specific, and capital 

inputs are all reported in value terms and converted to implicit quantities by using corresponding 

provincial price indices. The descriptive statistics for the output and input variables used to estimate 

the production technology for our sample of smallholder farms in rural China are reported in Table 

5-2.  

 

 

 
33 By land shares, the most important crops are corn, wheat, and rice. 
34 1 mu = 0.07 hectares 
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Table 5-2. Descriptive statistics for variables used in the production function 
 

Mean Std. dev. Min. Max. 

Aggregated output (cCN¥) 7,059.90 6,640.35 5.86 62,076.70 

Agricultural land (mu) 6.23 6.73 0.10 107.00 

Labour input (index) 23.29 10.19 0.50 100.00 

Materials (cCN¥) 2,934.95 3051.96 0.00 59,981.61 

Capital (cCN¥) 3,544.78 19,994.41 0.00 452,328.94 

Note: cCN¥ denotes constant Yuan. Descriptive statistics are based on 3,569 observations 

from 1,256 households in the years 2010, 2012 and 2014. 

5.4 Empirical framework 

5.4.1 Measuring productivity 

Total factor productivity is defined as the ratio of output to aggregate inputs. One way to aggregate 

quantities is based on value terms by using appropriate price indices, so that the productivity measure 

is independent of price differences. Another way is to weigh inputs by their output elasticities. With 

𝐾 production inputs 𝑋𝑘𝑖𝑡 and output 𝑄𝑖𝑡, TFP is then defined as (e.g. Syverson, 2011) 

 
𝑇𝐹𝑃𝑖𝑡 = 𝐴𝑖𝑡 =

𝑄𝑖𝑡

𝑋1𝑖𝑡
𝛼1 + 𝑋2𝑖𝑡

𝛼2 + ⋯ + 𝑋𝐾𝑖𝑡
𝛼𝐾

   ,   (5-1) 

where 𝛼𝑘 denotes the 𝑘-th input's output elasticity, 𝐴𝑖𝑡 is a technology shift factor that contains tech-

nical efficiency and technical change (Frick and Sauer, 2018), and 𝑖 and 𝑡 are subscripts for household 

units and time. As discussed by Syverson (2011) there are two approaches to measure output elastic-

ities. The first one is non-parametric and relies on the assumption of cost-minimising behaviour of 

firms. Under this assumption, elasticities can be constructed as the product of the input's cost share 

and the scale elasticity, which has to be either estimated or assumed (see Foster, Haltiwanger and 

Syverson (2008) for an application in the manufacturing sector). The second approach – which we 

will follow in our analysis – is to estimate the production function and measure firm-level produc-

tivity as the Solow residual (see Maue, Burke and Emerick, 2020 for a recent application of this 

approach to measure TFP in smallholder farming). In this way, we avoid relying on the assumption 

of cost minimisation, which is unlikely given the importance of subsistence farming in our sample. 

Specifically, we estimate the production function in the form 

 ln 𝑞𝑖𝑡 = 𝛽0 + 𝑥𝑖𝑡
′ 𝛽 + 𝛽𝑡𝑡𝑟𝑒𝑛𝑑𝑡 + 𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒𝑖𝑡 + ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖 + 𝜖𝑖𝑡    , (5-2) 

where the row vector 𝑥𝑖𝑡
′  contains either only linear (Cobb-Douglas functional form) or linear, inter-

action and squared terms (translog functional form) of production inputs. The Cobb-Douglas func-

tional form is employed in similar contexts (e.g. Jimi et al., 2019; Maue, Burke and Emerick, 2020). 

In addition to the Cobb-Douglas production function, we estimate the more flexible translog form to 
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capture non-linearities between input factors. A trend variable (𝑡𝑟𝑒𝑛𝑑𝑡) is included so that the pro-

duction function can shift over time, representing technical change.35 Household fixed effects 

(ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖) are included to account for unobserved heterogeneity across households such as geo-

graphical factors and ability. Controlling for these factors in the production function estimation helps 

mitigating endogeneity problems stemming from omitted variable bias.  Finally, we include a dummy 

variable to account for technological heterogeneity between crop farming and crop-livestock mixed 

farming (𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒𝑖𝑡). After estimating (5-2), we compute estimated productivity levels as variation 

in output that is not attributable to differences in input levels (see, e.g. Frick and Sauer, 2018): 

 ln 𝑇𝐹𝑃𝑖𝑡 = 𝛽̂0 + 𝛽̂𝑡 + 𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒𝑖𝑡 + ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖 + 𝜖̂𝑖𝑡 = ln 𝑞𝑖𝑡 − 𝑥𝑖𝑡
′ 𝛽 (5-3) 

While the TFP measure in equation (5-3) represents output differences that cannot be explained by 

differences in input levels, they can be caused by household fixed effects which contain both geo-

graphical factors (e.g. soil quality) and farmers' abilities. To isolate the effect of improved credit 

access on productivity, we therefore account for these confounding factors in the DID design speci-

fied below.  

5.4.2 Accounting for endogenous input choice 

Despite accounting for unobserved heterogeneity in the model specification (5-2), endogeneity may 

arise owing to unobserved productivity shocks that are time-varying and entail a change in input use. 

In other words, endogeneity problems arise when the inputs in the production function are not exog-

enous but determined by the individual farmers’ choices who respond to productivity shocks that are 

not observable to the econometrician (Griliches and Mairesse, 1999). To account for potential en-

dogeneity of input choice, we employ the proxy-variable approach by Levinsohn and Petrin (2003) 

(LP hereafter). The technique proposed by LP is a modification of the Olley and Pakes (1996) control 

function approach that uses investment to proxy unobserved productivity shocks. LP argue that this 

approach is problematic if adjustment of capital is costly so that the investment response to produc-

tivity shocks is not smoothly. From a practical perspective, high adjustment costs result in a substan-

tial amount of observations reporting zero investments. As a remedy, LP propose to proxy produc-

tivity shocks with intermediate inputs. In particular, the productivity process is described as a first-

order Markov process, assuming that capital stock is a state variable that cannot be immediately 

adjusted as a response to sudden productivity shocks. Under this assumption, the identification strat-

egy is based on the observation that material use can be represented as a function of a firm's produc-

tivity and its capital endowment. We follow this procedure to estimate the production function in 

(5-2) in the Cobb-Douglas form. Unfortunately, the control function approaches by Olley and Pakes 

 
35 We also estimate a model with county-year fixed effects (𝑐𝑜𝑢𝑛𝑡𝑦 - 𝑦𝑒𝑎𝑟𝑖𝑡) instead of a time trend to verify 

that the results are not driven by regional-specific shocks such as weather events.  
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(1996) and LP cannot accommodate the translog functional form. This is because it is not clear how 

to incorporate the interactions between the state variable capital and the freely variable inputs. An 

alternative endogeneity-robust estimation technique, which may be better suited to the translog func-

tional form, is the Wooldridge-Levinsohn-Petrin GMM estimator described in Wooldridge (2009). 

However, this estimation technique requires several-period lags of variables as instruments. Since 

we only observe three periods per household at maximum, we abstain from this approach.36 Never-

theless, comparing the productivity levels obtained from the LP Cobb-Douglas function to the ones 

obtained from the fixed effects estimation allows us to assess whether endogeneity problems affect 

the results. In particular, we will estimate the effect of improved credit access on the Solow residual 

obtained from the fixed effects translog model (FE-TL), the fixed effects Cobb Douglas model (FE-

CD), and the LP Cobb Douglas (LP-CD) model. If the results are robust across all our specifications, 

we can be confident that our main results are not sensitive to input endogeneity.  

5.4.3 Decomposition of productivity growth 

The residual approach discussed above measures differences in output while holding inputs constant. 

As such, it does not measure productivity changes that are due to scale efficiency effects. Stochastic 

frontier analysis, as proposed by Aigner, Lovell and Schmidt, P. (1977) and Meeusen and van Den 

Broeck (1977), provides a tool to decompose productivity growth into technical efficiency change, 

technical change and scale change (Orea, 2002). The resulting productivity index is called generalised 

Malmquist TFP index. To derive this TFP index, output is estimated as a function of inputs while 

allowing for inefficient input use. In this framework, we estimate a translog functional form only, so 

that scale elasticity can vary across farm observations. With four production inputs, the equation to 

be estimated takes the following form: 

 

ln 𝑞𝑖𝑡 = 𝛽0 + ∑ 𝛽𝑗

4

𝑗=1
ln 𝑥𝑗𝑖𝑡 + 0.5 ∑ ∑ 𝛽𝑗𝑘

4

𝑘=1
ln 𝑥𝑗𝑖𝑡 ln 𝑥𝑘𝑖𝑡

4

𝑗=1
+ 𝛽𝑡𝑡𝑟𝑒𝑛𝑑

+ 𝛽𝑡𝑡𝑡𝑟𝑒𝑛𝑑2 + ∑ 𝛽𝑗𝑡

4

𝑗=1
ln 𝑥𝑗𝑖𝑡 𝑡𝑟𝑒𝑛𝑑 + 𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒𝑖𝑡 + ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖

− 𝜂𝑖 − 𝑢𝑖𝑡 + 𝑣𝑖𝑡    , 

(5-4) 

where the variables are defined as above. The error term consists of four components as proposed by 

Kumbhakar, Lien and Hardaker (2014). The first component, ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖, captures time-invariant 

farm effects as in (5-2); second, 𝜂𝑖 > 0 and 𝑢𝑖𝑡 > 0 are persistent and time-varying inefficiency, 

respectively; finally, 𝑣𝑖𝑡 is a symmetric error term accounting for random noise, omitted variables 

and functional form errors. This model is an extension of models that have widely been adopted in 

the literature. Perhaps the most popular is the Battese and Coelli (1992) time decay model where 

 
36 Frick and Sauer (2018) applied the Wooldridge-Levinsohn-Petrin GMM estimator to a large panel of dairy 

farms. They report that the resulting estimates were very sensitive to the specification of the control function, 

possibly owing to multicollinearity between input variables, and thus proceeded with the Cobb Douglas form.  
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inefficiency is modelled as a function of time. However, it imposes the restriction that the inefficiency 

change is monotonically increasing or decreasing for all production units. Moreover, it does not dis-

tinguish between technical inefficiency and firm heterogeneity. We follow Kumbhakar, Lien and 

Hardaker (2014) and estimate equation (5-4) in three steps. First, we define 𝛼0 = 𝛽0 − 𝐸(𝜂𝑖) −

𝐸(𝑢𝑖𝑡), 𝛼𝑖 = ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑖 − 𝜂𝑖 + 𝐸(𝜂𝑖), and 𝜖𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡 + 𝐸(𝑢𝑖𝑡), so that equation (5-4) can be 

written as  

 𝑦𝑖𝑡 = 𝛼0 + 𝑓(𝑥𝑖𝑡; 𝛽) + 𝛼𝑖 + 𝜖𝑖𝑡   . (5-5) 

Since 𝛼𝑖 and 𝜖𝑖𝑡 have zero means and constant variances, this equation can be estimated as standard 

fixed effect panel regression. This multi-step procedure implies that the estimates for the slope pa-

rameters of the production frontier are equal to those from the production function in (5-2) with the 

translog functional form. In steps 2 and 3, time-varying technical efficiency, exp(𝑢̂𝑖𝑡), is estimated 

from 𝜖𝑖̂𝑡, and persistent technical efficiency, exp(𝜂̂𝑖), is estimated from α̂i using stochastic frontier 

estimators. Following Kumbhakar and Lovell (2000), we then compute TFP growth as the difference 

between output change and an input change index where output elasticities are used as weights:  

 𝑇𝐹𝑃̇ 𝑖𝑡 = ln 𝑞̇𝑖𝑡 − ∑ 𝜎𝑗 ln 𝑥̇𝑗𝑖𝑡

4

𝑗=1
   , (5-6) 

where 𝜎𝑗 represents the output elasticity of input 𝑗 and the dot over a variable indicates growth rate. 

The output growth can be expressed as the derivative of equation (5-4) with respect to time: 

 

𝑞̇𝑖𝑡 = ∑ 𝛽𝑗

4

𝑗=1
ln 𝑥̇𝑗𝑖𝑡 + 0.5 ∑ ∑ 𝛽𝑗𝑘

4

𝑘=1
ln 𝑥̇𝑗𝑖𝑡 ln 𝑥̇𝑘𝑖𝑡

4

𝑗=1
+ ∑ 𝛽𝑗𝑡

4

𝑗=1
ln 𝑥̇𝑗𝑖𝑡 𝑡𝑟𝑒𝑛𝑑

+ ∑ 𝛽𝑗𝑡

4

𝑗=1
ln 𝑥𝑗𝑖𝑡 + Δ𝜆𝑡 − Δ𝑢𝑖𝑡 

(5-7) 

We can now insert equation (5-7) into equation (5-6) and rearrange to obtain a parametric measure 

of TFP growth (see Alvarez and del Corral, 2010):  

 𝑇𝐹𝑃̇ 𝑖𝑡 =
𝜕 ln 𝑓( . )

𝜕𝑡 
+ (−

𝜕𝑢

𝜕𝑡
) + (𝑅𝑇𝑆 − 1) ∑ 𝜎𝑗

4

𝑗=1
ln 𝑥̇𝑗𝑖𝑡    , (5-8) 

where RTS denotes returns to scale, defined as the sum of output elasticities. The first term in (5-8) 

measures technical change, the second one represents technical efficiency change, and the last one 

denotes scale efficiency change. This decomposition allows us to estimate treatment effects both on 

TFP growth and on its individual components (see, e.g. Mennig and Sauer, 2020; Baráth, Fertő and 

Bojnec, 2020).  
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5.4.4 Identification of treatment effects 

To provide empirical evidence on the causal effect of credit access on agricultural TFP growth, we 

estimate the ITT effect (see also Hossain, M. et al., 2019). The ITT measures the difference in out-

comes between the treatment and the control group. Thus, it provides an estimate for the effect of 

implementing the credit programme, irrespective of households' actual participation. The ITT is a 

widely applied measure for the treatment effect in the evaluation of credit programmes (among pre-

viously mentioned studies, see Hossain, M. et al., 2019 and Jimi et al., 2016) or other financial pro-

grammes (e.g. Haushofer and Shapiro, J., 2016). As discussed above, participation in the Village 

Fund was voluntary and the village committee decided whether households were eligible to receive 

a credit or not. In 2012 (2014), 57 % (54 %) of farm households residing in treated villages joined 

the Village Fund, of whom 47 % (52 %) borrowed from the Fund. Overall, 29 % (31 %) of eligible 

households acquired loans from the Village Fund. This rate is higher than the one reported by Hoss-

ain, M. et al. (2019), who find that 20 % of eligible households acquired loans from a microcredit 

programme in Bangladesh. Table 5-11 in the Appendix shows that there are no systematic differences 

except household income between farm households taking part in the village fund programme and 

those that are not. Moreover, Table 5-12 shows that most characteristics are successfully balanced 

between the farms who actually took up credit from the village fund programme and those that did 

not. Exceptions are gender, household size, and land (all statistically significant at the 10 % signifi-

cance level) and household income (1 % significance level). Agricultural outputs and labour, material 

and capital inputs are largely balanced between borrowers and non-borrowers.   

We can therefore rely on the exogenous access to the Village Fund to identify the causal impact of 

relaxing farm households’ credit constraints on their agricultural productivity and other outcome var-

iables. We use a DID approach with two-way fixed effects to estimate the treatment effect:37  

 𝑦𝑖𝑣𝑡 = 𝛼 + 𝛾𝐷𝑣𝑡 + 𝛿𝑋𝑖𝑣𝑡 + 𝜔𝑣𝑡 + 𝜌
𝑡
+ 𝜐𝑖 + 𝜖𝑖𝑣𝑡   , (5-9) 

where 𝑦𝑖𝑣𝑡 is the outcome variable (e.g., components of productivity growth) by household 𝑖 in vil-

lage 𝑣 in year 𝑡. 𝐷𝑣𝑡 takes the value of 1 for the village if treated in year 𝑡 and the value 0 otherwise;38 

and 𝑋𝑖𝑣𝑡 are covariates at either the household level (gender, age, education of household head, and 

household size) or the village level (distance to town, investment into farmland). Although they are 

not systematically related to the treatment assignment, they may have explanatory power for the 

outcome variables and thus increase estimation efficiency. Furthermore, we include interaction terms 

of county dummies and a time trend 𝜔𝑣𝑡 to control for unobserved, county-specific time-varying 

influences, such as different factors and output markets across counties regarding agriculture or the 

 
37 Note that this is precisely the intent-to-treat (ITT) effect.  
38 Recall that treatment occurred either in September 2010 after the baseline survey or after July 2012.  
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widening differences across prefectures brought about by unequal socioeconomic development dur-

ing the long-time horizon of our study. Year fixed effects 𝜌𝑡 further pick up changes over time that 

affect all households similarly (e.g., changes of national policy). Finally, 𝜐𝑖 are household-level fixed 

effects to account for the fact that assignment was random across villages but not within villages, and 

𝜖𝑖𝑣𝑡 is the error term. The parameter of main interest is 𝛾, which reflects the change in the outcome 

variable in response to being offered credit access through the Village Fund programme, i.e., the ITT 

effect of the programme.  

5.5 Results and discussion 

In this section, we first present and discuss the results from the estimation of the production technol-

ogy and the derived productivity measures. We then compare productivity measures across treatment 

and control group and present the DID-estimates that reveal the ITT effect of improved credit access.  

5.5.1 Production technology  

We report the full parameter estimates of the Cobb-Douglas and Translog production functions in 

Table 5-13 in the Appendix.39 The corresponding output elasticities are presented in Table 5-3. The 

output elasticities show the expected sign for all specifications as they satisfy the monotonicity re-

quirement at the sample mean. For all specifications, material inputs exhibit the highest elasticity. 

For example, with the conventional Cobb-Douglas production function, a one per cent-increase in 

material use is associated with a 0.56 % increase in output. The results obtained using the LP (2003) 

estimation technique reveal that the output elasticity of materials tend to be upwards biased when 

endogeneity in input use is not accounted for. This result is consistent with the theory that unobserved 

productivity shocks (e.g. weather conditions) are positively correlated with variable input usage. 

Overall, the obtained elasticities are in similar ranges for the three models. Labour and capital show 

the far lowest elasticity values in all specifications, and land and material show the highest elastici-

ties. This result is consistent with the subsample of farm households in the Southwest of China pre-

sented in Chen, Z., Huffman and Rozelle (2009). With an average area of 6.47 mu, this subsample is 

similar to our sample in terms of farm size. Furthermore, we find that average RTS – calculated as 

the sum of individual input elasticities – varies between 0.79 for the Levinsohn-Petrin Cobb Douglas 

specification and 0.86 for the fixed effects Cobb-Douglas specification, implying that the production 

technology is characterised by decreasing RTS. Again, this result is in line with Chen, Z., Huffman 

and Rozelle (2009), who find RTS equal to 0.78. Although decreasing RTS are remarkable consider-

ing the small scale of the sample farms, this finding is consistent with the inverse size-productivity 

 
39 A likelihood ratio test indicated that the Cobb-Douglas production function is rejected in favour of the Trans-

log production function at p = 8.54e-24. Nevertheless, we report results obtained from both Cobb-Douglas and 

Translog functional form for the sake of comparisons with related studies and to assess the robustness of the 

results.  
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relationship documented in the literature (e.g. Sheng, Ding and Huang, J., 2019 for partial produc-

tivity, Muyanga and Jayne, 2019 for TFP) and possibly reflects the state of production technology 

used. Figure 5-6 in the Appendix displays the frequency distribution of technical efficiency scores 

obtained from the Kumbhakar, Lien and Hardaker (2014) stochastic frontier model. The efficiency 

scores vary between 0.10 and 0.87 with an average of 0.59. Thus, the average household in our sam-

ple could improve agricultural output by 41 % without changing the amount of inputs used, according 

to our estimates. 

Table 5-3. Output elasticities obtained from main production function specifications 

 FE-CD 

(1) 

LP-CD 

(2) 

FE-TL 

(3) 

FE-TL (ii) 

(4) 

Land 0.204*** 0.199*** 0.232*** 0.284*** 

 (0.025) (0.031) (0.038) (0.036) 

Labour 0.058** 0.062** 0.053 0.060 

 (0.028) (0.028) (0.042) (0.040) 

Material 0.564*** 0.491*** 0.507*** 0.480*** 

 (0.019) (0.027) (0.028) (0.028) 

Capital 0.030*** 0.035 0.024* 0.022* 

 (0.009) (0.023) (0.064) (0.012) 

Returns to Scale 0.856 0.787 0.853 0.853 

   Min - - 0.156 0.188 

   Max - - 1.149 1.115 

   Standard Deviation - - 0.069 0.060 

Note: Number of observations is 3,569. ***, **, and * indicate significance levels at 0.01, 0.05, and 0.10, 

respectively. Standard errors are in parentheses. FE-CD is the standard Cobb-Douglas production function, 

LP-CD is the Cobb-Douglas function estimated with the Levinsohn-Petrin (2003) technique. FE-TL is the 

translog production function and frontier. FE-TL (ii) contains county-year fixed effects instead of a time 

trend. Elasticities for the TL specifications vary across household observations and are evaluated at the sam-

ple mean using the delta method.  

Elasticities based on the flexible translog specifications (columns 3 and 4) vary across household 

observations. Hence, we check curvature conditions at every data point. Table 5-14 in the Appendix 

shows that the estimated production functions are monotonically increasing in inputs at the majority 

of data points. Use of labour is the input with the highest share of monotonicity violations (5.18 % 

for the specification with a time trend and 13.9 % for the specification with county-year fixed effects). 

A possible explanation might be that family labour input is proxied by an index rather than actual 

working hours, leaving the possibility of measurement errors. Another potential reason might be that 

within-household variation of labour use is rather limited, and thus part of the labour contribution 

towards output may be captured by the household fixed effect. Finally, we assess concavity of the 
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production function by evaluating the Hessian matrix of first and second derivatives. We find that the 

Hessian matrix is negative semi-definite for 75.7 % (67.2 %) of observations for the specification 

with a time trend (county-year fixed effects), implying that the concavity condition is satisfied at the 

majority of data points. The specification with the time trend results in fewer regularity violations 

with respect to both monotonicity and curvature conditions than the specification with county-year 

fixed effects. Deviations from the concave part of the production function indicate non-profit max-

imising behaviour, which seems reasonable in the case of smallholder farming with limited access to 

resources. Overall, the consistency of our estimated parameters to economic theory makes us confi-

dent that the production function specifications are reliable approximation to the underlying technol-

ogy.  

5.5.2 Productivity measures 

As discussed above, we employ two strategies to estimate household-level productivity: The Solow 

residual to measure TPF in levels and the Malmquist index to measure changes in TFP. The Solow 

residual is estimated based on four different production function specifications: The conventional 

Cobb-Douglas function; the LP (2003) Cobb-Douglas function; and two translog production func-

tions either with a time trend or with county-year fixed effects. Although there are differences in the 

estimated parameters and elasticities between different model specifications, the Solow residual is 

highly robust across these specifications as indicated by correlation coefficients above 95 %. Our 

preferred model is the Cobb-Douglas specification estimated with the LP (2003) technique, as it is 

robust to endogenous input choice. However, we also present treatment effects on other specifications 

in the following as robustness checks. For the Malmquist index, we focus on the production frontier 

with the time trend, as it allows decomposing productivity change into technical change, technical 

efficiency change, and scale change. It also results in fewer regularity violations than the frontier 

with county-year fixed effects.  

The Malmquist productivity index shows that TFP increased by 7.7 % per period, on average. Be-

cause data are collected every two years, this amounts to an annual average rate of 3.9 %. This esti-

mate lies between the estimates by Cao and Birchenall (2013) for the years 1991 to 2009 (6.5 %), 

and the estimates by Jin et al. (2010) for Chinese crop farms for the years 1990 – 2004 (2 %). Fur-

thermore, our estimates suggest that the overall technical efficiency change over the sample period 

was slightly negative. This result is driven by the negative efficiency change in the control group 

(- 1.3 %). Technical efficiency in the treatment group, by contrast, is slightly positive on average 

(+ 0.02 %). Finally, the scale effect is negative both in the control group and in the treatment group. 

The largest driver of TFP growth appears to be technical change, with 10.6 % on average. 
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Table 5-4. Components of productivity growth 

Variable Mean Std. dev. Min. Max. 

Entire sample     

 TFP change 0.077 0.239 -1.254 1.082 

 Technical efficiency change -0.001 0.211 -1.314 1.189 

 Scale change -0.028 0.087 -0.613 0.296 

 Technical change 0.106 0.090 -0.081 0.252 

Households in control villages (n=428) 

 TFP change 0.038 0.273 -1.093 1.038 

 Technical efficiency change -0.013 0.252 -1.123 1.189 

 Scale change -0.040 0.094 -0.518 0.179 

 Technical change 0.092 0.088 -0.070 0.228 

Households in treated villages (n=1885) 

 TFP change 0.086 0.229 -1.254 1.082 

 Technical efficiency change 0.002 0.200 -1.314 0.994 

 Scale change -0.025 0.085 -0.613 0.296 

 Technical change 0.109 0.091 -0.081 0.252 

Note: Number of observations is 2,313. The first sample appearance is omitted because variables 

are measured in changes. 

Figure 5-1 displays Kernel density plots of the Solow residual and of the Malmquist TFP index ob-

tained from our preferred models, separated by the treatment status, in the end-line survey in 2014. 

Descriptively, both plots suggest higher productivity for farms in treated villages, i.e. those with 

improved credit access. The descriptive comparison, however, does not allow to make statistical in-

ference on the effect of the improved credit access, which will be done in the following section.  

  

Figure 5-1. Kernel density plots for Solow residual (left) and Malmquist TFP index (right) with 

and without credit access (2014).  

Note: The Solow residual is derived from the Levinsohn-Petrin (2003) estimation of the Cobb-Doug-

las production function. The Malmquist index is derived from a translog production frontier. 
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5.5.3 Treatment effects of credit access 

This section presents the DID-estimates for the ITT-effect of the Village Fund programme obtained 

from equation (5-9). Standard errors in this section are clustered at the household level as the panel 

unit, as we expect serial correlation within the household. Autocorrelation in the time dimension is 

accounted for by including year fixed effects. First of all, we assess whether access to the Village 

Fund programme has improved credit access. The dependent variables are "access to formal loans" 

(1 if household stated that it has access to formal loans, 0 otherwise), "access to informal loans" (1 

if household stated that it has access to informal loans, 0 otherwise), and total current loans measured 

in CNY. As Table 5-5 shows, implementation of the Village Fund increased access to formal loans 

but – as expected – not access to informal loans. In monetary terms, access to the Village Fund 

increases a household's total loan by about 2,995 CNY. This value is comparable to the average value 

of material use in the sample as indicated by the descriptive statistics (see Table 5-2).  

Table 5-5. Impact of the Village Fund on credit access 

 Access to Formal 

loans 

Access to informal 

loans 

Total loans 

Treatment effect 0.090*** 0.008 2994.891* 

(Robust SE) (0.033) (0.028) (1721.761) 

P-value 0.006 0.769 0.082 

Baseline mean 0.298 0.768 8817.58 

(Std. dev.) (0.458) (0.422) (29753.92) 

Note: Estimation is based on 3,559 observations. ***, **, and * indicate significance levels at 0.01, 0.05, 

and 0.10, respectively. Standard errors are clustered at the household levels as the panel units, while con-

trolling for year fixed effects and interactions between a time trend and county dummies. Further control 

variables include household and village characteristics. 

Next, Table 5-6 presents the impact of the Village Fund programme on agricultural output and input 

usage. As described above, we distinguish between four inputs: land, labour, material inputs (includ-

ing crop- and animal-specific inputs) and capital input. Table 5-6 shows that the estimated coefficients 

for the treatment effect are all positive except for labour. However, only the effect on output is statis-

tically significant. As the amount of land allocated to a household is often determined by nutrition 

needs, i.e. family size, the non-significant effect on land use is expected. Indeed, the correlation co-

efficient between household size and agricultural land is +0.24 in our sample. Contrary to expecta-

tions, we find no overall significant ITT effect on material or capital use. Although the treatment 

effect of improved credit access on these two inputs are both economically significant, they are as-

sociated with high standard errors and hence statistically not significant. To explore this further, we 

estimate the treatment effect of individual material components. The estimated coefficients are dis-

played in Figure 5-7 in the Appendix. This figure reveals that the ITT effect on seed is significantly 
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positive (p-value: 0.056), implying that farm households with improved credit access may be able to 

afford more seed or seed with higher quality.  

Table 5-6. Impact of credit access on agricultural output and inputs 

 Output Land Labour Material Capital 

Treatment effect 997.560*** 0.121 -0.078 172.340 1681.140 

(Robust SE) (317.505) (0.194) (0.552) (154.730) (1262.013) 

P-value 0.002 0.533 0.888 0.266 0.183 

Baseline mean 

(Std. dev.) 

4935.443 

(4451.785) 

6.346  

(7.232) 

24.239  

(10.488) 

2452.860  

(2739.582) 

2881.492  

(14924.170) 

Note: Estimation is based on 3,559 observations. ***, **, and * indicate significance levels at 0.01, 0.05, and 

0.10, respectively. Standard errors are clustered at the household levels as the panel units, while controlling 

for year fixed effects and interactions between a time trend and county dummies. Further control variables 

include household and village characteristics. 

Table 5-7 reports the effect of the Village Fund on gross and net value per unit of land (i.e., two 

measures for land productivity), as well as the effect on TFP levels obtained from various production 

function specifications. Consistent with previous findings in the literature (Ciaian, Fałkowski and 

Kancs, 2012; Dong, Lu, J. and Featherstone, 2012; Guirkinger and Boucher, 2008; Reyes et al., 

2012), our results suggest that improved credit access positively contributes to land productivity. 

Partial productivity gains are not necessarily associated with a positive overall productivity effect 

(Baráth, Fertő and Bojnec, 2020). In our empirical case, however, we find that the positive effect on 

partial productivity also translates to a positive effect on TFP. The DID estimator suggests that the 

implementation of the Village Fund causes an increase in TFP level by more than 9 %. As Table 5-7 

shows, this finding is robust across the production function specifications considered in our analysis, 

including the endogeneity-robust estimation of the Cobb-Douglas production function using the Lev-

inson-Petrin (2003) estimator.  
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Table 5-7. Impact of credit access on agricultural productivity 

  

Gross value 

 

Net value 

log(TFP)  

(Solow residual) 

 per mu 

(1) 

per mu 

(2) 

FE-CD 

(3) 

LP-CD 

(4) 

FE-TL 

(5) 

Treatment effect 808.506** 516.919** 0.098*** 0.092** 0.091** 

(Robust SE) (350.600) (223.486) (0.036) (0.039) (0.035) 

P-value 0.021 0.021 0.006 0.020 0.010 

Baseline mean 

(Std. dev.) 

1520.838 

(2832.960) 

707.954 

(1863.840) 

3.336 

(0.512) 

3.854 

(0.539) 

-0.248  

(0.514) 

Note: Estimation is based on 3,559 observations and 1256 clusters. ***, **, and * indicate significance levels 

at 0.01, 0.05, and 0.10, respectively. Standard errors are clustered at the household level as the panel units, 

while controlling for year fixed effects and interactions between county dummies. Further control variables 

include household and village characteristics. FE-CD is the standard Cobb-Douglas production function, LP-

CD is the Cobb-Douglas function estimated with the Levinsohn-Petrin (2003) technique. FE-TL is the translog 

production function. 

Finally, in Table 5-8, we report the effect of the Village Fund on the Malmquist TFP index and its 

components. These variables are measured in changes with respect to the previous period, and thus 

are missing for the first year. To keep all observations for the estimation, we translate the index to a 

chain index, so that it takes the value 1 in the first period, which serves as the base for the second and 

third periods. The results in Table 5-8 show that the treatment effect on technical efficiency change is 

positive and statistically significant. The gains in technical efficiency in response to improved credit 

access are in line with the positive treatment effect on output but only small effects on input usage, 

as reported in Table 5-6. For example, higher technical efficiency may be achieved by improved 

timing of input applications. No statistically significant effect on scale efficiency change is observed. 

Again, this is consistent with only marginal responses in input usage, which implies that the (input-

related) scale of farming remains constant. Finally, we observe a small but statistically significant 

effect of credit access on technical change. Thus, our results are generally in line with the findings by 

Jimi et al. (2019), who found a significantly positive of a microcredit programme in Bangladesh on 

both technical efficiency and technical change by directly including credit access as a dummy varia-

ble in the production function. We refrained from this approach because we define technical change 

as new technologies or innovations that cause an outwards-shift of the production functions for all 

farms in the same way. Thus, in our interpretation, differences in technical change between the control 

and treatment group only arise from differences in input levels, i.e. non-neutral technical change. 

Taken together, the overall effect of improved credit access on the Malmquist productivity index (i.e., 

the sum of technical efficiency change, scale efficiency change, and technical change) is positive and 

statistically insignificant (column 1 in Table 5-8).  
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Table 5-8. Impact of credit access on agricultural productivity growth 

 

Malmquist  

TFP index 

(1) 

Technical efficiency 

change 

(2) 

Scale efficiency 

change 

(3) 

Technical change 

(4) 

Treatment effect 0.033*** 0.023** 0.002 0.006*** 

(Robust SE) (0.011) (0.009) (0.003) (0.002) 

P-value 0.002 0.014 0.670 0.001 

Note: Estimation is based on 3,559 observations and 1256 clusters. ***, **, and * indicate significance levels 

at 0.01, 0.05, and 0.10, respectively. Standard errors are clustered at the household levels as the panel units, 

while controlling for year fixed effects and interactions between county dummies. Further control variables 

include household and village characteristics. 

5.5.4 Heterogeneous and dynamic treatment effects 

Heterogeneous treatment effects on agricultural output, the Solow residual, the Malmquist produc-

tivity index as well as technical efficiency change are explored in Table 5-15 in the Appendix. To 

identify potential treatment heterogeneity, we estimate equation (5-9) for subsamples, separated by 

the following baseline characteristics: age cohorts, gender, initial poverty, credit availability, initial 

asset holdings and initial material usage. Standard errors of differences between the estimators are 

obtained by bootstrapping with 400 iterations. The initial poverty status is defined as whether the 

household’s per capita net income in 2009 was below the national poverty line of 2300 yuan. The 

initial credit availability status is defined as whether the household’s total available credits (the sum 

of outstanding loans and potentially available credits) in 2010 (before the intervention began in Sep-

tember) are below the sample median. The asset holdings are defined as whether the value of ma-

chines held by the household in 2010 was below the sample median. Material usage is defined in the 

identical way. The results in Table 5-15 indicate that there is only limited treatment heterogeneity 

across farm households with different baseline characteristics. We do not find any heterogeneous 

treatment effects of improved credit access on agricultural output (column 1) and TFP measured with 

the Solow residual (column 2) in our preferred specification. The effect on the Malmquist index and 

technical efficiency, by contrast, seems to be more pronounced for households that indicated higher 

credit availability in the beginning. While this finding seems counterintuitive, we emphasize that the 

total availability of credits does not indicate whether a household is credit constrained or not. By and 

large, the heterogeneous treatment analysis shows that the defined subsamples respond similarly to 

improved credit access.  

Finally, to explore treatment effects over time, we estimate a modification of equation (5-9) as fol-

lows: 

 𝑦𝑖𝑣𝑡 = 𝛼 + 𝛾1𝐷𝑣𝑡 + 𝛾2𝐷𝑣,𝑡−1 + 𝛽𝑋𝑖𝑣𝑡 + 𝜔𝑣𝑡 + 𝜌
𝑡
+ 𝜐𝑖 + 𝜖𝑖𝑣𝑡 (5-10) 
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In equation (5-10), 𝐷𝑣,𝑡−1 is the lagged value of the treatment variable. While 𝛾1 still captures the 

effect of improved credit access, 𝛾2 indicates the lasting or accumulating effect of the treatment after 

four years (e.g., in year 2014 if the treatment took place after the baseline survey in 2010), and all 

other variables are defined as above. The results of the estimation for our productivity measures are 

presented in Figure 5-2. The plots show that the effects of improved credit access on our overall TFP 

measures as well as on technical efficiency change are realised within two years (coefficients for 

𝐷𝑣𝑡). Moreover, a small positive effect on technical change is realised within two years and this effect 

accumulates over time (coefficient for 𝐷𝑣,𝑡−1). In particular, the DID-estimate of receiving treatment 

after the baseline survey in 2010 on technical change is more than three times as high in the follow-

up survey in 2014 than in the first follow-up survey in 2012. This finding suggests that there is a long-

term and accumulating effect of improved credit access on technical change.  

 

Figure 5-2. Dynamic treatment effects of improved credit access on productivity and components.  

Note: Blue bars represent 90 %, 95 % and 99 % confidence intervals. LP-CD is the Cobb-Douglas 

function estimated with the Levinsohn-Petrin (2003) technique. FE-TL is the translog production 

function. 
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5.5.5 Robustness checks 

In this section, we present three placebo tests to assess the robustness of our results with respect to 

TFP and its components: First, we evaluate whether the results are statistical artefacts driven by the 

research design. Second, we test whether the results are driven by changes in the treated group rather 

than concurrent changes in the control group. Third, we test whether initial differences between the 

treated and controlled groups are accountable for the results.  

For the first purpose, we conduct a randomisation inference test for which we randomly re-assign 

treatment at the level of actual treatment assignment (villages) 1,000 times. For each of the 1,000 

iterations, we re-estimate equation and store the coefficient 𝛾, representing the placebo estimate. The 

null hypothesis of this randomisation inference test is that there is no effect of credit access on the 

outcome variables. The p-value of this test is given by the share of estimated coefficients that are 

closer to zero than our actual estimates. In Figure 5-3, we plot histograms of the placebo estimates 

for the effect of credit access on our productivity measures. The actual estimates are indicated with 

dashed lines in these plots. The results support our original results: only in very rare cases, the placebo 

effect exceeds the estimated effects in the actual model, as indicated by the p-values of the tests that 

are all below zero. The only exception is scale efficiency change, for which the estimated effect has 

already been statistically insignificant using the actual research design.  

 

Figure 5-3. Randomisation inference test for estimated effects of credit access on productivity 
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For the second purpose, to test whether the results are driven by changes in the treated group rather 

than concurrent changes in the control group, we repeat this exercise but restrict the sample to the 

controlled villages. This allows us to assess the likelihood of changes in our outcome variables in the 

controlled group. If the “artificial” effects are statistically non-significant, we can conclude that our 

treatment effects are not driven by a deterioration of outcomes in the control group. The correspond-

ing plots showing the histograms of the simulated effects are displayed in Figure 5-8 in the Appendix. 

Large p-values for all outcome variables except scale efficiency change indicate that the "artificial" 

effects are statistically not different from zero. The significant estimate for scale efficiency changes 

suggests that there are changes in scale efficiency among the control group. However, since these 

changes are positive, and our actual treatment effect on scale efficiency is not significant, we do not 

have to be concerned that these changes in the control group drive any of our results.  

Finally, for the third purpose, we assume that the intervention began in 2010 and re-estimate (5-9) 

with the baseline wave only. Since productivity changes are not available for the first period, this 

robustness check can only be carried out for the productivity measures in levels, i.e. the Solow re-

siduals. The results in Table 5-9 show that the placebo effects on the Solow residuals from our three 

different production function specifications are statistically insignificant. Therefore, we conclude that 

the estimated positive effects of improved credit access on TFP are not driven by initial differences 

in TFP between the treated and controlled groups.  

Table 5-9. Placebo tests on credit access using the baseline data only 

 Solow residual 

(LP-CD) 

Solow residual 

(FE-CD) 

Solow residual 

(FE-TL) 

Treatment 

(Robust SE) 

0.031 

(0.045) 

0.034  

(0.039) 

0.028 

(0.474) 

P-value 0.491 0.400 0.474 

Note: Estimation is based on 1,252 observations. ***, **, and * indicate significance levels at 0.01, 0.05, and 

0.10, respectively. Standard errors are in parentheses and clustered at the village level. FE-CD is the standard 

Cobb-Douglas production function, LP-CD is the Cobb-Douglas function estimated with the Levinsohn-Petrin 

(2003) technique. FE-TL is the translog production function. 
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5.6 Conclusion 

Market failures constitute a major challenge for smallholder farmers in developing countries. In par-

ticular, limited access to credits as a result of few collaterals prevent farm households from using the 

optimal amount of agricultural inputs. A large body of empirical work demonstrated that relaxing 

credit constraints result in more investments, higher agricultural output and higher land and labour 

productivity. In this article, we investigated whether improving credit access for smallholder farmers 

also results in total factor productivity gains. To this end, we used data from a randomized controlled 

trial in rural China. The data comes from household interviews conducted in 2010, 2012 and 2014. 

After the baseline interview in 2010, a Village Fund was introduced in 30 out of 50 randomly selected 

villages across five sample provinces. After the first follow-up interview in 2012, 10 more villages 

received treatment. More than 50 % of households in treated villages applied for credit from the 

Village Fund and approximately 30 % of eligible households received loans by 2014.  

We find that improved credit access had a significantly positive effect not only on land productivity 

– as documented in the literature – but also on TFP. This finding is robust across a wide range of 

production function specifications. Decomposing TFP change into various components, we find that 

gains in TFP were driven by technical efficiency gains and technical change, consistent with the 

findings in Jimi et al. (2019). The availability of three survey rounds allowed us to assess effects of 

credit access beyond two years. We find that most effects are realised within two years and that the 

effect on technical change accumulates over time. Improved credit access may allow farm households 

to invest in better technologies that affect agricultural productivity not only immediately, but lead to 

further improvements in the future, for example because investment takes time or by dissemination 

of new technologies at the farm level across multiple plots (e.g. reproduction of improved seed vari-

eties).  

A limitation of our study is that poor and female participants are prioritised in loan allocation in our 

experiment. Indeed, the baseline test reveals that households with higher incomes were less likely to 

participate and borrow from the Village Fund. While this result could also imply that poorer house-

holds show the highest demand for credits, this qualification must kept in mind when interpreting the 

ITT effect in our study. Another limitation is that our sample is restricted to particularly poor counties. 

The external validity of the study could therefore be improved by extending the experiment to more 

representative rural areas in China and to other regions in developing countries. Although we did not 

find treatment heterogeneity across initial poverty status in our sample, theory suggests that wealthier 

households are less credit constrained (e.g., owing to more collaterals), and therefore would respond 

less to microcredit programmes. This effect may become visible if data were taken from a more het-

erogeneous sample population.  
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Despite these limitations, the study provides important implications for policy. First and foremost, 

supporting poor smallholder farms with microcredit programmes is shown to successfully increase 

agricultural output and productivity, and hence household welfare. The treatment effect of the credit 

programme on agricultural output amounts to approximately one third of the treatment effect on total 

loans, suggesting an effective turnaround of the credits into economic output. The results also suggest 

that there are even higher gains evolving years after the implementation of the microcredit pro-

gramme via long-term effects on technical change. Second, the results suggest that output gains were 

primarily achieved by higher technical efficiency and technical change, while no strong effects on 

total input use were found. Anecdotally, some households reported that enlarging the production 

would require large lump-sum investments for which the loan size was not sufficient. In addition, 

some households may also not only be restricted by liquidity but also by a limitation of investment 

opportunities, as already discussed by Taylor, Drummond and Gomes (1986). Thus, policymakers 

may potentially adjust the loan size to regional needs and support market access to improved inputs 

for smallholder farmers. Since changes in total input usage in response to improved credit access 

were only marginal, it is not surprising that no significant effects on scale efficiency were found. As 

the technology is found to be characterized by decreasing returns-to-scale, increasing the overall 

scale of the production would likely come at the cost of overall productivity. This is in line with 

Sheng, Ding and Huang, J. (2019), who conclude that land rental subsidies without technology ad-

aptations would result in resource misallocation towards larger farms that use less-efficient labour-

intensive technologies.  

Several avenues for further research exist. Besides improving the external validity of the study with 

replications in other regions, evaluating the long-term effects of improved credit access on efficiency 

and productivity is important to comprehensively evaluate credit programmes. As Shoji et al. (2012) 

show, households facing credit constraints reduce investments in social capital. Thus, a long-term 

benefit of credit-access on agricultural productivity may occur through the channel of improved ed-

ucation, which is unlikely to be captured in our data period, although the data allowed us to investi-

gate dynamic effects over four years. Future work should also evaluate how financial instruments can 

be tailored to enhance the adaption of modern technologies that offer economies of scale rather than 

diseconomies of scale for smallholder farms.   
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Appendix 

 

Table 5-10. Household per capita expenditures in production (nationally designated poor counties, 

2002-2009) 

   Of productive costs   

Year Productive 

costs 

 (i) 

Cropping 

(ii) 

Forestry 

(iii)  

Husbandry 

(iv)  

Fishery 

 Purchase of 

productive  

assets 

2002 575.250  298.254 8.324 207.587 2.433  49.816 

2003 625.936  304.775 9.453 250.072 2.017  77.265 

2004 701.422  350.831 7.697 283.359 2.045  83.468 

2005 779.175  402.238 11.415 293.970 3.884  82.495 

2006 818.095  437.222 14.841 291.597 4.522  84.407 

2007 890.254  465.973 16.720 330.339 4.730  82.832 

2008 1,009.445  520.681 17.559 389.607 5.164  99.984 

2009 1,013.104  530.225 15.851 377.933 6.423  105.465 

Note: The unit is yuan per capita. All figures are in the 2010 constant prices.  

Source: Authors’ calculations based on costs in the China Rural Poverty Monitoring Report (2010) pub-

lished by the CPAD based on the official Poverty Monitory Household Survey, and the rural CPI in the 

China Statistical Yearbooks published by the NBS 
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Table 5-11. Baseline balance, Village Fund participation vs. non-participation 

 
 

Not participate in 2012 Participate in 2012  

 
 

Mean 

(1) 

SD 

(2) 

Coeff. 

(3) 

p-value 

(4) 

 

Household demographics in 2010      

 Household head is female (1 if yes, 0  

  otherwise) 

0.06 0.25 -0.02 0.13  

 Age of household head  52.14 11.37 1.46 0.22  

 Household size 4.32 1.55 -0.24 0.14  

 Education of household head 5.76 3.73 -0.20 0.53  

Income and consumption       

 Household income (CN¥) 13,238.32 16,288.69 -2,811.00 0.04 ** 

 Household food consumption (CN¥) 269.19 216.60 -9.39 0.66  

 Household total consumption (CN¥) 6,276.87 12,771.91 -763.44 0.43  

Agricultural outputs and inputs       

 Crop production value (CN¥) 4,129.10 3,968.21 -94.37 0.84  

 Livestock production value (CN¥) 1,708.91 2851.49 252.68 0.39  

 Agricultural land (mu) 6.82 7.71 -1.39 0.15  

 Labour input (index) 24.32 10.51 -0.25 0.78  

 Crop-specific inputs (CN¥) 1,558.85 1,904.20 -227.11 0.17  

 Animal-specific inputs (CN¥) 1,233.91 2,618.33 52.90 0.81  

 Productive assets (CN¥) 2991.44 16,041.08 -319.67 0.77  

Credit access in 2010      

 Access to any type of loan (1 if yes, 0  

  otherwise) 

0.79 0.40 0.00 0.90  

 Access to informal loan (1 if yes, 0  

  otherwise) 

0.77 0.42 0.01 0.81  

 Access to formal loan (1 if yes, 0 oth- 

  erwise) 

0.30 0.46 0.01 0.80  

 Total loans (CN¥) 9,151.66 34,711.34 -971.30 0.63  

Note: 842 households do not participate in 2012, 432 households participate. Coefficients and p-values in 

columns (3) and (4) are from a regression of the respective variable on a dummy variable that indicates 

treatment (1 if yes, 0 otherwise). Standard errors are clustered at the village level and bootstrapped with 400 

repetitions. The respondents reported their annual income in 2009 as the baseline took place in mid of 2010, 

while other variables were asked for their values in 2010. The asterisks ***, **, and * indicate significance 

levels at 0.01, 0.05, and 0.10, respectively. 

 

 



Credit Access and Agricultural Productivity | 117 

 

 

 

 

 

Table 5-12. Baseline balance, borrowing from Village Fund vs. non-borrowing 

 
 

Not borrow in 2012 Borrow in 2012  

 
 

Mean 

(1) 

SD 

(2) 

Coeff. 

(3) 

p-value 

(4) 

 

Household demographics in 2010      

 Household head is female (1 if yes, 0  

  otherwise) 

0.06 0.24 -0.03 0.09 * 

 Age of household head  52.39 11.45 1.53 0.21  

 Household size 4.29 1.59 -0.29 0.09 * 

 Education of household head 5.72 3.72 -0.17 0.55  

Income and consumption in 2009      

 Household income (CN¥) 13,018.46 16,199.38 -4,510.62 0.00 *** 

 Household food consumption (CN¥) 271.80 216.40 -35.24 0.12  

 Household total consumption (CN¥) 6,140.49 11,967.54 -762.10 0.52  

Agricultural outputs and inputs in 2010      

 Crop production value (CN¥) 4,069.98 3,785.72 160.98 0.80  

 Livestock production value (CN¥) 1,798.36 2,812.10 -15.32 0.96  

 Agricultural land (mu) 6.64 7.34 -1.76 0.07 * 

 Labour input (index) 24.21 10.52 0.19 0.87  

 Crop-specific inputs (CN¥) 1,516.41 1,781.31 -215.41 0.17  

 Animal-specific inputs (CN¥) 1,254.03 2,426.00 -11.60 0.97  

 Productive assets (CN¥) 2,945.87 15,165.63 -388.77 0.78  

Credit access in 2010      

 Access to any type of loan (1 if yes, 0  

  otherwise) 

0.80 0.40 0.00 0.92  

 Access to informal loan (1 if yes, 0  

  otherwise) 

0.77 0.42 0.00 0.90  

 Access to formal loan (1 if yes, 0 oth- 

  erwise) 

0.30 0.46 -0.02 0.53  

 Total loans (CN¥) 8,612.42 31,395.91 1,238.86 0.55  

Note: 1,048 households do not borrow in 2012, 208 households borrow. Coefficients and p-values in columns 

(3) and (4) are from a regression of the respective variable on a dummy variable that indicates treatment (1 

if yes, 0 otherwise). Standard errors are clustered at the village level and bootstrapped with 400 repetitions. 

The respondents reported their annual income in 2009 as the baseline took place in mid of 2010, while other 

variables were asked for their values in 2010. The asterisks ***, **, and * indicate significance levels at 0.01, 

0.05, and 0.10, respectively. 
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Table 5-13. Parameter estimates for production function specifications 

 FE-CD 

(1) 

 LP-CD 

(2) 

 FE-TL 

(3) 

 FE-TL (ii) 

(4) 

  

Land 0.204 *** 0.199 *** 0.232 *** 0.284 *** 

 (0.025)  (0.031)  (0.038)  (0.036 ) 

Labour 0.058 ** 0.062 ** 0.053 * 0.060  

 (0.028)  (0.028)  (0.042)  (0.040 ) 

Material 0.564 *** 0.491 *** 0.507 *** 0.480 *** 

 (0.019)  (0.072)  (0.028)  (0.028 ) 

Capital 0.030 *** 0.035  0.024 * 0.022 * 

 (0.009)  (0.023)  (0.013)  (0.012 ) 

Land × Land     0.056 * 0.057 ** 

     (0.029)  (0.028 ) 

Land × Labour     0.023  0.027  

     (0.033)  (0.032 ) 

Land × Material     -0.056 *** -0.033 * 

     (0.020)  (0.020 ) 

Land × Capital     -0.007  -0.005  

     (0.010)  (0.009 ) 

Labour × Labour     0.021  0.010  

     (0.048)  (0.046 ) 

Labour × Material     -0.042  -0.056 ** 

     (0.029)  (0.028 ) 

Labour × Capital     0.002  0.012  

     (0.015)  (0.014 ) 

Material × Material     0.053 *** 0.036 * 

     (0.020)  (0.019 ) 

Material × Capital     -0.007  -0.004  

     (0.008)  (0.008)  

Capital × Capital     -0.005  -0.007  

     (0.006)  (0.006)  

Trend 0.182 *** 0.178 *** 0.208 ***   

 (0.012)  (0.013)  (0.019)    

Trend × Trend     -0.175 ***   

     (0.020)    

(continued on next page) 
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Table 5-15. (continued) 

 FE-CD 

(1) 

 LP-CD 

(2) 

 FE-TL 

(3) 

 FE-TL (ii) 

(4) 

 

 

Trend × Land     0.021    

     (0.017)    

Trend × Labour     0.006    

     (0.030)    

Trend × Material     0.004    

     (0.017)    

Trend × Capital     0.000    

     (0.009)    

Dummy for 𝑥3 = 0   -1.382  -2.584  -2.557  

   (2.509)  (0.193)  (0.187 ) 

Dummy for 𝑥4 = 0   -0.009  -0.275  -0.257  

   (0.234)  (0.060)  (0.059 ) 

Dummy for 𝑓𝑎𝑟𝑚𝑡𝑦𝑝𝑒 0.176 *** 0.174 *** 0.201 *** 0.230 *** 

 (0.036)  (0.047)  (0.036)  (0.035 ) 

Constant term 2.517 *** -0.105 *** -0.758 ** 0.382  

 (0.350)  0.025  (0.316)  (0.380 ) 

Household fixed effects yes 

County-year fixed effects no no no yes 

Note: Number of observations is 3,569. Standard errors are in parentheses. *, ** and *** indicate statistical 
significance at the 0.10, 0.5 and 0.01 significance level. All variables except the time trend and binary variables 
are in logarithms.  FE-CD is the standard Cobb-Douglas production function, LP-CD is the Cobb-Douglas 

function estimated with the Levinsohn-Petrin (2003) technique. FE-TL is the translog production function and 

frontier. FE-TL (ii) contains county-year fixed effects instead of a time trend.  
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Table 5-14. Violations of regularity conditions in translog specification 

  FE-TL  FE-TL (ii) 

  Number of 

violations 

% of viola-

tions 

 Number of 

violations 

% of viola-

tions 

Monotonicity      

 Land 2 0.06 %  0 0.00 % 

 Labour 185 5.18 %  496 13.9 % 

 Material 0 0.00 %  0 0.00 % 

 Capital 32 0.95 %  48 1.42 % 

Concavity 869 24.3 %  1171 32.8 % 

Note: Number of observations is 3,569. Percentage values relate to the number of ob-

servations without zero values in corresponding inputs. FE-TL is the translog produc-

tion function with time trends and FE-TL (ii) is the translog production function with 

county-year fixed effects.  
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Table 5-15. Heterogeneous treatment effects on output and productivity 

  Ag. output  

(1) 

TFP (LP-CD) 

 (2) 

Malmquist Index 

(3) 

TEC (SFA) 

Panel A: Heterogeneity by age cohorts  

 (1) Age < 50 

 

815.190 

(535.828) 

0.068 

(0.066) 

0.036* 

(0.018) 

0.018 

(0.016) 

 (2) Age ≥ 50 

 

1,112.983*** 

(387.694) 

0.106** 

(0.047) 

0.031** 

(0.013) 

0.027** 

(0.012) 

 Difference: (2)-(1)  

(p-value) 

297.794 

(0.285) 

0.039 

(0.295) 

-0.004 

(0.438) 

0.008 

(0.315) 

Panel B: Heterogeneity by gender  

 (1) Female 1521.049  

(989.07) 

0.261**  

(0.039) 

0.057 

(0.039) 

0.058*  

(0.034) 

 (2) Male 958.589*** 

(342.254) 

0.080* 

(0.042) 

0.032*** 

(0.011) 

0.022** 

(0.010) 

 Difference: (2)-(1)  

(p-value) 

-562.460  

(0.375) 

-0.182  

(0.225) 

-0.024 

(0.403) 

-0.036 

(0.255) 

Panel C: Heterogeneity by initial poverty status  

 (1) Poor households 1,214.703*** 

(458.854) 

0.094* 

(0.057) 

0.039** 

(0.016) 

0.029** 

(0.014) 

 (2) Less poor households 441.722  

(435.691) 

0.099* 

(0.055) 

0.024 

(0.015) 

0.018 

(0.013) 

 Difference: (2)-(1)  

(p-value) 

-772.982  

(0.120) 

0.006  

(0.453) 

-0.015 

(0.258) 

-0.011 

(0.297) 

Panel D: Heterogeneity by initial credit availability  

 (1) Low credit availability 784.753*  

(432.289) 

0.045  

(0.058) 

0.007 

(0.016) 

0.006 

(0.013) 

 (2) Higher credit availability  1,136.613** 

(458.538) 

0.127** 

 (0.053) 

0.055** 

(0.015) 

0.037*** 

(0.013) 

 Difference: (2)-(1)  

(p-value)  

351.861  

(0.295) 

0.081  

(0.115) 

0.048*** 

(0.007) 

0.031** 

(0.048) 

(continued on next page) 
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Table 5-17. (continued) 

  Ag. output  

(1) 

TFP (LP-CD) 

 (2) 

Malmquist Index 

(3) 

TEC (SFA) 

Panel E: Heterogeneity by initial asset holdings  

 (1) Holding fewer machines 

than the median  

1,121.065*** 

(406.116) 

0.110*  

(0.060) 

0.039** 

(0.016) 

0.031** 

(0.015) 

 (2) Holding more machines 

than the median  

834.886  

(532.394) 

0.092**  

(0.048) 

0.024* 

(0.024) 

0.018 

(0.011) 

 Difference: (2)-(1)  

(p-value)  

-286.179  

(0.350) 

-0.017  

(0.415) 

-0.015 

(0.255) 

-0.012 

(0.258) 

Panel F: Heterogeneity by initial material use  

 (1) Using less initial material 

than the median  

926.895** 

(366.732) 

0.086  

(0.064) 

0.028 

(0.017) 

0.023 

(0.016) 

 (2) Using more initial mate-

rial than the median  

1,186.189** 

(536.415) 

0.135***  

(0.002) 

0.031** 

(0.013) 

0.026** 

(0.010) 

 Difference: (2)-(1) (p-value) 259.294  

(0.347) 

0.048  

(0.273) 

0.003 

(0.412) 

0.003 

(0.427) 

Note: ***, **, and * indicate significance levels at 0.01, 0.05, and 0.10, respectively. Standard errors are in 

parentheses and clustered at the household level as the panel unit. The standard errors of the differences between 

estimators are obtained by 400 times of bootstrapping. Further control variables include household and village 

characteristics. The initial poverty status is defined as whether the household’s per capita net income in 2009 

was below the national poverty line of 2300 yuan. The initial credit availability is defined as whether the house-

hold’s total available credits in 2010 (before the intervention began in September) were below the sample me-

dian. The asset holdings and material usage are defined as whether the value of machines held and materials used 

by the household in 2010 (before the intervention began in September) was below the sample median.   
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Figure 5-4. Composition of rural household loans 

Source: All indicators except “total loans (yuan per household in poor counties)” are authors’ calcu-

lation based on the Fixed Point Rural Household Survey. The total loans (yuan per household in poor 

counties) are from Poverty Monitoring Report of Rural China 2010 that is based on the Poverty 

Monitoring Household Survey and is published by the National Bureau of Statistics.  

Note: The Fixed-Point Rural Household Survey has been conducted annually by the Research Center 

for Rural Economy at the Ministry of Agriculture since 1986. It is nationally representative, including 

about 23 thousand rural households in 360 villages out of 357 counties, 31 provinces. The Poverty 

Monitoring Household Survey is representative for poor areas in rural China. It is a panel with annual 

waves that is conducted by the National Bureau of Statistics. Each wave covers 40 thousand to 54 

thousand rural households in 5,400 administrative villages out of 592 poor counties that were desig-

nated by the State Council in 2002.  
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Figure 5-5. Experimental provinces 

 

 

 

  

Figure 5-6. Frequency distribution of technical efficiency scores 

 

 

 

 



Credit Access and Agricultural Productivity | 125 

 

 

 

 

 

Figure 5-7. Effect of improved credit access on individual material components 

 

 

 

Figure 5-8. Results of the randomisation inference test for controlled villages only 
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Green Policies and Farm Production Decisions in 

Selected EU Member States 

 

Abstract. The EU has implemented various mandatory and voluntary measures to increase the envi-

ronmental sustainability of farming. Using farm-level accountancy data from France, Germany, and 

the United Kingdom, we investigate how the EU set-aside programme and voluntary agri-environ-

mental schemes affect farmers' land and production choices. For each country, we estimate two multi-

output profit functions: One for the period with crop-specific area payments (1995–2004) and one 

for the period after (2005–2016). The resulting parameters are used to derive price and subsidy elas-

ticities of output supply, input demand, and land allocation. To ensure that the estimated profit system 

is consistent to economic theory, we impose convexity using the Cholesky factorisation technique. 

Overall, we find that green policies reduce cereal production in favour of protein production and have 

a negative effect on fertiliser use. Our results also show that farmers' responses to green policies vary 

considerably across countries. Differences between the unrestricted and restricted models confirm 

that econometric results require a careful theoretical interpretation, in order to support evidence-

based policymaking. 

Keywords. Agri-environmental schemes, agricultural policy, land allocation, profit function, theo-

retical consistency 

 

 

 

 

 

_____________________ 

* This article is based on joint work with Johannes Sauer. Johannes Sauer developed the research 

question. Stefan Wimmer worked out the empirical framework, conducted the econometric analysis 

and wrote the manuscript. Johannes Sauer contributed with the interpretation of the results and re-

viewing and editing of the manuscript. Target journal: American Journal of Agricultural Economics 

 * 



128 | Chapter 6 

 

 

6.1 Introduction 

Reducing negative externalities of agricultural production is a central concern in ongoing political 

debates, both globally and in the European Union (EU). Amongst the most urgent pressures are the 

loss of biodiversity (e.g. Pilling, Bélanger and Hoffmann, 2020), soil degradation (e.g. Robinson, D. 

A. et al., 2017), water pollution (e.g. Mateo-Sagasta, Marjani and Turral, 2018) and the emission of 

greenhouse gases (e.g. Vermeulen, Campbell and Ingram, 2012). The Common Agricultural Policy 

(CAP) is the EU's main instrument to steer agricultural practices. In the past decades, it has under-

gone several major reforms to align with changing societal demands (Pe’er et al., 2017). When the 

CAP was introduced in 1962, environmental considerations were less pronounced. Instead, promot-

ing food security and providing a stable income to farmers were the primary goals. Specifically, high 

support prices were in place, providing an incentive for farmers to expand production. However, the 

policy distorted the markets and led to an overproduction of agricultural commodities (Zobbe, 2001). 

In the 1980s, mandatory set-aside areas were introduced to reduce the amount of food produced and 

to increase the environmental sustainability of the farming sector. Farmers were compensated for 

leaving arable land fallow with set-aside premiums. Additionally, agri-environmental schemes (AES) 

are in place since the 1980s. Participating in these schemes is voluntary and farmers can choose from 

a wide range of programmes, which are designed at the regional level. In most cases, AES measures 

impose restrictions on agricultural practices, for example concerning the use of chemical inputs or 

farmers' choices of how to cultivate the agricultural land (e.g. Mennig and Sauer, 2020). In 1992, 

through the MacSharry reform, support prices were reduced and replaced by direct payments. These 

direct payments were crop-specific and based on the amount of land devoted to individual crops, 

hence not fully decoupled to production. Finally, in 2005, direct payments were replaced by single 

area payments, which are uncoupled from production in the sense that they do not depend on land 

allocation between crops.  

The ongoing change of the CAP raises the question how effective different green policies are. The 

overall effectiveness of the agri-environmental policies depends on how farmers respond to the pro-

vided economic incentives. Therefore, the goal of this article is to estimate the impact of the EU's 

green agricultural policies on production decisions. In particular, we examine the impact of set-aside 

and AES programmes on farmers' optimal land use decision and input use over the period 1995–

2016. Using farm accountancy data on crop farms in France, Germany, and the United Kingdom 

(UK), we estimate short-run profit functions with fixed allocable inputs as introduced by Chambers 

and Just (1989). From the estimated parameters, we derive subsidy elasticities of output supply, input 

demand, and land allocation between distinct crop categories. Our empirical framework for deriving 

land allocation equations extends the ones by Lacroix and Thomas (2011) and Laukkanen and Nauges 

(2014).  
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The literature on agri-environmental subsidies and farm production can be divided into two strands. 

The first one comprises treatment studies that assess the causal impact of subsidy payment on farm 

performance using reduced-form models, combining matching methods and difference-in-difference 

(DID) estimators. Pufahl and Weiss, C. R. (2009) estimate the average treatment effect of AES pay-

ments in Germany between 2000 and 2005. Their results show that scheme participation increases 

land growth rates and reduces chemicals purchases. Chabé-Ferret and Subervie (2013) estimate 

windfall effects of AES programmes in France in the same period, finding that in particular those 

programmes that only require small changes in the farm production plan are not cost-effective. Arata 

and Sckokai (2016) examine the impact of AES on farm production choices in Spain for the years 

2003–2006. They find, for instance, that AES participation reduces expenses for fertiliser and pesti-

cide per hectare land and increases the number of crops planted. Mennig and Sauer (2020) decom-

pose farm productivity growth of German farms (2006–2011) into the components of technical 

change, technical efficiency change and scale effects, and estimate the causal effect of AES partici-

pation on each component. They find that AES participation reduces farm productivity of dairy farms, 

but no significant effect was found for crop farms. Employing similar methods, Baráth, Fertő and 

Bojnec (2020) find that agri-environmental subsidies have no effect on TFP in Slovenian agriculture 

in the years 2006–2013. The second strand of the literature evaluating the effect of agri-environmental 

on production decisions uses structural models to derive estimates for production elasticities. Based 

on a profit function approach, Lacroix and Thomas (2011) evaluate elasticities of land, output and 

input with respect to prices and subsidy rates in a sample of French farmers for the years 1995–2001. 

For example, they find that set-aside subsidies reduce land allocated to cereals but have no statistical 

significant effect on fertiliser usage. Laukkanen and Nauges (2014) follow the same approach but 

extend the model by including special AES programmes in Finland, using data from 1996 to 2005. 

Consistent with Lacroix and Thomas (2011), they find that set-aside subsidies have a negative impact 

on the amount of land devoted to grain production. Additionally, they find that higher subsidy rates 

also decrease optimal fertiliser levels. Moreover, special AES subsidies are shown to have a positive 

effect on grain area, but a negative effect on fertiliser use. The effect of area subsidies on land alloca-

tion has also been studied by Serra et al. (2009) for U.S. agriculture.  

In this article, we opt for the structural model approach to quantify the effect of agri-environmental 

policies and subsidies on production decisions. In contrast to reduced-form models using matching 

methods and DID estimators, this approach allows us to recover the fundamental parameters that 

describe farms' production choices (Laukkanen and Nauges, 2014) and is therefore more suitable to 

model and simulate farmers' behaviour. The article contributes to the literature in three ways. First, 

we provide farm-level price and subsidy elasticities for agri-environmental measures for both the 

period with coupled subsidies (prior to 2005) and the period without coupled subsidies (post-2005). 

Prior studies employing the structural approach to model production choices with respect to agri-
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environmental payments in the EU exclusively focus on the pre-2005 period. Thus, we provide re-

cent estimates that allow assessing whether AES subsidy rates have changed over time, in particular 

after the discontinuation of the set-aside programme. Second, we offer a comparative analysis of the 

structural model across different EU countries (France, Germany, UK). To the best of our knowledge, 

Arata and Sckokai (2016) provide the only cross-country study on the effects of EU agri-environ-

mental policies, but using the reduced-form approach. Evaluating subsidy elasticities across coun-

tries offers insights into the heterogeneous responses to policies and hence supports the design of 

policies tailored to the regional needs. Third, in contrast to Laukkanen and Nauges (2014), we eval-

uate the effect of AES programmes on multiple crop categories, rather than an aggregate. It can be 

expected that green policies do not only affect overall output and input use, but also land allocation 

between crops (e.g. Arata and Sckokai, 2016). For example, it can be expected that farms with more 

engagement in AES programmes substitute cereal production in favour of protein crops because 

arable land schemes often involve the implementation of diversified crop rotations and planting of 

cover crops (e.g. Mennig and Sauer, 2020). Methodologically, we compare the results of an unre-

stricted profit function to a model where convexity is imposed. As emphasised by Sauer (2006), 

theoretically well-founded estimates are essential for the robustness of policy suggestions. There-

fore, we check whether our estimates of main interest – subsidy elasticities of output supply, input 

demand, and land allocation – are sensible to the econometric imposition of regularity conditions 

derived from economic theory.  

The article proceeds as follows. In Section 6.2, we introduce the conceptual framework that describes 

the profit-maximising problem of farmers in the presence of agri-environmental subsidies. In Section 

6.3, we describe the data and provide descriptive statistics for the sample in the three countries. We 

then present the empirical strategy, including the procedure to impose curvature on the profit func-

tion, in Section 6.4. Following that, we present and discuss the results in Section 6.5. Section 6.6 

concludes by offering policy implications. 

6.2 Conceptual framework 

We use a dual profit function approach to evaluate farm production decisions in response to agri-

environmental subsidies. The conceptual framework closely follows the ones in Lacroix and Thomas 

(2011) and Laukkanen and Nauges (2014). We assume that farmers maximise profit given input and 

output prices, subsidy rates, and allocable land (L) and other quasi-fixed inputs (k). Thus, the farmers' 

profit maximisation problem is given by  

 π(𝑝, 𝑤, 𝑠; 𝐿, 𝑘) = max
𝑞,𝑥,𝑙𝑐,𝑙𝑠𝑎

{∑ 𝑙𝑐(𝑝𝑐 × 𝑦𝑐 + 𝑠𝑐)

𝐶

𝑐=1

+ 𝑙𝑠𝑎𝑠𝑠𝑎 − ∑ 𝑤𝑛𝑥𝑛

𝑁

𝑛=1

+ 𝑙𝑎𝑒𝑠 × 𝑠𝑎𝑒𝑠}   , (6-1) 
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where 𝜋 denotes farm profit; 𝑝 and 𝑦 are output price and yield (i.e., 𝑞 = 𝑝𝑦 is output); 𝑤 and 𝑥 are 

price and quantity of variable inputs 𝑥; 𝑙𝑐 and 𝑙𝑠𝑎 denote land areas allocated to crop 𝑐 and set-aside, 

respectively; 𝑠𝑐 is the subsidy rate for land devoted to crop production; and 𝑠𝑠𝑎 is the subsidy rate 

for set-aside. Finally, 𝑙𝑎𝑒𝑠 denotes the area devoted to AES and 𝑠𝑎𝑒𝑠 is the corresponding subsidy 

rate.40 Unfortunately, our data does not report the amount of land devoted to AES programmes, nor 

corresponding subsidy rates. Instead, we observe the total AES payments received (i.e., 𝑙𝑎𝑒𝑠 × 𝑠𝑎𝑒𝑠). 

Since AES participation is commonly based on five-year contracts, whether to participate is not an 

annual decision made by farmers (see Laukkanen and Nauges, 2014). It is therefore reasonable to 

assume that farmers choose output supply, input demand, and land allocation between crop produc-

tion and set-aside to maximise farm profit, given quasi-fixed inputs and the level of AES participa-

tion. For this reason, we include AES revenues on the right-hand side of the profit function.  

By standard results, the profit function is non-negative, non-decreasing in 𝑝, non-increasing in 𝑤 and 

convex and positively linearly homogeneous in (𝑝, 𝑤) (Chambers, 1988). We estimate the profit 

functions separately for the periods 1995–2004 and 2005–2016, since the former period includes 

area-related direct payments. The inclusion of land allocation decisions requires the following land 

adding-up condition in addition to the regularity conditions (e.g. Lacroix and Thomas, 2011): 

 
∑ 𝑙𝑐

𝐶

𝑐=1

+ 𝑙𝑠𝑎 = 𝐿 ⟺ ∑
𝜕𝑙𝑐
𝜕𝑝𝑐′

 

𝐶

𝑐=1

+
𝜕𝑙𝑠𝑎
𝜕𝑝𝑐′

 = ∑
𝜕𝑙𝑐
𝜕𝑠𝑗′

 

𝐶

𝑐=1

+
𝜕𝑙𝑠𝑎
𝜕𝑠𝑗′

= ∑
𝜕𝑙𝑐
𝜕𝑤𝑛

 

𝐶

𝑐=1

+
𝜕𝑙𝑠𝑎
𝜕𝑤𝑛

 

= ∑
𝜕𝑙𝑐
𝜕𝑘𝑚

 

𝐶

𝑐=1

+
𝜕𝑙𝑠𝑎
𝜕𝑘𝑚

= 0    ∀𝑐′, ∀𝑘  𝑎𝑛𝑑  ∑
𝜕𝑙𝑐
𝜕𝐿

𝐶

𝑐=1

+
𝜕𝑙𝑠𝑎
𝜕𝐿

= 1 

(6-2) 

By Hotelling's (1932) Lemma, the partial derivatives of the profit function with respect to output 

prices are the output supply functions. Similarly, the partial derivatives with respect to input prices 

are the negative input demand functions. For the period prior to 2005, we can also take the partial 

derivative with respect to land-related subsidy rates, providing the land allocation functions (Lacroix 

and Thomas, 2011). Thus, we obtain the following system of output supply, input demand, and land 

allocation equations:  

 𝑞𝑐(𝑝, 𝑤, 𝑠; 𝐿, 𝑘) =
𝜕𝜋(𝑝, 𝑤, 𝑠, 𝑧)

𝜕𝑝𝑐

 (6-3) 

 𝑥𝑛(𝑝, 𝑤, 𝑠; 𝐿, 𝑘) = −
𝜕𝜋(𝑝, 𝑤, 𝑠, 𝑧)

𝜕𝑤𝑛

 (6-4) 

 𝑙𝑖(𝑝, 𝑤, 𝑠; 𝐿, 𝑘) =
𝜕𝜋(𝑝, 𝑤, 𝑠, 𝑧)

𝜕𝑠𝑖

 (6-5) 

 
40Most arable land schemes are compensated on a hectare basis, but measures with different reference units 

exist.  
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Given the properties of the profit function explained above, the output supply (input demand) func-

tions are non-negative, symmetric, homogeneous of degree zero, and non-decreasing in p (non-in-

creasing in w). In our analysis, we are primarily interested in changes of output supply, input usage, 

and land allocation in response to prices and green policies (AES subsidies and set-aside premiums). 

We quantify these changes by estimating elasticities based on equations (6-3) – (6-5). Subsidy and 

price elasticities of output supply, input demand, and land allocation are calculated by multiplying 

the corresponding parameter in equations (6-3) – (6-5) by the ratio of the price over the level of 

output, input, or land allocation. For example, the set-aside subsidy elasticity of land devoted to 

cereal production is given by: 

 𝜀𝑙𝑐𝑒𝑟𝑒𝑎𝑙,𝑠𝑠𝑎
=

𝜕2𝜋

𝜕𝑙𝑐𝑒𝑟𝑒𝑎𝑙𝜕𝑠𝑠𝑎

×
𝑠𝑠𝑎

𝑙𝑐𝑒𝑟𝑒𝑎𝑙

 (6-6) 

Similarly, the relationship between AES participation and fertiliser use is derived as 

 𝜀𝑥𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟,𝑟𝐴𝐸𝑆
=

𝜕2𝜋

𝜕𝑥𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟𝜕𝑟𝐴𝐸𝑆

×
𝑟𝐴𝐸𝑆

𝑥𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟

   . (6-7) 

6.3 Data and sample description 

For the empirical analysis, we use farm-level accountancy data from the European Farm Account-

ancy Data Network (FADN). The FADN is a harmonised survey carried out by each member state of 

the EU, which is representative for commercial agricultural holdings due to stratification according 

to region, type of specialisation and economic size. Our sample consists of crop farms in France, 

Germany, and the UK for the years 1995–2016.  

Figures 6-1 – 6-3 present yearly averages of land-related subsidies for the three countries from 1989 

to 2016. It can be seen that area-based payments and single farm payments are the most important 

subsidies in terms of revenue. In France, area payments were gradually phased out after 2005 while 

they were abolished after 2004 in Germany and the UK. Set-aside premiums were discontinued in 

Germany and the UK in the same year, and one year later in France.41 

Due to this policy change, we estimate two empirical models for each country: the first model (1995–

2004) considers AES payments and area-related subsidies including set-aside premiums, whereas the 

second model (2005–2016) considers AES payments as only agri-environmental policy.  

 
41 With the decoupling of payments in 2005, farmers could still claim set-aside payments according to their 

historical entitlements until 2008. However, these payments are not separately recorded in the data.  
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Figure 6-1. Yearly averages of land-related subsidies, FADN crop farms in France 

 
 

 

Figure 6-2. Yearly averages of land-related subsidies, FADN crop farms in Germany 

 

 

 

Figure 6-3. Yearly averages of land-related subsidies, FADN crop farms in the UK 
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We aggregate outputs into five crop categories: cereals (e.g. wheat, barley and rye), grain maize, 

protein crops (peas, lentils, other protein crops), oilseed crops (e.g. oilseed rape, sunflower, soybean), 

and root crops (sugar beet and potatoes). Output prices for the individual categories are district-level 

weighted averages of unit crop prices. To this end, we use the unit value approach and divide indi-

vidual crop revenues by its quantities. For the empirical estimation, we use lagged values of output 

prices, assuming that output and land allocation decisions are made in the beginning of the account-

ing year, while realised prices reflect prices received in the end of the growing season after harvest-

ing. Thus, we assume that farmers solve their maximisation problem based on expected prices, and 

that expected prices are the mean of current prices.  

As for inputs, we consider two variable inputs (fertiliser, other variable inputs) and three quasi-fixed 

inputs (land, labour, capital). Land is measured in hectare, labour in annual working units, and capital 

is proxied by depreciation costs as, for example, in Sauer and Latacz-Lohmann (2015). Following 

Lacroix and Thomas (2011), we distinguish only two variable inputs, because quantities are required 

for estimating the input demand equations. Fertiliser quantities can be retained from expenses using 

district-level average application rates and regional-level nitrogen fertiliser unit prices.42 Other vari-

able inputs include seed, pesticides, material, energy, contract services and water use. The price for 

other variable inputs is calculated as a Stone price index at the regional (nuts2) level: 

 log(𝑤𝑡) = ∑𝜎𝑖𝑡

𝑛

𝑖=1

log(𝑤𝑖𝑡), (6-8) 

where 𝑛 denotes the number of items in the input category and 𝜎𝑖𝑡 is the cost share of the 𝑖-th item 

and 𝑡 denotes time. This price index for other variable inputs is used as numeraire in the empirical 

estimation of the profit function, so that estimating the demand equation is not required. 

Land-related subsidy unit prices apply to cereals, maize, protein crops and oilseed crops, as well as 

to set-aside land. We construct these unit prices from the data set by dividing area-based subsidies 

by the corresponding amount of land. Like output prices, the subsidy rates are computed at the re-

gional (nuts-2) level43. For the land allocation equation, we only consider voluntary set-aside, be-

cause the amount of mandatory set-aside is not driven by price or subsidy incentives. To determine 

voluntary and mandatory set-aside, we closely follow the suggestion by Lacroix and Thomas (2011): 

set-aside land exceeding the mandatory rate is assumed voluntary set-aside. If observed set-aside 

land is below the mandatory rate, we assume that the farm is exempt from mandatory set-aside, and 

thus the entire set-aside land must be voluntary. Finally, if observed set-aside area is zero, and if 

 
42 Average application rates and fertiliser unit prices are only available for Germany. For France and the UK, 

we used implicit quantities as dependent variable in the fertiliser demand equation.  
43 While we compute subsidy unit rates directly from the observed data, the desirable approach is to use official 

data from individual regions. However, they are not publicly available for all years for most regions.  
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observed set-aside are equal to the mandatory area, we assume that voluntary set-aside is zero. The 

profit variable is computed from the data by subtracting variable costs from total crop revenue and 

area-related subsidies if applicable. As discussed above, AES revenues are included as independent 

variable in the profit function. Tables 6-1 and 6-2 present the mean values of variables used in the 

analysis for the three countries, separated by each sample period. Detailed descriptive statistics are 

reported separately for each country in Tables 6-6 – 6-11 in the Appendix.  

Table 6-1. Descriptive statistics for the years 1995–2004 

Variable Unit France Germany United  

Kingdom 

Number of observations # 19,912 12,632 7,086 

Cereals output 1,000 kg 420.67 720.54 864.56 

Maize output 1,000 kg 119.06 19.77 - 

Protein output 1,000 kg 29.97 12.15 21.55 

Oilseed output 1,000 kg 61.24 86.95 64.34 

Root crops output 1,000 kg 427.79 685.99 666.95 

Fertiliser use kg | const. € a 158.91 63.75 508.32 

Cereals area ha 58.96 114.87 115.49 

Maize area ha 12.93 2.65 - 

Protein area ha 6.15 4.19 5.75 

Oilseed area ha 20.09 28.45 21.29 

Root crops area ha 6.81 14.38 14.18 

Voluntary set-aside ha 4.08 6.93 8.74 

Cereals price €/1,000 kg 119.00 120.82 122.27 

Maize price €/1,000 kg 119.20 120.29 - 

Protein crops price €/1,000 kg 136.08 120.06 163.81 

Oilseed crops price €/1,000 kg 202.81 310.13 223.02 

Root crops price €/1,000 kg 106.86 64.29 101.35 

Fertiliser price €/1,000 kg 102.06 298.15 42.80 

Cereals subsidy rate €/ha 364.01 331.68 353.75 

Maize subsidy rate €/ha - 320.85 - 

Protein subsidy rate €/ha 492.54 419.62 465.69 

Oilseed subsidy rate €/ha 454.12 448.58 499.10 

Set-aside subsidy rate €/ha 478.31 374.24 433.90 

AES € 383.07 3,510.22 1,569.08 

Profit € 81,275.61 98,479.53 126,051.50 

Note: Profits are computed by subtracting variable costs from total crop revenue and area-related subsi-

dies. aFertiliser use is measured in kg in the German sample, but in implicit quantity in the French and UK 

samples. 
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Table 6-2. Descriptive statistics for the years 2005–2016 

Variable Unit France Germany United  

Kingdom 

Number of observations # 20,760 21,619 6,852 

Cereals output 1,000 kg 468.76 791.29 988.83 

Maize output 1,000 kg 129.24 31.26 1.50 

Protein output 1,000 kg 13.43 9.50 34.40 

Oilseed output 1,000 kg 72.91 140.54 100.58 

Root crops output 1,000 kg 548.36 782.38 782.81 

Fertiliser use kg | const. € a 297.36 79.99 425.95 

Cereals price €/1,000 kg 156.52 161.53 157.38 

Maize price €/1,000 kg 146.76 147.41 151.06 

Protein crops price €/1,000 kg 231.53 242.97 228.55 

Oilseed crops price €/1,000 kg 323.35 338.13 332.96 

Root crops price €/1,000 kg 166.69 77.14 137.24 

Fertiliser price €/kg 92.92 464.75 98.22 

AES payments € 722.45 4,247.44 10,078.87 

Profit € 69,233.49 101,661.90 117,082.80 

Note: Profits are computed by subtracting variable costs from total crop revenue. aFertiliser use is measured 

in kg in the German sample, but in implicit quantity in the French and UK samples. 

 

For France, the number of observations is around 20,000 in both periods. Because no subsidy rates 

are reported for maize production in our French data set, land allocation equations are only estimated 

for cereals, protein, oilseed, and (voluntary) set-aside. The German data consists of approx. 12,600 

observations in the first and 22,000 farm observations in the second period. Finally, about 7,000 farm 

observations are included in the UK data set in both periods. Grain maize is omitted in the first period 

of the UK data. However, it is part of the second period because some farms took up its production 

after 2003. The average production remains very low compared to other crop outputs such as other 

cereals, oilseed or root crops.  

In comparison, the descriptive statistics show that cereals are the most widely planted crop category 

in all countries. The largest farms in terms of crop area are found in Germany, followed by the UK 

and France. In the first period (1995–2004), German farms received the highest amount of AES pay-

ments. In the second period (2005–2016), farms in the UK received more than double the amount of 

AES payments than farms in Germany. 
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6.4 Empirical strategy 

We assume a normalised quadratic functional form for the profit function. As stated by Csajbok, 

Oude Lansink and Huirne (2005), for instance, the advantages of the normalised quadratic are its 

flexibility, simplicity, and computational ease. Homogeneity in input prices is imposed by using the 

price of other variable inputs (𝑤2) as numeraire for the profit, all prices and subsidy rates. Thus, the 

normalised quadratic profit function takes the following form: 
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(6-9) 

where 𝜋̃ is normalised profit; 𝑝̃, 𝑠̃, and 𝑤̃ are normalised output prices, subsidy rates, and input prices; 

𝑘 denote quasi-fixed inputs; and 𝐿 denotes total land use, also considered fixed in the short run. 

Furthermore, 𝑐 and 𝑗 are indices for crop categories and subsidy rates (either crop production or set-

aside), respectively; 𝑟𝑎𝑒𝑠 represents revenue from AES, and 𝑡𝑟𝑒𝑛𝑑 is a time variable to capture tech-

nology shifts over time. Finally, the 𝛽s are the unknown parameters that characterize the technlogy.  

Using Hotelling's lemma, we derive the parametric forms of output supply, input demand, and land 

allocation equations by taking the first derivatives of the profit function with respect to output prices 

(see equation (6-3)) and input prices (see equation (6-4)) and land-related subsidy rates (see equation 

(6-5)): 
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In addition, we impose cross-equation parameter constraints in the estimation procedure (e.g., the 

parameter of the squared price variable of cereals equals the constant term in the supply function for 

cereals). In addition, the following additional parameter constraints are imposed to impose the land 

adding-up condition in (6-2): 
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(6-13) 

For convexity, the matrix of second-order derivatives of the profit function with respect to output and 

input prices must be positive semidefinite. Curvature conditions can be imposed on flexible func-

tional forms using ex-post procedures (e.g. Henningsen, 2019), constrained maximum likelihood 

methods (e.g. Bokusheva and Hockmann, 2006) or Bayesian MCMC techniques (see O'Donnell and 

Coelli, 2005 and an application to the agricultural sector in Wimmer and Sauer, 2020a). In this article, 

we use the fact that every positive semidefinite matrix has a Cholesky factorisation (Lau, 1978). Thus, 

convexity can be imposed by estimating the Cholesky factorisation of the Hessian matrix rather than 

the parameter matrix itself (see Diewert and Wales, 1987 and Featherstone and Moss, 1994 for ap-

plications of this approach to cost functions, and Arnade and Kelch, 2007 and Lambert et al., 2020 

fort profit functions). For this purpose, we rewrite the positive semidefinite Hessian matrix of the 

profit function as 𝑩 = 𝑪𝑪′ where 𝑪 is an (𝑛 − 1) × (𝑛 − 1) lower triangular matrix with elements 

𝛾𝑖𝑗. Then, for the simple example of 𝑛 = 5 (e.g. 2 outputs, 1 area-related subsidy, 2 inputs whereby 

the second input is used as numeraire), the parameters in 𝑩 can be rewritten as:  
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𝑩 = 𝑪𝑪′ = [
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It follows, that the supply function for output 1 for this simple example can be estimated as 
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In our empirical application, the maximum number of prices (including subsidy rates) is 𝑛 = 12, i.e. 

the Cholesky matrix takes the dimension (11 × 11). To achieve convergence for this complex and 

highly nonlinear system of equations, we applied the rank reduction technique suggested by Diewert 

and Wales (1988). This requires setting 𝛾𝑖𝑗 = 0 for all 𝑖 > 𝐾, where 𝐾 is the desired rank of the 

matrix. As stated by Moschini (1998), convergence is likely to occur if the rank of the matrix does 

not exceed the number inconsistent eigenvalues of the unrestricted model. Thus, for each of our six 

models, we first evaluate the eigenvalues of the Hessian matrix of the unrestricted models and then 

estimate the Cholesky factorisation such that the rank of the matrix equals the amount of non-nega-

tive eigenvalues obtained by the unrestricted system.  

To estimate the system of equations (6-10) – (6-12) simultaneously, we employ iterated feasible gen-

eralised nonlinear squares, which converges to the maximum likelihood estimator (Zellner, 1962). 

The estimation is carried out using STATA's nlsur command (StataCorp, 2015). Farm-level fixed 

effects are accounted for by subtracting farm-specific average values from each variable prior to 

estimation ('within-transformation'). 

6.5 Results 

The parameter estimates of the profit systems for Germany (1995–2004) are reported in Table 6-12 

(unrestricted model) and Table 6-13 (restricted model using Cholesky factorisation). The correspond-

ing estimates for the second period and all other countries are available from the authors upon re-

quest. The full set of own and cross price elasticities estimated for the two periods and three countries 

are reported in the Appendix, both for the unrestricted and restricted models (Tables 6-14 – 6-25). In 

what follows, we present and compare estimated own-price elasticities across countries and models. 

Thereafter, we discuss elasticities with respect to subsidies in more detail. All elasticities are evalu-

ated at the sample mean and corresponding standard errors are obtained using the Delta method. 
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6.5.1 Period 1995–2004 

Table 6-3 presents own-price elasticities for the unrestricted and restricted profit systems for all three 

countries in the period 1995–2004. In France, the unrestricted profit model obtains significantly neg-

ative own-price elasticities for cereals and root crops, inconsistent to economic theory. Significantly 

positive own-price elasticities are obtained for maize, protein and oilseed crops. For example, a 1 per 

cent increase in the price of maize increases maize supply by 0.12 per cent. Land elasticities with 

respect to own-subsidy rates are significantly positive for cereals and oilseed: a 1 per cent increase 

in the subsidy rate for cereals increases the land devoted to cereals by 0.07 per cent, and a 1 per cent 

increase in the oilseed subsidy rate causes a 0.2 per cent increase in oilseed land. Land devoted to 

protein crops, however, is negatively related to the protein subsidy rate. The own-price elasticity of 

fertiliser use is also inconsistent with profit-maximising behaviour, as a 1 per cent-increase in ferti-

liser price by 1 per cent is associated with a 0.4 per cent-increase in fertiliser demand. In the restricted 

model, all own-price elasticity estimates are statistically significant positive at the 1 per cent signifi-

cance level. The highest output price elasticity is observed for oilseed crops, followed by protein 

crops and maize. As can be seen from Table 6-15, most significant cross-price elasticities are nega-

tive. We note that the economically consistent curvature of the profit function has no implications on 

the sign of cross-parameter elasticities. For example, cross-price elasticities can be positive if there 

are synergies between individual crops.  

For the German sample, own-price elasticities are significantly positive for cereals and protein crops 

in the unrestricted profit system. A 1 per cent-increase in the cereal price increases cereal supply by 

0.55 per cent, whereas a 1 per cent-increase in the protein price increases protein supply by 0.09 per 

cent. All other output price elasticities are not statistically significant, when evaluated at the sample 

mean. Land allocated to maize is positively affected by its own subsidy unit rate (elasticity = 0.08). 

However, land allocated to protein, oilseed and set-aside seem to be negatively related their own 

subsidy rates. Finally, the own-price elasticity of fertiliser use is statistically negative and quite elas-

tic: a 1 per cent-increase in fertiliser price leads to a 1.5 per cent-decline in fertiliser use for the 

average farm. In the restricted model, all own-price elasticities except for oilseed and root crops are 

statistically significant. For example, own-price elasticity of cereal crops is 0.6 per cent, hence in a 

similar range as in the unrestricted model. Likewise, the own-price elasticities of maize and fertiliser 

are similar to those from the unrestricted model, while the own-price elasticity of protein crops is of 

larger size in the restricted model.  

Finally, in the UK, the unrestricted model yields significantly positive own-price elasticities for cereal 

and oilseed output as well as for oilseed area. The own-price elasticity for fertiliser input is signifi-

cantly negative: a 1 per cent-increase in fertiliser price reduces fertiliser demand by 0.59 per cent at 

the sample mean. Own-price elasticities for protein output and protein area as well as for set-aside 
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area are negative, hence inconsistent with economic theory. In the restricted model, all output supply 

and input demand elasticities are statistically significant at the 1 per cent level of significance, except 

for root crops output, for which the own-price elasticity is statistically significant at the 5 per cent 

level of significance.  

Table 6-3. Own-price elasticities for unrestricted and restricted profit functions, 1995-2004 

 France  Germany  United Kingdom 

 Unrestr. Restr.  Unrestr. Restr.  Unrestr. Restr. 

Cereals output -0.060c 0.070c  0.547c 0.607c  0.186c 0.264c 

 (0.018) (0.012)  (0.041) (0.041)  (0.027) (0.025) 

Maize output 0.116c 0.232c  -0.002 0.032b  –  

 (0.022) (0.020)  (0.070) (0.013)  –  

Protein output 0.203c 0.337c  0.093a 0.207c  -0.410c 0.561c 

 (0.032) (0.023)  (0.056) (0.043)  (0.129) (0.094) 

Oilseed output 0.123c 0.354c  -0.003 0.003  0.593c 0.806c 

 (0.031) (0.030)  (0.006) (0.005)  (0.077) (0.075) 

Root crops output -0.008a 0.003c  0.013 0.004  -0.025 0.037b 

 (0.004) (0.001)  (0.015) (0.006)  (0.016) (0.015) 

Cereals area 0.068c 0.081c  0.003 0.033c  -0.004 0.067c 

 (0.005) (0.005)  (0.009) (0.006)  (0.010) (0.008) 

Maiz area – –  0.081a 0.127c  – – 

 – –  (0.046) (0.032)  – – 

Protein area -0.084a 0.182c  -0.198b 0.421c  -1.313c 0.657c 

 (0.044) (0.037)  (0.454) (0.122)  (0.263) (0.085) 

Oilseed area 0.202c 0.309c  -0.153c 0.137c  0.670c 0.798c 

 (0.020) (0.019)  (0.035) (0.027)  (0.061) (0.058) 

Set-aside area -0.223c 0.423c  -0.250c 0.306c  -0.171a 0.409c 

 (0.031) (0.023)  (0.049) (0.037)  (0.102) (0.086) 

Fertiliser use 0.433c -0.139c  -1.488c -1.543c  -0.588c -0.616c 

 (0.056) (0.029)  (0.100) (0.100)  (0.065) (0.065) 

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. 

6.5.2 Period 2005–2016 

Table 6-4 reports elasticities of output, land allocation, and fertiliser use for the three countries in the 

period 1995–2004. As discussed above, we cannot estimate land allocation equations for this period 

because crop-specific subsidies do not exist. Thus, we restrict the analysis to output and price elas-

ticities. In France, own-price elasticities for cereals, maize, and oilseed crop are significantly positive 

and the own-price elasticity of fertiliser is significantly negative in the unrestricted model. For ex-

ample, a 1 per cent increase in the cereal price increases cereal supply by 0.24 per cent, and a 1 per 

cent increase in fertiliser price reduces the amount of fertiliser by 0.5 per cent. Inconsistent to eco-

nomic theory, the own price elasticity for protein crops is significantly negative in the unrestricted 

model. In the restricted model, all own-price elasticities are statistically significant, except the one 

for root crops, which is nearly zero. Overall, the magnitudes of own-price elasticities are similar to 

their values in the unrestricted model for the ones that showed the correct sign in the unrestricted 
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model, which the exception of fertiliser use. This value is unrealistically high in the restricted model, 

implying that a 1 per cent increase in fertiliser price would decrease its use by 11 per cent. Thus, this 

estimate has to be interpreted with caution when derived from the restricted model.  

In the German sample, all cross-price elasticities carry the theoretically consistent sign in the unre-

stricted model: a 1 per cent increase in the price of cereal (maize, oilseed, root crops) implies a 0.31 

(0.40, 0.35, 0.02) per cent increase in cereal (maize, oilseed, root crops) supply. The own-price elas-

ticity of protein crops is positive but statistically insignificant. Even though own-price elasticities 

carry the expected sign, the profit system is not convex, as indicated by two (out of six) negative 

eigenvalues of the Hessian matrix. Nevertheless, the corresponding elasticities from the restricted 

model are very similar to the ones from the unrestricted model. Contrary to the unrestricted model, 

own-price elasticity for protein crops are significant, although at the 10 per cent level of significance 

only.  

Like in the German sample, the signs of the statistically significant own-price elasticities derived 

from the unrestricted model for UK farms are all consistent with economic theory. For example, a 1 

per cent increase in cereal price causes a 0.08 per cent increase in the profit-maximising cereal supply. 

Thus, the response to cereal price changes is less sensitive in the UK compared to France and Ger-

many, when evaluated at the sample mean. While own-price elasticities for protein and root crops 

are not significant in the unrestricted model, they become statistically significant at the 5 per cent 

significance level in the restricted model.   

Table 6-4. Own-price elasticities for unrestricted and restricted profit functions, 2005–2016 

 France  Germany  United Kingdom 

 Unrestr. Restr.  Unrestr. Restr.  Unrestr. Restr. 

Cereals output 0.235c 0.260c  0.307c 0.312c  0.078c 0.094c 

 (0.014) (0.013)  (0.014) (0.014)  (0.025) (0.017) 

Maize output 0.122c 0.241c  0.399c 0.500c  1.857c 2.353c 

 (0.025) (0.021)  (0.087) (0.080)  (0.412) (0.383) 

Protein output -0.072c 0.080c  0.006 0.066a  0.003 0.146b 

 (0.026) (0.012)  (0.041) (0.034)  (0.099) (0.058) 

Oilseed output 0.228c 0.309c  0.345c 0.389c  0.203c 0.106c 

 (0.024) (0.021)  (0.036) (0.033)  (0.062) (0.026) 

Root crops output -0.006 0.000  0.022c 0.041c  -0.033 0.036b 

 (0.005) (0.000)  (0.011) (0.008)  (0.029) (0.017) 
Fertiliser use -0.501c -11.357c  -0.717c -0.773c  -0.694c -0.694c 
 (0.023) (2.138)  (0.036) (0.074)  (0.027) (0.058) 
Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. 
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6.5.3 Elasticities related to agri-environmental subsidies 

This section reports elasticity estimates related to agri-environmental subsidies for the three countries 

and both periods. As described in the previous section, the unrestricted model resulted in several 

violations of theoretically required properties of the profit and associated supply and demand func-

tions. Therefore, we focus on the estimates from the restricted model here to support robust policy 

recommendations. Table 6-5 shows that a 1 per cent increase in set-aside unit prices increases the 

set-aside area by 0.42, 0.31 and 0.41 per cent in France, Germany, and the UK, respectively. In 

France, increased set-aside area primarily substitutes areas devoted to cereal and oilseed production. 

Furthermore, it is also associated with an increase in the protein area. In the German sample, the 

increase in the set-aside area primarily substitutes land devoted to protein crops production: a 1 per 

cent increase in set-aside subsidy rate decreases protein area by 0.39 per cent and protein production 

by 0.29 per cent. This reduction in protein supply seems to favour total cereal output, even though 

cereal area remains relatively stable, which can be due to a shift of input factors (other than land) 

from protein to cereal production in response to higher set-aside subsidy rates. Similarly, set-aside 

area primarily substitutes protein production in the UK. We note that the total land change adds up 

to zero when measured in absolute (i.e., hectare) numbers, as imposed by the parameter constraints 

in equation (6-13). For example, in the French case, increasing the set-aside subsidy unit price by 1 

€ increases the set-aside area and protein crops area by 0.38 hectares and 0.12 hectares, respectively, 

while it reduces the area devoted to cereal and oilseed crops production by 0.32 and 0.17 hectares.44   

Fertiliser use is reduced in response to both set-aside and AES subsidies, except for set-aside subsi-

dies in the French sample in the period 1995–2004. For example, in Germany, a 1 per cent increase 

in the set-aside subsidy rate reduces the amount of fertiliser used by 0.11 per cent. In the UK, a 1 per 

cent increase in the set-aside subsidy rate decreases fertiliser use by 0.05 per cent. Farm-level pro-

duction responses to AES subsidy seem to be much smaller. For instance, a 1 per cent increase in 

revenues from AES participation decreases fertiliser use in France by 0.002 per cent in the 1995–

2004 period and by 0.004 per cent in the 2005–2016 period. The response in Germany is only mar-

ginally higher: a 1 per cent increase in revenues from AES participation decreases fertiliser use by 

0.01 per cent in the 1995–2004 period and by 0.006 per cent in the 2005–2016 period. Finally, in the 

UK, 1 per cent increase in revenues from AES participation decreases fertiliser use by 0.01 per cent 

in the period 1995–2004 and by 0.02 per cent in the period 2005–2016. 

Table 6-5 also shows that output elasticities with respect to AES programmes are highly consistent 

across the two periods in France and Germany. For example, a 1 per cent increase in revenue from 

AES participation relates to a decrease in cereal output by 0.001 per cent (1995–2004) and 0.003 per 

 
44 The remaining 0.01 hectare is due to rounding of the numbers. 
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cent (2005–2016) in Germany, and by 0.021 per cent (1995–2004) and 0.025 per cent (2005–2016) 

in France. In the UK, by contrast, there are some differences between the two periods. Most notably, 

protein output and AES involvement are positively related in the earlier period but negatively related 

in the later period. This could be due to a change in the programme design, which is regularly updated 

on a 5-year basis by the individual EU member countries.  

Table 6-5. Elasticities related to agri-environmental subsidies (restricted models) 

  France  Germany  United Kingdom 

  Sample 

1995–

2004 

Sample 

2005–

2016 

 Sample 

1995–

2004 

Sample 

2005–

2016 

 Sample 

1995–

2004 

Sample 

2005–

2016 

Elasticities with respect to subsidies for set-aside  

 Cereals output 0.007c –  0.607c –  0.028c – 

 Maize output 0.093c –  0.023 –  – – 

 Protein output 0.222c –  -0.291c –  -0.177c – 

 Oilseed output 0.047c –  -0.001 –  0.043a – 

 Root crop output 0.000 –  0.001 –  0.013c – 

 Cereals area -0.027c –  -0.017c –  -0.009 – 

 Maize area – –  0.014 –  – – 

 Protein area 0.095c –  -0.390c –  -0.244c – 

 Oilseed area -0.042c –  0.050c –  -0.051 – 

 Set-aside area 0.423c –  0.306c –  0.409c – 

 Fertiliser use 0.048c –  -0.108c –  -0.045a – 

Elasticities with respect to AES programmes 

 Cereals output -0.001b -0.003c  -0.021c -0.025c  -0.003c -0.010b 

 Maize output -0.002b -0.002a  -0.035c -0.086c  – -0.823a 

 Protein output 0.002 0.014c  0.143c 0.028b  0.090c -0.137c 

 Oilseed output -0.003b -0.002b  0.004 -0.035c  0.024c -0.006 

 Root crop output -0.001 -0.001  -0.011c -0.010c  -0.022c -0.002 

 Cereals area 0.000 –  -0.006c –  -0.006c – 

 Maize area – –  0.196c –  – – 

 Protein area 0.008c –  0.144c –  0.099c – 

 Oilseed area -0.002c –  -0.008b –  0.011 – 

 Set-aside area 0.000 –  -0.029c –  -0.005 – 

 Fertiliser use -0.002c -0.004c  -0.011c -0.006c  -0.013c -0.021 

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. Subsidies for set-aside 

and area elasticities only apply to the early period (1995 - 2004). The upper panel displays elasticities with 

respect to subsidies for set-aside (e.g., percentage-change in cereal output in response to a 1 per cent increase 

in the subsidy rate for set-aside). The lower panel displays elasticities with respect to AES programmes (e.g., 

percentage-change in cereal output in response to a 1 per cent increase in AES involvement). 
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6.6 Discussion and conclusion 

Over the past decades, agricultural policies in the EU gradually shifted from market support to pro-

ducer support. During this process, environmental aspects are increasingly addressed to improve the 

environmental sustainability of farming. The most important green policies in this regard are volun-

tary agri-environmental programmes and set-aside premiums that compensate farmers for leaving 

agricultural land out of production. To evaluate the effectiveness of these programmes, this paper 

empirically evaluates the production response of farmers to the economic incentives provided by 

these programmes. In particular, we estimate subsidy and price elasticities of output supply, input 

demand, and land allocation with a particular focus on agri-environmental subsidies in France, Ger-

many, and the UK, using FADN data on crop farms from 1995–2016. Due to the decoupling of sub-

sidy payments in 2005, we distinguish two periods and estimate the system of profit equations sepa-

rately for each country and each period. The existence of area-related unit subsidies for cereals, 

maize, protein crops and oilseed crops (paid per hectare of corresponding land use) allows us to 

estimate land allocation equations for the period 1995–2004 using Hotelling's Lemma. In the subse-

quent period (2005–2016), we focus on output and input elasticities with respect to prices and AES 

programmes. Our estimates are based on a profit function approach. We compare the results from an 

unrestricted model to the results from a restricted model, where the theoretically consistent curvature 

is imposed on the profit function by making use of Cholesky factorisation.  

The results reveal substantial differences in production responses to price and subsidy rate changes 

across countries. For example, in response to higher set-aside subsidy rates, French farmers tend to 

substitute areas devoted to cereals and oilseed production in favour of set-aside areas in France, while 

farmers in the UK and Germany substitute areas devoted to protein crop production. Moreover, we 

find that higher levels of AES participation are related to less cereal and maize production, less fer-

tiliser use, and higher supply of protein crops in all countries. This finding is consistent to expecta-

tions, as arable land schemes often involve the implementation of diversified crop rotations and plant-

ing of cover crops (e.g. Mennig and Sauer, 2020). The response in root crop production to agri-envi-

ronmental subsidies is less pronounced. A possible explanation is that sugar beet and potatoes are 

highly intensive and profitable crops, which require especially high subsidy premiums to be replaced. 

Finally, the results also show that fertiliser use is consistently reduced with an increase in set-aside 

subsidy rates and AES involvement. The only exception is the French data set in the period 1995– 

2004. Applying the structural model to the same country over the period 1995–2001, Lacroix and 

Thomas (2011) find no statistically significant effect of set-aside subsidy rates on fertiliser use. For a 

sample of Finnish farms, Laukkanen and Nauges (2014) find that the elasticity of fertiliser use with 
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respect to subsidies for set-aside and with respect to AES programmes is -0.008 and -0.052, respec-

tively. In contrast to that, we find that fertiliser use is more elastic to set-aside subsidies but less 

elastic to AES participation in our samples of French, UK, and German farmers.  

The result that AES participation is related to less fertiliser use is consistent with the reduced-form 

estimates by Pufahl and Weiss, C. R. (2009) and Arata and Sckokai (2016). For example, Pufahl and 

Weiss, C. R. (2009) estimate that AES participation reduces expenditures for fertiliser by 9.4 per 

cent. Contrary to the identified treatment effects in the reduced-form literature, our structural param-

eters allow the simulation of farm responses to simultaneous changes in output and input prices and 

various policy changes. This is important as agricultural policies become increasingly complex and 

often formulate multiple and heterogeneous goals. Knowing the structural parameters that describe 

farmers' production decisions are therefore essential to predict farm-level outcomes under a range of 

different policy scenarios. Regarding immediate policy implications, our results demonstrate that 

production decisions in response to agri-environmental policies significantly vary across countries. 

This is the case not only for fertiliser usage but also for output decisions and land allocation. There-

fore, we conclude that heterogeneity between regions must be considered to increase the effective-

ness of green policies.  

Methodologically, our results show that the unrestricted estimation of the profit system results in 

large violations of theoretically required properties, especially in the period former period (1995–

2004). However, meaningful economic interpretation is only possible if estimation results are con-

sistent to theory (Sauer, 2006). Hence, econometric techniques are needed to improve the theoretical 

consistency of the estimated model and support evidence-based policymaking.  

The study offers significant scope for further research. In particular, we propose to collect subsidy 

rate data for individual AES programmes to evaluate their effects separately and uncover interde-

pendencies between them. Unfortunately, FADN bookkeeping data only allows us to consider total 

AES payments, i.e. a mix of individual programmes. However, individual programmes are very di-

verse and may promote ecosystem services that are either complementary or supplementary to agri-

cultural production (Sauer and Wossink, A., 2013). Thus, looking at aggregate revenues from indi-

vidual programmes may hide effects on production responses if they point in opposite directions. 

Thus, more detailed data is needed to guide policymakers on effectively designing green agricultural 

policies according to the objective to make agriculture more sustainable while maintaining its com-

petitiveness.  
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Appendix 

Table 6-6. Descriptive statistics for France, period 1995–2004 

Variable Unit Mean Std. Dev. Min. Max. 

Cereals output 1,000 kg 420.67 344.14 0.00 3,073.80 

Maize output 1,000 kg 119.06 260.35 0.00 5,837.40 

Protein output 1,000 kg 29.97 48.36 0.00 538.10 

Oilseed output 1,000 kg 61.24 78.55 0.00 888.70 

Root crops output 1,000 kg 427.79 865.98 0.00 12,220.00 

Fertiliser use const. € 158.91 103.26 0.00 1,088.66 

Cereals area ha 58.96 46.14 0.00 440.65 

Maize area ha 12.93 26.50 0.00 574.82 

Protein area ha 6.15 9.37 0.00 93.05 

Oilseed area ha 20.09 24.94 0.00 230.48 

Root crops area ha 6.81 14.17 0.00 216.00 

Voluntary set-aside ha 4.08 6.76 0.00 174.68 

Cereals price €/1,000kg 119.00 16.89 85.09 266.93 

Maize price €/1,000kg 119.20 35.37 74.29 616.35 

Protein price €/1,000kg 136.08 26.10 89.12 620.00 

Oilseed price €/1,000kg 202.81 24.39 79.16 305.09 

Root crops price €/1,000kg 106.86 114.28 24.92 656.16 

Fertiliser price index 102.06 5.66 95.20 112.40 

Cereals subsidy rate €/ha 364.01 41.81 251.01 553.33 

Protein subsidy rate €/ha 492.54 62.83 246.71 689.40 

Oilseed subsidy rate €/ha 454.12 75.27 274.34 596.46 

Set-aside subsidy rate €/ha 478.31 165.68 251.76 1,307.85 

AES Payments € 383.07 2,071.70 0.00 71,143.00 

Profit € 81,275.61 67,770.55 -345,171.00 1,093,222.00 

n=19,912; number of farms: 3,918 

 

Table 6-7. Descriptive statistics for France, period 2005–2016 

Variable Unit Mean Std. Dev. Min Max 

Cereals output 1,000 kg 468.76 385.72 0.00 3,249.20 

Maize output 1,000 kg 129.24 261.89 0.00 2,632.10 

Protein output 1,000 kg 13.43 30.79 0.00 439.80 

Oilseed output 1,000 kg 72.91 84.61 0.00 1,050.80 

Root crops output 1,000 kg 548.36 1,139.78 0.00 14,233.80 

Fertiliser use const. € 297.36 210.53 0.00 2,322.04 

Cereals price €/1,000 kg 156.52 40.90 55.54 285.45 

Maize price €/1,000 kg 146.76 51.20 71.99 648.15 

Protein crops price €/1,000 kg 231.53 117.31 103.46 1,729.17 

Oilseed crops price €/1,000 kg 323.35 89.50 180.63 734.41 

Root crops price €/1,000 kg 166.69 192.58 14.24 1,010.94 

Fertiliser price index 92.92 15.04 67.00 116.70 

AES payments € 722.45 2,808.50 0.00 58,421.00 

Profit € 69,233.49 100,481.60 -149,496.00 2,924,784.00 

n = 20,760; number of farms: 3,609 
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Table 6-8. Descriptive statistics for Germany, period 1995–2004 

Variable Unit Mean Std. Dev. Min Max 

Cereals output 1,000 kg 720.54 1,461.71 0.00 25,167.10 

Maize output 1,000 kg 19.77 112.46 0.00 2,908.00 

Protein output 1,000 kg 12.15 58.48 0.00 1,236.00 

Oilseed output 1,000 kg 86.95 261.08 0.00 17,162.30 

Root crops output 1,000 kg 685.99 1,230.40 0.00 23,507.30 

Fertiliser use kg 63.75 117.88 0.00 1,752.54 

Cereals area ha 114.87 233.65 0.00 3,754.65 

Maize area ha 2.65 14.61 0.00 522.72 

Protein area ha 4.19 18.85 0.00 308.62 

Oilseed area ha 28.45 69.05 0.00 1,379.00 

Root crops area ha 14.38 26.74 0.00 572.00 

Voluntary set-aside ha 6.93 23.49 0.00 509.33 

Cereals price €/1,000 kg 120.82 13.27 87.29 222.64 

Maize price €/1,000 kg 120.29 38.80 67.54 396.50 

Protein crops price €/1,000 kg 120.06 64.00 0.00 403.40 

Oilseed crops price €/1,000 kg 310.13 637.06 80.77 8,736.22 

Root crops price €/1,000 kg 64.29 22.09 38.97 287.61 

Fertiliser price €/1,000 kg 298.15 19.39 266.28 327.91 

Cereals subsidy rate €/ha 331.68 39.72 210.88 429.07 

Maize subsidy rate €/ha 320.85 141.89 0.00 792.94 

Protein subsidy rate €/ha 419.62 50.43 300.97 567.22 

Oilseed subsidy rate €/ha 448.58 84.01 275.99 1,463.68 

Set-aside subsidy rate €/ha 374.24 132.89 124.84 1,294.28 

AES € 3,510.22 14,433.01 0.00 350,001.00 

Profit € 98,479.53 180,361.30 -1,438,091.00 3,260,773.00 

n=12,632; number of farms: 3,361 

 

Table 6-9. Descriptive statistics for Germany, period 2005–2016 

Variable  Unit Mean Std. Dev. Min Max 

Cereals output  1,000 kg 791.29 1,579.95 0.00 35,953.10 

Maize output  1,000 kg 31.26 201.10 0.00 10,474.30 

Protein output  1,000 kg 9.50 52.42 0.00 1,846.60 

Oilseed output  1,000 kg 140.54 336.63 0.00 11,560.30 

Root crops output  1,000 kg 782.38 1,621.45 0.00 40,212.20 

Fertiliser use  kg 79.99 145.28 0.00 2,485.62 

Cereals price  €/1,000 kg 161.53 39.03 92.58 321.91 

Maize price  €/1,000 kg 147.41 53.61 28.42 441.07 

Protein crops price  €/1,000 kg 242.97 127.07 31.46 1,528.04 

Oilseed crops price  €/1,000 kg 338.13 80.26 142.39 583.78 

Root crops price  €/1,000 kg 77.14 46.02 31.99 480.22 

Fertiliser price  €/kg 464.75 57.85 348.37 537.13 

AES payments  € 4,247.44 14,310.02 0.00 333,337.00 

Profit  € 101,661.90 229,802.90 -2,275,018.00 5,642,586.00 

n=21,619; number of farms: 4,511 
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Table 6-10. Descriptive statistics for the UK, period 1995–2004 

Variable Unit Mean Std. Dev. Min Max 

Cereals output 1,000 kg 864.56 874.99 0.00 10,811.10 

Protein output 1,000 kg 21.55 67.76 0.00 1,684.60 

Oilseed output 1,000 kg 64.34 111.92 0.00 1,393.10 

Root crops output 1,000 kg 666.95 1,630.40 0.00 25,902.00 

Fertiliser use const. € 508.32 517.86 0.00 14,822.63 

Land for cereals ha 115.49 109.75 0.00 1,449.72 

Land for protein  ha 5.75 17.32 0.00 410.28 

Land for oilseed ha 21.29 34.45 0.00 357.22 

Land for root crops ha 14.18 33.47 0.00 491.79 

Voluntary set-aside ha 8.74 14.78 0.00 248.82 

Cereals price €/1,000kg 122.27 13.68 82.82 166.57 

Protein price €/1,000kg 163.81 35.70 96.17 366.70 

Oilseed price €/1,000kg 223.02 26.35 120.49 312.47 

Root crops price €/1,000kg 101.35 51.69 22.21 286.14 

Fertiliser price index 42.80 4.51 36.74 53.03 

Cereals unit subsidy €/ha 353.75 18.26 294.57 380.42 

Protein unit subsidy €/ha 465.69 52.44 316.63 544.21 

Oilseed unit subsidy €/ha 499.10 108.81 281.52 688.52 

Set-aside unit subsidy €/ha 433.90 102.84 256.67 1,363.77 

AES revenue € 1,569.08 7,290.29 0.00 229,278.70 

Profit € 126,051.50 173,096.20 -157,727.10 2,158,676.00 

Note: n=7,086; number of farms: 1,673 

 

 

Table 6-11. Descriptive statistics for the UK, period 2005–2016 

Variable Unit Mean Std. Dev. Min Max 

Cereals output 1,000 kg 988.83 1,153.75 0.00 17,983.00 

Maize output 1,000 kg 1.50 48.03 0.00 3,437.00 

Protein output 1,000 kg 34.40 91.45 0.00 1,465.00 

Oilseed output 1,000 kg 100.58 164.94 0.00 1,659.00 

Root crops output 1,000 kg 782.81 2,880.81 0.00 90,897.00 

Fertiliser use const. € 425.95 495.59 0.00 7,338.68 

Cereals price €/1,000kg 157.38 38.95 92.77 255.07 

Maize price €/1,000kg 151.06 134.48 0.00 550.27 

Protein crops price €/1,000kg 228.55 77.23 98.76 721.50 

Oilseed crops price €/1,000kg 332.96 83.40 146.57 694.52 

Root crops price €/1,000kg 137.24 68.44 33.63 387.29 

Fertiliser price index 98.22 26.64 58.07 146.31 

AES payments € 10,078.87 20,646.56 0.00 335,106.30 

Profit € 117,082.80 260,382.40 -359,232.30 7,267,414.00 

n=6,852; number of farms: 1,419 
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Table 6-12. Profit system estimates (unrestricted model), Germany 1995–2004 

  Coeff. Std. Err.     Coeff. Std. Err.     Coeff. Std.Err. 

Matrix terms          Fixed inputs and AES 

B11 259.224 19.044  B66 0.466 0.252  D11 3.661 0.081 

B12 1.887 2.804  B67 -0.080 0.070  D12 -0.004 0.001 

B13 4.663 2.043  B68 0.856 0.170  D13 0.079 0.014 

B14 0.983 0.285  B69 -0.209 0.179  D14 -0.004 0.000 

B15 21.708 10.881  B610 -1.0327   D21 0.380 0.013 

B16 8.105 1.305  B611 -3.397 0.470  D22 0.001 0.000 

B17 -0.650 0.511  B77 0.037 0.037  D23 -0.012 0.002 

B18 -2.830 0.843  B78 0.001 0.055  D24 0.000 0.000 

B19 -6.140 1.196  B79 0.212 0.059  D31 0.279 0.010 

B110 1.515 -  B710 -0.1692   D32 -0.003 0.000 

B111 -12.625 2.651  B711 1.135 0.186  D33 -0.012 0.002 

B22 0.137 0.906  B88 -0.156 0.208  D34 0.000 0.000 

B23 0.516 0.456  B89 -0.068 0.118  D41 0.484 0.040 

B24 -0.028 0.047  B810 -0.6326   D42 -0.010 0.001 

B25 -1.388 2.103  B811 0.198 0.440  D43 0.038 0.007 

B26 -0.166 0.298  B99 -0.715 0.182  D44 0.000 0.000 

B27 -0.060 0.138  B910 0.7804   D51 2.233 0.074 

B28 0.249 0.191  B911 0.184 0.387  D52 0.006 0.001 

B29 0.243 0.269  B1010 1.054   D53 0.099 0.012 

B210 -0.2661 -  B1011 1.879   D54 -0.002 0.000 

B211 2.629 0.572  B1111 22.901 1.913  D61 0.602 0.005 

B33 1.051 0.454      D62 0.000 0.000 

B34 0.089 0.036      D63 0.001 0.001 

B35 1.247 1.543      D64 0.000 0.000 

B36 1.814 0.223      D71 0.044 0.002 

B37 0.108 0.085      D72 0.000 0.000 

B38 0.218 0.159      D73 -0.002 0.000 

B39 -0.646 0.196      D74 0.000 0.000 

B310 -1.49372 -      D81 0.082 0.003 

B311 -2.742 0.416      D82 -0.001 0.000 

B44 -0.068 0.141      D83 -0.002 0.001 

B45 0.365 0.260      D84 0.000 0.000 

B46 0.008 0.018      D91 0.217 0.005 

B47 -0.007 0.008      D92 -0.001 0.000 

B48 0.017 0.012      D93 -0.003 0.001 

B49 0.012 0.017      D94 0.000 0.000 

B410 -0.03111 -      D101 0.054 - 

B411 -0.021 0.030      D102 0.002 - 

B55 11.780 12.784      D103 0.006 - 

B56 -0.060 0.835      D104 0.000 - 

B57 -0.127 0.354      D111 -0.253 0.008 

B58 -0.045 0.549      D112 0.001 0.000 

B59 0.041 0.780      D113 -0.001 0.001 

B510 0.191319 -      D114 0.000 0.000 

B511 -1.905 1.449                 

Note: The first six rows of the matrix represent output prices. Rows 7-10 represent subsidy rates. The terms 

of the last subsidy rate are recovered from land-use restrictions (see equation 13). The final row represents 

fertiliser price. The letter D represents fixed inputs (land, labour, capital) and AES payments.  
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Table 6-13. Profit system estimates with Cholesky factorisation, Germany 1995–2004 

  Coeff. Std.Err.     Coeff. Std.Err.     Coeff.     Coeff. 

Cholesky matrix terms  Fixed inputs and AES  Original matrix terms 

C11 16.858 0.564  D11 3.735 0.082  B11 284.203  B66 0.891 

C12 0.074 0.163  D12 0.000 0.001  B12 1.251  B67 -0.121 

C13 0.185 0.119  D13 0.085 0.014  B13 3.115  B68 0.351 

C14 0.054 0.017  D14 -0.004 0.000  B14 0.905  B69 -0.715 

C15 1.167 0.626  D21 0.385 0.013  B15 19.672  B610 -0.406 

C16 0.498 0.069  D22 0.001 0.000  B16 8.395  B611 -3.002 

C17 -0.077 0.026  D23 -0.011 0.002  B17 -1.294  B77 0.082 

C18 -0.118 0.042  D24 0.000 0.000  B18 -1.982  B78 -0.023 

C19 -0.454 0.065  D31 0.304 0.010  B19 -7.652  B79 0.054 

C110 - -  D32 -0.002 0.000  B110 2.533  B710 0.008 

C111 -1.032 0.142  D33 -0.010 0.002  B111 -17.396  B711 1.192 

C22 -0.636 0.131  D34 0.000 0.000  B22 0.410  B88 0.330 

C23 0.252 0.404  D41 0.516 0.040  B23 -0.146  B89 -0.315 

C24 0.040 0.072  D42 -0.008 0.001  B24 -0.021  B810 -0.343 

C25 0.537 0.730  D43 0.043 0.007  B25 -0.255  B811 -0.819 

C26 0.218 0.228  D44 0.000 0.000  B26 -0.102  B99 0.680 

C27 -0.213 0.075  D51 2.222 0.074  B27 0.130  B910 0.296 

C28 -0.001 0.162  D52 0.005 0.001  B28 -0.008  B911 1.183 

C29 0.127 0.201  D53 0.095 0.012  B29 -0.115  B1010 0.445 

C210 - -  D54 -0.002 0.000  B210 0.095  B1011 1.446 

C211 -4.553 0.606  D61 0.603 0.005  B211 2.818  B1111 25.938 

C33 1.245 0.152  D62 0.001 0.000  B33 1.648    
C34 0.056 0.034  D63 0.002 0.001  B34 0.090    
C35 0.116 0.726  D64 0.000 0.000  B35 0.495    
C36 0.558 0.142  D71 0.039 0.002  B36 0.842    
C37 0.078 0.053  D72 0.000 0.000  B37 0.029    
C38 0.396 0.063  D73 -0.002 0.000  B38 0.472    
C39 -0.441 0.121  D74 0.000 0.000  B39 -0.601    
C310 - -  D81 0.085 0.003  B310 -0.742    
C311 -1.088 1.440  D82 -0.001 0.000  B311 -2.691    
C44 0.244 0.220  D83 -0.001 0.001  B44 0.067    
C45 1.427 1.420  D84 0.000 0.000  B45 0.439    
C46 -0.243 0.218  D91 0.225 0.005  B46 0.007    
C47 0.022 0.056  D92 0.000 0.000  B47 -0.003    
C48 0.005 0.043  D93 -0.002 0.001  B48 0.017    
C49 0.163 0.154  D94 0.000 0.000  B49 -0.004    
C410 - -  D101 0.048 -  B410 -0.017    
C411 1.131 1.575  D102 0.001 -  B411 -0.021    
C55 0.158 0.647  D103 0.003 -  B55 3.726    
C56 -0.475 0.265  D104 0.000 -  B56 0.341    
C57 0.157 0.092  D111 -0.260 0.008  B57 -0.139    
C58 -0.399 0.127  D112 0.001 0.000  B58 -0.148    
C59 0.487 0.169  D113 -0.001 0.001  B59 -0.203    
C510 - -  D114 0.000 0.000  B510 0.149    
C511 1.295 1.801           B511 -1.956       

Note: The first six rows of the matrix represent output prices. Rows 7-10 represent subsidy rates. The terms 

of the last subsidy rate are recovered from land-use restrictions (see equation 13). The letter D represents 

fixed inputs (land, labour, capital) and AES payments.  
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Table 6-14. Elasticities of output, land, and fertiliser use for France, period 1995–2004 (unrestricted model) 

 

Price  

Cereals  

Price  

Maize  

Price  

Protein  

Price 

Oilseed  

Price  

Root Crops  

Subsidy  

Cereals  

Subsidy  

Protein  

Subsidy  

Oilseed  

Subsidy  

Set-aside  

Price  

Fertiliser  AES  
Output Cereals         -0.060 c -0.033 c 0.035 c -0.077 c 0.010 c 0.001  0.037 c -0.065 c 0.031 c -0.060  -0.001 c 

                      (0.018)  (0.008)  (0.005)  (0.008)  (0.002)  (0.005)  (0.004)  (0.005)  (0.003)  (0.007)  (0.000)  

Output Maize        -0.115 c 0.116 c 0.054 c -0.044 c -0.022 c -0.096 c 0.026 c -0.049 c 0.154 c 0.029 b -0.002 c 

                      (0.028)  (0.022)  (0.009)  (0.016)  (0.005)  (0.008)  (0.007)  (0.010)  (0.006)  (0.012)  (0.001)  

Output Protein        0.416 c 0.179 c 0.203 c -0.152 c 0.041 c -0.144 c 0.083 c -0.220 c 0.341 c -0.155 c 0.002  

                      (0.061)  (0.032)  (0.032)  (0.038)  (0.008)  (0.022)  (0.023)  (0.025)  (0.016)  (0.035)  (0.001)  

Output Oilseed          -0.313 c -0.050 c -0.052 c 0.123 c -0.001  -0.173 c -0.034 c 0.058 c 0.200 c -0.112 c -0.003 c 

                      (0.034)  (0.018)  (0.013)  (0.031)  (0.005)  (0.012)  (0.010)  (0.016)  (0.009)  (0.019)  (0.001)  

Output Roots 0.011 c -0.007 c 0.004 c 0.000  -0.008 a 0.001  0.003 c -0.004 c 0.001 c 0.001  -0.001  

                      (0.002)  (0.002)  (0.001)  (0.001)  (0.004)  (0.001)  (0.001)  (0.001)  (0.000)  (0.001)  (0.001)  

Land Cereals           0.003  -0.064 c -0.029 c -0.099 c 0.001  0.068 c 0.005  -0.077 c -0.014 c 0.100 c 0.000  

                      (0.011)  (0.005)  (0.004)  (0.007)  (0.001)  (0.005)  (0.004)  (0.006)  (0.003)  (0.009)  (0.000)  

Land Protein          0.589 c 0.116 c 0.113 c -0.131 c 0.039 c 0.033  -0.084 a -0.078 b 0.120 c 0.268 c 0.008 c 

                      (0.063)  (0.031)  (0.031)  (0.040)  (0.008)  (0.030)  (0.044)  (0.033)  (0.017)  (0.079)  (0.001)  

Land Oilseed          -0.355 c -0.075 c -0.102 c 0.077 c -0.022 c -0.179 c -0.027 b 0.202 c 0.050 c -0.210 c -0.002 c 

                      (0.029)  (0.015)  (0.012)  (0.022)  (0.004)  (0.013)  (0.011)  (0.020)  (0.009)  (0.026)  (0.001)  

Land Set-aside         0.748 c 1.044 c 0.695 c 1.184 c 0.029 c -0.141 c 0.182 c 0.221 c -0.223 c -0.770 c 0.000  

                      (0.081)  (0.043)  (0.032)  (0.055)  (0.011)  (0.030)  (0.026)  (0.040)  (0.031)  (0.055)  (0.002)  

Fertiliser Use 0.016  -0.025 b 0.040 c 0.083 c -0.003  -0.129 c -0.051 c 0.116 c 0.097 c 0.433 c -0.002 c 

                      (0.020)  (0.010)  (0.009)  (0.014)  (0.002)  (0.012)  (0.015)  (0.015)  (0.007)  (0.056)  (0.000)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % 

levels, respectively. 
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Table 6-15. Elasticities of output, land, and fertiliser use for France, period 1995–2004 (restricted model) 

 

Price  

Cereals  

Price  

Maize  

Price  

Protein  

Price 

Oilseed  

Price  

Root Crops  

Subsidy  

Cereals  

Subsidy  

Protein  

Subsidy  

Oilseed  

Subsidy  

Set-aside  

Price  

Fertiliser  AES  

Output Cereals         0.070 c -0.012 a 0.024 c -0.037 c 0.011 c 0.020 c 0.017 c -0.047 c 0.007 c 0.070  -0.001 b 

                      (0.012)  (0.007)  (0.003)  (0.008)  (0.002)  (0.004)  (0.003)  (0.005)  (0.002)  (0.004)  (0.000)  

Output Maize        -0.042 a 0.232 c 0.079 c 0.022  -0.022 c -0.073 c 0.043 c -0.036 c 0.093 c -0.039 c -0.002 b 

                      (0.024)  (0.020)  (0.008)  (0.016)  (0.005)  (0.008)  (0.006)  (0.009)  (0.005)  (0.010)  (0.001)  

Output Protein        0.286 c 0.263 c 0.337 c -0.001  0.038 c -0.155 c 0.139 c -0.145 c 0.222 c -0.250 c 0.002  

                      (0.034)  (0.027)  (0.023)  (0.035)  (0.007)  (0.019)  (0.017)  (0.023)  (0.011)  (0.024)  (0.001)  

Output Oilseed -0.152 c 0.026  0.000  0.354 c 0.004  -0.145 c -0.038 c 0.173 c 0.047 c -0.112 c -0.003 c 

                      (0.031)  (0.018)  (0.012)  (0.030)  (0.005)  (0.012)  (0.009)  (0.016)  (0.008)  (0.017)  (0.001)  

Output Roots   0.012 c -0.007 c 0.004 c 0.001  0.003 c 0.001 a 0.002 c -0.004 c 0.000  0.000  -0.001  

                      (0.002)  (0.001)  (0.001)  (0.001)  (0.001)  (0.001)  (0.000)  (0.001)  (0.000)  (0.001)  (0.001)  

Land Cereals           0.047 c -0.048 c -0.031 c -0.083 c 0.002 a 0.081 c -0.007 a -0.070 c -0.027 c 0.064 c 0.000  

                      (0.010)  (0.005)  (0.004)  (0.007)  (0.001)  (0.005)  (0.004)  (0.006)  (0.003)  (0.008)  (0.000)  

Land Protein          0.269 c 0.195 c 0.188 c -0.149 c 0.033 c -0.046 a 0.182 c -0.201 c 0.095 c 0.056  0.008 c 

                      (0.040)  (0.028)  (0.023)  (0.037)  (0.007)  (0.028)  (0.037)  (0.028)  (0.014)  (0.057)  (0.001)  

Land Oilseed          -0.257 c -0.056 c -0.067 c 0.232 c -0.019 c -0.164 c -0.069 c 0.309 c -0.042 c -0.124 c -0.002 c 

                      (0.027)  (0.015)  (0.011)  (0.021)  (0.004)  (0.013)  (0.010)  (0.019)  (0.008)  (0.020)  (0.001)  

Land Set-aside         0.159 c 0.630 c 0.452 c 0.275 c 0.006  -0.277 c 0.143 c -0.187 c 0.423 c -0.382 c 0.000  

                      (0.057)  (0.037)  (0.023)  (0.047)  (0.010)  (0.027)  (0.021)  (0.037)  (0.023)  (0.040)  (0.002)  

Fertiliser Use -0.019  0.033 c 0.064 c 0.083 c 0.001  -0.083 c -0.011  0.069 c 0.048 c -0.139 c -0.002 c 

                      (0.013)  (0.008)  (0.006)  (0.013)  (0.002)  (0.010)  (0.011)  (0.011)  (0.005)  (0.029)  (0.000)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % 

levels, respectively. 
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Table 6-16. Elasticities of output, land, and fertiliser for Germany, 1995–2004 (unrestricted model) 

 

Price  

Cereals  

Price  

Maize  

Price  

Protein  

Price  

Oilseed  

Price Root  

Crops  

Subsidy  

Cereals  

Subsidy  

Maize  

 Subsidy  

Protein  

 Subsidy  

Oilseed  

Subsidy  

Set-aside  

 Price  

Fertiliser   AES  
Output Cereals         0.547 c 0.003  0.009 b 0.005 c 0.025 b 0.044 c -0.008 c -0.012 b -0.052 c 0.547 c -0.078 c -0.021 c 

                      (0.041)  (0.006)  (0.004)  (0.002)  (0.012)  (0.007)  (0.003)  (0.005)  (0.009)  (0.005)  (0.013)  (0.002)  

Output Maize           0.123  -0.002  0.021  -0.006  -0.048  -0.033  -0.008  0.032  0.051  -0.025  0.549 c -0.035 c 

                      (0.218)  (0.070)  (0.035)  (0.009)  (0.087)  (0.062)  (0.026)  (0.043)  (0.077)  (0.043)  (0.101)  (0.013)  

Output Protein        0.568 b 0.034  0.093 a 0.028 b 0.104  0.513 c 0.019  0.045  -0.363 c -0.340 c -0.826 c 0.144 c 

                      (0.258)  (0.057)  (0.056)  (0.012)  (0.104)  (0.076)  (0.025)  (0.061)  (0.091)  (0.049)  (0.119)  (0.016)  

Output Oilseed        0.017 c -0.001  0.001 b -0.003  0.003  0.001  0.000  0.001  0.001  -0.002 c -0.001  0.004  

                      (0.005)  (0.001)  (0.001)  (0.006)  (0.002)  (0.001)  (0.000)  (0.001)  (0.001)  (0.001)  (0.001)  (0.009)  

Output Roots          0.049 b -0.003  0.003  0.002  0.013  -0.001  -0.001  0.002  0.001  0.001  -0.012 a -0.011 c 

                      (0.025)  (0.005)  (0.003)  (0.002)  (0.015)  (0.005)  (0.002)  (0.004)  (0.006)  (0.004)  (0.007)  (0.002)  

Land Cereals           0.100 c -0.002  0.020 c 0.000  -0.001  0.003  -0.005 b 0.046 c -0.026 c -0.017 c -0.105 c -0.006 c 

                      (0.017)  (0.004)  (0.003)  (0.001)  (0.006)  (0.009)  (0.002)  (0.007)  (0.009)  (0.004)  (0.014)  (0.001)  

Land Maize             -0.770 c -0.022  0.033  -0.009  -0.067  -0.211 b 0.081 a -0.026  0.453 c -0.211 c 1.840 c 0.199 c 

                      (0.264)  (0.073)  (0.043)  (0.010)  (0.098)  (0.098)  (0.046)  (0.082)  (0.110)  (0.054)  (0.226)  (0.014)  

Land Protein          -0.589 b 0.044  0.037  0.013  0.044  0.991 c -0.012  -0.502 b -0.278 b -0.426 c -0.420  0.145 c 

                      (0.265)  (0.058)  (0.051)  (0.011)  (0.095)  (0.141)  (0.040)  (0.207)  (0.127)  (0.054)  (0.310)  (0.014)  

Land Oilseed          -0.351 c 0.009  -0.041 c 0.002  0.003  -0.077 c 0.030 c -0.038 b -0.153 c 0.214 c 0.092 b -0.010 c 

                      (0.064)  (0.014)  (0.010)  (0.002)  (0.022)  (0.026)  (0.007)  (0.017)  (0.035)  (0.014)  (0.045)  (0.003)  

Land Set-aside 0.441 c -0.023  -0.191 c -0.018 c 0.010  -0.256 c -0.069 c -0.289 c 1.052 c -0.250 c 0.917 c -0.219 c 

 (0.168)  (0.039)  (0.028)  (0.007)  (0.065)  (0.052)  (0.018)  (0.037)  (0.068)  (0.049)  (0.088)  (0.028)  

Fertiliser Use 0.359 c -0.069 c 0.063 c 0.001  0.029 a 0.211 c -0.082 c 0.039  -0.062 b -0.125 c -1.488 c -0.011 c 

                      (0.060)   (0.013)   (0.009)   (0.002)   (0.017)   (0.029)   (0.010)   (0.029)   (0.030)   (0.012)   (0.100)   (0.002)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % 

levels, respectively. 
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Table 6-17. Elasticities of output, land, and fertiliser for Germany, 1995–2004 (restricted model) 

 

Price  

Cereals  

Price  

Maize  

Price  

Protein  

Price  

Oilseed  

Price Root  

Crops  

Subsidy  

Cereals  

Subsidy  

Maize  

 Subsidy  

Protein  

 Subsidy  

Oilseed  

Subsidy  

Set-aside  

 Price  

Fertiliser   AES  
Output Cereals         0.607 c 0.003  0.007  0.005 c 0.022 a 0.049 c -0.007 c -0.015 c -0.061 c 0.607 c -0.092 c -0.021 c 

                      (0.041)  (0.006)  (0.004)  (0.002)  (0.012)  (0.007)  (0.002)  (0.005)  (0.009)  (0.005)  (0.013)  (0.002)  

Output Maize           0.097  0.032 b -0.011  -0.004  -0.011  -0.022  0.027 b -0.002  -0.033  0.023  0.541 c -0.035 c 

                      (0.214)  (0.013)  (0.020)  (0.009)  (0.021)  (0.035)  (0.011)  (0.028)  (0.048)  (0.026)  (0.099)  (0.013)  

Output Protein        0.394  -0.018  0.207 c 0.029 b 0.033  0.292 c 0.010  0.207 c -0.282 c -0.291 c -0.840 c 0.143 c 

                      (0.256)  (0.033)  (0.043)  (0.012)  (0.063)  (0.052)  (0.016)  (0.045)  (0.068)  (0.038)  (0.118)  (0.016)  

Output Oilseed        0.016 c 0.000  0.002 b 0.003  0.004 a 0.000  0.000  0.001  0.000  -0.001  -0.001  0.004  

                      (0.005)  (0.001)  (0.001)  (0.005)  (0.002)  (0.001)  (0.000)  (0.001)  (0.001)  (0.001)  (0.001)  (0.009)  

Output Roots          0.044 a -0.001  0.001  0.003 a 0.004  0.002  -0.001  -0.001  -0.002  0.001  -0.011  -0.011 c 

                      (0.024)  (0.001)  (0.002)  (0.001)  (0.006)  (0.003)  (0.001)  (0.003)  (0.005)  (0.003)  (0.007)  (0.002)  

Land Cereals           0.112 c -0.001  0.011 c 0.000  0.002  0.033 c -0.004 b 0.016 c -0.036 c -0.017 c -0.099 c -0.006 c 

                      (0.017)  (0.002)  (0.002)  (0.001)  (0.004)  (0.006)  (0.002)  (0.003)  (0.007)  (0.003)  (0.014)  (0.001)  

Land Maize             -0.752 c 0.075 b 0.017  -0.004  -0.043  -0.193 b 0.127 c -0.046  0.116  0.014  1.709 c 0.196 c 

                      (0.256)  (0.030)  (0.028)  (0.010)  (0.046)  (0.075)  (0.032)  (0.068)  (0.082)  (0.037)  (0.221)  (0.014)  

Land Protein          -0.728 c -0.003  0.172 c 0.016  -0.029  0.353 c -0.022  0.421 c -0.430 c -0.390 c -0.741 b 0.144 c 

                      (0.261)  (0.037)  (0.038)  (0.010)  (0.065)  (0.060)  (0.033)  (0.122)  (0.104)  (0.043)  (0.299)  (0.015)  

Land Oilseed          -0.414 c -0.006  -0.032 c -0.001  -0.006  -0.106 c 0.008  -0.059 c 0.137 c 0.050 c 0.158 c -0.008 b 

                      (0.063)  (0.009)  (0.008)  (0.002)  (0.016)  (0.020)  (0.005)  (0.014)  (0.027)  (0.008)  (0.045)  (0.003)  

Land Set-aside 0.562 c 0.021  -0.163 c -0.010  0.018  -0.247 c 0.005  -0.265 c 0.244 c 0.306 c 0.791 c -0.029 c 

 (0.167)  (0.024)  (0.021)  (0.007)  (0.044)  (0.038)  (0.012)  (0.029)  (0.041)  (0.037)  (0.087)  (0.010)  

Fertiliser Use 0.420 c -0.068 c 0.064 c 0.001  0.025  0.199 c -0.076 c 0.069 b -0.106 c -0.108 c -1.543 c -0.011 c 

                      (0.059)   (0.012)   (0.009)   (0.002)   (0.017)   (0.028)   (0.010)   (0.028)   (0.030)   (0.012)   (0.100)   (0.002)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % 

levels, respectively. 
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Table 6-18. Elasticities of output, land, and fertiliser for the UK, 1995–2004 (unrestricted model) 

  

Price  

Cereals   

Price 

Protein   

Price  

Oilseed   

Price  

Root Crops   

Subsidy  

Cereals   

Subsidy  

Protein   

Subsidy  

Oilseed   

Subsidy  

Set-aside   

Price  

Fertiliser    AES   

Output Cereals         0.186 c -0.016 b -0.102 c -0.027 c 0.040 c -0.015 c -0.096 c 0.049 c -0.077 c -0.003 c 

                      (0.027)  (0.007)  (0.011)  (0.007)  (0.007)  (0.006)  (0.008)  (0.006)  (0.011)  (0.001)  

Output Protein        -0.465 b -0.410 c -1.145 c 0.275 c 0.918 c -0.205 b -0.892 c -0.151 b 0.594 c 0.082 c 

                      (0.223)  (0.129)  (0.145)  (0.068)  (0.075)  (0.093)  (0.102)  (0.075)  (0.138)  (0.010)  

Output Oilseed        -0.751 c -0.281 c 0.593 c -0.088 c -0.214 c -0.226 c 0.311 c 0.200 c -0.015  0.023 c 

                      (0.085)  (0.036)  (0.077)  (0.026)  (0.030)  (0.028)  (0.048)  (0.030)  (0.055)  (0.004)  

Output Roots          -0.042 c 0.014 c -0.019 c -0.025  -0.017 c 0.011 c -0.008 b 0.017 c 0.036 c -0.021 c 

                      (0.011)  (0.004)  (0.005)  (0.016)  (0.003)  (0.003)  (0.004)  (0.002)  (0.004)  (0.002)  

Land Cereals           0.103 c 0.079 c -0.075 c -0.027 c -0.004  0.106 c -0.110 c 0.002  -0.060 c -0.006 c 

                      (0.017)  (0.006)  (0.011)  (0.005)  (0.010)  (0.010)  (0.009)  (0.007)  (0.015)  (0.001)  

Land Protein          -0.601 c -0.271 b -1.214 c 0.276 c 1.629 c -1.313 c -0.705 c -0.152  0.516 c 0.091 c 

                      (0.231)  (0.123)  (0.153)  (0.066)  (0.160)  (0.263)  (0.135)  (0.095)  (0.195)  (0.009)  

Land Oilseed          -0.961 c -0.298 c 0.422 c -0.050 b -0.425 c -0.178 c 0.670 c 0.101 c 0.117 a 0.010 c 

                      (0.082)  (0.034)  (0.065)  (0.023)  (0.036)  (0.034)  (0.061)  (0.035)  (0.069)  (0.003)  

Land Set-aside        1.378 c -0.142 b 0.760 c 0.302 c 0.021  -0.107  0.283 c -0.171 a 0.166  -0.004  

                      (0.169)  (0.070)  (0.115)  (0.044)  (0.072)  (0.067)  (0.099)  (0.102)  (0.141)  (0.006)  

Fertiliser Use 0.371 c -0.096 c 0.010  -0.111 c 0.112 c -0.063 c -0.057 a -0.029  -0.588 c -0.013 c 

                      (0.053)   (0.022)   (0.036)   (0.014)   (0.028)   (0.024)   (0.033)   (0.024)   (0.065)   (0.002)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 

1 % levels, respectively.  
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Table 6-19. Elasticities of output, land, and fertiliser for the UK, 1995–2004 (restricted model) 

  

Price  

Cereals   

Price 

Protein   

Price  

Oilseed   

Price  

Root Crops   

Subsidy  

Cereals   

Subsidy  

Protein   

Subsidy  

Oilseed   

Subsidy  

Set-aside   

Price  

Fertiliser    AES   

Output Cereals         0.264 c -0.013 a -0.073 c -0.012 a 0.050 c -0.019 c -0.082 c 0.028 c -0.081 c -0.003 c 

                      (0.025)  (0.007)  (0.011)  (0.007)  (0.006)  (0.006)  (0.008)  (0.006)  (0.011)  (0.001)  

Output Protein        -0.377 a 0.561 c -0.807 c 0.189 c 0.320 c 0.502 c -0.781 c -0.177 c 0.405 c 0.090 c 

                      (0.209)  (0.094)  (0.134)  (0.067)  (0.054)  (0.073)  (0.097)  (0.059)  (0.133)  (0.010)  

Output Oilseed        -0.541 c -0.198 c 0.806 c -0.090 c -0.204 c -0.196 c 0.446 c 0.043 a -0.056  0.024 c 

                      (0.082)  (0.033)  (0.075)  (0.026)  (0.029)  (0.026)  (0.046)  (0.026)  (0.054)  (0.004)  

Output Roots          -0.019 a 0.010 c -0.019 c 0.037 b -0.012 c 0.009 c -0.009 b 0.013 c 0.036 c -0.022 c 

                      (0.010)  (0.003)  (0.005)  (0.015)  (0.003)  (0.003)  (0.004)  (0.002)  (0.004)  (0.002)  

Land Cereals           0.130 c 0.028 c -0.072 c -0.019 c 0.067 c 0.015 c -0.099 c -0.009  -0.078 c -0.006 c 

                      (0.017)  (0.005)  (0.010)  (0.005)  (0.008)  (0.005)  (0.009)  (0.006)  (0.015)  (0.001)  

Land Protein          -0.757 c 0.664 c -1.053 c 0.232 c 0.234 c 0.657 c -0.748 c -0.244 c 0.890 c 0.099 c 

                      (0.218)  (0.096)  (0.141)  (0.065)  (0.076)  (0.085)  (0.113)  (0.070)  (0.189)  (0.009)  

Land Oilseed          -0.820 c -0.261 c 0.606 c -0.055 b -0.384 c -0.189 c 0.798 c -0.051  0.073  0.011 c 

                      (0.081)  (0.032)  (0.062)  (0.023)  (0.034)  (0.029)  (0.058)  (0.032)  (0.068)  (0.003)  

Land Set-aside        0.782 c -0.165 c 0.164 a 0.234 c -0.103  -0.173 c -0.142  0.409 c 0.263 a -0.005  

                      (0.157)  (0.056)  (0.099)  (0.043)  (0.063)  (0.050)  (0.089)  (0.086)  (0.136)  (0.006)  

Fertiliser Use 0.392 c -0.065 c 0.037  -0.110 c 0.145 c -0.109 c -0.035  -0.045 a -0.616 c -0.013 c 

                      (0.053)   (0.022)   (0.035)   (0.014)   (0.028)   (0.023)   (0.033)   (0.024)   (0.065)   (0.002)   

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % 

levels, respectively.  
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Table 6-20. Elasticities of output supply and fertiliser for France, 2005–2016 (unrestricted model) 

 

Price  

Cereals  

Price 

Maize  

Price  

Protein  

Price 

Oilseed  

Price Root 

Crops  

Price  

Fertiliser  AES  
Output Cereals 0.235 c -0.058 c -0.017 c 0.046 c -0.006 b -0.083 c -0.003 c 

                (0.014)  (0.007)  (0.003)  (0.008)  (0.002)  (0.008)  (0.001)  

Output Maize -0.225 c 0.122 c -0.001  0.002  0.017 c 0.468 c -0.002 a 

                (0.027)  (0.025)  (0.007)  (0.019)  (0.006)  (0.016)  (0.001)  

Output Protein -0.391 c -0.007  -0.072 c -0.209 c -0.009  -0.223 c 0.013 c 

                (0.062)  (0.044)  (0.026)  (0.047)  (0.015)  (0.036)  (0.003)  

Output Oilseed 0.144 c 0.002  -0.028 c 0.228 c 0.005  -0.501 c -0.003 c 

                (0.025)  (0.015)  (0.006)  (0.024)  (0.004)  (0.016)  (0.001)  

Output Root Crops -0.005 b 0.003 c 0.000  0.001  -0.006  0.000  -0.001  

                (0.002)  (0.001)  (0.000)  (0.001)  (0.005)  (0.001)  (0.001)  

Fertiliser Use 0.220 c -0.321 c 0.025 c 0.425 c -0.001  -0.501 c -0.004 c 

                (0.020)  (0.011)  (0.004)  (0.013)  (0.002)  (0.023)  (0.001)  
Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively.  

 

Table 6-21. Elasticities of output supply and fertiliser for France, 2005–2016 (restricted model) 

 

Price  

Cereals  

Price 

Maize  

Price  

Protein  

Price 

Oilseed  

Price Root 

Crops  

Price  

Fertiliser  AES  
Output Cereals   0.260 c -0.054 c -0.016 c 0.036 c -0.004 b -0.113 c -0.003 c 

                (0.013)  (0.007)  (0.003)  (0.008)  (0.002)  (0.007)  (0.001)  

Output Maize     -0.208 c 0.241 c -0.028 c -0.103 c 0.010 c 0.375 c -0.002 a 

                (0.026)  (0.021)  (0.005)  (0.015)  (0.004)  (0.013)  (0.001)  

Output Protein  -0.389 c -0.170 c 0.080 c -0.052  -0.007  -0.097 c 0.014 c 

                (0.060)  (0.030)  (0.012)  (0.036)  (0.008)  (0.032)  (0.003)  

Output Oilseed  0.111 c -0.083 c -0.007  0.309 c 0.009 c -0.406 c -0.002 b 

                (0.024)  (0.012)  (0.005)  (0.021)  (0.003)  (0.013)  (0.001)  

Output Root Crops   -0.004 b 0.002 c 0.000  0.002 c 0.000  0.000  -0.001  

                (0.002)  (0.001)  (0.000)  (0.001)  (0.000)  (0.001)  (0.001)  

Fertiliser Use 0.300 c -0.257 c 0.011 c 0.344 c 0.000  -11.357 c -0.004 c 

                (0.019)  (0.009)  (0.004)  (0.011)  (0.002)  (2.138)  (0.001)  
Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, 
b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively.  
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Table 6-22. Elasticities of output supply and fertiliser for Germany, 2005–2016 (unrestricted 

model) 

  

Price  

Cereals  

Price  

Maize  

Price 

Protein  

Price 

Oilseed  

Price 

Root 

Crops  

Price 

Forage  

Price  

Fertiliser  AES  

Output Cereals   0.235 c -0.058 c -0.017 c 0.046 c -0.006 b -0.083 c -0.003 c 0.235 c 

                (0.014)  (0.007)  (0.003)  (0.008)  (0.002)  (0.008)  (0.001)  (0.014)  

Output Maize     -0.225 c 0.122 c -0.001  0.002  0.017 c 0.468 c -0.002 a -0.225 c 

                (0.027)  (0.025)  (0.007)  (0.019)  (0.006)  (0.016)  (0.001)  (0.027)  

Output Protein  -0.391 c -0.007  -0.072 c -0.209 c -0.009  -0.223 c 0.013 c -0.391 c 

                (0.062)  (0.044)  (0.026)  (0.047)  (0.015)  (0.036)  (0.003)  (0.062)  

Output Oilseed  0.144 c 0.002  -0.028 c 0.228 c 0.005  -0.501 c -0.003 c 0.144 c 

                (0.025)  (0.015)  (0.006)  (0.024)  (0.004)  (0.016)  (0.001)  (0.025)  

Output Root -0.005 b 0.003 c 0.000  0.001  -0.006  0.000  -0.001  -0.005 b 

   Crops                 (0.002)  (0.001)  (0.000)  (0.001)  (0.005)  (0.001)  (0.001)  (0.002)  

Output Forage   0.220 c -0.321 c 0.025 c 0.425 c -0.001  -0.501 c -0.004 c 0.220 c 

                (0.020)  (0.011)  (0.004)  (0.013)  (0.002)  (0.023)  (0.001)  (0.020)  

Fertiliser Use 0.235 c -0.058 c -0.017 c 0.046 c -0.006 b -0.083 c -0.003 c 0.235 c 

                (0.014)  (0.007)  (0.003)  (0.008)  (0.002)  (0.008)  (0.001)  (0.014)  

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, 
b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. 

 

 

Table 6-23. Elasticities of output supply and fertiliser for Germany, 2005–2016 (restricted model) 

  

Price  

Cereals  

Price  

Maize  

Price 

Protein  

Price 

Oilseed  

Price 

Root 

Crops  

Price 

Forage  

Price Fer-

tiliser  AES  

Output Cereals   0.260 c -0.054 c -0.016 c 0.036 c -0.004 b -0.113 c -0.003 c 0.260 c 

                (0.013)  (0.007)  (0.003)  (0.008)  (0.002)  (0.007)  (0.001)  (0.013)  

Output Maize     -0.208 c 0.241 c -0.028 c -0.103 c 0.010 c 0.375 c -0.002 a -0.208 c 

                (0.026)  (0.021)  (0.005)  (0.015)  (0.004)  (0.013)  (0.001)  (0.026)  

Output Protein  -0.389 c -0.170 c 0.080 c -0.052  -0.007  -0.097 c 0.014 c -0.389 c 

                (0.060)  (0.030)  (0.012)  (0.036)  (0.008)  (0.032)  (0.003)  (0.060)  

Output Oilseed  0.111 c -0.083 c -0.007  0.309 c 0.009 c -0.406 c -0.002 b 0.111 c 

                (0.024)  (0.012)  (0.005)  (0.021)  (0.003)  (0.013)  (0.001)  (0.024)  

Output Root -0.004 b 0.002 c 0.000  0.002 c 0.000  0.000  -0.001  -0.004 b 

   Crops                 (0.002)  (0.001)  (0.000)  (0.001)  (0.000)  (0.001)  (0.001)  (0.002)  

Output Forage   0.300 c -0.257 c 0.011 c 0.344 c 0.000  -11.357 c -0.004 c 0.300 c 

                (0.019)  (0.009)  (0.004)  (0.011)  (0.002)  (2.138)  (0.001)  (0.019)  

Fertiliser Use 0.260 c -0.054 c -0.016 c 0.036 c -0.004 b -0.113 c -0.003 c 0.260 c 

                (0.013)  (0.007)  (0.003)  (0.008)  (0.002)  (0.007)  (0.001)  (0.013)  

Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. a, b, 
c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively. 
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Table 6-24. Elasticities of output supply and fertiliser for the UK, 2005–2016 (unrestricted model) 

  

Price  

Cereals   

Price  

Maize   

 Price  

Protein   

 Price  

Oilseed   

 Price  

Root 

Crops   

 Price  

Fertiliser    AES   

Output Cereals         0.078 c 0.019 c 0.008  -0.013  -0.048 c 0.012  -0.010 b 

                      (0.025)  (0.003)  (0.009)  (0.014)  (0.011)  (0.010)  (0.004)  

Output Maize           12.958 c 1.857 c -1.459 b 3.596 c -0.957  -1.440 a -0.823 a 

                      (1.731)  (0.412)  (0.636)  (1.234)  (1.206)  (0.834)  (0.468)  

Output Protein        0.160  -0.042 b 0.003  0.202 a -0.192 c -0.587 c -0.137 c 

                      (0.170)  (0.019)  (0.099)  (0.112)  (0.061)  (0.084)  (0.022)  

Output Oilseed        -0.059  0.025 c 0.047 a 0.203 c -0.016  -0.257 c -0.006  

                      (0.064)  (0.008)  (0.026)  (0.062)  (0.028)  (0.033)  (0.010)  

Output Roots          -0.069 c -0.002  -0.014 c -0.005  -0.033  0.015 b -0.002  

                      (0.015)  (0.003)  (0.004)  (0.009)  (0.029)  (0.006)  (0.011)  

Fertiliser Use -0.043  0.008 a 0.110 c 0.205 c -0.038 b -0.694 c -0.021 c 

                      (0.039)  (0.005)  (0.016)  (0.026)  (0.015)  (0.027)  (0.005)  
Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively.  

 

 

Table 6-25. Elasticities of output supply and fertiliser for the UK, 2005–2016 (restricted model) 

  

Price  

Cereals   

Price  

Maize   

 Price  

Protein   

 Price  

Oilseed   

 Price  

Root 

Crops   

 Price  

Fertiliser    AES   

Output Cereals         0.094 c 0.016 c -0.002  0.013 b -0.035 c 0.007  -0.010 b 

                      (0.017)  (0.002)  (0.004)  (0.006)  (0.010)  (0.009)  (0.004)  

Output Maize           10.633 c 2.353 c -1.124 a 2.822 c -2.041 a -1.119  -0.823 a 

                      (1.450)  (0.383)  (0.599)  (1.057)  (1.118)  (0.817)  (0.468)  

Output Protein        -0.038  -0.033 a 0.146 b 0.119 a -0.148 c -0.524 c -0.137 c 

                      (0.086)  (0.017)  (0.058)  (0.061)  (0.054)  (0.076)  (0.022)  

Output Oilseed        0.061 b 0.019 c 0.028 a 0.106 c -0.023  -0.278 c -0.006  

                      (0.030)  (0.007)  (0.014)  (0.026)  (0.024)  (0.030)  (0.010)  

Output Roots          -0.050 c -0.004 a -0.011 c -0.007  0.036 b 0.014 b -0.002  

                      (0.014)  (0.002)  (0.004)  (0.007)  (0.017)  (0.006)  (0.011)  

Fertiliser Use -0.026  -0.026  0.098 c 0.222 c -0.036 b -0.694 c -0.021  

                      (0.035)  (0.004)  (0.014)  (0.024)  (0.015)  (0.058)  (0.005)  
Note: Elasticities evaluated at the sample mean. Standard errors in parentheses, obtained with delta method. 
a, b, c indicate statistical significance at the 10 %, 5 %, and 1 % levels, respectively.  
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Summaries and Authors' Contributions 

This chapter summarises the four empirical studies embedded in this dissertation, as well as two 

additional studies that are co-authored by the author of the dissertation and supplementary to the 

embedded articles. Table 7-1 gives an overview of all studies, including the main research questions 

and core findings, both from an empirical and a methodological perspective. In addition, the individ-

ual summaries in the subchapters 7.1 – 7.6 contain detailed descriptions of authors' contributions to 

each study.   

Table 7-1. Overview of the empirical studies and their findings 

Title Main research question Core findings (empirical and methodological) 

   a) Empirical studies embedded in the dissertation 

1. Profitability Develop-

ment and Resource Real-

location: The Case of 

Sugar Beet Farming in 

Germany 

(Chapter 3) 

What is the impact of the 

2006 sugar market re-

form on aggregate 

productivity in beet pro-

duction? 

Aggregate productivity is mainly determined by 

within-farm productivity growth, but reallocation be-

tween farms contributed to some extent after the 

2006 reform. Reallocation varies across sugar com-

panies with different trading schemes for delivery 

rights.  

2. Diversification Econo-

mies in Dairy Farming – 

Empirical Evidence from 

Germany 

(Chapter 4) 

What is the cost-saving 

potential of farm diversi-

fication in dairy farming? 

Small dairy farms can save costs by diversifying be-

tween milk and livestock production, while large 

farms benefit from diversification between milk and 

crop production.  

Methodologically, the study shows that Bayesian 

techniques can be used to improve the theoretical 

consistency of input distance functions without de-

stroying the flexibility of a translog functional form.  

3. Credit Access and 

Farm Productivity: Evi-

dence from a Field Ex-

periment in Rural China 

(Chapter 5) 

What is the causal effect 

of credit access on total 

factor productivity? 

Improved credit access causes a 9 %-increase in 

productivity, mostly via gains in technical efficiency 

and technical change.  

As for the method, we show that controlling for en-

dogeneity alters the production function parameters 

but not the inference on the productivity measure.   

4. Green Policies and 

Farm Production Deci-

sions in Selected EU 

Member States 

(Chapter 6) 

How do agri-environ-

mental subsidies affect 

production choices and 

land allocation between 

crops? 

Current EU agri-environmental programmes reduce 

fertiliser use and shift crop production from cereals 

and maize to protein crops.  

The method of Cholesky factorisation is necessary to 

obtain theoretically consistent profit function esti-

mates and to facilitate reliable policy recommenda-

tions.  

(continued on next page) 
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Table 7-1. (continued)   

Title Main research question Core findings (empirical and methodological) 

   b) Additional co-authored articles cited in the dissertation 

5. Is small family farm-

ing more environmentally 

sustainable? Evidence 

from a spatial regression 

discontinuity design in 

Germany 

(Summary in Chapter 7) 

Do small family farms 

use more environmen-

tally sustainable farming 

practices than their larger 

counterparts?  

Small family farms are more diversified in terms of 

crop rotation, but more often rely on monocultures, 

use fewer cover crops and structural elements (e.g. 

hedges or trees).  

6. Production Intensity 

and Emission Efficiency 

– A Latent-Class Meta-

Frontier Approach 

(Summary in Chapter 7)  

 

How do intensive and ex-

tensive production tech-

nologies compare in 

GHG emission effi-

ciency? 

Without loss of economic output, intensive (exten-

sive) farms could reduce GHG emissions by 21.1 % 

(48.5%). Intensive dairy farms are more emission ef-

ficient than extensive ones on average in our sample.  

Methodologically, the study shows that latent class 

stochastic frontier analysis combined with the eco-

efficiency concept is able to detect heterogeneous 

farm technologies.  

 

7.1 Profitability development and resource reallocation: the case of sugar beet farming in Ger-

many 

This empirical study examines the profitability and productivity dynamics of sugar beet farming in 

Germany over a 10-year period from 2004 to 2013. The source of the data is the EU farm accountancy 

data network (FADN). Our sample consists of 8,749 farm observations with sugar beet production. 

A major goal of the study is the examination of the role of delivery rights in productivity-enhancing 

resource reallocation. For this purpose, we decompose the profitability of sugar beet farming into 

total factor productivity (TFP) and terms of trade effects using a Lowe quantity index. The Lowe 

index satisfies all economically important axioms from the index number theory, including unity and 

transitivity (O'Donnell, 2012a). Hence, it is particularly useful to compare profitability and produc-

tivity across both time and space. We then compute sector productivity changes as the sum of average 

productivity change at the farm level ('within-effect') and productivity change through reallocation 

of production between farms with distinct productivity levels ('between effect') following Olley and 

Pakes (1996).  

The results suggest that sugar beet profitability was mainly driven by changes in terms of trade during 

the study period. As sugar prices sharply declined after the 2006 reform, the production value of 

sugar beet was below production cost in the years 2007 to 2010. Moreover, the results show that 

losses in terms of trade were partially compensated by an increase in TFP. This effect was especially 

pronounced in the south of Germany, where profitability in 2013 was at its 2004 levels, even though 

terms of trade were 20 % below their value in 2004. Using a system generalised method-of-moments 
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(GMM) estimator that incorporates the lagged values of the dependent variable, we investigate 

whether the contribution of production reallocation on sector productivity growth differed across 

regions with distinct mechanisms of delivery rights transfer between farms. In line with expectations, 

we find that productivity-enhancing resource reallocation was most pronounced in the catchment area 

of sugar factories that promote delivery rights trading between growers and that do not link delivery 

rights to capital contributions. The magnitude of the effect, however, remains low. A possible expla-

nation is that transaction costs may hamper the trade of delivery rights (Mahler, 1994).  

This work has been published in the Journal of Agricultural Economics (Wimmer and Sauer, 2020b). 

Stefan Wimmer developed the research question. Both Stefan Wimmer and Johannes Sauer selected 

the empirical methods. In particular, the research builds upon previous work by Johannes Sauer on 

resource reallocation and productivity. Observing that the German sugar sector is dominated by three 

major sugar companies with distinct ownership structures, Stefan Wimmer developed the hypothesis 

that resource allocation efficiency may be different across German regions. Having set out the re-

search questions and formulated working hypotheses, both authors applied for access to the EU 

FADN data. Stefan Wimmer prepared and cleaned the data and conducted the analysis. This involved 

the econometric estimation of output-specific input usage, derivation of productivity and profitability 

indices and application of the GMM-estimator to identify the effect of ownership structure on re-

source reallocation. The latter exploits a natural experiment of different ownership structures of sugar 

factories operating in distinct regions. Johannes Sauer supervised the econometric estimation and 

both authors interpreted the results. Stefan Wimmer wrote the manuscript while Johannes Sauer pro-

vided reviewing and editing and contributed to the whole process with feedback and further advice.  
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7.2 Diversification economies in dairy farming ‒ empirical evidence from Germany 

Farm diversification becomes increasingly important in the wake of market deregulation. In this em-

pirical study, we investigate diversification economies between various farm outputs for a sample of 

Bavarian dairy farms. In the context of structural change towards fewer but larger farms, our primary 

goal is to examine whether cost-saving potentials from diversification depend on farm size. Using 

accountancy data from 1,647 farms that are observed over the period 2000 to 2014, we estimate an 

input distance function (IDF) with four outputs: milk, livestock for sale, crops for sale, and other 

outputs (e.g. provision of farm tourism and energy production). Based on the IDF estimates, we 

derive cost complementarities for all output pairs following Hajargasht, Coelli and Rao (2008). Since 

the duality between the IDF and the cost function depends on regularity conditions (e.g. Färe and 

Primont, 1995), we impose curvature restrictions on the IDF using Bayesian methods as suggested 

by O'Donnell and Coelli (2005). This procedure maintains the flexibility of the translog functional 

form while reducing the share of observations inconsistent with economic theory from 40 to 19 %. 

Evaluated at the sample mean, we find that the marginal costs of producing livestock for sale can be 

decreased by extending crop production. Thus, the average farm in our sample could save costs by 

increasing diversification between livestock and crop production. However, no cost complementari-

ties are prevalent at the sample mean between the output pair milk and livestock production and the 

output pair milk and crop production. Further, the results also show that farms that are diversified to 

a large degree are less likely to achieve cost reductions by further diversifying their production port-

folio. This finding suggests that there is an optimal level of diversification in terms of associated 

production costs. Finally, we find that larger farms are more likely to realise cost savings by combin-

ing milk and crop production, whereas smaller farms tend to benefit from jointly producing milk and 

livestock. From a managerial and policy perspective, we conclude that downstream fattening of cattle 

can increase the competitiveness of small farms, as it allows them to reduce their marginal costs of 

milk production.  

The article has been published in the European Review of Agricultural Economics (Wimmer and 

Sauer, 2020a). Both authors developed the research question. Stefan Wimmer reviewed the literature, 

selected the methods, prepared the data and conducted the empirical analysis. As the estimation of 

the IDF resulted in many regularity violations, Johannes Sauer suggested imposing curvature econ-

ometrically. Thus, Stefan Wimmer employed a Bayesian estimation framework to impose regularity 

conditions on the IDF. He also estimated the endogeneity-robust input distance function using the 

method proposed by Griffiths, W. E. and Hajargasht (2016). Both authors interpreted the results. 

Stefan Wimmer wrote the original draft of the manuscript, which was improved through comprehen-

sive reviews and edits by Johannes Sauer.  
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7.3 Credit access and farm productivity: evidence from a field experiment in rural China 

In this article, we use data from a field experiment in rural China to measure the effect of improved 

credit access on farm productivity and its components. The data were collected in three waves in the 

years 2010, 2012 and 2014. This study involves 1,500 households in 50 villages across 5 provinces 

in China. After the baseline survey in 2010, the credit programme was initiated in 30 randomly se-

lected villages, and 10 further villages followed after the first follow-up survey in 2012. The loan size 

of the credit programme varied between 1000 and 5000 yuan (130–650 EUR) and participation was 

voluntary for households in the treated villages. The random assignment of the programme allows us 

to assess the intent-to-treat (ITT) effect of improved credit access on various household-level out-

come variables. Our primary interest is the ITT on farm productivity growth. For this purpose, we 

estimate total factor productivity (TFP) in two ways. First, we estimate productivity levels as the 

Solow residual based on a production function. Second, we estimate individual components of 

productivity change using the Malmquist index based on a production frontier approach.  

The production function and frontier parameters suggest that the underlying production technology 

is characterised by decreasing returns to scale. This finding is consistent with the inverse size-produc-

tivity relationship which is often observed in countries characterised by small-scale farming (e.g. 

Sheng, Ding and Huang, J., 2019; Muyanga and Jayne, 2019). Furthermore, using a difference-in-

difference (DID) design, we find that improved credit access increases TFP, derived from both the 

production function and the production frontier approach. The Solow residual suggests that treatment 

assignment increases productivity by about 9 %. The effect is driven by an increase in technical effi-

ciency and by technical change, while scale efficiency was not affected.  

The article is prepared for submission to the Journal of Development Economics. The three authors 

Stefan Wimmer, Jing You and Johannes Sauer jointly developed the research question addressed in 

this article. In particular, they noticed that previous research on the causal effect of credit access on 

productivity is limited to partial productivity measures (e.g. agricultural output per unit of land), 

which is incomplete as it does consider changes in the use of other inputs. Jing You collaborated with 

the State Council in China to design and implement the experiment. She also coordinated the data 

collection. Stefan Wimmer and Jing You cleaned and prepared the data for the specific needs of this 

research article. Stefan Wimmer conducted the econometric analysis to derive estimates for produc-

tivity and its components under the supervision of Johannes Sauer. Stefan Wimmer and Jing You 

conceptualised the DID estimator (including heterogeneous and dynamic treatment effects) to assess 

the effect of the credit programme intervention on various outcome variables. Stefan Wimmer wrote 

the major part of the manuscript while Jing You helped with substantial edits. The background section 

was provided by Jing You. Johannes Sauer contributed to the conceptual framework, helped interpret 

the results and reviewed the manuscript.  
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7.4 Green policies and farm production decisions in selected EU member states 

The EU Common Agricultural Policy (CAP) has shifted from purely supporting agricultural produc-

tion towards a more sustainability orientation in the past decades. A major goal of agri-environmental 

subsidies is to support agricultural practices that maintain biodiversity, prevent soil degradation and 

water pollution, and reduce the emission of greenhouse gases. In this article, we use data from the 

European Farm Accountancy Data Network (FADN) to estimate elasticities of output supply, input 

demand, and land allocation with respect to agri-environmental subsidies. We distinguish between 

voluntary agri-environmental schemes (AES) and the mandatory set-aside area scheme. In the con-

text of arable farms, the latter mainly involves the implementation of diversified crop rotations and 

planting of cover crops (e.g. Mennig and Sauer, 2020). To derive subsidy elasticities, we estimate a 

profit system consisting of profit-maximising output supply functions, input demand functions, and 

land allocation equations for three major crop production countries in the EU (France, Germany and 

the UK). We specify separate profit functions for the period with coupled subsidies (1995–2004) and 

the period with decoupled subsidies (2005–2014). To ensure that the estimated profit function is con-

sistent to economic theory, we estimate the Cholesky factorisation of the Hessian matrix of the profit 

system as proposed by Lau (1978) and Diewert and Wales (1987).  

The results show that there is considerable heterogeneity across countries with respect to subsidy 

elasticities. While farms in France tend to substitute cereal and oilseed areas in favour of set-aside 

areas in France, farms in Germany substitute cereals and protein areas in Germany in response to 

increasing set-aside subsidy rates. We further find that increased engagement in AES programmes is 

related to less cereal and maize production, less fertiliser use, and higher supply of protein crops. 

Finally, the results suggest that production responses to AES subsidies are very similar between the 

periods with and without coupled subsidies, implying that no fundamental change in the production 

technology with respect to green policies has occurred.   

The research question for this article was developed by Johannes Sauer. Stefan Wimmer reviewed 

the literature on farm-level responses to agri-environmental subsidies. The authors jointly applied for 

access to the EU FADN data, together with Denitsa Angelova. Stefan Wimmer cleaned and prepared 

the data, adapted the conceptual framework and conducted the empirical analysis. This involved the 

estimation of the Cholesky factorisation for the profit system, including output supply functions, 

input demand functions and land allocation equations. Both authors interpreted the results. Stefan 

Wimmer wrote the manuscript, which was continuously improved with feedback and suggestions 

from Johannes Sauer.   
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7.5 Is small family farming more environmentally sustainable? Evidence from a spatial regres-

sion discontinuity design in Germany 

It is often assumed that small family farms are managed in a more environmentally friendly way than 

large, industrial ones (see, e.g., van der Ploeg, 2013; Rossi and Garner, 2014). Although a meta-

analysis by the OECD (2005) shows that there is no clear relationship between farm structure and 

environmental effects, previous studies were often only able to show empirical correlations due to 

data limitations. This results may be biased by endogeneity due to omitted variables, for example if 

regional conditions such as climate and topography influence both the farm structure and agricultural 

practices. In this study, we exploit a natural experiment to identify the causal effect of small family 

farming on the adoption of farming practices that are considered less harmful to the environment. 

Our identification strategy relies on the fact that the relative frequency of small family farms changes 

abruptly at the historical border between East and West Germany. This set-up allows us to investigate 

whether family farming results in more environmentally friendly farming practices by making use of 

a regression discontinuity design.  

The results show that small family farming increases crop diversification, but at the same time in-

volves fewer structural elements and soil-covering measures. It also relies more often on monocul-

tures compared to their larger counterparts. We emphasise that the effect on diversification may be 

more pronounced at the landscape level than it can be documented at the individual farm level: in a 

given area, five farms, each with a wide crop rotation, contribute significantly more to biodiversity 

than a single large farm with a less diversified crop portfolio. The lower number of structural ele-

ments, the higher proportion of uncovered soils and the increased frequency of monocultures can 

possibly be explained by higher cost pressure on small businesses. 

This article has been published in Land Use Policy (Wuepper, Wimmer and Sauer, 2020). All authors 

jointly developed the research questions addressed in this article. David Wuepper came up with the 

research design that uses the historical inner German border as exogenous variation in the degree of 

small family farming and performed the econometric analysis. Stefan Wimmer contributed to the 

review of the literature, to the data preparation, to the selection of variables for the empirical analysis, 

and to writing and editing of the manuscript. The results were interpreted and discussed by all three 

authors. David Wuepper wrote the original draft of the article. Stefan Wimmer substantially contrib-

uted to the introduction, the discussion and policy implications. Johannes Sauer supervised the model 

estimation, provided suggestions to interpreting the results and reviewed the manuscript. The work 

also benefitted from feedback by project partners from the Free University of Bozen-Bolzano, the 

Federal Institute of Agricultural Economics in Austria and the Norwegian Institute for Bioeconomy 

Research.  
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7.6 Production intensity and emission efficiency – a latent-class meta-frontier approach 

Agriculture accounts for a significant portion of global greenhouse gas (GHG) emissions. The trend 

towards production intensification raises concerns about environmental sustainability. So far, empir-

ical evidence on the relationship between production intensity and environmental impact largely re-

lies on life cycle assessment studies and remains inconclusive (e.g. Basset-Mens, Ledgard and Boyes, 

2009; Capper, Cady and Bauman, 2009; Gerber, P. J. et al., 2013). In this article, we use a compre-

hensive panel data set of Bavarian dairy farms to compare the emission efficiency of extensive and 

intensive technologies. For this purpose, we combine the latent class stochastic frontier approach 

with the concept of eco-efficiency. Following Kuosmanen and Kortelainen (2005), we define eco-

efficiency as the ability of a farm to "produce goods and services while causing minimal environ-

mental degradation". Since we focus on GHG in our empirical application (see Dakpo, Jeanneaux 

and Latruffe, 2017), we use the term 'emission efficiency' rather than 'eco-efficiency'.  

The latent class approach divides our sample into two groups: 55 % of farm-observations are classi-

fied to the extensive group and the remainder is classified to the intensive group. Compared to the 

own technology class, farms in both groups are about equally emission-efficient: extensive (inten-

sive) farms could reduce emissions by 14 % (13 %) if they were operated at the pressure conversion 

frontier of the extensive (intensive) technology. We then construct a stochastic meta-frontier that 

envelops both the extensive and the intensive technologies. Thus, the meta-frontier indicates the su-

perior technology for each data point. We find that the emission efficiency with respect to the meta-

frontier is 52 % for extensive farms and 79 % for intensive farms. This result suggests that extensive 

farms could reduce GHG emissions by 48 % and intensive farms could reduce GHG by 21 % on 

average without reducing their economic output, if all farms had access to both technologies. The 

GHG mitigation potential translates to 225 tonnes of CO2-equivalents for extensive farms and 130 

tonnes of CO2-equivalents for intensive dairy farms per year. Thus, we conclude that intensive farms 

in our sample are considerably more emission-efficient than their extensive counterparts.  

The article is currently under review at the European Review of Agricultural Economics. Christian 

Stetter is the first author of the study. Stefan Wimmer and Christian Stetter have jointly developed 

the research idea and equally contributed to reviewing and summarising existing literature. Christian 

Stetter developed the conceptual framework for GHG emission-efficiency, constructed the data, es-

timated the metafrontier and visualised the results. Christian Stetter and Stefan Wimmer developed 

the framework for heterogeneity in pressure-generating technologies and Stefan Wimmer performed 

the latent class analysis. Christian Stetter and Stefan Wimmer jointly interpreted the results and wrote 

the manuscript under the lead of Christian Stetter. Johannes Sauer contributed to the process through 

valuable suggestions and feedback as well as by reviewing and editing the manuscript.  
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Discussion and Policy Implications 

This chapter presents a discussion across all dissertation topics in relation to the existing literature. 

The overarching goal of the preceding empirical studies was to provide empirical insights into the 

microeconomic behaviour of farms as well as their performance with respect to economic and envi-

ronmental aspects, to provide insights for a scientifically informed approach to agricultural and agri-

environmental policymaking. The individual studies are linked by their focus on current develop-

ments in agricultural policy, from market deregulation to improved credit access to environmental 

protection.  

The first trend in agricultural policies described in Chapter 1 is the transition from the most protective 

measures towards more market orientation. Against this background, the first and second empirical 

studies are concerned with the sugar and dairy sectors, respectively. These two sectors have been the 

last heavily regulated agricultural markets in the EU, before they were largely deregulated in the past 

decade. In both sectors, production was restricted by quota regulations for a long time. Since the 

discontinuation of the dairy quota in 2015 and of the sugar quota in 2017, farmers and processors are 

allowed to expand their production, which in turn increases the competition in the sectors. 

Empirical literature has shown that market deregulation can increase sector productivity by reallo-

cating production activities away from low-productive towards high-productive firms, both in the 

manufacturing sector (Eslava et al., 2004) and in the agricultural sector (Kirwan, Uchida and White, 

2012 for the U.S. tobacco sector; Gray, Oss-Emer and Sheng, 2014 and Sheng, Chancellor and Jack-

son, 2020 for the Australian broadacre and dairy sectors; and Frick and Sauer, 2018 for the German 

dairy sector). For the sugar sector, a number of studies examined the potential effects of market de-

regulation on total production and trade ex ante (e.g. Frandsen, 2003; Elobeid and Beghin, 2006; 

Gohin and Bureau, 2006). However, its effect on aggregate productivity has not been studied yet. 

Chapter 3 in this dissertation closes this gap in the literature by evaluating productivity and profita-

bility development in sugar beet farming after the EU sugar market reform in 2006 from an ex post 

perspective. Consistent with the listed literature on other sectors, our results show that deregulating 

the sugar market increased aggregate productivity by shifting production towards high-productive 

sugar beet growers. Nonetheless, the magnitude of the effect was rather low on average. We also 

found that resource allocation is most efficient in regions where farmers can effectively trade delivery 

rights. Concerning implications for policy, the study highlights that deregulation does not increase 

the competitiveness of the respective sector immediately and unequivocally. Instead, downstream 
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markets are shown to play a significant role in the effectiveness of deregulation efforts, which should 

be taken into account if policy aims to improve the competitiveness of the sector. For example, sector 

productivity could be further improved by reallocating delivery rights to farmers who value them the 

most, e.g. by auction markets (see, e.g., Bogetoft et al., 2007) 

From a managerial perspective, ongoing market deregulations and the associated increased compe-

tition requires farms to optimise their production structure. The scale of farming and the combination 

of outputs play a crucial role as they determine farm competitiveness through economies of scale and 

scope. Against this background, Chapter 4 investigated the economies of diversification for the em-

pirical case of German dairy farming. Previous literature on diversification economies largely relied 

on cost functions (e.g. Fernandez-Cornejo et al., 1992; Wu and Prato, 2006; Melhim and Shumway, 

2011), which is problematic if cost-minimisation cannot be assumed or if farm-level price data is not 

available. Thus, our study contributes by employing a primal approach to evaluate cost complemen-

tarities based on an IDF approach as proposed by Hajargasht, Coelli and Rao (2008). The second 

contribution is to provide empirical evidence on how diversification economies interact with the size 

of farms, in light of the structural change towards fewer but larger farms. The analysis unveils that 

cost complementarities between milk and crop production are decreasing (i.e., joint production be-

comes more attractive) in farm size, while those between milk and livestock production are increas-

ing (i.e., joint production becomes less attractive) in farm size. This result is not only useful for farm 

managers who are planning to change the size of their business but also for policymaking, as it shows 

that promoting investment in on-farm diversification – especially regarding milk and livestock pro-

duction – could be an effective tool to support smaller dairy farms. Currently, the CAP primarily 

supports diversification outside of primary agricultural production (e.g. production of renewable en-

ergies; providing services and farm tourism; and engaging in food processing and direct marketing). 

In Bavaria, the empirical case in our study, this is achieved by offering educational measures and 

investment incentives as well as by support from extension services (BStMELF, 2020). Our findings 

suggest that these activities may be extended to promote on-farm diversification.  

As shown in Chapter 1, deregulation of agricultural markets also takes place in developing and 

emerging countries. For example, China implemented market and trade reforms prior to its accession 

to the WTO in 2001 (Baylis, Fan and Nogueira, 2019). In light of the global trend from protective 

agricultural measures towards more market orientation, credit access is essential for farmers in de-

veloping countries to increase productivity and improve their international competitiveness (FAO, 

2002). Largely relying on quasi-experimental methods, existing literature shows that credit access 

has positive effects on total production (Feder et al., 1990; Briggeman, Towe and Morehart, 2009), 

agricultural investment (Berhane and Gardebroek, 2011), and partial productivity (Guirkinger and 

Boucher, 2008; Hossain, M. et al., 2019). Empirical evidence on the causal effect on TFP, however, 
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is scarce, even though it is necessary to comprehensively evaluate the success of credit programmes. 

Using survey data from a randomised controlled trial conducted between 2010 and 2014 in rural 

China, Chapter 5 of this dissertation revealed that improved credit access causes gains in TFP via 

technical efficiency improvements and technical change. For policymakers, the results imply that 

improving credit access for small-scale farms is an effective measure to improve agricultural produc-

tivity, not only in the short but also in the long-term, as indicated by the accumulating positive effect 

on technical change. At the same time, the seemingly decreasing-returns-to-scale technology may 

prevent farmers to take advantage of scale efficiencies. A possible remedy may be to ensure access 

to modern technology combined with training and education by extension services. Follow-up re-

search is necessary to examine the relationship between access to credit and technology explicitly.  

Besides increasing market orientation, the second trend in global agricultural policies is to reduce 

the detrimental effect of productive activities on the environment (see Chapter 1). This trend is visible 

in increasing efforts to regulate chemical use, protect agricultural soil and reduce the emission of 

GHG, amongst others. Against this background, the remaining studies were explicitly concerned with 

the environmental sustainability of farming. First, Chapter 6 evaluated the effectiveness of green 

policies in the EU by looking at production responses at the individual farm level. Second, two sup-

plementary studies examined the extent to which environmental sustainability may be related to the 

type of farming (small family farming vs. large industrial farming) and to heterogeneous production 

technologies (extensive vs. intensive farming).  

The impact of agri-environmental programmes on production and other farm level outcomes are 

commonly investigated by applying quasi-experimental methods to reduced-form regressions. For 

example, studies have shown that participation in AES increases per hectare expenditure of chemicals 

such as fertiliser and pesticides (Pufahl and Weiss, C. R., 2009; Arata and Sckokai, 2016). Contrary 

to these studies, we use of a structural model that provides the microeconomic parameters describing 

the production decisions of farms in Chapter 6. The main contribution of this study to the existing 

literature is the evaluation of agri-environmental subsidy elasticities for individual crop categories. 

In addition, we compared elasticities across three of the most important crop-producing countries in 

the EU (France, Germany and the UK). The results suggest that AES participation is related to less 

cereal and maize production in favour of protein crops as well as to reduced fertiliser use in all coun-

tries. The study also revealed significant heterogeneity across countries. For example, the reducing 

effect of AES participation on fertiliser use is considerably stronger in the UK than in Germany and 

France, especially in the later sample (2005–2016). As for the set-aside programme, not only the 

magnitude of farm-level responses but also the directions vary across countries. For example, farmers 

tend to substitute areas devoted to cereals and oilseed production in favour of set-aside areas in 

France. This finding is in line with Lacroix and Thomas (2011) who apply the structural model to the 
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same country over the period 1995–2001. For Germany, by contrast, we find that set-aside areas 

substitute areas devoted to cereal and protein production. This heterogeneos responses to policy in-

centives should be considered by policymakers to tailor agri-environmental policies for the specific 

regions. For example, AES programmes in Germany and France may be adjusted to achieve a more 

elastic response in fertiliser reduction, as it is already the case in the UK. Evaluating farmers' will-

ingness to participate in voluntary agri-environmental programmes in different regions can further 

help to increase the cost effectiveness of such programmes, as we show in Li, F. et al. (2020) for the 

case of a green manure planting programme in China. 

In light of the structural change towards fewer but larger and more intensive farms, the public and 

political discourse increasingly evolves around which type of farming is desirable. In this context, 

extensive and small-scale farming seem to be supported, not least because it is assumed that intensive 

and large-scale farming have more detrimental effects on the environment (see, e.g., van der Ploeg, 

2013; Rossi and Garner, 2014). In Wuepper, Wimmer and Sauer (2020), however, we found that 

small family farming does not unequivocally lead to farm practices that are considered more envi-

ronmentally friendly. In particular, small family farms are shown to be more diversified but they also 

use fewer cover crops and structural elements such as hedges, walls and trees. Overall, these results 

suggest that there is a lot of variation in the use of sustainable farming practices, but this variation 

does not seem to be determined by the size and ownership of farms. Hence, our empirical study 

confirms the findings of previous work, as summarized by OECD (2005), but improves the internal 

validity of previous results through a new identification strategy. Furthermore, we found in Stetter, 

Wimmer and Sauer (2020) that intensive dairy farming are more emission-efficient than extensive 

dairy farming: Holding economic output constant, intensive farms could reduce GHG emissions by 

21.1 %, while extensive farms could reduce GHG emissions by 48.5 % if they had access to the same 

technology. Again, similar results have been found in previous studies based on life cycle assess-

ments (e.g. Capper, Cady and Bauman, 2009; Gerber, P. J. et al., 2013). However, these studies are 

conducted based on a limited number of farms because of expensive data collection. Hence, the main 

contribution of our study to the literature is the use of a more comprehensive data set, adding to the 

external validity of previous studies. From a policy perspective, this study implies that there is large 

potential for climate change mitigation without risking the economic viability of farms, for example 

by promoting a sustainable intensification of dairy farms.  
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In summary, the empirical studies in this dissertation provide empirical evidence that a) downstream 

markets play an important role in the effect of market deregulation on resource reallocation; b) eco-

nomic benefits from farm diversification vary with farm size; c) improving credit access for rural 

small-scale farmers improves agricultural productivity via gains in technical efficiency and technical 

change but does not affect scale efficiency; d) the effect of green policy incentives on farm production 

decisions is heterogeneous across countries; and e) intensified and large farms are not necessarily 

bad for the environment. These empirical findings emphasise that sectoral characteristics, farm het-

erogeneity and the environment in which farms operate must be taken into account when predicting 

and evaluating the effect of policy changes. Since it is challenging, if not impossible, to consider all 

possibly influencing factors ex ante, ex post evaluation studies – as provided in this dissertation – 

will remain essential to guide policymakers, in particular in light of increasingly complex policy 

measures that often involve multiple goals such as rural support, environmental sustainability and 

social equitability (see Esposti and Sotte, 2013).  

Methodologically, this dissertation contributes with the empirical application of production theory 

using state-of-the-art econometric techniques that consider economic consistency and endogeneity 

concerns. The four embedded empirical studies rely on both primal (production and distance func-

tions) and dual (profit function) approaches to represent the underlying farming technologies. As 

discussed and illustrated by Sauer (2006) and Sauer, Frohberg and Hockmann (2006), theoretical 

consistency of econometric models is essential to derive reliable policy recommendations. To meet 

this demand, Chapter 4 employed a Bayesian estimation technique to impose monotonicity and con-

cavity on the distance function following O'Donnell and Coelli (2005) and Chapter 6 estimated the 

Cholesky factorisation of the Hessian matrix to impose convexity on the profit function proposed by 

Lau (1978) and Diewert and Wales (1987). The production function in Chapter 5, employing data 

from smallholder farmers in China, satisfied curvature requirements at most data points, hence econ-

ometric imposition was not necessary. 

Another common concern in the production economics literature is endogeneity in production and 

distance functions. To ensure that the distance function parameters in Chapter 4 are not affected by 

endogeneity, we applied an extension of the Mundlak (1978) random effects model with correlated 

effects in a Bayesian framework as proposed by Griffiths, W. E. and Hajargasht (2016). Chapter 5 

employed the Levinsohn and Petrin (2003) estimator to account for the correlation between input use 

and unobserved productivity shocks in the production function and frontier estimation. Finally, Chap-

ter 3 used on a non-parametric approach to measure and decompose profitability, which is not subject 

to endogeneity problems and curvature inconsistencies. Nonetheless, the index is selected based on 

theoretical considerations. Specifically, we make us of the Lowe quantity index, because it satisfies 

all economically relevant axioms from index number theory, including additivity and transitivity 
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(O'Donnell, 2012a). These two properties are particularly important in our empirical application, as 

they allow consistent comparisons across both time and space.  

Despite the efforts to produce unbiased and theoretically-consistent estimates, significant limitations 

to the studies exist, which at the same time offer scope for further research. For example, the rela-

tionship between delivery rights mechanism and reallocation efficiency in Chapter 3 was investigated 

by defining catchment areas of sugar companies based on the location of farms. Farms in border 

regions between different companies had to be excluded from the analysis. As the aggregate produc-

tivity is likely to be affected by unobserved regional conditions, the internal validity of this analysis 

could be improved by comparing reallocation activities between farms in close regional proximity to 

each other that deliver to sugar factories owned by companies with different ownership structures. 

Unfortunately, FADN data does not include information on market relationships, so that primary data 

collection is needed to identify the exact causal effect of the trading mechanism and sectoral produc-

tivity change. The causal identification could also be improved in Chapter 5 on smallholder credit 

access and productivity. The expirimental design of the Village Fund implementation allowed us to 

identify the ITT effect of improved credit access, which is essential for the evaluation of the pro-

gramme. Nevertheless, identifying the average treatment effect (ATE) of credit access would provide 

additional insights to understanding the consequences of binding credit constraints. Since participa-

tion in the programme was voluntary, we were not able to estimate the ATE. Further limitations of 

randomised controlled trials in the social sciences are summarised in Deaton and Cartwright (2018). 

The assessment of production decisions in the context of agri-environmental subsidies (Chapter 6) 

could be extended to evaluate climate change adaptation, considering farmers' risk attitudes. 

Finally, the external validity of the results reported in this dissertation can be improved by repeating 

the studies in additional locations and for different sectors. For example, diversification economies 

(Chapter 4) are also relevant in mixed livestock-crop farming and at the individual crop level (i.e., 

crop rotation effects). Equivalently, scientifically informed policies would benefit from empirical ev-

idence on subsidy-related elasticities (Chapter 6) for the livestock sector as well as in additional EU 

member countries. The field experiment conducted in rural China (Chapter 5) may also be repeated 

in other regions both within and outside of China where the production technology of farms can be 

expected to be significantly different. Finally, the study on productivity and profitability of sugar beet 

farming (Chapter 3) should be extended with more recent data. With the abolishment of the quota in 

2017, the EU sugar sector is going through a long process of change. Thus, is important to re-inves-

tigate the impact of the market deregulation on profitability and (aggregate) productivity of sugar 

beet farming with data from 2017 on.   
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Technical Appendix 

TA. 1 Concave and convex functions 

A function 𝑓 is concave if and only if  

 𝜃𝑓(𝑢) + (1 − 𝜃)𝑓(𝑣) ≤ 𝑓(𝜃𝑢 + (1 − 𝜃)𝑣) (TA-1) 

for any combination of distinct points 𝑢 and 𝑣 in the domain of 𝑓 and for 0 ≤ 𝜃 ≤ 1, while it is 

convex if and only if 

 𝜃𝑓(𝑢) + (1 − 𝜃)𝑓(𝑣) ≥ 𝑓(𝜃𝑢 + (1 − 𝜃)𝑣) (TA-2) 

for any combination of distinct points 𝑢 and 𝑣 in the domain of 𝑓 and for 0 < 𝜃 < 1 (Chiang and 

Wainwright, 2005, p. 322). Definitions for strict concavity and strict convexity are obtained by re-

placing the two weak inequalities ≤ and ≥ by strict inequalities < and >, respectively (Chiang and 

Wainwright, 2005, p. 322).  

If the function is twice continuously differentiable, (strict) concavity and (strict) convexity can be 

tested using the second-order partial derivatives. The Hessian matrix of a twice continuously differ-

entiable function 𝑧 = 𝑓(𝑥1, … 𝑥𝑛) is defined as 

 𝑯 = [

𝑓11 𝑓12

𝑓21 𝑓22
⋯

𝑓1𝑛

𝑓2𝑛

⋮ ⋮ ⋱ ⋮
𝑓𝑛1 𝑓𝑛2 ⋯ 𝑓𝑛𝑛

] ; 𝑓𝑖𝑗 =
𝜕𝑓(𝑥)

𝜕𝑥𝑖𝑥𝑗
 (TA-3) 

A twice continuously differentiable function 𝑧 = 𝑓(𝑥1, … 𝑥𝑛) is concave (convex) if and only if its 

Hessian matrix 𝑯 is everywhere negative (positive) semidefinite, and it is strictly concave (convex) 

if (but not only if) its Hessian is everywhere negative (positive) definite (Chiang and Wainwright, 

2005, p. 326).  

The definiteness of a matrix can be checked using principle minors or eigenvalues. A quadratic matrix 

𝑯 is negative semidefinite if and only if all its 𝑘th-order principle minors are non-positive for 𝑘 being 

odd and non-negative for 𝑘 being even, and it is positive semidefinite if all its principle minors are 

non-negative (Simon and Blume, 1994, p. 514). A quadratic matrix 𝑯 is negative definite if and only 

if its first leading principal minor is negative and the following principal minors alternate in sign, and 

it is positive definiteness if and only if its leading principal minors are all positive (Chiang and Wain-

wright, 2005, p. 307). Finally, the matrix 𝑯 is negative (positive) definite if and only if all eigenvalues 

of 𝑯 are negative (positive), and it is negative (positive) semidefinite if and only if all eigenvalues 

of 𝑯 are non-positive (non-negative) (Chiang and Wainwright, 2005, p. 311).  
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TA. 2 Quasi-concave and quasi-convex functions 

A function 𝑓 is quasi-concave if and only if  

 𝑓(𝑣) ≥ 𝑓(𝑢) ⇒ 𝑓(𝜃𝑢 + (1 − 𝜃)𝑣) ≥ 𝑓(𝑢) (TA-4) 

for any combination of distinct points 𝑢 and 𝑣 in the domain of 𝑓 and for 0 ≤ 𝜃 ≤ 1, while it is 

quasi-convex if and only if 

 𝑓(𝑣) ≥ 𝑓(𝑢) ⇒ 𝑓(𝜃𝑢 + (1 − 𝜃)𝑣) ≤ 𝑓(𝑢) (TA-5) 

for any combination of distinct points 𝑢 and 𝑣 in the domain of 𝑓 and for 0 ≤ 𝜃 ≤ 1 (Chiang and 

Wainwright, 2005, p. 365). Definitions for strict quasi-concavity and strict quasi-convexity are ob-

tained by replacing the two weak inequalities ≥ 𝑓(𝑢) and ≤ 𝑓(𝑢) by strict inequalities > 𝑓(𝑢) and 

< 𝑓(𝑢), respectively (Chiang and Wainwright, 2005, p. 366).  

If the function is twice continuously differentiable, (strict) quasi-concavity and (strict) quasi-convex-

ity can be tested using the second-order partial derivatives. The bordered Hessian matrix of a twice 

continuously differentiable function 𝑧 = 𝑓(𝑥1, … 𝑥𝑛) is defined as 

 𝑩 =

[
 
 
 
 
0 𝑓1
𝑓1
𝑓2

𝑓11

𝑓21

⋯

𝑓𝑛
𝑓1𝑛

𝑓2𝑛

⋮ ⋱ ⋮
𝑓𝑛 𝑓𝑛1 ⋯ 𝑓𝑛𝑛]

 
 
 
 

;  𝑓𝑖 =
𝜕𝑓(𝑥)

𝜕𝑥𝑖
; 𝑓𝑖𝑗 =

𝜕𝑓2(𝑥)

𝜕𝑥𝑖𝑥𝑗
 (TA-6) 

A necessary condition for 𝑧 = 𝑓(𝑥1, … 𝑥𝑛) to be quasi-concave on the non-negative orthant is that 

the leading principal minors |𝐵1| ≤ 0, |𝐵2| ≥ 0, ..., |𝐵𝑛| ≤ 0 for 𝑛 being odd and |𝐵𝑛| ≥ 0 for 𝑛 

being even wherever the partial derivatives are evaluated in the non-negative orthant, where 

 |𝐵1| = |
0 𝑓1
𝑓1 𝑓11

| ; |𝐵2| = |

0 𝑓1 𝑓2
𝑓1 𝑓11 𝑓12

𝑓2 𝑓21 𝑓22

| ; … ; |𝐵𝑛| =
|
|

0 𝑓1
𝑓1
𝑓2

𝑓11

𝑓21

⋯

𝑓𝑛
𝑓1𝑛

𝑓2𝑛

⋮ ⋱ ⋮
𝑓𝑛 𝑓𝑛1 ⋯ 𝑓𝑛𝑛

|
|
, (TA-7) 

and the sufficient condition is obtained by replacing weak inequalities with strict inequalities (Chiang 

and Wainwright, 2005, p. 369). A necessary condition for quasi-convexity is that all leading principal 

minors |𝐵𝑘| ≤ 0, and a sufficient condition for quasi-convexity is that all determinants |𝐵𝑘| < 0 

(Henningsen, 2019, p. 39).  
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TA. 3 Bayesian regression analysis 

While frequentist statistics assumes the data to be random variables while parameters are unknown 

fixed quantities, Bayesian statistics treats both data and parameters as random variables with proba-

bility distributions. By Bayes' Theorem, the posterior probability density function is proportional to 

the likelihood function multiplied with the probability density function of the prior (Coelli et al., 

2005, p. 232): 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃) × 𝑝(𝜃) (TA-8) 

In this equation, 𝜃 contains the unknown parameters and 𝑦 represents the data. The posterior com-

bines sample information (contained in the likelihood function 𝑝(𝑦|𝜃)) and pre-sample information 

(contained in the prior 𝑝(𝜃)).  

For a simple linear regression model, let us consider  

 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝜖𝑖   , (TA-9) 

where 𝑦𝑖 is the output and 𝑥𝑖 is the input vector of unit 𝑖 for 𝑖 = 1,… ,𝑁. Further, 𝛽 is a vector of 

regression coefficients and 𝜖 is the error term assumed to be independently and identically distributed 

with zero mean and variance 𝜎2 (𝜖𝑖~𝑖𝑖𝑑𝑁(0, 𝜎2). For technical reasons, it proves useful to replace 

the variance by error precision defined as ℎ = 1/𝜎2. The likelihood function is the joint probability 

density function for the data conditional on the unknown parameters, i.e. 𝑃(𝑦|β, ℎ). For the linear 

regression model, this is (Koop, 2003, p. 17) 

 𝑝(𝑦|𝛽, ℎ) =
ℎ

𝑁
2

(2𝜋)
𝑁
2

𝑒𝑥𝑝 (−
ℎ

2
∑(𝑦𝑖 − 𝑥𝑖

′𝛽)2

𝑁

𝑖=1

) (TA-10) 

Next, prior distributions for the unknown parameters have to be specified. If one does not have any 

prior information on the structures of the parameter, non-informative priors should be used, such as 

the Normal-Gamma prior 

 𝑝(𝛽, ℎ) ∝
1

ℎ
   , (TA-11) 

implying that all values are equally likely. The joint posterior probability density function is then 

obtained by multiplying the likelihood function and the prior. In the case of a linear regression model 

with a Normal-Gamma prior, the joint posterior probability density function can be written out ana-

lytically and the marginal posterior probability density functions for individual parameters can be 

obtained by integrating out the remaining parameters. With more complex models, such as stochastic 

frontier models or models with parameter restrictions, simulation techniques are used to describe the 

posterior distribution numerically. 


