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Chapter 1

Introduction

1.1 Motivation
Genomes, and especially genetic polymorphisms, are shaped by molecular
forces, such as mutation and recombination, but also ecological forces intrin-
sic to, or independent of, the biology of the species [34]. Polymorphism data
therefore contain a plethora of information that goes beyond the physiolog-
ical functions encoded therein. Recent advances in sequencing technologies
enable us to obtain whole genome sequence data for many individuals across
several populations, even for non-model species [170, 171, 108, 51]. Unlocking
information contained in genomes can provide unprecedented results, unveil-
ing the history of humans [103] or of other existing and/or extinct species
[69, 51].

The demographic history of a population (the variation of effective pop-
ulation size over time) results from environmental and demographic changes
that existing and/or extinct species have experienced (population expan-
sion, colonization of new habitats, past bottlenecks) [72, 52, 35, 59, 47, 51].
The demographic history can thus be linked to archaeological or climatic
data, providing new insights on their consequent genomic signatures [59,
47, 51, 6, 69, 103, 99]. Evidence for migration events have been uncovered
[103, 15, 176], as have genomic consequences of human activities on other
species [37]. Linking demographic history to climate and environmental data
can greatly supports the field of conservation genetics [40, 42, 128]. Such
information can help ecologist in detecting effective population size decrease
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[178], and thus serve as a guide in maintaining or avoiding the erosion of
genetic diversity in endangered populations, and potentially predicting the
consequences of climate change on genetic diversity [44]. In addition, study-
ing the demographic histories of different species in relation to one another
can unveil latent biological or environmental evolutionary forces [75], un-
veiling links and changes within entire ecosystems. At last, inferring the
demographic history is also necessary in order to define thresholds for selec-
tion scan methods. Hence, an accurate demographic inference should yield
more reliable selection results [163, 133, 156]. With the increased accuracy
of current methods, the availability of very large and diverse data sets and
the development of new theoretical frameworks, the demographic history has
become a central theme in the field of evolutionary biology [54].

Each species undergoes specific ecological and biological forces. Hence,
in this thesis, we will focus on explaining a population’s (or species) history
in the light of its biology by simultaneously inferring its demographic history
and biological traits. Unveiling the demographic and biological history of
a population from genomes requires statistical inferences. The latter relies
on mathematical models describing the evolutionary processes populations
undergo. This field of science is called Population Genetics.

1.2 Introduction to Population Genetics
Sequencing data of genome has revealed the existence of DNA sequence poly-
morphism among individuals of a population[170]. The frequency and distri-
bution of polymorphism in the sequence results from the population’s history.
Thus, from a theoretical perspective, once can try to reconstruct the popula-
tion’s history (i.e. its complete genealogy) based on this observed sequence
polymorphism. From this point of view, the main aspect of the presented
work is to interpret and infer the genealogy topology along genomes from
sampled sequences. Therefore, the work presented in this thesis greatly relies
on the coalescence theory. It is therefor of primary importance to understand
the foundation of this theory. We will first present the Wright-Fisher model
which models the behavior of a population in the most simple and idealized
way. We then briefly introduce the coalescence theory which describes a
sample genealogy’s distribution in the Wright-Fisher model.
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Wright-Fisher Model

We first assume we have a panmictic population (i.e every individual can
mate with every other individual with the same probability) of haploid in-
dividuals in absence of natural selection ( i.e the genotype of an individual
does not affect on its number of offspring). We also assume the population
size to be constant in time. We assume the population to evolve per gener-
ation ( i.e we assume time to be discrete and to be measured in number of
generations). Assuming each individual has only one gene with two allelic
states (A or a) observed in the population, which we assume do not affect on
fecundity (neutral hypothesis), and that individuals of the generation t+1
chooses uniformly and independently of others one parent among the indi-
viduals of the generation t and inherits its allele. From here we can define the
genetic drift, which is the variation of the different allele frequencies from one
generation to the other due to random sampling. Genetic drift is a funda-
mental stochastic process and a major component of evolution. We call the
described model/process the Wright-Fisher Model, capturing the stochastic-
ity behind genetic drift. The Wright-Fisher Model is represented in Figure
1.1.

Figure 1.1: Description of the Wright-Fisher Model. Representation of a
reproduction event in the Wright-Fisher model. Individual with allelic state a are
represented in red and those with allelic state A in blue.

The Kingman Coalescent

Assuming we have a population old enough following the Wright-Fisher
Model, we now study the time to the most recent common ancestor (TM-
RCA) of two randomly chosen distinct individuals from the population. We
call the "merging" of the two lineages, a coalescence event. The coalescence
process is represented in Figure 1.2.
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Figure 1.2: Schematic representation of the coalescence process. Rep-
resentation of a Wright-Fisher model with the genealogy of a sample (circled in
green) highlighted up to their most recent common ancestor (circled in black)

Then the TMRCA (in unit of twice the population size) tends to an ex-
ponential distribution of parameter 1 as the population size tends to infinite.
The demonstration can be found in [95]. The formula can easily extended to
any sample size. The intuition, is that we search among all pair of sampled
individual which will coalesce first (i.e. we study the minimum of

(
M
2

)
in-

dependent exponential distribution). The density of the waiting time to the
most recent common ancestor of any 2 individuals in a sample of size M is
thus:

P (TMRCA = t) = e−(M2 )t (1.1)

Hence, using the coalescence theory of Kingman, one can model the ge-
nealogical process of a sample in a population following the Wright-Fisher
model. One can thus reconstruct (under the model’s assumptions) the ge-
nealogy of a sample with no prior information on the population.

Understanding the coalescence process is of major importance since the
history of a population is characterized by its genealogy. In practice, the
distribution of genealogies of a sample will describe the population’s history
since the coalescent rate is in a unit of 2 N (N being the population size).
Thus if N changes in time, there will be a variation of the coalescence rate in
time, which will affect the distribution of genealogies in time. Thus Variation
of population size but also ecological forces or specific species biological traits
leading to violation of the Wright-Fisher model’s assumptions will affect the
sample’s genealogy distribution. Hence detecting deviation from expected
results can help unveil the population’s specific history. Because we start to
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understand the evolution of genomes throughout generations (e.g. mutation
and recombination) and model them, we are able to infer genealogies from
sequenced individuals.

1.3 The Sequentially Markovian Coalescent
As mentioned before, genomes can evolve throughout generations (especially
during the reproductive events). During reproduction, there can be errors
while replicating DNA sequences (mutation rate per generation is noted µ),
resulting in what we call mutations (Figure 1.3). If two individuals have a
very recent common ancestor, the number of generations (or reproductive
events) splitting them is small. Hence, few mutations are expected, and thus
less diversity (or the number of differences when comparing their respective
DNA sequences) between the two individuals is expected. If their most recent
common ancestor is far in the past (i.e. many reproductive events split
the two individuals) then many mutations between their respective genome
sequences are expected.

Figure 1.3: Schematic representation of a mutation event. A mutation
occurred on the sequence during replication resulting in appearance of a different
nucleotide (red) a the mutation position on the replicated sequence

In addition to mutation, recombination events (i.e. crossing over) can
occur during the meiosis (recombination rate per generation is noted r). As-
suming individuals are diploid (i.e. they have 2 copies of each chromosome),
then the two chromosomes can randomly "exchange" pieces of chromosome
(Figure 1.4). Because of recombination, pieces of the same chromosome can
thus have a different genealogy.
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Figure 1.4: Schematic representation of a recombination event. The
chromosome inherited by the father is represented in blue and the one by the
mother in red. Effect of a recombination event on the chromosome is represented.

We classically define ρ as the effective number of recombination and θ as
the effective number of mutation per locus (i.e. on a defined piece of genome
sequence). In the Wright-Fisher model, we have ρ = 4Ner and θ = 4Neµ (Ne

being the effective population size). Thus : r
µ

= ρ
θ
.

To model the variation of the genealogy along the chromosome (or se-
quence) we use the Ancestral Recombination Graph (ARG). A schema of
ARG is represented in Figure 1.5. The distribution of the ancestral recom-
bination graph of a sample has been described under a Wright-Fisher model
in [84]. However, the model of [84] can become computationally very heavy
with increasing sample size or sequence length. This computational load can
make inferences or simulations intractable. Therefore, a new process has
been introduced to model the ARG. In [180], they model the ARG as an
inhomogeneous Poisson process along the sequence. This process has been
approximated using a markov chain to model ARG by [115], corrected by
[111] to become the Sequentially Markovian Coalescent (SMC). The SMC
approximates with high accuracy the ARG assuming the Poisson process
modeling recombination event which goes along the sequence as Markovian
[179].
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Figure 1.5: Schematic representation of an ARG. Representation of a ge-
nealogy of 4 sampled individual in presence of recombination. Coalescence event
are represented by blue circle. Recombination event are represented by a red cir-
cle. Genealogy of the individual undergoing a recombination is now represented by
two branches. The sequence on the left of the position of the recombination event
has the left genealogy on the ARG, the sequence on the right has the genealogy
represented on the right.

Using the SMC, [103] have build a Hidden Markov Model (HMM) named
the Pairwise Sequentially Markovian Coalescent (PSMC) to infer parameters
shaping the ARG distribution. The insight behind the PSMC is represented
in Figure 1.6. The PSMC compares two sequences, if the number of muta-
tions between the two sequences is high, the coalescence time must be far
in the past. If no or few mutations are observed, the most recent common
ancestor at this position of the sequences must be in very recent time. Hence
the PSMC captures the variation segregating sites density along the genomes
and uses the SMC to model and infer the variation of genealogy along the
sequence (i.e. the ARG). From the distribution of genealogies along the se-
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quence, the recombination rate and the demographic history can be inferred.

Figure 1.6: Insight behind the PSMC. SNPs density along the sequence
is represented on the left and the insight behind the coalescence time along the
sequence is represented on the right.

1.4 Hidden Markov Models
As the PSMC is a Hidden Markov Model, we will here briefly describe what
are HMM and why we here have an HMM. An HMM models an unobserved
Markov process which emits a signal (observed data) conditioned on the un-
observed Markov process. Here, the exact genealogy of all individuals from a
population/species is unknown (when looking at an individual, its complete
genealogy does not display). Hence, the genealogy can be considered as a
latent (hidden/unobserved) variable. However, we can sequence individual
(to obtain their DNA sequences), using the population genetics theory and
molecular biology, we know that the distribution of mutation and recombi-
nation events are conditioned by the genealogy (more precisely the ARG).
Thus, if we take a sample of size two, the genealogy (or coalescence time
to their most recent common ancestor) can become a hidden state, and the
sequence polymorphism data the observed signal. Under the SMC theory,
the sequence of hidden states (i.e. the coalescence time) is a Markov process.
Thus, we have an HMM. A schematic Hidden Markov Model is represented
in Figure 1.7.
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Figure 1.7: Schematic representation of our HMM. Hidden state are pre-
sented by variation X and the signal by Y. The hidden states conditioned the

1.5 Overview and Authors contribution
Now that the main topic and essential tools used in this thesis have been
defined, we will briefly describe the chapters of this thesis.

Chapter 2 of this thesis describes the ecological Sequentially Marko-
vian Coalescent (eSMC), a new implementation of the Pairwise Sequentially
Markovian Coalescent [146] where self-fertilization and dormancy have been
integrated. In this chapter I demonstrate the capacity of our model to simul-
taneously infer demographic history and self-fertilization or dormancy. We
also demonstrate how self-fertilization and dormancy can strongly affect de-
mographic history estimation if not correctly accounted for. This chapter was
partially published in Plos Genetics ( https://doi.org/10.1371/journal.pgen.1008698)
since the manuscript version is more detailed. Thibaut Paul Patrick Sellinger
designed the study, simulated all the data sets and build the data sets for
Arabidopsis thaliana and Daphnia pulex. Thibaut Paul Patrick Sellinger
carried out all analyses and implemented the new approach eSMC through
an R package (https://github.com/TPPSellinger/eSMC). Further, Thibaut
Paul Patrick Sellinger drafted the manuscript which was then read and com-
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mented by Pr. Dr. Aurélen Tellier, Dr. Diala Abu Awad and Pr. Dr. Markus
Möst.

Since this thesis focuses on inferring biological trait , encountered species
might violate commonly made hypotheses in addition to the fact that only
poor data sets may be available for non-model species. Hence, chapter 3 of
this thesis will focus on the convergence properties of the Sequentially Marko-
vian Coalescent and understanding the consequences of commonly violated
hypothesis or data issue. This chapter has been recommended by PCI evolu-
tionary Biology. Thibaut Paul Patrick Sellinger designed the study, simulated
all the data sets, carried out all analyses, implemented the new approach
eSMC2 through an R package (https://github.com/TPPSellinger/eSMC2).
Thibaut Paul Patrick Sellinger drafted the manuscript which was then read
and commented by Pr. Dr. Aurélen Tellier and Dr. Diala Abu Awad.
(10.24072/pci.evolbiol.100115).

Chapter 4 will focus on breaking down the hypothesis of the Kingman
coalescent. Chapter 4 describes the Sequentially Markovian Beta Coalescent
(SMβC) (i.e. we assume the genealogy distribution follows a Beta Coa-
lescence process). The SMβC thus accounts for potential multiple merger
(or collisions) events in the sample’s genealogy, allowing for more than two
individuals to simultaneously coalesce. Multiple collisions might be more
realistic than the Kingman coalescent process (which is limited to binary
coalescence event) to model genealogy of species with skewed offspring dis-
tribution or populations undergoing strong selection. Thibaut Paul Patrick
Sellinger designed the study, simulated all the data sets, carried out all anal-
yses, implemented the new approach SMBC through an R package. The
simulator was jointly build by Dr. Jerome Kelleher, Dr. Eldon Bjarki, Dr.
Jere Koskela and Thibaut Paul Patrick Sellinger. The theoretical foundation
of SMBC was jointly made By Dr. Fabian Freund and Thibaut Paul Patrick
Sellinger.

Chapter 5 focuses on simultaneously integrating methylation data (i.e.
presence or absence of methylated cytosine) and genome polymorphism data
(i.e. segregating sites) in the Sequentially Markovian coalescent theory. Ac-
counting methylated data in genome analysis increases methods accuracy
to unreached heights but also potentially unlock events that do not have
enough "SNPs signature" to be recovered with mutations only. Integrating
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methylated data makes our approach the state of the art by outperforming
any other similar method (which none of them integrate methylation) given
the same amount of data. Thibaut Paul Patrick Sellinger designed the study,
simulated all the data sets, carried out all analyses, implemented the new ap-
proach SMCm through an R package. The simulator was build by Thibaut
Paul Patrick Sellinger as well as the theoretical foundation of SMCm under
the supervision and advises of Pr. Dr. Aurélien Tellier and Pr. Dr. Frank
Johannes.

Chapter 6 will summarize and discuss the obtained results throughout
this thesis. A detailed argumentation on why and how species ecology and
biology should be accounted to better extract information from whole genome
sequence data is given. Finally, a discussion concerning central topics in pop-
ulation genetics but going beyond the scope of this thesis will be presented.
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Chapter 2

Inference of demographic history,
dormancy and self-fertilization
rates

2.1 Motivation
Models and methods have been developed to extract previously unavailable
information from whole genome sequence data [168, 103, 146, 152, 45, 156].
Inferences are based on modeling single nucleotide polymorphism (SNPs)
along the genome across individuals, the density of which results from the
interplay between mutation, time to common ancestors, and recombination.
The common denominator in all these methods is their reliance on the per-site
ratio recombination (r) and the mutation (µ) rate of the species ( r

µ
), or, more

precisely, on its effective value ρ
θ
. We note that so far, applications of these

approaches have considered these ratios as interchangeable [146, 168, 103],
which is a strong assumption and may be violated in some species that do not
fulfill the assumptions of the classic Wright-Fisher diploid model with two
sexes (e.g. equal sex-ratio, sexual reproduction at each generation and no
overlap of generations). In humans and mammals, as ρ = 4Ner and θ = 4Neµ
(Ne being the effective population size), we indeed find r

µ
= ρ

θ
. Yet, even in

this case, biases arise if ρ
θ
> 1 [168]. In such cases, the number of mutations

is not sufficient to detect all recombination events. The model is therefore no
longer able to correctly estimate the Ancestral Recombination Graph (ARG)
of the sample, i.e the superposition of coalescence trees at different positions
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on the genome to display genealogies of sequences in the presence of recom-
bination. Generally, it becomes necessary to extend existing approaches to
account for characteristics and traits of species that can influence ρ or θ, and
thus define when these methods can be accurately applied. It is additionally
of interest to assess the accuracy of such methods for various values of the
ratio ρ

θ
.

Current methods rely on the Sequentially Markovian coalescence (SMC)
[115, 111] to account for the linear structure of genome sequences. At the
first position, a genealogy is built under the neutral coalescence and, in a sec-
ond step, recombination and linkage disequilibrium are incorporated using a
Poisson process [180, 181]. By applying Hidden Markov Models it, therefore,
becomes possible to calculate the probabilities of whole genome sequence data
and infer the most likely values of the model parameters. These approaches
can thus infer 1) the changes in population size (χt, where χt = Nt

Ne
, Ne and

Nt being the effective population size and the current population size at time
t, respectively) by inferring any variation of the coalescence rate in time,
and 2) the ratio of effective recombination over the effective mutation rate
ρ
θ
. From this ratio, the recombination rate can be estimated if the mutation

rate is known (assuming ρ
θ

= r
µ
).

The described methods have been almost exclusively built to be applied
to hominid data, therefore rely on several assumptions that are violated in
many species (and most likely also in hominids): non-overlapping genera-
tions, equal sex ratio, sexual reproduction through random mating. Indeed,
with the rise of next-generation sequencing technology, these methods are
now frequently applied to whole genome sequences of species with charac-
teristics that greatly differ from humans [69, 108, 39, 171]. In many species
(e.g. plants, invertebrates) life-history strategies, such as mating systems or
offspring production, influence the relationship between r and ρ and µ and
θ [34]. If these effects are not accounted for, inferences using these methods
may be biased and lead to misinterpretation of the results.

Two very common features in plant and invertebrate species are the main-
tenance of offspring as seed- or egg-banks [14, 63, 7] and self-fertilization [86].
Indeed, as a consequence of environmental fluctuations, species can develop
bet-hedging strategies such as seed-banking [166, 62, 101]. This strategy in-
creases the observed diversity [127, 174] and affects the rate of selection and
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neutral genomic evolution [77, 165]. Due to the discrepancy between census
(Ncs) and effective population size (Ne) caused by seed-banks [167, 127], we
expect that ρ

θ
6= r

µ
. Seed-banks can therefore strongly bias demographic in-

ference if ignored [188]. Self-fertilization, on the other hand, decreases the
effective population size. This reproductive strategy has evolved many times
independently and is one of the most common evolutionary transitions ob-
served in flowering plants [4]. The main consequence of this mating system
is increased homozygosity, which directly results in a decreased effective re-
combination rate (ρ) compared to the molecular recombination rate r (since
recombination events between two homozygous haplotypes are invisible), as
well as a reduction in genetic diversity [5]. Due to their contradictory effects
on the effective population size, the simultaneous occurrence of these traits
(dormancy and self-fertilization) may in fact be missed, and extensions of
inference methods to account for them could not only allow for more accu-
rate inferences of parameters and demographic histories of species with these
traits but could also provide a means with which to detect their respective
rates.

To account for self-fertilization and seed-banks (or egg-banks) we develop
a modified version of PSMC’ [146], named ecological Sequentially Markovian
Coalescent (eSMC). PSMC’ refers to the MSMC using only two haplotypes
[146], which is slightly different from the original PSMC [103]. Our model
uses the deviation between the ratios ρ

θ
and r

µ
to infer self-fertilization and the

existence of seed-banks. However, confounding effects arise when estimating
both simultaneously. We first apply eSMC to simulated data to demon-
strate its accuracy and then to genome sequence data of a plant, Arabidopsis
thaliana, and an invertebrate species, Daphnia pulex. In these species, self-
fertilization and/or seed/egg-banks have been observed or suspected. A.
thaliana presents a very high self-fertilization rate of 99% [1] and it has been
suggested that Scandinavian populations may have evolved seed-banks in
Sweden [93] and Norway [107]. D. pulex exhibits cyclical parthenogenesis,
i.e. a cyclical alternation of phases with asexual and sexual reproduction
and is known to have dormant eggs produced through sexual reproduction
[108, 30]. These resting eggs can potentially build up an egg-bank in the lake
sediment as observed in many Daphnia species [14, 2]. First, we present a
method based on the SMC using polymorphism data to infer the germina-
tion and/or self-fertilization rates jointly with the past demographic history.
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Second, we study the effect of variable ratios of ρ
θ
(and r

µ
) on the accuracy

of estimates of past demography. Third, we apply our method to existing
datasets from Arabidopsis thaliana and Daphnia pulex which have well doc-
umented high self-fertilization rates and egg-banks, respectively. We find
a strong signature of self-fertilization in Arabidopsis thaliana and a strong
signature of egg-banks in Daphnia pulex. We find that self-fertilization has
little effect on the inference of the demographic history, whereas neglecting
seed-banks can strongly affect the inferred population size.

2.2 Materials and methods

The coalescence with seed-bank and self-fertilization

We model population seed-banks using the same hypotheses described in [88].
Under these assumptions, seed-banking can be accounted for by rescaling the
coalescence rate by β2, where β (0 ≤ β ≤ 1) is the germination rate, more
precisely the expected germination probability at each generation (β = 1
implying that there is no seed-bank). The probability that two lineages find
a common ancestor in the active population is slowed by a factor β × β
when looking backward in time. Hence, the expected coalescence times are
increased by a factor 1

β2 . Assuming mutations can arise during the dormant
stage at the same rate as in the active population, we expect to have 1

β2

more mutations [127, 166, 77]. As recombination only occurs in the active
population and concerns only one lineage backward in time, it is rescaled by
β [165]. Because coalescence times are 1

β2 longer, we obtain (scaled in units
of 4N):

ρ =
βr

β2
=
r

β
and θ =

µ

β2
, so that

ρ

θ
=
β2r

µβ
=
βr

µ
(2.1)

To model self-fertilization, we adopted the island model described in
[126], where σ (0 ≤ σ ≤ 1) represents the proportion of offspring produced
through self-fertilization (if σ = 1 all individuals are produced through self-
fertilization). As a consequence, the coalescence rate is increased by a factor

2
2−σ [117] and the recombination rate is decreased by a factor 2−2σ

2−σ [126] since
recombination events in homozygous individual are invisible. In the case of
self-fertilization, we thus find (scaled in units of 4N):

15



ρ =
2(1− σ)r

(2− σ)

(2− σ)

2
= (1− σ)r and θ =

µ(2− σ)

2
, (2.2)

so that
ρ

θ
=
r2(1− σ)

µ(2− σ)
(2.3)

To simultaneously model seed-banking and self-fertilization we assume
their effects to be independent and that there is no correlation between dor-
mancy and the rate of self-fertilization. Under this assumption we can sim-
ply multiply their effects as in [174], giving the relationship ρ

θ
= 2(1−σ)βr

(2−σ)µ
.

We, therefore, have a confounding effect between self-fertilization and seed-
banking when observing the recombination and mutation ratio ρ

θ
. Because

of their opposing effects on the effective population size (seed dormancy in-
creasing it, and self-fertilization decreasing it), the effects of these traits can
be compensated by one another. As consequence, in our model seed-banking
is mathematically equivalent to self-fertilization with a higher effective pop-
ulation size.

ecological Sequentially Markovian Coalescent (eSMC)

The eSMC is a Hidden Markov Model along two haplotypes. It is an exten-
sion of the PSMC’ algorithm [146]. It adds the possibility of taking seed-
banks and self-fertilization into account and simultaneously estimating their
rates along with the demographic history. As in PSMC’, we assume neu-
trality, an infinite site model, and a piece-wise constant population size. To
define our HMM we need to precisely define all the following objects: the
signal (observed data), the hidden states (coalescence time), the emission
probabilities (probabilities of observing the data conditional to the hidden
states), transition probabilities (probabilities of jumping from one hidden
state to another) and the probabilities of the initial hidden states. The
demonstrations of the results presented here can be found in Appendix 1.2.
A detailed list of symbols and parameters used throughout chapter 2 can be
found in Table 2.1.
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Symbol Meaning
r Molecular Recombination rate per nucleotide per generation
µ Molecular Mutation rate per nucleotide per generation
ρ Effective recombination rate per nucleotide per generation
θ Effective mutation rate per nucleotide per generation
β Germination rate
σ Self-fertilization rate
χt Population size scaling vector (i.e Nt = χtN0)

Table 2.1: Symbol table

The signal (or observed data) depends on the hidden state and is a chain
of 0s and 1s. To construct this signal, as in PSMC’, two genome sequences
are compared at each position; if at a given position, the two nucleotides are
the same on both sequences, this is indicated by a 0, otherwise by a 1. As is
necessary in HMM, the number of hidden states (or the coalescence times)
must be finite, which is achieved by discretizing time. Therefore, the hidden
state at one position is α if the coalescence time between the two haplotypes
at that position is between Tα and Tα+1. Given the model parameters, we
know the expected coalescence time (which is (2−σ)

2β2 ), and we define Tα as :

Tα =
−(2− σ) ln(1− α

k
)

2β2
(2.4)

Here, k is the number of hidden states and α is an integer value between
0 and k − 1. σ and β are the self-fertilization and the germination rate,
respectively.

The emission probability P is the probability of observing the signal
(chain of 0’s and 1’s) conditional to the hidden states (coalescence time).
As in the PSMC’ algorithm, we consider an infinite site model. The emission
rate is therefore given by:

P (0|α) = 1− e−2µtα

P (1|α) = e−2µtα ,
(2.5)

Where µ is the mutation rate per base pair and tα the expected coalescence
time in interval α. We find :

tα =
Tα − Tα+1e

−∆αΛα

(1− e−∆αΛα)
+

1

Λα

(2.6)
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With:

∆α = Tα+1 − Tα , Λα =
2β2

(2− σ)χα
, and χα = Nα/Ne (2.7)

Where ∆α is the duration (in coalescence time) of interval α, Λα is the
coalescence rate in the time window α, N is the effective population size and
Nα is the population size during the time interval α. Using N and Nα, we
can calculate χα which represents the variation of population size over time.
It is this value that is inferred by the model.

The transition probabilities are the probabilities of going from one hidden
state to another. We find:

p(α|γ) =



Pγ
2tγ

((
α−1∑
η=1

(1−e−2∆αΛα )e
−
∫Tα
Tη+1

2Λvdv
(1−e−∆η2Λη )

2Λη
)

+(∆α − (1−e−∆α2Λα )
2Λα

))

α < γ

Pγ
tγ

(
γ−1∑
η=1

e
−
∫ tγ
Tη+1

2Λvdv (1−e−2∆ηΛη )
2Λη

+ (1−e2(Tγ−tγ )Λγ

2Λγ
)e
−
∫ Tα
tγ

Λvdv(1− e−∆αΛα)

α > γ

1− (
γ−1∑
α=0

p(α|γ) +
k∑

α=γ+1

p(α|γ))

α = γ

(2.8)

Where Pγ is the recombination probability between two base-pairs:

Pγ = (1− e−2rtγ
2β(1−σ)
(2−σ) ) (2.9)

The initial probability corresponds to the first state probability. We assume
this probability to be the equilibrium probability qo(α) (probability of being
in state α at the first position). We find:

qo(α) = e

α−1∑
η=0
−Λη∆η

(1− e−∆αΛα) (2.10)

Simulated (pseudo-observed) Sequence data

Throughout this chapter we use five different demographic scenarios: 1) con-
stant population size, 2) expansion, 3) bottleneck and recovery, 4) decrease
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and 5) "sawtooth" (a succession of expansions and decreases). These sce-
narios are simulated for different combinations of the self-fertilization rate
(0 ≤ σ ≤ 0.9) and the germination rate (0.1 ≤ β ≤ 1). Different sequence
lengths are tested, as are combinations of mutation and recombination rates.
To simulate our data, we use a modified version of the coalescence simula-
tion program scrm [159]. This modified version integrates seed-banking (or
egg-banking) and self-fertilization. The simulator is available on our GitHub
repository (https://github.com/TPPSellinger/escrm). On all the simulated
data, four different algorithms are used to estimate demographic history and
recombination rate: our algorithm eSMC, which we compare to PSMC’,
MSMC ,and MSMC2. PSMC’, MSMC and MSMC2 are run with default
parameter and 1 as initial value for ρ

θ
.

Sequence data

We use 12 whole genome sequences (hence all five chromosomes) of Euro-
pean A. thaliana from the 1001 genome project [36, 171], six individuals
sampled in Sweden (id : 5830, 5836, 5865, 6077, 6085 and 6087) and six
from Germany (id : 7231, 7250, 7255, 7337, 7415 and 7419). Each individual
is considered haploid because of very high levels of homozygosity [69]. We
obtained polymorphism data (that is processed vcf files) from the authors of
the study [69]. The mapping to the reference genome and SNP calling was
performed based on the pipeline in [69]. The mutation rate is set at 7× 10−9

per generation per bp [129] and the chromosome-specific recombination rates
are 3.4× 10−8, 3.6× 10−8, 3.5× 10−8, 3.8× 10−8, 3.6× 10−8 per generation
per bp for chromosome 1 to 5 respectively [144]. We first run the four differ-
ent algorithms to estimate the demographic history and recombination rate
(ignoring self-fertilization and seed-banks for eSMC). Analyses are run per
chromosome (represented by the different lines in the figures). We then anal-
yse the data again with eSMC, first accounting only for self-fertilization (β is
fixed to 1 and σ is estimated), and then accounting for both self-fertilization
and seed-banks using reasonable priors (0.5 ≤ β ≤ 1 and 0.5 ≤ σ ≤ 1).

To infer the demographic history and the dormancy rates of D. pulex, we
use six whole genome sequences from [108](id: SRR5004865, SRR5004866,
SRR5004867, SRR5004868, SRR5004869 and SRR5004872) which are avail-
able under the accession SAMN06005639 in the NCBI Sequence Read Archive
(SRA). We used the reference genome assembly PA42 v3.0 which is avail-
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able at the European Molecular Biology Laboratory (EMBL) nucleotide se-
quencing database under accession PRJEB14656 [58]. The raw data is first
trimmed using bbtools to remove duplicates, trim adapters, remove synthetic
artifacts, spike-ins, and perform quality-trimming based on minimum read
quality of 40. Then we mapped reads using bwa (default parameters) onto
the reference genome [102]. We used Samtools to convert sam to bam files
[104] and GATK to remove PCR duplicates and perform local realignment
around indels [48]. We used freebayes to call the SNPs and vcftools for post-
processing (filtering). The pipeline is available on the GitHub repository:
https://github.com/TPPSellinger/Daphnia_pulex_data . Note that the ref-
erence genome consists of 1,822 scaffolds (average length of 85,849) and thus
to avoid bias in the analyses, we only kept scaffolds above 1 Mb retaining only
the 19 largest scaffolds. As the phasing quality could not be guaranteed, we
analyze sequence data of each D. pulex individual separately. The mutation
rate is set at 4.33 × 10−9 per generation per bp [66] and the recombination
rate at 8 × 10−8 per event of sexual reproduction per bp [183, 108]. To ac-
count for the number of generations before sexual reproduction takes place,
the recombination rate is re-scaled by np which represents the total number of
generations per year. If we consider np = 5, the recombination rate is scaled
by 0.2 [108]. We also test how the number of parthenogenetic generations
between sexual reproductive events could affect the quality of the inference,
and rescale the recombination rate accordingly. The scenarios we test are: no
parthenogenesis, two generations of parthenogenesis, and five generations of
parthenogenesis, therefore rescaling the recombination rate by 1, 0.5, and 0.2
respectively. The sequences of each individual are analyzed with PSMC’ and
eSMC only, as MSMC and MSMC2 require accurate and reliable phasing,
which is not the case for these sequences. We then account for egg-banks
using eSMC and imposing no priors on β and setting σ = 0. The multihet-
sep files for A. thaliana and D. pulex analyses are available on the GitHub
repository at https://github.com/TPPSellinger/Daphnia_pulex_data and
at https://github.com/TPPSellinger/Arabidopsis_thaliana_data.

2.3 Results
We first study the theoretical accuracy and properties of our method on
sequence data simulated under different scenarios. A demonstration of the
model’s accuracy in absence of seed bank and self-fertilization can be found
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in [151]. We then analyze real sequence data from two European populations
of Arabidopsis thaliana: one from Tübingen, Germany, where there is no
seed-bank, and one from Sweden, where seed-banking is suspected while
accounting for self-fertilization. We also analyze data from Daphnia pulex,
for which egg-banking is known to be a prominent biological feature.

Simulation results

Convergence property with dormancy (seed- or egg-banks). Using
eSMC on sequences simulated under the "sawtooth" scenario in the pres-
ence of seed-banks (mutation and recombination rates are set to 1.25× 10−8

per generation per bp, Figure 2.1), we obtain an accurate estimation of the
demography (χt) and of the germination rates (β). Under four germination
rates β with values 1 (no seed-bank), 0.5 (two-year seed-bank), 0.2 (long-lived
five-year seed-bank) and 0.1 (long-lived ten-year seed-bank), we respectively
estimate an average germination rate of 0.88, 0.55, 0.24 and 0.13. As seed-
banks affect the time window of the estimated demography, more ancient
events can be inferred when β < 1 [188]. In models where seed-banks can-
not be accounted for (PSMC’, MSMC, MSMC2), census population size is
strongly overestimated when β < 1.
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Figure 2.1: Estimated demographic history with seed banking.Estimated
demographic history using four simulated sequences of 10 Mb and ten replicates
under a sawtooth demographic scenario (black). The mutation and recombination
rates are set to 1.25× 10−8 per generation per bp. Therefore r

µ = 1. We simulate
under four different germination rates β = 1 (red), 0.5 (blue), 0.2 (green) and 0.1
(purple), hence we respectively have ρ

θ = 1, = 0.5,0.2 and 0.1. The demographic
history is estimated using a) eSMC , b) MSMC, c) MSMC2 and d) PSMC’. β∗

represents the estimated germination rate by eSMC.

For simpler demographic scenarios (constant population size, bottleneck,
expansion, and decrease, see Supplementary Figure A.1 ) and µ = r =
1.25×10−8 per generation per bp, the germination rate and the demographic
histories estimated by eSMC are accurate for all the demographic scenarios
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considered.

Convergence property with self-fertilization. Under the "sawtooth"
scenario with different rates of self-fertilization σ, with mutation and recom-
bination rates set to 1.25 × 10−8 per generation per bp ( r

µ
= 1), for four

different self-fertilization rates σ = 0 (no self-fertilization), 0.5 (50% selfing),
0.8 (80% selfing) and 0.9 (90% selfing), we estimate the self-fertilization rate
respectively at 0.17, 0.51, 0.76 and 0.85 (Figure 2.2). eSMC infers a residual
rate of self-fertilization (below 0.2). Yet, eSMC accurately estimates de-
mography, while MSMC, MSMC2, and PSMC’ exhibit a small bias in the
estimation of the demographic history. Neglecting self-fertilization, there-
fore, seems to be of a smaller consequence than neglecting dormancy (see
above), as self-fertilization has a very small impact on the inferred demo-
graphic history. Variance in the estimations increases for higher rates of σ.
When the mutation rate is set to 1.25× 10−8 per generation per bp and the
recombination rate to 6.25× 10−8 per generation per nucleotide ( r

µ
= 5), the

self-fertilization rate is overestimated for small values of σ (Supplementary
Figure A.2 ), but well estimated for higher values of σ. The estimation of the
demographic history remains accurate, though slightly biased for small val-
ues of self-fertilization. The other methods tested (PSMC’, MSMC, MSMC2)
present stronger biases in the estimated demographic history.
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Figure 2.2: Estimated demographic history with selfing. Estimated demo-
graphic history using four simulated sequences of 10 Mb and ten replicates under a
sawtooth demographic scenario (black). The mutation and recombination rates are
set to 1.25×10−8 per generation per bp, and simulations were run for four different
self-fertilization rates (σ = 0 (red), 0.5 (blue), 0.8 (green) and 0.9 (purple)), and
as r

µ = 1, this gives ρ
θ = 1, 0.667,0.333 and 0.182 respectively. The demographic

history is estimated using a) eSMC , b) MSMC, c) MSMC2 and d) PSMC’. σ∗

represents the self-fertilization rate estimated by eSMC.

In the simpler demographic scenarios tested (Supplementary Figure A.3),
the rate of self-fertilization is estimated fairly well, though there is an im-
pact of the considered demographic scenario. However, in absence of self-
fertilization, eSMC still infers a residual rate of self-fertilization (below 0.2).
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Demographic history remains accurately estimated.

Convergence property with both dormancy and self-fertilization.
Here we test different combinations of seed/egg-banks and self-fertilization
rates that result in the same ratio ρ

θ
= 0.15, with r

µ
= 1 (setting µ = r =

1.25 × 10−8 per generation per bp). Self-fertilization and dormancy have
opposing effects on the coalescence rate, and thus cannot be simultaneously
estimated from whole-genome data alone (Figure 2.3). These two rates are
indeed simultaneously non-identifiable. Without any prior knowledge (blue
in Figure 2.3), eSMC can’t estimate the correct set of parameters. How-
ever, this shortcoming can be corrected to some extent by setting general
"ecological" priors for either β or σ (e.g. 0 ≤ β ≤ 0.5 or 0.5 ≤ σ ≤ 1).
In this case, eSMC can infer a demographic history of the correct shape
but slightly shifted away from the true values of population size and time.
eSMC tends to overestimate the values of β and σ, a consequence of which is
the overestimation of the census population size (see Figure 2.3). However,
while integrating prior knowledge on both parameters does not solve the
non-identifiability issue, it does reduce the inferred range of values. Hence,
including priors on both rates reduces the parameter space for which the con-
founding effect of joint estimation occurs. This is shown in Supplementary
Figure A.4 in a plot showing all possible estimations of coupled variables of
β and σ for a given parameter set. We also test how recombination can influ-
ence the output of these models, notably by taking a higher recombination
rate (8.335 × 10−8 per-site per generation), more representative of the high
recombination to mutation ratio observed in some species (notably D. pulex
and A. thaliana [108, 144]). This gives r

µ
= 6.667 and ρ

θ
= 1, parameters

for which the variance of the demographic history is smaller and the esti-
mation of self-fertilization and germination parameters remain unchanged
(Supplementary Figure A.5). All the possible estimated combinations of β
and σ, given different sets of priors for this recombination rate and ratio r

µ

are given in Supplementary Figure A.6 (results similar to those for r
µ

= 1 in
Supplementary Figure A.4 are observed.)
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Figure 2.3: Estimated demographic history with selfing and seed bank-
ing. Demographic history estimated by eSMC for ten replicates using four simu-
lated sequences of 10 Mb under a sawtooth demographic scenario and four different
combinations of germination (β) and self-fertilization (σ) rates but resulting in the
same ρ

θ . Mutation and recombination rates are set to 1.25×10−8 per generation per
bp, giving r

µ = 1. The four combinations are : a) σ = 0.4 and β = 0.25, b) σ = 0.75
and β = 0.6, c) σ = 0.85 and β = 1 and d) σ = 0 and β = 0.15. Hence, for each
scenario ρ

θ = 0.15 For each combination of β and σ, eSMC was launched with five
different prior settings: ignoring seed-banks and self-fertilization (red), accounting
for seed-banks and self-fertilization but without setting priors (blue), accounting
for seed-banks and self-fertilization with a prior set only for the self-fertilization
rate (green), only for the germination rate (orange) or for both (purple). σ∗ and
β∗ respectively represent the estimated self-fertilization and germination rate.
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Inferring self-fertilization, seed-banks and demography in
Arabidopsis thaliana

Using 12 individuals whole genome sequence data obtained from two acces-
sions of A. thaliana (one from Sweden and the other from Germany), we
inferred the demography of each population using eSMC, PSMC’, MSMC,
and MSMC2 (Supplementary Figure A.7 ). When ignoring self-fertilization,
both populations have a common demographic history, similarly inferred by
the different methods, except for MSMC, whose results exhibit a higher vari-
ance for the Swedish population. Furthermore, we observe a non-negligible
deviation between the recombination rate estimated using these inference
methods (ρ

θ
< 1.2, Supplementary Figure A.7) and what has been obtained

using experimental approaches ( r
µ

= 5) [144]. MSMC finds lower ρ
θ
than

other methods. When accounting only for self-fertilization (hence imposing
β = 1), eSMC estimates a high self-fertilization rate averaged at σ = 0.86
in the German population and 0.87 in the Swedish one. These rates are not
as high as what has been recorded previously [55, 1]. When running anal-
yses per chromosome, we found no significant chromosome effect on these
estimations. When simultaneously estimating β, σ, and the population size,
we find a slightly lower σ = 0.84 in the German population and 0.86 in the
Swedish one (Figure 2.4). Here, eSMC estimates a germination rate β higher
than 0.9 in both populations, implying that there is no long-term seed-bank
in either of them.
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Figure 2.4: Estimated demographic history of Arabidopsis thalinana. De-
mographic history of two European (Sweden (S, blue) and German (G, green)) pop-
ulations of A. thaliana estimated using eSMC : a) accounting only for selfing (σ is a
variable and β = 1) and b) accounting simultaneously for selfing and seed-banking
(σ bounded between 0.5 and 0.99 and β bounded between 0.5 and 1). Mutation
rate is set to 7×10−9 per generation per bp and recombination respectively set for
chromosome 1 to 5 to 3.4× 10−8, 3.6× 10−8, 3.5× 10−8, 3.8× 10−8, 3.6× 10−8) per
generation per bp. σ∗ and β∗ respectively represent the estimated self-fertilization
and germination rates.
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Inferring egg-banks and demography in Daphnia pulex

The inferred demographic history of a single population of D. pulex has a
similar shape using eSMC and PSMC’ (Figure 2.6). The demographic history
estimated by PSMC’ is shifted vertically compared to eSMC since dormancy
is ignored. The effective population size is hence overestimated compared to
eSMC. We fix the self-fertilization rate at σ = 0 because during sexual cycles
although D. pulex in principal could self-fertilize via intraclonal matings dur-
ing sexual cycles, these matings are rare and it has been shown that selfing is
negligible in this case [108]. D. pulex reproduces via cyclical parthenogenesis,
i.e. alternating phases of ameiotic parthenogenesis (or more exactly abortive
meiosis with no or very little recombination [78, 79]) and sexual reproduction.
Hence, the inferred mean generation time before the hatching of dormant eggs
produced by sexual reproduction depends on the number of parthenogenetic
cycles that occur on average per year since mutations can occur during amei-
otic parthenogenesis but recombination is very unlikely. Here one generation
is considered to be of one cycle of asexual or sexual reproduction, several
generations taking place in a single year. For this specific population, a max-
imum of five parthenogenetic cycles before sexual reproduction is assumed
[108]. It is important to note that the number of parthenogenetic cycles can
affect the ratio ρ

θ
. Therefore we tested the effect of the value of the average

number of parthenogenetic cycles on the estimation of the germination rate.
Independently of the number of parthenogenetic cycles, eSMC always detects
dormancy, with β < 0.5. The average dormancy can therefore be bounded
between 3 and 18 generations, revealing the existence of at least moderate
dormancy in this species. Running analysis per scaffold and not per individ-
ual lead to slightly less dormancy and demographic history (Supplementary
Figure A.8).
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Figure 2.5: Estimated demographic history of Daphnia pulex. Demo-
graphic history estimated by eSMC on six individuals of D. pulex accounting for
egg-banks (β is a variable and σ = 0). Different assumptions concerning the number
of parthenogenetic cycles before the production of the dormant egg are made: Five
cycles (pink), two cycles (red) and no parthenogenesis (dark red). Demographic
history estimated by PSMC’ are ploted in organge. Mutation and recombination
rates are respectively set to 4.33× 10−9 and 8×10−8

np
per generation per bp, where

np is the number of reproductive cycles per year, parthenogenetic and sexual.

Because of the life cycle of D. pulex is extremely short (< 1 year) [108, 30],
the hypothesis of having mutation accumulating in the seed bank at the same
speed as those from reproductive events might be violated. Hence, we now
assume that mutations in the dormancy stage accumulate 5 times slower
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as during the reproductive event (Supplementary Figure A.9). Using this
setting we still find dormancy but also a demographic history shifted in the
past compared to Figure 2.6.

2.4 Discussion
The existing statistical inference methods based on full genome polymor-
phism data estimate the past demographic history under the assumptions
of a model that is violated in many species. Here, we develop a method
where ecological and life history traits can not only be accounted for but can
also be inferred from sequence data along with the past demography. Ecol-
ogy and life history traits can affect ρ and θ differently and our HMM can
detect these differences through the estimation of ρ

θ
. However, this implies

that some knowledge of the molecular ratio of recombination over mutation
( r
µ
) is required. We demonstrate the capacity of our method to accurately

recover the germination rate (and therefore the presence and strength of dor-
mancy), though simulated results show that the violation of the infinite site
assumption can lead to it being slightly underestimated. Similarly, our model
can also retrieve the self-fertilization rate and we show that for high rates
(σ ≥ 0.9), more data are required to compensate for the variance observed
and increase the accuracy of the estimation. Finally, our model cannot dis-
entangle the genomic signatures of self-fertilization and seed-banks due to
non-identifiability. The simultaneous estimation should thus be avoided, and
only be performed if a priori knowledge on the presence of seed-banks (or a
dormant stage) as well as the reproductive mode is available [7, 14].

Throughout the chapter, we have highlighted two main ratios that are
of great importance when using inference methods: the ratios r

µ
and ρ

θ
, re-

spectively the per-site molecular and effective ratios of recombination over
mutation rate. We have used the deviation between r

µ
and ρ

θ
to estimate

the self-fertilization and/or germination rate. We also show that the demo-
graphic history can contribute to a departure of ρ

θ
from r

µ
. Indeed, care must

be taken concerning the initial value used for ρ
θ
: if the initial value is greater

than one, the inferred demographic history will be flattened, regardless of
the actual value of ρ

θ
. Furthermore, if the true value of ρ

θ
is indeed greater

than one, similar biases are expected, such as flattened demographic history.
This observation, which is true irrespective of the presence of seed-banks or
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self-fertilization, is due to insufficient information to correctly reconstruct the
local genealogy, as a high ratio ρ

θ
implies that few SNPs are present between

the recombination spots on the genome. We highlight that the importance
of ρ

θ
for inference was mentioned in [168], but has largely been ignored in

the literature on SMC-based methods, although a ratio of ρ
θ
greater than one

significantly alters the accuracy of inference.

When applying eSMC to sequences data of A. thaliana, we find evidence of
strong self-fertilization with an estimated selfing rate of around 0.87. How-
ever, this rate is slightly smaller than what is known empirically for this
species, where the current rate of self-fertilization has been estimated at 0.99
[1]. There are three possible explanations for this discrepancy. First, A.
thaliana most probably evolved from outcrossing to highly self-fertilizing less
than 400 thousand years ago [55], whereas our demographic inference dates
further in the past. Self-fertilization would therefore have appeared within
the time window of the inferred demographic history. As a consequence,
our estimate of self-fertilization (constant in time) reflects the average ef-
fect of the varying the real self-fertilization rate within the time window.
Second, the under-estimation may be due to limits of the self-fertilization
model, which accounts only for homologous recombination events. Yet, other
types of recombination or chromosomic re-arrangements do occur in genomes.
These non-accounted mechanisms could increase the signature of recombina-
tion leading to an underestimation of the self-fertilization rate. Third, we
infer the self-fertilization rate of a single population in isolation (Germany
or Sweden) while the past demography of A. thaliana consists of episodes of
admixture, migration, and recolonization from glacial refugia [36, 171], all of
which are ignored in our model. The resulting complex population structure
likely affects our estimates (see discussion in [140]).

It has long been observed that many Daphnia species, including D. pulex,
have resting egg-banks. The sequences analyzed using eSMC agree with this
hypothesis, as we find strong evidence of dormancy. The inferred duration
of dormancy greatly depends on the number of parthenogenetic generations
between sexual reproduction events. Indeed, parthenogenetic cycles increase
the number of mutations compared to recombination events. If we take two
extreme scenarios for the specific sampled population (no parthenogenesis
versus 5 generations of parthenogenesis [108]) we find a duration of dor-
mancy between 3 and 18 generations, slightly less than when performing the
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analysis per scaffold. The discrepancy between those results suggest issues
in the data or a hypothesis violation (e.g mutation or recombination rate are
no constant along the genome). However, reducing the mutation rate dur-
ing the dormant stage (which is a more realistic hypothesis), will shift the
demographic history in the past, demonstrating that dormancy can not only
shift the y axis but also the x axis. Finding dormancy in Daphnia agrees
with empirical observations [30, 14], and confirms the major role of egg-banks
in maintaining diversity in this species. The sequences used here originate
from an ephemeral (i.e. non-permanent pond), and populations in such en-
vironments are expected to have both higher rates of sexual reproduction as
well as longer-lived egg-banks [30]. It would therefore be interesting to test
the existence of egg-banks and assess the germination rates in several Daph-
nia species and from different permanent and ephemeral water bodies. Our
method presents a way forward to the detection of egg/seed/spore-banks of
many invertebrates, plant, and fungal species, as well as their past demo-
graphic history using sequence data (as experimental validation of dormancy
is difficult to obtain [166, 165]).

Our method represents a small but important step for the integration of
ecological traits in whole genome sequence analysis through the ratio ρ

θ
. We

nevertheless advise caution when using our proposed, or other HMMmethods
(further advice and recommendations are found in [132]), for the inference
of demography, as some assumptions may still be violated. For example, we
assume that mutations occur in the seed/egg-bank (a consequence of DNA
damage) at the same rate as in the active population. While there is support
in plants for this hypothesis [177, 24], we do not know supporting data in
Daphnia. Note finally, that all results rely on the quality of the sequences
used and of the reference genome assembly.

As the conclusion of the chapter, the presented method allows the joint
estimation of life-history traits and past demographic history based on full
genome data. It is specifically adapted to the many species presenting vi-
olations of the classic Wright-Fisher model and can be used to study the
evolution of seed/egg-banking as an important bet-hedging strategy with
large consequences on the rate of genome evolution [165].
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Chapter 3

Limits and Convergence
properties of the Sequentially
Markovian Coalescent

3.1 Motivation
Recovering the demographic history of a population has become a central
theme in evolutionary biology. The demographic history (the variation of ef-
fective population size over time) is linked to environmental and demographic
changes that existing and/or extinct species have experienced (population ex-
pansion, colonization of new habitats, past bottlenecks) [72, 52, 35]. Current
statistical tools to estimate the demographic history rely on genomic data
[147] and these inferences are often linked to archaeological or climatic data,
providing novel insights on the evolutionary history [59, 47, 51, 6, 69, 103, 99].
From these analyses, evidences for migration events have been uncovered
[103, 15], as have genomic consequences of human activities on other species
[37]. Linking demographic history to climate and environmental data greatly
supports the field of conservation genetics [40, 42, 128]. Indeed, using such
approaches can help ecologists in detecting effective population size decrease
[178], and thus serve as a guide in maintaining or avoiding the erosion of
genetic diversity in endangered populations, and potentially predicting the
consequences of climate change on genetic diversity [44]. Besides, studying
the demographic histories of different species in relation to one another can
unveil latent biological or environmental evolutionary forces [75], unveiling
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links and changes within entire ecosystems. With the increased accuracy of
current methods, the availability of very large and diverse data sets, and the
development of new theoretical frameworks, the demographic history has be-
come information that is essential in the field of evolution [54, 36]. However,
obtaining unbiased estimations/interpretations of the demographic history
remains challenging [9, 22].

The most sophisticated methods to infer demographic history make use
of whole genome polymorphism data. Among the state-of-the-art meth-
ods, are those based on the theory of the Sequentially Markovian Coales-
cent (SMC) developed by McVean and Cardin [115] after the work of Wiuf
and Hein [180], corrected by Marjoram and Wall [111] and first applied to
whole genome sequences by Li and Durbin [103], who introduced the now
well-known, Pairwise Sequentially Markovian Coalescent (PSMC) method.
PSMC allows demographic inference of populations with unprecedented ac-
curacy, while requiring only one sequenced diploid individual. This method
uses the distribution of SNPs along the genome between the two sequences to
account for and infer recombination and demographic history of a given pop-
ulation, assuming neutrality and panmixia. Although PSMC was a break-
through in demographic inference, it has limited power in inferring more
recent events. To address this issue, PSMC has been extended to account
for multiple sequences (i.e. more than two) into the method known as the
Multiple Sequentially Markovian Coalescent (MSMC) [146]. By using more
sequences, MSMC better infers recent events and also provides the possi-
bility of inferring population splits using the cross-coalescent rate. MSMC,
unlike PSMC, is not based on SMC theory [115] but on SMC’ theory [111],
therefore MSMC applied to only two sequences has been defined as PSMC’.
Methods developed after MSMC followed suit, with MSMC2 [46] extending
PSMC by incorporating pairwise analysis, increasing efficiency, and the num-
ber of sequences that can be inputted (up to a hundred), resulting in more
accurate results. SMC++ [168] brings the SMC theory to another level by
allowing the use of hundreds of unphased sequences (MSMC requires phased
input data) and breaking the piece-wise constant population size hypothesis
while accounting for the sample frequency spectrum (SFS). Because SMC++
incorporates the SFS in the estimation of demographic history, it increases
accuracy in recent times [168]. SMC++ is currently the state of the art
SMC-based method for big data sets (>20 sequences) but seems to be out-
performed by PSMC when using smaller data sets [53]. In a similar vein,
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the Ascertained Sequentially Markovian Coalescent (ASMC) [131] extends
the SMC theory to estimate coalescence times at the locus scale from as-
certained SNP array data, something that was made possible by the theory
presented by Hobolth and Jensen [81].

More recently, the second generation of SMC-based methods has been
developed. New features have been added to the initial SMC theory, extend-
ing its application beyond simply inferring past demography [6, 151, 176].
The development of C-PSMC [75] allows the interpretation of estimated de-
mographic history in the light of coevolution between species, making the
first link between demographic history estimated by PSMC and evolutionary
forces (although biological interpretation remains limited). iSMC [6] extends
the PSMC theory to account and infer the variation of the recombination rate
along sequences, unlocking recombination map estimations. An impressive
advancement is the development of MSMC-IM, which to some extent solves
the population structure problem, allowing the accurate and simultaneous
inference of the demographic history and population admixture [176]. eSMC
[151] incorporates common biological traits (such as self-fertilization and dor-
mancy) and demonstrated the strong effect life-history traits can have on
demographic history estimations. Results that could not be explained under
the initial SMC hypotheses can now be explained by the potential presence
of measurable phenomena.

New methods have been developed since PSMC, that have been either
strongly inspired by the SMC [152, 161] or that are completely dissociated
from it [156, 8, 140, 89, 109, 87, 155, 175]. Though there are alternative
approaches, methods based on the SMC are still considered state of the art
and remain widely used [112, 9, 157], notably in human evolution studies
[157, 53]. However, each described method has its specificity, being based
on different hypotheses to solve a particular problem or shortcomings of
existing methodology. Although all these methods allow a new and different
interpretation of genomic data, none of these methods guarantees unbiased
inference, and their limitations have underlined how crucial and challenging
demographic inference is, highlighting the complementarity and usefulness of
applying several inference methods on a given dataset.

SMC-based methods display very good fits when using simulated data,
especially when using simple single population models based on typical hu-
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man data parameters [168, 146, 151, 176]. However, the SMC makes a large
number of hypotheses [103, 146] that are often violated in data obtained from
natural populations. When inputting data from natural populations, extract-
ing information or correctly interpreting the results can become troublesome
[22, 169, 9] and several studies address the consequences of hypothesis vio-
lation [74, 22, 140, 114, 148]. They bring to light how strongly population
structure or introgression influence demographic history estimation if not
correctly accounted for [74, 22]. Furthermore, some SMC-based methods re-
quire phased data (such as MSMC [146] and MSMC-IM [176]), and phasing
errors can lead to a strong overestimation of population size in recent time
[168]. The effect of sequencing coverage has also been tested in Nadachowska
et al. [121], showing the importance of high coverage in order to obtain trust-
worthy results, and yet, SMC methods seem robust to genome quality [53].
Selection, if not accounted for, can result in a bottleneck signature [148], and
there is currently no solution to this issue within the SMC theory, though
it could be addressed using different theoretical frameworks that are being
developed [153, 122]. More problematic, is the ratio of effective recombina-
tion over effective mutation rates ρ

θ
, which, if it is greater than one, biases

estimations [168, 6, 151]. It is also important to keep in mind that there can
be deviations between ρ

θ
and the ratio of recombination rate over mutation

rate measured experimentally ( r
µ
), as the former can be greatly influenced by

life-history, such as in organisms displaying self-fertilization, parthenogene-
sis or dormancy, and this can lead to issues when interpreting results (e.g.
[151]). It is thus necessary to keep in mind that the accuracy of SMC-based
methods depends on which of the many underlying hypotheses are prone to
be violated by the data sets being used.

In an attempt to complement previous works, we here study the limits
and convergence properties of methods based on the Sequentially Markovian
Coalescent. We first define the limits of SMC-based methods (i.e. how well
they perform theoretically), which we will call the best-case convergence. To
do this, we use a similar approach to [71, 130, 87], and compare simulation
results obtained with the simulated Ancestral Recombination Graph (ARG)
as input to results obtained from sequences simulated under the same ARG,
to study the convergence properties linked to data sets in the absence of
hypothesis violation. We test several scenarios to check whether there are
instances, where even without violating the underlying hypotheses of the
methodology, the demographic scenarios cannot be retrieved because of the-
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oretical limits (and not issues linked with data). We also study the effect
of the optimization function (or composite likelihood) and the time window
of the analysis on the estimations of different variables. Lastly, we test the
effect of commonly violated hypotheses, such as the effect of the variation of
recombination and mutation rates along the sequence and between scaffolds,
errors in SNP calls, and the presence of transposable elements and link ab-
normal results to specific hypothesis violations. Through this work, we aim
to provide guidelines concerning the interpretation of results when applying
this methodology on data sets that may violate the underlying hypotheses
of the SMC framework.

3.2 Materials and Methods
In this study we use four different SMC-based methods: MSMC, MSMC2,
SMC++ and eSMC. All methods are Hidden Markov Models and use whole
genome sequence polymorphism data. The hidden states of these methods
are the coalescence times (or genealogies) of the sample. To have a finite
number of hidden states, they are grouped into x bins (x being the number
of hidden states). The reasons for our model choices are as follows: i) MSMC,
unlike any other method, focuses on the first coalescence event of a sample of
size n, and thus exhibits different convergence properties [146], ii) MSMC2
computes coalescence times of all pairwise analysis from a sample of size n,
and can deal with a large range of data sets [156], iii) SMC++ [168] is the
most advanced and efficient SMC method and lastly, iv) eSMC [151] is a
re-implementation of PSMC’ (similar to MSMC2), which will contribute to
highlighting the importance of algorithmic translations as it is very flexible
in its use and outputs intermediate results necessary for this study.

3.2.1 SMC methods

PSMC’, MSMC2 and eSMC

PSMC’ and methods that stem from it (such as MSMC2 [46] and eSMC [151])
focus on the coalescence events between only two individuals (or sequences
in practice), and, as a result, do not require phased data. The algorithm goes
along the sequence and estimates the coalescence time at each position. To
do this, it checks whether the two sequences are similar or different at each
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position. The presence or absence of a segregating site along the sequence
(determined by the population mutation rate θ) is used to infer the hidden
state (i.e. coalescence time). However, the hidden state is only allowed to
change in the event of a recombination, which leads to a break in the current
genealogy. Thus, the population recombination rate ρ constrains the inferred
changes of hidden states along the sequence (for a detailed description of the
algorithm see [146, 176, 151]).

MSMC

MSMC is mathematically and conceptually very similar to the PSMC’ method.
Unlike other SMC methods, it simultaneously analyses multiple sequences
and because of this, MSMC requires the data to be phased. In combination
with a second HMM, to estimate the external branch length of the genealogy,
it can follow the distribution of the first coalescence event in the sample along
the sequences. However, due to computational load, MSMC cannot analyze
more than 10 sequences simultaneously (for a detailed description see [146]).

SMC++

SMC++ is slightly more complex than MSMC or PSMC. Though it is concep-
tually very similar to PSMC’, mathematically it is quite different. SMC++
has a different emission matrix compared to previous methods because it
calculates the sample frequency spectrum of sample size n + 2, conditioned
on the coalescence time of two "distinguished" haploids and n "undistin-
guished" haploids. In addition SMC++ offers features such as a cubic spline
to estimate demographic history (i.e. not a piece-wise constant population
size). The SMC++ algorithm is fully described in [168].

Best-case convergence

Using sequence simulators such as msprime [91] or scrm [159], one can sim-
ulate the Ancestral Recombination Graph (ARG) of a sample. Usually, the
ARG is given through a sequence of genealogies (e.g. a sequence of trees
in Newick format). From this ARG, one can find what state of the HMM
the sample is in at each position. Hence, one can build the series of states
along the genomes, and build the transition matrix. The transition matrix
is a square matrix of dimension x (where x is the number of hidden states)
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counting all the possible pairwise transitions between the x states (includ-
ing from a given state to itself). Using the transition matrix built directly
from the exact ARG, one can estimate parameters using eSMC or MSMC
as if they could correctly infer the hidden states. Hence, estimations using
the exact transition matrix represents the upper bound of performance for
these methods. We choose to call this upper bound the best-case convergence
(since it can never be reached in practice). For this study’s purpose, a second
version of the R package eSMC [151] was developed. This package enables
the building of the transition matrix (for eSMC or MSMC), and can then
be used to infer the demographic history. The package is mathematically
identical to the previous version but includes extra functions, features, and
new outputs necessary for this study. The package and its description can
be found at https://github.com/TPPSellinger/eSMC2.

Baum-Welch algorithm

SMC-based methods can use different optimization functions to infer the de-
mographic parameters ( i.e. likelihood or composite likelihood). The four
studied methods use the Baum-Welch algorithm to maximize the likelihood.
MSMC2 and SMC++ implement the original Baum-Welch algorithm (which
we call the complete Baum-Welch algorithm), whereas eSMC and MSMC
compute the expected composite likelihood Q(θ|θt) based only on the tran-
sition matrix (which we call the incomplete Baum-Welch algorithm). The
use of the complete Baum-Welch algorithm or the incomplete one can be
specified in the eSMC package. The composite likelihood for SMC++ and
MSMC2 is given by equations 1 and the composite likelihood for eSMC and
MSMC by equation 2:

Q(Θ|Θt) = νΘtlog(P (X1|Θ)) +
∑
X,Y

E(X,Z|Θt)log(P (X|Z,Θ))

+
∑
X,Y

E(Y,X|Θt)log(P (Y |X,Θ))
(3.1)

and :

Q(Θ|Θt) =
∑
X,Y

E(X,Z|Θt)log(P (X|Z,Θ)), (3.2)

with:
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• νΘ : The equilibrium probability conditional to the set of parameters Θ.

• P (X1|Θ) : The probability of the first hidden state conditional to the set of
parameters Θ.

• E(X,Z|Θt) : The expected number of transitions of X from Z conditional
to the observation and set of parameters Θt.

• P (X|Z,Θ) : The transition probability from state Z to state X, conditional
to the set of parameters Θ.

• E(Y,X|Θt) The expected number of observations of type Y that occurred
during state X conditional to observation and set of parameters Θt.

• P (Y |X,Θ) : The emission probability conditional to the set of parameters
Θ.

Time window

Each tested SMC-based method has its own specific time window for which esti-
mations are made. Note that hidden states are defined as discretized intervals, as
consequences of which the boundaries, length, and number of states of the time
window do implicitly affect inferences. For example, the original PSMC has a time
window wider than PSMC’, so that estimations cannot be compared one to one.
To measure the effect of choosing different time window parameters, we analyze the
same data with four different settings. The first time window is the one used for
PSMC’ defined in [146]. The second time window is that of MSMC2 [176] (similar
to the one of the original PSMC [103]), which we call "big" since it goes further
in the past and in more recent time than that of PSMC’. We then define a time
window equivalent to the first one (i.e. PSMC’) shifted by a factor of five in the
past (first time window, i.e. hidden states, multiplied by five). The last one is a
time window equivalent to the first one (i.e. PSMC’) shifted by a factor of five in
recent times (i.e. first time window divided by five).

3.2.2 Simulated sequence data
Throughout this chapter, we simulate different demographic scenarios using either
the coalescence simulation program scrm [159] or msprime [91]. We use scrm for the
best-case convergence as it can output the genealogies in a Newick format (which
we use as input). We use scrm, which outputs simulated sequences in the ms
format, to simulate data for eSMC, MSMC, MSMC2. We use msprime to simulate
data for SMC++ since msprime is more efficient than scrm for big sample sizes
[91] and can directly output .vcf files (which is the input format of SMC++).
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Absence of hypothesis violation

We simulate five different demographic scenarios: sawtooth (successions of popula-
tion size exponential expansion and decrease), bottleneck, exponential expansion,
exponential decrease, and constant population size. Each of the scenarios with
varying population size is tested under four amplitude parameters (i.e. by how
many folds the population size varies: 2, 5, 10, 50). We infer the best-case con-
vergence under four different sequence lengths (107, 108, 109, and 1010 bp) and
choose the per site mutation and recombination rates recommended for humans in
MSMC’s manual, respectively 1.25 × 10−8 and 1 × 10−8. When analyzing simu-
lated sequence data, we simulate sequences of 100 Mb: two sequences for eSMC
and MSMC2, four sequences for MSMC, and twenty sequences for SMC++.

Calculation of the mean square error (MSE)

To measure the accuracy of inferences we calculate the Mean Square Error (MSE).
We first divide the time window (in log10 scale) of each analysis into ten thousand
points. We then calculate the MSE by comparing the actual population size and
the one estimated by the method at each of the ten thousand points. We thus have
the following formula:

MSE =

∑104

i=1(yi − y∗i )2

104
(3.3)

Where:

• yi is the population size at the time point i.

• y∗i is the estimated population size at the time point i.

All the command lines to simulate data can be found in S1 of the Appendix.

Presence of hypothesis violation

SNP calling: In practice, SNP calling from next generation sequencing can yield
different numbers and frequencies of SNPs depending on the chosen parameters for
the different steps of analysis (read trimming, quality check, read mapping, and
SNP calling) as well as the quality of the reference genome, data coverage and
depth of sequencing, species ploidy [135]. Therefore, based on raw sequence data,
the stringency of filters can lead to excluding SNPs (false negatives) or including
spurious ones (false positives). When dealing with complex genomes or ancient
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DNA [154, 20], SNPs can be simultaneously missed and added. We thus simulate
four sequences of 100 Mb under a "sawtooth" scenario and then a certain percentage
(5,10 and 25 % ) of SNPs is randomly added to and/or deleted from the simulated
sequences. We then analyze the variation and bias in SNP calling on the accuracy of
demographic parameter estimations. As an additional analysis, we test the effect of
ascertainment bias on inferences (a prominent issue in microarray SNP studies) by
simulating 100 sequences with msprime where only SNPs above a certain (Minor
Allele Frequency) MAF threshold (1%,5%, and 10%) are kept, then run SMC
methods on a subset of the obtained data.

Changes in mutation and recombination rates along the sequence:
Because the recombination rate and the mutation rate can change along the se-
quence [6], and chromosomes are not always fully assembled in the reference genome
(which consists of possibly many scaffolds), we simulate short sequences where the
recombination and/or mutation rate randomly change between the different scaf-
folds around an average value of 1.25×10−8 per generation per base pair (between
2.5×10−9and 6.25×10−8). We simulate 20 scaffolds of size 2 Mb, as this seems rep-
resentative of the best available assembly for non-model organisms [108, 160]. We
then analyze the simulated sequences to study the effect of assuming scaffolds share
the same mutation and recombination rates. In addition, we simulate sequences of
40 Mb (assuming genomes are fully assembled) where the recombination rate along
the sequence randomly changes every 2 Mbp (up to five-fold) around an average
value of 1.25× 10−8 (the mutation rate being fixed at 1.25× 10−8 per generation
per bp) to study the effect of the assumption of a constant recombination rate
along the sequence.

Transposable elements (TEs): Genomes can contain transposable elements
whose dynamics violate the classic infinite site mutational model for SNPs and
thus potentially affect the estimation of different parameters. Although methods
have been developed to detect [123] and simulate them [96], understanding how
their presence/absence influences demographic inferences remains unclear. TEs
are usually masked when detected in the reference genome and thus not taken into
account in the mapped individuals due to the redundancy of read mapping for TEs.
Due to their repetitive nature, it can be difficult to correctly detect and assemble
them if using short reads, as well as to assess the presence/absence polymorphism
of individuals of a population [64]. In addition, the quality and completeness of
the reference genome (e.g. using the reference genome of a sister species as the
reference genome) can strongly affect the accuracy of detecting, assembling, and
masking TEs [137]. To best capture and mimic the effect of TEs unaccounted for
in the data, we altered four simulated sequences of length 20 Mb in four different
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ways. The first way to simulate the effect of unmapped and unaccounted TEs is to
assume they exhibit presence/absence polymorphism, hence creating gaps in the
sequence. For each individual, we remove small pieces of the sequence of different
lengths (1kb, 10 kb or 100kb), so that up to a certain percentage (5,10,25,50%)
of the original simulated sequence is removed, so as to shorten and fragment the
whole sequence to be analyzed. The second way is to consider unmasked TEs, done
by randomly selecting small pieces of the original simulated sequence (1kb, 10 kb
or 100kb), making up to a certain percentage of it (5,10,25,50%), and removing all
the SNPs found in those regions (i.e. removing mutations from TEs). The removed
SNPs are hence structured in many small regions along the genome. Thirdly, we
test the consequences of simultaneously having both removed and unmasked TEs
in the data set. Lastly, to measure the importance of detecting and masking TEs,
we assume all TEs to be present and masked when building the multihetsep file
(i.e. considering TEs as missing data).

3.3 Results

3.3.1 Best-case convergence
Results of the best-case convergence of eSMC under the sawtooth demographic
history are displayed in Figure 1. Increasing the sequence length increases accu-
racy and reduces variability, leading to better convergence and reducing the mean
square error (see Figures 3.1 a-c and Supplementary Table A.1). However, when
the amplitude of population size variation is too great (here for 50 fold), the de-
mographic history cannot be retrieved, even when using very large data sets (see
Figure 1d). In Supplementary Figure A.12, we show that even when changing the
number of hidden states (i.e. number of inferred parameters), some scenarios with
a very strong variation of population size remain badly inferred.
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Figure 3.1: Best-case convergence of eSMC. Estimated demographic history
using simulated genealogy over sequences of 10,100,1000,10000 Mb (respectively in
red,orange, green and blue) under a sawtooth scenario (original scenario in black)
with 10 replicates for different amplitudes of size change: a) 2-fold, b) 5-fold, c)
10-fold, and d) 50-fold. The recombination rate is set to 1 × 10−8 per generation
per bp and the mutation rate to 1.25× 10−8 per generation per bp.

In Supplementary Figures A.13, we show the best-case convergence of MSMC
with four genome sequences and generally find that these analyses present a higher
variance than eSMC. However, MSMC shows better fits in recent times and is
better able to retrieve population size variation than eSMC (see Supplementary
Figure A.13 d). Scenarios with a strong variation of population size (i.e. with
large amplitudes) still pose a problem (see Supplementary Figure A.14), and no
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matter the number of estimated parameters, such scenarios cannot be correctly
inferred using MSMC.

To better understand these results, we examine the coefficient of variation cal-
culated from the replicates at each entry of the transition matrix. We can see that
increasing the sequence length reduces the coefficient of variation (the ratio of the
standard deviation to the mean, hence indicating convergence when equal to 0,
see Supplementary Figure A.15). Yet increasing the amplitude of population size
variation decreases the number of some hidden state transitions leading to unob-
served transitions. Unobserved transitions result from the reduced probability of
coalescence events in specific time intervals (i.e. hidden states). In these cases,
matrices display higher coefficients of variation and can be partially empty (Figure
3.2). This explains the increase of variability of the inferred scenarios, as well as the
incapacity of SMC methods to correctly infer the demographic history with strong
population size variation in specific time intervals independently of the amount of
data available.
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Figure 3.2: Estimated transition matrix in sharp sawtooth scenario. Es-
timated coefficient of variation of the transition matrix using simulated genealogy
over sequences of 10000 Mb under a sawtooth scenario of amplitude 2, 5,10 and 50
(respectively in a, b, c and d) each with 10 replicates. Recombination and mutation
rates are as in Figure 1. White squares indicate absence of observed transitions
(i.e. no data).

3.3.2 Simulated sequence results
Scenario effect

In the previous section, we explored the theoretical performance limitations of
eSMC and MSMC using trees in Newick format as input. In this section, we
evaluate how these methods perform when inputting simulated sequence data using
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the same recombination and mutation rates. We first investigate the effect of
amplitude of population size variation as in Figure 3.1. Results for the sawtooth
scenario are displayed in Figure 3.3, where the different models display a good fit
but are not as good as expected from the best-case convergence given the same
amount of data (Figure 3.1 (orange line) and Supplementary Table A.1 vs Figure
3.3 (red line) and Supplementary Table A.2). As predicted by Figures 1 and 2, the
case with the greatest amplitude of population size variation (Figure 3.1d) is the
least well fitted (see Supplementary Table A.2 for the MSE). To study the origin
of differences between simulation results and theoretical results, we measure the
difference between the transition matrix estimated by eSMC and the one built from
the actual genealogy. Results show that hidden states are harder to correctly infer
in scenarios with strong population size variation, explaining the high variance (see
Supplementary Figure A.16). We demonstrate there that for the same amount
of data, the simulation, and thus by extension the real data, shows additional
stochastic behavior than the best-case convergence (Figure 3.1).
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Figure 3.3: Estimated demography using simulated sequences as input.
Estimated demographic history (black) under a sawtooth scenario with 10 repli-
cates using simulated sequences for different amplitudes of population size change:
a) 2, b) 5, c) 10 and d) 50. Two sequences of 100 Mb for eSMC and MSMC2
(respectively in red and green), four sequences of 100 Mb for MSMC (orange) and
20 sequences of 100 Mb for SMC++ (blue) were simulated. Recombination and
mutation rates are respectively set to 1× 10−8 and 1.25× 10−8.

Increasing the time window results in an increased variance of the inferences
(Supplementary Figure A.17). In addition, shifting the window towards more re-
cent time leads to poor demographic estimations, but shifting it further in the past
does not seem to bias it (there are however consequences on estimations of the
recombination rates, see Table 1 for more details). Concerning the optimization
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function, we find that the complete Baum-Welch algorithm gives similar results to
the incomplete one (Table 3.1).

Optimization function Scenario real ρ
θ

normal window ρ
θ
∗ Big Window ρ

θ
∗ Old window ρ

θ
∗ Recent window ρ

θ
∗

Incomplete Baum-Welch sawtooth 0.8 0.79 (0.036) 0.72 (0.039) 0.72 (0.042) 0.94 (0.005)
Complete Baum-Welch sawtooth 0.8 .79 (0.044) 0.72 (0.039) 0.72 (0.042) 1.56 (0.087)
Incomplete Baum-Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 0.98 (0.002)
Complete Baum-Welch Constant 0.8 0.86 (0.019) 0.85 (0.020) 0.84 (0.019) 1.06 (0.02)

Table 3.1: Average estimated values for the recombination over mutation
ratio ρ

θ
over ten repetitions for different sizes of the time window. The co-

efficient of variation is indicated in brackets. Four sequences of 50 Mb were
simulated with a recombination rate set to 1 × 10−8 per generation per bp
and a mutation rate to 1.25× 10−8 per generation per bp.

Effect of the ratio of the recombination over the mutation rate

The ratio of the effective recombination over effective mutation rates (ρθ ) can influ-
ence the ability of SMC-based methods to retrieve the coalescence time between two
points along the genome [168]. Intuitively, if recombination occurs at a higher rate
compared to mutation, then it renders it more difficult to detect any recombination
events that may have taken place before the introduction of a new mutation, and
thus bias the estimation of the coalescence time [151, 168]. Under the bottleneck
scenario, we find that the lower ρ

θ , the better the fit of the inferred demography
by eSMC and SMC++ in the past, but also the higher the variance of the infer-
ences (see Figure 3.4 ). However, each method displays the worse fit when ρ

θ = 10
(Supplementary Table A.3). SMC++ seems slightly less sensitive to ρ

θ than other
methods.
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Figure 3.4: Effect of ρ
θ on inference of demographic history. Estimated de-

mographic history under a bottleneck scenario with 10 replicates using simulated
sequences. We simulate two sequences of 100 Mb for eSMC and MSMC2 (respec-
tively in a and b), four sequences of 100 Mb for MSMC (c) and twenty sequences
of 100 Mb for SMC++ (d). The mutation rate is set to 1.25× 10−8 per generation
per bp and the recombination rates are 1.25 × 10−9,1.25 × 10−8 and 1.25 × 10−7

per generation per bp, giving ρ
θ = 0.1, 1 and 2 and the inferred demographies are

in red, orange and green respectively. The demographic history is simulated under
a bottleneck scenario of amplitude 10 and is represented in black.

It is, in some instances, possible to compensate for a ρ
θ ratio that is not ideal

by increasing the number of iterations. Indeed, for eSMC, the demographic history
is better inferred (Supplementary Figure A.18), although the correct recombina-
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tion rate cannot be retrieved (Table 2). MSMC is able to better infer the correct
recombination rate than other methods despite ρ

θ > 1 but poorly estimates the de-
mographic history. The past demographic inferences obtained using MSMC2 and
SMC++ are not improved when increasing the number of iterations (see Supple-
mentary Figure A.18 and Table 3.2).

method real ρ
θ

set 1 , ρ
θ
∗ set 2 , ρ

θ
∗ set 3 , ρ

θ
∗ set 4 , ρ

θ
∗ set 5 , ρ

θ
∗

eSMC 10 1.35 (0.026) 1.76 (0.047) 1.29 (0.027) 1.74 (0.048) 1.80 (0.041)
MSMC 10 2.70 (0.011) 6.58 (0.031) 2.68 (0.011) 6.57 (0.032) 6.62 (0.030)
MSMC2 10 1.27 (0.055) 1.65 (0.13) 1.26 (0.060) 1.75 (0.060) 1.60 (0.29)
SMC++ 10 0.56 (0.38) 0.48 (0.38) 1.32 (0.15) 0.21 (0.62) 0.98 (0.24)

Table 3.2: Average estimated values for the recombination over mutation
ratio ρ

θ
over ten repetitions. The coefficient of variation is indicated in brack-

ets. For eSMC, MSMC and MSMC2 we have: set 1: 20 hidden states; set 2: 200
iterations; set3: 60 hidden states; set 4: 60 hidden states and 200 iterations and
set 5: 20 hidden states and 200 iterations. For SMC++: set 1: 16 knots; set 2:
200 iterations; set 3: 4 knots in green; set 4: regularization penalty set to 3 and
set 5: regularization-penalty set to 12.

3.3.3 Simulation results under hypothesis violation
Imperfect SNP calling

We analyze simulated sequences that have been modified by removing and/or
adding SNPs using the different SMC methods. We find that, when using MSMC2,
eSMC and MSMC, having more than 10% of spurious SNPs (e.g. no quality fil-
tering) can lead to a strong overestimation of population size in recent time but
that missing SNPs have no effects on inferences in the far past and only mild ef-
fects on inferences of recent time for MSMC2 (Figure 5). The mean square error
is displayed in Supplementary Table A.4.
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Figure 3.5: Consequences of SNP calling errors. Estimated demographic
history using MSMC2 under a sawtooth scenario with 10 replicates using four sim-
ulated sequences of 100 Mb. Recombination and mutation rates are as in Figure
1 and the simulated demographic history is represented in black. a) Demographic
history simulated with ibsence of SNP calling issue (red). b) Demographic history
simulated with 5% (orange),10% (green) and 25% (blue) missing SNPs. c) Demo-
graphic history simulated with 5% (orange), 10% (green) and 25% (blue) additional
SNPs. d) Demographic history simulated with 5% (orange),10% (green) and 25%
(blue) of additional and missing SNPs .
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Specific scaffold parameters

We simulate sequence data where scaffolds have either been simulated with the
same recombination and mutation rates or with different recombination and mu-
tation rates. Data sets are then analyzed assuming scaffolds share or do not share
the same recombination and mutation rates. We can see in Figure 3.6 (and Sup-
plementary Table A.5) that when scaffolds all share the same parameter values,
estimated demography is accurate both when the analysis assumed shared or dif-
fering mutation and recombination rates. However, when scaffolds are simulated
with different parameter values, analyzing them under the assumption that they
have the same mutation and recombination rates leads to poor estimations. As-
suming scaffolds do not share recombination and mutation rates does improve the
results somewhat, but the estimations remain less accurate than when scaffolds all
share with the same parameter values. If only the recombination rate changes from
one scaffold to another, the demographic history is only slightly biased, whereas,
if the mutation rate changes from one scaffold to the other, demographic history
is poorly estimated.
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Figure 3.6: Estimating demographic history using scaffolds sharing or dif-
fering in mutation and recombination rates. Estimated demographic history
using eSMC under a sawtooth scenario with 10 replicates using twenty simulated
scaffolds of two sequences of 2 Mb assuming scaffolds share (red) or do not share
recombination and mutation rates (orange). The simulated demographic history
is represented in black. a) Scaffolds share the same parameters, recombination
and mutation rates are set at 1.25 × 10−8, b) Each scaffold is randomly assigned
a recombination rate between 2.5 × 10−9 and 6.25 × 10−8 and the mutation rate
is 1.25 × 10−8, c) Each scaffold is randomly assigned a mutation rate between
2.5× 10−9 and 6.25× 10−8 and the recombination rate is 1.25× 10−8 and d) Each
scaffold is assigned a random mutation and an independently random recombina-
tion rate, both being between 2.5× 10−9 and 6.25× 10−8.
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Even if chromosomes are fully assembled, assuming we here have one scaffold of
40 Mb (chromosome fully assembled), there may be variations of the recombination
rate along the sequence, however, this seems of little consequence when applying
eSMC. As can be seen in Supplementary Figure A.19, the demographic scenario
is well inferred, despite an increase in variance and a smooth "wave" shaped de-
mographic history when sequences simulated with varying recombination rates are
compared to those with a fixed recombination rate throughout the genome. Over-
all we see that when the recombination rate is heterogeneous along the genome by
a factor 5, it is not untypical to falsely estimate a two-fold variation of Ne even
though the true Ne is constant in time.

How transposable elements bias inference

Transposable elements (TEs) are present in most species, and are (if detected)
taken into account as missing data by SMC methods [146]). Depending on how
TEs affect the data set, we find that methods are more or less sensitive to TEs.
If TEs are unmapped/removed from the data set, there does not appear to be
any bias in the estimated demographic history when using MSMC2 (see Figure
3.7), but there is an overestimation of ρ

θ (see Table 3). We find that the higher
the proportion of sequences removed, the more ρ

θ is over-estimated. For a fixed
amount of missing/removed data, the smaller the sequences that are removed, the
more ρ

θ is over-estimated (Table 3.3). If TEs are present but unmasked in the
data set (and thus not accounted for missing data by the model [146] ), we find
that this is equivalent to a faulty calling of SNPs, in which SNPs are missing,
hence resulting in demographic history estimations by MSMC2 similar to those
observed in Figure 3.5a. However, if the size of unmasked TEs increases, different
results are obtained (see Supplementary Figures A.20 and A.20). Indeed, in recent
times there is a strong underestimation of population size and the model fails to
capture the correct demographic history. The longer the TEs are, the stronger
the effect on the estimated demographic history. However, when TEs are detected
and correctly masked, there is no effect on demographic inferences (Supplementary
Figures A.22).
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Figure 3.7: Estimated demography of MSMC2 under a sawtooth scenario
with transposable elements. Estimated demographic history by MSMC2 un-
der a sawtooth scenario with 10 replicates using simulated sequences. 4 sequences
of 20 Mb. Recombination rate is set to 1.25 × 10−8 per generation per bp and
mutation rate to 1.25× 10−8 per generation per bp . The simulated demographic
history is represented in black. Here tansposable element are of length 1kbp. a)
Demographic history simulated with no transposable elements. b) Demographic
history simulated where transposable element are removed. c) Demographic his-
tory simulated where SNPs on transposable are removed. d) Demographic history
simulated where half of transposable are removed and SNPs on the other half are
removed. Proportion of transpobable element of the genome is set to 0% (red), 5%
(orange), 10% (green), 25 % (blue) and 50 % (purple).
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TE length method real ρ
θ

ρ
θ
∗ and 5% TEs ρ

θ
∗ and 10% TEs ρ

θ
∗ and 25% TEs ρ

θ
∗ and 50% TEs

1 kb MSMC2 1 0.87 (0.047) 0.88 (0.049) 1.0 (0.036) 1.35 (0.035)
10 kb MSMC2 1 0.87 (0.064) 0.89 (0.067) .99 (0.15) 1.13 (0.30)
100 kb MSMC2 1 0.87 (0.056) 0.88 (0.050) 0.91 (0.079) 0.91 (0.073)

Table 3.3: Average estimated values for the recombination over mutation
ratio ρ

θ
by MSMC2 over ten repetitions. The coefficient of variation is indi-

cated in brackets. TEs are of length 1kb, 10kb or 100 kb and are completely
removed and the proportion of the genome made up by TEs is 5%,10% ,25%
and 50%.

3.4 Discussion
Throughout this chapter, we have outlined the limits of PSMC’ and MSMCmethod-
ologies, which had, until now, not been clearly defined. We find that, in most cases,
if enough genealogies (i.e. data) are inputted then the demographic history is accu-
rately estimated, tending to results obtained previously [71, 22], however, we find
that the amount of data required for an accurate fit depends on the underlying
demographic scenario. The differences with previous works stem from estimations
being made using the actual series of coalescence times [71, 22], whereas we use
the series of hidden states built from the discretization of time summarized in a
simple matrix. We also find that some scenarios are better retrieved when using ei-
ther MSMC or methods based on PSMC’, indicating that there are complementary
convergence properties between these methodologies.

We develop a method to indicate if the amount of data is enough to retrieve
a specific scenario, notably by calculating the coefficient of variation of the tran-
sition matrix using either real or simulated data and therefore offer guidelines to
build appropriate data sets (see also Supplementary Figure 8). Our approach can
also be used to infer demographic history given an ARG (using trees in Newick
format or sequences of coalescence events), independently of how the ARG has
been estimated. Our results suggest that whole genome polymorphism data can
be summarized in a transition matrix based on the SMC theory to estimate the
demographic history of panmictic populations. As new methods can infer genealo-
gies better and faster [156, 92, 116, 131], the estimated transition matrix could
become a powerful summary statistic in the future. HMM can be a computational
burden depending on the model and model parameters, and estimating genealogy
through more efficient methods would still allow the use of SMC theory for param-
eter estimation or hypothesis testing (as in [56, 71, 87]). In addition, using the
work of [176], one could (to some extent [94]) extend our approach to account for
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population structure and migration.

We have also demonstrated that the power of PSMC’, MSMC, and other SMC-
based methods, rely on their ability to correctly infer the genealogies along the
sequence (i.e. the Ancestral Recombination Graph or ARG). The accuracy of
ARG inference by SMC methods, however, depends on the ratio of the recombina-
tion over the mutation rate (ρθ ). As this rate increases, estimations lose accuracy.
Specifically, increasing ρ

θ leads to an over-estimation of transitions on the diago-
nal, which explains the underestimation of the recombination rate and inaccurate
demographic history estimations, as shown in [168, 151]. As a way around this
issue, in some cases, it is possible to obtain better results by increasing the num-
ber of iterations. MSMC’s demographic inference is more sensitive to ρ

θ but the
quality of the estimation of the ratio itself is less affected. This once again shows
the complementarity of PSMC’ and MSMC. If the variable of interest is ρ

θ , then
MSMC should be used, but if the demographic history is of greater importance,
PSMC’-based methods should be used. The amplitude of population size varia-
tion also influences the estimation of hidden states along the sequences, with high
amplitudes leading to a poor estimation of the transition matrix, distorting the in-
ferred demography. We find that increasing the size of the time window increases
the variance of the estimations, despite using the same number of parameters, as
this results in a small under-estimation of ρθ . In addition, the complete and incom-
plete Baum-Welch algorithms lead to identical results, demonstrating that all the
information required for the inference is in the estimated transition matrix.

Finally, we explored how imperfect data sets (due to errors in SNP calling, the
presence of transposable elements and existing variation in recombination and mu-
tation rates) could affect the inferences obtained using SMC-based methods. We
show that a data set with more than 10% of spurious SNPs will lead to poor esti-
mations of the demographic history, whereas randomly removed SNPs (i.e. missing
SNPs) have a lesser effect on inferences. It is thus better to be stringent during
SNP calling, as false data is worse than missing data. Note, however, that this
consideration is valid for demographic inference under a neutral model of evolu-
tion, while biases in SNP calling also affect the inference of selection (especially for
conserved genes under purifying selection). However, if missing SNPs are struc-
tured along the sequence (as would be the case with unmasked TEs), there is a
strong effect on inference. If TEs are correctly detected and masked, there is no
effect on demographic inferences. It is therefore recommended that checks should
be run to detect regions with abnormal distributions of SNPs along the genome.
Surprisingly, simulation results suggest that removing random pieces of sequences
has no impact on the estimated demographic history. Taking this into account,
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when seeking to infer demographic history, it seems better to remove sections of
sequences than to introduce sequences with SNP call errors or abnormal SNP dis-
tributions. However, removing sequences leads to an over-estimation of ρ

θ , which
seems to depend on the number and size of the removed sections. The removal of
a few, albeit long sequences, will have almost no impact, whereas removing many
short sections of the sequences will lead to a large overestimation of ρ

θ . This con-
sequence could provide an explanation for the frequent overestimation of ρ

θ when
compared to empirical measures of the ratio of recombination and mutation rates
r
µ . This implies, that in some cases, despite an inferred ρ

θ > 1, the inferred demo-
graphic history can surprisingly be trusted. Note also that as discussed in [151],
the discrepancy between ρ

θ and r
µ can be due to life history traits such as selfing

or dormancy.

Simulation results suggest that any variation of the recombination rate along
the sequence does not strongly bias demographic inference but slightly increases
the variance of the results and leads to small waves in the demographic history (as a
consequence of erroneously estimated hidden state transition events because of the
non-constant recombination rate along the sequence), as expected from previous
works [103]. However, unlike Li and Durbin’s results [103], if scaffolds do not share
similar rates of mutation and recombination, but are analyzed together assuming
that they do, estimations will be very poor. This could be due to the variation
of mutation rate being within a scaffold in their study and the discrepancy be-
tween out and their results could suggest analyses based on longer scaffolds to be
more robust. However, this problem can be avoided if each scaffold is assumed to
have its own parameter values, although this would increase computation time, it
could provide useful insight in unveiling any variation in molecular forces along the
genome, albeit in a coarser way than in [6]. As we found that non-accounted vari-
ation of the recombination rate along the sequence can lead to a spurious two-fold
variation of population size, we here provide guidelines to test if small detected
variations of population size are to be trusted. Since the consequences of a varying
recombination rate might depend on the topology of the recombination map, one
first needs to estimate the recombination map (e.g. using iSMC [6]). If problem-
atic regions are found they can be removed with almost no negative impact on the
estimated demography (Figure 7). Otherwise, the recombination map can be used
to simulate sequences e.g. using scrm [159]), which can be compared to results
obtained for a constant recombination rate. Analyses can be run on both data sets
to quantify the effect of the recombination map.
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3.4.1 Guidelines when applying SMC-based methods
Our aim through this work is to provide guidelines to optimize the use of SMC-
based methods for inference. First, if the data set is not yet built, but there is some
intuition concerning the demographic history and knowledge of some genomic prop-
erties of a species (e.g. recombination and mutation rates), we recommend simu-
lating a data set corresponding to the potential scenarios. From these simulations,
the transition matrix for PSMC’ or MSMC-based methods can be built using the
R package eSMC2. The results obtained can guide users when it comes to the
amount and quality of data needed (sequence size and copy number) for a good
inference. Beyond being used to guide the building of data sets, it is possible to
assess the trustworthiness of results obtained using SMC-based methods on ex-
isting data sets. If the estimated transition matrix is empty in some places (i.e.
no observed transition event between two specific hidden states; white squares in
Figure 2), it could suggest a lack of data and/or strong variation of the population
size somewhere in time. In order to test the accuracy of the inferred demography,
the estimated demographic history can be retrieved and used to simulate a data
set with more sequences and/or simulate a demographic history with higher ampli-
tude than the estimated one. The SMC method can then be run on the simulated
data in order to check whether using more data results in a matching scenario or
if a higher amplitude of population size can indeed be inferred, in which cases the
initial results are most probably trustworthy.

As mentioned above, it is better to sequence fewer individuals but to have data
of better quality. It is also important to note, that more data is not necessarily
always better, especially if there is a risk of spurious SNPs (see Figure 5). In some
cases, methods are limited by their own theoretical framework, hence no given data
set will ever allow a correct demographic inference. In such cases, other methods
based on a different theoretical frameworks (e.g. SFS and ABC) might perform
better [9, 147].

3.4.2 Concluding remarks
Here we present a simple method to help assess how accurate inferences obtained
using PSMC’ and MSMC would be when applied to data sets with suspected flaws
or limitations. We also provide new interpretations of results obtained when hy-
potheses are known to be violated, and thus explain why results sometimes deviate
from expectations (e.g. when the estimated ratio of recombination over mutation
is larger than the one measured experimentally). We propose guidelines for build-
ing/evaluating data sets when using SMC-based models, as well as a method that
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can be used to estimate the demographic history and recombination rate given a
genealogy (in the same spirit as Popsicle [71]). The estimated transition matrix is
introduced as a summary statistic, which can be used to recover demographic his-
tory (more precisely the Inverse Instantaneous Coalescence Rate interpretation of
population size variation, when assuming a panmictic population [22, 140]). This
statistic could, in the future, be used in scenarios with migration, without the com-
putational load of Hidden Markov Models. When faced with complex demographic
histories, or ρθ > 1, we show that there are strategies that would allow those wishing
to use SMC methodology to make the best use of their data.
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Chapter 4

The Sequentially Markovian Beta
Coalescent

4.1 Motivation
Many models and methods have been developed to extract information from whole
genome sequence data [168, 103, 146, 152, 156, 151, 6, 176]. The common fea-
ture of all these methods is their underlying assumption of a Kingman coalescent
process [95] to describe the genealogy distribution of a sample. The Kingman co-
alescent process results itself from the traditional assumption of a Wright-Fisher
Model to describe the reproduction mechanism of a population. As genome se-
quence data starts to be available for many different species [109, 41, 57, 43, 25,
60, 49, 36, 83, 170] with as many different biological trait or life cycle. Hence,
for some species the underlying assumption of a Wright-Fisher model is strongly
questioned [162, 3, 125, 90, 119]. The Wright-Fisher model (and other models
leading to a Kingman coalescence process, e.g. the classic Moran Model) might
not correctly describe some population’s evolutionary process because of their as-
sumptions. More specifically, a key parameter is the distribution of the number of
offspring that parents can have. In the Wright-Fisher, due to Binomial sampling,
the distribution of offspring number per parent is well approximated by a Poisson
distribution with mean 1 and variance 1. To give a biological intuition, it means
that most parents will have no, one, or two offsprings, but it is very improbable
that one parent has many offspring (of the order of the population size, e.g. N/2).
However, for some species, it is expected that the variance in reproduction be-
tween parents can be much larger than under the Poisson distribution, even under
neutrality. Strong selection, dormancy, high fecundity with skewed offspring dis-
tribution, extremely strong bottlenecks have been theoretically shown to deviate
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from the classic Wright-Fisher model in a way that the genealogies can no longer
be described by a Kingman Coalescent process [16, 17, 29, 76, 32, 12, 19]. In such
conditions, a new class of process arises to describe the genealogy distribution, a
class where multiple individuals can simultaneously coalesce and/or multiple dis-
tinguished coalescence events can simultaneously occur [143, 118, 28, 142, 136]. We
call this class of genealogical processes Multiple Merger Coalescent (MMC).

Because Kingman coalescent and Λ-coalescents describe different processes and
thus have extremely different evolutionary interpretation, it is essential to assess
which model best describes the species genealogy [98]. Therefore, methods to dis-
tinguish which model best describes the data, and thus the genealogy, are required
[98, 97, 33, 68, 113]. Current methods rely on the Site Frequency Spectrum (or
derived summary statistic) [98], minor allele frequency [139] or copy number alter-
ation [90] for model selection and parameter estimations . However, this implies
that current methods do not directly integrate linkage disequilibrium, although
some statistics have been proven to be robust to recombination [98, 139]. Besides,
these methods usually need a high sample size (>50) for trustworthy results, which
might not be available for non-model species [98, 97, 33].

With the development of the Sequentially Markovian Coalescence theory [115,
111], it becomes tractable (i.e. possible) to integrate linkage disequilibrium over
chromosomes in inferences [103] based on the Kingman coalescence theory. In
addition, it was demonstrated in [149] that if the probability of a parent to have k
or more offspring is proportional to kα, where 1 < α < 2, then the genealogy can
be described by the Λ coalescent (a general class of coalescent process describing
how and how fast blocks/individuals merge [136, 142]) in which the measure is
the Beta(2− α,α) distribution. This coalescent process was thus named the Beta
coalescent. If α tends to 2, then the coalescence process tends to a Kingman
coalescent up to a scaling constant. If alpha tends to one, the model tends to a
Bolthausen-Snitzman coalescence process (i.e. star shaped). We next define the
merging rates of the Beta coalescent. The rate of transition from a state with b
lineages (i.e. current number of individuals) to b− n+ 1 lineages, i.e. a merger of
n lineages is :

Λb,α,b−n+1 =

(
b
n

)
B(n− α, b− n+ α)

Γ(2− α)Γ(α)
. (4.1)

Thus, the total rate (i.e. rate to the next merging event) is :

λb,α =

b∑
k=2

(
b
n

)
B(k − α, b− n+ α)

Γ(2− α)Γ(α)
(4.2)
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Where k is the number of merging individuals. With decreasing α the probability
of having more than 2 lineages merging increases, but when α tends to 2, the
probability of having more than 2 lineages merging tends to 0 (i.e. Kingman
coalescent process).

Waiting times are exponentially distributed in the coalescent for population size
constant in time. For time-varying population sizes, we define the time-changed Λ-
n-coalescent as the (rescaled) genealogy limit from a Wright-Fisher type Cannings
model with skewed offspring distributions as introduce in [149], which leads to a
time-change waiting time for coalescence events: If a waiting time has rate λ in the
standard Beta n-coalescent (started at some time t0), it has a waiting time density
of :

f(t) =
λ

χ(t)
e
−
∫ t
t0

λ
χ(s)

ds
, (4.3)

which follows as described in [67]. In addition, we chose our scaling to make our
coalescent process tend to the Kingman coalescent when α tends to 2.

Hence, to detect and account for multiple merger events along the genome
we develop a new Sequentially Markovian Coalescent approach assuming a Beta-
coalescent. Our approach can thus approximate the Ancestral Recombination
Graph (ARG) using the Sequentially Markovian Coalescent [146]. We build a
Sequentially Markovian β Coalescent (SMβC). In addition, the theory describing
the exact ARG has been build in [10] allowing the development of a new sequence
simulator included in msprime with recombination for multiple merger coalescent
models [91].

From the Sequentially Markovian β Coalescent we derived an inference method
based on the Multiple Sequentially Markovian Coalescent (MSMC) [146] allow-
ing multiple individuals to simultaneously coalesce. In addition, we modified the
underlying hidden markov model to account for spurious multiple mergers origi-
nating from the discretization of time. Our model can thus infer recombination
rate, population size, and the parameter of the Beta distribution, determining how
frequently multiple individuals simultaneously coalesce. We first demonstrate the
effect of assuming a Kingman coalescent model when the underlying coalescent
model is a Beta coalescent. We then demonstrate the theoretical accuracy of our
approach.
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4.2 Materials and Methods
In this study, we use three different SMC-based methods: MSMC, MSMC2, eSMC,
and our new method SMβC. The basis of novelty in SMβC is that to detect mul-
tiple merger events, we need mergers of more than 2 lineages, thus we need to use
methods based on multiple sequences (i.e. MSMC), and not based on the PSMC.
All methods are Hidden Markov Models and use whole genome sequence polymor-
phism data. The hidden states of these methods are the coalescence times (or first
coalescence time for sample size larger than 2) of a sample. In order to have a finite
number of hidden states, the hidden states are grouped into x bins (x being the
number of hidden states) results of the discretization of time (and an index describ-
ing who coalesces for sample size >2). The reasons for our model choices are as
follows: SMβC to check the convergence properties of our new method and demon-
strate its efficiency to uncover multiple merger events. MSMC, from which SMβC
is mathematically derived, to compare its convergence properties with SMβC [146].
MSMC2 and eSMC (using the same input file as MSMC) because it computes co-
alescent times of all pairwise analysis from a sample of size n, and can deal with a
large range of data sets [46].

4.2.1 SMC methods
eSMC and MSMC2

eSMC and MSMC2 focus on the coalescence events between only two individuals,
and thus do not require phased data. The algorithm goes along the sequence and
estimates the coalescence time at each position. Both methods check whether
the two sequences are similar or different at each position. If the two sequences
are different, this indicates a mutation took place. The absence of mutation (the
two sequences are identical) suggests a recent common ancestor. In the event of
recombination, there is a break in the current genealogy and the coalescence time
consequently takes a new value. A detailed description of the algorithm can be
found in [46, 176, 151].

MSMC

MSMC simultaneously analyses multiple sequences and because of this, MSMC
requires the data to be phased. In combination with a second HMM, to estimate
the external branch length of the genealogy, it can follow the distribution of the
first coalescence event in the sample along sequences. A detailed description of
MSMC can be found in [146].
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SMβC

SMβC is based on MSMC. Hence it simultaneously analyses multiple sequences
and thus also required the data to be phased. It can follow the distribution of the
first coalescence event in the sample along sequences assuming a Beta coalescent
and therefore allow for more than two individuals to join the first coalescence event.
The emission matrix is similar to the one of MSMC. However, currently, SMβC
has been derived for up to 4 sequences simultaneously (due to computational load
and complexity). The transition probabilities of SMβC for sample size 3 (when
time is continuous) are displayed in equation 4.1. A detailed description of SMβC
can be found in Appendix A.3.



p(t, i|s, j, u) =

Ps
2λ2,α
χtM

e
−
∫ t
u

MλM+1,α,M
χv

dv
u < t < s

(1− Ps) + Ps(
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(4.4)

Where

• r : recombination rate per nucleotide

• µ : Mutation rate per nucleotide

• u : recombination time, follows a continuous uniform distribution between 0
and first coalescent time.

• ξt : Scaled population size at time t (Nt = ξtN0)

• χt = ξα−1
t

• M : Number of analyzed sequences (or individuals)

• α : The multiple merger parameter

• Ps = (1− e−Mrs) represents the recombination probability
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4.2.2 Simulated data
Simulated ARG

Using the sequence simulators msprime [91], one can simulate the Ancestral Re-
combination Graph of a sample. From the simulated ARG, one can find what state
of the HMM the sample is in at each position of the simulated sequences. Hence,
one can build the series of states along the genomes, and build a transition matrix.
The transition matrix is a square matrix (of dimension x defined as the number
of hidden states) counting the number of transitions from one of the x states to
another (it also counts the number of transitions from one state to the same state).
Using the transition matrix built directly from the exact ARG, one can estimate
parameters of SMC methods as if the HMM could perfectly infer the sequence
of hidden states. Hence estimations using the exact transition matrix represent
the upper bound of performance for those methods and can thus demonstrate the
potential accuracy of a method. Therefore, one can determine the best-case con-
vergence of any SMC method based on HMM. We use msprime to simulate the
ARG (also under constant population size) when the underlying coalescent model
is a Beta coalescent [149, 10]. We analyze the ARG assuming the recombination
rate is known or not ( i.e. the recombination rate is fixed or set free to be inferred).

4.2.3 Simulated Sequence data
To test the effects of assuming a Kingman coalescent process when the underlying
model is a Beta coalescent, we use msprime to simulate sequence data. We simu-
late sequence data (of diploid individual) under 2 demographic scenarios (constant
population size, sawtooth). We first check the effect of multiple mergers on demo-
graphic inferences by analyzing simulated sequence data under a Beta coalescent
where population size is constant. Under the Beta coalescent model, coalescence
time is not scaled linearly to the population size. Thus, to study the effect of
varying population size on inferences, we analyze simulated data under a Beta co-
alescent model where the population undergoes a sawtooth demographic scenario.

4.3 Results
We first study the effect of assuming a Kingman coalescent when the underlying
model is a Beta coalescent, results, when population size is constant are displayed in
Figure 4.1. All methods fail to correctly infer the population size, due to the scaling
discrepancy between the Kingman and Beta coalescence. However, all methods
correctly infer a constant population size for α values >1.5. Yet, for smaller α
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values, a spurious recent bottleneck can be observed. Results of MSMC2 for beta
values smaller than 1.9 are not displayed due to the method crashing for those
beta values. Decreasing the parameter of the Beta coalescence (increasing multiple
merger probability) increases the variance of inferences. Similar results are observed
when sequences are simulated under a sawtooth demographic scenario (Figure 4.2).
In addition, assuming a Kingman coalescent model when the underlying model is
a Beta coalescent with small a α value will slightly flatten demographic history.
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Figure 4.1: Performance of MSMC, MSMC2 and eSMC under a Beta
coalescent. Estimated demographic history by MSMC, MSMC2 and eSMC using
3 sequences of 100 Mb (respectively in blue, green and red) when population size
is constant (black) for different α values, 1.9,1.7,1.5,1.3 respectively in a),b),c) and
d). The recombination and mutation rate are set to 1 × 10−8 per generation per
bp.
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Figure 4.2: Performance of MSMC, MSMC2 and eSMC under a Beta
coalescent. Estimated demographic history by MSMC, MSMC2 and eSMC using
3 sequences of 100 Mb (respectively in blue, green and red) when population under-
goes a sawtooth demographic scenario (black) for different α values, 1.9,1.7,1.5,1.3
respectively in a),b),c) and d). The recombination and mutation rate are set to
1× 10−8 per generation per bp.

To check if our model can theoretically recover the past demographic history
and the parameter α of the Beta coalescent, we give as input the ancestral re-
combination graph to our new method SMβC. Results for data simulated under
a constant population size are displayed in Figure 4.3. For α values high enough
(>1.5), the constant population size is recovered. However, for smaller values, an
extremely high variance is observed, limiting all interpretations. In addition fixing
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(i.e. constraining) the recombination rate to its value seems to strongly bias in-
ferences and increasing variance. Similar results are obtained when the underlying
demographic history is sawtooth shaped (Figure 4.4). Estimated values of α are
written in Table 4.1. When the population size is constant and the recombination
rate is set free, α is fairly well recovered. However, when population size varies, α
can be underestimated. Fixing the recombination rate leads to poor estimations of
α.
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Figure 4.3: Performance of SMβC under a Beta coalescent. Best-case
convergence estimations of demographic history by SMβC using 3 sequences of 100
Mb with recombination rate fixed or set free to be inferred (respectively in red and
blue) when population size is constant (black) under 4 different α values 1.9,1.7,1.5
and 1.3, respectively in a),b),c) and d). The recombination and mutation rate are
set to 1× 10−7 per generation per bp.
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Figure 4.4: Performance of SMβC under a Beta coalescent. Best-case
convergence estimations of demographic history by SMβC using 3 sequences of 100
Mb with recombination rate fixed of set free to be inferred (respectively in red
and blue) when population undergoes a sawtooth demographic scenario (black)
under 4 different α values 1.9,1.7,1.5 and 1.3, respectively in a),b),c) and d). The
recombination and mutation rate are set to 1× 10−7 per generation per bp.

74



scenario α estimated α and r free estimated α and r fixed
Constant 1.9 1.82 (0.03) 1.63 (0.18)
Constant 1.7 1.63 (0.05) 1.24 (0.09)
Constant 1.5 1.53 (0.15) 1.4 (0.18)
Constant 1.3 1.35 (0.06) 1.31 (0.07)
Sawtooth 1.9 1.67 (0.03) 1.3 (0.06)
Sawtooth 1.7 1.59 (0.07) 1.16 (0.06)
Sawtooth 1.5 1.45 (0.08) 1.32 (0.08)
Sawtooth 1.3 1.38 (0.08) 1.32 (0.07)

Table 4.1: Average estimated values of α by SMβC over ten repetitions using
3 sequences of 100 Mb with recombination and mutation rate set to 1× 10−7

per generation per bp under a Beta coalescent process (with different alpha
parameter). The coefficient of variation is indicated in brackets.

In order to test if SMβC could suggest a Kingman coalescent, we analyzed the
ancestral recombination graph simulated under Kingman. Results for data simu-
lated under a constant population size are displayed in Figure 4.5. The constant
population size is recovered. However, there is a scaling discrepancy between the
simulated and estimated demographic history as in Figure 4.1. Similar results
are obtained when the underlying demographic history is sawtooth shaped (Figure
4.6). Estimated values of α are written in Table 4.2. Estimated alpha values are
higher than 1.85 (when r is set free) suggesting an underlying Kingman coalescent
process.
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Figure 4.5: Performance of SMβC under a Kingman coalescent. Best-case
convergence estimations of demographic history by SMβC using 3 sequences of 100
Mb with recombination rate fixed of set free to be inferred (respectively in red and
orange) when population size is constant (black) under a Kingman coalescent. The
recombination and mutation rate are set to 1× 10−8 per generation per bp.
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Figure 4.6: Performance of SMβC under a Kingman coalescent. Best-
case convergence estimations of demographic history by SMβC using 3 sequences
of 100 Mb with recombination rate fixed of set free to be inferred (respectively
in red and orange) when population undergoes a sawtooth demographic scenario
(black) under a Kingman coalescent. The recombination and mutation rate are set
to 1× 10−8 per generation per bp.
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scenario estimated α and r free estimated α and r fixed
Constant 1.93 (0.005) 1.9 (0.016)
Sawtooth 1.88 (0.009) 1.39 (0.09)

Table 4.2: Average estimated values of α by SMβC over ten repetitions
using 3 sequences of 100 Mb with recombination and mutation rate set to
1× 10−8 per generation per bp under a Kingman coalescent. The coefficient
of variation is indicated in brackets.

4.4 Discussion
In this study, we have demonstrated the effect of assuming a Kingman coalescent
process when the underlying coalescent process is a Beta coalescent. The scaling
discrepancy will lead to an erroneous inference of population size and thus tem-
poral interpretation of inferences. Assuming a Kingman can also lead to flattened
demographic history due to the non-linear scaling of the coalescence rate in the
Beta coalescence. In addition, a spurious recent bottleneck can be observed under
small α values (<1.7), which has also been found as a signature similar to selection
[148]. Potentially indicating confounding effect with pervasive or strong selection.

When given the ARG and sufficient data, our method can recover the α param-
eter under a constant population size (as well as recovering the constant population
size). However, variations of the population size seem to affect the estimation of α
(by underestimating it). Yet, inferences of α still make sense to some extent since
the smaller α, the smaller α is inferred. In addition, our model fails to recover the
recombination rate from the ARG (overestimating it by a factor between 1 and 2),
potentially indicating a scaling issue. This discrepancy could originate from the
scaling discrepancy between our implementation and the simulator (our implemen-
tation tends to the Kingman coalescent when α tends to 2, not the simulator), but
could also originate from the limit of the Markovian hypothesis when dealing with
multiple merger [19]. In addition, we observe that smaller α values, increase the
variance of estimations, suggesting the needs of increasing the data for smaller α
values.

We found our method capable to suggest a Kingman coalescent under a constant
population size. However, variations of population size can slightly diminish the
inference of α, suggesting that population undergoing strong and rapid variation of
population size could mimic the signature of multiple merger events as suggested
in [70, 19]. In addition, our method requires phased data, which is known to bias
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inferences [168]. One would need to test the effect of phasing error on demographic
and α estimations.

A surprising result we found is that multiple merger events seem to not strongly
affect the ratio of recombination and mutations (ρθ ). However, decreasing α (i.e.
increasing the relatedness between individual) should increase linkage disequilib-
rium and thus diminish ρ

θ . Intuition would suggest (under neutrality) that multiple
merger events (i.e. large production of offspring) should increase inbreeding the
population, thus results similar to self-fertilization or inbreeding are expected. We
failed to find in the literature formulas describing the probability of "effective re-
combination" (i.e. visible) under the beta coalescent. In addition, the potential
"invisibility" of recombination events in presence of large offspring production is
currently not implemented in msprime. Therefore there is a correction that re-
mains to be derived in our implementation, which could improve the estimation of
α and the biological meaning behind our model.

On a brighter tone, new statistics have arisen, capable of suggesting an under-
lying Beta coalescent process and being largely insensitive to the population size
[139]. Thus, prior values of α could be first obtained or hinted and then inputted
in SMβC [97, 68]. In addition, inputting/inferring an erroneous α value will lead to
extremely strong biased population size inferences (e.g. a population of 10 individ-
uals or 1010, depending on the bias on α), resulting in inferences with no biological
meaning. Thus, boundaries on the potential values of Beta could easily be calcu-
lated by setting realistic boundaries on the population size (e.g. 100< population
size <108, depending on the species), which could strongly improve inferences ac-
curacy. If the data allows it, the model could be selected using the singleton-tail
statistic of [98]. At last, ploidy can strongly affect the Beta coalescence process
[11]. Currently, only an implementation for a haploid population is available, but
an extension to account for different ploidy is in development.
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Chapter 5

Integration of methylation data in
the Sequentially Markovian
Coalescent

5.1 Motivation
With the simultaneous rise of sequencing technologies and theoretical frameworks
[170, 171, 156, 92], it has now become basic routine to estimate the past demo-
graphic history of populations and species [147]. Interpreted under the correct
model [140, 22, 176, 151], the past demographic history will describe what the
species has undergone, help detecting selection signatures [156, 131] and can facil-
itate the detection of effective population size decrease [178], unveiling endangered
populations. Hence, the demographic history is a key information in evolution-
ary biology, justifying the massive theoretical framework and methodology which
has been developed to estimated the past demographic history from whole genome
sequencing data [152, 161, 156, 8, 140, 89, 109, 87, 155, 175, 71, 168, 146, 151,
176, 103, 73, 23]. Methodology can be clustered in two main categories [157, 9],
those based on the Site Frequency Spectrum (SFS) (or other summary statistics)
[73, 109, 8, 155, 175, 13, 138], and those going along the sequence inferring the An-
cestral Recombination Graph (ARG) from which model parameters are estimated
[103, 146, 168, 156, 6, 176, 151, 152, 161]. Although there is evidence that methods
based on the SFS can display higher accuracy in recent times [9], we will focus on
the second class of model which has higher resolution and can display high accuracy
for small sample [103, 146, 176, 168, 156, 151, 157, 150].

The first method to integrate (i.e. account and infer recombination events
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while analyzing whole genome sequence data to infer the demographic history is
the famous Pairwise Sequentially Markovian Coalescent (PSMC) [103]. This was
rendered possible after the work of [180, 115, 111] allowing to model recombina-
tions as a point process along sequences in a tractable way. Ever since PSMC was
released, its accuracy in the far past has not been outperformed [156, 53]. However,
its limitation to infer events in recent times has been acknowledged [146, 168, 9]. To
improve and outperform PSMC, theoreticians and computational biologists have
opted for one main strategy: integrating more data. In order to improve inference
in recent times, PSMC has been extended to simultaneously account for multiple
sequences (i.e. more than two) into the method known as the Multiple Sequentially
Markovian Coalescent (MSMC) [146]. Methods developed after MSMC followed
suit, with MSMC2 [46] extending PSMC by incorporating pairwise analysis, in-
creasing efficiency, and the number of sequences that can be inputted (up to a
hundred), resulting in more accurate results. SMC++ [168] brings analyses to
another level by allowing the use of hundreds of unphased sequences to increase
accuracy in recent times [168]. After SMC++, relate has been developed [156],
emancipating itself from the sequentially markovian coalescence theory by using
the theory of [105]. With this new theoretical basis, relate can scale up to sample
size of multiple thousands, outperforming in recent times (i.e. < 1000 generations
ago ) all other methods.

Currently, most sophisticated methods either require a large number of well se-
quenced individuals (>20) to display good performance in recent times [156, 168,
109]. Yet, such data sets might be unrealistic for biologists working under budget
constraints or endangered species. However, it has recently been shown that SMC
methods fail to correctly extract all information from genome sequence polymor-
phism data, partially explaining the poor accuracy in recent times [150]. Theoret-
ical results suggest good performance in recent times could be obtained given an
optimum amount of data and by correctly recovering the ancestral recombination
graph [150, 71]. Authors show that segregating sites alone are insufficient to cor-
rectly recover all information from sequence data [150]. However, current models
ignore microsatellites, insertion, deletions, transposable elements, and epigenetics
markers [156, 168, 6, 176] which could all be seen as markers and potentially be used
and accounted for. Thus, there is a huge potential improvement that would not nec-
essarily increase the monetary cost (as much as sequencing hundreds of individuals)
of analysis. As a first step, we here offer a novel method (SMCm) simultaneously
integrating sequence and methylation (on cytosine in cytosine-guanine context)
polymorphism data leading to increased accuracy in recent times. Our choice is
based on the rising availability of bisulfite sequencing data [182] (i.e. methylation
data ).
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Studies on plant (and some other species e.g. fungus) methylome data suggests
that epimutations (or epigenetic modifications) are heritable [65, 100, 185, 50].
Furthermore, studies of the methylated Site Frequency Spectrum (mSFS) of Ara-
bidopsis thaliana is well described by theoretical prediction [173, 21], suggesting
robust modeling and hypothesis [173]. Based on the Vidalis results, epimutations
can be considered neutral at coding regions ( while this might be not true for
transposable elements) [173, 164, 141]. From those results, it became reasonable to
integrate methylation polymorphism information to sequence polymorphism data
in order to improve the accuracy of current methods. Because methylation and
demethylation rates are much faster than mutation rates [172], methylation poly-
morphism allows us to estimate the length of short genealogy branches (i.e. recent
coalescent event). In addition, it also solves a major flaw in most methods, which
is the sensibility toward the ratio of recombination over mutation. When methy-
lations (or epimutations) scales much faster than recombination, recombinations
which cannot be detected due to the lack of segregating sites (i.e. SNPs ) can be
detected due to methylation polymorphism. Furthermore, methylation polymor-
phism can help to detect and distinguish demographic scenarios with a strong and
rapid variation of population size, as current methods fail to correctly detect them
[150].

From the Pairwise Sequentially Markovian Coalescent, we derive an inference
method integrating methylation polymorphism [146]. We modify the emission ma-
trix to account for methylation polymorphism allowing for new types of observa-
tions as well as changing the original mutation model to now assume a finite site.
We also developed a simulator extension, capable of creating sequences which take
as input an ARG in the Newick format (e.g. outputted by ms and scrm [159, 85])
or from the sequence simulator msprime [91]. In this chapter, we will focus on
simulated data, but argue the application to sequence data in the discussion. We
first demonstrate the increased accuracy and ability to detect a rapid and strong
variation of population size when inferring demographic history with our approach.
We then show the increasing capacity to estimate the ARG with the increasing pro-
portion of methylation polymorphism annotated. We then establish the model’s
capacity to estimate and detect recombination rate higher than the mutation rate.

5.2 Materials and Methods

5.2.1 Methods
In this study, we use two different SMC-based methods: eSMC and our new SMCm.
All methods are Hidden Markov Models and use whole genome sequence polymor-
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phism data except SMCm which also integrates methylation polymorphism. The
hidden states of these methods are the coalescence time of a sample size 2. To have
a finite number of hidden states, the coalescence times are grouped into x bins (x
being the number of hidden states) resulting from the discretization of time (and
an index describing coalescing individuals for sample size >2). The reasons for our
model choices are as follows: SMCm to check the convergence properties of our
new method and demonstrate its efficiency to better uncover coalescence events.
eSMC, from which SMCm is derived, to compare its convergence properties with
SMCm to measure the accuracy increase of integrating methylations.

eSMC

eSMC focuses on the coalescence events between only two individuals, and, as
a result, does not require phased data. The algorithm goes along the sequence
and estimates the coalescence time at each position. Both methods check whether
the two sequences are similar or different at each position. If the two sequences
are different, this indicates a mutation took place. The absence of mutation (the
two sequences are identical) suggests a recent common ancestor. In the event of
recombination, there is a break in the current genealogy and the coalescence time
consequently takes a new value. A detailed description of the algorithm can be
found in [46, 176, 151].

SMCm

SMCm is based on eSMC, thus it focuses on the coalescence events between only
two individuals, hence also does not require phased data. The main, difference
is that it accounts for sites that are potentially methylated. Because the model
accounts for epimutations, there are five possible observations. As in eSMC, if the
two nucleotides are identical at a non methylable site, we indicate this as 0. If the
two nucleotides are different, it is indicated as 1 (i.e. a mutation occurred). If the
methylation state is annotated at a position there are three possible observations.
If the two cytosines are unmethylated, it is indicated as a 2. If the two cytosines
are methylated, it is indicated as a 3. If at a position a cytosine is methylated and
the other one unmethylated, it is indicated as a 3. Depending on the mutation,
methylation and, demethylation rates, each observation has a different probability
of occurring depending on the coalescence time. The complete description and
the probabilities can be found in appendix A.4. SMCm has been implemented in
a R package SMCm, only available upon request as the package is currently in
development.
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5.2.2 Simulated data
Throughout this chapter, we simulate different demographic (constant population
size, sawtooth scenario and, bottlenecks) scenarios using the coalescence simulation
program scrm [159]. To simulate our sequences with annotated methylation, we
first simulate genealogies in the Newick format. We then process the ARG to create
sequences to which we add mutations and epimutations. To assess mutations and
epimutations we build a mutation and epimutation model. Our model is inspired
by the work of [21] which we extended using formulas of [184] (which assumes a
Juke-Cantor model) for any sample size. Results for mutations can be found in
theorem 1 of appendix A.4. Results for mutations and epimutations can be found
in theorem 2 of appendix A.4.

As methylation and demethylation occur at higher rates than recurrent muta-
tions, we expect to increase the accuracy of inferences in recent times. We enlarge
the analysis time window to infer demographic history in recent times. To check
the effect of integrating epimutations, we simulate data under a sawtooth demo-
graphic scenario (sample size two with ten scaffolds of 100 Mb, mutation and,
recombination rate are set to 1× 10−8 per bp per generation.). We simulate data
where only 30 % of CG have their methylation sate annotated, which is slightly
more than what is expected from the plant model Arabidopsis thaliana in CG con-
text, but similar to the proportion of cytosine which can be methylated globally
[106, 38, 187, 61]. In addition, to test the effect of the methylation and demethy-
lation rates, we simulate data with methylation rate and demethylation rate of
1× 10−4 and 5× 10−4 respectively, or 1× 10−3 and 5× 10−3 respectively which
are rates that have been observed in Arabidopsis thaliana [173].

Bottleneck events can be smoothed when inferred by SMC methods [150]. In
addition, correctly inferring bottlenecks can be crucial in the field of conservation
genetics and, because of small population sizes, the lack of SNPs can lead to poor
demographic history inferences. Thus we simulate sequence data (sample size 2
and sequence length of 100 Mb) with mutation and epimutations under a bottle-
neck scenario with two average population sizes (ten thousand or one thousand) to
investigate the effects of adding epimutations on inferences. Mutation and recom-
bination rates are set to 1× 10−8 per bp per generation. Methylation rate is set to
1 × 10−4 and demethylation rate set to 5 × 10−4. Again, we simulate data where
only 30 % of CG have their methylation sate annotated.

When the recombination rate is higher than the mutation rate, inferences of
past demographic history and inferences of the recombination rate can be biased
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[168, 151]. Since methylation and demethylation rates are faster than the muta-
tion rate and recombination rate, we study the effect of adding epimutations on
inferences when the mutation rate is slower than the recombination rate. To do
so we simulate the sequence data under a bottleneck scenario of sample size 2 and
with sequences length of 100 Mb. The mutation rate is set to 5 × 10−9 and the
recombination rate to 5 × 10−8 per bp per generation. Methylation rate is set to
1×10−4 and demethylation rate set to 5×10−4. In addition, we increase the num-
ber of iteration to optimize likelihood to 200 as it was shown to increase methods
accuracy (Supplementary Figure A.18).

5.3 Results
Results of eSMC and SMCm under the sawtooth demographic history with an
enlarged time window are displayed in Figure 5.1. eSMC and SMCm both cor-
rectly infer a sawtooth demographic scenario. Yet, SMCm better infers population
size variation, especially in recent times. In addition SMCm also better infers
the amplitude of population size variation. Similar results are observed when the
methylation and demethylation rate are respectively set to 1×10−3 and 5×10−3 per
generation per bp (Supplementary Figure A.23). However, when analyzing smaller
data sets (one scaffold of 100 Mb), SMCm displays higher variance in recent times
than eSMC (Supplementary Figure A.24).
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Figure 5.1: Performance of eSMC and SMCm under a sawtooth scenario.
Estimated demographic history by SMCm and eSMC using 10 scaffolds each of 100
Mb with sample size 2 (respectively in red and orange) under a sawtooth scenario
(black). The recombination and mutation rate are set to 1×10−8 per generation per
bp and the methylation and demethylation rate are respectively set to to 1× 10−4

and 5× 10−4 per generation per bp.

Results of eSMC and SMCm under a recent bottleneck are represented in Figure
5.2. Both methods correctly infer the amplitude of population size variation. Yet
eSMC fails to infer the sudden variation of population size and infer exponential
variation of population size. However, SMCm correctly infers the rapid change of
population size undergoing a bottleneck. Similar results are obtained when the
population size is ten times smaller (Supplementary Figure A.25).
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Figure 5.2: Performance of eSMC and SMCm under a bottleneck sce-
nario. Estimated demographic history by SMCm and eSMC using 10 scaffolds
each of 100 Mb with sample size 2 (respectively in red and orange) under a recent
bottleneck (black). The recombination and mutation rate are set to 1 × 10−8 per
generation per bp and the methylation and demethylation rate are respectively set
to to 1× 10−4 and 5× 10−4 per generation per bp.

Results of eSMC and SMCm under a recent bottleneck with ρ
θ = 10 are dis-

played in Figure 5.3. SMCm correctly infers the population size variation. But
eSMC fails to infer the sudden variation of population size and overestimates the
population size in recent times. SMCm estimates on average over ten repetitions
the ratio ρ∗

θ = 9.18 with a coefficient of variation of 0.041. Yet, eSMC estimates
on average ρ∗

θ = 7.26 with coefficient of variation of 0.12.
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Figure 5.3: Performance of eSMC and SMCm under a bottleneck sce-
nario. Estimated demographic history by SMCm and eSMC using simulated se-
quences of 100 Mb with sample size 2 (respectively in red and orange) under a
bottleneck (black). The recombination is set to 1 × 10−7 per generation per bp,
the mutation rate to 1 × 10−8 and the methylation and demethylation rate are
respectively set to to 1× 10−4 and 5× 10−4 per generation per bp.

5.4 Discussion
Throughout this study, we demonstrated the effect of integrating epimutations in
the Pairwise Sequentially Markovian Coalescent. Accounting for epimutations in-
creases inferences accuracy in recent times. SMCm outperforms in recent times
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any other methods given the amount of data that is used [156, 168]. This indicates
that with the use of epimutations, SMCm can better infer hidden states in recent
times. However, estimates in the far past seem to be unaffected by the integra-
tion of epimutations. Thus, epimutations cannot be used in the hope of increasing
analysis accuracy estimating parameters too far in the past (expected due to ho-
moplasy). Obtained results demonstrate that SMCm can also be used to increase
the accuracy of inferences in species presenting small diversity (e.g. in populations
with a small mutation rate or presenting a small effective population size). Yet,
additional analysis to test the effect and presence of selection on inferences are
required since signatures of selection in Arabidopsis thaliana have been found [120]
and similar bias found in [148] are expected. We show that adding and accounting
for epimutations should only impact inferences in recent times, thus if the discrep-
ancy in the far past is observed when accounting or not for epimutations, it could
suggest the presence of unaccounted phenomena (such as selection).

However, our analyses suggest that the increase in accuracy can depend on the
rate of methylation and demethylation. As those rates can take many different
values from one species to another [173], leading to variation of the ratio of methy-
lation and demethylation. Thus, more analyses are necessary to understand and
comprehend the effect of methylation and demethylation rate on inferences. In
addition, the effect of methylation and demethylation rate has to be interpreted in
the light of the mutation rate, since the effect of integrating epimutations might
strongly depend on the ratio of epimutation and mutation speed. Furthermore,
SMCm results using small data sets can display high variances, much more than
when ignoring epimutations. Hence, SMCm requires larger data sets than eSMC
to perform estimations with low variance. Where 100 Mb seems to be a reasonable
amount of data to infer demographic history with eSMC (or MSMC2) [150], 1 Gb
seems to be more suited for SMCm.

One of the main strengths of integrating epimutations is to overcome issues orig-
inating from the recombination rate pointed in [168, 151, 6, 156]. We demonstrate
that integrating epimutations helps to correctly infer the recombination rate when
the recombination rate is higher than the mutations rate. Based on [151], epimu-
tations could thus help to better measure biological traits where mutations alone
would fail. In addition, integrated into iSMC [6], epimutations could potentially
help to unveil recombination maps in species presenting a high recombination rate
or small diversity. More interestingly, integrating epimutations can lead to correct
past demographic inferences although the recombination rate is higher than the mu-
tation rate. This results is of major importance since previous methods presented
performance limited by the ratio recombination over mutation [168, 151, 156, 150].

89



Thus, trustful inferences can now be obtained independently from the ratio of re-
combination over mutation, opening doors for reliable inferences for many different
species.

As an exponential and sudden variation of population size can have different
ecological interpretations, it is crucial to be able to distinguish them, which is not
possible with current methods [158, 9, 150]. However, we show that integrating
epimutations helps to detect a sudden variation of population size and distinguish
them from exponential variation. Our results tend more to best-case convergence
described in [150, 71] than with sequence polymorphism data alone. In addition,
the SMC theory seems to smooth over time the estimations of migration [176]. Inte-
grating epimutations in MSMC-IM could potentially help to better infer migrations
events.

At last and most importantly, we deliver a practical demonstration that there is
more information in the genome that can be extracted. No current method outper-
forms the best-case convergence presented in [71, 150]. This implies that current
models fail to correctly infer coalescence time along the sequence. Hence, simul-
taneously integrating epimutations and mutations increases the model’s capacity
to recover the coalescence time, especially in recent times which can remain prob-
lematic [92, 156]. However, results can still be improved as only a fraction of the
genome information is currently accounted for. Any heritable mechanism which
is currently ignored in analyses could potentially be integrated (e.g. insertions
and deletions) to improve the model accuracy uncovering new and more reliable
estimations. However, this requires to correctly model all the accounted under-
lying molecular processes in a coherent and unified theory, forcing us to deeper
understand the mechanism of genome evolution.
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Chapter 6

General discussion and
conclusions

6.1 Summary
In this thesis, I focus on simultaneously inferring species history and species specific
traits from whole genome sequence data. The current state of the art methods to
infer history rely on the Sequentially Markovian Coalescent (SMC) approximation.
Yet, these methods are designed for hominid species and make assumptions (e.g.
Wright-Fisher Model) which are violated in other species or even in humans. I here
study if current methods based on the SMC can be extended or complemented to
infer and account for species specific traits.

By studying the convergence properties of the Sequentially Markovian Coales-
cent (SMC) and methods that derive from it, I find that the demographic history
of populations that do not undergo a rapid and strong variation of population size
can be correctly recovered. Yet, my results also show that even without violating
the model’s assumptions, some scenarios can never be recovered. This is because
the performance of SMC methods relies on their capacity to recover and infer the
ancestral recombination graph, which I find to be linked to the ratio of recombina-
tions over mutations (ρθ ). The higher this ratio, the poorer the inference. Results
show that none of the current methods based on the SMC can deliver correct infer-
ences when the ratio value is greater than one (i.e. ρ

θ > 1), which seems to be the
ratio value in many species. In addition when I test the effect of problems in the
data sets (i.e. hypothesis violation), I observe drastic biases in the inferences. I
find that a non-constant mutation rate along the sequence has the strongest conse-
quence on inferences. Errors in the SNP calling introducing spurious SNPs can also
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lead to a strong bias on inferences (contrary to missing SNPs). From the results,
I, therefore, recommend stringent filtering and, if possible, high quality reference
genomes and sequence data. Lastly, I find that transposable elements can lead
to the spurious signature of population size decrease, yet if they are detected and
masked, they will not affect the inferences.

Since the accuracy of current SMC methods relies on ρ
θ , I integrated epimu-

tations (i.e. methylation and demethylation) in the signal (i.e. input data) to
increase the amount of information with which to recover the genealogy. My re-
sults show that the correct past demographic history and ρ

θ can be inferred even
when ρ

θ > 1. When integrating epimutations, results are accurate enough to distin-
guish sudden from smooth population size variation, offering a more appropriate
interpretation of what changes the population has undergone. Yet, not all species
respect the underlying necessary hypothesis (e.g.mammals). However, many other
genome features are ignored by current methods (e.g. insertions and deletions)
but if they are correctly integrated and accounted for an increase in accuracy can
be obtained. In addition, integrating more genome features in the signal not only
strongly improves the inference of the ancestral recombination graph but also leads
to a more coherent model describing genome evolution.

When integrating self-fertilization and dormancy, I find they have similar ef-
fects as a re-scaling of the coalescence and recombination rate. They can thus be
inferred through the comparison of the observed ratio of recombination over mu-
tation (ρθ ) and the expected one based on the known mutation and recombination
rates ( rµ). Therefore my model explains the discrepancy one can observe between
ρ
θ and r

µ , which before remained unexplained and undiscussed. When applied to
data, results show dormancy in Daphnia pulex and self-fertilization in Arabidopsis
thaliana at the expected rates. However, my approach alone is not sufficient to
distinguish self-fertilization from dormancy and additional experiments, analyses,
or prior knowledge are required to distinguish between them. In addition, other
biological traits can affect the ratio ρ

θ (e.g. occurrence of clonal events). Hence, the
observed ρ

θ is a result of many biological mechanisms that need to be accounted
for to interpret ρ

θ . I currently assume self-fertilization and the dormancy rate to
be constant in time, which might not be true [55]. The results of Barroso et al.
[6] suggest that detecting a variation of ρ

θ in time is theoretically feasible (under
the assumption that the recombination rate is constant along the genome). I de-
rived such a theoretical framework and have implemented it, data analysis remains
to be done to demonstrate the accuracy of my approach. Also, as my model as-
sumes the absence of population structure, supplementary studies are required to
understand the effect of admixture or migration on the observed ρ

θ . Furthermore,
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self-fertilization or dormancy being independent of migration might not be true and
will have to be correctly modeled according to species biology (e.g. discrepancies
between pollen and seed migration rate). As a result, not correctly accounting for
self-fertilization or dormancy could lead to erroneous admixture inferences.

In some species, individuals can produce a large number of offspring (in com-
parison to the population size), increasing the variance in the number of descen-
dants between individuals, as a consequence the life cycle cannot be described by a
Wright-Fisher model (e.g. in fungi, bivalve mollusks and in some fish species). As a
result, the genealogy cannot be described by Kingman coalescent (even a re-scaled
one). In this case, the genealogy can be star-shaped (more than two individuals can
simultaneously coalesce). I built and implemented a Sequentially Markovian Coa-
lescent model based on the Beta coalescent. In this model, the probability of being
"star-shaped" depends on a parameter α which is inferred. I find my model capa-
ble of accounting and measuring the probability of the genealogy being star-shaped
but does not deliver the "ecological origin" of the star-shaped genealogy (i.e. the
interpretation of the inferred ancestral recombination graph belongs to the user).
Additional analysis of the linkage disequilibrium and knowledge on offspring pro-
duction in the species are required to distinguish between strong selection, strong
bottlenecks, and neutral large variance in offspring production.

6.2 General Discussion
As selection can strongly bias demographic inferences, which are themselves nec-
essary for selection scans, there is a current lack of methodology to account for
selection when inferring past demographic events. Since multiple merger events
can describe strong positive selection (directional selection) because all individuals
will rapidly inherit the advantageous locus and thus simultaneously coalesce to a
common ancestor, from the SMβC I am building a model similar to iSMC. Instead
of having the recombination rate varying along the sequence, the alpha parameters
(i.e. probability of a star shaped genealogy) would now become a hidden state.
From this model, one could either detect potential regions under selection and re-
move them to correct demographic inferences (cf chapter 3), or directly account for
them while simultaneously inferring the rate at which selection affects linkage dis-
equilibrium. As additional analyses, regions detected or suspected to have a small
α parameter (i.e. potentially being under selection) can be compared to existing
results of selection scans [133] to test the coherence of the methodology. These
regions can also be studied more closely and one can check if they correspond to
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coding or promoting regions. Furthermore, the strength of selection could be mea-
sured or interpreted through the α estimated. Finally, the α parameter could be
explained in the light of the simultaneously inferred coalescence time. More pre-
cisely, a small α (i.e. star shaped genealogy) with a small coalescence time could
indicate a region currently under selection. Yet a small α in regions displaying high
coalescence time could suggest a region that was under selection at some point in
the species history (but no longer is).

Furthermore, selection can originate from many different and non-independent
mechanisms (e.g. polygenic selection, background selection, fluctuating selection,
or balancing selection) which we still fail to fully model and infer. More precisely
each type of selection might affect the local ρ

θ , in a different way. For example
background selection could decrease the number of observed SNPs (i.e. increase
ρ
θ ) whereas balancing selection could maintain high diversity (i.e. decrease ρ

θ ).
Distinguishing the different mechanisms of selection can be a difficult task but of
major importance since these mechanisms have very different ecological or biolog-
ical interpretations. By building more complex theoretical models describing the
topology of the ancestral recombination graph under the different selection mod-
els, one could predict and better understand the specific genomic signature of each
selection mechanism. Such powerful theoretical results could help us detect and
select the correct selection model or mechanism observed (locally or not) in the
genome. Yet, the complexity of such analyses could be such that many different
scenarios could potentially explain the observed data (i.e. identifiability issue).
Hence, additional analyses based on different statistics or approaches (e.g. based
on other population genetics approaches [124]) to select one model from another
will be required. New theoretical frameworks might arise (e.g. Phase-type theory
[82], already applied to balancing selection [186]), offering new tools to solve te-
dious modeling problems. Integrating more data could also be a solution, or at
least a part of the solution as we will discuss below.

One aspect of genome data that is currently not explored is the difference in
the information that can be extracted from the genome. Genomes are shaped by
many complex molecular and evolutionary forces. Assuming the molecular forces
are well understood, then the discrepancy from what is inferred using different
genome features could help infer and uncover evolutionary forces. For example, one
could use only epimutations to infer past demographic history or only use sequence
polymorphism data, a discrepancy between the two inferences could suggest an
underlying selection mechanism affecting at least one of the input data sets (i.e.
genome and/or methylome). Otherwise, inferring similar scenarios could support
the neutral hypothesis. By integrating more genomic characteristics in analyses
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(e.g. microsatellites repetition polymorphism, copy number variation of genes,
transposable elements presence/absence polymorphism), and by assuming them
being independent or not, new scenarios could be unveiled and help in unveiling
specific selection mechanisms.

Integrating more genomic characteristics might require changing time scales,
as all molecular mechanisms do not occur at the same rate. For example, complex
chromosomic rearrangements are assumed to not occur at the "coalescence" time
scale. However, they can occur at the phylogeny scales. Inspired by the work of
Marin et al. [110], one could build an approach inspired by the SMC (or a more
relevant model) to infer the evolutionary history of species along the genome. This
approach could also the comparison of species genomes, focusing on genomic dis-
crepancies relevant at the phylogeny time scales. Such an approach, most likely
based on the Multi-Species Coalescent [31, 80, 26] (MSC), could complement the
work by Marin et al [110], unveiling more complex evolutionary scenarios, giving
a new interpretation of species trees and gene genealogies, and deepening our un-
derstanding of genome evolution on longer time scales. However, inferences could
require strong hypotheses such as nonvariation of molecular rates in time and along
the genome, neutrality, or prior knowledge on the mechanisms driving genome evo-
lution at this time scale. Besides, the differences in ecological traits, generation
time, and reproduction mechanisms between species might make such analyses
unrealistic. Yet overcoming all these issues could render feasible the inference of
ecological/biological traits or even genome of ancestral species, a major achieve-
ment in the field of biology. Most likely, this approach would only be relevant when
analyzing sisters species or clades of recently diverged species (e.g. The Tomato
clade [134] )

Modeling and inferring inter-specific coevolution from genomes remains chal-
lenging. However, assuming a system of non-independent species (e.g. species
belonging to a common trophic network within an ecosystem [18] ), one could pre-
dict the effect of interacting species on the topology of the ancestral recombination
graph (i.e. the distribution of genealogies) of each species. Based on those theo-
retical results, one could study and test species being independent or coevolving
by studying the correlation of their ancestral recombination graph or by describ-
ing the ancestral recombination graph of a species conditioned to the ancestral
recombination graph of the other species. However, similar analyses were made
and results are very noisy as shown in [75], thus accurate and coherent modeling
with robust statistics are still required to make such approaches relevant. This
approach would require integrating the specific biological traits of each species (as
mentioned above), which is currently not an easy task, potentially explaining part
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of the observed noise.

6.3 Conclusion
As a conclusion, ecological traits can be detected and measured if correctly modeled
from genome sequence data. With the development of new theoretical frameworks,
it will become possible to simultaneously integrate ecological traits, the variation
of population size, admixture, and selection in a unified and coherent model. In
order to recover model parameters, I showed that the signal can be enhanced by
integrating more genomic characteristics than just sequence polymorphism data.
Integrating new genomic characteristics will lead to increasing the time frame in
which inferences can be made, potentially going beyond the field of population
genetics and reaching the field of phylogenetics.
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Appendix A

Appendix

A.1 Appendix of Chapter 2

A.1.1 Supplementary Figure
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Figure A.1: Estimated demographic history in four simple demographic
scenarios with seed banking. Estimated demographic history using four sim-
ulated sequences of 10 Mb under four different demographic scenarios with 10
replicates. Mutation and recombination rate are set to 1.25× 10−8 per generation
per bp. Simulation were done under four different germination rate β. We have
β = 1 (red), 0.5 (blue), 0.2 (green) and 0.1 (purple). Therefore r

µ = 1 and we
respectively have ρ

θ = 1 ,ρθ = 0.5,ρθ = 0.2 and ρ
θ = 0.1. The simulated demographic

history is represented in black. a) Demographic history simulated under a constant
population size. b) Demographic history simulated under a bottleneck. c) Demo-
graphic history simulated under an expansion. d) Demographic history simulated
under a decrease. In addition we simulated data under four different germination
rate β. β* equal the estimated germination rate.

98



1e+01 1e+02 1e+03 1e+04 1e+05

2
3

4
5

6
7

8

Generations ago

po
pu

la
tio

n 
si

ze
 (

lo
g1

0)

σ :0  σ *: 0.4
σ :0.5  σ *: 0.69
σ :0.8  σ *: 0.83
σ :0.9  σ *: 0.9

a) eSMC

1e+01 1e+02 1e+03 1e+04 1e+05

2
3

4
5

6
7

8

Generations ago

po
pu

la
tio

n 
si

ze
 (

lo
g1

0)

b) MSMC

1e+01 1e+02 1e+03 1e+04 1e+05

2
3

4
5

6
7

8

Generations ago

po
pu

la
tio

n 
si

ze
 (

lo
g1

0)

c) MSMC2

1e+01 1e+02 1e+03 1e+04 1e+05

2
3

4
5

6
7

8

Generations ago

po
pu

la
tio

n 
si

ze
 (

lo
g1

0)
d) PSMC'

Figure A.2: Estimated demographic history with selfing under r
µ =

5.Estimated demographic history using four simulated sequences of 10 Mb and
ten replicates under a sawtooth demographic scenario (black). Simulation were
done under four different self-fertilization rate σ (0,0.5,0.8 and 0.9). The mutation
is set to 1.25× 10−8 and the recombination rate to 6.25× 10−8 per generation per
bp. Therefore r

µ = 5 and respectively ρ
θ = 5 ,ρθ = 2.5,ρθ = 1 and ρ

θ = 0.5. Estimated
demographic history are represented for all tested self-fertilization, σ = 1 (red), 0.5
(blue), 0.2 (green) and 0.1 (purple). The demographic history is estimated using a)
eSMC where σ* equals the estimated self-fertilization rate, b) MSMC, c) MSMC2
and d) PSMC’.
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Figure A.3: Estimated demographic history in four simple demographic
scenarios with selfing. Estimated demographic history using four simulated
sequences of 10 Mb under four different demographic scenarios with 10 replicates.
Mutation and recombination rate are set to 1.25 × 10−8 per generation per bp.
Simulation were done under four different self-fertilization rate σ (0,0.5,0.8 and
0.9). Therefore r

µ = 1 and respectively ρ
θ = 1 ,ρθ = 0.667,ρθ = 0.333 and ρ

θ = 0.182.
The simulated demographic history is represented in black. a) Demographic history
simulated under a constant population size. b) Demographic history simulated
under a bottleneck. c) Demographic history simulated under an expansion. d)
Demographic history simulated under a decrease. In addition we simulated data
under four different self-fertilization rate σ . We have σ = 0 (red), 0.5 (blue), 0.8
(green) and 0.9 (purple). σ* equal the estimated self-fertilization rate.
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Figure A.4: Possible selfing and seed banking value where r
µ = 1 . Possible

estimated self-fertilization and germination rates because of confounding effect us-
ing four simulated sequences of 10 Mb under a sawtooth demographic scenario and
four different combinations of germination (b) and self-fertilization (s) rate but re-
sulting in the same ρ

θ = 0.15. Mutation rate is set to 1.25×10−8 and recombination
rate to 1.25× 10−8 per generation per bp. Therefore r

µ = 1. The four combination
are : a) σ = 0.4 and β = 0.2, b) σ = 0.857 and β = 0.6, c) σ = 0.919 and β = 1 and
d) σ = 0 and β = 0.15. Hence, for each scenario ρ

θ = 0.15 For each combination
of β and σ, eSMC was launched with five different prior settings: ignoring seed
banks and self-fertilization (red), accounting for seed banks and self-fertilization
but without setting priors (blue), accounting for seed banks and self-fertilization
with a prior set only for the self-fertilization rate (green), only for the germination
rate (orange) or for both (purple).
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Figure A.5: Estimated demographic history with selfing and seed bank-
ing where r

µ = 6.667 . Demographic history estimated by eSMC for ten replicates
using four simulated sequences of 10 Mb under a sawtooth demographic scenario
and four different combinations of germination (b) and self-fertilization (s) rate but
resulting in the same ρ

θ = 1. Mutation rate is set to 1.25×10−8 and recombination
rate to 8.335×10−8 per generation per bp. Therefore r

µ = 6.67. The four combina-
tion are : a) σ = 0.4 and β = 0.25, b) σ = 0.75 and β = 0.6, c) σ = 0.85 and β = 1
and d) σ = 0 and β = 0.15. Hence, for each scenario ρ

θ = 1 For each combination
of β and σ, eSMC was launched with five different prior settings: ignoring seed
banks and self-fertilization (red), accounting for seed banks and self-fertilization
but without setting priors (blue), accounting for seed banks and self-fertilization
with a prior set only for the self-fertilization rate (green), only for the germination
rate (orange) or for both (purple). σ* and β* respectively represent the estimated
self-fertilization and germination rate.
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c) σ :0.919  β :1
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d) σ :0  β :0.15

Figure A.6: Possible selfing and seed banking value where r
µ = 6.667 .

Possible estimated self-fertilization and germination rates because of confounding
effect using four simulated sequences of 10 Mb under a sawtooth demographic
scenario and four different combinations of germination (b) and self-fertilization
(s) rate but resulting in the same ρ

θ = 1. Mutation rate is set to 1.25 × 10−8 and
recombination rate to 8.335 × 10−8 per generation per bp. Therefore r

µ = 1. The
four combination are : a) σ = 0.4 and β = 0.2, b) σ = 0.857 and β = 0.6, c)
σ = 0.919 and β = 1 and d) σ = 0 and β = 0.15. Hence, for each scenario ρ

θ = 1
For each combination of β and σ, eSMC was launched with five different prior
settings: ignoring seed banks and self-fertilization (red), accounting for seed banks
and self-fertilization but without setting priors (blue), accounting for seed banks
and self-fertilization with a prior set only for the self-fertilization rate (green), only
for the germination rate (orange) or for both (purple).
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Figure A.7: Estimated demographic history of Arabidopsis thaliana
where selfing and seed banking is ignored. Demographic history of two
European (Sweden (blue) and German (green)) populations of A. thaliana. Mu-
tation rate is set to 7 × 10−9 per generation per bp and was use as prior for
recombination rate. a) Demographic history estimated by eSMC without account-
ing self-fertilzation or dormancy. b) Demographic history estimated by MSMC. c)
Demographic history estimated by MSMC2 . d) Demographic history estimated
by PSMC’.
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Figure A.8: Estimated demographic history of Daphnia pulex. Demo-
graphic history estimated by eSMC per scaffolds on six individuals of D. pulex
accounting for egg-banks (β is a variable and σ = 0). Different assumptions con-
cerning the number of parthenogenetic cycles before the production of the dormant
egg are made: Five cycles (pink), two cycles (red) and no parthenogenesis (dark
red). Demographic history estimated by PSMC’ are ploted in organge. Mutation
and recombination rates are respectively set to 4.33× 10−9 and 8×10−8

np
per genera-

tion per bp, where np is the number of reproductive cycles per year, parthenogenetic
and sexual.
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Figure A.9: Estimated demographic history of Daphnia pulex. Demo-
graphic history estimated by eSMC on six individuals of D. pulex accounting for
egg-banks assuming mutations accumulates 5 times slower during egg stage and ac-
tive stage (β is a variable and σ = 0). Different assumptions concerning the number
of parthenogenetic cycles before the production of the dormant egg are made: Five
cycles (pink), two cycles (red) and no parthenogenesis (dark red). Mutation and
recombination rates are respectively set to 4.33× 10−9 and 8×10−8

np
per generation

per bp, where np is the number of reproductive cycles per year, parthenogenetic
and sexual.

A.1.2 Model description of eSMC
To define our Hidden Markov Model (HMM) we need to define :
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• Hidden States

• The signal (observed data)

• A Transition matrix (Probability of jumping from one state to another)

• An Emission matrix (Probability of observing the data given the hidden
state)

• An Initial probability (Probability of hidden states at the first position of
the sequence)

Notations and Assumptions

We here define the different notations used and their meaning:

• β : the germination rate (expected probability to germinate at every gener-
ation, between 0 and 1)

• σ : self fertilization rate (between 0 and 1)

• N0 : Population at present time

• r : recombination rate per nucleotide per 4N0 generations

• µ : Mutation rate per nucleotide per 4N0 generations

• u : recombination time (which follows a continuous uniform distribution on
the coalescent tree)

• L: Sequence length in bp

• ρ = r(L− 1)

• θ = µL

• Nt : Population size at time t

• χt : Scaled population size at time t (Nt = χtN0)

The model’s assumptions are :

• Piecewise constant population size

• Infinite site model
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• Constant mutation, recombination, germination and self-fertilization rate in
time

• Constant mutation and recombination rate along the sequence

• Neutrality

• Wright-Fisher model

Hidden States

We define our hidden states at one position as the coalescent time between the
two individuals at that position. We note that coalescent time t (t>0). A tran-
sition from a coalescent time s to time t (t 6= s) at the next can only occur if a
recombination happened in between the two positions.

Observations

Our observation, or the signal, is a sequence of 1s and 0s. This sequence is built
from the comparison of two DNA sequences. When going along the sequence, if
both nucleotides are similar, then the signal is a 0 (no mutation occurred). If both
are different, then a mutation occurred, and the signal is a 1 (Figure 1).

Figure A.10: Schema describing the construction of the signal from phased
sequences

Transition Matrix

A transition to state t from state s (t 6= s) can only occur if there is a recombination
event. Assuming recombinations occur along the sequence as a Poisson process,
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the recombination probability between two nucleotides is :

P (rec|s) = (1− e−
β2(1−σ)

2−σ 2rs) (A.1)

We now Assume that a recombination event occurred at time u (<s) where u
follows a uniform distribution between 0 and s. Then three scenarios are possible.
Either the new coalescent time t is smaller (t<s), bigger (t>s), or unchanged (t=s).
Those scenarios are displayed on Figure 2 A),C) and B).

Figure A.11: Schema of the three possible coalescent events after a recombi-
nation event

t<s The floating branch resulting from the recombination event coalesces at time
t < s . This mean it must not coalesce before time t (including itself). In addition
we have u<t. The transition probability is therefore :

P (t|s, u) =
2β2

(2− σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

) (A.2)

109



t=s The floating branch resulting from the recombination event can self coalesce
before time t. We therefore have the transition probability :

P (s|s, u) =

∫ s

u

2β2

(2− σ)χk
e
∫ k
u −

4β2

(2−σ)χv
dv
dk (A.3)

t>s The floating branch resulting from the recombination event must not coa-
lesce (including itself) before time s. Then no coalescent event must happen before
time t. We therefore have the transition probability :

P (s|s, u) =
2β2

(2− σ)χt
e
∫ s
u −

4β2

(2−σ)χv
dv
e
∫ t
s −

2β2

(2−σ)χv
dv (A.4)

Transition probability in continuous time In the end we have :

p(t|s, u) =



(1− e−
β2(1−σ)

2−σ 2rs) 2β2

(2−σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

) if u < t < s

e−
β2(1−σ)

2−σ 2rs + (1− e−
β2(1−σ)

2−σ 2rs)
∫ s
u

2β2

(2−σ)χk
e
∫ k
u −

4β2

(2−σ)χv
dv
dk if t = s

(1− e−
β2(1−σ)

2−σ 2rs) 2β2

(2−σ)χt
e
∫ s
u −

4β2

(2−σ)χv
dv
e
∫ t
s −

2β2

(2−σ)χv
dv

if t > s

0 if otherwise
(A.5)

Once again, if β = 1 and σ = 0, we fall back on the probability from PSMC’.
One can find p(t|s) using the total probability formula which is:

p(t|s) =

∫ s

0

1

s
p(t|s, u)du (A.6)

As explained before, the hidden state space is finite. We therefore discretize
time in n intervals. At one point the hidden state is α if t ∈ [Tα, Tα+1], where
α ∈ [0, (n− 1)]. We define Tα :

Tα = −(2− σ)

2β2
ln(1− α

n
) (A.7)

We therefore have:

p(α|s) =

∫ Tα+1

Tα

p(t|s)dt (A.8)

The transition matrix needs is the probability of going from one state to an-
other. Therefore, we need the probability of the coalescent time at the previous
position (which is here s), which belongs to the state γ. To do this we simply inte-
grate s over the time interval γ, equivalent to replacing s by the expected coalescent
time : tγ .
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Initial Probability We use the equilibrium probability as initial probability.
The equilibrium probability is the probability that the coalescent, at the first po-
sition, happens in each time interval and is thus given by :

qo(α) =

∫ Tα+1

Tα

2β2

(2− σ)χα
e
∫ t
0
−2β2

(2−σ)χv
dv
dt

qo(α) =

∫ Tα+1

Tα

2β2

(2− σ)χα
e
∫ Tα
0

−2β2

(2−σ)χv
dv
e
∫ t
Tα

−2β2

(2−σ)χv
dv
dt

qo(α) = e
∫ Tα
0

−2β2

(2−σ)χv
dv
∫ Tα+1

Tα

2β2

(2− σ)χα
e
−2β2(t−Tα)

(2−σ)χα dt

qo(α) = e
∑α−1
η=0

−2β2

(2−σ)χη
∆η

(1− e
−2β2∆α
(2−σ)χα )

(A.9)

Calculation of tγ

tγ = E[Coalescent time|γ] =
E[Coalescent time ∩ γ]

P (γ)
=

∫ Tγ+1

Tγ
tΛγe

−
∫ t
0 Λvdvdt

q0(γ)

=
Λγ
∫ Tγ+1

Tγ
te−

∫ Tγ
0 Λvdve

−
∫ t
Tγ

Λvdvdt

q0(γ)
=

Λγe
−
∫ Tγ
0 Λvdv

∫ Tγ+1

Tγ
te
−
∫ t
Tγ

Λvdvdt

q0(γ)

=
Λγ
∫ Tγ+1

Tγ
te(Tγ−t)Λγdt

(1− e−∆γΛγ )
=
Tγ − Tγ+1e

−∆γΛγ

(1− e−∆γΛγ )
+

∫ Tγ+1

Tγ
e(Tγ−t)Λγdt

(1− e−∆γΛγ )

=
Tγ − Tγ+1e

−∆γΛγ

(1− e−∆γΛγ )
+

(1− e−∆γΛγ )

Λγ(1− e−∆γΛγ )
=
Tγ − Tγ+1e

−∆γΛγ

(1− e−∆γΛγ )
+

1

Λγ
(A.10)

Where :

∆γ = Tγ+1 − Tγ

Λγ =
2β2

(2− σ)χγ

(A.11)
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Calculation of p(α|γ) with α < γ We first need p(t|tγ) when α < γ, which
is obtained as described below :

p(t|tγ) =

∫ t

0

Pγ
tγ

2β2

(2− σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

)du

=
Pγ
tγ

∫ t

0

2β2

(2− σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

)du

=
Pγ
tγ

(
α−1∑
η=0

∫ Tη+1

Tη

2β2

(2− σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

)du

+

∫ t

Tα

2β2

(2− σ)χt
(e
∫ t
u −

4β2

(2−σ)χv
dv

)du)

=
Pγ
tγ

(
α−1∑
η=0

∫ Tη+1

Tη

2β2

(2− σ)χt
(e
∫ Tη+1
u − 4β2

(2−σ)χv
dv

)(e
∫ t
Tη+1

− 4β2

(2−σ)χv
dv

)du

+

∫ t

Tα

2β2

(2− σ)χt
(e
− (t−u)4β2

(2−σ)χα )du)

=
Pγ
tγ

2β2

(2− σ)χα
(

α−1∑
η=0

e
∫ t
Tη+1

− 4β2

(2−σ)χv
dv
∫ Tη+1

Tη

(e
−(Tη+1−u) 4β2

(2−σ)χη )du

+

∫ t

Tα

e
− (t−u)4β2

(2−σ)χα du)

=
Pγ2β2

tγ(2− σ)χα
(
α−1∑
η=1

e
−
∫ t
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e(Tα−t) 4β2

(2−σ)χα )
4β2

(2−σ)χα

)

(A.12)

Where:
Pγ = (1− e−2rtγ

β2(1−σ)
(2−σ) ) (A.13)
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We can now calculate p(α|γ).

p(α|γ) = Pγ

∫ Tα+1

Tα

p(t|tγ)dt

= Pγ

∫ Tα+1

Tα

2β2

tγ(2− σ)χα
(

α−1∑
η=1

e
−
∫ t
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e(Tα−t) 4β2

(2−σ)χα )
4β2

(2−σ)χα

)dt

= Pγ

∫ Tα+1

Tα

2β2

tγ(2− σ)χα
(
α−1∑
η=1

e
−
∫ t
Tα

4β2

(2−σ)χv
dv
e
−
∫ Tα
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e(Tα−t) 4β2

(2−σ)χα )
4β2

(2−σ)χα

)dt

=
Pγ2β2

tγ(2− σ)χα
(

∫ Tα+1

Tα

α−1∑
η=1

e
(Tα−t) 4β2

(2−σ)χα
dv
e
−
∫ Tα
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

dt

+

∆α − (1−e
−∆α

4β2

(2−σ)χα )
4β2

(2−σ)χα

4β2

(2−σ)χα

)

=
Pγ2β2

tγ(2− σ)χα
(
α−1∑
η=1

(1− e−∆α
4β2

(2−σ)χα )e
−
∫ Tα
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χα
4β2

(2−σ)χη

+

∆α − (1−e
−∆α

4β2

(2−σ)χα )
4β2

(2−σ)χα)

4β2

(2−σ)χα

)

=
Pγ
tγ2

(
α−1∑
η=1

(1− e−∆α
4β2

(2−σ)χα )e
−
∫ Tα
Tη+1

4β2

(2−σ)χv
dv

(1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

+∆α −
(1− e−∆α

4β2

(2−σ)χα )
4β2

(2−σ)χα

)

=
Pγ
tγ2

(

α−1∑
η=1

(1− e−∆α
4β2

(2−σ)χα )e
−
∑α
ζ=η+1

4∆ζβ
2

(2−σ)χζ (1− e−∆η
4β2

(2−σ)χη )
4β2

(2−σ)χη

+

∆α −
(1− e−∆α

4β2

(2−σ)χα )
4β2

(2−σ)χα

)

(A.14)
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Where:
Pγ = (1− e−2rtγ

β2(1−σ)
(2−σ) ) (A.15)

Calculation of p(α|γ) with α > γ We first need p(t|tγ) when α > γ, which
is obtained as described below :

p(t|tγ) =

∫ tγ

0

Pγ2β2

tγ(2− σ)χt
(e
∫ tγ
u −

4β2

(2−σ)χv
dv
e
∫ t
tγ
− 2β2

(2−σ)χv
dv

)du

=
Pγ2β2

tγ(2− σ)χα
e
∫ t
tγ
− 2β2

(2−σ)χv
dv
∫ tγ

0
(e
∫ tγ
u −

4β2

(2−σ)χv
dv

)du

=
Pγ2β2

tγ(2− σ)χα
e
∫ t
tγ
− 2β2

(2−σ)χv
dv

(

γ−1∑
η=0

∫ Tη+1

Tη

(e
∫ tγ
u −

4β2

(2−σ)χv
dv

)du+

∫ tγ

Tγ

(e
∫ tγ
u −

4β2

(2−σ)χv
dv

)du)

=
Pγe

∫ t
tγ
− 2β2

(2−σ)χv
dv

2β2

tγ(2− σ)χα
(

γ−1∑
η=0

∫ Tη+1

Tη

(e
−(Tη+1−u) 4β2

(2−σ)χv e
∫ tγ
Tη+1

− 4β2

(2−σ)χv
dv

)du

+

∫ tγ

Tγ

(e
−(tγ−u) 4β2

(2−σ)χγ )du)

=
Pγ2β2

tγ(2− σ)χα
e
∫ t
tγ
− 2β2

(2−σ)χv
dv

(

γ−1∑
η=1

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e(Tγ−tγ) 4β2

(2−σ)χγ )
4β2

(2−σ)χγ

))

(A.16)

Where:
Pγ = (1− e−2rtγ

β2(1−σ)
(2−σ) ) (A.17)
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We can now calculate p(α|γ).

q(α|γ) = Pγ

∫ Tα+1

Tα

q(t|tγ)dt

=

∫ Tα+1

Tα

Pγ2β2

tγ(2− σ)χα
e
−
∫ t
tγ

2β2

(2−σ)χv
dv

(

γ−1∑
η=1

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e

(Tγ−tγ )4β2

(2−σ)χγ )
4β2

(2−σ)χγ

)dt

=
Pγ2β2

tγ(2− σ)χα
(

γ−1∑
η=0

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e

(Tγ−tγ )4β2

(2−σ)χγ )
4β2

(2−σ)χγ

)

∫ Tα+1

Tα

e
−
∫ Tα
tγ

2β2

(2−σ)χv
dv
e
−
∫ t
Tα

2β2

(2−σ)χv
dv
dt

=
Pγ2β2

tγ(2− σ)χα
(

γ−1∑
η=1

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e

(Tγ−tγ )4β2

(2−σ)χγ )
4β2

(2−σ)χγ

)

e
−
∫ Tα
tγ

2β2

(2−σ)χv
dv
∫ Tα+1

Tα

e
(Tα−t) 2β2

(2−σ)χα dt

=
Pγ2β2

tγ(2− σ)χα
(

γ−1∑
η=1

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+
(1− e

(Tγ−tγ )4β2

(2−σ)χγ )
4β2

(2−σ)χγ

)

e
−
∫ Tα
tγ

2β2

(2−σ)χv
dv (1− e−∆α

2β2

(2−σ)χα )
2β2

(2−σ)χα

=
Pγ
tγ

(

γ−1∑
η=1

e
−
∫ tγ
Tη+1

4β2

(2−σ)χv
dv (1− e−∆η

4β2

(2−σ)χη )
4β2

(2−σ)χη

+

(1− e
(Tγ−tγ )4β2

(2−σ)χγ )
4β2

(2−σ)χγ

)e
−
∫ Tα
tγ

2β2

(2−σ)χv
dv

(1− e−∆α
2β2

(2−σ)χα )

(A.18)

Where:
Pγ = (1− e−2rtγ

β2(1−σ)
(2−σ) ) (A.19)
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Calculation of p(α|γ) with α = γ Because probabilities sum up to one. We
have the following formula:

p(γ|γ) = 1− (

γ−1∑
α=0

p(α|γ) +

n∑
α=γ+1

p(α|γ)) (A.20)

Emission Matrix

The probability of observing a mutation or not is given by the following formula:

P (0|γ) = e−2µtγ

P (1|γ) = 1− e−2µtγ
(A.21)

Where µ is the mutation rate per nucleotide per N generation and tγ the average
coalescent time in state γ.

Calculating the objective function of the Baum-Welch Algorithm

To calculate the objective function ( or Composite Likelihood (CL)), we first need
to define it as :

CL = P (Y,X|β, χ, ρ) (A.22)

Which is the probability of the signal (Y) and the sequence of Hidden states
(X) given the germination rate (β),self-fertilization rate (σ),recombination rate
(ρ) and population size per interval (χ). To calculate this probability we use a
forward-backward algorithm.

Forward Algorithm The Forward algorithm is an iterative algorithm that
calculates at step t the probability :

fot(i) = P (Y1,...,t, Xt = i) (A.23)

To calculate this probability we define:

• T : Transition matrix (Ti,j = P (X(t) = j|X(t− 1) = i))

• O : observation matrix (Oi,i = P (Y (t) = e(t)|X(t) = i)) where e(t) is the
observed data at position t ( which can be 0 or 1)

Initialization fo1 = q0O1

Where q0 is the vector of initial probabilities.
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Recursive formula fot = OtT
T fot−1

In case of recurrent patterns in the sequence, a technique has been developed
to improve the algorithm efficiency[145]. For example, if there are many repetition
of the same observation (repetition of length l), we have :

fot = OtT
T fot−1 = OtT

TOt−1T
T fot−2 = (OtT

T )lfot−l (A.24)

To compute P (O1,....,L) which we call the likelihood (LH), We simply notice
that : ∑

i

fot(i) =
∑
i

P (Y1,...,t, Xt = i) = P (Y1,...,t) (A.25)

Which leads to :

ct =
∑
i

fot(i)

fo∗t =
fot
ct

fot = OtT
T fo∗t−1

LH =
L∏
t=1

ct

(A.26)

Backward Algorithm The backward algorithm is an iterative algorithm that
calculates : bat(i) = P (Yt+1,...,L|Xt = i)

The notations are the same as before. The algorithm is defined as :

Initialization baL = I

Recursive formula bat−1 = TOtbat

In a similar way, if there are repeated observations in the sequence we have:

bat = TOt+1bat+1 = TOt+1TOt+2bat+2 = (TOt)
lbat+l (A.27)

Baum-Welch Algorithm
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The classic algorithm The Baum-Welch Algorithm is a particular case of
the generalized Expectation-Maximization algorithm. At every step the algorithm
updates the parameters that maximize the function Q. Where Q is defined at step
t as :

Q(θ|θt) =
∑
X

P (X|Y, θt)log(P (X,Y |θ)) (A.28)

And so :
θt+1 = argmaxθQ(θ|θt) (A.29)

We have :

Q(θ|θt) =
∑

X P (X|Y, θt)log(
∏
X1
P (X1|θ)N(X1)

∏
X,Z P (X|Z, θ)N(X,Z)

∏
X,Y P (Y |X, θt)N(Y,X))

(A.30)
Where :

• N(X1) : number of first positions where the hidden state is X1

• N(X,Z) : number of transitions from state Z to X

• N(Y,X) : number of positions with observation Y happening with hidden
state X

Which gives us :

Q(θ|θt) = νθt log(P (X1|θ)) +
∑

X,Y E(X,Z|θt)log(P (X|Z, θ)) +
∑

X,Y E(Y,X|θt)log(P (Y |X, θ))
(A.31)

Where:

• νθ : The equilibrium probability conditional to the set of parameters θ

• P (X1|θ) : Probability of the first hidden state conditional to the set of
parameters θ

• E(X,Z|θt) : Expected number of transitions of X from Z conditional to the
observation and set of parameters θt

• P (X|Z, θ) : Transition probability from state Z to state X conditional to the
set of parameters θ

• E(Y,X|θt) Expected number of observations of type Y that happened during
state X conditional to the observation and set of parameters θt

• P (Y |X, θ) : Emission probability conditional to the set of parameters θ

The objective function used in [146] is

Q∗(θ|θt) =
∑
X,Z

E(X,Z|θt)log(P (X|Z, θ)) (A.32)
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Calculating E(X,Z|θt)

E(X,Z|θt) =

∑L−1
l=1 fot(Z)bat+1(X)P (Yt+1|X)P (X|Z)

P (Y1,...,L|θ)
(A.33)

Calculating E(Y,X|θt)

E(Y,X|θt) =

∑L
t=1 fot(X)bat(X)1Yt

P (Y1,...,L|θ)
(A.34)

Speeding the algorithm We thus have using the approach in [168] (Cf for-
ward and backward algorithm).

fol = (W T )l−kfok

bak = W l−kbal

W = TO = PDP−1

(A.35)

Calculating E(Y,X|θt) We want folbal:

E(Y,X|θt) =

l−1∑
i=k

foibai =

l−k−1∑
i=0

diag((W T )ifok(W
l−k−ibal)

T )

l−1∑
i=k

foibai =

l−k−1∑
i=0

diag((W T )ifokba
t
l(W

l−k−i)T )

l−1∑
i=k

foibai =

l−k−1∑
i=0

diag(((P−1)DiP T fokba
t
l(P
−1)TDl−k−iP T )

l−1∑
i=k

foibai = diag((P−1)TAP T )

A =
l−k−1∑
i=0

DiP T fokba
t
l(P
−1)TDl−k−i

U = P T fokba
t
l(P
−1)T

A =

l−k−1∑
i=0

DiUDl−k−i

(A.36)
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We have :

l−k−1∑
i=0

DiUDl−k−i =

m∑
i=0

DiUDm−iD

(
l−k−1∑
i=0

DiUDl−k−i)ab =
m∑
i=0

Di
aaUabD

m+1−i
bb = Uab

m∑
i=0

Di
aaD

m+1−i
bb

(A.37)

We therefore define Q:

Qab =

m∑
i=0

Di
aaD

m−i
bb (A.38)

In the end:

A = (U ∗Q)D (A.39)

Where ∗ stands for the Hadamard product.

Calculating E(X,Z|θt) In a similar way.

E(X,Z|θt) =

l−1∑
i=k

ξi = (foi(bai+1Yi+1)) ∗ T

ξi,ab = P (Xi = b,Xi+1 = a|Y, θt)

(A.40)

Which gives us:

l−1∑
i=k

ξi =
l−1∑
i=k

(foiba
T
i+1O) ∗ T

ξi,ab = P (Xi = b,Xi+1 = a|Y1,...,L, θ
t)

(A.41)

With repeated observed data we have:

l−1∑
i=k

ξi =
l−k−1∑
i=0

((W T )ifokba
T
l (W k−l−1−i)TO) ∗ T

l−1∑
i=k

ξi =
l−k−1∑
i=0

((P−1)TDiP T fokba
T
l (P−1)TDl−k−1−iP T )O) ∗ T

l−1∑
i=k

ξi = (((P−1)T (U ∗Q)P T )O) ∗ T

(A.42)
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Maximizing the objective function

To maximize the Complete Likelihood, as shown before we need to maximize the
following value:

Q∗(θ|θt) =
∑
X,Z

E(X,Z|θt)log(P (X|Z, θ)) (A.43)

To maximize the objective function we use a Barzilai-Borwein spectral method.
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A.2 Appendix of Chapter 3

A.2.1 Supplementary Figures
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Figure A.12: Best-case convergence of PSMC’. Estimated demographic
history using simulated genealogy over sequences of 1 Gb using 30 or 50 hidden
states (respectively in red,orange) under scenarios with population size of fold 50
(black) with 10 replicates. Recombination rate is set to 1 × 10−8 per generation
per bp and mutation rate to 1.25 × 10−8 per generation per bp. a) Demographic
history simulated under a sawtooth scenario of strength 50. b) Demographic history
simulated under a bottleneck scenario of strength 50. c) Demographic history
simulated under a population expansion scenario of strength 50. d) Demographic
history simulated under a population decrease scenario of strength 50.
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Figure A.13: Best-case convergence of MSMC. Estimated demographic
history using simulated genealogies of 4 sequences of 10,100,1000,10000 Mb (re-
spectively in red,orange, green and blue) under a sawtooth scenario (black) with
10 replicates for different amplitudes of size change: a) 2-fold, b) 5-fold, c) 10-fold,
and d) 50-fold. The recombination rate is set to 1 × 10−8 per generation per bp
and the mutation rate to 1.25× 10−8 per generation per bp.
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Figure A.14: Best-case convergence of MSMC. Estimated demographic
history using simulated genealogy over sequences of 1 Gb using 30 or 50 hidden
states (respectively in red,orange) under scenarios with variation of population
size fold 50 (black) with 10 replicates. Recombination rate is set to 1 × 10−8

per generation per bp and mutation rate to 1.25 × 10−8 per generation per bp.
a) Demographic history simulated under a sawtooth scenario of strength 50. b)
Demographic history simulated under a bottleneck scenario of strength 50. c)
Demographic history simulated under a population expansion scenario of strength
50. d) Demographic history simulated under a population decrease scenario of
strength 50.
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Figure A.15: Estimated Transition matrix in sawtooth scenario. Es-
timated transition matrix coefficient of variation using simulated genealogy over
sequences of 10,100,1000,10000 (respectively in a), b) c) and d) ) Mb under a
sawtooth scenario with 10 replicates. Recombination rate is set to 1 × 10−8 per
generation per bp and mutation rate to 1.25× 10−8 per generation per bp. Demo-
graphic history is simulated under a sawtooth scenario of amplitude 10.
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Figure A.16: Mean difference between estimated and actual transition
matrix in sawtooth scenario. Mean difference between estimated and transition
matrix directly build from genealogy using sequences of 100 Mb under a sawtooth
scenario of strength 2,5,10 and 50 (respectively in a), b) c) and d) ) each with
10 replicates. Recombination rate is set to 1 × 10−8 per generation per bp and
mutation rate to 1.25× 10−8 per generation per bp.
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Figure A.17: Estimated demography using different window and opti-
mization function under a sawtooth and constant population size sce-
nario. Estimated demographic history under a sawtooth (a), b)) and constant
population size (c,d)) scenario with 10 replicates using 4 simulated sequences of
length 50 Mb. Estimation with the incomplete optimization function are displayed
in a) and c). Estimation with the complete Baum-Welch algorithm are displayed
in b) and c). Recombination rate is set to 1 × 10−8 per generation per bp and
mutation rate to 1.25 × 10−8 per generation per bp. The simulated demographic
history is represented in black. Estimation with the time window of PSMC’ are
displayed in red, with the time window of MSMC2 in orange, estimation with a
PSMC’ time window shifted by fold 5 in past are displayed in green and shifted by
fold 5 in recent time are displayed in blue.
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Figure A.18: Estimated demography of SMC method under a bottleneck
scenario. Estimated demographic history under a bottleneck scenario with 10
replicates using simulated sequences. 2 sequences of 100 Mb for eSMC and MSMC2
(respectively in a) and b) ). We use 4 sequences of 100 Mb for MSMC (c ) ) and 20
sequences of 100 Mb for SMC++ ( d) ). Recombination rate is set to 1.25× 10−7

per generation per bp and mutation rate to 1.25 × 10−8 per generation per bp.
Demographic history is simulated under a bottleneck scenario of strength 10 and
is represented in black. Analysis with eSMC, MSMC and MSMC2 using 20 hidden
states are in red, 200 iterations orange, 60 hidden states green, 60 hidden states
and 200 iterations in blue, 20 hidden states and 200 iterations in purple. For
SMC++, analysis using 16 knots are in red, 200 iterations in orange, 4 knots in
green, regularization penalty set to 3 in blue and regularization-penalty set to 12
in purple.
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Figure A.19: Estimated demography of eSMC under a constant popula-
tion size with recombination rate variation. Estimated demographic history
by eSMC under constant population size (black) with (red) or without (orange)
variation of recombination rate along the sequence with 10 replicates using 2 sim-
ulated sequences of 40 Mb. Mutation rate is set to 1.25× 10−8 per generation per
bp. Recombination rate changes randomly every 2 Mb between 2.5 × 10−9 and
6.25× 10−8. T
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Figure A.20: Estimated demography of MSMC2 under a sawtooth sce-
nario with transposable elements. Estimated demographic history by MSMC2
under a sawtooth scenario with 10 replicates using simulated sequences. 4 se-
quences of 20 Mb. Recombination rate is set to 1.25 × 10−8 per generation per
bp and mutation rate to 1.25 × 10−8 per generation per bp . The simulated de-
mographic history is represented in black. Here tansposable element are of length
10kbp. a) Demographic history simulated with no transposable elements. b) De-
mographic history simulated where transposable element are removed. c) Demo-
graphic history simulated where SNPs on transposable are removed. d) Demo-
graphic history simulated where half of transposable are removed and SNPs on the
other half are removed. Proportion of transpobable element of the genome is set
to 0% (red), 5% (orange), 10% (green), 25 % (blue) and 50 % (purple).
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Figure A.21: Estimated demography of MSMC2 under a sawtooth sce-
nario with transposable elements. Estimated demographic history by MSMC2
under a sawtooth scenario with 10 replicates using simulated sequences. 4 se-
quences of 20 Mb. Recombination rate is set to 1.25 × 10−8 per generation per
bp and mutation rate to 1.25 × 10−8 per generation per bp . The simulated de-
mographic history is represented in black. Here tansposable element are of length
100 kbp. a) Demographic history simulated with no transposable elements. b)
Demographic history simulated where transposable element are removed. c) De-
mographic history simulated where SNPs on transposable are removed. d) Demo-
graphic history simulated where half of transposable are removed and SNPs on the
other half are removed. Proportion of transpobable element of the genome is set
to 0% (red), 5% (orange), 10% (green), 25 % (blue) and 50 % (purple).
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Figure A.22: Estimated demography of MSMC2 under a sawtooth sce-
nario with masked transposable elements. Estimated demographic history
by MSMC2 under a sawtooth scenario with 10 replicates using simulated sequences.
4 sequences of 20 Mb. Recombination rate is set to 1.25× 10−8 per generation per
bp and mutation rate to 1.25 × 10−8 per generation per bp . The simulated de-
mographic history is represented in black. Here tansposable element are of length
1kbp. a) Demographic history simulated with 5% transposable elements. b) DDe-
mographic history simulated with 10% transposable elements. c) Demographic
history simulated with 25% transposable elements. d) Demographic history sim-
ulated with 50% transposable elements. Size of transposable elements are set to
1kb (red), 10kb (orange), 100 kb (green).
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A.2.2 Supplementary Tables

Figure eSMC 10 Mb eSMC 100 Mb eSMC 1 Gb eSMC 10 Gb
1 a) 7.23 (0.11) 6.34 (0.040) 6.10 (0.01) 5.99 (0.005)
1 b) 8.59 (0.099) 7.99 (0.012) 7.86 (0.010) 7.86 (0.002)
1 c) 8.96 (0.038) 8.74 (0.011) 8.77 (0.005) 8.76 (0.006)
1 d) 10.36 (0.002) 10.37 (0.001) 10.38 (0.001) 10.38 (0.001)

Table A.1: Average mean square error of Figure 3.1 (in log10). The coefficient
of variation is indicated in brackets.

Figure eSMC MSMC MSMC2 SMC++
3 a) 6.82 (0.07) 7.60 (0.05) 8.21 (0.17) 7.57 (0.03)
3 b) 8.16 (0.01) 8.69 (0.08) 10.0 (0.16) 7.84 (0.03)
3 c) 9.27 (0.03) 9.53 (0.08) 11.43 (0.08) 8.86 (0.004)
3 d) 10.0 (0.008) 10.90 (0.12) 11.0 (0.04) 10.46 (0.0001)

Table A.2: Average mean square error of Figure 3.3 (in log10). The coefficient
of variation is indicated in brackets.

Figure ρ
θ

= 0.1 ρ
θ

= 1 ρ
θ

= 10
4 a) 8.21 (0.12) 7.45 (0.06) 9.62 (0.04)
4 b) 15.7 (0.3) 9.46 (0.33) 10.43 (0.20)
4 c) 9.95 (0.24) 8.48 (0.22) 10.65 (0.13)
4 d) 7.78 (0.008) 7.79 (0.003) 7.79 (0.001)

Table A.3: Average mean square error of Figure 3.4 (in log10). The coefficient
of variation is indicated in brackets.

% of problematic SNPs 5 a) 5 b) 5 c) 5 d)
0 9.10 (0.10)
5 12.66 (0.002) 13.0 (0.007) 13.27 (0.001)
10 10.08 (0.11) 12.15 (0.07) 12.55 (0.01)
25 12.83 (0.012) 13.03 (0.001) 13.28 (0.006)

Table A.4: Average mean square error of Figure 3.5 (in log10). The coefficient
of variation is indicated in brackets.
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Figure Share Not share
6 a) 6.58 (0.06) 6.68 (0.08)
6 b) 7.99 (0.04) 8.02 (0.098)
6 c) 7.08 (0.15) 7.43 (0.093)
6 d) 7.99 (0.07) 8.09 (0.09)

Table A.5: Average mean square error of Figure 3.6 (in log10). The coefficient
of variation is indicated in brackets.

A.3 Appendix of Chapter 4

A.3.1 Description of the SMβC
The Sequentially Markovian β Coalescent is a Hidden Markov Model based on
the Multiple Sequentially Markovian Coalescent (MSMC) where Multiple Merger
events are allowed to occur following the Beta coalescent.

To define our Hidden Markov Model (HMM) we need to define :

• Hidden States

• The signal (observed data)

• A Transition matrix (Probability of passing from one state to another)

• An Emission matrix (Probability of observing the signal conditional to the
hidden state)

• An Initial probability (Probability of hidden states at the first position of
the sequence)

Notations and Assumptions

We here define the different notations used and their meaning:

• r : recombination rate per nucleotide

• µ : Mutation rate per nucleotide

• u : recombination time, follows a continuous uniform distribution between 0
and first coalescent time.

• α : The parameter of the Beta distribution

• ξt : Scaled population size at time t (Nt = ξtN0)
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• χt = ξα−1
t

• M : Number of analyzed sequences (or individuals)

The model’s assumptions are :

• Infinite site model

• (χt)t≥0 is piece-wise constant (intervals are specified in the following)

We first define the transition rates of the Beta n-coalescent. The rate of tran-
sition from a state with b lineages to b− n+ 1 lineages, i.e. a merger of n lineages
is

λb,α,b−n+1 =
B(n− α, b− n+ α)

Γ(2− α)Γ(α)
. (A.44)

Λb,α,b−n+1 =

(
b
n

)
B(n− α, b− n+ α)

Γ(2− α)Γ(α)
. (A.45)

Thus, the total rate is

λb,α =

b∑
k=2

(
b
n

)
B(k − α, b− n+ α)

Γ(2− α)Γ(α)
(A.46)

Waiting times are exponentially distributed in the coalescent for population size
constant in time. For time-varying population sizes, we define the time-changed Λ-
n-coalescent as the (rescaled) genealogy limit from a Wright-Fisher type Cannings
model with skewed offspring distributions as introduce in [149], which leads to a
time-change waiting time for coalescence events: If a waiting time has rate λ in the
standard Beta n-coalescent (started at some time t0), it has a waiting time density
of

f(t) =
λ

χ(t)
e
−
∫ t
t0

λ
χ(s)

ds
, (A.47)

which follows as described in [67].

Hidden States

Our hidden states at one position are define by the first coalescent event’s time t > 0
at that position and which individuals i := (i1, . . . , in) coalesce in the corresponding
coalescence. A transition from coalescent time s to time t or a change in the index
i can only occur when a recombination happens.
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Observations

The observation signal is the comparison of the M analyzed sequences. Thus the
signal is a series of number indicating the allelic state of the sequences at each
position. For M=3, under the infinite site model hypothesis, only 4 different state
can be observed along the sequence. All sequences are the same at this position
(indicated by a 0), or one of the three sequences if different from the two other
(indicated by i, if the individual i is different from the two other).

Transition Matrix

Five transitions are possible, we transition from (s, j) to (t, i). Here we assume
that t and s are in interval time β and γ. At indices i and j, n and m individuals
coalesce. In addition, recombination occurs with probability :

P (rec|s) = 1− e−rMs (A.48)

We assume that only one recombination event can occur between two positions.
A recombination event in one ofM lineages splits one ancestral lineage in two (back-
wards in time). The additional lineage is not yet described by the coalescent with-
out the recombination event, we call this free. It can merge with any of the remain-
ingM lineages, but also with the second parental ancestral lineage (i.e. the second
split lineage from the recombination event). The transition probabilities/rates
conditional on the (known) behaviour of the other lineages are as described in [27,
Sect. 5]: Conditional on the mergers of the M other lineages, a binary merger of
the "freed" lineage appears with rate MλM+1,α,M and it joins an existing merger
of m lineages at some time t with probability 1− λM+1,α,M+1−m+1

λM,α,M−m+1
=

λM+1,α,M+1−m
λM,α,M−m+1

,
where the second equation is due to the consistency of rates in Λ-n-coalescents. In
the following, we derive conditional probabilities and/or conditional densities for
certain events.

t<s For this to happen, a recombination must occur before time t. The new
number of individuals first coalescing is now n = 2, and the recombination event
needs to affect one of these two individuals i = {i1, i2} (which happens with prob-
ability 2/M), splitting one lineage in two. Then, we just multiply the density of
a binary merger of the free lineage with any of the other M lineages in the time-
changed coalescent, which is Eq. (A.47) with rate MλM+1,α,M and the probability
that the first merger is indeed merging i, which is 1

M (we pick the second lineage
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of i at random from M lineages):

f(t, i|s, j, u) =
2λM+1,α,M

Mχt
e
−
∫ t
u

MλM+1,α,M
χv

dv (A.49)

t=s Case 1: a non coalescing individual joins the coalescent event j = {j1, . . . , jn}.
For this to happen, the recombination event must occur before time s in a non coa-
lescing branch, which happens with probability M−n

M . Then, the newly split second
ancestral lineage of i need to not coalesce in a binary collision until time s, which
equals exp(−

∫ s
u
MλM+1,α,M

χv
dv) (by integrating Eq. (A.47) with rate MλM+1,α,M ).

Finally, it then needs to join in the coalescent event j, which happens with proba-
bility λM+1,α,M+1−m

λM,α,M−m+1
. This shows that :

P (s, i|s, j, u) =
(M − n)λM+1,α,M+1−m

MλM,α,M−m+1
e
−
∫ s
u

MλM+1,α,M
χv

dv (A.50)

for i = j ∪ {i}.
Case 2: Recombination occurs in a coalescing individual i ∈ j = {j1, . . . , jn}

of a multiple merger event with n > 2 (happens with probability n
M ). The new

lineage then coalesces higher in time, i.e. it does neither coalesce in a binary merger
before s (as in case 1) nor in the collision at s (which is the complementary event
from case 1). As above, this leads to

P (s, i|s, j, u) =
nλM+1,α,M+1−m+1

MλM,α,M−m+1
e
−
∫ s
u

MλM+1,α,M
χv

dv (A.51)

for i = j \ {i}
Case 3: Nothing changes. This happens if a) there is no recombination event

(so u > s), b) the lineage split makes a binary merger between the two lineages
resulting from the split ("self-coalesce") before s, c) recombination splits a lineage
merged at the coalescence event at s, but that the second ancestral lineage from
the split joins the merger.
a) happens with probability 1 if u > s, b) has conditional density as in Eq.
A.49 without the factor 2/M , integrating over [u, s] yields the probability (1 −
(1/M) exp(−

∫ t
u
MλM+1,α,M

χv
dv) and c) follows as case 2, only we need the recom-

bination event on a lineage already participating in the merger at time s (so just
replacing M − n with n in Eq. (A.51)).

t>s For this to happen, a recombination must occur before time s and break
a coalescent event of only two individuals (j1, j2) (w. probability 2/M). Assume
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without restriction j1 was affected by recombination. For (the new ancestral lineage
of) j1 to coalesce at time t, it must not coalesce until time s, then not coalesce in
the former coalescent event and then the next coalescence event happens at time
t. The next coalescence event can take any form and does not need to merge j1.
Additionally, we just need to keep track of the M − 1 non-recombining lineages
and j1, since we are not conditioning on the behaviour after s and thus both self-
coalescence and the coalescence of the second split lineage (not j1) can be ignored.
Thus, to compute the conditional rate for merging into i, we first compute the
probability that the new ancestral lineage representing j1 in the new DNA segment
does not coalesce until time s, given by Eq. (A.51) with n = 2, and multiply this
by the conditional density for merging into any i of M lineages afterwards. Thus,
this is just Eq. (A.47) with rate λM,α multiplied with λM,α,M−n+1

λM,α
. This leads to

f(t, i|s, j, u) =
2λM+1,α,M

MλM,α,M−1
e
−
∫ s
u

MλM+1,α,M
χv

dv λM,α,M−n+1

χt
e
−
∫ t
s

λM,α
χv

dv (A.52)

for i = {i1, . . . , in}.

Full transition probability
p(t, i|s, j, u) =

Ps
2λ2,α
χtM

e
−
∫ t
u

MλM+1,α,M
χv

dv
u < t < s

(1− Ps) + Ps(
∫ s
u

1
χk

e

∫k
u −

MλM+1,α,M
χv

dv
dk +

(M−n)λ(n+1),α,2
Mλ(n+1),α,2+λ(n+1),α,1

e

∫ t
u −

MλM+1,α,M
χv

dv
) t = s,m = n

Ps
(M−n)λ(n+1),α,1e

−
∫ s
u

MλM+1,α,M
χv

dv

M(λ(n+1),α,2+λ(n+1),α,1)
t = s,m = n + 1

Ps
n
M

λ(n+1),α,2e
−
∫ s
u

MλM+1,α,M
χv

dv

s(λ(n+1),α,2+λ(n+1),α,1)
t = s,m + 1 = n

Ps
λM,α,(M−m+1)(

M
m

)
χα

e
−
∫ t
s

λM,α
χv

dv
e
−
∫ s
u

MλM+1,α,M
χv

dv 2λ(n+1),α,2
M(λ(n+1),α,2+λ(n+1),α,1)

t > s, i = l, j = k

(A.53)

Where Ps = (1− e−Mrs) represents the recombination probability.
As explained before, the state space is finite. We therefore discretized time in

k intervals. At one point the time state is β if t ∈ [Tβ, Tβ+1], where β ∈ [0, (n−1)].
We define Tβ :

Tβ =
− ln(1− β

n)

λM,β
(A.54)

We therefore have:

p(β, i|s, j) =

∫ Tβ+1

Tβ

p(t, i|s, j)dt (A.55)
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Note: Because time is discretized, if the first coalescent time is bigger than
T(n−1), then all individual coalesce.

Initial probability We use the equilibrium probability as initial probability
while assuming m individual coalesce. The equilibrium probability is given by :

qo(β, i) =

∫ Tβ+1

Tβ

λM,α,(M−m+1)

χβ
(
M
m

) e
−
∫ t
0

λM,α
χv

dv
dt

=
λM,α,(M−m+1)e

∑β−1
η=0

λM,α
χη

∆η(
M
m

)
λM,α

(1− e−∆β
λM,α
χt )

(A.56)

Calculation of tγ,j Assuming n individual coalesces.

tγ,j = E[Coalescent time|γ, j] =
E[Coalescent time ∩ γ, j]

P (γ, j)
=

∫ Tγ+1

Tγ
tλM,α,(M−n+1)e

−
∫ t
0

λM,α
χv

dv(
M
n

)
q0(γ, j)

dt

=
Tγ − Tγ+1e

−∆γ
λM,α
χγ

(1− e−∆γ
λM,α
χγ )

+
χγ
λM,α

(A.57)

Where :

∆γ = Tγ+1 − Tγ (A.58)

We note that tγ,j is independent of j, thus tγ,j = tγ .

Calculation of p(β, i|γ, j) β < γ
We here calculate the transition probabilities from the state γ to a time t in
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the time interval β.

P (t, i|tγ , j) =
Pγ
tγ

∫ t

0

2λ2,α

χvM
e
−
∫ t
u

MλM+1,α,M
χv

dv
du

=
Pγ
tγ

(

β−1∑
η=0

∫ Tη+1

Tη

2λ2,α

χvM
e
−
∫ t
u

MλM+1,α,M
χv

dv
du+

∫ t

Tβ

2λ2,α

χvM
e
−
∫ t
u

MλM+1,α,M
χv

dv
du)

=
Pγ
tγ

(

β−1∑
η=0

∫ Tη+1

Tη

2λ2,α

χβM
e
−
∫ Tβ
Tη+1

MλM+1,α,M
χv

dv
e
−
∫ t
Tβ

MλM+1,α,M
χv

dv
e
−
∫ Tη+1
u

MλM+1,α,M
χv

dv
du+

∫ t

Tβ

2λ2,α

χβM
e
−(t−u)

MλM+1,α,M
χβ

dv
du)

=
Pγ
tγ

2λ2,α

χβM
(

β−1∑
η=0

∫ Tη+1

Tη

e
−
∑β−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(t−Tβ)
MλM+1,α,M

χβ e
−(Tη+1−u)

MλM+1,α,M
χη du

+
(1− e

−(t−Tβ)
MλM+1,α,M

χβ )
MλM+1,α,M

χβ

)

=
Pγ
tγ

2λ2,α

χβM
(

β−1∑
η=0

e
−
∑β−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(t−Tβ)
MλM+1,α,M

χβ
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+
(1− e

−(t−Tβ)
MλM+1,α,M

χβ )
MλM+1,α,M

χβ

)

(A.59)

We then have to integrate t over the time interval β to have the transition
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probability from the state γ to the state β.

P (β, i|γ, j)

=

∫ Tβ+1

Tβ

Pγ
tγ

2λ2,α

χβM
(

β−1∑
η=0

e
−
∑β−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(t−Tβ)
MλM+1,α,M

χβ
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+
(1− e

−(t−Tβ)
MλM+1,α,M

χβ )
MλM+1,α,M

χβ

)dt

=
Pγ
tγ

2λ2,α

χβM
(

β−1∑
η=0

e
−
∑β−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ

(1− e
−∆β

MλM+1,α,M
χβ )

MλM+1,α,M

χβ

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

+

(∆β − (1−e
−(∆β

MλM+1,α,M
χβ )

MλM+1,α,M
χβ

)

MλM+1,α,M

χβ

)

=
Pγ
tγ

2

M2
(

β−1∑
η=0

e
−
∑β−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ (1− e

−∆β
MλM+1,α,M

χβ )
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+(∆β −
(1− e

−(∆β
MλM+1,α,M

χβ )
MλM+1,α,M

χβ

))

(A.60)

Where the recombination probability if defined as:

Pγ = (1− e−Mrtγ ) (A.61)

γ < β We here calculate the transition probabilities from the state γ to a time
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t in the time interval β.

P (t, i|tγ , j)

=

∫ tγ

0

Pγ
tγ

λM,α,(M−m+1)(
M
m

)
χβ

e
−
∫ t
tγ

λM,α
χv

dv
e
−
∫ tγ
u

MλM+1,α,M
χv

dv 2λ(n+1),α,2

M(λ(n+1),α,2 + λ(n+1),α,1)
du

=
Pγ
tγ

λM,α,(M−m+1)(
M
m

)
χβ

(

γ−1∑
η=1

∫ Tη+1

Tη

e
−
∫ t
tγ

λM,α
χv

dv
e
−
∫ Tγ
Tη+1

MλM+1,α,M
χv

dv
e
−
∫ tγ
Tγ

MλM+1,α,M
χv

dv

e
−
∫ Tη+1
u

MλM+1,α,M
χv

dv 2λ(n+1),α,2

M(λ(n+1),α,2 + λ(n+1),α,1)
du

+

∫ tγ

Tγ

e
−
∫ t
tγ

λM,α
χv

dv
e
−
∫ tγ
u

MλM+1,α,M
χv

dv 2λ(n+1),α,2

M(λ(n+1),α,2 + λ(n+1),α,1)
du)

=
Pγ
tγ

2λ(n+1),α,2e
−
∫ t
tγ

λM,α
χv

dv

M(λ(n+1),α,2 + λ(n+1),α,1)

λM,α,(M−m+1)(
M
m

)
χβ

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ

e
−(tγ−Tγ)

MλM+1,α,M
χγ

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

+
(1− e−(tγ−Tγ)

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

)

We then have to integrate t over the time interval β to have the transition
probability from the state γ to the state β.

P (β, i|γ, j) =

∫ Tβ+1

Tβ

Pγ

tγ

2λ(n+1),α,2e
−
∫ t
tγ

λM,α
χv

dv

M(λ(n+1),α,2 + λ(n+1),α,1)

λM,α,(M−m+1)(
M
m

)
χβ

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1

∆ζ
MλM+1,α,M

χζ e
−(tγ−Tγ )

MλM+1,α,M
χγ

(1− e
−∆η

MλM+1,α,M
χη )

MλM+1,α,M
χη

+
(1− e

−(tγ−Tγ )
MλM+1,α,M

χγ )

MλM+1,α,M
χγ

)dt

=

∫ Tβ+1

Tβ

Pγ

tγ

2λ(n+1),α,2e
−
∫Tβ
tγ

λM,α
χv

dv
e
−
∫ t
Tβ

λM,α
χv

dv

M(λ(n+1),α,2 + λ(n+1),α,1)

λM,α,(M−m+1)(
M
m

)
χβ

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1

∆ζ
MλM+1,α,M

χζ e
−(tγ−Tγ )

MλM+1,α,M
χγ

(1− e
−∆η

MλM+1,α,M
χη )

MλM+1,α,M
χη

+
(1− e

−(tγ−Tγ )
MλM+1,α,M

χγ )

MλM+1,α,M
χγ

)dt

=
Pγ

tγ

2λ(n+1),α,2e
−
∫Tβ
tγ

λM,α
χv

dv
(1− e

−∆β
λM,α
χβ )

M(λ(n+1),α,2 + λ(n+1),α,1)

λM,α,(M−m+1)(
M
m

)
λM,α

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1

∆ζ
MλM+1,α,M

χζ e
−(tγ−Tγ )

MλM+1,α,M
χγ

(1− e
−∆η

MλM+1,α,M
χη )

MλM+1,α,M
χη

+
(1− e

−(tγ−Tγ )
MλM+1,α,M

χγ )

MλM+1,α,M
χγ

)

(A.62)

γ = β,m = n+ 1
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For a multiple merger event to happen, there are three possibilities. A non
coalescing branch join the coalescent event, or it coalesces in the same hidden state
in the current first coalescent event (before or after the coalescent event).

P (γ, i|γ, j) =
Pγ
tγ

∫ tγ

0

(M − n)λ(n+1),α,1e
−
∫ tγ
u

MλM+1,α,M
χv

dv

M(λ(n+1),α,2 + λ(n+1),α,1)
du+ Pc1 + Pc2

= Pc1 + Pc2 +
Pγ
tγ

(M − n)λ(n+1),α,1

M(λ(n+1),α,2 + λ(n+1),α,1)
(

γ−1∑
η=

∫ Tη+1

Tη

e
−
∫ Tη+1
u

MλM+1,α,M
χv

dv
e
−
∫ tγ
Tη+1

MλM+1,α,M
χv

dv
du

∫ tγ

Tγ

e
−
∫ tγ
u

MλM+1,α,M
χv

dv
du)

=
Pγ
tγ

(M − n)λ(n+1),α,1

M(λ(n+1),α,2 + λ(n+1),α,1)
(

γ−1∑
η=

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

e
−
∫ tγ
Tη+1

MλM+1,α,M
χv

dv

+
(1− e−(tγ−Tγ)

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

) + Pc1 + Pc2

Pc1 is the probability that a recombination happens before the first coalescent
event in the non coalescing branch, the resulting free branch then coalesces before
the current first coalescent event but in the same hidden state (resulting in a
multiple merger coalescent because of the discretized time)

Pc2 is the probability that a recombination happens before Tγ+1 in the non
coalescing branch, the resulting free branch then coalesces after the current first
coalescent event but in the same hidden state (resulting in a multiple merger coa-
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lescent because of the discretized time)

Pc1 =

∫ tγ

Tγ

Pγ
tγ

λ2,α

χγM
(

γ−1∑
η=0

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(t−Tγ)
MλM+1,α,M

χγ
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+
(1− e−(t−Tγ)

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

)dt

=
Pγ
tγ

λ2,α

χγM
(

γ−1∑
η=0

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ

(1− e−(tγ−Tγ)
MλM+1,α,M

χγ )
MλM+1,α,M

χγ

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

+

((tγ − Tγ)− (1−e
−(tγ−Tγ )

MλM+1,α,M
χγ )

MλM+1,α,M
χγ

)

MλM+1,α,M

χγ

)

=
Pγ
tγ

1

M2
(

γ−1∑
η=0

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ (1− e−(tγ−Tγ)

MλM+1,α,M
χγ )

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

+((tγ − Tγ)− (1− e−(tγ−Tγ)
MλM+1,α,M

χγ )
MλM+1,α,M

χγ

))

(A.63)

Pc2 =

∫ Tγ+1

tγ

Pγ
tγ

λ(n+1),α,2e
−
∫ t
tγ

λ2,α
χγ

dv

M(λ(n+1),α,2 + λ(n+1),α,1)

λ2,α

χγ

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(tγ−Tγ)
MλM+1,α,M

χγ
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+
(1− e−∆γ

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

)dt

=
Pγ
tγ

λ(n+1),α,2(1− e−(Tγ+1−tγ)
λ2,α
χγ )

M(λ(n+1),α,2 + λ(n+1),α,1)

(

γ−1∑
η=1

e
−
∑γ−1
ζ=η+1 ∆ζ

MλM+1,α,M
χζ e

−(tγ−Tγ)
MλM+1,α,M

χγ
(1− e−∆η

MλM+1,α,M
χη )

MλM+1,α,M

χη

+
(1− e−∆γ

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

)dt

(A.64)
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γ = β,m = n− 1

P (γ, i|γ, j) =
Pγ
tγ

∫ tγ

0

nλ(n+1),α,2e
−
∫ tγ
u

MλM+1,α,M
χv

dv

M(λ(n+1),α,2 + λ(n+1),α,1)
du

=
Pγ
tγ

nλ(n+1),α,2

M(λ(n+1),α,2 + λ(n+1),α,1)
(

γ−1∑
η=1

∫ Tη+1

Tη

e
−
∫ Tη+1
u

MλM+1,α,M
χv

dv
e
−
∫ tγ
Tη+1

MλM+1,α,M
χv

dv
du

+

∫ tγ

Tγ

e
−
∫ tγ
u

MλM+1,α,M
χv

dv
du)

=
Pγ
tγ

nλ(n+1),α,2

M(λ(n+1),α,2 + λ(n+1),α,1)
(

γ−1∑
η=1

(1− e−∆η
MλM+1,α,M

χη )
MλM+1,α,M

χη

e
−
∫ tγ
Tη+1

MλM+1,α,M
χv

dv

+
(1− e−(tγ−Tγ)

MλM+1,α,M
χγ )

MλM+1,α,M

χγ

)

(A.65)

γ = β,m = n

P (γ, j|γ, j) = 1−
∑

β 6=γ,i 6=j
P (β, i|γ, j) (A.66)

Emission Matrix

M=3 For M = 3, only 4 types of observations. Observation 0, no mutation
observed at this position. Observation 1 (2,3), individual 1 (2,3) is different from
individual 2 and 3 (1 and 3 , 1 and 2).

If the first coalescent event involves 2 individuals we have :

P (0|γ) = e−µ(Ts) (A.67)

i ∈ 1, 2, 3. Mutation occurred and did not occurred in the first coalescent event.

P (i|γ, i) = (1− e−µ(Ts−2tγ)) (A.68)

i ∈ 1, 2, 3; ī 6= i. Mutation occurred and is in the first coalescent event.

P (i|γ, ī) = (1− e−µ(2tγ)) (A.69)

146



if the first coalescent event involves 3 individuals we have :

P (0|γ) = e−µ(3tγ) (A.70)

i ∈ 1, 2, 3
P (i|γ) = 1− e−µ(3tγ) (A.71)

M=4 If M = 4, one can only observe 8 possibilities as we assume an infinite site
model. Observation 0, no mutation observed. Observation 1 (2,3,4), individual 1
(2,3,4) is different from all other individual. Observation 5 to 7 , two individuals
are different from the other two.

If the first coalescent event involves 4 individuals:

P (0|γ) = e−µ(4tγ) (A.72)

i ∈ 1, 2, 3, 4
P (i|γ) = 1− e−µ(4tγ) (A.73)

If the first coalescent event involves 3 individuals:

P (0|γ) = e−µ(Ts) (A.74)

i ∈ 1, 2, 3, 4
P (i|γ, ī) = (1− e−µ(tγ)) (A.75)

i ∈ 1, 2, 3, 4
P (i|γ, i) = (1− e−µ(Ts−3tγ)) (A.76)

If the first coalescent event involves 2 individuals:
No mutation occurred.

P (0|γ) = e−µ(Ts) (A.77)

i ∈ 1, 2, 3, 4 and mutation is within on one of the individual that coalesce.

P (i|γ) = (1− e−µ(tγ)) (A.78)

i ∈ 1, 2, 3, 4 and mutation is not on one of the individual that coalesce.

P (i|γ) = (1− e−µ(
(Ts−4tγ )

2
+tγ)) (A.79)

i ∈ 5, 6, 7 and the two individuals coalescing are identical.

P (i|γ) = e−µ(Ts) (A.80)

i ∈ 5, 6, 7 and the two individuals coalescing are different,then two mutation must
occur, which has probability 0.

P (i|γ) = 0 (A.81)
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A.4 Appendix of Chapter 5

A.4.1 Supplementary Figures
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Figure A.23: Performance of eSMC and SMCm under a sawtooth sce-
nario. Estimated demographic history by SMCm and eSMC using 10 scaffolds
each of 100 Mb with sample size 2 (respectively in red and orange) under a saw-
tooth scenario (black). The recombination and mutation rate are set to 1 × 10−8

per generation per bp and the methylation and demethylation rate are respectively
set to to 1× 10−3 and 5× 10−3 per generation per bp.
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Figure A.24: Performance of eSMC and SMCm under a sawtooth sce-
nario. Estimated demographic history by SMCm and eSMC using 2 sequence of
100 Mb (respectively in red and orange) under a sawtooth scenario (black). The
recombination and mutation rate are set to 1 × 10−8 per generation per bp and
the methylation and demethylation rate are respectively set to to 1 × 10−4 and
5× 10−4 per generation per bp.
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Figure A.25: Performance of eSMC and SMCm under a bottleneck
scenario. Estimated demographic history by SMCm and eSMC using 10 scaffolds
each of 100 Mb with sample size 2 (respectively in red and orange) under a recent
bottleneck (black) and where current population size is 1000. The recombination
and mutation rate are set to 1×10−8 per generation per bp and the methylation and
demethylation rate are respectively set to to 1× 10−4 and 5× 10−4 per generation
per bp.

A.4.2 Theorem 1
When mutation rate, sample size, coalescent times are to important, the infinite
site model might no longer be valid. We therefore build a model to describe the
distribution of nucleotides under a finite site model. To do so, we build a recursive
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formula (along the coalescent tree) to calculate the distribution of nucleotides of
the sample at one position. We first model a sequence, at each position and with
probability 0.25 the common ancestor (ancestral nucleotidic state) is attributed a
nucleotide Xi (i.e. A,T,C,G). Then a coalescence event happens and a new indi-
vidual appears. Its nucleotide is selected with probability equal to its proportion
in the sample at that time.

Second step, mutations are added. Let’s Note Xt = (X1t, X2t, X3t, X4t) the
number of each nucleotide at step t. Let Tt be the coalescent time at step t. The
number of each nucleotide is the sum of t+1 random variable. Four distributions
are possible depending on the original nucleotide. The distribution of Xt is thus
the sum of four independent random variable conditional to the number of each
nucleotide at time t-1. Each of these variable follow a multinomial distribution.
We can thus use the convolution formula which gives us :

P (Xt|T,Xt−1) =
4∑

k=1

pt−1,k × (P (Xt|T,Xk,t−1)) (A.82)

Where Xk,t−1 is Xt−1 +1 for the number of nucleotide k (new individual).
pt−1,k is the probability conditional to Xt−1 that the new individual is of type k.

This gives :

P (Xt|T,Xt−1) =

4∑
k=1

pt−1,k × (

X1k,t−1∑
n11=0

....

X4k,t−1∑
n44=0

∏4
i=1Xik,t−1!∏4
i,j=1 nij!

4∏
i,j=1

pnijij ) (A.83)

Where nij is the number of nucleotides of type i that become of type j. and
pij the probability of turning to nucleotide j from nucleotide i. This formula comes
from the fact that each individual (before adding mutations) will give an individual.
We therefore have to pick every individual, and sum over all possible combination
which will give us Xt

We have pii = (0.25+0.75×e−µT ) that we call p and pi 6=j = (0.25×(1−e−µT ))
Thus :

P (Xt|T,Xt−1) =

4∑
k=1

pt−1,k×(

X1k,t−1∑
n11=0

....

X4k,t−1∑
n44=0

∏4
i=1Xik,t−1!∏4
i,j=1 nij!

p
∑4
i=1 nii(1−p)t−

∑4
i=1 nii)

(A.84)

Using Newton formula (and where N=
∑4

i=1 nii):

P (Xt|T,Xt−1) =
4∑
k=1

pt−1,k×(

X1k,t−1∑
n11=0

....

X4k,t−1∑
n44=0

∏4
i=1 Xik,t−1!∏4
i,j=1 nij!

1

4

t N∑
d=0

t−N∑
l=0

(N
d

)(t−N
l

)
3d(−1)le−µT (d+l))

(A.85)
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The integral of a sum is the sum of integral, thus we can integrate over time.
Since T follows an exponential distribution of parameter

(
t
2

)
, it gives us :

P (Xt|Xt−1) =

4∑
k=1

pt−1,k × (

X1k,t−1∑
n11=0

....

X4k,t−1∑
n44=0

∏4
i=1 Xik,t−1!∏4
i,j=1 nij!

1

4

t N∑
d=0

t−N∑
l=0

(N
d

)(t−N
l

) 3d(−1)l
(t
2

)(t
2

)
+ µ(d+ l)

)

(A.86)

Of course we only sum terms where :

•
∑4

i=1 nij = Xjt

•
∑4

j=1 nij = Xit−1

Using the total probability formula:

P (Xt) =
∑
Xt−1

P (Xt|Xt−1)P (Xt−1) (A.87)

Here we have a recursive formula to calculate the distribution.

A.4.3 Theorem 2
We here integrate epimutation (i.e. methylation and demethylation of cytosine) to
what has been done in theorem 1. We assume that epimutations and mutations
are independent and that we are at a position which can be methylated (otherwise
cf theorem 1). In addition, we assume that if a nucleotide is replaced by a cytosine,
the cytosine is unmethylated. We now have with probability 0.25Pm for the initial
nucleotide to be a C∗ (methylated) and C (unmethylated) with probability 0.25(1-
Pm) (assuming we are at equilibrium). Where Pm is defined as:

Pm =
µm

µm + µd
(A.88)

Where, µm is the methylation rate and µd the demethyation rate.

We respectively note X1,X2,X3,X4,X5 as A,T,G,C,C*. We first model a se-
quence, at each position and with probability 0.25 the common ancestor is at-
tributed a nucleotide Xi (i.e. A,T,C,G). Then a coalescence event happens and
a new individual appears. Its nucleotide is selected with probability equal to its
proportion in the sample at that time.

Second step, mutations are added and then epimutations. Let’s Note the num-
ber of each nucleotide at step t : Xt = (X1t, X2t, X3t, X4t, X5t). Let Tt be the
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coalescent time at step t. The number of each nucleotide is the sum of t+1 ran-
dom variable. Four distributions are possible depending on the original nucleotide.
The distribution of Xt is thus the sum of four independent random variable condi-
tional to the number of each nucleotide at time t-1. Each of these variable follow
a multinomial distribution. We can thus use the convolution formula which gives
us :

P (Xt|T,Xt−1) =
5∑

k=1

pt−1,k × (P (Xt|T,Xk,t−1)) (A.89)

Where Xk,t−1 is Xt−1 +1 for the number of nucleotide k (new individual).
pt−1,k is the probability conditional to Xt−1 that the new individual is of type
k.This gives :

P (Xt|T,Xt−1) =
5∑

k=1

pt−1,k × (

X1k,t−1∑
n11=0

....

X4k,t−1∑
n44=0

∏4
i=1Xik,t−1!∏4
i,j=1 nij!

4∏
i,j=1

pnijij ) (A.90)

Where nij is the number of nucleotide of type i that become type j. and pij
the probability of turning to nucleotide j from nucleotide i. We therefore have to
pick every individual, and sum over all possible combination which will give us Xt.
We have:

• pii = (0.25 + 0.75× e−µT ), if i ∈ {1,2,3}

• pi 6=j = (0.25× (1− e−µT )), if j ∈ {1,2,3}

• pii = (0.25 + 0.75× e−µT )( µd
µm+µd

(1 + e−T (µm+µd))), if i ∈ {4}

• pii = (0.25 + 0.75× e−µT )( µm
µm+µd

(1 + e−T (µm+µd))), if i ∈ {5}

• pi 6=j = (0.25+0.75×e−µT )( µd
µm+µd

(1−e−T (µm+µd))), if j ∈ {4} and if i ∈ {5}

• pi 6=j = (0.25+0.75×e−µT )( µd
µm+µd

(1−e−T (µm+µd))), if j ∈ {5} and if i ∈ {4}

• pi 6=j =
∫ T

0
1
T (0.25+0.75×e−µt)(( µd

µm+µd
+ µm
µm+µd

e−(T−t)(µm+µd))dt, if j ∈ {4}
and if i ∈ {1,2,3}

• pi 6=j =
∫ T

0
1
T (0.25 + 0.75× e−µt)( µm

µm+µd
(1− e−(T−t)(µm+µd))dt, if j ∈ {5} and

if i ∈ {1,2,3}

From here, the recursive formulas can be obtained using the similar approach
as in theorem 1.
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A.4.4 Model description of SMCm
SMCm derives from eSMC except for the emission matrix. Hence, for the general
HMM description and optimization of the likelihood, cf A.1.

Emission Matrix with sequence and methylation polymorphism

Since the model accounts for sequence and methylation polymorphisms, there are
at each position 5 different possible observations when comparing two sequences.
The first observation is 0 , corresponding to a non-methylable site where the two
nucleotides are identical. 1, if the two nucleotide are different. 2 if it’s a methy-
lable site and both are unmethylated. 3, if the site is methylable and both are
methylated. Finally, 4 is it’s a methylable site and one cytosine is methylated and
the other unmethylated. Therefore, from theorem 2 with sample size 2, after ap-
proximating the formula assuming methylation state is not affected by mutations
we have the following formula:

P (0|γ) = e−2µtγ

P (1|γ) = 1− e−2µtγ

P (2|γ) = ((pd × ((pd + ((1− pd)e(−(µd+µm)×Tc×Ne)))× (pd + ((1− pd)e(−θm)))))

+((1− pd)× (1− ((1− pd) + (pde
(−θm))))× (1− ((1− pd) + (pde

(−θm))))))

P (3|γ) = ((pd × ((1− (pd + ((1− pd)e(−θm))))× (1− (pd + ((1− pd)e(−θm))))))

+((1− pd)× (((1− pd) + (pde
(−θm))))× (((1− pd) + (pde

(−θm))))))

P (4|γ) = ((pd × (2× (pd + ((1− pd)e(−θm)))× (1− (pd + ((1− pd)e(−θm))))))

+((1− pd)× (2× ((1− pd) + (pde
(−θm)))× (1− ((1− pd) + (pde

(−θm)))))))

pd =
µd

µd + µm

θm = (µd + µm)× Tc×Ne
(A.91)

Where µ is the mutation rate per nucleotide per N generation,µm the methy-
lation rate per generation,µd the demethylation rate per generation and tγ the
average coalescent time in state γ.
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