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Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel

2. Prof. Joseph Z. Ben-Asher, Ph.D.

Die Dissertation wurde am 30.09.2020 bei der Technischen Universität München 

eingereicht und durch die Fakultät für Luftfahrt, Raumfahrt und Geodäsie am 

24.02.2021 angenommen. 





Acknowledgement

First of all, I would like to thank my family members Luise Diepolder, Wolfgang
Diepolder, Sophie Stettner, and Elisabeth Diepolder for their support over the years.
With their help I was able to obtain the opportunities and make the experiences that
have encouraged me to finish this thesis.

I really enjoyed my work as a research associate at the Institute of Flight System
Dynamics at the Technical University of Munich. In this time my doctoral supervisor
Prof. Florian Holzapfel has provided me all possible opportunities for my professional
growth. His ideas regarding the application of the methods developed in this thesis
constitute an integral part of this work. Moreover, I would like to extend my sin-
cere gratitude to Prof. Joseph Z. Ben-Asher for his guidance throughout my years as
a doctoral candidate. In particular, his longer visits at the Institute of Flight system
Dynamics in Munich and my time at the Technion in Israel have been the most crucial
periods for the completion of my doctoral thesis. I am immensely grateful for his kind
encouragement and help.

Special thanks go to all of my closest colleagues and friends Mattias Bittner, Rainer
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Abstract

The application of optimal control theory for flight control law clearance is investi-
gated. In this context a classification scheme based on the well-known categorization
for aircraft pilot in the loop oscillations is proposed for different model alternatives
(linear, quasi-linear, nonlinear). The nonlinear category is further refined based on the
respective solution methodology, namely non-intrusive (black box), intrusive (white
box), and hybrid (grey box) methods. The main concept for the approaches investi-
gated in this thesis is the formulation of the clearance problem as a parameter depen-
dent, state constrained, optimal control problem. For the linear and quasi-linear case
the worst-case control is characterized based on the Minimum Principle. It is shown
that the nominal clearance problem for linear models with state constraints and fixed
terminal time yields a convex parameter optimization problem. The global solution
for the discretized problem is achieved based on Linear Programming methods. In
addition, parameter dependent methods (deterministic and stochastic) and methods
for multi-criteria analysis are proposed. These approaches are tested using linearized
aircraft models for the longitudinal and lateral motion. Multiple inputs are consid-
ered, such as pilot commands and wind gusts. Moreover, state constraints for rate
and position limits of the servomechanism are introduced. In the nonlinear case novel
approaches for hybrid and intrusive methods are presented. The hybrid approach
is based on results from the linear domain and formulates the problem as an opti-
mization problem in the switching points of the worst-case control function. Intrusive
methods cover the solution of the parameter dependent clearance problem using direct
optimal control methods. Formulations for the simultaneous determination of worst-
case pilot control functions and parameter combinations are presented. Furthermore,
post-optimal sensitivity analysis is performed to obtain the sensitivity of the worst-
case solution with respect to fixed parameters. The approaches are applied to test the
inner-loop controller of a nonlinear closed-loop model. Additionally, a method for
computing reachable sets is proposed for the clearance task and illustrated by estimat-
ing the reachable set in the error subspace for a model reference adaptive controller.
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Kurzfassung

Diese Arbeit befasst sich mit der Anwendung von Optimalsteuerungsmethoden für
das Testen von Flugregelungssystemen. Die entwickelten Methoden sind in ein Klas-
sifizierungsschema für die verschiedenen Modellierungsansätze (linear, quasi-linear,
nichtlinear) eingebettet, welches auf dem bekannten Klassifizierungsschema für pilo-
teninduzierte Oszillationen beruht. Des Weiteren werden die Ansätze für nichtlinearen
Methoden in nicht-intrusive (black box), intrusive (white box) und hybride (grey box)
Methoden unterteilt. Die grundlegende Modellierungsstrategie welche in dieser Arbeit
verwendet wird, ist die Formulierung des Problems als parameterabhängiges Opti-
malsteuerungsproblem mit reinen Zustandsbeschränkungen. Im linearen sowie quasi-
linearen Fall wird die optimale Steuerfunktion basierend auf dem Minimumprinzip
charakterisiert. Zudem werden Ansätze für die numerische Lösung des nominellen
Problems mit fester Endzeit vorgestellt. Es wird gezeigt, dass dieses Problem als kon-
vexes Optimierungsproblem mit Hilfe von Methoden der linearen Programmierung
global gelöst werden kann. Weitere Verfahren ermöglichen die Lösung von parame-
terabhängigen (deterministisch und stochastisch), sowie multikriteriellen Problemen.
Diese Methoden werden anhand der Untersuchung eines geregelten Systems für die
Längs- und Seitenbewegung illustriert, welches durch die Linearisierung um einen
Referenzzustand abgeleitet wird. Das verwendete Modell weist mehrere Eingänge für
Pilotenkommandos sowie Windstörungen auf. Zudem sind Raten- und Positionsbe-
schränkungen für die Aktuatorik in der Problemformulierung berücksichtigt. Im nicht-
linearen Fall werden hybride und intrusive Methoden vorgestellt. Der hybride Ansatz
beruht auf einer Optimierung der Schaltstruktur für das nichtlineare Modell, welche
basierend auf linearen Modellen bestimmt wird. Die intrusiven Verfahren hingegen
basieren auf Methoden der direkten Optimalsteuerung. Die gemeinsame Optimierung
der Kontrollfunktionen in Kombination mit Parametervariationen ist hierbei möglich.
Zudem kann mit Hilfe von post-optimalen Sensitivitäten im Anschluss an die Opti-
mierung der Einfluss von Parametern auf die optimale Lösung berechnet werden. Die
Methoden werden für das Testen der inneren Regelschleife eines nichtlinearen Flug-
modells verwendet. Weiterhin findet eine Methode zur Approximation von Erreich-
barkeitsmengen für die Abschätzung des Fehlers im Folgeverhalten eines adaptiven
Modellfolgereglers Anwendung.
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Chapter 1

Introduction

1.1 Motivation

Testing can be considered one of the most important tasks in the development of en-
gineering solutions. Especially for safety critical applications it is mandatory to show
that systems can only be operated under safe conditions. Flight control laws, which are
investigated in the this thesis, belong to this class of safety critical systems. As such,
all relevant internal and external influences have to be considered during testing and
the safety assessment of the entire flight system needs to be performed in the develop-
ment process using quantifiable criteria. In this context, internal influences for flight
control systems are, for example, quantities related to the structural properties, such
as mass and mass distribution, as well as aerodynamic properties of the vehicle. An
important external influence is the atmospheric impact due to the varying density of
the surrounding air or wind gusts. Especially the latter can lead to hazardous flight
conditions due to the strong effects of wind on the aerodynamic forces. Moreover, the
pilot steering the aircraft needs to be considered due to the high degree of influence
on the motion of the aircraft. Ideally, the control system should be designed in such
as way that it is not possible for the pilot to bring the vehicle into an undesired flight
condition. It is important to note that some of the mentioned quantities may be de-
terministic with a fixed range, known for the particular system, whereas others can
be considered uncertain, i.e. subject to a distribution. Typical criteria for flight con-
trol systems involve bounds on aerodynamic quantities, structural loads, or tracking
performance, to name a few. To illustrate the clearance task, consider the maximum
Angle-of-Attack (AoA) exceeding criterion for wing-borne flight. The lift force, which
is mainly produced by the wing of the aircraft, is heavily influenced by the aerody-
namic AoA. An increased AoA leads to an elevated lift force but only until a certain
limit is reached. If this limit is exceeded the lift force breaks down to a large extent due
to the altered flow conditions on the wing and the aircraft stalls. This effect can lead
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1.2 State of the Art

to dangerous conditions if the vehicle cannot be recovered. Typically, the flight con-
trol system ensures by means of built-in protection laws that the stall limit may not be
breached and the vehicle is only operated within the safe limits of the AoA. However,
note that numerous quantities have an influence on this particular criterion. Besides
the structural quantities, such as those related to mass distribution, the aerodynamic
properties of the aircraft which are, in most cases, subject to a considerable uncertainty
need to be taken into account. Furthermore, disturbances such as wind gusts may pro-
duce very sudden changes in the aerodynamic AoA and are not known a-priori due
the unpredictable nature of the atmospheric motion. The combination of these effects
with any possible pilot command history and other unknowns, such as measurement
noise, needs to be considered in order to ensure that the system can be kept within the
prescribed limits. It should be clear from this example that the number of unknowns
and the numerous combinations of all possible parameter values, envelope points, and
disturbances adds to the complexity of the clearance task. In addition, one of the ma-
jor challenges for a rigorous clearance of flight control systems is the high degree of
nonlinearity associated with some of these effects. Besides the inherent nonlinearity of
the aircraft dynamic model, a typical example for strongly nonlinear effects are inter-
nal limits for the servomechanism. For example, the actuators’ maximum position and
rate represent natural limits constraining the motion of the primary control surfaces
and thus need to be considered in the dynamic model. Note that as soon as the actu-
ators are driven into saturation the maneuverability of the aerial vehicle is impaired.
This situation needs to be handled adequately by the control law, e.g. by means of
suitable control allocation schemes. The illustrated complexity of the clearance task
has led to the development of various advanced approaches for flight control law test-
ing in the last decades. In particular, optimization based approaches have shown a
high potential to efficiently identify worst-case scenarios. The state of the art for these
approaches is discussed in the following section.

1.2 State of the Art

In Ref. [1] collected results for modern flight control law clearance methods are sum-
marized. The main objective behind the approaches in this reference is the application
of advanced flight control law clearance methods in industry practice. This is mo-
tivated by the fact that, in many cases, still the most popular approaches for flight
control law testing are typically based on Gridding and standard Monte Carlo. For
Gridding approaches the criterion under investigation is tested for a finite set of points
in the space of all influential parameters. It is important to mention that the corner
cases are usually of particular interest as worst-case combinations are often found at

2



Chapter 1: Introduction

extremal values of the parameters. However, in general, it is by no means certain that
a violation of the criterion may not occur in between grid points and would thus re-
main undetected by this approach. Furthermore, the number of grid points grows
rapidly with an increasing dimension of the parameter space due to the combinatorial
nature of the problem (curse of dimensionality). For Monte Carlo methods the criterion
is evaluated using a sampling-based approach and statistical information can be ob-
tained from the results. Nevertheless, typically an enormous amount of realizations
needs to be performed until the required confidence level is reached. This is true, in
particular, for the standard Monte Carlo approach if very small failure domains are
investigated. More advanced methods such as subset simulation methods (cf. Ref. [2])
tackle this problem by a successive construction of sets advancing towards the failure
domain. Note that by moving towards this failure domain the algorithm concentrates
not on the whole parameter space but on the region where further violations are ex-
pected. Note further that in some sense the idea to increase efficiency by advancing
towards the failure domain naturally leads to the use of optimization assisted search
methods for worst-case analysis. These approaches employ optimization methods to
search the admissible parameter space for a violation of the criterion. In Ref. [3] sev-
eral optimization methods are considered for the application to worst-case parameter
search. The main categories are gradient-based methods (Sequential Quadratic Pro-
gramming methods [4] and limited-memory BFGS with bound constraints [5]), gra-
dient free methods (pattern search [6], constrained optimization by linear approxima-
tions [7], derivative free trust region [8]), and global methods (simulated annealing [9],
genetic algorithms [10], multilevel coordinate search [11]). It is observed that the main
challenges for the application of optimization based methods are expensive function
evaluations, multiple local minima, noisy functions, and discontinuous derivatives.
The application of these optimization methods to linear and nonlinear criteria is in-
vestigated in Refs. [12, 13]. For linear criteria the application of optimization based
methods is benchmarked in Ref. [12] against the standard Gridding approach. Re-
garding the efficiency, it is noted that the Gridding approach exhibits an exponential
computational complexity with respect to the number of parameter dimensions. This
is not the case for the optimization methods employed in this reference. For the nonlin-
ear benchmark in Ref. [13] the AoA exceeding criterion and the maximum load factor
criterion are investigated. Besides aerodynamic derivatives, other parameters related
to the mass distribution of the aircraft (center of gravity position and moment of inertia
around the pitch axis) are used for the clearance task. For this study the optimization
based methods outperform the Gridding methods. Particularly noteworthy is the fact
that optimization based methods are able to identify considerable degradations in be-
tween grid points, that are regions not even explored by the Gridding approach. As for
the linear benchmark, it is found that the (local) gradient-based methods perform more
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efficiently, whereas global algorithms seem to yield more reliable worst-case results in
this study. The authors suggest to combine local and global optimization schemes to
harvest the effectiveness of local gradient-based methods together with the reliability
of global methods. This line of research is continued in Refs. [14, 15] where two global
schemes, namely differential evolution (DE) [16] and genetic algorithms (GA) are com-
bined with a local search algorithm. The study considers the AoA limit exceeding crite-
rion for the ADMIRE (Aerodata Model in Research Environment, cf. Ref. [17]) fighter
aircraft model on a time horizon of ten seconds in a pull-up maneuver. Parameters
related to aerodynamic coefficients and mass distribution are used. The algorithms
with local search outperform the basic algorithms (without local search) both in com-
putational time and global convergence. Overall, DE with local search shows superior
performance for this study. In Ref. [18] the authors further investigate the effective-
ness of the DIRECT optimization method [19] combined with a local search algorithm.
The results are compared to the DE algorithm with local search in a similar setting
as in Refs. [14, 15]. The results indicate that the DIRECT method with local search
outperforms DE with local search. The study in Ref. [20] investigates the clearance
problem using the ADMIRE model for the maximum load factor criterion by means of
discretized pilot command inputs. The pitch and roll signals are discretized with ten
amplitude points each. Three optimization algorithms, DE, GA, and a gradient-based
search are compared. The gradient-based search performs well initially, but then gets
trapped in a local solution. The DE method outperforms GA in this study. Follow-
ing the developments in Ref. [1] the application of optimization based methods for
civil aircraft is studied in Ref. [21]. Optimization based worst-case parameter search
(cf. Refs. [22, 23]) and worst-case pilot input determination (cf. Refs. [24, 25]) are in-
vestigated using local and global optimization algorithms. The optimization based
methods show excellent performance for the clearance task. For example in Ref. [25]
optimization based methods easily find pilot inputs violating the maximum AoA ex-
ceeding criterion. Additionally, multi-criteria analysis is performed in Ref. [26] for a
combined AoA exceeding and dive speed criterion. This combination is interesting
from the point of view that the AoA exceeding criterion is typically more relevant at
low velocities and the dive speed criterion for high velocities. Optimization methods
and a Monte Carlo approach are compared using parametrized pilot commands (longi-
tudinal stick, lateral stick, pedal, air-brakes, and throttle position) in combination with
other parameters (altitude, speed, mass, and center of gravity position). The overall
proposed validation workflow for the implementation of optimization based methods
in industry practice is to first perform a Monte Carlo analysis and then start the opti-
mization based search using global algorithms from identified worst-cases. The results
from the global algorithms are then refined by a local algorithm and complemented by
a sensitivity analysis based on simulations. In Ref. [27] the carefree handling clearance
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problem for the Eurofighter Typhoon is investigated. The pitch and roll stick command
with 20 parameters each (ten time points and corresponding amplitude parameters) in
combination with other parameters is used to test the control system. The global opti-
mization algorithm MAGO (Multi Dynamics Algorithm for Global Optimization) [28]
is applied in combination with a local search algorithm and compared to two global
algorithms (particle swarm optimization (PSO) [29] and SPS-LSHADE-EIG [30]). The
proposed algorithm shows good performance compared to the other global schemes.
It is important to observe that the discretization of the control signal adds a dominant
amount of parameters to the clearance problem which is undesirable for global opti-
mization algorithms that perform typically well in low dimensional parameter spaces.
One key observation in this context is that the clearance problem with input commands
can be viewed as an optimal control problem. In other words, a worst-case control
function is searched for which minimizes (or maximizes) the criterion under inves-
tigation. Recently, the authors in Ref. [31] proposed to state the problem of finding
the worst-case pilot inputs based on optimal control methods. This approach is illus-
trated using a short period approximation of the ADMIRE model. The advantages to
regard the clearance problem from this point of view are on the one side a rich theo-
retical background in optimal control theory and on the other side powerful numerical
tools which have been developed in the past decades for the solution of dynamic op-
timization problems. Due to the appealing potential of the idea this line of research is
followed for the approaches developed in this thesis.

1.3 Goals and Contributions

The primary goal of this thesis is to lay ground for the application of optimal control
based clearance methods in industry practice. This includes advancements of the the-
oretical and practical basis, which can be used for the implementation of novel test
procedures for realistic flight control systems. As such, a framework for the applica-
tion of optimal control based methods for typical flight control law clearance tasks is
developed. The contributions can be summarized as follows:

I Development of a model classification scheme for optimal control based clearance
approaches for different modeling alternatives (linear, quasi-linear, nonlinear) and
corresponding solution strategies (non-intrusive, intrusive, hybrid).

II Development of clearance methods for linear and quasi-linear systems including
approaches for

� deterministic, parameter dependent systems,

� uncertain, parameter dependent systems,

5



1.3 Goals and Contributions

� multi-criteria and reachability analysis.

III Development of approaches for nonlinear clearance tasks including

� clearance methods based on direct optimal control methods,

� the application of post-optimal sensitivity analysis, and

� a hybrid clearance method based on the optimization of switching times.

IV Implementation of a counter optimization library (COLIBRY) with high level inter-
faces to MATLAB® and Simulink® for the application of the approaches developed
in this thesis as well as contributions to the implementation of the FSD optimal
control toolbox FALCON.m1 for the solution of nonlinear clearance problems.

These contributions are described in detail in the following sections.

Contribution I: Model classifications for optimal control based

clearance

Due to the novelty of the optimal control approach in the context of flight control law
clearance it is useful to introduce a classification scheme. To the knowledge of the
author a classification in this form has not been proposed in public literature. Optimal
control based clearance approaches may be classified based on the following model
categories:

� Category I: Completely linear system analysis.

� Category II: Quasi-linear system analysis including internal limits in the ser-
vomechanism.

� Category III: General nonlinear system analysis.

This categorization is based on the model categories for the analysis of pilot induced
oscillations (cf. Ref. [32]). It is noteworthy that, using the tools developed in this the-
sis, several problems from Cat I and Cat II can be solved to global optimality. This
is not the case for Cat III models as the theoretical and algorithmic development has
not yet lead to global optimal control methods which can operate in high dimensional
state-spaces. As such, the goal for Cat III models is to develop effective optimal control
based methods which are comprehensive for the application in industry practice and
can efficiently be applied to large-scale models. For Cat III models it is helpful to in-
crease the classification granularity by the introduction of the following three solution
methodologies:

1www.falcon-m.com

6



Chapter 1: Introduction

� Non-intrusive: The dynamic nature of the problem is regarded as a black box,
typically using the combination of parameter optimization and simulation meth-
ods in a single sweep.

� Intrusive: The dynamic system is exposed to the algorithm as a white box, e.g. in
the form of a single point execution model.

� Hybrid: An intermediate modeling alternative is used in which worst-case in-
puts are constructed based on a reduced white box model and applied to the full
simulation model.

Note that this classification is only introduced for Cat III models as Cat I and Cat II
models, that are linear and quasi-linear models, can for the most part be treated in an
intrusive manner. The majority of the approaches discussed in Sec. 1.2 belong to Cat
III non-intrusive methods. The optimal control approach from Ref. [31] however may
be viewed as a Cat II intrusive method due to the fact that it approaches the problem
based on the characteristics of the dynamic model at a single time point.

Contribution II: Development of clearance methods for parame-

ter dependent (quasi-)linear systems

Following the ideas in [31] the theoretical analysis in this thesis characterizes the solu-
tion of Cat I and Cat II models based on the Minimum Principle. This analysis includes
the state constrained case which is used to model internal limits of the servomecha-
nism. Four formulations are developed for the application to flight control law testing
under Cat I and Cat II:

� Nominal Case:
It is shown that the dynamic optimization problem for Cat I and Cat II models
with fixed terminal time can be transcribed into a linear programming problem.
Worst-case disturbance inputs (e.g. wind gusts and pilot commands) and state
constraints related to actuator position and rate limits are considered under this
approach. It is particularly noteworthy that this formulation allows for an effi-
cient solution of the nominal, discretized problem to global optimality.

� Parameter Dependent Case (Deterministic):
Based on the nominal formulation, a bi-level method is proposed which can be
used to solve dynamic optimization problems for linear parameter varying prob-
lems. On the lower level a discretized optimal control problem is solved for
fixed values of the parameters using linear programming. On the upper level
the typically low dimensional search is performed by a parameter optimization
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algorithm. For this upper level problem gradient-based algorithms using post-
optimal sensitivities and gradient-free, global methods are proposed.

� Parameter Dependent Case (Stochastic):
In the context of uncertainty quantification a generalized polynomial chaos ap-
proach with stochastic collocation is applied to the clearance task. Statistical in-
formation about the clearance criterion is obtained using the solution of deter-
ministic optimal control problems at stochastic collocation points and the pro-
jection into the space of orthogonal polynomial basis functions. The fast con-
vergence of the spectral method is verified based on the comparison to a Monte
Carlo analysis.

� Multi-Criteria and Reachability Analysis:
A numerical scheme for the simultaneous treatment of multiple criteria is devel-
oped. This scheme approximates the boundary of the reachable set in the space
of criteria up to a given tolerance. The proposed method is applicable to very
high dimensional state spaces and is able to consider input and state constraints.

Contribution III: Development of clearance methods for general

nonlinear systems

For the nonlinear domain both intrusive and hybrid Cat III approaches are developed.
As for the linear case, the CAT III intrusive approaches include the nominal and pa-
rameter dependent case as well as multi-criteria and reachability analysis:

� Nominal and Parameter Dependent Case:
The problem formulation for the nonlinear case is directly able to treat the param-
eter dependent case. As for the linear case, the numerical solution of the nonlin-
ear optimization problem is achieved through the discretization of the problem
using direct transcription methods. Numerical evidence suggests that due to the
resulting sparse optimization problem the solution of the clearance problem is
efficient and produces plausible results from an engineering point of view. More-
over, results from post-optimal sensitivity analysis are used to study the effect
of parameters on the worst-case optimal solution. This information is deemed
useful to determine influential parameters. The nonlinear closed-loop model
used for the study in this thesis is a full six-degree-of freedom flight dynamic
model including aeroelastic effects, sensor models, the inner-loop controller, and
an actuation system with rate and position limits. As such, the optimal control
problem solved for the clearance task has 82 states, six controls modeling pilot
commands and wind disturbances and depends on parameters related to aero-
dynamic derivatives and mass distribution.

8
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� Multi-Criteria and Reachability Analysis:
Reachability analysis for the nonlinear problem is treated through the application
of the distance fields on grids (DFOG) method [33]. Besides the general applica-
bility of the approach it is observed (in congruence with Ref. [33]) that the local
nature of the solution for nonlinear optimal control problems is mitigated to a cer-
tain extent through the solution of a large number of optimal control problems
on a grid. However, an obvious downside of this approach is the considerable
computational effort which requires an efficient implementation. The approach is
illustrated using an example problem for the approximation of the reachable set
in the tracking error subspace of a nonlinear model reference adaptive controller.

Besides the Cat III intrusive methods a hybrid approach is developed which extends
the tools developed for linear models to the nonlinear domain. First, a linear model
is employed to construct the worst-case command. It is observed that the switching
structure obtained from the linear model present a good parametrization of the control
function which may also be applied to the nonlinear model. As such, the problem is
reformulated for the Cat III hybrid approach as an optimization in the switching times
of the worst-case control obtained from the linear model. In addition to the good initial
guess from the linear model, the number of switches is typically very low which greatly
reduces the parameter space to be searched. The appealing simplicity paired with its
effectiveness makes this approach directly applicable in industry practice. Note that
the additional modeling effort for the application is very low as linearization results
for closed-loop models and a simulation model are typically available during the de-
velopment process.

It is important to mention that the approaches related to Cat III models are compu-
tationally quite demanding. Consider for example the reachability analysis using the
DFOG method which requires the solution of potentially several thousands of non-
linear optimal control problems. As such, the exploitation of problem characteristics
in the numerical implementation, e.g. the exploitation of sparse structures for the dy-
namic systems or the discretization methods, is of paramount importance. This leads
to the last contribution, that is the software development for clearance methods.

Contribution IV: Software development for clearance methods

The developed approaches for Cat I and Cat II models as well as the hybrid method
for Cat III models are implemented by the author in a counter optimization library
(COLIBRY) with an interface to MATLAB® and Simulink®. The main objective of this
software package is to allow for the direct application of the approaches developed in
this thesis to realistic clearance problems. For Cat III intrusive methods the FSD Opti-
mal control software FALCON.m is employed which has since the initial version been

9
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co-developed by the author with major contributions from the authors of Refs. [34, 35].
This tool allows for an efficient numerical solution of nonlinear optimal control prob-
lems using interfaces to third-party solvers. Besides the general development for the
core capabilities of the tool the author has implemented a Simulink® interface and con-
tributed to the implementation of post-optimal sensitivities.

1.4 Outline of the Thesis

This thesis is structured as follows. Firstly, the mathematical background is outlined
in chapter 2. This theoretical background summarizes well established results from
function interpolation and approximation, quadrature approximations, and the nu-
merical solution of initial value problems including sensitivity analysis. The chapters
3 and 4 present the theoretical background for unconstrained and constrained param-
eter optimization problems. Besides the necessary and sufficient conditions of opti-
mality, numerical methods for linear, quadratic, and general nonlinear optimization
problems are presented. Moreover, important results from post-optimal sensitivity
analysis are discussed. In chapter 5 the step is taken from finite dimensional parame-
ter optimization problems to infinite dimensional optimal control problems in function
space. As such, chapter 5 revisits first-order necessary conditions for differential and
integral formulations and summarizes theoretical results for control affine and state
dependent optimal control problems. The following chapter 6 discusses direct solu-
tion approaches, namely shooting and collocation methods, for the numerical treat-
ment of optimal control problems. The connection between the continuous time op-
timal control problem and the discretized versions using direct transcription schemes
is established based on the derivation of a co-state estimation schemes for segmented
Legendre-Gauss methods in differential form. Chapter 7 presents the proposed frame-
work for optimal control based worst-case analysis developed in this thesis. Besides
the classification of optimal control based testing, particular modeling choices related
to the servomechanism of the system are put into context. The proposed classification
is the basis for the approaches presented in the following two chapters. Chapter 8 dis-
cusses the first two categories, namely the linear and quasi-linear case (Cat I and Cat
II) with and without parameter dependencies. First, the optimal control is character-
ized based on the Minimum Principle and the developed testing procedures for the
nominal and parameter dependent case are presented. Furthermore, the application
of generalized polynomial chaos for uncertainty quantification in the context of opti-
mal control based testing is proposed. Moreover, an efficient reachable set algorithm
for Cat I and Cat II models is developed. Chapter 9 discusses the general nonlinear
case from the last modeling category (Cat III). Both intrusive and hybrid methods are
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presented. These methods are benchmarked using a nonlinear closed-loop model. In
addition, an intrusive method for performing reachable set approximations is applied
to a F16 fighter model with a nonlinear model reference adaptive controller.
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Chapter 2

Mathematical Preliminaries

The flight control law clearance approaches presented in this thesis are based on the
application of direct optimal control methods. These methods transcribe the clearance
optimal control problem into a discretized form. Transcription schemes of this type pri-
marily rely on mathematical tools related to function parametrization and the solution
of initial value problems. On the one side, B-splines (cf. Sec. 2.6) are widely used in this
context for the parametrization of control functions due to their local support property.
On the other side, the solution of initial value problems (cf. Sec. 2.3 and Sec. 2.4) is, in
most cases, achieved numerically using Runge-Kutta methods. In addition, segmented
collocation methods (cf. Sec. 2.5) are commonly employed for this task. As such, two
different forms of collocation methods, namely the differential and integral form, are
derived in this chapter and their connection to implicit Runge-Kutta methods is estab-
lished. Lagrange interpolation (cf. Sec. 2.1) and Legendre-Gauss quadrature methods
(cf. Sec. 2.2) represent the mathematical basis for these methods and are, as such, dis-
cussed in the beginning of this chapter.

2.1 Lagrange Interpolation

One of the basic tools for function interpolation is the use of a Lagrange interpolation
polynomial [36, 37]. In the following the interpolation of a function f : R → R at knots
ti, i = 0, . . . ,n− 1 is considered. These knots are defined on the Lagrange interpolation
grid GL

n of cardinality n:

GL
n := {ti : i = 0, . . . ,n− 1, ti+1 > ti} (2.1)
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The Lagrange interpolation for n values f(ti), i = 0, . . . ,n− 1 can be written as

f(t) ≈
n−1∑

i=0

li(t)f(ti), (2.2)

using the basis functions li : R → R defined by

li (t) :=
n−1∏

j=0
j 6=i

t− tj
ti − tj

. (2.3)

It is easily verified that each of the Lagrange basis functions has value one at a single
knot point ti and zero at all others, i.e.

li(tj) =





1 if i = j,

0 otherwise.
(2.4)

Please refer to Fig. 2.1 for an illustration of these basis functions.

Figure 2.1: Illustration of the first five Lagrange basis function values l0(t), . . . , l4(t) on
the interval t ∈ [−1, 1]. Abscissas for the interpolation points are highlighted
with black markers.
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From a practical point of view it is important to mention that the representation in
Eq. (2.3) is not the most favorable form for numerical implementations. Among other
reasons, this is contributed to the fact that O(n2) additions and multiplications are
required for each evaluation. Thus, in practice it is preferable to implement Eq. (2.2)

together with the basis functions defined in Eq. (2.3) in a different form, termed the
barycentric form [37]

f(t) ≈
n−1∑

i=0

n−1∏

j=0
j 6=i

t− tj
ti − tj

f(ti) =

∑n−1
i=0

wi
t−tif(ti)∑n−1

i=0
wi
t−ti

, (2.5)

with the barycentric weights wi, i = 0, . . . ,n− 1

wi :=
1∏n−1

j=0
j 6=i

(ti − tj)
. (2.6)

If the interpolation grid GL
n does not change, the barycentric weights wi can be pre-

computed resulting inO(n) operations for a single evaluation of the polynomial. More-
over, it is important to mention that the selection of the knots ti is crucial for the error
between the true function value f(t) and the interpolating polynomial. The intuitive
choice of equidistant points in fact leads to Runge’s phenomenon (cf. Ref. [38]) close to
both ends of the interpolation grid GL

n . This phenomenon becomes increasingly visible
for higher orders of the polynomial. To counteract this phenomenon the grid can be
chosen in such a way that the density of points is higher close to the ends of the interpo-
lation interval. Particularly, the sets of Legendre-Gauss (LG), Legendre-Gauss-Radau
(LGR), and Legendre-Gauss-Lobatto (LGL) points (cf. Sec. 2.2) alleviate the negative ef-
fect of this phenomenon. The classical example for Runge’s phenomenon is illustrated
in Fig. 2.2. In this figure, the interpolation of function values from

f(t) =
1

1 + t2
, (2.7)

is shown for equally spaced knots and abscissas based on LGL points. Note that the
interpolation using equally spaced points leads to large oscillations at both ends of the
interval. This phenomenon is not observed for the interpolation using the LGL points.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

t

f
(t
)

f(t)

Interpolation f(t) (LGL points)

Interpolation f(t) (equally spaced)
Values at LGL points
Values at equally spaced points

Figure 2.2: Illustration of the classical example for Runge’s phenomenon with f(t) =
1/(1 + t2) on the the interval t ∈ [−5, 5]. Equally spaced interpolation points
lead to oscillations towards both ends of the interval. For LGL points this
effect is not observed.

2.2 Legendre-Gauss Quadrature

In the following numerical integration methods are discussed. These integration meth-
ods can be used to approximate the integral of the function f : R → R on a closed
interval t ∈ [a, b]. An important class of numerical methods in this context is based on
quadrature rules [39, 40]. For schemes of this class the integrand f is evaluated on a
quadrature grid GQ

n of cardinality n

GQ
n := {ti : i = 0, . . . ,n− 1, ti+1 > ti, t0 ≥ a, tn−1 ≤ b}, (2.8)

and a weight wi is associated with each of the function values. The sum over these
weighted function values yields an approximation to the integral of the form:

∫ b

a

f (t) dt ≈
n−1∑

i=0

wif (ti) (2.9)

The approximation of an integral using a quadrature of this form is illustrated in
Fig. 2.3. Without loss of generality, the function f is in the following considered on the
normalized interval [−1, 1]. Note that the function f can always be mapped from the
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t

f(t)

f(t0)
f(t1)

f(t2)

f(t3)

t0 t1 t2 t3a b

∫ b
a
f(t)dt ≈∑iwif(ti)

Figure 2.3: Illustration of the numerical approximation for the definite integral of the
function f on the interval [a, b] by a weighted sum of function values at specific
locations.

interval [a, b] to this normalized interval using an affine transformation for t. Observe
that for the quadrature approximation (2.9) there are n abscissas ti, i = 0, . . . ,n − 1

and n weights wi, i = 0, . . . ,n − 1 to be defined. The primary motivation of how to
select these points and weights is to obtain a quadrature method with a high accu-
racy given n points. In this work, the class of Legendre-Gauss quadrature rules are
considered due to their fast convergence to the true value of the integral. The points
ti, i = 0, . . . ,n − 1 for these quadrature rules can be obtained from the roots of the
Jacobi polynomials P (α,β)

p : R → R, α, β > −1 of degree p. Jacobi polynomials belong
to the class of orthogonal polynomials and can be defined in terms of their recurrence
relation [41]

P (α,β)
p (t) :=

(2p+ α + β − 1) ((2p+ α + β) (2p+ α + β − 2) t+ α2 − β2)

2p (p+ α + β) (2p+ α + β − 2)
P

(α,β)
p−1 (t)

− 2(p+ α− 1)(p+ β − 1)(2p+ α + β)

2p (p+ α + β) (2p+ α + β − 2)
P

(α,β)
p−2 (t),

(2.10)

for p > 1 together with the first two Jacobi polynomials

P
(α,β)
0 (t) := 1, (2.11)

P
(α,β)
1 (t) :=

1

2
(α + β + 2) t+

1

2
(α− β) . (2.12)

Quadrature methods based on the abscissas obtained from the roots of the Jacobi poly-
nomials are exact for polynomials up to a degree of 2n − 1 − α − β. The following
special cases are of particular interest [40]:
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Legendre-Gauss (α = 0, β = 0)

The quadrature grid GLG
n of cardinality n contains the abscissas of the LG quadrature

rule based on the roots of P (0,0)
n :

GLG
n := {tLGi : P (0,0)

n

(
tLGi
)

= 0, i = 0, . . . ,n− 1}, n > 0. (2.13)

All LG quadrature points defined in GLG
n are internal, i.e. neither of the interval end-

points is included in the set of quadrature points. This quadrature method provides
an exact integration of polynomials up to a degree of 2n− 1.

Legendre-Gauss-Radau (α = 0, β = 1), (α = 1, β = 0)

For the LGR points either the initial point or the endpoint of the interval is included
in the set of quadrature points. The quadrature grid GLGR

n for the abscissas of the LGR
quadrature rule is defined as

GLGR
n := {tLGRi : tLGR0 = −1,P

(0,1)
n−1

(
tLGRj

)
= 0, j = 1, . . . ,n− 1}, n > 0. (2.14)

The distribution of LGR points is not symmetric with respect to the origin. Thus, it is
possible to use a flipped set of points which includes the end-point instead of the initial
point. In this case, the set of points are usually referred to as the flipped Legendre-
Gauss-Radau (LGRF) points and the corresponding quadrature grid GLGRF

n is defined
as

GLGRF
n := {tLGRFi : P

(0,1)
n−1

(
tLGRFj

)
= 0, j = 0, . . . ,n− 2, tLGRFn−1 = 1, }, n > 0. (2.15)

Radau quadrature methods are exact for polynomials up to a degree 2n − 2, i.e. one
degree less compared to the LG quadrature rule.

Legendre-Gauss-Lobatto (α = 1, β = 1)

For the LGL points both the initial point and the endpoint of the interval are included in
the set of quadrature points. This leads to the following definition of the LGL quadra-
ture grid GLGL

n based on the Jacobi polynomials with α = 1 and β = 1:

GLGL
n := {tLGLi : tLGL0 = −1,P

(1,1)
n−2

(
tLGLj

)
= 0, j = 1, . . . ,n− 2, tLGLn−1 = 1}, n > 1 (2.16)

The LGL quadrature is exact for polynomials up to a degree of 2n− 3, i.e. two degrees
less than the LG method.
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Based on the location of the quadrature points ti, i = 0, . . . ,n− 1 the corresponding
weights wi, i = 0, . . . ,n− 1 can be easily constructed.

Figure 2.4: Illustration of the LG (top left), LGL (bottom left), LGRF (top right), and
LGR (bottom right) quadrature weights and abscissas. The points in the strict
interior of the interval (diamond markers) are obtained from the roots of the
respective Jacobi polynomial. Fixed quadrature points at the beginning and
end of the intervals for the set of LGR, LGRF, and LGL points are marked by
a circle. Moreover, the blue bars illustrate the weights associated with each
of the quadrature points.

Consider a Lagrange interpolation polynomial for the n values of the integrand
f(ti) at the quadrature abscissas ti:

f(t) ≈
n−1∑

i=0

li(t)f(ti) (2.17)

Integration on both sides

∫ 1

−1

f(t) dt ≈
n−1∑

i=0

∫ 1

−1

li(t) dt f(ti) (2.18)
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and matching the coefficients with Eq. (2.9) yields

wi :=

∫ 1

−1

li(t) dt, i = 0, . . . ,n− 1. (2.19)

The quadrature points and corresponding weights associated with each of the dis-
cussed quadrature methods are depicted in Fig. 2.4 for n = 6. To illustrate the conver-
gence of the four quadrature methods presented in this section consider the integral

vE =

∫ 1

−1

etdt, (2.20)

i.e. f(t) = et. The absolute errors between the exact value vE of the integral and the
values obtained from a quadrature approximation of the form

vQ =
n−1∑

i=0

wie
ti , (2.21)

for all four methods (LG, LGR, LGRF, and LGL) is shown in Fig. 2.5. Note the expo-
nential decay of the error for all methods which illustrates the fast convergence of the
Legendre-Gauss quadrature schemes.

Figure 2.5: Convergence plot of the error on a logarithmic scale for n = 2, . . . , 7 points
regarding the numerical approximation of the integral of et on the interval
t ∈ [−1, 1] for the LG, LGR, LGRF, and LGL quadrature methods.
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2.3 Numerical Methods for Initial Value Problems

Initial value problems may be stated as follows: Find a function x : I t → Rnx on the
interval

I t := [t0, tf ] ⊂ R, tf > t0, (2.22)

starting at the initial value x0 ∈ Rnx , which fulfills the differential equation ẋ(t) :=

f(x(t), t) with f : Rnx × I t → Rnx , i.e. :

ẋ(t) = f(x(t), t), x(t0) = x0, t ∈ I t (2.23)

In the following Runge-Kutta methods [38, 42], which belong to the class of one-step
methods, are considered for the numerical solution of initial value problems. These
methods approximate the solution of the initial value problem (2.23) on the integration
grid GI

N+1 of cardinality N + 1

GI
N+1 := {t[i] : t0 = t[0] < t[1] < . . . < t[N−1] < t[N ] = tf}, (2.24)

with mesh lengths h[i] = t[i+1]−t[i], i = 0, . . . ,N−1 by a grid function x[i] : GI
N+1 → Rnx .

In particular, methods of this class construct the solution for a single step from t[i]

to t[i+1] without using information from previous steps (t[i−1], t[i−2], ...) or next steps
(t[i+2], t[i+3], ...). For the following description, it is useful to introduce the short notation
f

[i]
k (x(t), t) = h[i]fk(x(t), t), k = 0, . . . ,nx − 1 for the scaled form of the right-hand side

function of each component. For Runge-Kutta methods ns intermediate stages s
[i]
j ∈

Rnx , j = 0, . . . ,ns − 1 for each integration interval [ti, ti+1] are defined by the stage
equations

s
[i]
j,k = x

[i]
k +

ns−1∑

q=0

aj,qf
[i]
k

(
s[i]
q , t[i] + cqh

[i]
)

. (2.25)

Equivalently, these stage equations (2.25) can be written in matrix form:




s
[i]
0,k
...

s
[i]
ns−1,k


 = 1x

[i]
k +




a0,0 . . . a0,ns−1

... . . . ...
ans−1,0 . . . ans−1,ns−1







f
[i]
k

(
s

[i]
0 , t[i] + c0h

[i]
)

...

f
[i]
k

(
s

[i]
ns−1, t[i] + cns−1h

[i]
)


 (2.26)

The values x[i+1]
k , k = 0, . . . ,nx − 1 at the next integration grid point t[i+1] are obtained

by the following quadrature rule with weights bj, j = 0, . . . ,ns − 1:

x
[i+1]
k = x

[i]
k +

ns−1∑

j=0

bjf
[i]
k

(
s

[i]
j , t[i] + cjh

[i]
)

(2.27)
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The coefficients aj,q and cq in Eq. (2.25), as well as bj in Eq. (2.27), are usually repre-
sented in a tabular form termed Butcher-tableau

c A

b
(2.28)

with A ∈ Rns×ns , b ∈ R1×ns , and c ∈ Rns×1. By normalization the sum of the weights∑ns−1
j=0 bj, j = 0, . . . ,ns − 1 is equal to one. In addition, for each row (indices j =

0, . . . ,ns − 1) in A the sum over the columns, i.e.
∑ns−1

k=0 aj,k, is equal to cj . Moreover,
the coefficients defined in a Butcher-tableau (2.28) have to fulfill certain conditions de-
pending on the order of the Runge-Kutta scheme. Table 2.1 summarizes the conditions
up to order three. Note that for a method to have order p all lower order conditions
must be fulfilled as well.

Table 2.1: Runge-Kutta order conditions up to order three [43]

Order Conditions

1
∑ns−1

i=0 bi = 1

2
∑ns−1

i=0 bici = 1
2

3
∑ns−1

i=0 bic
2
i = 1

3
,
∑ns−1

i,j=0 biai,jcj = 1
6

Furthermore, in case the stage integration matrix A is strictly lower triangular, i.e. ai,j =

0 for all i < j, the method is called explicit and the system (2.26) can be solved by a se-
quential computation of the stages. Contrary, if the matrix A cannot be represented in
a strictly lower triangular form, nonzero entries on the diagonal or above imply that
it is not possible to directly solve for the stages. Runge-Kutta schemes where this is
the case are termed implicit. These methods usually need to be solved numerically
by employing root finding schemes within each integration step, e.g. using the New-
ton method. One of the most commonly used explicit methods is the fourth-order
Runge-Kutta method, also called the classical Runge-Kutta method. This method can be
represented by the following Butcher-tableau:

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

(2.29)

Note that the stage integration matrix in the Butcher-tableau (2.29) is strictly lower
triangular, implying that the method is explicit and the stages can be computed se-
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quentially starting from the first stages s[i]
0,k = x

[i]
k , k = 0, . . . ,nx − 1. For this particular

method the sequence of computation within one integration step t[i] → t[i+1] can be
summarized as follows:

� s
[i]
1,k: Forward Euler with a half step h[i]/2 (Predictor)

� s
[i]
2,k: Backward Euler with a half step h[i]/2 (Corrector)

� s
[i]
3,k: Midpoint rule with a full step h[i]

� x[i+1]: Quadrature using all stage derivatives

This sequential construction for the classical Runge-Kutta method is illustrated in Fig. 2.6.

t

x(t)

t[i] t[i+1]

c0 = 0 c3 = 1c1 = c2 = 1
2

s
[i]
0

f
[i]
0

h[i]

s
[i]
2

x[i] +
f

[i]
0

6
+

f
[i]
1

3
+

f
[i]
2

3
+

f
[i]
3

6
= x[i+1]

s
[i]
1

f
[i]
1

f
[i]
2

f
[i]
3

s
[i]
3

x[i]

Figure 2.6: Illustration of the sequential stage computation for the classical, fourth-order,
Runge-Kutta method in case of a single state. The derivatives correspond-
ing to the stages are denoted using the short notation f

[i]
j = h[i]f(s

[i]
j , t[i] +

cjh
[i]), j = 0, . . . , 3 for the scaled form of the right-handside.

2.4 Sensitivity Analysis for Initial Value Problems

Consider the parameter dependent form of an initial value problem (cf. Eq. (2.23))

ẋ(t; p) = f (x(t; p), p, t) , x(t0) = x0(p), t ∈ I t, (2.30)
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2.5 Segmented Collocation Methods

depending on the parameter vector p ∈ Rnp . The solution of the matrix-valued initial
value problem

Ṡ(t) =
∂f

∂x
S(t) +

∂f

∂p
, S(t0) =

∂x0

∂p
, t ∈ I t, (2.31)

for the sensitivities S ∈ Rnx×np defined as

S(t) :=
∂x(t; p)

∂p
, (2.32)

yields the derivatives of x(t; p) with respect to the parameters p [44]. The approach
for obtaining the sensitivities S(t) from the solution of problem (2.31) is called internal
differentiation method. Contrary, the external differentiation method relies on the nu-
merical approximation of the derivatives through the application of a finite difference
scheme, such as

∂x(t; p)

∂pi
≈ x

(
t; [p0, . . . , pi + ∆pi, . . . , pnp−1]T

)
− x(t; p)

∆pi
, i = 0, . . . ,np − 1. (2.33)

Despite the appealing simplicity of the external differentiation method the internal
differentiation method is typically preferred due the approximate nature of the finite
difference scheme.

2.5 Segmented Collocation Methods

The solution for an initial value problem of the form (2.23) can also be found by a
piecewise polynomial approximation on N subintervals

I t,[i] :=
[
t
[i]
S , t

[i+1]
S

]
⊂ R, t

[i+1]
S > t

[i]
S , i = 0, . . . ,N − 1, (2.34)

termed segments in the following [45, 44]. These segments of length h[i] = t
[i+1]
S − t[i]S

are defined based on the segment grid GS
N+1:

GS
N+1 :=

{
t
[i]
S : i = 0 . . . ,N , t

[i+1]
S > t

[i]
S , t

[0]
S = t0, t

[N ]
S = tf

}
(2.35)

The piecewise polynomials s[i](t) of order p[i] which are used for the approximation of
the solution within each segment need to satisfy the initial conditions

s[i]
(
t
[i]
S

)
= x

(
t
[i]
S

)
, (2.36)

24



Chapter 2: Mathematical Preliminaries

as well as the collocation conditions

ṡ[i]
(
t
[i]
S + c

[i]
j h

[i]
)

= f
(
s[i]
(
t
[i]
S + c

[i]
j h

[i]
)

, t
[i]
S + c

[i]
j h

[i]
)

, j = 0, ..., p[i] − 1. (2.37)

In Eq. (2.37) the collocation points t[i]S + c
[i]
j h

[i] are defined by the collocation grid GC,[i]

p[i]

containing the constants c[i]
j ∈ [0, 1] normalized to the respective segment:

GC,[i]

p[i] :=
{
c

[i]
j : 0 ≤ c

[i]
0 , . . . , c

[i]

p[i]−1
≤ 1
}

, i = 0, . . . ,N − 1 (2.38)

The conditions (2.36) and (2.37) thus impose that the solution matches the initial val-
ues at the beginning t

[i]
S , i = 0, . . . ,N − 1 of each segment and the derivatives at the

respective collocation points. Furthermore, observe that these conditions require the
piecewise polynomial to be continuous, but not necessarily continuously differentiable
at the boundaries between segments. Only in the special case where the initial and final
point in each segment are collocation points, i.e.

c
[i]
0 = 0, c

[i]

p[i]−1
= 1, i = 0, . . . ,N − 1, (2.39)

the polynomial approximation is continuously differentiable on the whole interval and
the derivatives at the boundaries between segments satisfy for N > 1:

ṡ[i−1]
(
t
[i]
S

)
= ṡ[i]

(
t
[i]
S

)
, i = 1, . . . ,N − 1. (2.40)

For the description in the following sections a single variable x(t) is considered and
the focus is on a single segment. As such, the index �[i] is omitted and, additionally,
the segment interval is treated in normalized form. This implies that the polynomial
approximation s(t) ≈ x(t) is constructed for t ∈ [0, 1] and the normalized collocation
points defined on the grid GC

p for a polynomial approximation of order p are denoted
with cj, j = 0, . . . , p − 1. This construction is general in the sense that the right-hand
side can always be scaled by the segment length h, i.e. for each collocation point the
following scaled form may be used:

fj := hf (s (cj) ,hcj) , j = 0, . . . , p− 1 (2.41)

Moreover, the initial value of the segment is denoted by x0 and the discussion is re-
stricted to LG, LGRF, and LGL methods (cf. Sec. 2.2) which are particularly important
for the application in direct optimal control methods (cf. chapter 6).
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2.5 Segmented Collocation Methods

Differential Formulation

In the following a matrix formulation for the collocation conditions (2.36) and (2.37) is
derived. For this purpose the polynomial s(t) is formulated as a Lagrange interpolation
polynomial on the grid GD

nD

GD
nD

:=
{
tDj : j = 0, . . . ,nD − 1

}
, (2.42)

with Lagrange basis functions

lDj (t) :=

nD∏

k=0
k 6=j

t− tDk
tDj − tDk

, j = 0, . . . ,nD − 1. (2.43)

Using these Lagrange basis functions the interpolating polynomial for the correspond-
ing values s

(
tDj
)

, j = 0, . . . ,nD − 1 can be written as follows:

s(t) =

nD−1∑

j=0

lDj (t) s
(
tDj
)

(2.44)

It is important to mention that the initial condition (2.36) is taken into account by the
additional inclusion of the initial point t = 0 of the segment in the interpolation grid.
This is necessary for the set of LG and LGRF points which do not have a collocation
point at c0 = 0. The interpolation points in GD

nD
are defined for this case as the union

of t = 0 and the set of collocation points defined in GC
p (cf. Eq. (2.38)):

GD
nD

= {0} ∪GC
p (2.45)

For an illustration of the polynomial for LG and LGRF collocation methods in differ-
ential form please refer to Fig. 2.7. Note that for LG collocation continuity between
segment boundaries is not automatically ensured by construction as merely the initial
point is included in the definition of the interpolating polynomial (2.44). Therefore, it
is necessary in this case to explicitly impose continuity of the profile between segments.
See chapter 6 for a related discussion in the context of optimal control methods.

The p collocation conditions in (2.37) can be written in matrix form by differentia-
tion of (2.44) and the evaluation at the collocation points defined by GC

p :




l̇D0 (c0) . . . l̇DnD−1 (c0)
... . . . ...

l̇D0 (cp−1) . . . l̇DnD−1 (cp−1)







s
(
tD0
)

...

s
(
tDnD−1

)


 =




f0

...

fcp−1


 (2.46)
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0 1c0 cp−1
. . .

x(t)
!

= 0

!
= 0

!
= 0

t

0 c0 cp−1

x(t) !
= 0

!
= 0

t. . .

!
= 0

Figure 2.7: Illustration of the polynomial approximation for LG (upper) and LGRF
(lower) collocation methods in differential form.

This form is particularly useful in order to establish the connection between the dif-
ferential formulation and the integral formulation of collocation methods discussed in
the following sections.

Integral Formulation

For the integral formulation the Lagrange interpolation polynomial is constructed for
the derivative values ṡ(cj), j = 0, . . . , p − 1 at the p collocation points. The Lagrange
basis functions for the collocation grid GC

p of cardinality p are defined as

lIj (t) :=

p−1∏

k=0
k 6=j

t− ck
cj − ck

, j = 0, . . . , p− 1, (2.47)

and the interpolating polynomial for the derivatives is obtained similar to (2.44) as
follows:

ṡ(t) =

p−1∑

j=0

lIj (t) ṡ(cj) (2.48)
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2.5 Segmented Collocation Methods

Integration of this interpolating polynomial with the initial value s(0) = x0 yields:




s (c0)
...

s (cp−1)


 = 1x0 +




∫ c0
0
lI0 (t) dt . . .

∫ c0
0
lIp−1 (t) dt

... . . . ...
∫ cp−1

0
lI0 (t) dt . . .

∫ cp−1

0
lIp−1 (t) dt







ṡ (c0)
...

ṡ (cp−1)


 (2.49)

Note that by including the initial value s(0) = x0 in the integral the collocation condi-
tion (2.36) is automatically fulfilled. It can be shown that collocation methods of this
form belong to the class of implicit Runge-Kutta methods with p stages [46]. This can
be motivated by defining

ai,j =

∫ ci

0

lIj (t) dt, bj =

∫ 1

0

lIj (t) dt, i, j = 0, . . . , p− 1. (2.50)

Furthermore, denoting the stage values as

sj = s(cj), j = 0, . . . , p− 1, (2.51)

and inserting the collocation conditions (2.37), i.e. fj = ṡ (cj) j = 0, . . . , p − 1, in
Eq. (2.49) the following form is obtained:




s0

...

sp−1


 = 1x0 +




a1,1 . . . a1,p−1

... . . . ...

ap−1,1 . . . ap−1,p−1







f0

...

fp−1


 (2.52)

Observe that Eq. (2.52) represents exactly the form of Eq. (2.26) with the number of
stages equal to the order p of the method.

Connection between the Differential and Integral Form

There exists an interesting connection between the differential and integral form of LG
collocation methods, which has important implications for the relationship between
both formulations. First, the following identity for the sum of the Lagrange basis func-
tion values at the non-collocated point for LG and LGRF methods are introduced [47]

l̇D0 (cj) = −
p−1∑

q=0

l̇Dq+1(cj), j = 0, . . . , p− 1. (2.53)

In order to illustrate the connection between the differential and integral form the non-
collocated variable (node) is denoted with n, the collocated variables (stages) are de-
noted with sj, j = 0, . . . , p − 1, and the corresponding right-hand side function values
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with fj, j = 0, . . . , p− 1. With these quantities the collocation conditions for the differ-
ential formulation for LG and LGRF methods can be written as:

−
p−1∑

q=0

l̇Dq+1(cj)n+

p−1∑

q=0

l̇Dq+1(cj)sq − fj = 0. (2.54)

The connection between the differential and integral form can be easily seen when the
equality conditions of the differential and integral form are compared in matrix form

−D1n+Ds− f = 0, (2.55)

−1n+ s−Af = 0, (2.56)

with the stage vector s = [s0, . . . , sp−1]T , the vector of right-hand side function values
f = [f0, . . . , fp−1]T , as well as the differentiation matrix D ∈ Rp×p and integration matrix
A ∈ Rp×p defined as

D :=




l̇D1 (c0) . . . l̇Dp (c0)
... . . . ...

l̇D1 (cp−1) . . . l̇Dp (cp−1)


 , A :=




∫ c0
0
lI0 (t) dt . . .

∫ c0
0
lIp−1 (t) dt

... . . . ...
∫ cp−1

0
lI0 (t) dt . . .

∫ cp−1

0
lIp−1 (t) dt


 .

(2.57)

It can be shown that the relationship [48, 49]

A = D−1, (2.58)

holds between the differentiation and integration matrix for Gauss- and Radau-type
collocation methods which do not include both endpoints of the segment interval in
the collocation grid. This implies that the differential and integral forms are equivalent
which is not true for Lobatto collocation methods and the differentiation and integra-
tion matrices within a single segment are rank deficient. Observe that the first row of
the integration matrix A based the set of LGL collocation points

∫ c0

0

lIj (t) dt = 0, j = 0, . . . , p− 1, (2.59)

contains the integrated Lagrange basis functions with c0 = 0. As the first row in A

is zero regardless of the order p the integration matrix cannot have full rank. Fur-
thermore, it is interesting to note that for the last row the integrated Lagrange basis
functions with cp−1 = 1 yield

∫ cp−1

0

lIj (t) dt = bj, j = 0, . . . , p− 1. (2.60)
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This implies that the last row contains the weights of the quadrature rule with p points
associated with the LGL method. Both properties, (2.59) and (2.60), are of interest
when deriving important special cases, which are particularly useful in the context of
direct optimal control methods, in the following section.

Discussion of Special Cases for Legendre-Gauss Collocation Methods

In this section, important special cases of collocation methods are discussed which are
the basis for popular transcription schemes in optimal control applications. Note that
the equations for the differential and integral formulations implicitly define the stage
values at collocation points. In most cases these equations are solved numerically.
For example, if a collocation method is used inside an optimization problem, which is
the case in the context of this thesis, the variables at the stages may be introduced as
optimization variables and the collocation conditions can be imposed as equality con-
straints. In the following important special cases are derived for integral collocation
methods based on the LG, LGR, LGRF, and LGL quadrature abscissas, normalized to
the interval [0, 1]. Note that the segment index �[i] is re-introduced in order to dis-
tinguish between variables of the current segment (�[i]) and the following segment
(�[i+1]).

Order p = 1: The approximating polynomial s[i] (t) for p = 1 is easily obtained from
the semi-definite integral

∫ t
0
lI0 (s) ds = t with lI0(t) = 1 [45]:

s[i] (t) = x
[i]
0 + tf

[i]
0 , (2.61)

x
[i+1]
0 = x

[i]
0 + f

[i]
0 . (2.62)

From this representation the Forward and Backward Euler method, as well as the im-
plicit midpoint rule can be directly derived by inserting the respective collocation point
(see Tab. 2.2).

Table 2.2: Resulting methods for p = 1 in case of LG, LGR, LGRF points

Type c0 Butcher Tableaus Methods

LGR 0
0 0

1
Forward Euler

LG 1
2

1
2

1
2

1
Midpoint Rule

LGRF 1
1 1

1
Backward Euler
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Order p = 2: For p = 2 the Lagrange basis functions are

lI0 (t) =
t− c1

c0 − c1

, lI1 (t) =
t− c0

c1 − c0

, (2.63)

and the corresponding semi-definite integrals yield

∫ t

0

lI0 (s) ds =
−t (2 c1 − t)
2 (c0 − c1)

,

∫ t

0

lI1 (s) ds =
t (2 c0 − t)
2 (c0 − c1)

.

(2.64)

Thus, the following expression for the polynomial approximation s[i](t; c0, c1), param-
eterized by the collocation constants c0 and c1 is obtained:

s[i](t; c0, c1) = x
[i]
0 +
−t (2 c1 − t)
2 (c0 − c1)

f
[i]
0 +

t (2 c0 − t)
2 (c0 − c1)

f
[i]
1 (2.65)

Inserting the LGL points for p = 2, i.e. c0 = 0 and c1 = 1, yields the Butcher tableau

0 0 0

1 1
2

1
2

1
2

1
2

(2.66)

This Butcher tableau represents the second-order LobattoIIIA method, or Trapezoidal
method. [45] Note that the first row of Eq. (2.66) contains only zero entries (in accor-
dance with Eq. (2.59)) and simply states that the first stage coincides with the initial
value of the segment, i.e.

s[i](0; 0, 1) = x
[i]
0 . (2.67)

Furthermore the integrated stage s(1; 0, 0) at the end of the interval is equal to the value
obtained from the quadrature rule x[i+1]

0 (in accordance with Eq. (2.60)). Thus, the two
conditions

s[i](1; 0, 1) = x
[i]
0 +

1

2

(
f

[i]
0 + f

[i]
1

)
, (2.68)

x
[i+1]
0 = x

[i]
0 +

1

2

(
f

[i]
0 + f

[i]
1

)
, (2.69)

together with s[i](1; 0, 1) = x
[i+1]
0 are equivalent. Therefore, only one condition is re-

quired to solve the implicit equations for x[i+1]
0 , which is the common representation

for the Trapezoidal collocation method [50].
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Order p = 3: Another important case which is often used in practice can be derived
for p = 3 using the basis functions

lI0 (t) =
(c1 − t)(c2 − t)

(c0 − c1)(c0 − c2)
, lI1 (t) = − (c0 − t)(c2 − t)

(c0 − c1)(c1 − c2)
, lI2 (t) =

(c0 − t)(c1 − t)
(c0 − c2)(c1 − c2)

.

(2.70)

The semi-definite integrals for the parametrized polynomial approximation yield in
this case:

s[i](t; c0, c1, c2) = x
[i]
0 +

t (6 c1 c2 − 3 c1 t− 3 c2 t+ 2 t2)

6 (c0 − c1) (c0 − c2)
f

[i]
0

− t (6 c0 c2 − 3 c0 t− 3 c2 t+ 2 t2)

6 (c0 − c1) (c1 − c2)
f

[i]
1

+
t (6 c0 c1 − 3 c0 t− 3 c1 t+ 2 t2)

6 (c0 − c2) (c1 − c2)
f

[i]
2 .

(2.71)

For the Lobatto points c0 = 0, c1 = 1
2
, and c2 = 1 the following Butcher-tableau is

obtained:
0 0 0 0

1
2

5
24

1
3
−1
24

1 1
6

2
3

1
6

1
6

2
3

1
6

(2.72)

By the same argument as for the Trapezoidal method the first stage s[i]
(
0; 0, 1

2
, 1
)

co-
incides with the initial value x

[i]
0 and the last row and the quadrature equation are

redundant, meaning that the two relevant equations are:

s[i]

(
1

2
; 0,

1

2
, 1

)
= x

[i]
0 +

1

24

(
5f

[i]
0 + 8f

[i]
1 − f [i]

2

)
, (2.73)

x
[i+1]
0 = x

[i]
0 +

1

24

(
4f

[i]
0 + 16f

[i]
1 + 4f

[i]
2

)
(2.74)

Note that using these two equations it is possible to explicitly solve for the stage
s[i](1

2
; 0, 1

2
, 1) by subtracting two times the first equation (2.73) from the second equa-

tion (2.74). This yields the following conditions for the Hermite-Simpson collocation
method in compressed form [50]:

s[i]

(
1

2
; 0,

1

2
, 1

)
=

(
x

[i]
0 + x

[i+1]
0

)

2
+
f

[i]
0 − f [i]

2

8
, (2.75)

x
[i+1]
0 = x

[i]
0 +

1

24

(
4f

[i]
0 + 16f

[i]
1 + 4f

[i]
2

)
(2.76)
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2.6 B-spline Parametrization

Function parametrizations based on B-splines [51, 50] are particularly useful in the
context of direct optimal control methods for the discretization of control functions.
A B-spline parametrization of degree p is defined based on a break-point grid GB

M of
cardinality M

GB
M :=

{
tBi : i = 0, . . . ,M − 1, tBi+1 ≥ tBi

}
. (2.77)

For this break-point grid an auxiliary knot grid GK
m is constructed. In the following this

knot grid is assumed to be a clamped grid of cardinality m = M + 2p of the form:

GK
m :=

{
tKi : i = 0, . . . ,m− 1

}
= {tB0 , . . . , tB0︸ ︷︷ ︸

p+1

, tB1 , . . . , tBM−2︸ ︷︷ ︸
M−2

, tBM−1, . . . , tBM−1︸ ︷︷ ︸
p+1

} (2.78)

It is important to mention that the B-spline knot grid points do not need to be unique.
In particular, for clamped knot grids the points in the beginning and the end have
multiplicity p+ 1. The B-spline basis functions Bp,i(t) can be defined recursively by the
relation

Bp,i(t) =
t− tKi
tKi+p − tKi

Bp−1,i(t) +
tKi+p+1 − t
tKi+p+1 − tKi+1

Bp−1,i+1(t), (2.79)

with

B0,i(t) :=





1, if t ∈
[
tKi , tKi+1

)
,

0, otherwise.
(2.80)

and the definition of the quotient 0/0 = 0. The nw = M +p−1 non-zero basis functions
have local support. This means that the B-spline basis functions satisfy for p > 0:

Bp,i(t)




> 0, if t ∈

(
tKi , tKi+p+1

)
,

= 0, otherwise.
(2.81)

For an illustration for these B-spline basis functions up to degree p = 3 please refer to
Fig. 2.8.
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Figure 2.8: B-spline basis functions (non-zero values) of degree p = 0 (top left), p = 1 (top
right), p = 2 (bottom left), and p = 3 (bottom right) for a break point grid
GB

4 = {0, 1/3, 2/3, 1} (black dots). The knot locations, including multiplicity
at the first and last grid point, are illustrated with black circles.
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The function f(t) based on the B-spline parametrization with a parameter vector
w = [w0, . . . ,wnw−1]T is defined as

f(t) =
nw−1∑

i=0

Bp,i(t)wi. (2.82)

For computational implementations it is usually not efficient to evaluate each B-spline
basis function Bp,i(t) based on Eq. (2.79) as common terms can be saved and re-used in
the recursion. This fact can be easily seen when visualizing the B-spline basis functions
needed to construct the recursion from Eq. (2.79) in triangular table form:

B0,0

↘
B1,0

↗ ↘
B0,1 B2,0

↘ ↗ . . .

B1,1

↗ ↘
B0,2 B2,1

↘ ↗ ... . . .

B1,2

↗ ... . . .

B0,3

... . . .

(2.83)

For example, consider the construction of the basis functionsB2,0(t) andB2,1(t). For the
basis function B2,0(t) the functions B1,0(t) and B1,1(t) need to be constructed. Similarly,
the construction of B2,1(t) is based on B1,1(t) and B1,2(t). Thus, the function B1,1(t) is
shared among B2,0(t) and B2,1(t) which can be exploited in the implementation [51].
One of the major advantages regarding the use of B-spline parametrizations for the
discretization of control functions in optimal control applications is that the interpola-
tion Jacobians are typically very sparse. To illustrate this point consider a query grid
GQ
nq of cardinality nq

GQ
nq := {tj : j = 0, . . . ,nq − 1} , (2.84)
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and the corresponding value vector v =
[
f (t0) , . . . , f

(
tnq−1

)]T with

f (tj) =
nw−1∑

i=0

Bp,i (tj)wi, j = 0, . . . ,nq − 1. (2.85)

First, note that the Jacobian

∂v

∂w
=




Bp,0(t0) . . . Bp,nw−1(t0)
... . . . ...

Bp,0(tnq−1) . . . Bp,nw−1(tnq−1)


 , (2.86)

of v with respect to the parameter vector w merely contains the B-spline basis functions
evaluated at the query grid points. As such, this Jacobian remains constant if the break-
point and query grids do not change. Moreover, due to the local support property of
the B-spline functions (cf. Eq. (2.81)) most of the entries are usually zero, i.e. the matrix
is sparse. This property plays an important role in numerical optimal control methods
as it reduces coupling within the problem [52].
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Chapter 3

Unconstrained Optimization

The numerical treatment of optimal control problems in the context of direct methods
(cf. chapter 6) is based on the solution of constrained parameter optimization prob-
lems. In order to streamline the discussion for the constrained case (cf. chapter 4), first
the unconstrained case is presented in this chapter. Many of the concepts introduced
in this chapter, such as the statement of the necessary and sufficient conditions of opti-
mality and the application of iterative numerical methods, can then be extended to the
constrained case later on.

3.1 Problem Statement

For unconstrained optimization problems [4, 50] the goal is to find an optimization
variable vector z ∈ Rnz which minimizes the cost function j : Rnz → R:

minimize
z ∈ Rnz

j(z) (3.1)

The solution of this problem is termed globally optimal if the optimal point ẑ satisfies

j(ẑ) ≤ j(z), z ∈ Rnz , (3.2)

and locally optimal if
j(ẑ) ≤ j(z), z ∈ N (3.3)

holds in a neighborhood N of ẑ. Furthermore, the solution can be characterized as a
strict global or local optimum if strict inequalities hold for conditions (3.2) and (3.3) for
all z 6= ẑ.
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3.2 Necessary and Sufficient Conditions

The first-order necessary conditions for a minimizer ẑ of j(z) require the cost function
to be continuously differentiable in an open neighborhood N of ẑ. These conditions
state that the gradient of the cost function has to satisfy:

∂j

∂z
(ẑ) = 0 (3.4)

A second-order sufficient condition can be formulated under the assumption of a twice
continuously differentiable cost function. This sufficiency condition states that in ad-
dition to the first-order necessary conditions (3.4) the Hessian ∂2j

∂z2 (ẑ) is required to be
positive definite:

dT
∂2j

∂z2
(ẑ)d > 0, ∀ d : ẑ + d ∈ N , d 6= 0 (3.5)

Furthermore, if the cost function j is convex, the stationary point of the cost function
(cf. Eq. 3.4) is a global minimizer. There exists a number of algorithms to solve the
unconstrained optimization problem in an iterative process. This means that the al-
gorithms generate a sequence of iterates {zk} which converges to a local minimizer ẑ.
The numerical methods differ in how a step from one iterate zk to the next iterate zk+1

is taken. Two important approaches in this context are Trust-Region and Line-Search
methods. The major difference between these two approaches is that for Trust-Region
algorithms the step to the next iterate is computed by solving a constrained model
problem which approximates the function j(z) locally around the current iterate. The
length and direction of the step are chosen simultaneously for this case by solving the
model optimization problem within the so-called Trust-Region. For Line-Search algo-
rithms the step to the next iterate is determined in a sequential manner. First, a search
direction is found based on the solution to an unconstrained optimization problem.
Second, a step-size in this direction is computed. Both Trust-Region and Line-Search
methods are discussed in the following.

3.3 Trust-Region Methods

For Trust-Region methods the step to the next iterate is determined from the solution
of a simplified minimization problem. This simplified problem uses a model j̃k (z),
which locally approximates the cost function j (z) around the current iterate zk. The
region in which this model is “trusted” to provide a good approximation and produce
sufficient improvements to the actual minimization problem is called the Trust-Region.
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The shape of the Trust-Region with radius ∆k > 0 is often defined as

‖Msk‖p ≤ ∆k, (3.6)

with the matrix M ∈ Rnz×nz , the vector sk = z − zk and using a suitable vector p-
norm ‖·‖p. Typically, a quadratic model is used for the local approximation of the cost
function around zk

j (z) ≈ j̃k (z) = ak + cTk sk +
1

2
sTkBksk, (3.7)

If the model in Eq. (3.7) is based on a Taylor expansion around the current iterate zk,
the constant ak represents the cost function value j (zk) at the current point, ck is the
gradient ∂j

∂z
(zk), and Bk the Hessian ∂2j

∂z2 (zk). The approximate minimization problem
with the model function (3.7) and the Trust-Region constraint (3.6) is thus defined as:

minimize
sk ∈ Rnz

cTk sk +
1

2
sTkBksk,

subject to ‖Msk‖p ≤ ∆k.

(3.8)

For a diagonal matrix M = diag(m1, . . . ,mn) with positive entries on the diagonal and
p = 2, Eq. (3.6) defines an ellipsoidal and for M = I with p = 2 a spherical Trust-Region.
An elliptical region can be helpful if the optimization variables exhibit different rates of
change in different directions. In this case, the entries on the diagonal of M represent
scaling factors for the minimization problem. This can be easily seen by applying the
variable transformation s̃k = Msk to (3.8), and defining B̃k = M−1BkM

−1, as well as
c̃k = M−1ck which yields:

minimize
s̃ ∈ Rnz

c̃Tk s̃k +
1

2
s̃Tk B̃ks̃k,

subject to ‖s̃k‖p ≤ ∆k.

(3.9)

From the solution ŝk of the model problem (3.8) the next iterate zk+1 is readily obtained:

zk+1 = zk + ŝk (3.10)

In order to measure the quality of the approximation and to adapt the Trust-Region
radius ∆k, the quotient

ρ̃k :=
j(zk)− j(zk + ŝk)

j̃(zk)− j̃(zk + ŝk)
, (3.11)

can be used. For example, if ρ̃k has a value close to one the approximation within the
Trust-Region seems to be trustworthy and the step can be accepted. In addition, the
Trust-Region radius ∆k may be increased for the next iteration. Other values for ρ̃k
exist in which the trust region should be reduced or kept unchanged (cf. Ref. [4]).
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3.4 Line-Search Methods

Recall that the solution of the approximate minimization problem for Trust-Region
methods simultaneously yields a direction and magnitude of the step from the cur-
rent iterate zk to the next iterate zk+1. However, for line search methods the direction
and magnitude are computed sequentially. In the following two possibilities to ob-
tain the search direction, namely Newton and Quasi-Newton methods, as well as two
conditions to determine the step size (Armijo rule and Wolfe conditions) which are
commonly used for Line-Search methods are discussed.

3.4.1 Search Direction Computation

Newton Method

In case the model function is chosen to be the truncated Taylor expansion of j(z)

around the current point zk

j̃ (sk) := j(zk) +
∂j

∂z
(zk)sk +

1

2
sTk
∂2j

∂z2
(zk)sk, (3.12)

with sk = z− zk, the solution ŝk to the unconstrained minimization problem

minimize
sk ∈ Rnz

∂j

∂z
(zk)sk +

1

2
sTk
∂2j

∂z2
(zk)sk, (3.13)

can be obtained simply by setting the gradient to zero, i.e. :

∂j

∂z
(zk) +

∂2j

∂z2
(zk)sk = 0 (3.14)

This yields the Newton-direction:

ŝk = −
(
∂2j

∂z2
(zk)

)−1
∂j

∂z
(zk) (3.15)

It can be shown, that close to a minimizer ẑ where the Hessian is positive definite, the
Newton-direction leads to a fast, quadratic convergence rate. Note that the inverse
of the Hessian needs to exist in order to compute the search direction ŝk. This may
not be the case further away from the minimizer ẑ where the Hessian can be indefi-
nite. This poses a major problem, as in this case the Hessian needs to be modified such
that all eigenvalues are strictly positive. Moreover, the evaluation of the Hessian can
be computationally quite expensive. One possible remedy for the mentioned difficul-
ties, which partially preserves the good local convergence properties of the Newton-
direction, is the application of the so-called Quasi-Newton method.
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Quasi-Newton Method

For the Quasi-Newton method the Hessian in the model (3.12) is replaced by an ap-
proximation Bk

j̃ (sk) = j(zk) +
∂j

∂z
(zk)sk +

1

2
sTkBksk, (3.16)

and the unconstrained minimization problem (3.13) becomes:

minimize
sk ∈ Rnz

∂j

∂z
(zk)sk +

1

2
sTkBksk (3.17)

The solution of this problem with Hk = B−1
k yields the direction

ŝk = −Hk
∂j

∂z
(zk), (3.18)

similar to Eq. (3.15). One possibility for the construction of a suitable sequence of
matrices {Bk} is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule [4]

Bk+1 = Bk −
Bkss

T
kBk

sTkBksk
+ ρkyky

T
k , ρk =

(
yTk sk

)−1
, (3.19)

paired with a suitable Line-Search method, such as the Wolfe-rules (cf. Sec. 3.4.2). The
idea behind this method is to apply a rank-2 update based on curvature information
from the change in the gradient yk = ∂j

∂z
(zk+1) − ∂j

∂z
(zk) between two iterations. The

sequence of matrices {Bk} generated by this update rule maintains a symmetric and
positive definite matrix Bk. In addition to Eq. (3.19), the following update formula
which iterates on the inverse Hk = B−1

k can be applied:

Hk+1 =
(
I− ρkskyTk

)
Hk

(
I− ρkyksTk

)
+ ρksks

T
k (3.20)

This form is typically preferred as the matrix Hk in Eq. (3.18) is directly available to
compute the search direction without the additional solution of a linear system.

Steepest Descent

Further simplifying the unconstrained minimization problem (3.16) and setting the
Hessian approximation to the identity Bk = I yields the minimization problem

minimize
sk ∈ Rnz

∂j

∂z
(zk)sk +

1

2
sTk sk, (3.21)

with the closed solution
ŝTk = −∂j

∂z
(zk). (3.22)
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This is the direction of steepest descent at the current iterate zk as the gradient points
in the direction of steepest ascent.

3.4.2 Step Size Selection

The step size αk is used as a scaling factor for the search direction ŝk to obtain the next
iterate zk+1:

zk+1 = zk + αkŝk (3.23)

In this context, it is reasonable to impose a requirement that the step size improves the
cost function in the direction of ŝk. This requirement can be expressed by the sufficient
decrease inequality condition

j(zk + αkŝk) ≤ j(zk) + β
∂j

∂z
(zk)αkŝk, (3.24)

with the parameter 0 < β < 1. This condition, sometimes termed Armijo rule, is il-

j(zk + αkŝk)

αkWolfeWolfe
Armijo Armijo

j(zk) + β ∂j
∂z

(zk)αkŝk

Figure 3.1: Acceptable step sizes using the Armijo rule and the strong Wolfe conditions.

lustrated in Fig. 3.1. Despite the fact, that the condition (3.24) ensures non-increasing
values of the cost function it may result in very small improvements from one iteration
to the next. Note that the step size αk = 0 trivially satisfies the inequality. A stronger
condition for selecting the step size αk can be formulated by imposing a second condi-
tion, termed curvature condition, of the form

∂j

∂z
(zk + αksk)ŝk ≥ γ

∂j

∂z
(zk)ŝk (3.25)

where the constant γ satisfies β < γ < 1. Essentially, this condition imposes a require-
ment for a decrease in the cost function gradient. The sufficient decrease inequality
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(3.24) together with the curvature condition (3.25) are usually referred to as Wolfe con-
ditions. Furthermore, the strong Wolfe conditions additionally impose

∣∣∣∣
∂j

∂z
(zk + αksk)ŝk

∣∣∣∣ ≤
∣∣∣∣γ
∂j

∂z
(zk)sk

∣∣∣∣ , (3.26)

instead of Eq. (3.25). It can be shown that for a continuously differentiable cost function
which is bounded from below in the direction ŝk there exists a step length αk which
satisfies the strong Wolfe conditions for 0 < β < γ < 1. [4]
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Chapter 4

Constrained Optimization

This chapter extends the theoretical background regarding parameter optimization
problems from the unconstrained case, presented in chapter 3, to the constrained case.
First, the general, nonlinear case with equality and inequality constraints is revisited.
Afterwards, numerical methods for this nonlinear case as well as other relevant special
cases, namely linear and quadratic programming, are discussed. These methods are
employed in this thesis to solve the discretized form of the clearance optimal control
problem. Finally, methods related to the determination of post-optimal sensitivities
for parametric optimization problems are presented which can be used to investigate
the sensitivity of optimal solutions, that are worst-case solutions in the context of this
thesis, with respect to parameters of interest.

4.1 Problem Statement

The goal in constrained optimization [4, 50, 53] is to find the optimization variable
vector z ∈ Rnz , which minimizes the cost function j : Rnz → R subject to the equality
constraints h : Rnz → Rnh and the inequality constraints g : Rnz → Rng :

minimize
z ∈ Rnz

j(z)

subject to h(z) = 0,

g(z) ≤ 0

(4.1)

All functions in problem (4.1) are assumed to be at least twice continuously differen-
tiable. The feasible region F for this optimization problem is represented by the set of
points satisfying the constraints:

F := {z ∈ Rnz : h(z) = 0, g(z) ≤ 0} (4.2)

45



4.2 Necessary and Sufficient Conditions

A solution ẑ ∈ F to the optimization problem (4.1) is termed a global solution if

j(ẑ) ≤ j(z), z ∈ F , (4.3)

is satisfied. For a local solution ẑ ∈ F there has to exist a neighborhood N of ẑ in which

j(ẑ) ≤ j(z), z ∈ N ∩ F (4.4)

holds. For a strict global, respectively local, solution strict inequalities need to hold for
all z 6= ẑ in Eq. (4.3), respectively Eq. (4.4). In addition, the index set A(z) of the active
inequality constraints is introduced

A(z) := {i ∈ IN0 : gi(z) = 0} , (4.5)

which is used in the following discussion regarding the conditions of optimality.

4.2 Necessary and Sufficient Conditions

In order to state the optimality conditions for the optimization problem (4.1) it is useful
to introduce multipliers l0 ∈ R, λ ∈ Rnh , and µ ∈ Rng and to define the Lagrangian
function L : R × Rnz × Rnh × Rng → R:

L (l0, z,λ,µ) := l0j(z) + λTh(z) + µTg(z) (4.6)

In the following the normal case is assumed for which the multiplier l0 can be set to
one [54]. A local solution ẑ with corresponding multipliers λ̂ and µ̂ of the constrained
optimization problem (4.1) has to satisfy the necessary conditions:

∂L
∂z

(
ẑ, λ̂, µ̂

)
=
∂j

∂z
(ẑ) + λ̂

T ∂h

∂z
(ẑ) + µ̂T

∂g

∂z
(ẑ) = 0, (4.7)

∂L
∂λ

(
ẑ, λ̂, µ̂

)
= hT (ẑ) = 0, (4.8)

g (ẑ) ≤ 0, (4.9)

µ̂i ≥ 0, i = 0, . . . ,ng − 1, (4.10)

gi(ẑ)µ̂i = 0, i = 0, . . . ,ng − 1 (4.11)

Additionally, the linear independence constraint qualification (LICQ) needs to hold, imply-
ing that all gradients of the active constraints have to be linearly independent. These
first-order necessary conditions are also called Karush-Kuhn-Tucker (KKT) conditions.
Note that the stationarity condition (4.7) requires the negative gradient of the cost func-
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tion to be a linear combination of the constraint Jacobians:

− ∂j

∂z
(ẑ) = λ̂

T ∂h

∂z
(ẑ) + µ̂T

∂g

∂z
(ẑ) (4.12)

In some sense, this linear combination can be compared to a vectorial force equation
in which the Lagrange multipliers play the role of scaling factors maintaining an equi-
librium (see Fig. 4.1). Moreover, the primal feasibility conditions (4.8) and (4.9) simply

∂h
∂z

∂j
∂z

µ∂g
∂z

∂g
∂z

λ∂h
∂z

g(z)

h(z)

Figure 4.1: Two dimensional illustration of the vectorial sum of the cost function gradient
and constraint Jacobians (scaled by the corresponding multipliers) at the op-
timal solution. A scalar equality constraint h(z) as well as a scalar inequality
constraint g(z) are considered.

state that the constraints need to be satisfied at the local solution ẑ. Additionally, the
dual feasibility conditions (4.10) require the multipliers of the inequality constraints to
be non-negative. Finally, the complementarity conditions (4.11) ensure that for inactive
constraints the corresponding multipliers, or both the constraint values and the mul-
tipliers, have to be zero. In the latter case a constraint is said to be weakly active. A
stronger condition is the strict complementarity condition which requires the multipli-
ers corresponding to active constraints to be strictly positive:

µi > 0, gi(ẑ)µ̂i = 0, ∀i ∈ A(ẑ) (4.13)

Note that the first-order conditions do not specify the type of extremal point ẑ for
which second-order information is required. For the statement of the second-order
necessary conditions it is useful to introduce the critical cone C(ẑ)

C(ẑ) :=





d ∈ Rnz :





∂h
∂z

(ẑ)d = 0

∂gi
∂z

(ẑ)d = 0, ∀i ∈ A(ẑ), µ̂i > 0

∂gi
∂z

(ẑ)d ≤ 0, ∀i ∈ A(ẑ), µ̂i = 0





, (4.14)
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which represents a conical approximation of the feasible set. The second-order neces-
sary conditions additionally require the projection of the Hessian of the Lagrangian in
all admissibly directions d, as defined by the critical cone C(ẑ), to be greater than or
equal to zero:

dT
∂2L
∂z2

d ≥ 0, d ∈ C(ẑ) (4.15)

For the second-order condition to be sufficient the inequality in condition (4.15) is re-
quired to be strict.

Note that for the general case it is by no means easy to find analytical solutions
satisfying the KKT conditions. As such, numerical methods are vital for practical ap-
plications. These methods are the topic of the following sections. Important special
cases, namely Linear Programming (LP) and Quadratic Programming (QP), as well as
the general case of Nonlinear Programming (NLP) are discussed.

4.3 Linear Programming

Consider a special case of the optimization problem (4.1) where the objective function,
the equality constraints, as well as inequality constraints are linear. This optimization
problem can be written as:

minimize
z̄ ∈ Rnz̄

c̄T z̄

subject to Mhz̄ = bh,

Mgz̄ ≤ bg

(4.16)

The linear cost function is modeled using the vector c̄ ∈ Rnz̄ . Furthermore, the matrix
Mh ∈ Rnh×nz̄ and corresponding vector bh ∈ Rnh define the equality constraints. Simi-
larly, the matrix Mg ∈ Rng×nz̄ and corresponding vector bg ∈ Rnh define the inequality
constraints. Usually the problem is stated in standard form

minimize
z ∈ Rnz

cTz

subject to Msz = bs,

z ≥ 0,

(4.17)

with c ∈ Rnz , Ms ∈ Rnc×nz , and bs ∈ Rnz . The statement of the LP (4.16) in the
form (4.17) can always be achieved by means of suitable standard transformations
(cf. Ref. [4]). It is assumed in the following that the feasible set is non-empty, nc <
nz holds, and the rows in matrix Ms are linearly independent (directly implying that
Mh is required to have full row rank). The Lagrangian for the standard form with
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multiplier vectors λ ∈ Rnc and µ ∈ Rnz may be written as

L (z,λ,µ) := cTz + λT (bs −Msz)− µTz, (4.18)

and the optimality conditions for the KKT triple
(
ẑ, µ̂, λ̂

)
are [4]

MT
s λ̂+ µ̂ = c, (4.19)

Msẑ = bs, (4.20)

µ̂ ≥ 0, (4.21)

ẑ ≥ 0, (4.22)

Ẑµ̂ = 0, (4.23)

(4.24)

with Ẑ = diag(ẑ). A globally optimal solution of the LP problem is guaranteed to be on
a vertex of the convex polytope defining the feasible set. An effective method for find-
ing such an optimal vertex is the Simplex method [55]. Essentially, this algorithm visits
vertices of the feasible set until an optimal solution is found. Geometrically, this can be
interpreted as moving along the edges of the polytope in directions of non-increasing
cost until the cost cannot be improved further. All vertices which are visited during the
iterations of the Simplex algorithm are basic feasible. This means that they are vertices
of the feasible polytope and at each point there exists an index set B ⊆ {0, . . . ,nz − 1}
of cardinality nc with zi = 0, ∀i /∈ B. Moreover, the basis matrix MB comprised of the
columns mi, i ∈ B of Ms has full rank and and is invertible. Furthermore, the comple-
mentary non-basic index set N = {0, . . . ,nz − 1} \ B with cardinality nz − nc may be
defined. Using the definition of the basic and non-basic index sets the variables z and
µ may be rearranged into the basic variables zb ∈ Rnc and µb ∈ Rnc which contain all
zi,∀i ∈ B and µi,∀i ∈ B as well as the non-basic variables zn ∈ Rnz−nc and µn ∈ Rnz−nc

collecting all zi,∀i ∈ N , respectively µi,∀i ∈ N . Furthermore, the columns of the ma-
trix Ms can be rearranged to [MB, MN ] with the invertible basis matrix MB and the
matrix MN collecting all columns of Ms not indexed by B. A basic feasible optimal point
is a basic feasible point which is a solution for the LP (4.17). A basic feasible optimal
solution is guaranteed to exist under relatively mild assumptions for the LP problem
(see Theorem 13.2 in Ref. [4]):

� “If [(4.17)] has a nonempty feasible region, then there is at least one basic feasible
point”

� “If [(4.17)] has solutions, then at least one such solution is a basic optimal point”

� “If [(4.17)] is feasible and bounded, then it has an optimal solution”
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Moreover, if the strict complementarity condition optimal solution, which may be ex-
pressed as

ẑ + µ̂ > 0, (4.25)

then the optimal solution is unique [56] and the basic and non-basic variables satisfy
zb > 0, zn = 0, respectively µb = 0,µn > 0. Efficient implementations of LP methods
which are able to handle large scale problems are available in software packages such
as CPLEX [57], GUROBI [58], and CLP [59].

4.4 Quadratic Programming

QP methods solve an optimization problem with a quadratic cost function and linear
constraints of the form:

minimize
z ∈ Rnz

cTz +
1

2
zTBz

subject to Mhz = bh,

Mgz ≤ bg

(4.26)

The quadratic cost function contains a linear term with vector c ∈ Rnz and a quadratic
term with symmetric matrix B ∈ Rnz×nz . The equality and inequality constraints are
defined as for LPs (cf. Sec. 4.3). The Lagrangian of the QP problem is defined as follows:

L (z,λ,µ) := cTz +
1

2
zTBz + λT (Mhz− bh) + µT (Mgz− bg) (4.27)

An important special case arises if the matrix B is positive definite. In this case the
problem is convex and there exists a unique global minimizer. This is not true for non-
convex problems and there may exist several local solutions. Moreover, in case the
quadratic problem has only equality constraints the first-order optimality conditions
can be stated as a solution for the optimization variables ẑ and the Lagrange multipliers
λ̂ of the system: 

 B MT
h

Mh 0




 ẑ

λ̂


 =


−c

bh


 (4.28)

Two commonly applied approaches to solve the QP problem with inequality con-
straints are active set and interior point methods. Among others, a popular imple-
mentation of an active set QP algorithm is qpOASES [60]. This solver is widely used
in optimal control applications, especially in the context of model predictive control.
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4.5 Nonlinear Programming

For problems of the general nonlinear type two methods, namely Sequential Quadratic
Programming (SQP) and Interior Point (IP) methods, are discussed in the following.
They both differ in the way how iterates are computed and how inequality constraints
are treated. SQP methods solve the constrained optimization problem by a series of
quadratic model problems with linear constraints. The index set for the active inequal-
ity constraints is updated in each iteration based on the active constraints from the
solution of the QP. For solving the quadratic model problem in each iteration meth-
ods discussed in Sec. 4.4 are used. A popular implementation of a SQP method is
the nonlinear solver SNOPT [61]. Besides SQP methods, IP methods are commonly
used for solving NLPs. These methods can be seen as homotopy methods for solv-
ing a sequence of perturbed optimization problems. For this purpose the nonlinear
optimization problem (4.1) is first transformed to the equivalent form:

minimize
z ∈ Rnz , s ∈ Rng

j(z)

subject to h(z) = 0,

g(z) + s = 0,

s ≥ 0

(4.29)

Note that the inequality constraints are replaced by equality constraints g(z) + s =

0 using additional slack variables s ∈ Rng , s ≥ 0. Defining the Lagrangian of this
problem based on the multipliers λ ∈ Rnh and µ ∈ Rng

L (z, s,λ,µ) := j(z) + λTh(z) + µT (g(z) + s) , (4.30)

together with the non-negativity inequality constraints s ≥ 0 the KKT conditions at a
local solution with ẑ, ŝ, λ̂, and µ̂ can be stated as [4]

∂L
∂z

(
ẑ, ŝ, λ̂, µ̂

)
=
∂j

∂z
(ẑ) + λ̂

T ∂h

∂z
(ẑ) + µ̂T

∂g

∂z
(ẑ) = 0, (4.31)

∂L
∂λ

(
ẑ, ŝ, λ̂, µ̂

)
= hT (ẑ) = 0, (4.32)

∂L
∂µ

(
ẑ, ŝ, λ̂, µ̂

)
= gT (ẑ) + ŝT = 0, (4.33)

µ̂i ≥ 0, i = 0, . . . ,ng − 1, (4.34)

ŝi ≥ 0, i = 0, . . . ,ng − 1, (4.35)

ŝiµ̂i = τ , i = 0, . . . ,ng − 1, (4.36)
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for τ = 0. The solution of the constrained optimization problem is now determined by
solving a sequence of perturbed problems with a positive perturbation parameter τ >
0. As such, IP methods can be seen as continuation methods with homotopy parameter
τ . In this context, it is interesting to observe that the condition (4.36) approximates
the complementarity condition using a “smoothed corner” as illustrated in Fig. 4.2.
Hence, the concept of inactive constraints essentially looses its meaning and, there
are merely “less active” or “more active” constraints. Note further that for τ > 0 the
slack variables s and the multipliers µ are forced to be strictly positive by the relaxed
complementarity condition and hence µ > 0 as well as s > 0 needs to be ensured in
each iteration. This implies that strict complementarity holds for all iterates with τ > 0

in the interior of the feasible set. The Newton directions dz, ds, dλ, and dµ for solving

0 0.2 0.4 0.6 0.8 1
0

0.2
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µ
i

τ=0.1

τ=0.01
...

Figure 4.2: Illustration of the relaxed complementarity condition for one multiplier µi and
corresponding slack si in case of interior point problems with τ > 0.

the KKT equations in each iteration are determined from the solution of




∂2L
∂z2

(
∂h
∂z

)T (
∂g
∂z

)T
0

∂h
∂z

0 0 0

∂g
∂z

0 0 I

0 0 S M







dz

dλ

dµ

ds




= −




∂j
∂z

+ λT ∂h
∂z

+ µT ∂g
∂z

h(z)

g(z) + s

Sµ− 1τ




, (4.37)

with S = diag(s) and M = diag(µ). In order to measure progress in each iteration
when employing a Line-Search method a so-called merit function is defined. This merit
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function takes the cost function value as well as constraint violations into account. An
example for such a merit function based on a suitable vector norm ‖·‖ is [4]:

m(z, s,λ,µ; τ) := max

{∥∥∥∥
∂j

∂z
+ λT

∂h

∂z
+ µT

∂g

∂z

∥∥∥∥ , ‖Sµ− 1τ‖ , ‖h(z)‖ , ‖g(z) + s‖
}

(4.38)

Popular interior point solvers are IPOPT [62], KNITRO [63], and LOQO [64].

4.6 Sensitivity Analysis for Parametric Optimization

Problems

Post-optimal sensitivity analysis [53, 65, 52, 66] can be used to study the effect of pa-
rameters on the optimal solution of optimization problems. For this purpose, consider
the parameter dependent case of the constrained minimization problem (4.1):

minimize
z ∈ Rnz

j(z; p),

subject to h(z; p) = 0,

g(z; p) ≤ 0

(4.39)

Note that the parameters p ∈ Rnp in this optimization problem are not subject to opti-
mization. The Lagrangian of this parametric optimization problem is defined as:

L (z,λ,µ; p) := j(z; p) + λTh(z; p) + µTg(z; p) (4.40)

It is assumed that the second-order sufficient conditions with strict complementarity
and LICQ (cf. Sec. 4.2) hold at the nominal solution ẑ(p0). In this case there exists
a neighborhood of p0 where the set of active constraints remains unchanged and the
trajectories ẑ(p), λ̂(p) and µ̂(p) are continuously differentiable [52]. In the following
function arguments are dropped in order to improve readability. In addition, all quan-
tities are assumed to be evaluated at a KKT point

(
ẑ, λ̂, µ̂

)
for a nominal parameter

value p0. First, the vector function v(p)

v(p) :=
[
zT (p),λT (p),µT (p)

]T
, (4.41)

is introduced which expresses the implicit dependence of the optimal optimization
variables and Lagrange multipliers on the parameter vector p. The following condition
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holds at an optimal solution of problem (4.39) (cf. Eqs. (4.7), (4.8), and (4.11))

c(p) :=




(
∂L
∂z

)T

h

Mg


 = 0, (4.42)

with M = diag(µ). Note that the total derivative of this condition is not allowed to
change for the perturbed solution to remain optimal, i.e. :

∂c

∂v

dv

dp
+
∂c

∂p
= 0 (4.43)

The Jacobian

∂c

∂v
=




∂2L
∂z2

(
∂h
∂z

)T (
∂g
∂z

)T

∂h
∂z

0 0

M∂g
∂z

0 G


 , (4.44)

with G = diag(g) exhibits a particular structure which can be exploited to simplify
Eq. (4.43). Let the active inequality constraints and corresponding Lagrange multipli-
ers be denoted with ga ∈ Rna , respectively µa ∈ Rna . Similarly, the inactive constraints
and multipliers are denoted with gi ∈ Rni and µi ∈ Rni . Note that due to the assump-
tion of a strict complementary solution (cf. Eq. (4.13)) the multipliersµi and constraints
ga are zero and the multipliers µa and constraints gi are non-zero. Defining the matri-
ces Gi = diag(gi) and Ga = diag(ga) as well as Mi = diag(µi) and Ma = diag(µa) the
block structures

G =


Gi 0

0 Ga


 =


Gi 0

0 0


 , (4.45)

and

M
∂g

∂z
=


Mi ∂gi

∂z

Ma ∂ga

∂z


 =


 0

Ma ∂ga

∂z


 , (4.46)

can be exposed under the assumption that the constraints are arranged as follows:

g =


gi

ga


 (4.47)
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Exploiting these structures in Eq. (4.44), the following linear system is obtained from
Eq. (4.43): 



∂2L
∂z2

(
∂h
∂z

)T (
∂gi

∂z

)T (
∂ga

∂z

)T

∂h
∂z

0 0 0

0 0 Gi 0

Ma ∂ga

∂z
0 0 0







dz
dp

dλ
dp

dµi

dp

dµa

dp




= −




∂2L
∂z∂p

∂h
∂p

0

Ma ∂ga

∂p




(4.48)

As the third row block equation of Eq. (4.48) implies

Gidµ
i

dp
= 0, (4.49)

it immediately follows that
dµi

dp
= 0, (4.50)

due to the fact that Gi is a diagonal matrix with non-zero entries on the diagonal. Note
that this is consistent with the requirement that there are no active set changes in the
vicinity of the nominal solution (inactive constraints stay inactive). Note further that
Ma is a diagonal matrix with strictly positive entries on the main diagonal. Thus, after
multiplying the fourth row with the inverse of Ma and removing the rows and columns
corresponding to the result from Eq. (4.50), the following system is obtained:




∂2L
∂z2

(
∂h
∂z

)T (
∂ga

∂z

)T

∂h
∂z

0 0

∂ga

∂z
0 0







dz
dp

dλ
dp

dµa

dp


 = −




∂2L
∂z∂p

∂h
∂p

∂ga

∂p


 (4.51)

Due to the assumption that second-order sufficient conditions with strict complemen-
tarity and LICQ hold, the sensitivity matrix in Eq. (4.51) has full rank and is invertible
(cf. Ref. [52]). Hence, the post-optimal sensitivities w.r.t. the parameters p yield:




dz
dp

dλ
dp

dµa

dp


 = −




∂2L
∂z2

(
∂h
∂z

)T (
∂ga

∂z

)T

∂h
∂z

0 0

∂ga

∂z
0 0




−1 


∂2L
∂z∂p

∂h
∂p

∂ga

∂p


 (4.52)

These sensitivities are termed post-optimal sensitivities as they reveal how the optimal
solution, i.e. the optimal optimization variables and multipliers, changes in a neigh-
borhood around the nominal solution. Based on the post-optimal sensitivities of the
optimization variables and multipliers it is possible to obtain the sensitivities of the
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optimal cost function:
dj

dp
=
∂j

∂z

dz

dp
+
∂j

∂p
(4.53)

In addition to expression (4.53), it can be shown that the post-optimal sensitivity of the
cost function is equal to the partial derivatives of the Lagrangian with respect to the
parameters [66]:

dj

dp
=
∂L
∂p

(4.54)

Note that this expression is considerably cheaper to evaluate as it does not require the
sensitivity of the optimization variables with respect to the parameters. Interestingly,
also second-order sensitivities can be derived for the cost function [65]:

d2j

dp2
=

∂2L
∂p∂z

dz

dp
+
∂2L
∂p2

+

(
∂ga

∂p

)T
dµa

dp
+

(
∂h

∂p

)T
dλ

dp
(4.55)

Note that the cost function sensitivity deserves particular attention considering the ap-
plication investigated in this thesis. This is due to the fact that the cost function models
the clearance criterion under investigation. Thus, the post-optimal sensitivities of the
cost function with respect to parameters can provide valuable information regarding
the influence of these parameters on the worst-case solution in the context of flight
control law clearance.
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Optimal Control

Optimal control theory is the basis of the clearance methods developed in this the-
sis. Two approaches for solving optimal control problems are commonly employed,
termed the direct and the indirect approach. In the direct approach the problem is
first discretized in the temporal dimension and the resulting parameter optimization
problem is then solved using the methods discussed in the previous chapter 4. This
sequence may be described as first discretize, then optimize. The indirect approach re-
lies on the derivation of the necessary optimality conditions for the continuous time
problem. A solution of these necessary conditions can then be obtained analytically
or numerically. If a numerical method is used to solve the necessary conditions, the
indirect approach can be described as first optimize, then discretize [52]. Both options
for the indirect approach are by no means foolproof and in most cases quite involved.
On the one hand, the analytical solution is only possible for very few, often relatively
simple, optimal control problems. On the other hand, the numerical solution of the
necessary conditions, e.g. using shooting techniques [67], requires a good initial guess
and knowledge about the structure of the problem (such as the sequence of active and
inactive boundary arcs, cf. Sec. 5.4). In this thesis the direct approach is used for the so-
lution of the clearance optimal control problem due to its general applicability. Never-
theless, the concepts presented in this chapter are useful to characterize the worst-case
control function and to verify if the solution obtained from the discretized problem
in fact represents a valid approximation of the solution expected from the continuous
time problem. Especially the connection between the discretized problem and the con-
tinuous time problem, which is discussed in chapter 6, is essential in order to perform
these sanity checks. In this chapter results from the continuous case are highlighted,
which are deemed relevant for the clearance problem investigated in this thesis.

57



5.1 Problem Statement

5.1 Problem Statement

Optimal control problems [52, 54, 50] are optimization problems in function space. In
order to state a commonly used formulation involving ordinary differential equations
consider the dynamic constraint

f (x(t), u(t), t)− ẋ(t) = 0, (5.1)

on the time interval I t

I t := [t0, tf ] ⊂ R, tf > t0. (5.2)

The non-autonomous dynamic model function f : Rnx × Rnu × I t → Rnx in Eq. (5.1)

depends on the state function x(t) ∈ W nx
1,∞ (I t), the control function u(t) ∈ Lnu∞ (I t), and

the monotonically increasing time variable t ∈ I t. For an exact definition of the func-
tion spaces please refer to Ref. [52]. In particular, these function spaces allow the con-
trol to exhibit discontinuities, but require the state history to be continuous, i.e. without
“jumps”. The optimal control problem formulation considered in the following can be
stated as follows: Find the optimal control function û(t) ∈ U within the control set
U ⊆ Rnu and the corresponding optimal state history x̂(t) which minimize the Bolza
cost function:

jB := jM (x(t0), t0, x(tf ), tf ) +

∫ tf

t0

jL (x(t), u(t), t) dt (5.3)

On the one hand, the Mayer cost function jM : Rnx × R × Rnx × R → R in (5.3)

depends on the values of the initial time t0, final time tf , and the state values at these
time points, i.e. x(t0), respectively x(tf ). On the other hand, the Lagrange cost function
jL : Rnx × Rnu × I t → R is integrated on the time interval I t. Additionally, the path-
constraints c : Rnx × Rnu × I t → Rnc ,

c (x(t), u(t), t) ≤ 0, (5.4)

are imposed along the trajectory and boundary conditions φ : Rnx × Rnx → Rnφ ,

φ (x(t0), x(tf )) = 0, (5.5)

depending on the state values at the initial and final time point constrain the problem
at the beginning and end of the time interval. Note that the formulation above also
includes the case with parameters p ∈ Rnp which can be formally introduced by adding
additional state variables xpi(t), i = 0, . . . ,np−1 to the formulation with a zero rate and
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an initial (or final) boundary condition:

ẋpi(t) = 0, xpi(t0) = pi (5.6)

This transformation can be used to introduce the parameters for the initial time t0 and
final time tf as states xt0(t), respectively xtf (t), with

ẋt0(t) = 0, xt0(t0) = t0,

ẋtf (t) = 0, xtf (tf ) = tf .
(5.7)

A similar idea can be used to transform the problem to an autonomous formulation
with no explicit dependence on the independent variable t by the introduction of an
additional state xt(t):

ẋt(t) = 1, xt(t0) = t0 (5.8)

Furthermore, the Bolza cost function can be transformed into a pure Mayer-type cost
function by the introduction of an additional state xjL(t):

ẋjL(t) = jL (x(t), u(t), t) , xjL(t0) = 0 (5.9)

The augmented state vector x̄(t) using these transformations thus becomes

x̄(t) =
[
xT (t),xt0(t),xtf (t),xt(t),xjL(t)

]T
. (5.10)

Moreover, the problem can be formulated in time normalized form, which is preferred
in most derivations throughout this thesis. This means that the problem is stated using
the normalized time variable τ ∈ Iτ on the interval

Iτ := [0, 1]. (5.11)

The transformations between the time t and the normalized time τ are

t = xt0(t) + τ
(
xtf (t)− xt0(t)

)
, τ =

t− xt0(t)

xtf (t)− xt0(t)
, (5.12)

Using these transformations the time scaled form of the dynamic equation involving
the augmented state vector x̄(t) can be given as follows:

x̄′(τ) =
dx̄

dt

dt

dτ
=
dx̄

dt

(
xtf (t)− xt0(t)

)
= f̄ (x̄(τ), u(τ)) (5.13)
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This leads to the following time normalized Mayer-type problem:

minimize
u(τ) ∈ U

jM (x̄(0), x̄(1))

subject to f̄ (x̄(τ), u(τ))− x̄′(τ) = 0,

c (x̄(τ), u(τ)) ≤ 0,

φ (x̄(0), x̄(1)) = 0,

τ ∈ Iτ

(5.14)

5.2 First-order Necessary Conditions

In the following a reduced problem formulation without state constraints and control
bounds is considered for the derivation of the first-order necessary conditions. This
simplified case is useful to later show the connection between the discretized form
and the continuous time problem in chapter 6. Moreover, the theoretical results are
extended in the sequel of this chapter to the case with control constraints and the case
with purely state dependent path-constraints, which are relevant for the application
considered in this thesis. The optimal control formulation used for the derivation of
the first-order necessary conditions is of the form:

minimize
u(τ) ∈ Rnu

jM (x̄(0), x̄(1))

subject to f̄ (x̄(τ), u(τ))− x̄′(τ) = 0,

φ (x̄(0), x̄(1)) = 0,

τ ∈ Iτ .

(5.15)

First, the augmented cost jA is introduced

jA := l0j
M (x̄(0), x̄(1))+γTφ (x̄(0), x̄(1))+

∫ 1

0

λT (τ)
[
f̄ (x̄(τ), u(τ))− x̄′(τ)

]
dτ , (5.16)

by adjoining the boundary constraints with multipliers γ ∈ Rnφ and the dynamic con-
straints in differential form using the co-states λ(τ) ∈ W nx

1,∞ (Iτ ) to the cost with cor-
responding multiplier l0 ∈ R. In the following arguments are omitted for better read-
ability and, in particular, the short notations x̄0 = x̄(0), x̄f = x̄(1), and λ0 = λ(0),
λf = λ(1) are used. The first variation of the augmented cost function (5.16) for the
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time normalized form with no path-constraints (5.15) can be written as

δjA =

[
l0
∂jM

∂x̄0

+ γT
∂φ

∂x̄0

]
δx̄0 +

[
l0
∂jM

∂x̄f
+ γT

∂φ

∂x̄f

]
δx̄f+

∫ 1

0

(
λT

∂ f̄

∂u
δu + f̄

T
δλ− (x̄′)

T
δλ− λT δx̄′ + λT ∂ f̄

∂x̄
δx̄

)
dτ .

(5.17)

Integration by parts for the term λT δx̄′

∫ 1

0

λT δx̄′dτ = λTf δx̄f − λT0 δx̄0 −
∫ 1

0

(λ′)
T
δx̄dτ , (5.18)

yields after insertion of Eq. (5.18) and collection of the terms:

δjA =

[
l0
∂jM

∂x̄0

+ γT
∂φ

∂x̄0

+ λT0

]
δx̄0 +

[
l0
∂jM

∂x̄f
+ γT

∂φ

∂x̄f
− λTf

]
δx̄f+

∫ 1

0

(
λT

∂ f̄

∂u
δu +

[
f̄
T − (x̄′)

T
]
δλ+

[
λT

∂ f̄

∂x̄
+ (λ′)

T

]
δx̄

)
dτ

(5.19)

Introducing the Hamiltonian

H(λ(τ), x̄(τ), u(τ)) := λT (τ)f̄ (x̄(τ), u(τ)) , (5.20)

with
∂H
∂λ

= f̄
T

,
∂H
∂x̄

= λT
∂ f̄

∂x̄
,

∂H
∂u

= λT
∂ f̄

∂u
, (5.21)

Eq. (5.19) can be written as

δjA =

[
l0
∂jM

∂x̄0

+ γT
∂φ

∂x̄0

+ λT0

]
δx̄0 +

[
l0
∂jM

∂x̄f
+ γT

∂φ

∂x̄f
− λTf

]
δx̄f+

∫ 1

0

(
∂H
∂u

δu + δλT
[
∂H
∂λ
− (x̄′)

T

]
+

[
∂H
∂x̄

+ (λ′)
T

]
δx̄

)
dτ .

(5.22)

Equating the first variation of the augmented cost to zero, i.e. δjA = 0, yields the fol-
lowing conditions for each single term:

� State Equation (Variation δλ):

(x̄′)
T

=
∂H
∂λ

(5.23)

� Adjoint Equation (Variation δx̄):

(λ′)
T

= −∂H
∂x̄

(5.24)
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� Transversality Conditions (Variations δx̄0, δx̄f ):

λT0 = −l0
∂jM

∂x̄0

− γT ∂φ
∂x̄0

, (5.25)

λTf = l0
∂jM

∂x̄f
+ γT

∂φ

∂x̄f
(5.26)

� Control Equation (Variation δu):

∂H
∂u

= 0 (5.27)

Based on these conditions, an important result for the Hamiltonian can be derived:

dH
dτ

= 0 (5.28)

This result can be obtained by taking the total derivative of the Hamiltonian with re-
spect to time:

dH
dτ

=
∂H
∂λ

dλ

dτ
+
∂H
∂x̄

dx̄

dτ
+
∂H
∂u

du

dτ
(5.29)

Inserting the state equation (5.23) and co-state equation (5.24) yields

dH
dτ

= f̄
dλ

dτ
− λ′dx̄

dτ
+
∂H
∂u

du

dτ
=
∂H
∂u

du

dτ
. (5.30)

Together with the control equation ∂H
∂u

= 0, Eq. (5.28) is readily obtained. Note that ac-
cording to Eq. (5.27) the control u(τ) for the optimal control problem (5.15) is assumed
to be uniquely determined by the condition

∂H
∂u

= λT
∂ f̄

∂u
= 0. (5.31)

In case the control is bounded, i.e. u(τ) ∈ U , not all variations δu in the control are
feasible. For this case the Minimum Principle provides the necessary conditions. It
states that for any admissible control u(τ) ∈ U the HamiltonianH

(
ˆ̄x(τ), û(τ), λ̂(τ)

)
at

an optimal solution needs to satisfy

∂H
∂u

(u(τ)− û(τ)) ≥ 0, (5.32)

together with the transversality conditions (5.25) and (5.26) as well as the co-state
equation (5.24). Note that the condition (5.32) implies that the optimal control û(τ)
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is an admissible control which minimizes the Hamiltonian

û(τ) = arg min
u(t)∈U

H
(

ˆ̄x(τ), u(τ), λ̂(τ)
)

. (5.33)

5.3 Control Affine Systems

Consider the control affine case [52] for a dynamic constraint of the form

nu−1∑

i=0

f̄ i (x̄(τ))ui(τ) + f̄nu (x̄(τ))− x̄′(τ) = 0, (5.34)

with state dependent functions f̄ i : Rnx → Rnx , i = 0, . . . ,nu. In this case, the differen-
tial form of the time normalized Mayer-type problem without path-constraints reads

minimize
u(τ) ∈ U

jM (x̄(0), x̄(1))

subject to
nu−1∑

i=0

f̄ i (x̄(τ))ui(τ) + f̄nu (x̄(τ))− x̄′(τ) = 0,

φ (x̄(0), x̄(1)) = 0,

τ ∈ Iτ ,

(5.35)

and the Hamiltonian is defined as

H(λ(τ), x̄(τ), u(τ)) := λT (τ)
nu−1∑

i=0

f̄ i (x̄(τ))ui(τ) + λT (τ)f̄nu (x̄(τ)) . (5.36)

Introducing the so-called switching function

ST (λ(τ), x̄(τ)) :=
∂H
∂u

= λT
[
f̄0x̄(τ), . . . , f̄nu−1x̄(τ)

]
, (5.37)

the Hamiltonian can be expressed as

H(λ(τ), x̄(τ), u(τ)) = λT (τ)f̄nu (x̄(τ)) + ST (λ(τ), x̄(τ)) u(τ). (5.38)

Recall that according to the Minimum Principle the optimal control is an admissible
control which minimizes the Hamiltonian (cf. Eq. (5.33)). Therefore, using the defini-
tion of the switching function in Eq. (5.37) the product of ST (λ(τ), x̄(τ)) with u(τ) ∈ U
needs to be minimized in order to determine the optimal control. For a scalar, box
bounded, control u(τ) ∈ [ulb,uub] ⊂ R,uub > ulb this implies that merely the sign of the
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switching function determines the value of the control

u(τ) =





ulb, if S (λ(τ), x̄(τ)) > 0,

uub, if S (λ(τ), x̄(τ)) < 0,

us otherwise.

(5.39)

In case the switching function remains zero, i.e. S (λ(τ), x̄(τ)) = 0, for a non-instantaneous
time interval τ ∈ Is := [τ1, τ2] , τ1 < τ2 the control cannot be determined from the value
of the switching function alone and the resulting control us is termed singular. Ob-
serve that the condition S (λ(τ), x̄(τ)) = 0, τ ∈ Is implies that all time derivatives of
the switching function remain zero on Is. The i-th time derivative of the switching
function can be defined as follows:

S(0) := S (λ(τ), x̄(τ)) ,

S(i) :=
∂S(i−1)

∂x̄

dx̄

dτ
+
∂S(i−1)

∂λ

dλ

dτ
.

(5.40)

If the p-th derivative (p <∞) satisfies

∂S(p−1)

∂u
= 0, (5.41)

∂S(p)

∂u
6= 0, (5.42)

the switching function S(p) can be decomposed as follows

S(p) = S(p)
1 (λ(τ), x̄(τ)) + S(p)

2 (λ(τ), x̄(τ))us(τ) = 0. (5.43)

and the expression can directly be solved for the singular control us(τ)

us(τ) = −S
(p)
1 (λ(τ), x̄(τ))

S(p)
2 (λ(τ), x̄(τ))

. (5.44)

It can be shown that p is an even integer i.e. the control appears first in an even order
time derivative of S (λ(τ), x̄(τ)) [68].

5.4 Purely State Dependent Path-constraints

In the following the case is analyzed in which the optimal control problem is subject to
a purely state dependent path-constraint c (x̄(τ)) ≤ 0 with c : Rnx → R [69, 52]. This
case is not trivial from a theoretical perspective as the control does not appear explicitly
in the constraint. In particular, the time points where the constraint becomes active,
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respectively in-active, are not known a-priori and in general difficult to determine.
The following cases can occur when a state dependent constraint c(x̄(τ)) is part of the
optimal control problem [52] (see Fig. 5.1):

� Free arc: The constraint is inactive on τ ∈ If := [τ1, τ2] , τ2 > τ1

� Boundary arc: The constraint is active on τ ∈ Ib := [τ1, τ2] , τ2 > τ1

� Contact point: The constraint is active at a single time point

� Touch point: The time derivative of the constraint is continuous at a contact point

c(x(τ))

0
1

τ

0

Boundary

Contact

Free

Touch
PointPoint

Arc
Free
Arc

Free
Arc Arc

Free
Arc

Figure 5.1: Illustration of free and boundary arcs as well as contact and touch points.

In addition, the order of the constraint is defined as the number of time derivatives
required until the control appears explicitly. The i-th time derivative of the constraint
can be defined recursively

c(0) := c (x̄(τ)) , (5.45)

c(i) :=
∂c(i−1)

∂x̄

dx̄

dτ
, (5.46)

and the path-constraint is said to be of order p if the control appears explicitly for
the first time in c(p), p < ∞. Two commonly used approaches to treat purely state
dependent path-constraints in optimal control theory are the indirect and the direct
adjoining approach [69]. In the indirect adjoining approach [70] an index reduction
technique is applied to the constraint. This means that the constraint is derived p times
until the direct dependence of the constraint on the control is revealed. In the direct
adjoining approach [71], which is used in this thesis for the characterization of the
worst-case control, the state constraint is directly adjoined to the Hamiltonian using a
piecewise continuous multiplier µ(τ). This yields the so-called augmented Hamiltonian
[71, 69]

HA(λ(τ), x̄(τ), u(τ)) := λT (τ)f̄ (x̄(τ), u(τ)) + µ(τ)c (x̄(τ)) , (5.47)
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and the adjoint equation evolves according to

(λ′)
T

= −∂H
A

∂x̄
. (5.48)

In addition, the following complementarity condition needs to hold:

µ(τ) ≥ 0, µ(τ)c (x̄(τ)) = 0 (5.49)

It is important to mention that in this case the co-states may exhibit “jumps”. These
jumps can take place when the state constraint becomes active, respectively inactive.
At a point of discontinuity τJ of the co-state such a jump is of the form

λT
∣∣
τ=τ−J

= λT
∣∣
τ=τ+

J
+ η

∂c

∂x̄

∣∣∣∣
τ=τJ

, (5.50)

with a non-negative jump height η. In Eq. (5.50) τ−J denotes the left sided limit for the
jump time point and τ+

J the right sided limit, respectively.
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Chapter 6

Direct Optimal Control Methods

In this chapter direct optimal control methods [52, 50, 40] are discussed. These methods
rely on discretization schemes (cf. Sec. 6.1) which transcribe the continuous time opti-
mal control problem introduced in chapter 5 into a discretized form. Popular choices
for these transcription schemes are shooting and collocation methods. The discretized
problem represents a finite dimensional optimization problem which can be solved
using NLP methods (cf. chapter 4). It is important to mention that direct methods, as
opposed to most indirect methods, do not require a-priori knowledge regarding the co-
state histories or the switching structure of the problem. This makes these approaches
particularly useful to obtain approximate solutions in practical applications. In this
context, the relationship between the KKT conditions of the discretized problem and
the optimality conditions of the continuous time optimal control problem is of inter-
est in order to check the validity of the approximate solution obtained from a direct
method (cf. Sec. 6.3).

6.1 Discretization Methods

In the following two important discretization methods, namely shooting and colloca-
tion, for direct optimal control methods are presented. Both discretization methods
are discussed for the Mayer-type optimal control problem formulation (5.14) in time
normalized form which is re-stated here for the reader’s convenience:

minimize
u(τ) ∈ U

jM (x̄(0), x̄(1))

subject to f̄ (x̄(τ), u(τ))− x̄′(τ) = 0,

c (x̄(τ), u(τ)) ≤ 0,

φ (x̄(0), x̄(1)) = 0,

τ ∈ Iτ

(6.1)
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Note that this formulation is general in the sense that it also covers the Bolza-type cost
function (5.3), non-autonomous systems with a direct dependence on the independent
variable, free and fixed final time formulations, as well as parameter dependent sys-
tems through the transformations introduced in Sec. 5. It is important to mention that
for direct methods no distinction is made between purely state dependent, purely con-
trol dependent, or mixed state-control path-constraints.

Both shooting methods and collocation methods are discussed in their segmented
form. For this purpose, it is useful to introduce the normalized segment time grid of
cardinality N + 1

GS
N+1 :=

{
τ

[i]
S : i = 0, . . . ,N , τ

[i+1]
S > τ

[i]
S , τ

[0]
S = 0, τ

[N ]
S = 1

}
, (6.2)

which defines N time intervals (segments)

Iτ ,[i] :=
[
τ

[i]
S , τ

[i+1]
S

]
⊂ R, τ

[i+1]
S > τ

[i]
S , i = 0, . . . ,N − 1, (6.3)

each of length h[i] = τ
[i+1]
S − τ [i]

S . To simplify notation the scaled form of the dynamic
equation for each segment, f̄

[i]
(x̄(τ), u(τ)) := h[i]f̄ (x̄(τ), u(τ)), is used in most deriva-

tions throughout this chapter. The transcription of the continuous problem (5.14) is
achieved using a particular state and control discretization for each segment. It is
noteworthy that a common extension to the optimal control problem (5.14) are so-
called interior point constraints. These constraints are imposed at some time point in
the interior of the time interval [0, 1]. This type of constraint is usually introduced by
splitting the problem into so-called phases. Each phase may be viewed as an optimal
control problem of the type (5.14) and continuity between phases is enforced by ad-
ditional constraints. Note that for some applications it may not be required to ensure
continuity for all quantities. This can occur if different dynamic models with differ-
ent state vectors are used for each phase or if discontinuities are desired due to the
specific problem formulation. As the notion of multi-phase problems does not add
to the discussion of discretization methods in the context of this thesis, the following
descriptions are limited to a single phase problem of the type (5.14).

6.1.1 Shooting Methods

The idea of shooting methods is based on the solution of several initial value problems
for each segment Iτ ,[i]. This shooting discretization in segmented form is illustrated
in Fig. 6.1. Three methods are usually distinguished for shooting methods. The first
extreme case, termed single shooting, uses a single segment for the discretization of the
optimal control problem. This implies that the integration on the whole time interval

68



Chapter 6: Direct Optimal Control Methods

of the problem is performed in a single sweep. Despite the appealing simplicity of this
method the long integration interval often leads to difficulties in the numerical solution
process. In the second case, termed multiple shooting, more than one segment is used
which reduces the length of the integration intervals. Splitting the problem into several
segments is achieved by the introduction of so-called shooting nodes and additional de-
fect constraints which link the segments together. Decoupling the problem in this way
often facilitates the numerical solution. Another extreme case is the full discretization
approach. For this method a shooting node is introduced at each step of the integration
scheme. This transcription method results in a high dimensional, but also very loosely
coupled, parameter optimization problem. The trade-off between the length of the in-
tegration intervals and the number of optimization variables, respectively constraints,
usually needs to be made according to the specific problem.

State and Control Discretization

The states are discretized at each time point τ [i]
S , i = 0, . . . ,N of the segment grid de-

fined in Eq. (6.2) by introducing so-called shooting nodes x̄[i], i = 0, . . . ,N as optimiza-
tion variables. The state trajectories on each segment Iτ ,[i] are then obtained from the
solution of an initial value problem:

x̄(τ) = x̄[i] +

∫ τ

τ
[i]
S

f̄ (x̄(s), u(s)) ds, τ ∈ Iτ ,[i] (6.4)

The numerical solution on an integration grid GI,[i]

N [i]+1

GI,[i]

N [i]+1
:=
{
τ

[i]
I,j : j = 0, . . . ,N [i], τ

[i]
S = τ

[i]
I,0 ≤ τ

[i]
I,1 ≤ . . . ≤ τ

[i]

I,N [i]−1
≤ τ

[i]

I,N [i] = τ
[i+1]
S

}

(6.5)

of cardinality N [i] + 1 can be obtained for example using Runge-Kutta one-step meth-
ods (cf. Sec. 2.3). Moreover, the control parametrization is often based on B-splines
(cf. Sec. 2.6) of degree p with a control break point grid GB

M of the form:

GB
M := {τB,j : j = 0, . . . ,M − 1, 0 = τB,0 ≤ τB,1 ≤ . . . ≤ τB,M−2 ≤ τB,M−1 = 1} . (6.6)

As discussed in Sec. 2.6, B-spline parametrizations are a popular choice due to their
local support property, which decreases coupling within the problem. For the B-spline
control parametrization of degree p, nw = M+p−1 variables wq,k, q = 0, . . . ,nu−1, k =

0, . . . ,nw − 1 are introduced and the interpolated values for each component uq (τ) of
the control vector u(τ) can be obtained from:

uq (τ) =
nw−1∑

k=0

Bp,k (τ)wq,k (6.7)
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x[1]

!
= 0

x[0]

!
= 0 . . . !

= 0

!
= 0

x[2]

x[N−1]

x[N ]

xub

xlb

u(τ)

. . .

uub

w0

x(τ)

ττ
[0]
S = 0 τ

[1]
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[N−1]
S τ

[N ]
S = 1
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wnw−1

τ
[2]
S

w2 w3

ττB,0 τB,1 τB,2 τB,3 τB,M−2 τB,M−1

ulb

Figure 6.1: Illustration of a segmented shooting discretization for a scalar state xlb ≤
x(τ) ≤ xub and scalar control ulb ≤ u(τ) ≤ uub with control parameters
w0,...,nw−1. Initial and final boundary conditions are imposed on the first,
respectively final state (brackets) and state continuity is ensured by enforcing
equality between the state values at segment boundaries.

70



Chapter 6: Direct Optimal Control Methods

Cost and Constraints

The cost function in Mayer-form and the boundary constraints can directly be evalu-
ated using the first and last shooting node, i.e. jM

(
x̄[0], x̄[N ]

)
and φ

(
x̄[0], x̄[N ]

)
. Addi-

tionally, defect equality constraints d[i,i+1], i = 0, . . . ,N − 1 are introduced

d[i,i+1] := x̄[i] +

∫ τ
[i+1]
S

τ
[i]
S

f̄ (x̄(τ), u(τ)) dτ

︸ ︷︷ ︸
x̄
(
τ

[i+1]
S

)

−x̄[i+1] = 0, (6.8)

which enforce state continuity across the respective segment boundaries. The path-
constraints

ck := c (x̄ (τC,k) , u (τC,k)) ≤ 0, k = 0, . . . ,P − 1 (6.9)

are usually imposed on a grid GC
P of cardinality P

GC
P := {τC,k : k = 0, . . . ,P − 1} , (6.10)

which contains a subset of the grid points from the union of all state integration grids
(6.5). The state values at these grid points can be obtained from

x̄ (τC,k) = x̄[i] +

∫ τC,k

τ
[i]
S

f̄ (x̄(s), u(s)) ds, k ∈ GC
P , (6.11)

and the control values u (τC,k) in Eq. (6.9) are determined using the control interpola-
tion in Eq. (6.7). It is important to mention that typically gradient-based optimization
methods are employed for the numerical solution of the discretized problem. These
methods require the derivatives of the cost and constraint functions with respect to the
optimization variables. As such, sensitivity analysis plays an important role in the con-
text of shooting methods to determine the derivatives of the constraints w.r.t. shooting
nodes and control parameters. Based on the state and control discretization introduced
in the last section the shooting nodes and control parameters can be collected in the pa-
rameter vector z ∈ Rnz

z :=
[(

x̄[0]
)T

, . . . ,
(
x̄[N ]

)T
, (w0)T , . . . , (wnw−1)T

]T
, (6.12)

with nz = nx(N + 1) + nunw. The major challenge for the efficient computation of
derivative information originates from the state dependency of the constraint func-
tions. One key concept for obtaining derivative information for the states with respect
to the parameter vector z is to use internal numerical differentiation (cf. Sec. 2.4). The
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initial value problem for the sensitivity differential equation of the state sensitivities

Sx(τ) :=
∂x̄

∂z
(τ), (6.13)

which needs to be solved on each shooting segment is defined as

S′x(τ) =
∂ f̄

∂x̄
Sx(τ) +

∂ f̄

∂u
Su(τ), τ ∈ Iτ ,[i], (6.14)

Sx

(
τ

[i]
S

)
=
∂x̄[i]

∂z
, (6.15)

with the control sensitivity matrix

Su(τ) :=
∂u

∂z
(τ). (6.16)

Note that for a B-spline control parametrization the matrix ∂u
∂z

(τ), j = 0, . . . ,nu − 1

merely contains the values of the B-spline basis functions at fixed normalized time
points. Furthermore, due to the local support property of the B-spline interpolation
method this matrix is usually very sparse. This initial value problem for the sensitivi-
ties is solved with the same numerical integration method and the same discretization
grid (cf. Eq. 6.5) as the initial value problem for the states. Let x̄

[i]
j = x

(
τ

[i]
I,j

)
and

u
[i]
j = u

(
τ

[i]
I,j

)
denote values of the states and controls at time points of the integration

grids. Given the state derivatives (6.13) the Jacobian matrices for all quantities in the
parameter optimization problem, that is for the cost

∂jM

∂z
=
∂jM

∂x̄[0]

∂x̄[0]

∂z
+

∂jM

∂x̄[N ]

∂x̄[N ]

∂z
, (6.17)

the boundary conditions

∂φ

∂z
=

∂φ

∂x̄[0]

∂x̄[0]

∂z
+

∂φ

∂x̄[N ]

∂x̄[N ]

∂z
, (6.18)

the defect-constraints

∂d[i,i+1]

∂z
=
∂d[i,i+1]

∂x̄
[i]

N [i]

∂x̄
[i]

N [i]

∂z
+
∂d[i,i+1]

∂x̄[i+1]

∂x̄[i+1]

∂z
, (6.19)

and the path-constraints
∂ck
∂z

=
∂ck
∂x̄k

∂x̄k
∂z

+
∂ck
∂uk

∂uk
∂z

, (6.20)

with x̄k = x (τC,k) and uk = u (τC,k) can be derived from the chain rule. It is important
to note that the sensitivity differential equation only requires a single step in case a full
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discretization scheme is chosen. Besides the very high degree of decoupling for this
discretization type it is interesting to observe that certain implicit integration schemes
can easily be used. For example, the defect constraint of the implicit Backward Euler
method

x̄[i+1] − x̄[i] − f̄
[i] (

x̄[i+1], u[i+1]
)

= 0, (6.21)

can be directly evaluated as all quantities (x̄[i],x̄[i+1], and u[i+1]) are available. For im-
plicit Runge-Kutta methods (cf. Sec. 2.3) the stages may also be introduced as addi-
tional optimization variables and the stage equations (cf. Eq. (2.25)) can be added as
equality constraints [50]. Recall that as discussed in Sec. 2.5 collocation methods can be
interpreted as implicit Runge-Kutta methods. This point of view leads to collocation
methods discussed in the following section.

6.1.2 Collocation Methods

Different types of collocation methods based on Legendre-Gauss quadrature points
(LG, LGRF, LGL) are discussed in the following. As outlined in Sec. 2.3 collocation
methods can be formulated in a differential as well as integral form. Both flavors and
their application to direct optimal control methods are presented in the sequel.

State and Control Discretization

For segmented collocation schemes (cf. Sec. 2.5) the dynamic equation is discretized
on the segments Iτ ,[i], i = 0, . . . ,N − 1 using a method of order p[i]. For each collo-
cation time point c[i]

j , j = 0, . . . , p[i] − 1 one control variable vector u
[i]
j and one state

variable vector s
[i]
j (collocated stages) is introduced. Additionally, a state variable vec-

tor n[i] (non-collocated nodes) is used at all segment grid points, which do not coincide
with collocation time points. The collocation methods discussed in the following are
summarized in Tab. 6.1. All Lagrange basis functions for the differential and integral
methods are assumed to be constructed on a normalized time interval [0, 1] (cf. Sec. 2.5).
To simplify notation, let d[i]

j,q denote values of the derivatives of the Lagrange basis

functions d
dτ
l
D,[i]
q+1

(
c

[i]
j

)
for the differential methods. Similarly, for the integral methods

a
[i]
j,q denotes the integral of the Lagrange basis functions

∫ c[i]j
0 l

I,[i]
q (τ) dτ . In addition,

b
[i]
q =

∫ 1

0
l
I,[i]
q (τ) dτ are the corresponding quadrature weights. Using these definitions,

the collocation constraints for the differential LG (DLG) collocation method at the col-
location time points c[i]

j for all segments and states k = 0, . . . ,nx − 1 can be expressed
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Table 6.1: Overview of Legendre-Gauss collocation methods (differential and integral
forms).

Method Description
Collocated end-points

(single segment)

DLG-L
Differential Legendre-Gauss

(linear state continuity constraint)
-

DLG-N
Differential Legendre-Gauss

(nonlinear state continuity constraint)
-

ILG
Integral Legendre-Gauss

(nonlinear state continuity constraint)
-

DLGRF Differential Legendre-Gauss-Radau (flipped) Final point

ILGRF Integral Legendre-Gauss-Radau (flipped) Final point

ILGL Integral Legendre-Gauss-Lobatto Initial and final point

as (cf. Eq. (2.54)):

f̄
[i]
k

(
s

[i]
j , u

[i]
j

)
+

p[i]−1∑

q=0

d
[i]
j,qn

[i]
k −

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k = 0. (6.22)

Note that the interpolating polynomial for the DLG method only includes the initial
point of the segment and the collocation time points (cf. Sec. 2.5). This implies that state
continuity is not automatically ensured as all LG collocation time points are internal
(see Fig. 6.2). As such, an additional constraint must be imposed which ensures a

τ
[0]
S = 0

n[1]

n[0]

x(τ)

ττ
[N−1]
S

n[N−1]

. . .

!
= 0

τ
[1]
S τ

[N ]
S = 1

!
= 0

!
= 0

!
= 0

!
= 0

!
= 0

!
= 0!

= 0

!
= 0

n[N ]

Figure 6.2: Illustration of the differential Legendre Gauss collocation method with col-
location constraints strictly in the interior of the segments and state defect
constraints at the interior segment boundaries and the final time point.

continuous trajectory of the states. At this point, it is interesting to observe that due
to the collocation conditions (6.22) the following relationship holds on each segment
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using the quadrature weights b[i]
j (cf. Eq. (2.50)):

n
[i]
k +

p[i]−1∑

j=0

b
[i]
j f̄

[i]
k

(
s

[i]
j , u

[i]
j

)

= n
[i]
k +

p[i]−1∑

j=0

b
[i]
j


−

p[i]−1∑

q=0

d
[i]
j,qn

[i]
k +

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k




(6.23)

This relation implies that the defect constraint for the differential LG method can be
formulated either using a quadrature with the right-hand side function

n
[i]
k +

p[i]−1∑

j=0

b
[i]
j f̄

[i]
k

(
s

[i]
j , u

[i]
j

)
− n[i+1]

k = 0, (6.24)

which yields a nonlinear constraint (DLG-N) or the derivative values of the Lagrange
basis functions

n
[i]
k +

p[i]−1∑

j=0

b
[i]
j


−

p[i]−1∑

q=0

d
[i]
j,qn

[i]
k +

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k


− n[i+1]

k = 0, (6.25)

which yields a linear constraint (DLG-L). Even though both formulations of the state
continuity constraint seem equivalent it is clear that they differ considering the non-
linearity of the defect constraint. The linearity of the constraint formulation (6.25) has
an interesting implication when considering Newton-type iterations for the solution
of the KKT conditions. If the linear constraints are fulfilled at some iterate during the
solution process each following Newton step will exactly respect the linearized con-
straints. Moreover, the linear constraint is fulfilled from the first iterate on in case
the initial guess for the state approximation is continuous. This effect is illustrated in
Sec. 6.3. Furthermore, note that the constraint Jacobian for (6.25) is constant which
implies that it needs to be computed only once before solving the problem.

Next, the differential LGRF (DLGRF) collocation method is discussed. The La-
grange basis for the state approximation is constructed in this case similar to the DLG
collocation method based on the initial point of the segment and the collocation time
points (cf. Sec. 2.5). For the first segment the initial point is not a collocation point (see
Fig. 6.3). Hence, the collocation conditions for the first segment (i = 0) are exactly of
the form (6.22) with the flipped Radau collocation time points c[0]

j , j = 0, . . . , p[0] − 1.
Note however, that the endpoint of the segment is included in the set of DLGRF collo-
cation time points. This means that for the remaining segments Iτ ,[i], i = 1, . . . ,N − 1

the last stage of the preceding segment coincides with the node at the beginning of the
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next segment
n[i] = s

[i−1]

p[i]−1
, 0 < i < N . (6.26)

Thus, these stages can be re-used for the state approximation (see Fig. 6.3). Note that by
re-using the stage at the end of the preceding segment state continuity is automatically
ensured by construction of the piecewise polynomials. This implies that a state con-
tinuity constraint as for the DLG method does not need to be enforced. Re-using the
state variables at internal segment boundaries the collocation conditions of the DLGRF
method on the remaining segments i = 1, . . . ,N − 1 thus read:

f̄
[i]
k

(
s

[i]
j , u

[i]
j

)
+

p[i]−1∑

q=0

d
[i]
j,qs

[i−1]

p[i]−1,k
−

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k = 0, 0 < i < N − 1 (6.27)

τ
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Figure 6.3: Illustration of the differential LGRF collocation method with collocation de-
fect constraints.

For both the DLG and DLGRF there exists an equivalent integral form. In case of
the integral LG (ILG) method the collocation conditions (cf. Eq. (2.49)) may be stated
as

n
[i]
k +

p[i]−1∑

q=0

a
[i]
j,qf̄

[i]
k

(
s[i]
q , u[i]

q

)
− s[i]

j,k = 0. (6.28)

In addition, state continuity must be ensured for the ILG method which can be achieved
by introducing constraints of the form (6.24). In case of the integral LGRF (ILGRF)
method the collocation conditions for the first segment are of the form (6.28) and for
all following segments the last stage of the preceding segment may be re-used as for
the differential form:

s
[i−1]

p[i]−1,k
+

p[i]−1∑

q=0

a
[i]
j,q f̄

[i]
k

(
s[i]
q , u[i]

q

)
− s[i]

j,k = 0, 0 < i < N − 1 (6.29)
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For integral LGL (ILGL) methods the collocation conditions are also of the form
(6.28). However, as shown in Sec. 2.5 the first collocation condition simply implies

n[i] = s
[i]
0 , i = 0, . . . ,N − 1. (6.30)

Recall that this can be directly seen from the corresponding Butcher Tableau which for
all ILGL methods have only zero entries in their first row (cf. Sec. 2.5). Hence, only the
second until the last collocation conditions j = 1, ..., p[i] need to be imposed explicitly
for the ILGL method

s
[i]
0,k +

p[i]−1∑

q=0

a
[i]
q,j f̄

[i]
k

(
s

[i]
j , u

[i]
j

)
− s[i]

j,k = 0. (6.31)

Note that all segment grid points correspond to collocation time points as the first and
last time point of the segments are included in the set of LGL points. Two popular
special cases for ILGL collocation methods derived in Sec. 2.5 which are commonly
employed in optimal control applications are the Trapezoidal method (p[i] = 2) and
the compressed Hermite-Simpson method (p[i] = 3) [50]. For these methods only the
segment grid needs to be considered for the discretization and all time points represent
collocation time points. As all state discretization points correspond to collocation
time points and additionally coincide with the segment grid points the state variables
may simply be designated with x̄[i], i = 0, . . . ,N in the following. For the Trapezoidal
collocation scheme one control variable u[i] is introduced for each segment grid time
point τ [i]

S , i = 0, . . . ,N . The defect constraint for this case reads:

x̄[i+1] − x̄[i] − f̄
[i] (

x̄[i], u[i]
)

+ f̄
[i] (

x̄[i+1], u[i+1]
)

2
= 0 (6.32)

For the Hermite-Simpson collocation method an additional control variable u[i,i+1] at
the midpoint of each segment is introduced. In addition, the state at this segment
midpoint can be calculated from:

x̄[i,i+1] =
x̄[i] + x̄[i+1]

2
+

f̄
[i] (

x̄[i], u[i]
)
− f̄

[i] (
x̄[i+1], u[i+1]

)

8
(6.33)

The defect constraint for this special case reads:

x̄[i+1] − x̄[i] − 4f̄
[i] (

x̄[i], u[i]
)

+ 16f̄
[i] (

x̄[i,i+1], u[i,i+1]
)

+ 4f̄
[i] (

x̄[i+1], u[i+1]
)

24
= 0 (6.34)

Using the affine transformation τ [i](τ) =
(
τ − τ [i]

S

)
/h[i], τ ∈ Iτ ,[i] the approximating
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polynomial is directly obtained as

sT
(
τ [i](τ)

)
= x̄[i] +

[
τ [i](τ)

]
f̄

[i] (
x̄[i], u[i]

)

+
[
τ [i](τ)

]2 f̄
[i]

(x̄[i+1], u[i+1])− f̄
[i]

(x̄[i], u[i])

2
,

(6.35)

by substituting c[i]
0 = 0 and c

[i]
1 = 1 in Eq. (2.65). For the Hermite-Simpson method the

state sH(τ [i]) is approximated with a cubic function

sH
(
τ [i](τ)

)
= x̄[i] +

[
τ [i](τ)

]
f̄

[i] (
x̄[i], u[i]

)

+
[
τ [i](τ)

]2 −3f̄
[i]

(x̄[i+1], u[i+1]) + 4f̄
[i]

(x̄[i,i+1], u[i,i+1])− f̄
[i]

(x̄[i+1], u[i+1])

2

+
[
τ [i](τ)

]3 2f̄
[i]

(x̄[i+1], u[i+1])− 4f̄
[i]

(x̄[i,i+1], u[i,i+1]) + 2f̄
[i]

(x̄[i+1], u[i+1])

3
,

(6.36)

which is obtained from Eq. (2.71) with c
[i]
0 = 0, c[i]

1 = 1/2 and c
[i]
2 = 1. It is noteworthy

that in practical applications the control function is often defined on a coarser grid and
using function parametrizations with different smoothness compared to the standard
control discretization (e.g. using B-splines).

Cost and Constraints

The collocation methods for the state and control discretization presented in the last
section have slight differences in how the state and control discretization is performed.
In the following the evaluation of the cost and constraint functions for the optimal
control problem (5.14) are illustrated for the ILGL methods (Trapezoidal, Hermite-
Simpson) using a B-spline control parametrization. As for the shooting methods pre-
sented in Sec. 6.1.1 B-splines are a popular choice for this purpose. The definitions
of the break-point grid (6.6) and the control interpolation in Eq. (6.7) directly apply
to collocation methods. The optimization parameter vector for this case has the same
elements as for shooting methods (cf. Eq. (6.12)) and the Mayer-type cost function
as well as the boundary constraints can directly be computed, i.e. jM

(
x̄[0], x̄[N ]

)
and

φ
(
x̄[0], x̄[N ]

)
. Moreover, the defect equality constraints d[i,i+1], i = 0, . . . ,N − 1 as de-

fined in Eqs. (6.32) and (6.34)) can be evaluated based on the discretized state variables
and the interpolated controls. The values of the control components at segment grid
points u[i]

q , q = 0, . . . ,nu − 1 and segment mid-points u[i,i+1]
q , q = 0, . . . ,nu − 1 can be

obtained from

u[i]
q =

nw−1∑

k=0

Bp,k

(
τ

[i]
S

)
wq,k, (6.37)
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u[i,i+1]
q =

nw−1∑

k=0

Bp,k

(
τ

[i,i+1]
S

)
wq,k, (6.38)

with τ [i,i+1]
S = 1

2

(
τ

[i]
S + τ

[i+1]
S

)
. Furthermore, the path-constraints

ck := c
(
x̄[k], u[k]

)
≤ 0, (6.39)

are evaluated on the constraint grid GC
P of cardinality P

GC
P :=

{
τC,k : τ

[k]
S ∈ GS

N+1

}
(6.40)

using the state variables x̄[k] = x̄ (τC,k) and the interpolated controls u[k] = (τC,k). Note
that the calculation of derivatives for collocation methods is considerably easier com-
pared to shooting methods. This is contributed to the fact that there is no implicit de-
pendence on the optimization variables through an integration procedure. The deriva-
tives of the cost function ∂jM

∂z
and boundary constraints ∂φ

∂z
are equivalent to shooting

methods (cf. Eqs. (6.17) and (6.18)) and the defect constraint derivatives are

∂d[i,i+1]

∂z
=
∂d[i,i+1]

∂x̄[i]

∂x̄[i]

∂z
+
∂d[i,i+1]

∂x̄[i+1]

∂x̄[i+1]

∂z

+
∂d[i,i+1]

∂u[i]

∂u[i]

∂z
+
∂d[i,i+1]

∂u[i+1]

∂u[i+1]

∂z
+
∂d[i,i+1]

∂u[i,i+1]

∂u[i,i+1]

∂z
.

(6.41)

Note that the last term can be dropped for the Trapezoidal collocation method as no
control variable at the segment midpoint is required. Moreover, the derivatives for the
path-constraints can be evaluated as follows:

∂ck
∂z

=
∂ck
∂x̄[k]

∂x̄[k]

∂z
+

∂ck
∂u[k]

∂u[k]

∂z
(6.42)

6.2 The Transcribed Problem

Using the cost and constraint functions introduced in the last sections, the discretized
optimal control problem can be stated in form of a nonlinear parameter optimization
problem (cf. chapter 4). On the one hand, the vector-valued function of equality con-
straints h : Rnz → Rnh with nh = Nnx + nφ conatains the boundary constraints and
defect constraints for all segments

h (z) :=

[
φT
(
x̄[0], x̄[N ]

)
,
(
d[0,1]

)T
, . . . ,

(
dN−1,N

)T
]T

= 0. (6.43)
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On the other hand, the vector-valued function of inequality constraints g : Rnz → Rng

contains all ng = Pnc discretized path-constraints:

g (z) :=
[
(c0)T , . . . , (cP−1)T

]T
≤ 0 (6.44)

Thus, the discretized version of the optimal control problem (5.14) using a shooting
transcription method or one of the ILGL methods discussed in the last section (Trape-
zoidal or Hermite-Simpson) can be stated as a nonlinear parameter optimization prob-
lem of the form (4.1):

minimize
z ∈ Rnz

jM
(
x̄[0], x̄[N ]

)
,

subject to h(z) = 0,

g(z) ≤ 0

(6.45)

Introducing the multiplier vectorsα for the boundary constraints, κ[i,i+1], i = 0, . . . ,N−
1 for the defect constraints, andβ[i]

j , j = 0, . . . ,P−1 corresponding to the path-inequality
constraints, the Lagrangian L : Rnz × Rnh × Rng → R is defined as

L (z,λ,µ) := jM
(
x̄[0], x̄[N ]

)
+ λTh(z) + µTg(z), (6.46)

with the multiplier vector λ ∈ Rnh

λ :=
[
αT ,

(
κ[0,1]

)T
, . . . ,

(
κ[N−1,N ]

)T]T
, (6.47)

and the multiplier vector µ ∈ Rng

µ :=
[
(β0)T , . . . ,

(
βP−1

)T]T
. (6.48)

The necessary and sufficient conditions of a parameter optimization problem in this
form are discussed in Sec. 4.2. Moreover, the numerical methods presented in chapter
4 can be employed to obtain a solution of the discretized problem which approximates
the solution of the continuous time problem.

6.3 Connection Between the Direct and Indirect Ap-

proach

In the following the connection between the necessary conditions from the direct and
indirect approach is discussed. In particular, the interpretation of the Lagrange multi-
pliers from the direct approach has been subject to extensive research in the past years
in order to establish co-state estimation schemes. For example, in Ref. [52] a discrete
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Minimum Principle is presented for the Backward Euler discretization method. It is
shown how the multipliers from the discretized problem can be matched with the mul-
tipliers from the continuous time problem. Moreover, in Refs. [72, 73] the authors relate
the direct and indirect approach for segmented LG and LGRF collocation methods and
derive co-state estimates.

Co-state Estimation

The discussion in the following is based on the DLG-L method. This means that
the differential LG method is formulated using the linear state continuity constraint
(cf. Eq. (6.25)). With the constraints introduced in Sec. 6.1.2 the Lagrangian can be for-
mulated by adjoining the boundary constraints φr

(
n[0], n[N ]

)
, r = 0, . . . ,nφ − 1 using

multipliers αr, r = 0, . . . ,nφ − 1, the collocation constraints (cf. Eq. (6.22)) using multi-
pliers ν [i]

j,k, j = 0, . . . , p[i] − 1, k = 0, . . . ,nx − 1, and the linear state continuity constraint
(cf. Eq. (6.25)) using multipliers κ[i,i+1]

k to the Mayer-cost function jM
(
n[0], n[N ]

)
:

L := jM
(
n[0], n[N ]

)
+

nφ−1∑

r=0

αrφr
(
n[0], n[N ]

)
+

N−1∑

i=0

p[i]−1∑

j=0

nx−1∑

k=0

b
[i]
j ν

[i]
j,k


f̄ [i]

k

(
s

[i]
j , u

[i]
j

)
+

p[i]−1∑

q=0

d
[i]
j,qn

[i]
k −

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k


+

N−1∑

i=0

nx−1∑

k=0

κ
[i,i+1]
k


n[i]

k +

p[i]−1∑

j=0

b
[i]
j


−

p[i]−1∑

q=0

d
[i]
j,qn

[i]
k +

p[i]−1∑

q=0

d
[i]
j,qs

[i]
q,k


− n[i+1]

k




(6.49)

Additionally, the defect equality constraints in the Lagrangian are scaled by the quadra-
ture weights b[i]

j . Note that this is valid, as scaling a constraint by the constant factors
b

[i]
j > 0 has no effect on the extreme points, i.e. the location of stationary points of the

Lagrangian1.

The necessary conditions of optimality for constrained optimization problems re-
quire the partial derivatives of the Lagrangian with respect to the optimization vari-
ables to be zero (cf. Eq. (4.7)). The derivative of the Lagrangian (6.49) with respect to
the final node n[N ]

k yields

∂L
∂n

[N ]
k

=
∂jM

∂n
[N ]
k

+

nφ−1∑

r=0

αr
∂φr

∂n
[N ]
k

− κ[N−1,N ]
k = 0, k = 0, . . . ,nx − 1. (6.50)

Re-arranging this relation and comparing the equation to the transversality condition
1In fact, this is the form one would obtain from a discretization of the augmented performance index

(5.16) using the piecewise polynomial approximation corresponding to the collocation method. The
quadrature approximation of the integral automatically scales each discretized multiplier by the respective
quadrature weight.
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(cf. Eq. (5.26)) for l0 = 1 at the final time point

κ
[N−1,N ]
k =

∂jM

∂n
[N ]
k

+

nφ−1∑

r=0

αr
∂φr

∂n
[N ]
k

, k = 0, . . . ,nx − 1 (6.51)

λTf =
∂jM

∂x̄f
+ γT

∂φ

∂x̄f
, (6.52)

it can be deduced that α ≈ γ and that the last defect multiplier κ[N−1,N ] appears to
match the co-state at the final time-point:

κ[N−1,N ] ≈ λf . (6.53)

The partial derivatives of the Lagrangian (6.49) with respect to a stage s[i]
j,k in the last

segment (i = N − 1) yields:

∂L
∂s

[i]
j,k

=
nx−1∑

k=0

b
[i]
j ν

[i]
j,k

∂f̄
[i]
k

(
s

[i]
j , u

[i]
j

)

∂s
[i]
j,k

+

p[i]−1∑

q=0

b[i]
q κ

[i,i+1]
k d

[i]
q,j −

p[i]−1∑

q=0

b[i]
q ν

[i]
q,kd

[i]
q,j = 0 (6.54)

After division by the weight factor b[i]
j , Eq. (6.54) can be written as

nx−1∑

k=0

ν
[i]
j,k

∂f̄
[i]
k

(
s

[i]
j , u

[i]
j

)

∂s
[i]
j,k

+

p[i]−1∑

q=0

b
[i]
q

b
[i]
j

κ
[i,i+1]
k d

[i]
q,j −

p[i]−1∑

q=0

b
[i]
q

b
[i]
j

ν
[i]
q,kd

[i]
q,j = 0. (6.55)

Here, it is useful to introduce the so-called adjoint basis for the LG collocation method.
Recall that the polynomial approximation with basis functions lD,[i]

q (τ), q = 0, . . . , p[i]

for LG methods includes the initial point of the segment and all collocation points
(cf. Sec. 2.5). This basis is commonly termed the forward basis. Besides the construction
of this forward basis, it is possible to construct a different basis for the collocation
method where the polynomial approximation includes the final point of the segment
together with the collocation points. This basis is termed the adjoint basis and the basis
functions are denoted with l

†,[i]
q (τ), q = 0, . . . , p[i]. Here, l†,[i]0 (τ) is the basis function

associated with the last point of the segment. Introducing the short notation d
†,[i]
j,q =

d
dτ
l
†,[i]
q+1

(
c

[i]
j

)
as for the forward basis it can be shown that the following relationship

holds between the derivative values of the forward and adjoint basis functions [74]:

d
†,[i]
j,q = −b

[i]
q

b
[i]
j

d
[i]
q,j (6.56)

In addition, equivalently to the relation for the forward basis (cf. Eq. (2.54)) the deriva-
tives at collocation time points for a quantity discretized with the adjoint basis can be
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represented by

−
p[i]−1∑

q=0

d
†,[i]
j,q �

[i]
k +

p[i]−1∑

q=0

d
†,[i]
j,q �

[i]
q,k = (�′)[i]

j,k , (6.57)

where �[i]
k denotes the quantity at the (non-collocated) final point of the segment and

�[i]
q,k are quantities corresponding to the collocation time points. Inserting the identity

(6.56) between the forward and the adjoint basis and rearranging terms, Eq. (6.55)

becomes

−
p[i]−1∑

q=0

d
†,[i]
j,q κ

[i,i+1]
k +

p[i]−1∑

q=0

d
†,[i]
j,q ν

[i]
q,k = −

nx−1∑

k=0

ν
[i]
j,k

∂f̄
[i]
k

(
s

[i]
j , u

[i]
j

)

∂s
[i]
j,k

. (6.58)

If the multipliers ν [i]
q,k are identified as discrete values λ[i]

q,k of the co-states at collocation
time points, i.e.

ν
[i]
q,k ≈ λ

[i]
q,k, (6.59)

Eq. (6.58) for the final segment i = N −1 has the form of a collocation condition for the
adjoint system (cf. Eq. (5.24)). This can be seen by inserting (6.59) into the left side of
Eq. (6.58)

−
p[i]−1∑

q=0

d
†,[i]
j,q κ

[i,i+1]
k +

p[i]−1∑

q=0

d
†,[i]
j,q λ

[i]
q,k = (λ′)

[i]
j,k , (6.60)

which yields:

(λ′)
[i]
j,k = −

nx−1∑

k=0

ν
[i]
j,k

∂f̄
[i]
k

(
s

[i]
j , u

[i]
j

)

∂s
[i]
j,k

(6.61)

The derivative of the Lagrangian with respect to the node n[i]
k is

∂L
∂n

[i]
k

= κ
[i,i+1]
k −

p[i]−1∑

j=0

p[i]−1∑

q=0

b
[i]
j d

[i]
j,qκ

[i,i+1]
k +

p[i]−1∑

j=0

p[i]−1∑

q=0

b
[i]
j d

[i]
j,qν

[i]
j,k − κ

[i−1,i]
k = 0. (6.62)

Inserting the identity (6.56) the following form is obtained:

κ
[i,i+1]
k +

p[i]−1∑

j=0

p[i]−1∑

q=0

b[i]
q d
†,[i]
q,j κ

[i,i+1]
k −

p[i]−1∑

j=0

p[i]−1∑

q=0

b[i]
q d
†,[i]
q,j ν

[i]
j,k − κ

[i−1,i]
k = 0 (6.63)

Under the assumption that the multipliers κ[i,i+1]
k and ν

[i]
j,k can be identified as discrete
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values of the co-states the two double sums can be written for i = N − 1 as:

p[i]−1∑

j=0

p[i]−1∑

q=0

b[i]
q d
†,[i]
q,j κ

[i,i+1]
k −

p[i]−1∑

j=0

p[i]−1∑

q=0

b[i]
q d
†,[i]
q,j λ

[i]
j,k = (6.64)

−
p[i]−1∑

q=0

b[i]
q


−

p[i]−1∑

j=0

d
†,[i]
q,j κ

[i,i+1]
k +

p[i]−1∑

j=0

d
†,[i]
q,j λ

[i]
j,k


 = (6.65)

−
p[i]−1∑

q=0

b[i]
q (λ′)

[i]
q,k = −∆

[i]
λ,k (6.66)

Inserting this relationship in Eq. (6.63)

κ
[i−1,i]
k = κ

[i,i+1]
k −∆

[i]
λ,k, (6.67)

it can be seen that, if κ[i,i+1]
k represents the value of the co-state at the final point of

the last segment i = N − 1 and ∆
[i]
λ,k is the change of the co-state value within this

segment, the defect multipliers κ[i−1,i]
k represent the values of the co-state at the initial

point of this segment. The arguments presented for matching the multipliers between
the necessary conditions of the direct and indirect approach for the last segment are
valid for all other segments. The derivations starting from Eq. (6.54) just need to be
repeated for i = N−2, . . . , 0 in exactly the same manner. Note that the equation related
to the defect multipliers κ[i−1,i]

k (cf. Eq. (6.67)) essentially propagates the information
regarding the value of the co-state across the segments, whereas Eq. (6.58) (respectively
Eq. (6.61)) ensures that the co-state differential equation is fulfilled at the collocation
time points. Finally, it remains to investigate if the derivation yields a consistent result
for the transversality condition at the initial point (cf. Eq. (5.25)). The derivative of the
Lagrangian with respect to the initial node n[0]

k

∂L
∂n

[0]
k

=
∂jM

∂n
[0]
k

+

nφ−1∑

r=0

αr
∂φr

∂n
[0]
k

+ κ
[0,1]
k −

p[0]−1∑

j=0

p[0]−1∑

q=0

b
[0]
j d

[0]
j,qκ

[0,1]
k +

p[0]−1∑

j=0

p[0]−1∑

q=0

b
[0]
j d

[0]
j,qν

[0]
j,k = 0,

(6.68)

can be re-arranged and written using the relation for the adjoint basis:

κ
[0,1]
k +

p[0]−1∑

j=0

p[0]−1∑

q=0

b[0]
q d
†,[0]
j,q κ

[0,1]
k −

p[0]−1∑

j=0

p[0]−1∑

q=0

b[0]
q d
†,[0]
j,q ν

[0]
j,k = − ∂j

M

∂n
[0]
k

−
nφ−1∑

r=0

αr
∂φr

∂n
[0]
k

(6.69)

With the multiplier κ[0,1]
k representing the co-state at the beginning of the second seg-

ment and exploiting the relation (6.67) the result can be compared to the initial transver-
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sality condition (cf. Eq. (5.25)) for l0 = 1:

κ
[0,1]
k −∆

[0]
λ,k = − ∂j

M

∂n
[0]
k

−
nφ−1∑

r=0

αr
∂φr

∂n
[0]
k

, k = 0, . . . ,nx − 1 (6.70)

λT0 = −∂j
M

∂x̄0

− γT ∂φ
∂x̄0

(6.71)

Note that exactly the same form is obtained, i.e. the derivations in this section are
consistent regarding the transversality condition at the initial time point. Furthermore,
the partial derivative of the Lagrangian with respect to the control vector u

[i]
j yields

∂L
∂u

[i]
j

= b
[i]
j

(
ν

[i]
j

)T ∂ f̄
[i]

∂u
[i]
j

= 0. (6.72)

After division by the weight factor b[i]
j and with the identified relation ν [i]

j ≈ λ
[i]
j a

discretized form of the control equation (5.27) for each collocation point is obtained:

(
λ

[i]
j

)T ∂ f̄
[i]

∂u
[i]
j

= 0 (6.73)

Summarizing, for all segments i = 0, . . . ,N − 1 the state continuity multipliers κ[i,i+1]

and the collocation defect multipliers ν [i]
j , j = 0, . . . , p[i] − 1 can be interpreted as the

co-states from the necessary conditions of the continuous problem. In addition, the
control equation and the co-state equation can be identified in a discretized form at the
collocation time points.
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Numerical Examples

The DLG-L, DLG-N, ILG, and DLGRF collocation methods are illustrated and dis-
cussed using an example problem from Ref. [48]. This problem is stated in Mayer
form and involves a scalar state x(t) and a scalar control u(t):

minimize
u(t)

− x(tf )

subject to ẋ(t) = −x(t) + x(t)u(t)− u2(t),

x(0) = 1,

tf = 5

(6.74)

The optimal solutions for the state x̂(t), corresponding co-state λ̂(t), and the control
û(t) are:

x̂(t) :=
4

1 + 3et
,

λ̂(t) :=
−e(2 ln(1+3et)−t)

e−5 + 6 + 9e5
,

û(t) :=
x̂(t)

2

(6.75)

In order to transcribe this continuous time problem into a parameter optimization
problem the DLG-L, DLG-N, ILG, and DLGRF methods are used. Moreover, for the
numerical solution of the resulting NLP the SQP solver SNOPT [61] is employed with
default settings. In all graphs the solutions for the state and co-state trajectories are de-
picted with dense output, i.e. using the interpolating polynomials. For all methods two
segments with ten collocation points each are used. The analytical solution and the so-
lution obtained from the DLG-L method is shown in Fig. 6.4. Note that the numerical
solution closely matches the analytical solution for all three quantities. Moreover, the
deviations between the polynomial approximation of all collocation schemes (DLG-
L, DLG-N, ILG, DLGRF) for the state and co-state are depicted in Fig. 6.5. It can be
seen that using relatively few discretization points the optimal solution is accurately
approximated for all methods.
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Figure 6.4: Comparison between the analytical and numerical solution (DLG-L) of the
example problem. The analytical solution is represented by a black dash-
dotted line. Dense outputs for the state and co-state trajectories are shown in
different colors for different segments. For the state trajectory blue triangles
represent stage variables and black dots show the nodes at non-collocated
time points. For the co-state trajectory black markers represent the co-state
estimates from the state continuity constraint multipliers, red markers the
co-state estimates at collocation points, and the white marker depicts the
extrapolated co-state estimate at the beginning of the time interval.
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Figure 6.5: Comparison of the errors ex(t) and eλ(t) between the dense outputs of state
x(t) and co-state λ(t) from the numerical solution with the analytical solution
using the DLG-L, DLG-N, ILG, and DLGRF collocation methods.

Furthermore, Fig. 6.6 presents a comparison between the DLG-L and DLG-N method
regarding the state continuity constraint value at the end of the first segment. The first
26 major iterations are shown. The optimization parameter vector is initialized with
all components set to one which implies that the linear defect constraint is trivially sat-
isfied at the initial point. This is not the case for the nonlinear defect constraint. As
can be seen in Fig. 6.6 the linear constraint is not violated in any of the iterations as
expected from the exactness of the Newton-step for linear constraints.
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Figure 6.6: Comparison of the constraint values of the state continuity constraint between
the first and the second segment for the Legendre Gauss method with linear
defect constraint (star markers) and with nonlinear defect constraint (round
markers) for the first 26 major iterations.
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Chapter 7

Models for Optimal Control Based

Clearance of Flight Control Systems

This chapter discusses the basic modeling concepts for the optimal control based clear-
ance approach. First, a system classification for the clearance task is proposed which
considers the nonlinearity of the system and the presence of internal bounds (cf. Sec.
7.1). The remainder of this chapter describes models for aircraft closed-loop systems
which are under consideration regarding the approaches developed in this thesis. First,
basic flight mechanical quantities for aircraft plant models are introduced (cf. Sec. 7.2.1).
Following, the modeling concept of the optimal control based approach regarding ac-
tuator limits is discussed from a phase plane perspective (cf. Sec. 7.2.2). Finally, a basic
overview of flight control systems is given and relevant clearance criteria for worst-
case pilot inputs are summarized (cf. Sec. 7.2.3).

7.1 Modeling Philosophy and System Classifications

The layout of the closed-loop system considered for the clearance task is depicted in
Fig. 7.1. Basic building blocks of this system are models for the aircraft plant, the ser-
vomechanism, sensors, and the controller. In addition, external influences considered
for testing the flight control law are pilot commands and disturbances, such as wind.
Moreover, the system may depend on parameters with known limits or subject to a
distribution. Furthermore, internal bounds of the servomechanism such as rate and
deflection limits are considered for the clearance task. The modeling philosophy for
optimal control based worst-case analysis with respect to pilot commands and distur-
bances follows the categorization for pilot induced oscillations (PIO) from Ref. [32]. As
such, the proposed classification considers the nonlinearity of the closed-loop model
on the one side and the presence of internal limits of the actuators on the other.
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Controller Aircraft

Sensors

Servos
Pilot

Wind

Figure 7.1: Illustration of the basic layout of the closed-loop system with actuator limits
and external inputs (pilot, wind).

The following categories are introduced to classify the clearance task under the
optimal control based approach investigated in this thesis:

� Category I: Completely linear system analysis. The dynamic model is linear and
only subject to limits for the external pilot commands and disturbance inputs.
Nominal and parameter dependent systems are considered.

� Category II: Quasi-linear system analysis with nonlinear influences originating
from rate and deflection limits introduced from the servomechanism of the sys-
tem. The pilot commands and disturbances are bounded and the limits for the
servomechanism are modeled using state constraints. Nominal and parameter
dependent systems are considered.

� Category III: Nonlinear system analysis. All other cases which cannot be mod-
eled as a Cat I or Cat II model are collected in this category. This category is
further refined based on the respective solution methodologies (non-intrusive,
intrusive, hybrid, cf. chapter 9).

Note that the investigation of PIO effects is not considered within the scope of this the-
sis and merely the modeling categories are defined similar to Ref. [32]. Nevertheless, it
is interesting that the excitement of oscillatory modes due to pilot-vehicle interactions
naturally arises for certain types of clearance tasks.

7.2 Aircraft Closed-loop Systems

7.2.1 Flight Mechanical Model

In the following a basic overview of the flight mechanical quantities [75, 76, 35] for the
aircraft plant model is given. First, it is useful to introduce the reference frames illus-
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Figure 7.2: Relevant reference frames and their relationship including angles with rotation
axis and angular rotation rates between the I-, E-, O- and B-frame.

trated in Fig. 7.2. The earth centered, inertial (ECI) frame (index I) is a non-rotating,
inertial frame with its origin in the center of the earth. The x-axis of the ECI-frame is
oriented towards a fix-point (vernal equinox) and the z-axis points in the direction of
the earth’s rotation axis towards the north pole. The earth centered, earth fixed (ECEF)
frame (index E) also has its origin in the center of the earth and shares the z-axis with
the I-frame. The kinematic (K) angular velocity ωIEK ∈ R3 between the I- and the
E-frame is approximately

ωIEK ≈




0

0

2π/24h


 . (7.1)

All velocity vectors at a reference point R, that are the kinematic velocity
(
VR
K

)E ∈ R3,
the aerodynamic velocity

(
VR
A

)E ∈ R3, and the wind velocity
(
VR
W

)E ∈ R3 are de-
scribed relative to the earth (E), which is a natural description for the velocity. An-
other important frame for aircraft orientation, the so-called North-East-Down (NED)
frame or Orientation frame (index O), is centered at the reference point R of the air-
craft and can be obtained from the E-frame by a rotation around the zE-axis with angle
λ (geodetic longitude) and a rotation around the yO-axis with the negative angle of
geodetic latitude (φ + π/2). The zO-axis is pointing downwards, perpendicular to the
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surface of the earth. The xO-axis and yO-axis are oriented towards the north and east.
The O-frame is rotating relative to the E-frame with the so-called kinematic (K) trans-
port rate ωEOK ∈ R3.

The kinematic frame (index K) represents a trajectory frame with the xK-axis ori-
ented in the direction of the kinematic velocity

(
VR
K

)E
. This frame is obtained from the

NED-frame by a rotation around the zO-axis with the kinematic course angle χK , and
a rotation around the yK-axis with the kinematic inclination angle γK . Rotating the
kinematic frame around the xK-axis with the bank angle µK yields the rotated kine-
matic frame (index K̄). From the rotated kinematic frame the body fixed frame (index
B) is obtained by a rotation around the zK̄-axis with the negative kinematic Angle-of-
Sideslip (AoS) βK and a rotation around the yB-axis with the Angle-of-Attack (AoA)
αK . From the O-frame, the B-frame is obtained through a rotation around the zO-axis
with yaw angle Ψ, a rotation around the intermediate y-axis with pitch angle Θ, and
a rotation around the xB-axis with roll angle Φ. The aerodynamic frame (index A)
is defined with its xA-axis pointing in the direction of the aerodynamic velocity vec-
tor

(
VR
A

)E
. The rotated aerodynamic frame (index Ā) is obtained from the A-frame

through a rotation around the xA-axis with the negative aerodynamic bank angle µA.
Note that if the wind velocity is zero, i.e.

(
VR
W

)E
= 0, the kinematic velocity vector(

VR
K

)E
is equal to the aerodynamic velocity vector

(
VR
A

)E
according to the vectorial

wind equation: (
VR
A

)E
=
(
VR
K

)E −
(
VR
W

)E
=
(
VR
K

)E
(7.2)

For this case, the A-frame coincides with the K̄-frame and the Ā-frame coincides with
the K-frame. In the following all rotation matrices are described based on the elemen-
tary rotation matrices for a generic angle δ around the respective x-axis, y-axis, and
z-axis

Rx(δ) :=




1 0 0

0 cδ −sδ
0 sδ cδ


 , Ry(δ) :=




cδ 0 sδ

0 1 0

−sδ 0 cδ


 , Rz(δ) :=




cδ −sδ 0

sδ cδ 0

0 0 1


 ,

(7.3)

with cδ = cos(δ) and sδ = sin(δ). In order to introduce the basic flight mechanical
quantities which are of interest in the context of this thesis it is sufficient to discuss the
aircraft dynamic equations with the following simplifying assumptions:

� The aircraft is modeled as a rigid-body.

� The change of mass of the aircraft in the dynamic equations is assumed quasi-
stationary

� Effects of earth rotation are neglected (ωIEK := 0).
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� Effects of earth curvature are neglected (ωEOK := 0).

Additionally, the reference pointR is set to the center of gravity (R := G). The states de-
scribing the motion of the rigid-body aircraft model are position states, attitude states,
as well as states for the translational and rotational velocity dynamics. There are many
possibilities to describe the motion of the aircraft, due to the non-uniqueness of a state
space representation. In the following the position states λG, φG and the geodetic height
hG describe the position of the aircraft’s center of gravity (G) using WGS84 coordinates.
The description of the aircraft’s attitude relative to the O-frame can be based on the
Euler angles Ψ, Θ, and Φ. The kinematic (K) rotational velocity vector

(
ωOBK

)
B
∈ R3

describing the rotational velocity vector of the B-frame w.r.t. the O-frame denoted in
the B-frame has the components

(
ωOBK

)
B

:=




pK

qK

rK



B

. (7.4)

Furthermore, the translational states can be described by the velocity vector
(
VG
K

)E
B

denoted in the B-frame:

(
VG
K

)E
B

:=




uGK

vGK

wGK




E

B

(7.5)

As such, the state vector for the rigid-body model has twelve components:

x :=
[
λG,φG,hG,

(
uGK
)E
B

,
(
vGK
)E
B

,
(
wGK
)E
B

, Ψ, Θ, Φ, pK , qK , rK

]T
(7.6)

Other relevant quantities may be derived from these states. For example, another set
of states describing the translational dynamics, which is useful in the context of this
thesis, contains the absolute velocity V G

K , the kinematic AoA αK , and the kinematic
AoS βK which can be obtained from the rigid-body velocities as follows:

V G
K =

∥∥∥
(
VG
K

)E
B

∥∥∥
2

, (7.7)

αK = arctan

((
wGK
)E
B

(uGK)
E

B

)
, (7.8)

βK = arctan




(
vGK
)E
B√[

(uGK)
E

B

]2

+
[
(wGK)

E

B

]2


 (7.9)

95



7.2 Aircraft Closed-loop Systems

In addition, the kinematic inclination angle γK and the kinematic course angle χK can
be obtained from

χK = arctan

((
vGK
)E
O

(uGK)
E

O

)
, (7.10)

γK = − arctan




(
wGK
)E
O√[

(uGK)
E

O

]2

+
[
(vGK)

E

O

]2


 , (7.11)

with RBO = Rx(Φ)Ry(Θ)Rz(Ψ) as

(
VG
K

)E
O

:=




uGK

vGK

wGK




E

O

= RT
BO

(
VG
K

)E
B

. (7.12)

The same relations (7.8)-(7.12) hold for the corresponding aerodynamic quantities and
merely the index K needs to be replaced by the index A in these equations. The dy-
namic equations for the propagation of the position states

λ̇G =
V G
K cos (γK) sin (χK)

(Nφ + hG) cos (φ)
(7.13)

φ̇G =
V G
K cos (γK) cos (χK)

Mφ + hG
(7.14)

ḣG = V G
K sin (γK) (7.15)

are defined based on the WGS84 reference ellipsoid with semi-major axis a and semi-
minor axis b as well as the flattening f and first eccentricity e

a = 6378137 m, b = 6356752.3142 m, (7.16)

f = (a− b)/a, e =
√
f(2− f), (7.17)

as well as the curvature radii in the prime vertical section and the meridian:

Nφ =
a√

1− e2 sin(φ)2
, (7.18)

Mφ = Nφ
1− e2

1− e2 sin(φ)2
(7.19)
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Moreover, the attitude propagation for the Euler angles can be stated as follows:




Φ̇

Θ̇

Ψ̇


 =




1 sin (Φ) tan (Θ) cos (Φ) tan (Θ)

0 cos (Φ) − sin (Φ)

0 sin (Φ) / cos (Θ) cos (Φ) / cos (Θ)







pK

qK

rK



B

(7.20)

The translational dynamics denoted in the B-frame may be derived based on the con-
servation law for the linear momentum which yields

(
V̇
G

K

)EB
B

=

(
FG
T

)
B

m
−
(
ωOBK

)
B
×
(
VG
K

)E
B

, (7.21)

with the aircraft’s mass m and the total (T ) force
(
FG
T

)
B

in the center of gravity (G).
This force is the sum of propulsion (P ), gravitation (G), and aerodynamic (A) forces
denoted in the B-frame

(
FG
T

)
B

=
(
FG
P

)
B

+
(
FG
G

)
B

+
(
FG
A

)
B

, (7.22)

and is often given in a normalized form as the load factor nG =
[
nGx ,nGy ,nGz

]T




nGx

nGy

−nGz


 =

(
FG
T

)
B
−
(
FG
G

)
B

mg
. (7.23)

Moreover, the rotational dynamics are derived based on the conservation law of the
angular momentum

(
ω̇OBK

)B
B

=
(
IG
)−1

BB

[(
MG

T

)
B
−
(
ωOBK

)
B
×
(
IG
)
BB

(
ωOBK

)
B

]
, (7.24)

with the inertia tensor
(
IG
)
BB
∈ R3×3 and the vector of total (T ) moments

(
MG

T

)
B

at
the center of gravityG denoted in theB-frame. Similar to the forces, the total moments
can be described as the sum of the propulsion (P ) and aerodynamic moments (A)

(
MG

T

)
B

=
(
MG

P

)
B

+
(
MG

A

)
B

. (7.25)

Assuming a constant gravitational force in the direction of the zO-axis
(
FG
G

)
O

= [0, 0,mg]T

with the constant acceleration g, the gravitational force
(
FG
G

)
B

in the B-frame is ob-
tained from: (

FG
G

)
B

= RBO

(
FG
G

)
O

(7.26)

The aerodynamic force vector
(
FA
A

)
A

=
(
FG
A

)
A

at the aerodynamic reference point (A)
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is stated in the A-frame

(
FA
A

)
A

:= q̄S




−CD
CQ

−CL



A

, (7.27)

with the drag-coefficient CD, the side-force coefficient CQ, the lift-force coefficient CL,
the reference wing area S, and the dynamic pressure q̄ = 1

2
ρ
(
V G
A

)2 which is defined
using the air density ρ and the absolute value of the aerodynamic velocity V G

A . The
aerodynamic coefficients are usually modeled in linear form. For example, the lift
coefficient

CL := CL,0 + CL,ααA + CL,ηη + . . . , (7.28)

is the sum of the zero lift coefficient CL,0, motion-induced influences (e.g. CL,α for the
aerodynamic AoA) as well as control-induced influences (e.g. CL,η for the elevator de-
flection η). The aerodynamic moment at the center of gravity (G) is obtained from

(
MG

A

)
B

=
(
MG

A

)
B

+
(
rGA

)
B
×
(
FA
A

)
B

, (7.29)

with the lever arm
(
rGA

)
B

between the center of gravity (G) and the aerodynamic refer-
ence point (A). The aerodynamic moment vector

(
MA

A

)
B

=
(
MG

A

)
B

at the aerodynamic
reference point (A) is defined in the B-frame

(
MA

A

)
B

:= q̄S




sCl

c̄Cm

sCn



B

, (7.30)

with the mean aerodynamic chord c̄ and the wing semi-span s. The coefficients are, as
for the aerodynamic forces, often based on linear models of the form

Cl := Cl,ββA + Cl,pp
∗ + Cl,rr

∗ + Cl,ζζ + Cl,ξξ + . . . ,

Cm := Cm,0 + Cm,ααA + Cm,qq
∗ + Cm,ηη + . . . ,

Cn := Cn,ββA + Cn,pp
∗ + Cn,rr

∗ + Cn,ζζ + Cn,ξξ + . . . ,

(7.31)

with the normalized rotation rates

p∗ :=
pAb

2V G
K

, q∗ :=
qAc̄

2V G
K

, r∗ :=
rAb

2V G
K

, b = 2s. (7.32)

where pA, qA, and rA are the aerodynamic rotation rates. The moment coefficients in-
clude among others: Cn,β related to the weathercock stability, Cl,β related to the Dihe-
dral stability, Cm,α related to pitch stiffness, Cm,q related to pitch damping, and control
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surface coefficients (Cl,ζ ,Cl,ξ, Cm,η, Cn,ζ ,Cn,ξ) related to the control effectiveness of the
aileron deflection (ξ), elevator deflection (η) and rudder deflection (ζ). The primary
control surfaces are in many cases moved by a servomechanism. Related modeling
concepts in the context of the optimal control based clearance approach are discussed
in the following section.

7.2.2 Actuator Modeling Alternatives for the Clearance Task

A dynamic model of the servomechanism, which is often used in practice, can be based
on a second-order model (damping ζ̄ , natural frequency ωn) of the form


ẋp(t)
ẋv(t)


 =


 0 1

−ω2
n −2ζ̄ωn




xp(t)
xv(t)


+


0

k


 δ(t), (7.33)

with the actuator position state xp(t), the actuator velocity (or rate) state xv(t) as well
as the commanded value δ(t) and corresponding input gain k. One of the key concepts
to model the clearance problem as an optimal control problem is to introduce the ac-
tuator rate and position limits as purely state dependent constraints. This concept is
discussed in the following. It is assumed that both the actuator position state xp(t) and
the actuator rate state xv(t) are subject to box constraints of the form

xp,lb ≤ xp(t) ≤ xp,ub, (7.34)

xv,lb ≤ xv(t) ≤ xv,ub, (7.35)

and that the commanded value δ(t) is depending on the control input which is used
for the clearance task. These constraints are the only constraints considered under
the optimal control based clearance approach investigated in this thesis. The actuator
modeling approaches for the actuator position and rate limits are discussed from a
phase plane perspective as illustrated in Fig. 7.3.

Consider the case where the commanded input δ(t) is at the maximum value. A typ-
ical physical behavior of a servomechanism for the primary control surfaces of an air-
craft subject to rate and position limits is illustrated by the dashed trajectory in Fig. 7.3.
If the command is at the maximum value, the servo controller increases the rate until
it gradually saturates, e.g. due to the maximum moment which can be generated by
the motor of the actuator. As soon as the rate saturates, it stays at the same value until
the position of the actuator approaches its maximum value. When reaching the posi-
tion limit, the rate starts to drop until arriving at the maximum position. At this point
the rate is zero and, obviously, the actuator position cannot be increased further. Note
that the control input was unchanged during the process, and therefore external dis-
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xv(t)

xp(t)

xv,ub

xp,ub

Figure 7.3: Schematic view of paths in the phase plane for two different actuator mod-
eling approaches (optimal control with state constraints dotted line, physical
behavior dashed line).

turbance inputs are assumed to exist to satisfy the state equations (e.g. reaction forces).
Note also that, under this assumption, the control input is not uniquely defined.

Next, consider the optimal control based modeling approach using purely state
dependent constraints. In this case the actuator rate and position limits are introduced
as constraints along the trajectory and the responsibility for not exceeding the limits
is transferred from the system to the control. Note that under this modeling approach
the internal limits are essentially exposed and the task of the optimal control is to bring
the system to the bound (if it is optimal to go there), to hold the system on the bound
(if it is optimal to remain there), and to bring the system away from the bound (if it is
optimal not to stay there). Such a trajectory in the phase plane is illustrated in Fig. 7.3
by the dotted line. The system is first steered to the rate bound and held there using
a particular choice for the control (boundary control). Before the system can reach the
maximum position state it needs to leave the rate bound and control the rate to zero
at the point where the position limit is reached. In order to remain on the position
limit the rate needs to be controlled to zero as for the rate bound. It is important to
observe that in the optimal control approach the control is uniquely determined by
the mentioned conditions for the boundary control. Under certain assumptions this
allows for a unique characterization of the worst-case control based on the Minimum
Principle as shown in chapter 8.
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7.2.3 Flight Control Systems

Flight control systems [76, 77] are often designed in a cascaded control architecture.
The main motivation for this layout is contributed to the time scale separation between
the different dynamic effects of the aircraft dynamics. To illustrate this point, consider
for example a desired change the height of an aircraft flying in a stationary, straight
and level flight condition. From Newton’s laws it is known that in order to change the
direction of motion, a force needs to be exerted perpendicular to this direction. In the
context of a height change for the aircraft this implies that the climb angle and, as such,
the lift force needs to be increased. In order to increase the lift force, the AoA needs
to be changed which can be achieved by rotating the aircraft around the yB-axis. For
conventional aircraft this rotation is taking place on a considerably smaller timescale
than changes in the translational dynamics. Because of this, the control system is in
many cases split into an inner-loop responsible for controlling the moment dynamics
(rotation) and an outer-loop responsible for controlling the force dynamics (transla-
tion). One of the most basic tasks of aircraft control systems is to alter the dynamic
characteristics of the aircraft. Note that in a direct law full authority may be given to
the pilot over the aircraft control, e.g. by means of a rod connection to the primary
control surfaces. In order to change the dynamic behavior of the aircraft a Stability
Augmentation System (SAS) can be employed. This system introduces an artificial
feedback which can be used to adequately change quantities such as Eigenfrequencies
and damping depending on the flight condition. A classical example for this appli-
cation is to counteract the decreased aerodynamic damping in higher altitudes due to
the lower density of the surrounding air. In order to artificially change the damping
characteristics of the aircraft for example a feedback of the pitch rate of the aircraft
to the elevator may be embedded in the control law. The internal parameters of the
control system, such as gain values, are typically scheduled depending on the flight
condition, e.g. based on the static and dynamic pressure. This scheduling takes into
account the altered aerodynamic characteristics of the aircraft dynamics when flying
at different speeds or different altitudes. Gain design (e.g. using the LQR method) in
industry practice is primarily based on linearized systems of the aircraft model over
a grid of flight conditions and load cases. Besides the SAS, a Control and Stability
Augmentation System (CSAS) or a Fly-by-Wire (FBW) system may be used. For CSAS
systems the control system has an additional electrical component which improves the
handling qualities. Here, the pilot does not anymore give direct commands but uses a
higher level command, such as the angle of attack or the load factor. For FBW systems
the mechanical link between the pilot and the aircraft control is completely removed
giving full authority to the flight control system. The basic internal tasks of a flight
control system include:
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� The translation of the commanded value (such as a roll angle) into outputs (e.g. the
required roll rate) and the allocation of the necessary commands to the actuators
(such as control surface deflections for the ailerons).

� The conditioning of the sensory inputs measuring the states of the aircraft, e.g. by
using filters to improve the quality of the signals.

� The conditioning of the outputs, that are the commanded values from the control
law fed to the actuation system.

� The implementation of protections, such as stall protections or protections against
internal saturations.

It is noteworthy, that most commercial aircraft are equipped with autopilot systems.
These systems provide high-level interfaces for the pilot to accomplish tasks such as
speed and attitude control, as well as flight path and trajectory control. Advanced
components of autopilot systems may include capabilities for automatic take-off and
landing as well as a flight management system for mission control. There exist several
requirements for flight control systems which define certification specifications and
acceptable means of compliance (cf. e.g. MIL-F-8785C [78], CS-23 [79], CS-25 [80]). An
excellent overview of typical criteria in civil aviation can be found in Ref. [81]. Here, it
is important to mention that the formulation considered in this thesis is general in the
sense that a combination of control inputs and parameters can be used with a generic
cost function modeling the criterion. For the investigation of worst-case pilot inputs,
which is the main focus of the approaches developed in chapters 8 and 9, the following
criteria are of particular interest (cf. Ref. [81]):

� Criteria for the maximum allowable AoA (αA) and AoS (βA).

� Limits on the load factors nx,B, ny,B, and nz,B.

� Maximum allowable limits for other aircraft states (such as angular body rates).

In Ref. [81] these criteria are considered over a fixed time horizon [0, tf ] where the final
time tf is 5-10 times the short period time scale of the closed-loop system. It should be
noted that the classical methodology to aircraft control based on linear controllers is
still the prevailing approach in industry practice. As such, the approaches developed
in chapters 8 and 9 are shown primarily for a conventional fixed-wing aircraft with a
control system of this type. However, rapid advancements in the field of nonlinear air-
craft control have led to increased interest in the application of modern and advanced
control systems. Thus, besides the classical example, a modern nonlinear model refer-
ence adaptive control law is investigated in chapter 9 using combination of pilot inputs
and parametric uncertainties.
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Chapter 8

Optimal Control Based Clearance for

Linear and Quasi-linear Systems

In the following chapter, the clearance problem for linear dynamic systems with and
without actuator limits is investigated. The worst-case control input is characterized
based on the Minimum Principle for both cases, that is the linear case (Cat I) as well
as the quasi-linear case where the actuators are subject to rate and position limits (Cat
II). For the numerical analysis a closed-loop aircraft system with actuator dynamics,
linearized around a stationary, straight and level flight condition is used. Note that for
this case the linearized systems in the longitudinal and lateral plane decouple. There-
fore, both cases can be treated separately. Besides the investigation of the nominal case,
approaches related to parameter dependent systems with known limits and subject to
a distribution as well as multi-criteria analysis are presented.

8.1 Problem Definition

Consider a linear dynamic system with state vector x(t) ∈ Rnx , control vector u(t) ∈
Rnu , as well as the system matrix A ∈ Rnx×nx , and the control matrix B ∈ Rnx×nu :

ẋ(t) = Ax(t) + Bu(t) (8.1)

The output equation for the scalar output y(t) with the corresponding output vector
c ∈ Rnx is given as follows

y(t) = cTx(t), (8.2)

and models the criterion under investigation. Moreover, a subset of the state variables,
indexed by the set Ib, is assumed to be constrained:

xj,lb ≤ xj(t) ≤ xj,ub, ∀j ∈ Ib (8.3)
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In particular, these constraints are introduced to model actuator rate and position limits
of the system (cf. Sec. 7.2.2). For testing the closed-loop system the problem is formu-
lated as a Mayer-type optimal control problem on a time interval I t := [t0, tf ] , t0 < tf

starting from the initial equilibrium point x(t0) = x0. Under this Mayer-type formu-
lation the optimal value of the cost function jM (x(tf )) depending on the value of the
states at the final time point is sought for. For the clearance problem under investiga-
tion this cost function represents the scalar criterion y(tf ) at the final time point tf

jM (x(tf )) := y(tf ) = cTx(tf ). (8.4)

Note that the general case of a Bolza-type cost function can, without loss of generality,
be transformed to the Mayer-type cost function by introducing an additional state for
the Lagrange term (cf. Sec. 5.1). The control input u(t) is assumed to be bounded by
box bounds u(t) ∈ U where U := [ulb, uub] , uub > ulb. Summarizing, the quasi-linear,
Cat II clearance problem takes the following form including the purely state dependent
path constraints for the actuator rate and position states:

minimize
u(t) ∈ U

cTx(tf )

subject to ẋ(t)−Ax(t)−Bu(t) = 0,

x(t0) = x0,

xj,lb ≤ xj(t) ≤ xj,ub, ∀j ∈ Ib,
t ∈ I t

(8.5)

Similarly, the linear problem for Cat I type models can be stated directly based on the
Cat II type problem formulation with Ib = ∅:

minimize
u(t) ∈ U

cTx(tf )

subject to ẋ(t)−Ax(t)−Bu(t) = 0,

x(t0) = x0,

t ∈ I t

(8.6)

From an optimal control perspective, the characterization of the worst-case control
differs for both formulations and is thus considered separately in the following section.
Moreover, for both formulations it is interesting to observe that the cost function is
non-decreasing for increasing final times tf , if the system starts in an equilibrium point
x(t0). This fact can be illustrated as follows: suppose the optimal cost function value
for a given t0f is jt0f . For a new final time t1f = t0f + ∆t it is always possible to keep
the system in the initial equilibrium point for the time interval ∆t and then apply
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the previous controls, obtaining the previous cost function value jt0f . Thus, the cost
function value is non-decreasing with the final time tf . As a direct consequence, the
maximal reasonable (fixed) final time tf = tf ,max should be considered for the clearance
problem. From a practical perspective the length of this time interval can be based for
example on characteristic quantities of the aircraft dynamics, such as the short period
time-scale (cf. Ref. [81]). The cases with and without state constraints, i.e. using a model
of type Cat II or Cat I, are analyzed separately in the theoretical analysis. Following
the ideas in Refs. [31, 82] the optimal (worst-case) control is characterized based on the
Minimum Principle. Moreover, the orders of the state constraints are determined and
explicit formulas for the Lagrange’s multipliers corresponding to both types of state
constraints (actuator rate and actuator deflection) are derived.

8.1.1 Cat I: Optimal Control Analysis without State Constraints

For the theoretical analysis considering Cat I models a scalar, box bounded, control
input u(t) ∈ U = [ulb,uub] ,uub > ulb with the corresponding input vector b ∈ Rnx is
considered. This leads to the following problem formulation:

minimize
u(t) ∈ U

cTx(tf )

subject to ẋ(t)−Ax(t)− bu(t) = 0,

x(t0) = x0,

t ∈ I t

(8.7)

The HamiltonianH (λ(t), x(t),u(t)) for this problem can be written using the co-states
λ(t) as follows:

H (λ(t), x(t),u(t)) := λT (t) (Ax(t) + bu(t)) (8.8)

It is assumed that the system is controllable with respect to the control u(t) which can
be expressed by the condition that the controllability matrix

U :=
[
b Ab . . . Anx−1b

]
, (8.9)

has full rank. The following arguments for characterizing the control follow the deriva-
tion for showing the non-singularity of linear time invariant systems with a single
input. In case of more than one control the analysis remains valid if the system is
controllable with respect to each control. [54]

From the Minimum Principle the differential equations governing the evolution of
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the co-states λ(t) is obtained as follows

∂H
∂x

= −λ̇T (t) = λT (t)A, (8.10)

with non-trivial multipliers λ(t) 6= 0. Denoting the switching function as

S(t) :=
∂H
∂u

= λT (t)b, (8.11)

the following cases characterize the optimal control for a non-instantaneous time in-
terval depending on the sign of the switching function:

û(t) =





uub, S(t) < 0

ulb, S(t) > 0

us(t), S(t) = 0

(8.12)

In the first two cases the control is regular and the sign of the switching function de-
termines if the optimal control is on the upper bound uub or on the lower bound ulb.
In the third case, the control us(t) is singular and cannot be directly obtained as the
switching function is zero on an interval [t1, t2], t2 > t1. By taking the time derivatives
of the switching function

S(k)(t) = λT (t)Akb = 0, k = 0, . . . ,nx − 1, (8.13)

it is important to observe that for a controllable system only the trivial solutionλ(t) = 0

satisfies the equation

λT (t)
[
b Ab . . . Anx−1b

]
= λT (t)U = 0, (8.14)

as the controllability matrix U has full rank. This contradicts the non-triviality of the
multipliers from the Minimum Principle. Thus, the switching function only exhibits
isolated zeros and the optimal control is of pure bang-bang type. In particular, the sign
of the switching function determines if the control is on the lower or upper bound (see
cases in Eq. (8.12)).

8.1.2 Cat II: Optimal Control Analysis with State Constraints

For Cat II models (with state constraints) a second-order actuator model is considered
where the control u(t) directly influences the actuator deflection rate xv(t)

ẋv(t) = aTv x(t) + bvu(t), (8.15)
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with the system vector av ∈ Rnx and the scalar control influence bv 6= 0. The time
derivative of the position state of the actuator xp(t) is equal to the actuator rate xv(t)
and may therefore be expressed as:

ẋp(t) = xv(t) (8.16)

In order to simplify notation, it is assumed that the state vector x(t) is arranged in such
a way that the position state xp(t) appears in the first and the rate state xv(t) in the
second element. Two types of constraints are considered in the following. The first
type models symmetric rate limits xv,b > 0 on the actuator of the form

|xv(t)| ≤ xv,b. (8.17)

The second type models symmetric limits with xp,b > 0 for the actuator’s position state

|xp(t)| ≤ xp,b. (8.18)

Adding these constraints to the Cat I problem (8.7) yields the following Cat II problem:

minimize
u(t) ∈ U

cTx(tf )

subject to ẋ(t)−Ax(t)− bu(t) = 0,

|xv(t)| ≤ xv,b,

|xp(t)| ≤ xp,b,

x(t0) = x0,

t ∈ I t

(8.19)

It is noteworthy that for the following analysis it is useful to express the constraints for
the actuator rate and position states in Eqs. (8.17) and (8.18) in the equivalent form

cv(t) =
1

2

(
x2
v(t)− x2

v,b

)
≤ 0, (8.20)

cp(t) =
1

2

(
x2
p(t)− x2

p,b

)
≤ 0. (8.21)

First, the order of the state constraints is determined. Recall that the order of a state
constraint is defined as the number of times the constraint needs to be derived with
respect to time until the control appears explicitly (cf. Sec. 5.4). On a state constrained
arc of the rate state with cv(t) = 0, t ∈ [t1, t2] , t2 > t1 the boundary control ub,v(t)
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appears explicitly in first time derivative:

ċv(t) = xv(t)ẋv(t) = xv(t)
(
aTv x(t) + bvub,v(t)

)
= 0 (8.22)

due to xv(t) = ±xv,b 6= 0 and bv 6= 0. Thus, the rate constraint cv(t) is of first-order. On
a state constrained arc of the position state with cp(t) = 0, t ∈ [t1, t2] , t2 > t1 the first
time derivative yields:

ċp(t) = xp(t)ẋp(t) = xp(t)xv(t) = 0 (8.23)

Due to xp(t) = ±xp,b 6= 0 it follows that the rate state needs to satisfy

xv(t) = 0. (8.24)

Note that this directly implies with xv,b > 0 that it is not possible for the rate and
position constraint to be active simultaneously. The second time derivative equates to

c̈p(t) = ẋp(t)xv(t) + xp(t)ẋv(t) = xp(t)
(
aTv x(t) + bvub,p(t)

)
= 0, (8.25)

as the rate satisfies Eq. (8.24). Moreover, due to xp(t) = ±xp,b 6= 0 and bv 6= 0 the bound-
ary control ub,p(t) appears explicitly. Thus, the actuator position constraint cp(t) is of
second-order. A single expression for the boundary control ub(t) on state constrained
arcs for the rate or position can be directly derived from Eqs. (8.22) and (8.25). Note
that for the second-order actuator model the condition

aTv x(t) + bvub(t) = 0, (8.26)

defines the boundary control ub(t) for both the position and rate constrained arc. This
expression can be solved to obtain a single expression for the boundary control in both
cases:

ub(t) = −aTv x(t)

bv
(8.27)

Next, expressions for the multiplier functions associated with both the rate and po-
sition state constraint are derived. For the analysis with purely state dependent con-
straints the augmented Hamiltonian HA (λ(t), x(t),u(t),µv(t),µp(t)) is formed (cf. Sec.
5.4) using the multiplier functions µv(t) for the rate constraint and the multiplier func-
tion µp(t) for the position constraint

HA (λ(t), x(t),u(t),µv(t),µp(t)) := λT (Ax(t) + bu(t)) + µv(t)cv(t) + µp(t)cp(t), (8.28)

by directly adjoining the state constraints to the Hamiltonian. These multiplier func-
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tions satisfy:

µp/v(t) =





= 0, cp/v(t) < 0

≥ 0, cp/v(t) = 0
. (8.29)

Recall that either the rate or the position constraint can be active. Thus, on a rate
constrained arc t ∈ [t1, t2] , t2 > t1 the multiplier for the position constraint satisfies
µp(t) = 0. Similarly, on a position constrained arc µv(t) = 0 holds. As in the uncon-
strained case the switching function is defined as

S(t) = λT (t)b, (8.30)

and the co-state equation evolves according to

∂HA

∂x
= −λ̇T (t) = λT (t)A + µv(t)

∂cv
∂x

+ µp(t)
∂cp
∂x

, (8.31)

with
∂cv
∂x

= [0,xv(t), 0] , (8.32)

∂cp
∂x

= [xp(t), 0, 0] . (8.33)

On a state constrained arc t ∈ [t1, t2] , t2 > t1 the switching function satisfies S(t) = 0.
Taking the first time derivative yields:

Ṡ(t) = λ̇
T

(t)b = −λT (t)Ab− µv(t)
∂cv
∂x

b + µp(t)
∂cp
∂x

b = 0 (8.34)

On a rate constrained arc µp(t) = 0 holds and the product ∂cv
∂x

b evaluates to

∂cv
∂x

b = [0,xv(t), 0]




0

bv

0


 = xv(t)bv. (8.35)

After insertion into Eq. (8.34)

− λT (t)Ab− µv(t)
∂cv
∂x

b = −λT (t)Ab− µv(t)xv(t)bv = 0, (8.36)

it directly follows that the multiplier µv(t) satisfies

µv(t) = −λ
T (t)Ab

xv(t)bv
, (8.37)

with xv(t) = ±xv,b. Note that the sign of xv(t) expresses if the constraint for the lower or
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upper bound is active. In order to derive an explicit expression for the multiplier µp(t)
on a position constrained arc the switching function needs to be derived a second time.
On a position constrained arc the rate constraint is in-active, that is µv(t) = µ̇v(t) = 0,
and the product ∂cp

∂x
b evaluates to zero:

∂cp
∂x

b = [xp(t), 0, 0]




0

bv

0


 = 0 (8.38)

Thus, based on Eq. (8.34) the second time derivative of the switching function can be
expressed as

S̈(t) = −λ̇T (t)Ab = λT (t)A2b + µp(t)
∂cp
∂x

Ab = 0. (8.39)

Note that the product ∂cp
∂x

Ab simplifies to

∂cp
∂x

Ab = [0,xp(t), 0]




0

bv

0


 = xp(t)bv, (8.40)

as the product ∂cp
∂x

A yields

∂cp
∂x

A = [xp(t), 0] A = [0,xp(t), 0] , (8.41)

due to the fact that the row corresponding to the position differential equation only
has a single entry in the column corresponding to the rate state according to Eq. (8.16).
After insertion into Eq. (8.39)

λT (t)A2b + µp(t)xp(t)bv = 0, (8.42)

it directly follows that the multiplier µp(t) satisfies

µp(t) = −λ
T (t)A2b

xp(t)bv
, (8.43)

with xp(t) = ±xp,b. Summarizing, for the case with actuator rate and position limits
the control u(t) is either regular, i.e. of bang-bang type, if both constraints are inactive
and takes the value of the respective boundary control if one of the state constraints
is active. Note that for the case of more than one control the analysis is considerably
more involved as the control functions may exhibit different combinations of regular
and singular controls.

110



Chapter 8: Optimal Control Based Clearance for Linear and Quasi-linear Systems

8.1.3 Discretized Form for Cat I and Cat II Models

In order to obtain a form for the linear analysis which can be solved numerically
the problem is transcribed into a finite dimensional parameter optimization problem
(cf. chapter 6). In order to illustrate the transcription for Cat I and Cat II models the
Backward Euler method withN+1 discretization points and discretization step length
h = (tf − t0)/N is considered, which is the basis of the discrete Minimum Principle
presented in Ref. [52]. The results from this discrete Minimum Principle are used in
the following sections to estimate quantities such as the co-states in order to verify the
validity of the theoretical results from Secs. 8.1.1 and 8.1.2.

For the Backward Euler method state variable vectors x[i] ∈ Rnx , i = 0, . . . ,N and
control variable vectors u[i] ∈ Rnu , i = 1, . . . ,N are introduced and the dynamic con-
straints are expressed as

x[i] − hAx[i] − hBu[i] − x[i−1] = 0, i = 1, . . . ,N . (8.44)

As such, the discretized problem statement (8.5) for Cat II models may be written as

minimize
x[0], x[i], u[i], i ∈ 1 . . . N

cTx[N ]

subject to Adx
[i] + Bdu

[i] − x[i−1] = 0, i = 1, . . . ,N ,

x[0] = x(t0),

xj,lb ≤ x
[i]
j ≤ xj,ub, i = 1, . . . ,N ,∀j ∈ Ib,

ulb ≤ u[i] ≤ uub, i = 1, . . . ,N ,

(8.45)

with the matrices Ad := I− hA and Bd := −hB and the vector c ∈ Rnx . Note that this
discretized Cat II type problem reduces to a Cat I type problem for Ib = ∅. Note further
that the discretized problem can be stated as a Linear Program (LP) of the form

minimize
z ∈ Rnz

vTz

subject to Mhz = bh,

Mgz ≤ bg,

(8.46)

with the nz = (N + 1)nx +Nnu dimensional parameter vector z ∈ Rnz

z :=
[(

x[0]
)T

, . . . ,
(
x[N ]

)T
,
(
u[1]
)T

, . . . ,
(
u[N ]

)T]T
, (8.47)

the cost vector v ∈ Rnz

v :=
[
0, . . . , cT , 0, . . . , 0

]T
, (8.48)
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the equality constraint matrix Mh ∈ Rnh×nz ,nh = (N + 1)nx and the corresponding
right-hand side vector bh ∈ Rnh

Mh :=




I 0 . . . 0 0 0 . . . 0

−I Ad . . . 0 0 Bd . . . 0
...

... . . . ...
...

...
...

...

0 0 . . . −I Ad 0 . . . Bd




, bh :=




x(t0)

0
...

0




, (8.49)

as well as the inequality constraint matrix Mg ∈ Rng×nz ,ng = (N − 1)(nx +nu) with the
right-hand side vector bg ∈ Rng :

Mg :=




0 −I . . . 0 0 . . . 0
...

... . . . ...
... . . . ...

0 0 . . . −I 0 . . . 0

0 I . . . 0 0 . . . 0
...

... . . . ...
... . . . ...

0 0 . . . I 0 . . . 0

0 0 . . . 0 −I . . . 0
...

... . . . ...
... . . . ...

0 0 . . . 0 0 . . . −I

0 0 . . . 0 I . . . 0
...

... . . . ...
... . . . ...

0 0 . . . 0 0 . . . I




, bg :=




−xlb
...

−xlb

xub
...

xub

−ulb
...

−ulb

uub
...

uub




(8.50)

Observe that the initial state is already uniquely determined by the equality constraint
corresponding to the first block row in Mh and bh and each of the vectors xlb, xub ∈ Rnx

for the state bounds as well as the vectors ulb and uub for the control bounds is repeated
N times in bg. In order to simplify notation the lower and upper bounds in xlb and xub

for the unbounded states are defined as −∞, respectively +∞

xk,lb := −∞, k ∈ In, (8.51)

xk,ub := +∞, k ∈ In, (8.52)

with In = {0, . . . ,nx − 1} \ Ib. Other discretization schemes with a higher order may
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be employed, such as the Trapezoidal method with the defect constraint

x[i] − hA
x[i] + x[i−1]

2
− hB

u[i] + u[i−1]

2
− x[i−1] = 0, i = 1, . . . ,N , (8.53)

and the additional control vector u[0]. The transcribed problem has a similar form in
this case.

8.2 Nominal Problems for Linearized Aircraft Dy-

namics

8.2.1 Nominal Linear Benchmark Problems

For the following examples the longitudinal and lateral channel of the inner-loop con-
troller for a conventional fixed-wing aircraft is investigated. The model is obtained
from linearization around a steady state, straight and level flight condition at a ref-
erence altitude href and reference velocity Vref . For this linearization point with trim
state vector x0 ∈ Rnx and trim control vector u0 ∈ Rnu the linear model is of the form

δẋ(t) = Aδx(t) + Bδu(t), A ∈ Rnx×nx , B ∈ Rnx×nu , (8.54)

δy(t) = cT δx(t), c ∈ Rnx , (8.55)

with
δx(t) := x(t)− x0, (8.56)

δu(t) := u(t)− u0. (8.57)

In the following the δ-notation is dropped for better readability, bearing in mind that
all quantities are relative to the specific trim values. In addition, unless otherwise
specified, all quantities are given at the reference point R := G and the superscript G
for the center of gravity is omitted. Moreover, the normal load factor and the lateral
factor in the B-frame are denoted with nz and ny.

It is important to observe, that under the chosen flight condition the aircraft’s lin-
earized dynamic equations decouple for the longitudinal and lateral plane. This im-
plies that both channels can be investigated separately. The inputs to the inner-loop
controller are the normal load factor command nz,c(t), the roll angle command Φc(t),
and the lateral factor command ny,c(t). Note that the lateral factor is controlled to zero
for most maneuvers.

In addition to the command inputs from the pilot, the influence of wind is inves-
tigated. The wind velocities uW (t), vW (t), and wW (t) relative to the earth (E) at the
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aerodynamic reference point (A) are denoted in the O-frame and, as such, describe
the wind components corresponding to the xO-, yO-, and zO-axis. The first and sec-
ond time derivatives of these wind velocities are modeled using linear second-order
models (damping ζ̄W , natural frequency ωW ). As such, besides the wind velocity states
uW (t), vW (t), and wW (t), additionally the wind acceleration states uW ,a(t), vW ,a(t), and
wW ,a(t) are added to the state vector of the system. For all three wind velocities dy-
namic models of the same form are used which, for example, in case of the vertical
wind velocity reads:


 ẇW (t)

ẇW ,a(t)


 =


 0 1

−ω2
W −2ζ̄WωW




 wW (t)

wW ,a(t)


+


 0

ω2
W


wW ,c(t) (8.58)

The reasoning behind using second-order models for the wind dynamics is that in
addition to the translational wind velocities the effect of wind rotation is considered in
the analysis. Here, the rotational components qW (t) and rW (t) are approximated as

qW (t) ≈ wW ,a(t)

Vref
, (8.59)

rW (t) ≈ vW ,a(t)

Vref
. (8.60)

Note that as the control-like variables introduced for modeling wind merely influ-
ence the time derivative of the wind acceleration states (uW ,a(t), vW ,a(t), wW ,a(t)) in
the second-order models the wind controls are not able to instantaneously produce a
wind rotation.

The minimum and maximum wind gust velocities which are used for the lower
and upper limits of the artificial wind controls uW ,c(t), vW ,c(t), and wW ,c(t) are set to
±7.62 m/s (25 ft/s) which represent severe gust velocities [83]. It is important to men-
tion that the gust modeling approach using second-order models does not allow to
directly impose specific gust lengths. In fact, the exact shape of the gust is implicitly
determined by the optimization. Thus, it is important to ensure that the optimal gust
is capable of exciting relevant Eigenmodes of the system under investigation which
implies that the parameters ζ̄ and ωW are application specific. For the system inves-
tigated in this thesis these parameters are set to ζ̄W = 1 as well as ωW = 1 and the
artificial wind controls are bounded by

− 7.62 m/s ≤ uW (t) ≤ 7.62 m/s, (8.61)

− 7.62 m/s ≤ vW (t) ≤ 7.62 m/s, (8.62)

− 7.62 m/s ≤ wW (t) ≤ 7.62 m/s. (8.63)
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The aircraft’s plant model with the state vector xac(t) ∈ R10

xac(t) := [h(t),VK(t),αK(t), βK(t), Φ(t), Θ(t), Ψ(t), pK(t), qK(t), rK(t)]T (8.64)

and the system matrix Aac ∈ R10×10 is of the form

ẋac(t) = Aacxac(t) + Bactxact(t) + Bdis


xdis(t)

ẋdis(t)


 , (8.65)

with the actuator states

xact(t) := [xe,p(t),xa,p(t),xr,p(t)]
T , (8.66)

for the primary control surfaces (elevator position xe,p(t), aileron position xa,p(t), rud-
der position xr,p(t)), the corresponding input matrix Bact ∈ R10×3, as well as the wind
disturbance states

xdis(t) := [uW (t), vW (t),wW (t)]T , (8.67)

with input matrix Bdis ∈ R10×6. The dynamic equations for the actuation system are
modeled by linear second-order models (damping ζ̄k, natural frequency ωn,k) of the
form 

ẋk,p(t)

ẋk,v(t)


 =


 0 1

−ω2
n,k −2ζ̄kωn,k




xk,p(t)

xk,v(t)


+


 0

bk


xk,c(t), (8.68)

with k ∈ {e, a, r} (elevator, aileron, and rudder) and the actuator rate states xe,v(t),
xa,v(t), and xr,v(t). Moreover, the commanded values from the controller fed to the
actuator are denoted by xk,c(t). Due to the decoupled nature of the complete closed-
loop dynamic model for the flight condition in the linearization point the model is
separated in the following into a longitudinal and lateral model. For the control system
under investigation the basic internal structure of the inner-loop controller has both
proportional and integral parts. In particular, the states of the basic a PI-type control
law in this controller are denoted with enz(t) for the longitudinal channel and eΦ(t)

as well as eΨ(t) for the lateral channel. For illustration purposes the step responses
and pole-zero plots for the basic closed-loop systems in the longitudinal and lateral
channel are presented. In case of the longitudinal channel the reduced state vector of
the close-loop system is defined as

xlon,r = [xe,p(t),xe,v(t),VK(t),αK(t), Θ(t), qK(t), enz(t)] , (8.69)
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and in case of the lateral model:

xlat,r = [xa,p(t),xr,p(t),xa,v(t),xr,v(t), βK(t), Φ(t), Ψ(t), rK(t), pK(t), eΦ(t), eΨ(t)] (8.70)

The step responses of the basic control law for the longitudinal and lateral inputs at
a typical envelope point are illustrated in Fig. 8.1. Notice the non-minimum phase
behavior of the normal load factor nz(t) and ny(t) as well as the high damping of the
roll angle response Φ(t). Additionally, the response of the second-order wind model
for wW (t) is presented in Fig. 8.1. Moreover, the pole-zero plots for the normal load
factor, lateral load factor, and the roll angle are depicted in Figs. 8.2-8.4.

Figure 8.1: Responses of the normal load factor nz(t) (top left), the roll-angle Φ(t) (top
right), the normal wind wW (t) (bottom left), and the lateral load factor ny(t)
(bottom right) to a unit step.
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Figure 8.2: Pole-zero plot for the normal load factor nz.
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Figure 8.3: Pole-zero plot for the lateral load factor ny.
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Figure 8.4: Pole-zero plot for the roll angle Φ.

For the following analysis of the longitudinal and lateral channel the basic inner-loop
control law is considered with all available states corresponding to sensor models,
aeroelasticity models, and other internal states, e.g. for notch filters in the inner-loop
controller.

Longitudinal Model

For the longitudinal dynamics the state vector xlon(t) ∈ R46 contains the wind velocities
uW (t) and wW (t), the actuator position and rate states of the elevator xe,p(t) and xe,v(t),
the geodetic height h(t), the kinematic velocity VK(t), the kinematic AoA αK(t), the
pitch angle Θ(t), the pitch rate q(t), the integral state of the PI-type error controller
enz(t), as well as sensor model and additional internal controller states collected in the
vector xF ,lon(t) ∈ R34:

xlon(t) := [uW (t),uW ,a(t),wW (t),wW ,a(t),xe,p(t),xe,v(t),

h(t),VK(t),αK(t), Θ(t), qK(t), enz(t), x
T
F ,lon(t)]T

(8.71)

The control vector ulon(t) := [uW ,c(t),wW ,c(t),nz,c(t)]
T contains the wind commands

subject to general box bounds (cf. constraints (8.61) and (8.63)) and the normal load
factor command nz,c(t) relative to the trim value bounded by −0.5 ≤ nz,c(t) ≤ 0.5.
These constraints define the admissible control set Ulon for the longitudinal plane. Let

x̃lon(t) :=
[
h(t),VK(t),αK(t), Θ(t), qK(t), enz(t), x

T
F ,lon(t)

]T
, (8.72)

collect all states besides the elevator and wind states. The dynamic equations for the
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elevator position state xe,p(t) is expressed as

ẋe,p(t) = aTe,p
[
xe,p(t),xe,v(t), x̃

T
lon(t)

]T
= xe,v(t), aTe,p := [0, 1, 0] , (8.73)

and the servo rate xe,v(t) with the scalar control influence be,v evolves according to

ẋe,v(t) = aTe,v
[
xe,p(t),xe,v(t), x̃

T
lon(t)

]T
+ be,vnz,c(t), ae,v ∈ R42. (8.74)

Thus, the dynamic equations for the longitudinal channel are of the form

d

dt




uW (t)

uW ,a(t)

wW (t)

wW ,a(t)

xe,p(t)

xe,v(t)

x̃lon(t)




︸ ︷︷ ︸
xlon(t)

=




0 1 0 0 0

−ω2
W −2ζ̄WωW 0 0 0

0 0 0 1 0

0 0 −ω2
W −2ζ̄WωW 0

0 0 0 0 aTe,p

0 0 0 0 aTe,v

ãlon,uW ãlon,uW ,a
ãlon,wW ãlon,wW ,a

Ãlon




︸ ︷︷ ︸
Alon

xlon(t) +




0 0 0

ω2
W 0 0

0 0 0

0 ω2
W 0

0 0 0

0 0 be,v

b̃lon,uW ,c
b̃lon,wW ,c

b̃lon,nz,c




︸ ︷︷ ︸
Blon

ulon(t),

(8.75)

where the system matrix Alon ∈ R46×46 is split into the column vectors ãlon,uW ∈ R40,
ãlon,uW ,a

∈ R40, ãlon,wW ∈ R40, and ãlon,wW ,a
∈ R40, the matrix Ãlon ∈ R40×42, as well as

the entries from the actuator and wind models. Similarly, the input matrix Blon ∈ R46×3

is split into the input column vectors b̃lon,uW ,c
∈ R40, b̃lon,wW ,c

∈ R40, and b̃lon,nz,c ∈ R40

as well as other entries from the actuator and wind models. Note that the control
influences originating from the normal load factor command nz,c(t) and the wind com-
mands uW ,c(t) and wW ,c(t) are decoupled regarding the influence on the elevator actu-
ator model and the wind dynamics. For the following analysis two different criteria
are investigated. These criteria are the normal load factor jnz(xlon(tf )) = −nz(tf ) and
the aerodynamic AoA jαA(xlon(tf )) = −αA(tf ). The normal load factor may be written
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in the form
nz(tf ) = cTnz ,Axlon(tf ), cnz ,A ∈ R46, (8.76)

if the wind is non-zero and in the form

nz(tf ) = cTnz ,K

[
xe,p(t),xe,v(t), x̃

T
lon(t)

]T
, cnz ,K ∈ R42, (8.77)

in case of no wind. Moreover, the aerodynamic AoA is expressed as

αA(tf ) = cTαAxlon(tf ), cαA ∈ R46. (8.78)

In case the actuator position and rate states are bounded by the box constraints

xe,p,lb ≤ xe,p(t) ≤ xe,p,ub, (8.79)

xe,v,lb ≤ xe,v(t) ≤ xe,v,ub, (8.80)

the following Cat II type clearance problems are obtained:

minimize
ulon(t) ∈ Ulon

− nz(tf )/− αA(tf )

subject to ẋlon(t)−Alonxlon(t)−Blonulon(t) = 0,

xlon(t0) = 0,

xe,p,lb ≤ xe,p(t) ≤ xe,p,ub,

xe,v,lb ≤ xe,v(t) ≤ xe,v,ub,

t ∈ I t

(8.81)

Lateral Model

For the lateral dynamic equations the state vector xlat ∈ R36 contains the lateral wind
velocity vW (t), the aileron position state xa,p(t) and rate state xa,v(t), the rudder position
state xr,p(t) and rate state xr,v(t), the kinematic AoS βK(t), the roll angle Φ(t), the yaw
angle Ψ(t), the yaw rate r(t), the roll rate p(t), the error controller states eΦ(t) and
eΨ(t), as well as other internal controller and sensor model states collected in the vector
xF ,lat(t) ∈ R23:

xlat(t) := [vW (t), vW ,a(t),xa,p(t),xr,p(t),xa,v(t),xr,v(t),

βK(t), Φ(t), Ψ(t), rK(t), pK(t), eΦ(t), eΨ(t), xTF ,lat(t)]
T

(8.82)

The control vector ulat(t) ∈ R3

ulat(t) := [vW ,c(t),ny,c(t), Φc(t)]
T , (8.83)
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contains the lateral wind command vW ,c(t) constrained by box bounds (cf. constraint
(8.62)), the lateral load factor command ny,c(t) bounded by

− 0.1 ≤ ny,c(t) ≤ 0.1, (8.84)

as well as the roll angle command Φc(t) limited to

− 45 deg ≤ Φc(t) ≤ 45 deg , (8.85)

which define the control set Ulat for the lateral plane. Similar to the longitudinal plane,
let

x̃lat(t) :=
[
βK(t), Φ(t), Ψ(t), rK(t), pK(t), eΦ(t), eΨ(t), xTF ,lat(t)

]T
, (8.86)

collect all states besides the actuator rate and position states and the wind state. The
dynamic equations for the aileron and rudder servo positions, xa,p(t) and xr,p(t), are:

ẋa,p(t) = aTa,p

[
xa,p(t),xr,p(t),xa,v(t),xr,v(t), x̃

T
lat(t)

]T
= xa,v(t), aTa,p := [0, 0, 1, 0, 0] ,

(8.87)

ẋr,p(t) = aTr,p
[
xa,p(t),xr,p(t),xa,v(t),xr,v(t), x̃

T
lat(t)

]T
= xr,v(t), aTr,p := [0, 0, 0, 1, 0]

(8.88)

For the aileron and rudder servo rate states, i.e. xa,v(t) and xr,v(t), the dynamic equa-
tions are of the form

ẋa,v(t) = aTa,v

[
xa,p(t),xr,p(t),xa,v(t),xr,v(t), x̃

T
lat(t)

]T
+ba,ny,cny,c(t)+ba,ΦcΦc(t), aa,v ∈ R34,

(8.89)

ẋr,v(t) = aTr,v
[
xa,p(t),xr,p(t),xa,v(t),xr,v(t), x̃

T
lat(t)

]T
+ br,ny,cny,c(t) + br,ΦcΦc(t), ar,v ∈ R34,

(8.90)

with the scalar control influences ba,ny,c , ba,Φc , br,ny,c , and br,Φc . Together with the equa-
tion for the lateral wind acceleration these dynamic equations may be written jointly
as:



v̇W ,a(t)

ẋa,v(t)

ẋr,v(t)


 =




−ω2
W −2ζ̄WωW 0

0 0 aTa,v

0 0 aTr,v


xlat(t) +




ω2
W 0 0

0 ba,ny,c ba,Φc

0 br,ny,c br,Φc







vW ,c(t)

ny,c(t)

Φc(t)


 (8.91)

Note that the input equations for the aileron and rudder states are coupled and the full
rank matrix

Ba,v :=


ba,ny,c ba,Φc

br,ny,c br,Φc


 , (8.92)
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expresses the control allocation in the lateral channel. Thus, the equations governing
the lateral motion are of the form

d

dt




vW (t)

vW ,a(t)

xa,p(t)

xr,p(t)

xa,v(t)

xr,v(t)

x̃lat(t)




︸ ︷︷ ︸
xlat(t)

=




0 1 0

−ω2
W −2ζ̄WωW 0

0 0 aTa,p

0 0 aTr,p

0 0 aTa,v

0 0 aTr,v

ãlat,vW ãlat,vW ,a
Ãlat




︸ ︷︷ ︸
Alat

xlat(t) +




0 0 0

ω2
W 0 0

0 0 0

0 0 0

0 ba,ny,c ba,Φc

0 br,ny,c br,Φc

b̃lat,vW ,c
b̃lat,ny,c b̃lat,Φc




︸ ︷︷ ︸
Blat

ulat(t),

(8.93)

where the system matrix Alat ∈ R36×36 is split into the column vectors ãlat,vW ∈ R30

and ãlat,vW ,a
∈ R30, the matrix Ãlat ∈ R30×34, as well as the entries from the actuator

and wind models. Similarly, the input matrix Blat ∈ R36×3 is split into the input col-
umn vectors b̃lat,vW ,c

∈ R30, b̃lat,ny,c ∈ R30, and b̃lat,Φc ∈ R30 as well as the contributions
from the actuator and wind models. As for the longitudinal model two different cri-
teria are investigated, namely the lateral load factor jny(xlat(tf )) = −ny(tf ) and the
aerodynamic AoS jβA(xlat(tf )) = −βA(tf ). The load factor may be written in the form

ny(tf ) = cTny ,Axlat(tf ), cny ,A ∈ R35, (8.94)

if the wind is non-zero and in the form

ny(tf ) = cTny ,K

[
xa,p(t),xr,p(t),xa,v(t),xr,v(t), x̃

T
lat(t)

]T
, cny ,K ∈ R34, (8.95)

in case of no wind. Furthermore, the aerodynamic AoS is given as

βA(tf ) = cTβAxlat(tf ), cβA ∈ R35. (8.96)

For a Cat II type model where the actuator rate and position state are bounded by the
box constraints

xa,p,lb ≤ xa,p(t) ≤ xa,p,ub, (8.97)

xr,p,lb ≤ xr,p(t) ≤ xr,p,ub, (8.98)

xa,v,lb ≤ xa,v(t) ≤ xa,v,ub, (8.99)

xr,v,lb ≤ xr,v(t) ≤ xr,v,ub, (8.100)
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the problem formulations thus reads as follows:

minimize
ulat(t) ∈ Ulat

− ny(tf )/− βA(tf )

subject to ẋlat(t)−Alatxlat(t)−Blatulat(t) = 0,

xlat(t0) = 0,

xa,p,lb ≤ xa,p(t) ≤ xa,p,ub,

xr,p,lb ≤ xr,p(t) ≤ xr,p,ub,

xa,v,lb ≤ xa,v(t) ≤ xa,v,ub,

xr,v,lb ≤ xr,v(t) ≤ xr,v,ub,

t ∈ I t

(8.101)
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8.2.2 Numerical Examples

Here and in what follows, the numerical examples are computed using the Counter
Optimization Library (COLIBRY) developed by the author (Contribution IV) and the
LP solver employed for all studies is CPLEX 12.9 [57] (Primal Simplex, Dual Simplex,
Interior Point) with standard settings. For these numerical examples the linearized
models for the longitudinal and lateral plane are obtained from a trim point with ref-
erence height href ≈ 2500 m and reference velocity Vref ≈ 67 m/s. Recall that all
quantities which are presented in the following are relative to the respective trim val-
ues. The fixed final time tf for the analysis is chosen as approximately five times the
closed-loop short period time constant TSP ≈ 1.19 s, i.e. tf ≈ 6 s. A Backward Eu-
ler discretization with a constant discretization step size of h = 0.005 s is used for all
examples. Moreover, the switching functions are estimated based on the results from
the discrete Minimum Principle in Ref. [52]. In all numerical results the signs of the
switching function values are indicated in red for negative values (< 10−10) and green
for positive values (> 10−10). All other values, which are regarded as zero, are colored
black. Moreover, the full set of rigid body states and error controller states are pro-
vided as additional material in App. A. Note that in this chapter only the linear case is
presented. The validity of the linearized models regarding the qualitative and quanti-
tative behavior is discussed in Sec. 9.1 using the Cat III intrusive approach. First, the
longitudinal model without wind is under investigation. The Cat II type problems for
maximizing the normal load factor or the kinematic AoA are stated as follows:

minimize
nz,c(t)

− nz(tf )/− αK(tf )

subject to
d

dt




xe,p(t)

xe,v(t)

x̃lon(t)


−




aTe,p

aTe,v

Ãlon







xe,p(t)

xe,v(t)

x̃lon(t)


−




0

be,v

b̃lon,nz,c


nz,c(t) = 0,




xe,p(0)

xe,v(0)

x̃lon(0)


 = 0,

− 0.5 ≤ nz,c(t) ≤ 0.5,

xe,p,lb ≤ xe,p(t) ≤ xe,p,ub,

xe,v,lb ≤ xe,v(t) ≤ xe,v,ub,

t ∈ [0, tf ]

(8.102)

At first, the actuator limits are set to xe,p,lb,xe,v,lb = −∞ and xe,p,ub,xe,v,ub = ∞ which
yields a Cat I type problem. The optimal solutions for the trajectory of the normal load
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factor nz(t), as well as the load factor command history and corresponding switch-
ing function are depicted in Fig. 8.5. As predicted by the theoretical analysis for Cat I
problems (cf. Sec. 8.1.1) the worst-case command is non-singular, bang-bang. In par-
ticular, the switching function only exhibits isolated zeros and the time points where it
switches sign correspond to the time points where the control changes from one bound
to the other. These switching time points are:

tnzs ≈ [3.32 s, 3.74 s, 4.62 s, 5.06 s, 5.95 s] (8.103)

Each pulse has a total length (tnzs,0 → tnzs,2 and tnzs,2 → tnzs,4) which approximately matches
the short period time constant TSP . Moreover, the width of the pulses (tnzs,0 → tnzs,1

and tnzs,2 → tnzs,3) is ≈ TSP/3. For the kinematic AoA a similar structure is obtained.
The control is again of bang-bang type and the switching time points of the control
match the location of the isolated zeros of the corresponding switching function. These
switching time points are:

tαs ≈ [4.7 s, 5.04 s] (8.104)

Only one pulse is observed for which the total length (tαs,0 → tf ) approximately matches
the short period time constant TSP and the width of the pulse (tαs,0 → tαs,1) is ≈ TSP/3

as for the maximization of the normal load factor. The cases with actuator limits for
both cost functions are depicted in Fig. 8.7 and Fig. 8.8. Note that the elevator rate con-
straint becomes active (the position limit is not reached for both cases). As predicted by
the theoretical analysis, the control is bang-bang with singular parts on time intervals
where the state constraint on the elevator rate state is active. On these intervals the
control takes values in the interior of the admissible control set, i.e. the values of the
boundary control nz,c,b(t). This boundary control of the normal load factor command
can be expressed based on Eq. (8.27) as follows:

nz,c,b(t) := − 1

be,v
aTe,v




xe,p(t)

xe,v(t)

x̃lon(t)


 (8.105)

A detailed view comparing the boundary control for maximizing the load factor and
AoA obtained from the solution of the discretized problem and the control predicted
from the theoretical analysis is presented in Fig. 8.9.
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Figure 8.5: Optimal results for the longitudinal plane using a Cat I model for maximizing
nz(tf ), tf = 6 s including the normal load factor nz(t), the normal load factor
command nz,c(t), and the switching function corresponding to the normal load
factor command Snz,c(t).
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Figure 8.6: Optimal results for the longitudinal plane using a Cat I model for maximizing
αK(tf ), tf = 6 s including the kinematic AoA αK(t), the normal load factor
command nz,c(t), and the switching function corresponding to the normal load
factor command Snz,c(t).
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Figure 8.7: Optimal results for the longitudinal plane using a Cat II model for maximizing
nz(tf ), tf = 6 s including the normal load factor nz(t), the normal load factor
command nz,c(t), the switching function corresponding to the normal load
factor command Snz,c(t), and the elevator rate xe,v(t).
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Figure 8.8: Optimal results for the longitudinal plane using a Cat II model for maximizing
αK(tf ), tf = 6 s including the kinematic AoA αK(t), the normal load factor
command nz,c(t), the switching function corresponding to the normal load
factor command Snz,c(t), and the elevator rate xe,v(t).
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Figure 8.9: Detailed view of the boundary control on rate constrained arcs of the elevator
for the maximization of the normal load factor (top) and AoA (bottom). The
control values obtained from the discretized problem (nz,c(t), blue) are com-
pared to the boundary control (nz,b(t), red dots) according to the theoretical
analysis.

The numerical results appear to be in coherence with the theoretical analysis. Note
that in all Cat II results (cf. Figs. 8.7 and 8.8) there are overshoots visible in the con-
trol at the entry time points of the state constrained arcs. This is an inherent effect
originating from the discretization of the problem as the entry time points of the state
constrained arcs where the control jumps are not exactly resolved by the time grid.
Note further that the values of the AoA and normal load factor for the Cat II model
are lower compared to the Cat I model. This is expected as the feasible region for Cat
II type problems is reduced by the addition of state constraints corresponding to the
limits of the servomechanism.
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For the lateral model without wind the Cat II problems for maximizing the lateral
load factor or the AoS are defined as follows:

minimize
ny,c(t), Φc(t)

− ny(tf )/− βK(tf )

subject to
d

dt




xa,p(t)

xr,p(t)

xa,v(t)

xr,v(t)

x̃lat




−




aTa,p

aTr,p

aTa,v

aTr,v

Ãlat







xa,p(t)

xr,p(t)

xa,v(t)

xr,v(t)

x̃lat




−




0 0

0 0

ba,ny,c ba,Φc

br,ny,c br,Φc

b̃lat,ny,c b̃lat,Φc





ny,c(t)

Φc(t)


 = 0,




xa,p(0)

xr,p(0)

xa,v(0)

xr,v(0)

x̃lat(0)




= 0,

− 0.1 ≤ ny,c(t) ≤ 0.1,

− 45 deg ≤ Φc(t) ≤ 45 deg,

xa,p,lb ≤ xa,p(t) ≤ xa,p,ub,

xr,p,lb ≤ xr,p(t) ≤ xr,p,ub,

xa,v,lb ≤ xa,v(t) ≤ xa,v,ub,

xr,v,lb ≤ xr,v(t) ≤ xr,v,ub,

t ∈ [0, tf ]

(8.106)

First, only the roll angle command Φc(t) is used to solve the clearance problem for the
lateral plane. It is found that the maximization of the lateral load factor is effective
whereas the values obtained from the maximization of the AoS are fairly small. This
is illustrated for the Cat I version of the problem, i.e. without state constraints on the
aileron and rudder states (xa,p,lb,xa,v,lb,xr,p,lb,xr,v,lb = −∞, xa,p,ub,xa,v,ub,xr,p,ub,xr,v,ub =

∞) in Fig. 8.10 and Fig. 8.11. In both cases the control is regular, i.e. of bang-bang
type. Despite the in-effectiveness of the roll angle command for the maximization
of the AoS this case is interesting to illustrate typical numerical effects regarding the
optimization with fixed final time. It is observed that a weak dependence of the cost
function with respect to control actions in the beginning of the time interval can results
in high frequency switches of the control.
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Figure 8.10: Optimal results for the lateral plane using a Cat I model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the roll angle command
Φc(t), and the switching function corresponding to the roll angle command
SΦc(t).
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Figure 8.11: Optimal results for the lateral plane using a Cat I model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the roll angle command
Φc(t), and the switching function corresponding to the roll angle command
SΦc(t).
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This chattering effect becomes apparent if the length of the fixed time interval [0, tf ]

is increased. Recall that as discussed in Sec. 8.1 the cost function is non-decreasing
with the final time, if the system is starting from an equilibrium point. However, one
direct result of fixing the final time is that the problem becomes very in-sensitive with
respect to control actions at the beginning of the time interval if the interval is too long.
For the value of the cost function this is not detrimental because the solution of the
LP is global. Loosely speaking - it simply matters very little for the value of the cost
function at the final time point what exactly the control is doing in the beginning of
the time interval. The cost and control histories for maximizing βK(tf ) with tf = 7 s

are presented in Fig. 8.12. Observe the chattering effect of the control (blue line). If
this effect is undesired, e.g. if not solely the value of the clearance criterion itself but
a clean control history is of interest, it is possible to force the control to the trim value
on intervals where the sensitivity of the control is low. This can be achieved by the
introduction of a penalty term in the cost function of the form

minimize
x[0], x[i], u[i], i = 1, . . . ,N

cTx[N ] + ε

N∑

i=1

nu−1∑

q=0

|u[i]
q |

subject to Adx
[i] + Bdu

[i] − x[i−1] = 0, i = 1, . . . ,N ,

x[0] = 0,

xj,lb ≤ x
[i]
j ≤ xj,ub, i = 1, . . . ,N ,∀j ∈ Ib,

ulb ≤ u[i] ≤ uub, i = 1, . . . ,N ,

(8.107)

with a small constant ε << 1. This reformulation is not covered in the theoretical
analysis and as such introduces inaccuracies in the numerical results compared to the
theoretical results. In fact, the control may take singular values in this case. Note that
despite the absolute value function in the cost this optimization problem can still be
solved using LP methods. For this purpose the control is split into its positive part u

[i]
+

and its negative part u
[i]
− . As the control is assumed bounded and given relative to its

trim value u0 this transformation is readily accomplished. Based on its positive and
negative part the control u[i] can be expressed as

u[i] = −u
[i]
− + u

[i]
+ , (8.108)
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and the problem formulation reads:

minimize
x[0], x[i], u

[i]
+/−, i = 1, . . . ,N

cTx[N ] + ε

N∑

i=1

1
(
u

[i]
+ + u

[i]
−

)

subject to Adx
[i] + Bdu

[i] − x[i−1] = 0, i = 1, . . . ,N ,

x[0] = 0,

xj,lb ≤ x
[i]
j ≤ xj,ub, i = 1, . . . ,N ,∀j ∈ Ib,

0 ≤ u
[i]
+ ≤ uub, i = 1, . . . ,N ,

0 ≤ u
[i]
− ≤ −ulb, i = 1, . . . ,N ,

u[i] = −u
[i]
− + u

[i]
+ , i = 1, . . . ,N

(8.109)

It is noteworthy, that from a clearance perspective the reduction ε0 of the clearance
criterion value when removing the penalty has a conservative bound of

ε0 ≤ ε

N∑

i=1

1
(
u

[i]
+ + u

[i]
−

)
, (8.110)

which for small ε is typically negligible compared to the value of the clearance cri-
terion itself. The other way round, if ε is chosen based on an acceptable error toler-
ance ε0 for the respective quantity under investigation the reformulation presents a
valid extension to the problem formulation from a practical perspective. Moreover,
the penalty may only be introduced for the variables corresponding to a time interval
t ∈ [t0, t2], t0 ≤ t2 ≤ tf . In Fig. 8.12 the numerical result obtained from following this
strategy with t2 = 2TSP ≈ 2.38 s are presented (black lines). Note that the control takes
the (singular) values of the trim control for the first interval t ∈ [t0, t1], t1 < t2 and is
regular on the remaining time interval t ∈ [t1, tf ]. This result solidifies the argument
presented in Sec. 8.1 regarding the non-decreasing value of the cost function with in-
creasing values of the final time tf . By employing the penalty approach the solver is
essentially pushed towards a particular solution which is to hold the system in the trim
condition for the first t1 seconds and then applies the worst-case control to minimize
the cost function.
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Figure 8.12: Optimal values for maximizing βK(tf ), tf = 7 s, including the cost function
βK(t) as well as the control Φc(t) (without penalty: blue; with penalty:
black). The control penalty is imposed on the control variables for the first
2.38 s and has a contribution to the cost function of 0.0011735 deg.

To investigate the Cat II type problem using solely the roll angle command, the po-
sition and rate limits for the aileron and rudder with finite bounds are reintroduced in
the problem formulation. The command is, as expected, less effective for both cases,
i.e. when maximizing βK(tf ) (cf. Fig 8.14) or ny(tf ) (cf. Fig 8.13). In particular, the con-
siderable control effort required to attain a negligible value for the AoS at the final
time point, as illustrated in Fig 8.14, forces the servomechanism of the aileron both
in the rate and position limits. Particularly noteworthy is the fact that solution ex-
hibits a sequence of regular and singular parts where the singular parts are of first-
and second-order. These singular parts correspond to constrained arcs for the aileron
rate constraints (first-order) and the aileron position constraints (second-order). Note
that as soon as the position limit of the aileron is reached the rate rapidly drops to zero
and remains at zero while the position bound is active. This result confirms the condi-
tion (8.24), i.e. xa,v(t) = 0 for the aileron rate state on an aileron position constrained
arc.
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Figure 8.13: Optimal results for the lateral plane using a Cat II model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the roll angle command
Φc(t), the switching function corresponding to the roll angle command SΦc(t),
the aileron rate xa,v(t), and the aileron position xa,p(t).
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Figure 8.14: Optimal results for the lateral plane using a Cat II model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the roll angle command
Φc(t), the switching function corresponding to the roll angle command SΦc(t),
the aileron rate xa,v(t), and the aileron position xa,p(t).
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Figure 8.15: Boundary control on rate and position constrained arcs of the aileron for the
maximization of the lateral load factor (top) and AoS (bottom). The control
values obtained from the discretized problem (Φc(t), blue) are compared to
the boundary control (Φc,b(t), red dots) according to the theoretical analysis.

Moreover, the boundary control can be estimated based on the condition for first-
and second-order state constraints of the aileron actuator states:

Φc,b(t) := − 1

ba,v

aTa,v




xa,p(t)

xr,p(t)

xa,v(t)

xr,v(t)

x̃lat(t)




(8.111)

The comparison of the boundary controls for maximizing the load factor and AoS be-
tween the solution of the discretized problem and the control predicted from the theo-
retical analysis is depicted in Fig. 8.15. Note that there is fast chattering visible on the
state constrained arc of first-order in the beginning of the time interval when maximiz-
ing the lateral load factor. A possible explanation may be again the low sensitivity of
control actions in the beginning of the time interval with respect to the cost function.
On all other parts the results regarding the values of the boundary controls match very
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well on both first- and second-order state constrained arcs.

Next, only the commanded lateral load factor ny,c(t) is used to maximize the lateral
load factor ny(tf ) and the AoS βK(tf ). For the maximization of ny(tf ) (cf. Fig. 8.16)
under the Cat I model the worst-case command represents a pulse in the second half
of the time interval. In case of the maximization of βK(tf ) (cf. Fig. 8.17) the control
switches only once. This switch takes place approximately in the middle of the time
interval. Note that in both cases the controls are completely regular. In case of the Cat
II models (cf. Fig. 8.18 and Fig. 8.19) the structure of the controls is similar. However,
there are singular parts close to the time points where the control switches in case of
the Cat I model. Here, the rudder rate state is on the limit and the control takes the
values of the boundary control. Similar to the other cases (cf. Eq. 8.105 and Eq. 8.111)
the boundary control corresponding to state constrained arcs of the rudder actuator
states can be computed from the condition

ny,c,b(t) := − 1

br,v
aTr,v




xa,p(t)

xr,p(t)

xa,v(t)

xr,v(t)

x̃lat(t)




, (8.112)

The comparison between the numerical values and the boundary control obtained
from Eq. (8.112) is depicted in Fig. 8.20 and appears to confirm the theoretical anal-
ysis.
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Figure 8.16: Optimal results for the lateral plane using a Cat I model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the lateral load factor
command ny,c(t), and the switching function corresponding to the lateral
load factor command Sny,c(t).
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Figure 8.17: Optimal results for the lateral plane using a Cat I model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the lateral load factor
command ny,c(t), and the switching function corresponding to the lateral
load factor command Sny,c(t).
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Figure 8.18: Optimal results for the lateral plane using a Cat II model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the lateral load factor
command ny,c(t), the switching function corresponding to the lateral load
factor command Sny,c(t), and the rudder rate xr,v(t).

143



8.2 Nominal Problems for Linearized Aircraft Dynamics

Figure 8.19: Optimal results for the lateral plane using a Cat II model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the lateral load factor
command ny,c(t), the switching function corresponding to the lateral load
factor command Sny,c(t), and the rudder rate xr,v(t).
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Figure 8.20: Boundary control on rate constrained arcs of the rudder for the maximiza-
tion of the lateral load factor (top) and AoS (bottom). The control values
obtained from the discretized problem (ny,c(t), blue) are compared to the
boundary control (ny,c,b(t), red dots) according to the theoretical analysis.
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Finally, the optimal solutions for combined control actions are presented and dis-
cussed. It is found that the (optimal) worst-case gust has a detrimental effect on all
clearance criteria. This is illustrated for the Cat I and Cat II clearance problems in the
longitudinal plane under the combined load factor command nz,c(t) and wind com-
mands (uW ,c(t) and wW ,c(t)) in Figs. 8.21-8.24. Observe that the optimal values of the
criteria including wind are considerably worse compared to the case without wind
(see Figs. 8.5-8.8). Note further that the worst-case wind commands are bang-bang
for all examples. The load factor command is bang-bang for the Cat I models (see
Fig. 8.21 and Fig. 8.22) and exhibits singular parts corresponding to state constrained
arcs of the elevator rate state (see Fig. 8.22 and Fig. 8.23). It is interesting that the
structure of the worst-case load factor command essentially remains unchanged com-
pared to the results without wind and the wind commands primarily seem to support
the control actions taken by the load factor command. In particular, some switches of
the command inputs appear to be very close (see for example the last switches of the
wind commands as well as the first switch of the normal wind command wW ,c(t) and
the load factor command nz,c(t) in Fig. 8.21). Observe that for the Cat II examples in
Fig. 8.23 and Fig. 8.24 the wind command is completely regular, i.e. of bang-bang type,
whereas the normal load factor command is singular when the elevator rate state is on
one of the bounds.
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Figure 8.21: Optimal results for the longitudinal plane using a Cat I model for maxi-
mizing nz(tf ), tf = 6 s with wind including the normal load factor nz(t),
the longitudinal wind velocity command uW ,c(t), the normal wind velocity
command wW ,c(t), and the normal load factor command nz,c(t).
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Figure 8.22: Optimal results for the longitudinal plane using a Cat I model for maximizing
αA(tf ), tf = 6 s with wind including the AoA αA(t), the longitudinal wind
velocity command uW ,c(t), the normal wind velocity command wW ,c(t), and
the normal load factor command nz,c(t).
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Figure 8.23: Optimal results for the longitudinal plane using a Cat II model for maxi-
mizing nz(tf ), tf = 6 s with wind including the normal load factor nz(t),
the longitudinal wind velocity command uW ,c(t), the normal wind velocity
command wW ,c(t), the normal load factor command nz,c(t), and the elevator
rate xe,v(t).

149



8.2 Nominal Problems for Linearized Aircraft Dynamics

Figure 8.24: Optimal results for the longitudinal plane using a Cat II model for maxi-
mizing αA(tf ), tf = 6 s with wind including the AoA αA(t), the longitudinal
wind velocity command uW ,c(t), the normal wind velocity command wW ,c(t),
the normal load factor command nz,c(t), and the elevator rate xe,v(t).
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For the lateral plane the optimal solutions for a combination of the lateral load fac-
tor command ny,c(t), the roll angle command Φc(t), and the lateral gust vW ,c(t) are
investigated. As for the longitudinal plane the basic structure of the load factor com-
mand and the roll angle command is quite similar to the cases when using only a single
command input. This can be seen as an indicator for a high roll/yaw decoupling in
the closed-loop system. Note that for the state constrained cases (see Fig. 8.27 and
Fig. 8.28) both controls exhibit a rather complicated sequence of regular and singular
parts with state constraint arcs of first- and second-order.

Figure 8.25: Optimal results for the lateral plane using a Cat I model for maximizing
ny(tf ), tf = 6 s with wind including the lateral load factor ny(t), the lateral
wind velocity command vW ,c(t), the lateral load factor command ny,c(t), and
the roll angle command Φc(t).
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Figure 8.26: Optimal results for the lateral plane using a Cat I model for maximizing
βA(tf ), tf = 6 s with wind including the AoS βA(t), the lateral wind velocity
command vW ,c(t), the lateral load factor command ny,c(t), and the roll angle
command Φc(t).
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Figure 8.27: Optimal results for the lateral plane using a Cat II model for maximizing
ny(tf ), tf = 6 s with wind including the lateral load factor ny(t), the lateral
wind velocity command vW ,c(t), the lateral load factor command ny,c(t), the
roll angle command Φc(t), the rudder rate xr,v(t), the aileron rate xa,v(t),
the rudder position xr,p(t), and the aileron position xa,p(t).
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Figure 8.28: Optimal results for the lateral plane using a Cat II model for maximizing
βA(tf ), tf = 6 s with wind including the AoS βA(t), the lateral wind velocity
command vW ,c(t), the lateral load factor command ny,c(t), the roll angle
command Φc(t), the rudder rate xr,v(t), the aileron rate xa,v(t), the rudder
position xr,p(t), and the aileron position xa,p(t).
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Recall that throughout this section the Backward Euler method is employed for
all examples and the discrete Minimum Principle (cf. Ref. [52]) is used to verify the
theoretical results. As mentioned before, this transcription method is found to produce
very clean results regarding the control functions. This is mainly observed to be the
case under Cat II type models (i.e. with state constraints) and clearly facilitates the
interpretation of the numerical results in the light of the theoretical developments from
Sec. 8.1.1 and Sec. 8.1.2. However, for example the Trapezoidal method shows to be
rather prone to the effect of control chattering (high frequency switches of the optimal
control) on state constrained arcs. This effect is illustrated for the longitudinal plane in
Fig. 8.29. In this figure, a detailed view of the optimal solution to the Cat II clearance

Figure 8.29: Optimal solutions of the Cat II problem for maximizing nz(tf ), tf = 6 s using
the Backward Euler method (blue line) and the Trapezoidal method (black
dashed line). Black star markers represent the mean control values between
two control discretization points of the Trapezoidal method and the red dots
are the values of the boundary control based on the theoretical analysis.

problem for maximizing nz(tf ), tf = 6 s using the normal load factor command nz,c(t)

is presented. The depicted detail shows the entry to a first-order state constrained arc
(elevator rate constraint) coming from a regular part of the control. Due to the finite
discretization the entry point is not exactly resolved and for both the Backward Euler
method (blue line) and the Trapezoidal method (black dashed line) the controls appear
to overshoot the entry of the arc. This may be interpreted as a compensatory action
in order to enter the arc caused by the restricted input space of the discretized control.
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Note that the control from the Backward Euler method (blue line) exhibits only a single
overshooting control variable and shows a clean discretized version of the boundary
control on the state constrained arc (red dots, estimated based on the theoretical results
using values from the Backward Euler solution). The control history corresponding to
the Trapezoidal method however heavily oscillates on the state constrained interval.
A possible explanation for this behavior is that for the Trapezoidal method the mean
state vector x

[i]
m := x[i]+x[i−1]

2
and mean control vector u

[i]
m := u[i]+u[i−1]

2
are in fact the

quantities entering the dynamic constraint (cf. Eq. (8.53)):

x[i] − hAx[i]
m − hBu[i]

m − x[i−1] = 0, i = 1, . . . ,N (8.113)

These mean controls for the Trapezoidal method are depicted in Fig. 8.29 (black star
markers). Note that these control values appear to be very close to the boundary con-
trol found from the Backward Euler method (blue line) and the boundary control esti-
mated by the theoretical results using the values of the Backward Euler solution (red
dots). Despite the observation that the lower order Backward Euler method produces
cleaner results for the control compared to the higher order Trapezoidal method does
not mean that higher order methods should not be used for the clearance task. At first,
it is important to mention that this chattering effect is not as harmful as it may seem at
first glance. The solution may not be as pleasing to the eye as a clean control history,
however the main figure obtained from the solution of the flight control law clear-
ance problem is the value of the criterion itself (which is essentially unaffected by this
phenomenon). Moreover, higher order schemes are expected to be considerably more
efficient than lower order schemes as the time required to solve the clearance problem
depends on the number of variables and constraints in the discretized problem. Com-
putational experience indicates that the solution time for a relatively coarse discretiza-
tion may be within the range of a few milliseconds whereas the solution times for a
very fine discretization spreads from several seconds to over minutes. The number
of variables and constraints is obviously lower if a higher order discretization scheme
is used as the time step length may be chosen larger which yields a fewer number of
variables and constraints. As such, it is found that the solvers find worst-case values
considerably faster if a higher order scheme is used which requires less discretization
points. As the approaches presented in the following sections are solely focused on
the value of the criterion a higher order scheme is applied instead of the Backward
Euler method. Here, the Trapezoidal scheme is used for simplicity as the focus in the
following is not on the choice of a particular discretization method but on the discus-
sion of the clearance approaches. However, it is important to mention that all schemes
presented in Sec. 6 yield LP problems under the Cat I and Cat II modeling approach
and may be employed to transcribe the optimal control problem.
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8.3 Parameter Dependent Clearance Problems

In the following section the Cat I and Cat II clearance problems including parame-
ter variations are investigated (cf. Sec. 8.3.1). On the one side, a bi-level algorithm
(cf. Sec. 8.3.2) is presented which can be employed to identify worst-case solutions (pa-
rameters in combination with optimal control actions) using global and local optimiza-
tion methods. In this context, results from post-optimal sensitivity analysis are used
to determine influential parameters regarding the worst-case solution and to obtain
derivative information for gradient-based methods. On the other side, the application
of generalized Polynomial Chaos (gPC) for the clearance task is proposed (cf. Sec. 8.3.3)
in order to efficiently determine statistical information concerning the clearance crite-
rion. (Contribution II, [84, 85])

8.3.1 Problem Statement

Consider the case where the dynamic system under investigation depends on param-
eters p ∈ Rnp . For the parameter dependent case it is useful to introduce the nonlinear
dynamic system f : Rnx × Rnu × Rnp → Rnx and the purely state dependent nonlinear
output equation modeling the criterion j : Rnx × Rnp → R

ẋ(t) := f (x(t), u(t), p) , (8.114)

y(t) := j (x(t), p) (8.115)

This system is assumed to be in a stationary condition, that is ẋ(t) = 0. The state and
control vectors at the reference flight condition x0 ∈ Rnx and u0 ∈ Rnu are thus defined
by the nt parameter dependent trim conditions r : Rnx×Rnu×Rnp → Rnt of the general
form

r (x0, u0, p) = 0, (8.116)

and the trim state vector x0 and control vector u0 implicitly depend on the parameters.
The behavior of the system around such trim points may be approximated as:

ẋ(t) ≈ ∂f

∂x

∣∣∣
x0,u0,p︸ ︷︷ ︸

:=A(x0,u0,p)

(x(t)− x0) +
∂f

∂u

∣∣∣
x0,u0,p︸ ︷︷ ︸

:=B(x0,u0,p)

(u(t)− u0) , (8.117)

y(t) ≈ j (x0, p) +
∂j

∂x

∣∣∣
x0,p︸ ︷︷ ︸

:=cT (x0,p)

(x(t)− x0) (8.118)
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Defining the admissible region for the parameters by a general inequality constraint
function gp : Rnp → Rng , i.e.

gp(p) ≤ 0, (8.119)

and under the linearized dynamic equation (8.117) and output equation (8.118) the
parameter dependent Cat II problem is stated as follows

minimize
u(t), p, x0, u0

j (x0, p) + cT (x0, p) (x(tf )− x0)

subject to ẋ(t)−A (x0, u0, p) (x(t)− x0)−B (x0, u0, p) (u(t)− u0) = 0,

xj,lb ≤ xj(t) ≤ xj,lb, ∀j ∈ Ib,
x(t0) = x0,

gp(p) ≤ 0,

r (x0, u0, p) = 0,

u(t) ∈ U ,

t ∈ I t.

(8.120)

Note that this problem cannot be treated anymore as linear due to the nonlinearity
introduced through the parameter dependency. In particular, a discretization of this
problem using direct transcription methods yields a Nonlinear Programming (NLP)
problem of high dimension (optimization variables and constraints). The nonlinearity
on the one side and the dimension of the problem (typically several thousands) on the
other represents the two main challenges for solving this parameter dependent ver-
sion of the Cat II type clearance problem. Note that as in the nominal case, the Cat II
type problem reduces to a Cat I type problem for Ib = ∅. On the one hand, gradient-
based NLP methods may be employed for the numerical solution in order to efficiently
solve the high dimensional problem. However, the optimization problem (8.120) is by
no means trivial due to the simultaneous determination of the worst-case parameter
combination with the worst-case controls under the trim constraint. As such, these
methods can easily get trapped in local solutions and it is not possible to guarantee
that the global worst-case as for the LP approach in the nominal case is found. On the
other hand, it may be tempting to employ global optimization algorithms to increase
the chance of finding a global minimizer. Unfortunately, these methods only operate
efficiently for low dimensional parameter spaces (typically several tens). In order to
resolve this conflict, a decomposition approach is proposed for the parameter depen-
dent clearance task which separates the search in the parameter space from the optimal
control problem. For this decomposition approach the problem is split into two levels.
The higher level treats the parameter dependency and the lower level solves LP prob-
lems for fixed parameter values. This lower level is of a similar form as the one used
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for the nominal clearance problem. In particular, the trim condition is evaluated inter-
nally in the lower level and does not need to be exposed to the optimization algorithm.
On the one side, this approach directly leverages the efficiency of LP algorithms for
finding global solutions to the nominal, high dimensional lower level problem. On the
other side, the upper level problem is of low dimension for most clearance problems
which enables the use of global parameter optimization methods. Besides the use of
global algorithms it is observed that gradient-based schemes are highly effective for
the upper level but merely require a fraction of the computational cost associated with
global methods.

In addition, it is noteworthy that the decomposition approach is modular in the
sense that it may be used for applications where the parameters are uncertain, that is
subject to a distribution. In the sequel of this chapter a generalized Polynomial Chaos
(gPC) approach is employed to obtain statistical information regarding the clearance
criterion under investigation. Here, the upper level is replaced by a gPC-solver which
requires the solution of deterministic problems in the lower level, i.e. the same two-
level setup can be used.

8.3.2 Bi-level Worst-Case and Post-optimal Sensitivity Analysis

Under the proposed decomposition approach, the parameters p are optimized within
the admissible region defined by gp(p) ≤ 0 in the upper level

minimize
p

ĵLL (p)

subject to gp (p) ≤ 0,
(8.121)

where ĵLL (p) represents the optimal cost function value of the lower level problem
depending on the values of the parameter p. In the lower level, the trim constraint
is imposed by explicitly solving the trim condition for the trim state x̂0(p) and trim
control û0(p) based on the parameter vector p = p0 provided from the upper level:

r (x0(p), u0(p), p) = 0→ x̂0(p), û0(p) (8.122)

Hence, the implicit parameter dependencies of the system matrix A(x̂0(p), û0(p), p),
control matrix B(x̂0(p), û0(p), p), as well as the cost vector c(x̂0(p), p) are exposed and
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the parameter dependent LP problem in the lower level is

minimize
u(t)

cT (x̂0(p), p)x(tf )

subject to ẋ(t) = A (x̂0(p), û0(p), p) (x(t)−x̂0(p)) + B (x̂0(p), û0(p), p) (u(t)−û0(p)) ,

x(t0) = x̂0(p),

xj,lb ≤ xj(t) ≤ xj,lb, ∀j ∈ Ib,
u(t) ∈ U ,

t ∈ I t,
(8.123)

which yields the optimal cost function value ĵLP (p) := cT (x̂0(p), p)x̂(tf ) depending on
the parameter p and returns

ĵLL(p) := ĵLP (p) + j (x̂0(p), p)− cT (x̂0(p), p)x̂0(p), (8.124)

to the upper level. Note that using this decomposition approach the dynamic opti-
mization problem (8.123) in the lower level is reduced to a Cat II type clearance prob-
lem. This problem can be solved to global optimality using the transcription process
presented in Sec. 8.1.3. In the following the Trapezoidal method using a step size h is
employed for which the discretized problem can be written as

minimize
x[i], u[i], i = 0, . . . ,N

cT (x̂0(p), p)x[N ]

subject to r0(p)=A−d (p)x[i−1]+A+
d (p)x[i]+Bd(p)

(
u[i]+u[i−1]

)
, i = 1, . . . ,N ,

x[0] = x̂0(p),

xj,lb ≤ x
[i]
j ≤ xj,ub, i = 1, . . . ,N ,∀j ∈ Ib,

ulb ≤ u[i] ≤ uub, i = 0, . . . ,N ,

(8.125)

with

A+
d (p) := I− h

2
A(x̂0(p), û0(p), p), (8.126)

A−d (p) := −I− h

2
A(x̂0(p), û0(p), p), (8.127)

Bd(p) := −h
2

B(x̂0(p), û0(p), p), (8.128)

r0(p) := −h [A(x̂0(p), û0(p), p)x̂0(p) + B(x̂0(p), û0(p), p)û0(p)] . (8.129)

It is noteworthy, that the control and state variables subject to optimization are not rela-
tive to the trim condition and, as such, the state and control bounds represent absolute
limits. This problem formulation can be written in the form of a parameter dependent
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LP problem
minimize
z̄ ∈ Rnz̄

v̄T (p)z̄

subject to Mh (p) z̄ = bh(p),

Mgz̄ ≤ bg,

(8.130)

with the nz̄ = (N + 1)nx + (N + 1)nu dimensional parameter vector z̄ ∈ Rnz̄ defined as

z̄ :=
[(

x[0]
)T

, . . . ,
(
x[N ]

)T
,
(
u[0]
)T

, . . . ,
(
u[N ]

)T]T
, (8.131)

the cost vector v̄(p) ∈ Rnz̄ of the form

v̄(p) :=
[
0, . . . , cT (x̂0(p), p), 0, . . . , 0

]T
, (8.132)

as well as the equality constraint matrix Mh(p) ∈ Rnh×nz̄ ,nh = (N + 1)nx

Mh(p):=




I 0 . . . 0 0 0 0 . . . 0 0

A−d (p) A+
d (p) . . . 0 0 Bd(p) Bd(p) . . . 0 0

...
... . . . ...

...
...

... . . . ...
...

0 0 . . . A−d (p) A+
d (p) 0 0 . . . Bd(p) Bd(p)




,

(8.133)

and the right-hand side vector bh(p) ∈ Rnh

bh(p) :=




x̂0(p)

r0(p)
...

r0(p)




. (8.134)

The inequality constraint matrix Mg ∈ Rng×nz̄ ,ng = (N − 1)nx + Nnu and the right-
hand side vector bg ∈ Rng have exactly the form in Eq. (8.50) with the only difference
being that each of the vectors xlb and xub is repeatedN−1 times and the vectors ulb and
uub are repeated N times in the right-hand side vector bg. Note that in case a control

161



8.3 Parameter Dependent Clearance Problems

penalty is introduced, the problem formulation may be extended to the LP problem

minimize
x[i], u

[i]
+/−, i = 0, . . . ,N

cT (x̂0(p), p)x[N ] + ε

N∑

i=0

1
(
u

[i]
+ + u

[i]
−

)

subject to r0(p)=A−d (p)x[i−1]+A+
d (p)x[i]+Bd(p)

(
u[i]+u[i−1]

)
, i = 1, . . . ,N ,

x[0] = x0(p),

xj,lb ≤ x
[i]
j ≤ xj,ub, i = 1, . . . ,N ,∀j ∈ Ib,

0 ≤ u
[i]
+ ≤ u+

ub, i = 0, . . . ,N ,

0 ≤ u
[i]
− ≤ u−lb, i = 0, . . . ,N ,

u[i] = −u
[i]
− + u

[i]
+ , i = 0, . . . ,N ,

(8.135)

similar to the problem formulation (8.109) with suitable limits u+
ub and u−lb. The penalty

constant ε is defined as
ε :=

ε0
(N + 1)1 (uub − ulb)

, (8.136)

where ε0 represents a tolerance for the clearance criterion which may be accepted from
a practical perspective. The potential reduction of the cost function when removing
the penalty is strictly smaller or equal to ε0 in this case.

For typical clearance applications the dimension in the high level search, being the
number of parameters np, is low compared to the lower level LP problem. Conse-
quently, even a gradient-free, global algorithm can be employed. Global optimization
methods which utilize values of the cost function at certain points in the parameter
space are easily applied as the lower level merely needs to be solved and the cost
function returned to the upper level. It is noteworthy that the operations required to
evaluate the lower level are computationally cheap. The solution of the trim condi-
tion is typically achieved in the range of a few milliseconds and for the solution of the
LP problem there exist highly efficient solvers (cf. Sec. 4.3). Besides the use of global
algorithms, local gradient-based schemes may be employed which are very efficient
in finding extremal points. The effectiveness of these methods can additionally be
improved if the problem is started from randomized initial values which mitigates the
local nature of these methods. The numerical examples presented at the end of this sec-
tion indicate that the bi-level approach using gradient-based methods often converge
in a few iterations which allows for the initialization of the optimization scheme from
several tens or even hundreds of points. For gradient-based methods first and possi-
bly second-order derivative information is required. The computation of derivatives
for the cost function is more involved for the bi-level setup compared to a standard op-
timization problem due to the implicit dependence of the upper level on the optimal
solution of the lower level problem. In particular, the upper level problem requires
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derivative information of the cost function with respect to the parameters in the lower
level problem. In the following the definitions from Sec. 4.3 for the standard form are
used to streamline the discussion and the derivations. This standard form depending
on the parameter vector p reads

minimize
z ∈ Rnz

cTs (p)z

subject to Ms(p)z = bs(p),

z ≥ 0,

(8.137)

with the optimization variable vector z ∈ Rnz , the cost vector, cs ∈ Rnz , constraint
matrix Ms ∈ Rnc×nz , and the right-hand side vector bs(p) ∈ Rnc . The parameter de-
pendent Lagrangian of this standard form is defined as:

L (z,λ,µ; p) := cTs (p)z + λT (Ms(p)z− bs(p))− µTz (8.138)

In order to provide efficient formulas for calculating the derivatives of the upper level
problem, results from post-optimal sensitivity analysis are employed.

Post-optimal sensitivity analysis is well established for LP problems [86, 87, 56, 88].
In most references the sensitivities of the optimal point or the optimal cost function
value are investigated separately depending on the type of influence in the different
parts (right-hand side, constraint matrix, cost coefficients) of the LP problem. The the-
orem from Ref. [66] however provides the cost function derivatives in a very general
setting, i.e. the dependency on the parameters within the LP problem can be essen-
tially of arbitrary type. Let J(z; p) = cTs (p)z denote the cost function of the parameter
dependent problem and h(z; p) = Ms(p)z−bs(p) denote the equality constraints. The
total derivative of the optimal cost function value is equal to the partial derivative of
the Lagrangian with respect to the parameters p [66] which for LP problems can be
expressed as:

dJ

dp
=
∂L
∂p

= zT
∂cs
∂p

+ λT
∂h

∂p
(8.139)

All quantities in Eq. (8.139) need to be evaluated at a KKT point
(
ẑ, λ̂, µ̂

)
for a nominal

parameter value p = p0.

Using this first-order derivative information for the cost function from Eq. (8.139),
a gradient method may be used in the upper level. In order to speed up convergence
using Newton-type iterations it is advisable to provide not only information regarding
the first derivatives but also the Hessian of the cost function, or an approximation
thereof (cf. Sec. 3.4.1).

Superior convergence properties are typically obtained when utilizing the exact
Hessian of the cost function, which requires the second-order post-optimal sensitiv-
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ities of the cost function with respect to the parameters. This case is not covered in
Ref. [66] but a formula for the general nonlinear case is provided in Ref. [65].

However, for LP problems this second-order information can be obtained very effi-
ciently as shown in the following. Under the assumption of a basic feasible optimal
solution for which the strict complementarity condition (4.25) holds, the following
proposition provides a formula for the computation of second-order derivative infor-
mation of the optimal cost function with respect to parameters.

Proposition: Second-order Cost Sensitivity for Linear Programming
Let

(
ẑ, λ̂, µ̂

)
be a basic feasible optimal point with basis MB and basic variables zb > 0 of

the parameter dependent LP (8.137) satisfying the strict complementarity condition. Then, the
LP problem has a unique solution in a neighborhood around the nominal parameter and the
second-order cost sensitivities can be expressed as:

d2J

dp2
=
∂2L
∂p2
−
(
D + DT

)
, D =

∂2L
∂p∂zb

M−1
B

∂h

∂p
(8.140)

The cost and constraint functions of the LP need to be at least twice continuously differentiable
and all quantities are evaluated at the optimal point for a nominal value p = p0.

Proof: Consider the augmented optimization problem (cf. Ref. [66])

minimize
z, p̃

cT (p̃)z

subject to Ms(p̃)z = b(p̃),

p̃ = p,

z ≥ 0,

(8.141)

at a nominal parameter value p = p0 with the corresponding LagrangianLA (z,λ,µ, p̃; p):

LA (z,λ,µ, p̃; p) := cT (p̃)z + λT (Ms(p̃)z− b(p̃))− µTz + ηT (p̃− p) (8.142)

This Lagrangian of the augmented problem may be written in terms of the Lagrangian
L (z,λ,µ, p̃) corresponding to the original problem (without the parameter embedding
constraint) as:

LA (z,λ,µ, p̃; p) = L (z,λ,µ, p̃) + ηT (p̃− p) (8.143)
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Moreover, the KKT conditions of the augmented problem can be expressed as follows

(
∂L
∂z

)T
= 0, (8.144)

(
∂L
∂p̃

)T
+ η = 0, (8.145)

h(z, p̃) = 0, (8.146)

p̃− p = 0, (8.147)

Zµ = 0, (8.148)

µ ≥ 0, (8.149)

z ≥ 0, (8.150)

with
(
∂L
∂z

)T
= MT

s (p̃)λ − µ + c(p̃), h(z, p̃) = Ms(p̃)z − b(p̃), and Z = diag(z). Note
that there are two additional conditions compared to the original problem due to the

parameter embedding constraint, namely
(
∂L
∂p̃

)T
= −η and p̃ = p. Obviously, this

augmented problem has the same optimal cost function value as the problem without
the parameter embedding constraint. For the solution to remain optimal in a neighbor-
hood of the nominal parameter p0 the total derivative dF

dp
of the first-order conditions

(8.144)-(8.148) defined by

F(v(p); p) :=




(
∂L
∂z

)T
(
∂L
∂p̃

)T
+ η

h(z, p̃)

p̃− p

Zµ




= 0, (8.151)

with vT :=
[
zT , p̃T ,λT ,ηT ,µT

]
needs to satisfy dF

dp
= 0 which implies

∂F

∂v

∂v

∂p
= −∂F

∂p
, (8.152)

or explicitly 


0 ∂2L
∂z∂p̃

MT
s 0 I

∂2L
∂p̃∂z

∂2L
∂p̃2

(
∂h
∂p̃

)T
I 0

Ms
∂h
∂p̃

0 0 0

0 I 0 0 0

M 0 0 0 Z







dz
dp

dp̃
dp

dλ
dp

dη
dp

dµ
dp




=




0

0

0

I

0




, (8.153)

165



8.3 Parameter Dependent Clearance Problems

with M := diag(µ). Due to the strict complementarity condition z+µ > 0 the matrices
M and Z can be expressed as

M =


0 0

0 Mn


 , Z =


Zb 0

0 0


 , (8.154)

with Mn := diag (µn) and Zb := diag (zb) as the variables µb and zn are zero at a basic
feasible optimal point (see the definitions of basic and non-basic variables in Sec. 4.3).
Together with the partitioning of Ms(p̃) in [MB, MN ], as well as z in [zb, zn], and simi-
larly µ in [µb,µn], Eq. (8.153) can be expanded to:




0 0 ∂2L
∂zb∂p̃

MT
B 0 I 0

0 0 ∂2L
∂zn∂p̃

MT
N 0 0 I

∂2L
∂p̃∂zb

∂2L
∂p̃∂zn

∂2L
∂p̃2

(
∂h
∂p̃

)T
I 0 0

MB MN
∂h
∂p̃

0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 Zb 0

0 Mn 0 0 0 0 0







dzb
dp

dzn
dp

dp̃
dp

dλ
dp

dη
dp

dµb
dp

dµn
dp




=




0

0

0

0

I

0

0




(8.155)

The fifth row block matrix equation simply expresses the consistent result dp̃
dp

= I for
the total differential of the parameters p̃ with respect to the parameters p. The last two
row block matrix equations yield

Zb
dµb
dp

= 0→ dµb
dp

= 0, (8.156)

Mn
dzn
dp

= 0→ dzn
dp

= 0, (8.157)

as the matrices Mn and Zb are both diagonal matrices with strictly positive entries on
the main diagonal. Note that this result reflects the requirement that the variables µb
and zn remain zero and the basis matrix MB is unchanged in a neighborhood of the
solution around p0. From the first and fourth row block matrix equations the total
derivatives of the Lagrange multipliers λ and the basic variables zb are obtained as

∂2L
∂zb∂p̃

+ MT
B

dλ

dp
= 0→ dλ

dp
= −

(
MT

B

)−1 ∂2L
∂zb∂p̃

, (8.158)

MB
dzb

dp
+
∂h

∂p̃
= 0→ dzb

dp
= −M−1

B

∂h

∂p̃
. (8.159)
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Furthermore, for completeness, the second row block matrix equation yields:

∂2L
∂zn∂p̃

+ MT
N

dλ

dp
+
dµn
dp

= 0→ dµn
dp

= − ∂2L
∂zn∂p̃

+ MT
N

(
MT

B

)−1 ∂2L
∂zb∂p̃

(8.160)

Finally, note that the negative multiplier η corresponding to the parameter embed-
ding constraint represents the first-order cost sensitivity with respect to the parameter
p, i.e. dJ

dp
= ∂L

∂p̃
= −ηT (cf. Eq. (8.139)). Together with the third row block matrix equa-

tion
∂2L
∂p̃∂zb

dzb
dp

+
∂2L
∂p̃2 +

(
∂h

∂p̃

)T
dλ

dp
+
dη

dp
= 0, (8.161)

the relationship for the second-order cost sensitivity in Eq. (8.140) is readily derived

d2J

dp2
=

d

dp

(
dJ

dp

)
= −dη

dp
(8.162)

=
∂2L
∂p̃∂zb

dzb
dp

+
∂2L
∂p̃2 −

(
∂h

∂p̃

)T
dλ

dp
(8.163)

= − ∂2L
∂p̃∂zb

M−1
B

∂h

∂p̃
+
∂2L
∂p̃2 −

(
∂h

∂p̃

)T (
MT

B

)−1 ∂2L
∂zb∂p̃

(8.164)

= − ∂2L
∂p̃∂zb

M−1
B

∂h

∂p̃
+
∂2L
∂p̃2 −

(
∂h

∂p̃

)T (
M−1

B

)T
(

∂2L
∂p̃∂zb

)T
(8.165)

= − ∂2L
∂p̃∂zb

M−1
B

∂h

∂p̃
+
∂2L
∂p̃2 −

(
∂h

∂p̃

)T (
∂2L
∂p̃∂zb

M−1
B

)T
(8.166)

= − ∂2L
∂p̃∂zb

M−1
B

∂h

∂p̃
+
∂2L
∂p̃2 −

(
∂2L
∂p̃∂zb

M−1
B

∂h

∂p̃

)T
, (8.167)

completing the proof.
Observe that the formula for the post-optimal second-order cost function sensitivity is
efficient as the sparse linear system

MB
dzb

dp
= −∂h

∂p
, (8.168)

only needs to be computed once and the remaining operations merely involve (typi-
cally sparse) matrix multiplications and additions.

The bi-level method is illustrated in the following using both models introduced in
Sec. 8.2.1, that are the models for the lateral and the longitudinal plane. First, the post-
optimal sensitivities with respect to parameters for nominal solutions from Sec. 8.2.2
are presented. These nominal solutions are obtained from the Cat I and Cat II prob-
lems using combined control inputs, i.e. the clearance problem (8.81) for the longi-
tudinal plane and (8.101) for the lateral plane with tf = 6 s. Additionally, the trim
condition is considered according to Eq. (8.124) from which the absolute value of the
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worst-case cost function is obtained. It is noteworthy that besides the utilization of
the post-optimal sensitivities in the bi-level setup they can be seen as a tool on its own
in the context of optimal control based clearance to identify influential parameters.
The author would like to emphasize that the post-optimal sensitivities discussed in the
following represent the sensitivities for the optimal solutions of the nominal clearance
problems. This means that, as opposed to the sensitivities regarding the solution to
initial value problems (i.e. simulations), the post-optimal sensitivities indicate how the
worst-case may change under parameter variations. These sensitivities can be obtained
efficiently based on Eq. (8.139) for arbitrary parameters in the closed-loop system.

In the following the parameters for the post-optimal sensitivity analysis in the lon-
gitudinal plane represent uncertainties related to the pitch stiffness ∆Mα, pitch damp-
ing ∆Mq, elevator effectiveness ∆Mη, mass ∆m, moment of inertia around the yB-axis
∆Iyy, and the distance ∆xRG of the neutral point (N ) from a reference point (R). All
of these parameters are introduced as multiplicative uncertainties for the respective
quantities with nominal value zero and the parameter ∆xRG is scaled such that for
∆xRG = −1 the center of gravity would coincide with the neutral point. Addition-
ally, the reference velocity Vref and reference height href at the linearization point are
considered as parameters. The sensitivities corresponding to a maximization of the
normal load factor nz(tf ) and the aerodynamic AoA αA(tf ) using the normal load fac-
tor command nz,c(t) in combination with the wind commands uW ,c(t) and wW ,c(t) are
depicted in Fig. 8.30 and Fig. 8.31. In each chart the sensitivities are shown both for
the Cat I (blue) and Cat II (black) type model. In order to facilitate the interpretation
of the sensitivities the values are provided as normalized and absolute values. Ob-
serve that the indications regarding the parameter sensitivities related to the Cat I and
Cat II type clearance problems are similar. This is most likely contributed to the fact
that despite the singular intervals in the Cat II cases the worst-case inputs exhibit a
comparable structure for the optimal control actions under Cat I and Cat II models
(cf. Figs. 8.21-8.28). For both the maximization of the load factor (Fig. 8.30) and AoA
(Fig. 8.31) high influences are identified for the parameters ∆xRG and ∆Mα. This result
is not unexpected as both quantities are indicators for the static stability and in particu-
lar robustness with respect to disturbances in the longitudinal plane. Additionally, the
parameters associated with the mass ∆m and the moment of inertia ∆Iyy show high
sensitivities. The reference velocity Vref and height href however appear to have little
to no influence on the worst-case cost function values.

For the lateral plane the parameters under investigation are uncertainties related
to the Dihedral stability ∆Lβ , Weathercock stability ∆Nβ , roll and yaw damping ∆Lp,
∆Lr, ∆Nr, aileron and rudder effectiveness ∆Lξ, ∆Lζ , ∆Nζ as well as the moments of
inertia around the xB-axis ∆Ixx and the zB-axis ∆Izz. As for the longitudinal model
all of these parameters represent multiplicative uncertainties centered at zero. The

168



Chapter 8: Optimal Control Based Clearance for Linear and Quasi-linear Systems

Figure 8.30: Post-optimal sensitivities for maximizing nz(tf ), tf = 6 s under a Cat I (blue)
and Cat II (black) type model using the normal load factor command nz,c(t)
as well as the wind commands uW ,c(t) and wW ,c(t).

sensitivities for the maximization of the lateral load factor ny(tf ) and the aerodynamic
AoS βA(tf ) using the lateral load factor command ny,c(t) in combination with the roll
angle command Φc(t) and wind command vW ,c(t) are depicted in Fig. 8.32 and Fig. 8.33.
For the lateral plane the uncertainties corresponding to the Weathercock stability ∆Nβ

and the moment of inertia ∆Izz around the yaw axis are influential parameters for
both the maximization of the lateral load factor (see Fig. 8.32) and the aerodynamic
AoS (see Fig. 8.33). Moreover, the parameter related to the rudder effectiveness ∆Nζ

appears to play a crucial role for the maximization of the AoS (cf. Fig. 8.33). Note that
the control actions primarily excite the yaw motion in the worst-case solutions (see
Figs. 8.25-8.28). As such, it is reasonable that these quantities exhibit a high sensitivity
regarding the optimal cost function values. Conversely, the quantities corresponding
to the roll motion (roll moment coefficients and aileron effectiveness) only seem to play
a minor role. As for the longitudinal model the reference velocity and height have a
negligible effect on the optimal values of the criteria.
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Figure 8.31: Post-optimal sensitivities for maximizing αA(tf ), tf = 6 s under a Cat I
(blue) and Cat II (black) type model using the normal load factor command
nz,c(t) as well as the wind commands uW ,c(t) and wW ,c(t).

Figure 8.32: Post-optimal sensitivities for maximizing ny(tf ), tf = 6 s under a Cat I (blue)
and Cat II (black) using the lateral roll angle command Φc(t), the lateral
load factor command ny,c(t) as well as the wind command vW ,c(t).
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Figure 8.33: Post-optimal sensitivities for maximizing βA(tf ), tf = 6 s under a Cat I
(blue) and Cat II (black) type model using the lateral roll angle command
Φc(t), the lateral load factor command ny,c(t) as well as the wind command
vW ,c(t).
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To illustrate the bi-level optimization approach a subset of influential parameters
is considered. In case of the longitudinal plane these parameters are collected in the
vector plon ∈ R6:

plon =
[
∆Mα, ∆Mq, ∆Mη, ∆m, ∆Iyy, ∆xRG

]T
(8.169)

Similarly, for the lateral model the parameter vector plat ∈ R6 is introduced:

plat = [∆Lβ, ∆Lp, ∆Nβ, ∆Nζ , ∆Ixx, ∆Izz]
T (8.170)

The acceptable accuracy of the clearance criteria is set to ε0 = 0.001 for all criteria which
yields ε0 · 180deg/π ≈ 0.0573 deg for the aerodynamic angles αA(tf ) and βA(tf ). For all
numerical results the Trapezoidal transcription (cf. LP problem (8.135)) is employed
and the tolerance ε0 is used to impose penalties on all controls according to Eq. (8.136).
Moreover, the final time is set to tf = 8 s ≈ 7TSP which is slightly higher compared
to the nominal cases presented in Sec. 8.2.2 where a final time of tf = 6 s is used. It
is noteworthy that the approaches in the sequel of this chapter purely focus on the
optimal value of the cost function. The convergence of the optimal criteria values for
the longitudinal and lateral plane using the Cat II models with h = 0.005 s, . . . , 0.25 s

are depicted in Figs. 8.34-8.37. Additionally, the normalized times required to numer-
ically solve the LP problems are provided for all four criteria (αA(tf ), nz(tf ), βA(tf ),
ny(tf ), tf = 8 s). Moreover, the respective tolerance intervals are illustrated relative
to the solution with the smallest discretization step length h = 0.005 s (green boxes).
First, observe that the values of all criteria appear to exhibit values within the toler-
ances for relatively coarse discretization step lengths. In addition, for smaller step
sizes h . 0.05 s the solution of the LPs appears to require a rapidly increasing amount
of computational work with little effect on the worst-case values from a practical per-
spective. In the following the step length for all analyses is chosen as h = 0.025 swhich
based on the convergence studies is expected to yield sufficiently accurate approxima-
tions of the optimal cost function values for all criteria below the selected tolerances.
Regarding the efficiency of the numerical solution of the LPs it is important to mention
that the approaches discussed in the following rely on the solution of a high number
of LP problems (> 1000 for some methods). In many cases these problems differ only
slightly depending on the value of the parameter vector. Moreover, the structure of
the discretized problem is unaltered if a constant discretization step length is used.
To improve the efficiency for the solution of a large number of these similar clearance
problems the optimal basis matrix returned after each solution of a LP problem is used
to warm-start the next LP problem. Moreover, each warm-started LP problem is solved
with the Concurrent strategy in CPLEX 12.9 for which several algorithms are run in an
opportunistic parallel mode [57]. Computational experience suggests that these two
strategies considerably speed up the numerical solution.
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Figure 8.34: Maximization of αA(tf ), tf = 8 s (Cat II): Optimal cost function values (top)
and solution time (bottom) for discretization step sizes h = 0.005, . . . , 0.25 s.

Figure 8.35: Maximization of nz(tf ), tf = 8 s (Cat II): Optimal cost function values (top)
and solution time (bottom) for discretization step sizes h = 0.005, . . . , 0.25 s.
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Figure 8.36: Maximization of βA(tf ), tf = 8 s (Cat II): Optimal cost function values (top)
and solution time (bottom) for discretization step sizes h = 0.005, . . . , 0.25 s.

Figure 8.37: Maximization of ny(tf ), tf = 8 s (Cat II): Optimal cost function values (top)
and solution time (bottom) for discretization step sizes h = 0.005, . . . , 0.25 s.
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The bi-level optimization of the parameter dependent longitudinal and lateral Cat
II models is performed using two different kinds of limits regarding the admissible pa-
rameter region. The first kind allows all parameters to vary between ±10%, i.e. simple
box bounds are used. For the second kind a subset of uncertain parameters (aerody-
namic coefficients) are constrained to a region which contains a 1 − α portion of the
probability mass. The motivation behind the second type of constraint is as follows: If
no worst-case value in the admissible region is found which exceeds a certain critical
limit and if the solution is global then the exceedance probability of this criterion is at
most α.

For the box-bounded case the following optimization algorithms for the higher
level are used to benchmark the approach:

� Gradient-based (Jacobian): The Sequential Quadratic Programming (SQP) solver
from the fmincon()-function in MATLAB® with Quasi-Newton Hessian approx-
imation is used. This solver is able to handle nonlinear inequality constraints as
well as linear equality and inequality constraints. The optimality tolerance for
this solver is set to 10−4.

� Gradient-based (Jacobian and Hessian): The Trust-Region-reflective (TR) solver
from the fmincon()-function in MATLAB® is employed. This solver can handle
simple box bounds and linear equality constraints. As for the SQP solver the
optimality tolerance is set to 10−4.

� Global (Stochastic): The surrogate optimization (SR) algorithm surrogateopt()

introduced in MATLAB® R2018B is used. This solver is designed for the global
optimization of time-consuming objective functions subject to box-bounds and
nonlinear inequality constraints. The algorithm constructs a surrogate model at
random points using radial basis functions and searches for a minimum with
a sampling based approach. It is found that this solver converges quickly for
the clearance problems under investigation. As such, the maximum number of
function evaluations is set to 50 as a termination criterion.

� Global (Deterministic): The DIRECT algorithm (DR, cf. Ref. [19]) using the im-
plementation from Ref. [89] is employed. This solver divides the search space
with a particular strategy that balances local and global search subject to box-
bounds. In particular, this algorithm “is guaranteed to converge to the globally opti-
mal function value if the objective function is continuous - or at least continuous in the
neighborhood of a global optimum” [19]. This arguments holds if the number of iter-
ations goes to infinity - it is clear that in practice the search needs to be stopped
at some point. Here, the maximum number of iterations is chosen as 50.
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The results for the box-bounded case of the longitudinal Cat II model are summarized
in Tab. 8.1 and Tab. 8.2. Moreover, the results for the lateral Cat II model are pre-
sented in Tab. 8.3 and Tab. 8.4. The reference values for the nominal problems are
α̂A,0(tf ) = 11.3172 deg, n̂z,0(tf ) = 1.8259, β̂A,0(tf ) = 12.7957 deg, and n̂y,0(tf ) = 0.2691.
It is noteworthy that, as opposed to the results in Sec. 8.2.2, the values of the criteria
presented here are not relative to the trim condition but absolute.

Observe that the worst-case criterion values at the optimal parameter combinations
presented in Tabs. 8.1-8.4 are considerably higher compared to the nominal values.
Moreover, the solvers seem to yield very consistent results regarding both the optimal
criterion values and the worst-case parameter combinations. The parameters almost
exclusively converge to one of the bounds. In some cases intermediate values are ob-
served (see for example ∆L̂p in Tab. 8.3). However, for these cases the criterion values
seem to be of comparable magnitude. This may be seen as an indication that the crite-
rion is only depending weakly on these parameters and the solvers simply converge to
one particular point based on the termination criterion. The gradient-based schemes
appear to work very efficiently and converge within a few iterations. This is true for
both the SQP solver with Quasi-Newton Hessian update and the TR solver with the
exact Hessian. For the maximization of αA(tf ) both solvers (SQP, TR) require the so-
lution of a comparable amount of LPs until convergence. For the maximization of
nz(tf ) the SQP method requires less solutions than the TR method and for the maxi-
mization of βA(tf ) and ny(tf ) the TR method appears to be more efficient. In all cases
(cf. Tabs. 8.1-8.4) the worst-case parameter combinations of the Cat I and Cat II type
clearance problems are very similar.

Note that for the longitudinal Cat I and Cat II models the pitch stiffness and pitch
damping are decreased and the center of gravity is moved towards the neutral point.
These parameter changes decrease the stability of the aircraft which seems a reasonable
result from a flight mechanical perspective. Moreover, the elevator effectiveness is
increased which essentially augments the effect of the worst-case control actions. Also
the moment of inertia around the yB-axis is increased, whereas the mass is on the upper
bound for the maximization of αA(tf ) and on the lower bound for the maximization of
nz(tf ). In the lateral cases, i.e. the maximization of βA(tf ) (see Tab. 8.3) and ny(tf ) (see
Tab. 8.4) the Weathercock and Dihedral stability is lowered and the moments of inertia
for both axes (roll and yaw) are increased. As mentioned above the roll damping ∆L̂p

appears to have little influence the worst-case value for the maximization of βA(tf ).
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Table 8.1: Bi-level optimzation results (box-bounded parameters) for the maximization
of αA(tf ) using the normal load factor command nz,c(t) as well as the wind
commands uW (t) and wW (t).

Solver α̂A(tf ) nLP ∆M̂α ∆M̂q ∆M̂η ∆m̂ ∆Îyy ∆x̂RG

SQP 14.166 [deg] 7 −0.100 −0.100 0.100 0.100 0.100 −0.100

TR 14.165 [deg] 6 −0.100 −0.100 0.100 0.100 0.100 −0.100

SG 14.164 [deg] 50 −0.100 −0.099 0.100 0.100 0.100 −0.100

DR 14.147 [deg] 1473 −0.100 −0.099 0.100 0.100 0.100 −0.099

Table 8.2: Bi-level optimzation results (Cat II, box-bounded parameters) for the maxi-
mization of nz(tf ) using the normal load factor command nz,c(t) as well as the
wind commands uW (t) and wW (t).

Solver n̂z(tf ) nLP ∆M̂α ∆M̂q ∆M̂η ∆m̂ ∆Îyy ∆x̂RG

SQP 2.222 3 −0.100 −0.100 0.100 −0.100 0.100 −0.100

TR 2.222 31 −0.100 −0.100 0.100 −0.100 0.100 −0.100

SG 2.222 50 −0.100 −0.100 0.100 −0.100 0.100 −0.100

DR 2.222 1041 −0.100 −0.100 0.100 −0.100 0.100 −0.100

Table 8.3: Bi-level optimzation results (Cat II, box-bounded parameters) for the max-
imization of βA(tf ) using the roll angle command Φc(t), lateral load factor
command ny(t), and the wind command vW (t).

Solver β̂A(tf ) nLP ∆L̂β ∆L̂p ∆N̂β ∆N̂ζ ∆Îxx ∆Îzz

SQP 16.325 [deg] 13 −0.100 0.007 −0.100 0.100 0.100 0.100

TR 16.332 [deg] 7 −0.100 −0.100 −0.100 0.100 0.100 0.100

SG 16.343 [deg] 50 −0.091 0.100 −0.100 0.100 0.100 0.100

DR 16.326 [deg] 1053 −0.100 −0.100 −0.100 0.100 0.100 0.100

Table 8.4: Bi-level optimzation results (Cat II, box-bounded parameters) for the max-
imization of ny(tf ) using the roll angle command Φc(t), lateral load factor
command ny(t), and the wind command vW (t)

Solver n̂y(tf ) nLP ∆L̂β ∆L̂p ∆N̂β ∆N̂ζ ∆Îxx ∆Îzz

SQP 0.323 11 −0.100 −0.100 −0.100 0.100 0.100 0.100

TR 0.323 6 −0.100 −0.100 −0.100 0.100 0.100 0.100

SG 0.323 50 −0.100 −0.100 −0.100 0.100 0.100 0.100

DR 0.323 1115 −0.100 −0.100 −0.100 0.100 0.100 0.100
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For the second type of parameter region the parameters ∆xRG, ∆m, ∆Ixx, ∆Iyy, and
∆Izz are again allowed to vary within±10% as for the box-bounded case. However, all
aerodynamic parameters that are ∆Mα,∆Mq, and ∆Mη for the longitudinal model as
well as ∆Lβ , ∆Lp, ∆Nβ , and ∆Nζ for the lateral model are now subject to an uni-variate
normal distribution with mean µ = 0 and standard deviation σ = 0.05. For these Gaus-
sian distributions the admissible parameter space is defined as the region containing a
probability of 1 − α. This region may be for example defined as an ellipsoidal-shaped
region of the form [90]

gc(p;α) := (p− p0)T Σ−1 (p− p0)− χ2
np,1−α ≤ 0, (8.171)

with the np-dimensional parameter vector p ∈ Rnp , the vector of mean values p0 ∈ Rnp ,
and the positive definite covariance matrix Σ ∈ Rnp×np . Moreover, χ2

np,1−α represents
the (1 − α)-quantile of the χ2 distribution with np degrees of freedom. In order to
provide a general approach that can easily be used for other distribution types an over-
approximation of this region is used which is defined as a convex polytope of the form
Acp ≤ bc. In the following the three-dimensional polytope for the longitudinal plane
is constructed based on the tangent planes at 14 support points on the surface defined
by the level-set gc(p;α) = 0 with α = 10−3 (see Fig. 8.38).

Figure 8.38: Illustration of the polytopal over-approximation of the admissible parameter
region for ∆Mα, ∆Mq, and ∆Mη in the longitudinal plane.
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Similarly, for the lateral plane the four-dimensional polytope is determined using
24 support points with the same definition of the level set and value for α. These con-
servative regions contain approximately a probability mass of 1 − α̃ ≈ 1 − 3.67 · 10−4

for the longitudinal and 1 − α̃ ≈ 1 − 2.01 · 10−4 for the lateral plane. Both figures are
estimated based on 107 random samples. The numerical solution with these parameter
regions are illustrated using the SQP method which inherently supports linear inequal-
ity constraints. The results are summarized in Tab. 8.5 for the longitudinal plane and
Tab. 8.6 for the lateral plane. As for the box-bounded case the solver only requires the
evaluation of a few lower level problems to converge. Moreover, observe that the cri-
teria exhibit higher values compared to the box-bounded case. This can be attributed
to the fact that the admissible parameter region allows for higher (absolute) parameter
values at the vertices of the polytopal regions compared to the box-bounded case.

Table 8.5: Bi-level optimzation results (Cat II, probability-bounded parameters) for the
maximization of αA(tf ) and nz(tf ) with the SQP method using the normal
load factor command nz,c(t) as well as the wind commands uW (t) and wW (t).

Criterion ĵLL nLP ∆M̂α ∆M̂q ∆M̂η ∆m̂ ∆Îyy ∆x̂RG

αA(tf ) 14.867 [deg] 15 −0.202 0.000 0.148 0.100 0.100 −0.100

nz(tf ) 2.402 7 −0.202 −0.148 0.000 −0.100 0.100 −0.100

Table 8.6: Bi-level optimzation results (Cat II, probability-bounded parameters) for the
maximization of βA(tf ) and ny(tf ) with the SQP method using the roll angle
command Φc(t), lateral load factor command ny(t), and the wind command
vW (t).

Criterion ĵLL nLP ∆L̂β ∆L̂p ∆N̂β ∆N̂ζ ∆Îxx ∆Îzz

βA(tf ) 20.949 [deg] 11 0.000 −0.000 −0.215 0.215 0.100 0.100

ny(tf ) 0.393 35 0.000 0.000 −0.215 0.215 −0.100 0.100

The results in this section indicate that the proposed decomposition approach seems
to be suitable to solve the parameter dependent Cat I and Cat II type clearance prob-
lems. In particular, gradient-based methods appear to be not only efficient as they
converge within a few steps but, most importantly, attain essentially the same opti-
mal values as the global optimization algorithms. Moreover, these methods have well
defined termination criteria based on the KKT conditions (cf. Sec. 4). Note that us-
ing the proposed decomposition approach also global optimization algorithms can be
used in the upper level. However, for these methods it is difficult to define meaning-
ful termination criteria for the clearance task. From a practical perspective a simple
yet most likely effective method for the bi-level approach is to start the local gradient-
based solvers from several randomized initial points in order to increase the chance of
finding the global worst-case.
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8.3.3 Uncertainty Quantification using Generalized Polynomial

Chaos

Note that the bi-level approach presented in the last section is able to determine a sin-
gle worst-case solution in the parameter region. In the following the quantification
of the uncertainty related to a particular criterion for distributed parameters is under
investigation (Contribution II, [85]). Uncertainty quantification based on gPC [91, 92]
has gained rapidly increasing popularity in the last decades. In particular, gPC us-
ing the stochastic collocation approach is a popular choice mainly due to its general
applicability and relatively straight-forward implementation. For this approach the
user merely needs to specify a set of nodes and run deterministic realizations. After a
single post-processing step, that is the calculation of expansion coefficients, statistical
moments are readily available. It is particularly noteworthy that “the applicability of
stochastic collocation is not affected by the complexity or nonlinearity of the original problem so
long as one can develop a reliable deterministic solver” [93]. Note that with the transcription
of Cat I and Cat II type clearance problems to LP problems very reliable and efficient
solvers are at hand. In particular, the global worst-case value of the criterion under
investigation for the nominal Cat I and II type models can be obtained.

This section extends a preliminary study concerning gPC based uncertainty quan-
tification under Cat I and Cat II models previously published by the author in Ref. [85].
First, the basic theoretical background for uncertainty quantification using gPC is sum-
marized. For extended introductions regarding this topic please refer to Refs. [91, 92,
93]. In the following the uncertain parameters p ∈ Rnp for the clearance problem are
considered as mutually independent, random variables with probability density func-
tions ρi(pi), i = 0, . . . ,np − 1. This implies that the joint probability density function
ρ(p) can be expressed as:

ρ(p) :=

np−1∏

i=0

ρi (pi) . (8.172)

The random spaces of the parameters pi, i = 0, . . . ,np − 1 are denoted with Ωi and

Ω :=

np−1∏

i=0

Ωi, (8.173)

represents the joint random space. For each random variable an uni-variate polyno-
mial space W i,qi , i = 0, . . . ,np − 1 of highest degree qi is defined

W i,qi :=
{
w : Ωi → R : w ∈ span {ψi,j(pi)}qij=0

}
. (8.174)
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The polynomials ψi,j(pi), j = 0, . . . , qi need to satisfy the orthogonality conditions

〈ψi,l,ψi,r〉 =

∫

Ωi

ψi,l(pi)ψi,r (pi) ρi (pi) dpi = h2
l δl,r, l, r = 0, . . . , qi, (8.175)

with the Kronecker delta

δl,r :=





1, l = r

0, otherwise
, (8.176)

and are selected based on the distribution type (see Tab. 8.7). Without loss of generality
it is assumed in the following that the basis functions are normalized with respect to
the normalization factors:

h2
l :=

∫

Ωi

ψi,l(pi)ψi,l (pi) ρi (pi) dpi, l = 0, . . . , qi (8.177)

Table 8.7: Polynomial basis for different continuous distribution types [92]

Distribution Polynomial Basis Type Support

Normal Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [−1, 1]

Uniform Legendre [−1, 1]

The np-variate orthogonal polynomial space W q
np is defined as the full tensor prod-

uct space of the uni-variate polynomial spaces W i,qi , i = 0, . . . ,np − 1. Let the poly-
nomials from W q

np be denoted with φk(p), k = 0, . . . ,nγ − 1. The approximation of the
criterion function y : Ω→ R can be constructed using an expansion of the form

y(p) :=

nγ−1∑

k=0

γkφk(p), (8.178)

with nγ expansion coefficients γk, k = 0, . . . ,nγ − 1. Using a spectral projection, the
expansion coefficients are defined as follows:

γk :=

∫

Ω

y(p)φk(p)ρ (p) dp (8.179)

This integral can be approximated using a quadrature

γk =

nb−1∑

j=0

y
(
p[j]
)
φk
(
p[j]
)
bj, (8.180)
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with weights bj, j = 0, . . . ,nb − 1 and quadrature nodes p[j], j = 0, . . . ,nb − 1. These
weights and nodes need to be computed depending on the distribution type, i.e. based
on Gauss-Hermite, Gauss-Laguerre, Gauss-Jacobi, and Gauss-Legendre quadrature
methods for the types provided in Tab. 8.7. From the expansion coefficients the mo-
ments can be easily derived. In particular, the first expansion coefficient γ0 represents
the mean and the variance can be obtained from the sum of the squared second to last
expansion coefficients:

Var(y(p)) =

nγ−1∑

i=1

γ2
k (8.181)

It is noteworthy, that the highest degree of the joint polynomial space W q
np is often

truncated. Moreover, for higher dimensional parameter spaces it is advisable to use
sparse grids in order to alleviate the curse of dimensionality associated with the full
tensor product space.

To illustrate the application of the gPC approach the mean and standard deviation
of the criteria for the longitudinal Cat II model (αA(tf ),nz(tf )) and lateral Cat II model
(βA(tf ),ny(tf )) are investigated using the same lower level problems as in the numer-
ical examples of the bi-level approach (cf. Sec. 8.3.2). As such, merely the upper level
needs to be replaced by the gPC solver and the optimal control problems are solved
for each stochastic collocation point in the parameter space. The uncertain parameters
considered in the following are the aerodynamic uncertainties ∆Mα,∆Mq, and ∆Mη

for the longitudinal model and the uncertainties ∆Lβ , ∆Lp, ∆Nβ , ∆Nζ for the lateral
model. All uncertain parameters are assumed to have a normal distribution with zero
mean and a standard deviation σ = 0.05. Hence, uni-variate Hermite-polynomials
(cf. Tab. 8.7) are used for the stochastic collocation approach. Two different orders, that
are qi = 3, i = 0, . . . ,np − 1 and qi = 4, i = 0, . . . ,np − 1 are used for all uni-variate
parameter spaces. For the longitudinal model (np = 3) the gPC approach thus requires
the solution of 33 = 27 LPs for the third-order approximation and 34 = 64 LPs for the
fourth-order approximation. For the lateral model (np = 4) 43 = 64 LP solutions for
the third-order approximation and 44 = 256 LP solutions for the fourth-order approxi-
mation are necessary to compute the expansion coefficients. The results from the gPC
approach are compared to a Monte Carlo analysis with nMC = 103 Latin-Hypercube
samples (MATLAB®-function lhsdesign()) in Tab. 8.8 for the mean and Tab. 8.9 for the
standard deviation. Additionally, (1− α)-confidence intervals for the mean C[1−α]

µ,MC [94]

C[1−α]
µ,MC :=

[
µMC − tnMC−1,α/2

σMC√
nMC

,µMC + tnMC−1,α/2
σMC√
nMC

]
, (8.182)

with the upper half tail percentage of Student’s t-distribution tnMC−1,α/2 with nMC − 1
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degrees of freedom and the standard deviation C[1−α]
σ,MC [95]

C[1−α]
σ,MC :=

[√
nMC − 1

χ2
nMC−1,1−α/2

σMC ,

√
nMC − 1

χ2
nMC−1,α/2

σMC

]
, (8.183)

with the quantiles 1 − α/2 and α/2 of the χ2 distribution with nMC − 1 degrees of
freedom are provided.

Table 8.8: Comparison of the mean between gPC and MC including confidence intervals.

Criterion µ
[3]
gPC µ

[4]
gPC µMC C[0.95]

µ,MC

αA(tf ) [deg] 11.2024 11.2012 11.2054 [11.1755, 11.2353]

nz(tf ) [−] 1.8304 1.8304 1.8305 [1.8282, 1.8328]

βA(tf ) [deg] 13.1136 13.1136 13.1087 [13.0570, 13.1604]

ny(tf ) [−] 0.2722 0.2722 0.2721 [0.2713, 0.2729]

Table 8.9: Comparison of the standard deviation between gPC and MC including confi-
dence intervals.

Criterion σ
[3]
gPC σ

[4]
gPC σMC C[0.95]

σ,MC

αA(tf ) [deg] 0.4862 0.4873 0.4811 [0.4609, 0.5031]

nz(tf ) [−] 0.0369 0.0369 0.0369 [0.0354, 0.0386]

βA(tf ) [deg] 0.8189 0.8189 0.8330 [0.7980, 0.8712]

ny(tf ) [−] 0.0125 0.0125 0.0123 [0.0118, 0.0129]

Note that the results from the gPC approach match well with the results obtained
from the MC analysis and, in particular, are within the 95% confidence intervals. The
gPC approach is expected to be efficient in lower dimensional parameter spaces as the
number of stochastic collocation points grows exponentially with the number of di-
mensions. In higher dimensions (typically np > 5) sparse grids can be used instead
of the full tensor grid. However, for very large parameter dimensions the MC ap-
proach should be preferred due to the weak dependence on the number of parameters.
Note that both the gPC and MC approach allow for a considerable parallelization as all
samples can be computed independently. Another interesting observation is that the
gPC approach directly yields an approximation of the criterion in the parameter space
(cf. Eq. (8.178)) which can be used as a surrogate model of the response.

It is important to mention that in the context of flight control law clearance the
exceedance probability P(y ≥ ymax) of a criterion y with limit ymax is of particular
interest. Under the assumption that there exist a finite mean µ and a finite, non-zero
variance V ar(y) = σ2 a bound for this probability is given by the one-sided Chebyshev-
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Cantelli inequality:

P (y ≥ ymax) ≤
V ar(y)

V ar(y) + (ymax − µ)2 , ymax > µ (8.184)

Besides the Chebyshev-Cantelli inequality, there exist other bounds based on higher
moments (cf. Ref. [96]). To provide an example regarding the clearance criteria inves-
tigated in this section consider the maximum normal load factor nz(tf ) with an upper
limit of nz,max(tf ) = 3.8. Using the results for the mean and standard deviation of the
fourth-order gPC method (cf. Tab. 8.8 and Tab. 8.9) the exceedance probability for this
criterion is bounded by

P (nz(tf ) ≥ nz,max(tf )) ≤

(
σ

[4]
gPC

)2

(
σ

[4]
gPC

)2

+
(
nz,max(tf )− µ[4]

gPC

)2 ≈ 3.5 · 10−4, (8.185)

according to the inequality (8.184).

184



Chapter 8: Optimal Control Based Clearance for Linear and Quasi-linear Systems

8.4 Multi-Criteria and Reachability Analysis

All the approaches presented in the last sections are focused on a single criterion. How-
ever, it may be of interest for clearance applications which combination of criterion
values may occur. Here, reachable set methods can provide valuable information re-
garding the attainable set in the output space of a closed-loop system. In the following
an algorithm tailored to the Cat I and Cat II type clearance problems is presented which
can be used to compute a tight over-approximation of the forward reachable set at a
time point tf starting from the trim state x(t0) = 0 (Contribution II). All quantities are
in the following regarded relative to the trim condition which is general in the sense
that the origin merely needs to be shifted in order to obtain the set in absolute coordi-
nates (the shape of the set remains unchanged).

For linear systems it is possible to construct reachable sets using basic set operations
such as sums, differences, and over-approximations of convex sets [97, 98]. However,
it is important to mention that the computational effort for these methods becomes
increasingly costly for higher dimensions as the number of facets grows very quickly.
Often, inner and outer approximations are obtained using simple geometrical bodies
such as ellipsoids (cf. Refs. [99, 100]), zonotopes (cf. Refs. [101, 102]), and parallelo-
topes (cf. Refs. [103, 104]). Moreover, optimal control based methods are presented in
Refs. [105, 106] for reachable set approximations under input constraints. In the context
of the optimal control based approaches investigated in this thesis these methods natu-
rally fit into the clearance framework. Note that for Cat II type problems the reachable
set needs to be computed considering the convex control constraint set U

ulb ≤ u(t) ≤ ulb, (8.186)

and convex state constraint set X

xj,lb ≤ xj(t) ≤ xj,ub,∀j ∈ Ib. (8.187)

It is noteworthy that the reachable set of linear systems with convex input and state
constraints is convex and compact [107]. As such, it is sufficient to compute a conser-
vative outer approximation of the convex boundary of the set. Clearly, it is desirable
to provide bounds for the accuracy of this approximation and to refine the set until
a certain threshold is reached. For this purpose an algorithm considering the Cat I
and Cat II type clearance problems is presented in the following based on the ideas in
Refs. [105, 106]. In particular, this algorithm computes an inner approximation through
the successive optimization along rays in the output space. The outer approximation is
constructed using the collection of tangent planes at the vertices of the inner approxi-
mation (see Fig. 8.39). These tangent planes are obtained using post-optimal sensitivity
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analysis. Note that the boundary of the true reachable set is guaranteed to lie within
the inner and outer approximation. Hence, the strategy of the algorithm refines both
approximations until the maximum distance between the two is below a specified tol-
erance ε0.

O

Figure 8.39: Illustration of the inner approximation (grey region/red vertices) and outer
approximation (union of the light blue region, dark blue region, and the grey
region / blue vertices) of a convex reachable set (union of the dark blue
region and the grey region) centered at the origin O.

The LP for the maximization of the distance r ∈ R from the origin along a ray de-
fined by anglesφ ∈ Rny−1 is performed with the optimization problem LPMRAY(φ,U ,X ):

minimize
r, x[i], u[i], i = 0, . . . ,N

− r

subject to 0 = A−d x[i−1] + A+
d x[i] + Bd

(
u[i] + u[i−1]

)
, i = 1, . . . ,N ,

x[0] = 0,

h
(
r,φ, x[N ]

)
= 0,

u[i] ∈ U , i = 0, . . . ,N ,

x[i] ∈ X , i = 1, . . . ,N

(8.188)

In alignment with the last sections a Trapezoidal scheme with step length h is used
for the discretization of the dynamic constraints and the matrices for the Trapezoidal
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discretization A+
d , A−d , and Bd are (cf. Eqs. (8.126)-(8.128)):

A+
d := I− h

2
A, (8.189)

A−d := −I− h

2
A, (8.190)

Bd := −h
2

B (8.191)

The linear equality constraint h
(
r,φ, x[N ]

)
= 0 defining the direction of the ray in the

output space is parameterized with hyper-spherical coordinates, that are the magni-
tude r and the angles φ [108]

h
(
r,φ, x[N ]

)
:=




cT0 x[N ] − r cos(φ0)

cT1 x[N ] − r sin(φ0) cos(φ1)
...

cTny−2x
[N ] − r sin(φ0) . . . sin(φny−3) cos(φny−2)

cTny−1x
[N ] − r sin(φ0) . . . sin(φny−3) sin(φny−2)




= 0, (8.192)

with 0 ≤ φ0,...,ny−3 ≤ π and 0 ≤ φny−2 < 2π. Note that this equality constraint is the
only quantity in problem (8.188) depending on φ. As such, based on the relation for
the post-optimal sensitivities of the cost function from Eq. (8.139) the total derivative
of the negative cost function for this LP problem is expressed as

dr̂

dφ
= −λ̂Tφ

∂h

∂φ
, (8.193)

where λ̂φ represents the Lagrange multiplier vector corresponding to the equality con-
straint (8.192) and r̂(φ) is the negative, optimal cost function value of problem (8.188).
Consider the parametric surface:

ŷ (φ, r̂(φ)) :=




ŷ0(φ)

ŷ1(φ)
...

ŷny−2(φ)

ŷny−1(φ)




=




r̂(φ) cos(φ0)

r̂(φ) sin(φ0) cos(φ1)
...

r̂(φ) sin(φ0) . . . sin(φny−3) cos(φny−2)

r̂(φ) sin(φ0) . . . sin(φny−3) sin(φny−2)




(8.194)

The tangent plane of this surface at φ = φ(j) can be represented by the column space
of the matrix T̂(φ)

T̂(φ) :=
∂ŷ

∂r̂

dr̂

dφ
+
∂ŷ

∂φ
. (8.195)
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Let n̂(φ) denote a non-zero unit vector in the null-space of the column space of T̂(φ)

pointing outward and the distance from the origin to the tangent hyper plane d(φ) ≥ 0

be defined as d(φ) := n̂T (φ)ŷ(φ). One of the inequalities corresponding to a particular
φ = φ(j) defining the outer approximation can be expressed as

aOj y ≤ bOj , (8.196)

with
aOj := n̂T

(
φ(j)

)
, bOj := d

(
φ(j)

)
. (8.197)

Consider a set of points VI

VI :=
{
ŷ (φ0) , . . . , ŷ

(
φnI−1

)}
, (8.198)

obtained from the solutions of LPMRAY(φ0,U ,X ),. . ., LPMRAY(φnI−1,U ,X ). The con-
vex hull of these points which can be described by the inequalities

AIy ≤ bI , (8.199)

represents an inner approximation of the true set. Now, consider the collection of all
inequalities from Eq. (8.196)

AOy ≤ bO, (8.200)

with

AO :=




aO0
...

aOnI−1


 , bO :=




bO0
...

bOnI−1


 . (8.201)

For an appropriate selection of the angles φ0, . . . ,φnI−1 these inequalities defined by
all tangent planes form a closed and convex polytope representing the outer approxi-
mation. Note that the boundary of the true set is guaranteed to lie in between the inner
approximation (8.199) and outer approximation (8.200). Using a suitable refinement
strategy the approximation of the true set up to a tolerance ε0 is achieved as described
in Alg. 1.
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Algorithm 1 Algorithm for Output Reachable Set Approximation with Tolerance ε0

1: procedure ApproximateOutputReachableSet(ε0,U ,X , c0, . . . , cny−1)
2: ∆ŷ← 0
3: for j ∈ {0, . . . ,ny − 1} do

4: x̂[N ]
max ← argx[N ] LPM (−cj,U ,X ) . Maximize output yj

5: x̂
[N ]
min ← argx[N ] LPM (+cj,U ,X ) . Minimize output yj

6: for k ∈ {0, . . . ,ny − 1} do

7: ŷk,max ← cTk x̂[N ]
max

8: ŷk,min ← cTk x̂
[N ]
min

9: end for

10: AO ←
[(

AO
)T

, ej,−ej

]T

11: bO ←
[(

bO
)T

, ŷj,max,−ŷj,min
]T

12: VI ← VI ∪
{[
ŷ0,max, . . . , ŷny−1,max

]T
,
[
ŷ0,min, . . . , ŷny−1,min

]T}

13: ∆ŷ← ∆ŷ + ej (ŷj,max − ŷj,min)
14: end for
15: repeat
16: VR ← ∅ . Initialize refinement set
17: VO ← I2V

(
AO, bO

)
. Vertices from inequalities

18:
[
AI , bI

]
← V2I

(
VI
)

. Inequalities from vertices
19: e∞ = ε0
20: for all yO ∈ VO do
21: eC ← LLS

(
yO, ∆ŷ, AI , bI

)
. Compute scaled distance

22: if e ≥ ε0 then . Select refinement points
23: VR ← VR ∪ yO

24: e∞ ← max{e∞, eC} . Determine maximum error
25: end if
26: end for
27: for all yR ∈ VR do
28: φ← C2S

(
yR
)

. Spherical angles from Cartesian vector
29: r̂(φ)← LPMRAY (φ,U ,X ) . Maximize in direction defined by φ
30: ŷ(r̂(φ),φ)← S2C (r̂(φ),φ) . Cartesian vector from spherical coordinates
31: T̂ = ∂ŷ

∂r̂
dr̂
dφ

+ ∂ŷ
∂φ

. Compute tangent space matrix

32: n̂← null
(
T̂
)

. Compute normalized null-space vector

33: d̂← n̂T ŷ

34: AO ←
[(

AO
)T

, n̂
]T

35: bO ←
[(

bO
)T

, d̂
]T

36: VI ← VI ∪ ŷ
37: end for
38: until e∞ < ε0
39: return

[
AO, bO

]

40: end procedure
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This algorithm first solves 2ny LP problems which determine the maximal and min-
imal possible values ŷj,max, j = 0, . . . ,ny − 1 and ŷj,min, j = 0, . . . ,ny − 1 for each indi-
vidual output.

These values are obtained from the solution of the following optimization problem
LPM(c,U ,X ) depending on one of the output vectors c:

minimize
x[i], u[i], i = 0, . . . ,N

cTx[N ]

subject to 0 = A−d x[i−1] + A+
d x[i] + Bd

(
u[i] + u[i−1]

)
, i = 1, . . . ,N ,

x[0] = 0,

u[i] ∈ U , i = 0, . . . ,N ,

x[i] ∈ X , i = 1, . . . ,N

(8.202)

Let x̂
[N ]
j,max, j = 0, . . . ,ny − 1 be obtained from solutions of LPM(−cj,U ,X ), i.e. a maxi-

mization of the j−th output. The upper extremal points of the true set are then:

ŷj,max :=
[
c0x̂

[N ]
j,max, . . . , cny−1x̂

[N ]
j,max

]T
, j = 0, . . . ,ny − 1 (8.203)

Similarly, let x̂
[N ]
j,min, j = 0, . . . ,ny − 1 be obtained from the solutions of LPM(cj,U ,X ),

i.e. a minimization of the j−th output. The points

ŷj.min :=
[
c0x̂

[N ]
j,min, . . . , cny−1x̂

[N ]
j,min

]T
, j = 0, . . . ,ny − 1, (8.204)

then represent lower extremal points of the set. From these extremal points the initial
set for the inner approximation is thus defined as:

VI :=
{

ŷ0,max, ŷ0,min, . . . , ŷny−1,max, ŷny−1,min

}
(8.205)

On the one side, the corresponding normal vector for each point ŷj,max is chosen as the
basis vector ej , which is a zero vector with a single entry 1 at the index j. On the other
side, the normal vector for each point ŷj,min is chosen as the negative basis vector −ej .
Note that this choice has the property that the outer approximation is guaranteed to be
closed from the beginning as the inequalities




eT0

−eT0
...

eTny−1

−eTny−1




≤




eT0 ŷ0,max

−eT0 ŷ0,min

...

eTny−1ŷny−1,max

−eTny−1ŷny−1,min




, (8.206)
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defining the initial outer approximation (cf. Eq. (8.200)) represent a hyper-rectangle
(see Fig. 8.40). Furthermore, scaling factors which are collected in the vector ∆ŷ ∈ Rny

O

yI

yO

yR

e

n

yC

Figure 8.40: Illustration of the initial set approximations.

are determined from the differences of the maximum and minimum values

∆ŷ :=
[
eT0
(
ŷ0,max − ŷ0,min

)
, . . . , eTny−1

(
ŷny−1,max − ŷny−1,min

)]T
(8.207)

These scaling factors are used to quantify the scaled distance of the points from the
outer approximation to the inner approximation. The following steps are repeated un-
til the maximum of all scaled distances of the vertices in the outer approximation from
the inner approximation is less than ε0. In the beginning of each refinement cycle these
scaled distances are determined as follows: First, the vertices of the outer approxima-
tion in the current iteration are computed from the inequalities (8.200) and collected in
the set VO:

VO :=
{
ŷOj : j = 0, . . . ,nO − 1

}
(8.208)

Note that in the first iteration these points are simply the vertices of a hyper-rectangle.
Next, the matrix AI and the vector bI of the inequalities (8.199) defining the con-
vex polytope of the inner approximation are computed using the vertices in VI . The
minimum distances between all points in VO from the convex hull of the inner ap-
proximation can be quantified by computing the closest point ŷCj for each ŷOj ∈ VO
to the boundary of the polytope AIy ≤ bI under consideration of the scaling fac-
tors ∆ŷ. These points are obtained from the following linear least-squares problem
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LLS
(
ŷOj , ∆ŷ, AI , bI

)
:

minimize
yCj

∥∥yCj − diag (∆ŷ)−1 ŷOj
∥∥

2

subject to AIdiag (∆ŷ) yCj ≤ bI
(8.209)

The optimal cost function of this problem yields the minimum scaled distance eCj for
each point ŷOj ∈ VO to the convex boundary of the inner approximation. The maxi-
mum scaled distance is then determined as e∞ = max{eC0 , . . . , eCnO−1}. Subsequently,
all points ŷOj satisfying eCj > ε0 are collected in the refinement set VR

VR :=
{
yRj : j = 0, . . . ,nR − 1, yRj ∈ VO, eCj > ε0

}
. (8.210)

For each point yRj the vector of anglesφ(j) is computed using a transformation to spher-
ical coordinates and the optimal control problem LPMRAY(φj,U ,X ) is solved, i.e. the
distance to the origin along the ray defined by the angles in φj is maximized. At the
optimal solution of each problem the output vector ŷ(φj) is added to the set of points
VI for the inner approximation and the inequality (8.196) is added to the set of inequal-
ities for the outer approximation. These steps represent the major iterations of Alg. 1
and are repeated until convergence. In this algorithm the transformation S2C(r,φ) is
defined as in Eq. (8.194) and C2S(v) computes the hyper-spherical anglesφ from a gen-
eral Cartesian vector v ∈ Rnv . Moreover, the function I2V [A, b] determines the vertices
of a convex polytope defined by Av ≤ b. Similarly, the function V2I [V ] computes in-
equalities Av ≤ b of the convex polytope defined by vertices V . For both functions the
implementation from Ref. [109] is used.

The application of the algorithm is illustrated for the nominal models in the lon-
gitudinal and lateral plane (cf. Sec. 8.2.1) with tf = 8 s and h = 0.025 s. For all set
approximations a tolerance of ε0 = 0.01 is used. First, two-dimensional examples for
the Cat I and Cat II type models are presented. The resulting outer approximations for
the longitudinal model are depicted in Fig. 8.41 and Fig. 8.42. Moreover, a comparison
of these two sets is shown in Fig. 8.43. In this figure the set obtained for the Cat II
model is colored in dark blue whereas the set for the Cat I model is colored in light
blue. Note that the set for the Cat II model is fully contained within the set for the Cat
I model as the addition of state constraints limits the attainable values of the criteria.
The difference between the two sets is not significantly large. This may be explained
based on the control histories in Figs. 8.21-8.24 for the maximization of the individual
criteria. Herein, the solutions for the longitudinal Cat II model merely exhibits short
constrained arcs for the elevator rate state (the position limit is not reached) which
appear to have only a small effect on the optimal cost function values.

The outer approximations for the Cat I and Cat II models in the lateral plane are
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presented in Fig. 8.44 and Fig. 8.45. Moreover, the comparison of the combined sets
is shown in Fig. 8.46. It is apparent that the state constraints considerably constrain
the attainable set in the output space. Note that contrary to the Cat II results for the
longitudinal model the solutions for the maximization of the individual criteria in the
lateral plane under the Cat II models exhibits both rate and position constrained arcs
on most parts of the time interval (see Fig. 8.27 and Fig. 8.28).

Finally, the sequence of construction for the inner and outer approximations in each
major iteration of the algorithm are depicted in Figs. 8.47-8.50 for all cases. The vertices
of the outer approximation (blue dots) which are selected to define the rays in the next
refinement cycle are circled in black. Note that a fairly low number of LPs (nLP ) is
required to obtain over-approximations at a reasonable accuracy.

Figure 8.41: Final iteration of the reachable set approximation (Cat I) for nz(tf ) and
αA(tf ) (e = 0.00682 < ε0,nLP = 22)
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Figure 8.42: Final iteration of the reachable set approximation (Cat II) for nz(tf ) and
αA(tf ) (e = 0.00978 < ε0,nLP = 21)

Figure 8.43: Comparsion between the reachable set approximations (Cat I light blue, Cat
II dark blue) for nz(tf ) and αA(tf ).

194



Chapter 8: Optimal Control Based Clearance for Linear and Quasi-linear Systems

Figure 8.44: Final iteration of the reachable set approximation (Cat I) for ny(tf ) and
βA(tf ) (e = 0.00636 < ε0,nLP = 24)

Figure 8.45: Final iteration of the reachable set approximation (Cat II) for ny(tf ) and
βA(tf ) (e = 0.00920 < ε0,nLP = 22)
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Figure 8.46: Comparsion between the reachable set approximations (Cat I light blue, Cat
II dark blue) for ny(tf ) and βA(tf ).
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Iteration 0 (e = 0.64695,nLP = 4) Iteration 1 (e = 0.19742,nLP = 8)

Iteration 2 (e = 0.03619,nLP = 16) Iteration 3 (e = 0.01555,nLP = 20)

Figure 8.47: Illustration of the iterations 0,...,3 for the reachable set approximation (Cat
I) in the output space for the normal load factor nz and the aerodynamic
AoA αA.
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Iteration 0 (e = 0.65370,nLP = 4) Iteration 1 (e = 0.19866,nLP = 8)

Iteration 2 (e = 0.03810,nLP = 15) Iteration 3 (e = 0.01596,nLP = 19)

Figure 8.48: Illustration of the iterations 0,...,3 for the reachable set approximation (Cat
II) in the output space for the normal load factor nz and the aerodynamic
AoA αA.
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Iteration 0 (e = 0.47414,nLP = 4) Iteration 1 (e = 0.09734,nLP = 8)

Iteration 2 (e = 0.02521,nLP = 16)

Figure 8.49: Illustration of the iterations 0,...,2 for the reachable set approximation (Cat
I) in the output space for the lateral load factor ny and the aerodynamic
AoS βA.
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Iteration 0 (e = 0.57337,nLP = 4) Iteration 1 (e = 0.10964,nLP = 8)

Iteration 2 (e = 0.02615,nLP = 16)

Figure 8.50: Illustration of the iterations 0,...,2 for the reachable set approximation (Cat
II) in the output space for the lateral load factor ny and the aerodynamic
AoS βA.
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To illustrate the application of the algorithm in three dimensions the aerodynamic
pitch rate qA(tf ) is added to the criteria for the longitudinal model. Similarly, for the
lateral model the aerodynamic yaw rate rA(tf ) is added. The resulting sets for the Cat I
and Cat II models are depicted in Fig. 8.51 and Fig. 8.52 for the longitudinal as well as
Fig. 8.53 and Fig. 8.54 for the lateral model. The sequence of construction for the inner
and outer approximations in each major iteration are shown in Figs. 8.55-8.58. As in
the two-dimensional case the resulting over-approximations for the longitudinal Cat I
and Cat II models appear to be very similar (compare Fig. 8.51 and Fig. 8.52). Contrary,
in the lateral plane the set in the Cat II case is considerable smaller in comparison to
the Cat I case (see Fig. 8.51 and Fig. 8.52). Note further that the strategy in Alg. 1
automatically allocates a higher density of points in regions where the set requires a
refinement (observe for example the refinement of the rim-like feature in Fig. 8.55).
The number of LPs is obviously higher in the three-dimensional case and is expected
to grow rapidly for higher dimensions. However, it is noteworthy that the algorithm
is essentially applicable to arbitrary state and control dimensions. In the examples
presented here the number of variables and constraints for the discretized problem are
in the range of several thousands. As the solution of LP problems is a highly developed
field, state of the art solvers are able to efficiently handle considerably higher numbers
of variables and constraints.

Several aspects may help to alleviate the increasing computational cost for higher-
dimensional criteria spaces. For example, symmetry can be exploited if the set is point-
symmetric. This is for example expected in case all limits are symmetric as a mini-
mization and maximization in the direction of a particular ray should yield opposite
responses. In addition, it is clear that the algorithm allows for a massive paralleliza-
tion as all LPs within one refinement cycle can be solved independently. Moreover,
note that a closed outer approximation is maintained from the first iteration of the al-
gorithm onward and that the largest improvement in the error is observed in the first
iterations. If a coarse, however conservative, approximation is sufficient for a particu-
lar application the algorithm returns an outer approximation of the set including the
expected accuracy after the first iteration with a maximum number of nLP = 2ny + 2ny

LPs to be solved.
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Figure 8.51: Final iteration of the reachable set approximation (Cat I) for nz(tf ), αA(tf ),
and qA(tf ) (e = 0.00957 < ε0,nLP = 332)

Figure 8.52: Final iteration of the reachable set approximation (Cat II) for nz(tf ), αA(tf ),
and qA(tf ) (e = 0.00989 < ε0,nLP = 349)
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Figure 8.53: Final iteration of the reachable set approximation (Cat I) for ny(tf ), βA(tf ),
and rA(tf ) (e = 0.00955 < ε0,nLP = 348)

Figure 8.54: Final iteration of the reachable set approximation (Cat II) for ny(tf ), βA(tf ),
and rA(tf ) (e = 0.00999 < ε0,nLP = 300)
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Iteration 0 (e = 0.75201,nLP = 6) Iteration 1 (e = 0.27299,nLP = 14)

Iteration 2 (e = 0.09371,nLP = 38) Iteration 3 (e = 0.04801,nLP = 108)

Iteration 4 (e = 0.01476,nLP = 287)

Figure 8.55: Illustration of the iterations 0...4 for the reachable set approximation (Cat
I) in the output space for the normal load factor nz, the aerodynamic AoA
αA, and the aerodynamic pitch rate qA.
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Iteration 0 (e = 0.75763,nLP = 6) Iteration 1 (e = 0.33521,nLP = 14)

Iteration 2 (e = 0.12775,nLP = 38) Iteration 3 (e = 0.04765,nLP = 110)

Iteration 4 (e = 0.01677,nLP = 288)

Figure 8.56: Illustration of the iterations 0,...,4 for the reachable set approximation (Cat
II) in the output space for the normal load factor nz, the aerodynamic AoA
αA, and the aerodynamic pitch rate qA.
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Iteration 0 (e = 0.68941,nLP = 6) Iteration 1 (e = 0.26707,nLP = 14)

Iteration 2 (e = 0.09262,nLP = 38) Iteration 3 (e = 0.03188,nLP = 110)

Iteration 4 (e = 0.01511,nLP = 302)

Figure 8.57: Illustration of the iterations 0,...,4 for the reachable set approximation (Cat
I) in the output space for the lateral load factor ny, the aerodynamic AoS
βA, and the aerodynamic yaw rate rA.
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Iteration 0 (e = 0.74304,nLP = 6) Iteration 1 (e = 0.25435,nLP = 14)

Iteration 2 (e = 0.10478,nLP = 38) Iteration 3 (e = 0.04976,nLP = 110)

Iteration 4 (e = 0.01832,nLP = 263)

Figure 8.58: Illustration of the iterations 0,...,4 for the reachable set approximation (Cat
II) in the output space for the lateral load factor ny, the aerodynamic AoS
βA, and the aerodynamic yaw rate rA.
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Chapter 9

Optimal Control Based Clearance for

Nonlinear Systems

According to the classification scheme proposed in Sec. 7.1 all cases which cannot be
treated under Cat I and Cat II belong to the general Cat III modeling class. The solu-
tion of the clearance problem for these models is considerably more involved due to
the potential nonlinearity of the closed-loop system. However, for practical clearance
applications the development of a framework for the solution of Cat III models is of
high importance due to the restricted validity of Cat I and Cat II models close to the
linearization point. Due to the challenges encountered for the solution of Cat III type
models this category is further refined into:

� Non-intrusive methods

� Intrusive methods

� Hybrid methods

Non-intrusive methods (cf. Refs. [3, 21]) treat the problem as a black-box function
j : Rnp → R which depends on parameters p ∈ Rnp and returns the value of the
criterion under investigation. Here, the vector p collects parameters of the aircraft
closed-loop model and, additionally, a parametrization of the control functions. In
particular, under the non-intrusive approach the dynamic character of the underlying
problem is not exposed to the optimization method. This implies, that the dynamic
behavior is resolved internally through the solution of initial value problems, i.e. by
performing simulations using the closed-loop model. Note that the non-intrusive ap-
proach is closely related to the single shooting concept (cf. Sec. 6.1.1) and, as such,
comes with all its advantages and disadvantages. One of the major advantages is the
simplicity of its application as, in most cases, the aircraft closed-loop model is provided
in form of a parametrized simulation model. Hence, this model can directly be used to
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evaluate the criterion based on the parameters p. However, the disadvantages include
the high degree of coupling in the problem and the potential nonlinearity of the crite-
rion with respect to the parameters through the long simulation intervals. These two
aspects render a numerical solution challenging. Additionally, most aircraft closed-
loop models feature a variety of non-differentiable functions, such as table data with
non-smooth interpolation methods or internal limiters which may violate the differ-
entiability requirements for gradient-based methods. As such, typically gradient-free
methods are employed if the search space is restricted to low-dimensional parameter
spaces. Moreover, note that the information which is made available to the worst-case
search is minimal in the sense that merely the admissible parameter space and the re-
sulting value of the criterion is visible to the algorithm. Hence, a considerable amount
of information regarding the internal characteristics of the black-box function is hidden
under this approach which may otherwise be exploited for the solution of the clearance
problem.

Intrusive methods do not purely rely on a simulation over the whole time interval
and the dynamic character of the underlying problem is partially exposed under this
approach, e.g. through a segmentation using direct optimal control methods (cf. Sec. 6).
One typical requirement for this type of model is that the system needs to be available
in state-space form. This implies that the model provides the state time derivatives
and outputs depending on the current states, inputs, and parameters. Moreover, dif-
ferentiability requirements need to be met in case direct optimal control methods with
gradient-based schemes are employed. In practice, models are rarely given in this form
but are rather embedded in a simulation framework (such as Simulink®) and addition-
ally contain non-differentiable features. As such, some modeling effort is required to
bring the closed-loop model in a form which is suitable for the application of direct
optimal control methods. In particular, the model needs be transformed into a single-
point execution model of the form

ẋ(t) = f(x(t), u(t), p), (9.1)

which fulfills the differentiability requirements and allows for an efficient computation
of first- and (desirably) second-order derivative information. This transformation can
be considered one of the major challenges when dealing with intrusive methods as the
process of transcribing the model into the required form has to ensure that the primary
characteristics are not altered. However, it is clear that the amount of information
provided to the solver is considerably higher compared to the non-intrusive (black-
box) approach. First of all, using a segmented transcription method (cf. chapter 6)
under the direct optimal control approach the problem can be highly decoupled which
is preferable for many optimization algorithms. Moreover, modeling concepts such as
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state constraints can be employed to expose internal limits to the worst-case search.
Finally, the worst-case inputs can be determined with a high resolution, meaning that
the control functions can be parameterized with a large number of parameters.

Hybrid methods can be seen as a middle-ground between the intrusive and non-
intrusive approach. The idea behind this approach is to employ a reduced model for
the computation of the worst-case solution with a Cat I, Cat II, or Cat III model un-
der the intrusive approach. This solution is then used to increase the information
content provided to a Cat III non-intrusive method, e.g. by determining a suitable
control parametrization and a meaningful initial guess for the parameters involved
in the worst-case search. In this thesis the proposed hybrid method uses Cat I and
Cat II models discussed in chapter 8 as reduced models. Clearly, the problem specific
information content used under this approach is higher compared to the Cat III non-
intrusive (black-box) method. At the same time, the potentially restrictive modeling
requirements of the Cat III intrusive approach can be avoided if the reduced models
are based on Cat I and Cat II models. The two requirements for the hybrid approach to
be effective are that the reduced model at least shares the same tendencies as the full
model regarding the worst-case parameter combinations and that the structure, e.g. the
number and location of the switches for the worst-case control input, is comparable to
a worst-case solution for the full model.

9.1 A Cat III Intrusive Approach for Worst-Case

Analysis

In the following the Cat III intrusive approach for optimal control based clearance is
introduced which is based on the application of direct optimal control methods (Con-
tribution III, cf. Refs. [110, 111, 112, 113]). It is noteworthy, that similar to global param-
eter optimization methods which are often employed for non-intrusive methods there
exist global algorithms for solving optimal control problems. For example, Dynamic
Programming (DP) [114] approaches guarantee that the discretized solution is in fact
globally optimal. Unfortunately, DP methods for nonlinear systems are only able to
operate in low-dimensional state-spaces as not only the temporal dimension but also
the whole state-space is discretized. However, in practice aircraft closed-loop models
feature several tens or often even more than a hundred states. In particular, care must
be taken if a reduced model is used in order to preserve the essential dynamic charac-
teristics for performing the clearance task. As such, the following section focus on the
direct approach which given the current state of the art for these methods allow for the
solution of the clearance problem in a fairly general setting.
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9.1.1 Nonlinear Optimal Control Formulation

Under the Cat III intrusive approach the nonlinear dynamic model f : Rnx × Rnu ×
Rnp → Rnx in state-space form

ẋ(t) = f (x(t), u(t), p) , (9.2)

with the state vector x ∈ Rnx , the control vector u ∈ Rnu , and the parameter vector
p ∈ Rnp is considered. Furthermore, the nonlinear output function j : Rnx × Rnp → R

y(t) := j (x(t), p) , (9.3)

for the scalar output y(t) ∈ R represents the criterion under investigation. As in the
linear case a subset of the state variables defined by the index set Ib is assumed to be
bounded

xi,lb ≤ x(t) ≤ xi,ub, i ∈ Ib (9.4)

and the control set U is defined as:

ulb ≤ u(t) ≤ uub (9.5)

Furthermore, the parameters are constrained to an admissible region defined by

g(p) ≤ 0, (9.6)

with the constraint function g : Rnp → Rng . In the following all functions for the Cat
III clearance problem under the intrusive approach are assumed to be at least twice
continuously differentiable. The general Mayer-form of this problem on a time interval
I t := [t0, tf ] , tf > t0 for a suitable fixed final time tf can be formalized as follows:

minimize
u(t), p

j (x(tf ), p)

subject to ẋ(t)− f (x(t), u(t), p) = 0,

x(t0) = x0,

xj,lb ≤ xj(t) ≤ xj,ub, j ∈ Ib,
u(t) ∈ U ,

g(p) ≤ 0,

t ∈ I t

(9.7)

The direct optimal control approach (cf. Sec. 6) can be used to transcribe the optimal
control problem (9.7) into a parameter optimization problem. As for the linear case
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(cf. Sec. 8.1.3) a Backward Euler method with step size h is used in the following if the
focus is on the investigation of the control functions as this discretization approach is
observed to yield rather “clean” control histories (cf. Sec. 8.2.2):

minimize
p, x[0], x[i], u[i], i = 1, . . . ,N

j
(
x[N ], p

)

subject to x[i] = x[i−1]+hf
(
x[i], u[i], p

)
, i=1, . . . ,N ,

x[0] = x0,

x
[i]
j,lb ≤ x

[i]
j ≤ x

[i]
j,ub, ∀j ∈ Ib, i = 1, . . . ,N ,

u
[i]
lb ≤ u[i] ≤ u

[i]
ub, i = 0, . . . ,N ,

g(p) ≤ 0,

t ∈ I t

(9.8)

Similarly, if the focus is primarily on the value of the cost function a Trapezoidal collo-
cation approach is used for which the Cat III clearance problem reads as follows:

minimize
p, x[i], u[i], i = 0, . . . ,N

j
(
x[N ], p

)

subject to x[i] = x[i−1]+h
f
(
x[i−1], u[i−1], p

)
+f
(
x[i], u[i], p

)

2
, i=1, . . . ,N ,

x[0] = x0,

x
[i]
j,lb ≤ x

[i]
j ≤ x

[i]
j,ub, ∀j ∈ Ib, i = 1, . . . ,N ,

u
[i]
lb ≤ u[i] ≤ u

[i]
ub, i = 0, . . . ,N ,

g(p) ≤ 0,

t ∈ I t
(9.9)

Note that in the linear case the initial condition is changed depending on the value of
the parameter p (cf. Sec. 8.3.2) in order to linearize the model around an equilibrium
point. This requirement is dropped under the Cat III type model as a nonlinear model
can directly be used under this approach. As such, the system may originate from a
general initial point x0 in the state-space which is suitable for the particular clearance
problem under investigation. Moreover, as illustrated in the linear case (cf. Sec. 8.2.2)
the solution can become highly in-sensitive to control actions in the beginning of the
time interval if the final time tf is too large. For the nonlinear case it is possible to let
the optimizer choose the final time tf , i.e. a free final time can be used. Thus, the time
point where the worst-case occurs becomes part of the optimization problem. How-
ever, in order to constrain the solution to a reasonable time interval it is advisable to
either impose limits on the free final time tf ∈ [t0, tf ,ub] , tf ,ub > t0, or to add a (small)
penalty depending on tf to the cost function which monotonically increases towards
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higher values of the terminal time. As described in chapter 6, optimal control prob-
lems which are discretized using a segmented method represent high-dimensional but
very sparse nonlinear programming problems (NLPs). These NLPs can be efficiently
solved by one of the methods described in Sec. 4.5. In particular, computational expe-
rience suggests that the interior point solver IPOPT [62] is highly efficient and effective
for this purpose. For all numerical solutions which are presented in the following
the optimal control toolbox FALCON.m1 is used which is co-developed by the author
(Contribution IV). In particular, a transcription tool for Simulink® models for internal
use is developed to obtain a model in state-space form which can be used by FAL-
CON.m for the dynamic optimization. Moreover, post-optimal sensitivity analysis can
be performed to identify influential parameters regarding the worst-case cost function
value (cf. Sec. 8.3.2). One practical method to obtain the post-optimal sensitivities of the
optimal cost function for nonlinear clearance problems is to use a parameter embed-
ding approach. Under this approach an additional equality constraint p− p0 = 0 with
the nominal parameter vector p0 is introduced in the clearance problem which fixes
the parameters to their nominal values. The negative Lagrange multipliers associated
with this parameter embedding constraint then represent the post-optimal sensitivities
of the optimal cost function with respect to the parameters (cf. Ref. [66]).

9.1.2 The Nonlinear Benchmark Problem

The nonlinear benchmark model which is used for the illustration of the Cat III intru-
sive approach represents a nonlinear version of the closed-loop system introduced in
Sec. 8.2.1 for the Cat I and Cat II type models. It is noteworthy that in the nonlinear
case the model is not separated into a longitudinal and lateral model but for all nu-
merical experiments the full dynamic model is considered. For this nonlinear closed-
loop model only the differentiable part is used and other components such as internal
limiters are dropped in order to enable the numerical solution using gradient-based
solvers (the full model is then treated under the Cat III hybrid approach, cf. Sec. 9.2).
In particular, the subsystems responsible for not exceeding the limits of the servomech-
anism are removed and replaced by state constraints for the rate and position states.
The only exception are table data (e.g. for gain scheduling) which are interpolated us-
ing a multi-linear method. Typically, it is advisable to use differentiable interpolation
methods for direct optimal control approaches. However, computational experience
indicates that the numerical solution for the clearance problems presented in the fol-
lowing section can be obtained even using multi-linear interpolation. Hence, in order
to keep the dynamic model used for the Cat III intrusive approach as close as possible
to the full model the table data interpolation method is left unaltered.

1www.falcon-m.com
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The nonlinear model has 82 states and includes the nonlinear plant model with
aeroelastic effects, sensor models, the gain scheduled controller, and the dynamic model
for the servomechanisms of all primary control surfaces including rate and position
limits (introduced as state constraints). Moreover, six control inputs, namely the nor-
mal load factor command, the lateral load factor command, the roll angle command
and the wind commands for the longitudinal, normal, and lateral wind gust are used
in different combinations to test the system. Inputs which are not used for the particu-
lar clearance problem are fixed to the trim condition. For example, in the case of the cri-
teria associated with the longitudinal plane this implies that all controls for the lateral
motion, i.e. the lateral load factor command, the roll angle command, and the lateral
wind gust command are set to the trim values. The same holds for the investigation
of the criteria in the lateral plane regarding the inputs associated with the longitudi-
nal plane, i.e. the normal load factor command as well as the longitudinal and normal
wind commands. Additionally, the model depends on the parameters introduced in
Sec. 8.3.2 (cf. Eq. 8.169 and Eq. 8.170) under the bi-level optimization approach.

9.1.3 Numerical Results

Both the nominal and the parameter dependent clearance problems are investigated in
the following. All results under the Cat III intrusive method are compared to the re-
sults obtained in the linear cases using the same transcription methods and discretiza-
tion step lengths (cf. Sec. 8.2.2 and Sec. 8.3.2). As such, for the solution of the nominal
problems and the investigation of the worst-case control functions the Backward Euler
method is used. Regarding the determination of the worst-case parameter combina-
tion a Trapezoidal transcription is employed. Additional states (rigid body states, error
controller states, and wind states) which are not presented this section are provided for
reference in App. B. The initial guess for all states and controls of the nonlinear model
is set to values corresponding to the trim condition (cf. Sec. 8.2.2). All four criteria,
i.e. the aerodynamic AoA αA(tf ), the normal load factor nz(tf ), the aerodynamic AoS
βA(tf ), and the lateral load factor ny(tf ) at tf = 6 s ≈ 5TSP , are investigated under the
Cat III intrusive approach. For the optimization of the criteria corresponding to the
longitudinal plane (αA(tf ), nz(tf )) the inputs for the normal load factor nz,c(t) as well
as the normal wind command wW (t) and the longitudinal wind command uW (t) are
used. Similarly, for the optimization of the criteria corresponding to the lateral plane
(βA(tf ), ny(tf )) the lateral load factor command ny,c(t), the roll angle command Φc(t),
and the lateral wind input vW (t) are used. Moreover, state constraints for the rate and
position limits are imposed for all actuators (elevator, aileron, rudder). The numer-
ical results for the nominal clearance problems are presented in Figs. 9.1-9.3. In all
figures the results using the nonlinear model (black lines) are compared to the results
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obtained from the linear models (blue lines). The author would like to emphasize that
the solution of the nonlinear optimal control problems posed considerable challenges
regarding the convergence of the NLPs. Here, for all problems except the maximiza-
tion of ny(tf ) (nominal case) the solver converged to an optimal solution. In case of
the maximization of ny(tf ) the solver appeared to get stuck despite the fact that the
optimization was performed using different combinations of scaling values, deriva-
tive options (BFGS, Hessian), discretization methods (Backward Euler / Trapezoidal),
discretization step lengths, and initial guesses. Considering the complexity of the non-
linear closed-loop model it is deemed practically impossible to narrow down the root
cause to a single element (or a combination of events) in the optimization problem
which inhibits convergence in this particular case.

Regarding the numerical results for the other nominal cases, i.e. the maximization
of nz(tf ) and αA(tf ) in the longitudinal plane as well as βA(tf ) in the lateral plane, it
is noteworthy that, as for the linear case, the worst-case controls obtained from the so-
lutions of the nonlinear clearance problems are of bang-bang type in case of the wind
commands and bang-bang with singular parts for the other command inputs. Here,
the singular parts of the command inputs correspond to the time intervals where the
actuators reach rate or position limits. For the maximization of the normal load fac-
tor nz(tf ) (cf. Fig. 8.23) the structure obtained for the nonlinear model shares common
features with the linear results. It is interesting, that in the nonlinear case the load fac-
tor command nz,c(t) and the longitudinal wind command uW (t) in the first half of the
time interval are on the opposite bound compared to the linear case. In the second half
all three controls appear to exhibit a comparable structure and the response nz(t) for
both models yields almost the same final value. Merely, the last switching time point
of the longitudinal wind command uW (t) appears to be shifted and the entry, respec-
tively exit time points of the elevator rate constrained arcs do not match perfectly. The
normal wind command wW (t), however, is almost identical for both the Cat II and Cat
III model. Regarding the maximization of αA(tf ) (cf. Fig. 9.2) it is observed that the
nonlinear model reaches the upper position limit of the elevator, which is not the case
for the linear model. As such, the load factor command nz,c(t) for the nonlinear model
exhibits additional arcs on which the elevator rate xe,v(t) is controlled to zero. In fact,
the elevator is saturated almost on the entire second half of the time interval (excluding
a short regular interval where the normal load factor command is on the bound). Note
that in the linear case the elevator position gets very close to the upper limit but does
not quite touch it. As the control inputs for the first half of the time interval are very
similar this is probably contributed to the fact that the linear and nonlinear dynam-
ics propagate in a slightly different manner further away from the linearization point.
Moreover, it is interesting to observe that the switching structures regarding the wind
commands (uW (t),wW (t)) appear to be very similar.
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Figure 9.1: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing nz(tf ), tf = 6 s with wind in-
cluding the normal load factor nz(t), the longitudinal wind velocity command
uW ,c(t), the normal wind velocity command wW ,c(t), the normal load factor
command nz,c(t), and the elevator rate xe,v(t).
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Figure 9.2: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing αA(tf ), tf = 6 s with wind
including the AoA αA(t), the longitudinal wind velocity command uW ,c(t),
the normal wind velocity command wW ,c(t), the normal load factor command
nz,c(t), the elevator rate xe,v(t), and the elevator position xe,p(t).
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For the maximization of βA(tf ) (cf. Fig. 9.3) the response and the structure of the
control functions from the linear and nonlinear analysis appear to be comparable. In
particular, the lateral wind command vW (t) and the lateral load factor command ny(t)

match very closely. However, the roll angle command Φc(t) appears to react differently
and exhibits rather complicated switches between different state constrained arcs.

Figure 9.3: Optimal results for the lateral plane using a Cat III model (black lines) and a
Cat II model (blue lines) for maximizing βA(tf ), tf = 6 s with wind including
the AoS βA(t), the lateral wind velocity command vW ,c(t), the lateral load
factor command ny,c(t), the roll angle command Φc(t), the rudder rate xr,v(t),
the aileron rate xa,v(t), the rudder position xr,p(t), and the aileron position
xa,p(t).
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As for the linear analysis (cf. Sec. 8.3.2, Figs. 8.30-Fig. 8.33) the post-optimal sen-
sitivities at the optimal solutions are presented. The indications regarding the degree
of influence on the worst-case solution are similar to the results obtained from the lin-
ear analysis for the maximization of nz(tf ) (cf. Fig. 9.4) and the maximization of βA(tf )

(cf. Fig. 9.6). Note that the structure of the solution for the worst-case control histories
(cf. Fig. 8.23 and Fig. 9.3) is comparable to the linear case. However, the indications for
the maximization of αA(tf ) (cf. Fig. 9.5) differ significantly. This may be contributed to
the fact that in the nonlinear case the elevator position limit is reached. Observe that
in the linear results merely two short state constraint arcs for the elevator rate state are
visible. As the sensitivity information is local there is no information contained in the
linear results that the position of the actuator is close to being saturated. In the nonlin-
ear results the actuator is saturated (rate and position) for the most part of the second
half of the time interval. As such, the post-optimal sensitivities need to be understood
under the following conditions: in the linear case the elevator position is not saturated
and does not get saturated under small parameter variations whereas in the nonlin-
ear case the elevator position is saturated and stays saturated under small parameter
variations. It is not un-reasonable that this fact has a considerable effect on the optimal
solution of the problem and is, as such, reflected in the post-optimal sensitivities of the
optimal cost function value regarding the local influence of the parameters.

Figure 9.4: Post-optimal sensitivities for maximizing nz(tf ), tf = 6 s under a Cat II (blue)
and Cat III (black) type model using the normal load factor command nz,c(t)
as well as the wind commands uW ,c(t) and wW ,c(t).
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Figure 9.5: Post-optimal sensitivities for maximizing αA(tf ), tf = 6 s under a Cat II (blue)
and Cat III (black) type model using the normal load factor command nz,c(t)
as well as the wind commands uW ,c(t) and wW ,c(t).

Figure 9.6: Post-optimal sensitivities for maximizing βA(tf ), tf = 6 s under a Cat II (blue)
and Cat III (black) type model using the lateral roll angle command Φc(t),
the lateral load factor command ny,c(t) as well as the wind command vW ,c(t).
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For the determination of the worst-case parameter combination the final time is
increased to tf = 8 s as for the parameter dependent cases in Sec. 8.3.2. The results
presented in Tab. 9.1-Tab. 9.4 compare the solution obtained from the bi-level approach
using a gradient-based method (SQP, cf. Tabs. 8.1-8.4) to the solutions obtained from
the nonlinear analysis. The optimal cost function values are similar for the load factors
n̂z(tf ) and n̂y(tf ) but differ for the aerodynamic angles α̂A(tf ) and β̂A(tf ). In particular,
the values obtained for the AoA are clearly non-physical as the aircraft would have
stalled far below the optimal value.

It is remarkable, that the worst-case parameter combinations of the linear and non-
linear results are very similar (merely, the values for ∆L̂p and ∆Îxx in Tab. 9.3 and
Tab. 9.4 show different values in the comparison). This may be seen as an indicator
that the Cat II and Cat III models qualitatively behave in a similar way. Hence, Cat
II models may be used as an indicator for the direction in the parameter space where
the worst-case solution is expected. This observation together with the indications that
the worst-case structure of the optimal control histories share similarities is the moti-
vation behind the Cat III hybrid approach presented in Sec. 9.2 which uses information
from a reduced model to improve the worst-case search under a Cat III non-intrusive
(black-box) method.

Table 9.1: Comparison of the bi-level optimization results of the Cat II model with the
results obtained from the Cat III intrusive method (box-bounded parameters)
for the maximization of αA(tf ) using the normal load factor command nz,c(t)
as well as the wind commands uW (t) and wW (t).

Case α̂A(tf ) ∆M̂α ∆M̂q ∆M̂η ∆m̂ ∆Îyy ∆x̂GN

CAT II 14.166 [deg] −0.100 −0.100 0.100 0.100 0.100 −0.100

CAT III 29.877 [deg] −0.100 −0.100 0.100 0.100 0.100 −0.100

Table 9.2: Comparison of the bi-level optimization results of the Cat II model with the
results obtained from the Cat III intrusive method (box-bounded parameters)
for the maximization of nz(tf ) using the normal load factor command nz,c(t)
as well as the wind commands uW (t) and wW (t).

Case n̂z(tf ) ∆M̂α ∆M̂q ∆M̂η ∆m̂ ∆Îyy ∆x̂GN

CAT II 2.222 −0.100 −0.100 0.100 −0.100 0.100 −0.100

CAT III 2.349 −0.100 −0.100 0.100 −0.100 0.100 −0.100
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Table 9.3: Comparison of the bi-level optimization results of the Cat II model with the
results obtained from the Cat III intrusive method (box-bounded parameters)
for the maximization of βA(tf ) using the roll angle command Φc(t), lateral load
factor command ny(t), and the wind command vW (t).

Solver β̂A(tf ) ∆L̂β ∆L̂p ∆N̂β ∆N̂ζ ∆Îxx ∆Îzz

CAT II 16.325 [deg] −0.100 0.007 −0.100 0.100 0.100 0.100

CAT III 20.532 [deg] −0.100 0.100 −0.100 0.100 −0.100 0.100

Table 9.4: Comparison of the bi-level optimization results of the Cat II model with the
results obtained from the Cat III intrusive method (box-bounded parameters)
for the maximization of ny(tf ) using the roll angle command Φc(t), lateral load
factor command ny(t), and the wind command vW (t).

Solver n̂y(tf ) ∆L̂β ∆L̂p ∆N̂β ∆N̂ζ ∆Îxx ∆Îzz

Cat II 0.323 −0.100 −0.100 −0.100 0.100 0.100 0.100

Cat III 0.344 −0.100 0.100 −0.100 0.100 −0.100 0.100

9.1.4 Multi-Criteria and Reachability Analysis

As for Cat I and Cat II type models (cf. Sec. 8.4) it can be of interest for Cat III type mod-
els which values of combined criteria may occur. Reachability analysis for nonlinear
models is considerably more involved compared to the linear case. In particular, the
reachable set is not guaranteed to be convex in the general case. The computation of
forward and backward reachable sets in the context of safety analysis has been of par-
ticular interest in the last years (see for example Ref. [115]). A popular approach for this
purpose are level-set methods which require the formulation of the reachability prob-
lem based on a suitable Hamilton-Jacobi equation (cf. Refs. [116, 117]). However, the
applicability of these approaches in higher dimensional state-spaces is computation-
ally challenging. Nevertheless, these methods have been proven useful in aerospace
applications such as safety analysis during landing (cf. Ref. [118]) or maneuvering en-
velope estimation (cf. Ref. [119]). As for the linear case there also exist approaches
based on direct optimal control methods such as the Distance Fields on Grids (DFOG)
method (cf. Ref. [33]). This method relies on the solution of multiple optimal control
problems which is conceptually close to the formulation of the clearance problems in-
vestigated in this thesis. Moreover, the requirements on the type of dynamic system are
fairly non-restrictive and the consideration of input and state constraints is supported.
As such, this method is considered in the following for the general Cat III models un-
der the intrusive approach in order to approximate the forward reachable set at a time
point tf . For the DFOG method the space of interest is discretized using a grid GDFOG

ng
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with constant mesh size containing ng grid points:

GDFOG
ng := {yk : k = 0, . . . ,ng − 1, yk ∈ Rny} (9.10)

The reachable set can then be approximated by solving an appropriate optimal control
problem for each of the grid points in GDFOG

ng . This optimal control problem solved for
each of the points yk, k = 0, . . . ,ng − 1 using a Cat III model reads

minimize
u(t), p

‖j (x(tf ), p)− yk‖2

subject to ẋ(t)− f (x(t), u(t), p) = 0,

x(t0) = x0,

x(t) ∈ X ,

u(t) ∈ U ,

g(p) ≤ 0,

t ∈ I t,

(9.11)

with the vector-valued output function j : Rnx × Rnp → Rny :

y(tf ) = j (x(tf ), p) (9.12)

Here, the problem formulation (9.11) is adapted from Ref. [33] for the clearance ap-
plication considered in this thesis. In particular, the formulation is extended by the
parameter dependency and the states are assumed to be constrained to the set X de-
fined by:

xj,lb ≤ xj(t) ≤ xj,ub, ∀j ∈ Ib (9.13)

The discretization of this problem using the Trapezoidal collocation method with step
size h yields:

minimize
p, x[i], u[i], i = 0, . . . ,N

∥∥j
(
x[N ], p

)
− yk

∥∥
2

subject to x[i] = x[i−1]+h
f
(
x[i−1], u[i−1], p

)
+f
(
x[i], u[i], p

)

2
, i=1, . . . ,N ,

x[0] = x0,

u[i] ∈ U , i = 0, . . . ,N ,

x[i] ∈ X , i = 1, . . . ,N

(9.14)

Obviously, the reachable set approximation requires the solution of a potentially large
number of optimal control problems depending on the number of grid points ng (see
Fig. 9.7). Moreover, it is important to mention that the nonlinear optimal control prob-
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lems associated with each grid point can usually only be solved for a local minimizer.
However, it is observed for the DFOG method “that the lack of global optimality is often
cured by considering many grid points” [33]. Hence, the high number of optimal control
problems which need to be solved for this approach are expected to mitigate the local
nature of the solution using direct methods to a certain extent.

Figure 9.7: Illustration of the reachable set approximation using a distance function on
a rectangular grid with constant mesh size. The black markers represent the
points with the smallest distances to the respective grid points.

The application of the DFOG method is applied in Ref. [110] by the author for the
estimation of the tracking errors of a nonlinear aircraft closed-loop system. For illustra-
tion purposes this analysis is re-produced in the following. The system investigated in
this reference represents a reduced model for a F-16 fighter aircraft with a Model Ref-
erence Adaptive Controller (MRAC). For this system, the plant is modeled by a short
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period approximation of the form:

ẋP (t) = APxP (t) + BPλMηu(t) (9.15)

Here, the state vector of the plant xP (t) = [αP (t), qP (t)]T collects the AoA αP (t) as well
as the pitch rate qP (t). Moreover, the input is denoted with u(t) and the system is
subject to the parametric uncertainty λMη ∈ [0.75, 1.25] for the elevator effectiveness. In
addition, the uncertain system matrix AP is of the form

AP :=


 Zα 1 + Zq

MαλMα MqλMq


 , (9.16)

and contains the entries Mα = −30.79, Mq = −3.75, Zα = −1.84, and Zq = −0.09 as
well as the multiplicative uncertainties λMα ∈ [0.75, 1.25] and λMq ∈ [0.75, 1.25] for the
pitch stiffness and pitch damping. In addition, the uncertain input matrix BP

BP :=


 0

Mη


 , (9.17)

contains the coefficient Mη = −12.75. The reference model for the MRAC

ẋM(t) = AMxM(t) + BMKrr(t), (9.18)

with the feed-forward gain Kr = −1.55 has two states xM(t) = [αM(t), qM(t)]T , namely
the reference state for the AoA αM(t) and the pitch rate qM(t). These states should be
tracked by the plant states αP (t) and qP (t). The system matrix of the reference model
AM is of the form

AM :=


 Zα 1 + Zq

Mα,M Mq,M


 , (9.19)

with the desired values Mα,M = −11.38 and Mq,M = −4.16. The reference command
r(t) for the AoA is subject to box bounds r(t) ∈ [−5 deg, +5 deg] and the input matrix
BM is defined as BM := BP . The reference model (9.18) exhibits desirable properties
as it ensures stationary accuracy and has an ideal damping of

√
2

2
. The task of the

controller is to let the plant states follow the reference model states, i.e. xP (t) ≈ xM(t),
as in this case these properties of the reference dynamics are transferred to the plant.

The matching conditions

AM = AP + BPλMηΘ
∗
x(t), (9.20)

BPKr = BPλMηΘ
∗
r(t), (9.21)
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relating the matrices of the plant (9.15) to those of the reference model (9.18) guarantee
that this control objective is achievable. In these conditions, the so-called ideal param-
eters are denoted with Θ∗x ∈ R1×2 and Θ∗r ∈ R. Observe that these ideal parameters are
uncertain as they depend on the multiplicative uncertainties λMα , and λMq through the
plant matrix AP and the uncertainty λMη .

The following adaptive control law (cf. Ref. [120])

u(t) = Θx(t)xP (t) + Θr(t)r(t) = Θ(t)ω(t), (9.22)

Θ̇
T

(t) = −Γω(t)eTC(t)PBP , (9.23)

with the regressor vectorωT (t) = [xTP (t), r(t)], the parameter vector Θ(t) = [Θx(t), Θr(t)]

as well as the error vector eC(t) = [eα(t), eq(t)]
T = xP (t)− xM(t) ensures that the plant

asymptotically tracks the reference model, i.e. lim
t→∞

eC(t) = 0.

In Eq. (9.23) the matrix Γ := diag([Γ, Γ, Γ]) with the learning rate Γ ∈ R and the
symmetric, positive definite matrix P ∈ R2×2 obtained from the solution of the Lya-
punov equation

AT
MP + PAM = −Q, (9.24)

with Q := I represent design parameters of the control law.

By adding and subtracting BPKr to the dynamic equations of the plant (9.15) as
well as using the matching conditions (9.20) and (9.21) yields:

ẋP (t) = AMxP (t) + BPKrr(t) + BPλMη(u(t)−Θ∗(t)ω(t)), Θ∗(t) := [Θ∗x(t), Θ∗r(t)]

(9.25)

Moreover, inserting the adaptive control law (9.22) one obtains:

ẋP (t) = AMxP (t) + BPKrr(t) + BPλMη(Θ(t)−Θ∗(t))ω(t). (9.26)

Thus, the tracking error dynamics can be expressed as:

ėC(t) = ẋP (t)− ẋM(t) = AMeC(t) + BPλMη(Θ(t)−Θ∗(t))ω(t) (9.27)

Hence, the complete set of dynamic equations for the nonlinear closed-loop system can
be written as:

ėC(t) = AMeC(t) + BPλMη(Θ(t)−Θ∗(t))ω(t),

ẋM(t) = AMxM(t) + BPKrr(t),

Θ̇
T

(t) = −Γω(t)eTC(t)PBP

(9.28)

The quantification of the attainable set in the tracking error subspace for eα(t) and eq(t)
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represents an important figure of merit to quantify the deviation between the states of
the plant and the reference model. Note that in the context of flight control law clear-
ance typically the boundary of the set is of primary interest. If a point-wise estimate
of this boundary is sufficient for a particular application it is reasonable to consider
only those optimal control problems which minimize the distance to the points in the
outer boundary of the grid. For an extended investigation which employs this idea the
reader is referred to Ref. [110]. Here, for illustration purposes the reachable set estima-
tion from Ref. [110] is reproduced for Γ = 10 at tf = 1 s using the DFOG-method. The
resulting set including the worst-case parameters corresponding to each grid point are
depicted in Figs. 9.8-9.10. Note that the DFOG method for the estimation of reachable
sets in the clearance framework is particularly appealing as it

� enables the estimation of the reachable set in a general setting (control constraints,
state constraints, parameters, ...),

� allows for a parallel solution of all optimal control problems associated with each
grid point, and

� mitigates the local nature for direct optimal control problems by considering the
solution of a large number of problems.

Thus, it can be expected that the application of this methods represents be a valuable
extension for the Cat III intrusive approach for optimal control based clearance.

Figure 9.8: Reachable set approximation and optimal parameter values for λMα corre-
sponding to each grid point.
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Figure 9.9: Reachable set approximation and optimal parameter values for λMη corre-
sponding to each grid point.

Figure 9.10: Reachable set approximation and optimal parameter values for λMq corre-
sponding to each grid point.
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9.2 A Cat III Hybrid Approach for Practical Worst-

case Analysis

The main motivation for the Cat III hybrid approach presented in the following is
to introduce problem-specific information extracted from the solution of an intrusive
method in the non-intrusive (black-box) approach. For this purpose a reduced model
is employed which shares basic characteristics with the full model and allows for a
solution of the clearance problem using a Cat I, Cat II, or Cat III type model under
the optimal control based approach. This solution from the reduced model is used to
determine the worst-case parameter combination and the structure of the worst-case
control functions. The parametrization obtained in this way is then applied to test the
full model under the Cat III non-intrusive method. Here, a simultaneous refinement
of the worst-case control functions in combination with the parameters is possible or,
to simplify the approach, the parameters may be fixed and solely the control function
is refined. Note that an initial guess for the starting point of the black-box approach is
readily available from the solution of the reduced model.

Obviously, the results obtained under this approach depend on the validity of the
reduced model. If the information extracted from the solution of the reduced model
is in-accurate the search space may not be parametrized appropriately and the initial
guess is expected to be poor. As such, the two underlying assumptions for the appli-
cation of this approach are:

� Assumption I: The reduced model shares the same tendency regarding the com-
bination of worst-case parameter values and optimal control actions with the full
model.

� Assumption II: The switching structure, e.g. the sequence of bang-bang arcs, of
the worst-case control functions from the reduced model is representative for the
full model.

Assumption I ensures that even if the results obtained from the reduced model do not
match the full model quantitatively at least the reduced model provides an indicator
regarding the direction in the parameter space where the worst-case parameter combi-
nation is expected. Under this assumption the reduced model may be used to search
the parameter space in order to determine the parameter combination which leads to
the most detrimental value of the criterion. At the worst-case parameter combina-
tion identified by this approach the optimal control functions can be analyzed and the
structure parametrized. In case of a bang-bang type control this parametrization can
be for example chosen as the switching time points with the amplitude being fixed to
the respective bounds. If assumption II holds it can be expected that a fine-tuning of
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this parametrized control function, e.g. by adapting the switching time points using a
suitable optimization algorithm, improves the worst-case solution for the full model.
Note that under this approach the number of parameters is greatly reduced compared
to a search of the optimal control function “from scratch” and an initial guess is readily
available from the reduced model. Note further that, alternatively, also a simultane-
ous refinement of the worst-case parameter combination and control parametrization
obtained by the reduced model is possible under this approach.

In the following Cat I and Cat II models are used as reduced models. The Cat II
model is preferred for the parameter search under the bi-level approach presented in
Sec. 8.3.2 in order to determine the worst-case parameter combination. The reasoning
behind this approach is that the degree of realism for the worst-case parameter combi-
nation is expected to be higher if actuator limits are included in the analysis. For deter-
mining a suitable control parametrization the Cat I model is then solved at the worst-
case parameter combination. Cat I models are observed to represent an excellent choice
for this purpose as the bang-bang commands seem to be the most hazardous type of
input signals for the full model and a parametrization based on the switching time
points is easily determined. Note that the full model is expected to handle constraints
internally, e.g. by featuring an actuator model which takes saturations into account.
Hence, if the full model handles the actuator limits internally the responsibility for
not exceeding the limits of the servomechanism is transferred from the control to the
dynamic model. It is observed that the number of switches for bang-bang type worst-
case control functions is typically low. As such, the number of parameters (number of
switching time points) is expected to be low if the amplitudes are fixed to the lower,
respectively upper control bounds. This implies that also gradient-free optimization
algorithms can be easily applied to refine the switching time points for the full model.

Let the switching time points identified from the reduced model be collected in
the vector t ∈ Rnt . A simple method to determine these switching time points is to
find the zero-crossings of the switching functions in case of Cat I models. Computa-
tional experience suggests that this approach works very robustly even if the control
function exhibits numerical inaccuracies (such as chattering effects). The evaluation
of the criterion function j : Rnt → R is then performed based on a simulation of the
full model. As the values of the function j (t) from the nonlinear model can be noisy
due to the potentially complex structure of aircraft closed-loop systems a gradient-free
optimization method is used in the following. In particular, the Nelder-Mead Sim-
plex method (cf. Ref. [121, 122]) has shown to be effective for this task. This method
represents a derivative-free optimization algorithm for the solution of unconstrained
optimization problems which merely requires the values of the cost function at partic-
ular points in the parameter space. The name “Simplex”-method originates from the
fact that the method performs a set of operations (reflection, expansion, contraction)
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on a simplex body such that the “simplex adapts itself to the local landscape, and con-
tracts on to the final minimum” [121]. Note that this method is not to be confused with
Dantzig’s Simplex method (cf. Ref. [55]) for solving LPs. An implementation is for
example available in the MATLAB®-function fminsearch() designed for unconstrained
minimization. Clearly, it is desirable for the control function parametrization using the
switching time points to impose bounds of the form 0 ≤ tk ≤ tf , k = 0, . . . ,nt − 1. In
order to include these simple bounds in the unconstrained algorithm from fminsearch()
the version from Ref. [123] is used which applies simple variable transformations to
handle box-bounds. Moreover, it is required that the sequence of the switching struc-
ture, meaning the sequence of bang-bang arcs, is maintained which implies ti+1 ≥ ti

(recall that the amplitudes are fixed to the lower or upper bounds). This can be ensured
by sorting the vector t in ascending order before evaluating the cost function.

Regarding the cost-function it would be possible to use the infinity norm of the cri-
terion under investigation over the whole time interval which is a common approach
for optimization based clearance methods (see for example Ref. [21]). Here, this ap-
proach is not followed but the problem is stated as a Mayer-type problem regarding
the value of the criterion at the final time point tf . The reasoning behind this strategy
is to avoid that the algorithm concentrates on some extremal point (e.g. right in the
beginning of the time interval) which may not exploit the full potential of the control
function parametrization over the whole time interval. Consider for example a control
function with two switches (see Fig. 9.11). If in some iteration the two switches are not

t

y(t)
ylin(t)

ynlin(t)
ulin(t)

tft2t1

Figure 9.11: Linear response (ylin(t), blue line) and nonlinear response (ynlin(t), black line
/ grey line) to the control input (ulin(t), black dashed line) parametrized by
the time points t1 and t2. Components which are greyed out indicate that
the maximum value of the nonlinear response is not influenced by these
quantities due to the causality of the system.
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well tuned the maximum may occur before the second switch takes place. If the algo-
rithm focuses on the highest value of the cost function history the second parameter is
essentially disregarded due to the causality of the system (future control actions do not
affect the past). For example, when using a gradient-based method the gradient of the
maximum value with respect to the second parameter (switching time point) would
be zero in this case. However, by maximizing the criterion value at the final time point
the algorithm is “motivated” to use the full parameter space in all iterates as all pa-
rameters should have an effect on the final value of the criterion (past control actions
do affect the future). Moreover, the algorithm concentrates on the maximization of the
criterion on a single, defined point and a jumping between extremal points or even
cycling between several extremals at different locations is avoided.

Both the longitudinal and the lateral models are used to illustrate the Cat III hybrid
approach. First, the nominal cases, i.e. without considering parameter uncertainties,
are presented and the Cat I solutions using the combined controls from Sec. 8.2.2 are
parametrized based on the switching time points. Figs. 9.12 and 9.13 present the results
for the maximization of nz(tf ) and αA(tf ) using the normal load factor command nz,c(t)
including the wind commands uW (t) as well as wW (t). Similarly, Fig. 9.14 and Fig. 9.15
present the results for the maximization of ny(tf ) and βA(tf ) using the lateral load fac-
tor command ny,c(t) including the wind command vW (t). In all results (top sub-figures)
the initial response in the first iteration (blue lines) is compared to the worst-case solu-
tion identified by the optimization algorithm (black lines). Note that the results in the
initial iteration indicate that merely applying the commands obtained from the Cat I
models is not effective for the final values of the criteria as the switching time points
are not tuned to the nonlinear model. Only for the maximization of ny(tf ) the initial
and final value at the terminal time point appear to be similar (cf. Fig. 9.14). However,
for all cases the optimization algorithm behaves as expected and adjusts the switching
time points in order to maximize the criteria at the terminal time point. Observe that
in some cases the optimizer chooses to collapse some of the switching time intervals
for the nonlinear model (see for example Fig. 9.12, Fig. 9.16, and Fig. 9.17).

Next, the parameter dependent cases are investigated. Here, the results from Tabs. 8.1-
8.4 (SQP) are used as starting points and the optimal control functions at the worst-case
parameter combinations are first determined using a Cat I model and then parametrized
using the zero-crossings of the switching functions. Note that as for the nominal case
simply applying the worst-case control from the reduced model is not effective. How-
ever, through the refinement using the Nelder-Mead Simplex algorithm the results are
considerably improved. Observe that for the maximization of the load factors nz(tf )
and ny(tf ) the identified worst-case solutions exceed the maximum commanded val-
ues by a noticeable amount.

233



9.2 A Cat III Hybrid Approach for Practical Worst-case Analysis

Figure 9.12: Optimal results for the longitudinal plane using the Cat III hybrid approach
(nominal case) for maximizing nz(tf ), tf = 6 s with wind including the nor-
mal load factor nz(t), the longitudinal wind velocity command uW ,c(t), the
normal wind velocity command wW ,c(t), and the normal load factor com-
mand nz,c(t). The blue lines represent the initial control and response his-
tories whereas the black lines are the final results after the optimization of
the switching time points requiring 269 simulations.
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Figure 9.13: Optimal results for the longitudinal plane using the Cat III hybrid approach
(nominal case) for maximizing αA(tf ), tf = 6 s with wind including the AoA
αA(t), the longitudinal wind velocity command uW ,c(t), the normal wind
velocity command wW ,c(t), and the normal load factor command nz,c(t).
The blue lines represent the initial control and response histories whereas
the black lines are the final results after the optimization of the switching
time points requiring 223 simulations
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Figure 9.14: Optimal results for the lateral plane using the Cat III hybrid approach (nom-
inal case) for maximizing ny(tf ), tf = 6 s with wind including the lateral
load factor ny(t), the lateral wind velocity command vW ,c(t), the lateral load
factor command ny,c(t), and the roll angle command Φc(t). The blue lines
represent the initial control and response histories whereas the black lines are
the final results after the optimization of the switching time points requiring
338 simulations.
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Figure 9.15: Optimal results for the lateral plane using the Cat III hybrid approach (nom-
inal case) for maximizing βA(tf ), tf = 6 s with wind including the AoS βA(t),
the lateral wind velocity command vW ,c(t), the lateral load factor command
ny,c(t), and the roll angle command Φc(t). The blue lines represent the ini-
tial control and response histories whereas the black lines are the final results
after the optimization of the switching time points requiring 213 simulations.
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Figure 9.16: Optimal results for the longitudinal plane using the Cat III hybrid approach
(parameter dependent case) for maximizing nz(tf ), tf = 8 s with wind in-
cluding the normal load factor nz(t), the longitudinal wind velocity command
uW ,c(t), the normal wind velocity command wW ,c(t), and the normal load fac-
tor command nz,c(t). The blue lines represent the initial control and response
histories whereas the black lines are the final results after the optimization
of the switching time points requiring 657 simulations.
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Figure 9.17: Optimal results for the longitudinal plane using the Cat III hybrid approach
(parameter dependent case) for maximizing αA(tf ), tf = 8 s with wind in-
cluding the AoA αA(t), the longitudinal wind velocity command uW ,c(t), the
normal wind velocity command wW ,c(t), and the normal load factor com-
mand nz,c(t). The blue lines represent the initial control and response his-
tories whereas the black lines are the final results after the optimization of
the switching time points requiring 174 simulations.
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Figure 9.18: Optimal results for the lateral plane using the Cat III hybrid approach (pa-
rameter dependent case) for maximizing ny(tf ), tf = 8 s with wind including
the lateral load factor ny(t), the lateral wind velocity command vW ,c(t), the
lateral load factor command ny,c(t), and the roll angle command Φc(t). The
blue lines represent the initial control and response histories whereas the
black lines are the final results after the optimization of the switching time
points requiring 321 simulations.
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Figure 9.19: Optimal results for the lateral plane using the Cat III hybrid approach (pa-
rameter dependent case) for maximizing βA(tf ), tf = 8 s with wind including
the AoS βA(t), the lateral wind velocity command vW ,c(t), the lateral load
factor command ny,c(t), and the roll angle command Φc(t). The blue lines
represent the initial control and response histories whereas the black lines are
the final results after the optimization of the switching time points requiring
187 simulations.
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Regarding the maximization of nz(tf ) for the parameter dependent case (see Fig. 9.16)
it appears as if the controls are exciting an oscillatory mode. Here, it is worthwhile
to investigate if increasing the final time of the analysis is expected to yield a higher
value of the criterion. A comparison of the parametrizations obtained from the solu-
tion using the Cat I model at the worst-case parameter combinations are presented in
Figs. 9.20-9.22 for tf ∈ {8 s, 12 s, 16 s}. Note that the structure of the solution in the
final 6 s remains essentially unchanged and merely the longitudinal wind command
seems to produce an additional switch in the beginning of the time interval for the
cases with tf = 12 s and tf = 16 s. This indicates that increasing the time interval
is not expected to yield a significantly higher value by refining the switches using a
non-intrusive method.

Figure 9.20: Comparison of the parametrized control functions for uW ,c(t) obtained from
the solution using a Cat I model at the worst-case parameter combinations
for tf = 8 s (top), tf = 12 s (middle), and tf = 16 s (bottom).
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Figure 9.21: Comparison of the parametrized control functions for wW ,c(t) obtained from
the solution using a Cat I model at the worst-case parameter combinations
for tf = 8 s (top), tf = 12 s (middle), and tf = 16 s (bottom).

Figure 9.22: Comparison of the parametrized control functions for nz,c(t) obtained from
the solution using a Cat I model at the worst-case parameter combinations
for tf = 8 s (top), tf = 12 s (middle), and tf = 16 s (bottom).
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It is clear that the application of sanity checks is advisable in order to improve
the confidence in the worst-case results obtained from the Cat III hybrid approach.
The following checks may be performed to check if the assumptions on the reduced
model are valid and if the refinement using the optimization algorithm under the non-
intrusive approach converged to a meaningful value:

� Check I: Investigate the flatness of the slope for the criterion at the final time.

� Check II: Check if the most detrimental value of the criterion occurs at the final
time and not in the interior of the time interval.

� Check III: Check how the optimization algorithm under the non-intrusive ap-
proach exploits the parametrization obtained from the intrusive approach (e.g. check
if intervals are collapsed after the refinement).

� Check IV: Apply different optimization algorithms for the refinement of the so-
lution under the non-intrusive approach and check the consistency of the results.

� Check V: Perform the analysis for increasing values of the final time tf (e.g. in
multiples of a characteristic time constant such as the one corresponding to the
closed-loop short period mode) and check if the results obtained from the analy-
ses yield consistent worst-case solutions.

If the above checks indicate that the solution is not satisfactory the process may be
repeated for a new final time, the analysis may be re-started from a randomized initial
parametrization around the nominal values obtained from the non-intrusive approach
or a different optimization algorithm can be employed (e.g. the DIRECT method or the
surrogate optimization method, cf. Sec. 8.3.2). These strategies may also be applied for
some of the cases presented in this section to further improve the worst-case solutions.

However, the examples presented in this section indicate that the Cat III hybrid ap-
proach is effective for the fully nonlinear model and can be easily integrated in existing
tool-chains. Merely, linearized models and a simulation model are required which are
essentially available at no cost - typically these models are required anyway for the de-
velopment of flight control laws. Thus, the Cat III hybrid approach should be directly
applicable for the solution of clearance problems in industry practice. In particular, it
is observed that the Cat III hybrid approach allows for a considerable automatization.
On the one side, the solution using Cat I and Cat II models is reliable and efficient.
On the other side, it is found that the automatic detection of the switching time points
using the values of the switching functions works very robustly. These aspects, in par-
ticular, allow for the application of this approach for example in the form of an auto-
matic sanity check whenever the model is altered (such as in a continuous integration
environment).
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Chapter 10

Summary, Conclusion, and Outlook

10.1 Summary and Conclusion

In this thesis the application of optimal control methods for flight control law clear-
ance is investigated. The optimal control formulation considers bounded inputs as
well as state constraints which are introduced to expose internal limits (actuator rate
and deflection) to the optimization algorithm. For all categories from the proposed
modeling classification scheme (cf. Sec. 7.1, Contribution I: Model classifications for
optimal control based clearance) approaches tailored to linear (Cat I), quasi-linear (Cat
II), and general nonlinear (Cat III) models are developed. These approaches consider
the solution of the clearance problem in the nominal and parameter dependent cases.

Contribution II: Development of clearance methods for parame-

ter dependent (quasi-)linear systems

For Cat I and Cat II type models the optimal control is characterized based on the Min-
imum Principle (cf. Sec. 8.1.1 and Sec. 8.1.2). Under the assumption that the system is
controllable it is shown that the worst-case control is of bang-bang type if the states are
unbounded and potentially exhibits singular intervals in the bounded case. On these
singular intervals the control takes the values of the boundary control which allows
the system to ride the state constrained arcs. Regarding the numerical solution using
Cat I and Cat II type models it is shown that based on direct transcription methods
the continuous time optimal control problem can be transcribed into a finite dimen-
sional Linear Program (LP), cf. Sec. 8.1.3. This implies that the global worst-case can be
efficiently determined using LP solvers even under the consideration of actuator rate
and deflection limits. A benchmark model is used to illustrate the application of this
approach to a realistic aircraft closed-loop model. This model is linearized around a
steady-state flight condition and the longitudinal and lateral channels are investigated
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separately (cf. Sec. 8.2.1). Four different criteria namely the load factors in normal and
lateral direction as well as the aerodynamic Angle-of-Attack and Angle-of-Sideslip are
considered for testing the flight control law. Besides the commands of the closed-loop
model (normal and lateral load factor commands, roll angle command) additional ar-
tificial control-like variables are used to model the influence of wind. The numerical
solutions show that the approach is effective not only for the single input case but also
when considering combined control actions. Moreover, the numerical results appear
to be in alignment with the theoretical analysis (cf. Sec. 8.2.2).

Regarding the parameter dependent case for Cat I and Cat II models (cf. Sec. 8.3)
a decomposition approach is proposed which separates the search in the parameter
space from the solution of the optimal control problem. Under this approach a bi-
level optimization setup is used where the upper level searches the parameter space
and is subject to the lower level which solves for the worst-case control functions
(cf. Sec. 8.3.2). For most practical applications the number of parameters in the up-
per level is expected to be low which implies that global optimization methods can be
efficiently employed. Note that the lower level solves for the worst-case control func-
tions through the solution of LP problems at nominal parameter values. As such, the
lower level can be evaluated efficiently and is always guaranteed to yield the global
worst-case for the particular parameter values provided from the upper level. Besides
the use of global optimization algorithms in the upper level, gradient-based methods
are shown to be efficient as convergence is achieved within a few steps. Moreover, the
illustrative examples demonstrate that gradient-based methods yield worst-case solu-
tions close to the ones obtained from global methods (at a considerably lower compu-
tational cost). For the application of gradient-based methods it is shown that first- and
second-order derivative information of the cost function in the lower level with respect
to parameters in the upper level can be obtained efficiently using post-optimal sensi-
tivity analysis. It is noteworthy that this kind of sensitivity analysis can also be seen as
a valuable extension for the clearance framework developed in this thesis in order to
determine influential parameters regarding the worst-case solution at nominal param-
eter values. Here, it should be mentioned that essentially arbitrary parameters in the
aircraft closed-loop system can be considered for this type of sensitivity analysis.

Besides the proposed worst-case search algorithm for parameter dependent Cat I
and Cat II models the case is investigated where the parameters are uncertain, i.e. sub-
ject to a distribution (cf. Sec. 8.3.3). Uncertainty quantification is performed under the
optimal control based clearance approach using generalized Polynomial Chaos (gPC)
and Monte Carlo (MC) analysis. In the numerical examples criteria for the longitudi-
nal and lateral channel are investigated including uncertainties corresponding the the
aerodynamic coefficients. The gPC and MC approaches are used to estimate the first
two moments of the criteria. It is shown that the results regarding both methods are in
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good alignment and that the gPC approach can be used to efficiently estimate the mo-
ments and the response surface for the criterion under investigation. Moreover, these
results can be used to determine bounds on the exceedance probability for a particular
criterion. It is noteworthy that both approaches allow for a considerable parallelization
as all LPs corresponding to the sampling points can be solved independently.

For the investigation of multi-criteria problems using Cat I and Cat II type models
reachability analysis is considered (cf. Sec. 8.4). An algorithm is developed based on
the successive solution of LPs along rays in the output space in combination with post-
optimal sensitivity analysis. This algorithm constructs inner and outer approximations
and adaptively refines these approximations until a given accuracy is achieved. In
particular, this algorithm is able to handle input and state constraints and provides a
bound on the expected error in each major iteration. Two- and three-dimensional ex-
amples for different criteria regarding the longitudinal and lateral plane are presented
to illustrate the approach.

Contribution III: Development of clearance methods for general

nonlinear systems

Cat III type models for optimal control based clearance approaches have shown to be
the most challenging type regarding the numerical solution. Three sub-classes are pre-
sented for this category namely non-intrusive (black-box), intrusive (white-box), and
hybrid (grey-box) approaches (cf. chapter 9). For the intrusive approach a nonlinear
optimal control problem is formulated which simultaneously determines the worst-
case parameters in combination with the worst-case control functions. It is shown that
given the current state of the art regarding direct optimal control methods, solutions
of the discretized problems can be obtained using nonlinear programming solvers tai-
lored to large-scale and sparse problems. However, it is also found that the solution
of the nonlinear optimal control problems using the direct approach are considerably
more challenging compared to the linear case. Furthermore, the results indicate that
the solution structures obtained from Cat II type models share similarities with the
solutions obtained from the general Cat III type model. In particular, the worst-case
parameter combination obtained under the simultaneous optimization of parameters
and control functions yields almost identical results (cf. Sec. 9.1.3).

Regarding multi-criteria analysis for Cat III type models the application of the Dis-
tance Fields on Grids (DFOG) method is proposed (cf. Sec. 9.1.4). This method is based
on a particular optimal control formulation for which a distance function is used to
obtain a point-wise representation of the reachable set in the space of criteria. An in-
herent characteristic of this method is that the solution of a potentially large number of
optimal control problems is required. Even though this property obviously represents
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a challenge regarding the efficient solution of the associated optimal control problems
it can in fact be seen as a good practical strategy to globalize the approximation. More-
over, the DFOG method allows for a considerable parallelization as all optimal control
problems which need to be solved are independent. The method is illustrated using
a F-16 model with nonlinear model reference adaptive controller (MRAC). For this
example the forward reachable set in the error subspace is estimated including the
consideration of parametric uncertainties.

Finally, the Cat III hybrid approach is presented which employs a reduced model to
determine the worst-case parameter combination and the worst-case inputs (cf. Sec. 9.2).
This result is then used to parametrize the control functions and to refine the solution
using a Cat III non-intrusive (black-box) method. Here, it is found that the maximiza-
tion of the criterion at the final time point represents an effective way to formulate
the clearance problem. Moreover, the refinement of the control functions based on the
Nelder-Mead Simplex method is shown to be effective for this task. In all cases the
final worst-case control functions identified by this optimization algorithm appear to
increase the value of the criterion at the final time point compared to the initial guess
provided from the reduced model. In particular, for the maximization of the normal
and lateral load factors it is shown that the response of the system considerably ex-
ceeds the commanded values. From a practical perspective the Cat III hybrid approach
appears to be a promising candidate for the direct integration into state of the art clear-
ance procedures. These state of the art methods in optimization based clearance are
currently primarily based on black-box methods using global optimization algorithms
(see Ref. [21]). Note that the efficiency and effectiveness of these algorithms under the
Cat III hybrid approach is leveraged by the optimal control based methods. As such,
this approach allows for a gradual integration of optimal control based methods in
optimization based clearance frameworks (cf. Fig. 10.1).

Cat III

Non-intrusive

(black-box)

Intrusive

(white-box)
Hybrid

(grey-box)

Cat I, Cat II
Total Effort

Non-intrusive/

Intrusive

Figure 10.1: Combination of state of the art (black-box) methods with the optimal control
based approaches developed in this thesis. The work share regarding the
optimization/optimal control based solution of clearance problems between
the non-intrusive (back-box) methods and the intrusive (white box) methods
is illustrated by the black and white triangles.
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Due to the fact that computational optimal control methods are currently evolving
rapidly it is expected that besides the use of Cat I and Cat II models also nonlinear
models may be used for this task in the near future. Obviously, the closer the reduced
model gets to the full model the less work is required for the final refinement of the
solution using a non-intrusive (black-box) approach.

Contribution IV: Software development for clearance methods

All approaches presented in this thesis regarding the Cat I and Cat II models as well
as the Cat III hybrid approach are implemented by the author in a Counter Optimiza-
tion Library (COLIBRY) which has a defined interface for the closed-loop model under
investigation. From a practical perspective, the user merely needs to provide a trim,
linearization, and simulation method in order to apply the approaches. For the Cat III
intrusive approaches the optimal control toolbox FALCON.m has been co-developed
by the author and applied for the solution of nonlinear clearance problems. Note that
the modeling effort for the application of this approach is higher compared to the first
two categories as the model needs to be reduced first and converted into a model in
state-space form which which fulfills the model requirements in FALCON.m.

However, the Simulink® transcription tool developed by the author appears to be
very helpful in reducing the workload for the conversion task. Regarding the compu-
tational efficiency it is important to mention that care was taken in the selection and
design of the methods to allow for a considerable parallelization. This is desirable con-
sidering the fact that current trends in computing architectures are focused on parallel
computing, e.g. by increasing the number of threads which can be executed simulta-
neously on multi-core platforms. Hence, it is expected that this development increases
the efficiency of the proposed methods in the near future.

As suggested in Ref. [21] the application of optimization based approaches is not
meant to completely replace the existing methods which are currently employed for
flight control law clearance. The same holds for the optimal control based methods.
However, the effectiveness and efficiency of the developed approaches indicate that an
introduction of these methods in industry practice can help to add an additional safety
layer to the clearance task. In particular, the application of the proposed methods
in form of sanity checks during the development process are expected to present a
valuable extension of the available tools in order to increase the confidence in the safety
assessment of flight control laws.
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10.2 Outlook

In this thesis numerical solutions for nonlinear clearance problems under the Cat III
intrusive approach were obtained based on the direct optimal control approach. Be-
sides direct methods, the application of Dynamic Programming [124] seems appealing
as a global worst-case is obtained under these methods. Unfortunately, as discussed in
chapter 9, the computational requirements are very restrictive regarding the number
of state dimensions which can be considered under this approach. Nevertheless, there
also exist approximate DP methods [124] which can be applied in higher dimensional
spaces. It would be worthwhile to benchmark the efficiency and effectiveness of these
approaches compared to the direct optimal control approach under the proposed Cat
III hybrid method. However, regardless of the optimal control method employed for
the clearance task it is important to mention that models usually need to be available in
state-space form. In this work the nonlinear simulation model was reduced manually
and then transcribed by the Simulink® transcription tool into a form which can be used
by FALCON.m. Obviously, a suitable modeling framework which further automatizes
this process would greatly facilitate the application of Cat III intrusive methods. It is
clear, that for such a framework additional effort during the creation of the simulation
model would be required, e.g. to tag certain subsystems in the dynamic model which
need to be removed or replaced using an appropriate replacement library. Neverthe-
less, in the opinion of the author such an integrated modeling approach appears to
be technically feasible and would help to significantly decrease the amount of manual
work for the application of nonlinear optimal control based clearance methods.
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Appendix A

Results Numerical Experiments

(Linear)

This appendix chapter contains additional numerical results from Sec. 8.2.2.
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Figure A.1: Optimal results for the longitudinal plane using a Cat I model for maximizing
nz(tf ), tf = 6 s including the normal load factor nz(t), the geodetic height
h(t), the normal load factor command nz,c(t), the kinematic velocity VK(t),
the error controller state enz(t), the kinematic AoA αK(t), the elevator rate
xe,v(t), the pitch rate qK(t), the elevator position xe,p(t), and the pitch angle
Θ(t).
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Chapter A: Results Numerical Experiments (Linear)

Figure A.2: Optimal results for the longitudinal plane using a Cat I model for maximizing
αK(tf ), tf = 6 s including the kinematic AoA αK(t), the geodetic height h(t),
the normal load factor command nz,c(t), the kinematic velocity VK(t), the
error controller state enz(t), the elevator rate xe,v(t), the pitch rate qK(t), the
elevator position xe,p(t), and the pitch angle Θ(t).
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Figure A.3: Optimal results for the longitudinal plane using a Cat II model for maximizing
nz(tf ), tf = 6 s including the normal load factor nz(t), the geodetic height
h(t), the normal load factor command nz,c(t), the kinematic velocity VK(t),
the error controller state enz(t), the kinematic AoA αK(t), the elevator rate
xe,v(t), the pitch rate qK(t), the elevator position xe,p(t), and the pitch angle
Θ(t).
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Figure A.4: Optimal results for the longitudinal plane using a Cat II model for maximizing
αK(tf ), tf = 6 s including the kinematic AoA αK(t), the geodetic height h(t),
the normal load factor command nz,c(t), the kinematic velocity VK(t), the
error controller state enz(t), the elevator rate xe,v(t), the pitch rate qK(t), the
elevator position xe,p(t), and the pitch angle Θ(t).
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Figure A.5: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat I model (blue lines) for maximizing nz(tf ), tf = 6 s with wind
including the normal load factor nz(t), the geodetic height h(t), the normal
load factor command nz,c(t), the kinematic velocity VK(t), the error controller
state enz(t), the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate
qK(t), the elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind
velocity command uW ,c(t), the normal wind velocity command wW ,c(t), the
longitudinal wind velocity uW (t), and the normal wind velocity wW (t).
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Figure A.6: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat I model (blue lines) for maximizing αA(tf ), tf = 6 s with wind in-
cluding the AoA αA(t), the geodetic height h(t), the normal load factor com-
mand nz,c(t), the kinematic velocity VK(t), the error controller state enz(t),
the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate qK(t), the
elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind velocity
command uW ,c(t), the normal wind velocity command wW ,c(t), the longitu-
dinal wind velocity uW (t), and the normal wind velocity wW (t).

VII



Figure A.7: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing nz(tf ), tf = 6 s with wind
including the normal load factor nz(t), the geodetic height h(t), the normal
load factor command nz,c(t), the kinematic velocity VK(t), the error controller
state enz(t), the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate
qK(t), the elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind
velocity command uW ,c(t), the normal wind velocity command wW ,c(t), the
longitudinal wind velocity uW (t), and the normal wind velocity wW (t).
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Figure A.8: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing αA(tf ), tf = 6 s with wind
including the AoA αA(t), the geodetic height h(t), the normal load factor com-
mand nz,c(t), the kinematic velocity VK(t), the error controller state enz(t),
the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate qK(t), the
elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind velocity
command uW ,c(t), the normal wind velocity command wW ,c(t), the longitu-
dinal wind velocity uW (t), and the normal wind velocity wW (t).
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Figure A.9: Optimal results for the lateral plane using a Cat I model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the kinematic AoS
βK(t), the roll angle command Φc(t), the yaw angle Ψ(t), the error controller
state eΦ(t), the error controller state eΨ(t), the aileron rate xa,v(t), the pitch
rate rK(t), the aileron position xa,p(t), the roll angle Φ(t), the rudder rate
xr,v(t), the roll rate pK(t), the rudder position xr,p(t),
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Figure A.10: Optimal results for the lateral plane using a Cat I model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the yaw angle Ψ(t),
the roll angle command Φc(t), the error controller state eΨ(t), the error
controller state eΦ(t), the pitch rate rK(t), the aileron rate xa,v(t), the roll
angle Φ(t), the aileron position xa,p(t), the roll rate pK(t), the rudder rate
xr,v(t), and the rudder position xr,p(t).
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Figure A.11: Optimal results for the lateral plane using a Cat II model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the kinematic AoS
βK(t), the roll angle command Φc(t), the yaw angle Ψ(t), the error controller
state eΦ(t), the error controller state eΨ(t), the aileron rate xa,v(t), the pitch
rate rK(t), the aileron position xa,p(t), the roll angle Φ(t), the rudder rate
xr,v(t), the roll rate pK(t), the rudder position xr,p(t),
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Figure A.12: Optimal results for the lateral plane using a Cat II model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the yaw angle Ψ(t),
the roll angle command Φc(t), the error controller state eΨ(t), the error
controller state eΦ(t), the pitch rate rK(t), the aileron rate xa,v(t), the roll
angle Φ(t), the aileron position xa,p(t), the roll rate pK(t), the rudder rate
xr,v(t), and the rudder position xr,p(t).
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Figure A.13: Optimal results for the lateral plane using a Cat I model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the kinematic AoS
βK(t), the lateral load factor command ny,c(t), the yaw angle Ψ(t), the
error controller state eΦ(t), the error controller state eΨ(t), the aileron rate
xa,v(t), the pitch rate rK(t), the aileron position xa,p(t), the roll angle Φ(t),
the rudder rate xr,v(t), the roll rate pK(t), the rudder position xr,p(t),
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Figure A.14: Optimal results for the lateral plane using a Cat I model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the yaw angle Ψ(t),
the lateral load factor command ny,c(t), the error controller state eΨ(t), the
error controller state eΦ(t), the pitch rate rK(t), the aileron rate xa,v(t), the
roll angle Φ(t), the aileron position xa,p(t), the roll rate pK(t), the rudder
rate xr,v(t), and the rudder position xr,p(t).
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Figure A.15: Optimal results for the lateral plane using a Cat II model for maximizing
ny(tf ), tf = 6 s including the lateral load factor ny(t), the kinematic AoS
βK(t), the lateral load factor command ny,c(t), the yaw angle Ψ(t), the
error controller state eΦ(t), the error controller state eΨ(t), the aileron rate
xa,v(t), the pitch rate rK(t), the aileron position xa,p(t), the roll angle Φ(t),
the rudder rate xr,v(t), the roll rate pK(t), the rudder position xr,p(t),
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Figure A.16: Optimal results for the lateral plane using a Cat II model for maximizing
βK(tf ), tf = 6 s including the kinematic AoS βK(t), the yaw angle Ψ(t),
the lateral load factor command ny,c(t), the error controller state eΨ(t), the
error controller state eΦ(t), the pitch rate rK(t), the aileron rate xa,v(t), the
roll angle Φ(t), the aileron position xa,p(t), the roll rate pK(t), the rudder
rate xr,v(t), and the rudder position xr,p(t).
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Figure A.17: Optimal results for the lateral plane using a Cat III model (black lines)
and a Cat I model (blue lines) for maximizing ny(tf ), tf = 6 s with wind
including the lateral load factor ny(t), the kinematic AoS βK(t), the lateral
load factor command ny,c(t), the yaw angle Ψ(t), the roll angle command
Φc(t), the error controller state eΨ(t), the error controller state eΦ(t), the
pitch rate rK(t), the aileron rate xa,v(t), the roll angle Φ(t), the aileron
position xa,p(t), the roll rate pK(t), the rudder rate xr,v(t), the lateral wind
velocity command vW ,c(t), the rudder position xr,p(t), and the lateral wind
velocity vW (t).

XVIII



Chapter A: Results Numerical Experiments (Linear)

Figure A.18: Optimal results for the lateral plane using a Cat III model (black lines)
and a Cat I model (blue lines) for maximizing βA(tf ), tf = 6 s with wind
including the AoS βA(t), the kinematic AoS βK(t), the lateral load factor
command ny,c(t), the yaw angle Ψ(t), the roll angle command Φc(t), the
error controller state eΨ(t), the error controller state eΦ(t), the pitch rate
rK(t), the aileron rate xa,v(t), the roll angle Φ(t), the aileron position xa,p(t),
the roll rate pK(t), the rudder rate xr,v(t), the lateral wind velocity command
vW ,c(t), the rudder position xr,p(t), and the lateral wind velocity vW (t).
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Figure A.19: Optimal results for the lateral plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing ny(tf ), tf = 6 s with wind
including the lateral load factor ny(t), the kinematic AoS βK(t), the lateral
load factor command ny,c(t), the yaw angle Ψ(t), the roll angle command
Φc(t), the error controller state eΨ(t), the error controller state eΦ(t), the
pitch rate rK(t), the aileron rate xa,v(t), the roll angle Φ(t), the aileron
position xa,p(t), the roll rate pK(t), the rudder rate xr,v(t), the lateral wind
velocity command vW ,c(t), the rudder position xr,p(t), and the lateral wind
velocity vW (t).
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Figure A.20: Optimal results for the lateral plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing βA(tf ), tf = 6 s with wind
including the AoS βA(t), the kinematic AoS βK(t), the lateral load factor
command ny,c(t), the yaw angle Ψ(t), the roll angle command Φc(t), the
error controller state eΨ(t), the error controller state eΦ(t), the pitch rate
rK(t), the aileron rate xa,v(t), the roll angle Φ(t), the aileron position xa,p(t),
the roll rate pK(t), the rudder rate xr,v(t), the lateral wind velocity command
vW ,c(t), the rudder position xr,p(t), and the lateral wind velocity vW (t).
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Appendix B

Results Numerical Experiments

(Nonlinear)

This appendix chapter contains additional numerical results from Sec. 9.1.3.
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Figure B.1: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing nz(tf ), tf = 6 s with wind
including the normal load factor nz(t), the geodetic height h(t), the normal
load factor command nz,c(t), the kinematic velocity VK(t), the error controller
state enz(t), the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate
qK(t), the elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind
velocity command uW ,c(t), the normal wind velocity command wW ,c(t), the
longitudinal wind velocity uW (t), and the normal wind velocity wW (t).
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Figure B.2: Optimal results for the longitudinal plane using a Cat III model (black lines)
and a Cat II model (blue lines) for maximizing αA(tf ), tf = 6 s with wind
including the AoA αA(t), the geodetic height h(t), the normal load factor com-
mand nz,c(t), the kinematic velocity VK(t), the error controller state enz(t),
the kinematic AoA αK(t), the elevator rate xe,v(t), the pitch rate qK(t), the
elevator position xe,p(t), the pitch angle Θ(t), the longitudinal wind velocity
command uW ,c(t), the normal wind velocity command wW ,c(t), the longitu-
dinal wind velocity uW (t), and the normal wind velocity wW (t).
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Figure B.3: Optimal results for the lateral plane using a Cat III model (black lines) and a
Cat II model (blue lines) for maximizing βA(tf ), tf = 6 s with wind including
the AoS βA(t), the kinematic AoS βK(t), the lateral load factor command
ny,c(t), the yaw angle Ψ(t), the roll angle command Φc(t), the error controller
state eΨ(t), the error controller state eΦ(t), the pitch rate rK(t), the aileron
rate xa,v(t), the roll angle Φ(t), the aileron position xa,p(t), the roll rate pK(t),
the rudder rate xr,v(t), the lateral wind velocity command vW ,c(t), the rudder
position xr,p(t), and the lateral wind velocity vW (t).
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Appendix C

Practical Considerations and Best

Practices (Summary)

In the following practical aspects as well as best practices for the optimal control based
clearance approaches presented in this thesis are summarized:

� Models: For Cat I (linear) and Cat II (quasi-linear) type models the dynamic
system is obtained from a linearization around a steady-state flight condition.
Depending on the reference flight condition the longitudinal and lateral channel
can be investigated separately. In case of Cat III (nonlinear) models under the
intrusive approach the model needs to be available in state-space form in order
to meet the modeling requirements of state of the art direct optimal control soft-
ware. Moreover, the models should fulfill the differentiability requirements if
gradient-based methods are used. As such, it is advisable to perform a model
reduction under this approach and to remove non-differentiable features such as
internal limiters which may otherwise cause difficulties regarding the numeri-
cal solution. Furthermore, it is desirable to use smooth interpolation schemes
for table data (such as for aerodynamic derivatives or gain scheduling) even
though it is observed that optimization solvers appear to cope well with multi-
linear interpolation methods. Regarding the simulation models under the Cat
III non-intrusive approach the computational load is observed to be considerably
lower if the model is executed in compiled from (e.g. as MATLAB®-Executable
for Simulink®-models).

� Wind: Optimal wind disturbance inputs are used in this work to test the flight
control system. In order to produce smooth wind gusts a linear second order
system is introduced to model the wind velocity and rotation. It is important to
mention that under this modeling approach the exact shape of the wind gust is
not prescribed but determined by the solution of the optimal control problem.
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� Discretization: Under the direct optimal control approach the discretization can
be performed using shooting, full discretization, and collocation methods. In this
thesis the Backward Euler method is used if the focus lies on the control functions
as this method appears to produce few numerical artifacts in the optimal control
histories. However, it is important to mention that also discretization methods of
higher order can be used. For the Trapezoidal collocation method it is observed
that this method is prone to chattering effects on state constrained arcs.

� Constraints: Inputs (commands, wind) are subject to box bounds. Actuator rate
and position limits are introduced as purely state dependent constraints.

� Numerical Solution (Linear Optimal Control Problems): Linear Programming
(LP) solvers can be used to solve the discretized form of the optimal control prob-
lems. Throughout this thesis the LP solver CPLEX is used with different methods
(Primal Simplex, Dual Simplex, Interior Point, Concurrent). It is observed that
depending on the particular problem a considerable speed-up can be achieved
simply by switching to a different method. In addition, some methods seem to
produce cleaner results which is most likely contributed to internal numerical
tolerances used by the solver. Moreover, if a large number of similar problems
needs to be solved it appears to be beneficial for the solution time to provide a
basis matrix to the solver in order to warm-start the solution.

� Numerical Solution (Parameter Optimization): Regarding the parameter opti-
mization methods under the bi-level approach both global and local (gradient-
based) methods can be used. Regarding the local optimization methods both the
Trust-Region and the SQP method used in this thesis appear to work very effi-
ciently. A simple globalization strategy for these methods is to start the solution
from several initial points.

� Numerical Solution (Nonlinear Optimal Control Problems): For the numeri-
cal solution of the nonlinear optimal control problems the interior point solver
IPOPT is used in this thesis which is well suited for large scale problems.

� Control Parametrization (Cat III Hybrid): For the Cat III hybrid approach the
switching time points of the optimal control functions obtained from the solution
using a Cat I model need to be determined. It is found that the identification
of theses switching time points based on the zeros of the switching functions
works very robustly regarding the numerical solution. A determination purely
depending on the control functions is observed to be challenging as in some cases
these function appear to be more prone to numerical artifacts such as chattering
effects.
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B. Grüter, and F. Holzapfel, “Flight control law clearance using worst-case in-
puts,” in ICAS 30th International Congress of the International Council of the Aero-
nautical Sciences, 2016.

LXXVII



BIBLIOGRAPHY

[83] “Mil-std-1797a: Department of defense handbook, flying qualities of piloted air-
craft,” 1995.

[84] J. Diepolder, J. Z. Ben-Asher, and F. Holzapfel, “Flight control law clearance
using worst-case inputs under parameter uncertainty,” AIAA Journal, vol. 43,
no. 10, pp. 1967–1974, 2020.

[85] J. Diepolder, J. Z. Ben-Asher, P. Piprek, and F. Holzapfel, “Optimal control based
flight control law clearance using generalized polynomial chaos,” in 60th Israel
Annual Conference 2020.

[86] T. Gal, “Linear parametric programming—a brief survey,” in Sensitivity, Stability
and Parametric Analysis (A. V. Fiacco, ed.), Mathematical Programming Studies,
pp. 43–68, Berlin and Heidelberg: Springer, 1984.

[87] I. Adler and R. D. C. Monteiro, “A geometric view of parametric linear program-
ming,” Algorithmica, vol. 8, no. 1, pp. 161–176, 1992.

[88] R. D. C. Monteiro and S. Mehrotra, “A general parametric analysis approach and
its implication to sensitivity analysis in interior point methods,” Mathematical
Programming, vol. 72, no. 1, pp. 65–82, 1996.

[89] M. Bjorkman and K. Holmström, “Global optimization using the direct algo-
rithm in matlab,” Advanced Modeling and Optimization, vol. 1, 2004.

[90] M. Slotani, “Tolerance regions for a multivariate normal population,” Annals of
the Institute of Statistical Mathematics, vol. 16, no. 1, pp. 135–153, 1964.

[91] D. Xiu and G. E. Karniadakis, “The wiener–askey polynomial chaos for stochas-
tic differential equations,” SIAM Journal on Scientific Computing, vol. 24, no. 2,
pp. 619–644, 2002.

[92] D. Xiu, “Fast numerical methods for stochastic computations: A review,” Com-
munications in Computational Physics, vol. 5, pp. 242–272, 2009.

[93] D. Xiu, Numerical methods for stochastic computations: A spectral method approach.
Princeton, N.J.: Princeton University Press, 2010.

[94] N. T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods for
Building Simulation Models. New York, NY: Springer New York and Imprint:
Springer, 1. ed., 2013.

[95] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. Boca
Raton: Chapman & Hall/CRC, 4. ed., 2009.

LXXVIII



BIBLIOGRAPHY

[96] S. He, J. Zhang, and S. Zhang, “Bounding probability of small deviation: A
fourth moment approach,” Math. Oper. Res., vol. 35, pp. 208–232, 2010.
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