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FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

Since molecular dynamic simulations are very calculation heavy tasks, load balancing
is one of the key points which should be optimized to gain an optimal runtime. In this
thesis, three load balancing strategies of the simulation framework ls1-MarDyn and their
optimizations will be discussed. Since ls1-MarDyn uses MPI as its communication protocol,
some time is spent inside of the MPI-routines and therefore falsifies the measured time
which is used as the input parameter for the load balancing. A way will be shown how
to reduce this parameter by the time spent inside of the MPI-routines. Furthermore, this
implementation is evaluated using three different simulation setups. The newly reduced time
leads to an overall better performance - but this only applies if it is used in combination
with a diffusive domain decomposition.
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Part I.

Introduction and Background
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1. Introduction

Molecular dynamic simulations are nowadays a popular way to research the behavior of up
to trillions of molecules and atoms in the form of gases, liquids, or solids. They get used in
the field of drug discovery [DM11], thermodynamics [FAC00], fighting nowadays diseases
[CCWT08] and many more - most of the time when the experiments become too expensive
or even impossible.

In these simulations, the atoms and molecules interact with each other using the forces
given and calculated by the program - this is called an N-Body-Problem. This N-Body-
Problem has a complexity of O(N2) since each particle has to interact with the whole
environment of N -particles. But this complexity can be reduced using some algorithms like
the linked-cell algorithm, which subdivides the simulation environment using a cartesian
mesh. Afterward, only the forces between particles in a given range, plus a given cutoff, of the
neighboring cells will be calculated - which leads to a complexity of O(n). Using an algorithm,
such as the mentioned linked-cell algorithm, makes it also easier to parallelize the calculation
of the simulation since it is already subdivided into smaller sections. Each of those sections
can then be allocated to the available computing nodes, using a decomposition-algorithm.

The reason why such a program should be parallelized is to ensure an optimal runtime and
performance due to its calculation heavy routines. Decomposition algorithms try to balance
the load to minimalize the time the processes have to wait for each other to finish their task,
thus less time will be wasted by waiting. Three algorithms will be described in this thesis:
A cartesian decomposition[Subsection 2.5.2], a k-d decomposition[Subsection 2.5.3], and a
diffusive decomposition[Subsection 2.5.4].

In this thesis, the main focus will be on the General-Domain-Decomposition, which is
based on comparing the runtimes from the tasks of all processes - These runtimes are called
last-traversal-time. Unfortunately, in ls1-MarDyn the last-traversal-times are negatively
affected by including the time spent inside of MPI-calls [Section 2.4]. Consequently, I
demonstrate how it is possible to adapt the last-traversal-time to pass a more accurate time
to the load balancer. In addition, a comparison of the old and the new implementation will
be done in Chapter 5.
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2. Background

2.1. ls1-MarDyn

ls1-MarDyn1(large systems 1: molecular dynamics) is a still-in-progress open-source project
by six institutes (Thermodynamics and Thermal Separation Processes, Technische Uni-
versität Berlin; High Performance Computing Center Stuttgart, University of Stuttgart;
Laboratory for Engineering Thermodynamics, University of Kaiserslautern; Scientific Com-
puting in Computer Science, Technische Universität München; Chair for High Performance
Computing, Helmut-Schmidt-Universität; Scientific Computing Department, STFC Dares-
bury Laboratory)2. It is a molecular dynamics simulation framework that is optimized to run
on supercomputing architectures. Furthermore, ls1-MarDyn is developed in a modular way
and is still under development. Due to the modularity of the program, it is well optimized
for easy extensibility.

The main part of the application is written in C++ using many different libraries, including
MPI which will be introduced in Section 2.4.

Since this project is for highly intensive molecular dynamic simulations, the program uses
a linked-cell data structure which helps to split up the simulations into smaller subsections,
which then will be assigned to available computing nodes. But this only works if a functioning
MPI-library is installed on the machine, from now on we assume that it is. Also, AutoPas3

will be used on each node for adaptive auto-tuning, more in Section 2.2.
The unit and the size of the timesteps of the simulation are going to be defined by the

user, more in Subsection 2.1.1. After a given amount of iterations inside the simulation,
the subsections are going to be rebalanced to gain a better load balancing which leads
to a better runtime. For the rebalancing the user can choose from several strategies
(DomainDecomposition [Subsection 2.5.2], k-d Decomposition [Subsection 2.5.3], General
Domain Decomposition [Subsection 2.5.4]). The given input for those strategies are some
parameters, stated in an XML-file by the user, and the LTT, given by the program itself. The
last-traversal-time describes the time the process needed for calculating the new forces and
positions of the particles within their subsections. Further load balancing implementation
details will be described in Chapter 3.

2.1.1. XML-Input (in ls1-MarDyn)

To run a molecular dynamics simulation in ls1-MarDyn successfully, a proper XML-input-file
is needed. It is used to define the parameters for the simulation, such as the general domain
size, the definitions of all particles or molecules, and many more. Besides, plugins can be
activated and their parameters can be adjusted. In ls1-MarDyn are already some plugins

1https://github.com/ls1mardyn/ls1-mardyn
2https://www.ls1-mardyn.de/about.html
3https://github.com/AutoPas/AutoPas
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2. Background

built-in and ready for use - Some Examples: A timer, a profiler, an individual potential per
timestep, or several different output-writers. The structure of this XML-file depends on
which plugins, load balancing strategies, etc. are going to be used.

In Listing 2.1 is an extract given of an example XML-input-file, which creates a domain
of [500, 500, 500], with a timestep-size of 1 and 100 timesteps in total. In addition, it is
defined to use the General-Domain-Decomposition as the rebalancing strategy and to include
AutoPas as a datastructure for each node.

1 [ . . . ]
2 <simulation type=”MD”>
3 [ . . . ]
4 <run>
5 <integrator type=”Leapfrog ”>
6 <timestep uni t=” reduced ”>1</timestep>
7 </ integrator>
8 <currenttime>0</currenttime>
9 <production>

10 <steps>100</steps>
11 </production>
12 </run>
13 <ensemble type=”NVT”>
14 <temperature uni t=” reduced”>220</temperature>
15 <domain type=”box”>
16 <lx>500</ lx>
17 <ly>500</ ly>
18 <lz>500</ lz>
19 </domain>
20 [ . . . ]
21 </ensemble>
22 <algorithm>
23 <paral le l i sat ion type=”GeneralDomainDecomposition”/>
24 <datastructure type=”AutoPas”>
25 <allowedTraversals>c08</allowedTraversals>
26 <allowedContainers> l i n k e dCe l l s</allowedContainers>
27 [ . . . ]
28 </datastructure>
29 [ . . . ]
30 </algorithm>
31 <output>
32 <outputp lug in name=”CheckpointWriter ”>
33 [ . . . ]
34 </outputp lug in>
35 [ . . . ]
36 </output>
37 </simulation>
38 [ . . . ]

Listing 2.1: Extract of an XML-input-file
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2. Background

2.2. AutoPas

AutoPas is an auto-tuned particle simulation framework on node-level and is part of the
TalPas4(Task-based Load Balancing and Auto-tuning in Particle Simulations) project. Node-
level means that it can only run on a single node at a time.

Especially for ls1-MarDyn, this framework is very useful due to its foundation of self-
optimizing algorithms for N -body simulations. Because AutoPas operates only on node-level,
ls1-MarDyn creates one instance of AutoPas on each computing node to have an adaptive
auto-tuning on all regions of the simulation. AutoPas is used as an extension to the ls1-
MarDyn-project, by activating it during compilation time. In addition, some parameters of
AutoPas need to be set using the XML-input-file[Subsection 2.1.1] - from now on we will
always assume that it is activated, if not stated otherwise.

2.3. Molecular Dynamics - Theoretical Background

The following explanations all refer to the ls1-MarDyn-project, if not stated otherwise. A
molecular dynamics simulation program, in general, is an application which calculates the
forces and positions of given molecules or atoms in a given environment. For this, it uses a
given physical background, stated in the next subsections.

Figure 2.1.: N2-Gas Molecular Dynamic Simulation computed by ls1-MarDyn and visualized
by ParaView Source: [n217]

2.3.1. Intermolecular Potentials

Between all particles acts a pairwise potential, this is called the intermolecular potential. In
ls1-MarDyn the Lennard-Jones-Potential(Equation 2.1) is used for this as default, but other

4https://www.vi-hps.org/projects/talpas/
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2. Background

ones can also be used. It is defined through the relative range between two molecules rij , a
potential well ε, and a zero-crossing ω.

U(r) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.1)

The potential between all molecules defines the resulting forces on each of them. The
force and the velocity of each particle then leads to its position after a specific timestep.
Furthermore, a cutoff radius can be introduced that conducts to a smaller amount of
potential-calculations which have to be solved. It means that if a distance between the
two molecules is bigger than the cutoff, the potential will not be calculated because it is
significantly small, as you can see in Figure 2.2.

Figure 2.2.: Lennard-Jones-Potential for three different ε and σ

2.3.2. Newton’s Laws of Motion

Newton’s laws of motion are three laws that build up the foundation of physical movement
between several bodies (here: molecules).
First law: If an object has a velocity of zero and has no force influencing it, it stays at a

rest. If an object has a velocity unequal to zero and has no other net force influencing it, it
moves in a straight line with perpetual speed [NMC68].
Second law: The momentum of an object is parallel to the magnitude and direction of

the imposing force. Furthermore, it is conversely proportional to its body mass m. The
resulting force is equal to F = m ∗ a[NMC68].

Third law: The force F1 of an object is the directional opposite of the force F2 from the
object which exerts F2 on it, F1 = - F2. This means that F1 and F2 are equal in strength
and the opposite in direction[NMC68].

2.4. Message Passing Interface (MPI)

The Message Passing Interface (short: MPI) is a communication protocol used for developing
applications in the surrounding of parallel computing with the goal of high performance,
scalability, and portability.
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2. Background

Until now, there are different well-known and tested implementations of MPI, such as
Open MPI 5 or IntelR© MPI 6 - For this thesis the Intel-implementation will be used.

MPI is used to define communication routes between several computing nodes in parallel
applications. This means to parallelize an application still needs to be done by other parts
of the program. MPI, therefore, provides an API for different network communication
architectures like Omnipath7, Tofu8 or Infiniband9[SL19]. This API has a variety of pre-
implemented functions for communication, data reduction, and more. These implemented
routines can be directly called from C, C++, and Fortran - If a working copy of an MPI
implementation is installed and the library is included/imported in the program code.

Before each run of the application, it has to be defined how many processes the MPI-
application has to start and run on. A process is one instance of a parallel thread from
MPI. To define the number of processes, the user has to use the np-flag when executing the
program. In Listing 2.2 you can see how the program Example-Program is called with 8
processes.

1 mpirun −np 8 . / Example−Program

Listing 2.2: Run MPI-Application, named Example-Program, with 8 processes

2.5. Load Balancing

Load balancing describes the process of distributing tasks over a given set of resources and
trying to keep them in a good balance - with the goal of optimizing the overall performance.
But every program has some different kind of task, thus there is not one solution which fits
for every program to obtain the optimal performance.

Nowadays, there are different strategic approaches to converge as close as possible to the
optimal solution for different problems. Three rebalancing strategies from ls1-MarDyn will
be described in Subsection 2.5.2, Subsection 2.5.3 and Subsection 2.5.4.

2.5.1. ALL-library

The ALL10-library was developed by the E-CAM11-community and is part of the E-CAM
meso- and multi-scale modules. The term ’module’ is here used for any piece of software
that creates a use to this community[oER19]. Among other things, ALL provides different
dynamic load balancing techniques[oER19]. One technique, an implementation of the GDD,
is used in ls1-MarDyn to balance the load, more in Subsection 2.5.4.

5https://www.open-mpi.org
6https://software.intel.com/content/www/us/en/develop/tools/mpi-library.html
7https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-

driving-exascale-computing.html
8https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol48-

3/paper05.pdf
9https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf

10https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/index.html
11https://www.e-cam2020.eu
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2. Background

2.5.2. Domain Decomposition

MarDyn provides the Domain-Decomposition (short: DD) as a foundation for its implemented
load balancing strategies, which are going to be introduced in the next subsections. The DD
is not a real load balancing strategy since it is static and does not rebalance the load after
creating sub-domains at the beginning of the simulation.

But it still splits the given domain into several sub-domains into a given form-factor. This
is done coordinate-wise or in the data structure, in ls1-MarDyn it is done coordinate-wise in
the form of cuboids. Then each of the sub-domains will be assigned to a computing node or
process. Also, the neighbor sub-domains have to communicate with each other about the
particles at the borders to update them correctly, see also Figure 2.5.

A dynamic application here will be a problem for the domain-decomposition because
the load of the sub-domains can become an imbalance - thus the domains should also be
adapted dynamically[BBF+03]. This is the point where the General-Domain-Decomposition
[Subsection 2.5.4] helps out.

Figure 2.3.: Communication-structure of a domain decomposition algorithm using
non-periodic boundaries. Arrows represent communication between do-
mains(indicated by gray squares).

2.5.3. k-d Decomposition

The k-d Decomposition(short: KDD) relies on the principle of a k-d tree, which is a data-
structure for partitioning given data into k-dimensions of the same size. But because of the
straight borders between the sections, it does not work all the time.

In the surrounding of molecular dynamics, a k-d tree tries to determine where to set the
borders between the particles in a way that each created section has the same amount of
load. Then the load balancer assigns each of the sections to one of the available processes.

In Figure 2.4 is an example shown where a given space gets separated into four sections

8



2. Background

with roughly the same amount of molecules. Each step, the redistributions, would be one
rebalancing in the ls1-MarDyn project after a given amount of iterations.

Figure 2.4.: First two redistributions of four subdomains using the k-d Decomposition. Tree
gets built up new at each redistribution, trying to balance the amount of
molecules in each subdomain.
Source: [ZGH+18]

2.5.4. General Domain Decomposition

The General-Domain-Decomposition (short: GDD) is based on the domain-decomposition
[Subsection 2.5.2] with the big difference that it is not static and gets rebalanced in a
diffusive way. Diffusive means that the borders of the sub-domains can shift in a way that
the load of the processes are getting more balanced.

In ls1-MarDyn the load balancer shifts the borders by comparing the last-traversal-times
of the adjacent sub-domains. The border of a sub-domain with a smaller last-traversal-time
gets shifted into the direction of an adjacent sub-domain with a bigger last-traversal-time.
In consequence, the imbalance between those two is more stable afterward. This mechanism
then gets transferred to all sub-domains. Furthermore, the GDD-class in ls1-MarDyn acts as
a wrapper for the ALL, described in Subsection 2.5.1. This means, that the just-described
technique is originally implemented in ALL and then gets called from the load balancer of
ls1-MarDyn. ALL takes care of restructuring the subdomains using the last-traversal-times
of each sub-domain and the GDD-class then takes care of the particles in each domain. A
more detailed look is given in Subsection 3.2.3.

9



2. Background

Figure 2.5.: First two redistributions of four subdomains using the General-Domain-
Decomposition. Borders are getting shifted on each redistribution to balance
the load of the subdomains.
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Part II.

Load Balancing in ls1-MarDyn
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3. Old Implementation

3.1. Measuring the Last-Traversal-Time

The load, in the ls1-MarDyn project, gets rebalanced after a given amount of iterations.
This amount can be chosen by the user using the XML-input file. When the rebalancing
function is called, it needs the last-traversal-time as an input. This time gets calculated
by two checkpoints in the program, from now on let us call them preTime and currTime.
preTime is the previous time of the rebalancing, thus at the first iteration preTime gets
set to the current system time. In Algorithm 1 this time gets fetched by the function
currentSystemTime().

currTime can be set in different ways: One way would be by setting the current system
time before the rebalancing is going to be started - this is the default timer. The other
way would be by using the system time from the point where the force calculations of the
domain have been finished - this timer is called SIMULATION FORCE CALCULATION -
Timer(short: SFCT). Both ways have their pros and cons. One advantage of the first method
is that plug-ins are considered for the rebalancing as well, a disadvantage would be that
the time spent in MPI is included as well. The advantage and disadvantage of the second
method is the exact opposite of the first one. Which means, an advantage is that time spent
in MPI is automatically not included and a disadvantage is that plug-ins are not considered
for the rebalancing. In Algorithm 1 this time is fetched by calling the function currentTime()
The default timer will be used in this thesis, if not stated otherwise. The SFCT will be used
in Chapter 5 to compare the different strategies.

Afterward, the last-traversal-time will be set equal to currT ime− preT ime. When the
rebalancing has finished preTime will be set equals to currTime.

Algorithm 1: Calculating Last-Traversal-Time

// Setting preTime to current system time in first iteration

1 preTime = currentSystemTime()
// Updating preTime and currTime while simulation is running

2 while keepRunning do
3 currTime = currentTime()

4 lastTraversalTime = currTime - preTime
5 rebalance(lastTraversalTime)
6 preTime = currTime

Unfortunately, this time measurement takes anything into place what the program does -
like print statements, writing into files, or the communication between the processes. How
to adapt this time will be discussed in Chapter 4.

12



3. Old Implementation

3.2. Using the Last-Traversal-Time

Just the KDD and the GDD will be explained in detail, because only those two are using
the last-traversal-time as a factor for rebalancing. Furthermore, these will be used for the
comparison of the newly implemented last-traversal-time calculation. The rebalance method
of both algorithms, which will be called in each timestep, is named balanceAndExchange(...).
The implementation of this method for each algorithm, including major help functions, will
be explained in Subsection 3.2.2 for the KDD and Subsection 3.2.3 for the GDD. In addition,
both of the methods are using a frequency parameter to avoid updating the load balancing
every timestep.

3.2.1. Pre-Defined Function: exchangeMoleculesMPI(...)

The KDD and the GDD are both using, among others, one pre-defined function, named
exchangeMoleculesMPI(...), to exchange molecules between the domains of the processes. In
more detail: If a molecule is not in the region of the domain anymore, it gets transferred
to its neighbor-domain. Furthermore, all the molecules from the halo region are getting
transferred into it, if the parameter doHaloPositionCheck is set to true. This function is also
optimized to reduce the maximum amount of domains to communicate with. For example,
if a molecule needs to be transferred to the upper left domain, it first gets transferred to
the upper one, afterward, it will be transferred from the upper to the upper left domain.
As you can see in Figure 3.1, on the left side the domains have to communicate with three
other domains, on the right side the domains only have to communicate with two domains
each - this is also called indirect neighbour communication.

Figure 3.1.: Comparison between direct neighbor communication(left) and indirect neighbor
communication(right) - Particle moves from bottom right(red marked position)
subdomain to top left(green marked position) subdomain. Black arrows indicate
communication between subdomains and blue arrows indicate the transfer of
the particle.
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3. Old Implementation

The function itself needs five arguments in total:

• moleculeContainer : The container which holds all molecules inside of the simulation

• domain: The Domain of the current process

• msgType: Defines which particles should be exchanged, i.e. LEAVING ONLY (ex-
change of all leaving molecules), HALO COPIES (exchange of the halo copies), LEAV-
ING AND HALO COPIES (exchange of leaving molecules and halo copies)

• doHaloPositionCheck : Boolean if it should check for halo molecules; default is true

• removeRecvDuplicates : Boolean if it should remove received duplicates; default is false

In Listing 3.1 and Listing 3.2 will only the argument msgType be given, the other ones
are not necessary for understanding the algorithms.

3.2.2. KD-Decomposition (Usage of LTT)

The KD-Decomposition uses the last-traversal-time as a secondary parameter, which here
means that it is only used to determine if a rebalancing is necessary. In addition, the
balanceAndExchange(...)-method uses two helper functions to determine if a rebalancing is
needed, those are named doRebalancing(...) and checkNeedRebalance(...).

checkNeedRebalance is the one which is called first. This function uses the last-traversal-
time as an input and returns a boolean value. Using the MPI-function MPIAllreduce(...)
with the MPI MAX as a parameter, the last-traversal-times from all processes will be
gathered, the maximum will be saved and processed in further instructions. If this maximum
is greater than a set threshold (here: rebelanceLimit), the return value will be set to True -
if not it returns False.

doRebalancing(...) is called directly afterward. It returns a boolean and this will be used
as the final decision if a rebalancing is needed. The task of this function is to check whether
a rebalancing is forced or if a rebalancing is needed in the current timestep. To check if it is
needed in this timestep, it uses the return value from the checkNeedRebalance-function, and
in addition checks if the current timestep modulo the update-frequency is equal to 0 or if the
current timestep is lower than 1 (which means that the simulation is in its first iteration).

The main rebalancing function balanceAndExchange(...) uses the two mentioned functions
to determine what this function should do. If no rebalancing is needed it only exchanges the
molecules between the processes using the exchangeMoleculesMPI-function [Subsection 3.2.1].
If a rebalancing is needed, it exchanges the leaving particles, builds up a new KD-Tree,
rearranges the processes to it, and exchanges the halo particles at the end.

100 bool doRebalancing (bool fo rceReba lanc ing , bool needsRebalance , s i z e t steps ,
int f r equency ) {

101 return f o r ceReba lanc ing or ( ( s t ep s % frequency == 0 or s t ep s <= 1) and
needsRebalance ) ;

102 }
103
104 bool KDDecomposition : : checkNeedRebalance (double l a s tTraversa lT ime ) {
105 bool needsRebalance = fa l se ;
106 i f ( r eba l anceL imi t > 0) {
107 // c a l u c l a t e s t imerCoe f f us ing g iven las tTraversa lT ime
. . . [ . . . ]
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113 MPI CHECK(MPI Allreduce ( loca lTraversa lTimes , g loba lTraversa lTimes , 2 ,
MPI DOUBLE, MPI MAX, MPICOMMWORLD) ) ;

. . . [ . . . ]
118 // check i f max . l a s t−t r av e r s a l−time i s g r e a t e r than a l im i t
119 i f ( t imerCoe f f > r eba lanceL imi t ) {
120 needsRebalance = true ;
121 }
122 } else {
123 needsRebalance = true ;
124 }
125 return needsRebalance ;
126 }
127
128 void KDDecomposition : : balanceAndExchange (double l astTraversa lTime , bool

fo rceReba lanc ing , Pa r t i c l eConta in e r ∗ moleculeContainer , Domain∗ domain ) {
129 bool needsRebalance = checkNeedRebalance ( la s tTraversa lTime ) ;
130 bool r eba lance = doRebalancing ( forceReba lanc ing , needsRebalance , s t ep s ,

f r equency ) ;
. . . [ . . . ]
155 i f (not r eba lance ) {
156 i f ( [ . . . ] ) { // check f o r i n v a l i d p a r t i c l e s
157 i f ( sendLeavingWithCopies ( ) ) {
158 DomainDecompMPIBase : : exchangeMoleculesMPI (LEAVING AND HALO COPIES) ;
159 } else {
160 DomainDecompMPIBase : : exchangeMoleculesMPI (LEAVING ONLY) ;
161 #ifndef MARDYNAUTOPAS
162 // d e l e t e out f low pa r t i c l e s , i f AutoPas i s a c t i va t ed
163 moleculeContainer−>de l e t eOu t e rPa r t i c l e s ( ) ;
164 #endif
165 DomainDecompMPIBase : : exchangeMoleculesMPI (HALO COPIES) ;
166 }
167 } else {
168 DomainDecompMPIBase : : exchangeMoleculesMPI (HALO COPIES) ;
169 }
170 } else {
171 i f ( s t e p s != 1) {
172 DomainDecompMPIBase : : exchangeMoleculesMPI (LEAVING ONLY) ;
173 }
174 // Rebalance the load by c r e a t i n g a new KD−Tree
. . . [ . . . ]
195 DomainDecompMPIBase : : exchangeMoleculesMPI (HALO COPIES) ;
196 }
197 }

Listing 3.1: Code-Structure of the KD-Decomposition

3.2.3. General-Domain-Decomposition (Usage of LTT)

The General-Domain-Decomposition uses the last-traversal-time as their main parameter
for finding a new and probably better load balance than in the previous iterations. Instead
of using it to check whether the load of the processes needs to be rebalanced, it just gets
used to find a new distribution.

To check if the processes need a new distribution, a helper function named queryRebalancing
gets called. This function checks if the current timestep modulo the update-frequency is
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equal to 0. In this decomposition it differentiates between two frequencies - There is one
frequency given for the simulation initialization phase and one for the actual simulation.
And of course, it checks this operation with both of them. Therefore, setting up a new load
balance does not depend on how good or bad the load balancing from previous iterations
was, it just depends on the update-frequency and gets triggered at the last iteration of each
frequency cycle. In the main rebalancing function balanceAndExchange, it gets checked if the
simulation is in its first timestep, if this is true no rebalancing is needed, just the halo-copies
of the molecules are getting exchanged between the sub-domains. If the simulation is not
in its first timestep, it gets checked if a rebalancing is needed, using the output of the
queryRebalancing-function. When it needs a rebalancing, it first exchanges all the leaving
particles with the adjacent sub-domains and deletes all outer particles of the domain. Then
the main rebalancing starts by calling the rebalance-function from the loadBalancer including
the last-traversal-time as a parameter, implemented by the ALL. After this step has finished
the halo-copies of the molecules are getting exchanged.

If the simulation needs no rebalancing in the current timestep, only the molecules of the
subdomains are getting exchanged in such a way that there are no invalid particles available
afterward.

100 bool GeneralDomainDecomposition : : queryRebalancing ( s i z e t step , s i z e t
updateFrequency , s i z e t in i tPhase , s i z e t initUpdateFrequency , double /∗
l a s tTraversa lTime ∗/ ) {

101 return s tep <= in i tPhase ? s tep % initUpdateFrequency == 0 : s tep %
updateFrequency == 0 ;

102 }
103
104 void GeneralDomainDecomposition : : balanceAndExchange (double l astTraversa lTime ,

bool fo rceReba lanc ing , Pa r t i c l eConta ine r ∗ moleculeContainer , Domain∗ domain
) {

105 bool r eba lance =
106 queryRebalancing ( s t ep s , rebui ldFrequency , in i tPhase , in i tFrequency ,

la s tTraversa lTime ) or f o r ceReba lanc ing ;
107 i f ( s t e p s == 0) {
108 // ensure that the re are no outer p a r t i c l e s
109 moleculeContainer−>de l e t eOu t e rPa r t i c l e s ( ) ;
110 // i n i t i a l i z e communication par tne r s
111 initCommPartners ( moleculeContainer , domain ) ;
112 DomainDecompMPIBase : : exchangeMoleculesMPI (HALO COPIES) ;
113 } else {
114 i f ( r eba lance ) {
115 // t r a n s f e r l e av ing p a r t i c l e s
116 DomainDecompMPIBase : : exchangeMoleculesMPI (LEAVING ONLY) ;
117 // ensure that the re are no outer p a r t i c l e s
118 moleculeContainer−>de l e t eOu t e rPa r t i c l e s ( ) ;
119 // reba lance
. . . [ . . . ]
195 std : : t i e (newBoxMin , newBoxMax) = loadBalancer−>r eba lance (

la s tTraversa lT ime ) ;
. . . [ . . . ]
195 DomainDecompMPIBase : : exchangeMoleculesMPI (HALO COPIES) ;
196 } else {
. . . // exchange p a r t i c l e s
. . . [ . . . ]
195 }

16



3. Old Implementation

196 }
197 }
198 ++ s t ep s ;
199 }

Listing 3.2: Code-Structure of the General-Domain-Decomposition
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4. Reducing Last-Traversal-Time

As already mentioned in Chapter 3, the calculation of the last-traversal-time measures too
much or too less to get an accurate parameter for the rebalancing strategies. One of them
is the time which is spent inside of the MPI-function-calls, which means all the time the
machine needs for the calculations when an MPI-function is called - in fact, this can make
some serious differences. The time inside of an MPI-function can take up to several minutes,
depending on the data which needs to be sent, received, or processed.

In the ls1-MarDyn project, MPI is used to let the processes communicate with each
other - the main information they need to exchange is the information about the particles
at the border of their sub-domain. And the more particles, the more data needs to be
transferred, therefore the time spent inside of an MPI-call increases. In addition, ls1-MarDyn
synchronizes the processes of MPI, which means the processes have to wait on each other to
finish their task before starting a new one, as you can see in Figure 4.1. In consequence,
waiting time will be measured which makes it useless as a parameter for balancing the load.
Thus, to get a more efficient load balancing only the real molecule-calculation-times should
be used as a parameter to find a better load balancing.

Figure 4.1.: Due to the synchronization of the MPI-processes, each process has to wait on
each other after their main timestep calculations. This wasted time is also used
for the load balancing strategies, which falsifies the input parameter and thus
the load balancing in general.

4.1. Problems and Solution

To reduce the last-traversal-time by the time spent in MPI-calls, it needs to be measured. A
research was done if an existing library is capable of doing this. Unfortunately, those which
were analyzed only show results after the calculations of the given application have been
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finished. However, to rebalance the load dynamically during the runtime a profiler is needed,
on which the results can be checked while the simulation is running.

Fortunately, the MPI-library has a monitoring interface called PMPI, which will be used
as the solution to track the time spent in MPI-calls. In further detail, the PMPI-functions
will be used to create a name shift and override the existing MPI-functions.

In the MPI-library all the native MPI-functions are implemented as weak symbols,
accordingly they can be overridden by the user - More in Subsection 4.2.4. This is used to
reimplement all used MPI-functions with a built-in timer and using the PMPI-functions to
trigger the original action the user wanted to call.

4.2. Implementation

The implementation consists of two main parts: The first one is a timer that is used for time
measuring. The second one is the new implementation of the MPI-functions, which use the
implemented timer.

4.2.1. Process-Timer

The timer consists of one class which is called ProcessTimer and it is mainly based on
managing one double variable, named process time. This variable is used for storing the
measured time of the current process. If std :: thread1 would be used for parallelizing the
application, a map, mapping from thread-IDs to the measured times, should be used instead.
As each MPI-process has its own stack, as well as heap, the process time variables, one in
each process, do not interfere with each other.

Figure 4.2.: Two example timelines for MPI-function-calls, which show that MPI functions
can be called sequentially as well as parallel. Besides, the Process-Timer is
shown how it handles the time measurement using the two functions startTimer()
and stopTimer(). The green dots mark the time when the startTimer()-function
is called, the red dots mark the time when the stopTimer()-function is called.
Due to the implementation of the timer, startTimer() can be called several
times in a row without the need of stopping the timer before starting it again.
Thus, time can be measured for two MPI-function-calls simultaneously.

To start the timer for the current process the function startTimer needs to be called. This
function checks for the process-ID, used later for a debugging-map, and gets the current

1https://en.cppreference.com/w/cpp/thread/thread
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system wall-time using MPI Wtime(). This time gets subtracted from the process time
variable.

To stop the timer afterward, the function stopTimer needs to be called. This function
also checks for the process-ID, used for the debugging-map as well, and the wall-time as the
start-function does. Then the checked time gets added to the process time. Thus, the value
which results from this calculation is the exact time between the start and the end-point.
One benefit of using this method is that when it is used in combination with std :: atomic2

and more than one MPI-function needs to be measured for a single process at the same time,
it would work - this can happen if threading is used on top of MPI-processes. std :: atomic is
used to ensure the racing-conditions of the threads. An example timeline can be found in
the Figure 4.2.

Furthermore, a function, named getTime, is implemented which returns the measured
time of a given process. This function has two optional parameters which are both set to
false by default:

• reset(optional; default = false): If true the measured time of the process will be reset
to 0 after checking the time.

• debug(optional; default = false): If true the measured time will be written into a
csv-file, which then can be used in other ways during or after the runtime.

1 private :
2 double p ro c e s s t ime ;
3 std : : map<int , s td : : vector<double>> proce s s e s debug ;
4 int p r o f i l i n g sw i t c h = 1 ;
5
6 public :
7 void startTimer ( ) {
8 i f ( p r o f i l i n g sw i t c h == 1) {
9 int proce s s ;

10 MPI Comm rank(Comm, &proce s s ) ;
11 double measurement time = MPI Wtime ( ) ;
12 p ro c e s s t ime −= measurement time ;
13 proce s s e s debug [ p roce s s ] . push back(−measurement time ) ;
14 }
15 }
16
17 void stopTimer ( ) {
18 i f ( p r o f i l i n g sw i t c h == 1) {
19 double measurement time = MPI Wtime ( ) ;
20 int proce s s ;
21 MPI Comm rank(MPICOMMWORLD, &proce s s ) ;
22 p ro c e s s t ime += measurement time ;
23 proce s s e s debug [ p roce s s ] [ p ro c e s s e s debug [ p roce s s ] . s i z e ( ) −1] −=

measurement time ;
24 }
25 }
26
27 double getTime (bool r e s e t = false , bool debug = fa l se ) {
28 double time = pro c e s s t ime ;
29 i f ( debug ) {

2https://en.cppreference.com/w/cpp/atomic/atomic
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30 int proce s s ;
31 MPI Comm rank(MPICOMMWORLD, &proce s s ) ;
32 writeProcessTimeLogSing le ( process , p roce s s t ime , true ) ;
33 }
34 i f ( r e s e t )
35 resetTimer ( p roce s s ) ;
36 return time ;
37 }
38
39 void resetTimer ( int proce s s ) {
40 p ro c e s s t ime −= pro c e s s t ime ;
41 }

. . . [ . . . ]

Listing 4.1: Extraction from the implemented timer class - Main functions

Additionally, this class has a profiling switcher, called profiling switch, which allows us to
switch the time measuring on and off. This can be used to exclude parts of the program
which should not be taken into account for calculating the time spent inside of MPI-calls. It
is implemented as an integer to stick to the structure of the profiling switcher given by the
MPI-library.

4.2.2. MPI-Profiling-Interface

The profiling interface uses the timer described in Subsection 4.2.1 as its main and only
timer. This interface consists of reimplementations of MPI-functions which are used in
the ls1-MarDyn project - the list of reimplemented functions can be found at the end of
Section 4.2.2.

The reimplemented functions have the same declarations as the ones from the MPI-
library, therefore those are overwritten when the compiled code gets linked together, more in
Subsection 4.2.4. The structure of each reimplemented function looks the same: First, the
timer for the process gets triggered to start the measurement. Afterward, the corresponding
PMPI-function gets called with the given parameters. At the end, the timer of the current
process gets stopped.

To tell the program which implementation each class should use, the include-section of
those classes have to be adapted. This means that the inclusion of the MPI-library is not
needed anymore, instead, this profiling interface needs to be included.
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1 int MPI Send ( const void ∗buf , int count , MPI Datatype datatype , int dest ,
2 int tag , MPI Comm comm) {
3 processTimer . s tartTimer ( ) ;
4 int r e s u l t = PMPI Send( buf , count , datatype , dest , tag , comm) ;
5 processTimer . stopTimer ( ) ;
6 return r e s u l t ;
7 }
8
9 int MPI Recv (void ∗buf , int count , MPI Datatype datatype , int source , int tag ,

10 MPI Comm comm, MPI Status ∗ s t a tu s ) {
11 processTimer . s tartTimer ( ) ;
12 int r e s u l t = PMPI Recv( buf , count , datatype , source , tag , comm, s t a tu s ) ;
13 processTimer . stopTimer ( ) ;
14 return r e s u l t ;
15 }

Listing 4.2: Exampe implementation of MPI Send and MPI Recv in the MPI-Profiling-
Interface

Full list of reimplemented MPI-functions

• MPI Allreduce

• MPI Bcast

• MPI Cart coords

• MPI Cart create

• MPI Cart rank

• MPI Comm free

• MPI Dims create

• MPI Exscan

• MPI File close

• MPI File get position

• MPI File open

• MPI File write

• MPI File write at

• MPI Finalize

• MPI Get address

• MPI Get count

• MPI Iprobe

• MPI Irecv

• MPI Isend

• MPI Op create

• MPI Op free

• MPI Probe

• MPI Recv

• MPI Send

• MPI Test

• MPI Type commit

• MPI Type create struct

• MPI Type free

• MPI Pcontrol

4.2.3. Adapting the used LTT

The adaption of the last-traversal-time happens when the particle containers are getting
updated and the rebalancing-function is triggered - this is done by the function which is
named updateParticleContainerAndDecomposition(...). This function gets triggered in the
main simulation-loop.

To adapt the LTT, used as the input parameter for updateParticleContainerAndDecompo-
sition(...), the getTime(...)-function of the ProcessTimer(Subsection 4.2.1) is called with
the parameter reset set to True and debug set to False. This function then returns the time
spent inside the MPI-routines of the current process since the last rebalancing. Then up-
dateParticleContainerAndDecomposition(...) is called with the LTT minus the return-value
of getTime(...) as you can see in Listing 4.3.
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1 // Implementation o f the s imu la t i on c l a s s
. . . [ . . . ]
101 // Main Simulat ion−Loop
102 while ( keepRunning ( ) ) {
. . . [ . . . ]
201 double l a s tTraversa lTime = currentTime − previousTimeForLoad ;
202 double timeSpentInMPI = processTimer . getTime ( true , fa l se ) ;
203 updatePart ic leContainerAndDecomposit ion ( las tTraversa lT ime −

timeSpentInMPI ) ;
. . . [ . . . ]

Listing 4.3: Extraction of the main simulation-loop

4.2.4. Linking the Application

ls1-MarDyn is written in C++, therefore the code has to be compiled and linked to run the
actual application. The compilation of the application is not changed for this thesis, only
the linking stage needs to be adapted.

In the linking stage the object files, the output of the compilation stage, are getting
checked for weak and strong symbols. Each weak symbol can be overwritten by a strong
symbol, but a strong symbol cannot be overwritten by a weak symbol. This also means that
only one strong symbol of each type can exist, otherwise, the linker would quit the linking
of the application and the application cannot be built.

The PMPI interface is implemented in such a way that its methods are declared as weak
symbols and can be overwritten by strong symbols - by default, all declared symbols are
strong symbols. But this only works if the linker supports weak external symbols. If it
does not support them, the linker has to be told that multiple definitions of strong symbols
are allowed. Then it will use the definition which uses more memory space, which is in
this case the reimplemented MPI-function. This can be done by adding the argument
--allow-multiple-definition as a linker flag.

1 [ . . . ]
2 LDFLAGS += −Wl,−−al low−mult ip le−d e f i n i t i o n
3 [ . . . ]

Listing 4.4: Extract of makefile - shows which linker flags have to be added in the makefile
to link the application properly.
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5. Evaluation

To compare the old implementation with the new approach of reducing the last traversal
time three examples will be introduced in the following subsections. Furthermore, in each
example section, the old and new approaches will be compared for each.

5.1. Examples

All examples will be compared with the Domain Decomposition, the General Domain Decom-
position and the kd Decomposition using the old implementation, the new implementation
and the old implementation in combination with the use of the SFCT, described in Chapter 3.

All simulations will run on 16 MPI-processes and use AutoPas, with the exception when
the KDD is used. When using the KDD the simulations will run on 16 processes as well,
but AutoPas is not compatible with this decomposition algorithm, so it will not be used -
the default LinkedCells-datastructure will be used instead.

As an evaluation factor, the total runtime of the simulations(charts on the left) and the
standard deviation(SD, charts on the right) of the processes, over 10 simulation timesteps
each and 100 simulation timesteps in total, will be used.

5.1.1. mkesfera

The mkesfera simulation (Figure 5.1a) is a scenario that simulates a sphere of molecules
surrounded by floating single molecules. The sphere has a higher density of molecules than
the rest of the simulation, accordingly they are pulling each other together and the sphere
stays almost in its form. Because the simulation runs with 16 processes, the number of
molecules in each process domain is very unbalanced at the beginning. The reason for this
is that the created domains are the same size before the first rebalancing - so the domains
in the middle of the simulation area contain parts of the sphere with a high density, and the
other ones contain molecules of the surrounding gas with a lower density.
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(a) full simulation
Source: [mke17a]

(b) slice of simulation
Source: [mke17b]

Figure 5.1.: Picture of mkesfera simulation

As you can see in Figure 5.2a and Figure 5.2b with the DD the mkesfera simulation
performs almost the same for each implementation, this is because by using the DD the load
of the processes do not get rebalanced at all. Only at the beginning of the simulation the
subdomains are created and stay the same for all the timesteps.

When the GDD is used it can be seen that the new implementation, where the LTT gets
reduced by the time spent inside MPI, achieves the same results as by using the SFCT. This
can be seen in Figure 5.2c for the total runtime and also in Figure 5.2d for the standard
deviation.

Using the KDD and the new implementation together does not lead to good results in
this example (Figure 5.2e, Figure 5.2f) - the SD is not getting lower during the simulation,
while the overall runtime increases.

5.1.2. Evaporation

The Evaporation example simulates the evaporation of a liquid into the vacuum(Figure 5.3).
The green-colored molecules are a liquid reservoir which is connected to the evaporating
liquid (blue-red-colored) through a transition plane - and this liquid is connected to the
vacuum through a planar interface [HV19]. The thermostat which is heating up the liquid
is limited to the left 75% of the blue-red-colored liquid so that the transition between the
liquid and vapor phase evolves naturally [HV19]. Throughout the simulation, the liquid is
heating up until it starts to evaporate and turns into vapor.
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(a) Total Runtime - Domain Decomposition
(b) Standard Deviation - Domain Decomposition

(c) Total Runtime - General Domain Decomposi-
tion

(d) Standard Deviation - General Domain De-
composition

(e) Total Runtime - kd Decomposition
(f) Standard Deviation - kd Decomposition

Figure 5.2.: Example: mkesfera - Comparison
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Figure 5.3.: Picture of Evaporation simulation
Source: [eva17]

As stated in the previous example (Subsection 5.1.1) when using the DD the total runtime
and the SD relies on how the molecules are distributed in the simulation space. Therefore,
the overall runtime is pretty close to each other (Figure 5.4a), while the SD of the SFCT is
higher than the others in general.

When using the GDD, the new implementation performs better than both, the old
implementation and using the SFCT as a timer. The new implementation converges faster
to an optimal load balancing, low SD, than the SFCT (Figure 5.4d), which then also leads
to a better total runtime (Figure 5.4c).

By using the KDD as the rebalancing strategy, the SD is higher and the overall runtime
increases contrary to the old implementation and the SFCT in combination with the old
implementation.

5.1.3. Vapor–liquid equilibrium

This Vapor–liquid equilibrium simulation simulates the scenario of thousands of CO2 (carbon
dioxide) molecules and their distribution in the given space between their liquid and vapor
phases [Kis92](Figure 5.5). In the middle section of the simulation domain, the molecules
with the high-density are in the liquid phase, the surrounding molecules represent the vapor
phase of the CO2.
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(a) Total Runtime - Domain Decomposition
(b) Standard Deviation - Domain Decomposition

(c) Total Runtime - General Domain Decomposi-
tion

(d) Standard Deviation - General Domain De-
composition

(e) Total Runtime - kd Decomposition (f) Standard Deviation - kd Decomposition

Figure 5.4.: Example: Evaporation - Comparison
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Figure 5.5.: Picture of CO2-VLE simulation
Source: [vle17]

As seen in the other two examples (Subsection 5.1.1 and Subsection 5.1.2), using the DD
depends on the distribution of the molecules at the first timestep and how the subdomains
are being created. Thus, the SD of all three stay pretty much the same (Figure 5.6b).

Using the GDD as a load-balancing-strategy, the new implementation behaves similarly
to the old implementation as to the SFCT(Figure 5.6d) - And, the overall runtime is lower
than both (Figure 5.6d). This leads to the result, that the new implementation can be used
efficiently for this scenario.

The KDD gives as bad results as the other examples (Subsection 5.1.1 and Subsection 5.1.2)
for the new implementation. The SD of the new implementation is approximately four
times higher than the old implementation as well as the SFCT during the whole simulation
(Figure 5.6f), which then leads to a higher overall runtime (Figure 5.6e).

5.2. Result

To sum up the results of the examples presented in Section 5.1:
The new implementation is a good alternative for the SFCT used for the last traversal

time. In general, by using the reduced time as the LTT the same or better results for the
load balancing can be achieved. But this only applies to a simulation where the GDD is
used as the load balancing strategy.

If KDD is used instead, this implementation should not be used due to the results. In all
three examples, the load balancer cannot handle the new last traversal time as a rebalancing
factor, if a rebalancing should be triggered or not. For finding the new load balancing the
LTT is not used, therefore the new approach in combination with the KDD should not be
used to optimize the load balancing of ls1-MarDyn.

The reason why the same or better results can be achieved, when using the GDD, is that
the time which is wasted due to the synchronization of the processes is not considered as a
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(a) Total Runtime - Domain Decomposition
(b) Standard Deviation - Domain Decomposition

(c) Total Runtime - General Domain Decomposi-
tion

(d) Standard Deviation - General Domain De-
composition

(e) Total Runtime - kd Decomposition
(f) Standard Deviation - kd Decomposition

Figure 5.6.: Example: VLE - Comparison
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factor for the load balancer anymore. This means that the input parameter is more precise
and leads faster to an optimal load balancing. When using the SFCT, this time is also
not considered for the load balancing, but it has the disadvantage that the time used for
the plug-ins on each process is not considered as well. Thus, the new approach performs
sometimes better than the SFCT.

Origin LTT Time spent in MPI Used LTT Reduction (%)

mkesfera 14709,22348 877,575299 13831,64745 5,97

Evaporation 243,2337441 58,20635789 185,0274022 23,93

VLE 5591,936039 486,658521 510,5277754 8,70

Table 5.1.: Reduction of the LTT using the time spent in MPI-calls

Also, it needs to be shown how much the LTT gets reduced by using the new implementation
in the three different simulations. The times shown in Table 5.1 are the times measured
by ls1-MarDyn and summed up over the whole simulation. The ’Used LTT ’ is the time
that is given as the parameter to the load balancer, which means this is the result of the
’Origin LTT ’ minus the ’Time spent in MPI ’. This all leads to a reduction of 5, 97% in the
mkesfera-simulation, 23, 93% in the Evaporation-simulation and 8, 7% in the VLE -simulation.
That shows us that the time used for the load balancing was significantly falsified by the
time spent in MPI-calls.
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6. Conclusion and Outlook

The main goal of this thesis was to optimize the load balancing of the ls1-MarDyn project
by adapting the used parameter, called last-traversal-time, due to the time spent inside
of MPI-calls. This time should be reduced by the time needed for MPI-calls because the
processes of the application need to be synchronous. This means that the processes have to
wait for each other inside of some plug-ins, after the calculations of the temperature, pressure,
etc., as well as after each timestep when all processes have finished their calculations for
their subdomain. And this waiting time, amongst others, was one of the causes why the
original LTT leads not to an optimal load balancing.

The solution stated in this thesis is reducing the LTT by the time spent in MPI-calls, thus
this time needs to be measured. For this, a timer was implemented and used by a newly
implemented profiling interface. This profiling interface overrides the used MPI-functions
by reason that it can start a timer, trigger the wanted MPI-function, and stop the timer.
Furthermore, it was implemented in a way, that this timer can also be used even if more
than one MPI-function is needed at the same time. This measured time then gets subtracted
from the LTT when it gets used as the parameter for the load balancer.

This modified LTT was then evaluated using different load balancing strategies and
different example simulations. The result was that this approach can be used for a better
load balancing in combination with the GDD. It achieves the same or better results than
the SFCT-timer and has also the advantage that the used plug-ins are not ignored for
rebalancing the load of the processes. Unfortunately, this does not apply to the KDD, the
evaluation of this load balancing strategy leads on average to a higher standard deviation
and to a higher total runtime than the old implementation or the SFCT-timer. Which leads
to the result, that this approach should not be used in combination with the KDD.

In a retroactive view, the approach of this thesis turned out as a good foundation for further
load balancing optimizations. Future works could be a full integration into ls1-MarDyn as a
plugin, which then could be activated by the XML-input-file.
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