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Abstract

Molecular Dynamics (MD) simulations are computationally highly involved and there exist
many strategies to improve their efficiency. Because those strategies are difficult to select
manually, it is desirable to automatically compare and choose them during run-time. This is
called auto-tuning. AutoPas is a C++ MD-simulation library designed to do exactly that with
custom simulations provided by the user[5]. However, it did not previously feature a way to
parallelize the tuning process. Instead, each process used in a highly parallel MD-simulation
had to find an optimal solution in isolation. This thesis implements a parallelization scheme,
which allows AutoPas processes to communicate during tuning in order to find a solution
more quickly. This is done using the MPI-specification[6]. As the solution has to be
applicable for all processes, the simulation-domain is assumed to be homogeneous. The
implementation is tested in various situations and compared to a non-parallelized execution
of those same situations. Overall, it is shown that significant improvements in performance
are possible, but also that they are highly situational. Therefore, future optimizations will
be necessary to fully exploit the potential of parallelizing the tuning.
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Zusammenfassung

Molekulardynamiksimulationen (MD-Simulationen) sind hochkompliziert zu berechnen
und es gibt viele Strategien, um ihre Effizienz zu verbessern. Da diese Strategien nur schwer
manuell bestimmt werden können, ist es wünschenswert, sie automatisch zu vergleichen
und auszuwählen, was Auto-Tuning heißt. AutoPas ist eine C++ Bibliothek für MD-
Simulationen, die eben das mit vom Nutzer eigens erstellten Simulationen tut[5]. Allerding
konnte es bislang den Tuning-Prozess nicht parallelisieren. Stattdessen musste jeder Prozess
in einer hoch-parallelen Simulation eine optimale Lösung selbst finden. Diese Arbeit imple-
mentiert eine Parallelisierung, die es AutoPas erlaubt, während des Tunings Informationen
zwischen den Prozessen auszutauschen, um schneller eine Lösung zu finden. Dafür wird
die MPI-Spezifikation verwendet[6]. Da die Lösung für alle Prozesse optimal sein soll, wird
angenommen, dass die Simulationsdomäne homogen ist. Die Implementierung wird in
verschiedenen Situationen mit einer nicht-parallelisierten Ausführung derselben Situationen
verglichen. Im Ganzen wird gezeigt, dass dadurch signifikante Performanzsteigerungen
möglich sind, aber nur in bestimmten Situationen. Deshalb werden künftige Optimierungen
benötigt um das Potenzial eines parallelen Tuning-Vorgangs vollständig auszunutzen.
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Part I.

Background & Introduction
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1. Motivation

Complex Molecular Dynamics (MD) simulations can help scientists gain insights into many
physical phenomena. These phenomena often occur on timescales of several milliseconds
(10−3 s) and can involve millions of particles. When simulating, a distribution of particles is
evolved by several discrete time steps. To yield reasonable results, a single time step will
often be femtoseconds (10−15 s) in length [11]. For larger intervals, simulations lose accuracy
because the errors in each step become larger. Femtoseconds provide a compromise between
speed and acceptably accurate results. The difference between the simulated time scales and
the time for a single step means that usually at least several millions of time steps need to be
computed. While long-distance interactions are often ignored (see Section 2.1), a single time
step still involves many thousands of interactions for every particle. In order to approach such
simulations, one needs as much computational power as possible. However, simply increasing
the number of cores to several thousands alone does not typically solve a computational
problem. Researchers have developed several methods of improving performance, which will
be discussed in more detail in Section 2.1. Unfortunately, the challenges that need to be
solved depend strongly on the specific simulation.

Brooks already showed that for general software engineering problems of this kind, no
universal solution can exist[3]. This is also true for MD-simulations[4]. Choosing the optimal
approach for a simulation manually requires great intuition and foresight. Yet, many people
who need to run MD-simulations have no computer science background. A possible solution
to this is to use different strategies for parts of a simulation and automatically determine
which one works best. This is called auto-tuning. AutoPas is a C++ library for particle
simulations, which is based around this auto-tuning principle. More specifically, AutoPas
allows users to code their own particle simulations and select which approaches should be
tested. On execution, the simulation is begun with systematically measuring the performance
for those approaches. When an optimum is found, it is used for many of the following time
steps before beginning the procedure anew. More on this in Section 3.1.

As MD-simulations are often distributed over many compute units (called nodes from
here on), it makes sense to also distribute the tuning. Before this thesis, AutoPas was not
able to do this. This thesis implements a parallelization scheme which allows AutoPas to
distribute the tuning-workload. The goal is to decrease the amount of time each process
has to simulate with suboptimal approaches, thus improving overall execution time. The
thesis limits itself to solving the parallelization for homogeneous simulation domains. This
means that the optimal solution is the same everywhere in the domain. Undoubtedly, a
heterogeneous simulation domain would introduce new complexity and will be left for future
work. Other than that, it attempts to be as generally applicable as possible within AutoPas.
This thesis will conclude that the parallelization can yield improvements in performance,
but not in every scenario.
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2. Theoretical Background

2.1. Molecular Dynamics & N-Body Simulations

Figure 2.1.: The Lennard-Jones 12-6
Potential.
The specific values de-
pend on two variables σ
and ε [5]. The positive
section results in a repul-
sion, while the negative
one results in a pulling
force between both par-
ticles.

Molecular Dynamics simulations allow im-
portant insights into the properties of cer-
tain materials or the behaviors of biophysi-
cal systems[2]. For this reason, they have
been studied extensively and the High Per-
formance Computing (HPC) Community has
seen vast improvements in their efficiency
and effectiveness[10]. Their complexity starts
on the low end with simulating atoms as
point-particles with a single kind of inter-
action between them. This interaction is
usually modeled as a force potential, com-
monly the Lennard-Jones 12-6 potential de-
picted in Figure 2.1[5]. More complex simu-
lations might explicitly model bonds between
some number of atoms and use several poten-
tials, sometimes between more than two par-
ticles. These are required for the modeling
of many chemical processes. Some simulations
even account for quantum-mechanical phenom-
ena[2].

In general, all MD-simulations share one common source of complexity. A physical simula-
tion with N distinct objects, each interacting with all others via forces, is called an N-body
simulation. Any such simulation has to solve what is commonly called the N-body prob-
lem[10]. The complexity arises from the fact that the number of force calculations increases
quadratically with N. To alleviate this effect, optimizations, as well as approximations, are
available.
A common optimization is to apply forces for two particles at a time. According to Newton’s
3rd law of motion, any object acting on another with a certain force F experiences the equal
but opposite force −F on itself. This means that from knowing the force particle p1 exerts
upon particle p2, one immediately knows the force p2 exerts upon p1. This optimization
halves the number of force calculations compared to a primitive implementation. In AutoPas,
it is called the Newton3-optimization.
An important approximation arises from the way short-range potentials (e.g. Lennard-Jones
12-6) behave for large particle distances. Because they commonly converge to 0 very quickly,
not much is lost by assuming them to be exactly zero after certain distances. If these
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2. Theoretical Background

cutoff-distances are significantly smaller than the simulation domain, a majority of particle
interactions can be ignored. For a fixed cutoff-distance and particle density, this even means
that the number of particle interactions to compute increases only linearly with N, not
quadratically.

Figure 2.2.: Particles in a Visualized
OCTREE. [14]

A second optimization is high paralleliza-
tion [10]. This lends itself naturally to MD-
simulations because the force acting between a
pair of particles is independent of all other parti-
cles1. Another reason why parallelization follows
naturally is that complex MD-simulations cannot
be contained on a single node, as illustrated in
Chapter 1. Specifically, there are two types of
parallelizations to consider here: Shared memory
parallelization on each node individually and dis-
tributed memory parallelization across all nodes.
Both can also be used together. When implement-
ing a parallel MD-simulation there are certain
pitfalls to avoid, however.
For instance, when combining shared memory
parallelization with the Newton3-optimization
one must be careful to avoid data races. When

calculating the particles in a random order, two threads might select the same pair simulta-
neously. In this case, the force from that interaction would be added twice per particle. For
this reason, AutoPas implements several traversal patterns which determine a thread-safe
order to compute the forces in.
For distributed memory parallelization, it is important to minimize communication bot-
tlenecks. Commonly, the simulation domain will be divided into rectangular regions, for
example with OCTREES [10], as depicted in Figure 2.2 or grids. Despite ignoring inter-
actions after a cutoff-distance, there are large amounts of overlapping particle interactions
between neighboring regions. The exact positions of those particles need to be updated
continually on all nodes so that force calculations can remain accurate. This poses a severe
challenge, as much information needs to be transmitted between many different nodes2.
Oftentimes, the computers that run these simulations are organized in grids themselves3,
allowing for short transmission distances[6].

In conclusion, MD-simulations are very useful scientifically, but extremely difficult from
a computer and software engineering perspective. Both dedicated hardware[11, 12] and
advanced algorithmic solutions are being developed continually. Yet, many complex sim-
ulations are still out of reach, which underlines the importance of further research in the
field.

1The computation of that force, however, is not independent if the Newton3-optimization is used. Details
below

2Assuming that each sub-region in the domain is held by one node, this usually means transferring particles
to up to 33 − 1 = 26 neighbors in a 3-dimensional case.

3Technically in tori, because opposing sides are also connected.
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2. Theoretical Background

2.2. Auto-Tuning

As indicated before, there exist several interchangeable strategies for running MD-simulations.
They will be discussed in more detail in Section 3.1. For now, it is important that they
are all qualitatively equivalent, assuming a cutoff-distance4. However, their run-times are
highly dependent on certain properties of the simulation. For instance, particle density
or average velocity can have a huge impact. Importantly, different strategies are affected
differently by these properties, making it necessary to find the optimal choice for each
simulation individually. This selection is not trivial to make, however, as the space of
possible strategies is high-dimensional and MD-simulations can get very heterogeneous.
Additionally, requiring a user to understand the advantages and disadvantages of all different
algorithms is unrealistic and cumbersome[4]. A third problem is that the properties of a
simulation can change during run-time, this changing which approach is optimal. A potent
approach to solve these issues is called auto-tuning[17].

There are two primary types of auto-tuning. The first, sometimes called parameter-
tuning or automatic algorithm configuration, changes certain variables that influence the
performance of a given algorithm. An example of such a variable would be how far to unroll
loops in auto-tuned compilers[4]. Another one is [13], where a 3D Fast-Fourier-Transform is
tuned with a large parameter space. The second type, called automatic algorithm selection,
is more powerful than that because it changes the algorithm altogether. This can improve
performance drastically because a single algorithm with tuned variables might not be able
to account for a wide range of problems (e.g. the range of all MD-simulations)[3]. Examples
of possible algorithms will be discussed in Section 3.1. AutoPas includes both types of
auto-tuning but relies heavily on the latter. Auto-tuning can generally occur at three
different stages of a program’s lifetime[5]:

1. At compile-time.
This approach is only viable when the optimal solution does not depend on any form
of input. The relevant information which informs the tuning-process here comes from
the systems architecture and possibly available libraries.

2. During initialization.
This works well for programs in which the optimal solution only depends on initial
input and does not change during execution. Also, it has to be possible to infer the
optimum from knowledge given during initialization. This could be achieved by doing
some pre-computation on the problem and tuning based on known heuristics.

3. Anywhere throughout run-time, usually periodically or continually.
This option becomes viable when the only way to determine which solution is optimal
is trial-and-error. It becomes necessary when the optimal solution varies throughout
execution. Commonly, a program will tune at the beginning and then repeat the
tuning regularly to keep using the optimal approach.

It should be noted that going down this list, tuning becomes more flexible and more time-
intensive as it has to be done more often. Going into a tuning phase while the old solution

4Otherwise, a primitive solution without cutoff-distance would be technically more precise than a solution
with cutoff-distance. This is unimportant here, as AutoPas only considers short-range interactions with a
cutoff-distance.
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2. Theoretical Background

Figure 2.3.: Tuning in AutoPas, Simplified.
A configuration defines the combination of algorithms used to run the simulation.
The search strategy defines which configurations to test next and how to find
the optimum. More on that in Section 3.1. During a tuning phase, the search
strategy tests different configurations by measuring their execution time until it
is confident to select an optimal configuration. The optimum is then used until
a fixed number of time steps elapsed, after which the tuning phase is repeated.

is still optimal results in unnecessary overhead. Thus, choosing to tune periodically during
run-time is not a good option if the problem does not require it. An example of on-line
auto-tuning is discussed in [15]. Similar to AutoPas, they distribute the tuning process over
many nodes, however without algorithm selection.
MD-simulations can change drastically over time. For instance, particles could oscillate
between being condensed on a small amount of space and being evenly spread over the
entire domain. These two extremes have different optima, which is why auto-tuning for
MD-simulations has to happen regularly. AutoPas specifically has time intervals of a set
length between all tuning phases. This enables an efficient trade-off between tuning regularly
and keeping tuning times low. A depiction of how auto-tuning works in AutoPas is given in
Figure 2.3.

6



3. Technical Background

3.1. AutoPas

Figure 3.1.: Three Containers Visualized. [5]
The red circle shows the cutoff-distance in which forces are calculated for the red
particle. For Verlet-lists, the yellow circle shows the boundaries of the neighbor
list. An arrow going into a particle means that that particle is considered for
force calculations.

Figure 3.2.: Two Traversals Visualized. [5]
Cells outside the red boxes are halo cells, used to handle boundary conditions.

”AutoPas is an open-source C++ node-level performance library, which aims to provide a
base for arbitrary N-body simulations.”[5] It approaches this goal by defining an interface for
particles and their respective force calculations (via functors), which the user codes specific

7



3. Technical Background

Figure 3.3.: Two Data Layout Options. [5]

implementations for. This allows for high flexibility concerning the simulation without
requiring knowledge about any optimizations or algorithms from the user. Instead, AutoPas
implements several options, which it automatically tunes to find an efficient execution for
the given simulation. At the time of writing, there are six tuneable options with several
different values each:

1. Containers:
They determine how particle information is stored. Specifically, they keeps track of
which particle pairs to consider for force calculations. Figure 3.1 shows three examples
for containers. One can see that going from left to right, fewer unnecessary particles
are considered. The linked-cells approach achieves this by dividing the simulation
domain into squares (or cubes for the 3D case)[5]. Then, only the particles in the
surrounding cells and the one that contains the red particle need to be considered.
This turns the quadratic dependence on the number of particles into a linear one.
The Verlet-list approach stores and regularly updates lists of neighboring particles.
It can be used with linked-cells for finding the neighbors, which combines the linear
dependence on N with the small number of distance computations of the Verlet-lists.
There exist several other containers, many of which are variants of the mentioned ones.

2. Cell-size-factors:
These make up the only instance of parameter-tuning in AutoPas. They correspond to
how big the cells are for containers that use cells (e.g. linked-cells). Unlike the other
options (which are enumerated values), these have two possible representations. They
can either be stored as an arbitrarily large set of numbers or as an interval that is
considered infinite in AutoPas.

3. Traversals:
Different traversal strategies are used to avoid race conditions on a single node. They
control which order particle interactions are computed in. Figure 3.2 shows two
common options. The sliced traversal splits the domain into long slices which are
assigned to one thread each[5]. Thus, the total number of threads is limited by the
domain size. An alternative, the c08-traversal, computes interactions in non-adjacent
nodes simultaneously. This means additional scheduling overhead, but very good load
balancing. The traversal options are by far the most numerous in AutoPas, but most
traversals are only compatible with a small subset of containers.

8



3. Technical Background

4. Load Estimators:
These are used to estimate the costs associated with updating a sub-region of the
domain. AutoPas currently implements two heuristics for doing so (next to not
estimating at all). One is based on the number of particles, the other on the length of
Verlet-lists.

5. Data Layouts:
These options affect how particle information is vectorized. The main distinction
is between Array-of-Structures (AoS) and Structure-of-Arrays (SoA), as depicted in
Figure 3.3. AoS groups information by which particle it belongs to and allows quick
access to other information of the same particle. SoA on the other hand groups
information by its type (e.g. x-coordinate of the position vector), which allows quick
access to the same information of other particles. A third option (called CUDA) is a
data layout optimized for GPUs.

6. Newton3:
This simply refers to whether the Newton3 optimization explained in Section 2.1 is
utilized. While one may want to always use it, it is not compatible with all user-defined
functors.

Any combination of values from those six options is called a configuration and is responsible
for the exact way a simulation is executed. In a simulation with several processes, each
process can use its own configuration. At the beginning of a simulation, the user may specify
which values should be allowed for each option1. The set of (valid) configurations that arises
from these values is called the search space. Determining which configuration to test next
and which to select as the optimum defines a search strategy (also called tuning strategy).
At the time of writing, AutoPas implements six search strategies, all of which are based on
measuring execution times for configurations:

1. Active Harmony (AH).
Active Harmony is an auto-tuning library itself[1], which has been integrated into
AutoPas. AH is far more general in scope than AutoPas and thus could not make many
important optimizations for MD-simulations on its own. It implements several search
strategies itself, but the one used in AutoPas is the Nelder-Mead simplex method.
This strategy treats the search space as a (in this case) five-dimensional simplex2. It
then attempts to find the optimal strategy by interpreting the measured performance
as the values of a continuous function on the search space. Architecturally, AH uses a
server-client model. Either each AH process can use its own local server, or a server
can be set up which communicates via TCP with all client instances in a global tuning
session.

2. Bayesian-search &

3. Bayesian-cluster-search.
Similar to AH, these two search strategies try to find the minimum of a function
that maps configurations to measured execution times. To do this, they rely on
Gaussian processes[8]. Essentially, they assume that the measured performances

1A common restriction is to disallow the direct-sum container to improve performance.
2A geometric object in five dimensions consisting of six points which are all connected to all others.

9



3. Technical Background

Search Strategy Next Configuration Finishing Criterion

Active Harmony
most promising

convergence
Bayesian (Cluster) Search

# of tested configurations
Random Search random

Predictive Tuning strict order in promising set whole promising set tested

Full Search strict order whole search space tested

Table 3.1.: Brief, Simplified Overview over the Functioning of all Tuning Strategies.

of a configuration are normally distributed. Then they attempt to predict which
configuration would be the most useful3 to test next. The difference between both is
that Bayesian-cluster-search fixes certain values during its search.

4. Full-search.
This is an exhaustive search through the configurations. The search space is traversed in
a way that minimizes switches in options that are expensive to switch (e.g. containers).
Once all configurations have been tested once, it selects the one with the fastest
measured performance. Due to being exhaustive, this is the only search strategy that
is always guaranteed to find the optimal solution but is also slower than most others.

5. Predictive-tuning.
This strategy attempts to predict the performance for every configuration at the start
of a tuning-phase. It then tests the configurations which are expected to perform best.
When this reduced search space is depleted, it selects the configuration which was
measured to be the optimum among those. There are four prediction schemes available,
which use information from past tuning-phases to predict the current performance of
each configuration.

6. Random-search.
This and full-search are the two least sophisticated tuning-strategies in AutoPas.
Random search selects new tuning strategies from the search space completely by
chance and selects the best one after a certain number of different configurations have
been tested.

A short overview over the tuning strategies is provided in Table 3.1. All auto-tuning
that happens in AutoPas is based on measuring execution-times when employing different
configurations. These times are then used to select an optimal configuration for the given
problem. For this to be functional, it is assumed that a simulation does not change too
drastically in a short number of time steps. Otherwise, the measured times could become
unrepresentative before or shortly after the tuning is completed. To account for a changing
simulation, tuning phases are repeated periodically.

3i.e. the one whose measurement would provide the most information for tuning. For instance, if changing
the cell-size-factor twice has resulted in almost no performance difference, changing it again will likely
not be useful.

10



3. Technical Background

3.2. MPI

The Message-Passing Interface (MPI) is a specification ”address[ing] the message-passing
parallel programming model[, extended by] collective operations, remote-memory access
operations, dynamic process creation, and parallel I/O.”[6] It allows for different kinds
of message-based communication between several nodes. For the purposes of this thesis,
a message here is simply a collection of a single type of information (e.g. a collection of
float values) to be communicated between processes. The utility of MPI arises from the
computations that can be done during communication. For instance, MPI defines several
common reduction operations (e.g. finding the minimum of a collection of numbers) and
calls to collect or distribute large data sets automatically. Among many of its stated goals
are efficiency and portability, as well as supporting heterogeneous environments[6]. These
make it well suited for MD-simulations in general. MPI itself is only a specification, defining
requirements and interfaces for a possible implementation. Two common such implementa-
tions are MPICH [7] and OpenMPI [9].

In order to identify individual processes, MPI uses the concept of ranks, which it automati-
cally assigns upon initialization. Ranks are usually assigned to all processes with consecutive
numbers starting at zero, where by default the process with rank zero is considered the
”root” node. This is important for many asymmetric MPI-calls (e.g. a broadcast from one
process), although MPI always allows any other node to be specified as root. Complex
MD-simulations are usually carried out on supercomputers, whose nodes are often configured
in grids or torus-shapes. Therefore, to handle communication efficiently, a linear numbering
is often insufficient. MPI accommodates for this, by allowing the user to define a custom
node topology [6].

Many of the calls it defines come in blocking and non-blocking versions. Blocking here
means that the code after the call is not executed until the call is finished. Importantly, this
means that all processes need to participate simultaneously for it to succeed. A non-blocking
call on the other hand returns a request handle. This handle can be used later to test if the
call has already finished or to wait for it to finish. For non-blocking communication, it is
unimportant when each rank joins in, but it can only finish once all ranks have done so. By
their nature, non-blocking calls allow processes to execute other code while waiting.

11
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Implementation
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4. Overview

As stated in Chapter 1, this thesis aims at distributing the tuning workload in AutoPas
across several processes. Before, AutoPas was unable to communicate tuning information in
a distributed memory environment. As MD-simulations are commonly executed on many
nodes at a time, AutoPas spent much time measuring configurations whose performance
was already known. When the underlying simulation is sufficiently homogeneous, the mea-
surements of one configuration do not differ significantly across the nodes. This can be
exploited by only measuring each configuration on a single node and communicating the
result globally. To reduce communication overhead, one could broadcast only the time of
the optimal configuration of each node. Since sub-optimal configurations should not be
used, their times are not important to find the globally optimal one. Some search strategies
(e.g. predictive-tuning), however, require the measurements of all configurations to function
properly. This problem can be avoided by giving each node only a subset of the total search
space. Then, each process can fully explore its search space with any strategy and does not
need to know of other configurations. For this to work as intended, the union of all local
search spaces needs to equal the global one. Once the local optima of all nodes are found,
they can be compared to find the global optimum. This approach can be implemented
well by wrapping the existing search strategies rather than integrating new code into them.
Thus, a new wrapper search strategy, called MPIParallelizedStrategy was implemented. It
implements the same interface as all other search strategies but holds a reference to another,
local, search strategy which does most of the tuning. Its functioning will be described in
more detail in Chapter 5.

The types of distributed communication necessary for this are comparatively uncomplicated.
For the tuning itself, it is necessary to find the minimum in a distributed set of numbers
(time measurements) and to broadcast the optimal configuration. Since non-serialized
objects cannot generally be transmitted between nodes, the configurations are serialized and
deserialized locally. To avoid race conditions and deadlocks, it is also needed to synchronize
the control-flow of different processes. To this end, MPI was used. As it is a widely
accepted standard, there are several efficient and well-supported implementations available.
Additionally, all aforementioned use cases can be realized in MPI with very few calls.

13



5. Parallel Tuning Algorithms

5.1. Distribution

Figure 5.1.: Simplified Depiction of the Distribution of Configurations Across four Ranks.
A combination of one blue, one green, and one red rectangle is a configuration.
”Input:” denotes the global search space. The tree structure shows how all
configurations are built from the input. ”Rank X” denotes the output for Rank
X, with the light blue bridges showing which parts of the array the options
correspond to.

The way configurations are distributed across ranks is influenced by three considerations:

1. Load Balancing.
For this, it is assumed that all ranks run on equally powerful machines with similar
CPU time assigned to them. While it could be more efficient to assign larger search
spaces to faster processes, implementing this would have resulted in more complex
code and computation overhead in other areas. A big reason for this is that processes
are synchronized every few time steps, as will be explained below. Therefore, it is
attempted to partition the search space into equally large subsets.

2. Load Reduction.
Full-search traverses its search space by exhausting options that can quickly switch
between values before changing other, ”heavier” options. For example, containers are
switched as seldom as possible, because doing so takes more time than for any other
option. Motivated by this, the distribution scheme assigns as few ”heavy” options
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to one rank as possible, while still maintaining equally large subsets. To do so, it
traverses the search space in the same way as full-search does, when distributing. This
way, all search strategies can benefit from a reduced load when switching between
configurations.

3. Storage.
Most search strategies in AutoPas do not store a set of configurations. Instead, they
store a set of values for each of the six options. From here on, storing sets of values
for options will be called the implicit representation, while storing configurations
will be called explicit. The benefit of the implicit version is that no redundant
information is stored. The user enables or disables values for options instead of
individual configurations, so it is usually of no value to have any finer control over
the search space. Also, some search strategies (e.g. Active Harmony, Bayesian-search)
require the implicit representation. However, for splitting the search space at arbitrary
points, an explicit approach would be necessary. As a compromise, the search space is
first split according to the two considerations above. For this, the explicit representation
is never actually built, but six iterators are used to traverse the search space. This has
the same effect as building the explicit representation without the memory overhead.
Then, the implicit representation is created per rank by storing all unique values that
are used in configurations for the rank. Due to using the implicit representation, some
overlapping configurations need to be accepted.

These points lead to the distribution algorithm depicted in Figure 5.1. Note that the array
of configurations does not equal the Cartesian product because not all combinations are
valid. Thus, its size is 19 instead of 33 = 27. The values of the blue option are grouped,
as it represents a ”heavy” one. The values of the green option are grouped within that
because they are the next ”heaviest”. The global search space is split equally1 across four
ranks, as can be seen by the vertical lines below it. From this, the implicit representation
is generated by storing for all options the values that appear in each sub-array. In this
example, even though only 19 unique configurations exist in total, there are 8 which are
not uniquely assigned. Thus, adding the sizes of all four local search spaces up results in 27
instead of 19. That this is equal to the size of the Cartesian product without eliminating
invalid configurations is a coincidence.

Realistically, there would be significantly more than 3 options with 3 values each. At
the time of writing, options hold between 2 and 21 values. Cell-size-factors can even hold
arbitrarily many values, with intervals being considered infinitely large. In the case of
intervals, the distribution scheme ignores them altogether. Only if more ranks than con-
figurations exist, are they split evenly between ranks that store the same single configuration.

One problem that can arise from using this distribution scheme with many ranks is that
some of them might end up without valid configurations. Even though it is avoided to assign
invalid configurations, some may only be found to be invalid after tuning already begun.
Due to the way AutoPas is currently implemented, this is an unfortunate, but unavoidable
consequence. Section 5.2 discusses how this situation is dealt with.

1As the total number of configurations is not divisible by four, Rank 3 has one fewer than the other ranks.
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The involvement of MPI in this is limited to providing the number of processes and
the rank of each one. From this, each process can generate the explicit representation
and find its respective sub-array on its own. Alternatively, it would have been possible to
dedicate a root node to the computation and use MPI to distribute the final results to all
processes. This was avoided, because the computation phase would take the same amount
of time, but would be followed by a large communication call. The total time would thus
increase. Because the non-root nodes would not have been able to do other computations in
the meantime, no workload reduction would have occurred. A second option might have
been to use a dedicated MPI-call for the distribution. To do this, however, the explicit
representation would need to be stored completely. Also, all configurations in it would need
to be serialized, and deserialized after the communication. This would also have resulted
in unneeded overhead and more complex code. Since this code is only called once per
simulation, the potential performance increase was not a reasonable justification for this.
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5.2. Tuning

Algorithm 1: Outline of the tune() method in the wrapper. Called once per
tuning step and whenever an invalid configuration has been selected. Delegates
tuning to the local search strategy until that finished or fails. Then uses MPI to
find the globally fastest solution. optimalConfig is initially unassigned.

Input :Whether the currently selected configuration is invalid.
Output :Whether the tuning phase needs to be continued.

1 Function tune(invalid: bool):
// handling fallback options

2 if localStrategy.invalid() then
3 usingFallbackOptions ← True
4 localSearchFinished ← True

5 if usingFallbackOptions and invalid then
6 optimalConfig ← findNextFallbackOption()

// only enter global synchronization once per tuning step

7 return True

// handling local tuning

8 if not localSearchFinished then
9 localSearchFinished ← not localStrategy.tune(invalid)

10 if invalid then
// only enter global synchronization once per tuning step

11 return True

// handling global synchronization and tuning

12 allLocalFinished ← synchronizeAndGetAllLocalFinished(synchronizationHandle)
13 if allLocalFinished then
14 if localStrategy.invalid() then
15 localOptimum ← null
16 localBestTime ←∞
17 else
18 localOptimum ← localStrategy.optimalConfig
19 localBestTime ← localStrategy.bestTime

20 optimalConfig ← findGlobalOptimum(localOptimum, localBestTime)
21 return False

22 testGlobalSearchFinished(localSearchFinished, out synchronizationHandle)
23 return True

The primary principle behind the tuning is to tune completely locally until an optimum is
found. Then, all local optima are compared to find a global optimum. As mentioned before,
some ranks might end up without valid configurations. For this case, MPIParallelizedStrategy
stores the global search space. If its local strategy fails, it declares the local tuning phase as
completed and uses the global search space as a source of valid configurations. If the local
strategy has not failed yet, the tuning is delegated to it. This behavior is depicted until
line 11 in Algorithm 1.
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Once every tuning step, all processes are synchronized (line 12). This is used to com-
municate globally if all local tuning phases are finished, via the synchronizationHandle.
The handle is set in a non-blocking MPI-call (depicted in line 22), which reduces all pro-
vided Boolean values via a logical and-operation. The call is non-blocking to allow for
computation-communication overlap, which improves performance2. It has been attempted
to only synchronize once at the end of the tuning phase. This could in theory allow for
less time spent waiting when different ranks use slow configurations during different time
steps. However, since simulation codes also often need to communicate between processes, it
would have been difficult to avoid deadlocks. When testing this approach, deadlocks often
occurred when attempting to synchronize the ranks after all had finished their local tuning.
Another factor for not pursuing this approach further is that MPI does not need to evaluate
non-blocking calls immediately. This means that more time than necessary could have been
spent with suboptimal configurations when waiting for the non-blocking MPI call to finish.
Lastly, distributed simulation domains need to be synchronized anyways to remain accurate.
This means that not much time can be saved by a non-blocking approach.

5.3. Optimization

Algorithm 2: Outline of the findGlobalOptimum(...) method as used in Algo-
rithm 1. Compares each rank’s best time to find the optimum. Then broadcasts
the optimum from the respective rank to all others with getConfigFrom(...). Seri-
alization and deserialization were omitted to simplify the code.

Input :The optimum found in the local tuning phase and the time measured for
it.

Output :The globally optimal configuration.
1 Function findGlobalOptimum(localOptimum: Configuration, localTime: time):
2 bestTime ← findBestTime(localTime)
3 bestRank ← communicateBestRank(bestTime)
4 return getConfigFrom(bestRank)

Finding the globally optimal configuration is achieved by comparing the measured times
of all local optima. If two processes measured the same time for their respective optimum
(which is unlikely), the one with the lower rank is chosen, as depicted in Algorithm 2. It
would have been possible to combine the calls to findBestTime and communicateBestRank
into one. However, the gain in performance would have been negligible, because no time is
wasted waiting between both calls. On the other hand, the programming demand would
have increased. MPI does provide a call to automatically find the minimum of a set of
numbers and the rank which holds this minimum3. Unfortunately, the necessary operator is
not defined for the data type of the time measurements (size t). The operator would have
had to be implemented and integrated into MPI beforehand, which results in the increased

2As the call is rather uncomplicated, the benefit is not noticeable. But a blocking alternative would not
have resulted in significantly simpler code either.

3More specifically, it provides the operator MPI MINLOC which can be used with a regular reduction call
to achieve this.
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programming demand.

findGlobalOptimum is fully blocking. A non-blocking implementation has also been
considered. However, MPI does not provide a sufficiently powerful call to handle the entire
global optimization at once. Thus, it would have to be done over several tuning steps. Since
every tuning step also consists of several time steps, this would mean many more time steps
of using suboptimal configurations. Simply optimizing in one set of blocking calls is much
quicker in comparison. Also, at this part of the tune()-function, all processes are already
synchronized due to the reasons outlined in Section 5.2. Thus, a non-blocking version could
only have been useful if tune() was entirely non-blocking as well.
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6.1. Changes to Tuning Strategies

As mentioned in Section 3.1, Active Harmony (AH) can use a TCP-server to handle
distributed tuning sessions[1]. This is achieved by providing each AH-client with the
hostname and port that the server can be contacted with. For this, two environment
variables, HARMONY HOST and HARMONY PORT are used. However, setting up a
global tuning session was not supported in AutoPas before this thesis. The reason is that to
do so, some prior communication between the processes is necessary, which is usually done
via MPI. Instead, every AutoPas process would set up its own, local AH-server for tuning.
Thus, the first step was to implement global tuning sessions via the AH-server. For this
code to execute, two conditions need to be met: MPI must be enabled in AutoPas, and the
mentioned environment variables need to be set.

Host & Port Set Host & Port not Set

MPI enabled global AH-server local AH-server & MPI-tuning

MPI disabled local AH-server

Table 6.1.: Summary of the Results of all Combinations between MPI and a Global AH-
Server. ”MPI enabled” and ”MPI disabled” here mean whether mpi.h and the
appropriate MPI-strategy is used. More on this in Section 6.2.

Table 6.1 shows how AutoPas behaves depending on whether MPI is enabled and whether
the environment variables for an AH-server are set. With both disabled, AutoPas func-
tions as before. With both enabled, it ignores the MPI-wrapper strategy and only uses
a server-based AH-tuning session. This also includes the initial distribution of the search
space, because the server needs to be set up from a single node. This root-node thus
needs to know the entire search space. Without MPI, it is not possible to set up a global
tuning session, because the number of participating processes needs to be known beforehand.
Thus, when a server is provided, but MPI disabled, the server has to be ignored and each
AH-client creates its own, local server. With MPI enabled, but no server provided, AH is
treated like any other search strategy and global MPI-tuning as described in this thesis is used.

Another change had to be made in random-search. As mentioned in Section 5.1, the
division of the search space can result in processes with few or no valid configurations. This
is handled with the fallback-behavior explained in Section 5.2. In order to determine when
a search strategy has failed, two signals are used: Either the strategy throws an exception,
or the strategy selects an invalid configuration as its optimum. Random-search did none
of those things by default. For too few1 valid configurations, it could never finish a tuning

1by default less than 10
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phase, because it could not collect enough time measurements. With no valid configurations
it would not even finish the first time step, but instead just keep randomly selecting invalid
configurations. To fix this, random-search now keeps track of configurations that are already
proven to be invalid. With this, it can test whether there are any untested configurations
left. If there are not, it tries to select the optimal configuration from the valid, tested ones.

6.2. Other Changes

In order to not interfere with user-level MPI-calls, AutoPas will use a copy of the global
MPI-communicator by default. This guarantees that AutoPas still largely functions as a
black-box, which is one of its stated goals[5]. The user may execute their own MPI code in
combination with AutoPas without needing to know which MPI-calls it uses. However, the
user still needs to understand that AutoPas does use MPI and that the processes are synchro-
nized regularly. This is important for avoiding deadlocks. Also, to adhere to xSDK-policies,
it is possible to set the MPI-communicator that will be used for all internal operations[16].
This leads to AutoPas not copying the default communicator. To deallocate the default
communicator and avoid memory leaks, AutoPas now features a finalize() method, which
must be called before MPI Finalize().

There is now a new Option, MPIStrategyOption, which allows the user to decide between
MPI-distributed or isolated execution. The new option was introduced to be able to use
MPI in AutoPas without automatically using the new parallelization scheme. Future work
could also use it to differentiate between more nuanced MPI-parallelization schemes. It is
also provided to the AH-based search, where it is used to determine whether a server-based
communication can be set up. Along with the option came a new compiler flag for enabling
or disabling MPI usage in AutoPas.

A wrapper for common MPI-calls, WrapMPI.h, is used to reduce code complexity by
providing default behaviors in cases where MPI is disabled. Since xSDK-policies demand that
no valid MPI-installation should be assumed[16], it would normally take many preprocessor-
commands to properly implement both cases. A wrapper reduces that number to a minimum
because the non-MPI version of an MPI-call is usually clear without context2. With MPI
enabled, the wrapper adds no functionality and thus no overhead. With MPI disabled,
it provides primitive replicates of the actual MPI-calls based on the assumption that the
current process is the only one.

2e.g. For an MPI-call which broadcasts a configuration from one rank to all others, the non-MPI version is
usually to simply copy the configuration between buffers.
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7.1. Expectation

To analyze the expected speed-up during tuning, a simplified model of a tuning phase is
assumed. In this model, there is an exact correspondence between configurations and their
measured times. This assumption is roughly realistic, as the measurements for a single
configuration tend to stay at similar values for consecutive time steps. The model also
assumes that the used configuration changes after every time step and that no configuration
is ever computed twice. This is less realistic, as AutoPas always takes several measurements
per configuration. The difference is negligible, however, because the number of measurements
per configuration tends to stay the same throughout a tuning phase. Therefore, combining
several time steps into one ”tuning step” per configuration, as the model essentially does, is
valid. Random-search usually also computes some configurations several times. Yet, as it is
no practically important search strategy, this fact can be ignored. Another assumption is
that there exists no overlap of configurations between MPI-parallelized processes. This is
not true, as discussed in Chapter 5. Rather, it provides a lower bound for the actual number
of configurations per rank. Let n denote the number of concurrent AutoPas process and
m the total number of valid configurations. Lastly, the model assumes that in a parallel
setting, each tuning step takes as long as the slowest participating configuration. This is
realistic, as the processes are synchronized at each tuning step. Firstly, a special case is
considered: full-search.
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Figure 7.1.: Comparison of Worst-Case and Best-Case Scenarios for an Idealized Tuning
Phase with Full-Search.
The ”no MPI” sub-plots show a sequential execution of all configurations. The
others depict a parallel execution with four processes. The lines for each rank
in them show the time of a configuration without subsequent synchronization.
The actual execution time is the maximum of those for all ranks, shown by the
blue and red areas. All sub-figures use the same configurations with the same
times, but ordered differently. The overlapping for the MPI cases is based on
splitting the tuning phase into four equal intervals. This works, because the
distribution algorithm traverses the search space in the same order as full-search,
as described in Section 5.1.

This strategy is unique in that it definitely searches through all configurations and is
thus guaranteed to find an optimal solution. This means that no speed-up can be expected
outside of tuning phases, but rather that the tuning phases are shorter. For the case where
MPI-communication is inactive, full-search has exactly m tuning steps. Therefore, the total
time for tuning is the sum over all m tuning steps’ times.
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Figure 7.1 depicts four tuning phases using full-search after the stated model. As can
be seen, the total tuning-time depends strongly on the order of configurations. While the
number of tuning steps is the same in both scenarios, the sum of their measured times differs
strongly. The worst-case scenario is one where n−1 fast configurations run concurrently with
one slow configuration for each iteration, as depicted in the ”Worst Case” sub-plots. This
would result in a tuning-time of the sum of the slowest

⌈
m
n

⌉
configurations. The best-case

tuning-time results from n similarly fast configurations being concurrent per tuning step,
as depicted in the ”Best Case” sub-plots. To analyze the resulting tuning time, one can
imagine an array of all configurations, decreasingly sorted by their speed. The result is
the sum of the times of every n-th configuration, starting with the first. The mean of tun-
ing step times, in this case, can be interpreted as an upper bound for the mean of all m times.

Let M be the total number of iterations (tuning steps and non-tuning iterations). Also let
tfastest be the time of the fastest configuration, tmean the mean time of all configurations,
and tslowest the mean time of the slowest

⌈
m
n

⌉
configurations. In a realistic scenario, a

configuration would be used for several iterations. To reflect this, a constant c is defined for
the number of iterations per configuration. Therefore, let Mparallel =

⌈
m
n

⌉
· c be the number

of tuning iterations for the parallel case. Similarly, Msequential = m · c corresponds to the
number of tuning iterations in the sequential case. The predicted speed-up, in this case, is
Msequential·tmean+(M−Msequential)·tfastest
Mparallel·tslowest+(M−Mparallel)·tfastest in the worst-case.
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Example

Figure 7.2.: Example Tuning Iterations Using the Default Values for MD-Flexible (Sec-
tion 7.2).
The tuning strategy is full-search. The upper sub-plot shows a sequential ex-
ecution, while the lower two show both ranks of a single parallel execution.
The red and blue lines show the measured time for each iteration including
synchronization. The black, stepped plot shows the time per tuning step (three
iterations), i.e. per configuration.
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.

Figure 7.3.: Example Tuning Iterations with Accumulated Times.
The data is taken from the same executions as in Figure 7.2. The right-most
y-value corresponds to the total execution time of the simulation without
initialization.

Figure 7.2 shows an example of one tuning phase, followed by some non-tuning iterations. As
can be seen, the graphs for the parallel case roughly show the maximum of overlapping the left
and right half of the serial case. Differences arise from the overlap of configurations between
the ranks. Another factor for differences is the synchronization, which causes the spikes in the
blue portion of the parallel graphs. Synchronization only happens when changing to a new
configuration. Thus, a spike appears after one configuration has been significantly slower than
the corresponding configuration of the other rank. For this reason, the stepped line appears
to fall one configuration behind for whichever rank is faster than the other at a given tuning
step. Figure 7.3 shows the same scenarios, but with the times accumulating from left to right.

Since in this example, all the most time-intensive configurations are in the search space of
rank one, we expect a speed-up close to the worst-case scenario from above. Here, n is two and
m is 621. The slowest

⌈
m
n

⌉
= 31 configurations took approximately 23.0ms = tslowest in the

1Technically there are more configurations in the search space, but not all are applicable in this example.
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mean. AutoPas had every configuration run for three iterations, so c = 3. Lastly, tfastest has
been measured to about 1.2ms in the mean, and tmean to approximately 13.2ms. Using the
formula from above results in an estimated minimal speed-up of 186·13.2ms+50·1.2ms

93·23.0ms+143·1.2ms ≈ 1.065
or 6.5%. This does not take any overlap into account. The measured total times for No MPI,
Rank 0, and Rank 1 approximate 2.51, 2.29, and 2.31 respectively. The actual speed-up thus
was 2.51

2.31 ≈ 1.087 or 8.7%. This corresponds to the fact that the scenario was close to, but
not entirely the worst-case2.

If the strategy is not full search, the tuning phases are usually significantly shorter, at
the cost of optimality. Thus, the expected speed-up in these cases is even more difficult
to quantify, as it depends on the specifics of the strategy. For some, the tuning phase is
independent of the search space size (e.g. Bayesian-search, random-search). In those cases,
the parallelized tuning phases could even be assumed to be longer than the non-parallelized
ones, because the execution time for a tuning step is the maximum of all of its ranks and the
number of tuning steps is the same. However, some of these strategies provide options for the
user to manually shorten the tuning phases. The speed-up then is determined by the balance
of short tuning phases and sufficiently accurate results. When simulating with a tuning
phase designed for single-process execution, enabling parallelization could therefore even
result in a slow-down. In conclusion, the biggest speed-up is expected for search strategies
that either benefit from smaller search spaces (e.g. full-search) or which have a low chance
for optimality (e.g. random-search and Bayesian-search with short tuning phases).

2The estimated best-case scenario speed-up from this data is 1.74 or 74%.
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7.2. Method

Testing was done with two setups (Table A.1) on two different machines (Appendix B). All
tests essentially compare the execution time of certain simulations with and without the
MPI-parallelization. Tests were done with 2, 16, and 32 concurrent processes. Dual-process
tests were executed on a Notebook, while the other tests were run on the CoolMUC-2 cluster
segment of the Leibniz Rechenzentrum (LRZ), both described in Appendix B. Another
distinction is the use of OpenMP. The two-process tests used no OpenMP-parallelization,
whereas the 16- and 32-process tests used 7 OpenMP-threads. This was mainly due to hard-
ware limitations of the Notebook and to provide a more realistic use-case for the 32-process
tests. The outcome of the measurements stays unaffected by this, as no comparisons are
made between the run-times of setups with different numbers of processes. All tuning strate-
gies were measured, except for Bayesian-cluster-search, as it was dysfunctional at the time
of writing. Measurements have been repeated at least four times and up to tens of times each.

AutoPas provides two example simulations: sph (two versions: one with MPI, one without)
and md-flexible. Although sph-mpi is the only example that uses MPI to communicate
particle information between processes, md-flexible was chosen for the tests. This is because
it is far more easily configurable. While sph-mpi might give a more realistic use case, both
are equivalent for time measuring purposes. The only assumption this thesis makes about
a simulation is that it is homogeneous. Since the md-flexible simulations for all processes
are exact copies of each other, this assumption is necessarily met for md-flexible. Sph-mpi
on other hand has the potential to become at least slightly heterogeneous, depending on
the particle distribution and run-time. By default, md-flexible spawns particles in a grid
pattern across the entire domain.

The two setups mentioned before are md-flex-100Phases and md-flex-100000Iterations.
They both represent one of two extremes with respect to the ratio of tuning iterations
compared to non-tuning iterations. Since md-flex-100Phases defines a tuning interval of
200 iterations and full-search with the default options tunes for 186 iterations, almost
50% of iterations can be spent tuning with this strategy. On the other hand, md-flex-
100000Iterations only has a single tuning phase initially. After that, it runs for almost
100000 iterations without changing configuration. This means that the total execution time
for the former setup is strongly influenced by how fast tuning can be finished. For the latter,
it is dominated by how optimal the found solution is.
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7.3. Results

Figure 7.4.: Time Measurements for MD-Flexible Simulations with two Different Setups.
The red boxes show the measurements for the given processor count, tuning
strategy and setup with MPI-parallelization. The blue boxes show the same
without MPI. Since md-flexible does not use MPI either, the blue boxes are
the same for 16 and 32 processes. The blue boxes for two processes differ
because they were measured on the notebook rather than the Linux-cluster.
Dots show outliers. The values for the boxes have been normalized to 1 within
their respective column. The bar plots show the means of those same values,
but normalized to 1 across all sub-figures.
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Figure 7.5.: Ratio of the Number of Tuning Iterations to Total Iterations for several scenarios.

As shown in Figure 7.4, the divide-and-conquer MPI-strategy does not ubiquitously result in
a speed-up. In many cases, it can even stagger the performance. This is partially expected, as
described in Section 7.1. An unexpected result is that full-search for md-flex-100Phases slows
down for high numbers of parallel processes. Similarly, predictive-tuning hardly benefits
from parallelization. Figure 7.5 shows that those two search strategies do indeed tune with
significantly fewer tuning iterations when parallelized. Section 7.1 concluded that this would
result in overall shorter execution times, which is not the case.

To explain the poor performance for full-search and predictive-tuning, a new consideration
was made. As could be seen in Figure 7.2, for the default md-flexible simulation, all of
the slowest configurations occur in a fairly consecutive block. This block consists of those
configurations which share the verletClusterLists-container. For cases with many processes,
when distributing the configurations initially (Section 5.1), many of these will be assigned
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to several ranks due to overlap. Since usually no two ranks share the exact same search
space, the slowest configurations are not used simultaneously. To reuse the terms from
Section 7.1, this means that the worst-case scenario changes due to the overlap. Instead
of a tuning phase taking

⌈
m
n

⌉
tuning steps with the

⌈
m
n

⌉
slowest configurations, it takes

possibly more tuning steps with a slow subset of those slowest configurations. When a small
number of configurations are significantly slower than all others, as in the default md-flexible
simulation, the performance loss can then exceed the gain from a smaller search space. The
idea that the loss in performance is explained by this overlap is supported by the fact that a
slowdown for full-search using md-flex-100Phases can only be seen for higher process-counts
in Figure 7.4. Fewer processes result in smaller overlaps.

Figure 7.6.: Full-search Measured without the VerletClusterLists-Container.

To further test this, full-search was measured without verletClusterLists. The expectation
was that performance of the MPI-case would improve relative to the non-MPI case. Figure 7.6
shows the results. For md-flex-100Phases, there now is a small performance gain when
using MPI as opposed to a performance loss that was measured with the verletClusterLists-
container. This optimization is of course not feasible for real operation. Knowing which
configurations and options to remove beforehand would diminish the reason to use auto-
tuning in the first place. The decrease in execution time does still not scale with the decrease
in the number of tuning iterations (Figure 7.5). This is partially due to non-tuning iterations,
which remain unchanged with parallelization. The other reason is that waiting times still
have an impact and there is still a difference between the fastest and slowest configurations.
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Figure 7.5 also reveals that the number of tuning iterations is not always reduced when
employing MPI with sufficiently many processes, as mentioned in Section 7.1. Rather, AH,
bayesian-search, and random-search tune for a number of tuning steps independent of search
space size. Bayesian-search and random-search have a variable that directly controls the
number of tested configurations. For AH, the length of a tuning phase depends on how
quickly the search converges, which appears to stay fairly constant for varying search space
sizes. For those strategies, where the length of the tuning phases is independent of the
search space size, this explains the loss in performance. The reason for longer total times
(as in the case for Bayesian-search with 32 processes using md-flex-100Phases for example)
is that some processes may have only slow configurations. This means that the number
of tuning-iterations stays roughly the same but all of them are spent with slow iterations
because the fast processes have to wait for the slow ones. Therefore, performance could be
improved for those strategies, by manually shortening their tuning phases.

To test the above hypothesis, Bayesian-search was tested with a short tuning phase.
Bayesian-search was chosen because its tuning phases are easier to control than for AH
and because it is more optimized than random-search3. Figure 7.7 shows that for md-flex-
100Phases there is a significant performance increase between a non-parallelized execution
with 30 iterations per tuning phase and a parallelized execution with nine per tuning phase.
For md-flex-100000Iterations, no speed-up was measured, which is expected. In the case
of using only two parallel processes, the tuning phases for the MPI-case were too short to
reliably find an optimal solution, which is why they are slower than the non-MPI-case. For
more processes, the execution time is dominated by non-tuning iterations. Since both the
MPI and non-MPI version could reliably find a solution close to the optimum, no difference
in speed should be expected.

3Although, for such small search spaces there would not have been much difference between Bayesian-search
and random-search.
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Figure 7.7.: Measured Times for Bayesian-Search with Reduced Search Spaces in the MPI-
Case.
The executions without MPI used the standard max-evidence value of ten. The
executions with MPI used two instead, meaning that only two configurations
had to be tested per rank for each tuning phase. This usually results tuning
phases of three tuning steps, i.e. nine iterations. For a max-evidence value of
ten, a tuning phase has ten tuning steps, i.e. 30 iterations. The reason one
more tuning step is used than the max-evidence value for the MPI-case is that
the parallelization adds another tuning step at the end of each phase. Again,
the case for two processes was measured on the notebook in Appendix B and
the others on the Linux-cluster.

34



Part IV.

Conclusion & Future Work

35



8. Conclusion

As initially planned, this thesis implements a wrapper search strategy, which uses MPI to
connect several local tuning sessions. The search spaces of all participating processes get
reduced and the results are compared to find the optimal configuration for a homogeneous
simulation domain. Unlike expected, the reduction of all search spaces does not uniformly
result in faster execution. There are two primary factors for this:

1. Many tuning strategies tune for a set number of iterations independently of search
space size. In these cases, it is usually possible to force shorter tuning phases in
order to fully benefit from the MPI-parallelization. However, as this does not happen
automatically, the user is still required to have a rough understanding of how many
configurations there would be per rank and how long a tuning phase should take
accordingly.

2. Due to overlapping configurations and the orders in which configurations are used,
much time is spent waiting for slow processes. As AutoPas is currently implemented,
there is no clear way to solve these issues. One main reason for this is the implicit
representation of configurations.

It is possible to achieve very sizeable speed-ups using the implemented parallelization.
However, this is highly situational and it is often not clear whether using it would improve
or worsen performance. Some questions to ask are:

• Which tuning strategy is being used?

• How many parallel processes are involved?

• How many valid configurations are in the search space?

• How much time is spent tuning?

• How slow are the slowest configurations compared to all others?

Unfortunately, some of these questions are not trivial to answer and it is not obvious whether
to use MPI in any given scenario. Additionally, the later stages of this thesis revealed that
most search strategies are poorly equipped to handle small search spaces. This further
complicates matters, as the integration of MPI could not be done seamlessly.

In hindsight, a different approach to this thesis might have been promising: Instead of
writing a wrapper for the already existing tuning strategies, a new, independent strategy
could have been implemented. This could have had the following benefits:

1. Overlapping configurations between ranks could be fully avoided by storing the explicit
representation of configurations.
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2. The order of ranks could be controlled freely. Normally, tuning strategies store sets of
either options or configurations. With an independent strategy, it could be possible to
store an ordered list of configurations.

3. Instead of having to work around the inner functioning of a generic internal strategy,
it could be directly aimed at solving heterogeneous domains. Specifically, it could
exchange useful information about the performance of configuration during tuning, not
only at the end of a tuning phase. The approach might work similarly to the current
Bayesian-search or the Nelder-Mead simplex method used in AH but fully designed
for parallelism and heterogeneous MD-simulations.

An independent MPI-strategy would not be free of draw-backs. A clear one is that different
tuning strategies could only be provided by implementing all of them separately. Additionally,
the strategy could not benefit from any developments made for serial tuning. For instance, if
a novel search strategy was implemented that would lend itself well to parallelization, doing
so could not be done easily.
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As was argued before, a smarter distribution of configurations should be the first step
to improve performance. Currently, options are ordered by the difficulty associated with
changing them. This approach works fine for full-search in a non-parallelized setting, as
the total simulation time is not affected by the configuration’s order. With this thesis’
MPI-parallelization, however, it could be useful to sort options by the impact on simulation
time associated with them. Alternatively, one could sort the configurations themselves,
allowing for more control over their order. This could lead to a speed-up closer to the
best-case scenario, as described in Chapter 5. Whether and in which cases this might be
beneficial could be an area of further research.

A second consideration with respect to the distribution is the overlap created by building
the implicit representation. In most cases, this will not have drastic consequences. Fig-
ure 7.5 shows an example in which the distribution works well for reducing the search space.
However, as the options are grouped within each other when traversing the search space, the
worst-case behavior is severe. Whenever a container between two consecutive configurations
changes, all other options can change as well. This means that from two configurations in
the explicit representation, two different values for each of the six options could be generated.
This results in 26 = 64 configurations in the implicit representation. Although many of
these would usually be invalid, this should be avoided. A possible alternative to the current
order used in the distribution scheme might be one that changes only two or three options
between two consecutive configurations.

Another important area for improvement is the fallback behavior. Intuitively one might
hope that increasing the number of processes for a program would improve execution-time.
As demonstrated, this is not necessarily the case. When increasing the number of ranks
above a certain value, some ranks will end up without valid configurations. In these cases,
the process will use the first (according to the ordering mentioned above) valid configuration
possible. As this might be a configuration that has already been measured to be very slow,
this strategy can slow the tuning phases down without providing any new information to
the tuning process. An alternative solution could be to communicate already tested, fast
configurations to those processes during tuning. A second option is to transfer untested
configurations from another process to the one in question. Both approaches could shorten
tuning phases, assuming a low overhead for the communication. Unfortunately, the second
option is not easily compatible with many tuning strategies (e.g. AH).

An interesting extension of the current system would be one that can work in heterogeneous
domains. However, a simple time measuring approach would not work for this case. Thus, a
first important step is to find a good model to derive information about one region of the
domain with a characteristically different region. Alternatively, the domain might be split
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into several, roughly homogeneous sub-problems. Each would then be tuned independently
of the others. The latter option could be implemented using different MPI-communicators,
but requires expensive pre-computation and good heuristics.

The independent MPI-tuning-strategy outlined in Chapter 8 could also be considered for
future work. Instead of replacing this thesis’ work, it could also be added as an alternative.
Using the current code, this would a candidate for a third MPI-strategy option. Then, the
MPI wrapper could, with some of the optimizations outlined above, function for parallelizing
existing strategies for homogeneous domains, while the independent MPI strategy could
solve heterogeneous cases.

As has been shown in Section 7.3, whether the implemented MPI-parallelization results in
a speed-up or slow-down differs between scenarios. An opportunity to take the auto-tuning
idea a step further would be to turn this parallelization and any future parallelization
schemes into a tune-able parameter. This would without a doubt mean much refactoring
work in AutoPas. Unlike all other tune-able parameters, it could not be tested independently
of other configurations. Thus, the tuning-process might be divided into several layers. The
parallelization might then be tested concurrently with the configurations, as it does not
affect force calculation times.
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A. Testing setups

Setup command

md-flex-100Phases:

Many tuning phases with short
times between them. Almost 50% of
iterations are tuning iterations
when using full-search without MPI.
As the other values were left at the
default, they can be found in
Listing A.1.

./md-flexible

--tuning-phases 100

--tuning-interval 200

--mpi-strategy <mpi>

--tuning-strategy <tuning>

md-flex-100000Iterations:

A single tuning phase followed by
many iterations without tuning. As
the other values were left at the
default, they can be found in
Listing A.1.

./md-flexible

--iterations 100000

--tuning-interval 1000000

--mpi-strategy <mpi>

--tuning-strategy <tuning>

Table A.1.: Description of Testing Setups

1 conta ine r : [ L inkedCel l s ,
2 V e r l e t L i s t s ,
3 V e r l e t L i s t s C e l l s ,
4 V e r l e t C l u s t e r L i s t s ,
5 VarVer letListsAsBui ld ,
6 V e r l e t C l u s t e r C e l l s ]
7 v e r l e t −r ebu i ld−f r equency : 20
8 v e r l e t −skin−rad iu s : 0 . 2
9 v e r l e t −c l u s t e r −s i z e : 4

10 s e l e c to r−s t r a t e g y : Fastest−Absolute−Value
11 data−l ayout : [ AoS , SoA ]
12 t r a v e r s a l : [ c08 , s l i c e d , c18 , c01 ,
13 directSum , v e r l e t −s l i c e d ,
14 v e r l e t −c18 , v e r l e t −c01 ,
15 cuda−c01 , v e r l e t − l i s t s ,
16 c01−combined−SoA ,
17 v e r l e t −c l u s t e r s , c04 ,
18 var−v e r l e t − l i s t s −as−bui ld ,
19 v e r l e t −c l u s t e r s −co l o r ing ,
20 c04SoA , v e r l e t −c l u s t e r −c e l l s ,
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21 v e r l e t −c l u s t e r s −s t a t i c ,
22 balanced−s l i c e d ,
23 balanced−s l i c e d −v e r l e t ,
24 c04HCP ]
25 tuning−samples : 3
26 tuning−max−ev idence : 10
27 func to r : Lennard−Jones (12−6)
28 newto n3 : [ d i sab led , enabled ]
29 cu to f f : 2
30 box−min : [ −0.56125 , −0.56125 , −0.56125]
31 box−max : [ 1 0 . 6 6 3 8 , 10 .6638 , 10 . 6638 ]
32 c e l l −s i z e : [ 1 ]
33 deltaT : 0 .001
34 pe r i od i c−boundar ies : t rue
35 Objects :
36 CubeGrid :
37 0 :
38 p a r t i c l e s −per−dimension : [ 1 0 , 10 , 10 ]
39 p a r t i c l e −spac ing : 1 .1225
40 bot to mLeftCorner : [ 0 , 0 , 0 ]
41 v e l o c i t y : [ 0 , 0 , 0 ]
42 p a r t i c l e −type : 0
43 p a r t i c l e −e p s i l o n : 1
44 p a r t i c l e −sigma : 1
45 p a r t i c l e −mass : 1

Listing A.1: md-flexible default values
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B. Hardware Specifications

Model Lenovo ideapad 320

Cpu model Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
Cpu cores 2
Threads per CPU core 2

OS Manjaro Linux 20.0.3 Lysia
MPI MPICH 3.3.2

Table B.1.: Hardware Specifications of the Notebook Used for Testing

Number of nodes 812

Cores per node 28
Threads per CPU core 2
Core frequency 2.6 GHz

OS SLES15 SP1 Linux
MPI Intel MPI 2019

Table B.2.: Hardware specifications of the CoolMUC-2 cluster segment at LRZ
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