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Abstract

AutoPas is a C++ library that provides different algorithms to efficiently solve N-body
problems. For molecular dynamics simulations, such algorithms are especially important to
quickly calculate large amounts of short-range forces. This thesis adapts the existing sliced
traversal into a 3-dimensional slicing algorithm and evaluates its efficiency in comparison to
the existing algorithm. The resulting analysis shows some increases in efficiency, but also
some different shortcomings.
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Zusammenfassung

AutoPas ist eine C++ Bibliothek, welche verschiede Algorithmen zum effizienten Lösen
von N-Körper Problemen bereitstellt. Für Molekulardynamik Simulationen sind solche
Algorithmen besonders wichtig um schnell eine große Menge an Kräften in kurzer Reichweite
zu berechnen. Diese Arbeit passt das existierende Schnitt Traversal zu einem 3 dimensionalen
Schnitt Traversal und evaluiert dessen Effizienz im Vergleich zum bestehenden Algorithmus.
Die resultierende Analyse zeigt manche Verbesserungen in der Effizienz, aber auch manche
verschiedene Mängel.
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1 Introduction

Molecular Dynamic (MD) simulations are used to simulate future states of a given molecular
system by calculating all interactions between comprising molecules or atoms. Such systems
are used in a wide range of fields where direct analysis of physical systems is not feasible.
The efficiency of such simulations is very important because the number of particles in such
systems can be incredibly large. Even a droplet of water with the weight of 0.18g exists of
roughly 6.022 · 1021 [VMS+19] molecules. In comparison, the current fastest supercomputer
in the world can calculate 4.88 ∗ 1017 FLOPS [fCS20]. Simple iteration over that water drop
would take longer than 3 hours or 1.2 · 105 seconds. While this is an acceptable amount of
time, it is usually necessary to calculate many multiple steps into the future to ascertain
useful information. Usually, the particles can interact with each other. This alone makes
any MD Simulation an N-Body Problem, with the complexity of O(n2).

Therefore the efficiency of MDs is a vital part to ensure problem applicability by reducing
the complexity. One such library dedicated to reducing that is AutoPas. AutoPas [GS+20]
is one code library providing algorithms under the TaLPas (Task-based Load Balancing
and Auto-tuning in Particle Simulations) Project [tal20] for MD Simulations run in HPC.
AutoPas provides auto-tuning at the node level and has various approaches for Shared
Memory Parallelizations. In this thesis, we analyse efficiency on the implementation of
AutoPas.
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2 Theoretical Background

Molecular Dynamics Simulations are N-body Simulations calculating pairwise interactions
between bodies. As the affected area is on a molecular level, the bodies are usually particles.
While the simulations themselves should always be as accurate as possible, it is often
feasible to abstract or ignore some data and still achieve correct simulation output under
given starting parameters. Such strategies could include principles such as coarse-graining
[HEHB15, p. 12] or truncating the Lennard-Jones-12-6 Potential [GST+19]. Some coarse-
graining strategies might change the simulation results, which might be acceptable depending
on the simulation objective. AutoPas provides a particle interface, where the user can define
their particles, whether they are single atoms, larger molecules, astrophysical objects or a
mix, preferably in roughly the same size range. As the practical work of this thesis built on
the AutoPas Library and coarse-graining efficiency depends on the strategy of the user, any
specific particle-based optimizations will not be discussed. As AutoPas is only a library, we
test our MD simulations with example software using AutoPas, named md-flexible.

2.1 Particle Simulation

Technically all particles in a given simulation environment would be interacting with each
other. Usually, in MD simulations this is avoided by using the Truncated-Shifted Lennard-
Jones-12-6 Potential. Different interactions require different minimal timesteps to still
preserve accuracy. The timesteps can be integrated using the Störmer-Verlet method, as is
done in md-flexible. In md-flexible the interactions between particles are calculated only in
short ranges, leaving the Lennard-Jones-12-6 Potential and Newtons Third Law of Motion
as the main calculations between forces.

2.1.1 Lennard Jones Potential

The Lennard Jones Potential [len24] describes an additive force combination between particles
i and j. The Equation models Van der Waals forces and the Pauli repulsion:

U(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

with rij being the length between i and j. The strength of the attraction or repulsion ε
between i and j is also called the well depth. Leaving the Van der Waals radius σ as the
distance at which V (rij) becomes zero.

The Lennard-Jones Potential quickly convergences towards a 0 limit, allowing a truncation
at radius rc.
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2.2 Force Calculation

Figure 2.1: From [Mar17]. The Truncated Lennard-Jones Potential-12-6 Potential, truncated
at 2.5 with σ = 1.0 and ε = 1.0

.

This can be used to reduce the number of pairwise calculations for each particle significantly
while neglecting a possible force, that converges towards 0. AutoPas allows this cutoff radius
to be variable, by setting the cutoff radius as required. Any mention of a cutoff radius in this
thesis always refers to the rc cutoff radius of the Lennard-Jones Potential, unless explicitly
otherwise stated.

2.1.2 Newtons Third Law

Newtons Third Law says that every action, there is an equal and opposite reaction. In
a molecular dynamics environment this saves half of the inter-particle calculations as
U(rij) = (−1) ·U(rji). The force affecting particle i, is equal to the negative force on particle
j.

2.2 Force Calculation

There are multiple algorithms to calculate the forces for particle pairs. All of them provide
the same results and only differ in their approach. AutoPas includes the following:

3



2 Theoretical Background

Figure 2.2: From [GST+19]. Illustration of the different interaction possibilities. Connection
by arrows indicates necessary distance evaluations. The red circle marks the
cutoff radius.

2.2.1 Direct Sum

An intuitive algorithm simply iterating over all existing particles. It checks each particle if
it is within distance once per iteration. The runtime complexity for n particles is therefore
O(n2). Such complexity is not useful for larger amounts of particles. But as the overhead is
rather small, it can be advantageous to use for very few particles. Nevertheless, it serves as
a perfect worst-case benchmark for comparison.

2.2.2 Verlet Lists

The Verlet Lists Algorithm now combines the Direct Sum with the cutoff radius. Each
Particle holds a list of all particles close enough to be in their cutoff radius. To calculate the
force for a single particle it is only necessary to check each particle on its Verlet-list. If the
particles are moving, they can move in or out of the cutoff radius. To mitigate recalculation
of the verlet list every step, the cutoff is expanded by a skin length, to account for movement.
The complexity to build the lists for n particles is in O(n2) because each particle compares
their distance to all other particles. Depending on the size of the Verlet-skin though, it is
possible to keep the list for multiple time steps, before a rebuild is necessary. The build
complexity could be further reduced if it would not be necessary to search through all
particles on rebuild. Which is what Subsection 2.2.3 is about.

2.2.3 Linked Cells

The Linked Cell Algorithm expands on the Direct Sum incorporating the cutoff radius to
organise the simulation environment. The simulation environment is structured into cubes
with the edge length of the cutoff rc. If there are different particles, usually the longest
cutoff is used. Instead of each particle having to check all other particles to find if they are
inside their cutoff, they now have to check only their Cell and its neighbours. This reduces
the complexity down from O(n2) to O(c · n). Of course only under the assumption that the
particles are spread over the environment and do not cluster into a few single cells or that
all cells of the domain are neighbours to each other. The latter could happen if rc is too
large because of a freak particle or because of a very small size of the environment. The
iteration actually does not iterate over particles, but cells and conducts the calculation for
all particles in the cell.

2.3 Cell-Handling

AutoPas provides multiple algorithms on how the cells should be iterated and the particles
inside each cell handled.
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2.4 Traversals

(a) The c01 interaction pattern for a single cell.

(b) The c08 interaction pattern for a single
cell.

C01

The c01 algorithm reads all neighbouring cells to calculate the forces for the current inner cell.
Except for the border, this necessitates checking 27 cells, while the force is only calculated
for 1 cell per step. Without applying newtons third law it is rather easy to parallelize, as
one does not have to worry about race-conditions.

C08

The c08 cell handling uses less cells than c01 per step. This is possible through not only
calculating the influential force from the neighbour cells to the current cell but also by
applying the forces of the current cell to the neighbour cells. If Newtons Third Law is
applied, the calculation of opposite forces for the particles in the neighbouring cells often
becomes trivial. For parallelization, it is necessary to be aware of the writing process, which
occurs into the neighbouring cells, or else race-conditions can appear. Hence all cells need
to be locked until the interactions as shown in Figure 2.3b for the specific cell have been
calculated. Through the application of Newtons Third Law the cells can be unlocked after
they have been processed. This means that cell 0 locks all cells 0 − 7, but if 0 has been
processed already cell 1 would only need locks on cell 2 and 6.

2.4 Traversals

A traversal parallelizes a different cell handling base-step. Strategies to achieve parallelization
include different colouring schemes for the cells and locking mechanisms.

2.4.1 Coloured Traversals

A colouring strategy allocates colour to cells or regions of cells, depending on the traversal.
The colouring mechanisms only allow one colour to be processed until all threads finished
their coloured region of cells. Cells which can not influence each other in a single cell
handling step can be coloured in the same colour. Each connected set of cells with the same
colour is then processed by a single thread. As an example, a traversal using the c08 cell
handling can pass by with 8 different colours. This usually generates some minimal idle
time for the threads before switching colour.
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2 Theoretical Background

2.4.2 Sliced Traversal

Figure 2.4: The sliced traversal over 16x5 cells with 4 threads. Blue cells are locked at the
start and are freed as soon as the neighbouring red cells have been processed.

A different approach would be to separate the simulation domain into different areas or
slices. The Sliced Traversal in AutoPas divides the longest domain by the number of
available threads. Each thread then becomes a slice to process. To avoid race-conditions
the borders between the cells are locked. In Figure 2.4 the blue cells are locked at the start
by the neighbouring thread. Each thread will traverse first over their red cells, to free the
neighbouring blue cells as soon as possible. This additionally gives a direction in which the
thread traverses over the cells, as the last cells to traverse should be the blue cells to avoid
waiting times because of locks still held by neighbour threads.
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3 Implementation

All the different strategies of the traversals are trying to optimize the speed of the force
calculation between the particles. It seems unlikely that there would be a single strategy that
is always the fastest in any situation, but we can certainly assume that there are algorithms,
which are better suited in specific particle distributions than others [Tch20]. Hence the
question to identify certain conditions under which the traversal algorithms can be easily
distinguished in performance. For best application, those conditions should be as simple
and come with as little calculation effort as possible, while still being good indicators which
traversal to prefer currently. Therefore it is necessary to analyse those algorithms that we
have already and to find out under which situations they are efficient. Building on that we
can expand to judge the traversals against each other and decide in which scenarios it might
be best to use traversal A over B.

3.1 Context of Efficiency

We define a program as efficient if it wastes as little time as possible. This is not a simple
task though, as it can be favourable to increase time usage in some parts of a program
to achieve a significant gain in the end. And just because some time can be saved in a
subprocess, does not necessarily apply to time saved in the end. In consequence, the aim
is to analyse efficiency, which translates directly into minimizing total execution time. A
good starting point is the force calculation as it is the most time-consuming part of each
MD Simulation. Consequently, the main goal is to achieve the utmost efficiency of the force
calculation, even if possibly creating a comparable small increase in other time expenditures.
It is important to note, that this thesis is about the time efficiency of traversals, which focus
on the parallelization of cell handling.

3.1.1 Minimizing Thread Waiting Time

A theoretically most efficient parallelization algorithm would not simply avoid any thread idle
time. It would have the smallest sum of idle time, aggregated over all threads. Additionally,
any overhead processing from actually traversing should also be minimal. This generates a
direct competition between:

• Maximizing Time spent on Force Calculation

• Higher Parallelization or using more Threads

• Minimizing Thread Idle Time

• Minimizing Overhead Processing

At the very beginning, there are a few things we can not avoid right from the start. There
will always be small differences in the simulations as particles move and are not necessarily
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3 Implementation

always spread equally over threads. With a different time to finish for each thread even in a
theoretically optimal solution, there would always be some waiting time in the end until
the last thread is finished. Also, there might always be some overhead at the start of the
traversal, which might not be parallelizable.

This thesis will try to improve an already existing traversal by decreasing its thread
waiting time. The optimization builds on the sliced traversal as the sliced traversal splits
the simulation domain only by one (the longest) axis. Allowing for possible optimization by
splitting all three axes instead of only one. The increased amount of possible threads should
be an optimization the larger the simulation domains gets. As the load is also balanced
better threads might idle less.

3.2 Sliced Block Traversal

The Sliced Block Traversal is a 3-dimensional extension based on the original sliced traversal
and a proposed 2-dimensional extension ”sli blk” in [Tch20, p. 127].

The general idea is to slice each dimension of the simulation into blocks and assign each
block bijective to one thread, allowing finer granularity. For this, it uses the available amount
of threads to slice each dimension, which results in blocks, and assign the number of slices
lengthi to dimension i. The amount of slices per dimension are then the i-th root of the
dimensional length: li = d max(i)

√
ne with n being the number of available threads and i the

number of dimensions. If li is not a natural number, we round down and expand the last
block in the dimension towards the end of the domain length.

For the Sliced Block Traversal, we use 3 dimensions, as AutoPas and most molecular
dynamics simulations only simulate in 3 spatial dimensions, while accounting for time
differently. Therefore we only need the cubic root lx,y,z = d 3

√
ne of available threads n to

calculate the number of slices per dimension.
While the normal sliced approach only slices in one dimension, it must slice along the

longest axis to use the maximum amount of threads possible. In the sliced traversal, the
amount of usable threads scales only with one axis. Additionally, the length of each slice has
to be at least 2 for reasons of locking, as parallelization with slice length 1 would become
serialization. See also Figure 2.4. The maximum ratio of cells to threads for the Sliced
traversal is therefore:

c
li
2

=
2 · c
li

with c being the total amount of cells and li the maximum axis length in cells.
The Sliced Block Traversal slices in all dimensions though with the maximal ratio:

c
lx
3 ·

ly
3 ·

lz
3

=
1

27
· c

We divide each axis length by 3, because we still want to form cubes with a middle cell for
parallelization optimization explained later in this section. This has no disadvantageous
ratio of thread to cells if the simulation environment approaches a cubic form. Assuming lx
is the longest axis, we can compare the number of cells per thread directly:

27 ∗ c
y · z

= 2 · c
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3.2 Sliced Block Traversal

2 · y · z = 27

The sliced traversal scales rather badly for cubic form domains, whereas the sliced block
traversal theoretically always uses 27 cells per thread. In practice, this is, of course, limited
by the physical maximum of threads available. We can assume the sliced block traversal
will converge a lot faster on using the maximum amount of threads than the sliced traversal,
at least for cubic form domains.

While it illustrates the expected gain, it is important to remember, that with any dimension
length smaller than 3 cells the actual Sliced Block Traversal implementation is not applicable.
In the rare case that the other 2 dimensions are so large that a gain from 2-dimensional
slicing would be advantageous to the normal slicing, we would propose to stretch the single
or double cells to a 3 cell length by filling with empty space if possible. Nevertheless, the
worst-case slicing of the Sliced Block Traversal is still a good slicing for the normal Slicing
Traversal, excluding the aforementioned exception.

Different dimensional sizes lead to different lengths of the slices or blocks, which in turn
lead to different block dimensions, rather than perfect cubes. Especially as the number of
threads is most likely not divisible without remainder, the last blocks towards a dimensional
border must be expanded towards the dimensional border.

3.2.1 Splitting the blocks into sub-blocks

We can not easily iterate over each block with each thread, as it would cause race-conditions
if two threads would operate on neighbouring cells. To mitigate this we split the blocks into
the thinnest possible surface areas around a large middle cuboid. The depth of the surface
area needs to be the rounded up cutoff rc length in cells.

This provides us with two questions: First, how do we split up the surface area to lock
neighbouring blocks? Secondly, how do we iterate over the surface area to minimize locks
and locked time?

For the answer to the first question, we need to remember that we want the inside area of
each block to be as big as possible because this is the area with the least amount of locks
needed. This is the case because a thread does not need to lock cells, which can only be
accessed by itself. If we imagine equally sized blocks stacked to fit a large space, we analyse
the areas where each block would overlap with other blocks. In a 3 dimensional slice, we
would have areas or sub-blocks:

We see that the overlap differs in the corners, edges and the surface. Including the inner
part of our block, we can split one block into 27 sub-blocks, 8 Corners, 12 Edges, 6 Surfaces
and 1 inner part as seen in Figure 3.1a The size of these depends on the length of our overlap
measured in cells. If we have an overlap of 1 or a larger overlap, the size of the sub-blocks
changes. But the size of the surface areas for a given block varies only depending on the
overlap. With that, we can distinguish the sub-blocks in a single block in the following way:

9



3 Implementation

(a) A minimal 3 sided cube. The Corners (red)
touch 8 other blocks, the Edges (green) 4, the
Surfaces (blue) 1 and the Middle (white) none.

(b) A 3 dimensional render of a minimal block.

Figure 3.2: Each Subblock with a unique id in relation to their orientation inside the block.
Again Red = Corner, Green = Edge, Blue = Surface, White = Inner Part.

To calculate the sub-blocks now, we only need the starting coordinates of the sub-block,
the length xi of the block in each dimension and the overlap size.

Size Corner: overlapx ∗ overlapy ∗ overlapz
Size Edge: overlapi ∗ overlapj ∗ (blocklengthk − overlapk ∗ 2)
Size Surface: (blocklengthi − overlapi ∗ 2) ∗ (blocklengthj − overlapj ∗ 2) ∗ overlapk
Size Middle:

(blocklengthi − (overlapi ∗ 2)) ∗ (blocklengthj −
(overlapj ∗ 2)) ∗ (blocklengthk − (overlapk ∗ 2))

Table 3.1: Volumes per Sub-Block in cells

3.2.2 Sub-Block Traversal and Locking

First, we do not want to lock cells inside the sub-blocks, as we have already established
minimal areas for locking. Secondly, the surface areas are rather small themself, with the
corners being exactly a single cell for rc = 1. This in turn should lead to quick traversal
through the surface areas and a long traversal through the inner sub-block. Assuming that
each cell needs to lock all neighbouring cells necessary for parallel force calculations, each

10



3.2 Sliced Block Traversal

sub-block would have to lock every neighbouring sub-block. To avoid this our traversal
will use the c08 cell-handling as described in Section 2.3. Therefore the number of locks
decreases significantly depending on the number of cells the cell-handler uses to make the
calculation. This corresponds to 8 locks per sub-block traversal.
Because the areas are rather large, we want to avoid a colouring approach as the possible
waiting times per thread could be drastic. Technically we can let the thread freely choose
when to iterate over which sub-block, as long as it can lock the corresponding neighbours.
And depending if we want that or not we have two options to choose from:

Asynchron We allow each thread to freely choose when to work on each sub-block and queue
each sub-block for each thread. If one thread can not process a sub-block because it is
locked, that thread can then choose the next sub-block in the queue (unless it is the
last one) and continue calculating.

Synchron If we do not allow a free sub-block sequence, we can save locks by giving a
chronological order. As each thread has to only lock those own sub-blocks, which have
not yet been processed and can only request locks for neighbouring sub-blocks, which
have been processed already.

Asynchronous Sub-Block Handling

This option varies greatly depending on the underlying cell handler. In the case of the c08,
each cell needs to lock 7 neighbour cells and itself. This corresponds exactly to the same
neighbouring and own sub-blocks as the cells used by the cell handler to iterate over. The
c08 cell handler also has the other advantage of corresponding directly to a simple shifting
of the blocks. The asynchronous handling has the advantage, that a thread is not stuck
waiting for a neighbour to finish some of the shared surface cells unless everything else is
finished already.

3.2.3 Synchronous Sub-Block Handling

The main idea about this is to use the locks as indicators to show where in the sub-block
order a thread is. The immediate drawback is clear as we can have waiting times for other
blocks. Our synchronous locking idea is based on the sli-blk [Tch20, p. 127] using one lock
per dimension per block. Therefore each block has a x, y and z lock. This is a small number
of locks and therefore less overhead than the asynchronous handling. To use this to the full
advantage we would take multiple sub-blocks in one single step. We want to allow threads to
continue processing sub-blocks as long as they can and only stop if they meet a neighbouring
surface which is currently being processed by a neighbouring thread. Additionally, we want
to switch the surfaces, through which we iterate, so that a single thread is not stuck multiple
times behind locks of the same neighbour thread in succession.
This leads to us to have one lock per dimension per block.
While both strategies have their advantages, the asynchronous could possibly reduce waiting
times by a lot more than the synchronous handling. In comparison with the gain from
less overhead, it seems the reduced waiting time is the more efficient choice. Therefore we
implemented the asynchronous sub-block handling. Nevertheless, there can be no certainty
until the efficiency has been analysed for certain scenarios.

11



3 Implementation

(a) Top Down View on a minimal cube, with 2D
traversal order, based on locks.

(b) A blow-up view of a minimal block with
a possible iteration order for the sliced
block synchronous algorithm. This shows
only the surface areas. Each cube in the
figure corresponds to a sub-block.

(a) A 2D example of overlapping blocks with cor-
responding sub-blocks.

(b) Each thread iterates only over their
coloured area. Arrows indicate inital iter-
ation order in queue.

3.2.4 Parallelization

Now we have different options regarding our parallelization mechanisms. But first, we
want to decrease the total amount of different locks per block from 27 to 8. We do this by
overlapping the blocks on their surface areas.
This compression increases the parallelization even further, by decreasing the number of
cells per block. Each thread also has to iterate over fewer sub-blocks. The locking uses
the actual cell coordinates of the closest cell to point of origin of a sub-block. We achieve
asynchronous handling by using the OpenMP ”omp test lock” function, which returns true
if a lock could be set and false otherwise. Now it is possible to test if all sub-blocks could be
locked and if so, we iterate over the cells in the sub-block with the c08 handling. If not all
neighbour sub-blocks could be locked, we free the sub-blocks, then push back our sub-block
in the queue and test the next sub-block in the queue.
Nevertheless we could still achieve deadlocks. Avoiding them is not a trivial task though, as
the following deadlock scenario might demonstrate:

12



3.2 Sliced Block Traversal

Block 0 starts: Locks its own sub-blocks 000, 001, 010, 100, 110, 101, 011, 111 (equal to
traverse order)

Block 0 is quick and can continue to traverse all sub-blocks until 011 is finished.
Block 0 wants to lock the corresponding sub-blocks for 111 now.

Block 1 is now finished with its sub-block 000 and wants to go into 001.
Block 1 sub-block 001 corresponds to Block 0 sub-block 201.

Now Block 1 locks Block 0: 201 (which is fine) and Block 0: 211 (= 1: 011).
Now Block 0 locks Block 0: 111 and 112 and 212. Where 0: 212 (= 1: 012).

Now we have a deadlock, because Block 1 needs 0: 212 and Block 0 needs 1: 012.

To avoid creating any deadlocks while locking, we use a single masterlock. To avoid any
deadlocking while setting the locks, only the thread holding the masterlock is allowed to
test for locks. This obviously does not keep us from initially queueing the sub-blocks with
the possible order of the synchronous handling. And it neither keeps us from setting the
first locks in the initialization before the masterlock is needed. As there are only 8 locks to
be tested, the possible waiting time on the masterlock seems still fairly short in comparison
to waiting for a cell filled with particles. Unless of course there is no other sub-block left,
besides a neighbour locked one.
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4 Analysis

4.1 Tools

4.1.1 VTune

We used the Intel VTune Profiler to generate and analyse the efficiency of our algorithm.

4.1.2 Computational Platform

All tests have been run on the Linux Clusters of the Leibniz-Rechenzentrum (LRZ) of the
Bavarian Academy of Sciences.

CoolMUC2

The LRZ Linux Cluster CoolMUC2 was mainly used for running the tests. It has multiple
partitions with different amounts of shared memory. In total, the cluster has 812 Intel 28-way
Haswell based nodes, each with 28 cores and 2 hyperthreads per core. Each node has 64 GB
DDR4 memory. The core nominal frequency is 2.5 GHz, with a total peak performance of
the complete system of 1400 TFlop/s. For our test execution this means we have 56 threads
per node.

CoolMUC3

The LRZ Linux Cluster CoolMUC3 has 148 Intel 64-way Knights Landing 7210-F many-core
processors, each with 64 cores and 4 hyperthreads per core. Each node has 96 GB DDR4
memory. The core nominal frequency is 1.3 GHz, with a total peak performance of the
complete system of 459 TFlop/s. For our test execution, this means we have 256 threads
per node.

4.2 Theoretical Analysis

We already guessed in Section 3.2 that the sliced block traversal should be able to utilize more
threads than the sliced traversal. This should become visible for increased larger simulation
domains. Additionally, we want to see if the masterlock and lock testing has had positive
or negative repercussions. Also, the overhead through the generation of the sub-blocks has
increased drastically and is, therefore, a possible issue to check. The granularity of sliced
block should also be better than that of the sliced traversal, which might be visible in direct
comparison.
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4.3 Tests

Cluster CoolMUC2 CoolMUC3
Dimensions 200 x 200 x 200 50 x 25 x 13
Particles: 0 0
Iterations: 100 100

Table 4.1: Reference Test Parameters

4.3 Tests

4.3.1 Reference Test for Overhead Operations

A reference test with 0 particles was run at the beginning on each Cluster. Following
parameters were used:
The first results on CoolMUC3 were astonishing because sliced block was not only faster
but also had less overhead. The problem that occurred was that the length of each slice
became less than 2 using more a serialization of the slices, rather than parallelization.

Figure 4.1: Profile of 4 threads out of 256 running the sliced traversal in CoolMUC3.

Figure 4.2: Profile of 4 threads out of 256 running the sliced block traversal in CoolMUC3.

All threads except the master thread (Top bar in the profiles) showed similar behaviour and
are therefore shortened. The colours have the same meaning and do not change over the
tests. Red marks the spin and overhead time, light green is waiting time, dark green is run
time and brown colour is CPU utilization time.

Figure 4.3: Profile of 4 threads out of 56 running the sliced traversal in CoolMUC2.

Figure 4.4: Profile of 4 threads out of 56 running the sliced block traversal in CoolMUC2.

The CoolMUC2 results were more to the initial expectations. Sliced took 14.168 seconds
and sliced block took 15.505 seconds.

15



4 Analysis

Particle Dimensions Iterations TimeToFinish sliced TimeToFinish sliced block
0 50 x 25 x13 100 1.337 0.223
16 50 x 25 x13 100 0.72 0.2
64 50 x 25 x13 100 0.705 0.201
256 50 x 25 x13 100 1.106 0.2
1024 100 x 50 x 25 50 0.778 1.947
4096 100 x 50 x 25 50 1.046 2.25
16396 100 x 50 x 25 50 3.133 4.19
65536 200 x 100 x 50 25 9.533 7.844
131072 200 x 100 x 50 25 24.769 18.397
262144 200 x 100 x 50 25 48.861 41.964
524288 200 x 100 x 50 25 102.64 79.718
1048576 200 x 100 x 50 5 194.687 143.305
2097152 200 x 100 x 50 5 378.763 285.997
4194304 200 x 100 x 50 5 778.627 567.727
8388608 200 x 100 x 50 5 1132.888 1219.315

Table 4.2: Gaussian distributed tests over a cuboid.

4.3.2 Homgenous Tests

The homogenous tests had the following parameters and were executed on a single node on
CoolMUC2 with using 56 threads.
There are a lot of interesting results. First, the bad runtime for the sliced traversal seems
to have the same reason as in the reference tests. This is attested by the better runtime
once the dimensions increase at 1024 particles. Interestingly the increase for the sliced block
traversal increases immensely at the same point.

Figure 4.5: Profile of 4 threads with the 3rd from top being the master thread. Test has 256
particles in a cuboid of 100 x 50 x 25 cell dimensions.

Figure 4.6: Profile of 4 threads running a test with 1024 in a cuboid of 100 x 50 x 25 cell
dimensions.

Figure 4.7: Profile of only the waiting time of 6 threads running a test with 1024 in a cuboid
of 100 x 50 x 25 cell dimensions.
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4.3 Tests

Particle Dimensions Iterations TimeToFinish sliced TimeToFinish sliced block
0 50 x 50 x 50 100 0.89 3.325
16 50 x 50 x 50 100 0.871 3.266
64 50 x 50 x 50 100 0.889 3.244
256 50 x 50 x 50 100 0.906 3.264
1024 100 x 100 x 100 50 2.003 3.205
4096 100 x 100 x 100 50 2.198 3.298
16396 100 x 100 x 100 50 2.815 3.964
65536 200 x 200 x 200 25 14.932 14.141
131072 200 x 200 x 200 25 20.439 17.575
262144 200 x 200 x 200 25 32.175 26.105
524288 200 x 200 x 200 25 71.616 52.74
1048576 500 x 500 x 500 5 227.346 203.114
2097152 500 x 500 x 500 5 303.136 249.984
4194304 500 x 500 x 500 5 548.944 387.837
8388608 500 x 500 x 500 5 693.957 787.501

Table 4.3: Gaussian distributed tests over a cuboid.

What looked weird at the start is easily explained by Figure 4.7 and the stacktraces mainly
show waiting for joining the endTraversal and only very very rarely an actual lock because
of the master lock.
The rest of the simulation shows that the sliced block traversal is gaining efficiency the larger
the dimensions become and the more particles are used. It is not simply the dimensions,
which increase efficiency, but by increasing the number of particles the larger overhead each
step is easier justified. For the largest dimensions in our test, it is a bit surprising that
sliced block traversal is quicker, as the sliced traversal can also use all its threads and does
not have the overhead. At this phase, most waiting was done for memory calls. A possible
explanation for this would be the better predictability, which cells need to be preloaded
for the sliced bulk traversal, as the cells for a single thread are closer together than for the
sliced traversal.

Figure 4.8: Profile of waiting times for threads at the start of the homogenous simulation
running 2097152 particles on the CoolMUC3 Cluster.
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4 Analysis

Figure 4.9: Profile of waiting times for threads at the middle of the homogenous simulation
running 2097152 particles on the CoolMUC3 Cluster.

Additionally, a subset of the homogenous cubic tests was run on CoolMUC3 to see if the
masterlock might cause locking problems. The total amount of waiting for locks did increase,
as shown in Figure 4.8. It is certainly guaranteed to increase further with more threads,
but the biggest bottleneck was waiting for memory, again. This, in turn, triggered a high
waiting period for some threads, possibly while the locking uses actual cell coordinates,
which in turn needs memory, which might cause the thread holding the masterlock to wait
for memory. Therefore the Masterlock certainly remains a weak link, especially if memory
needs to be loaded regularly.

4.3.3 Inhomogenous Tests

The inhomogenous tests were executed with equal parameters as the homogenous tests
but included an additional dense part of particles in the domain. The dense part was
generated as a sphere with radius either being 20, 40, 60 or 80 corresponding to the increase
in dimensions. While the theory behind the test was to try to find out if behaviour changes
drastically compared to the homogenous tests, it did not. Runtime increased significantly
because of the higher amount of particles as did possible waiting time on the threads inside
the spheres.
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5 Conclusion

In this thesis, a new traversal was introduced building on the sliced traversal with focus on
higher efficiency. Using AutoPas as a basis to develop, the number of applicable threads for
parallelization could be significantly increased in comparison to the base. The new traversal
slices with a lot finer granularity, and additionally allows for basic wait time avoidance
through the lock testing functionality of OpenMP. The traversal was then tested on the
CoolMUC2 and CoolMUC3 Clusters regarding efficiency. Those tests succeeded under
certain conditions, while not being a perfectly efficient traversal. The analysis provided
insight, which can be used to further optimize the traversal and to correct some shortcomings
as the masterlock. All in all the new sliced bulk traversal certainly provides an efficient
traversal, if the dimension is big enough and the amount of used threads is not too high in
combination with frequent memory calls.

5.1 Optimizations

5.1.1 Masterlock

In theory, only neighbouring cells need to share a masterlock. It also should be possible for
threads to test for two masterlocks, if it is always in the same order. An example would be
building masterlock areas like the slices from the sliced traversal and all threads in such a
slice share a masterlock and the masterlock of the neighbouring slice.

5.1.2 Expand the Surface Areas

Having each sub-block assigned only to a single thread allows for more selection in the queue.
Additionally, it allows for each inner sub-block to be free of locks, as the only neighbouring
cells are assigned to the same thread. This allows a single sub-block in the queue, which is
the largest and can always be processed. The increase in total locks per thread might be
negligible.
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