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Abstract

Many problems nowadays require approximations of high-dimensional integrals, because their
analytical solutions cannot be provided. Among others, possible fields of application are Uncertainty
Quantification and Machine Learning. Unfortunately high-dimensional problems suffer from the
Curse of Dimensionality: Due to the exponential increase of the number of grid points the computation
time grows rapidly. This makes calculations infeasible when the number of dimension grows.
Possible solutions are Sparse Grids and the Sparse Grid Combination Technique, which are non-adaptive.
However, many real-world applications have highly varying characteristics and thus require strategies
that adapt to the given problem. A well-known approach is a dimension adaptive variant of the
Combination Technique [GG03]. Another approach has been presented in [OB20]: a spatially adaptive
variant with dimension-wise refinement. So far there has been little research towards high order
methods for the above-mentioned approach. The goal of this thesis is to combine adaptive order
methods and spatial adaptivity (with dimension-wise refinement). Therefore we investigate the
well-known Romberg-Quadrature and generalize it for the application on adaptive grids. Thereafter,
various variants of these theoretical results are incorporated into the sparseSpACE-framework and
compared to adaptive as well as non-adaptive implementations of quadrature rules, such as Gauß-
Legendre. The numerical results show that our adaptive extrapolation can significantly reduce the
total number of distinct function evaluations to achieve a certain approximation tolerance threshold.
This leads to shorter runtimes and a lower total number of refinements.
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Zusammenfassung

Viele Problemstellungen benötigen heutzutage hochdimensionale Berechnungen. Mögliche Ein-
satzgebiete hierfür sind u.a. Maschinelles Lernen oder Uncertainty Quantification. Hierbei kann oft
die analytische Lösung nicht bestimmt werden, weswegen eine Approximation von hochdimension-
alen Integralen notwendig wird. Dabei tritt allerdings der Fluch der Dimensionalität auf. Mit steigender
Dimensions-Anzahl erhöht sich die Anzahl der Gitterpunkte exponentiell, wodurch Berechnungen
sehr lange dauern können. Um diesem Effekt entgegenzuwirken wurden Sparse Grids (Dünne Gitter)
und die Sparse Grid Kombinationstechnik untersucht. Allerdings weisen Alltagsprobleme oftmals sehr
unterschiedliche Charakteristiken auf, welche stark variieren können. Daher benötigt man adaptive
Verfahren, die sich an die Charakteristiken des Problems anpassen. Ein bekannter Algorithmus
hierfür ist eine dimensionsadaptive Version der Kombinationstechnik [GG03]. Außerdem wurde in
[OB20] eine räumlich-adaptive Variante mit Verfeinerung von einzelnen Dimensionen vorgestellt.
Bisher gab es wenig Forschung, welche High-Order Methoden mit dem vorherigen Verfahren zur
räumlichen Verfeinerung verknüpft. Das Ziel dieser Arbeit ist ein Verfahren, welches Ordnungsadap-
tivität und räumliche Adaptivität (mit dimensionsweiser Verfeinerung) vereint. Dazu untersuchen
wir die bekannte Romberg-Quadratur und verallgemeinern diese anschließend für adaptive Gitter.
Wir implementieren verschiedene Varianten dieser Verallgemeinerung und integrieren diese in das
sparseSpACE-Framework. Außerdem führen wir numerische Untersuchungen durch und vergle-
ichen unsere Ergebnisse mit sowohl adaptiven als auch nicht-adaptiven Verfahren, wie z.B. einem
Gauß-Legendre Gitter. Unsere Ergebnisse zeigen, dass durch adaptive Extrapolation die Gesamtan-
zahl eindeutiger Funktionsevaluationen signifikant verringert werden kann, wobei weiterhin eine
vergleichbare Approximation des Integralwerts gewährleistet wird. Diese Verbesserung hat, unter
anderem, kürzere Laufzeiten und weniger Verfeinerungsschritte zur Folge.
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1 Introduction

“Squaring the circle” 1. This statement is used when someone is trying to do the impossible. Already
the ancient greek geometers were interested in the problem called Squaring the circle. It is also known
as Quadrature of the circle [DR07, p.1]. Given a circle with a radius r = 1 one aims to construct a
square which has the same area as the circle within a finite amount of steps. It was proven that this
problem is unsolvable using only straightedge and compass. One geometer who investigated this
issue with deeper interest was Archimedes of Syracuse. He approximated the circle by inscribing
and circumscribing regular n-sided polygons for increasing 6 ≤ ni ≤ 96, ni+1 = 2ni. Using this
technique Archimedes proved that π is bounded by [Eng80, p.7]: 22

7 < π < 223
71 .

Another problem that emerged was the Quadrature of the Parabola. Archimedes asked himself the
question: “What is the size of the area enclosed by an inverted unit parabola and the x-axis?” [Dei].

Figure 1.1: Method of exhaustion.
Taken from [Dei, p.37].

He solved this problem using the method of exhaustion by inscribing the parabola with triangles of
decreasing size: Let D, D1, D2, . . . , Dn, . . . be the area of the corresponding triangle in the figure 1.1
above. By applying Cavalieri’s principle and the geometric series it follows with D = 1

2 · 2b · b2 = b3:

A = D + 2 · D1 + 4 · D2 + · · ·+ 2n · Dn + . . .

= D + 2 · D
8
+ 4 · D

82 + · · ·+ 2n · D
8n + . . .

= D · ∑
n≥0

(
1
4

)n

= D · 1
1− 1

4

=
4
3

b3

On the other hand, using the fundamental theorem of calculus we obtain instantly

A =
∫ b

−b
f (x) dx =

∫ b

−b
b2 − x2 dx = 2 ·

∫ b

0
b2 − x2 dx = 2 ·

[
b2 · x− 1

3
x3
]b

0

= 2 · b3 − 2 · 1
3

b3 =
4
3

b3,

since the function is symmetric to the y-axis. Generalizing the idea of Archimedes, one possible
method to approximate integrals is to bound the calculation using only n triangles.

1https://www.dictionary.com/browse/square--the--circle
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1 Introduction

The generic problem of quadrature
Now we want to introduce the general core concepts of numerical quadrature. In the following let
f : Ω ⊂ R→ R be a scalar function for a close interval Ω. Numerical quadrature normally uses a
linear combination of function values f (xi) and corresponding weights wi as an approximation of
the integral with n ≥ 1 support points:∫ b

a
f (x) dx ≈ w1 · f (x1) + · · ·+ wn · f (xn) =

n

∑
i=1

wi · f (xi) (1.0.1)

for min(Ω) ≤ a ≤ b ≤ max(Ω), wi ∈ R, and xi ∈ Ω for all 1 ≤ i ≤ n. One regularly strives to
use non-negative weights, since the problem of quadrature can become ill-conditioned otherwise.
Following this approach we obtain primitive quadrature rules like the Midpoint rule and Trapezoidal
rule by introducing a step width h = b−a

n > 0 for n ≥ 1.
Visually speaking, one can consider h as the width of each sub-interval. The Midpoint rule inscribes
n rectangular stripes under the function curve using the function value in the middle of each
sub-interval to compute the corresponding height:

M f (h) = h · f (a + (0 +
1
2
) · h) + h · f (a + (1 +

1
2
) · h) + · · ·+ h · f (a + ((n− 1) +

1
2
) · h)

= h ·
n−1

∑
i=0

f (a + (i +
1
2
) · h)

(1.0.2)

By inscribing trapezoids instead of rectangles, we obtain the Trapezoidal rule for h = b−a
n :

Tf (h) =
h
2
· f (a + 0 · h) + h · f (a + 1 · h) + · · ·+ h · f (a + (n− 1) · h) + h

2
· f (b)

= h ·
[

1
2

f (a) +
( n−1

∑
i=1

f (a + i · h)
)
+

1
2

f (b)

] (1.0.3)

Futhermore, the weights are defined as wi =
h
2 for i ∈ {0, n} and wi = h for 1 ≤ i ≤ n− 1.

The following figure compares these rules for f : R→ R, f (x) = exp(−x2), and a = 0, b = 2, n = 5.

(a) Midpoint rule for n = 5 (b) Trapezoidal rule for n = 5

Figure 1.2: Comparison of Midpoint and Trapezoidal rule

2



1 Introduction

These two methods belong to a class of Quadrature rules called Newton-Cotes formulas [DR07].
Among others this class also contains Simpson’s rule. The results are approximated by dividing
the integration area into several sub-intervals. The Trapezoidal rule inscribes trapezoids whereas
Simpson’s rule inscribes parabolas. The sum of these parts approximates the area below the curve
in the given interval. Theoretically it would be possible to increase the degree of accuracy of the
underlying interpolation function arbitrarily. Unfortunately, for n ≥ 9 negative weights occur [Eng80,
p.268] which increases the numerical condition and therefore detoriates the result.
Nowadays, many problems require an approximation of integrals, because analytical solutions cannot
be provided. This happens, for example, if there are only discrete values of scientific experiments
available. Another example is the function f : [a, b]→ R, f (x) = e−x2

where the integral
∫

f (x) dx
“cannot be expressed in finite terms by combinations of algebraic, logarithmic, or exponential
operations” [DR07, p.2].

Sparse Grids
High-dimensional applications occur for example in physics or finance. Often one has to compute
integrals that are approximated by increasing the resolution of points in each dimension. Using
Archimedes quadrature the method’s accuracy depends on how many triangles are used. The more
triangles are used, the more accurate the result will be.
The drawback of increasing the grid’s resolution for higher dimensions (d > 4 , see [Pfl10]) is that
the computation time soars rapidly. This is due to the fact that the function must be evaluated at an
exponentially growing number of points for increasing d. More specifically, let us consider a grid
with n grid points in each of the d dimensions. Then the Full Grid contains O(nd) grid points. The
computing complexity in such high dimensions is also called Curse of Dimensionality.
One possible remedy are Sparse Grids. They require significantly less evaluation points, while
maintaining a similar asymptotic error decay as full grids (up to a logarithmic factor) [Pfl10].
This is achieved by selecting only those points which contribute most to the result. Points whose
contributions are too small are neglected. With this technique the number of points is reduced to
O(n · log(n)d−1) for n grid points in each dimension [BG04]. Further important aspects of sparse
grids will be presented in chapter 3.
Unfortunately, when using Sparse Grids one has to transform existing algorithms to work with
the new grid type. To mitigate these efforts Zenger et al. developed the Combination Technique
[GSZ92]. Their idea is to represent a Sparse Grid by a linear combination of full grids (each is
called a Component Grid) with different resolutions. This technique enables us to take profit of
already existing algorithms that operate separately on component grids. These individual results are
combined according to the combination scheme. It is an ideal example for using parallel computations
for the component grids.

Adaptivity strategies
Not all functions are as smooth as the function mentioned in the example above. They might rather
have different properties in some areas or dimensions. Therefore one should additionally leverage
adaptive algorithms.
There are two strategies of adaptivity: order adaptivity and refinement adaptivity.
The latter aims to exploit local smoothness of functions by partitioning the integration domain into
smaller regions. Here the main idea is to use more grid points in intervals where the integrand has
high oscillation or many different characteristics. In contrast one wants to use fewer grid points in
those areas where the function is moderate. Several authors have implemented different types of
adaptivity: dimensional adaptivity [GG03], spatial adaptivity [Pfl10] [OB19] and spatial adaptivity
with dimension-wise refinement [OB20].

3



1 Introduction

The second strategy is adaptivity of order [Bon94]. Here, the idea is again to exploit the smoothness
of a function. But this time by increasing the order in promising sub-areas. Bonk proposed a method
that combines both adapitivity strategies [Bon95].
The main contribution of the thesis will be based on Romberg-Quadrature [Rom55]. This method
leverages Richardson extrapolation and combines trapezoidal rules of decreasing step size in each
iteration to retain an approximation of higher order. A detailed introduction to this method is given
in chapter 2. Afterwards another generalization of Romberg’s method (than the one of [Bon95]) is
proposed.

Thesis overview
The thesis will have the following structure: In chapter 2, the original Romberg-Quadrature will be
introduced. The new results of this thesis are based on the original idea of Romberg. After the
intuition of Romberg’s method is explained, we will formally construct and derive this quadrature
method. Subsequently a new generalization of Romberg’s method is derived. It will enable
extrapolation on adaptive grids and is the main contribution of this thesis. Finally, we propose some
optimizations and variants of the generalized Romberg method. Chapter 3 presents the intuition
and construction of the Sparse Grid method. Building upon those grids, we are going to explain
the Combination technique and some adaptive variants of it. After the theoretical foundations are
laid we will summarize important aspects of the SparseSpace framework and the integration of the
new method in chapter 4. In chapter 5 the methods are tested and compared with various other
adaptive as well as non-adaptive quadrature techniques. Finally, we draw a conclusion of our work
and propose further ideas for improvement in chapter 6 which concludes this thesis.

4



2 Romberg-Quadrature

Romberg’s method initially computes trapezoidal rules with decreasing step size. The sequence of
results are then combined by exploiting the error expansions of the trapezoidal rules - following the
idea of extrapolation. Thus a higher order of accuracy is obtained.
In this chapter we will first explain the intuition of the method and summarize some important results
in this area. Afterwards, the theoretical background of Romberg’s method is explained. Finally,
Romberg’s method will be generalized, enabling higher order quadrature on adaptive grids. In this
chapter we will focus on the theoretical foundation and intuition. The associated implementation
will be presented in chapter 4.

2.1 Original method

Let f ∈ C2m+2([a, b]) for m ≥ 0. We define the step size hk =
b−a
nk

with nk = 2k for all k ≥ 0. In this
section we are following [Eng80, p.369]. In addition, let us introduce a new notation:

T0,k = Tf (hk) = hk ·

1
2

f (a) +
( nk−1

∑
i=1

f (a + i · hk)
)
+

1
2

f (b)

 (2.1.1)

Romberg’s method proficiently combines these trapezoidal sums T0,k. Before we explain the formal
extrapolation process we visualize the idea of the method. Let f : R → R, f (x) = exp(−x2), and
a = 0, b = 2. We approximate the integral

∫ 2
0 f (x) dx by using Romberg’s method:

(a) One trapezoid: T0,0 (b) Two trapezoids: T0,1 (c) 4 trapezoids: T0,2

(d) 8 trapezoids: T0,3 (e) 16 trapezoids: T0,4
(f) Extrapolation

Figure 2.1: Romberg’s method visualized

Figure 2.1f visualizes the extrapolation process using formula 2.1.2. Informally speaking, we
interpolate through the points (h2

k , T0,k) for 0 ≤ k ≤ 4. The extrapolated result is the intersection of
the interpolated curve and x = 0.

5



2 Romberg-Quadrature

In each iteration k ≥ 1, we initially compute T0,k. Afterwards the trapezoidal rules are combined, by
applying the following formula (according to the Aitken-Neville-Scheme):

Tm,k =
4m · Tm−1,k+1 − Tm−1,k

4m − 1
(2.1.2)

where 1 ≤ m ≤ k specifies the number of extrapolations. This way we are able to combine the entries
Tm,k and can fill a table row by row. Hence, the order of accuracy is increased in each iteration of k:

T0,0

T0,1 T1,0

T0,2 T1,1 T2,0
...

...
...

. . .

Table 2.1: Romberg’s table or T-table

We will refer to this table as Romberg’s table in the following sections. Assuming we stop at row r ≥ 0,
the result of the extrapolation process is given by Tr,0. Using Lagrange interpolation we are able to
rewrite this extrapolation process [Bon95, p.21] to:

Tm(0) = Tm,0 =
m

∑
j=0

cm,j · T(hj), with cm,j =
m

∏
i=0,
i 6=j

h2
i

h2
i − h2

j
(2.1.3)

As one notices, the function is evaluated multiple times at the same support points. In the example
above we would evaluate the function at points a, b for each 0 ≤ k ≤ 4. By exploiting the property
of T0,k we get a more efficient form of the trapezoidal rule for k ≥ 1 when using the results from
previous steps:

T0,k = hk

1
2

f (a) +
nk−1

∑
l=1

f (a + l · hk) +
1
2

f (b)



= hk

1
2

f (a) +
nk/2

∑
l=1,
l odd

f (a + l · hk) +
(nk/2)−1

∑
l=1,

l even

f (a + l · hk) +
1
2

f (b)


=

T0,k−1

2
+ hk

nk/2

∑
l=1,
l odd

f (a + l · hk)

(2.1.4)

Properties of Romberg’s method:
Engels [Eng80, p.381] summarized and proved some important properties about the Romberg-
Quadrature method:

Theorem 2.1.1

Romberg’s quadrature contains only positive weights.

Negative weights would increase the numerical condition and therefore detoriate the result.

6



2 Romberg-Quadrature

Theorem 2.1.2

Let f ∈ C0([0, 1]). Then the Romberg-Quadrature scheme converges for every f .

Bauer [Eng80] proved a theorem about the error representation of the method:

Theorem 2.1.3: Error representation of Romberg-Quadrature

The Romberg-quadrature formulas Tm,k have the error representation

∫ 1

0
W(x) · f (x) dx− Tm,k =

(−1)i+1 · B2m+2

(2m + 2)!
· 4−(m+1)k · 2−m(m+1) · f (2m+2)(t)

for t ∈ (0, 1), a weight function W(x), and the Bernoulli numbers Bi.

Romberg’s method operates on the sequence nk = 2k. This has the disadvantage that nk is decreasing
rapid. This is reflected by rapidly increasing computation time because the number of sub-intervals
for the trapezoidal rule increases exponentially. Bulirsch [Bul64] showed that another sequence may
be used:

n0 = 1, nk =

 1
3 · 2−

k
2+1, for k even

2−
k+1

2 for k odd

 for k > 0 (2.1.5)

When using other sequences than the one proposed by Romberg, it is necessary to use another
formula instead of 2.1.2. An example is retained by application of Aitken-Neville as explained in
[Eng80, p.372]:

Tm,k =
Tm−1,k · hk+m − Tm−1,k+1 · hk

hk+m − hk
(2.1.6)

By comparing delta := Ti,0 − Ti−1,0 for i > 0 after each step with a given tolerance tol > 0 one can
define a termination criterion for this method: Stop the iteration if delta < tol. The Romberg method
may then be summarized as follows:

Algorithm 1: Romberg-Quadrature in the 1-dimensional case
Input: Function f : R→ R, error tolerance tol, maximum iteration bound max_i, lower and

upper bounds a, b ∈ R.
Output: Approximation of the integral

∫ b
a f (x) dx

hk ← b− a; nk ← 1; delta← ∞; i← 0;

while (|delta| > tol) and (i < max_i) do
T[i]← hk

[
1
2 f (a) + ∑nk−1

l=1 f (a + l · hk)
]

for k← 1 to i do
T[i].append( 4m·Tm−1,k+1−Tm−1,k

4m−1 )
end
if i > 0 then

delta← Ti,0 − Ti−1,0

end
hk ← hk/2; nk = nk ∗ 2; i← i + 1;

end

7



2 Romberg-Quadrature

2.2 Derivation of the original method

In this section, we will explain why the Romberg method works the way presented in the section
above. The argumentation is as follows: First we are going to analyze the error of the trapezoidal rule
based on a Taylor expansion. Thereafter we are generalizing this result to the composite trapezoidal
rule. Thus, we are able to specify the error in terms of the step width. Finally we compose the
steps mentioned above by combining the error representation of trapezoidal rules with different step
widths. This procedure gives us the main formula of Romberg’s method and its corresponding error.
First of all, let Ω = [a, b] ⊂ R, f : Ω→ R a function with f ∈ C∞(Ω). Furthermore, let m ∈ Ω. Then
there exists a Taylor expansion of f in the development point m:

f (x) =
∞

∑
k=0

f (k)(m)

k!
(x−m)k (2.2.1)

2.2.1 Trapezoidal rule error

We develop a Taylor series around the midpoint m = a+b
2 of the integration domain D, following

[Hea02] [Obe19]. Starting with the default formula for the trapezoidal rule T( f ) with step width
H = b− a we insert the Taylor expansion:

T( f ) = H
f (a) + f (b)

2
=

H
2
( f (a) + f (b))

=
H
2

[ ∞

∑
k=0

f (k)(m)

k!
(a−m)k +

∞

∑
k=0

f (k)(m)

k!
(b−m)k

]
=

H
2

∞

∑
k=0

f (k)(m)

k!
((a−m)k + (b−m)k)

Besides, we know

a−m = a− a + b
2

=
2a
2
− a + b

2
=

a− b
2

,

b−m = b− a + b
2

=
2b
2
− a + b

2
=

b− a
2

= − a− b
2

= −(a−m)

Thus, it holds that (a−m)k = (−1)k(b−m)k = (−H
2 )

k = (−1)k Hk

2k and we can simplify

(a−m)k + (b−m)k =

 0 , for k odd

2 Hk

2k , for k even

 for k ≥ 0

The odd terms eliminate themselves. By inserting in T( f ) above it holds:

T( f ) =
H
2

∞

∑
k=0

k even

f (k)(m)

k!
· 2 · Hk

2k =
∞

∑
k=0

k even

f (k)(m)

k!
· H

2
· 2 · Hk

2k

=
∞

∑
k=0

k even

f (k)(m) · Hk+1

2k · k!

8
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By integrating the Taylor expansion of f in m we generate a second equation:∫ b

a
f (x) dx =

∫ b

a

∞

∑
k=0

f (k)(m)

k!
(x−m)k dx =

∞

∑
k=0

∫ b

a

f (k)(m)

k!
(x−m)k dx

=
∞

∑
k=0

[
f (k)(m)

(k + 1) · k!
(x−m)k+1

]b

a

=
∞

∑
k=0

[
f (k)(m)

(k + 1)!
(b−m)k+1 − f (k)(m)

(k + 1)!
(a−m)k+1

]
=

∞

∑
k=0

f (k)(m)

(k + 1)!

[
(b−m)k+1 − (a−m)k+1

]

This expression can be simplified. With the same idea as presented above we get:

(b−m)k+1 − (a−m)k+1 =

 0 , for k odd

2 Hk+1

2k+1 , for k even

 for k ≥ 0

In the end we can rewrite the integral expression to:∫ b

a
f (x) dx =

∞

∑
k=0

k even

f (k)(m)

(k + 1)!
· 2 · Hk+1

2k+1 =
∞

∑
k=0

k even

f (k)(m) · Hk+1

2k · (k + 1)!

This derivation provided us two equations that are summarized in the following:

T( f ) = H · f (m) +
∞

∑
k=2

k even

f (k)(m) · Hk+1

2k · k!
(I)

∫ b

a
f (x) dx = H · f (m) +

∞

∑
k=2

k even

f (k)(m) · Hk+1

2k · (k + 1)!
(II)

Reordering of equation (I) enables us to insert (I) in (I I):∫ b

a
f (x) dx =

[
T( f )−

∞

∑
k=2

k even

f (k)(m) · Hk+1

2k · k!

]
︸ ︷︷ ︸

=H· f (m)

+
∞

∑
k=2

k even

f (k)(m) · Hk+1

2k · (k + 1)!

= H
f (a) + f (b)

2
+

∞

∑
k=2

k even

f (k)(m) ·
[

Hk+1

2k · (k + 1)!
− Hk+1

2k · k!

]

= H
f (a) + f (b)

2
+

∞

∑
k=2

k even

Hk+1 · f (k)(m) ·
[

1
2k · (k + 1)!

− 1
2k · k!

]
︸ ︷︷ ︸

=:Ck

= H
f (a) + f (b)

2
+

∞

∑
k=2

k even

Hk+1 · Ck

Through rearranging we obtain the following error expansion of the trapezoidal rule:∫ b

a
f (x) dx− T( f ) =

∞

∑
k=2

k even

Hk+1 · Ck

= H3 · C2 + H5 · C4 + H7 · C6 + . . .

(2.2.2)
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2.2.2 Composite trapezoidal rule error

The derivation of this error expansion is a little bit more involved. An important result is the
well-known Euler-Maclaurin formula, which is summarized in the following theorem [Sto71, p.168]:

Theorem 2.2.1: Euler-Maclaurin formula (Trapezoidal rule)

Let Ω = [a, b], f ∈ C2m+2([a, b]), and xi = a + i · h for 0 ≤ i ≤ n and h = b−a
n . Then it holds

Tf (h) =
∫ b

a
f (t)dt +

m

∑
k=1

τ2k · h2k + Rm+1(h) · h2m+2

with τ2k = B2k
(2k)! ( f (2k−1)(b) − f (2k−1)(a)), 1 ≤ k ≤ m and Rm+1(h) = B2m+2

(2m+2)! (b − a) f 2m+2(ξ),
a < ξ < b.

Here Tf (h) stands for the composite trapezoidal rule as defined in chapter 1 and Bk denotes the k-th

Bernoulli number which is defined recursively as Bk = − 1
n+1 ∑k−1

i=0

(
k+1

i

)
Bi with B0 = 1.

This provides us with an expansion of Tf (h) in powers of h where τ2k is independent of n and h.
The remainder Rm+1(h) is bounded [Sto71, p.170]:

∣∣Rm+1(h)
∣∣ ≤ Mm+1 for all h = b−a

n , n = 1, 2, . . .

with Mm+1 =
∣∣∣ B2m+2
(2m+2)! (b− a)

∣∣∣ ·maxx∈[a,b]

∣∣∣ f (2m+2)(x)
∣∣∣.

2.2.3 Extrapolation

Now we are going to combine composite trapezoidal rules of decreasing step widths. For convenience
we will assume Ω = [a, b] = [0, 1] in the following. This has, among others, the advantage that
H = b− a = 1. By rearranging 2.2.1 we obtain

T(h) := Tf (h) =
∫ 1

0
f (x) dx︸ ︷︷ ︸
=:I( f )

+τ2h2 + τ4h4 + τ6h6 + . . . (2.2.3)

Now we set up two equations, each one with another step width (h0, h1 > 0):

T(h0) = I( f ) + τ2h2
0 + τ4h4

0 + . . . (I)

T(h1) = I( f ) + τ2h2
1 + τ4h4

1 + . . . . (II)

Subtracting h2
0 · (I I) from h2

1 · (I) yields

h2
1 · T(h0)− h2

0 · T(h1) = (h2
1 − h2

0) · I( f ) + 0 + h2
0h2

1(h
2
0 − h2

1)τ4 +O(h6)

= (h2
1 − h2

0) · I( f )− h2
0h2

1(h
2
1 − h2

0)τ4 +O(h6)

Now we divide by h2
1 − h2

0 and obtain

h2
1 · T(h0)− h2

0 · T(h1)

h2
1 − h2

0
= I( f )− h2

0h2
1τ4 +O(h4)

After isolation of I( f ) it holds that

I( f ) =
h2

1 · T(h0)− h2
0 · T(h1)

h2
1 − h2

0
− h2

0h2
1τ4 +O(h4)

≈ h2
1 · T(h0)− h2

0 · T(h1)

h2
1 − h2

0
+O(h4) (2.2.4)
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by omitting the error in O(h2
0h2

1). This procedure can be executed with an increasing number of
different step widths. The error is in O(h2

0h2
1h2

2 · · · ) [Obe19].
We derive formula 2.1.3 for the special case m = 1 using formula 2.2.4:

I( f ) ≈ h2
1 · T(h0)− h2

0 · T(h1)

h2
1 − h2

0
=

h2
1

h2
1 − h2

0
· T(h0)−

h2
0

h2
1 − h2

0
· T(h1)

=
h2

1

h2
1 − h2

0
· T(h0) +

h2
0

−(h2
1 − h2

0)
· T(h1)

=
h2

1

h2
1 − h2

0︸ ︷︷ ︸
=c1,0

·T(h0) +
h2

0

h2
0 − h2

1︸ ︷︷ ︸
=c1,1

·T(h1) =
1

∑
j=0

c1,j · T(hj)

This results can be generalized for h0, h1, h2, . . . which results in formula 2.1.3 [Bon95, pp. p.21].

2.3 Weight-based variant of the original method

In this section we propose a new variant of Romberg’s method by following a weight-based approach.
Our goal is to obtain a formula similar to equation 1.0.1:∫ b

a
f (x) dx ≈ w1 · f (x1) + · · ·+ wn · f (xn) =

n

∑
i=1

wi · f (xi)

Hence, we strive to obtain the coefficients (weights) wi for each 1 ≤ i ≤ n. To achieve our goal we
transform equation 2.1.3:

Tm(0) =
m

∑
j=0

cm,j · T(hj) =
m

∑
j=0

cm,j ·
(

hj

2
· ( f (a) + f (b)) + hj ·

nj−1

∑
i=1

f (a + i · hj)

)

=
m

∑
j=0

(
cm,j ·

hj

2
· ( f (a) + f (b))

)
︸ ︷︷ ︸

=:A

+
m

∑
j=0

(
cm,j · hj ·

nj−1

∑
i=1

f (a + i · hj)

)
︸ ︷︷ ︸

=:B

Thus, by looking at part A, we obtain by comparison of coefficients between equation 1.0.1 and

A =
m

∑
j=0

(
cm,j ·

hj

2
· ( f (a) + f (b))

)
= ( f (a) + f (b)) ·

m

∑
j=0

cm,j · hj

2

=

( m

∑
j=0

cm,j · hj

2

)
︸ ︷︷ ︸

=w0

· f (a) +
( m

∑
j=0

cm,j · hj

2

)
︸ ︷︷ ︸

=wn

· f (b)

the weights w0 = wn = ∑m
j=0

cm,j·hj
2 of the boundary points a, b. The weights of the other points

require a little more effort. We consider the second sum, denoted by B. Since the default Romberg
method operates on the sequence (hk)k∈N0 = ( H

nk
)k∈N0 = ( H

20 , H
21 , H

22 , . . . ) for (nk)k∈N0 = (2k)k∈N0 and
H = b− a we consider this specific sequence at first. Thus the boundary weights simplify to

w0 = wn =
m

∑
j=0

cm,j · H
2 · 2j =

m

∑
j=0

cm,j · H
2j+1 =

m

∑
j=0

cm,j ·
hj

2

Consequently, let us introduce a new notation: In the following we will abbreviate xl,i = a + i · hl .

11
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Figure 2.2: Example of a nested grid (level l = 4)

By inserting Romberg’s sequence hk we obtain:

B =
m

∑
j=0

cm,j · hj ·
nj−1

∑
i=1

f (a + i · hj) =
m

∑
j=0

cm,j ·
H
2j ·

nj−1

∑
i=1

f
(

a + i · H
2j

)
=

m

∑
j=0

cm,j ·
H
2j ·

(
f
(

a +
H
2j

)
+ · · ·+ f

(
a +

H · (2j − 1)
2j

))
= cm,0 ·

H
20 ·

(
0
)

+ cm,1 ·
H
21 ·

(
f (x1,1)

)
+ cm,2 ·

H
22 ·

(
f (x2,1) + f (x2,2) + f (x2,3)

)
+ cm,3 ·

H
23 ·

(
f (x3,1) + f (x3,2) + f (x3,3) + f (x3,4) + f (x3,5) + f (x3,6) + f (x3,7)

)
+ cm,4 ·

H
24 ·

(
f (x4,1) + f (x4,2) + f (x4,3) + f (x4,4) + f (x4,5) + f (x4,6) + f (x4,7) + f (x4,8)

+ f (x4,9) + f (x4,10) + f (x4,11) + f (x4,12) + f (x4,13) + f (x4,14) + f (x4,15)
)

+ . . .

+ cm,m ·
H
2m ·

(
f
(

a +
H
2m

)
+ · · ·+ f

(
a +

H · (2m − 1)
2m

))
The red grids points (xl,i) in the formula above correspond to the red points in figure 2.2. These are
the new contributions on their level. All other points have already occurred in previous levels. If
one groups same support values f (xl,i) it is now possible to deduce a formula for the non-boundary
points: Let li ≥ 0 denote the level of point xl,i = a + i · hl for 1 ≤ i ≤ 2l − 1.
The weights of Romberg’s method are determined by:

wi =


∑m

j=0
cm,j·H
2j+1 , for i = 0, 2m

∑m
j=li

cm,j·H
2j , else

 =


∑m

j=0 cm,j ·
hj
2 , for i = 0, 2m

∑m
j=li cm,j · hj, else

(2.3.1)

We can also interpret this weight formula visually: For each inner point we construct a sum of
extrapolation coefficients factored with the step width on each level li ≤ j ≤ m.
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2.4 Adaptive sliced method

This section aims to develop a generalized Romberg’s method for adaptive grids. The default
Romberg method works flawlessly on equidistant grids to whom we will refer in the following as
full grids. However, this method is in general not suitable for adaptive grids.

(a) Full grid of level 2 (b) Adaptive grid with max. level 3

Figure 2.3: Comparison of full grids and adaptive grids (Example).

The error cancellation process of Romberg’s method does not work that well on adaptive grids. Due
to the non-equidistant nature of adaptive grids not all error terms cancel each other out. We will
develope a technique that tries to mitigate this effect.

2.4.1 Sliced trapezoidal rule

In the following we want to find a formula for a sliced trapezoid. The main idea is to linearly
interpolate between the support points of a trapezoid and then integrate a slice of this area. Let
f : D ⊂ R → R a continuous function. Moreover, let Ω = [a, b] ⊂ D be the integration domain.
Firstly, we interpolate f in through the two points (a, f (a)), (b, f (b)):

p : R→ R, p(x) = f (a) +
f (b)− f (a)

b− a
(x− a) =: f (a) + ∆ f b

a · (x− a)

Secondly, let Si = [xi, xi+1] ⊂ Ω be a slice of the integration domain with step width hi = xi+1 − xi.

Figure 2.4: Slice S2 = [1, 1.5] with the support element (a, b) = (0, 2) of level 0.

To obtain the area of the sliced trapezoid on Si we integrate the interpolated function p:∫ xi+1

xi

p(x) dx =
∫ xi+1

xi

(
f (a) + ∆ f b

a · (x− a)
)

dx =

[
f (a) · x + ∆ f b

a ·
(

1
2
· x2 − a · x

)]xi+1

xi

= (xi+1 − xi) · f (a) + (xi+1
2 − xi

2) · 1
2
· ∆ f b

a + (−xi+1 + xi) · a · ∆ f b
a

= (xi+1 − xi) · f (a) + (xi+1 + xi)(xi+1 − xi) ·
1
2
· ∆ f b

a − (xi+1 − xi) · a · ∆ f b
a

= hi ·
(

f (a)− a · ∆ f b
a +

xi+1 + xi

2
· ∆ f b

a

)

13
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This result can also be achieved by applying the trapezoidal rule T(p) = H p(xi)+p(xi+1)
2 on the function

p with H = xi+1 − xi:

Tb
a (xi, xi+1) := H

p(xi) + p(xi+1)

2

= (xi+1 − xi) ·
1
2
·
(

f (a) + ∆ f b
a · (xi − a) + f (a) + ∆ f b

a · (xi+1 − a)
)

= (xi+1 − xi) ·
1
2
·
(

2 · f (a) + ∆ f b
a · (xi+1 + xi)− 2 · ∆ f b

a · a
)

= hi ·
(

f (a)− a · ∆ f b
a +

xi+1 + xi

2
· ∆ f b

a

)
It can easily be shown that insertion of xi = a, and xi+1 = b generates the default trapezoidal rule for
the support points a and b. Thus it holds by construction:

Tb
a (a, b) = H

f (a) + f (b)
2

= T( f ), for H = b− a

These results are summarized in the following definition:

Definition 2.4.1: Sliced trapezoidal rule

Let f : D ⊂ R→ R a continuous function. Furthermore, let Ω = [a, b] ⊂ D, Si = [xi, xi+1] ⊂ Ω,
hi = xi+1 − xi, and mi =

xi+1+xi
2 . Then we define the Sliced trapezoidal rule as

Tb
a (Si) = Tb

a (xi, xi+1) = hi ·
(

f (a)− a · ∆ f b
a + mi · ∆ f b

a

)
(2.4.1)

Furthermore the following theorem holds:

Theorem 2.4.1: Area of the sliced trapezoidal rule

Let f : D ⊂ R→ R a continuous function, Ω = [a, b] ⊂ D, and Si = [xi, xi+1] ⊂ Ω.
Then it yields: Tb

a (Si) is the area of slice Si under the trapezoid spanned by a and b.

Proof. Compare with the derivation of Tb
a (xi, xi+1) above. �

Now we deduce a weight-based variant of 2.4.1. Let [l, r] ⊂ Ω, where l denotes the left support point
of the trapezoid and r respectively the right support point. Rearranging the terms yields:
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Tr
l (xi, xi+1) = (xi+1 − xi) ·

(
f (l)− l · ∆ f r

l +
xi+1 + xi

2
· ∆ f r

l

)
= xi+1

[
f (l)− l ·

(
f (l)
l − r

− f (r)
l − r

)
+

xi+1 + xi

2

(
f (l)
l − r

− f (r)
l − r

)]
− xi

[
f (l)− l ·

(
f (l)
l − r

− f (r)
l − r

)
+

xi+1 + xi

2

(
f (l)
l − r

− f (r)
l − r

)]
= xi+1 · f (l)− xi+1 · l ·

f (l)
l − r

+ xi+1 · l ·
f (r)
l − r

+ xi+1 ·
xi+1 + xi

2
f (l)
l − r

− xi+1 ·
xi+1 + xi

2
f (r)
l − r

− xi · f (l) + xi · l ·
f (l)
l − r

− xi · l ·
f (r)
l − r

− xi ·
xi+1 + xi

2
f (l)
l − r

+ xi ·
xi+1 + xi

2
f (r)
l − r

= f (l)
[

xi+1 − xi+1 · l ·
1

l − r
+ xi+1 ·

xi+1 + xi

2
1

l − r
− xi + xi · l ·

1
l − r

− xi ·
xi+1 + xi

2
1

l − r

]
+ f (r)

[
xi+1 · l ·

1
l − r

− xi+1 ·
xi+1 + xi

2
1

l − r
− xi · l ·

1
l − r

+ xi ·
xi+1 + xi

2
1

l − r

]
= f (l)

[
(xi+1 − xi)− (xi+1 − xi) ·

l
l − r

+ (xi+1 − xi) ·
xi+1 + xi

2
1

l − r

]
+ f (r)

[
(xi+1 − xi) ·

l
l − r

− (xi+1 − xi) ·
xi+1 + xi

2
1

l − r

]
= f (l) · (xi+1 − xi) ·

(
1− l

l − r
+

xi+1 + xi

2
1

l − r

)
+ f (r) · (xi+1 − xi)︸ ︷︷ ︸

=:hi

·
(

l
l − r

− xi+1 + xi

2︸ ︷︷ ︸
=:mi

1
l − r︸ ︷︷ ︸

=− 1
r−l =−

1
H

)

= f (l) · hi ·
(

1 +
l
H
− mi

H

)
+ f (r) · hi ·

(
mi

H
− l

H

)
= f (l) · hi ·

H + l −mi

H
+ f (r) · hi ·

mi − l
H

This is our sought-for weight-based representation of 2.4.1. The result is summarized in the next
definition and subsequent theorem:

Definition 2.4.2: Left/right weight of the sliced trapezoidal rule

Let f : D ⊂ R → R be a continuous function, Ω = [a, b] ⊂ D, and Si = [xi, xi+1] ⊂ Ω,
hi = xi+1 − xi. In addition, let (l, r) be the current support thus H = r− l.
Then we define the left weight of slice Si as

wl

∣∣∣xi+1

xi
= hi ·

H + l −mi

H
(2.4.2)

Analogously we define the right weight of slice Si as

wr

∣∣∣xi+1

xi
= hi ·

mi − l
H

(2.4.3)
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Theorem 2.4.2: Weight-based area of a trapezoidal slice

Let f : D ⊂ R→ R be a continuous function, Ω = [a, b] ⊂ D, and Si = [xi, xi+1] ⊂ Ω.
Then it yields:

Tb
a (Si) = wl

∣∣∣xi+1

xi
· f (l) + wr

∣∣∣xi+1

xi
· f (r) (2.4.4)

Proof. Compare with the derivation above. �

With this theorems at hand it is now possible to approximate the area of a slice using a sequence of
support. Before we formalize this procedure, we want to give a visual demonstration of the idea.

Example
Let f : R→ R, f : 2 · x3 + 1 with grid [0, 1

2 , 5
8 , 3

4 , 1] be given. Hence, there are four slices S0 = [0, 1
2 ],

S1 = [ 1
2 , 5

8 ], S2 = [ 5
8 , 3

4 ], and S3 = [ 3
4 , 1].

Slice S2 entails the support sequence (0, 1), ( 1
2 , 1), ( 1

2 , 3
4 ), (

5
8 , 3

4 ) with max level 3:

(a) Support of level 0 (b) Support of level 1

(c) Support of level 2 (d) Support of level 3

Figure 2.5: Visualization of the support sequence for S2

The other slices could be visualized analogously. To avoid repetition we will omit these figures. The
following figures illustrate all slice refinements of support trapezoids for each level:
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Figure 2.6: Visualization of support refinement for each level of the grid

With theorem 2.4.2 it yields for S0 = [0, 1
2 ] and level 0:

T1
0 (S0) = w0

∣∣∣ 1
2

0
· f (0) + w1

∣∣∣ 1
2

0
· f (1)

We compute the weight according to definition 2.4.2, with H = (1− 0) = 1, h0 = ( 1
2 − 0) = 1

2 , and

m0 =
0+ 1

2
2 = 1

4 :

w0

∣∣∣ 1
2

0
= h0 ·

H + 0−m0

H
=

1
2
·

1 + 0− 1
4

1
=

3
8

and w1

∣∣∣ 1
2

0
= h0 ·

m0 − 0
H

=
1
2
·

1
4 − 0

1
=

1
8

Finally, it follows T1
0 (S0) = 3

8 · f (0) + 1
8 · f (1) = 3

8 · 1 + 1
8 · 3 = 3

4 . The results of all weights are
summarized in this table:

S0 = [0, 1
2 ] S1 = [ 1

2 , 5
8 ] S2 = [ 5

8 , 3
4 ] S3 = [ 3

4 , 1]

Level 0 w0 = 3
8 , w1 = 1

8 w0 = 7
128 , w1 = 9

128 w0 = 5
128 , w1 = 11

128 w0 = 1
32 , w1 = 7

32

Level 1 w0 = 1
4 , w 1

2
= 1

4 w 1
2
= 7

64 , w1 = 1
64 w 1

2
= 5

64 , w1 = 3
64 w 1

2
= 1

16 , w1 = 3
16

Level 2 – w 1
2
= 3

32 , w 3
4
= 1

32 w 1
2
= 1

32 , w 3
4
= 3

32 w 3
4
= 1

8 , w1 = 1
8

Level 3 – w 1
2
= 1

16 , w 5
8
= 1

16 w 5
8
= 1

16 , w 3
4
= 1

16 –

Table 2.2: Sliced trapezoidal rule example: summary of all weights

For convenience and space purposes we abbreviated the notation wx := wx

∣∣∣xi+1

xi
for each column

Si = [xi, xi+1]. In the next sections we will derive an extrapolation formula using these weights.
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2.4.2 Error expansion

In this section we will derive an error expansion of the sliced trapezoidal rule. The procedure is
inspired by section 2.2.
As mentioned before, let Ω = [a, b] ⊂ R, f : Ω→ R be a function with f ∈ C∞(Ω). Additionally, let
m ∈ Ω. Then there exists a Taylor expansion of f in the development point m:

f (x) =
∞

∑
k=0

f (k)(m)

k!
(x−m)k (2.4.5)

We define the slice with index i ∈ N0 as Si = [xi, xi+1]. Let m = xi+1+xi
2 be the midpoint of slice Si,

H = b− a, and h = xi+1 − xi.
The area of Si can be expressed with theorem 2.4.2:

Tb
a (Si) = h · H + a−m

H
· f (a) + h · m− a

H
· f (b)

Now the Taylor expansion with the midpoint m of the slice Si is inserted. Subsequently the resulting
expression is simplified:

Tb
a (Si) = h · H + a−m

H

∞

∑
k=0

f (k)(m)

k!
(a−m)k + h · m− a

H

∞

∑
k=0

f (k)(m)

k!
(b−m)k

=
∞

∑
k=0

f (k)(m)

k!
· h ·

[
(a−m)k · H + a−m

H
+ (b−m)k · m− a

H

]
=

∞

∑
k=0

f (k)(m)

k!
· h ·

[
(a−m)k ·

(
1 +

a−m
H

)
− (b−m)k · a−m

H

]
= h · f (m) ·

(
1 +

(a−m)

H
− (a−m)

H

)
+ h

∞

∑
k=1

f (k)(m)

k!
· (a−m)k + h

∞

∑
k=1

f (k)(m)

k!
· a−m

H
·
[
(a−m)k − (b−m)k

]
= h · f (m) + h

∞

∑
k=1

f (k)(m)

k!
· (a−m)k + h

∞

∑
k=1

f (k)(m)

k!
· a−m

H
·
[
(a−m)k − (b−m)k

]
Integrating the Taylor series within the domain of Si results in:∫ xi+1

xi

f (x) dx =
∫ xi+1

xi

∞

∑
k=0

f (k)(m)

k!
(x−m)k dx =

∞

∑
k=0

∫ xi+1

xi

f (k)(m)

k!
(x−m)k dx

=
∞

∑
k=0

[
f (k)(m)

(k + 1) · k!
(x−m)k+1

]xi+1

xi

=
∞

∑
k=0

[
f (k)(m)

(k + 1)!
(xi+1 −m)k+1 − f (k)(m)

(k + 1)!
(xi −m)k+1

]
=

∞

∑
k=0

f (k)(m)

(k + 1)!

[
(xi+1 −m)k+1 − (xi −m)k+1

]
To further simplify this expression we use the following trick: We know that
xi+1 −m = 2xi+1

2 − xi+1+xi
2 = xi+1−xi

2 = h
2 and xi −m = 2xi

2 −
xi+xi+1

2 = xi−xi+1
2 = −(xi+1 −m) = − h

2 .
Thus, it holds that (xi −m)k+1 = (−1)k+1(xi+1 −m)k+1 and the odd terms cancel each other out

(xi+1 −m)k+1 − (xi −m)k+1 =

 0 , for k odd

2 hk+1

2k+1 , for k even

 for k ≥ 0

18
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Inserting this expression into the integral of the taylor series yields:

∫ xi+1

xi

f (x) dx =
∞

∑
k=0

k even

f (k)(m)

(k + 1)!
· 2 · hk+1

2k+1 =
∞

∑
k=0

k even

f (k)(m) · hk+1

2k · (k + 1)!

= h · f (m) +
∞

∑
k=1

k even

f (k)(m) · hk+1

2k · (k + 1)!
(2.4.6)

And now we have a system of two equations which is summarized here:

Tb
a (Si) = h · f (m) + h

∞

∑
k=1

f (k)(m)

k!
· (a−m)k + h

∞

∑
k=1

f (k)(m)

k!
· a−m

H
·
[
(a−m)k − (b−m)k

]
∫ xi+1

xi

f (x) dx = h · f (m) +
∞

∑
k=2

k even

f (k)(m) · hk+1

2k · (k + 1)!

Subtracting the second equation from the first one yields after rearrangement:

Tb
a (Si) =

∫ xi+1

xi

f (x) dx

+ h
∞

∑
k=1

f (k)(m)

k!
· (a−m)k + h

∞

∑
k=1

f (k)(m)

k!
· a−m

H
·
[
(a−m)k − (b−m)k

]
−

∞

∑
k=2

k even

f (k)(m) · hk+1

2k · (k + 1)!

Finally, we differentiate two cases: The refinement of the left boundary and respectively the refinement
of the right boundary of support. This difference is illustrated in the following figures:

(a) Step 0: Starting point for the
support refinement

(b) Step 1: Refinement of the left
support boundary

(c) Step 2: Refinement of the right
support boundary

Figure 2.7: Different cases of support refinement

Additionally, constant terms are factored out and grouped accordingly. This yields the following
theorems about the error expansion of the sliced trapezoidal rule where

∫ xi+1
xi

f (x) dx is abbreviated
with Ixi+1

xi ( f ).
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Theorem 2.4.3: Sliced trapezoidal rule error expansion: right boundary refinement

Let ((a, bj))j∈N be the support sequence of slice Si = [xi, xi+1]. Thus it holds:

T
bj
a (Si) = Ixi+1

xi ( f ) +
∞

∑
k=1

C(a)
1,k +

∞

∑
k=1

1

H(a)
j

(C(a)
2,k − C(a)

3,k (bj −m)k)−
∞

∑
k=2

k even

Ck

for H(a)
j = bj − a and the constants

C(a)
1,k = h · f (k)(m)

k!
· (a−m)k

C(a)
2,k = C(a)

1,k · (a−m) = h · f (k)(m)

k!
· (a−m)k+1

and
C(a)

3,k = h · f (k)(m)

k!
· (a−m)

Ck =
f (k)(m) · hk+1

2k · (k + 1)!

Theorem 2.4.4: Sliced trapezoidal rule error expansion: left boundary refinement

Let ((aj, b))j∈N be the support sequence of slice Si = [xi, xi+1]. Thus it holds:

Tb
aj
(Si) = Ixi+1

xi ( f ) +
∞

∑
k=1

C(b)
1,k (aj −m)k +

∞

∑
k=1

aj −m

H(b)
j

(C(b)
2,k · (aj −m)k − C(b)

3,k )−
∞

∑
k=2

k even

Ck

for H(b)
j = b− aj and the constants:

C(b)
1,k = h · f (k)(m)

k!
C(b)

2,k = C(b)
1,k

and
C(b)

3,k = C(b)
1,k · (b−m)k = h · f (k)(m)

k!
· (b−m)k

Ck =
f (k)(m) · hk+1

2k · (k + 1)!

An important aspect to note is that the constant term Ck is the same for each of the two cases.
However the expansion is more involved than one of the default trapezoidal rule.

2.4.3 Extrapolation

The previous results will be used to deduce an extrapolation formula for each refinement case. In
contrast to Romberg’s method we combine the approximations of only one slice using support
trapezoids of decreasing support width. To achieve this result we follow a similar procedure as in
section 2.2.3. Using the notation and definitions of the previous section we initially consider the first
step of the extrapolation process.

Extrapolation with right boundary refinement
Let (a, b) = (a, b0) be the support of the first trapezoid. Furthermore, let (a, b1) be the support
of the second trapezoid for b1 = a+b0

2 . Since the slice boundaries xi, xi+1 stay constant during the
extrapolation we abbreviate Ixi+1

xi ( f ) with I( f ). For notational convenience we abbreviate Hi :=
H(a)

i = bi − a for i ∈ {0, 1}.
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We expand the sums of theorem 2.4.3 and obtain these two equations:

Tb0
a (Si) = I( f ) + C(a)

1,1 +
1

H0
C(a)

2,1 −
1

H0
(b0 −m)C(a)

3,1 (I)

+ C(a)
1,2 +

1
H0

C(a)
2,2 −

1
H0

(b0 −m)2C(a)
3,2 − C2 + . . .

Tb1
a (Si) = I( f ) + C(a)

1,1 +
1

H1
C(a)

2,1 −
1

H1
(b1 −m)C(a)

3,1 (II)

+ C(a)
1,2 +

1
H1

C(a)
2,2 −

1
H1

(b1 −m)2C(a)
3,2 − C2 + . . .

By multiplying the first equation with H2
1 and the second equation with H2

0 we receive:

H2
1 · Tb0

a (Si) = H2
1 · I( f ) + H2

1 · C
(a)
1,1 +

H2
1

H0
C(a)

2,1 −
H2

1
H0

(b0 −m)C(a)
3,1 (I*)

+ H2
1 · C

(a)
1,2 +

H2
1

H0
C(a)

2,2 −
H2

1
H0

(b0 −m)2C(a)
3,2 − H2

1 · C2 + . . .

H2
0 · Tb1

a (Si) = H2
0 · I( f ) + H2

0 · C
(a)
1,1 +

H2
0

H1
C(a)

2,1 −
H2

0
H1

(b1 −m)C(a)
3,1 (II*)

+ H2
0 · C

(a)
1,2 +

H2
0

H1
C(a)

2,2 −
H2

0
H1

(b1 −m)2C(a)
3,2 − H2

0 · C2 + . . .

The first extrapolation step can be written as
(
(I∗)− (I I∗)

)
÷
(

H2
1 − H2

0

)
:

H2
1 · T

b0
a (Si)− H2

0 · T
b1
a (Si)

H2
1 − H2

0
= I( f ) + C(a)

1,1 +

H2
1

H0
− H2

0
H1

H2
1 − H2

0
C(a)

2,1 +

H2
0

H1
(b1 −m)− H2

1
H0
(b0 −m)

H2
1 − H2

0
C(a)

3,1

+ C(a)
1,2 +

H2
1

H0
− H2

0
H1

H2
1 − H2

0
C(a)

2,2 +

H2
0

H1
(b1 −m)2 − H2

1
H0
(b0 −m)2

H2
1 − H2

0
C(a)

3,2

− C2 + . . .

Solving for I( f ) yields the expression we searched for

I( f ) =
H2

1 · T
b0
a (Si)− H2

0 · T
b1
a (Si)

H2
1 − H2

0

− C(a)
1,1 −

H2
1

H0
− H2

0
H1

H2
1 − H2

0
C(a)

2,1 −
H2

0
H1
(b1 −m)− H2

1
H0
(b0 −m)

H2
1 − H2

0
C(a)

3,1

− C(a)
1,2 −

H2
1

H0
− H2

0
H1

H2
1 − H2

0
C(a)

2,2 −
H2

0
H1
(b1 −m)2 − H2

1
H0
(b0 −m)2

H2
1 − H2

0
C(a)

3,2

+ C2 − . . .

where Hi = bi − a for i ∈ {0, 1}. These results are constrained to one extrapolation step. However,
it is possible to generalize the formula above for n > 1 extrapolation steps under the condition
that only the right support boundary is refined during the extrapolation. This implies that the left
support point a does not change.
As one can see in comparison to Romberg there are more constant terms involved. These terms will
be estimated and then eliminated from the equation (see subsection 2.5.2).
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Extrapolation with left boundary refinement
Until now we proved the extrapolation only for the refinement of the right support point. Analogously,
we obtain a formula for refinement of the left support point. Let (a, b) = (a0, b) the support of
the first trapezoid. Furthermore, let (a1, b) the support of the second trapezoid for a1 = a0+b

2 . For

notational convenience we abbreviate Hi := H(b)
i = b− ai for i ∈ {0, 1}.

We obtain the following with theorem 2.4.4:

Tb
a0
(Si) = I( f ) + (a0 −m)C(b)

1,1 +
(a0 −m)2

H0
C(b)

2,1 −
a0 −m

H0
C(b)

3,1 (I)

+ (a0 −m)2C(b)
1,2 +

(a0 −m)3

H0
C(b)

2,2 −
a0 −m

H0
C(b)

3,2 − C2 + . . .

Tb
a1
(Si) = I( f ) + (a1 −m)C(b)

1,1 +
(a1 −m)2

H1
C(b)

2,1 −
a1 −m

H1
C(b)

3,1 (II)

+ (a1 −m)2C(b)
1,2 +

(a1 −m)3

H1
C(b)

2,2 −
a1 −m

H1
C(b)

3,2 − C2 + . . .

To continue we multiply again crosswise with the support width Hi:

H2
1 · Tb

a0
(Si) = H2

1 · I( f ) + H2
1 · (a0 −m)C(b)

1,1 +
H2

1 · (a0 −m)2

H0
C(b)

2,1 −
H2

1 · (a0 −m)

H0
C(b)

3,1 (I*)

+ H2
1 · (a0 −m)2C(b)

1,2 +
H2

1 · (a0 −m)3

H0
C(b)

2,2 −
H2

1 · (a0 −m)

H0
C(b)

3,2 − H2
1 · C2 + . . .

H2
0 · Tb

a1
(Si) = H2

0 · I( f ) + H2
0 · (a1 −m)C(b)

1,1 +
H2

0 · (a1 −m)2

H1
C(b)

2,1 −
H2

0 · (a1 −m)

H1
C(b)

3,1 (II*)

+ H2
0 · (a1 −m)2C(b)

1,2 +
H2

0 · (a1 −m)3

H1
C(b)

2,2 −
H2

0 · (a1 −m)

H1
C(b)

3,2 − H2
0 · C2 + . . .

Finally,
(
(I∗)− (I I∗)

)
÷
(

H2
1 − H2

0

)
yields:

H2
1 · Tb

a0
(Si)− H2

0 · Tb
a1
(Si)

H2
1 − H2

0

= I( f ) +
H2

1(a0 −m)− H2
0(a1 −m)

H2
1 − H2

0
C(b)

1,1 +

H2
1 ·(a0−m)2

H0
− H2

0 ·(a1−m)2

H1

H2
1 − H2

0
C(b)

2,1 +

H2
0 ·(a1−m)

H1
− H2

1 ·(a0−m)
H0

H2
1 − H2

0
C(b)

3,1

+
H2

1(a0 −m)2 − H2
0(a1 −m)2

H2
1 − H2

0
C(b)

1,2 +

H2
1 ·(a0−m)3

H0
− H2

0 ·(a1−m)3

H1

H2
1 − H2

0
C(b)

2,2 +

H2
0 ·(a1−m)

H1
− H2

1 ·(a0−m)
H0

H2
1 − H2

0
C(b)

3,2

− C2 + . . .

By rearranging the terms we obtain the final result

I( f ) =
H2

1 · Tb
a0
(Si)− H2

0 · Tb
a1
(Si)

H2
1 − H2

0

− H2
1(a0 −m)− H2

0(a1 −m)

H2
1 − H2

0
C(b)

1,1 −
H2

1 ·(a0−m)2

H0
− H2

0 ·(a1−m)2

H1

H2
1 − H2

0
C(b)

2,1 −
H2

0 ·(a1−m)
H1

− H2
1 ·(a0−m)

H0

H2
1 − H2

0
C(b)

3,1

− H2
1(a0 −m)2 − H2

0(a1 −m)2

H2
1 − H2

0
C(b)

1,2 −
H2

1 ·(a0−m)3

H0
− H2

0 ·(a1−m)3

H1

H2
1 − H2

0
C(b)

2,2 −
H2

0 ·(a1−m)
H1

− H2
1 ·(a0−m)

H0

H2
1 − H2

0
C(b)

3,2

+ C2 − . . .

where Hi = b− ai for i ∈ {0, 1}.
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The above-mentioned derivation only showed one step of the extrapolation process for each of both
cases. Now we would like to briefly sketch the idea for multiple extrapolation steps. Suppose we
should perform an extrapolation with three step widths h0, h1, h2. Similar to Romberg’s table (see 2.1)
we combined the result from h0 with the one from h1. The result of the previous extrapolation is
combined with the result of the combination from h1 and h2. In total, we obtain the following result:

Extrapolation of a generic support sequence
Thus far we have distinguished between two cases of extrapolation, depending on the type of support
boundary refinement. Now we are going to merge these two cases into one extrapolation formula.
Similar to equation 2.1.3 we obtain for a slice Si = [xi, xi+1] of level m ≥ 0:

T̂(Si) :=
m

∑
j=0

cm,j · T
bj
aj (Si), with cm,j =

m

∏
k=0,
k 6=j

H2
k

H2
k − H2

j
(2.4.7)

where (aj, bj) is the support sequence element of level m for Si.

Other possible extrapolations
We have also tried other extrapolation steps, such as

I( f ) ≈ H0 · Tb0
a (Si)− H1 · Tb1

a (Si)

H0 − H1
and I( f ) ≈

H0
(a0−m)2 · Tb

a0
(Si)− H1

(a1−m)2 · Tb
a1
(Si)

H0
(a0−m)2 − H1

(a1−m)2

for the right and left boundary refinement respectively. These formulas are obtained through different
combinations of the above-mentioned equations (I) and (I I). The idea was to factor different terms
in equation 2.4.7, depending of the type of refinement. For H̃j := Hj

(aj−m)2 we investigated:

cm,j =
m

∏
k=0,
k 6=j


Hj

Hj−Hk
, for a right boundary refinement

H̃j

H̃j−H̃k
, for a left boundary refinement

Despite having a simpler extrapolation representation they did not converge as quickly in our test
cases as in the previous method.

Example (continued)
Now we are going to continue the example of section 2.4.1 by extrapolating the weights of table 2.2.
The slice S0 = [0, 1

2 ] has the weights w(0)
0 = 3

8 , w(0)
1 = 1

8 for level 0 and w(1)
0 = 1

4 , w(1)
1
2

= 1
4 for level 1.

Using formula 2.4.7 we obtain:

T̂(S0) =
1

∑
j=0

c1,j · T
bj
aj (Si) = c1,0 · Tb0

a0
(Si) + c1,1 · Tb1

a1
(Si)

= c1,0 · (w(0)
0 · f (0) + w(0)

1 · f (1)) + c1,1 · (w(1)
0 · f (0) + w(1)

1
2
· f ( 1

2 ))

=
(

c1,0 · w(0)
0 + c1,1 · w(1)

0

)
︸ ︷︷ ︸

=: ŵ
[0, 1

2 ]
0

· f (0) + c1,1 · w(1)
1
2︸ ︷︷ ︸

=: ŵ
[0, 1

2 ]
1
2

· f ( 1
2 ) + c1,0 · w(0)

1︸ ︷︷ ︸
=: ŵ

[0, 1
2 ]

1

· f (1)
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Now we have found a respresentation of the extrapolated weights for S0 which is grouped for each
grid point (where c0,1, c1,0, c1,1 are computed like in formula 2.4.7):

ŵ[0, 1
2 ]

0 = − 1
3 ·

3
8 +

4
3 ·

1
4 = − 1

8 +
1
3 = 5

24

ŵ[0, 1
2 ]

1
2

= 4
3 ·

1
4 = 1

3

ŵ[0, 1
2 ]

1 = − 1
3 ·

1
8 = − 1

24

The extrapolated weights of the other slices can be computed analogously. The results of these
computations are summarized in the next table:

S0 = [0, 1
2 ] S1 = [ 1

2 , 5
8 ] S2 = [ 5

8 , 3
4 ] S3 = [ 3

4 , 1] ŵi = ∑3
k=0 ŵSk

i

x0 = 0 ŵS0
0 = 5

24 − 1
51840 − 1

72576
1

1440
79

378

x1 = 1
2

1
3

2227
45360 − 1

80 − 1
36

194
567

x2 = 5
8 – 256

2835
256
2835 – 512

2835

x3 = 3
4 – − 2

135
26

567
8
45

592
2835

x4 = 1 − 1
24

53
120960

493
362880

143
1440

337
5670

Table 2.3: Sliced trapezoidal rule example: summary of all extrapolated weights

Finally, we are able to compute the integral approximation:

I( f ) =
4

∑
i=0

ŵi · f (xi)

= 79
378 · 1 +

194
567 ·

5
4 +

512
2835 ·

381
256 +

592
2835 ·

59
32 +

337
5670 · 3 = 1388

945 ≈ 1.469

Whereas the analytical solution would be
∫ 1

0 2 · x3 + 1dx = [ 1
2 x4 + x]10 = 3

2 = 1.5.

Exploitation of full grids: Thus far, we have ignored the fact that the grid [0, 1
2 , 5

8 , 3
4 , 1] contains a

partial full grid structure. Specifically, we partition the grid into containers:

Containers: C0 = [0, 1
2 ] C1 = [ 1

2 , 5
8 , 3

4 ] C2 = [ 3
4 , 1]

Levels: [0, 1] [1, 3, 2] [2, 0]

Normalized levels: [0, 0] [0, 1, 0] [0, 0]

Table 2.4: Example: Exploitation of the full grid structure

With this trick it is now possible to execute the sliced Romberg method in C0 and C2 separately.
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We can furthermore execute the default weight-based Romberg method in C1 with normalized levels:

ŵ∗1 := ŵ∗3 :=
1

∑
j=0

c1,j · H
2j+1 = c1,0 · ( 3

4 −
1
2 ) ·

1
2 + c1,1 · ( 3

4 −
1
2 ) ·

1
4 = 1

24

ŵ∗2 :=
1

∑
j=1

c1,j · H
2j = c1,1 · ( 3

4 −
1
2 ) ·

1
4 = 1

6

The new extrapolated total weights are given by the sum of some old weights from table 2.3 and the
above computed new weights:

ŵ0 = ŵ[0, 1
2 ]

0 + 0 + ŵ
[
3
4 ,1]

0 = 5
24 +

1
1440 = 301

1440

ŵ1 = ŵ[0, 1
2 ]

1 + ŵ∗1 + ŵ
[
3
4 ,1]

1 = 1
3 +

1
24 + (− 1

36 ) =
25
72

ŵ2 = ŵ[0, 1
2 ]

2 + ŵ∗2 + ŵ
[
3
4 ,1]

2 = 0 + 1
6 + 0 = 1

6

ŵ3 = ŵ[0, 1
2 ]

3 + ŵ∗3 + ŵ
[
3
4 ,1]

3 = 79
360

ŵ4 = ŵ[0, 1
2 ]

4 + 0 + ŵ
[
3
4 ,1]

4 = 83
1440

In total, we achieve a better approximation than before:

I( f ) =
4

∑
i=0

ŵi · f (xi) =
79241
53760 ≈ 1.474

However, the default weight-based Romberg method on the full grid F = [0, 1
4 , 1

2 , 3
4 , 1] computes the

exact analytical value. The sliced Romberg method is also exact on the grid F. Thus the missing
point 1

4 in the penultimate grid detoriates the approximations. In the following our goal is to further
improve our adaptive extrapolation method by increasing the order in each slice.

2.5 Further improvements

Building upon the previous results about weight-based and adaptive extrapolation we want to
propose several improvements of this technique. An naive but very effective approach is Grid
Balancing, which is explained in subsection 2.5.1. Another possibility exploits the above derived error
expansion of the sliced trapezoidal rule in the extrapolation process (subsection 2.5.2). Our third idea
(subsection 2.5.3) uses an interpolatory approach of promising missing grid points in combination
with a suitable grouping of subgrids. Finally, we investigate extrapolation using Simpon’s rule
instead of the trapezoidal rule as a base rule (subsection 2.5.4).

2.5.1 Grid balancing

In the previous example we mentioned that our sliced extrapolation method also achieves exactness
on a full grid of level 2. Hence, we investigated how the method performs on balanced grids. This
grid type is characterized by the following property: each inner grid point has either zero or two
children in the refinement graph. This is illustrated in the next figure:
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(a) Example of an unbalanced grid (b) Example of the transformed balanced grid

(c) Example of an unbalanced tree (d) Example of the transformed balanced tree

Figure 2.8: Comparison of unbalanced and balanced grids (and their refinement trees)

Although naturally this leads to more points it improves the results significantly in respect to the
approximation error (see chapter 5). In the example of the previous section the balanced grid
[0, 1

4 , 1
2 , 5

8 , 3
4 , 7

8 , 1] achieves exactness using the adaptive method whereas without balancing there is
still a small error. This idea of grid balancing has been investigated by other authors, e.g. from [Dir00,
p.24], in the context of piece-wise Gauss basis functions. More information about this comparison is
compiled in chapter 5.

2.5.2 Subtraction of extrapolation constants

Another proposition to improve the extrapolation results is subtracting appropriate terms of the error
expansion. In section 2.4.3 we derived an extrapolation formula for the sliced trapezoidal rule. Its

error representation depends on several constants. Each constant contains a factor of the form f (k)(m)
k!

for k ≥ 0, where m ∈ R is the midpoint of the slice. Since the function value of f at the point m is
in general not available, it is necessary to approximate f (k)(m). This is, for example, achieved with
Lagrange interpolation [Hea02, p.367].
To explain some important aspects about this extrapolation improvement we refer to the previous
example. For the constant subtraction in S0 = [0, 1

2 ] we need:

f (m) =
4

∑
i=0

Li(m) · f (xi) with Li(m) =
4

∏
j=0,
j 6=i

m− xj

xi − xj

where m =
0+ 1

2
2 = 1

4 . This expression can be differentiated, to obtain f (k)(m). Hence, each constant
is now expressed as a weighted sum with factors that only depend on the support points.
In each extrapolation step these constants are taken into account. Depending on the extrapolation
type (left or right) the necessary constants are constructed. Since these constants are a weighted
sum of support points it is possible to distribute their contributions onto the extrapolation weights.
Therefore this procedure adjusts the extrapolated weights according the error expansion of the
extrapolation step.
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2.5.3 Grid interpolation

In the last example it has been shown that the adaptive extrapolation method approximates the
integral decently (taken into account that there are certainly fewer points than using a full grid). To
improve this method, the idea of exploiting partial subgrids will now be extended by increasing the
order of some subgrids. Promising missing grid points are interpolated and their contributions are
distributed to the weights of the surrounding non-interpolated grid points.
Since the generic construction of this construction is rather complex we will only explain the
underlying idea by continuing the example from above. Through interpolation of the missing point
x1 = 1

4 of level 2 (colored in red), we increase the order in the first half of the grid.

(a) Adaptive grid (b) Adaptive interpolated grid

Figure 2.9: Comparison of an adaptive grid and an interpolated adaptive grid

Obviously, it would be inefficient to interpolate all missing grid points which would in this example,
provide a full grid of level 3. Instead, suitable candidates for interpolation points are determined
by partitioning the grid in multiple subgrids. Some of those algorithms are explained in chapter 4.
The philosophy is to interpolate as few points as possible but as many as necessary to achieve good
results in a broad range of test functions.
For the interpolation there are a multitude of possibilities, for example Lagrange Interpolation
[Hea02, p.316] or B-Splines [Hea02, p.330]. For simplicity we will explain the extrapolation method
using Lagrange Interpolation. After suitable interpolation points are determined (see figure 2.9b),
the Lagrange Basis is constructed with suitable support points (see chapter 4):

L0(x) =
4

∏
j=0,
j 6=0

x− xj

x0 − xj
, L1(x) =

4

∏
j=0,
j 6=1

x− xj

x1 − xj
, . . . , L4(x) =

4

∏
j=0,
j 6=4

x− xj

x4 − xj

where the grid is given by G = [x0, x1, x2, x3, x4] := [0, 1
2 , 5

8 , 3
4 , 1]. Hence the interpolation polynomial

is given by p(x) = ∑4
i=0 Li(x) · f (xi) and

p( 1
4 ) =

3
20 · f (x0) +

9
2 · f (x1) + (− 32

5 ) · f (x2) + 3 · f (x3) + (− 1
4 ) · f (x4) =

33
32

p( 7
8 ) = −

1
160 · f (x0) +

7
16 · f (x1) + (− 7

5 ) · f (x2) +
7
4 · f (x3) +

7
32 · f (x4) =

599
256

Since f (x) = 2x3 + 1 has degree deg( f ) = 3 the interpolation is exact in this example. Obviously
this is not always the case for more complex functions. By including the interpolated points and
partitioning the grid into two subgrids

G1 = [x0, xp0 , x1] := [0, 1
4 , 1

2 ]

G2 = [x1, x2, x3, xp1 , x4] := [ 1
2 , 5

8 , 3
4 , 7

8 , 1]

we can now execute two separate extrapolations on the full grids G1 and G2 with normalized levels.
In this example we extrapolate using formula 2.3.1:
The weight proportion of the interpolated points x ∈ { 1

4 , 7
8} is distributed to the support points of

the interpolation. Each non-interpolated grid point xi (0 ≤ i ≤ 4) has a total extrapolated weight of
ŵi = wi + w′i, where wi is given through formula 2.3.1 and w′i = wi ·∑x∈{ 1

4 , 7
8 }

Li(x).

The reason for this combination is best explained using an area-based extrapolation instead of
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weight-based extrapolation: Firstly, we extrapolated on G1. The composite trapezoidal rules for
h0 = 1

2 and h1 = 1
4 are

T(h0) =
h0
2 ( f (x0) + f (x1)) + h0 ·

20−1

∑
i=1

f (x0 + i · h0) =
h0
2 ( f (x0) + f (x1)) =

9
16

T(h1) =
h1
2 ( f (x0) + f (x1)) + h1 ·

21−1

∑
i=1

f (x0 + i · h1) =
h1
2 ( f (x0) + f (x1)) + h1 · f ( 1

4 )

≈ h1
2 ( f (x0) + f (x1)) + h1 · p( 1

4 ) =
69
128

Through extrapolation with formula 2.1.3 we obtain:

T1(0) =
1

∑
j=0

c1,j · T(hj) = c1,0 · T(h0) + c1,1 · T(h1) = − 1
3 ·

9
16 +

4
3 ·

69
128 = 17

32

Instead of formula 2.1.3 it would also possible to use the sliced extrapolation from subsection 2.4.3.
Since the interpolation is exact and an extrapolation on G1 is exact (deg( f ) = 3), this “approximation”
is equal to the analytical solution

∫ 1/2
0 f (x) dx. By the previous calculation we recognize the structure

of the weight-based interpolated extrapolation: Each non-interpolated grid point has, for one, an
extrapolated weight wi. In addition, all new weight proportions are added to wi for which this point
xi is an support point for the interpolations. Thus we obtain ŵi = wi + w′i.
The extrapolation on G2 is carried out analogously. For h0 = 1

2 , h1 = 1
4 , h2 = 1

4 we obtain

T(h0) =
h0
2 ( f (x1) + f (x4)) + h0 ·

20−1

∑
i=1

f (x1 + i · h0) =
17
16

T(h1) =
h1
2 ( f (x1) + f (x4)) + h1 ·

21−1

∑
i=1

f (x1 + i · h1) =
127
128

T(h2) =
h2
2 ( f (x1) + f (x4)) + h2 ·

22−1

∑
i=1

f (x1 + i · h2) =
499
512

Again it holds that p( 7
8 ) = f ( 7

8 ), for an interpolation polynomial p constructed with Lagrange
Interpolation through 0, 1

2 , 5
8 , 3

4 , 1, is similar to the previous construction on G1. Extrapolation gives:

T2(0) =
2

∑
j=0

c2,j · T(hj) = c2,0 · T(h0) + c2,1 · T(h1) + c2,2 · T(h2)

= 1
45 ·

17
16 + (− 4

9 ) ·
127
128 +

64
45 ·

499
512 = 31

32

In total we obtain the exact result on the domain [0, 1] with 17
32 +

31
32 = 48

32 = 1.5, since both partial
results are exact.
It is noteworthy that the extrapolation method with interpolation and without using constant
subtraction is not always exact on an unbalanced interpolated grid (e.g. without the interpolated
point xp1 =

7
8 ). This is due to the fact that not all errors cancel each other out.

This concludes the example. As mentioned previously, it is also possible to use other interpolation
methods. For more information about the algorithmic implementation see chapter 4.
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2.5.4 Romberg’s method using Simpson’s rule

Romberg’s orginal method leverages the composite trapezoidal rule as base rule. These results are
registered in the first column of Romberg’s table (see table 2.1). The second column consists of
composite Simpson’s rules and the third column contains Boole’s rules [Eng80, p.373].
Thus, one might try to skip the first column, which is the first extrapolation step, by using composite
Simpson’s rules as a base of the extrapolation process. The base rule is defined as [DR07, p.58]:

Definition 2.5.1: Composite Simpson’s rule

Let Ω = [a, b] be the integration domain and h = b−a
n for an even n ∈ {2, 4, 6, . . . }. Then we

define the composite Simpson’s rule by

S(h) =
h
3

(
f (x0) + f (xn) + 2

n/2−1

∑
k=1

f (x2k) + 4
n/2

∑
k=1

f (x2k−1)
)

,

where xi = a + i · h for all 0 ≤ i ≤ n− 1.

Similar to section 2.3, we obtain the following extrapolated weights:

wi =


1
3 ∑m

j=0 cm,j · hj, for i = 0, 2m

4
3 cm,ihi +

2
3 ∑m

j=li+1 cm,j · hj, else
(2.5.1)

for equidistant x0, . . . , x2m with m ≥ 0. An Euler-Maclaurin formula for the Simpson’s rule is given
by [Luc, p.10]

Theorem 2.5.1: Euler-Maclaurin formula (Simpson’s rule)

Let Ω = [a, b], f ∈ C∞([a, b]) and xi = a + i · h for 0 ≤ i ≤ n and h = b−a
n . Then it holds

S(h) =
∫ b

a
f (t)dt +

4
3

∞

∑
k=2

τ2k · h2k

with τ2k =
(4k−1−1)B2k

(2k)! [ f (2k−1)]ba.

Thus the first order of Simpson’s rule is 2 · 2 = 4. The error expansion contains the following powers
of h: h4, h6, h8, h10, . . . which differs from the expansion of the trapezoidal rule. This relationship
must be taken into account when defining the cm,j for formula 2.5.1.
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2.6 Related work

Many functions do not fulfill certain smoothness criteria or have different characteristics in some
sub-intervals. Examples are, among others, functions that highly oscillate in one subinterval and are
close to constant in other intervals. The result of the integral approximation can then be improved by
using adaptive methods.

Adaptive Romberg method (from Prager): Prager introduced an adaptive variant of the Romberg-
Quadrature [DR07, p.442] for one dimension.
Let f , a, b be defined as before and n > 0. First we select h ≥ 0 so that [a, a + h] ⊂ Ω and h ≤ 4.
Now Romberg’s table can be constructed to approximate

∫ a+h
a f (x) dx. If T0,k and T0,k−1 have at least

n figures in common, then the computation for this subinterval is terminated and the result T0,k
accepted. To determine the width h for the new subinterval the following cases are differentiated:

h :=


3
2 · h if the sub-interval terminated with k = 1
3
5 · h if the sub-interval terminated with k = 4

1 · h else

In each case the computation proceeds to the next subinterval. If however T0,4, T0,3 have less than
n figures in common, h is decreased to 3

5 · h and Romberg’s table for this smaller subinterval is
constructed. Finally the amount of subintervals is restriced by 8·(b−a)

h otherwise the algorithm exits
with an error.

Adaptive Romberg method (from Genz): Genz [Gen72] describes the method for one dimensional
cases as follows: Initially the whole integration interval [a, b] is considered. Subsequently we
approximate the integral value using a suitable low order rule and denote the result with S0.
Afterwards the same rule is applied to [a, a+b

2 ] and [ a+b
2 , b] where S1 denotes the sum of both sub-

interval results. Thereafter each sub-interval is halved again and the sum of all four approximations
is defined as S2.
In general terms, let i(p−1)

k be defined as the k-th sub-interval in the iteration step p− 1. Then this

interval is halved into the two sub-intervals i(p)
2k−1 and i(p)

2k in the next iteration step p. Furthermore

R(p)
k is defined as result of a low order quadrature rule applied to i(p)

k . With this notation it follows:

Sp = ∑2p

k=1 R(p)
k for each iteration step p ≥ 1.

The approximation error e(p)
k in sub-interval k in iteration p is estimated using error estimators:

1. Terminate the computation on this sub interval, if e(p)
k < α ·

∣∣∣R(p)
k − (R(p+1)

2k−1 + R(p+1)
2k )

∣∣∣. Usually
α = 1. The result of the whole interval is compared with the sum of its two halved children.

2. Let R∗ be another low order quadrature rule. The computation on a sub-interval is terminated
if e(p)

k < α ·
∣∣∣R(p)

k − R∗ (p)
k

∣∣∣. In this case α > 1 is usually chosen.

Let Gp contain the sum of all contributions of sub-intervals where the computation is already finished
(convergence has already been obtained) for iteration step p. Furthermore, let E be the total error
estimate in this step. We apply the low order quadrature rule only to sub-intervals that are still
under consideration (meaning convergence has not been obtained).
We obtain the following relation for each iteration step p:

Sp =
np

∑
k=1

R(p)
k + Gp−1 and εp+1 =

E− Ep

np+1

30



2 Romberg-Quadrature

The subdivision in a region can be stopped if e(p)
k < εp. The previous method can be enhanced

by using Richardson extrapolation for a specific type of functions (with high order continuous
derivatives). After all the error expansion of Sp is not effected significantly by the adaptive method
[Gen72, p.13]. Thus we can use Romberg’s method on the results Sp.

Adaptive quadrature of higher order (from Bonk): T. Bonk presented a method which combines
the generalized Romberg-Quadrature with the generalized Archimedes quadrature [Bon95, p.68]
[Bon94, p.62] . Since both quadrature methods operate on Sparse Grids it is convenient to store grid
points in a tree data structure. One major problem that needs to be addressed is how to handle
missing grid points in the extrapolation process due to the adaptive nature of the Archimedes
quadrature.
The one-dimensional case can be summarized, as follows, using a scheme based on the midpoint rule:
Let Ω = [a, b]. First we compute the midpoint rule of the root node M using n = 1 and h = b− a.
The approximation M̂0 = M0( f ) = M f (h) = h · f (a + 1

2 h) will be stored as first entry in the list of
node M.

Figure 2.10: Adaptive quadrature of higher order (one-dimensional-case).
Taken from [Bon94, p.62].

In the second iteration, the integration domain Ω is halved into two sub-intervals IL = [a, a+b
2 ] and

IR = [ a+b
2 , b], resulting in Ω = IL ∪ IR. For each sub-interval the midpoint sum is computed with

h = b−a
2 . The results are stored as the first list element in node L or respectively R.

M(L)
0 = h · f

(
3a + b

4

)
or respectively M(R)

0 = h · f
(

a + 3b
4

)
(2.6.1)

Based upon M(L)
0 and M(R)

0 we extrapolate M̂1 and store the difference M̂1 − M̂0 as second list
item in node M. Consequently, the extrapolated value M̂1 is of order O(h4). The third iteration
halves each sub-interval IL and IR again. This results in extrapolated values of order O(h4) in each
sub-interval IL and IR. Each improvement is stored as second element in the respective list of node L
or R. With this values one can extrapolate an approximation of order O(h6) at node M and store the
improvement as third element in the list of node M. This interval splitting is carried on recursively
leading to results of higher order.
Finally, a termination criterion for the sub-interval splitting is required: When the absolute value of
the last improvement is smaller than a given tolerance ε > 0, a stop flag will be set and this sub-tree
will not be considered in the next iterations. Unfortunately some improvements for the extrapolation
might be missing as a result of the adaptivity. Thus the improvements for all higher orders in the list
of this node are set to zero. If all nodes have a stop flag assigned, the procedure stops and returns the
approximation of highest order. This method can be generalized to multiple dimensions by splitting
the domain in each dimension which results in a multidimensional tree.
Further information can be found in [Bon94, p.63] and [Bon95, p.75].
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Generalizing the Archimedes quadrature and using the Cavalieri Principle leads naturally to Sparse Grids
[Bon95]. First we will summarize an intuition about Sparse Grids before the generic construction of
Sparse Grids will be presented. Subsequently, we summarize important aspects of the Sparse Grid
Combination Technique.

3.1 Intuition: Generalized Archimedes quadrature

This section summarizes the method presented in [Bon95, pp. 6].

One-dimensional case
Let f : R→ R, a, b ∈ R, a < b. The goal is to determine F1( f , a, b) =

∫ b
a f (x) dx. Firstly, we divide

the enclosed area into two sub-problems T1 and S1.

Figure 3.1: Method of exhaustion. Taken from [Bon95, p.7].

Hence it holds: F1( f , a, b) =
f (a) + f (b)

2
(b− a)︸ ︷︷ ︸

T1

+S1( f , a, b).

Besides, the area of the inscribed triangle D1 is given by

D1( f , a, b) =
(

f
(

a + b
2

)
− f (a) + f (b)

2

)
· b− a

2
.

The following recursive relation holds with hierarchical surplus g1( f , a, b) = f
(

a+b
2

)
− f (a)+ f (b)

2 :

S1( f , a, b) =


g1( f , a, b) · b−a

2 , if
∣∣g1( f , a, b)

∣∣ ≤ εtol

g1( f , a, b) · b−a
2 + S1

(
f , a, a+b

2

)
+ S1

(
f , a+b

2 , b
)

, else

for an εtol > 0. A noteworthy fact is that the result of the above rule is a trapezoidal rule with
step width h = b−a

2m and 2m + 1 equidistant support points if the recursion is bounded by m > 0
incarnations.
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Two-dimensional case
Let f : R2 → R, ai, bi ∈ R, ai < bi for i ∈ 1, 2. This time our goal is to determine
F2( f , a1, a2, b1, b2) =

∫ b1
a1

∫ b2
a2

f (x1, x2) dx2 dx1

Figure 3.2: Cavalieri’s Principle. Taken from [Bon95, p.9]

By applying Cavalieri’s Principle we reduce the problem to the one-dimensional case:

F2( f , a1, a2, b1, b2) = F1

(
f (x1, a2) + f (x1, b2)

2
· (b2 − a2)︸ ︷︷ ︸

T2(x1)

, a1, b1

)
+ S2( f , a1, a2, b1, b2)

Furthermore, we get D2(x1) =

(
f
(

x1, a2+b2
2

)
− f (x1,a2)+ f (x1,b2)

2

)
· b2−a2

2 .

Let g2( f , a1, a2, b1, b2) = g1( f (x1, a2+b2
2 ), a1, b1)− 1

2 · (g1( f (x1, a2), a1, b1) + g1( f (x1, b2), a1, b1)) be the
two dimensional hierarchical surplus. Then the following recursion holds:

S2( f , a1, a2, b1, b2) =



F1(D2(x1), a1, b1), for
∣∣g2( f , a1, a2, b1, b2)

∣∣ ≤ εtol

F1(D2(x1), a1, b1)

+ S2

(
f , a1, a2, b1, a2+b2

2

)
+ S2

(
f , a1, a2+b2

2 , b1, b2

)
, otherwise

for an εtol > 0.
Let us consider the examples f : [−1, 1]2 → R, f (x1, x2) = x2

1 · x2
2 with εtol = 10−3 and

g : [−8, 8]2 → R, f (x1, x2) = ex1+x2 with εtol = 103 [Bon94]. The following figure displays the
evaluated points of f at the left side and g at the right:

Figure 3.3: Sparse Grids for f (left) and g (right). Taken from [Bon94, p.58].
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n-dimensional case
Let f : Rn → R, ai, bi ∈ R, ai < bi for 1 ≤ i ≤ n. Finally the goal is to determine the n-dimensional
integral Fd( f , a1, . . . , an, b1, . . . , bn) =

∫ b1
a1
· · ·
∫ bn

an
f (x1, . . . , xn) dxn . . . dx1. The above-mentioned

formulas can be generalized by applying the idea of the two dimensional case using Cavalieri’s
Principle. For more information see [Bon95, p.9].

3.2 Hierarchical basis and Nodal basis

In this section we will explain the necessary concepts for the construction of Sparse Grids [Dir00]
[Gar13] [GG10] [Pfl10]. Our first goal is to interpolate a function f : Ω→ R using piece-wise d-linear
functions for d ≥ 1. Furthermore, we will restrict ourselves to Ω = [0, 1]d, because other domains
might be transformed to the d-dimensional unit cube using a suitable transformation function.
Additionally, we assume f (x) = 0 for all x ∈ ∂Ω (all function values in boundary points are 0).
Pursuing Archimedes’ idea of inscribing triangles we first define the following term for d = 1.

Definition 3.2.1: Standard hat function

Let ϕ : R→ R, φ(x) := max(1−|x| , 0). Then we call φ the Standard hat function.

Using one-dimensional piece-wise linear basis functions ϕi(x) and step size hn = 2−n we are able to
interpolate a function f : [0, 1] → R with f (x) ≈ u(x) := ∑i αi ϕi(x) for certain coefficients αi ∈ R.
Through translation and dilatation we define:

Definition 3.2.2: One-dimensional hat function

Let l ≥ 1 denote a level, 1 ≤ i ≤ 2l an index, and hl = 2−l the step size of level l. Then we call

ϕl,i(x) := ϕ

(
x− i · hl

hl

)
= ϕ(h−1

l · x− i) = ϕ(2l · x− i) (3.2.1)

the One-dimensional hat function of level l and index i. Moreover, we define the Space of piece-wise
linear functions of level l ≥ 1 as

Vl := span{ϕl,i | 1 ≤ i ≤ 2l − 1}. (3.2.2)

Let xl,i denote the grid point xl,i = i · hl for 0 ≤ i ≤ 2l . The function ϕl,i has xl,i in its center of
support given [xl,i − hl , xl,i + hl ]. This family of basis functions is also called Nodal basis [GG10].
Unfortunately one disadvantage of the Nodal basis is that basis functions overlap.

(a) Using the Nodal basis.
Taken from [Pfl10, p.7].

(b) Using the Hierarchical basis.
Taken from [Pfl10, p.9].

Figure 3.4: Comparison of piece-wise linear interpolation for d = 1, h3 = 2−3.
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If another basis is chosen, it is possible to reduce the number of basis functions and omit basis
functions that have less contribution to the interpolation (small support).

Figure 3.5: Comparison between the Hierarchical basis (left) and Nodal basis (right) for ϕl,i
where d = 1 and 1 ≤ l ≤ 3. Taken from [Pfl10, p.9].

Now we are able to define the Hierarchical increment spaces.

Definition 3.2.3: Hierarchical increment spaces, Hierarchical basis

Let l ≥ 1, Vl := span{ϕl,i | 1 ≤ i ≤ 2l − 1}, and Il := {i ∈ N | 1 ≤ i ≤ 2l − 1 ∧ i odd}. We
define the Hierarchical increment space of level l as

Wl :={ϕl,i | i ∈ Il} (3.2.3)

Moreover, we call the basis of Wl Hierarchical basis of level l.

For level l ≥ 1 it holds Vl =
⊕

k≤l Wk (compare with figure 3.5). Thus it is possible to interpolate the
above function f for a level l ≥ 1 through u, defined by:

f (x) ≈ u(x) :=
l

∑
k=1

∑
i∈Ik

αk,i · ϕk,i(x) (3.2.4)

with hierarchical surpluses αk,i ∈ R. In more detail, this theorem holds [Gar13, p.6] 1:

Theorem 3.2.1: Hierarchical surplus

Let f be a function with bounded second derivative. Then we can compute the hierarchical
surpluses:

αl,i := f (xl,i)−
f (xl,i−1) + f (xl,i+1)

2
=
∫

Ω
−hl

2
· ϕl,i(x) · f ′′(x) dx

1https://www5.in.tum.de/lehre/vorlesungen/asc/ss13/hierarch_integral_representation.pdf
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3 Sparse Grids

Generalisation to n dimensions (using tensor product construction)
Now we consider d > 1 but still with the above restrictions to Ω and ∂Ω. First of all, we introduce
several notations for convenience:

Definition 3.2.4: Multi-dimensional level vector, step-width, grid point

Let d > 1. We define the multi-dimensional level vector l := (l1, . . . , ld) where the level of
dimension k is defined by lk ≥ 1 for all 1 ≤ k ≤ d.
Analogously, the step width hl of level l is given by the multi-index hl := 2−l := (h1, . . . , hd).
Furthermore, we define the grid point xl,i of level l and index i as

xl,i := (xl1,i1 , . . . , xld,id)

for 1 ≤ i ≤ 2l − 1 where 1 denotes the vector (1, . . . , 1) ∈ Rn, 2l := (2l1 , . . . , 2ld)

and ∀o = (o1, . . . , od), p = (p1, . . . , pd) : o ≤ p ⇔ (∀1 ≤ k ≤ d : ok ≤ pk)

With this notational prepatory it is now possible to transfer the concepts of d = 1 to higher dimensions.

Definition 3.2.5: Multidimensional hat function

Let l ≥ 1, 1 ≤ i ≤ 2l , and hl = 2−l . Then we call

ϕl,i(x) :=
d

∏
k=1

ϕlk ,ik (3.2.5)

the Multi-dimensional hat function of level l and index i. Moreover, we define the Space of piece-wise
linear functions of level l ≥ 1 as

Vl := span{ϕl,i | 1 ≤ i ≤ 2l − 1}. (3.2.6)

This enables us to generalize the hierarchical increment spaces 3.2.3 to multiple dimensions:

Definition 3.2.6: Multidimensional hierarchical increment spaces, hierarchical basis

Let l ≥ 1, Vl := span{ϕl,i | 1 ≤ i ≤ 2l − 1}, and
Il := {i ∈ Nd | 1 ≤ i ≤ 2l − 1 ∧ ∀1 ≤ k ≤ d : ik odd}. We define the Hierarchical increment
space of level l as

Wl :={ϕl,i | i ∈ Il} (3.2.7)

Moreover, we call the basis of Wl Hierarchical basis of level l.

Just like in the one-dimensional case it holds by construction: Vl =
⊕

k≤l Wk. Thus we can interpolate
a function f : Ω→ R with the properties mentioned above for a level l ≥ 1 through u defined by:

f (x) ≈ u(x) :=
l

∑
k=1

∑
i∈Ik

αk,i · ϕk,i(x) (3.2.8)

with hierarchical surpluses αk,i ∈ R. The approximation error of this interpolations for sufficiently
smooth functions is

∥∥ f (x)− u(x)
∥∥

2 ∈ O(h
2
n) [Pfl10, p.10].
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(a) Hierarchical increment spaces.
Taken from [Pfl10, p.11].

(b) Selection of subspaces Wl .
Taken from [Pfl10, p.13].

Figure 3.6: Example of Hierarchical increment spaces and subspace selection for l ≤ 3 and d = 2

3.3 Construction of Sparse Grids

To obtain a Sparse Grid we follow the idea presented before: We select only those subspaces of Vl ,
whose basis functions have a non-negligible area of support. Expressed with other words, this means
basis functions with small support are ignored because they have small contribution to 3.2.8.
So, we obtain the following Sparse Grid space resulting from an optimization problem that was
discussed in detail by [BG04]:

Definition 3.3.1: Classical Sparse Grid space

Let n ≥ 1. We define the Classical Sparse Grid space of level n and dimension d as

V(1)
n :=

⊕
|l|1≤n+d−1

Wl

In the definition above |·|1 denotes the l-1 norm. This subspace selection is arranged in figure 3.6b
for n = 2 and d = 2. The left part of the figure displays the a priori selection of subspaces. The
subspaces below the dashed line are neglected in the construction. Whereas the right part of figure
3.6b shows the resulting sparse grid V(1)

3 . In contrast to this is the full grid space [GG10, p.3] specified
through Ṽ(1)

n =
⊕
|l|∞≤n Wl . This space is created if the gray subspaces below the dashed line in figure

3.6b would be considered too. In [BG04, p.26] the authors showed that this selection of subspaces is
optimal for the l-2 and l-∞ norm under a cost-benefit standpoint.
This construction diminishes the number of inner grid points to O(h−1

n · (log h−1
n )d−1) [BG04, p.27]

which is a significant improvement to O(h−d
n ). So far we have only considered the special case of

functions f with f (x) = 0 for all x ∈ ∂Ω.
For many applications it is advantageous to extrapolate to the boundaries by modifying the under-
lying basis functions [Pfl10, p.14]. This technique is usually promising for applications where the
accuracy at the boundary is not that important. Another solution to mitigate this boundary-problem
is to introduce another level l = 0. However, this has the disadvantage of increasing the number of
grid points drastically, because most of the points are located on the boundary ∂Ω.
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Original idea
The idea of sparse grids dates back to a Russian mathematician Smolyak [BG04, p.43 f.] [Dir00,
p.10]. His method is based on a tensor product construction of quadrature formulas Q(1)

n for n ∈N.
Q(1)

n is a sequence of simple quadrature rule on the subintervals [ i
pn , i+1

pn ] for 0 ≤ i ≤ pn − 1 and

p ≥ 2. Based on these univariate rules d-dimensional quadrature formulas Q(d)
n are constructed. He

investigated a class of the following type of quadrature rules:

Q(d)
n f =

( n

∑
i=0

(Q(1)
i −Q(1)

i−1)⊗Qd−1
n−i

)
f

where Q(1)
−1 is the constant 0-function. Figure 3.7 visualizes the resulting grid for the trapezoidal rule.

The left image grid has parameters p = 2, n = 8, the middle one has p = 3, n = 5, whereas the last
image has p = 4, n = 4.

Figure 3.7: Smolyak quadrature with univariate trapezoidal rule.
Taken from [BG04, p.44].

3.4 Combination Technique

The Combination technique first introduced by [GSZ92] enables us to circumvent the sometimes
difficult recursive data structures required by Sparse Grids. Each grid can be assembled by a linear
combination of an-isotropic full grids of different levels. Hence, it is no longer necessary to transcribe
already existing algorithms, so that they work on Sparse Grids, after all the algorithm may be
executed for each component grid of the combination scheme separately. The results from the
different component grids may then be combined using the appropriate coefficient for each grid.
This is a perfect application domain for parallelism because the computations can be performed
individually on each component grid [OB19].
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(a) Relation between the subspace combination and the
corresponding Sparse Grid. Taken from [GG10, p.4].

(1, 3)

(1, 2) (2, 2)

(2, 1) (3, 1)

l1

l 2

(b) Other visualization of the subspaces
from figure 3.8a. Taken from sparseSpACE.

Figure 3.8: Visualizations of the Sparse Grid Combination technique

Let |l|1 = n− q for 0 ≤ q ≤ d− 1 and l ≥ 0. The Combination technique considers grids Ωl with
the former restriction. From now on we will call those grids component grids. Leveraging piecewise
d-linear functions φl,i (nodal basis) we obtain for each component grid the interpolant [Gar13, p.17]:

fl(x) =
2l1

∑
i1=0
· · ·

2ld

∑
id=0

αl,iφl,i(x)

Finally, the results of each component grid are combined together by

f c
n(x) =

d−1

∑
q=0

(−1)q
(

d−1
q

)
∑

|l|1=n−q
fl(x)

By comparing the above-mentioned formula with figure 3.8b it is evident that some component grids
have a negative sign.
Having discussed several grid variants, the following table summarizes the approximation error and
corresponding grid points [Pfl10, p.20]:

Grid type Grid points Approximation error

Sparse Grids O(h−1
n (log h−1

n )d−1) O(h2
n(log h−1

n )d−1)

Sparse Grids Combination Technique O(d · (log h−1
n )d−1)×O(h−1

n ) O(h2
n(log h−1

n )d−1)

Full Grids O(h−d
n ) O(h2

n)

Table 3.1: Comparison of grid points and grid approximation error of different grid variants
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3.5 Adaptive refinement

Not all functions fulfill certain smoothness criteria. Some of them might have highly varying
properties. In these cases Sparse Grids might perform not ideal regarding their approximation error
and amount of evaluated grid points, due to the a priori choice of relevant subspaces. This is, for
example, due to the fact that each dimension and every region is considered equally important.
Hence, adaptive variants of the combination technique have been investigated. The underlying idea
is to decide during execution time which sub-spaces or grid points should be refined. This enables
the algorithm to treat different regions or dimensions with varying amounts of grid points.
Specifically this means to “spend more effort on rough and less effort on smooth regions” [Dir00,
p.20]. An important advantage is that usually fewer points are needed to achieve the same error as
using general Sparse Grids.

Dimensional adaptivity
One of the first, who introduced the idea of dimensional adaptivity was [GG03]. In real problems
some dimensions might contribute more to the solution than others. The dimension-adaptive
approach solves this issue by modifying the current index set in each iteration of the algorithm. More
specifically, certain indices are added to the active index set depending on the use of an appropriate
error estimator. In each iteration the index with the largest error estimate in the active set is to be
refined. The evolution of an exemplary refined grid is depicted in figure 3.9a. In the upper row
different states of the index set are depicted. Active indices are coloured darker. The indices with the
largest error estimate are encircled. In the second row the according sparse grids are shown using
the midpoint rule.

(a) Evolution of the dimensional adaptive algorithm.
Taken from [GG03, p.74].

(b) Evolution of spatial refinement steps.
Taken from [Pfl10, p.21].

Figure 3.9: Comparison of dimensional and spatial adaptivity

40



3 Sparse Grids

Spatial adaptivity
Whereas the previous technique tries to refine important dimensions, the spatial adaptive refinement
tackles functions with varying smoothness conditions in different domains [Pfl10]. This is commonly
achieved by refining individual grid points with large error estimates and adding all their hierarchical
children. Sometimes it is necessary to add missing hierarchical parents recursively because they
are necessary for the calculation of surpluses. An exemplary refinement process is shown in figure
3.9b. The red points are refined by adding all their hierarchical children recursively. In the second
refinement iteration, it is necessary to add all hierarchical parents (gray points).
Unfortunately, this procedure cannot be as seamlessly incorporated into the Combination Technique
as the previous dimensional adaptive procedure. Due to the nature of subspace selection, it is at first
only possible to add full sub-spaces. This stands in contrast to the spatial adaptive idea of refining
specific points individually.
However, M. Obersteiner developed the Split-Extend Scheme [OB19] that operates on a generalized
Combination Technique using block adaptive full grids. The two main operations are, as the name
suggests, splitting and extending. The former operates on refinement objects which are subareas
of the domain. Based on error estimators a refinement object is split into 2d subareas. Since this
operation has the tendency to converge to a full grid structure another operation called Extend has
been developed. By adding new sub-spaces (component grids) to the scheme and coarsening of
subareas the operation mitigates the development of a full grid structure.
The following figure depicts these two operations side by side:

(a) Starting the inital grid (left), two sequential Split operations are
executed. Taken from [OB19, p.9].

(b) Extend on the lower left quadrant.
Taken from [OB19, p.11].

Figure 3.10: The two main operations of the Split-Extend Scheme

A detailed explanation of this algorithm can be found in [OB19].
Additionally, a spatial adaptive algorithm with dimension-wise refinement has been presented in
[OB20]. Refinement objects are refined separately in each dimension instead of splitting the domain
in 2d children. After the refinement of each dimension the global scheme for the Combination
Technique is constructed. Visually speaking, in every iteration of the algorithm each stripe is refined
separately, and afterwards the combination scheme is constructed based on these stripes:
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Figure 3.11: Refinement steps of the dimension wise spatial adaptivity.
Taken from [OB20, p.12].

The work of this thesis is based on the dimension-wise refinement of the above explained method. We
will execute the extrapolation methods explained in chapter 2 individually on each one-dimensional
grid stripe.
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In this chapter we explain the structure of our implementation. The contents are presented in the
following order: First, we give an overview of the sparseSpACE-Framework1. Thereafter, we explain
important aspects of the new contributions to the framework. We will address important aspects of
our implementation and summarize most of the code structure.

4.1 sparseSpACE framework

The framework supports various types of grids. Each type inherits from

class Grid(object):
def __init__(self, a, b, boundary=True):

# ...

The parameters a and b are d-dimensional vectors which denote the boundaries of the rectangular
integration domain Ω = [a1, b1]× · · · × [ad, bd]. Whereas the parameter boundary is True if the grid
points on the boundary ∂Ω are included. The next method returns the weights of the grid:

def get_weights(self) -> Sequence[float]:

Every grid consists of one-dimensional grids that each inherit from

class Grid1d(object):
def __init__(self, a: float=None, b: float=None, boundary: bool=True):

#...

Here, the parameters a, b, and boundary specify the grid of current dimension. Already implemented
grids are for example TrapezoidalGrid or ClenshawCurtisGrid with their corresponding one-
dimensional component grids.
Based on the Grid class a generalized class has been implemented

class GlobalGrid(Grid):

which, among other things, enables the programmer to pass parameters such as grid_1D or
grid_levels_1D to the computation of weights. Some grids like, for example, GlobalTrapezoidal-
Grid or GlobalSimpsonGrid already implement this interface and realize the weight computation
for corresponding quadrature rules.
Another important component is the class

class Function(object):

which contains an interface for the numerical testing functions. Several functions from the Genz
testing package [Gen87], like GenzCornerPeak or GenzOszillatory have been implemented.
Additionally there are several operations that can be performed on the grids. One of those operations
is of course

class Integration(AreaOperation):
def __init__(self, f: Function, grid: Grid, dim: int,

reference_solution: Sequence[float] = None):
# ...

1https://github.com/obersteiner/sparseSpACE
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which encapsulates methods like evaluation of an volume under a function. Most grids use the class

class IntegratorArbitraryGridScalarProduct(IntegratorBase):
def __init__(self, grid):

# ...

by default for integration after the grid weights have been computed. It computes the integral
approximation using a scalar product of weights and corresponding function evaluations. After the
weights and function values have already been computed this corresponds to the final step. In the
one dimensional case:∫ b

a
f (x) dx ≈ w1 · f (x1) + · · ·+ wn · f (xn) =

n

∑
i=1

wi · f (xi)

The core of the framework encapsulates the logic for the spatially adaptive refinement for the Sparse
Grid Combination technique. The class

class SpatiallyAdaptivBase(StandardCombi):
def __init__(self, a: Sequence[float], b: Sequence[float],

operation: GridOperation, norm: int=np.inf):
# ...

provides the generic interface for all spatially adaptive refinement implementations. The refinement
algorithm is initiated with

adaptiveCombi.performSpatiallyAdaptiv(lmin, lmax, errorOperator, tol, do_plot=True)

where adaptiveCombi is an object of an inheriting class of SpatiallyAdaptivBase and lmin/lmax are
the corresponding minimal/maximal level of the (truncated) combination technique. Furthermore,
an errorOperator of type ErrorCalculator computes the estimated error inside of an Refinement-
Container. Finally, tol specifies the tolerance at which the refinement should terminate. There are
several more options that could be provided. But those seem not so important for our work.
The two classes SpatiallyAdaptiveExtendScheme and SpatiallyAdaptiveSingleDimensions2 are
the main implementation classes of different adaptive refinement strategies. The former class is the
implementation of the Split-extend scheme [OB19] whereas the latter class implements the spatially
adaptive method with dimension-wise refinement [OB20].
More information about the calling conventions of sparseSpACE is compiled in the Jupyter-
Notebooks2 of the frameworks repository.

2https://github.com/obersteiner/sparseSpACE/tree/master/ipynb
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4.2 Romberg Grid

This section gives an overview of the contribution of this thesis to the sparseSpACE framework. The
classes that will be presented are important parts of the implementation from the developed theory
proposed in the second part of chapter 2. Further information can be found in the Jupyter Notebook
called Tutorial_Extrapolation.ipynb inside the sparseSpACE framework.

Main interface: sparseSpACE provides an interface that encapsulates the grids and weights.
The weight computation of one-dimensional grid stripes is performed with the method com-
pute_1D_quad_weights. Thus we implemented the main wrapper class that encapsulates the
computation of weights

class GlobalRombergGrid(GlobalGrid):
def __init__(self, a, b, boundary=True, modified_basis=False,

slice_grouping=SliceGrouping.UNIT,
slice_version=SliceVersion.ROMBERG_DEFAULT,
container_version=SliceContainerVersion.ROMBERG_DEFAULT):

# ...

As an example, we revisit the one of section 2.4 using a slightly more refined grid. Let a = 0, b = 1
and suppose that the spatial adaptive algorithm needs the extrapolated weights as explained in
section 2.4 to decide which area should be refined in the next iteration. The current state of the
concerning one-dimensional grid stripe is given by

Figure 4.1: One-dimensional grid stripe example

This grid consists of the slices S0 = [0, 2
16 ], S1 = [ 2

16 , 3
16 ], S2 = [ 3

16 , 4
16 ], S3 = [ 4

16 , 5
16 ], S4 = [ 5

16 , 6
16 ],

S5 = [ 6
16 , 7

16 ], S6 = [ 7
16 , 8

16 ], S7 = [ 8
16 , 12

16 ], S8 = [ 12
16 , 14

16 ], S9 = [ 14
16 , 1].

The previous class offers various options that can be set in arbitrary combination with each other:

Slice Grouping: This option determines whether the slices (S0, . . . , S9 in the example above) are
grouped into bigger containers. By default, each slice is in its own container, thus the containers
C0, . . . , C9 would be initialized. This version is called UNIT grouping and is illustrated in figure
4.1. Each slice is in its own container. A container generally consists of 2k slices (k ∈ N0) which
all have the same width. Hence, it is possible to execute the original Romberg’s method in each
container that has at least two slices. In particular each container with at least two slices has an even
number of slices and therefore contains an odd amount of grid points. This enables extrapolation
using Simpon’s sums as base rules inside of containers with at least two slices. There are two more
grouping options: GROUPED and GROUPED_OPTIMIZED. Using GROUPED the grid slices are
scanned from left to right: when the previous grid slice has the same width as the current one the
previous container is extended. Otherwise a new container is created. In a post processing step each
container that does not contain 2k slices is broken into unit containers (they each consist of a single
slice). The GROUPED_OPTIMIZED option takes another approach. Suppose the container has
n 6= 2k slices. Instead of breaking the partial full grid into unit containers, a binary decomposition of
n = n1 + · · ·+ nj is executed. In a post processing step the containers are split into smaller ones with
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sizes n1, . . . , nj respectively. This technique ensures that each container has the maximum amount of
slices under the condition that it can only contain 2i slices. The next figure illustrates the difference
between the two grouping options:

(a) Default slice grouping (b) Optimized slice grouping

Figure 4.2: Slice grouping options

The alternating colors resemble the groupment of slices into containers. Hence, the left figure has 9
containers, whereas the right figure has only 5. This partitioning process brings some advantages:
On the one hand, partial full grid structures are exploited and used for conventional extrapolation
methods (e.g. Romberg extrapolation, section 2.3). On the other hand, unit containers are extrapolated
using the sliced extrapolation (see section 2.4) or default trapezoidal rule. With this abstraction into
containers and slices we provided an flexible interface that can easily be extended in the future using
other extrapolation methods.

Slice Version: This option determines the (extrapolation) type for unit slices (these are slices that
are alone in a container). Possible are, among others:

1. Sliced extrapolation: based on the support sequence of trapezoidal slices (see section 2.4)

2. Trapezoidal rule without extrapolation

3. Sliced extrapolation with constant subtraction (see subsection 2.5.2)

Container Version: This option allows to change the extrapolation type inside containers with
more than one slice. Each container has a full equidistant grid. By default the container executes
a weight-based Romberg extrapolation. Another possibility is an interpolatory approach, which is
explained in section 2.5.3. The difference between the default Romberg containers (figure 4.3a) and
interpolated containers (figure 4.3b) is illustrated in the next figure:

(a) Default Romberg Container
(with optimized slice grouping)

(b) Lagrange Romberg Container
(with optimized slice grouping)

(c) Lagrange Full Romberg Container
(with optimized slice grouping)

Figure 4.3: Container version options

In figure 4.3b there are two interpolated grid points (characterized by the dashed vertical lines
and empty points). This approach drastically enlarges full grid structures for extrapolation and
reduces the amount of containers. We will explain some algorithmic ideas for the discovery of such
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suitable interpolation grid points later on. Figure 4.3c depicts an interpolation of a full grid, which
increases the order of the whole grid if the interpolation is sufficiently accurate. Another option is a
weight-based extrapolation using Simpson’s rule as a base rule, which is explained in subsection
2.5.4.

Main class: The next class handles the initialization of the grid, slices, and containers:

class ExtrapolationGrid:
def __init__(self, slice_grouping: SliceGrouping = SliceGrouping.UNIT,

slice_version: SliceVersion = SliceVersion.ROMBERG_DEFAULT,
container_version: SliceContainerVersion

= SliceContainerVersion.ROMBERG_DEFAULT,
force_balanced_refinement_tree=False,
print_debug=False):

# ...

By calling extrapolation_grid.set_grid(grid, grid_levels) on objects of this class, the correct
slice and container objects are constructed using the Factory Pattern. Finally, the extrapolated weights
are computed and returned with extrapolation_grid.get_weights().

Slices: As mentioned above, we provide different types of slices: for example sliced extrapolation
or trapezoidal rule. Each slice type inherits from the class

class ExtrapolationGridSlice:
def __init__(self, interval, levels, support_sequence,

function: Function = None):
# ...

Containers: Slices are grouped into containers. As explained previously we support multiple
container types that all inherit from

class ExtrapolationGridSliceContainer:
def __init__(self, function: Function = None):

# ...

Supported container types are for example: default Romberg extrapolation, interpolatory Romberg
extrapolation or extrapolation using Simpson’s rule. Unit containers compute their weights based on
the slice type. If a container consists of two or more slices, the weights are computed based on the
container type.

Grid balancing: This technique is explained in subsection 2.5.1. The next class implements this
behaviour using default algorithms

class GridBinaryTree:
def __init__(self, print_debug=False):

# ...

It also incorporates a caching ability that maps grids and their levels to the transformed bal-
anced grid with its balanced levels. Whether this transformation is activated or not can be con-
trolled in the constructor of the class SpatiallyAdaptiveSingleDimensions2 with the boolean flag
force_balanced_refinement_tree.
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Now that we have introduced the most important interfaces and constructors of our implementation,
we would like to present some fundamental algorithms of our implementation.
Firstly, we give an high-level overview of the main algorithm in ExtrapolationGrid:

Algorithm 2: Weight computation in ExtrapolationGrid
Input: slice_grouping, slice_version, container_version, force_balanced_refinement_tree,

grid, grid_levels
Output: (Extrapolated) weights for the given grid and grid_levels

if force_balanced_refinement_tree then
force_balanced_tree_grid()

end

initialized_grid_slices_and_containers()
initialize_weight_dictionary()

foreach container in containers do
weights← container.get_weights()
update_weight_dictionary(weights)

end

Initialization of slices and containers: After the grid for the weight computation is set the slices
as well as the containers are constructed. This is done by parsing the grid from left to right:

# Pseudo code
step_width_buffer = None

for i in range(0, len(grid)-1)
step_width = grid[i+1] - grid[i]
support_sequence = compute_support_sequence(i, i+1)

slice_ = create_slice((grid[i], grid[i+1]), (grid_levels[i], grid_levels[i+1]),
support_sequence)

create_containers(step_width, step_width_buffer, slice_)

step_width_buffer = step_width

grid_init_post_processing()

The support sequence of a slice is necessary for the extrapolation process of the sliced trapezoidal
rule (see section 2.4.1). Each support sequence always has the tuple of domain boundaries (a, b) as
its first element.

def compute_support_sequence(self, final_slice_start_index, final_slice_stop_index):
# Init sequence with indices for level 0 (whole integration domain)
sequence = [(0, len(self.grid) - 1)] \

+ self.__compute_support_sequence_rec(0, len(self.grid) - 1,
final_slice_start_index,
final_slice_stop_index)

return [(self.grid[element[0]], self.grid[element[1]]) for element in sequence]
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Other support sequence elements are computed recursively with a sliding window method (start and
stop indices). The recursive algorithm operates on grid levels by searching the index of the minimal
level within the current window. After a new support tuple has been found the algorithm reduces
the active window by halving the old window according to the position of the minimal level and the
slice position.

def __compute_support_sequence_rec(self, start_index, stop_index,
final_slice_start_index,
final_slice_stop_index):

if start_index >= stop_index:
return []

# Slice of the grid levels without the current level
grid_levels_slice = self.grid_levels[(start_index + 1):stop_index]

if len(grid_levels_slice) == 0:
return []

# Start or stop index of the next slice in the sequence
new_boundary_index = (start_index + 1) \

+ grid_levels_slice.index(min(grid_levels_slice))

# Determine the boundary indices of the new slice in the sequence
if new_boundary_index <= final_slice_start_index:

start_index = new_boundary_index
# stop_index does not change

else:
# start_index does not_change
stop_index = new_boundary_index

return [(start_index, stop_index)] \
+ self.__compute_support_sequence_rec(start_index, stop_index,

final_slice_start_index,
final_slice_stop_index)

If slice grouping is enabled, the slices are grouped into bigger containers. Depending on the width
of the previous slice either a new container is constructed or the slice is appended to the previous
container. If interpolation is enabled, it is possible that slices with different widths are grouped in
one container, if their widths are below a certain threshold delta. Then the missing slices (those
contain the interpolated grid points) are inserted in the post processing step.
Finally, in the post processing step those containers are divided if there exists no k ∈N0 so that the
slice count is 2k. Figure 4.2 displays the default and optimized grouping.

Extrapolation: Another important aspect of our implementation is the extrapolation inside slices
and containers. We will address only the core part of this implementation because the complete code
is quite large. The next code excerpt shows the computation of the extrapolated weights from a slice
using the support sequence. These partial weights are stored in a dictionary using grid points as
keys. With this data structure it is convenient to merge and accumulate partial weights of different
slices whose contributions might overlap with other slices.
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The cm,j coefficients for the extrapolation are generated from a separate factory. This makes it
convenient to change extrapolation methods easily.

# Returns a dictionary that maps grid points to a list of their extrapolated weights
def get_final_weights(self):

# The 1st element of the support sequence contains the domain boundaries
(a, b) = self.support_sequence[0]

# Generate the extrapolation coefficients
coefficient_factory = self.coefficient_factory.get(a, b, self.support_sequence)

# Dictionary that maps grid points to their extrapolated weights
weight_dictionary = defaultdict(list)

for level in range(self.max_level + 1): # 0 <= i <= max_level
point_weight_pairs = self.get_support_points_with_their_weights(level)

assert len(point_weight_pairs) == 2
(left_point, left_weight) = point_weight_pairs[0]
(right_point, right_weight) = point_weight_pairs[1]

coefficient = coefficient_factory.get_coefficient(self.max_level, level)
left_weight = coefficient * left_weight
right_weight = coefficient * right_weight

weight_dictionary[left_point].append(left_weight)
weight_dictionary[right_point].append(right_weight)

# Update dictionary of extrapolated weights
self.extrapolated_weights_dict = weight_dictionary

return weight_dictionary

As the name already suggests self.get_support_points_with_their_weights(level) returns the
(level)-th support sequence element and the weights of the sliced trapezoidal rule (which have not
been extrapolated yet).
The above code shows the weight extrapolation for one unit slice. When a container consists of more
than one slice, the weights are computed using a classic full grid extrapolation technique, for example
the original Romberg method. These partial weights of the non-unit containers are combined with
the partial weights from all other unit slices to obtain the final total weights.

Subtraction of extrapolation constants: As explained in subsection 2.5.2, we use Lagrange interpo-
lation for the approximation of the derivatives. Using the SymPy framework3 the generic Lagrange
basis is constructed and then symbolicly differentiated. These results are then used to approximate
the extrapolation constants that will be subtracted. Unfortunately, the symbolic differentiation with
SymPy needs a lot of computing time. Therefore, the method cannot be used in this form because
many derivatives have to be determined.

3https://www.sympy.org/
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Extrapolation with interpolated grid points: In subsection 2.5.3 we explained an interpolatory
approach to increase the containers and the partial full grid structures for extrapolation. Figure 4.3
illustrates the difference between Romberg containers and interpolated Romberg containers. As
explained above, the idea is to group slices with similar (but not the same) width into containers and
replace some slices with smaller ones to obtain a full grid structure within the container. But how
are these interpolatory slices determined? The goal is to interpolate as little as possible and consider
only promising grid points that should be interpolated. Otherwise we would obtain an interpolated
full grid on the whole integration domain.
An additional important aspect of this approach is the determination of support points for the
interpolation. One possibility to determine these points is an geometrical approach. Starting from the
interpolation point we select support points beginning with the geometrically closest ones. Whenever
a new support point is found the condition of the interpolation is evaluated using the sum of the
interpolated weights. The following pseudo-code illustrates the algorithmic idea:

Algorithm 3: Determine interpolation support points geometrically
Input: interp_point, max_points, adaptive
Output: List of geometrically closest support points

grid← get_noninterpolated_grid()
(left, right)← get_closest_neighbours(interp_point, grid)

support_points← []

while len(support_points) < max_points and (0 ≤ left or right ≤ len(grid) - 1) do
if 0 ≤ left then

add_new_support_point(left, support_points)
end
if right ≤ len(grid) - 1 then

add_new_support_point(right, support_points)
end

if is_ill_conditioned(interp_point, support_points) then
revert_support_points(left, right, support_points)

end
end

We presented a selection of some important algorithms of our implementation. For further infor-
mation visit the Extrapolation classes in the sparseSpACE framework 4. The next chapter finally
presents the numerical results of our newly implemented methods.

4https://github.com/obersteiner/sparseSpACE
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In this penultimate chapter we present the results from various versions of our implementation.
Subsequently, we are going to compare these results with each other and reference solutions, which
have already existed before. Finally, we will highlight important differences between the implemented
methods. In the final chapter 6 further possible improvements of our implementation are discussed
on the basis of these results.

5.1 Test functions

Let x = (x1, . . . , xd), d ≥ 1 and s ∈ {corner, prod, cont, gauss, oscil, discont, expvar}. Several numeri-
cal experiments have been conducted on the real value functions fs : Rd → R.
The first six functions fcorner, fprod, fcont, fgauss, foscil, fdiscont are taken from the Genz test package
[Gen87] and have been slightly adapted [OB19]. Whereas the last function fexpvar is taken from
[GG98]. In the following let exp : R→ R denote exp(x) = ex.
The first function fcorner has one parameter a ∈ Rd which determines the growth of the function
towards the corner.

fcorner(x) =
(

1 +
d

∑
i=1

ai · xi

)−(d+1)

The graph of fcorner is depicted in figure 5.1a for a =
(

4
8

)
:

(a) GenzCornerPeak fcorner (b) GenzProductPeak fprod (c) GenzContinuous fcont

Figure 5.1: GenzCornerPeak, GenzProductPeak and GenzContinuous for d = 2

fprod has the parameters a ∈ Rd and u ∈ Rd that control the growth and position of the peak. It is
arranged in figure 5.1b with a =

(
4
8

)
and u =

(
0.99
0.99

)
:

fprod(x) =
10−d

∏d
i=1 a−2

i + (xi − ui)2

fcont has parameters a ∈ Rd and u ∈ Rd and is displayed in figure 5.1c for a =
(

4
8

)
and u =

(
0.5
0.5

)
fcont(x) = exp

(
−

d

∑
i=1

ai ·|xi − ui|
)
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fgauss is controlled by a ∈ Rd and u ∈ Rd and is plotted in figure 5.2a for a =
(

1
2

)
and u =

(
0.99
0.99

)
.

fgauss(x) = exp
(
−

d

∑
i=1

ai · (xi − ui)
2
)

(a) GenzGaussian fgauss (b) GenzOscillatory foscil (c) GenzDiscontinuous fdiscont

Figure 5.2: GenzGaussian, GenzOscillatory and GenzDiscontinuous for d = 2

Now we are presenting some more difficult functions. Firstly, a highly oscillating function, for
suitable parameters a ∈ Rd and u ∈ R:

foscil(x) = cos
(

2π · u +
d

∑
i=1

i · xi

)
This function is arranged in figure 5.2b for paramters a =

(
1
2

)
and u = 1

2 .
Furthermore, we have investigated our implementation using a discontinuous function with a ∈ Rd

and u ∈ Rd, which is displayed for a =
(

4
8

)
in figure 5.2c.

fdiscont(x) =

0, for ∀1 ≤ i ≤ d : xi ≥ 0.2

exp
(
−∑d

i=1 ai · xi

)
, otherwise

The function fdiscont has zero value for all x ≤ u, where x ∈ Rd and is exponentially growing
otherwise. Lastly, we present the function fexpvar:

fexpvar(x) =
(

1 +
1
d

)d

·
d

∏
i=1

x
1
d
i

With fexpvar we want to evaluate how the adaptive refinement performs when the spatial adaptivity
contributes only a little [OB20, p.18].

Figure 5.3: ExpVar for d = 2
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5.2 Results

In this subsection we are presenting the numerical results of our implemented methods. To begin
with, some two dimensional grids will be illustrated. Afterwards some convergence diagrams will
be compared and discussed.

Resulting Sparse Grids: The following figures compare different Sparse Grids with and without
extrapolation for different 2-dimensional functions using the same parameters as in the plots in
section 5.1. These results are, among others, compared by the number of distinct function evaluations
needed to achieve a certain tolerance threshold. In the following, we will abreviate “distinct function
evaluations” with “function evaluation” and “distinct grid points” with “points”.

(a) Trapezoidal Grid
(without rebalancing)

(b) Extrapolation Grid
(Grouped Optimized, Romberg, Default Romberg)

Figure 5.4: Comparison of Sparse Grids and their stripes for d = 2, tol = 10−4, and fexp_var

The above-mentioned example displays a big advantage of the extrapolation grid: only 148 distinct
function evaluations are required to achieve the same approximation error as the trapezoidal grid
with 1102 distinct function evaluations. Since significantly less points have to be evaluated with ex-
trapolation this method is also significantly faster. Suprisingly, the trapezoidal grid with rebalancing
requires as well 933 points which is much more than when using extrapolation. Additionally, the
extrapolated grid requires only 30 refinements whereas the trapezoidal grids needs 178 refinements.
The following figure illustrates the comparison of a trapezoidal grid and an extrapolated grid with
optimized grouping of Romberg slices and execution of default Romberg inside containers. In this
depiction you can easily see that the grid is refined towards the center of the integration domain.
This area requires more points, because the function fcont has its peak there, as one can see in figure
5.1c. Again the extrapolation grid requires only 273 points to fall below an approximation error of
10−4. This number of points is significantly smaller than that of a trapezoidal grid which needs 1621
points. As a consequence only 52 refinements are required instead of 244.
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(a) Trapezoidal Grid
(without rebalancing)

(b) Extrapolation Grid
(Grouped Optimized, Romberg, Default Romberg)

Figure 5.5: Comparison of Sparse Grids for fcont, d = 2 and tol = 10−4

The next figure displays multiple variants of the extrapolation grid and a trapezoidal grid for fgauss:

(a) Trapezoidal Grid
(without rebalancing)

(b) Extrapolation Grid
(Unit, Romberg, Default Romberg)

(c) Extrapolation Grid
(Unit, Romberg, Default Romberg, Balanced)

(d) Extrapolation Grid
(Unit, Romberg, Lagrange Romberg)

Figure 5.6: Comparison of Sparse Grids for fgauss, d = 2 and tol = 10−6

In all four grids a refinement towards the right boundary can be recognized. This behaviour corre-
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sponds to the plot in figure 5.2a. The difference between trapezoidal grid and extrapolation grid
is even more significant. We terminated the refinement of the trapezoidal grid manually after 5219
points were used resulting in an approximation error of 2 · 10−6 because the approximation error
decreased only slightly. However, using the extrapolation grid with unit grouping, Romberg slices,
and default Romberg containers required only 200 points to achieve a tolerance of tol = 10−6. An
interesting observation is that the number of 42 refinements using the extrapolation grid are higher
than the 18 refinements when using the trapezoidal grid. If balancing is enabled for the extrapolation
grid, we obtain only slightly more points (203) whereas the number of refinements remains at 42.
This means, balancing has no significant effect in this example.
The best results in terms of number of points are delivered by the extrapolation grid that uses
Lagrange interpolation for suitable points. This method requires only 93 points and 20 refinements
to achieve the same tolerance of tol = 10−6.

Finally, we present some Sparse Grids that are produced for fdiscont:

(a) Trapezoidal Grid
(without rebalancing)

(b) Extrapolation Grid
(Grouped Optimized, Romberg, Default Romberg)

(c) Extrapolation Grid
(Grouped Optimized, Romberg, Default Romberg,

Balanced)

Figure 5.7: Comparison of Sparse Grids for fdiscont, d = 2 and tol = 10−3

All three figures show that the grid is refined towards the lower left corner where the function has
discontinuities (see figure 5.2c). As follows, there are more points required than in the other more
constant parts of the integration domain.
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The trapezoidal grid requires 192 points to obtain the tolerance 10−3. However, the extrapolation grid
without rebalancing has its difficulties due to the discontinuities. Which is why we terminated the
refinement after 1612 points manually and obtained only an approximation error of about 2 · 10−1.
Enabling grid balancing solves this problem in some extend. The algorithm then needs slightly more
points (197) to achieve a tolerance of 10−3. Despite requiring some more points the extrapolation
with balancing has only 28 refinements whereas the trapezoidal grid needs 36 refinements. Thus, the
extrapolation grid with balancing takes significantly less time than the trapezoidal grid.
In summary, we conclude that for all above-mentioned examples there exist an extrapolation grid
that requires less points or less refinement steps than the trapezoidal grid. Among other things, this
leads to shorter running times. However, it should be noted that this cannot be generalized for all
functions and all variants of the extrapolation grid.

Convergence diagrams: Now the numerical results for the above mentioned functions are presented.
Firstly, we will provide an overview of all compared variants. These variants are classified into the
following groups:

1. Standard combination schemes: These are already implemented grids in the sparseSpACE
framework. Since those grids are executed with the standard combination scheme they don’t
use spatial adaptivity. The parameter lmin determines the minimum level of the combination
technique.

a) Gauss-Legendre Grid (Standard Combi) with lmin = 1 or lmin = 2.

b) Trapezoidal Grid (Standard Combi) with lmin = 1 or lmin = 2.

2. Spatial adaptivity with existing grids: The following grids are used in combination with
spatial adaptivity and dimension-wise refinement.

a) Trapezoidal Grid with rebalancing enabled or disabled.

b) High Order Grid.

c) Simpson Grid (Balanced): The results of this grid have improved after we enabled our
new grid balancing operation.

Here rebalancing is an operation that modifies the grid levels to balance the refinement tree
and even prevents from too much refinements of subtrees. The Balanced option however refers
to the grid balancing from subsection 2.5.1 where each node has either zero or two children.

3. Spatial adaptivity with new extrapolated grids: In this group we again used spatial adaptivity
with dimension-wise refinement. The evaluated grids are of the following form: Extrapolation
Grid (<Grouping>, <Slice version>, <Container version>, <Balancing>). The options are
defined, like explained in section 4.2.

a) <Grouping>: e.g. Unit, Grouped or Grouped optimized.

b) <Slice version>: e.g. Romberg, Trapezoid.

c) <Container version>: e.g. Default Romberg, Lagrange Romberg, Simpson Romberg
(subection 2.5.4), Lagrange Full Romberg (where a full grid is interpolated).

d) <Balancing>: If enabled, each node in the refinement tree is forced to zero or two children.

Because the following diagrams might be a little confusing due to the large number of selected
variants, different variants are considered in isolation afterwards:
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Gauss-Legendre Grid (Standard Combi) lmin=1
Gauss-Legendre Grid (Standard Combi) lmin=2
Trapezoidal Grid (Standard Combi) lmin=1
Trapezoidal Grid (Standard Combi) lmin=2
Trapezoidal Grid
Trapezoidal Grid (Rebalancing)
HighOrder Grid
Simpson Grid (Balanced)
Extrapolation Grid (Unit, Romberg, Default Romberg)
Extrapolation Grid (Unit, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped, Romberg, Default Romberg)
Extrapolation Grid (Grouped, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped Optimized, Romberg, Lagrange Romberg)
Extrapolation Grid (Grouped Optimized, Romberg, Lagrange Full Romberg)
Extrapolation Grid (Grouped Optimized, Romberg, Simpson Romberg, Balanced)
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(b) GenzCornerPeak fcorner
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(c) GenzProductPeak fprod
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(d) GenzContinuous fcont
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(e) GenzGaussian fgauss
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(f) GenzOscillatory foscil
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(g) GenzDiscontinuous fdiscont
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(h) ExpVar fexpvar

Figure 5.8: Overview of the approximation error for various grids
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These diagrams were generated with 5-dimensional functions and the following parameters: For
fcorner, fprod, fcont and fdiscont we have set the parameter a = (ai)1≤i≤5 with ai = 4 · i. Whereas we
used a = (ai)1≤i≤5 with ai = i for fgauss and foscil.
At first, it should be noted that most of the adaptive variants lie between the Standard Combination
technique of the Trapezoidal rule and the Gauß-Legendre rule. The only significant exception is the
GenzContinuous function. Here all algorithms that use extrapolation are worse than the previously
implemented methods. The reason for this is that the GenzContinuous function is not continuously
differentiable.
Another interesting observation is that the sliced extrapolation with unit grouping sometimes even
outperforms the other extrapolation methods.

5.3 Comparison

Grid balancing: Although balancing potentially increases the number of grid points it mostly had
a positive consequence on our tests. The following figures compare extrapolation with and without
balancing for the function fgauss.

Gauss-Legendre Grid (Standard Combi) lmin=1
Gauss-Legendre Grid (Standard Combi) lmin=2
Trapezoidal Grid
Trapezoidal Grid (Rebalancing)
Extrapolation Grid (Unit, Romberg, Default Romberg)
Extrapolation Grid (Unit, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped, Romberg, Default Romberg)
Extrapolation Grid (Grouped, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg, Balanced)
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(a) fgauss
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(b) fexpvar

Figure 5.9: Impact of unit extrapolation with and without balancing

No matter which slice grouping is used for fgauss, the balanced extrapolation always outperforms
the extrapolation without balancing. Most of the other functions behave similarly, i.e., if balancing
is enabled, the error is reduced mostly at least equally or faster. However, the function fexpvar is an
exception. Here the balancing seems to have a small negative effect on the extrapolation, which is
slightly delaying the convergence. Whereas the trapezoidal grid with rebalancing outperforms the
extrapolation grids with balancing at about 104 points. One conceivable cause for this behaviour could
be the small benefit from spatial adaptivity for fexpvar. It should be noted that the approximation
error is only slightly worse but mostly outperforms the trapezoidal rule.
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Slice grouping: An important question one might ask is: Which slice grouping version performs
the best? As the extrapolation grid performs better with balancing we will only compare the slice
grouping with balancing enabled. But it should be noted that the extrapolation without balancing
shows no significant differences between the grouping version. Nevertheless, the grouped optimized
version mostly performs slightly better than the other versions (but not significantly).
The following figure compares unit, grouped, and grouped optimized with the trapezoidal rules:

Gauss-Legendre Grid (Standard Combi) lmin=1
Gauss-Legendre Grid (Standard Combi) lmin=2
Trapezoidal Grid
Trapezoidal Grid (Rebalancing)
Extrapolation Grid (Unit, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg, Balanced)
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(a) GenzGaussian
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(b) GenzOscillatory
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(c) GenzDiscontinuous

103 104 105

Number of points

10 3

10 2

10 1

100

101

Ap
pr

ox
im

at
io

n 
er

ro
r

(d) GenzProductPeak

Figure 5.10: Comparison of slice grouping versions

Overall there are no significant differences of the three versions in the convergence diagrams. All
three methods achieve roughly a similar order in all tests. Having said that, in most of the cases the
grouped optimized version performs slightly better than the others.

Sliced extrapolation: Another important result concerns the sliced extrapolation (explained in
subsection 2.4.3). We conducted numerical experiments with the extrapolation grid using unit
grouping and sliced extrapolation. First it should be noted that sliced extrapolation is exact on those
full grids where the original Romberg method is exact. This behaviour has been investigated using
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many automatically generated polynomials. Therefore, from a numerical point of view, it seems that
sliced extrapolation is equivalent to the original Romberg method on full grids. But it should be
noted that this result has not been formally proven.
We numerically investigated the above-mentioned issue closer. We compared the approximation
errors for polynomial and trigonometric functions with grids that were symmetrical to each other.
For example G1 = [0, 0.5, 0.75, 1] and G′1 = [0, 0.25, 0.5, 1], or G2 = [0, 0.5, 0.625, 0.75, 0.875, 1] and
G′2 = [0, 0.125, 0.25, 0.375, 0.5, 1] with the obvious levels. It appears that G1 and G′1 have the same
approximation error except that they have an inverted sign. This implies that the absolute error is
equal. The same observation has been made with G2 and G′2.
We also investigated other unbalanced grids than G1 and G′1, such as G3 = [0, 0.5, 0.625, 0.75, 1] and
G′3 = [0, 0.125, 0.25, 0.5, 1]. Those grids mostly had not the same absolute error.

Impact of sliced extrapolation: The following figures compare the two slice versions with opti-
mized slice grouping and grid balancing enabled.

Gauss-Legendre Grid (Standard Combi) lmin=1
Gauss-Legendre Grid (Standard Combi) lmin=2
Trapezoidal Grid
Trapezoidal Grid (Rebalancing)
Extrapolation Grid (Grouped Optimized, Romberg, Default Romberg, Balanced)
Extrapolation Grid (Grouped Optimized, Trapezoid, Romberg, Balanced)
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(a) ExpVar
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(b) GenzGaussian
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Figure 5.11: Impact of slice versions: Trapzoid vs. sliced Romberg

Apparently the containers with more than one slice contribute more to the result as the containers
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with unit slices. However, figure 5.8 shows that sliced extrapolation with unit slicing and balancing
performs very well in comparison to the other methods.

Interpolation containers: Now we want to investigate the impact of interpolating grid points for
the extrapolation. First we compare the results of full grid interpolation (where all missing grid
points of the closest full grid are interpolated) with the results of an adaptive grid interpolation
(where only promising grid points are interpolated).
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Figure 5.12: Examples: Adaptive interpolating extrapolation vs. full grid interpolating extrapolation

As expected the full grid interpolation performs better in those cases where the interpolation is
sufficiently accurate. This is due to the fact that it achieves a higher order on the whole grid in
contrast to the adaptive interpolation that achieves only locally higher order. In the other cases both
variants show similar characteristics.
An exception is the function fdiscont: Due to its discontinuities the interpolation is not sufficient for the
extrapolation. Hence, the full grid interpolation performs not as good as the adaptive extrapolation.
Surprisingly fprod is not resolved well either. Generally it can be said the adaptive interpolation is
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the more appropriate choice under a runtime and computation complexity perspective. Especially
for functions that require excessive refinement in one area and few points in others the interpolation
to a full grid is not optimal.
Now we want to compare the interpolation approach with other extrapolation methods.
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Figure 5.13: Impact of interpolation on extrapolation

In most cases the interpolation methods perform not as good as the remaining extrapolation methods
with grid balancing and optimized grouping.

High order comparsion: Finally, we decided to compare our new best extrapolation methods with
another high order method. The HighOrder Grid was already implemented in sparseSpACE.
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Figure 5.14: Comparison of adaptive extrapolation with the previously implemented grid

With the exception of the GenzContinuous function our best new extrapolation variants outperformed
the high order grid. It was to be assumed that extrapolation does not work well with GenzContinuous
because it is not continuously differentiable.
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In the other cases our new implementation improved the results mostly by one or two orders.

Influence of the dimensionality: It appears that the extrapolation grids work even better in lower
dimensions where they achieve a significant higher order than non extrapolated methods. This
result corresponds to the above-mentioned Sparse grids that are constructed from extrapolated
one-dimensional grids. The following figures show convergence diagrams for selected variants in
two dimensions:
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Figure 5.15: Two dimensional convergence diagrams

Here one notices the oscillations of high order methods in convergence diagrams that occur because
of the error cancelation process. In the four test cases above the extrapolation methods outperform
both trapezoidal rules significantly.
The only exception is the extrapolation with adaptive interpolation which oscillates around the lines
of the trapezoidal rules with a large amplitude.
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Conclusion: We compared Sparse Grids that are based on extrapolated grid stripes with those
based on non-extrapolated stripes. Thereby we noticed that the former grids mostly require signif-
icantly less points to obtain the same error tolerance. Even when the extrapolated grids required
more points, there have been fewer refinement steps. This behaviour resulted mostly in a shorter
runtime of the algorithms although the operations of the extrapolation grids are more involved than
those of a simple trapezoidal rule.
Additionally the grid balancing had a positive effect on the error cancelation process in the extrapo-
lation despite having the drawback of increasing the number of points slightly. The approximations
improved up to one order.
Some of our extrapolation variants worked better than others depending on the test function. It can
be said that optimized grouping with grid balancing achieved very good results in a wide range of
test cases. Both interpolation approaches performed similar good for smooth functions. As expected
the interpolation did not work as well for functions with discontinuities.
It turns out that extrapolation is not always the best approach. For the GenzDiscontinuous function
some extrapolation methods performed surprisingly well even though there are discontinuities.
However, the GenzContinuous test case showed that both trapezoidal rules perform significantly
better than any extrapolation method. In two dimensions this can be explained with the steep
peak in the middle of the integration domain which cannot be resolved that well using adaptive
extrapolation. In general, the GenzContinuous is not continuously differentiable in this peak. Thus
it is not resolved that well because extrapolation requires continuously differentiable functions.
Consequently, extrapolation methods should not be used when the functions are not continuously
differentiable.
To sum it up, if the conditions are fulfilled, most extrapolation variants perform at least as well as the
trapezoidal rule and even surpass the standard combination Gauss-Legendre grids in some cases.
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6 Conclusion

In this thesis the Romberg-Quadrature has been generalized to adaptive grids. Several versions of
this method have been implemented and successfully integrated into the sparseSpACE framework.
We derived error expansions for an adaptive slice extrapolation and proposed some algorithmic
improvements to this approach.
The numerical results look promising: Using extrapolation the number of grid points can be
significantly reduced in many tests. Additionally, the number of required refinement steps mostly
decreases. Although the algorithmic computing complexity of extrapolated weights for an adaptive
grid is pretty high the runtime of the algorithms can thereby be reduced.
Unfortunately, our implemented methods could not outperform the trapezoidal rule with rebalancing
in every test case regarding the decay of the integral approximation error. When the conditions
for extrapolation are not fulfilled the trapezoidal rules perform better. However, the convergence
of the methods has been improved in a broad range of test cases. In some cases we even achieved
to surpass the standard combination scheme using a Gauss-Legendre grid. These results show the
potential of high order methods like a generalized Romberg method for high-dimensional problems.
We compared our newly implemented extrapolation grids with another high order method that has
been presented by other authors. Our methods outperform it in most of the test cases.
But there is always room for improvement: In future times one could investigate the implementation
of a robust extrapolation grid for quadrature. We found out that some extrapolation variants perform
better than others depending on the scenario. For example grid balancing improves the results
for functions with discontinuities, and an interpolatory approach significantly improves the results
for very smooth functions. If an appropriate detector of the scenario could be implemented, these
versions could be combined or interchanged to obtain a robust quadrature for a broader range of
application.
Another idea of improvement concerns the extrapolation using Simpson quadrature as a base rule.
Instead of using this kind of extrapolation only inside containers one could derive an adaptive
variant similar to our sliced extrapolation. Additionally the extrapolation constant subtraction could
be investigated to increase the order of individual slices even more.
In summary, we showed how promising the potential of adaptive extrapolation for application in
quadrature is and hope that this area will be investigated further in the future.
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