
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Mitigation of Advanced Code Reuse
Attacks

Paul Ioan Muntean

TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

LEHRSTUHL FÜR IT SICHERHEIT

Mitigation of Advanced Code Reuse Attacks

Paul Ioan Muntean

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Jens Grossklags, Ph.D.

Prüfer der Dissertation:

1. Prof. Dr. Claudia Eckert

2. Prof. Dr. Zhiqiang Lin

Die Dissertation wurde am 04.11.2020 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 09.03.2021 angenommen.

Acknowledgements

I would like to take the opportunity to thank, give gratitude and appreciation to the main
persons, who supported me during my Ph.D. studies.

First, of all I would like to thank Prof. Dr. Claudia Eckert, for giving me the opportunity
of pursuing a Ph.D. and for helping me during the years whenever I needed her help. Without
her support, this dissertation would not have seen the light. Further, I would like to thank Prof.
Zhiqiang Lin (Ph.D.) who decided to support this work by being my second thesis supervisor.

Second, I would like to give thanks to my main research collaborators. Prof. Jens Grossklags
(Ph.D.), Technical University of Munich (TUM), Germany; Prof. Zhiqiang Lin (Ph.D.), The
Ohio State University, USA; Prof. Gang (Gary) Tan (Ph.D.), Penn State University, USA;
and Prof. Dr. Martin Monperrus, KTH Royal Institute of Technology, Sweden. Their support
helped me bring my research to the next level.

Third, I would like to thank my current and former colleagues with whom I had the oppor-
tunity to work over the years and to share interesting research ideas. These are first of all the
persons at the chair for IT security, from TUM and the Fraunhofer Institute for Applied and
Integrated Security (AISEC). In no particular order, I would like to address my thanks to the
following persons: Julian Kirsch, Peng Xu, Dr. Bojan Kolosnjaji, Dr. Huang Xiao, and Dr.
Julian Schütte (Google, DE). Further, I would like to thank all students from TUM with whom
I collaborated over the last years during my research projects.

Fourth, I want to also thank other researchers who helped mainly with constructive discus-
sions. Dr. Benjamin Johnson, TUM, Germany; Dr. Dimitar Bounov, University of California,
San Diego, USA; Dr. Thurston Dang, Massachusetts Institute of Technology (MIT), USA;
Dr. Istvan Haller, Microsoft Research, UK; Dr. Felix Schuster, Microsoft Research, UK; Dr.
Jake Weidmann, Google, USA; Dr. Hao Sun, Alibaba, P. R. China; Dr. Xi Cheng, Tsinghua
University, P. R. China; Artur Janc, Google, CH; Jaroslav Sevcik, Google, DE; Haohuang Wen,
The Ohio State Univ., USA; and Chandler Carruth, Google, USA; and Thomas Dullien (Halvar
Flake), Google, CH. All these people sacrificed countless hours to help improve my work.

Finally, my special appreciation and gratitude goes to my family and to my parents, who
always believed in me and continuously encouraged me to follow my dreams. Thanks to my
brother for his positive thoughts. Without their love, support, and encouragement I could not
have reached this milestone in my life.

iii

Abstract

The people around the world use more and more software in their daily lives, as such the
boundary between digital and human is about to vanish. A natural observation is that the
interest of many type of actors (e.g., nation state actors, state sponsored actors, etc.) rises
exponentially as this software success story unfolds. As digital data is the new oil of the
economy, these actors are driven by many incentives to get to this data. As such, comparable
efforts are undertaken to reach the point in which private devices are no longer private but rather
controlled and owned by others, in many cases without the user knowledge. This is achieved
by performing an attack which uses a certain system weakness such as a program code-based
vulnerability. As such, it is important to have a deep understanding of code reuse attacks
(CRAs) as these are often used by these actors to reach their above-mentioned goals. Thus,
this thesis provides tools and techniques to mitigate these problems by offering approaches to
address CRAs along two main lines of research based on static and dynamic code analysis.

In the first part of this thesis, we present a static symbolic execution based framework
INTDETECT, which can detect integer overflows in C source code programs, as integer overflows
often lead to memory corruptions, and even to CRAs. INTDETECT can reliably detect integer
overflows and does not suffer from false negatives for the tested programs. We integrate it in the
Eclipse IDE which is a well-established and widely used Integrated Development Environment
(IDE). Next, we extend the static C source code analysis framework on which INTDETECT relies
by implementing an integer overflow detection and repair generation tool, called INTREPAIR,
on top of it. INTREPAIR generates C source code repairs that help a programmer to automat-
ically repair a previously detected integer overflow. INTREPAIR can efficiently remove a fault,
automatically validate a repair and does not introduce unwanted program behavior. Further,
we extend our static source code analysis framework in order to not only detect and repair
integer overflows, but also to detect and repair buffer overflows which are in most cases one
of the main prerequisites for performing CRAs. For this purpose, we provide a tool, called
BUFFREPAIR, which automatically generates buffer overflow repairs, does not suffer from false
negatives, and can also validate a repair.

In the second part of this thesis, we focus on the detection of dynamic memory corruptions,
which most commonly lead to (or are a prerequisite for) CRAs. We are motivated to take
this path due to the intrinsic limitations of static analysis techniques used in the first part
of this thesis. More precisely, we develop a compiler-based sanitizer tool, called CASTSAN,
which detects object type confusions during runtime and which is completely integrated into a
well-established compiler framework (i.e., Clang/LLVM). CASTSAN is a fully functional object
type confusion detection tool that is based on a novel and efficient technique for detection of
only polymorphic C++ object type confusions. Thus, if consistently used it can considerably
reduce the likelihood of CRAs.

Next, we design a static compiler based tool, named LLVM-CFI, which can assess state-
of-the-art static CFI defenses. The intuition behind this decision is twofold: First, due to the
fact that currently memory corruptions cannot fully be eradicated from programs, we would
like to provide a runtime defense to harden a program. Second, we would like to design and

v

implement a novel CFI-based technique, which will be introduced in the next parts of this
thesis, for protecting indirect program control flow transfers. In order to effectively address
this task, we first need to learn how effective the existing state-of-the-art CFI defenses are
and which level of security they offer. Thus, we develop LLVM-CFI, a novel framework for
assessing static CFI policies w.r.t. calltarget set reduction after a certain CFI defense was
applied. Further, by using LLVM-CFI, we gain important knowledge which helps us to prepare
the next design decisions for the tools presented later in this thesis. Further, we design and
implement a compiler-based tool, called rFEM, which is based on the results from the second
part of this thesis. rFEM protects program CFG backward-edges stemming from indirect
and direct forward-edge program control flow transfers. rFEM is based on a novel technique
for protecting program CFG backward-edges relying on a fine-grained CFI policy, which
provides an optimal set of return targets for each protected callee. In this way, the likelihood
of successfully performing CRAs exploiting backward edges is greatly reduced. At the same
time, a solution serving as a competitive alternative for shadow stacks is provided. In contrast
to shadow stack techniques, except Intel Control Flow Enforcement (CET) which is based on
hardware support or Return Address Defender (RAD) which uses page permissions, rFEM
does not rely on entropy and information hiding. Thus, the corresponding protection disclosing
attack vectors which are relevant for shadow-stack techniques do not apply for rFEM.

Finally, in the last part of this thesis, we develop a framework called tCFI for protecting
legacy program binaries with novel CFI policies designed by taking into account the lessons
we learned and summarized in previous chapters. These lessons have helped us to design and
implement a tool which can effectively protect forward and backward program CFG edges in
stripped program binaries as this type of information is usually not required in production-ready
binaries. Note that most of the semantic information has vanished through the compilation
process. In this way, CRAs which rely on corrupting forward and/or backward CFG edges due
to indirect control flow transfer violations are mitigated by greatly reducing the likelihood of
successfully performing such an attack when hardening the program binary with tCFI.

vi

Zusammenfassung

Menschen auf der ganzen Welt nutzen zunehmend mehr Software in ihrem alltäglichen
Leben, was dazu führt, dass die Grenze zwischen der digitalen und realen Welt zunehmend ver-
schwindet. Während Software stetig populärer wird, steigt auch exponentiell das Interesse von
verschiedenen Akteuren (z.B. staatliche Angreifer, staatlich gesponserte Angreifer, etc.). Dig-
itale Daten werden heutzutage oft als das neue Gold betitelt. Aus diesem Grund unternehmen
Angreifer zum Teil große Anstrengungen, um private Geräte ohne das Wissen der Benutzer
zu kapern, um an wertvolle Daten zu gelangen. Deshalb ist es wichtig, ein tiefgreifendes Ver-
standnis von Code-Wiederverwendungs-Angriffen (CWA) zu haben. Denn diese stellen einen
Hauptangriff Vektor dar, der von diesen Akteuren verwendet wird, um ihre Ziele zu erreichen.
Diese Dissertation bietet daher Lösungen und Ansätze zur Minderung von Problemen dieser
Art, indem CWAs mit zwei verschiedenen Forschungsansätze adressiert werden.

Im ersten Teil dieser Dissertation präsentieren wir ein statisches symbolisches Ausführungs-
framework, in welchem wir zuerst ein Ganzzahl Überlauferkennungswerkzeug namens INT-
DETECT entwerfen und implementieren. Anschließend wird dieses in der Eclipse Entwick-
lungsumgebung integriert. INTDETECT kann Ganzzahlüberläufe in C Quellcode-Programmen
erkennen, die oftmals zu einer Speicher-Korruption oder sogar zu einer CWA führen können.
Des Weiteren kann INTDETECT Ganzzahl-Fehler zuverlässig erkennen ohne dabei Falschmel-
dungen zu melden. Wir integrieren dieses Werkzeug in die etablierte und weit verbreitete
Eclipse Entwicklungsumgebung. Als nächstes erweitern wir unser statisches C Quellcode-
Analyse-Framework, das wir bereits oben erwähnt haben, durch die Integration eines Ganzzahl-
Überlauferkennungs- und Reparatur-Werkzeugs namens INTREPAIR. INTREPAIR kann Quellcode-
Reparaturen automatisch durchführen, die einem Programmierer helfen den Ganzzahl-Überlauf
zu korrigieren. INTREPAIR kann einen Fehler effizient entfernen, überprüft automatisch gener-
ierte Reparaturvorschläge und führt kein unerwünschtes Programmverhalten ein. Außerdem
erweitern wir unser statisches C Quellcode-Analyse-Framework, sodass dieses Pufferüber-
läufe, welche in vielen Situationen eine Hauptvoraussetzung fur CWAs sind, erkennen und
reparieren kann. Hierfür stellen wir ein Werkzeug namens BUFFREPAIR zur Verfügung. BUF-
FREPAIR erzeugt automatisch Pufferüberlauf Reparaturen, und kann einen vorher generierten
Quellcode-Reparatur-Vorschlag validieren.

Im zweiten Teil dieser Dissertation präsentieren wir einen dynamischen Ansatz zur Erken-
nung von Speicher Verfälschungen, die oft zu CWAs führen können oder sogar eine Voraus-
setzung für diese sind. Unsere Motivation hierfür ergibt sich aus den Einschränkungen der
statischen Analysetechniken wie im ersten Teil dieser Dissertation herausgearbeitet. Wir en-
twickeln ein Compiler basiertes Erkennungswerkzeug namens CASTSAN, das während der
Programmlaufzeit polymorphe C++ Objekttyp-Konflikte erkennt. CASTSAN wird anschließend
in einem etablierten Compiler-Framework (d.h. Clang/LLVM) integriert. CASTSAN ist ein voll
funktionsfähiges Objekttyp-Verwirrung Detektion-Werkzeug, das auf einer neuen und effizien-
ten Technik zu Erkennung von polymorphen Objekttyp-Verwirrungen basiert. Bei konsequenter
Verwendung von CASTSAN kann die Wahrscheinlichkeit von CWAs erheblich reduziert werden.

vii

Als Nächstes entwickeln wir ein statisches Compiler-basiertes Werkzeug namens LLVM-CFI,
das statische Kontrollfluss Integritäts (CFI) Regeln bewerten und untereinander vergleichen
kann. Die Wahl dieses Ansatzes ist zweifach motiviert. Erstens Speicherkorruptionen in
Programmen können nicht vollständig verhindert werden, deshalb um Programme zu härten
wollen wir eine Laufzeitverteidigung bereitstellen. Zweitens wollen wir eine neuartige CFI
basierte Technik entwerfen und implementieren, die in den nächsten Teilen dieser Disserta-
tion vorgestellt wird. Diese neue CFI Technik soll Schutz gegen nicht erlaubten indirekten
Programmsteuerung-Fluss-Übertragungen bieten. Um diese Aufgabe effektiv zu bewältigen,
finden wir zunächst heraus, wie effektiv die bestehenden CFI-Abwehrmechanismen sind
und welches Sicherheitsniveau diese bieten. Hieraus motiviert entwickeln wir LLVM-CFI,
ein neuartiges Framework zur Bewertung statischer CFI-Schutzregeln. Durch die Verwen-
dung von LLVM-CFI erhalten wir wichtige Erkenntnisse, die uns bei der Vorbereitung der
nächsten Werkzeug-Entwurfsentscheidungen helfen sollen. Außerdem entwickeln und imple-
mentieren wir ein Compiler-basiertes Werkzeug namens rFEM, das auf den Erkenntnissen
basiert, die wir im zweiten Teil dieser Dissertation gewonnen haben. rFEM schützt Programm-
Kontrolfluss-Graphen (PKG)-Rückwärtskanten, die von indirekten und direkten Vorwärts-
Kanten-Programmsteuerungsfluss-Übertragungen stammen. rFEM basiert auf einer neuartigen
Technik zum Schutz von Programm- PKG-Rückwärtskanten die auf präzisen CFI-Regeln
basieren. Die CFI Technik ermöglicht für jede geschützte und aufgerufene Programm-Funktion
eine optimale Anzahl von Rückkehrzielen. So wird die Wahrscheinlichkeit der erfolgre-
ichen Durchführung von CWAs, die auf Rückwärts-Transferkanten basieren, stark reduziert.
Gleichzeitig bieten wir eine Lösung, die eine wettbewerbsfähige Alternative für Shadow-Stack-
basierte Ansätze darstellt. Im Gegensatz zu Shadow-Stack-Ansätzen, die nicht auf Intel Control
Flow Enforcement (CET) und Return Address Defender (RAD) basieren, ist rFEM nicht auf
die Adressraum-Entropie und das Verstecken von Information angewiesen. Somit sind die
entsprechenden Angriffsvektoren nicht relevant.

Des Weiteren entwickeln wir im letzten Teil dieser Dissertation ein Framework namens
tCFI, um Legacy-Programme, in denen z.B. der Quellcode nicht verfügbar ist, zu schützen.
tCFI basiert auf den neuen CFI-Regeln die wir aus den Erkenntnissen des zweiten Teils
dieser Dissertation entwickeln. Diese helfen uns, ein Software-Werkzeug zu entwerfen und zu
implementieren, das Vorwärts- und Rückwärts-Programm-Kontrollfluss-Kanten im Programm-
Binärdateien wirksam schützen kann. Auf diese Weise werden CWAs, die auf der Korruption
von rückwärtigen Kontrollfluss-Kanten basieren stark eingeschränkt, was die Wahrschein-
lichkeit von erfolgreichen Angriffen deutlich reduziert, wenn tCFI zum Einsatz kommt.

viii

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

List of Publications xv

1 Introduction 1
1.1 Research Questions . 4
1.2 Contributions . 6
1.3 Thesis Outline . 8

2 Background 11
2.1 Code Reuse Attacks . 11

2.1.1 Simple Code Reuse Attacks . 11
2.1.2 Advanced Code Reuse Attacks . 12
2.1.3 Code Reuse Attacks Prerequisites 13
2.1.4 Mitigation of Code Reuse Attacks 13

2.2 Integer Over�ows . 13
2.2.1 Integer Over�ows . 14
2.2.2 Detecting Integer Over�ows . 15
2.2.3 Avoiding Integer Over�ows . 17

2.3 Mitigating Integer Over�ows . 17
2.3.1 Symbolic Execution Engine . 17
2.3.2 Program Input Validation . 18

2.4 Buffer Over�ows . 19
2.4.1 History . 19
2.4.2 Description . 19
2.4.3 Exploitation . 20
2.4.4 Protection . 20

i

Contents

2.5 C++ Object Type Confusion . 21
2.5.1 C++ Type Casting . 21
2.5.2 C/C++ Legal and Illegal Object Type Casts 22
2.5.3 Virtual Table Inheritance Trees . 23
2.5.4 Type Casting in Practice . 24
2.5.5 Object Type Confusion Example in Google's V8 25
2.5.6 Security Implications of Object Type Confusion 26
2.5.7 Object Type Confusion Defenses . 27
2.5.8 Ordered vs. Unordered Virtual Tables 28

2.6 Code Reuse Attack Primitives and Mitigation 30
2.6.1 Code Reuse Attack Primitives . 31
2.6.2 Control Flow Integrity . 32

2.7 Program Callee Primitives and Mitigation 33
2.7.1 Indirect Control Flow Transfers . 33
2.7.2 Program Callsite Types . 33
2.7.3 Control Flow Backward Edges . 34
2.7.4 Virtual Table Hierarchy . 35
2.7.5 Shadow Stack Techniques . 36

2.8 Type Inference in Program Binaries . 38
2.8.1 Exploiting C++ Object Dispatches 38
2.8.2 Type-Inference on Executables . 39
2.8.3 Security Implications of Program Indirect Transfers 40
2.8.4 Shadow Stack Techniques . 41
2.8.5 Polymorphism in C++ Programs . 42
2.8.6 Real COOP Attack Example . 43
2.8.7 Mitigation of Forward-Edge Based Attacks 45
2.8.8 Mitigation of Backward-Edge Based Attacks 46

3 Related Work 47
3.1 Detecting Integer Over�ows . 47

3.1.1 Static Analysis Tools . 47
3.1.2 Dynamic Analysis Tools . 48

3.2 Repairing Integer Over�ows . 48
3.2.1 Detecting Integer Over�ows . 50
3.2.2 Classifying Integer Over�ow . 52
3.2.3 Repairing Integer Over�ows . 52

3.3 Repairing Buffer Over�ows . 53
3.3.1 Generating Buffer Over�ow Repairs 53

3.4 Detecting C++ Object Type Confusions . 54
3.4.1 Virtual Table Pointer-based Tools 54
3.4.2 C++ Object Type Runtime Tracking 54
3.4.3 Compiler-based Tools . 55

ii

Contents

3.4.4 Binary-based Tools . 55
3.4.5 IVT vs. TypeSan . 56
3.4.6 CastSan vs. IVT . 56

3.5 Assessing Control Flow Integrity Defenses 57
3.5.1 Defense Assessment Metrics . 57
3.5.2 Static Gadget Discovery . 57
3.5.3 Dynamic Gadget Discovery . 58
3.5.4 Existing Metrics vs. Our Metrics . 58

3.6 Protecting Backward Edges . 59
3.6.1 Source Code based Tools . 59
3.6.2 Binary-based Tools . 60
3.6.3 Other Types of Tools . 61
3.6.4 Backward Edge Attack Mitigation 62

3.7 Protecting Against Code Reuse Attacks . 63
3.7.1 Mitigation of Simple Code Reuse Attacks 63
3.7.2 Mitigation of Advanced Code Reuse Attacks 64
3.7.3 Mitigation of Forward Edge based Attacks 66
3.7.4 Mitigation of Backward Edge based Attacks 67

4 IntDetect: Static Detection of Integer Over�ow Based Memory Corruptions 69
4.1 Introduction . 69
4.2 Threat Model . 71
4.3 Design and Implementation . 71
4.4 Evaluation . 76

4.4.1 Experiments Methodology . 76
4.4.2 Automated jUnit Test Cases Generation 77
4.4.3 Automated Eclipse C/C++ Programs Generation 77
4.4.4 Experimental Results . 78

4.5 Discussion . 83
4.6 Summary . 84

5 IntRepair: Static Repairing of Integer Over�ow Based Memory Corruptions 85
5.1 Introduction . 85
5.2 Threat Model . 87
5.3 Design and Implementation . 88

5.3.1 Overview . 88
5.3.2 IntRepair Over�ow and Under�ow Checks 89
5.3.3 Fault Localization . 90
5.3.4 Repair Patterns . 90
5.3.5 Integer Over�ow Repair Algorithm 92
5.3.6 Implementation . 98
5.3.7 Graphical User Interface in an IDE 99

iii

Contents

5.4 Evaluation . 100
5.4.1 Evaluation Setup . 100
5.4.2 Effectiveness . 101
5.4.3 Bug Removal . 102
5.4.4 Performance . 102
5.4.5 Correctness . 103
5.4.6 User Study . 104

5.5 Discussion . 106
5.6 Summary . 107

6 Bu�Repair: Static Repairing of Bu�er Over�ow Based Memory Corruptions 109
6.1 Introduction . 109
6.2 Motivation . 111
6.3 Threat Model . 112
6.4 Design and Implemnetation . 113

6.4.1 Quick Fix Locations Search Algorithm 113
6.4.2 Bug Detection with SMT . 115
6.4.3 Semi-Automatic Patch Insertion Wizard 118
6.4.4 Implementation . 118

6.5 Evaluation . 119
6.5.1 Experiments Methodology . 119
6.5.2 Performance . 119
6.5.3 Repair Usefulness . 121
6.5.4 Program Behavior Preserving . 122

6.6 Discussion . 122
6.7 Summary . 123

7 CastSan: Runtime Detection of C++ Polymorphic Object Type Confusions 125
7.1 Introduction . 125
7.2 Threat Model . 129
7.3 Design and Implementation . 129

7.3.1 Architecture Overview . 129
7.3.2 Virtual Table Inheritance Tree Projection 130
7.3.3 Object Type Confusion Detection 132
7.3.4 Implementation . 135

7.4 Evaluation . 136
7.4.1 Performance Overhead . 136
7.4.2 Precision . 139
7.4.3 Effectiveness . 139
7.4.4 Programmer Assistance . 139

7.5 Discussion . 140
7.6 Summary . 142

iv

Contents

8 LLVM-CFI: Analyzing Control Flow Integrity Defenses 143
8.1 Introduction . 143
8.2 Threat Model . 145
8.3 Overview . 146

8.3.1 Available Analysis Primitives . 147
8.3.2 Constraints . 149
8.3.3 Generating Defense Statistics . 150

8.4 Mapping Defenses . 150
8.4.1 Deriving Constraints . 150
8.4.2 Mapping Defenses . 152

8.5 Assessing CFI Policies . 155
8.6 Design and Implementation . 158

8.6.1 Data Collection and Aggregation . 158
8.6.2 CFI Defense Modeling . 159
8.6.3 CFI Defense Analysis . 159
8.6.4 Implementation . 160

8.7 Evaluation . 160
8.7.1 Detailed Analysis of NodeJS . 161
8.7.2 Generalized Results . 162
8.7.3 Ranking of CFI Policies . 162
8.7.4 Constructing Code Reuse Attacks 165

8.8 Discussion . 167
8.9 Summary . 169

9 r FEM: Backward-edge Protection Using Reversed Forward-edge Mappings171
9.1 Introduction . 171
9.2 Threat Model . 174
9.3 Design and Implementation . 175

9.3.1 r FEM Design . 176
9.3.2 Direct Call Analysis . 178
9.3.3 Virtual Call Analysis . 178
9.3.4 Function Pointer Based Call Analysis 181
9.3.5 Backward-Edge Checks . 182
9.3.6 Implementation . 183

9.4 Evaluation . 183
9.4.1 Protection Effectiveness . 184
9.4.2 Exploit Coverage . 187
9.4.3 Security Analysis . 188
9.4.4 Runtime Overhead . 189

9.5 Discussion . 191
9.6 Summary . 193

v

Contents

10 t CFI: Runtime Protection of Program Binaries Against Code Reuse Attacks 195
10.1 Introduction . 195
10.2 Threat Model . 198
10.3 Design and Implementation . 199

10.3.1 Approach Overview . 199
10.3.2 Parameter Count and Type Policy 200
10.3.3 Instruction Read-Write Effect . 200
10.3.4 Calltarget Analysis . 201
10.3.5 Callsite Analysis . 202
10.3.6 Return Values . 203
10.3.7 Backward-Edge Analysis . 203
10.3.8 Binary Instrumentation . 203
10.3.9 Implementation . 204

10.4 Evaluation . 205
10.4.1 Effectiveness . 205
10.4.2 Forward-Edge Policy vs. Other Tools 207
10.4.3 Effectiveness Against COOP . 207
10.4.4 Comparison with the Shadow-Stack 208
10.4.5 Security Analysis . 210
10.4.6 Mitigation of Advanced CRAs . 210
10.4.7 Runtime Overhead . 211

10.5 Discussion . 212
10.6 Summary . 213

11 Conclusion and Future Work 215
11.1 Conclusion . 215

11.1.1 Contributions . 215
11.2 Future Work . 217

11.2.1 Next Steps related to INTDETECT 218
11.2.2 Next Steps related to INTREPAIR 218
11.2.3 Next Steps related to BUFFREPAIR 218
11.2.4 Next Steps related to CASTSAN . 219
11.2.5 Next Steps related to LLVM-CFI . 220
11.2.6 Next Steps related tor FEM . 221
11.2.7 Next Steps related tot CFI . 221

11.3 Final Remarks . 222

Bibliography 223

vi

List of Figures

2.1 Integer over�ow shaded gray at line seven. 14
2.2 Program path and state coverage vs. static and dynamic analysis techniques. . 15
2.3 C++ based object type down-casting and up-casting examples. 22
2.4 Class hierarchy containing virtual functions (a) and the corresponding vtable

inheritance trees (b) and (c). 24
2.5 The IsCompatibleReceiver() function contained in Google V8 engine.

This source code is used in Google Chrome before v. 48.0.2564.82. It does
not ensure receiver compatibility before performing a cast of an unspeci�ed
variable, which allows remote attackers to cause a denial of service or possibly
have another unknown impact via crafted JavaScript code (see source code
differential view [95]). The## symbol represents a macro. 25

2.6 Illegal and legal object casts vs. ordered and unordered virtual tables. 29
2.7 Types of callsites for a particular callee. 34
2.8 Virtual tables of a single C++ class hierarchy. 35
2.9 COOP main loop gadget (ML-G) operation with the associated C++ code. . . . 38
2.10 Class hierarchy of classes used in the COOP attack. 44

4.1 Main engine Java classes. These are also presented in more detail by Ibing [115]. 72
4.2 INTDETECT run-time results for the Juliet's CWE-190 test case. 79
4.3 CWE_190 baseline programs bug reports. 83

5.1 INTREPAIR depicted as gray shaded boxes. 88
5.2 Decision tree used for storing repair patterns. 91
5.3 Repair pattern example. 97
5.4 Screenshot of the GUI ofINTREPAIR. 99

6.1 Buffer over�ow bug due to missing input checks. 112
6.2 Quick �x locations searching and repair generation algorithm. 113
6.3 First and second oracles used for fault detection and repair generation. 116
6.4 Patch insertion GUI based wizard. 118

vii

LIST OF FIGURES

6.5 Quick �x generation for memcpy and fgets programs. 120
6.6 Total overhead. 121

7.1 Ten years of object type confusion vulnerabilities. 126
7.2 CASTSAN system architecture. 130
7.3 Unordered & ordered (a) vtables of the tree rooted inX. (b) contains the vptr

of each type after ordering. (c) depicts the projected list corresponding to (b). 131
7.4 Instrumented polymorphic C++ object type cast. 134
7.5 Clang-CFI (gray) vs.CASTSAN (black) SPEC CPU2006 benchmark overhead. 138
7.6 Clang-CFI (gray) vs.CASTSAN (black) Chrome runtime overhead. 138
7.7 Type confusion back-trace for thexalancbmkprogram. 140

8.1 Design ofLLVM-CFI with the main stages of the analysis pipeline. 147
8.2 C++ based class hierarchy with four classes. 152
8.3 Mapping of CFI defense classes to write (X-axis) and target (Y-axis) constraints

in LLVM-CFI . 153
8.4 Dependencies between our metrics (bold text), and program metadata primitives.156

9.1 Identi�er (ID) based backward edge mapping of virtual functions called through
object dispatches, (a) & (b) andID based backward-edge mapping of non-
virtual functions called indirectly through function pointers, (c) & (d). 176

9.2 Design ofr FEM. 177
9.3 Steps used to determineIDs and the range for functiong(). (a) Step one:

Building class hierarchy from the virtual table hierarchies. (b) Step two:
Collecting root class information of functions (shaded red) and overrides
(shaded green). (c) Step three: Calculating ranges andIDs for functiong(). . . 179

9.4 Caller (a) and callee (b) source code and caller (c) without instrumentation.
Callee assembly (d) and caller (e) and callee (f) assembly instrumentation. . . 182

9.5 CCDF between the number of return targets and the percentage of legitimate
callees. 184

9.6 r FEM vs. SafeStack vs. IVT overhead . 190

10.1 Main steps (gray shaded box) done byt CFI when hardening a program binary. 199
10.2 CDF for the PostgreSQL program. 209
10.3 Runtime overhead. 211

viii

List of Tables

2.1 High-level features overview of object type confusion checking tools. 27

3.1 Integer over�ow detection and repair features. Entries are arranged by year. . 50

4.1 Bug detection results for CWE_190. 80
4.2 Integer over�ows bugs triggered. 81
4.3 Impact of expensive baseline test cases. 81
4.4 Types of exceptions encountered. 82

5.1 Four repair patterns ofINTREPAIR. 92
5.2 Overview of the subject programs. 100
5.3 Descriptive statistics of our subject programs. 101
5.4 Average repair generation time in seconds. 103

6.1 Bug detection and patches generation results. 119
6.2 Comparison of time cost between our system and GCC. 119
6.3 Bug �xing results. 121
6.4 Programs behavior preserving. 122

7.1 High-level feature overview of existing C++ object type confusion checkers. . 127
7.2 Object type confusion detection overhead for SPEC CPU2006 benchmark. . . 127
7.3 Benchmark results of running various C++ programs contained in the SPEC

CPU2006 benchmark withCASTSAN enabled and disabled (vanilla). The values
represent the mean time needed to �nish running the benchmark program over
10 runs. 137

7.4 Runtime overhead on Chrome withCASTSAN enabled and disabled (vanilla). . 137

8.1 Mapping of CFI code-reuse defenses intoLLVM-CFI constraints. 151

ix

LIST OF TABLES

8.2 Policies evaluation for NodeJS. The values not contained in round brackets are
obtained for only virtual callsites and all targets (i.e.,virtual and non-virtual),
while the values in round brackets are obtained for all indirect callsites (i.e.,
virtual and function pointer based calls) and all targets. For theBin types, Safe
src types, andSrc typespolicies depicted above the targets can be virtual or
non-virtual, for the remaining policies the targets inherently can only be virtual
functions. Targets: median (minimum and maximum) number of legal function
targets per callsite. Target distribution: minimum/90th percentile/maximum
number of targets per callsite. 161

8.3 Virtual and pointer based callsites results. 163
8.4 Evaluation of virtual callsites for only C++ programs. Baseline all func. rep-

resents the total number of functions, while Baseline virtual func. represents
the number of virtual functions. The �rst four policies (from left to right in
italic font) allow virtual or non-virtual targets, while the remaining policies
inherently allow only virtual targets. The values in round brackets show the the-
oretical results after adapting the �rst four policies to only allow virtual targets.
Each table entry contains �ve aggregate values: minimal, 90p: minimum/90th
percentile/maximum, maximal, median and average (Avg) number of targets
per callsite. 164

8.5 Normalized results using virtual callsites only. All results are normalized
using Baseline. Baseline: Total number of possible virtual targets. Each
entry contains three aggregate values: average-, standard deviation (SD) and
90p-number of targets per callsite. 164

8.6 Normalized results using all indirect callsites. 165
8.7 Ten controllable callsites and legitimate targets. 166

9.1 Number of allowed return addresses per callee. All virtual and non-virtual
functions are considered as callees. 185

9.2 Return addresses allowed byr FEM for several C/C++ programs. Note that
only virtual functions are considered here as callees. 186

9.3 Fraction of instructions allowed to return to. 186
9.4 Stopped backward-edge attacks. 187
9.5 Exploits caught by callee return target protection techniques. 187
9.6 ret gadgets available before/after hardening. 188
9.7 Overhead on the SPEC CPU2017 (rate) benchmark. 190
9.8 Overhead on the SPEC CPU2017 (speed) benchmark. 191

10.1 Allowed callsites per calltarget fort CFI's count and type policies. 206
10.2 Legitimate calltargets and callsite pair sets for �ve tools. 207
10.3 Parameter overestimation for the ML-G and REC-G gadgets. 208
10.4 Backward-edge policy statistics. 209
10.5 Stopped CRAs, forward-edge policy (FP) & backward-edge policy (BP). . . . 210

x

List of Acronyms

• ABI - Application Binary Interface

• ACICS - Argument Corruptible Indirect Call Site

• API - Application Programming Interface

• ASLR - Address Space Layout Randomization

• AST - Abstract Syntax Tree

• AT - Address Taken

• AUFNIRA - Arrays, Uninterpreted Functions, Non-linear Integer and Real Arithmetic

• CCDF - Complementary Cumulative Distribution Function

• CDF - Cumulative Distribution Function

• CFB - Control Flow Bending

• CFG - Control Flow Graph

• CFI - Control Flow Integrity

• CFV - Control Flow Variant

• COOP - Counterfeit Object Oriented Programming

• COP - Call Oriented Programming

• CRA - Code Reuse Attack

• CWE - Common Weakness Enumeration

• CoFI - Change of Flow Instruction

• DEP - Data Execution Prevention

• DFS - Depth First Search

xi

List of Acronyms

• DoS - Denial of Service

• EC - Equivalence Classes

• ESC - Extended Static Checking

• FP - False Positive

• GCC - GNU Compiler Collection

• HW - Hardware

• ID - Identi�er

• IDE - Integrated Development Environment

• IL - Intermediate Language

• IR - Intermediate Representation

• ISA - Instruction Set Architecture

• IVT - Interleaved Virtual Table

• JIT - Just in Time

• JOP - Jump Oriented Programming

• JS - JavaScript

• LBR - Last Branch Register

• LLVM - Low Level Virtual Machine

• LOC - Lines of Code

• LTO - Link Time Optimization

• MCFI - Modular Control Flow Integrity

• OS - Operating System

• PC - Personal Computer

• PT - Processor Trace

• ROP - Return Oriented Programming

• RQ - Research Question

xii

• RTTI - Runtime Type Information

• SD - Standard Deviation

• SEH - Structured Exception Handler

• SLoC - Source Lines of Code

• SMT - Satis�ability Modulo Theories

• SQL - Structured Query Language

xiii

List of Publications

TOPS'21 Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags, and
Claudia Eckert. Analyzing CFI Defenses: The Bad, The Good & The Potential. Inin
submission, ACM, Apr. 2021.

NDSS'20 Paul Muntean, Richard Viehoever, and Claudia Eckert. iTOP: Indirect Transfer Oriented
Programming: Automating Control-Flow Hijacking Attacks Inin submission, IEEE, Oct.
2020.

ACSAC'20 Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags, and
Claudia Eckert.r FEM: Ef�cient Callee Protection Using Reversed Caller Mappings. In
Annual Computer Security Applications Conference (ACSAC), ACM, Dec. 2020.

ACSAC'19 Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags, and
Claudia Eckert. Analyzing Control Flow Integrity with LLVM-CFI. InAnnual Computer
Security Applications Conference (ACSAC), ACM, Dec. 2019.

TSE'19 Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert.
IntRepair: Informed Repairing of Integer Over�ows. InTransactions on Software
Engineering (TSE), IEEE, Aug. 2019.

Usenix Sec.'19Felix Fischer, Huang Xiao, Ching-yu Kao, Yannick Stachelscheid, Benjamin Johnson,
Danial Razar, Paul Furley, Nat Buckley, Konstantin Böttinger,Paul Muntean and Jens
Grossklags. Stack Over�ow Considered Helpful! Deep Learning Security Nudges
Towards Stronger Cryptography, InProceedings of the USENIX Security Symposium
(USENIX Security), Santa Clara, CA, USA, Aug. 2019.

ESORICS'18 Paul Muntean, Sebastian Wuerl, Jens Grossklags, and Claudia Eckert. CastSan: Ef�cient
Detection of Polymorphic C++ Object Type Confusions with LLVM. InProceedings
of the European Symposium on Research in Computer Security (ESORICS), Barcelona,
Spain, LNCS, Sept. 2018.

RAID'18 Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens Grossklags, and Claudia
Eckert.t CFI: Type-Assisted Control Flow Integrity for x86-64 Binaries. InProceedings
of the International Symposium on Research in Attacks, Intrusions, and Defenses (RAID),
Heraklion, Greece, LNCS, Sept. 2018.

xv

List of Publications

Arxiv'18 Paul Muntean. Automated CFI Policy Assessment with Reckon. In Arxiv CoRR
abs/1812.08496, 2018.

Arxiv'17 Paul Muntean, Jens Grossklags, and Claudia Eckert. Practical Integer Over�ow Preven-
tion. In ArXiv CoRR abs/1710.03720, 2017.

Tech. Rep.'16 Paul Muntean, and Alexander Malkis. Information Exposure Checker.Technical report,
TUM-I1646, Technical University of Munich,
https : //mediatum :ub:tum:de/doc/
1326283/1326283:pdf , 2016.

Tech. Rep.'16 Paul Muntean, and Alexander Malkis. Automatic Security Checks on the Model Level.
Technical report, TUM-I1657, Technical University of Munich,
https : //mediatum :u
b:tum:de/doc/1341307/1341307:pdf , 2016.

Arxiv'16 Paul Muntean. Mobile Robot Navigation on Partially Known Maps using a Fast A Star
Algorithm Version. InArxiv CoRR abs/1604.08708, 2016.

SAFECOMP'15 Paul Muntean, Vasantha Kommanapalli, Andreas Ibing, and Claudia Eckert. Automated
Generation of Buffer Over�ow Quick Fixes Using Symbolic Execution and SMT. In
Proceedings of the International Conference Computer Safety, Reliability, and Security
(SAFECOMP), LNCS, Sept. 2015.

QRS'15 Paul Muntean, Adnan Rabbi, Andreas Ibing, and Claudia Eckert: Automated Detection
of Information Flow Vulnerabilities in UML State Charts and C Code. InProceedings of
the Quality, Reliability and Security Conference (QRS) Companion, Vancouver, Canada,
IEEE Aug. 2015.

ISSA'15 Paul Muntean, Musta�zur Rahman, Andreas Ibing, and Claudia Eckert: SMT-constrained
symbolic execution engine for integer over�ow detection in C code. InProceedings of
the Information Security for South Africa (ISSA), Johannesburg, South Africa, IEEE,
Aug. 2015.

InnoSWDev'14 Paul Muntean, Claudia Eckert, and Andreas Ibing. Context-sensitive detection of
information exposure bugs with symbolic execution. InProceedings of the Interna-
tional Workshop on Innovative Software Development Methodologies and Practices,
(InnoSWDev), co-located with ACM's FSE conference, Hong Kong, China, ACM, Nov.
16, 2014.

Arxiv'14 Paul Muntean. Modeling of information-�ow restrictions.Technical report TUM-
I1416, Technical University of Munich,
https : //mediatum :ub:tum:de/doc/1244626/
1244626:pdf , 2014.

xvi

C
ha

pt
er

1

Chapter1
Introduction

What is the overall view? Protecting software programs against control-�ow hijacking attacks
(e.g.,ROP, DOP, COOP) is a basic requirement needed in order to have a secure system since
these types of attacks are more and more prevalent. This situation is con�rmed by the increasing
number of CRAs reported by Mitre's CWE [177]. Nowadays users use many programs from
multiple vendors for different purposes. Some of these vendors take security seriously. But
all are driven by cost and time to market criteria.

A CRA represents an exploit which is performed by reusing existing code from a vulnerable
application or other system components such as shared libraries. Typical attack vectors are
represented by memory safety issues due to: buffer over�ows, integer over�ows, NULL pointer
dereferences, use after free, use of uninitialized memory, double frees, object type confusions,
see Payer [220], for more details. In this thesis we differentiate between control �ow graph
(CFG) violating attacks and non CFG violating attacks (e.g.,data-only-attacks). Note that,
in most cases, the attacker needs to trigger unde�ned behavior in order to perform such an
attack. Thus, this thesis focuses on providing tools for protecting user-space applications
against control-�ow hijacking attacks which are based on a memory corruptions. Further for
data-only CRAs, we advise the reader to consult, for example, Ispoglouet al. [121].

However, there are multiple ways to protect programs against control-�ow hijacking attacks.
Important to note is that such an attack represents a user capability which can be performed:
(1) completely manually, (2) partially manually, or (3) fully automatically (if a tool support is
available). The user usually triggers unde�ned behavior to build his attacks. As such, in most
cases these types of attacks are manually built and thus represent a user capability since these
highly depend on the skills and knowledge of the attacker in order to craft such an attack.

Modern operating systems, compilers and binary hardening tools provide many techniques
for protecting software against control-�ow hijacking attacks. Two main OS based approaches
(e.g.,DEP [164] and ASLR [219] are used to protect programs. Data execution prevention
(DEP) forbids jumping into and executing data, and address space layout randomization (ASLR)
helps to randomize the code and data sections inside a program during loading. Further, these
two approaches do not solve the problem of protecting against these attacks as these were shown

1

1 Introduction

to be easily by-passable by attackers. DEP can be bypassed by changing the bit of the page table
which indicates if that particular page is executable or not. ASLR is bypassable through infor-
mation leaks which help the attacker to learn about the layout of the program which he wants
to attack. Thus, their security primitives are weak in the face of modern and advanced attacks.

Further, as these OS based defenses were shown to be of questionable utility researchers are
continuously proposing new OS based defenses which use hardware support and comprise of
stronger primitives which should lower the likelihood of a successful attack. As a result, the
OS based applications try to focus on imposing stricter runtime policies. Also, live monitoring
of applications is another line of research which relies on heuristics and a previously computed
CFG in order to detect malicious program execution streams but with less success as recent
research has demonstrated, see Schusteret al. [239]. Finally, there is no clear separation
between techniques which can be used only for the OS kernel space and, as such, these are
applied to user space as well.

What is the problem? User space based protection.As the problem of protecting against
control-�ow hijacking attacks is a multi-layer problem, one has to rely on multiple components
in order to tackle this problem. By multi-layer we mean, in this context, that the user space
protection against control-�ow violating attacks can be addressed in multiple ways. The main
approaches are as follows: (1) preventing memory corruptions through runtime checking and
software testing, (2) hardening binaries against control-�ow violations when source code is
unavailable, (3) providing hard to bypass �ne-grained runtime primitives, and (4) hardware
based monitoring of malicious program execution streams. Note that this list is not exhaustive
and other attack mitigation lines of defense exist having their advantages and disadvantages.
One of the most notable approaches is (4) live monitoring of execution streams which is
based on the interplay between user space and kernel space, found recently application in the
Windows OS 10 (i.e.,CFGuard [167]).

What are the existing solutions?Live monitoring of program execution approaches, such as
kBouncer [216], ROPecker [44], and ROPGuard [83] validate the execution of a program by
monitoring branch transfers based on keeping track of so calledfromandto address pair and
in certain time intervals these jumps are compared against a precomputed program CFG. While
some simple CRAs can be detected by using these primitives this type of approach can easily
be fooled and is of questionable usage when more advanced CRAs are performed, see Schuster
et al. [239].

What are the limitations of the solution? Unfortunately, the heuristics on which these types
of systems are based can only keep track of limited amount of from-to address pairs in hardware
which was not speci�cally designed for this purpose but rather for program debugging. Further,
this type of defenses assume that the previously computed CFG is suf�cient for assessing if
an execution trace is malicious or not.

This assumption does not hold since these CFG are not as precise as these should be in
order to catch malicious behavior. Further, it is well known that alias analysis of pointers is
undecidable as demonstrated by Ramalingam [229]. As such, computing a precise CFG which
would allow for precise analysis is unfeasible. Further, advanced CRAs (e.g.,COOP) exploit

2

C
ha

pt
er

1

exactly pointer based indirect transfers for which construction a CFG is very dif�cult, and in
practice rather program primitives are used to reconstruct metadata, which can be used to check
these indirect transfers such as the program class hierarchy.

Further, recent CRAs explicitly target this main intrinsic limitation which makes the program
monitoring approaches by �ltering benign from malicious program executions very dif�cult.
As such, we can see many lines of research to address this problem.

No one shot solution. In general, the main problem is that the machine instruction set
architectures (ISA) are designed without security in mind but rather are mostly optimized for
low runtime overhead. Further, the main research in the last decades went into runtime overhead
reduction and thus we are confronted nowadays with intrinsic ISA limitations which could
potentially be eradicated by coming up with secure by design ISAs. Until then we address CRAs
from multiple dimensions and pursue the cat and mouse game which have not seen its peeks yet.

What is our insight? In this thesis, we focus on how to reduce the likelihood of a successful
CRA in cases: (1) source code is under development, (2) is fully available, or (3) the source
code is no longer available (e.g.,legacy applications). As such, we �rst look at how can tools
help programmers spot bugs early on in the development cycle and how to reliable repair
them. For this purpose, in a �rst step, we come up with tools which can help a programmer
to �nd and repair software bugs which can lead to CRAs in an automated fashion. Equipped
with this knowledge, we propose runtime based tools which can use program data that is only
available during runtime in order to detect other types of memory corruptions that can lead to
CRAs. As a consequence of the intrinsic limitations of these types of tools we propose new
control �ow integrity (CFI) policies which can be enforced during program compile time and
to legacy binaries. With the knowledge gained, we answer the question on how the likelihood
of successful exploitation can be reduced and build a framework which can be used to assess
the protection level of different static state-of-the-art CFI defenses during compile time.

Improving user space based protection.As techniques for protecting software against attacks
become more and more prevalent, attackers also adapt and provide new methods to perform
CRAs. A relatively new approach is based on advanced attack (e.g.,COOP [238]), which uses
only available instructions and do not violate the caller-callee function calling convention. To
accomplish this, advanced attacks de�ne a new set of gadgets and rely on hard to determine
(before runtime of) forward-edge transfer violations. A gadget is a set of machine code in-
structions which usually terminate in an indirect transfer instruction (e.g.,ret , jump, call ,
etc.). This set of gadgets allow powerful attacks which despite what the literature proposes
are not Turing complete (see Dullienet al. [76] for more details) and can infect a system, for
example, with malware. Despite this major threat posed by this type of attacks there are only
a few countermeasures which can combat advanced attacks [59, 268] at the source code and
binary level in user space.

Thus, in this thesis, we see the mitigation of advanced attacks as a multi-layer problem which
we believe it needs to be tackled with a corresponding multi-step approach. As mentioned
before, reasoning about alias analysis is undecidable, we focus on recuperating program meta-
data during compile time (virtual tale hierarchy) and from program binary (function parameter

3

1 Introduction

types) to: (1) use the program virtual table hierarchy for checking of runtime object type
confusions (CASTSAN), (2) use the program virtual table hierarchy for imposing return target
sets for callees (r FEM), (3) assess different static state-of-the-art CFI defenses (LLVM-CFI),
and (4) impose function signature for constraining forward and backward edge transfers (t CFI).
In order to recuperate the whole program virtual hierarchy we use the compiler to collect all
relevant virtual table metadata and transport it to make it available during program link time.
Further, in order to build function signatures for forward and backward edge dispatches we
use the x86-64 bit function calling convention and the width of the used registers. Next, we
perform a liveness and reaching analysis in order to �nd matching pairs.

Further, we employ static symbolic execution and build a fully integrated framework into
an IDE for detection and repair of integer over�ow and buffer over�ows. Our framework
constructs for each analyzed program a CFG and then for a previously extracted path the path
constraints are translated to satis�ability modulo theories (SMT) constraints and solved with
the help of a SMT solver. In this way integer over�ows and buffer over�ows can be detected
and automated repairs are suggested for the user.

Finally, we provide a multi-step approach of tackling advanced CRAs by helping to remove
memory corruptions which are likely to lead to CRAs during program development or during
runtime and provide tools for hardening the source code and binary code against advanced
CRAs as well a framework for assessing state of the art static CFI defenses.
Kernel space based protection.Even though we did not provide kernel space mitigation
against advanced CRAs, we note that our techniques developed for protecting user space
application can also be adapted to protect the kernel space. Note that similar approaches as
ours have been adapted with success in the past to protect kernel space applications as well.

1.1 Research Questions

This thesis presents several approaches to combating advanced CRAs in the user space. This
consists in a three steps approach to address this problem, namely: (1) detecting and repairing
memory corruptions which can lead to advanced attacks as well as runtime detection of memory
corruptions which can be exploited in order to perform attacks, (2) hardening of program's
source code and machine code with novel �ne-grained CFI policies, and (3) assessing static
CFI defenses with the goal to determine which is more effective w.r.t. protecting against these
types of attacks. To address and mitigate this problems, we address several research questions
(RQs) and formulate them as following.

• Static source code analysis for automated memory corruption localization and
repair generation.

– RQ1: How to ef�ciently locate integer over�ows which potentially lead to CRAs in
Csource code based programs without false negatives and potential false positives?
Within RQ1, we need to research on how to design a novel technique which can
be used to effectively and reliably detect integer over�ows inCsource code without

4

C
ha

pt
er

1

1.1 Research Questions

false positives. Previous research did not address the problem of static integer over-
�ow detection with the help of static symbolic execution from a programmer usable
tool which can be integrated in a ready to use, well integrated and widely used IDE.

– RQ2: How to automatically generate and validate integer over�ows repairs inC
source code based programs which potentially lead to CRAs? After we researched
in RQ1 how to effectively detect integer over�ows now withinRQ2, we need to
devise a new methodology to automatically generate integer over�ow repairs which
are validated automatically, can remove the previously detected fault, and does not
introduce unwanted program behavior. Previous research did not address the integer
over�ow repair generation from the angles presented above, and thus we think that
in this way we can provide more useful repairs.

– RQ3: How to automatically generate and validate buffer over�ows, which can
potentially lead to CRAs with the help ofCsource code based program repairs?
After presenting a technique for generating integer over�ows repairsRQ2 the goal
of RQ3 is to come up with a new technique which can be used to detect and repair
buffer over�ows inCsource code programs without false negatives but potentially
false positives and which can be easily integrated in the previous mentionedRQ1
framework. Previous research did not address repair correctness, and generation of
buffer over�ow repairs atnon-in-placelocations, and thus we think that by focusing
on these repair characteristics we can improve the state-of-the-art.

• Dynamic source and machine code based analysis and instrumentation for runtime
memory corruption detection, CRAs mitigation, and static CFI policies assessment.

– RQ4: How to more effectively detect object type confusions in source code pro-
grams which can potentially be used to perform CRAs? The goal ofRQ4 is to
devise a new technique for detecting runtime based object type confusions which
can be used to perform CRAs. Previous research has looked at runtime library
based support for detection of object type confusions. In this research we focus on
a purely static technique with no need of object type tracking during runtime, and
thus we improve w.r.t. runtime ef�ciency the state-of-the-art.

– RQ5: How to assess state-of-the-art static CFI defenses and provide the set of
legitimate calltargets for each callsite which are still accessible even after a static
state-of-the-art CFI policy was applied? Next, in order to design an effective CFI-
based technique for protecting program CFG backward-edges against CRA based
exploits inRQ6 andRQ7, we focus withinRQ5 to come up with a framework
which can be used to assess such kind of static CFI based defenses that are widely
used and for which there is currently no reliable way to assess them w.r.t. how effec-
tive this can protect against certain types of CRAs. Previous work w.r.t. providing a
tool for automated static CFI policy assessment is not publicly available at the time
of writing this thesis, as such we would like to provide the �rst tool of this kind in
order to better assess static CFI policies against each other.

5

1 Introduction

– RQ6: How to protect CFG backward edges from program control �ow bending
which can be used for performing CRAs in the presence of a deployed defense? In
RQ6 we focus on securing program control �ow graph edges during runtime under
the assumption that an exploitable memory corruption exists and which was not
previously detected and removed from the vulnerable program. Previous work has
mostly relied on the presence of a shadow stack technique for protecting backward
edges. Since these techniques can be bypassed we want in this research to provide
a competitive alternative which does not have the limitations of shadow stacks and
thus improve state-of-the-art w.r.t. protection of runtime backward edge dispatches.

– RQ7: How to protect CFG forward and backward edges in program binaries which
are usually corrupted during a CRAs? InRQ7 we focus on protecting CFG forward
and backward in binary programs based on the lessons learned inRQ5. Further, we
assume that source code is not available (i.e., legacy code, closed source libraries,
etc.). Previous work has assumed that shadow stack techniques are ef�cient w.r.t.
backward edge protection and function signatures can be used to protect forward
edges, and thus in this research we want to improve state-of-the-art by proposing
a novel technique for protecting forward edges. This technique is more precise then
similar state of the art solutions. Yet another another technique will be introduced
for protecting backward edges, this technique does, for example, not suffer from
the intrinsic limitations of shadow stack techniques.

1.2 Contributions

What are our contributions? In this thesis, we provide answers to the above mentioned
research questions. In the following, we brie�y list the contributions made while researching
for the answers to the previously mentioned research questions. Note that the following con-
tributions are listed for completeness reasons at the beginning of the appropriate chapters too.

• Static source code analysis for automated memory corruption localization and
repair generation.

– We design a novel source code repair generation technique for integer over�ows
in Cprograms.

– We implementINTREPAIR, a prototype of our novel integer over�ow repairing
technique, forCsource code programs.INTREPAIR can automatically repair integer
over�ows across multiple integer precisions.

– We show the effectiveness ofINTREPAIR's w.r.t. code repairing and that the repairs
induce a low runtime overhead by runningINTREPAIR on 2,052Cprograms con-
tained in the currently largest open-source test suite forC/C++source code (NSA's
Juliet) and with 50 synthesized programs which range up to 20 KLOC.

6

C
ha

pt
er

1

1.2 Contributions

– We demonstrate thatINTREPAIR is superior to manually generated repairs and also
more time-effective than repairing the same programs manually by usingINTREPAIR

within a user-based controlled experiment.

– We provide precise symbolic modeling ofCrelated semantics needed for integer
over�ow detection.

– We design and implement an integer over�ow checker, calledINTDETECT, as an
Eclipse IDE plug-in based on our static execution engine, and automated testing
based on automatically generated jUnit test cases and Eclipse projects.

– We present an experimental evaluation ofINTDETECT on the currently largest open
sourceC/C++test case CWE_190_Integer_Over�ow contained in the Juliet test
suite.

– We provide an algorithm for generation ofin-placeandnon-in-placebuffer over�ow
quick �xes.

– We present a novel approach, calledBUFFREPAIR, for automated buffer over�ow
fault repair generation based on program input saturation.

– We implement a semi-automated patch insertion based tool for visualizing source
code �les based on differential views (old code and patched source code).

– We implement withinBUFFREPAIR an approach for automated checking of program
behavior preserving after a patch was applied to a source code based program.

• Dynamic source and machine code based analysis and instrumentation for runtime
memory corruption detection, CRAs mitigation and static CFI policies assessment.

– We design a novel �ne-grained backward-edge protection technique without relying
on information hiding.

– We implement our technique based on the Clang/LLVM compiler framework inside
a prototype calledr FEM.

– We show thatr FEM has a low runtime overhead of 2.72% in geomean for the
Google's Chrome Web browser and of less than 1% in geomean for the SPEC
CPU2017 benchmarks.

– We develop a novel technique for detectingC++object type confusions during
runtime, which is based on the linear projection of virtual table hierarchies.

– We implement our technique in a prototype, calledCASTSAN, which is based on
the Clang/LLVM compiler framework and the Gold plug-in.

– We demonstrate thatCASTSAN is more ef�cient than other state-of-the-art tools by
runningCASTSAN on the same benchmarks.

– We show that static CFI attacker models are powerful and drastically lower the bar
for performing CRAs against state-of-the-art defenses.

7

1 Introduction

– We implementLLVM-CFI , a novel framework usable for generating low-effort
CRAs and for empirically assessing CFI defenses against each other, using constraint-
driven static analysis of aggregated program meta-data obtained during program
compilation.

– We compare existing static state-of-the-art CFI defenses against each other, and
show their strengths and weaknesses by employingLLVM-CFI 's CFI defense con-
straints. We compute the legitimate target sets and demonstrate that these allow
further reasoning about possible attacks.

– We present a NodeJS-based case study with the goal of highlighting howLLVM-CFI
can be used to craft CRAs against a state-of-the-art defense.

– We introduce four new CFI defense assessing metrics that are more effective and
precise than existing metrics. We also show the signi�cance of one of our metrics
by putting it to work in our evaluation.

– We presentt CFI, a new CFI system that improves the state-of-the-art CFI with more
precise forward-edge identi�cation by using type information reverse-engineered
from stripped x86-64 binaries.

– We implementt CFI as a binary instrumentation framework to enforce a �ne-grained
forward-edge and backward-edge protection.

– We show thatt CFI is more precise and effective than other state-of-the-art tech-
niques.

1.3 Thesis Outline

The rest of this thesis is organised as follows:
In Chapter 2, we present the required background knowledge needed in order to understand

the rest of this thesis. More speci�cally, we introduce background information about CRAs
and how this can be mitigated. Further, we introduce the control �ow integrity technique for
protecting indirect control �ow transfers. We present information about object type confusions
and needed data in order to understand how program backward edges can be protected. Also,
we introduce knowledge about integer over�ows and buffer over�ows and present general
information about these topics. Finally, we give an overview about forward and backward CFG
edge transfers in program binaries and present advantages and disadvantages of shadow stack
based techniques.

In Chapter 3, we discuss related work concerning the detection of object type confusions and
protection of program backward edges using compiler based instrumentation. Then we discuss
about automated CRA gadget discovery and existing metrics used to assess the ef�ciency of
CRA protection techniques. Further, we present related work about integer over�ow and buffer
over�ow detection and automated repair generation as well as how advanced CRAs can be
mitigated.

8

C
ha

pt
er

1

1.3 Thesis Outline

In Chapter 4, we presentINTDETECT, a tool usable for detection of integer over�ows inC
source code based programs across multiple integer precisions.

In Chapter 5, we presentINTREPAIR which can detect and generate automated repairs which
can completely remove the previously detected integer over�ow.

In Chapter 6, we present,BUFFREPAIR, a tool usable for automated detection and repair
generation of buffer over�ows inCsource code based programs.

In Chapter 7, we presentCASTSAN, a compiler based tool used for detection of object type
confusions during runtime. This tool can detect object type confusions which potentially can
lead to CRAs.

In Chapter 8, we presentLLVM-CFI , a compiler based tool which can be used to model and
assess state-of-the-art static CFI defenses and provides the possibility to pinpoint legitimate
calltagerts still available after a CFI policy was applied and which through control �ow bending
for example can still be reached and used within a CRA.

In Chapter 9, we presentr FEM, a compiler based tool which can be used to protect backward
edges by inferring a minimal set of legitimate callee return targets.

In Chapter 10, we presentt CFI, a tool used for program binary analysis and instrumentation
with the goal to protect forward and backward edges of the program CFG which are the result
of program indirect control �ow transfers.

Finally, in Chapter 11, we conclude this thesis, present potential future work avenues, and
at the end of this Chapter we provide �nal remarks.

9

C
ha

pt
er

2

Chapter2
Background

In this Chapter, we present required knowledge in order to better understand the rest of
this thesis. More precisely, in Section 2.1, we present background knowledge about code
reuse attacks (CRAs), and in Section 2.2, we introduce the concept of integer over�ows
detection, while in Section 2.3, we highlight some essential information about integer over�ow
repairing. In Section 2.4, we introduce information on how buffer over�ows are repaired
in general, and in Section 2.5, we present important concepts about object type confusions,
while in Section 2.6, we introduce basic knowledge about CFI and how these protection
techniques can be best assessed. In Section 2.7, we give an overview of program CFG
backward-edges, and in Section 2.8, we describe notions about type information recovery
from program binaries. Finally, note that parts of this chapter have already been published by
Munteanet al. [195, 196, 197, 198, 199, 200, 201].

2.1 Code Reuse Attacks

In this Section, we present the difference between code reuse attacks and advanced code reuse
attacks and introduce some mitigation techniques.

2.1.1 Simple Code Reuse Attacks

Code-reuse attacks (CRAs) are of two main types: (1) program control-�ow violating attacks
(i.e., ROP, DOP, COOP, JOP,etc.) and (2) program control �ow not violating attacks (i.e.,
data-only-attacks, see Ispoglouet al. [121]). While historically (1) were encountered before
(2) both types of attacks use machine code instructions in order to craft malicious behavior.
These machine code instructions are called gadgets and by chaining them together in a so called
gadget chain an attack can be performed. These gadgets are used to perform computations
which are not Turing complete (see Dullien [76] for more details) despite the fact that the
current existing research community propagates the knowledge as being Turing complete. Note

11

2 Background

that neitherreal Turing completeness nor the shorthand forwrite and compute anywhere in
the address spaceis required for exploitation.

Further, a gadget chain can have from a few gadgets (i.e.,2-3) to hundreds or even thousands
of gadgets. The number of gadgets depends on the attack success de�nition (i.e.,consider the
attack success determined by the successful execution of a gadget chain containingN gadgets).
Note that each existing attack presented in the academic community de�nes its own set of
gadgets. Further, each gadget set is essentially w.r.t. the number of used instructions a superset
or a subset of another attack gadget set. Most commonly, these attacks use program indirection
due to the fact that program indirection is hard to be statically determined and dif�cult to
enforce dynamically. Yet another reason is that alias analysis in binary programs is undecidable,
see Ramaligam [229] for more details.

In this thesis, we focus on (1) program control �ow violating attacks (i.e., non-data-only
attacks). Non-data-only attacks are violating the control �ow of the program and stem most
of the time from a stack or a heap-based memory corruption (i.e., integer or buffer over�ow,
dangling pointer, type confusion,etc.). These types of attacks are used to mount disastrous
attacks which remain stealth most of the time to program-monitoring tools (i.e.,anti virus tools).
This is due to the fact that the monitoring tools cannot differentiate between benign or malicious
program execution which is based on the attacker's intended logic which is performed through
chaining of gadgets together.

2.1.2 Advanced Code Reuse Attacks

These (1) attacks can be further classi�ed into non-advanced code reuse attacks (i.e.,historically
before advanced CRAs) and advanced code reuse attacks. These following characterizations
are based on what these attacks particularly violate and how these attacks can be effectively
mitigated.

Non-advanced code reuse attacks can be detected by enforcing the caller/callee calling
convention while advanced code reuse attacks do not violate this calling convention (see
COOP attack [238]). Also, some non-advanced code reuse attacks can be mitigated my using
coarse-grained CFI-based policies while advanced code reuse attacks can only be mitigated
by using �ne-grained CFI-based policies. Some of the non-advanced code reuse attacks could
be mitigated by ASLR and/or DEP while advanced code reuse attacks bypass these protection
mechanisms. Both types of attacks can be mitigated by employing a CFG approximation-
based CFI policy while theC++program-based attacks can also be mitigated by employing
object-oriented program concepts based on CFI-based policies. All non-advanced code reuse
attacks and some advanced code reuse attacks (i.e., in the COOP attack the stack-base pointer
(BP) moves up and down) which corrupt the stack and can be mitigated by monitoring the
stack behavior during runtime and comparing it with the normal (expected) program behavior,
particularly when parameters are passed to functions indirectly.

More precisely, advanced CRAs are more dif�cult to defend against than CRAs and have
appeared from a timeline perspective after CRAs. The exact time when advanced CRAs were

12

C
ha

pt
er

2

2.2 Integer Over�ows

introduced is not clear so for this reason, we used a simple characterization in this thesis in
order to separate them.

2.1.3 Code Reuse Attacks Prerequisites

In order to perform a code reuse attack, usually a memory corruption is needed (i.e., buffer
over�ow, object type confusion, integer over�ow,etc.). Note that there are CRAs which rely
on a memory corruption which is not necessarily caused by a bug.

Next, the attacker needs a binary layout leakage in order to know where the data and the code
sections are located in the vulnerable program. Further, he may want to know where the system
Libc is in order to be able to call exploitable functions. The attacker may also want to deactivate
Data Execution Prevention (DEP) and/or Address Space Layout Randomization (ASLR). Next,
the attacker needs to put his payload on the system where the vulnerable application runs.
Further, the attacker will exploit the memory corruption and run the program/logic contained
in the payload. This way, the attacker calls code reuse gadgets one by one in order to perform
his malicious Turing-complete computations such as installing malware or preparing the stage
for an advanced persistent threat APT.

2.1.4 Mitigation of Code Reuse Attacks

Code Reuse Attacks such as ROP and its manifestations (i.e.,RILC, JIT-ROP, COP, COOP,
JOP, Stiching Numbers [189]) can be mitigated with binary rewriting (user space application
and OS kernel), source code recompilation or runtime monitoring approaches such as (1) �ne-
grained CFI with hardware support PathArmor [266], (2) by using coarse-grained CFI such as
CCFIR [289], (3) coarse-grained CFI based on binary loader CFCI [291], (4) �ne-grained code
randomization STIR [275] and O-CFI [187], (5) cryptography with hardware support-based
CCFI [160], (6) based on the ROP stack pivoting, PBlocker [227], (7) canary based as Dyna-
Guard [223], (8) checking vTable integrity for protecting against COOP based on CFI for source
code auch as SafeDispatch [124], VTV [261] LLVM and GCC compiler based vor vTable
protection and binary rewriting such as vfGuard [226], vTint [287] and [59] (9) with runtime
hardware support-based on a combination of LBR, PMU and BTS registers CFIGuard [284], and
(10) with code recompilation (e.g., reassemble disassembly [269], superset disassembly [17], or
probabilistic disassembly [170]) with CFI and/or randomization enforcement against JIT-ROP,
MCFI [210], RockJIT [211] and PiCFI [212] and any combination of the above.

2.2 Integer Over�ows

In this Section, we present required background knowledge in order to better understand the
rest of this thesis.

13

2 Background

2.2.1 Integer Over�ows

Integer over�ow is a known cause of memory corruption and a widely known type of vulnera-
bility [272]. It often leads to stack or heap over�ow and thus is usually exploited indirectly (as
opposed to buffer over�ows which are exploited directly). More speci�cally, integer over�ows
occur at runtime, when the result of an integer expression exceeds the maximum allowed value
(e.g.,232 � 1).

1 int64_t data = 0LL;
2 //Potential flaw: use random value
3 data = (int64_t)RAND64();
4 if (data > 0){
5 /* Potential flaw: if (data*2)>
6 LLONG_MAX, this will overflow */
7 int64_t result = data * 2;
8 printLongLongLine(result);}

Figure 2.1: Integer over�ow shaded gray at line seven.

Figure 2.1 depicts an integer over�ow memory corruption at line number 7, which could
manifest because there is no proper check in place for verifying the range of admissible values
for data. This integer over�ow (and potential under�ow) error can be avoided by checking the
value ofdata to see if it is less than or equal toLLONG_MAX_VAL

2 = 4:611:686:018:427:387:903
and greater than or equal to� LLONG_MAX_VAL

2 .

2.2.1.1 Characteristics of Integer Over�ows

Integer over�ows can be classi�ed as malicious or benign. Essentially, an integer over�ow man-
ifests itself when the program receives a user-supplied input and subsequently the input value
is used in an arithmetic operation to trigger an integer over�ow. Thus, a smaller-than-expected
value is supplied to the memory allocation function and as a result a smaller-than-expected
memory will be allocated. Note that a smaller-than-expected value can be supplied to the
memory allocation function and this might not always be an issue as it is possible that the
allocation is properly sized, but a subsequent integer over�ow results in a buffer under�ow.
Deciding between the types of integer over�ow related problems is rather dif�cult and a lot
of research has been devoted in the last years to this type of classi�cation [255]. The general
desire in the research community is to categorize different hard-to-�nd integer over�ows w.r.t.
how exploitable these are in contrast to just �nding and repairing them.

2.2.1.2 Integer Over�ow Related Problems

There are several integer over�ow related problems that we will next list and brie�y describe.
CWE-191, integer under�ow (wrap or wrap-around) [175], is the result of multiplying two
values with each other and the result is less than the minimum admissible integer value due
to the fact that the product subtracts one value from another. CWE-192: integer coercion
error [174], manifests during bad type casting and the extension or truncation of primitive

14

C
ha

pt
er

2

2.2 Integer Over�ows

data types. CWE-193: off-by-one error [179], manifests during product calculation/usage; an
incorrect maximum/minimum value is used which is one more, or one less than the correct
value. CWE-194: unexpected sign extension [181], appears when an operation performed
on a number can cause it to be sign-extended when it is transformed into a larger data type.
CWE-195: signed to unsigned conversion error [180], manifests when a signed primitive that
is used inside a cast to an unsigned primitive can produce an unexpected result if the value of
the signed primitive cannot be represented using an unsigned primitive. CWE-196: unsigned
to signed conversion error [182], manifests when an unsigned is used inside a cast to a signed
primitive, which can produce an unexpected value if the result of the unsigned primitive cannot
be represented using a signed primitive. CWE-19:, numeric truncation error [178], manifests
when a primitive is casted to a primitive of a smaller size and data is lost in the conversion.
CWE-680: integer over�ow to buffer over�ow [176], appears when an integer over�ow occurs
that causes less memory to be allocated than expected, which can lead to a buffer over�ow.

2.2.2 Detecting Integer Over�ows

Figure 2.2: Program path and state coverage vs. static and dynamic analysis techniques.

Figure 2.2 depicts the code coverage (i.e.,program path coverage) and state coverage (i.e.,
symbolic variable coverage) w.r.t. the most used analysis techniques to address the detection of
integer over�ow bugs. As far as we know, there is no technique which can be used for solving

15

2 Background

the problem of integer over�ow detection. Several techniques have emerged over time with
more or less applicability depending on the concrete scenario in which they are applied. We do
not intend to review the advantages and disadvantages of these techniques w.r.t. to each other,
but rather brie�y stress why we decided to use static symbolic execution for the generation of
our code repairs and brie�y highlight its advantages. Consequently, there are several techniques
which can be used to detect and repair integer over�ow with more or less success. These
techniques will be brie�y compared against each other w.r.t. to program path coverage and state
coverage. We decided to use these dimensions, depicted in Figure 2.2, as they make the most
sense for our goals mentioned in Section 5.1. In order to reach these goals, we want to achieve
high path coverage and state coverage. The generated source code repairs should be sound w.r.t.
the fact that these should not change program behavior and the fault should be correctly re-
moved after the repair was applied. For this reason, we opted for static symbolic analysis which
achieves higher path coverage than concolic or purely static analysis techniques by visiting pro-
gram paths in a depth-�rst search (DFS) fashion. Our static analysis technique bene�ts from the
possibility of parallel execution which can be effectively used to speed up the analysis. Not only
does this allow more paths to be visited, but also more states can be analyzed simultaneously as
opposite to single-threaded scenarios which are more limited. For this purpose, we currently use
a DFS strategy of path traversal. This strategy helps us perform a more informed search space
traversal than the one performed without this technique. We plan to implement other techniques
in the future. We currently perform path pruning by merging paths based on dead variables and
checking satis�ability of paths at branch nodes. This helps drastically reduce uninteresting paths
as well as reducing search locations. Additionally, we only check interesting program locations
(e.g.,assignments) in the source code for integer over�ow bugs, thus further reducing the possi-
ble search space. Finally, techniques such as fuzzing and interpolation have high priority targets
on our future work agenda and we think that these can be implemented into our tool as well.

2.2.2.1 Symbolic Execution Based Input Validation

Symbolic execution-based techniques can be used to achieve all of the guarantees mentioned
above. Furthermore, the repairs are cheap to construct and to insert. On one hand, symbolic
execution-based techniques can achieve more guarantees than other repair generation tech-
niques. On the other hand, these techniques are based on computationally intensive analysis
strategies which if not applied in a suited manner, may not scale well (or at all) with large
programs. We believe that repair tools should be used early by programmers during develop-
ment, since the level of software complexity is low and gets higher as the number of code lines
increases. Finally, we believe the following. First, manually-written source code repairs should
be avoided and only used ineasy-to-addresssituations. Second, compilers should not be used
for repairing integer over�ows since the number of guarantees which they can offer is low.
Finally, specialized tools which provide more guarantees should be used for repair generation.

16

C
ha

pt
er

2

2.3 Mitigating Integer Over�ows

2.2.3 Avoiding Integer Over�ows

It is important to avoid integer-over�ow-based memory corruptions since these are insidious,
costly and exploitable [73]. Theexploitabilityof integer-over�ow-based memory corruptions
is a well understood topic and, for this reason,not very dif�cult to be performedby a skilled
attacker, for programs written inC/C++since these programing languages are notoriously prone
to integer over�ow bugs. Code containing such a memory corruption induces alarge attack
surfacewhich can even beexploited through the networkby attackers. Thus, the attackers may
perform CRAs which may result in serious consequences for all systems running that particular
source code version. Open source code can be studied by attackers and newinteger over�ow
bugs can be detected with relatively low effortand even without tool support.Zero-day integer
over�ow bugsin open source software havedisastrous consequencessince these are easily
exploitable and huge gains can be achieved by the attackers. Finally,integer over�ow based
vulnerabilities are traded online, andattackers can buy integer-over�ow-based vulnerabilities
for a fraction of the potential damage or the achievable attacker bene�t. As a matter of fact,
we believe that for these reasons and others not mentioned here for brevity, software should
be kept ascleanas possible from integer over�ow bugs.

2.3 Mitigating Integer Over�ows

Before presenting the technical details of our approach, we highlight the necessary background
information required to better understand the rest of this thesis.

2.3.1 Symbolic Execution Engine

INTREPAIR uses a symbolic execution approach for fault detection and repair generation. A
symbolic execution engine [196, 200] constructs a control �ow graph (CFG) for each analyzed
program and extracts execution paths. Constraints along the execution path are encoded into
SMT equations, using the SMT-LIB format SMT-LIB [15]. The translation of CFG nodes into
SMT is performed by a translator algorithm, which extends the program's abstract syntax tree
(AST) visitor class, according to the visitor pattern [84]. This is usually based on abottom-up
traversal of each program statement located on the currently analyzed program execution path.

In our work, we use the Codan static symbolic execution engine [196, 113, 114]. In Codan,
single static assignment (SSA) variables are created forCexpressions, which are associated with
no variables in the analyzed program. Before creating a new variable, the interpreter checks
whether there is already a symbolic variable. Further, for all SMT formulas created for a partic-
ular program statement, one symbolic variable is created for each of the variables contained in
the original program statement. Next, a single path is extracted from the previously computed
CFG and traversed. In Codan: (1) loops can be traversed a con�gurable number of times, (2) the
analysis can be customized to look, for example, for the �rstN faults located on the currently
analyzed program path, and (3) Codan performs path-caching and backtracking traversal, which

17

2 Background

avoids traversing the whole program path from the beginning and collecting all constraints
again. Codan uses the Z3 [68] solver as its backend in order to solve SMT constraints.

2.3.2 Program Input Validation

First, there are several techniques which can be used to repair integer over�ow based memory
corruptions. Most of these techniques are based on program input validation. Of all these
techniques, manual �xing is the most tedious and provides fewer guarantees than the other
techniques. Next, we present some possible research paths and compare them against each
other in order to answer the question stated above.

2.3.2.1 Manual Input Validation

Manually written input validation checks for repairing integer over�ows have the following
properties. First, they are prone to error and take much time to be inserted in large code bases.
Second, they cannot guarantee that the integer over�ow bug was really removed for tricky code
locations (i.e.,multi-dependent control-�ow-based source code locations). Finally, they are
inapplicable across multiple integer precisions, and cannot guarantee that the intended behavior
of the program is preserved.

However, there are multiple real-life documented use cases where an integer over�ow bug was
repaired after a cascading array of repairs was applied one after the other. We dub this type of
trail of repairs astry-and-error repairs. The main disadvantage of such repairs is that they give
the impression to the tool user that the bug was removed, when in reality the bug was not �xed.

2.3.2.2 Compiler-based Input Validation

Compiler-based input validation checks are cheap, fast to insert but can be optimized away
by some compilers. When using the GCC compiler, some input validation checks are use-
less because they might be optimized/removed during compilation since the C++ standard
N4296 [120] speci�es that integer, arithmetic and signed over�ows are considered unde�ned
behavior, thus implementation speci�c. Furthermore, the GCC developers believe that the
programmers should detect the over�ow before it happens rather than using the over�owed
result to check the existence of the over�ow during runtime (see detailed discussion [139, 87]).
First, this is impossible in some situations since the search space for program inputs that trigger
an integer over�ow is in�nite. Second, as a consequence of compiler implementation speci�cs,
some checking conditions may be removed totally when the program is compiled with GCC
in combination with speci�c optimization options. On one hand, compiler-based repairs do
not guarantee that the repair really removed the bug, are not applicable across multiple integer
precisions and do not guarantee that unwanted behavior is introduced. On the other hand,
compiler-based runtime checks have access to more speci�c information than static tools. Thus,
in some scenarios, they can provide considerable bene�ts w.r.t. bug prevention. Finally, we

18

C
ha

pt
er

2

2.4 Buffer Over�ows

believe that stand-alone compilers should not be used for repairing integer over�ows during
compile time. In contrast, specialized tools which can provide more guarantees should be used.

2.3.2.3 Symbolic-execution-based Input Validation

Symbolic-execution-based techniques can be used to achieve all of the desired repair guarantees
mentioned above. Furthermore, the repairs are cheap to construct and to insert. On one hand,
symbolic execution-based techniques can achieve more guarantees than other repair generation
techniques. On the other hand, these techniques are based on computationally intensive
analysis strategies which, if not applied in a suited manner, may not scale well (or at all) with
large programs. We believe that repair tools should be used early on by programmers during
development, since the level of software complexity is low and it gets higher as the number of
code lines increases. Thus, we believe the following. First, manually written source code repairs
should be avoided and only used ineasy-to-addresssituations, Second, compilers should not be
used for repairing integer over�ows since the number of guarantees which these can offer is low.
Finally, specialized tools which provide more guarantees should be used for repair generation.

2.4 Bu�er Over�ows

2.4.1 History

Buffer over�ows were �rst partially understood and documented by Anderson [4] which de-
scribes that by exploiting a buffer over�ow, new code can be injected by an attacker and this
way, the attacker could gain control over the machine. By 1988, the �rst documented buffer
over�ow was used by the Morris worm in order to propagate itself over the Internet [192]. In
1995, this buffer over�ow was rediscovered and the �ndings were published by providing more
details. Later in 1996, Elias Levy (know as Aleph One) published a step-by-step introduction to
exploiting buffer over�ow vulnerabilities [214]. Further, in 2001, the Code Red worm exploited
a buffer over�ow in Microsoft's Internet Information Services [157] and in 2003, the SQL
Slammer worm compromised millions of Microsoft's SQL Server 2000 machines. Lately,
in 2003 buffer over�ows in Xbox video games were exploited to bypass the license-based
software protection. Similar exploits were published for PlayStation 2 as well. Finally, the cat
an mouse game between attackers and defenders continues asC/C++programming languages
are some of the most prominent choices for developing software systems and are nowadays
the dominating programming languages for developing OSs.

2.4.2 Description

A buffer over�ow occurs when data written to a buffer also corrupts data values in memory
adjacent to the destination of the buffer due to insuf�cient bounds checking. More precisely,
this appears when copying data from a larger buffer to smaller one without previously checking

19

2 Background

data size and available space. During an exploit, this data that is being copied is most likely
a program which can then be executed by the attacker to perform malicious computations.

2.4.3 Exploitation

Stack-based buffer over�ows are used by the attacker to manipulate the program in several
ways as follows. First, by overwriting a local variable that is located near the vulnerable buffer
on the stack in order to change the behavior of the program. Second, by overwriting the return
address in a stack frame. Third, by overwriting a function pointer or exception handler which
is afterwards executed. Finally, by overwriting a local variable or pointer of a different stack
frame which will be used by the function which owns that frame later.

Heap-based buffer over�ows appear on the program heap. These vulnerabilities are ex-
ploitable in a different way than stack-based buffer over�ows. During a heap-based buffer over-
�ow, program data is corrupted in order to cause the application to overwrite internal structures
such as linked list pointers. For example, the dynamic memory allocation linkage ofmalloc
is overwritten and the resulting pointers are used to overwrite a program function pointer.

2.4.4 Protection

Static program analysis (source code, machine code or intermediate representation) can be used
to check for the presence of buffer over�ows. These techniques have their limitations which
are dependent on the complexity of the analyzed program and the runtime which has to be
simulated. Next, dynamic and hybrid approaches alleviate some of the limitations of the static
techniques but still can not guarantee that all buffer over�ow are detected.

The buffer over�ows are most common inC/C++programming languages and as such, other
programming languages which are strongly typed such as Java and Python are recommended,
which can help prevent buffer over�ows [215]. Other programming languages (e.g.,Ada, Eiffel,
Lisp, Smalltalk, OCaml,etc.) provide runtime checking or even compile-time checking. These
approaches can be used to detect or prevent buffer over�ows. Often times security is traded
for performance when deciding which programming language and compiler �ags to use.

Safe libraries are yet another way to mitigate against buffer over�ows. Safe libraries provide
alternatives for string manipulation functions such asgets , fscanf , fscanf which should
be avoided. The available safe libraries perform bounds checking on the data that is being
manipulated.

Systems which check if the stack was altered after the called function returns are Libsafe
[136], StackGuard [58], and ProPolice [116]. For example, Microsoft's Data Execution Pre-
vention (DEP) explicitly protects the pointer to the Structured Exception Handler (SEH) from
being overwritten. Other protection techniques such as the shadow stack implementations
available in the Clang and GCC compiler can also protect against buffer over�ows, since the
data and pointers are split between the two stacks.

Pointer-based protection such as PointGuard [57] is a compiler-based protection which can
be used to protect pointers and addresses which are used by an attacker. Pointers are XOR-

20

C
ha

pt
er

2

2.5 C++ Object Type Confusion

encoded before and after usage. The idea behind this approach is that the attacker theoretically
does not know what the value will be used to encode and decode the pointer and in this way
he cannot predict where it will point to in case he overwrites it with a new value.

Data Execution Prevention (DEP) is used to prevent the execution of code on the stack or on
the heap. This way, injected code cannot randomly be executed. An attacker may need �rst to
deactivate DEP. Further, DEP does not protect against return-to-libc attacks or any other attack
which does not rely on the execution of the attacker code.

Address Space Layout Randomization (ASLR) is a security feature which involves arranging
randomly program data areas in a process address space. This technique makes buffer-over�ow-
based exploits more dif�cult but not impossible since during an exploit the attacker needs to
know the layout of the vulnerable program. The layout can eventually be disclosed by a data
layout leakage, which may help the attacker disclose the binary layout.

Fuzzing [230] is another promising technique for detecting buffer over�ows. This technique
is based on providing a considerable amount of program inputs with the goal to trigger buffer
over�ows during runtime. Further, software testing based on programmer-provided test cases
can also be successfully used to detect buffer over�ows.

2.5 C++ Object Type Confusion

Before presenting the technical details of our approach, we review necessary background
information.

2.5.1 C++ Type Casting

Object type casting inC++allows an object to be cast to another object, such that the program
can use different features of the class hierarchy. Seen from a different angle, object typecasting
is aC++language feature, which augments object-oriented concepts such as inheritance and
polymorphism. Inheritance facilitates that one class contained inside the program class hierar-
chy inherits (gets access) to the functionality of another class that is located above in the class
hierarchy. Object casting is different, as it allows for objects to be used in a more general way
(i.e.,using objects and their siblings, as if they were located higher in the class hierarchy).C++
providesstatic , dynamic, reinterpret andconst casts. Note thatreinterpret_cast
can lead to bad casting, when misused and is uncheckedby design, as it allows the programmer
to freely handle memory. In this thesis, we focus onstatic_cast anddynamic_cast (see
N4618 [119] working draft), because the misuse of these can result in bad object casting,
which can further lead to unde�ned behavior. This can potentially be exploited to perform, for
example, local or remote code reuse attacks on the software.

The terminology used in this thesis is aligned to the one used by colleagues [107], in order
to provide terminology traceability as follows. First,runtime typerefers to the type of the
constructor used to create the object. Second,source typeis the type of the pointer that is
converted. Finally,target typeis the type of the pointer after the type conversion.

21

2 Background

An upcastis always permitted if the target type is an ancestor of the source type. These types
of casts can be statically veri�ed as safe, as the object source type is always known. Thus, if the
source type is a descendant of the target type, the runtime type also has to be a descendant and
the cast is legal. On the other hand, adowncastcannot be veri�ed during compile time. This ver-
i�cation is hard to achieve, since the compiler cannot know the runtime type of an object, due to
intricate data �ows (for example, inter-procedural data �ows). While it can be assumed that the
runtime type is a descendant of the source type, the order of descent is unknown. As only casts
from a lower to a higher (or same) order are allowed, a runtime check is required to check this.

2.5.2 C/C++ Legal and Illegal Object Type Casts

A type cast inC/C++is legal only when the destination type is an ancestor of the runtime type
of the cast object. This is always true if the destination type is an ancestor of the source type
(upcast). In contrast, if the destination type is a descendant of the source type (downcast), the
cast could only be legal if the object has been upcast beforehand.

W

Y Z

X

do
w

nc
as

t upcast

virtual x()

virtual x()

virtual x()

virtual x()

(a) Class hierarchy with four classes.

/* downcast */
X *x = new W();

Y *y = static_cast<Y>(x);

/* �rst upcast*/

Z *z = new Z();

X *x = static_cast<X>(z);

/* second upcast */

Y *y = new W();

X *x = static_cast<X>(y);

(b) Downcast and upcast cast in C++.

Figure 2.3: C++ based object type down-casting and up-casting examples.

Figure 2.3 depicts object upcast and downcast operations with respect to a given class hierar-
chy. The graph of Figure 2.3(a) is a simple class hierarchy. The boxes are classes, and the arrows
depict inheritance. The code of Figure 2.3(b) shows how upcast and downcast look inC++. The
upcast and downcast arrows besides the graph visualize the same casts that are coded inC++in
Figure 2.3(a). To verify the cast, the runtime type of the object is needed. Unfortunately, the ex-
act runtime type of an object is not necessarily known to the compiler for each cast, as explained
in Section 2.5.1. While the source type is known to the compiler for each cast, it can only be
used to detect very speci�c cases of illegal casts (e.g.,casts between types that are not related
in any way, which means they are not in a descendant-ancestor relationship). All upcasts can be
statically veri�ed as safe because the destination type is an ancestor of the runtime type. If the
destination type is not an ancestor of the runtime type, then the compiler should throw an error.

22

C
ha

pt
er

2

2.5 C++ Object Type Confusion

2.5.3 Virtual Table Inheritance Trees

In order to encode object subtype checks with range checks over the virtual pointers values,
we need to be able to validate that the runtime type of an object inherits from the destination
type of the casted object. In order to achieve this, we need the class hierarchy of the protected
program during runtime. Next, the virtual pointer (vptr) of an object can be used as identi�er,
and its value as an ordering number inside the vtable inheritance tree. By ordering we mean
the exact location of the object type in the pre-order traversal of the primitive virtual table
tree derived from the class hierarchy. The value of the vptr represents the vtable address of
its runtime type. This therefore represents the position of the vtable of the runtime type of the
object in memory. The position is decided by the compiler during compilation, which places
all vtables in memory. Therefore, in order to manipulate the value of the vptr, the virtual tables
(vtables) of all object types have to be placed in a certain order in memory. Since we need to
control the values of virtual pointers in the produced program binary, we need explicit control
over the locations and layout of the virtual tables in memory.

By default the Clang compiler does not impose a speci�c order on the virtual tables in
memory. This means that there could exist memory gaps between the start addresses of the
vtables, which can lead to an unwanted situation, namely that the vtable ranges are not tight.
First, these gaps could introduce imprecision (too many addresses could be allowed) for the
forward edge target sets, and thus the layout of the vtables has to be modi�ed. Second, due
to these gaps and the fact that the table layout is not ordered w.r.t. the class hierarchy, object
cast checks cannot use these ranges since the resulting ranges (intervals) contain memory gaps.

In order to overcome these limitations, we use an algorithm for interleaving the vtables of a
program in memory without gaps. The vtable interleaving algorithm repositions the vtables in
memory with the goal to provide a minimal set of target addresses for each object dispatch on
virtual functions (i.e., forward edge). More speci�cally, the vtables of polymorphic types are
reordered with the help of a pre-order traversal of the class hierarchy graph with no memory
gaps between them. This way if the vptr of an object is corrupted by an attacker with the
purpose for example to call a function of a class that does not respect the static type at the
virtual call location, then it can be detected during runtime. This ensures that only legitimate
virtual functions (the ones which respect the per object class hierarchy) are allowed at any
particular object cast location.

Figure 2.4 depicts aC++class hierarchy containing only virtual functions (a) and the cor-
responding primitive vtables inheritance trees in (b) and (c). Figure 2.4, the class hierarchy and
virtual inheritance trees are represented as UML class hierarchies containing classes and their
inherited functions. The arrows depict inheritance, similar to UML class hierarchy inheritance.
Figure 2.4(a) contains the following elements: (1) a box (node) represents a polymorphic class,
a box contains its class name (�rst row,i.e.,X) and its inherited virtual functions (following
rows,i.e.,virtual x()), and (2) the inheritance relationship between two classes is depicted
by arrows. An arrow pointing from one class to another signi�es that the lower located class
inherits from the class located in the upper part. Figure 2.4(b) and Figure 2.4(c) depict two
virtual table inheritance trees, derived from the class hierarchy depicted in Figure 2.4(a), which

23

2 Background

W
virtual x()

Y
virtual x()

Z
virtual x()
virtual a()

X
virtual x()

A
virtual a()

(a)

W
virtual x()

Y
virtual x()

Z
virtual x()

X
virtual x()

(b)

Z

virtual a()

A
virtual a()

(c)

Figure 2.4: Class hierarchy containing virtual functions (a) and the corresponding vtable
inheritance trees (b) and (c).

were obtained by performing a pre-order traversal starting at the two roots, X and A. These two
trees result, because a polymorphic class (i.e.,Z) has two ancestors (i.e.,X andA). A box in
a tree is a virtual class having its type depicted in the �rst row. Further, if a polymorphic class
inherits from multiple polymorphic classes, then this relationship will be represented by two or
more boxes in multiple trees (i.e.,Z has a box in the tree of Figure 2.4(b) for its inheritance from
X and a box in the tree of Figure 2.4(c) for its inheritance fromA). Each box contains virtual
functions that are inherited within the tree (i.e., the box ofZ in Figure 2.4(b) only contains the
functionvirtual x() , while the box ofZ in Figure 2.4(c) only contains the functionvirtual
a()). Similar to Figure 2.4(a), an arrow depicts the inheritance between vtables.

Finally, note that a base class hierarchy can contain more primitive virtual inheritance trees.
Thus, we need to be able to split complex class hierarchies into simple trees because under
the hood, theC++Itanium ABI splits objects into primitive objects, and vtables into primitive
vtables in such a way that the primitive objects/virtual tables form trees. This helps decouple
a complex directed acyclic graph (DAG) hierarchy into multiple simple trees.

2.5.4 Type Casting in Practice

TheC++language providesdynamic_cast, which can guarantee the correctness of type cast-
ings, under certain cases. Speci�cally,dynamic_cast can only be applied to polymorphic
types, and only when RTTI information was emitted. Unfortunately, it is seldom used due
to its inef�ciency. For example, [142] showed thatdynamic_cast is 90 times slower than
static_cast on average. This slowdown can be traced to the recursive traversal and linear
time checks performed bydynamic_cast() . Further, this renders this type of check ineffective
mostly for large programs like for example Mozilla Firefox. Therefore, its con�rmed security
advantage is avoided or even forbidden in for example the Google Chrome project. Because
of this, all currently legal and illegal object casts available bad cast detection tools replace the
RTTI information with their own metadata, in order to optimize the type comparison which
is needed to check legitimate casts.

24

C
ha

pt
er

2

2.5 C++ Object Type Confusion

For this reason, large software project such as Chrome use a workaround based on a function
such asisType() which returns the true allocated type of the object. As a result, this technique
successfully decouples andynamic_cast into an explicit type check followed by astatic_-
cast which drastically reduces the runtime check cost. Note thatdynamic_cast is based on
a very general algorithm that can account for various complex corner cases of multiple and
virtual inheritance, whileisType() is a very simple exact type comparison, that only works
in the speci�c cases the programmer used it. Further, this approach is still error-prone since
it falls under the error-prone manual modi�cations paradigm which is affected by (1) incorrect
marked object type identity �ag or (2) the absence due to human factors of theisType() check.
Finally, even with custom RTTI information bad-casting errors still are prevalent.

2.5.5 Object Type Confusion Example in Google's V8

1type* type::cast(Object* object) { SLOW_ASSERT(object->Is ##type());
2 return reinterpret_cast <type*>(object);}
3bool IsCompatibleReceiver(LookupIterator* lookup, Handle<Map> receiver_map) {
4 DCHECK(lookup->state()==LookupIterator::ACCESSOR);
5 Isolate* isolate = lookup->isolate();
6 Handle<Object> accessors=lookup->GetAccessors();
7 if (accessors->IsExecutableAccessorInfo()) {
8 Handle<ExecutableAccessorInfo> info =
9 Handle<ExecutableAccessorInfo>::cast(accessors);

10 if (info->getter() != NULL &&
11!ExecutableAccessorInfo::IsCompatibleReceiverMap(isolate, info, receiver_map)){
12 return false;
13 }
14} else if (accessors->IsAccessorPair()) {
15 return true;}}

Figure 2.5: The IsCompatibleReceiver() function contained in Google V8 engine.
This source code is used in Google Chrome before v. 48.0.2564.82. It does
not ensure receiver compatibility before performing a cast of an unspeci�ed
variable, which allows remote attackers to cause a denial of service or possibly
have another unknown impact via crafted JavaScript code (see source code
di�erential view [95]). The## symbol represents a macro.

Figure 2.5 depicts the bug �x of CVE-2016-1612 [47] which manifests due to a bad cast at
line number 11. The gray shaded lines represent all code lines that are relevant for this type con-
fusion. This object type confusion can be circumvented by �rst performing a receiver compati-
bility check before performing a cast of an unspeci�ed variable as depicted at line numbers 8-9.
The goal of this check is to check if the state of thelookup object is a lookup iteratorACCESSOR.
Without this check, thereinterpret_cast at line number 2 would allow remote attackers to
cause a denial of service or possibly have another unknown impact via crafted JavaScript code.

25

2 Background

A reinterpret_cast is particularly dangerous because it forces the reinterpretation of mem-
ory area into a different type which most commonly breaks underlying type assumptions. As
such, it is recommended that it is used with care and guarded by runtime checks (e.g.,asserts).
Finally, it is recommended (as in [107]) that reinterpret_cast should be avoided and either
dynamic_cast should be used, or a pair of anisType() runtime check andstatic_cast .

2.5.6 Security Implications of Object Type Confusion

The application behavior becomes unde�ned after an incorrect badstatic_cast is performed.
In order to understand what the consequences of bad-casting are we need to understand the
internals of the compilers which implement this feature. Bad typecasts allow an attacker to
corrupt memory in a targeted manner. If a bad-casting occurs near to a virtual pointer the
attacker can control the input to member variables or it can overwrite the virtual pointer and
hijack the program execution.

Figure 2.4 depicts aC++class hierarchy containing only virtual functions (a) and the corre-
sponding primitive vtables inheritance trees in (b) and (c). In Figure 2.4, the class hierarchy and
virtual inheritance trees are represented as UML class hierarchies containing classes and their
inherited functions. The arrows depict inheritance, similar to UML class hierarchy inheritance.
Figure 2.4(a) contains the following elements: (1) a box (node) represents a polymorphic class,
a box contains its class name (�rst row,i.e.,X) and its inherited virtual functions (following
rows,i.e.,virtual x()), and (2) the inheritance relationship between two classes is depicted
by arrows. An arrow pointing from one class to another signi�es that the lower located class
inherits from the class located in the upper part. Figure 2.4(b) and Figure 2.4(c) depict two
virtual table inheritance trees, derived from the class hierarchy depicted in Figure 2.4(a), which
were obtained by performing a pre-order traversal starting at the two roots, X and A. These two
trees result, because a polymorphic class (i.e.,Z) has two ancestors (i.e.,X andA). A box in
a tree is a virtual class having its type depicted in the �rst row. Further, if a polymorphic class
inherits from multiple polymorphic classes, then this relationship will be represented by two or
more boxes in multiple trees (i.e.,Z has a box in the tree of Figure 2.4(b) for its inheritance from
X and a box in the tree of Figure 2.4(c) for its inheritance fromA). Each box contains virtual
functions that are inherited within the tree (i.e., the box ofZ in Figure 2.4(b) only contains the
functionvirtual x() , while the box ofZ in Figure 2.4(c) only contains the functionvirtual
a()). Similar to Figure 2.4 the control �ow of the program such as in the advanced COOP [238]
code reuse attack. This shows that COOP attacks do not necessarily require a buffer over�ow
memory corruption upfront. Furthermore, non-control-data attacks are possible too [142].

TheC++standard mandates that the program behavior is unde�ned after a bad typecast. In
practice, bad typecasts allow an attacker to corrupt memory in a targeted manner. These memory
corruptions can allow an attacker to modify control-�ow relevant state such as function pointers
or vtable pointers. This leads to a wide array of attacks such as ROP, JOP and some more ad-
vanced code-reuse attacks such as COOP [238], that defeat many state-of-the-art CFI defenses.

The exploitability of bad-casting depends on the possibility of performing out-of-bound
memory access or manipulate memory semantics. Furthermore, this is dependent on the object

26

C
ha

pt
er

2

2.5 C++ Object Type Confusion

layout as speci�ed by the usedC++application binary interface (ABI). Depending on the used
ABI the security implications for the same bad casting bug can be different. Finally, as the
treat posed by bad-casting errors is alarming, the awareness of this error should be raised to
avoid future security breaches. For example, CVE-2016-1612 [47] where a bad-cast in Google
V8 engine used by Chrome running on Mac, Windows, Linux and Android could be exploited.
This vulnerability allows remote attackers to cause a denial-of-service or possibly have another
unknown impact via crafted JavaScript code. The �x of this vulnerability was rewarded with
3k in cash by Google [47].

2.5.7 Object Type Confusion Defenses

There are several recent lines of research aiming to protect against bad typecasting. Halleret
al. [107] point out that we can broadly split object type confusion defenses into two categories:
(1) techniques based on an embedded vtable pointer in the casted object, and (2) techniques
leveraging disjoint metadata. Embedded vtable pointers which can be used only for polymor-
phic casts have the advantage that the runtime cast checks based on these can be performed
relatively fast. Compared to that, metadata approaches where the type of the object has to be
tracked during runtime can reach higher coverage while being fundamentally slower.

Checker Poly Non-poly No blacklist Tracking Threads
UBSan [99] X X
Clang CFI [149] X X X
CaVer [142] X X X X limited
TypeSan [107] X X X X X
HexType [125] X X X X X
CastSan [201] X X X

Table 2.1: High-level features overview of object type confusion checking tools.

Table 2.1 depicts the high level feature overview ofCASTSAN and other comparable tools.
CASTSAN covers all casts between classes that are covered by the IVT tool. This includes all
polymorphic classes which do not inherit from classes of thestd namespace. Classes that do
not have a vtable can not be checked w.r.t. object casts. AsCASTSAN does not rely on runtime
object tracking but does solely need the virtual function pointer of the object to perform its
check,CASTSAN can check any casts that are performed within threads that are not the main
thread of the program and does not need a blacklist. Also, other sanitizers like HexType depend
on objects to be allocated by a trackable allocator to be able to insert metadata of objects on
construction. BecauseCASTSAN does not need additional metadata, it can check object casts
regardless of allocation method. Therefore, no further limitation has to be noted for checking
casts between polymorphic classes. The coverage was tested using the benchmark suites of
ShrinkWrap, TypeSan and IVT. Using these benchmarks, there was no case thatCASTSAN

could not correctly handle. When compiling the Chrome 33 source code usingCASTSAN, 30757

27

2 Background

(it contains in total 50994 object casts) typecasts are instrumented in total. Non-polymorphic
classes on the other hand can not be checked due to the absence of a vtables.

UBSan [99] and Clang-CFI (cast checker) [149] are both based on vtables. UBSan in-
struments static casts in order to effectively turn them into dynamic casts and it requires
manual blacklisting in order to avoid false negatives due to non-polymorphic classes. The type
checking mechanism of UBSan is inherently slow and for this reason, UBSan is intended as
a testing tool rather than always on solution due to its high overhead. UBSan can not support
non-polymorphic classes.

CaVer [142], HexType [125] and TypeSan [107] are based on disjoint metadata. CaVer
supports non-polymorphic classes by relying on disjoint metadata and without blacklisting.
CaVer has high performance overhead due to inef�cient metadata tracking and slow checks
even doubling the runtime overhead. CaVer cannot rely on vtables and for this reason, it has
to track all live objects during runtime. Due to its inef�cient underlying implementation, it
can not handle stack objects shared between threads even with perfectly implemented synchro-
nization. CaVer has a reduced object allocation coverage in practice which leads to limited
type-confusion detection coverage compared to TypeSan. TypeSan is yet another tool which
is based on disjoint metadata that reduces the runtime overhead of checking object typecasts
and which can detect errors which are hard to reproduce during testing. TypeSan is based on
object tracking which supports all types of classes with no blacklisting required.

Clang-CFI cast checker achieves a lower performance overhead compared to other state-of-
the-art tools by optimizing its use of type metadata [52] to encode relationships between class
object types based on class hierarchy relationships. Speci�cally, Clang-CFI embeds a bitmap
for each class A, encoding the valid starting offsets for all vtables for objects of type A (or any
of its subtypes). To reduce the size of these bitmaps, Clang-CFI relies on several optimizations:
(1) all vtables for class A start at some base offset Base, and (2) all vtables for class A are
aligned by some power of 2 (e.g.,1,024.0). Runtime checks in Clang-CFI consist of a range
check and a bit lookups in the appropriate bitmap. In some cases Clang-CFI can optimize away
the bit lookup, or even the range check. Clang-CFI can not support non-polymorphic object
casts since it uses vtable pointers to perform lookups in the bitmaps.

In this thesis, we presentCASTSAN, a generic solution for object type confusion detection
during runtime based on ef�cient representation of class hierarchies and fast range-based checks.
CASTSAN does not require blacklisting and supports all polymorphic object types. Furthermore,
it does provides better typecasting results as the above presented tools w.r.t. performance.

2.5.8 Ordered vs. Unordered Virtual Tables

In this Section, we brie�y describe the differences between in-memory ordered and unordered
vtables and how these can be used to detect object type confusions during runtime.

Figure 2.6(a), Figure 2.6(b), and Figure 2.6(c) highlight the case in which an illegal object
cast would not be detected if the vtables are not ordered (see blue shaded code in line number
eight), while Figure 2.6(d), Figure 2.6(e), and Figure 2.6(f) show how a legal (see green shaded

28

C
ha

pt
er

2

2.5 C++ Object Type Confusion

W
virtual x()

Y
virtual x()

Z
virtual x()

X
virtual x()

0x00

0x08

0x18

0x10

sublist: X,Y,W,Z

sublist: Y,W sublist: Z

sublist: W

0x00 - 0x18

0x08 - 0x18

0x18 - 0x18

0x10 - 0x10

(a)

0x00 X::x()

0x18 W::x()

0x08 Y::x()

0x10 Z::x()Y

(b)

1. //legal downcast

5. //illegal downcast

7. X *x = new Z();

4. z = static_cast<Y>(x);
3. X *x = new W();

8. z = static_cast<Y>(x);

2. //vp of x: 0x18

6. //vp of x: 0x10

(c)

W
virtual x()

Y
virtual x()

Z
virtual x()

X
virtual x()

0x00

0x08

0x10

0x18

sublist: X,Y,W,Z

sublist: Y,W sublist: Z

sublist: W

0x00 - 0x18

0x08 - 0x10

0x10 - 0x10

0x18 - 0x18

(d)

0x00 X::x()

0x18 Z::x()

0x08 Y::x()

0x10 W::x()
Y

(e)

1. //legal downcast

5. //illegal downcast

7. X *x = new Z();

4. z = static_cast<Y>(x);
3. X *x = new W();

8. z = static_cast<Y>(x);

2. //vp of x: 0x10

6. //vp of x: 0x18

(f)

Figure 2.6: Illegal and legal object casts vs. ordered and unordered virtual tables.

code in line number four) and an illegal (see red shaded code in line number eight) object cast
can be correctly identi�ed by using the object vptr in case the vtables are ordered in memory.

Note that the main difference between the vtables' layouts depicted in Figure 2.6(b) and
Figure 2.6(d) is that the vtable layout entries depicted in Figure 2.6(d) are not arranged in
pre-order traversal, while the vtable entries shown in Figure 2.6(d) are arranged in pre-order
traversal. Further, note that, (1) green shaded code indicates that the legal downcast was
correctly detected (program execution continues), (2) blue highlighted code means that the
illegal downcast was not detected (program execution continues), (3) red shaded code means that
the illegal downcast was correctly detected (program execution stops or an error log is printed).

Next, we will present the contents of the six sub-�gures depicted in Figure 2.6. Figure 2.6(b)
depicts the unordered vtable, while Figure 2.6(e) depicts the ordered vtable. Figure 2.6(b) and
Figure 2.6(e) represent how the vtables' addresses of the hierarchies are appearing in memory.
Both vtables are ordered by their vtable addresses; Figure 2.6(e) shows the vtable addresses
are ordered and used byCASTSAN. Figure 2.6(b) depicts the vtable addresses unordered as they
are present in vanilla LLVM. The vtable address ordering depicted in Figure 2.6(e) corresponds
to the hierarchy depicted in Figure 2.6(d).

The vtable hierarchy trees depicted in Figure 2.6(a) and Figure 2.6(d) contain in the attached
black dotted frames the sub-lists of allowed types, while in Figure 2.6(b) and in Figure 2.6(e) we
can observe in the orange dotted frames the allowed types ranges for legal object casting before
and after the pre-order traversal, respectively. Note that the differences between Figure 2.6(a)
and Figure 2.6(d) are represented by the ranges, which are depicted in the orange shaded boxes

29

2 Background

attached on the right side of each black shaded box. Further, Figure 2.6(a) and Figure 2.6(d)
depict the same virtual inheritance tree with different vtable address values. In Figure 2.6(d),
the vtable addresses are ordered by the interleaving algorithm as used byCASTSAN, while in
Figure 2.6(a) they are not. Both trees contain: (1) the classes and their functions, (2) their
vtable address (top right of the box), and (3) in addition to that, their sub-list (black dotted
frame). These contain all inheriting types and the vtable range from the �rst element of the
sub-list to the last element of the sub-list (orange dotted frame).

The code listings depicted in Figure 2.6(c) and Figure 2.6(f) depict the sameC++object type
casts, with the vptr of the constructed object depicted in the comments for each case. Both
these code listings �rst depict a legal cast, followed by an illegal object cast.

On one hand, Figure 2.6(c) shows the vptr value as it would be present in the unordered
case of Figure 2.6(b) and Figure 2.6(a). The objectx, that is constructed at line number seven
with the constructor ofZ (runtime type) has a vptr of value0x18 in the unordered case.x
is referenced by a pointer of typeX (source type) and at line number eight it is cast toY
(destination type). This is an illegal object cast, asZ does not inherit fromY. The vptr ofx is
in the range ofY built from the unordered vtable layout of Figure 2.6(b). A range check would,
therefore, falsely conclude that the cast is legal.

On the other hand, Figure 2.6(f) depicts the same objects as constructed after ordering
according to Figure 2.6(e) and Figure 2.6(d). At line number three, the objectx is instantiated
having (runtime) typeW. The object, therefore, has a vptr with value0x10 according to
Figure 2.6(d). The object is referenced by a pointer of typeX (source type) and at line number
four, the objectx is cast toY (destination type). This cast is a legal object cast, as the vptr0x10
has a value between the vtable address ofY 0x08 and the address value of the last member of
the sub-list ofY 0x10. Note that this memory range is depicted in Figure 2.6(e). Further, in
line number seven, the objectx is newly allocated with the constructor ofZ. Next, the object is
cast toY at line number eight. Asx's vptr is 0x18, which is the vtable address ofZ, it can be
observed that the cast is illegal. The reason is that the vptr value0x18 is larger than the largest
value of the sub-list ofY, which is the vtable address ofW, 0x10. Thus, in this way the object
type confusion located at line number eight can be correctly detected.

Finally, note that the range checks, which we will use in our implementation, are precise,
when the vtables of all program hierarchies are ordered with no gaps in memory according to,
for example, their pre-order traversal. In case this is not guaranteed, then the range checks could
generate false positives as well as false negatives (see the blue shaded code in Figure 2.6(c)).

2.6 Code Reuse Attack Primitives and Mitigation

In this section, we highlight the necessary background information in order to better understand
the rest of this thesis.

30

C
ha

pt
er

2

2.6 Code Reuse Attack Primitives and Mitigation

2.6.1 Code Reuse Attack Primitives

In order to better understand code reuse attacks (CRAs), we describe what happens during a
CRA at the source code and binary level.

Forward-edge-based code reuse attacks exploit the forward-edges of CFGs. First, at the
source code level by performing calls through either function pointers (e.g.,single level of
indirection) or virtual calls (e.g.,double level of indirection). For example, these calls may
use an array of function pointers that is accessed by a pointer to a virtual table (vtable) plus an
index. Second, at the binary level,jump, andcall instructions are used to redirect the program
control �ow to a different address than the one intended in the original program CFG.

Backward-edge-based code reuse attacks violate CFG backward edges. First, at the source
code level, the function will not return to the next source code line from where the function was
�rst called. Second, in the program binary, the address located on the stack is modi�ed such
that the function'sret instruction will return to a different address than the one next to the
instruction from where the function was initially called (mostly through acall instruction).

Finally, these two types of primitives (forward and backward edges) are used to link gad-
gets, in order to form a gadget chain with the goal of performing Turing-complete malicious
computations.

Backward/forward-edge based code reuse attacks violate both forward and backward edges
inside a program, in order to perform the intended malicious behavior. Note that most CRAs
either use forward or backward edges when performing the malicious computations.

Gadget Types.Each code reuse attack has its own set of gadgets. Interestingly, the gadgets
have a runtime behavior similar to the original program instructions and are mainly subsets
or supersets of existing gadget sets. Currently, the smallest gadget w.r.t. the number of machine
instructions has two instructions (i.e., two consecutivepushandpop instructions, equivalent
to a return). In addition, the largest gadget comprises a whole virtual function (i.e.,Counterfeit
Object Oriented Programming (COOP) [238]). Note that while for a certain type of attack a
whole virtual function could represent one gadget, for other CRAs this function may contain
many gadgets. From here, we observe the afore mentioned subset relationships. These rela-
tionships are dependent on the notion of gadget length which varies and is constrained by the
gadget set used and the goals of the attacker.

Gadget Availability means that a certain gadget is present in a certain program or library
and is not constrained by any protection technique. Note that a gadget can be available for a
certain attack and not for other types of attacks. This is due to the fact that certain protection
techniques are too coarse grained w.r.t. certain attacks.

Gadget Usability means that a gadget is useful within certain CRA types. Note that each
CRA has its own set of gadgets. In this case, we assume that while a gadget is available (i.e.,
protected or not) it can be usable or not usable by a certain type of CRA. This property indicates
if a gadget belongs to the set of gadgets of the current CRA type.

Gadget Linkability is based on the concept of availability and usability of a certain gadget.
In case that a gadget is available and usable, linkability describes how easy or dif�cult it is
for an attacker to use this gadget at a certain position inside a gadget chain. In this case, the

31

2 Background

dif�culty is directly proportional to: (1) number of operations which have to be performed in
order to link a gadget to another and (2) for example, in case a function primitive (i.e., int
mprotect(void *addr, size_t len, int prot);) is not accessible, linkability describes
how dif�cult it is to get to this primitive and make it usable during the attack.

2.6.2 Control Flow Integrity

Control-Flow Integrity (CFI) is a state-of-the-art technique used successfully along other tech-
niques to protect forward and backward edges against program control �ow violations. CFI
is used to mitigate CRAs by, for example, pre-pending an indirect callsite with runtime checks
that make sure only legal calltargets are allowed by an as precisely as possible computed control
�ow graph (CFG) [1].

Protection Schemes.Alias analysis in binary programs is undecidable [229]. For this reason,
when protecting CFG forward-edges, defenders focus on using other program primitives to
enforce a precise CFG during runtime. These primitives are most commonly represented by
the program's: class hierarchy [106], virtual table layouts [226], quasi-class hierarchies [218],
binary function types [268] (callsite/calltarget parameter count matching),etc.They are used
to enforce a CFG which is as close as possible to the original CFG being best described by
the program control-�ow execution. Note that state-of-the-art CFI solutions use either static
or dynamic information for determining legal calltargets.

Static Information. CFI solutions that use static information allow callsites to target: (1) all
function entry pointse.g.,[290], map callsite types to target function types by creating a mask
which enforces that the number of provided parameters (up to six) has to be higher than the
number of consumed parameterse.g.,[268], (2) a quasi-class hierarchy (no root node(s) and
the edges are not oriented) can be recuperated from the binary and enforcede.g.,[218], (3) all
virtual tables that can be recuperated and enforcede.g.,[226], only certain virtual table entries
are allowede.g.,[286] based on a precise function type mapping, and (4) sub-class hierarchies
are enforcede.g.,[261, 106, 24].

Dynamic Information. The goal of CFI solutions which use dynamic information is to re-
�ne their runtime analysis by leveraging program information which is only available during
program execution. In particular, PiCFI [212] restricts the set of calltargets to functions which
have their address computed during runtime. Context-sensitive solutions with different levels
of context precision rely on hardware features such as the Last Branch Register (LBR) [266]
to track a limited range (i.e., 16 up to 32 address pairs) of so-calledfrom andto addresses
pairs during runtime. They then compare them against a precomputed program CFG. Finally,
note that Intel Processor Trace (PT) [89] can be used to build a longer history of address pairs
compared to other approaches.

32

C
ha

pt
er

2

2.7 Program Callee Primitives and Mitigation

2.7 Program Callee Primitives and Mitigation

Before presenting the technical details of our approach, we highlight the necessary background
information required to better under- stand the rest of this thesis. In Section 2.7.1, we present
program indirection and relate it to C/C++ programs, and in Section 2.7.2, we describe several
types of program callsites, while in Section 2.7.3 we discuss program control �ow graph edges.
Finally, in Section 2.7.4, we present several basic concepts related to virtual tables hierarchies.

2.7.1 Indirect Control Flow Transfers

Program indirection is represented by any program control �ow transfer which is performed for
example with the help of a pointer, other types of level of indirection (trampolines) or trough
registers. Basically speaking, program indirection is represented by the control �ow graph
(CFG) edges which can not statically determined due to input dependency, complex control �ow,
etc.While static edges are �xed edges inside the CFG, dynamic edges are not present or hard
to be determined due to program indirection. These type of edges exist due to object dispatches
(forward edges), pointers accessing different �elds of data structures, function returns (backward
edges),etc. In the context of control �ow integrity (CFI), researchers are categorizing program
indirection into forward and backward CFG edges as these type of edges are usually used
to link gadgets together. Further, code reuse attacks violate forward and/or backward edges
since it is currently very dif�cult to protect these control �ow transfers due to the fact that alias
analysis in program binaries is undecidable [229]. Finally, other useful program metadata (i.e.,
class hierarchies, virtual tale hierarchy) is not available, not usable (for C only programs which
have not class hierarchies), hard to be statically or dynamically determined with high precision.

2.7.2 Program Callsite Types

We divide callsites into three distinct type: direct, virtual or indirect callsites. A direct callsite
has a single �xed callee, a virtual callsite uses the C++ virtual dispatch mechanism, and lastly
an indirect callsite, which most commonly uses a function pointer for an indirect call. These
three types are all handled slightly differently:

• D: Direct callsites.This is the easiest case, which is handled as explained in Section 10.3.

• V: Virtual callsites. In this case, we use class hierarchy information to infer a range of
IDs, which includes the IDs of all function implementations, which can be called by this
callsite. The callsite then gets assigned twoNOPscarrying the range data. This case is
explained in detail in Section 10.3.

• I: Indirect callsites. For indirect callsites, we use a function signature matching tech-
nique, which is explain in more detail in Section 10.3.

33

2 Background

D

I

V

D\ I

D \ V

I \ V

D\ I \ V

Figure 2.7: Types of callsites for a particular callee.

Figure 2.7 depicts the fact that even though a particular callsite has only a single type at a
time, a particular callee might have multiple callsites and therefore can be called using more
than one of these types. Nevertheless, we want to brie�y highlight the other callsite types which
can be used to call a particular callee.

• D \ I : Direct and Indirect Callsites Intersected.There are callees which can be called
by both direct and indirect callsites.

• D \ V: Direct and Virtual Callsites Intersected. There are callees which can be called
by both direct and virtual callsites.

• I \ V: Indirect and Virtual Callsites Intersected. There are callees which can be called
by both indirect and virtual callsites.

• D \ I \ V: Direct, Indirect and Virtual Callsites Intersected. There are callees which
can be called by direct, indirect and virtual callsites.

2.7.3 Control Flow Backward Edges

Return edges in assembly code are represented by function return instructions (ret instruction)
and are used to return the control �ow of the program to the address after the callsite which
originally called the function. Depending on the instruction set architecture (ISA) (i.e.,x86,
x86-64, ARM, SPARC,etc.) the format of the return instruction can vary (i.e., ret), with
no parameter on the right hand side. Note that for the herein mentioned return edge details
the format of the corresponding instruction is irrelevant. However, the pre-conditions and
post-conditions needed for normal program execution are of importance. These are determined
by the used calling convention and can slightly vary depending on the used architecture binary
interface (ABI) (e.g.,Itanium ABI [122], Microsoft ABI [101], ARM ABI [9], etc.).

34

C
ha

pt
er

2

2.7 Program Callee Primitives and Mitigation

On one hand, the number of used and not used registers varies for each calling conventions,
the stack usage and whether the stack is cleaned after or before a function returns. On the other
hand, they usually do not vary w.r.t to the fact that each callee needs to return program control
�ow execution to the next address after the callsite.

Code reuse attacks inject different return addresses to violate the normal program control
�ow. This is achieved by manipulating the return addresses stored on the stack. These addresses
will be used later by a return instruction to change the control �ow of the program. Code reuse
attacks use sequences of instructions located before a return instruction for their malicious
intents. The instructions are used to prepare information for the next steps (gadgets) present
in the code reuse gadget chain. Since an unprotected backward edge can target any address in
the program the sequence can start at an arbitrary point (address) in a function. This results in a
violation of the original CFG. By detecting such violation, it allows a backward edge protection
tool to mitigate a CRA.

2.7.4 Virtual Table Hierarchy

Figure 2.8: Virtual tables of a single C++ class hierarchy.

Figure 2.8 depicts three class-relevant terms required to better understand the remainder of
the thesis. More speci�cally, Figure 2.8 depicts a single most derived typeC with a parentP
and grand-parentGP. An arrow indicates a class inheritance relation. With regard to a speci�c
virtual callsite (which is used to call a virtual function contained in this class hierarchy), we
introduce the following de�nitions.

Precise class.The precise class of a callsite is the least-derived type of which the object used at
the callsite can be. Usually, the precise class is the static type of the variable used for the virtual
call. However, depending on the compiler implementation, a stricter type can be inferred (see
the Clang/LLVM [50] compiler framework for more implementation details). In our example,
we assume that we have a virtual callsite which uses a variable of static typeC. This static type
is called the precise class of the callsite.

Base class.We de�ne the base class as the class which provides the function implementation
which is called when an object of precise type is used,i.e., the object has a dynamic type of
precise class. Therefore, the vtable entry used for the object dispatch is located in the vtable of
precise class and per de�nition points to a function of base class. It follows that if the precise
class itself implements (or overrides) the function used at the callsite, then the precise class
and the base class of the callsite are the same.

35

2 Background

Figure 2.8 depicts in blue shaded color the vtable entries used, in case the object at the
callsite is of precise type (C). If the callsite dispatches functionf(), then the base class for this
callsite isC, sinceC overrides functionf(). If instead the callsite dispatches functiong(), then
the base class for this callsite isP, because classC does not override functiong() and instead
uses the implementation provided by classP.

Root class.The root class is de�ned as the class �rst introducing the function (i.e., the least de-
rived class declaring the function). Note that this class might declare this function asabstract
and not provide any implementation for it. In Figure 2.8,GP, depicted with red font color, is
the root class of both functionsf() andg().

2.7.5 Shadow Stack Techniques

Shadow stack techniques can be used similarly to stack canaries, in order to protect against
backward-edge program control �ow violations, see Dang's [62] PhD thesis for more details.
These techniques consist of complementing the program with additional code, which is able to
check if the caller/callee calling convention is respected during runtime. This technique relies
on building a second stack for each function stack located in the program. Runtime checks
ensure that each function return address –that was put in the shadow stack before entering the
called function– is popped from the stack before leaving the called function or before the stack
frame was cleaned up by the program. Essentially, a shadow stack technique keeps track of
all addresses that are pushed and popped on the stack and checks that the push-pop address
pairs match. This way, the caller/callee calling convention is enforced. In addition, the program
stack is not corrupted (polluted) by the attacker with fake addresses that are usually used to
chain code reuse gadgets, as for example in return oriented programming (ROP) attacks.

While these techniques are effective in theory, they have received less acceptance. Only
SafeStack [49] is in production, but was recently bypassed [94]. Further, their practicability
and ef�ciency is questionable due to the fact that they rely on information hiding. We next list
some of their limitations.

Hiding the Shadow Stack.The shadow stacks inside a program are typically hidden from
the usual program execution through one level (ideally more) of indirection (i.e., trampolines,
segment register). These levels of indirection should guarantee that the attacker is not able to
�nd the shadow stacks. This ensures that the attacker cannot write into them (these reside in
writable memory). However, it is not yet demonstrated, that one level of indirection is suf�cient
to ensure that the shadow stack cannot be found (through information leaks) by a motivated and
resourceful attacker. Since shadow stack implementations put the shadow stacks in writable
memory, if they are found, they could be overwritten by the addresses that the attacker wants
to use in their attack.

Binary Size Blow-up. Shadow stack-based techniques provide a separate shadow stack for
each function, that is either instrumented inside the protected program or inside a library loaded
along with the protected program. Due to the fact that the number of these additional shadow
stacks can be high, the size of the program binary can grow rapidly. Some techniques consid-

36

C
ha

pt
er

2

2.7 Program Callee Primitives and Mitigation

erably increase the size of the binary. Well-implemented (lazily allocated) shadow stacks will
at most double the amount of memory used for stacks (this 2x factor is the same regardless of
multi-threading, see [63] for more details). In addition, stacks tend to be very small compared
to the heap. Therefore, these techniques might not be suitable for all types of program memory
restrictive applications, such as certain embedded devices. Shadow stack techniques, which
are, for example, based on hardware features such as Intel's CET (no known implementation
at the time of writing this thesis) and compiler support, have negligible program binary size
increase after hardening the executable.

Not returning calls. The C++ programing language, for which most of the shadow stack tech-
niques were designed, provides some function calls, that do not return or respect the caller-callee
function calling convention. These functions are:longjump, tail calls , etc.For these types
of calls, the shadow stack techniques cannot be used, since these types of function calls do not re-
turn to the address next to the calling function. Finally, all tools enforcing shadow stack policies:
(1) do not handle these types of calls due to complexity reasons, and (2) because these types
of calls do not violate the caller-callee function calling convention, as these do not return at all.

Runtime overhead.As each function's return address has to be pushed, compared with the
stack top value and popped from the shadow stack, the runtime overhead varies drastically from
one shadow stack technique to another. Depending on the count of operations (instructions)
which need to be performed (1-3), the shadow techniques have high performance overheads
(around 10% see [63]), making them infeasible for deployment in production software. For
these reasons, researchers are looking for approaches to do these operations with a minimal
number of steps, such that the overhead is as low as possible and no memory leak is favored
by these operations.

Limited Support for External Calls. Most C/C++ programs rely on third-party libraries and
thus functions residing in these external libraries can be performed. For this reason, this type
of external call needs to be protected as well. Most of the binary and compiler-based tools
do not protect these shared libraries for a number of reasons: (1) binary-based tools usually
cannot deal with functions having their address not taken, (2) binary-based tools often fail
to analyze large binaries due to their complexity, and (3) the compiler-based tools opt to not
recompile shared libraries due to increased analysis complexity, thus backward edges (also
forward edges) remain unprotected. Note that BinCFI [290] (binary tool) could have easily
added a shadow stack to these libraries, but omitted it, due to the resulting overhead. In other
words, the backward edges contained in shared libraries are not protected and thus, the attack
surface remains considerably high and the protection added to the program does not help much
when all the needed gadgets reside in a shared library.

Emulated Shadow Stacks.Tools which approximate perfect shadow stack (i.e.,do not contain
all caller-callee address pairs) techniques (e.g.,[266]) achieve only a coarse-grained precision
w.r.t. the return addresses, which can be checked. On one hand, these techniques are optimized
for performance. On the other hand, some of the return edges remain unprotected due to their
imprecision. Furthermore, the checks of harvested addresses are slow due to: (1) the high
volume of data �owing through the CPU, (2) the need to collect and analyze this data, and (3)

37

2 Background

the relative low speed of the continuous reads. As such, these techniques are mostly blind to
attacks which use backward edges [239]. Therefore, other techniques which emulate a shadow
stack more �ne-grained or have the same precision as a perfect shadow stack implementation
(shared library support is not supposed) are needed.

2.8 Type Inference in Program Binaries

In this Section, we provide the needed technical background to set the stage for the remainder
of this thesis.

2.8.1 Exploiting C++ Object Dispatches

1 class nsMultiplexInputStream final
2 : public nsIMultiplexInputStream //A0
3 , public nsISeekableStream //A1
4 , public nsIIPCSerializableInputStream //A2
5 , public nsICloneableInputStream{ //A3
6 nsTArray<nsCOMPtr<nsIInputStream>> mStreams;
7 NS_IMETHODIMP nsMultiplexInputStream::Close(){
8 MutexAutoLock lock(mLock);
9 mStatus = NS_BASE_STREAM_CLOSED;

10 //set NS_OK flag
11 nsresult rv = NS_OK;
12 //get array length
13 uint32_t len = mStreams.Length();
14 //array-based main loop gadget (ML-G)
15 for (uint32_t i = 0; i<len; ++i){
16 //(0)hijacked object dispatch
17 nsresult rv2=mStreams[i]->Close();
18 if (NS_FAILED(rv2)) {
19 rv = rv2;
20 }
21 }
22 return rv;
23 }

Figure 2.9: COOP main loop gadget (ML-G) operation with the associated C++ code.

Figure 2.9 depicts aC++code example (left) and how a COOP main-loop gadget (right) (i.e.,
based either on ML-G (main-loop), REC-G (recursive) or UNR-G (unrolled) COOP gadgets,
see [59] for more details) is used to sequentially call COOP gadgets by iterating through a loop
(REC-G excluded) controlled by the attacker.

First, the object dispatch (see line 17 depicted in Figure 2.9) is exploited by the attacker in
order to call different functions in the whole program by iterating on an array of fake objects
previously inserted in the array through, for example, a buffer over�ow. Second, in order to
achieve this, the attacker previously exploits an existing program memory corruption (e.g.,
buffer over�ow), which is further used to corrupt an object dispatch,¶ , by inserting fake objects
into the array and by changing the number of initial loop iterations. Next, she invokes gadgets¶

38

C
ha

pt
er

2

2.8 Type Inference in Program Binaries

and¸ up to M , through the calls,· and¹ up to N , contained in the loop. As it can be observed
in Figure 2.9, the attacker can invoke from the same callsite legitimate functions (in totalN)
residing in the virtual table (vTable) inheritance path (i.e.,at the time of writing this thesis this
type of information is particularly hard to recuperate from program binaries) for this particular
callsite, indicated with green color vTable entries. However, a real COOP attack invokes
illegitimate vTable entries residing in the entire initial program class hierarchy (or the extended
one) with little or no relationship to the initial callsite, indicated with red-color vTable entries.
Third, this way different addresses contained in the program (1) (vTable) hierarchy (contains
only virtual members), (2) class hierarchy (contains both virtual and non-virtual members)
and (or) the whole program address space can be called. For example, the attacker can call
any entry in the: (1) class hierarchy of the whole program, (2) class hierarchy containing only
legitimate targets for this callsite, (3) virtual table hierarchy of the whole program, (4) virtual
table hierarchy containing only legitimate targets for this callsite, (5) virtual table hierarchy and
class hierarchy containing only legitimate targets for this callsite, and (6) virtual table hierarchy
and class hierarchy of the whole program. Finally, because there are no intrinsic language
semantics—such as object cast checks—in theC++programming language for object dispatches,
the loop gadget indicated in Figure 2.9 can be used without constraint to call any possible entry
in the whole program. Thus, making any program address the start of a potential usable gadget.

2.8.2 Type-Inference on Executables

Recovering variable types from executable programs is generally considered dif�cult for two
main reasons. First, the quality of the disassembly can vary considerably from one used
underlying binary analysis framework to another and w.r.t. the compiler �ags which were used
to compile the binary. Note that production binaries can be more or less stripped (i.e.,RTTI
or other debugging symbols may or may not be availableetc.) from useful information, which
can be used during a type-recovering analysis.t CFI is based on DynInst and the quality of the
executable disassembly is suf�cient for our needs. In contrast to other approaches, the register
width-based type recuperation oft CFI is based on a relatively simple analysis compared to
other tools and provides similar results. For a more comprehensive review on the capabilities
of DynInst and other tools, we advise the reader to review Andriesseet al. [5]. Second, if the
type inference analysis requires alias analysis, it is well known that alias analysis in binaries
is undecidable [229] in theory and intractable in practice [202]. Further, there are several
highly promising tools such as: Rewards [147], BAP [28], SmartDec [81], and Divine [14].
These tools try more or less successfully to recover (or infer) type information from binary
programs with different goals. Typical goals are: (1) full program reconstruction (i.e.,binary
to code conversion, reversing,etc.), (2) checking for buffer over�ows, and (3) checking for
integer over�ows and other types of memory corruptions. For a comprehensive review of type
inference recovering tools in the context of binaries, we suggest consulting Caballeroet al. [33].
Finally, it is interesting to note that the code from only a few of the tools mentioned in the
previous review are actually available as open source.

39

2 Background

2.8.3 Security Implications of Program Indirect Transfers

Indirect Forward-Edge Transfer. Illegal forward-edge indirect calls may result from a virtual
pointer (vPointer) corruption. A vPointer corruption is not a vulnerability but rather a capa-
bility, which can be the result of a spatial or temporal memory corruption triggered by: (1)
bad-casting [142] of C++objects, (2) buffer over�ow in a buffer adjacent to aC++object, or
(3) a use-after-free condition [238]. A vPointer corruption can be exploited in several ways. A
manipulated vPointer can be exploited to make it point to any existing or added program virtual
table entry or to a fake virtual table added by the attacker. For example, an attacker can use the
corruption to hijack the control �ow of the program and start a COOP attack [238]. vPointer
corruptions are a real security threat that can be exploited in many ways as for example if there
is a memory corruption (e.g.,buffer over�ow, use-after-free condition), which is adjacent in
memory to theC++object. Consequently, each memory corruption, which can be used to reach
the memory layout of an object (e.g.,object type confusion) can be potentially used to change
the program control �ow.

Indirect Backward-Edge Transfers. Program backward edges (i.e., jump, ret , etc.) can be
corrupted to assemble gadget chains such as follows. (1) No CFI protection technique was
applied: in this case, the binary is not protected by any CFI policy. Obviously, the attacker can
then hijack backward edges tojumpvirtually anywhere in the binary in order to chain gadgets
together. (2) Coarse-grained CFI protected scenarios: In this scenario, if the attacker is aware
of what addresses are protected, the attacker may deviate the application �ow to legitimate lo-
cations in order to link gadgets together. (3) Fine-grained CFI protection scenarios: in this case,
the legitimate target set is stricter than in (2). But, assuming that the attacker knows which ad-
dresses are protected and which are not, she may be able to call legitimate targets through control
�ow bending. (4) Fully precise CFI protected scenarios (i.e.,SafeStack [135] based): in this sce-
nario, the legitimate target set is stricter than in (3). Even though we have a one-to-one mapping
between calltargets and legitimate return sites, the attacker could use this one-to-one mapping
to assemble gadget chains if at the legitimate calltarget return site there is a useful gadget [36].

Interestingly to notice in this context is that through: (1) memory layout analysis (through
highly con�gurable compiler tool chains) of source-code-based locations which are highly
prone to memory corruptions such as declarations and uses of buffers, integers or pointer
deallocations one can obtain the internal machine code layout representation; (2) analysis
of a code corruption which is adjacent (based on (1)) to aC++object based on application
class hierarchy, the virtual table hierarchy and each location in source code where an object is
declared and used (e.g.,modern compiler tool chains can spill out this information for free), one
can derive an analysis which can determine—up to a certain extent—if a memory corruption
can in�uence (e.g.,is adjacent to) aC++object.

Finally, tools based on these two concepts (i.e., (1) and (2)) can be used by attackers,e.g.,
to �nd new vulnerabilities, and by defenders to harden the source code only at the places which
are most exposed to such vulnerabilities (i.e., targeted security hardening).

40

C
ha

pt
er

2

2.8 Type Inference in Program Binaries

2.8.4 Shadow Stack Techniques

In this Section, we present details on how shadow stack techniques can by bypassed in general
and why we need an alternative solution for protecting backward edges.

Shadow stack techniques are based on the assumption that these are hard to be found by an
attacker and that these have to remain writable during runtime as addresses are pushed and
popped during runtime. According to Goktaset al. [94] there are at least four attack vectors
(namely; neglected pointers, thread spraying, allocation oracles, and guessing oracles) which
can be used independently to bypass a shadow stack implementation. More broadly, these attack
vectors show that all entropy based hiding techniques can be bypassed by a motivated attacker.

Simulated shadow stacks.The original CFI implementation of Abadiet al. [1] protects
backward edges by simulating a shadow stacki.e.,without building new shadow stacks. Abadi
et al. present two approaches: (1) based on pre-fetching (i.e.,usingprefetchnta instruction)
a label into a register before entering/calling a function and comparing with this label before
leaving the function, and (2) based on hardware registers (segment registergs:[0h]) in which
the return address of a function is loaded before entering/calling a function and comparing it
before leaving the function with the address where the function returns. More speci�cally, each
program function can return to only an address which was previously loaded into an register
by using hardware segments.

The segment registergs always points to the memory segment that holds the shadow call
stack and which has been created to be isolated and disjoint from other accessible memory
segments. On Windows,gs is unused in application code; therefore, without limitation, CFI
veri�cation can statically preclude its use outside this instrumentation code. As shown in
the �gure, the instrumentation code maintains (in memory locationgs:[0h]) an offset into
this segment that always points to the top of the stack. The use of the protected shadow call
stack implies that each return goes to the correct destination, so no ID-checks are required
on returns in this instrumentation code. Approach (1) is in our opinion not affected by these
attack vectors but in case the attacker knows the register in which the label was stored he can
rewrite the a different label. Approach (2) is affected by the attack vectors presented above
since the segments on which it relies, where the return address is stored (see bottom part of
Fig. 7 in [1]) can be found and overwritten by an attacker and also the return address in the
stack can be overwritten by the attacker and as such he may return were ever he wants. To this
end, this proprietary implementation is not open source and (1) relies on a special instruction
(e.g.,prefetchnta only for 32-bit available) and (2) relies on hardware segment registers (i.e.,
gs:[0h]) which are not available on all architectures. Further, the overhead of these techniques
is on average more than 15% when protecting both backward and forward edges.

As response compiler based solutions (i.e.,Clang's SafeStack [49] and in GCC's shadow
stack implementation [86]) where proposed in the last years. These techniques do not rely on
exotic instructions, program segments, and hardware registers. These approaches provide a
second writable shadow stack for each program stack. In essence these techniques work by
pushing the return address of each function into a secondary writable shadow stack before
entering/calling a function and popping this address before leaving the function. In case these

41

2 Background

addresses match, then program execution is continued else program execution is terminated.
The accesses to the shadow stacks are made trough pointers and the main assumption is here
that the shadow stack are hard to �nd.

Real shadow stacks.The Clang's SafeStack and GCC's shadow stack implementation relies
on splitting each program stack in two stacks on which addresses are pushed and popped before
entering a function and before leaving it, respectively. It turns out that neglected pointers, thread
spraying and allocation oracles techniques can be all independently used to locate the shadow
stacks. These work under the assumption that there is a memory corruption, the attacker has
read/write primitives and that heap and module data is disclosed. As such, the shadow stack
can be located and overwritten by the attacker which may return to any address in the program
he desires.

Shadow stacks downsides.In terms of security, shadow stack protection is stronger than
the approach of reversing forward edges when assuming that the shadow stack's integrity is
protected. However, shadow stack's integrity has to be protected by a separate mechanism.
Randomization is not a good idea here, as shown by Goktaset al. [94]. Software-based
fault isolation would guarantee its integrity, but that comes with additional overhead. The
shadow stack's implementation has a higher overhead than the approach of reversing forward
edges. This would be a different situation with hardware supported shadow stacks however.
The shadow stack has trouble of being compatible with common software practices such as
longjumps or setjumps, exceptions, continuations,etc. that perform unconventional control
�ows. It takes extra effort to make it work at least.

However, our motivation is to provide a new technique for protecting backward edges in
program binaries which does not rely on information hiding or any special instructions and is
not affected by arbitrary writes since the labels are in write protected code located. Thus, our
approach is not affected by the four attack vectors [94]. Our approach enforces N addresses
per return site while a shadow stack enforces one address per return site.

2.8.5 Polymorphism in C++ Programs

Polymorphism along with inheritance and encapsulation are the most used modern object-
oriented concepts inC++. In C++, polymorphism allows accessing different types of objects
through a common base class. A pointer of the type of the base object can be used to point to
object(s) which are derived from the base class. InC++, there are several types of polymorphism:
(a) compile-time (or static, usually is implemented with templates), (b) runtime (dynamic, is
implemented with inheritance and virtual functions), (c) ad-hoc (e.g.,if the range of actual types
that can be used is �nite and the combinations must be individually speci�ed prior to use), and
(d) parametric (e.g.,if code is written without mention of any speci�c type and thus can be used
transparently with any number of new types). The �rst two are implemented through early and
late binding, respectively. InC++, overloading concepts fall under the category ofc) and virtual
functions, templates or parametric classes fall under the category of pure polymorphism. How-
ever,C++provides polymorphism through: (i) virtual functions, (ii) function name overloading,

42

C
ha

pt
er

2

2.8 Type Inference in Program Binaries

and (iii) operator overloading. In this thesis, we are concerned with dynamic polymorphism,
based on virtual functions (see ISO/IEC N3690 [129]), because it can be exploited to call: (x)
illegitimate virtual table entries (not) contained in the class hierarchy by potentially varying the
number of parameters and types, (y) legitimate virtual table entries (not) contained in the class
hierarchy by potentially varying the number of parameters and types, and (z) fake virtual tables
entries not contained in the class hierarchy by potentially varying the number of parameters and
types. By legitimate and illegitimate virtual table entries we mean those virtual table entries
which for a single indirect callsite lie in the virtual table hierarchy. More precisely, a virtual
table entry is legitimate for a callsite if from the callsite to the virtual table containing the entry
there is an inheritance path (see [106]). Virtual functions have several uses and issues associ-
ated, but for the scope of this thesis we will look at the indirect callsites which are exploited
by calling illegitimate virtual table entries (i.e., functions) with varying number and type of
parameters, see (x) above). More precisely, (1) load-time enforcement: as calling each indirect
callsite (i.e.,callee) requires a �xed number of parameters which are passed each time the caller
is calling, we enforce a �ne-grained CFI policy by statically determining the number and types
of all function parameter that belong to an indirect callsite, and (2) runtime veri�cation: as
differentiating during runtime legitimate from illegitimate indirect caller/callee pairs requires
parameter type and parameter number, we insert before each indirect callsite a check used for
determining during runtime if the caller matches with the callee based on certain CFI policies.

2.8.6 Real COOP Attack Example

The bug CVE-2014-3176 was exploited by Craneet al. [59] in order to perform a COOP attack,
on the Google Chromium Web browser. The details of this attack are highly complex involving
not properly handled interaction of browser extensions between the IPC, the sync API, and
Google V8 engine and for this reason we brie�y present a better documented COOP exploit
which is in principle similar with this attack.

Figure 2.10 depicts1 a Turing complete COOP attack [238] which was used to attack the
Mozilla Firefox web browser. Essentially, by exploiting an existing buffer over�ow bug the
attacker was able to call into existing virtual table entries by having a main loop gadget at his
disposal. Next we present the steps needed in order to perform this attack.

First, the attacker uses theC++classnsMultiplexInputStream (see Figure 2.10) which
contains a main loop gadget (ML-G) inside thensMultiplexInputStream::Close(void)
function in order to perform indirect calls by dispatching calls on the fake objects contained
in the array. The objects contained in the array during normal execution are ofnsInputStream
type and each of the objects will call theClose(void) function in order to close each of the
previously opened streams.

1The class inheritance hierarchy of the classes involved in the COOP attack against the Firefox browser. Red
letters indicate forbidden virtual table entries and green letters indicate allowed virtual table entries for the
given indirect callsite contained in the main loop gadget.

43

2 Background

Figure 2.10: Class hierarchy of classes used in the COOP attack.

Second, for performing the COOP attack, the attacker crafts aC++program containing an
array buffer holding six fake objects. These fake objects can call inside (and outside) the initial
class and virtual table hierarchies with no constraints. During the attack a buffer is created
in order to hold the fake objects. The crafted buffer will be used instead of the real code in
order to call different functions available in the program code. For example, the attacker calls
a function contained in the classxpcAccessibleGeneric which is not in the class hierar-
chy or virtual table hierarchy of the initially intended type of objects used inside the array.
Moreover, the header �le of this class (xpcAccessibleGeneric) is not included in the class
nsMultiplexInputStream .

Third, in total, six fake objects are used to call into functions residing in unrelated class
hierarchies with varying number of parameters and return types. The �nal goal of this attack is
to prepare the program memory such that a Unix shell can be opened at the end of this attack.

Lastly, this example illustrates why detecting vPointer corruptions is not trivial for real-world
applications. As depicted in Figure 2.10, the classnsInputStream has 11 classes which inherit
directly or indirectly from this class. The classesnsSeekableStream, nsIPCSerializable -
InputStream andnsCloneableInputStream provide additional inherited virtual tables which
represent illegitimate calltargets for the initialnsInputStream objects and legitimate calltar-
gets for the six fake objects which were added during the attack. Furthermore, declaration and
usage of the objects can be widely spread out in the source code. This makes detection of the
object types (i.e.,base class), range of virtual tables (i.e., longest virtual table inheritance path
for a particular callsite) and parameter types of the virtual table entries (i.e., functions) in which

44

C
ha

pt
er

2

2.8 Type Inference in Program Binaries

it is allowed to call a trivial task for source code applications, but a hard task when one wants
to apply similar security policies (e.g.,which rely on parameter types of virtual table entries)
to binary executables.

2.8.7 Mitigation of Forward-Edge Based Attacks

Binary based tools. TypeArmor [268] has around 3% runtime overhead and enforces a
CFI-policy based on runtime checking of caller-callee pairs which relies on runtime function
parameter count matching. Compared toTYPESHIELD, this tool does not use function param-
eter types and assumes that a backward-edge protection is in place. VCI [78] and Marx [218]
are both based on approximated program class hierarchies: (1) do not recover the root class of
the hierarchy, and (2) the edges between the classes are not oriented. Thus, both tools enforce
for each callsite the same virtual table entry (i.e., index based) contained in one recovered class
hierarchy denoted by father-child relationships between the recovered vtables. Finally, both
tools use up to six heuristics and simplifying assumptions in order to make the problem of
program class hierarchy reconstruction tractable.

Source-code-based tools.To the best of our knowledge, only the Clang-CFI [149] and IFC-
C/VTV [261] (up to 8.7% performance overhead) compiler based tools are deployed in practice
and can be used to check legitimate from illegitimate indirect forward-edge calls during runtime
by checking if virtual object pointers comply with the program class hierarchy inheritance
relationships. Furthermore, ShrinkWrap [106] is a GCC compiler based tool which further
reduces the legitimate virtual table ranges for a given indirect callsite (i.e., object dispatch)
through precise analysis of the program class hierarchy and virtual table hierarchy. Evaluation
results show similar performance overhead results as the previous mentioned tools but with
more precision with respect to legitimate virtual table entries (calltargets) per callsite. We
noticed by analyzing the previous research results that the overhead incurred by these security
checks can be very high due to the fact that for each callsite many range checks have to be
performed during runtime. Therefore, in our opinion, despite its security bene�t these types
of checks are most likely not applicable to software where performance is key.

Other types of tools.Other highly promising source-code-based tools (albeit also not deployed
in practice) which can overcome some of the drawbacks of the previously described tools are as
follows. Bounovet al. [24] presented a tool (� 1% runtime overhead) for indirect forward-edge
callsite checking based on virtual table layout interleaving. The tool has better performance
than VTV and better precision with respect to allowed virtual tables per indirect callsite. Its
precision (selecting legitimate virtual tables for each callsite) compared to ShrinkWrap is
lower since it does not consider virtual table inheritance paths. vTrust [286] (average runtime
overhead 2.2%) enforces two layers of defense (virtual function type enforcement and virtual
table pointer sanitization) against virtual table corruption, injection and reuse.

45

2 Background

2.8.8 Mitigation of Backward-Edge Based Attacks

According to one of the currently most comprehensive surveys by Burowet al. [32] assessing
backward edge protection techniques and runtime overhead comparisons, tools can be dis-
tinguished into providing low, medium, and high levels of protection w.r.t. backward-edges.
Further, this survey provides runtime overhead comparisons. classi�es the backward-edge
protection techniques in binary-based, source-code-based, and other types (i.e., with HW
support,etc.).

Binary based tools.Burow et al. provide the following insights w.r.t. binary-based tools. The
original CFI implementation from Abadiet al. [1] as well as MoCFI [156], kBouncer [216],
CCFIR [289], bin-CFI [290], Reins [276], O-CFI [187], PathArmor [266], LockDown [221]
mostly suffer from imprecision (high number of reused labels); have low runtime ef�ciency;
and some of the tools do not support shared libraries.

Source-code-based tools.SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
piCFI [212] relatively high precision w.r.t. enforced address return set, and all do not support
shared libraries (except MCFI), have high coverage (almost all backward edges are protected).

Other types of tools.ROPecker [44], HW-asst. CFI [66], CFIGuard [284] are mostly relying
on HW features which were not speci�cally built for protecting backward edges and for this
reason the tools are not runtime effective and their precision is rather low and mostly not
effective against state-of-the-art code reuse attacks.

46

C
ha

pt
er

3

Chapter3
Related Work

In this Chapter, we present related work with respect to detection of integer over�ows in Section
3.1, and in Section 3.2, we present tools usable for integer over�ow classi�cation and repair
generation, while in Section 3.3, we present related work to buffer over�ow repair generation.
In Section 3.4, we introduce some techniques for detection of object type confusions and in
Section 3.5, we talk about static and dynamic gadget discovery as well as existing metrics for
assessing CFI defenses. In Section 3.6, we highlight some of the tools usable for program
CFG backward-edge runtime protection. Further, in Section 3.7, we describe how backward
and forward edges based attacks can be mitigated as well as mitigation of advanced and not
advance CRAs. Finally, note that parts of this Chapter have already been published by Muntean
et al. [195, 196, 197, 198, 199, 200, 201].

3.1 Detecting Integer Over�ows

Integer-related problems detecting research focuses primarily on integer over�ow vulnerabil-
ities, either employing dynamic or static code approaches [54] which run on binary or source
code. The static approaches are mostly based on an analysis framework and added run-time
checks at certain interesting points in code (e.g.,assignments,x := expr:) located on satis�able
program paths.

3.1.1 Static Analysis Tools

The static analysis tool UQBTng [280] decompiles the binary �les and then uses model check-
ing based on CBMC [53] to detect integer over�ows. IntScope [272] �rst transforms the
analyzed binaries into an intermediary representation (IR) and based on symbolic execution
and taint analysis it checks for integer over�ows. These two approaches operate on binary �les
and cannot �gure out the original variables data types since they get lost during the compilation
process, whereas our approach can use the original variables data types from source code.
ARCHERR [45] can examine million of lines of source code but can not deal with string

47

3 Related Work

operations and has on average 35% of false positives, whereas our approach has a lower false
positives rate. Microsoft's PREfast [166] is used during source code compile time and relies
on source code annotations which is integrated in the Microsoft VS IDE and are provided in
advance. Our approach does not require costly annotations. On the other hand, we think that
the annotations represent an useful source of information which is typically not available during
static analysis. Microsoft's PreFix [193] is based on the Z3 [166] solver, runs on large legacy
C/C++ source code repositories in order to �nd a wide range of problems related to integers
and uses a ranking mechanism to �lter out false positives. It is based on a ranking mechanism
used to �lter out false positives and suffers from imprecision because it does not use the already
available annotations contained in the source code as the authors acknowledge.INTDETECT

compared to PreFix focuses integer related problems. It is based on a ranking mechanism
used to �lter out false positives and suffers from imprecision because of not using the already
available annotations contained in the source code as the authors acknowledge.INTDETECT

compared to PreFix focuses on only one type of integer related problems (integer over�ows)
by usingCfunction models whereas the PreFix tool does not use function models. Ceesay and
colleagues [38] added type quali�ers to detect integer over�ow problems. Their approach relies
on expensive system extensions which are linked into the compiler and are used to check the
code for integer errors. Their approach requires user annotation whereas our approach does not
require annotations. Ashcraftet al. [10] and Sarkaret al. [235] used bounds checking and taint
analysis to see if untrusted values are used in trusted sinks. These two approaches are based
on insensitive information �ow whereas our approach is context sensitive.

3.1.2 Dynamic Analysis Tools

The dynamic analysis tools are used to detect integer related problems: RICH [29], BRICK [42],
SmartFuzz [188], SAGE [93] and IOC [73]. RICH [29] instruments programs to detect safe
and unsafe operations based on well-known sub-typing theory. BRICK [42] detects integer
over�ows in compiled executables using a modi�ed Valgrind [203] version. Its accuracy and
ef�ciency depend on the test input used to exercise the instrumentation. It is either slow (50�
slowdown) or has many false positives. SmartFuzz [188] is also based on Valgrind, but it
uses dynamic test generation techniques to generate inputs, leading to good test coverage.
SAGE [93] uses dynamic test generation, but it targets fewer integer problems than SmartFuzz.
IOC [73] is an integer over�ow and under�ow problems detection tool integrated with the
Clang compiler. Compared withINTDETECT, these tools can neither exercise all bugs due to
dynamically generated test cases nor full path coverage can be achieved.

3.2 Repairing Integer Over�ows

There is a large body of research work focusing on integer over�owdetection: ARCHER [45],
UQBTng [280], PREfast [56], Rich [27], SAGE [93], CBMC [53], IntScope[272], Brick [42],
IntFinder [41], SmartFuzz [188], PRE�x [193], IntPatch [288], IOC [73], IntFlow [225],

48

C
ha

pt
er

3

3.2 Repairing Integer Over�ows

SoupInt [270], SIFT [154], TAP [249], Diode [248], Indio [292], Zhanget al. [285], and
IntEQ [255]. In contrast, only few approaches focus explicitly on integer over�owrepairs:
CIntFix [43], SoupInt [154], CodePhage [247], TAP [249], and SIFT [154]. Out of these
approaches, only TAP [249] (technical report) and SIFT [154] �rst explicitly detect the integer
over�ow and then repair it. The other tools—which do not �rst con�rm the bug existence—
mostly blindly change the code in all error-prone locations in the hope to avoid integer related
problems. For example: (1) CIntFix [43] utilizes integers of in�nite size with two's complement
encoding in place of original bounded integers, and (2) AIC/CIT/RAO [54] relies on three code
transformations: add integer cast (AIC), replace arithmetic operator (RAO), and change integer
type (CIT) to change the program in order to avoid integer over�ows. However, in most cases
these tools are triggering high runtime overhead and have a considerable likelihood of changing
program behavior.

TAP [249] �rst detect the integer over�ow and than propose a repair for it. TAP is similar to
INTREPAIR w.r.t. the fact that both tools �rst detect an integer over�ow and next they generate
a code repair which removes the integer over�ow. TAP utilizes the integer over�ow discovery
algorithm from DIODE [248]. Another improvement ofINTREPAIR over TAP is that a validation
mechanism is provided byINTREPAIR to check if the integer over�ow is indeed removed from
the program.

SIFT [154] �rst detects the integer over�ow (bug detection is based on Diode [248]) and
then generates an input �lter to eliminate the bug at the binary level. Sift is a static input �lter
generation tool, which inserts input �lters in the program binary for which the source code was
previously manually annotated with source code annotations. While currently the only sound in-
teger over�ow repair tool, Sift relies on tedious user source code annotations that are not always
available for a source code program or require a considerable and tedious annotation overhead.
Upper bound source code annotations for loops are needed when the analyzed expression de-
pends on a number of values that is not �nite. Further, not all types of integer over�ow relevant
sites are supported (i.e.,only memory allocations and block memory copy sites). For some types
of applications (i.e.,web serversetc.) with no available input format speci�cation (i.e.,no image
or video �les) Sift cannot be applied. Sift relies on tedious user source code annotations and can-
not guarantee that no unwanted program behavior is introduced since the �lters may remove only
the integer over�ows which these cover. Sift does not support multi-precision integer over�ow
repairs, and annotated stub standardClibrary functions need to be provided upfront for functions
that in�uence the computed symbolic condition (if not provided, the �lter will not be generated).

In the above-mentioned approaches, fault localization is performed before patch generation.
In contrast, we combine fault localization and patch generation, and as a result, we obtain
the capability of generating precise patches which remove the bug for various program inputs
(bug detection is not program input independent) and at the exact location where the bug was
detected upfront. For this purpose, we use SMT solving for bug localization. However, unlike
INTREPAIR, SMT solving is not used for repair synthesis by TAP or Sift. As such, their bug
removal process is bound to a limited number of test inputs to con�rm that the bug was removed
after the repair was inserted, which does not guarantee that the bug was really removed for all
possible program inputs.

49

3 Related Work

Tool Venue To
p

Ti
er

s.
s.

d.

s.
:

s.
d.

d.
s.

d.

d.
:

s.
d.

S
M

T
so

lv
.

:
S

M
T

so
lv

.

so
ur

ce
co

de

bi
na

ry
co

de

in
te

rm
ed

ia
te

C
su

pp
or

t

C
+

+
su

pp
or

t

ov
er

�o
w

un
de

r�
ow

si
gn

ed
ne

ss

tr
un

ca
tio

n

so
un

d

co
m

pl
et

e

be
ni

gn

ex
pl

oi
ta

bl
e

an
no

ta
tio

ns

fu
zz

in
g

m
ut

at
in

g

de
te

ct
(d

)

re
pa

ir
(r

)

(d
&

r)

ARCHERR [45] ESORICS'04 X X X X X X X X X
UQBTng [280] 22C3'05 X X X X X X X
PREfast [166] MSR-TR'10 X X X X X X X X
Rich [29] NDSS'07 X X X X X X X X X X X X
SAGE [93] NDSS'08 X X X X X X X X X X
IntScope [272] NDSS'09 X X X X X X X
Brick [42] ARES'09 X X X X X X X X X
IntFinder [41] ICICS'09 X X X X X X X X
SmartFuzz [188] Usenix Sec.'09 X X X X X X X X X X X
PRE�x [193] MSR-TR'09 X X X X X X X X
IntPatch [288] ESORICS'10 X X X X X X X X
IOC [73] ICSE'12 X X X X X X X X X X X
IntFlow [225] ACSAC'14 X X X X X X X X X X X
SoupInt [270] DIMVA'14 X X X X X X X
SIFT [154] ACM SN'14 X X X X X X X X
TAP [249] MIT-TR'14 X X X X X X X X X X X
Diode [248] ACM SN'15 X X X X X
Indio [292] RAID'14 X X X X X X X
Zhanget al. [285] SNPD'16 X X X X X
IntEQ [255] ICSE'16 X X X X X X X X X X X X
CIntFix [43] COMPSAC'16 X X X X X X X X X X

INTREPAIR [197] - X X X X X X X X X

Table 3.1: Integer over�ow detection and repair features. Entries are arranged by year.

Table 3.1 summarizes a string of tools used for integer over�ow detection and repair, and
the underlying techniques on which these tools are based. In Table 3.1 theX symbol means
addressed and the abbreviations have the following meaning: static symbolic detection (s.
s. d.), dynamic symbolic detection (d. s. d), and: logical not. We deliberately excluded
from Table 3.1 commercial static symbolic execution tools (e.g.,CodeSonar; see [245] for more
details), which scale to programs having millions LOC and which can ef�ciently detect integer
over�ows, since their internals are mostly unknown. Further, we have added a single tool based
on bounded model checking (BMC), namely CBMC [53], which can be used to check pointer
safety, array bounds, and user-provided assertions. While BMC can be used in principle to
detect integer over�ows, we consider this line of research orthogonal to our research.

Further, it is interesting to note that most of the tools presented in Table 3.1 are either only
used for integer over�ow detection or if they are used for code repair then they do not consider
detecting �rst the integer over�ow, and none of the integer over�ow repair tools are complete
for analysis trade-off reasons. Finally, integer over�ow has threatened software programs for
decades, and many efforts have been made to address this problem. Next we will present the
most representative work.

3.2.1 Detecting Integer Over�ows

Library Support. Safe integer libraries such as SafeInt [169] and IntegerLib [240] are widely
used during runtime. These approaches impose on the programmers that they rewrite existing

50

C
ha

pt
er

3

3.2 Repairing Integer Over�ows

code to use safe integer operations.INTREPAIR in contrast detects and repairs integer over�ows
without any assistance from developers to rewrite code.

Runtime Checks.RICH [27], IOC [73], IntPatch [288], RA [222] and IntTracker [254] utilize
program instrumentation to insert security checks around integer arithmetic operations of
interests in order to detect integer over�ows during runtime. One major drawback of this
approach is that these tools insert runtime checks conservatively such that they often incur a
high runtime overhead. In contrast,INTREPAIR inserts checks only when it previously found
an integer over�ow. It therefore imposes a lower performance overhead.

Static Integer Over�ow Detection. KINT [273] utilizes taint analysis and integer range
analysis to generate test cases which can trigger integer over�ows in Linux kernel. It requires
optionally procedure speci�cations from the programmer to characterize parameter value
ranges and reports many false positives. SIFT [154] uses a sound static program analysis to
collect constraints from program entries to integer arithmetic operations which can �ow into
memory allocation operations and block copy operations, to generate input �lters which can
decline inputs that may trigger over�ow errors. Similarly, DIODE [248] relies on targeted site
identi�cation and goal-directed conditional branch enforcement to discover integer over�ows.
Note that KINT [273], SIFT [154] and DIODE [248] can only handle integer over�ows which
can in�uence memory allocations or block copy operations,i.e., IO2BO, whereasINTREPAIR

can deal with all types of integer over�ows.

Dynamic Integer Over�ow Detection Taking a different approach, fuzzing-based software
testing and concolic testing are two widely used dynamic techniques to detection integer
over�ows. Random fuzzing [92] is widely used by researchers to expose program errors, not
only integer over�ows. Due to the fact that the new inputs it generates often fail certain sanity
checks, random fuzzing is relatively ineffective. Directed fuzzing such as BuzzFuzz [85] and
TaintScope [271] �rst uses dynamic taint tracking to identify input bytes that can in�uence
values at critical program sites such as memory allocation sites and system calls, and then
mutates these particular bytes so as to expose errors which reside deeply inside programs. Since
the size of fuzzed input is reduced, directed fuzzing is much more effective than random fuzzing.

Concolic Testing.[46, 158, 241] is a newer alternative than random and directed fuzzing. These
tools execute programs both concretely and symbolically on a seed input until an interesting
program expression is reached. Although successful in many scenarios [34], concolic testing
faces several challenges [228, 35]. Speci�cally, the resulted constraint systems for deeper
program paths get very complex and thus beyond the capabilities of current SMT solvers. Smart-
Fuzz [188] is a concolic testing tool which can detect integer over�ows, non-value-preserving
width conversions, and potentially dangerous signed/unsigned conversions. However, it is
limited by deep program paths and blocking checks. Dowser [108] is a fuzzer that combines
taint tracking, program analysis, and symbolic execution to �nd buffer over�ows. Note that
compared toINTREPAIR, these dynamic techniques need a set of seed inputs and may suffer
from a heavy runtime overhead.

51

3 Related Work

3.2.2 Classifying Integer Over�ow

As discussed in RICH [27], SIFT [154] and IntEQ [255], integer over�ow might be introduced
into the programs intendedly by programmers in order to accomplish benign purposes, such
as hashing computation and random number generation. These benign integer over�ows are
not harmful and it is not needed to �x them.

IntFlow [225] �rst utilizes static data �ow analysis to �nd safe integer arithmetic operations
which originates from trusted sources such as constants and con�guration �les, or which �nally
propagates into security-unrelated program sites such as debug information printing, and then
inserts security checks for those integer arithmetic operations besides these safe ones to gain
runtime protection. IntFlow could exclude the reports for benign integer over�ows to some
extent. However, there still exists a lot of benign integer over�ows which are along the paths
from untrusted sources to security-related program sites.

A further improvement is made by IntEQ [255], which uses equivalence checking across
multiple precisions to recognize benign integer over�ows from harmful ones. IntEQ deter-
mines whether an integer over�ow is benign by comparing the effects of an over�owed integer
arithmetic operation in the actual world with limited precision and the same operation in the
ideal world with suf�cient precision to evade the integer over�ow. However, IntEQ still fails
to recognize 20% benign integer over�ows according to its experiments.

Hence, it is not easy to identify all the benign integer over�ows automatically since benign
integer over�ows are essentially the programmers' intentions and it is dif�cult to formalize
and infer what programmers intend to do.INTREPAIR tries to mitigate this problem by letting
programmers make the �nal decisions. When an integer over�ow is detected byINTREPAIR,
whether to further repair it or not is determined by programmers. If needed, a proper over�ow
repair pattern is selected and patched automatically.

3.2.3 Repairing Integer Over�ows

SoupInt [270] is an off-line system that can diagnose whether an exploit is caused by an integer
over�ow and generate emergency patches at proper locations to �x it. Note that SoupInt works
for binary code whereasINTREPAIR works for source code.

CIntFix [43] utilizes integers of in�nite size with two's complement encoding in place of orig-
inal bounded integers to provide runtime protection forCsource code functions. The analysis
performed by CIntFix is syntax-directed and rule-based, which avoids sophisticated and impre-
cise analysis. However, its analysis cannot scale to large programs and CIntFix can miss to repair
some integer over�ows as well. From the total of 2052 programs in the same test suite, CIntFix
could repair only 1938, whereasINTREPAIR could �x all of them. Also, the source code expan-
sion is above 25%, which is almost 25 times more than that ofINTREPAIR. The runtime on the
repaired programs is 16%, whereasINTREPAIR's slowdown on the same programs is about 1%.

CodePhage [247] is an automatic patching tool, transferring the patch for an integer over�ow
from donor applications to recipient applications based on the assumption that applications
of the same type may have the similar behavior under the same input �le. The following

52

C
ha

pt
er

3

3.3 Repairing Buffer Over�ows

sentence is completely messed up: Given the same input �le, if there is no integer over�ow
for donor applications whereas it happens for recipient applications, there should have a patch
in donor applications which can �x the integer over�ow that occurs in recipient applications.
CodePhage does such transferring.INTREPAIR differs in that its code repair technique enable
it to automatically generate repairs in the absence of donor applications.

AIC/CIT/RAO [54] is a static source code analysis tool built as an Eclipse plug-in which pro-
vides several code transformations to avoid integer errors. Three types of code transformations
are provided: add integer cast (AIC), replace arithmetic operator (RAO), and change integer
type (CIT). Based on these three safe code transformations, this tool can protect against integer
over�ow without the need to detect the integer over�ow �rst. However, these three transfor-
mations cannot be applied to all unsafe situations and a fraction of the variable declarations
are also modi�ed since in some situations, the preconditions which have to be checked are far
more complex than what AIC/CIT/RAO can cover. In this situation, no transformations are
applied. The tool has a runtime overhead of the hardened programs for each of the three types
of transformations which is over 30% (see Figure 3 in [54]) compared with the original program.
This is not acceptable in real software. In contrast,INTREPAIR �rst detects integer over�ows
using static symbolic analysis and then it generates a repair which can protect against the integer
over�ow with a much lower runtime overhead than the three above presented transformations.

DirectFix [161] is a static test-case-based analysis tool used for generating simple repairs at
the expression level (i.e.,other tools operate at the statement level) which does not target specif-
ically integer over�ow repairs. This tool relies on test cases in order to locate the bug. The intu-
ition behind this tool is to propose simplistic repairs which generate less regressions compared to
other tools such as SemFix [205]. The repairs of DirectFix are up to 56% identical to the ground
truth repairs contained in the SIR testsuite [72] and target operators in existing expressions.
Compared to IntRepair which �rst locates the bug and then proposes complex repairs which can
have multiple lines of code, DirectFix does not validate the repair. Further, the authors claim that
as the repairs are more minimalistic, they should generate less regressions as other tools. We do
not agree with the hypothesis from DirectFix that...simple repairs are likely to be less hazardous.
general simplistic repairs always lead to less regressions. Further, in case the bug cannot be
removed by introducing the repair at the expression level or there is no expression which can
be mutated by DirectFix, then this tool cannot �x the bug. In contrast,INTREPAIR detects the
bug at the statement level and encloses the statement with a repair which can eliminate the bug.

3.3 Repairing Bu�er Over�ows

3.3.1 Generating Bu�er Over�ow Repairs

Source code patches for repairing buffer over�ow bug can be generated in different ways [109],
from free form bug reports [148], [277], [3], from statically de�ned patch patterns [132],
[105], from test suite using SMT solver [69], [205], from test suite and genetic program-
ming [141], [278], by replacing the unsafelibc [250], [236], functions with safe functions, [58].

53

3 Related Work

Ha�z et al. [244] addressedbuffer over�ows quick �xingby replacing unsafe library func-
tions with safe alternatives. Cowanet al. [60] have usedstatic analysis for generating code
patchesbased on four approaches in which the buffer over�ow vulnerabilities can bedefended.
Jacobs [123] has proposed to usebuffer over�ow refactoring patternsas an extension for
theClanguage called SMARTC. In recent years, manyquick �x generation tools for buffer
over�ows have been proposed: AutoPaG [146], SafeStack [40], DYBOC [246], TIED [12],
LibsafePlus [12], LibsafeXP [145], HeapShield [79].

To the best of our knowledge, the AutoPAG [146] tool is most similar to our approach from
the backward visiting of program statements perspective.BUFFREPAIR can not be compared
with AutoPAG from the point of view of computation time and quick �x quality at this stage of
development since AutoPAG has several limitations which we will brie�y list. Our algorithm
stops the search after encountering the �rstnon-in-placebug �x location, whereas AutoPAG
tries to detect all possiblenon-in-placebug �x location by running a repeated inef�cient data
�ow analysis (no program execution paths used). AutoPAG is unaware of program execution
paths and uses a rudimentary backward information �ow propagation approach based on the
sequential ordering of program statements. The analysis (no SMT solver used) is repeated until
there are no visited variables in the previously constructed set of tainted variables. This set can
contain all program variables and can generate a signi�cant overhead as already mentioned
by the authors of AutoPAG.

3.4 Detecting C++ Object Type Confusions

3.4.1 Virtual Table Pointer-based Tools

Clang-CFI [51, 52] (C++ object type cast checking tool) is similar toCASTSAN in that it uses
no runtime library and all cast check detection metadata is computed during compile time.
However, there are no publicly available evaluation results of Clang-CFI, and therefore we
evaluated Clang-CFI in Section 10.4 independently. Clang-CFI relies on bitsets in order to
model the class hierarchy of a program. Clang-CFI uses these bitsets to encode the valid virtual
table start addresses for each class. Compared toCASTSAN, Clang-CFI has a higher runtime
overhead, as the bit-set checking technique on which it relies apparently is less ef�cient than
our virtual table based technique.

3.4.2 C++ Object Type Runtime Tracking

All currently available polymorphic and non-polymorphic object type confusion detection tools
(except Clang-CFI) rely on dynamic checks (i.e.,LLVM's Compiler-RT is mostly used) for
several key reasons, as follows. First, the object type has to be tracked during runtime. Second,
this is due to the limited precision of static analysis techniques, which cannot recuperate the
object type or a set of possible types before program runtime, Third, the object type confusions

54

C
ha

pt
er

3

3.4 Detecting C++ Object Type Confusions

manifest only during runtime. Finally, object type confusions are hard to replicate statically
(i.e.,compile time or through symbolic execution, without running the program).

However, the most signi�cant reason is the fact that the types of casted objects, referenced by
pointers, may be program input dependent and thus only precisely obtainable during runtime.
On one hand, in the best case, the allocation of the object being cast can be tracked during
compile time (e.g.,if the runtime path from allocation to cast is linear). On the other hand,
in the worst case, the object type cannot be approximated (e.g.,the object was given via a
void-pointer from an external function previously).

3.4.3 Compiler-based Tools

UBsan [99], CaVer [142], TypeSan [107], and HexType [125] are compiler-based tools that
perform object type confusion detection at runtime forC++based programs. Since HexType is
the successor of TypeSan, the tools are very similar to each other from a technical perspective.
These two tools and CaVer rely on a runtime metadata service and can reach a high coverage
while imposing a considerable performance overhead.CASTSAN on the other hand uses meta-
data that is statically created at compile time and can therefore apply very performant checks at
runtime.CASTSAN can protect against polymorphic casts by using vtable hierarchy based ranges
and without using a black list. Thus, the assumption made by [107] w.r.t. the fact that polymor-
phic casts can be checked without relying on RTTI information can be con�rmed. Further,CAST-
SAN does not rely on slow runtime metadata structures as HexType does. Furthermore, the eval-
uation Chapter shows thatCASTSAN has less overhead than HexType, which in turn is more ef�-
cient than CaVer, UBSan and TypeSan. Compared to TypeSan,CASTSAN partially shares the in-
strumentation layer, which is unavoidable, but it uses completely different metadata without stor-
ing data at runtime. More precisely,CASTSAN uses the vtables of polymorphic classes. These ta-
bles that need to be in memory at runtime anyways already provide a view on the class hierarchy.
That is enough forCASTSAN to perform runtime checks without relying on further metadata as
maintained by HexType. HexType on the other hand reaches a higher coverage, as it can check
non-polymorphic objects as well.CASTSAN is more runtime-ef�cient than CaVer and HexType,
which both require a red-black tree to be traversed (only for the slow path) during each check.

3.4.4 Binary-based Tools

Most distant to our work is the work of Deweyet al. [71] were able to recuperate vtables from
program binaries and detect object type confusions indirectly by checking the bounds of a
virtual function call. This was achieved by enforcing a policy to check if the vptr lies inside
some legitimate bounds. As suggested by the authors, their analysis is imprecise because for
example—as also demonstrated by Prakashet al. [226]—determining the end of a vtable in
binaries without RTTI information is not trivial. Thus, false positives and false negatives are
raised and as such, this type of tool is in the best case usable before system deployment.

55

3 Related Work

3.4.5 IVT vs. TypeSan

In contrast to what TypeSan's authors claim w.r.t. to the fact that IVT [24] (an extension of
SafeDispatch [124]) can achieve similar goals as TypeSan by protecting virtual function calls,
we strongly disagree with this claim, since �rst, IVT does not check speci�cally for illegal casts
at the right location (i.e., object dispatch checks for ensuring the forward-edge integrity are
inserted at object dispatches to virtual functions only), and second, the standard IVT implemen-
tation does not detect speci�c type cast violations, but only a potential consequence of it. Thus,
it can be con�rmed after analyzing the IVT code that no particular up-cast or down-cast relation
is checked during an object dispatch on a virtual function. Further, IVT cannot detect any partic-
ular type of illegal cast and it was not intended as such. On the other hand, it can be con�rmed,
as mentioned by TypeSan's authors, that IVT can not protect against non-polymorphic illegal
object casts at all, as con�rmed by the authors of IVT. First, as illegal castedC++objects do not
necessarily require to be later on used for object dispatches, in this thesis we strongly disagree
with the claim stated by TypeSan's authors that IVTs solution can only detect type confusion if
the object is subjected to a virtual call, since the illegal cast is not detected, but a consequence
of this which does not necessarily need to manifest for any givenC++program. Second, the un-
de�ned behavior—can lead to an exploitable vulnerability—which results after an illegal object
cast, can manifestfreelyuntil the casted object is used and checked by IVT in a virtual function
object dispatch. Finally, we agree with TypeSan's authors which correctly observe that virtual
dispatch protection schemes [286, 106] do not prevent the misuse of type confusion in general.

3.4.6 CastSan vs. IVT

IVT [24] is a compiler-based (Clang/LLVM) tool which protects forward edges (object dis-
patches) during runtime by checking that these point into a legitimate class sub-hierarchy. IVT
is not intended to detect object type confusions but it can combat a consequence of object type
confusions (i.e.,hijacking virtual dispatch to execute arbitrary code). IVT can detect sibling and
non-sibling (located on the same branch) polymorphic object type confusions in theory only
if there is an object dispatch in the code which uses this casted object. Thus, the cast can be de-
tected but not at the right location in the code and only if on the casted object an object dispatch
is performed later after the cast was performed. Note that IVT cannot detect object type confu-
sions at all if no object dispatch happened after the object was cast since IVT adds checks just be-
fore each object dispatch. The vtable ranges computed by IVT are similar to the ranges used by
CASTSAN, but these are built for a different purpose and used in a different place in code (i.e.,ob-
ject dispatch) and thus with a lower precision thanCASTSAN. CASTSAN uses more precise class
hierarchy sub-trees when determining the minimal allowed range for each checked object dis-
patch than IVT. Finally, the vtable range concept of IVT is reused byCASTSAN to detect object
type confusions with higher precision and more effectiveness than IVT could theoretically do.

56

C
ha

pt
er

3

3.5 Assessing Control Flow Integrity Defenses

3.5 Assessing Control Flow Integrity Defenses

3.5.1 Defense Assessment Metrics

AIR [290], fAIR [261], and AIA [91] metrics have limitations (see Carliniet al. [36]) and
are currently the available CFI defense assessment metrics which can be used to compare the
protection level offered by state-of-the-art CFI defenses w.r.t. only forward-edge transfers.
These metrics provide average values which shed limited insight into the real offered protection
level and thus cannot be reliably used to compare CFI-based defenses. Most recently, ConFIRM
[283] also attempted to evaluate CFI, especially the compatibility, applicability, and relevance
of CFI protections with a set of microbenchmarking suites. In contrast, is not a benchmark
suite but rather a framework for modeling CFI defenses and comparing them against each
other w.r.t. protection level these offer. Burowet al. [32] propose two metrics: (1) a qualitative
metric based on the underlying analysis provided by each of the assessed techniques, and (2)
a quantitative metric that is the product of the number of equivalence classes (EC) and the
inverse of the size of the largest class (LC). In contrast, we propose , a CFI defense assessment
framework andCTR, a new CFI defense assessment metric based on absolute forward-edge
reduction set analysis, without averaging the results.CTRprovides precise measurements and
facilitates comprehensive CFI defense comparison.

3.5.2 Static Gadget Discovery

Wollgastet al. [281] present a static multi-architecture gadget detection tool based on the
analysis of the intermediate language (IL) of VEX, which is part of the Valgrind [265] pro-
graming debugging framework. The tool can �nd a series of CFI-resistant gadgets. Compared
to LLVM-CFI , both tools leave the gadget chain building as a manual effort. In contrast, when
usingLLVM-CFI , it is possible to de�ne a speci�c CFI-defense policy and search for available
gadgets while the tool of Wollgastet al. speci�es CFI resistant gadgets by de�ning their
boundaries (start and end instructions). These have to conform to some constraints and respect
the normal program control �ow of the program in order to be considered CFI resistant. These
types of gadgets are more thoroughly described by Goktaset al. [104], and Schusteret al.[239].

RopDefender [67], ROPgadget [233], and Ropper [237] are non-academic gadget detection
tools for program binaries. These tools are used to search inside program binaries with the
goal to �nd consecutive machine code instructions, which are similar to a previously speci�ed
set of rules that de�ne a valid gadget. While performing a fast search, these tools however
cannot detect defense-aware gadgets, since these tools do not model the defense applied to the
program binary. As such, these tools cannot determine which gadgets are usable after a certain
defense was applied.

57

3 Related Work

3.5.3 Dynamic Gadget Discovery

Newton [267] is a runtime binary analysis tool which relies on taint analysis to help signi�cantly
simplify the detection of code reuse gadgets de�ned as callsite and legal calltarget pairs. At
�rst, quite effectively as demonstrated by the authors of Newton, this tool can model part of
the byte memory dependencies in a given program. Newton is able to model a series of code
reuse defenses by not focusing on a speci�c attack at a time. Finally, Newton is able to craft
attacks in the face of several arbitrary memory write constraints.

Contiet al. [55] introduce StackDe�ler, a set of stack corruption attacks that leverage runtime
object allocation information in order to bypass �ne-grained CFI defenses. Based on the fact
that Indirect Function-Call Checks (IFCC) [261] (also valid for VTV) spills critical pointers
onto the stack, the authors show how CRAs can be built even in presence of a �ne-grained CFI
defense. Compared toLLVM-CFI which is based on control �ow bending to legitimate targets,
the authors of StackDe�ler show an alternative approach for crafting CRAs. More speci�cally,
Conti et al. show that information disclosure poses a severe threat. They also show that shadow
stacks which are not protected through memory isolation are an easy target for the attacker.

Argument Corruptible Indirect Call Site (ACICS) [80] gadgets are detected during runtime
by the ADT tool, in a similar way as Newton's detects gadgets. Note that the ACICS gadgets are
more constrained then those of Newton. For example, only attacks where the function pointer
and arguments are corruptible on the heap or in global memory are taken into consideration.
As Newton does not impose so many constraints on the gadgets, it can �nd depending on the
analyzed program more sophisticated attacks where the attack elements can be corrupted in
many more complex and indirect ways. Similar toLLVM-CFI , the ADT tool is able to craft
an attack in the face of IFCC's CFI defense policy by �nding pairs of indirect callsites that
match to certain functions which can be corrupted during runtime. In contrast,LLVM-CFI , is
not program input dependent as it is not a runtime tool. Therefore, it can �nd all corruptible
indirect callsite and function pairs under a certain modeled CFI policy.

3.5.4 Existing Metrics vs. Our Metrics

AIR [290], fAIR [261], and AIA [90] are the only available metrics which can be used to assess
the protection level offered by a CFI-based policy w.r.t. only forward-edge transfers. These
metrics provide average values which shed limited insight into the real offered protection level.
Further, these metrics can not be used to compare tools against each other since they provide
average values.

In contrast, in this thesis we provide new metrics (see Appendix) for assessing not only
the absolute forward-edge reduction set, but also the backward-edge target set reduction, the
runtime damping of each CFI policy as well as the gadget availability set after a program was
hardened with a CFI policy.

Additionally, two other relevant metrics are proposed by Burowet al. [32] as follows: (1)
qualitative metric, based on the underlying analysis provide by each of the assessed techniques,

58

C
ha

pt
er

3

3.6 Protecting Backward Edges

and (2) quantitative metric, the product of the number of equivalence classes (EC) and the
inverse of the size of the largest class (LC).

Finally, we note that the existing forward-edge CFI metrics are mostly used without spec-
ifying the total number of callsites contained in the hardened program and relating this to the
total number of callsites which are protected.

3.6 Protecting Backward Edges

According to Burowet al. [32], backward-edge CFI-based protection approaches can be classi-
�ed according to their level of protection as follows: low, medium and high level of protection
of the backward edge. Further, Burowet al. classify the backward-edge protection tools into
binary-based, source-code-based and other types of tools (e.g.,with hardware (HW) support,
runtime-based).

3.6.1 Source Code based Tools

Clang's SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209], CF-Restrictor [224],
KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210], and CFL [19] have
relatively high callee target set precision (except Clang's SafeStack which has a one-to-one
target set mapping precision) w.r.t. enforced address return set for each callee. These tools
have in general a high coverage,i.e.,almost all backward edges are protected.

CIFXX [23] is a source code tool used to protect forward-edges only by instrumenting the
program with CFI checks before object dispatches. The OTI policy used by CFIXX guarantees,
that polymorphic objects have the correct type associated with them at run time. As such,
the dynamic dispatch is per object basis protected. As such, CFIXX imposes a one-to-one
mapping between legal callsites and calltargets. Compared tor FEM, CFIXX does not protect
backward edges, but its forward edge policy, in our opinion, could be successfully used to
protect backward edges by enforcing the caller/callee function calling convention.

CFL [20] is a compiler-based tool built upon the GCC compiler used for protecting backward
edges, only by instrumenting the source code (only for 32-bit) of a compiled program. CFL uses
a statically pre-computed program control �ow graph (CFG). Thus, this technique (as it can be
observed) relies on the precision of the computed CFG. By the so calledlockingandunlocking
operations between each indirect control �ow transfer and legitimate backward edge return
targets (addresses), the CFL's technique is enforced. This results in a1 to N relation. CFL does
not provide any numbers w.r.t. how many backward edge targets are allowed on average for
each function return (backward edge). CFL can protect against code reuse attacks for statically
linked 32-bit binaries which violate the statically precomputed CFG. CFL provides three modes
of operation: (1) just alignment, (2) single-bit CFL, and (3) full CFL, which each have different
performance overheads. The authors claim that the control �ow of the program can not deviate
more than once. The underlying technique enforces control �ow integrity (CFI) by assigning
different values (k = 0 unlocked,k = 1 indirectjmp or call , k is greater then1 return from a

59

3 Related Work

non-indirect-callable function,k is less then0 return from an indirectly-callable function) tok.
By setting the value ofk to certain values (see above value ranges), different indirect control �ow
transfers are allowed or forbidden. The overhead of full CFL for certain SPEC CPU2006 pro-
grams (see Figure 4 in [20]) ranges from 1% to 16% and from 1% to more than 20% for SPEC
CPU2000 programs. This makes CFL not applicable to scenarios where performance is key. Fi-
nally, no average or geomeans runtime overhead values are provided and no evaluation on a real
software system was performed by its authors, making real-world usage of CFL questionable.

piCFI [212] is a compiler-based solution which lazily builds a CFG on the �y during program
execution. Indirect edges are added in the CFG before indirect branches need those edges.
piCFI disallows adding edges, which are not present in the statically computed all input CFG
(this CFG serves as an upper bound for the runtime constructed CFG). piCFI activates a func-
tion return address when the function is called. In such a situation, the function is allowed to
return only to the activated address. As the CFG in which return addresses are stored increases
monotonically (because addresses are not deactivated), this reduces the security (since more and
more addresses become available over time to return to) and performance as well. Compared
to piCFI, the return target set of backward edges ofr FEM does not change during runtime and
thus the performance and security do not vary during runtime. Further, no cleanup operations
(garbage collection or address deactivation) are needed when usingr FEM.

PittyPat [74] introduces a �ne-grained path-sensitive CFI approach for protecting both
forward and backward edges. It uses the processor trace (PT) CPU feature to ensure that a
program satis�es a stronger, path-sensitive variation of CFI. Additionally, two Clang/LLVM
instrumentation passes are used to build precise points-to target sets and to insert checks, which
try to determine if the indirect transfer is legitimate. PittyPat generates a smaller points-to
target set then piCFI for forward edges only. The size of PittyPat's points-to target set is larger
thenr FEM's calltargets set, which is obtained through a virtual table sub-hierarchy analysis.
For example, PittyPat allows up to 218 targets per callsite for the SPEC CPU2006403.gcc
program (see Figure 3(a) in [74] for more details), whereas the return target set ofr FEM is
much smaller, as it is directly proportional to the enforced forward-edge sub-hierarchy and thus
much smaller than 218 entries. This is becauser FEM's return target set is direct proportional
to: (1) the depth of the class hierarchy for a certain object type, and (2) the number of entries
(i.e.,number of parameters, their types, return typeetc.) used to compute function signatures.

3.6.2 Binary-based Tools

The original CFI implementation from Abadiet al. [1], MoCFI [156], kBouncer [216], CC-
FIR [289], bin-CFI [290], O-CFI [187], PathArmor [266], and LockDown [221] mostly suffer
from imprecision (high number of reused labels), have low runtime ef�ciency, and do not
support shared libraries at all.r FEM is similar to Abadi'set al. CFI [1] approach w.r.t. the fact,
that we also use IDs in order to check to which calltarget return sites it is allowed to return. Com-
pared to the original CFI implementation,r FEM does not rely on hardware support (i.e.,GSreg-
ister) or code segments. Further, our approach is applicable for both 32-bit and 64-bit systems.

60

C
ha

pt
er

3

3.6 Protecting Backward Edges

Marx [218] is a binary-based tool used for protecting only forward edges resulting from
C++ object dispatches. It reconstructs a quasi-class hierarchy from the binary and it enforces
only certain virtual table ranges to be legal for each previously detected callsite. Compared
to r FEM, this tool does not have the goal to protect backward edges. Further, the size of the
forward edge mappings are larger than the sizes ofr FEM's mappings, due to a less precise
analysis compared to a source-code-based tool which is true in general when comparing source
code and machine code analysis tools against each other.

TypeArmor [268] is a binary-based tool used to protect indirect forward-edge control �ow
transfers resulting from only object dispatches. TypeArmor imposes a CFI policy on legal indi-
rect transfers between callsites, which provides up to six parameters and calltargets, which are
allowed to consume up to the number of parameters a compatible callsite provides. Compared
to r FEM, TypeArmor does not provide protection for backward edges and its forward edge
mapping precision is lower than the one offered byr FEM, for the same reasons mentioned
above for the Marx tool.

3.6.3 Other Types of Tools

ROPecker [44], HW-asst. CFI [66], and CFIGuard [284] are mostly relying on HW features
which were not speci�cally built for protecting backward edges and are not runtime effective.
Further, their precision is rather low and most of them have a questionable effectiveness against
state-of-the-art CRAs.

HAFIX [65] is a HW and compiler-assisted approach usable for protecting backward edges
by introducing three new instructionsCFIBR, CFIDEL, andCFIRETfor monitoring during run-
time when entering a certain function and determining which is the active label set where this
function can return to. Finally, HAFIX was bypassed in the work presented by Theodorideset
al. [259] and for this reason, we present in Section 9.4.2 the �ve available bypassing techniques
and assess them w.r.t.r FEM.

Intel CET [118] is the �rst hardware feature speci�cally designed to assist with the protec-
tion of the integrity of backward edges by for example, helping to implement a more ef�cient
shadow stack. It introduces theENDBRANCHinstruction to the ISA to mark the legal target
for an indirect branch or jump. TheENDBRANCHinstruction can be used to develop compiler
and/or OS-based attack mitigation solutions. Compared tor FEM, Intel CET's new HW feature
has the potential to outperform check-based tools w.r.t. security and performance; however,
real-world implementations and experimental results are not yet available as open source.

Windows CFGuard [167] (as of 2017 removed from Windows beta) is a protection mech-
anism, which is based on the interplay of a user space agent and operating system (OS) kernel
space support. This feature was deployed in Windows 8.1 and Windows 10 and can only
protect forward edges. As a consequence, Microsoft has recently released return �ow guard
(RFG) [282] in Windows 10 Redstone in order to protect the return edges as well. RFG saves
each function return address tofs:[rsp] at the entry of each function, and compares it with the
return address on stack before returning. As CFGuard, RFG requires compiler (i.e.,Microsoft
Visual Studio) and OS support. Each hardened program is instrumented with the help of the

61

3 Related Work

compiler. The compiler instruments the program �le by reserving a certain number of instruc-
tion spaces in the form ofNOP(no operation) instructions. TheseNOPoperation will be replaced,
on an operating system, which supports this feature, during runtime of the binary, by RFG
instructions, which will be used to check function return addresses. In case the OS does not sup-
port the RFG functions, theNOPinstructions will not interfere with the normal execution �ow
of the hardened program. Important to note is the main difference between RFG and GS (Buffer
Security Check) is that in the case of GS, the stack cookie can be obtained using an information
leak or by brute-force. In contrast, RFG drastically increases the dif�culty of retrieving the stack
cookie, by writing each cookie to the Thread Control Stack (TCS). We point out that the TCS
is out of attacker reach. Unfortunately, no ef�ciency or runtime performance measurements
are currently available thus, it is hard to reason herein how effective this OS feature is.

PathArmor [266] emulates a shadow stack by validating the Intel Last Branch Record (LBR).
This technique is based on a buffer with limited size, which can hold up to 32from and
to addresses pairs. By validating these addresses and comparing these addresses against a
previously computed control �ow graph (CFG), PathArmor can, in some situations, detect if
the caller-callee function calling convention was violated. Unfortunately, due to the fact that
addresses pairs arrive into the LBR buffer at a pace considerably higher than the rate of which
these address pairs can be extracted and checked against the CFG, this tool has limited control
�ow violation detection rate.

Intel Processor Trace (Intel PT) [117] is a new hardware feature introduced by Intel with
the �fth generation of the Intel Core processors (Broadwell architecture). This feature helps
provide execution and branch tracing information by being able to monitor the �ve types of
control �ow, affecting instructions (called Change of Flow Instruction (CoFI)) speci�ed by
Intel. In contrast to the Intel Last Branch Record (LBR), the size of the output buffer when
Intel PT is used is no longer limited by special registers. The output can be stored in main
memory. In case the output is repeatedly and timely emptied, traces of arbitrary length can be
generated thus the limitations of the LBR register are avoided. Intel PT is a very promising
hardware feature which was already used to protect backward edges in GRIFFIN [89], which
has 9.5% runtime overhead on average for the combination policy, and PT-CFI [102], which
has in average a runtime overhead above 20%. Finally, we believe that this feature could be
further used in the future to design other, more ef�cient backward edge protection techniques,
which could be based for example on OS and compiler interplay.

3.6.4 Backward Edge Attack Mitigation

According to the currently most comprehensive survey by Burowet al. [32] on CFI-based tools,
which assesses backward-edge protection tools, there are tools offering low, medium and high-
level backward edge protection. Further, this survey classi�es the backward edge protection
tools as binary-based, source-code-based or other types (i.e.,with HW support,etc.) as follows.

Binary-based tools. Original CFI implementation from Abadi et. al. [1], MoCFI [156],
kBouncer [216], CCFIR [289], bin-CFI [290], O-CFI [187], PathArmor [266], and Lock-

62

C
ha

pt
er

3

3.7 Protecting Against Code Reuse Attacks

Down [221] mostly suffer from imprecision (high number of reused labels), have low runtime
ef�ciency, and do not support shared libraries at all.

Source code based tools.SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
and piCFI [212] have relatively high precision w.r.t. enforced address return set. None of them
support shared libraries (except MCFI). Further, these techniques have high backward edge
protection coverage, since almost all backward edge transfers can be protected.

Other types of tools ROPecker [44], hardware (HW)-assisted CFI [66], and CFIGuard [284]
mostly rely on HW features which were not speci�cally built for protecting backward edges.
Thus, these tools are not runtime effective. Their precision is rather low and they are mostly
ineffective against state-of-the-art code reuse attacks.

3.7 Protecting Against Code Reuse Attacks

In this Section, we brie�y review related work by focusing on binary-based tools.

3.7.1 Mitigation of Simple Code Reuse Attacks

In the last couple of years researchers have provided many versions of new Code Reuse Attacks
(CRAs). These new attacks were possible since DEP [164] and ASLR [219] were successfully
bypassed mostly based on Return Oriented Programming (ROP) [31, 133, 242] on one hand,
and due to the discovery of new exploitable hardware and software primitives on the other.

ROP started to present itself in the last couple of years in many faceted ways such as: Jump-
oriented Programming (JOP) [20, 39, 64] which uses jumps in order to divert the control �ow
to the next gadget and Call Oriented Programming (COP) [37] which uses calls in order to
chain gadgets together. CRAs have many manifestations and it is out of scope of this work to
list them all.

First, CRAs can be mitigated in general in the following ways: (i) binary instrumentation,
(ii) source code recompilation and (iii) runtime application monitoring. Second, there is a
plethora of tools and techniques which try to enforce CFI-based primitives in executables,
source code and during runtime. Thus, we brie�y present the solution landscape together
with the approaches and the techniques on which these are based: (a) �ne-grained CFI with
hardware support, PathArmor [266], (b) coarse-grained CFI used for binary instrumentation,
CCFIR [289], (c) coarse-grained CFI based on binary loader, CFCI [291] (d) �ne-grained code
randomization, O-CFI [187], (e) cryptography with hardware support, CCFI [160], (f) ROP
stack pivoting, PBlocker [227], (g) canary-based protection, DynaGuard [223], (h) runtime and
hardware support-based on a combination of LBR, PMU and BTS registers CFIGuard [284],
and (i) source code recompilation with CFI and/or randomization enforcement against JIT-ROP
attacks, MCFI [210], RockJIT [211] and PiCFI [212]. The following tools address vTable
protection through binary instrumentation, but fail to mitigate against COOP: vfGuard [226],
and vTint [287].

63

3 Related Work

The above list is not exhaustive and new protection techniques can be obtained by combin-
ing available techniques or by using newly available hardware features or software exploits.
However, notice that none of the above mentioned techniques and tools can be used to mitigate
COOP attacks.

3.7.2 Mitigation of Advanced Code Reuse Attacks

Recursive-COOP [59], COOP [238], Subversive-C [143] and the attack of Lanet al. [137]
are forward-edge-based CRAs which cannot be addressed with: (i) shadow stacks techniques
and hardware-based approaches such as Intel CET [118] (i.e.,since advanced COOP do not
violate the caller/callee convention), (ii) coarse-grained Control-Flow Integrity (CFI) [1, 2]
techniques, and (iii) OS-based approaches such as Windows Control Flow Guard [167] since
the precomputed CFG does not contain edges for indirect callsites which are explicitly exploited
during the COOP attack.

Binary based Forward Edge Protection.TypeArmor [268] is a binary instrumentation tool
that can protect against COOP. TypeArmor uses a �ne-grained CFI-policy-based on caller/callee
(but only indirect callsites) matching, which checks during runtime if the number of provided
and needed parameters match.TYPESHIELD is related to TypeArmor [268], since we also
enforce strong binary-level invariants on the number of function parameters. Further,TYPE-
SHIELD also aims for exclusive protection against advanced exploitation techniques, which
can bypass �ne-grained CFI schemes and vTable protections at the binary level. However,
TYPESHIELD offers a better restriction of calltargets to callsites, since we not only restrict
based on the number of parameters, but also on the width of their types. This results in much
smaller buckets that in turn can only target a smaller subset of all address-taken functions.
However, we rely for that on the variety of parameter types and when there is none, we will
degrade into a parameter count policy.

We are aware that there is still a long research path to go until binary-based techniques can
recuperate program based semantic information from executable with the same precision as
compiler-based tools. This path could even be endless since compilers are optimized for speed
and are designed to remove as much as possible semantic information from an executable in
order to make the program run as fast as possible. In this light,TYPESHIELD is another attempt
to recuperate just the needed semantic information (types and number of function parameters
from indirect callsites) in order to be able to enforce a precise and with low overhead primitive
against COOP attacks.

VCI [78] is a binary-based tool (7.9%) based on DynInst which can protect forward edge
indirect control �ow violations based on reconstructing a quasi program class hierarchy (i.e.,
no class root node and the edges are not directed). The authors claim that VCI is 10 times more
precise w.r.t. reducing the calltarget set per callsite. In contrast toTYPESHIELD VCI can not
protect backward-edge violations and we arguably due to the conservative analysis the VCI
could skip some corner situations allowing not legitimate calltargets.

64

C
ha

pt
er

3

3.7 Protecting Against Code Reuse Attacks

Marx [218] is most similar to VCI and as VCI this tool reconstructs the same type of quasi
program class hierarchy. No runtime ef�ciency numbers were provided in the thesis. The
authors claim that Marx can recuperate a class hierarchy which is more precise than that of
IDAPro. The thesis is geared towards �rst providing a tool which can be used by analyst in
order to reverse engineer a binary. The precision of the calltarget set reduction per callsite
should be similar to those of VCI but no comparison was compared in the thesis. Compared
to TYPESHIELD Marx can not protect against backward-edge violations and arguably has in
common with VCI several limitations.

VTPin [234] is a runtime-based tool (� 5%) used for protecting against VTable hijacking,
via use-after-free vulnerabilities. VTPin pins all the freed VTable pointers on a safe VTable
under VTPin's control. For each object deallocation, VTPin deallocates all space allocated,
but preserves and updates the VTable pointer with the address of the safe VTable. As a con-
sequence, a dangling pointer can invoke a method provided by VTPin's safe object. TPin needs
to keep track of metadata in order to detect runtime dangling pointer violations. The tool can
not protect against the COOP attack since the COOP attack does not rely on dangling pointers.
In contrast with TYPESHIELD, this tool cannot protect against backward-edges violations.

In this thesis, rather than claiming that the invariants offered byTYPESHIELD are suf�cient
to mitigate all versions of the COOP (as [268] does) attack we conservatively claim thatTYPE-
SHIELD further raises the bar w.r.t. what is possible when defending against COOP attacks
on the binary level.

Source Code Based Techniques.Indirect callsite targets are checked based on vTable integrity.
Different types of CFI policies are used such as in the following tools: SafeDispatch [124],
IFCC/VTV [261] LLVM and GCC compiler. Additionally, the Redactor++ [59] uses random-
ization vTrust [286] checks calltarget function signatures, CPI [135] uses a memory safety
technique in order to protect against the COOP attack.

There are several source code based tools which can successfully protect against the COOP
attack. Such tools are: ShrinkWrap [106], IFCC/VTV [261], SafeDispatch [124], vTrust [286],
Readactor++ [59], CPI [135] and the tool presented by VTI [24]. These tools pro�t from high
precision since they have access to the full semantic context of the program trhough the scope
of the compiler on which they are based. Because of this, these tools mostly target other types
of security problems other than the ones binary-based tools address. For example, some of the
last advancements in compiler-based protection against code reuse attacks address mainly per-
formance issues. Currently, most of the above presented tools are only forward edge enforcers
of �ne-grained CFI policies with an overhead from 1% up to 15% (see [32] for more details).

Runtime Based Techniques.Several promising runtime-based defenses against advanced
CRAs exist but currently none of them can successfully protect against the COOP attack.

IntelCET [118] is based onENDBRANCH, a new CPU instruction which can be used to enforce
an ef�cient shadow stack mechanism. The shadow stack can be used to check during program
execution if caller/return pairs match. Since the COOP attack reuses whole functions as gadgets
and does not violate the caller/return convention than the new feature provided by intel is

65

3 Related Work

useless in the face of this attack. Nevertheless, other highly notorious CRAs may not be
possible after this feature will be implemented main stream in OSs and compilers.

Windows Control Flow Guard [167] is based on a user-space and kernel-space components
which by working closely together can enforce an ef�cient, �ne-grained CFI policy-based on
a precomputed CFG. These new feature available in Windows 10 can considerably raise the
bar for future attacks but in our opinion advanced CRAs such as COOP are still possible due
the typical characteristics of COOP.

PathArmor [266] is yet another tool which is based on a precomputed CFG and on the LBR
register which can give a string of 16 up to 32 pairs of from/to addressed of different types of
indirect instructions such ascall , ret , andjump. Because of the sporadic query of the LBR reg-
ister (only during invocation of certain function calls) and because of the sheer amount of data
which passes through the LBR register this approach has in our opinion a fair potential to catch
different types of CRAs but we think that against COOP this tool can be used only with limited
success. First, because of the fact that the precomputed CFG does not contain edges for all pos-
sible indirect callsites which are accessed during runtime. Second, the LBR buffer can be easily
fooled by interleaving legitimate with illegitimate indirect callsites during the COOP attack.

3.7.3 Mitigation of Forward Edge based Attacks

Binary-based tools.t CFI is closely related to TypeArmor w.r.t. the forward edge analysis.
TypeArmor [268] (� 3% runtime overhead in geomean) enforces a CFI policy based on the
parameter count policy. Compared tot CFI, TypeArmor does not use function parameter types
and assumes a backward-edge protection is in place. VCI [78] and Marx [218] are both based
on approximated program (quasi) class hierarchies; they (1) do not recover the root class of
the hierarchy, and (2) the edges between the classes are not oriented; thus both tools enforce
for each callsite the same virtual table entry (i.e., index based) contained in one recovered class
hierarchy represented by father-child relationships between the recovered vtables. Finally, both
tools use up to six heuristics and simplifying assumptions in order to make the problem of
program class hierarchy reconstruction tractable. Compared to these tools,t CFI tries not to
reconstruct a high-level metadata data structure (class hierarchy), but rather performs analysis
on the usage of provided and consumed parameters at the callsites and calltargets.

Source code based tools.To the best of our knowledge, only the Clang-CFI [149] and IFC-
C/VTV [261] (up to 8.7% performance overhead) compiler based tools are deployed in practice
and can be used to check legitimate from illegitimate indirect forward-edge calls during runtime
by checking if virtual object pointers comply with the program class hierarchy inheritance
relationships. Furthermore, ShrinkWrap [106] is a GCC-compiler-based tool which further
reduces the legitimate virtual table ranges for a given indirect callsite (i.e., object dispatch)
through precise analysis of the program class hierarchy and virtual table hierarchy. Evaluation
results show similar performance overhead results as the previous mentioned tools but with
more precision with respect to legitimate virtual table entries (calltargets) per callsite. We
noticed by analyzing the previous research results that the overhead incurred by these security

66

C
ha

pt
er

3

3.7 Protecting Against Code Reuse Attacks

checks can be very high due to the fact that for each callsite many range checks have to be
performed during runtime. Therefore, in our opinion, despite its security bene�t, these types
of checks are most likely not applicable to software where performance is key.

Other types of tools.Other highly promising source code based tools (albeit also not deployed
in practice) which can overcome some of the drawbacks of the previously described tools are as
follows. Bounovet al. [24] presented a tool (� 1% runtime overhead) for indirect forward-edge
callsite checking based on virtual table layout interleaving. The tool has better performance
than VTV and better precision with respect to allowed virtual tables per indirect callsite. Its
precision (selecting legitimate virtual tables for each callsite) compared to ShrinkWrap is
lower since it does not consider virtual table inheritance paths. vTrust [286] (average runtime
overhead 2.2%) enforces two layers of defense (virtual function type enforcement and virtual
table pointer sanitization) against virtual table corruption, injection and reuse.

3.7.4 Mitigation of Backward Edge based Attacks

Backward-edge-based code reuse attacks exploit the indirection provided by the return in-
structions of a function. Usually each modern compiler builds caller/callee pairs by adhering
to the so called caller-callee calling convention. This calling convention basically speci�es
that for each indirect call the return address of the function which returns after it was called
lies at the next address of the call instruction. This calling convention is violated by all ROP
attacks and also by more recent advanced code reuse attacks. Intel CET [118] is a promising
technology from Intel in which the X86 instruction set is updated with new instructions (i.e.,
END_BRANCH) instruction which should facilitate an ef�cient implementation of shadow stack
implementations. Currently, this technology is not available and it is not foreseeable when these
features will be available in mass production. According to a comprehensive survey by Burow
et al. [32], tools that provide backward-edge protection offer low, medium, and high levels of
protection w.r.t. backward edges. Further, this survey provides runtime overhead comparisons,
classi�es the backward-edge protection techniques into binary-based, source code based, and
other types (e.g.,with HW support,etc.). Due to page restriction, we review only binary tools.

Binary based Backward Edge Protection.The original CFI implementation of Abadiet al.[1],
MoCFI [156], kBouncer [216], CCFIR [289], bin-CFI [290], O-CFI [187], PathArmor [266],
LockDown [221] mostly suffer from imprecision (high number of reused labels), have low
runtime ef�ciency, and most of them protect either forward edges or backward edges assuming a
perfect shadow stack implementation is in place. In contrast,t CFI makes no assumptions about
the presence of a backward-edge protection. Further,t CFI provides a technique for protecting
forward edges and does not rely on a shadow stack approach for protecting backward edges.

The CFI-based implementation of Abadiet al. [2] is the �rst binary-based implementation
of a shadow stack. While at �rst glance promising, this implementation suffers from high
performance overhead of around 21% due to the fact that the inserted checks before each
function return instruction are not runtime ef�cient. Further, this tool has high imprecision

67

3 Related Work

due to the fact that labels are reused and in this way not legitimate return addresses become
legitimate, thus these could be exploited by a skilled attacker.

Compiler-based Techniques.SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
piCFI [212] relatively high precision w.r.t. enforced address return set, and all do not support
shared libraries (except MCFI), have high coverage (almost all backward edges are protected).

LLVM SafeStack [135] is a compiler-based approach in which for each function stack a
shadows stack copy is build with the help of the Clang compiler. These additional stacks are
hidden by at least one level of indirection from the attacker such that she can not interfere with it.
This approach is effective but suffers from a big binary blow-up which is not acceptable in any
usage scenario. Currently, it was demonstrated that this implementation can be bypassed [94].

Other types of Techniques.ROPecker [44], HW-asst. CFI [66], CFIGuard [284] are mostly
relying on HW features which were not speci�cally built for protecting backward edges and
for this reason the tools are not runtime effective and their precision is rather low and mostly
ineffective against state-of-the-art code reuse attacks.

Windows CFGuard [167] is a technology by Microsoft deployed into Windows 8.1 and
Windows 10. This technology allows to protect backward-edges by checking in a shadow
stack like fashion for backward-edge violations. The implementation is based on an interplay
between user space and kernel space thus there is high potential that this implementation is
highly ef�cient even though no of�cial evaluation results are available.

PathArmor [266] is a runtime-based tool based on a Linux loadable module which can
emulate shadow stack checks by using theLBRregister, which stores callsite and target address
pairs. The capacity of the LBR register is limited to 32 address pairs which can be stored.
The tools suffers from high runtime overhead and is imprecise since the address pairs can not
be analyzed at the same speed as they arrive in this register. For this reason, some pairs are
skipped and thus the attacker has the chance to mount and attack.

68

C
ha

pt
er

4

Chapter4
IntDetect: Static Detection of Integer Over�ow
Based Memory Corruptions

In this Chapter, which belongs to the �rst part of this thesis, we present a framework, inside
which we �rst designed, implemented and, integrated an integer over�ow detection tool, called
INTDETECT into our static source code analysis engine.INTDETECT is capable of ef�ciently
detecting integer over�ows inCsource code programs by employing static symbolic execution.
With this approach, we answerRQ1 by providing a tool which can reliably detect integer
over�ows, does not suffer from false negatives, and is integrated in a well established and
widely used IDE (i.e.,Eclipse IDE). Finally, note that parts of this Chapter have already been
published by Munteanet al. [200].

4.1 Introduction

What is the overall view? In the 2011 top 25 most dangerous software errors [186] MITRE
classi�es integer over�ows as one of the main sources for different types of software vulnera-
bilities. Integer over�ow errors are responsible for a series of vulnerabilities in OpenSSH [183]
and Firefox [185], for example, which allow attackers to execute arbitrary code (CRA). In
reality, software failures can materialize, for example, during the crash of the Ariane 5 �ight
501 in 1996 due to an attempt to cast a �oating point value to a 16-bit integer value which
resulted in a truncation error.

Integer numerical errors in software applications are costly, hard to detect—there are several
types of integer over�ows and some of them are inserted into code intentionally and others
unintentionally—and exploitable. According to Brumleyet al. [29] state that there are four
types of integer related problems. First, integer over�ows occur at run-time when the result
of an integer expression exceeds the maximum value for its respective type. Second, integer
under�ow appear at run-time when the output of an integer expression is less than the minimum
value that the assignee can hold, thuswrappingto the maximum integer for the type. Third,
integer signedness occur when a signed integer is interpreted as unsigned, or vice-versa. Fourth,

69

4 INTDETECT: Static Detection of Integer Over�ow Based Memory Corruptions

integer truncations appear when an integer with smaller width—number of bits—has to hold
an integer with larger width. Finally, there are intentional and unintentional uses of integer
over�ows and illegal uses of operations such as shifts which can lead to integer related errors.

What is the problem? Integer related problems are typically exploited indirectly, contrary to
e.g.,buffer over�ows which can be exploited directly or indirectly. Typical indirect integer bug
exploitations are as follows. First, Denial of Service (DoS) attacks where the exploit causes
in�nite loops or excessive memory allocation. Second, arbitrary code can be executed when an
integer vulnerability results in insuf�cient memory allocation which afterwards can be exploited
by buffer over�ows, heap over�ows and overwrite attacks. Third, an upper bound sanitization
check can be bypassed when unexpected negative integer values are used. Fourth, a logic error,
where a reference counter in the NetBSD OS (CVE-2002-1490) [184] was manipulated by
an attacker that resulted in the premature freeing of an object from memory. Finally, array
index attacks are caused by a vulnerable integer value which can be used as array index so that
attackers can precisely overwrite arbitrary bytes in memory.

What are the existing solutions?These types of integer related problems can be addressed with
code analysis techniques (e.g.,static and dynamic code analysis) UQBTng [280], IntScope [272]
formal modeling ofCsemantics, Extended Static Checking (ESC)—usage of code annotations,
Satis�able Modulo Theories (SMT) solver, test cases to trigger the bug, compiler integration
(Clang), formal modeling of integer typing rules, dynamic analysis RICH [29], BRICK [42],
SmartFuzz [188], SAGE [93] and IOC [73]. RICH [29] instruments programs to detect safe
and unsafe operations based on well-known sub-typing theory. BRICK [42] detects integer
over�ows in compiled executables using a modi�ed Valgrind [203] version.

What are the limitations of the solution? None of the exiting tools care can systemat-
ically analyze the program and therefore do not achieve a suf�ciently high patch coverage and
all other static analysis tools suffer from false negatives, whereasINTDETECT can only have
false positives but no false negatives. To the best of our knowledgeINTDETECT is most similar
to PreFix.INTDETECT compared to PreFix focuses only one one type of integer related problem
(i.e., integer over�ows) by usingCfunction models whereas PreFix does not use function
models. Furthermore, the dynamic analysis approaches compared withINTDETECT can neither
exercise all bugs due to dynamically generated test cases, nor can full path coverage be achieved.
For example, Ceesayet al. [38] added type quali�ers to detect integer over�ow problems. Their
approach relies on expensive system extensions, which are linked into the compiler and are
used to check the code for integer errors. Their approach requires user annotation whereas
our approach does not require annotations. On one hand, typically dynamic analysis have low
overhead� 5%, low true positives and false negatives rate, reduced path coverage,etc.On the
other hand, side static analysis offers environment models, bit precision, low number of false
positives, high path coverage,etc.

What is our insight? In this Chapter, we address integer over�ow vulnerabilities detection
through precise symbolic "modeling" of C language semantics which are responsible for integer

70

C
ha

pt
er

4

4.2 Threat Model

over�ows andCfunction models. Concretely, we extended the C statement processing compo-
nent of our engine and carefully remodeled each external (C standard library and any other used
API) used function through usage of symbolic function models. Thus, providing a precise mod-
eling of C language semantics is the key to a high false positives and low false negatives rate.

What are our contributions? In summary, in this Chapter, we make the following con-
tributions:

• We provide precise symbolic modeling ofCrelated semantics needed for integer over�ow
detection, in Section 4.3.

• We design and implement an integer over�ow checker (calledINTDETECT) as an Eclipse
IDE plug-in based on our static execution engine in Figure 4.3 and automated testing
based on automatically generated jUnit test cases and Eclipse projects in Section 4.4.2
and in Section 4.4.3.

• We present an experimental evaluation of our approach based on the open sourceC/C++
test case CWE_190_Integer_Over�ow [207], in Section 4.4.

4.2 Threat Model

Defensive Assumptions.We align our threat model (e.g.,STRIDE [165]) to the general
integer over�ow threat model. We assume that ALSR [219] and DEP [164] are in-place and
correctly functioning. We assume that the code is not compiled with any integer over�ow
bounds checking. Lastly, we assume that the defender has access to the source code of the
application and potentially knows how to repair the integer over�ow.

Attacker Capabilities. We assume a skilled attacker with suf�cient resources and time to
exploit the integer over�ow. Further the attacker can use the integer over�ow to escalate
privileges or to manipulate the program counter according to his desires. The attacker is
equipped with the necessary tooling to �nd the integer over�ow in the program binary and to
experiment with the code in an live interactive debugging session. Next, we don not exclude
the possibility that the attacker has access to the source code of the application. Lastly, the
attacker is aware of the existence of other vulnerabilities (e.g.,buffer over�ow) which might be
triggered through the previously found integer over�ow. This requirement is not mandatory
but a nice to have as opposed to buffer over�ows, integer over�ows are exploited indirectly
through integer over�ow to buffer over�ow (i.e., IO2BO) vulnerabilities.

4.3 Design and Implementation

Figure 4.1 depicts the design of our engine on whichINTDETECT is based. The starting point
for the design ofINTDETECT is the multi-threaded symbolic execution engine with backtracking

71

4 INTDETECT: Static Detection of Integer Over�ow Based Memory Corruptions

Figure 4.1: Main engine Java classes. These are also presented in more detail by Ibing [115].

support presented by Ibinget al. in [110], which can, analyze multi-threadedCprograms,
too. The engine is used to perform inter-procedural analysis and is implemented according to
the tree-based interpreter pattern [217]. The engine implementation is multi-threaded, which
means that control �ow graphs and syntax trees are shared between worker threads.INTDETECT

relies on a SMT solver as logic back-end and translatesCcode into SMT-Lib [16] logic equa-
tions in the logic ofArrays,UninterpretedFunctions,Non-linearInteger andRealArithmetic
(AUFNIRA). Figure 4.1 contains the main classes of our engine and the interfaceIChecker ,
which makes the plug-in usable from CDT's code analysis framework [138]. Several workers
concurrently explore different parts of a program's execution tree. Each worker has an Inter-
preter together with a memory system model to store and retrieve symbolic variables (whose
values are logic SMT-Lib equations). The translation of Control Flow Graph (CFG) nodes into
SMT-Lib syntax is performed by theStatementProcessor (which extends CDT's abstract
syntax tree visitor class) according to the visitor pattern [84]. TheBranchValidator detects
unsatis�able branches in a program path with the help of theSMTSolver. WorkPoolis used
as synchronization object between the workers and theWorkPoolManager.

We brie�y present the main classes of our engine denoted with capital letters. For a more
detailed description see [115]. WorkPoolManagerimplements the interfaceIChecker , which
is present in the Codan API. TheWorkPoolManagerstarts workers and reports found errors
through theCodaninterface to the Eclipse marker framework.ProgramStructureFacade pro-
vides access to control �ow graphs.WorkPoolis used as synchronization object (synchronized
methods) which is used to track the number of active workers and to exchange split paths. Each
worker has a forward and a backward (backtracking) mode which passes references to control
�ow graph nodes for entry (forward mode) or backtracking to the Interpreter. The Interpreter
follows the tree-based interpreter pattern, see Parret al. [217] for more details. SMT syntax
is generated by the StatementProcessor (which implements CDT's ASTVisitor) by bottom-up
traversal of Abstract Syntax Tree (AST) sub-trees (visitor pattern), which are referenced by CFG

72

C
ha

pt
er

4

4.3 Design and Implementation

nodes. Symbolic variables are stored in and retrieved fromMemSystem. The interpreter further
offers an interface toBranchValidator and to the checker classes.SMTSolverwraps the inter-
face to the Z3 [68] external solver.BranchValidator is triggered when entering a branch node
and generates a SMT-Lib query for the path constraint. For an unsatis�able branch it throws an
exception which is caught further on by the worker. The Environment provides symbolic models
of standard library functions.StatementProcessor extends theASTVisitor class contained
in the Codan API. In this class, each statement contained on an execution path is visited in order
to create our symbolic variables and the SMT constraint system which is attached to each sym-
bolic variable. Among theleave methods—which visit each statement AST in bottom-up order—
contained in theStatementProcessor we extended the functionality of theIASTDeclaration ,
IASTDeclSpecifier andIASTDeclarator methods.BoundsChecker, a buffer over�ow
checker which triggers on memory access with (symbolic) pointers, forms bounds violation
satis�ability queries and reports buffer over�ows, under�ows,etc.LoopNonTermCheckeris
an in�nite loop detection checker [113]. FunctionSpaceStack used to model the function
space stack of symbolic functions.GlobalMemSpacemodeling the global memory space of
symbolic variables.RaceCheckeris used for detecting race conditions [112].

The new classes which were added to support the detection of integer over�ows in source
code are shaded grey in Figure 4.1. TheIIntegerOverflowObserver (for the sake of brevity
not depicted in Figure 4.1) interface is extended to notifyINTDETECT about integer over�ows.
The interface is implemented byIntegerOverflowChecker , which is described in detail in Fig-
ure 4.3. TheIntegerOverflowChecker is used to trigger a bug report if an integer over�ow
has been detected. If a satis�able path through the analyzed code is detected, additional checks
are performed insideIntegerOverflowChecker . Further, if the resulted SMT-Lib system is
still satis�able, a bug report is generated indicating that an integer over�ow error was detected.

Next, we will brie�y describe the main features of our symbolic execution engine.

Unrestricted context depth.The symbolic execution engine supports Inter-procedural path-
sensitive analysis with a call string approach [131, 243]. The path sensitivity is based on per
function control �ow graphs without in-lining. The function call context is represented by a
program path leading to its call. The symbolic execution can be constrained regarding to how
many times it should run by setting a context bound (e.g.,number of loop iterations, which
in general incurs accuracy degradation) or it can be used unconstrained. This may lead to
non-termination (e.g.,endless loops).

Finding relevant program paths. A �xed deterministic thread scheduling algorithm runs the
symbolic execution. The algorithm depends on the thread identity numbers. Lowest Thread-ID
First (LTIF) scheduling, which is based on scheduling one of the active threads having the
lowest thread-ID �rst, is used. The symbolic execution is run with approximate path cover-
age which uses Depth-First Search (DFS). During DFS, program states are backtracked and
branch decisions are changed [110]. The loop iteration bound can be con�gured either to
prune a path until the loop iteration bound is reached, or to bypass the loop by avoiding the
BranchValidator check.

73

4 INTDETECT: Static Detection of Integer Over�ow Based Memory Corruptions

Automatic slicing. In order to keep the equation systems for satis�ability checks small, only
relevant logic equations are passed to the solver for a certain veri�cation condition. This
corresponds to automatic slicing [262] over the control �ow (for separate analysis of different
program paths) and over the data �ow (for veri�cation conditions on a program path).

Context sharing for different checkers.All checks can be performed with one enumeration
of the satis�able paths, and any speci�c checker is allowed to share the contexts because it is
separated from the symbolic path interpretation. The checkers are allowed, through an interface,
to register for noti�cations (triggers) and to query context equations. The symbolic interpreter
is queried whenever triggered, in order to resolve the dependencies of the variables at the
triggered location into the relevant equation system slice and adds the veri�cation condition
formula for a satis�ability query.

Logic representation. The SMT-Lib sub-logic of arrays, uninterpreted functions and non-
linear integer and real arithmetic (AUFNIRA) has been chosen for using high-level logic that
can decide automatically. With a target and a symbolic integer as offset formula, pointers are
handled as symbolic pointers by the interpreter. They are outputted as logical formulas when
dereferenced. Symbolic variables are created for the �elds of composite data structures (e.g.,
structs and in case of C++ also classes) and are not translated, but rather treated like scopes.

Path validation. PathValidator is triggered for branch nodes and uses the same interface
as checkers. For all path decisions up to the current branch thePathValidator queries the
equation SMT-lib linear system slice based on the resolution of the variable dependencies.
Next, it adds a satis�ability check. ThePathValidator throws aPathUnsatException if
the solver answers unsatis�able, which is caught by thePathExplorer (which reports the
un-satis�able path to thePathValidator and symbolic execution proceeds with the next path).

SMT Solving. The common Eclipse distributions come with aSATsolver plug-in [140], a SMT
solver plug-in is unfortunately not (yet) available. Therefore, the SMT solver Z3 described
in [68] is used. It is wrapped by theSMTSolverclass and started as an external process.

Eclipse extension.The WorkPoolManagerimplements the CodanIChecker interface by
plugging in the extension pointorg.eclipse.cdt.codan.core.checkers . While the avail-
able Codan checkers are normally con�gured to berun as you typeor run with build, the
symbolic execution engine is onlyrun on demandwith a GUI command, because of higher
complexity and larger run-time of path-sensitive analysis. The plug-in further uses Codan
ControlFlowGraphBuilder to generate CFGs for parts of an AST which are rooted in a
function de�nition.

Posix threads support and path-sensitive tracing of shared variables.The symbolic exe-
cution engine offers the possibility to specify symbolic models of library functions, which are
used both for theC/C++standard library and for the operating system (Posix threads). Relevant
thread interactions are based on read accesses and write accesses to shared variables (usage
or de�nition actions for variables). All global variables are marked as shared when they are
�rst accessed. Then, thesharedproperty is inferred over data �ow constructs like assignments,
references, function call parameters, and return valuesetc.

74

C
ha

pt
er

4

4.3 Design and Implementation

Implementation. INTDETECT is noti�ed from inside theStatementProcessor when an
assignment statement is encountered. Further a symbolic variable which contained a symbolic
variable name and symbolic type is sent in the noti�cation. The Interpreter is noti�ed by calling
ps.notifyLimitChecker(ini_ssa); . Next, the noti�cation is delegated by the Interpreter
to the appropriate integer over�ow checker which checks if there could be an integer over�ow.
The slice of equations on which theini_ssa (this is a symbolic variable used to statically
model the run-time variablex; x := expression) variable depends, is queried by the checker and
adds one satis�ability check. The check is used to verify if the symbolic variableini_ssa can
be greater than the used integer upper bound value (the upper bound values are extracted from
theCstandard librarylimits.h �le). If the solver answersSAT(satis�able) to the query, then the
problem is reported. The bug report contains the problem ID (unique system string), �le name
where the bug was detected and line number where the bug is located. In principle CWE-190—
integer under�ow (wrap or wrap-around) and CWE-192—integer coercion error are detectable.

Any number of checkers can be added and share the symbolic execution contexts. The Codan
extension point supports the addition of new problems and problem detail views. Detected
problems are reported to the marker framework with their Id, �le name, line number and
problem description. We added our path-sensitive integer over�ow checker alongside other
existent checkers (e.g.,RaceCondition checker, In�niteLoop checker,etc.).

The gray shaded classes depicted in Figure 4.1 (TimeWatch, IntegerOverflowChecker ,
IntegersUpperBounds, andStatementLogger) were added, (� 1400 SLoC). In total we
added inStatementProcessor (� 700 SLoC) which represents code used for AST statement
traversing contained in theleave() methods. This is used for dealing with the new types of
Cstatements contained in the analyzed programs.IntegerOverflowChecker (105 SLoC)
is triggered for variable assignments present in the analyzed code. It generates satis�abil-
ity queries used to check for violation of integer over�ows and reports an error in case of
satis�ability. IntegersUpperBounds (42 SLoC) was used to extract the actual values for
the integer upper bounds (platform dependent) from the standardClibrary �le limits.h by
taking into account the current CPU architecture (32-bit or 64-bit). This makes our approach
platform-independent. TimeWatch (22 SLoC) is an utility class used for time measurements
of our checker.StatementLogger (38 SLoC) utility class was used to log statements coming
from leave() methods present inside theStatementProcessor .

The symbolic function models:AbsModel(), SqrtModel() andRandModel()were added
to the Environment inside our engine (not depicted in Figure 4.1) in order to symbolically
model the mathematical functions: abs(), sqrt() and rand(). The mathematical functionabs()
was symbolically remodeled by using the symbolic function modelAbsModel(40 SLoC)
inside our engine. We attached to the symbolic variable ofAbsModel(var_symbolic) , a
SMT-Lib constraint (it checks the numeric value of theabs() function parameter. If the
parameter value is positive then the value will be not changed, else if the parameter value
is negative then the- sign will be removed) which was used to model the mathematical
modulo function. As symbolic return of the function modelAbsModel(var_symbolic) we
used a symbolic copy ofvar_symbolic which contained the previous attached SMT-Lib
constraint. Next, we simulated the execution of the mathematicalsqrt function call inside

75

4 INTDETECT: Static Detection of Integer Over�ow Based Memory Corruptions

the function modelSqrtModel, (54 SLoC), by attaching to the symbolic parameter variable of
SqrtModel(param_symbolic) the value of the sqrt operation and assigning this to the symbolic
variable,param_symbolic. We implemented our ownsqrt function which can deal with big
integers based on thejava.math.BigInteger . Furthermore, we added the symbolic function
modelRandModel(), (29 SLoC), used to statically model the mathematical rand() function
contained in theCstandard library.

The symbolic function models:SocketModel() , ListenModel() , ConnectModel(),
RecvModel(), AcceptModel() andBindModel() were used (not depicted in Figure 4.1)
in order to symbolically model the (f) communication API functions:socket() , listen() ,
connect() , recv() , accept() andbind() declared inwinsock2.h , windows.h, direct.h ,
sys/types.h , sys/socket.h , netinet/in.h , arpa/inet.h andunistd.h . Note, that for
sake of brevity parameters are not indicated in the previous functions. The above mentioned
functions were used insideif branch containing theC stop; statement inside thethen branch.
The analyzedC/C++programs containedif branch which were used to check if the return value
of the function calls: are equal toSOCKET_ERROR (-1). In case the return value was equal to
-1 thenstop; was called on theif branch—anelse branch was not present in the code. The
symbolic return value of these functions would stop the symbolic program execution if it would
be equal to the macroSOCKET_ERROR -1or not initialized with a value. Thus, making the code
located after this function calls unreachable with respect to the program execution paths and
thus, it will not be possible to detect the integer over�ow bug. We attached to the symbolic
return variables of the following function models:SocketModel (39 SLoC),ListenModel
(39 SLoC),ConnectModel(41 SLoC),RecvModel(42 SLoC),AcceptModel (41 SLoC), and
BindModel, (41SLoC) numeric values through the usage of SMT-Lib constraints. This way the
part of the code where the bug was located could be reached. Note, that every numeric value
can be used as symbolic return value of the functions, except-1 . Furthermore, the function
modelsHtonsModel(32 SLoC) andInet_addrModel (32 SLoC) were added in order to model
thehtons() andinet_addr() functions. Each symbolical function model has a constructor
method,getName(), getSignature() and an execute() method which makes the creation and
usage of new function models straight forward.

4.4 Evaluation

4.4.1 Experiments Methodology

Test Programs.We testedINTDETECT with the open source integer over�ow test case CWE_-
190_Inger_Over�ow contained in the Juliet test suite [207]. The used test case contains 54
baseline programs with 48 Control Flow Variants (CFV) each resulting in total of 2592 ana-
lyzed programs and 2592 (†) true positives. Every baseline test case—48 CFV—contains 38
Cprograms and 10Cprograms.

Automated Experiment Assessment.First, we generated 26 jUnit test classes containing
100 jUnit test methods in each of the �rst 25 classes and respectively 92 jUnit test methods

76

C
ha

pt
er

4

4.4 Evaluation

in the 26th class. Second, we ran each of the generated classes separately—due to Eclipse
run-time limitations it was not possible to put all 2,592 jUnit test methods in one class and run
everything at once—by using the jUnit testing environment.

Setup.We testedINTDETECT on the Eclipse IDE v. Kepler SR 1, OpenSUSE 13.1 OS, 64bit;
12 GB RAM, CPU Q9550 2.83GHz, 64-bit.

The focus of our experiments is to �nd out the number of false positives, false negatives, true
positives (accuracy) and the runtime timings (ef�ciency). Our research questions are as follows.

• RQ1: How accurate isINTDETECT w.r.t. the number of false positives, false negatives,
and true positives? (Section 4.4.2)

• RQ2: How much analysis time requiresINTDETECT in order to accurately detect the
faults? (Section 4.4.2)

4.4.2 Automated jUnit Test Cases Generation

A script was developed to generate the jUnit test methods for 2592 analyzedCprograms. Our
script requires the directory location—path—as parameter followed by the Juliet test case name
for which the jUnt test cases should be generated (CWE_190 in our case). The script uses a
prede�ned jUnit template method and generates 100 jUnit methods per Java class �le. For
2592 programs we obtained 26 jUnit test classes containing 100 jUnit test methods each and 92
jUnit test methods in the 26th test class. The dynamic parameters, which are added in each Java
source �les, are: the line numbers where the bug is located, method names and the class names.
These are automatically generated based on the test cases names detected in the selected Juliet
test case. For the class names we divided the test programs in groups of 100 and named the Java
class �le asCWE_followed by the name of the 1st test program of the group of 100, followed by
underscore_ and the last test program name contained in the group. The �rst name of the �le
(e.g.,CWE...) contained in each test program was used as names for the generated jUnit test
methods. The line number where the true positive is located was determined by tokenizing the
source �les contained in each test program and by searching for the string (p)/* POTENTIAL
FLAW */—this string was inserted into the code by the Juliet test suite creators in order to mark
the true positive and false positive locations. The script identi�es as bug location the next line
number after the string (p) was detected. Multiple appearances of (p) are �ltered out by using
several �ags and counter variables used to count the number of appearances and the locations
(line numbers) of (p).

4.4.3 Automated Eclipse C/C++ Programs Generation

A second script was created in order to generate 2592 Eclipse IDE projects containing all
analyzedC/C++programs. The projects generation script uses the directory containing the
Juliet test case (CWE_190in our case) as parameter in order to iterate recursively through all
folders of the main directory and generates EclipseC/C++projects with the required header

77

4 INTDETECT: Static Detection of Integer Over�ow Based Memory Corruptions

�les contained inside. Brie�y, the script uses the EclipseC/C++hidden project �les.cproject
and.project as templates. These were next inserted into each generated project. In each
generated project the script replaces the names of the project with the names extracted from
the names of the source �les contained in each Eclipse test case program. The script creates
the project folder using the same name and puts all the required �les for the current test project
into the folder (needed header �les were also copied inside the folder). The project names
and the appropriate project con�gurations are written in the hidden project description �les
(.cproject and.project). Next, theCcode line#define INCLUDEMAINis added after the
code line#ifdef INCLUDEMAINwhich is contained in each Juliet test case program by default
in order to have a starting point for the static analysis.

4.4.4 Experimental Results

Note, that each number [1, 54] located on the X axis of Figure 4.2 has two bars associated.
Figure 4.2 depicts for each of the 54 test cases (each containing 48 CFV—in total 2592C/C++
programs) the run-time in seconds indicated on the left Y axis (e.g.,the left bar in Figure 4.2
located on the X axis for #1) and the contribution of each CFV in % depicted on the right Y
axis (e.g.,the right bar in Figure 4.2 located on the X axis for #1). The main contribution in
all 54 test cases has CFV 12 depicted in Figure 4.2 with blue colorCFV 12. We observe
that baselines (#12, #24, #27, #36, #48 and #54) depicted in Figure 4.2 and in Table 4.1, �rst
column, have high execution times—more than 200 seconds—compared to the rest of the
programs. In each of the expensive—have run-time over 200 seconds—test cases CFV 12 has
more than 80% contribution to theINTDETECT's run-time. Furthermore, we measured the total
execution time with respect to successful triggering, 3,638.122 seconds (3,666.36 seconds�
28.238 seconds) and the total execution time without successful triggering, 28.238 seconds
(3,666,36 seconds� 3,638.122 seconds) and found out that 0.77% (28.238 seconds out of
3638,122 seconds) additional performance overhead was induced by the programs in which
no execution exception was raised and no bug was found.

Figure 4.2 was split—depicted with dashed lines "" in Figure 4.2—from left to right having
12 test cases (24 bars) in each segment for the �rst 4 segments and 6 test cases (12 bars) in the
last segment located at the far most right in Figure 4.2. with the goal to depict commonalities
between each of the 5 obtained segments. We observe that the execution times are rising in
each segment to a peak value (segment 1 (#2), segment 2 (#18), segment 3 (#27), segment 4
(#47) and segment 5 (#54)) and then they abruptly drop, except segment 5 where it increases
continuously until it reaches the peak execution time (#54) for the last baseline test case. By
dividing the whole execution time among allthe expensiveexecution baselines, (#12, #24, #36,
#27 and #48) for the �rst 4 segments and the #54 baseline test case we observe that those 6
baselines signi�cantly dominated the whole execution time having execution times of more
than 200 seconds. The run-time for the above mentioned test cases is higher compared to
other baseline test cases because these programs contain theCstandard library function calls
rand() andsqrt() in multiple nestedif conditions which make the path conditions to be

78

C
ha

pt
er

4

4.4 Evaluation

Figure 4.2: IntDetect run-time results for the Juliet's CWE-190 test case.

more complex than programs which do not contain such complex nested path conditions. Thus,
incurring the additional computational overhead.

Table 4.1 contains the following abbreviations: Baseline Programs (BP, contains 48 CFV),
Source Lines of Code (#SLoC), Total Bugs Triggered from 48 TP (TBT), Total Execution
Time in seconds (TET [s]), Total Exceptions (TE), Exceptions with Trigger (0 NO/1 YES)
(EwT), Total True Positives percentage w.r.t. 48 CFV and 37 CFV (48 CFV� 11 CFV, 10
C++programs and 1 program containing theC goto statement) (TTP 48%/37%). Table 4.1
columns 5 and 8 depictINTDETECT's run-time timings in seconds and true positive percentages
for 37/48 CFV, respectively. False positives and false negatives are not depicted in Table 4.1
since they were not encountered during our experiment. Among the triggered bugs we have
100% success rate with respect to true positives. On the other hand, there were in total 11 (w.r.t.
2,592 programs) true positives detected where we got run-time exceptions but the bugs were
still triggered correctly, Table 4.1 column seven. However, there were in total 43 (w.r.t. 2592
programs) programs whereINTDETECT successfully parsed the source code but failed to trigger
any bug, see column seven contained in Table 4.1 for more details.

Table 4.2 contains the following abbreviation: % of Detected Bugs w.r.t. to the total number
of true positives 2,592 (†), (% DB). Table 4.2 presents the results ofINTDETECT by running
it on the 2592 programs.INTDETECT triggered in total 1,908 true positives with a success rate
of 73.61% DB in total as it can be observed in Table 4.2 columns 4 and 5. In terms of bug
triggering for the 48 CFV for each base line test case our plug-in triggered at most 37 bugs in
a single baseline which corresponds to a success rate of 48.53% DB while 27 being the lowest
triggering number corresponding to 1.04% DB. The rest of the DB percentages are between
1.35% and 11.11% as depicted in Table 4.2, 5th column.

79

	List of Figures
	List of Tables
	List of Acronyms
	List of Publications
	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Background
	Code Reuse Attacks
	Simple Code Reuse Attacks
	Advanced Code Reuse Attacks
	Code Reuse Attacks Prerequisites
	Mitigation of Code Reuse Attacks

	Integer Overflows
	Integer Overflows
	Detecting Integer Overflows
	Avoiding Integer Overflows

	Mitigating Integer Overflows
	Symbolic Execution Engine
	Program Input Validation

	Buffer Overflows
	History
	Description
	Exploitation
	Protection

	C++ Object Type Confusion
	C++ Type Casting
	C/C++ Legal and Illegal Object Type Casts
	Virtual Table Inheritance Trees
	Type Casting in Practice
	Object Type Confusion Example in Google's V8
	Security Implications of Object Type Confusion
	Object Type Confusion Defenses
	Ordered vs. Unordered Virtual Tables

	Code Reuse Attack Primitives and Mitigation
	Code Reuse Attack Primitives
	Control Flow Integrity

	Program Callee Primitives and Mitigation
	Indirect Control Flow Transfers
	Program Callsite Types
	Control Flow Backward Edges
	Virtual Table Hierarchy
	Shadow Stack Techniques

	Type Inference in Program Binaries
	Exploiting C++ Object Dispatches
	Type-Inference on Executables
	Security Implications of Program Indirect Transfers
	Shadow Stack Techniques
	Polymorphism in C++ Programs
	Real COOP Attack Example
	Mitigation of Forward-Edge Based Attacks
	Mitigation of Backward-Edge Based Attacks

	Related Work
	Detecting Integer Overflows
	Static Analysis Tools
	Dynamic Analysis Tools

	Repairing Integer Overflows
	Detecting Integer Overflows
	Classifying Integer Overflow
	Repairing Integer Overflows

	Repairing Buffer Overflows
	Generating Buffer Overflow Repairs

	Detecting C++ Object Type Confusions
	Virtual Table Pointer-based Tools
	C++ Object Type Runtime Tracking
	Compiler-based Tools
	Binary-based Tools
	IVT vs. TypeSan
	CastSan vs. IVT

	Assessing Control Flow Integrity Defenses
	Defense Assessment Metrics
	Static Gadget Discovery
	Dynamic Gadget Discovery
	Existing Metrics vs. Our Metrics

	Protecting Backward Edges
	Source Code based Tools
	Binary-based Tools
	Other Types of Tools
	Backward Edge Attack Mitigation

	Protecting Against Code Reuse Attacks
	Mitigation of Simple Code Reuse Attacks
	Mitigation of Advanced Code Reuse Attacks
	Mitigation of Forward Edge based Attacks
	Mitigation of Backward Edge based Attacks

	IntDetect: Static Detection of Integer Overflow Based Memory Corruptions
	Introduction
	Threat Model
	Design and Implementation
	Evaluation
	Experiments Methodology
	Automated jUnit Test Cases Generation
	Automated Eclipse C/C++ Programs Generation
	Experimental Results

	Discussion
	Summary

	IntRepair: Static Repairing of Integer Overflow Based Memory Corruptions
	Introduction
	Threat Model
	Design and Implementation
	Overview
	IntRepair Overflow and Underflow Checks
	Fault Localization
	Repair Patterns
	Integer Overflow Repair Algorithm
	Implementation
	Graphical User Interface in an IDE

	Evaluation
	Evaluation Setup
	Effectiveness
	Bug Removal
	Performance
	Correctness
	User Study

	Discussion
	Summary

	BuffRepair: Static Repairing of Buffer Overflow Based Memory Corruptions
	Introduction
	Motivation
	Threat Model
	Design and Implemnetation
	Quick Fix Locations Search Algorithm
	Bug Detection with SMT
	Semi-Automatic Patch Insertion Wizard
	Implementation

	Evaluation
	Experiments Methodology
	Performance
	Repair Usefulness
	Program Behavior Preserving

	Discussion
	Summary

	CastSan: Runtime Detection of C++ Polymorphic Object Type Confusions
	Introduction
	Threat Model
	Design and Implementation
	Architecture Overview
	Virtual Table Inheritance Tree Projection
	Object Type Confusion Detection
	Implementation

	Evaluation
	Performance Overhead
	Precision
	Effectiveness
	Programmer Assistance

	Discussion
	Summary

	LLVM-CFI: Analyzing Control Flow Integrity Defenses
	Introduction
	Threat Model
	Overview
	Available Analysis Primitives
	Constraints
	Generating Defense Statistics

	Mapping Defenses
	Deriving Constraints
	Mapping Defenses

	Assessing CFI Policies
	Design and Implementation
	Data Collection and Aggregation
	CFI Defense Modeling
	CFI Defense Analysis
	Implementation

	Evaluation
	Detailed Analysis of NodeJS
	Generalized Results
	Ranking of CFI Policies
	Constructing Code Reuse Attacks

	Discussion
	Summary

	FEM: Backward-edge Protection Using Reversed Forward-edge Mappings
	Introduction
	Threat Model
	Design and Implementation
	FEM Design
	Direct Call Analysis
	Virtual Call Analysis
	Function Pointer Based Call Analysis
	Backward-Edge Checks
	Implementation

	Evaluation
	Protection Effectiveness
	Exploit Coverage
	Security Analysis
	Runtime Overhead

	Discussion
	Summary

	CFI: Runtime Protection of Program Binaries Against Code Reuse Attacks
	Introduction
	Threat Model
	Design and Implementation
	Approach Overview
	Parameter Count and Type Policy
	Instruction Read-Write Effect
	Calltarget Analysis
	Callsite Analysis
	Return Values
	Backward-Edge Analysis
	Binary Instrumentation
	Implementation

	Evaluation
	Effectiveness
	Forward-Edge Policy vs. Other Tools
	Effectiveness Against COOP
	Comparison with the Shadow-Stack
	Security Analysis
	Mitigation of Advanced CRAs
	Runtime Overhead

	Discussion
	Summary

	Conclusion and Future Work
	Conclusion
	Contributions

	Future Work
	Next Steps related to IntDetect
	Next Steps related to IntRepair
	Next Steps related to BuffRepair
	Next Steps related to CastSan
	Next Steps related to LLVM-CFI
	Next Steps related to FEM
	Next Steps related to CFI

	Final Remarks

	Bibliography

