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Despite recent progress in AI, deploying robots is still a time-consuming and
cumbersome process. This is because current robots can only repeat pre-
programmed instructions with minimum adaptability to changes. In this
report, we introduce the concept of Teleported AI that draws from state-
of-the-art deep neural networks, robot simulations and cloud-based software
development to enable the massively parallel training of robots in virtual
environments. This novel approach alleviates the need for expensive physical
robot setups and makes progress in computing technology directly available
to robotics with the goal of developing robots with adaptive autonomous
behavior through simple direct instruction.

1 Challenge
Programming robots to perform a specific task is still a complex and time-consuming
process. It requires specialists, is therefore expensive and only possible if several domain
experts communicate with each other. The person who designs what is to be built by
the robot – the product engineer – must communicate with the person who defines
where (i.e. in which environment and with which equipment) the execution of the robot
task (e.g. assembly of a unit) is possible – the plant engineer. The latter, in turn, has
to talk to the person who will then set up and program the robot, i.e. teach the robot
how to do this – the actual robot programmer.
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2 State of the Art
Robots have undergone a considerable development in recent years, towards sensorization
(force transducers, cameras), which makes it possible to adapt to changing environmental
conditions. If the task remains the same and only e.g. the position of the assembly parts
in the robot environment changes, this adaptation already works quite well. Considerable
efforts have also been made in terms of mechanical adaptability (tool changers, multi-
finger hands).

Nevertheless, the problem of programming robots directly according to the product
engineer’s idea has not yet been solved satisfactorily: “Do what I mean.” It is possible
to grasp the robot and “guide” it by applying force, and the robot will reproduce the
demonstrated trajectory – this has, by the way, already been possible since the 1970s.
However, this does not convey a true understanding of the task, which would be required
to transfer it independently to another, partly similar task. It is only a basic imitation –
possibly with a few correction possibilities if parts are positioned differently than during
the learning process.

In conclusion, there are two things missing:

1. The possibility that a robot has an understanding of the nature of the task it is
performing and thus can collect transferable knowledge for other tasks or even other
task types.

2. The possibility of shortening the path from the product engineer to the final robot
controller. Ideally, the product engineer programs the robot directly. This would
alleviate the cumbersome communication of his intention across several stages and
“middlemen” from this brain into the “brain” of the robot, with each of the stages
accounting for information loss, additional inquiries etc.

Both fields of activity explicitly do not refer to the new or further development of me-
chanics. This reflects that the essential problems in robotics today – as in many other
application areas – no longer lie in hardware but in software. In fact, it is the case that
algorithmic limitations (e.g. adaptability of a system at runtime) are compensated at
great expense by appropriate design of the mechanics and electronics (e.g. high-precision
sensor technology and minimal manufacturing tolerances).

3 Opportunities and Limitations of Modern AI
The rapid development of artificial intelligence (AI) in recent years has also opened up
new perspectives for robotics. Deep neural networks and deep learning have set a new
standard and outperform classical methods in many applications [1]. These also include
parts of robotics where the combination of deep neural networks and reinforcement
learning has already been successfully applied to a wide range of control problems,
including complex sensorimotor coordination tasks, such as grasping objects [2]. This
example is already very much in line with the two goals formulated above, since the robot
on the one hand can learn the task completely independently and the neural network on
the other hand can be trained by means of transfer learning also for related tasks in a
similar environment once the initial training has been finished.
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A major obstacle for the broader use of deep neural networks in practical applications
is – setting aside questions of functional safety – the intense effort for initial training,
which requires large amounts of data. In contrast to the classification of images, for
example, which are available online in practically unlimited quantities and free of charge
[3], training robots requires the collection of data suitable for each task and environment.
If data collection is carried out on a physical robot, it is not only expensive, but above all
takes time. There are already initial approaches that can be used to reduce the amount of
training data and make learning certain tasks relatively quick [4]. However, the increase
in efficiency is primarily achieved through manual adjustments to the models, which
means that programming for a specific task is again necessary. Simulations are therefore
becoming a key tool in robotics, since only in this way can any task of any complexity
be learned in any environment. Variations of scenarios can be generated algorithmically
without additional effort, thus covering a higher number of situations than would ever
be possible in the physical world.

Whether a certain task can be learned from a given data set depends essentially on the
learning algorithms used. For the solution of increasingly complex problems, it will, in
general, not be sufficient to simply increase the amount of data. Therefore, the further
development of the theory of neural networks, or more generally, machine learning and
AI, remains central. Realistic brain models, which are becoming increasingly popular
in neuroscience, provide promising starting points for this. Simulations can significantly
accelerate the development of new AI methods.

In summary, the goal is to achieve the following three robot capabilities using the state
of the art in brain research, AI and simulation technology:

1. Robot systems must be endowed with task intelligence. This means that a robot
must learn directly from the product engineer – i.e. in a dialog with him – how to
perform a task. To accomplish this, the product engineer must be able to commu-
nicate with the robot in its (human) language. Roles are distributed in the same
way as between master and apprentice, although it is clear that there are different
terminologies and concepts – a welding robot will communicate in a different way
than a watchmaker robot.

2. Robots must have behavior intelligence. This means that they must be able to
do everything on their own that was not directly taught to them during the initial
programming by the product engineer. The knowledge for “bridging” is accumulated
during the execution of other tasks. It is obvious that this knowledge, properly
abstracted, can then be exchanged via the cloud with other robots that work in the
same domain and are in a similar situation.

3. Robots must be endowed with comprehension intelligence. If they are guided to
complete a task – or receive a command on another communication channel, such
as voice – they should be able to understand why that command was given in that
particular situation.
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4 Technical Foundations
This entire list of demands could not have been met before the availability of cloud
access directly on the robot. Today, however, this is the case and robots therefore can
access the entire arsenal of methods (abstract, partially instantiated for a class of tasks
or completely instantiated for a concrete task) of AI, which is available on cloud servers
worldwide. Even more: analogous to autonomous robot taxis, which are planned to be
remote controlled by a human beings for a short periods in difficult traffic situations
via “teleoperation”, a human being can intervene also here in order to help out in
difficult situations. This can happen directly during task execution, but also in the
programming phase in order to obtain “expert advice” in during the dialog between the
product engineer and the robot. This expert does not have to be a human being, but
could also be a specialized AI with the necessary knowledge base.

Most of the basic technologies required for the program outlined in this report are read-
ily available in the Neurorobotics Platform (NRP) [5, 6] of the Human Brain Project
(HBP) [7], an integrated development environment for the design and execution of robot
simulations for applications in neuroscience and AI. It supports cloud services such as
Amazon Web Services (AWS), Microsoft Azure or Google Cloud as technical infrastruc-
ture. Functionality not yet available in the NRP may need to be added. However, this
does not pose a problem since the source code of the system is freely available and can be
extended as needed. In particular, the following features and components are required:

1. A scalable technical infrastructure for the parallel execution of potentially hun-
dreds of simulations, to accelerate training and to cover as many different problem
instances as possible. The NRP has already been tested on various infrastructures
such as OpenStack, AWS and Google Cloud. Since offerings for cloud computing
resources are largely standardized, other services can also be supported with little ef-
fort. It is important that the infrastructure provides suitable accelerators for training
and inference in deep neural networks.

2. Realistic simulation models of robots and task environments. The quality of the
models is crucial to ensure that the virtual training can take place under the most
realistic conditions possible. For certain tasks (interaction with objects, materials
with specific appearance or special haptic properties), extensions for the simulation
may be required to reproduce all characteristics relevant to the training process as
realistically as possible. The same applies to certain properties of controllers and
sensor systems.

3. A sufficiently large data storage that stores simulation data and training results.
The required capacity depends strongly on the complexity of the task as well as the
amount and resolution of the processed sensor data.

4. Suitable network architectures, learning algorithms and loss functions for
training. The concrete choice of a particular model depends strongly on the problem
to be solved (e.g. camera- or force-guided robot control). However, certain model
types usually cover larger problem classes, which means that not every new task also
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requires a new model. Nevertheless, the integration of new learning methods should
be as simple as possible, so that new architectures can always be implemented and
evaluated as required. In the NRP, this has already been successfully implemented
in an initial application by defining abstract programming interfaces for a concrete
experiment type.

5 Embedding in the Science and Technology Landscape
The rapid progress in the development of deep neural networks would not have been
possible without the implementation of an appropriate technical infrastructure. It is
not without reason that in recent years many companies have introduced their own
platforms for the development of AI systems, ranging from software libraries (Google
TensorFlow, Facebook PyTorch, Huawei Mindspore) for the implementation and train-
ing of deep neural networks, to corresponding cloud services (AWS SageMaker, Azure
Machine Learning), to new processor architectures (Google TPU, Huawei Ascend AI
Processor) for the acceleration of training and inference. In addition, the source code of
current algorithms and models is usually made freely available on collaborative version
management systems (Github, Gitlab).

It is essential for the realization of the agenda proposed here to take advantage of this
ecosystem and benefit from the considerable worldwide effort going into the develop-
ment of models and tools. The fact that solutions are already available for some of
the problem areas outlined at the beginning of this report should by no means be seen
as a disadvantage. On the contrary, only this way the implementation of ambitious
goals becomes possible at all. The actual innovation is therefore not the independent
development of a closed system – the multitude of cognitive architectures and system
architectures available today gives clear proof of this. The goal is rather the integra-
tion and extension of existing solutions for the efficient and timely implementation of
the actual use case. Although more and more papers on the application of deep neural
networks in AI are being published, there are still hardly any examples of successful
practical implementations in productive systems.

The fact that existing tools, algorithms and models are used does not mean that no
development work is required. Only in the rarest cases can results – if at all fully
documented and published – be directly adopted. Therefore, further development and
fine-tuning must be performed in any case.

6 Practical Implementation
As a result of the broad base of published models, the main ingredients for the imple-
mentation of simpler tasks (gripping single objects, basic joining operations, adaptive
control in case of material scattering etc.) are already available. It is crucial for the first
steps that these basic operations are implemented in a robust and flexible way, so that
they become available to as many application scenarios as possible. Even the teaching
of simple motion primitives can drastically increase efficiency compared to classical pro-
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gramming, if the learned behavior covers a large number of situations (minor changes
to the workpieces, repositioning of the robot, changing the tool etc.).

Therefore, a catalog of simple but practice-relevant basic operations needs to be defined
first. These operations need to be mastered in a highly efficient and reliable manner.
Based on this, increasingly complex scenarios (object manipulation, following an assem-
bly plan, human-robot collaboration, etc.) can then be defined. It seems reasonable
to guide the development of this task catalog based on a set of target applications; for
example, different kinds production cells in a factory.

The NRP is designed as an open software framework that consistently integrates the
components and technologies required for this project. An open system architecture
enables the integration of all common tools such as Google, DeepMind, NVIDIA and
others. Similarly to Google Colabs, experiments can be configured and managed with
Juypter notebooks. In the simulation environment itself, sensors, controllers and models
can be added as required.

The implementation of a specific task starts with the definition of a digital twin of the
target environment in which all algorithms can then be virtually designed and tested.
As mentioned before, a starting point could the modeling of a concrete production cell
at an assembly line. This requires not only models and descriptions of the cell itself, but
also of the workpieces processed in it. The implementation of the simulation model is
critical for all further steps and therefore requires special consideration.

As soon as the simulation in the NRP – the experiment – is fully implemented and
validated, the next step is the development of the actual learning algorithms. This can
only be done efficiently with rapid design iterations if the experiment can be accelerated
through parallel execution. Distributed learning frameworks such as DeepMind impala
can serve a basis for the design of an appropriate system architecture. The final de-
ployment to the cloud can be handled by Docker and Kubernetes, both of which have
already been tested with the NRP.

As soon as the infrastructure comprised of the simulation models and parallel deployment
described above is in place, the actual use cases can be implemented. The completely
virtual development process enabled by the NRP enables shorter development cycles
compared to working on physical systems and thus also faster evaluation of implemen-
tation alternatives.
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