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Abstract

Various processes in nature can be modelled as dynamical systems. These systems range
from climate and ocean circulation to cells and organisms, from non-linear optics to tur-
bulent and reactive flows. Many systems involve high intrinsic dimensionality and complex
dynamics extending over multiple spatio-temporal scales. Furthermore, extreme events may
appear. Extreme events are characterized by rare transitions that are several standard devia-
tions away from the mean value of the state variables. Regarding the before mentioned dy-
namical systems, examples of extreme events are tsunamis, tornadoes, volcanoes, floodings
and droughts, earthquakes etc. A lot of effort is put into understanding these systems and dif-
ferent forecasting approaches are used. The three main methods are large scale simulations,
dimension reduction techniques and multiple data driven forecasting techniques. Successful
methods involve the highly nonlinear energy transfer between modes.
Large scale simulations are based on the complete description of the system through gov-
erning equations. These equations may be computationally difficult to solve and make these
methods more expensive. In order to reduce complexity, models can be used, but they them-
selves can have a certain model error.
Classical dimension reduction methods are based on projection. If the underlying set of equa-
tions possesses high intrinsic dimensionality, problems often arise as the truncated degrees
of freedom are essential for an effective description of the system.
In this context, machine learning methods can help. Some studies have proven that recurrent
neural networks are able to learn the dynamics of chaotic systems and are therefore univer-
sal approximators of dynamical systems. However, due to the intrinsic property of chaos, that
small deviations get amplified exponentially, prediction time is limited.
The idea of this work is to combine a projection method with a data driven method to im-
prove accuracy and to extend the prediction time. We use a Proper Orthogonal Decomposi-
tion as projection method and combine it with an Echo State (ESN). The key concept is that
the recurrent neuronal network assists the reduced order model which lost some informa-
tion due to the reduction. We introduce three hybrid methods, assess their performance of
the Lorenz system, the Platt system, the Charney-DeVore system and the Kuramoto Sivashin-
sky (KS) equation and compare the results with the pure machine learning method. We start
with the Lorenz system, which is a well known low-dimensional chaotic system and continue
to increase complexity and dimensionality and end with the KS equation which is a high-
dimensional chaotic system in the discretized version. The first hybrid method uses the ESN
to predict the truncated dynamics and reconstructs the solution in the reduced space. The
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second hybrid method uses the ESN to predict the truncated dynamics as well, however, the
solution is reconstructed in full solution space. In the third hybrid method, the ESN not only
predicts the next time step of the solution but is also able to let in information from the ROM.
We apply a parameter search routine to find good parameters for each method, test the pre-
diction performance for different reservoir sizes as well as investigate the behavior of the ROM
and the methods for different levels of information loss.
The results show that hybrid method 1 and 2 can only be used successfully in certain areas.
Hybrid method 1 demands accurate ROMs and the reconstruction of the solution in reduced
space is too restrictive with low-dimensional systems. Hybrid method 2 tries to correct this
and reconstructs the solution in full space. However, this method does not produce consis-
tent results. Hybrid method 3 is superior to the pure data-driven method in all cases. The
ability to decide between ROM and ESN information is the key to success.
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1 Introduction

1.1 Motivation and State of the Art

Dynamical systems and especially chaotic ones appear virtually everywhere in nature and
science. The fields range from climate and ocean circulation to biology with cell and organ-
ism evolution, or even fluid mechanics with turbulent and reactive flows and epidemiology.
Due to these various applications, chaotic systems have long been the subject of scientific re-
search and understanding them and being able to predict them is important. However, this
is difficult as they may show complex dynamical features like intermittency and/or extreme
events. Intermittency is the random switching amongst qualitatively random kinds of oscil-
lations. Extreme events are characterized by rare transitions that are several standard devia-
tions away from the mean value of the state variables. In addition, the high dimensionality of
the systems and their chaotic nature make their forecast considerably more challenging. This
chaotic behavior is often known as the "Butterfly effect" which means that small deviations at
the beginning may have strong impact on the latter behavior of the system. In a mathematical
sense, this means that deviations grow exponentially with time in chaotic systems.
Due to the complex nature of these systems, many attempts to simplify them and to fore-
cast their behaviors have been made. Order reduction methods like the proper orthogonal
decomposition (POD) or the strongly connected singular value decomposition (SVD) have
been used for a long time to try to educe their most important dynamics. POD was originally
introduced by Lumley [15] to identify coherent structures in turbulent flows. Since then, the
number of citations and publications using POD has increased exponentially [22]. In parallel,
several similar methods have also appeared in other scientific disciplines like the principal
component analysis method, Hotelling transform, Karhunen-Loève decomposition or em-
pirical orthogonal functions in meteorology. POD can either be used to postprocess data or to
generate low dimensional models by projecting the governing equations (Galerkin projection)
onto subspaces spanned by the POD base functions. Not all base functions have to be used to
represent the dynamical evolution of the system due to the optimal convergence in terms of
kinetic energy, therefore allowing for a model order reduction. Also, all previously mentioned
methods are based on linear decomposition and hence are approximations. In this context,
machine learning is a promising new approach as they represent a form of nonlinear identifi-
cation and decomposition. Indeed, some studies have shown that Recurrent neural networks
(RNN) are universal approximations of dynamical systems [18], [19] , [20], [25] and [1].
RNNs have been known for a long time. However, only recently, thanks to the increase in
computational power and the availability of data, they have become increasingly important
and used. The first recurrent neural network was based on David Rumelhart’s article “Learn-
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Introduction

ing representations by back-propagating errors” [23]. Classical recurrent neural networks are
known to be difficult to train especially for problems with long-term dependencies. The it-
erative nature can cause problems while calculating the gradient of the loss function, such
as a gradient explosion or vanishing due to the nonlinear behavior of the system. To remedy
this, Hochreiter et al. [9] introduced the Long short-term memory RNN (LSTM). These neural
networks compensate for the training problem by introducing memory cells. Memory cells
are self-recurrent neurons with additional input, forget and output gates [9]. LSTM became
especially successful in speech recognition and pattern recognition.

More related to the focus of this thesis, Wan et al. [25] used LSTM in combination with a
low order model to forecast the evolution of chaotic systems and predicted the occurrence
of extreme events. They showed the advantages of this hybrid method compared to purely
data-driven methods or those relying solely on reduced order models. They used the LSTM to
estimate the complementary dynamics of the nonlinear Galerkin projection of the equation
system. The complementary dynamics describes the out-of-plane portion that is neglected
in the flat Galerkin method. First, they considered a chaotic intermittent low-order atmo-
spheric model, the Charney-DeVore (CDV) equations. They chose a fixed set of parameters
which seemed best to show chaotic intermittent transitions and used the POD method to re-
duce the system of governing equations with the method of snapshots to calculate a set of
base functions. Only the first 5 modes were used to construct this basis. They observed that
the long-term predictions of the data-assisted model were significantly better than the purely
data-driven and the reduced order model alone as measured by the anomaly correlation coef-
ficient (ACC). The ACC measures the correlation between anomalies of forecasts and those of
the truth with respect to a reference level [6]. Secondly, they investigated intermittent bursts
of dissipation in Kolmogorov flow. The data-assisted approach yields the most accurate re-
sults as well. In a similar study, Vlachas et al. [24] proposed a LSTM-based method for the
prediction in the reduced order space of dynamical systems. They coupled their LSTM net-
work with a mean stochastic model (MSM) and created a hybrid LSTM-MSM method. The
LSTM is trained with time series data and predicts the high dimensional dynamics using the
short-term history of the reduced order variables. They showed the ability of their method
to accurately predict short terms and capture the long term behavior of the Lorenz 96 sys-
tem, the Kuramoto -Sivashinsky system and at a prototypical climate model. In addition, they
compared their method against state-of-the art methods like: MSM, GPR and mixed GPR-
MSM models. In all chaotic systems, the LSTM method without MSM extension performed
better in short-term predictions than the state-of-the-art methods. However, with an increas-
ing number of predictions, the error accumulated. The LSTM-MSM method, which should
alleviate this effect, performed worse for short terms but did not diverge for long terms.

Finally, a last approach combining neural networks with knowledge-based models was pro-
posed by Pathak et al. [19] to build a hybrid forecasting scheme for chaotic processes. They
tested their scheme on a low-dimensional and high-dimensional chaotic system with promis-
ing results. They focused on the “reservoir computing” machine learning technique, which
has been previously used to predict low-dimensional systems and more recently to predict

2



1.2 Objective of the Thesis

large spatiotemporal systems. They tested their approach at the low dimensional Lorenz sys-
tem and the high dimensional, spatiotemporal chaotic Kuramoto-Sivashinsky system. They
showed the superior performance of the hybrid model against the pure knowledge based or
pure machine learning approach for both systems. Their hybrid predictor showed accurate
results although the two component systems are flawed so that they do not show good results
on their own.

1.2 Objective of the Thesis

Given the state of the art provided above, it can be seen that various methods to combine
knowledge-based reduced order models (ROM) with machine learning algorithms have been
proposed with growing levels of success. Therefore, in this thesis, we will test and assess these
methods. More specifically, we focus on the promising results for ESN and try to develop hy-
brid models for the prediction of chaotic systems. We start with the development of hybrid
methods which combine projection based reduced order models and machine learning mod-
els. The different hybrid approaches either try to use the ESN to compensate for the loss of
information in the ROM or to find the best possible balance between information from the
ML model and the ROM. In this thesis, POD will be used to develop these ROMs.

The ultimate objective is to assess the hybrid methods performance on more and more com-
plex chaotic systems and provide a comparison with pure data-driven methods such as an
ESN alone. We aim for a maximal validity time, the validity time being defined as the time
where the norm of the difference between the reference solution and the predicted solution
exceeds a defined threshold. This study of different methods applied to different systems will
contribute to a deeper understanding of the combined use of ML with knowledge-based mod-
els for the forecasting of chaotic systems.

1.3 Structure of the Thesis

In order to successfully work through the stated objective, we study different chaotic sys-
tems, starting with low-dimensional ones and working towards the high-dimensional com-
plex ones. These are presented in Chapter 2. Next, in Chapter 3, we discuss the necessary
fundamentals to generate solutions of the several chaotic systems. These fundamentals in-
clude finite differences, Runge Kutta methods and exponential time differencing. The gener-
ated data is considered the reference data and all machine learning methods will be trained
using this data.
Chapter 4 deals with the fundamentals of reduced order modeling. POD is introduced to cre-
ate an optimal basis set and Galerkin projection is presented next, where the governing equa-
tions of the various systems are projected onto the new basis set. The procedure is demon-
strated for illustrating purposes on the low-dimensional Lorenz system and the same proce-
dure using matrix vector notation for high-dimensional systems is shown for the Kuramoto-
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Sivashinsky equation.
Chapter 5 introduces the ML basics, the ESN and the parameter search algorithm. We describe
how to create, train, use and optimize an ESN. Chapter 5 thus provides the ML portion for the
creation of the hybrid methods.
After all the basics have been introduced, we start with the development of the hybrid meth-
ods in Chapter 6. Three different hybrid methods with increasing level of complexity are pre-
sented.
Chapter 7 presents the results of the parameter search and a reservoir size study for each
method with the best parameters. The results are presented in the following order: data-only
for all systems, for each system the ROM alone and the results from all hybrid methods, at the
end plots combining all results for direct comparison are presented.
Finally, the results are discussed in Chapter 8, the work is summarized in Chapter 9 and an
outlook on future topics is given.
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2 Chaotic Systems

2.1 Ordinary Differential Equation Systems

Ordinary differential equations (ODEs) contain functions dependent on one independent
variable and their derivatives. In the context of dynamical systems, the time t is the inde-
pendent variable. In this thesis, three ODE systems will be studied: the Lorenz, the Platt and
the Charney-DeVore systems. They are presented next.

2.1.1 Lorenz System

The Lorenz system was proposed by Edward Norton Lorenz in 1962 [13]. The equations were
invented in order to predict the states in the earth’s atmosphere. They are idealized fluid me-
chanical equations describing mainly convection problems. The system reads as follows:

ẋ1 =−σx1 +σx2 (2.1a)

ẋ2 = ρx1 −x2 −x1x3 (2.1b)

ẋ3 =−βx3 +x1x2 (2.1c)

whereσ is the Prandtl number,β= 4
1+a2 is a measure for the cell geometry where a is the ratio

of the convection cell’s height and width and the parameter ρ is the relative Rayleigh number.
This number is the ratio between the Rayleigh number and the critical Rayleigh number and
compares lifting and breaking forces (viscous forces and/or gravitation).

The Lorenz system has for a certain choice of parameters a strange attractor that is also known
as the Lorenz attractor. This attractor is a set of points which the solution approaches when
proceeding in time. The standard parameters are: ρ = 28,σ= 10 andβ= 8

3 [13]. With these pa-
rameters, the solution oscillates irregularly and approaches the Lorenz attractor as depicted
in Fig. 2.1 and Fig. 2.2.
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Figure 2.1: Time evolution of the Lorenz system in phase space.
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Figure 2.2: Time evolution of all three variables of the Lorenz system for 100 seconds.
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Chaotic Systems

2.1.2 Platt System

Platt et al. introduced the Platt system [21] which exhibits the so called "on-off intermittency".
Initially observed in the field of fluid mechanics as transition between a laminar and turbu-
lent flow, intermittency is the random switching amongst qualitatively random kinds of os-
cillations and more specifically on-off intermittency is the sudden change of a variable from
long periods of stasis to bursts of large variations [21].
The Platt system reads:

ẋ1 = x2 (2.2a)

ẋ2 =−x3
1 −2x1x3 +x1x5 −µ01x2 (2.2b)

ẋ3 = x4 (2.2c)

ẋ4 =−x3
3 −ν01x2

1 +x5x3 −ν02x4 (2.2d)

ẋ5 = ν03x5 −ν04x2
1 −ν05

(
x2

3 −1
)

(2.2e)

For a deeper understanding of the on-off intermittency mechanism, the Platt system can be
separated into two parts. A K -dimensional hyperplane X = (x1, x2, ....., xk ) and the remainder
Y = (xk+1, ..., xN ). The system’s Eq. (2.2) can therefore be rewritten with K = 2 and N = 5:

Ẋ = F
(
X ,µ (t )

)
(2.3)

Ẏ (t ) =G (X ,Y ,ν0) =︸︷︷︸
if skew prod.

Ĝ (Y ,ν0) (2.4)

ν0 is an additional parameter and µ (t ) is:

µ (t ) = M
(
µ0,Y (t )

)
(2.5)

where µ0 is another parameter. An important characteristic of Eq. (2.4) is that the hyperplane
X = 0 is invariant under the described evolution. In addition, for some parameter combina-
tions (e.g.: ν01 = ν04 = 0) in Eq. (2.2), there is no X dependence in the evolution described by
Ẏ . This is called a skew product structure.
The key is to consider Y as a modifier of the parameters that control the stability of the rest
state X [21]. In our case, the rest state is X = 0 and µ (t ) controls the rest state’s stability. X
becomes unstable for values larger than the critical value νc and stable for smaller values. We
obtain the desired on-off intermittency behavior if µ spends suitable time intervals in those
regions [21].
We choose the parameters in Eq. (2.2) according to [21] and obtain a system without skew
product structure. However, these parameters yield the best on-off intermittency behavior.
They are: 

µ01

ν01

ν02

ν03

ν04

ν05

=



1.815
1.0

1.815
0.44
2.86
2.86

 (2.6)
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2.1 Ordinary Differential Equation Systems

The Platt system simplifies for x1 = x2 = 0 to the Lorenz system. Due to the extremely different
dynamics, this system represents a particular challenge for neural networks and serves as a
limiting test case.
Using the Runge Kutta 4 scheme with a step size of 0.01s, we obtain the solution as depicted
in Fig. 2.3 without initial transients. The intermittent bursts can be seen in the evolution of
variables x1 and x2.
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Figure 2.3: Time evolution of all variables of the Platt system for 500 seconds.
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2.1.3 Charney-DeVore System

We consider a chaotic low-order atmospheric model inspired by [3], [4]. This model repre-
sents the truncated Charney-DeVore (CDV) equations which were originally developed to
model barotropic flow in a β-plane with orography. The β plane approach incorporates Cori-
olis forces that vary linearly in space and orography that accounts for the surface’s height
profile. The governing equations as introduced by [25] are scaled slightly differently and read:

ẋ1 = γ∗1 x3 −C
(
x1 −x∗

1

)
(2.7a)

ẋ2 =−(
α1x1 −β1

)
x3 −C x2 −δ1x4x6 (2.7b)

ẋ3 =
(
α1x1 −β1

)
x2 −γ1x1 −C x3 +δ1x1x5 (2.7c)

ẋ4 = γ∗2 x6 −C
(
x4 −x∗

4

)+ε (x2x6 −x3x5) (2.7d)

ẋ5 =−(
α2x1 −β2

)
x6 −C x5 −δ2x4x3 (2.7e)

ẋ6 =
(
α2x1 −β2

)
x5 −γ2x4 −C x6 +δ2x4x2 (2.7f)

where the coefficients are defined as:

αm = 8
p

2m2
(
b2 +m2 −1

)
π

(
4m2 −1

)(
b2 +m2

) βm = βb2

b2 +m2
(2.8a)

δm = 64
p

2
(
b2 −m2 +1

)
15π

(
b2 +m2

) γ∗m = γ 4
p

2mb

π
(
4m2 −1

) (2.8b)

ε= 16
p

2

5π
γm = γ 4

p
2m3b

π
(
4m2 −1

)(
b2 +m2

) (2.8c)

for m ∈ 1,2. The remaining constants are:

x∗
1

x∗
4

C
β

γ

b

=



0.95
−9.76095

0.1
1.25
0.2
0.5

 (2.9)

Wan et al. [25] found that these parameters values are particularly suitable for the evaluation
of new modeling and prediction methods as the system shows chaotic intermittent transitions
as can be seen in Fig. 2.4. The solution depicted in Fig. 2.4 is calculated using the Runge Kutta
4 scheme with a time step size of 0.1. The initial transients are skipped and an interval of 2000s
is plotted where transitions between two states can be observed approximately every 700s.
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Figure 2.4: Time evolution of all variables of the CDV system for 2000 seconds.
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2.1.4 Lyapunov Exponent Calculation

Many nonlinear mathematical or physical systems exhibit chaotic behavior. One of the most
important quantitative measures for chaos is the Lyapunov exponent [7]. The Lyapunov ex-
ponents describe the average rate of separation of nearby trajectories [7]. Multidimensional
problems show a Lyapunov spectrum with one Lyapunov exponent for each direction. We ex-
plain here how to compute the Lyapunov spectrum using the so-called "Standard Method"
with periodic Gram-Schmidt normalization.
We consider an autonomous dynamical system:

dx

dt
= f

(
x (t )

)
(2.10)

In order to find an equation for the evolution of small deviations δx, we develop the Taylor
series along a solution of Eq. (2.10).

f
(
x +δx

)= f
(
x
)+Df

∣∣∣
x
·δx +O

(∥∥δx
∥∥2

)
(2.11)

Df
∣∣∣

x
is the Jacobian matrix evaluated along a solution x of system Eq. (2.10). We combine Eq.

(2.10) with Eq. (2.11) and obtain:

f
(
x +δx

)= d

dt

(
x +δx

)= dx

dt
+δẋ = f

(
x
)+δẋ (2.12)

Combining Eq. (2.11) with Eq. (2.12) and discarding higher order terms yields the desired
equation for the evolution of a deviation δx along the solution x:

dδx

dt
= Df

∣∣∣
x
·δx (2.13)

This equation holds exactly only for infinitesimal small deviations, however, by considering
the limit δ→ 0, one can identify δx as an element ξ of the tangent space at x and get an exact
equation for ξ [7]:

dξ

dt
= Df

∣∣∣
x
·ξ (2.14)

We may choose arbitrary ξ
0

but it is convenient to set
∥∥∥ξ

0

∥∥∥= 1 to get the growth at a later time

t as
∥∥∥ξ(t )

∥∥∥ [7]. For chaotic systems, the average growth rate is expected to be exponential with

the Lyapunov exponent λ. ∥∥∥ξ(t )
∥∥∥≈ eλt (2.15)

Solving for the unknown exponent λ yields an expression for the exponent:

λi =
l og

∥∥∥ξ
i
(t )

∥∥∥
t

(2.16)

12



2.1 Ordinary Differential Equation Systems

λi is the Lyapunov exponent in the i th dimension corresponding to ξ
i
.

We explain the complete algorithm to simultaneously compute the Lyapunov spectrum ac-
cording to Fig. 2.5 and Fig. 2.6 in the following:

1. Create n-dimensional unit sphere U (for instance n = 3 for Lorenz System):

U =
[
ξ

1
, ξ

2
, . . . , ξ

n

]
(2.17)

2. Evolve the unit sphere in time according to:

U̇ = Df
∣∣∣

x
·U (2.18)

and stop after a few iterations. The unit sphere will have deformed to a n-dimensional
ellipsoid. The deformation process occurs fast because the direction with the biggest
Lyapunov exponent gets stretched rapidly.

3. Before the matrix U gets ill-conditioned due to the fast deformation (some values be-
coming very large compared to the others), apply Gram-Schmidt orthonormalization,

store the lengths of the deformed vectors
∥∥∥ξ

i
(t )

∥∥∥ for Lyapunov exponent calculation

(Eq. (2.16)) and return to step 1. More details about Gram Schmidt and why it is legiti-
mate to use it can be found in [7].

It is important to note that the Lyapunov exponents are the (time-dependent) eigenvalues of
the Jacobian matrix. The trace of a matrix is invariant to a base transformation and therefore
the trace of the Jacobian can be used as a check for the correctness of the calculation method.∑

i
λi

!= tr
(
Df

)
(2.19)

For all ODE systems considered here, the trace is constant and reads for the various systems:

1. Lorenz System:

tr
(
Df

)= tr

 −σ σ 0
r −x3 −1 x1

x2 x1 −b

=−σ−1−b (2.20)

2. CDV System:

tr
(
Df

)= tr



−C 0 γ∗1 0 0 0
α1x3 −C −α1x1 +β1 −δ1x6 0 −δ1x4

α1x2 −γ1 α1x1 −β1 −C δ1x5 δ1x4 0
0 εx6 −εx5 −C −εx3 γ∗2 +εx2

−α2x6 0 −δ2x4 −δ2x3 −C β2 −α2x1

α2x5 δ2x4 0 γ2 +δ2x2 α2x1 −β2 −C

=−6C

(2.21)

13



Chaotic Systems

3. Platt System:

tr
(
Df

)= tr


0 1 0 0 0

−3x2
1 −2x3 +x5 −µ01 −2x1 0 x1

0 0 0 1 0
−2ν01x1 0 −3x2

3 +x5 −ν02 x3

−2ν04x1 0 −2ν05x3 0 −ν03

=−µ01 −ν02 −ν03 (2.22)

x1

x2

x3

ξ
1

ξ
2

ξ
3

xsol

q
1

q
3

q
2

Figure 2.5: Deformation of a unit sphere U along a solution xsol .
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2.2 Partial Differential Equation Systems

x1

x2

x3

ξ
1

ξ
2

ξ
3

ξ̃
1

ξ̃
3

ξ̃
2

xsol

Figure 2.6: Orthogonalization of ellipsoid.

2.2 Partial Differential Equation Systems

2.2.1 Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky (KS) equation is a fourth-order nonlinear partial differential equa-
tion that is known for its chaotic behavior. We consider the one-dimensional KS equation on
the spatial domain 0 ≤ x ≤ L and periodic boundary conditions:

∂u

∂t
+ ∂4u

∂x4
+ ∂2u

∂x2
+u

∂u

∂x
= 0 (2.23a)

u (t ,0) = u (t ,L) (2.23b)

The initial condition reads:

u (t , x) = cos
(
2π

x

L

)[
1+ si n

(
2π

x

L

)]
(2.24)

The domain length L plays a major role for spatio-temporal chaos since the bifurcation pa-
rameter, or the Lyapunov exponent which is the more meaningful parameter for us, strongly
depends on the domain length. For small domain lengths, traveling waves emerge. With in-
creasing domain length, intermittent bursts start to occur and disrupt the ordered structure.
For sufficiently large domain sizes, the solution shows chaotic behavior with spatio-temporal

15



Chaotic Systems

complex patterns [5].
We transform Eq. (2.23) into the Fourier domain to exclusively allow periodic solutions. We
obtain the following set of ordinary differential equations for the time dependent Fourier co-
efficients ak (t ):

ȧk (t ) = (
k2 −k4)ak −

i k

2
F

[
u (t )2] k ∈ n

2π

L
, n ∈Z (2.25)

where F is the Fourier transform, z is the imaginary unit and k is the wave number. Generally,
the nonlinear term is computed directly. To do that, we used the following relationships:

u
∂u

∂x
= 1

2

∂u2

∂x
(2.26a)

F

[
∂u2

∂x

]
= i k ·F [

u2] (2.26b)

How different terms in Eq. (2.23) act on periodic solutions with different wave numbers can
be seen in Eq. (2.25). The fourth order term acts as an energy sink and the second order term
as energy source. The nonlinear term acts as energy transport amongst different modes. De-
pending on the wave number, modes get damped or amplified. More specifically, long waves
corresponding to small wave numbers are unstable and short waves with big wave numbers
are stable. The special case k = 1 is the limit where modes get neither amplified nor damped.

The time evolution of the KS equation using exponential time differencing with Runge Kutta 4
as explained in section 3.3, with a step size h = 0.25, a domain length l = 35 and 64 grid points,
is depicted in Fig. 2.7.
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2.2 Partial Differential Equation Systems
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Figure 2.7: Time evolution of the KS equation.
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3 Numerical Methods

This chapter deals with the time integration methods necessary to obtain the solution of a
dynamical system. We consider a dynamical system described by an autonomous ordinary
differential equation. The absence of explicit occurrence of the independent variable (here t )
in the function f = f (x) 6= f (x, t ) of Eq. (3.1) characterizes an autonomous ordinary differen-
tial equation.

dx

dt
≡ ẋ = f (x (t )) , x (t0) = x0 (3.1)

Eq. (3.1) is an initial value problem with given initial condition. In order to find find a solution
x (t ), we integrate Eq. (3.1) in time:

x (t ) =
∫ t

t0

f (x (t ))dt +x0 (3.2)

In most cases, it is not possible to find an analytical solution of Eq. (3.2) and we seek an ap-
proximate solution. Numerical methods like finite difference methods applied on time deriva-
tives help us to accomplish this task. They are described next.

3.1 Finite Difference

Finite difference methods aim to approximate the differential quotient with a suited differ-
ence quotient. Instead of computing the derivative exactly with the limit, we are satisfied
with a sufficient small step size h that yields an acceptable truncation error and thus accu-
rate enough results. There are theoretically infinite ways of creating finite difference schemes
but in the following, we present some of the basic ones in one dimension. The first finite dif-
ference we consider is the right sided finite difference, where we take the value right of the
evaluation location to construct the difference quotient:

du (x)

dx

∣∣∣
xn

≈ u (xi +h)−u (xi )

h
+O (h) (3.3)

u is an arbitrary continuously differentiable function. The leading term in the local trunca-
tion error is of order of magnitude h as denoted by O (h). We call a difference scheme of nth

order if the leading term in the local truncation error is of O (hn). In the same manner, we can
construct a left sided finite difference by taking the left instead of the right value:

du (x)

dx

∣∣∣
xn

≈ u (xi )−u (xi −h)

h
+O (h) (3.4)
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3.2 Runge Kutta 4

Again, we obtain a first order difference scheme, which can be shown with a Taylor series.
Taking the left and the right value next to the evaluation point yields a second order difference
scheme and is called central difference.

du (x)

dx

∣∣∣
xn

≈ u (xi +h)−u (xi −h)

2h
+O(

h2) (3.5)

Applying the right sided finite difference on ordinary differential equations is called the ex-
plicit Euler method. It is explicit because the next time step can be directly calculated with all
known values. We replace the variables in Eq. (3.3) and insert it in Eq. (3.1).

xn+1 −xn

h
= f (xn) (3.6)

In addition, we introduce the abbreviation x (tn) = xn . Solving Eq. (3.6) for xn+1 yields the
explicit Euler scheme:

xn+1 = xn +h · f (xn) (3.7)

In comparison, if we use the left sided finite difference to approximate the time derivative we
get the implicit backward Euler method. It is implicit because the right hand side of Eq. (3.8)
is evaluated with values at the next timestep.

xn −xn−1

h
= f (xn) (3.8)

Shifting the time step by one and solving Eq. (3.8) for xn+1 yields the final implicit Euler
scheme, however further calculations have to be made at every time step to find xn+1.

3.2 Runge Kutta 4

In the previous section, we discussed solely one step methods applied on autonomous or-
dinary differential equations. The Runge Kutta 4 is the classical Runge Kutta method and is
a multi step scheme (more precise, 4 steps)[6]. It is a weighted average of the slopes f (x, t )
evaluated at four different locations. To keep it more general, we consider a general ODE and
allow the explicit dependence of the independent variable t in the right hand side of Eq. (3.9).

dx

dt
= f (x (t ) , t ) (3.9)

The method is as follows:

k1 = f (xn , tn) (3.10a)

k2 = f

(
xn +h

k1

2
, tn + h

2

)
(3.10b)

k3 = f

(
xn +h

k2

2
, tn + h

2

)
(3.10c)

k4 = f (xn +h ·k3, tn +h) (3.10d)

xn+1 = xn + h

6
(k1 +2k2 +2k3 +k4) (3.10e)

tn+1 = tn +h (3.10f)
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Numerical Methods

With a suitable step size h > 0, the local truncation error of Runge Kutta 4 is of 5th order and
therefore the method is of 4th order in the context of integration of ODEs.

3.3 Exponential Time Differencing with Runge Kutta 4

Exponential time differencing methods are particularly suitable for stiff ordinary differential
equations which may appear when transforming PDEs in Fourier space. This is due to the fact
that the linear part, which contains strongly varying eigenvalues in stiff systems, is exactly
integrated.
We consider again a dynamical system, Eq. (3.1), and decompose it into its linear part Lx and
its nonlinear part N :

ẋ = Lx (t )+N (x (t )) , x (t0) = x0 (3.11)

Exact integration of Eq. (3.11) yields the corresponding Volterra integral equation [8]:

x (t ) = eLt x (0)+
∫ t

0
eL(t−τ)N (x (τ))dτ (3.12)

Cox and Matthews [2] were the first scientists that applied Runge Kutte 4 method to integrate
the nonlinear part of Eq. (3.12). To do this, we write Eq. (3.12) in time discrete form with time
step size h:

x (tn+1) = eLh x (tn)+eLh
∫ h

0
e−LτN (x (tn +τ))dτ (3.13)

We apply Runge Kutta 4, combine everything and obtain the explicit update formula for one
time step [17]:

an =ϕ0

(
hL

2

)
xn + h

2
ϕ1

(
hL

2

)
N (xn) (3.14a)

bn =ϕ0

(
hL

2

)
xn + h

2
ϕ1

(
hL

2

)
N (an) (3.14b)

cn =ϕ0

(
hL

2

)
xn + h

2
ϕ1

(
hL

2

)
[2N (bn)−N (xn)] (3.14c)

xn+1 =ϕ0
(
hL

)+h f1
(
hL

)
N (xn)+h f2

(
hL

)
[N (an)+N (bn)]+h f3

(
hL

)
N (cn) (3.14d)

where f1, f2 and f3 are linear combinations of the functions ϕ.

f1
(
hL

)=ϕ1
(
hL

)−3ϕ2
(
hL

)+4ϕ3
(
hL

)
(3.15a)

f2
(
hL

)= 2ϕ2
(
hL

)−4ϕ3
(
hL

)
(3.15b)

f3
(
hL

)=−ϕ2
(
hL

)+4ϕ3
(
hL

)
(3.15c)
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3.4 Examples of applications

ϕ0
(
hL

)= ehL (3.16a)

ϕ1
(
hL

)= h−1L−1
(
ehL − I

)
(3.16b)

ϕ2
(
hL

)= h−2L−2
(
ehL −hL− I

)
(3.16c)

ϕ3
(
hL

)= h−3L−3
(
ehL −h2L2/2−hL− I

)
(3.16d)

The presented method is called exponential time differencing with Runge Kutta 4 (ETDRK4).
For simplicity, we consider here exclusively the case where L is diagonal and give some details
about the computation of the functions ϕi with i ∈ 1,2,3. However, non diagonal L can be
diagonalized and all operations are applied only on the diagonal terms. Let λ be one diagonal
element of L and z = hλ. Each of the functions ϕi contains the function:

g (z) = ez −1

z
(3.17)

The accurate computation of this function due to round-off errors is a well known problem
in numerical analysis [12]. Furthermore, g (z) has a removable singularity in z = 0. Kassam
and Trefethen [12] avoided both problems by making use of complex analysis’s residue theo-
rem. They evaluated the complex line integral around a closed curve Γ containing the desired
argument hλ where ϕi is to be evaluated.

ϕi (hλ) = 1

2πi

∮
Γ

ϕi (z)

z −hλ
dz, i ∈ 1,2,3 (3.18)

We use a circle that is centered at hλ as integration path Γ, approximate the integral with
a mean over K equally spaced points and simplify the computation by evaluating only the
upper half of the circle and taking the real part [12]. As a result, Eq. (3.18) simplifies to [17]:

ϕi (hλ) = 1

2πi

∮
Γ

ϕi (z)

z −hλ
dz ≈ 1

K

K∑
k=1

ϕi

(
hλ+e2πi (k−0.5)/K

)
, i ∈ 1,2,3 (3.19)

3.4 Examples of applications

3.4.1 Lorenz System

We apply the RK4 method to the Lorenz System. Therefore, we rewrite the Lorenz system Eq.
(2.1):

ẋ = f
(
x
)

(3.20a)

f =
 −σx1 +σx2

ρx1 −x2 −x1x3

−βx3 +x1x2

 (3.20b)
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Numerical Methods

Since no explicit time dependence occurs in function f , Eq. (3.10) simplifies to:

k1 = f (xn) (3.21a)

k2 = f

(
xn +h

k1

2

)
(3.21b)

k3 = f

(
xn +h

k2

2

)
(3.21c)

k4 = f (xn +h ·k3) (3.21d)

xn+1 = xn + h

6
(k1 +2k2 +2k3 +k4) (3.21e)

Iterative execution of the update rule above integrates the governing equation forward in
time.

3.4.2 KS System

We recall the in Fourier space transformed KS Eq. (2.25):

ȧk (t ) = (
k2 −k4)ak −

i k

2
FT

[
u (t )2] k ∈ n

2π

L
, n ∈Z

For this case, the Fourier transform is particularly suitable since it transforms the KS equation
into a system of ODEs and restricts the solution to periodic solutions at the same time.
We rewrite the Fourier-transformed KS equation in matrix-vector notation and identify the
linear and nonlinear term as needed for ETDRK4:

ȧ = L a +N (3.22a)

L =


0 0 . . . 0

0
(2π

L

)2 − (2π
L

)4

...
. . .

0
(
n 2π

L

)2 − (
n 2π

L

)4

 (3.22b)

N =− i

2
k FT

[
u (t )2] (3.22c)
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3.4 Examples of applications

The next step is to precompute all utility functions. We start with the two easiest ones that do
not suffer from singularity problem.

e
1
2 hL =


1 0 . . . 0

0 e
1
2 h

[( 2π
L

)2−( 2π
L

)4
]

...
. . .

0 e
1
2 h

[(
n 2π

L

)2−(
n 2π

L

)4
]

 (3.23a)

ehL =ϕ0
(
hL

)
(3.23b)

The remaining ones ϕ1, ϕ2 and ϕ3 are solved using Eq. (3.19) as the constant portion (k = 0)
would cause divisions by zero. We replaceλwith the diagonal entries of L and solve for eachλ.
Afterwards, we compute f1, f2 and f3 that are linear combinations of the functions calculated
before and are ready to start the iteration process, Eq. (3.14).
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4 Fundamentals of Reduced Order
Modelling

4.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) method was originally proposed by Lumley
et al. [15] in the field of fluid mechanics. It is a modal decomposition designed to identify
coherent structures in turbulent flows. The idea is to decompose a given field u

(
x, t

)
into a

sum of time dependent coefficients ai (t ) and spatial modes Φi

(
x
)

that are orthonormal to
each other.

u
(
x, t

)= M∑
i=1

ai (t )Φi

(
x
)

(4.1)

where M is the number of modes to be used. At most, we use all the modes available to us,
which corresponds to the number of input variables and includes all the information, how-
ever we aim here to reduce the problem’s complexity and, thus, the least energy/information
carrying modes are removed. How to find these modes is explained next.
The "proper" in POD tries to describe the most important characteristic of the POD, meaning
that the decomposition is optimal regarding the mean squared error ε2

min
φi

ε2 (l ) =
〈∣∣u −u (l )

∣∣2
〉

(4.2)

Let u be a random vector in Rn and u (l ) be the reconstruction using the l first modes of the
yet undetermined basis. No other decomposition yields a smaller mean squared error with
the same number of modes. Using a given number of modes retains, in this case, the most
possible kinetic energy in the system with that number of modes. The eigenvalues of the co-
variance matrix C are an indicator for the portion of kinetic energy contained in each mode.
If the mean velocity is subtracted and velocity fluctuations are considered, the mean squared
error is actually a measure for the turbulent kinetic energy.
In the following, we explain the POD method step-by-step for the n-dimensional case as de-
scribed in [26]. We start and create the snapshot matrix U. This matrix is the horizontal con-
catenation of different variables that are determined for the decomposition. Each variable is
a vector, element of Rm , where m is the number of time steps where the variable is evalu-
ated. The number of variables n determines the dimension of the problem and is composed
as follows

n = nu ·nx ·ny (4.3)
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4.1 Proper Orthogonal Decomposition

We consider results of a numerical two-dimensional flow simulation to elaborate on Eq. (4.3).
In this case, nu is for instance the number of velocity components nu = 2. If we want to con-
duct a purely velocity based POD, nx is the number of grid points in x direction and ny is the
number of grid points in y direction.
In contrast to the location dependent solutions of partial differential equations, the problem
simplifies drastically if we consider POD for ODEs like the Lorenz system (section 2.1.1). The
grid size is 1 in this case nx ·ny = 1 and the number of variables is 3 for the Lorenz system.
Therefore, the POD problem is 3 dimensional.

As a result, the m ×n snapshot matrix U reads:

U =


u11 u12 . . . u1n

u21 u22 . . . u2n
...

...
...

um1 um2 . . . umn

 (4.4)

The next step is the covariance matrix C computation:

C = 1

m −1
UTU = 1

m −1


∑m

i=1 ui 1ui 1
∑m

i=1 ui 1ui 2 . . .
∑m

i=1 ui 1ui n∑m
i=1 ui 2ui 1

∑m
i=1 ui 2ui 2 . . .

∑m
i=1 ui 2ui n

...
...

...∑m
i=1 ui nui 1

∑m
i=1 ui nui 2 . . .

∑m
i=1 ui nui n

 (4.5)

The diagonal entries of Eq. (4.5) are the variances of the n variables and the non-diagonal
entries the respective covariance. It should be noted that, in the context of fluid mechanics,
the turbulent kinetic energy (TKE) is half of the trace of C:

TKE = 1

2
tr

(
C

)= 1

2

n∑
i=1

Ci i (4.6)

The trace and, intuitively, the TKE as well is invariant to coordinate transformation. Therefore,
also the eigenvalues of C are a measure for the TKE. We want to find the direction of maximum
variance to create our POD basis which results in the eigenvalue problem:

CΦi =λiΦi (4.7)

We form a diagonal matrix containing the eigenvaluesλi and the POD modes or principal axis
Φi

Λ=


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

. . .
...

0 . . . 0 λn−1 0
0 . . . 0 0 λn

 (4.8)

Φ= [
Φ1, Φ2, . . . , Φn

]
(4.9)
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and can diagonalize C
C =ΦΛΦ−1 =ΦΛΦT (4.10)

Since the covariance matrix is symmetric, the eigenvectors form an orthonormal basis. As
noted before, the trace is invariant and TKE = 1

2 tr
(
C

)= 1
2 tr

(
Λ

)
applies. This property is useful

to determine which modes contribute the most to the TKE. In section 4.2, we will neglect the
modes with the smallest energy contribution λi

TKE .
We get the time dependent coefficients ai evaluated at the m points in time by simply pro-
jecting the snapshot matrix onto the new POD basis:

a1 =

 a11
...

am1

= UΦ1 (4.11)

Or in matrix notation:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

= UΦ (4.12)

The inverse mapping to get, from POD coefficients and POD modes, to the original snapshot
matrix reads:

U = AΦT (4.13)

4.2 Galerkin Projection

Reduced order models aim to reduce computation time and complexity of dynamical systems
while preserving their main characteristics and behavior. Once a set of POD base functions
has been found, we can project the original equations onto them and simultaneously skip the
modes carrying the least energy. The result is a new ODE that describes the POD coefficients
evolution in time. This methodology is illustrated next for an ODE system, the Lorenz System
and the KS equation.

4.2.1 ROM Lorenz System

The basic procedure will be demonstrated using the Lorenz system. The state vector x can be
rewritten using Eq. (4.1):

x (t ) =
R∑

i=1
ai (t )Φi (4.14)

R ≤ n is the number of retained modes and the coefficients a are the projections of x onto φ.

ai (t ) = 〈x (t ) ,Φi 〉 (4.15)
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4.2 Galerkin Projection

〈•, •〉 in Eq. (4.15) denotes the standard inner product in Euclidian space. We project the
Lorenz system, Eq. (2.1), onto the new basisΦi for i ∈ 1,2, ..,R and get:

〈ẋ,Φi 〉 = ȧi (t ) =
〈 −σx1 +σx2

ρx1 −x2 −x1x2

−βx3 +x1x2

 ,Φi

〉
(4.16)

The left side of Eq. (4.16) is obtained as:

ȧi = d

dt
〈x,Φi 〉 =

d

dt

n∑
j=1

x jΦ j i =
n∑

j=1

dx j

dt
Φ j i = 〈ẋ,Φi 〉 (4.17)

We use Eq. (4.14) to rewrite the right hand side of Eq. (4.16) in terms of coefficients and modes
and rename it: −σx1 +σx2

ρx1 −x2 −x1x2

−βx3 +x1x2

=

 σ
∑R

j=1 a j
(
Φ2 j −Φ1 j

)∑R
j=1 a j

(
ρΦ1 j −Φ2 j −Φ1 j

∑R
k=1 akΦ2k

)
−∑R

j=1 a j
(−βΦ3 j +Φ1 j

∑R
k=1 akΦ2k

)
=

F1

F2

F3

 (4.18)

Summing up all intermediate results yields the final system:

ai (t ) = 〈F ,Φi 〉 =
3∑

j=1
F jΦ j i i ∈ 1,2, ..,R (4.19)

withΦ j i the j th component of the i th mode.

4.2.2 ROM Kuramoto - Sivashinsky Equation

We recall the KS equation:
u,t +u,xxxx +u,xx +uu,x = 0

In a first step, we transform the infinite dimensional problem into a finite dimensional system
of differential equations. We achieve this by either replacing the spatial derivatives with finite
differences or by simply evaluating the equation at each of the n grid points xk over domain
length L. We abbreviate u (t , xk ) = uk . The set of coupled differential equations reads:

uk ,t +uk ,xxxx +uk ,xx +uk uk ,x = 0 k ∈ 1,2, ...,
L

n
+1 (4.20)

The coupling is hidden in the spatial derivatives since they depend on the values at the neigh-
boring grid points. It should be noted that a transformation in the Fourier domain also re-
duces the dimensionality if the wave number is restricted to the resolvable ones on a compu-
tational grid (Nyquist frequency).
As described in section 4.1, for a n-dimensional problem, with n equal to the number of grid
points here, we obtain n POD modes. The number of grid points is usually large, which is why
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we use the matrix vector notation in the case of PDE. The modal decomposition in matrix
vector notation reads:

uk =Φ (x) a (t ) =
[
φ

1
, . . . ,φ

n

]a1 (t )
...

an (t )

 (4.21)

We insert the POD approach, Eq. (4.21), in Eq. (4.20):

Φ ȧ =−Φ,xxxx a −Φ,xx a − (
Φ a

)(
Φ,x a

)
(4.22)

Next, we use the orthonormal property:

ΦTΦ= I (4.23)

and multiply Eq. (4.22) withΦT from the left side:

ȧ =−ΦT
(
Φ,xxxx +Φ,xx

)
a −ΦT

[(
Φ a

)(
Φ,x a

)]
(4.24)

Eq. (4.24) is the KS equation expressed in a different, or more precisely an optimal, basis set.
The dimension and thus also the information content is reduced with a successive decrease
in the modes used. At this point, the KS ROM is ready for use, however, we want to give some
detailed information on how to solve it efficiently.
We use ETDRK4 as introduced in section 3.3 to integrate the ROM in time and identify the
linear term L and nonlinear term N by comparing Eq. (4.24) with the standard formulation of
a dynamical system Eq. (3.11):

L =−ΦT
(
Φ,xxxx +Φ,xx

)
(4.25a)

N =−ΦT
[(
Φ a

)(
Φ,x a

)]
(4.25b)

The linear term Eq. (4.25a) is constant and it is efficient to compute it once at the beginning.
To do this, we make use of the Fourier transformation’s property that allows for exact differ-
entiation:

∂n

∂xn
Φ=F−1 [

(i k)n F
[
Φ

]]
n ∈N0 (4.26)

There are several other terms in the ETDRK4 scheme that depend on L and can be pre-
computed. Nearly all of them contain the matrix exponential function. Since here and in gen-
eral it is not the case that L is diagonal, we can solve an eigenvalue problem first to calculate
the matrix exponential function.

exp
(
L
)= exp

(
TΛT−1)= T exp

(
Λ

)
T−1 (4.27)

The same applies for the functions for which the complex curve integral has to be solved. After
the eigenvalue decomposition, the functions can be directly applied to the eigenvalues ofΛ.
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5 Fundamentals of Neural Networks

5.1 The Artificial Neuron

x1

x2

x3

∑m
i=1 wi xi f (u)

b

yu

Input Layer Hidden Layer Output Layer

Figure 5.1: One artificial neuron with bias and activation function f .

The artificial neuron is the basic building block of neural networks. It consists of a layer con-
taining the inputs x, the hidden layer that aggregates the weighted inputs and adds a bias
b and an output layer that applies the activation function f . In a first step, the inputs get
weighted with the weights wi , summed up and a bias b is added.

u =
m∑

i=1
wi xi +b = w ·x +b (5.1)

In the case of layers with multiple neurons in the hidden layer, the weight vector w becomes
the weight matrix W and the bias becomes a bias vector b containing the bias for each neuron.

u = W x +b (5.2)

The output layer applies the activation function to the hidden layer’s output u and returns the
output variable y :

y = f (u) = f
(
w · x +b

)
(5.3)

The choice of the activation function is crucial to the neural network’s performance. There
exist various possibilities for f and for each application, different functions are used in those
areas.
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Figure 5.2: Different, often used activation functions.

There exist zero centered activation functions, such as the linear, the sign si g n(x) and the hy-
perbolic tangent t anh(x) function but also non-zero centered ones like the sigmoid function
σ(x) = 1

1+e−x . These functions are plotted in Fig. 5.2. It also shows the importance of normal-
izing the data since bigger values may easily lead to saturation of neurons. Saturation means
that the activation function acts far away from the linear region which is, in most cases, not
desired.

5.2 Echo State Networks

Recurrent neural networks (RNN) have shown to be powerful tools to predict time series [18],
[1]. Classical artificial neural networks (NN) are trained by error back propagation (BB). In the
context of RNN, the BB algorithm is adapted to time series data and is called back propagation
through time (BBTT). RNN training suffers from the vanishing or exploding gradient problem
especially when using long time series. Repeating matrix multiplications cause either van-
ishing or very large gradients that prevents the updating of the weights and thus finding the
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5.2 Echo State Networks

global minimum.
Circumventing this issue, it was actually shown that even without training all weights of an
RNN, the prediction capability is often sufficient [14]. Using this consideration, Herbert Jäger
[10], [11] introduced the Echo State Network (ESN) which is a form of reservoir computing.
An ESN consists of three parts: the input layer, the reservoir and the output layer. The reser-
voir represents the actual RNN and is created randomly. The output layer contains adjustable
weights and is trained. Together with teacher forcing, the training process simplifies to a sim-
ple linear regression problem. Teacher forcing removes the recurrent connection while train-
ing and is explained later in section (5.2).

Basic Model

a.) Training Phase

ReservoirI/R O/Ru(n) y(n)
x

a.) Prediction Phase

ReservoirI/R O/R y(n)
x

Figure 5.3: Basic ESN in (a) training phase and (b) prediction phase.

This sections explains our specific ESN implementation inspired by [14], [18], [19] and [1]. We
consider a supervised temporal machine learning task where for a given input u(n) ∈Rnu the
output y(n) ∈Rny is known. n = 1,2, ....,T is the discrete time with T the number of samples in
our data set. nu is the number of input variables (for instance the state vector of the dynami-
cal system at time t ) and is, in all cases in this work, equal to the number of output variables
ny (for instance the state vector at t +1 ). Our goal is to create and train a model with output
y(n) that reproduces the mapping u(n) → y t ar g et (n) as good as possible with respect to an

error measure E(y , y t ar g et ), typically the mean squared error (MSE).

The ESN consists of three main parts as shown in Fig. 5.3: The input to reservoir coupler,
the reservoir and the reservoir output coupler. The input to reservoir coupler maps the in-
put signal to the higher dimensional reservoir state x(n) ∈ Rnx . nx is the number of sparsely
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connected neurons. Both, the input to reservoir and the reservoir to output coupler are linear
operations and can therefore be realized with a matrix multiplication. However, a quadratic
transformation is applied to the state vector x before applying the reservoir to output coupler.
A typical update loop looks as follows:

x̃ (n) = tanh
(
Wi n u (n)+W x (n −1)

)
(5.4)

x (n) = (1−α) x (n −1)+αx̃ (n) (5.5)

Wi n ∈ Rnx×nu is the input matrix and W ∈ Rnx×nx is the recurrent weight matrix. We use leaky
integration in Eq. (5.5) with the leaking rate α ∈ (0,1]. If we want to use the model without
leaky integration, we simply set α= 1. x̃ (n) ∈Rnx updates the internal state of the reservoir x.
The hyperbolic tangent function is applied element wise in Eq. (5.4).
Finally, the output is generated using a quadratic transformation [19] and the linear output
layer Wout ∈Rny×nx . The quadratic transformation reads as follows:

x̂i =
{

xi if i = odd

x2
i if i = even

for i ∈ 1,2, ....,nx (5.6)

The final output is:
y (n) = Wout x̂ (n) (5.7)

Now that all basic equations have been determined, we can address the question of how to
choose the matrices Wi n and W.

Reservoir

According to [14] the reservoir has two main functions: it is simultaneously a nonlinear higher
dimensional expansion of the input signal u and a storage of previous inputs. Incorporating
previous time steps is the essence of RNN. Using a high dimensional reservoir state (x) should
ensure that the desired output y

t ar g et
can be recreated by a linear combination of the reser-

voir states.
The reservoir is specified by the input matrix Wi n , the echo matrix W and the leaking rate α.
We focus in this section on a reasonable choice of the echo matrix while we discuss the input
matrix in section 5.2 Input Scaling and the leaking rate in section 5.2 Parameter Search.

We follow the guidelines in [14] and begin with the size of the reservoir nx . In general, the
following rule applies: Choose a reservoir as big as you can afford computationally, choose
the other hyperparameters with this reservoir size and scale to bigger ones afterwards. In-
deed, the bigger the reservoir, the easier it is to find a solution by linear combination of the
reservoir state. [14] provides an estimation for the lower boundary of the reservoir size:

nx,mi n ≥ nu ×T (5.8)

The reservoir size must be at least the number of independent variables nu times the number
of time steps T which is in total the number of independent real values the reservoir has to re-
member. However, in practice, existing temporal and inter-channel correlations in the input
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reduce nx,mi n .

The next parameter we consider is the sparsity of the echo matrix. The sparsity is the average
number of connections one node in the reservoir has to other nodes. [16] suggests to connect
each node to a fixed small number (for instance 5). In their practical experience, optimization
leads only to slightly better results and therefore sparsity parameter has lower priority.

The remaining non-zero elements in W are distributed uniformly in our case but also normal
distribution or Gaussian distribution are popular among other authors. However, different
methods show nearly the same performance using other parameters [14].

The spectral radius ρ
(
W

)
is one of the most important global parameters of an ESN [14]. The

spectral radius is defined as the largest absolute eigenvalue of the echo matrix. A reservoir
should satisfy the so-called echo state property. This property ensures that with repeated ap-
plication of the update equations (Eq. (5.4-5.7)), the influence of the initial condition fades
with time. To satisfy the echo state property, the spectral radius is generally set to a value
smaller than one.
While it is possible to violate the echo states property even with ρ

(
W

) < 1, this is unlikely to
happen in practice. Moreover, it is possible to satisfy the echo state property with ρ

(
W

) ≥ 1
for nonzero inputs [14]. [14] recommends to start with ρ

(
W

)= 1 as initial point since optimal
values can be bigger than one. In addition, tasks requiring longer history tend to work better
with a bigger spectral radius and tasks requiring only short term history tend to work better
with a smaller spectral radius.
We set the spectral radius of the echo matrix by first dividing W with its own spectral radius
and afterwards multiplying it with the desired one.

Input Scaling

Input scaling is another key parameter since it determines how nonlinear the reservoir re-
sponses are. Outliers in the input data should be avoided by normalizing the data or applying
t anh() before feeding it to the ESN. Otherwise these outliers cause the activation function to
act far away from the linear region (saturation of the neuron) and may throw the reservoir in
unfamiliar regions. Another functionality Wi n takes over is weighting the effects between x (n)
and the history.
The input matrix Wi n is chosen randomly with a uniform distribution. We define the input
scaling [−a, a] as the range of the uniformly sampled values. Similar to the echo matrix, other
types of distributions are possible. If different variables of the input u contribute differently
to the task, it is also possible to scale the columns of Wi n separately [14].

Training

The biggest advantage of ESN is that the training problem is reduced to a simple linear regres-
sion problem. In addition, we use regularization to avoid overfitting and feedback instability.
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For the training phase, we remove the recurrent connection (teacher forcing) and feed the
ESN the input from the training set (see Fig. 5.3).
We rewrite Eq. (5.7) in matrix notation because we take into account all T time steps:

Y = Wout X̂ (5.9)

Y ∈ Rny×T is the collection of all y (n) and X̂ ∈ Rnx×T is the collection of all x̂ (n) for n =
1,2, .....,T . The desired output is Yt ar g et ∈ Rny×T . Finding the optimal weights in Wout with
respect to the mean squared error between y (n) and y

t ar g et
(n) results in the following over

determined system of linear equations:

Yt ar g et = Wout X̂ (5.10)

One of the most commonly used methods to solve Eq. (5.10) is ridge regression or also known
as Tikhonov regularization [14]:

Wout = Yt ar g et X̂
T
(
X̂X̂

T +βI
)−1

(5.11)

β is the regularization parameter and can be chosen individually for a concrete ESN using
validation without rerunning through the entire training data. Regular linear regression is a
special case of ridge regression with β= 0.
For further details about large data sets and computing Wout incrementally, we refer to [14].
Furthermore, weighting techniques may be applied to change the importance of different
time steps in order to further improve performance.

Parameter Search

We follow the recommendations in [14] and determine the order of parameters we change
one by one successively. With a fixed reservoir size nx , the order is:

1. input scaling [−a, a]

2. spectral radius ρ
(
W

)
3. degree of connection

4. leaking rate α

5. ridge regression β

As depicted in Fig. 5.4 and Fig. 5.5, the parameter search consists of two steps. Step one is
to find the best choice of parameters in a range via a line search starting from a first guess
of parameters. We decide which parameters are the best solely based on the valid prediction
time. The valid prediction time is the time until the error E between the predicted solution
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and the reference solution reaches a previously defined threshold ε. Typical values for ε are
0.2, 0.3 or 0.4. The error E is defined as:

E (t ) =

∣∣∣y
t ar g et

(t )− y (t )
∣∣∣〈∣∣∣y

t ar g et
(t )

∣∣∣2
〉1/2

(5.12)

We predict in 50 regions not included in the training data and consider the mean for decision.

In the second phase of the parameter search, starting from the best guess from phase 1, we go
in both directions with a certain step size h. After each step we take a look if the performance
has improved. If so, we take a step with step size h. If not, we shorten the step size by a factor
fr e f and take a step with the new step size hnew = hol d · fr e f . The refinement process can take
place nr e f times. After nmax steps or nr e f refinement steps, the algorithm moves on to the
next parameter to be optimized and the better value from both directions gets chosen.

35



Fundamentals of Neural Networks

Start

Initial Guess

End of Param?

End of Val?

Predict

Res better?

Store as new best Val

Choose new Param

Best Params

To part 2

Next Val

no

no

yes

yes

yes

no

Figure 5.4: First step in the parameter search algorithm.
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Figure 5.5: Second step in the parameter search algorithm.
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6 Prediction Methods

On one hand, analytical relations are extremely powerful but are generally hard or impos-
sible to solve due to the complexity of the problem. Furthermore, only in simplified cases,
they include all the physical phenomena of the problem. On the other hand, recent develop-
ment in information technology delivers more and more available data which is the core of
ML techniques. Hybrid methods, explored here, try to combine the knowledge about physics
(knowledge-based model) with pure data from past observations (data-driven model). In this
thesis, we assess different approaches inspired by [20] and [19].

6.1 Method 1

The first hybrid architecture is inspired by [20]. Fig. 6.1 shows the schematic diagram of the
prediction and training setup with a switch that defines whether the model runs in training
or prediction mode. In the first step, the reference solution and therefore our training data is
used to determine the POD basis with the respective eigenvalues. We decompose the state in-
put vector and retain the R ≤ n most energy containing modes, with n being the total number
of modes.

u
(
x, t

)= R∑
i=1

ai (t )Φi

(
x
)

(6.1)

Using the modes, we derive the ROM as described in section 4.2 and get a system of ODEs
describing the time evolution of the retained time-dependent POD coefficients a(n)

k , k =
1,2, ....,R. At each time step, we can derive an error term C (n+1)

k between the one time step

integrated coefficient from the ROM G
(
a(n)

k

)
and the real coefficient at the next time step

derived from the reference solution a(n+1)
k :

C (n+1)
k = a(n+1)

k −G
(
a(n)

k

)
(6.2)

We then train the NN to learn the mapping from true coefficients a(n)
k to the correction term

C (n+1)
k as used by [20]:{

a(n)
1 , a(n)

2 , ....., a(n)
R

}
∈RR →

{
C (n+1)

1 ,C (n+1)
2 , .....,C (n+1)

R

}
∈RR (6.3)

Finally, we reconstruct the state vector using the predicted coefficients and the POD basis
(Eq. 4.13). There are only R coefficients available for reconstruction and thus, the state vector
is restricted to a reduced order space. Reconstruction of the solution only in reduced space
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Input Data
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ȧ = f (a)

a(n) → ã(n+1)
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a(n)
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ã(n+1)

prediction

a(n+1)

Figure 6.1: First hybrid architecture.

may be too restrictive for ODEs since the dimension is often too small to further reduce it. For
example, the dimension of the Lorenz system is 3 only. However, the dimension of POD with
solutions of PDE is the number of grid points times the number of variables which is a huge
number and the reconstruction in reduced space may be accurate enough.

39



Prediction Methods

6.2 Method 2

Input Data
Training Data

POD
Φi
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x
)

ESN

+

ROM
ȧ = f (a)

a(n) → ã(n+1)

POD−1

Output

training

a(n)

â(n)

â(n+1)C (n+1)

ã(n+1)

prediction

a(n+1)

Figure 6.2: Second hybrid architecture.

Method 2 tries to compensate for the dimension problem of method 1 with ODE. We augment
the mapping Eq. (6.3) and incorporate prediction of the skipped coefficients a(n+1)

R+1 , ...., a(n+1)
n .

The additional parameters can be seen in Fig. 6.2 at the violet lines. However, this method is
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only useful for small dimensional problems like ODE. The new mapping reads:

a(n)
1
...

a(n)
R

a(n)
R+1
...

a(n)
n


∈Rn →



C (n+1)
1

...
C (n+1)

R

a(n+1)
R+1

...
a(n+1)

n


∈Rn (6.4)

The upper part of the mapping Eq. (6.4) is equal to the mapping of hybrid method 1, however,
we also concatenate the skipped coefficients. With this, we are able to reconstruct the solution
at the end in full solution space since all coefficients are available.

6.3 Method 3

We use the same hybrid architecture as [19], however our knowledge based model is a ROM.
Some adaptions to the ESN has to be made since the new state from the ROM is routed di-
rectly to the output layer. The exact architecture can be seen in Fig. 6.3. The three changes are
summarized below:

• The new input vector is:

unew (n) =
[

uROM (n +1)
u (n)

]
∈R2nu (6.5)

Therefore, also the input matrix Wi n ∈Rnx×2nu changes its dimension. The reservoir size
nx stays the same.

• The new state from the ROM is concatenated with the state vector x̂ (x) in Eq. (5.7):

y (n) = Wout

[
uROM (n +1)

x̂ (n)

]
(6.6)

Therefore, also the input matrix Wout ∈Rny×nu+nx changes its dimension.

• In the training process in Eq. (5.9) X̂ has to be replaced by the concatenated vector in
Eq. (6.6).

Because of the direct connection between the input and the output layer, the ESN is able to
learn a weighting between ROM prediction and ESN prediction of the next time step.
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Figure 6.3: Third hybrid architecture.
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7 Results

7.1 Pure Data Driven

First, we test the data-only approach to provide a benchmark against which the performance
of the hybrid methods is assessed. The results for a single prediction are presented once at
the beginning for the Lorenz system. Although a single prediction is not meaningful, it helps
to understand the evolution of the error E(t ) and to see what is calculated next. Afterwards, a
parameter search on a statistical basis is performed for all systems and a reservoir size study
is conducted with the obtained parameters. Afterwards, in section 7.2, hybrid methods are
going to be tested.

7.1.1 Lorenz System

We asses here the performance of the ESN with the Lorenz system. We used Runge Kutta 4
(sec. (3.2)) with a time step 0.01s to create a reference solution and use the obtained data to
train the ESN and to asses the prediction performance. Starting from the initial conditions,

x0 =


0
1
0

 (7.1)

the initial transients, the first 20 seconds, were removed from our data. Table 7.1 summarizes
the parameters for one prediction interval of 10 seconds. The data was normalized with the
standard deviation and the mean was subtracted. 12500 samples were used to train the ESN,
which is equal to a training length of 112.5 Lyapunov times with a step size of 0.01 seconds
and a Lyapunov exponent of λ = 0.9. Table 7.1 summarizes the ESN parameters for the non-
statistical single prediction.

nneur ons sparsity α σ ρ
(
W

)
500 4.11 1.0 0.6 0.58
β training samples normalization resync steps washout

0.00001 12500 Stddev 100 100

Table 7.1: Parameters for single ESN prediction of the Lorenz System.

Fig. 7.1 shows the prediction of the ESN compared with the reference solution for 10 seconds
(= 9 Lyapunov times) and the time dependent error E (t ). The red line in both pictures depicts
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the valid time of 8.04 Lyapunov times. It is defined as the time where the error is smaller than
0.2.

−10
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valid time
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0 2 4 6 8

t ·λ

0.0

0.1

0.2

E(t )

E(t )

Figure 7.1: Comparison between reference solution and ESN prediction for the Lorenz system.

To estimate the overall statistical performance, we chose 50 intervals with a length of 10 sec-
onds and computed the average valid time. For a reservoir with 500 neurons, the parameter
search algorithm described in section 5.2 found that the parameters summarized in Table 7.2
yielded the best performance with a mean of 5.42 Lyapunov times and a standard deviation
of 1.07 Lyapunov times.
With the parameters from the optimization for a reservoir of 500 neurons, the reservoir size
was varied from 100 to 1000 neurons with 100 neuron steps. Fig. 7.2 shows the average pre-
diction time in Lyapunov times (λ · t )and the corresponding standard deviation for different
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nneur ons sparsity α σ ρ
(
W

)
500 3.3 1.022 0.6 0.5499
β training samples normalization resync steps washout

0.00001 12500 stddev 100 100

Table 7.2: Parameters for ESN prediction of the Lorenz system.

reservoir sizes. We observe a slight increase in prediction time with increasing reservoir size.
However, since the parameters are optimized for a reservoir with 500 neurons, the ESN’s per-
formance there was sometimes better than with larger reservoir sizes.

100 200 300 400 500 600 700 800 900 1000
nneur ons

0

1

2

3

4

5

6

7

valid time

Figure 7.2: Valid prediction time with standard deviation for increasing reservoir size nneur ons .

The reservoir initialization being random, an additional reservoir size study on a statistical
basis was performed. Fig. 7.3 shows the results for the ESN prediction with 20 random ini-
tializations that are tested on 25 different regions in the reference solution. Since the Lorenz
system is a low dimensional system, we observe a relatively small increase in prediction time.
The ESN is able to learn the dynamics of the system already with small reservoir sizes. How-
ever, in the following, the ESN applied to the more complex systems showed a strong increase
in prediction time as it requires a higher dimensional internal state of the ESN to reconstruct
the solution.
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Figure 7.3: Valid prediction time with standard deviation for increasing reservoir size nneur ons

for 20 random reservoir initializations.

7.1.2 Platt System

The Platt system was integrated using RK4 with a time step of 0.01s. The obtained reference
solution can be seen partially in section 2.1.2. We removed the first 500s from our training
data to remove the initial transients. 100 Lyapunov times were used to train the ESN. With
a Lyapunov exponent of 0.11, we have 113636 samples to train the ESN. The first 100 steps
were removed while training the ESN and use 99 samples(=1 Lyapunov time) to initialize the
reservoir before a prediction starts. We conducted a parameter search on an ESN with 500
neurons and an error of 0.4. The obtained parameters are summarized in Table 7.3.

nneur ons sparsity α σ ρ
(
W

)
500 3.7 0.9278 0.35 0.5
β training samples normalization resync steps washout

0.00001 113636 Stddev 99 100

Table 7.3: Parameters for ESN prediction of the Platt system.

Using the parameters from Table 7.3, the prediction performance with varying reservoir size is
depicted in Fig. 7.4. The valid prediction time in Lyapunov times (λ · t ) for an error of 0.4 was
increasing with increasing number of neurons and the best performance was at nneur ons =
900, near the maximum reservoir size in this study. The ESN requires more neurons to accu-
rately predict the next time step due to the difficult dynamics of the Platt system. Especially
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7.1 Pure Data Driven

the smaller reservoirs were not able to learn the dynamics of the system. A particularly strong
increase can be observed from 100-500 neurons as the ESN approaches reservoir sizes for the
first time that are able to reflect the system’s dynamics. This is because the ESN requires a
reservoir that can reproduce both the fast and slow intermittent dynamics.
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Figure 7.4: Valid prediction time with standard deviation for increasing reservoir size nneur ons .

7.1.3 Charney-DeVore System

The CDV system was integrated using RK4 and a reference solution was obtained as shown in
section 2.1.3. The first 500s, the initial transients, were removed from the training data and the
ESN was trained with 100 Lyapunov times. With a Lyapunov exponent of 0.02 and a time step
of 0.1s, the training set contains of 62500 samples. The first 100 samples are removed during
the training process and the reservoir is initialized with 500 samples for every new prediction
section. Table 7.4 summarizes the results of the parameter search algorithm for an ESN with
a reservoir size of 500 and a prediction error of 0.4.

nneur ons sparsity α σ ρ
(
W

)
500 3.5 0.8778 0.64999 0.7
β training samples normalization resync steps washout

0.00001 62500 Max 500 100

Table 7.4: Parameters for ESN prediction of the CDV system.
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Fig. 7.5 shows the prediction time and standard deviation in Lyapunov times (λ · t ) for ESN
only prediction with increasing reservoir size. The average prediction time and the respec-
tive standard deviation are calculated from 50 predictions in different regions of the reference
solution. An increase in prediction time with increasing reservoir size could be seen. The max-
imum prediction time occurs for a reservoir with 500 neurons since the ESN is optimized to
this reservoir size. We see similarities in the prediction performance with increasing reservoir
size between Platt system and Charney-DeVore system. Both systems show small prediction
performance with small reservoirs due to the higher dimensionality than Lorenz system. With
increasing number of neurons, the ESN has learned the high-dimensional dynamics more ac-
curately and therefore a strong increase in prediction time could be observed.
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Figure 7.5: Valid prediction time with standard deviation for increasing reservoir size nneur ons .

7.1.4 Kuramoto-Sivanshisky Equation

The parameters for the pure data-driven method are summarized in Table 7.5. We used 100
Lyapunov times to train the neural network which results in 5714 samples with a time step of
0.25 and the largest Lyapunov exponent is 0.07. We optimized the parameters for a reservoir
with 1000 neurons and found that normalizing the data with the standard deviation showed
the best prediction time with the smallest standard deviation.
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nneur ons sparsity α σ ρ
(
W

)
1000 3.5 1.05 0.1 0.3
β training samples normalization resync steps washout

0.00001 5714 Stddev 57 100

Table 7.5: Parameters for ESN prediction for KS equation.

Fig. 7.6 shows the prediction time and standard deviation in Lyapunov times (λ·t ) for ESN only
prediction with increasing reservoir size for the KS equation. The average prediction time and
the respective standard deviation are calculated from 50 predictions in different regions of the
reference solution. The prediction time increased with increasing reservoir size. This is similar
to the results from CDV system or Platt system. However, the system is much more complex.
Compared to the systems before with 3, 5 or 6 degrees of freedom (DoF), the KS system has 64
DoF since this system is obtained by discretizing a PDE. The overall prediction time is smaller
but that was to be expected as it is more complex.
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Figure 7.6: Valid prediction time with standard deviation for increasing reservoir size nneur ons .
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7.2 Hybrid Methods

In the previous section, we investigated the pure ML approach. We saw the ESN’s ability to
learn the dynamics and its increasingly better performance with the use of larger reservoirs.
Now, we try to improve that by using physics-based ROMs together with an ESN. The three
hybrid methods are tested, their performances are compared to the pure ML approach and
with each other. Reservoir size studies are also conducted and the accuracy of the ROM for
the KS equation is varied. The same training data and the same parameter search algorithm
is used as for the pure ML approach for all systems. The results are presented in the following
sections.

7.2.1 Lorenz System

This section investigates the different hybrid architectures and the ROM of the Lorenz system.
We are interested in the prediction time where the error between the predicted and reference
solution is smaller than 0.4. The average time and standard deviation of 50 predictions of 10s
length in different regions of the reference solution is monitored. We used nneur ons = 500 as a
reservoir size for each parameter search. We skipped the third mode with the smallest eigen-
value and use the first two modes for the ROM.
After good parameters have been found, we investigated the prediction performance for dif-
ferent reservoir sizes. The reservoir size was increased from 100 to 1000 in 100 neurons inter-
vals for fixed parameters. For the Lorenz system, due to computational simplicity, additional
analysis with and without different random initializations of the reservoir was conducted.

ROM only

First, we assess the performance of POD-only based ROM. After POD decomposition, we
order the eigenvalues and corresponding POD modes in descending order and divide each
eigenvalue λi by the sum of all eigenvalues to see the relative contribution of each mode to
the total energy. Table 7.6 shows the contribution of each mode.

λi∑
λi

λ1 81.35%
λ2 17.53%
λ3 1.12%

Table 7.6: Relative contribution of modes.

While the ROM with all modes was able to operate stably and resembled the exact dynamics
of the Lorenz system as can be seen in Fig. 7.8, skipping one mode already leads to a com-
plete prediction failure of the ROM. Figure 7.7 shows the time evolution of the ROM using
only the first two modes. The ROM was not able to capture the Lorenz system’s dynamics and
converged to a fixed point.
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Figure 7.7: ROM only prediction with one skipped mode.
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Figure 7.8: ROM only prediction with all modes incorporated.
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Hybrid1

Table 7.7 summarizes the hyper-parameters found by the parameter study for the first hybrid
method applied to the Lorenz system.

nneur ons sparsity α σ ρ
(
W

)
500 3.7 0.86 0.42 0.805
β training samples normalization resync steps washout

0.00001 12500 Max 100 100

Table 7.7: Parameters for hybrid1 method of the Lorenz system.

Fig. 7.9 shows the average prediction time with respective standard deviation for increasing
reservoir size in Lyapunov time units (=λ · tval i d ).
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Figure 7.9: Valid prediction time with standard deviation for increasing reservoir size nneur ons

using hybrid 1.

Fig. 7.10 shows the average prediction time with respective standard deviation for increasing
reservoir size in Lyapunov time units for the statistical study. The non-statistical and statistical
study showed similar results.
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Figure 7.10: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for 20 random reservoir initializations using hybrid 1.

Hybrid method 1 showed similar results as the pure data-driven method. A similar increase
in prediction performance with increasing reservoir size could be observed as with the pure
ML method and the results were negligibly better. The reconstruction of the solution in the re-
duced space seems to be too restrictive for low dimensional systems. The ESN’s task to predict
the skipped dynamics in the ROM could be as challenging as the prediction of the dynamics
of whole the system.

Hybrid2

Table 7.8 summarizes the hyper-parameters found by the parameter study for the second hy-
brid method applied to the Lorenz system.

nneur ons sparsity α σ ρ
(
W

)
500 3.3 0.9299 0.5 0.5449
β training samples normalization resync steps washout

0.00005 12500 Stddev 100 100

Table 7.8: Parameters for hybrid2 method of the Lorenz system.

Fig. 7.11 shows the average prediction time with respective standard deviation for increas-
ing reservoir size. Fig. 7.12 shows the average prediction time with respective standard devia-
tion for increasing reservoir size in Lyapunov time units for a statistical study with 20 random
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Figure 7.11: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 2.

reservoir initializations. Both, the statistical and non-statistical study showed strong varia-
tions in prediction time and standard deviation. The best result in the non-statistical case was
at the design point with 500 neurons whereas reservoirs with 700 or 800 neurons delivered
same valid times for the statistical case. Since the non-statistical and statistical results differ,
it can be concluded that this method is strongly dependent on the hyper parameters and the
random initialization. In addition, the ESN has to predict two different things, the correction
term and the skipped dynamics, which could have different time scales which makes it more
challenging for the ESN. Indeed, the ESN is only excited with the retained modes. Therefore,
it may be too challenging for the ESN to learn the skipped-mode dynamics from this.
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Figure 7.12: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for 20 random reservoir initializations using hybrid 2.

Hybrid3

Table 7.9 summarizes the hyper-parameters found by the parameter study for the third hybrid
method applied to the Lorenz system.

nneur ons sparsity α σ ρ
(
W

)
500 2.8 0.878 0.2445 0.655
β training samples normalization resync steps washout

0.00005 12500 None 100 100

Table 7.9: Parameters for hybrid3 method of the Lorenz system.

Fig. 7.13 shows the average prediction time with respective standard deviation for increasing
reservoir size. Fig. 7.14 shows the average prediction time with respective standard deviation
for increasing reservoir size in Lyapunov time units for the statistical study. While the non-
statistical study showed small fluctuations in prediction time with increasing reservoir size,
the statistical study showed a flat but steady increase of prediction time with increasing reser-
voir size. This method outperformed the pure data-driven method.
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Figure 7.13: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 3.
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Figure 7.14: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for 20 random reservoir initializations using hybrid 3.
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7.2.2 Platt System

This section examines the prediction performance of the different hybrid methods applied
to the Platt system which is particularly challenging due to the system’s properties. The time
when the error between predicted and reference solution gets bigger than 0.4 is measured for
each method. Each parameter combination is tested on 50 different intervals of 10 Lyapunov
times length and the average valid prediction time is monitored. We skipped the last mode
with the smallest eigenvalue and use the remaining modes for the ROM. The parameters for
ESN training are summarized in the tables below.
The prediction performance was investigated for different reservoir sizes with the listed pa-
rameters. The reservoir size was increased from 100 to 1000 in 100 neurons intervals for fixed
parameters and each reservoir was tested at 50 intervals and the average valid time was plot-
ted. The reservoir was only initialized once, thus, the results depend on the random creation
of the reservoir.

ROM only

After a POD decomposition of the reference solution, we can derive the ROM and estimate
the importance of each mode using the eigenvalues. The eigenvalues divided by the sum of
all eigenvalues are summarized in Table 7.10.

λi∑
λi

λ1 79.55%
λ2 11.33%
λ3 6.4%
λ4 1.43%
λ5 1.3%

Table 7.10: Relative contribution of modes.

We skip the last mode with eigenvalue λ5 for the ROM and obtain a model with dynamics
as depicted in Fig. 7.15. Compared to the other ODE systems, the ROM does not converge to
a fixed point and is able to resemble some dynamical characteristics as can be seen for x3.
However, the on-off intermittency is not apparent anymore which was the systems special
feature of interest for us.
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Figure 7.15: ROM only prediction with one skipped mode.
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Figure 7.16: ROM only prediction with all modes incorporated.
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Fig. 7.16 shows the ROM’s dynamics using all modes. Even small changes in the numerical
computation and round off errors can lead to discrepancies in the solution due to the sensitive
response of the system in unstable regions. This can be seen in Fig. 7.16 at approximately 18
Lyapunov times, where the reference solution and the ROM solution diverge. This illustrates
the extreme sensitivity of the Platt system which makes it extremely challenging to predict.

Hybrid1

Table 7.11 summarizes the hyper-parameters found by the parameter search for the first hy-
brid method applied to Platt system.

nneur ons sparsity α σ ρ
(
W

)
500 3.5 0.7499 0.6399 0.7
β training samples normalization resync steps washout

0.00005 113636 Max 99 100

Table 7.11: Parameters for hybrid1 method of the Platt system.

Fig. 7.17 shows the average prediction time in Lyapunov times units (= λ · tval i d ) with stan-
dard deviation for increasing reservoir size. The results did not show a consistent behavior.
The valid prediction time in the design point nneur ons = 500 was maximal, however, the stan-
dard deviation was nearly as big. Compared to the Lorenz system, the reconstruction in the
reduced space together with an inaccurate ROM seems to be too restrictive to capture any
of the Platt system’s complicated dynamics. The results for the CDV system and the Lorenz
system are similar.
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Figure 7.17: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 1.

Hybrid2

Table 7.12 summarizes the hyper-parameters found by the parameter search for the second
hybrid method applied to Platt system.

nneur ons sparsity α σ ρ
(
W

)
500 3.0 1.0 0.7 0.4
β training samples normalization resync steps washout

0.00005 113636 Max 99 100

Table 7.12: Parameters for hybrid2 method of the Platt system.

Fig. 7.17 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size. The results were constant for all reservoir sizes except
for the smallest reservoir, 700 neurons and 800 neurons. Although, the prediction time stays
constant, it is at higher values than the pure data-driven method. Reconstruction in the full
solution space yielded in the case of the Platt system a significant increase in accuracy. Com-
pared to the Lorenz system, this indicates that hybrid method 2 seems to be more accurate
for larger systems.
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Figure 7.18: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 2.

Hybrid3

Table 7.13 summarizes the hyper-parameters found by the parameter search for the third hy-
brid method applied to Platt system.

nneur ons sparsity α σ ρ
(
W

)
500 2.099 1.0 0.4 0.3
β training samples normalization resync steps washout

0.00003 113636 Max 99 100

Table 7.13: Parameters for hybrid3 method of the Platt system.

Fig. 7.19 shows the average prediction time in Lyapunov times units (= λ · tval i d ) with stan-
dard deviation for increasing reservoir size. The valid prediction time slightly increased until
it reached the design point with nneur ons = 500. Afterwards, the performance dropped and
started to increase again after 700 neurons. The best performance was measured in the de-
sign point. Hybrid method 3 is able to decide whether more ROM or more ESN information
contributes to the solution. The ROM of the Platt system retains, compared to the other ROMs
derived from ODE systems, more dynamics. Therefore, the method decides to weight the ROM
information more strongly and the proportion of the ESN scaling behavior is not strongly ap-
parent in the results.
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Figure 7.19: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 3.

7.2.3 Charney-DeVore System

This section investigates the different hybrid architectures and the ROM of the CDV system.
The prediction time is again defined as the time where the error exceeds 0.4. Each parameter
combination is tested on 50 different intervals of 10 Lyapunov times length and the average
valid prediction time is monitored. We used nneur ons = 500 as a reservoir size for each param-
eter search and tested different normalization methods for ESN input data. We skipped the
last mode with the smallest eigenvalue and use the remaining modes for the ROM.
The prediction performance for different reservoir sizes was tested and the reservoir size was
varied from 100 to 1000 in 100 neurons intervals for fixed parameters. The reservoir was only
initialized once, thus, the results depend on the random creation of the reservoir.

ROM only

The eigenvalues obtained by POD are normalized with the sum of all eigenvalues and sum-
marized in Table 7.14.
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λi∑
λi

λ1 94.28%
λ2 3.86%
λ3 1.61%
λ4 0.14%
λ5 0.07%
λ6 0.035%

Table 7.14: Relative contribution of modes.

Although the last eigenvalue does not contribute much to the total energy, the impact on the
ROM’s dynamics is severe. While a ROM with all modes incorporated is able to capture the
CDV system’s dynamics perfectly, Fig. 7.21, the ROM without the last mode already describes
a completely different behavior that converges to a fixed point after 2 Lyapunov times.
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Figure 7.20: ROM only prediction with one skipped mode.
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Figure 7.21: ROM only prediction with all modes incorporated.
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Hybrid1

Table 7.15 summarizes the hyper-parameters found by the parameter search for the first hy-
brid method applied to CDV system.

nneur ons sparsity α σ ρ
(
W

)
500 3.5 0.89 0.8 0.55
β training samples normalization resync steps washout

0.00005 62500 Max 500 100

Table 7.15: Parameters for hybrid1 method of the CDV system.

Fig. 7.22 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size. The valid time slightly increased at the beginning and
kept constant with increasing reservoir size. The best prediction performance was found in
the design point nneur ons = 500. Hybrid method 1 showed similar performance for the Lorenz
system. The method is nearly as accurate as the pure data-driven method as the reconstruc-
tion in the reduced space is too restrictive. However, there was no total failure as in the case
of the Platt system since the dynamics of the CDV system are not as complicated.
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Figure 7.22: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 1.
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Hybrid2

Table 7.16 summarizes the hyper-parameters found by the parameter search for the second
hybrid method applied to CDV system.

nneur ons sparsity α σ ρ
(
W

)
500 3.0 0.83 0.822 0.4
β training samples normalization resync steps washout

0.00001 62500 Stddev 500 100

Table 7.16: Parameters for hybrid2 method of the CDV system.

Fig. 7.23 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size. The valid time constantly increased with increasing
reservoir size and had a maximum at the design point nneur ons = 500. Similar to the Platt
system, hybrid method 2 provided significantly longer prediction times than the pure data-
driven method confirming that is is only useful for systems of slightly larger dimension.
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Figure 7.23: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 2.
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Hybrid3

Table 7.17 summarizes the hyper-parameters found by the parameter search for the third hy-
brid method applied to CDV system.

nneur ons sparsity α σ ρ
(
W

)
500 2.5 0.8099 0.40499 0.65
β training samples normalization resync steps washout

0.00001 62500 Max 500 100

Table 7.17: Parameters for hybrid3 method of the CDV system.

Fig. 7.24 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size. There was a slight but not steady increase in prediction
time with increasing reservoir size. The valid time dropped after the design point nneur ons =
500 but increased again shortly afterwards. Similar to the Lorenz system, the method detected
an inaccurate ROM and relied more on the ESN information which is why an increase in pre-
diction time with increasing reservoir size could be observed.
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Figure 7.24: Valid prediction time with standard deviation for increasing reservoir size
nneur ons using hybrid 3.
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7.2.4 Kuramoto-Sivanshisky Equation

This section deals with applying the proposed hybrid methods to a PDE, the KS equation.
Each parameter combination is tested on 50 different intervals of 10 Lyapunov times length
and the average valid prediction time, where the error exceeds 0.4, is monitored. We used
nneur ons = 500 as a reservoir size for each parameter search and tested different normalization
methods for the ESN input data. We performed the parameter search for different numbers
of skipped modes. One with 35 skipped modes, with 40 skipped modes and with 45 skipped
modes. Skipping more than 45 modes led to instabilities of the ROM.
The prediction performance was investigated for different reservoir sizes. The reservoir size
was increased from 200 to 2000 in intervals of 200 neurons for fixed parameters. The reservoir
was only initialized once, thus, the results depend on the random creation of the reservoir.
The prediction performance depending on the number of skipped modes was monitored in
an additional study for each hybrid method. The parameters from the parameter search with
35 skipped modes in combination with an ESN with 500 neurons were used and the number
of skipped modes was varied from 35 to 45. Again, each parameter combination was tested
on 50 different intervals of 10 Lyapunov times length and the average prediction time was
monitored.

ROM only

We investigated the behavior of the ROM depending on the number of used modes. Since we
deal with an PDE, we have a spatial discretization that determines the number of grid points
and thus the number of input variables. We used 64 grid points which yielded 64 eigenval-
ues in the POD decomposition. How much energy each mode contributes to the total energy
can be seen in Fig. 7.25. The relative contribution of each eigenvalue rapidly decreases and
reaches already values near 0% with eigenvalue 21. However, we found that it is necessary to
use at least 17 modes to ensure the stable behavior of the ROM.
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Figure 7.25: Relative energy content of modes.

In the following, we analyze the error between the ROM and the reference solution using dif-
ferent numbers of modes. Fig. 7.26 shows the error between the ROM with 40 modes skipped
and the reference solution, Fig. 7.27 shows the error between the ROM with 30 modes skipped
and the reference solution and Fig. 7.28 shows the error between the ROM with 20 modes
skipped and the reference solution. With increasing number of used modes, the accuracy of
the ROM and therefore the time where the error is small becomes larger.
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Figure 7.26: Error between ROM with 40 modes skipped and reference solution.
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Figure 7.27: Error between ROM with 30 modes skipped and reference solution.
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Figure 7.28: Error between ROM with 20 modes skipped and reference solution.

Hybrid1

Table 7.18 summarizes the hyper-parameters found by the parameter search for 35 skipped
modes, Table 7.19 summarizes the hyper-parameters found by the parameter search for 40
skipped modes and Table 7.20 summarizes the hyper-parameters found by the parameter
search for 45 skipped modes, for the first hybrid method applied to KS equation.

nneur ons sparsity α σ ρ
(
W

)
500 2.5 0.8499 0.5 0.35
β training samples normalization resync steps washout

0.0001 5714 Max 57 100

Table 7.18: Parameters for hybrid1 method of the KS equation with 35 modes skipped.
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nneur ons sparsity α σ ρ
(
W

)
500 2.7279 0.9 0.94 0.6
β training samples normalization resync steps washout

0.00012 5714 Max 57 100

Table 7.19: Parameters for hybrid1 method of the KS equation with 40 modes skipped.

nneur ons sparsity α σ ρ
(
W

)
500 3.0 1.05 0.378 0.4
β training samples normalization resync steps washout

0.00005 5714 Max 57 100

Table 7.20: Parameters for hybrid1 method of the KS equation with 45 modes skipped.

Fig. 7.29 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size for hybrid method 1 combined with different accurate
ROMs. The method with 35 skipped modes showed the maximum valid time at the design
point nneur ons = 500 and the values slightly decreased afterwards. The results were not consis-
tent for 40 skipped modes, which showed a minimum at 1000 neurons and got bigger in both
directions. For 45 skipped modes, the results were approximately constant for all reservoir
sizes. Hybrid method 1 strongly depends on accurate ROMs and a high dimensional space for
reconstruction. This is shown by the particularly large increase in prediction time between the
ROM with 40 skipped modes and the ROM with 35 skipped modes. The accuracy slightly de-
creases with increasing number of neurons for the ROM with 35 skipped modes which could
be due to the growing distance from the design point.
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Figure 7.29: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for three different numbers of skipped modes using hybrid 1.

Using the parameters from Table 7.20, we vary the number of skipped modes. The predic-
tion performance depending on the number of skipped modes is depicted in Fig. 7.30. A de-
crease in accuracy is observed when skipping more modes which is expected. Surprisingly, for
nski ppedmodes = 38 and nski ppedmodes = 39 no results were found. In rare cases, the coupling
between ESN and ROM lead to numerical instabilities. At these two points (the only ones in
this work) unstable behavior was observed.
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Figure 7.30: Valid prediction time with standard deviation for increasing number of skipped
modes using hybrid 1 with a reservoir of 500 neurons.

Hybrid2

Table 7.21 summarizes the hyper-parameters found by the parameter search for 35 skipped
modes, Table 7.22 summarizes the hyper-parameters found by the parameter search for 40
skipped modes and Table 7.23 summarizes the hyper-parameters found by the parameter
search for 45 skipped modes, for the second hybrid method applied to KS equation.

nneur ons sparsity α σ ρ
(
W

)
500 3.5 0.9 0.8 0.6
β training samples normalization resync steps washout

0.00005 5714 Stddev 57 100

Table 7.21: Parameters for hybrid2 method of the KS equation with 35 modes skipped.

nneur ons sparsity α σ ρ
(
W

)
500 3.5 0.9 0.8 0.65
β training samples normalization resync steps washout

0.000072 5714 Stddev 57 100

Table 7.22: Parameters for hybrid2 method of the KS equation with 40 modes skipped.
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nneur ons sparsity α σ ρ
(
W

)
500 3.0 0.9 0.2 0.2
β training samples normalization resync steps washout

0.00018 5714 Max 57 100

Table 7.23: Parameters for hybrid2 method of the KS equation with 45 modes skipped.

Fig. 7.31 shows the average prediction time in Lyapunov times units (=λ·tval i d ) with standard
deviation for increasing reservoir size for ROMs with different accuracy. We found the max-
imum valid time at the smallest reservoir and the minimum at 800 neurons for 35 skipped
modes. The values constantly decreased from 200 to 800 neurons and started to grow slightly
after the minimum until a reservoir size of 1200 neurons was reached, when the valid pre-
diction time decreased again. For 40 skipped modes, the valid prediction time constantly de-
creased with increasing reservoir size except for a reservoir with 1200 neurons where the result
was slightly better than the adjacent results. The prediction time for hybrid method 2 with 45
skipped modes constantly decreased with increasing reservoir size but had a minimum at 400
neurons. The results showed that hybrid method 2 works best with low dimensional systems
as the Platt system or the CDV system. With increasing numbers of skipped modes, the ESN is
increasingly unable to predict the truncated dynamics.

200 400 600 800 1000 1200 1400 1600 1800 2000
nneur ons

0

1

2

3

4

5

valid time

45 skipped modes

40 skipped modes

35 skipped modes

Figure 7.31: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for three different numbers of skipped modes using hybrid 2.
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Using the parameters from Table 7.23, we vary the number of skipped modes. The prediction
performance depending on the number of skipped modes is depicted in Fig. 7.32. With in-
creasing number of skipped modes, the prediction performance decreased until 39 modes.
From then on, the valid time was better until it started to decrease again. The inconsistent
drop in the curve could be due to the sensitivity of the method to the hyper parameters.

4544434241403938373635
nski ppedmodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

valid time

Figure 7.32: Valid prediction time with standard deviation for increasing number of skipped
modes using hybrid 2 with a reservoir of 500 neurons.

Hybrid3

Table 7.24 summarizes the hyper-parameters found by the parameter search for 35 skipped
modes, Table 7.25 summarizes the hyper-parameters found by the parameter search for 40
skipped modes and Table 7.26 summarizes the hyper-parameters found by the parameter
search for 45 skipped modes, for the third hybrid method applied to KS equation.

nneur ons sparsity α σ ρ
(
W

)
500 3.0 0.95 0.045 0.3
β training samples normalization resync steps washout

0.000072 5714 Max 57 100

Table 7.24: Parameters for hybrid3 method of the KS equation with 35 modes skipped.
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nneur ons sparsity α σ ρ
(
W

)
500 2.8 0.95 0.55 0.3
β training samples normalization resync steps washout

0.00005 5714 Max 57 100

Table 7.25: Parameters for hybrid3 method of the KS equation with 40 modes skipped.

nneur ons sparsity α σ ρ
(
W

)
500 2.5 0.95 0.4 0.3
β training samples normalization resync steps washout

0.00001 5714 Max 57 100

Table 7.26: Parameters for hybrid3 method of the KS equation with 45 modes skipped.

Fig. 7.33 shows the average prediction time in Lyapunov times units (= λ · tval i d ) with stan-
dard deviation for increasing reservoir size for ROMs using different numbers of modes. The
valid prediction time was nearly constant for all different reservoir sizes for a ROM with 35
skipped modes. As mentioned at the Platt system, hybrid method 3 prefers information from
an accurate ROM if available. Therefore, the prediction performance is good and no increase
in prediction time with increasing number of neurons could be observed since the ESN’s in-
formation is inferior for the solution.
While the method with a ROM with 45 skipped modes is the least accurate at the beginning
without the support of the ESN, it rapidly gains accuracy with increasingly large reservoirs. To-
wards the larger reservoirs, the ESN compensates for the inaccurate ROM and the prediction
performance of the methods, with 45 skipped modes and 40 skipped modes, converged.
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Figure 7.33: Valid prediction time with standard deviation for increasing reservoir size
nneur ons for three different numbers of skipped modes using hybrid 3.

Using the parameters from Table 7.26, we vary the number of skipped modes. The predic-
tion performance depending on the number of skipped modes is depicted in Fig. 7.34. With
increasing number of skipped modes, the prediction performance constantly decreased.
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Figure 7.34: Valid prediction time with standard deviation for increasing number of skipped
modes using hybrid 3 with a reservoir of 500 neurons.

In addition, we want to illustrate the weighting between ROM and ESN information using the
trainable output matrix Wout . The ESN is trained using the parameters listed in Table 7.26.
Since the KS system has 64 dimensions, the first 64 columns of Wout correspond the ROM
and the remaining 500 columns correspond to the units of the reservoir of the ESN. First, the
output matrix is normalized by dividing each row with the sum of the row’s squared entries.
Second, the mean of each column is calculated and named 〈α(x)〉. Fig. 7.35 shows the aver-
age weighting of each column in Wout . The entries in the output matrix mirror the observed
behavior in the the other results. With decreasing accuracy, the method reduces the influence
of the ROM information and the own ESN prediction becomes more important. To further il-
lustrate the weighting between ESN and ROM information, the mean of 〈α(x)〉 from columns
1-64 is calculated and named 〈α〉 and the mean of the remaining columns (corresponding to
the ESN) is calculated and named 〈β〉. Fig. 7.36 shows that with increasing number of skipped
modes, the influence of the ROM 〈α〉 over the ESN prediction 〈β〉 becomes less important.
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Figure 7.35: Average Weighting of each column in output matrix Wout for different numbers
of skipped modes.
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Figure 7.36: Weighting of ESN and ROM information in output matrix Wout with increasing
number of skipped modes.
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7.3 Summary

7.3 Summary

We summarize all the results here to make the direct comparison easier. In the Figs. 7.37 - 7.42,
the pure data-driven model and the three hybrid methods are plotted together to provide a
direct comparison between the different methods.
Fig. 7.37 shows the results for the Lorenz system. While the second hybrid method shows
strong variations and no consistent scaling behavior, the other hybrid methods outperform
the pure data driven method. Especially hybrid method 3 is at each point better than the pure
data-driven method whereas the first hybrid method is at two points slightly worse than the
pure data-driven method. Furthermore, only hybrid method 3 provides a relatively consistent
increase in prediction time with reservoir size.
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Figure 7.37: Comparison of all methods for Lorenz system.

85



Results

Fig. 7.38 shows the results for the Platt system. The pure data-driven method shows improving
performance with increasing reservoir size. However, both hybrid methods 2 and 3 provide,
over the entire range of reservoirs better and nearly constant valid prediction times than the
pure data-driven method. Hybrid method 1 is not able to capture the dynamics of the Platt
system since the reconstruction in the reduced space is too restrictive for the complex dy-
namics of this system.
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Figure 7.38: Comparison of all methods for Platt system.
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Fig. 7.39 shows the results for the CDV system. In this system which has a larger dimension
than the Lorenz system, hybrid method 1 has reduced performance and is no better than
the pure data-driven method anymore. Hybrid method 3 shows throughout all reservoir sizes
good, nearly constant, performance while hybrid method 2 starts with smaller values but out-
performs hybrid method 3 towards the largest reservoirs. Both, hybrid method 2 and hybrid
method 3 are better than pure data-driven over the entire range of reservoirs.
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Figure 7.39: Comparison of all methods for CDV system.
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Fig. 7.40 shows the results for the KS system and hybrid methods using a ROM with 35 skipped
modes. Hybrid method 2 shows the worst performance. Although hybrid method 2 is superior
to pure data-driven in the beginning, with increasing number of neurons, hybrid method 2
looses accuracy and the pure data-driven, improves its performance. Both, hybrid method
1 and hybrid method 3 outperform the pure data-driven method drastically where hybrid
method 3 is even more accurate than hybrid method 1.
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Figure 7.40: Comparison of all methods for KS equation with hybrid methods that skip 35
modes.
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7.3 Summary

Fig. 7.41 shows the results for the KS system and hybrid methods using a ROM with 40 skipped
modes. A similar trend as in Fig. 7.40 can be observed. With small reservoirs all hybrid meth-
ods are better than the pure data-driven method. Hybrid method 1 is approximately as accu-
rate as the pure data-driven method for reservoirs larger than 800 neurons. Hybrid method 3
is the most precise method for all reservoir sizes with a slightly increasing performance with
growing reservoirs.
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Figure 7.41: Comparison of all methods for KS equation with hybrid methods that skip 40
modes.
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Fig. 7.42 shows the results for the KS system and hybrid methods using a ROM with 45 skipped
modes. Hybrid method 1 and hybrid method 2 are not able to perform better than the pure
data-driven method anymore. These methods are better than the pure data-driven method
only for the very small reservoirs but their performance stays constant with increasing reser-
voir size. Hybrid method 3 is better than the pure data-driven method for all reservoir sizes.
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Figure 7.42: Comparison of all methods for KS equation with hybrid methods that skip 45
modes.
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8 Discussion

From the results presented in Section 7, we can observe that the pure data-driven method
shows good prediction performance. The ESN is generally able to learn the dynamics of the
different systems. The prediction performance increases slightly with increasing reservoir size
for low dimensional systems without too complicated dynamics like intermittency. However,
the ESN improved its prediction performance more when learning the dynamics of high di-
mensional and intermittent systems. The Platt system is an example of the latter. Already
small changes in the way the computation is done may lead to different behavior of the system
in the sensitive regions as shown with the ROM for Platt system that uses all modes. There-
fore, with a more accurate prediction, which is possible through larger reservoirs, the valid
prediction time increases consistently. Additionally, high dimensional systems naturally re-
quire more neurons to recreate a higher dimensional state, such as the discretized KS equa-
tion where we see the strong increase of prediction performance with increasing reservoir size
as well.

Hybrid method 1 reconstructs the solution only in a reduced space. This reconstruction of
the solution in reduced space is difficult, especially for low-dimensional systems where reduc-
ing one dimension has drastic impact on the resulting dynamics. For the Lorenz and the CDV
systems, reducing only one dimension leads to completely inaccurate ROMs which converged
towards fixed points. The Platt system’s ROM with one mode skipped was able to capture some
dynamical features, however intermittency was not apparent anymore. The KS equation with
64 grid points and, thus, 64 dimensions, was the only ROM that was able to recover the sys-
tems dynamics. We showed in the ROM section that keeping more and more modes in the
system increased the accuracy of the ROM. However, the contribution to the total energy was
not a good measure as skipping only 5% of the total energy caused unstable behavior.
Hybrid method 1 did not work well for the CDV and Lorenz systems. The prediction perfor-
mance is negligibly better than for the pure data-driven method. Even an increase in reservoir
size did not improve the performance much. This could be due to the leading error caused by
the reconstruction in reduced space and the governing dynamics of the ROM, which are com-
pletely different from the real systems dynamics. This is supported by the results for the Platt
system, where reconstruction in reduced space seems to be too restrictive to capture any dy-
namics.
With the KS equation, the hybrid method 1 worked well with an accurate ROM that skipped
fewer modes whereby many dimensions are available for reconstruction. In addition, predic-
tion performance stayed nearly constant for all reservoir sizes. With increasing number of
skipped modes, which is equivalent to a more and more inaccurate ROM, prediction perfor-
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mance got worse. In the limiting case, nski ppedmodes = 45, near the stability threshold, the
prediction performance was worse than the pure data-driven one. These observations sup-
port that hybrid method 1 is dominated by the ROM’s behavior and that the error prediction
of the ROM, which is in most cases also low-dimensional, therefore requiring no big reservoir
for accurate results, plays a smaller role.

Hybrid method 2 tried to compensate for the dimensionality problem explained above. In
addition to the prediction of the error term, the remaining coefficients are predicted and the
reconstruction takes place in full space. The method was successful only for the Platt and CDV
system and especially with the Platt system where hybrid method 1 failed. However, hybrid
method 2 showed no consistent behavior which could be due to the following reasons:

1. Hybrid method 2 is sensitive to hyper parameters. As no statistical parameter search was
performed, different random initializations of the reservoir could lead to strong varia-
tions in prediction performance and the parameter search could not find good values.

2. The way the correction term for the ESN is computed, it could contain already portions
of the skipped modes that are now taken into account twice.

3. Different dynamics between the correction term and the skipped time dependent coef-
ficients. ESN could have problems to predict variables with different typical time scales.
In addition, the decrease in prediction performance with increasing reservoir sizes es-
pecially at high dimensional systems with accurate ROMs could be due to an increasing
sensitivity of the ESN to variables with different dynamics.

Neither with Lorenz system nor with one ROM of KS equation was hybrid method 2 able to
predict longer than pure data-driven.

Hybrid method 3 is the only method that constantly outperforms the pure data-driven method
for all systems. Due to the special architecture, the ESN is able to "decide" whether to incorpo-
rate more ESN or ROM information. The method’s ability to decide can be seen in the behavior
of the method with increasing reservoir size. With ROMs that contain more information, the
prediction performance stays nearly constant for all reservoir sizes, similar to hybrid method
1 where the ROM clearly dominates. The Platt system and KS equation with just 35 skipped
modes are good examples for this. In all other cases, an increase of prediction performance
can be seen with increasing reservoir size, similar to the pure data-driven method. Especially
the steepening of the curve with increasing number of skipped modes and the more and more
parallel course of hybrid method 3 to the pure data-driven method is striking.
Hybrid method 3 works best with all systems, as it seems that this method is able to combine
information from a ROM and information from a ML model adequately.
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9 Conclusion

9.1 Summary

This work dealt with the prediction of chaotic dynamical systems using machine learning
approaches combined with reduced order models (ROM). We generated data sets for four dif-
ferent systems: the Lorenz system, the Platt system, the Charney-DeVore system and the Ku-
ramoto Sivashinsky(KS) equation. We chose these systems due to their increasing complexity.
The Platt system in particular serves us as a test case due to the intermittent dynamics. The
KS equation is a PDE and the discretization transforms this equation into a high-dimensional
system as the number of grid points is usually large.
We applied the proper orthogonal decomposition (POD) on the generated reference data and
were able to extract modes and coefficients that are optimal in an energy sense. We created
a new basis for the solution using these modes and projected the governing equations onto
the new basis set. This gave us a mapping for the time evolution of the purely time depen-
dent coefficients. Discarding the modes which contribute the least information to the solu-
tion yielded the ROM.
To compensate for the information loss in the ROM, we introduced the echo state network
(ESN). This machine learning method is known for its ability to approximate dynamical sys-
tems and especially for the comparatively small training effort. ESN are not trained by back
propagation as usual neural networks, their training simplifies to a linear regression problem.
We combined these two key components to create three hybrid methods which differ in struc-
ture. The first hybrid method uses the ESN to predict the skipped dynamics with the recon-
struction of the solution in the POD reduced space. Hybrid method 2 is the extension of hybrid
method 1 and reconstructs the solution in full space. Hybrid method 3 is different compared
with the other two methods and uses the ESN to predict the next timestep and additionally to
decide how much information to take from the ROM.
We applied all methods to all systems, calculated optimal hyper parameters and performed
reservoir size studies. We came to the following results.
As already shown in literature, the ESN is able to learn the dynamics of chaotic systems. For
low-dimensional systems, ESN with small reservoirs are able to capture the dynamics and no
large increase in prediction time could be observed for larger reservoirs. High-dimensional
systems require larger ESNs, therefore we saw a rapid rise in prediction time. Hybrid method
1 seemed to be too restrictive for low-dimensional systems since reconstruction takes place
solely in reduced space. In addition, with low-dimensional systems, the ROM with one mode
skipped showed completely different dynamics. Hybrid method 1 provided good prediction
time only with high-dimensional systems where a ROM could be generated that captured the
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original dynamics and the order reduction provided enough dimensions for solution recon-
struction.
Hybrid method 2 tried to predict the skipped dynamics. However, this method showed better
results only for Platt and CDV systems. No consistent behavior with increasing reservoir size
of the ESN could be observed. Hybrid method 3 was consistently better than pure data-driven
method for all systems. This method proved its ability to decide whether to take information
from the ESN or from the ROM. If an accurate ROM was present, nearly no increase in predic-
tion performance was observable as the ESN decided to take more ROM information and the
ESN was of secondary importance. In contrast, the prediction performance was getting better
with increasing reservoir size if an inaccurate ROM was present and the ESN had to rely more
on its own prediction capability.
This work showed the possibility to successfully combine pure machine learning models with
incomplete physical information originating from reduced order models. The promising re-
sults motivate the in-depth discussion and continuing research on this topic. Further topics
are presented in the next section.

9.2 Future Work

In this thesis we investigated different hybrid methods in conjunction with pure projection
based ROMs. Different hybrid architectures were applied to different systems. However, there
is still space for more research on various related topics.
Projection based reduced order models are known for suffering from numerical instabilities.
We faced no instabilities, however, reducing the system’s dimension instantly leads to com-
pletely different dynamics that hindered some hybrid architectures, which rely on accurate
ROMs, from working well. Two hybrid architectures tried to compensate for the information
loss with prediction of the error, that worked partially well. There exist other ROM methods,
that incorporate some stabilizing dynamics hidden in the skipped modes inherently. To im-
prove the ROM’s accuracy is one of the further topics.

The parameter search algorithm probably leaves the most work open. First, a statistical pa-
rameter search that removes the dependence on the random initialization of the reservoir
could be conducted. The computational resources during this work were not capable of do-
ing that. Second, we performed a simple line search. A grid search or better methods based
on backpropagation algorithms could help to find better hyper parameters. Last, instead of
using not just the valid prediction time as an error measure, one could introduce accumula-
tive errors that account for the error’s path. Only small peaks in the error currently affect the
search. These ideas could help to get closer to the error’s global minimum instead of getting
stuck in some local minima.

It is currently unclear why hybrid method 2 did not show a consistent behavior and lost ac-
curacy with increasing reservoir size especially at high dimensional systems with accurate
ROMs. An approach could be to investigate the dynamics of the different modes and their typ-
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ical time scales. Since POD decomposes with respect to the kinetic energy, time scales are not
directly taken into account and the different modes could have strongly varying time scales. In
addition, the ESN has to predict the truncated modes together with the retained POD modes.
This could be hard for a single ESN to predict. Models exist, where variables with similar typ-
ical time scales are collected and an own ESN is used for each group to predict their time
evolution. The implementation of a model that uses small ESNs to predict the time evolution
of groups of variables with similar time scales is one further topic.

Finally, there is always a possibility to reduce computational effort. The number of calcula-
tions can be reduced as well as a time step as big as possible can be chosen to reduce compu-
tation time and effort.
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