
Modeling and Automatic Tuning in High
Performance Computing

Seminar: Future Trends in High Performance Computing

Ludwig Gärtner
Fakultät für Informatik

Technische Universität München
Email: ludwig.gaertner@tum.de

Abstract— This literature research lays the groundwork for
integrating a machine learning based algorithm selector into the
molecular dynamic simulation framework AutoPas. Two refer-
ence projects were consulted to analyse the performance of using
machine learning models for automatic algorithm selection One
is using supervised learning, the other reinforcement learning.

The results though show no clear favorit among the two, as
there are some key performance measurements missing for a final
comparison.

Index Terms— High Performance Computing, Auto Tuning,
Automatic Algorithm Selection, Machine Learning

I. INTRODUCTION

Performance portability is a highly desirable feature of
applications in High-Performance Computing. Being able to
execute the same application on architecturally different su-
percomputers without changing the application itself reduces
the programmer’s burden in managing these different architec-
tures. This may involve generating the optimal compiler flags
at compile time or selecting the optimal algorithm to solve the
given problem.

This research was motivated by the idea of integrating a
machine learning based automatic algorithm selector into the
already existing auto tuning library AutoPas [1]. AutoPas acts
as a black-box auto tuner for N-Body simulations. It can
choose between different containers (namely how the particles
are stored), traversal patterns, data layouts for storing the
particles within a cell (SoA and AoS), etc. This choice is
currently done by comparing all possible combinations at
runtime and then selecting the best among those. Ideally, this
statistical evaluation will be replaced by a machine learning
model, which can make these decisions faster and more
accurately.

The results of this paper shall lay the groundwork for a ma-
chine learning based algorithm selector by demonstrating how
other projects approached their design of algorithm selectors
and how they perform.

II. THEORETICAL BACKGROUND

A. Automatic Algorithm Selection

John Rice formally introduces the Algorithm Selection
Problem in his paper [2] published in 1976. He describes the
Algorithm Selection Problem in its most basic form as a set
of characteristics:

Fig. 1. The Algorithm Selection Problem, extended by the feature space.
Taken from [3]

• The first of those is the problem space P . It defines the
set of problem instances.

• Secondly, the algorithm space A is the set of algorithms
that take a problem instance as an input.

• Finally, the performance measurement R describes differ-
ent qualities of the solution output of an algorithm, for
example execution time, accuracy, or any combinations
of those qualities.

Additionally, the model has mappings between these criteria.
The selection mapping s takes a problem instance and maps it
to an algorithm. The performance mapping p takes the problem
instance and the previously selected algorithm and evaluates
the performance of the given algorithm. [2]

To make this theoretical model more applicable to real
problems Rice extends his definition by another characteris-
tic, the feature space (see Figure 1). A feature vector to a
given problem instance represents this instance by holding its
measurable properties. This effectively results in a reduction
of the dimensionality of the problem space, by considering
only important details of the instance but disregarding unin-
formative noise. Rice describes ”the features as an attempt to
introduce an approximate coordinate system in P .” [2] In this
extended model the selection mapping takes the feature vector
of a problem instance as an input. The performance mapping
however still depends on the problem instance itself coupled
with an algorithm.

The objective in the Algorithm Selection Problem is to find
a selection mapping s that maximizes the performance to solve
every problem instance. The two different philosophies of



this selection are classification and regression based. For the
former, the selector takes the features of the given problem
instance and explicitly produces the algorithm it predicts to
be best at solving the instance. It does not give any other
information that would explain its choice. In most cases,
this is not a simple binary classification but a multi-class
classification, deciding between all possible algorithms in
one step. Techniques that implement this approach are for
example decision trees or the k-nearest-neighbor algorithm [4].
The regression based selection predicts the performance of
every single algorithm when solving a problem instance, and
then selects the algorithm based on the comparison of these
predictions. This may seem more advisable as one can make
the final selection based on more information, but it also
comes at the cost of having to train more predictors. Ridge
Regression and Random Forests are examples of regression
based predictors. [4]

Another design choice is between Offline- and Online
Automatic Algorithm Selection. They differ in the time the
selection mapping is constructed. For the former approach, the
mapping is trained entirely on a pre-constructed data set. After
the training procedure, the selection mapping is kept the same
during usage. This resembles the supervised learning method
in machine learning, which is explained in subsection II-C
of this paper. For the online approach, there may be some
training of the mapping in advance, but the key difference is
that the selection mapping is adjusted and retrained with data
that is gathered during execution. See subsubsection II-C.3
about Reinforcement Learning for the technical training side
of the online approach. The Contextual Multi-Armed Bandit
in subsection II-B covers the problem of exploration versus
exploitation one has to face when applying Online Algorithm
Selection.

As the only difference between online and offline
approaches lies in the timing of training, this is also where
their relative strengths and weaknesses lie. The offline model
is faster during execution as no retraining of its decision
maker is required. The online model, on the other hand, can
start faster as its initial training is made on less data (if there
even is any initial training).

B. Contextual Multi-Armed Bandit

The Multi-Armed Bandit Problem is something that is
applicable both to Online Automatic Algorithm Selection as
well as Reinforcement Learning. Imagine a gambler standing
in front of K different slot machines. At any time he can
choose which arm to pull / which slot machine to use to
maximize his overall profit. As he is playing on the different
machines the gambler is gathering information on the profit
he is making at each machine. The more rounds he plays
on a single machine, the more confident he can be in his
expectations. The dilemma he finds himself in is whether to
take advantage of what he expects to be the most profitable
machine or to invest some, to his knowledge, non-optimal
turns trying to find a more rewarding one.

More formally the Multi-Armed Bandit problem is modeled
with random variables Xi,n which stand for the earnings of
playing at slot machine i = 1 . . . n at time step n ≥ 1. For
one machine j the random variables Xj,n are independent
and identically distributed over the time steps n. The random
variables for different machines are also independent but
most of the time differently distributed. This results in most
machines having different expected rewards E[Xi] = E[Xi,n]
with n ≥ 1. [5]

The Contextual Multi-Armed Bandit Problem accommo-
dates for the slot machines different behavior depending on
a context. So additionally to just pulling the arms on bandits
and gather profit information on each machine the gambler
has to connect some contextual data to the rewards he gets in
each turn [4]. This problem is more applicable to our problem
of Automatic Algorithm Selection as the same algorithm does
not perform equally on different input. One basic example of
this would be with sorting algorithms. The average case time
complexity of Quicksort is O(n log n), but the sorting of some
badly aligned data would be in O(n2). If the gambler could
connect indications of such a case in the context data to the
performance of his available sorting algorithms, he would be
able to choose a better performing one.

One strategy to solve this problem of exploration versus
exploitation is to always select the slot machine that is the most
promising according to the current knowledge. This is called
the greedy method. The gambler’s plan is to neglect active
exploration and to always go for the most rewarding strategy.
Keep in mind though that even this selection strategy performs
some implicit exploration, as the optimal choice constantly
changes due to for example differences in the context or just
new data. [4] To start of though, each algorithm has to be
executed at least once, to offer the greedy selector something
to choose from.

A variation of this is the ε-greedy strategy. It selects the
best choice in some turns, and actively explores in others.
Before the decision is made a random variable selects whether
to go with the greedy choice with probability ε, or to select
an entirely random alternative with probability 1 − ε, with
0 ≤ ε ≤ 1. [4]

The last strategy that is discussed here is called the Up-
per Confidence Bound (UCB). As with the strategies above
the gambler has to compute the expected reward E[Xi] for
selecting machine i. Additionally, he needs the statistical
standard error ei of his gathered data samples for that machine,
which represents the uncertainty of his expectation. The final
prediction is done by finding the machine that maximizes

UCB(Xi) = E[Xi] + λei (1)

λ is a constant which controls the amount of exploration of
the UCB method. A smaller λ results in more focus on the
expected reward and less on the possible potential with λ = 0
being equal to the greedy method. The idea behind the UCB
strategy is fewer data points for a choice results in a higher
e and therefore a higher chance of being the optimal UCB
choice. [4]



C. Machine Learning

Machine Learning is the concept of training a model to
approximate an unknown function using a representative set
of data samples. A data sample consists of an input xi and an
output yi. The model is trained to find patterns in the data set
to generate a function f(xi) = ỹi with ỹi ≈ yi. In order to im-
prove the accuracy and learning rate of the Machine Learning
algorithm a preprocessing step called feature extraction is ran
on the input data. This generates a feature vector φi = φ(xi)
of the data sample. Its purpose is to describe the input of the
data sample accurately but reduce insignificant variability of
the input values. [6]

Training a Machine Learning model is divided into two
phases: the training phase and the validation phase. In the
training phase, a portion of the data samples is used to
train the model. The technical side of this training depends
on the machine learning algorithm that is used. For two
examples see subsubsection II-C.1 about Ridge Regression
and subsubsection II-C.2 about Regression Forest models. In
the validation phase, the rest of the data samples are used
to validate the accuracy of the trained model. Dividing the
data set into training and validation sets serves the purpose
of generalization. Generalization means the machine learning
model detects patterns that occur in real data. The opposite
of that is overfitting which lets the model focus on data that
is specific only to the training set but hurts the prediction of
data points outside the training data set. This way of training
a model is called supervised learning. Its name comes from
an external knowledgeable supervisor providing the labeled
training data set. [6]

Here are some notational remarks for the rest of this paper:
• φi ∈ Rp is a feature vector containing p feature values.
• X = (φ1, . . . , φn)

T is a n×p matrix of n feature vectors.
• y = (y1, . . . , yn)

T is the target vector for the dataset.

1) Ridge Regression: A Ridge Regression model is trained
by fitting a linear function

(XT )−1(XTX + αIp)w = y (2)

with Ip being the p× p identity matrix and α a regularization
constant on the training data set (X, y). The goal of the
training is to find a fitting weight vector w by converting
Equation 2:

w = (XTX + αIp)
−1XT y (3)

This weight vector can then be used to predict the target value
of a new input:

fw(xn+1) = wTφn+1 (4)

For α = 0 this model is equal to a simple linear regression
model. For any α > 0 large values in w are penalized which
regularizes the model by avoiding overfitting the model to
training data. Additionally this regularization increases the
numerical stability of ridge regression in case X is rank
deficient (not full ranked) [7]. See Figure 2 for a graphical
representation of the impact of the regularization constant α.

Fig. 2. Ridge Regression with regularization constant α. On the left is the
regression model trained on linear data. On the right the data is expanded
with a 10 degree polynomial expansion. Taken from [8]

The time complexity of training a Ridge Regression model
is bound to the complexity of inverting the p× p Matrix

A = XTX + αIp (5)

in Equation 3 which is in O(p3).
The generalization performance of a ridge regression based

prediction model is dependent on the quality of its feature
set. With uninformative or highly correlated features comes a
deteriorated generalization performance. A preprocessing step
called feature selection is performed on the feature set to work
around the problem of constructing a feature set that does not
suffer from this effect. The two phase forward selection is one
prominent method for feature selection [7]. In this method, one
starts by adding l features to an empty set, always minimizing
the cross-validation error (Forward Selection). After that, the
feature set φi is augmented by new features φij ∗ φik for
j = 1..l and k = j..l (Quadratic expansion). Another Forward
Selection of q features gives the final feature set. The reason
for the first selection is scalability. Uninformative features are
filtered out to not blow up the intermediate feature set with
more uninformative features during the expansion [7].

A quadratic expansion of the feature set improves the
predictive quality of the model even further. Hutter states
that ”[algorithm] runtime can often be better approximated
by a polynomial function than a linear one” [7]. For the same
reason expansions with even higher degrees were performed
for Figure 2.

Due to its computational and conceptual simplicity, and at
the same time predictive competitiveness, Ridge Regression
”has been used most frequently in the past for building
EPMs” [7] (Empirical Performance Model) which are used
to predict the performance of algorithms.

2) Regression Forest: The Regression Forest is another way
of mapping a feature vector to a target value. A Regression
Forest consists of several Regression Trees. The leaves of a
Regression Tree partition the input/feature space into disjoint
Regions R1, . . . , RM . The predicted target value for a new



input is then

µ(xn+1) =

M∑
m=1

cm · 1x∈Rm
(6)

where 1x∈Rm
is the indicator function and cm is the average

of all yi with xi ∈ Rm. The complexity of prediction with a
Regression Tree is linear in the depth of the tree. [7]

The construction of a Regression Tree starts with the set
of all training points D = (φ1, y1), . . . , (φn, yn) at the root
node of the tree. From there on the data points of a node are
recursively split into two child regions R1(j, s) and R2(j, s).
A data point xn falls into region R1(j, s) if φnj < s and into
R2(j, s) otherwise. The split variable j and split value s are
to be selected to minimize the squared difference to the mean
in each region:

l(j, s) =
∑

xi∈R1(j,s)

(yi − c1)2 +
∑

xi∈R2(j,s)

(yi − c2)2 (7)

To avoid overfitting a node is split only if its region contains
a number of nodes greater than nmin, rather than splitting
until every node contains only data points with equal features.
The complexity of constructing such a Regression Tree is at
best O(p · n log2 n) in case of a balanced Tree. At worst its
complexity is O(p · n2 log n) where only ever singular nodes
are split of the dataset. According to Hutter et al. ”[Regression]
trees are not perfectly balanced, but are much closer to the best
case than to the worst case.” [7]

The use of a Regression Forest is yet another attempt
to address the persistent problem of overfitting. Instead of
training and predicting with only one tree, a set of Regression
Trees is constructed. Each of the trees is trained a little
different. One has the choice of using different subsets of the
training data to train a tree or only using random subsets of
the feature space as split variables. Hutter et al. recommend
the latter based on some, only mentioned, experiments. [7]

Prediction with a Regression Forest is done by computing
the mean over all predicted outputs of the trees within the
forest. The predictive quality grows with the number of
trees, as do the computational costs of construction and
prediction. [7]

3) Reinforcement Learning: Reinforcement Learning takes
a different approach of training models compared to the
previously described supervised learning. Instead of being
given a training dataset that is (hopefully) representative of
the entire problem space, the reinforcement learning model is
put in a position where it explores the problem space on its
own. It does this exploration while simultaneously trying to
achive a certain goal [9]. This ties it back to the Contextual
Multi-Armed Bandit problem from subsection II-B.

Training a reinforcement learning model is a constant cycle
of ”sensation, action, and goal” [9]. One starts by observing
and analyzing the current situation/context, which can formally
be described as taking the input sample xi+1 and producing
its feature vector φi+1. The second step is to pick an action

based on its predicted output ỹi+1. The final step is to compare
the predicted output ỹi+1 to the actual observed output of
the performed action yi+1 to work the consequence into the
prediction model such that future actions bring it closer to its
goal. In reality, it is computationally too expensive to retrain
the model after every single action. Therefore one can wait
until a minimum number of new data samples is available and
only then retrain the prediction model. [4]

III. ANALYSIS OF REFERENCE PROJECTS

A. SATzilla07

SATzilla [10] is a collective solver for the Propositional
Satisfiability Problem (see subsubsection III-A.1). Collective
solver means that instead of trying to optimize a single solver
an algorithm selection model decides for every given instance
which solver to use.

The version of SATzilla that is described and analyzed in
this section is SATzilla07, which was SATzilla’s entry into
the SAT 2007 competition. All of the performance analysis
that is done in subsubsection III-A.3 of this paper is based
on the results in this competition.

1) The Propositional Satisfiability Problem - SAT: In the
rest of this paper the problem of Propositional Satisfiability
will be abbreviated by SAT.

To understand the applicability of the algorithm selection
problem to SAT, there will be an explanation of SAT itself
as well as a brief overview of two classes of solvers in this
section.

SAT is the problem of determining whether one can assign
truth values to the variables of a formula of propositional
calculus such that the formula evaluates to true. It has been
shown that this problem is NP-complete. [11]

With its origins in Logic, which ”as a science was invented
by Aristotle” [12] in Ancient Athens, it is the oldest of all
problems known to be NP-complete [11]. It has not only
ties to Logic but also to other scientific fields like graph
theory, computer science, and more. Because of these ties most
practical NP-hard problems, or at least component problems of
these, can efficiently be translated to SAT problems, resulting
in an ever-increasing interest in good SAT solvers. [12]

More formally SAT can be defined as follows.
• U = {u1, . . . , un} is the set of boolean variables.
• T : U 7→ {true, false} is the (partial) truth assignment for

these variables.
• literals u and ¬u (see Equation 8 for their evaluation

under T )
• a clause C is the disjunction (∨) of literals
• a formula φ is the conjunction (∧) of clauses

u is true under T ⇐⇒ T (u) = true

¬u is true under T ⇐⇒ T (u) = false
(8)

A formula φ is satisfied by T iff. all clauses C ∈ φ are
satisfied by T . A truth assignment T satisfies C iff. at least
one literal u ∈ C is true under T . [11]



{{a ∨ ¬b} ∧ {b}} (9)

{{a} ∧ {¬a}} (10)

Fig. 3. examples for a satisfiable formula (9, by setting a to true and b to
true) and an unsatisfiable formula (10)

Resolution based solvers are the first class of SAT solvers
to be discussed here. The idea behind this approach is to
eliminate variables from the formula via resolution and by this
to find contradictions that prove the unsatisfiability of formula
φ. Following are the rules of resolution:
• {ui∨V }∧{¬ui∨W} resolves to {V ∨W} (with at least

one of V and W not empty)
• {ui} ∧ {¬ui} resolves to {⊥}

To eliminate a variable ui from the formula φ, φ is first
augmented by any pair of clauses Ci, Cj with ui ∈ Ci and
¬ui ∈ Cj . Then all clauses Ci ∈ φ with ui ∈ Ci or ¬ui ∈ Ci

are removed from φ. [12]
If during any step of the resolution the empty clause {⊥}

is generated, φ is unsatisfiable. Additionally, this resolution is
refutation complete, meaning it is guaranteed to produce the
empty clause if φ is unsatisfiable [12]. Therefore this solver
is guaranteed to classify the formula correctly as sat. or unsat.
if ran until all variables are eliminated.

Local Search based solvers try to find solutions of the
formula to show satisfiability. [11]

For this local search, a cost function c is defined over the
space of truth assignments. The cost of a given assignment Ti
is assessed by counting the clauses C ∈ φ that are not satisfied
by Ti. Any global minimum Ti of this cost function c satisfies
φ iff. c(Ti) = 0. [11]

To start of a random initial truth assignment T0 is taken.
In every step after that, Ti is improved by evaluating the
cost of any assignment with Hamming distance 1 from Ti.
The best neighbour of Ti becomes the next Ti+1, even if
c(Ti+1) > c(Ti). This is different from conventional local
search algorithms but is essential for the search to not get stuck
in local minima. Cook writes in his paper that ”if restricted to
improving steps, [local search] performs very poorly, and in
practice steps which make no change to the score dominate the
search” [11]. Despite this change to the search algorithm it still
can get stuck in local minima. Therefore a maximum amount
of search steps until a retry, and also a maximum amount
of retries, are defined. After all retries are executed without
finding a satisfying truth assignment the algorithm classifies
the given formula as unsatisfiable. [11]

Note the key differences between the two solving
approaches. The Resolution solver tries to prove
unsatisfiability via contradiction. The Local Search solver
looks for satisfying solutions. The former will give definite
and proven answers for any formula and the latter only in case
of a satisfiable one. It is because solvers like Local Search
can only prove one of their answers one has to include the
performance metric of classifying accuracy in his algorithm

selection model.

2) The Algorithm Portfolio: SATzilla07 was built around
an Algorithm Portfolio which is basically a selection mapping
(see subsection II-A) for the SAT problem. A regression-
based model was used, meaning for each solver a Ridge
Regression (see subsubsection II-C.1) model was trained to
predict its runtime, and the selection then made based upon
those predictions. [10]

For each category of the SAT 2007 Competition (see
subsubsection III-A.3) a separate model of SATzilla was
trained to maximize its performance in each category [10].
The training data for each category consisted of the respective
datasets from previous SAT competitions, for example, the
model competing on the random category was trained on the
combined random datasets from previous competitions. [10]
Their overall instance collection held 4811 problem instances.
40% of these were used as training samples, 30% went into the
validation set, and the remaining 30% were used to analyze
SATzilla’s performance (see subsubsection III-A.3). [10]

Touching back on the definitions of the Automatic Al-
gorithm Selection problem (see subsection II-A) we have
formulas of propositional calculus filling the problem space
P and some candidate SAT solvers in the algorithm space
A [10]. As for the feature space, a total of 48 features were
hand picked as a preliminary set, among those were, for
example, the number of clauses, the number of variables,
statistics about the ratio of positive and negative literals in
each clause, and some probing features for different solving
approaches. See [13] for the entire list of preliminary features.
Afterwards a two phase forward selection (see Equation II-
C.1) was performed to construct the final set of features
F [10]. Unfortunately, there was no specific definition of a
performance measure mentioned in Xu’s paper [10], but as he
includes the speed of execution and classifying accuracy in
his performance analysis a good guess might be that it is a
mixture of at least those two.

To generate a labeled training dataset for the Ridge Re-
gression models, a set of formulas were handpicked to be
as representative of the practical use case as possible. Ev-
ery formula was then solved by every candidate solver and
their performances noted as future target labels. Lastly, the
features of all training formulas were generated and coupled
with the target labels to form the final training set for each
algorithm [10]. In the worst case, this process of evaluating
the performance of the seven used solvers on all 1925 training
samples with a cut-off time of 1200 CPU seconds could have
taken a total of 16170000 CPU seconds (187.2 days). Note
though that only about 32% of instances were not solved
within the time limit by any solver [10]. Consequently the
runtime will have been below that, how far was not mentioned.

It is not guaranteed that every feature can be computed
for every instance. Therefore formulas for which the feature
computation failed were excluded from the training dataset,
and the solver with the best average runtime on those formulas
was put in place as a backup solver. [10]



As the last step before training two presolver were selected.
A presolver is an algorithm that solves ”a large proportion of
instances quickly” [10]. To let the Ridge Regression models
focus on hard instances (ie. they cannot be solved by the
presolvers quickly) those instances were filtered out of the
training set. [10]

With the final training dataset, the Ridge Regression models
for every algorithm were trained as explained in subsubsec-
tion II-C.1.

The previously constructed Algorithm Portfolio is then used
on a per-instance basis as follows: [10]
• Presolvers are run unconditionally for a short amount of

time to catch easy problem instances.
• The feature vector is computed for the given instance.
• In case the feature vector could not be computed the

instance is solved by the backup solver.
• Otherwise, the runtime of each algorithm is predicted by

the model, and the expected best algorithm solves the
instance.

The pre- and backupsolvers are optimizations that are
tailored to SAT. They are described here to illustrate that
optimizations can be made outside the Machine Learning
models.

3) Performance Analysis: For the performance analysis of
the previously described SATzilla07 its results in the SAT 2007
Contest are reviewed. The Contest is held for three different
categories:
• Random contains randomly generated SAT formulas.
• Handmade formulas are constructed to give a challenge

to known solvers.
• Industrial formulas are typically very large and represent

real-world applications.
Figures 4 to 7 are all built up the same. In these figures,

SATzilla07’s performance is compared to three component
solvers (meaning not collective) and the oracle which sim-
ulates an upper performance (ie. lower runtime) bound of
SATzilla07 by always choosing the optimal solver. On the left
are the average runtimes over the entire category. The white
bar on top of the SATzilla column is the average duration of
the feature computation. On the right is the cumulative runtime
distribution function for every solver. Runtimes of pre-solving,
as well as the average feature computation, are indicated by
the strips on the bottom.

In the random category (see Figure 4) SATzilla07 solved
instances on average about three times faster than the best
component solver. Its average runtime was only about 30%
over the achievable optimum. In addition to that, it managed
to solve nearly all problem instances within the time limit
which is about 15% more than the fastest component solver.
Of its solved problems, 94% were classified correctly. [10]

In the handmade category (see Figure 5) SATzilla07 was on
average nearly twice as fast compared to the fastest component
solver but also took twice the time of the oracle. It managed
to solve about 95% of the given instances, again around

Fig. 4. Performance of SATzilla07 in the random category of the SAT 2007
competition, taken from [10]

Fig. 5. Performance of SATzilla07 in the handmade category of the SAT
2007 competition, taken from [10]

15% more than the best component solver. The classification
accuracy dropped to 70% which is its worst value between all
categories. [10]

The industrial category (see Figure 6) is where SATzilla07
runtime-wise performed the worst relative to the fastest com-
ponent solver, namely only around 23% faster. It took on aver-
age a little over twice the time to solve the problems compared
to the oracle. This is also the only category where the feature
computation with around 6% made up a considerable amount
of the average solution time. Despite the longer execution
times it still was able to solve around 95% of the given
formulas, with 92% of those being classified correctly. [10]

SATzilla07’s overall relative performance (see Figure 7)
looks closest to the handmade category. It was twice as fast
as the best component solver but also twice as slow as the
oracle. It still managed to solve around 95% of problems
within the time limit with the closest component solver being
at around 75%. The overall classification accuracy lies by
78%. [10]

Fig. 6. Performance of SATzilla07 in the industrial category of the SAT
2007 competition, taken from [10]



Fig. 7. Performance of SATzilla07 in the combination of all categories of
the SAT 2007 competition, taken from [10]

B. Reinforcement Learning for Automatic Online Algorithm
Selection

The second reference project of this research is the sci-
entific paper ”Reinforcement Learning for Automatic Online
Algorithm Selection - an Empirical Study” written by Hans
Degroote et al. He states that his motivation for this research
came from observing that the machine learning based state of
the art algorithm selection models left all the newly generated
data during usage unused. Therefore he developed a Rein-
forcement Learning based (see subsubsection II-C.3) model
that continues its training on this new data. [4]

A Regression Forest model (see subsubsection II-C.2 was
used as a predictor for the performance of each algorithm and
the selection was then made based on this prediction. The
problem fields where this approach was tested came from
ASLIB, which is a database containing several algorithm
selection problem datasets [4]. These datasets included
problem instances, instance features, and solving algorithms
for each problem field. Included problem fields were, for
example, different satisfiability problems, constraint solving,
and container pre-marshaling. For the entire list, as well as
details on each dataset see [13].

1) Solution Strategy: The Reinforcement Learning ap-
proach leaves it to the user whether or not to perform some ini-
tial training of the model. In this case, the decision was made
to use 10% of all data as an initial offline training dataset [4].
Following the offline training is the online phase which used
80% of the dataset. Predictions for the performance of every
algorithm are made, the optimal algorithm according to the
current strategy (see subsection II-B) is selected and executed,
and the performance of the selected algorithm, coupled with
the instance features, is used to train its prediction model [4].
Finally, the remaining 10% of the data were used to validate
the model after all of the training was done. [4]

Note that even though 90% of the overall data was used
for training, no algorithm is trained with its performance
information on all of those training instances, as during the
online phase each instance was only solved by one algorithm.

Using so many different problem fields as a benchmark
for the same algorithm meant that a raw machine learning
model without outside optimizations was used as a selection
mapping. [4]

2) Performance Analysis: To start this section, the figures
used to represent the performance analysis are explained. Each
algorithm is evaluated with a PAR10 score [4]. The PAR10
score is either the time it took the algorithm to solve a problem
instance within the time limit, or the time limit multiplied by
10 if it failed to do so. This multiplication by 10 represents a
penalty for not being able to solve the instance.

A state of the art reference performance is indicated by the
red line in each figure. This performance was achieved by the
regression forest based solver from LLAMA [14].

As an additional reference, the performance of a greedy-
full-information model was included. It is trained with the
performance information of every algorithm executing all
previous instances. [4]

For the evaluation every score is normalized. Normalizing
is done by awarding the virtual best solver (like the oracle for
SATzilla07, subsubsection III-A.3) a score of 0. The score of
1 represents the single best solver’s average performance for
all instances.

The parameters of the experiments were kept the same for
all experiments and are as follows:

• nmin for a regression tree: 5
• amount of trees for regression forest: 500
• LCB λ: 1
• ε-greedy ε: 0.05
• the minimal amount of data points to retrain model for

an algorithm: 16
• amount of repetitions per experiment: 10

The first comparison was made between learning during
the online phase (greedy) and not doing so (greedyNL). Both
methods are trained during the offline phase. The average
performance of the greedy method during the online phase
is already better than the greedyNL one, with the greedyFI
being ahead of both (see Figure 8).

In the validation phase, the lead of the greedy method over
the greedyNL is further extended. It is noteworthy that the the
greedy method comes close to the benchmark performance of
LLAMA (see Figure 9). At the point of validation the greedyFI
method is trained with the same information as the LLAMA
selection mapping, hence the similar performance. [4]

Figures 8 and 9 visualize the comparison between the dif-
ferent strategies on how to solve the Contextual Multi-Armed
Bandit problem (see subsection II-B). The first observation
is that the LCB and the greedy methods performed nearly
identically during the online training, as well as the validation
phase. Secondly, algorithms selected by the ε-greedy strategy
had a worse average runtime during the online phase but
performed slightly better during the validation when compared
to the greedy method. An improvement was observed for all
learning strategies.

What this paper fails to mention is the time each run spent
retraining its models. It would have made the comparison of
the greedy and the greedyNL strategies much more useful. One
desireable analysis could have been that the greedy method
lost some time to the retraining of its predictive models,



Fig. 8. Comparing the different exploration strategies, greedyFI, and
greedyNL during the online phase. Taken from [4]

Fig. 9. Comparing the finished training of the exploration strategies,
greedyFI, and greedyNL in the validation phase. Taken from [4]

but overtook the greedyNL method after n solved problem
instances.

IV. CONCLUSION

The results of the first reference project show that super-
vised machine learning based methods are state of the art
selectors for the offline automatic algorithm selection problem.
In problem fields like propositional satisfiability its average
performance is better than that of any single solver.

Furthermore the analysis of the second reference project
shows some promise for a reinforcement learning based ap-
proach to training the selector to reduce the initial training
overhead of supervised learning. However the given perfor-
mance data for this project was lacking in the key areas to
confirm this promise.

Future research could be invested to compare the methods in
greater detail, mainly regarding the minimization of the overall
execution time.

REFERENCES

[1] F. A. Gratl, S. Seckler, N. Tchipev, H.-J. Bungartz, and P. Neumann,
“Autopas: Auto-tuning for particle simulations,” in 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). Rio
de Janeiro: IEEE, May 2019.

[2] J. R. Rice, “The algorithm selection problem.” Advances in
Computers, vol. 15, pp. 65–118, 1976. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/ac/ac15.html

[3] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” AI Magazine, vol. 35, pp. 48–60, 2014.

[4] H. Degroote, B. Bischl, L. Kotthoff, and P. De Causmaecker,
“Reinforcement learning for automatic online algorithm selection - an
empirical study,” vol. 1649, 2016, pp. 93–101. [Online]. Available:
https://lirias.kuleuven.be/retrieve/403396

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp.
235–256, May 2002. [Online]. Available: https://doi.org/10.1023/A:
1013689704352

[6] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[7] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm
runtime prediction: The state of the art,” CoRR, vol. abs/1211.0906,
2012. [Online]. Available: http://arxiv.org/abs/1211.0906

[8] A. Géron, “Hands-on machine learning with scikit-learn and
tensorflow by aurélien géron,” https://www.oreilly.com/library/view/
hands-on-machine-learning/9781491962282/ch04.html, accessed:
18.6.2019.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[10] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-
based algorithm selection for SAT,” CoRR, vol. abs/1111.2249, 2011.
[Online]. Available: http://arxiv.org/abs/1111.2249

[11] S. A. Cook and D. Mitchell, “Finding hard instances of the satisfiability
problem: A survey,” vol. 35, 01 2000.

[12] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook
of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and
Applications. Amsterdam, The Netherlands, The Netherlands: IOS
Press, 2009.

[13] B. Bischl, P. Kerschke, L. Kotthoff, M. T. Lindauer, Y. Malitsky,
A. Fréchette, H. H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “Aslib: A benchmark library for algorithm selection,”
CoRR, vol. abs/1506.02465, 2015.

[14] L. Kotthoff, “LLAMA: leveraging learning to automatically manage
algorithms,” CoRR, vol. abs/1306.1031, 2013.

http://dblp.uni-trier.de/db/journals/ac/ac15.html
http://dblp.uni-trier.de/db/journals/ac/ac15.html
https://lirias.kuleuven.be/retrieve/403396
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
http://arxiv.org/abs/1211.0906
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
http://incompleteideas.net/book/the-book-2nd.html
http://arxiv.org/abs/1111.2249

	Introduction
	Theoretical Background
	Automatic Algorithm Selection
	Contextual Multi-Armed Bandit
	Machine Learning
	Ridge Regression
	Regression Forest
	Reinforcement Learning


	Analysis of Reference Projects
	SATzilla07
	The Propositional Satisfiability Problem - SAT
	The Algorithm Portfolio
	Performance Analysis

	Reinforcement Learning for Automatic Online Algorithm Selection
	Solution Strategy
	Performance Analysis


	Conclusion
	References

