
Technische Universität München

Fakultät für Mathematik
Lehrstuhl M2 - Numerische Mathematik (Prof. Dr. B. Wohlmuth)

Accelerating Isogeometric Analysis and
Matrix-free Finite Element Methods Using the

Surrogate Matrix Methodology

Daniel Peter Drzisga, M.Sc.

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Massimo Fornasier

Prüfer der Dissertation:

1. Prof. Dr. Barbara Wohlmuth

2. Prof. Dr. Matthias Möller

3. Prof. Dr. Giancarlo Sangalli

Die Dissertation wurde am 13.08.2020 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Mathematik am 17.11.2020 angenommen.

Zusammenfassung
In der vorliegenden Arbeit werden Methoden zur Beschleunigung der Matrix Assem-
blierung in der isogeometrischen Analyse und matrixfreier Finite-Elemente Methoden
vorgestellt. Die grundlegende Idee dieser Methoden besteht darin, die Matrixeinträge
der linearen Gleichungssysteme, welche aus Diskretisierungen von partiellen Diffe-
rentialgleichungen stammen, zu approximieren. Auf diese Weise können unnötige
Berechnungen vermieden werden, was letztendlich zu kürzeren Laufzeiten bei der
Bestimmung von Lösungen dieser Systeme führt. Die Hauptziele dieser Arbeit sind die
erste mathematische Analyse dieser Methoden und die Verifizierung deren Genauig-
keit und Leistung, indem sie auf lineare und nichtlineare Probleme aus verschiedenen
Bereichen der Wissenschaft und Technik angewandt werden.

Abstract
In this thesis, methods for accelerating matrix assembly in isogeometric analysis
and stencil-based matrix-free finite element methods are presented. Their functional
principle is the approximation of matrix entries in linear systems of equations origi-
nating from discretizations of partial differential equations. In this way, unnecessary
over-computation may be avoided which ultimately results in a shorter run-time
when determining solutions to these systems. The main objectives of this thesis
are the first mathematical analysis of these methods and the verification of their
accuracy and performance by applying them to linear and nonlinear problems from
various fields of science and engineering.

i

Acknowledgements
The list of people who have, in any way, made valuable contributions to the completion
of this work is long. First and foremost, I want to thank my supervisor Prof. Dr.
Barbara Wohlmuth for her patience, good advice, and support that I have enjoyed
since the beginning of my Bachelor studies. I am also thankful to Prof. Dr. Ulrich
Rüde for his ongoing support and for assisting me in the high performance computing
aspects of my research. I am very grateful to my reviewers Prof. Dr. Matthias Möller
and Prof. Giancarlo Sangalli, Ph.D. I also want to thank Prof. Dr. Massimo Fornasier
for agreeing to take the chair of the examining committee.

Moreover, I want to thank the past and present members of the M2 group: First,
I want to thank Brendan Keith, Ph.D., for his support, the productive discussions,
and his always encouraging words. Working together with you is always a pleasure.
I also want to greatly thank my former long-time office mate Dr. Markus Huber
for supporting me in the early stages of my Ph.D. studies. I want to thank Dr.
Linus Wunderlich for being my mentor and I am grateful to my Bachelor’s and
Master’s thesis advisor Dr. Tobias Köppl for supporting me in my first scientific
steps. Furthermore, I am thankful to my fellow Ph.D. students, the postdocs, and the
former members of the group for the countless chats, discussions, and entertaining
coffee and lunch breaks. A special thanks goes to Jenny Radeck for her kind help
in dealing with bureaucratic issues and to Prof. Dr. Rainer Callies for his pieces
of advice and counsels. A big thank you goes to Dr. Klaus-Dieter Reinsch who
always had an open ear for every issue. Thank you all for creating such a pleasant,
productive, and friendly atmosphere at work.

During my research I had the possibility to work with and to learn a lot from
many amazing people from different fields. From the Chair for System Simulation in
Erlangen, I want to thank Dr. Dominik Bartuschat, Dominik Thönnes, and Nils Kohl
for their helpfulness regarding scientific and high performance computing questions.
From the Department of Earth and Environmental Sciences in Munich, I want to
thank Dr. Simon Bauer, Prof. Dr. Hans-Peter Bunge, and Dr. Marcus Mohr for the
fruitful discussions about geophysics and scientific computing. Further, I want to
thank my fellow student and colleague Johannes Haubner for exchanging interesting
ideas during breaks. I also want to thank my collaborators Prof. Robert Scheichl,
Univ.-Prof. Dr. Walter Zulehner, Dr. Björn Gmeiner, Dr. Lorenz John, and Dr.
Christian Waluga for their cooperativeness. A special thanks goes to Tzanio Kolev,
Ph.D., and Veselin Dobrev, Ph.D., for hosting me at the Lawrence Livermore National
Laboratory and allowing me to experience an exciting time in California.

I am very thankful to all the proofreaders of the present text. Moreover, I want
to thank all my friends who have supported me in various ways over the last years.
Furthermore, I want to express my greatest gratitude to my dear girlfriend Leah
who always supported me in all these years. In the end, none of this would have
been possible without the encouragement and support of my parents and my brother.
Thank you.

iii

List of contributed articles
This thesis is based on the following articles:

Core articles as principal author

I) Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: a priori error estimation
SIAM Journal on Scientific Computing 41.6 (2019): A3806–A3838
(see also article [40] in the bibliography)

II) Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: Low-cost assembly for isogeomet-
ric analysis
Computer Methods in Applied Mechanics and Engineering 361 (2020): 112776
(see also article [43] in the bibliography)

III) Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: Accelerating isogeometric analysis
of waves
Computer Methods in Applied Mechanics and Engineering 372 (2020): 113322
(see also article [42] in the bibliography)

Further articles

IV) Daniel Drzisga, Ulrich Rüde, and Barbara Wohlmuth
Stencil scaling for vector-valued PDEs on hybrid grids with applica-
tions to generalized Newtonian fluids
SIAM Journal on Scientific Computing 42.6 (2020): B1429–B1461
(see also article [45] in the bibliography)

I, Daniel Drzisga, am the principal author of the articles I, II, and III.

v

List of further contributed articles
The following selected articles include further contributions by the author which
are not part of this thesis. They are included for the sake of completeness only.
Note that the author of this thesis does not claim to be the principal author of the
following articles.

Further articles which are not part of this thesis

• Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: A reference implementation for
low-cost assembly in isogeometric analysis
MethodsX (2020): 100813
(see also article [41] in the bibliography)

• Nils Kohl, Dominik Thönnes, Daniel Drzisga, Dominik Bartuschat, and Ulrich
Rüde
The HyTeG finite-element software framework for scalable multigrid
solvers
International Journal of Parallel, Emergent and Distributed Systems 34.5 (2019):
477-496
(see also article [69] in the bibliography)

• Simon Bauer, Daniel Drzisga, Marcus Mohr, Ulrich Rüde, Christian Waluga, and
Barbara Wohlmuth
A stencil scaling approach for accelerating matrix-free finite element
implementations
SIAM Journal on Scientific Computing 40.6 (2018): C748-C778
(see also article [14] in the bibliography)

• Daniel Drzisga, Lorenz John, Ulrich Rüde, Barbara Wohlmuth, and Walter
Zulehner
On the analysis of block smoothers for saddle point problems
SIAM Journal on Matrix Analysis and Applications 39.2 (2018): 932-960
(see also article [39] in the bibliography)

• Daniel Drzisga, Björn Gmeiner, Ulrich Rüde, Robert Scheichl, and Barbara
Wohlmuth
Scheduling massively parallel multigrid for multilevel Monte Carlo
methods
SIAM Journal on Scientific Computing 39.5 (2017): S873-S897
(see also article [38] in the bibliography)

• Daniel Drzisga, Tobias Köppl, Ulrich Pohl, Rainer Helmig, and Barbara Wohlmuth
Numerical modeling of compensation mechanisms for peripheral arte-
rial stenoses
Computers in biology and medicine 70 (2016): 190-201
(see also article [44] in the bibliography)

vi

Contents
1. Introduction 1

1.1. Open research issues . 1
1.2. State of the art . 4
1.3. Outline . 6
1.4. Summary of results . 6

2. Mathematical background 9
2.1. Introduction of function spaces . 9
2.2. Definition of the model problem . 10
2.3. Finite element method . 11
2.4. Isogeometric analysis . 13
2.5. Variational crimes . 15
2.6. Further problems . 18

3. Solution techniques 23
3.1. Matrix assembly, matrix-free methods, and surrogate matrices 24
3.2. Direct and iterative solvers . 28
3.3. Nonlinear problems . 31
3.4. Nonlinear time integration . 34

4. Performance modeling 37

Acronyms 41

Bibliography 43

A. Core articles 51
A.1. The surrogate matrix methodology: a priori error estimation 51
A.2. The surrogate matrix methodology: Low-cost assembly for isogeomet-

ric analysis . 89
A.3. The surrogate matrix methodology: Accelerating isogeometric analysis

of waves . 127

B. Further articles 157
B.1. Stencil scaling for vector-valued PDEs on hybrid grids with applica-

tions to generalized Newtonian fluids 157

vii

1. Introduction
In the field of science and engineering, one often requires to solve partial differential
equations (PDEs) which model the underlying physical phenomena. In many scenar-
ios, it can be shown that there exists a solution to a PDE, but it cannot be computed
analytically. Since one is still interested in an approximation of the solution, the
continuous formulation is discretized and the discrete problem is solved by computers.
Typically, these discretizations result in large linear systems described by sparse
matrices. The overarching topic of this thesis is accelerating the assembly of these
sparse matrices as well as accelerating the matrix-free action of these linear operators
while casting the techniques that make this possible into a mathematical framework
for error analysis.

1.1. Open research issues
The cost of high performance computing (HPC) is expensive in terms of initial
hardware investments but also in terms of running costs due to energy consumption,
labor costs, and facility expenses. In particular, energy consumption is one of the
leading cost factors as can be observed in emerging rankings like the GREEN5001

list that ranks the supercomputers by energy efficiency instead of the absolute
performance. These considerations gain additional relevance in current times since
the first exascale computers which can perform at least a quintillion (1018) floating
point operations per second (FLOPS) are expected to be delivered by the end of the
year 2021 [7]. It is predicted that the power consumption of these supercomputers
will be around 20MW [103]. To understand the enormous extent of this number,
it can be explained by means of a vivid example. According to [101], the average
annual electricity consumption for a U.S. residential utility customer was 10 972 kWh
in 2018, yielding an average power consumption of about 1.253 kW. This means
an exascale computer running at full load will probably require the same amount
of energy as about 15 962 households. Assuming an average residential electricity
price of $0.1287/(kWh) [100] results in a total cost of about $22 548 240 to power
an exascale supercomputer for a year. Therefore, it is necessary to find measures
for reducing the overall energy consumption by making better use of the available
resources.

The required energy of a computer is directly related to the computational work
its compute processors perform. This implies that reducing the absolute computing
time of a program is not only a profitable goal for the end user, but also a way to
reduce the energy consumption. In the past, users could rely on Moore’s law which
states that new developments in hardware yield computers running twice as fast
every 12 to 24 months. However, Moore’s law is slowing down and will soon come to
an end [104]. Therefore, decreasing the computing time of an application without
modifying its implementation is infeasible in the near future.

In order to reduce the computing time, implementations of existing and already
established algorithms can be refactored and optimized for the underlying and

1https://www.top500.org/lists/green500/2020/06/

1

https://www.top500.org/lists/green500/2020/06/

future hardware. This may include the adaption of codes for highly specialized
accelerators. Among those are, for instance, graphics processing units (GPUs) and
field programmable gate arrays (FPGAs). Moreover, it is possible to exploit fine-
grained concurrency by using single instruction, multiple data (SIMD) instructions
on modern central processing units (CPUs). However, these adaptions are not always
feasible since the programs need to meet certain criteria which are often difficult to
meet in practical applications. For instance, unavoidable data dependencies between
computations may prevent the utilization of SIMD instructions and the execution
falls back on utilizing sub-optimal scalar instructions. Likewise, data-intensive
programs are prone to be limited by the memory bandwidth and cannot exploit the
full potential of the CPUs and accelerators. In those cases where it is not possible to
adapt the implementations directly, the underlying algorithms need to be revised
from the ground up in order to obtain a better performance.

A large share of programs running on supercomputers are targeted for solving
computationally intensive scientific problems in various fields. For example, these
fields include weather forecasting, climate research, aerodynamics simulations, and
geophysical applications used for earthquake forecasting and plate tectonics simula-
tions. In order to make meaningful predictions in these fields, the simulations require
computations with highly resolved data which is only achievable using the resources
supercomputers provide. In these applications, innovations and improvements must
increasingly rely on specialized algorithms for the problems of interest as well as
better implementations suited for future supercomputers. Therefore, it is of utmost
importance to carefully rethink and reconstruct long-established algorithms and to
replace them by newly developed methods. The revision of methods in scientific
computing takes up a large part of this thesis. In particular, this work is focusing on
numerical methods for solving PDEs that model problems in science and engineering.

Practical simulations in this field of work are subject to a large number of possible
sources of error. They are mainly categorizable into modeling error, numerical error,
and data error. The total error of a solution is composed of contributions of all
of these types of errors. One possible way of reducing the computing time of a
simulation is the avoidance of performing too much unnecessary work which is also
known as over-computation. Over-computation in this context means reducing a
single source of error way below the total error. For instance, solving a linear system
obtained from a discretization of a PDE down to the floating point precision of the
CPU will not necessarily reduce the total error, since the discretization error may
dominate all the other sources of error. This effect is also known as over-solving a
problem and may be avoided in this case, by using iterative solvers which solve a
problem only down to a given residual tolerance. Ideally, this tolerance is chosen
as large as possible but still small enough that the discretization error dominates.
However, obtaining an a priori estimate on the scale of the discretization error is
often difficult or even impossible in the first place. In other situations, sources of
over-computation are less obvious and avoiding them might require the development
of fundamentally new algorithms.

This thesis deals with finding and analyzing new ways which reduce over-computation
when solving PDEs. The idea being pursued here is developing methods which in-

2

tentionally introduce additional consistency errors in the solution. The ultimate
goal is that these consistency errors are much smaller than the total error and using
these methods requires a much shorter computing time. Under these premises, the
following research questions arise:

• In which steps of the PDE solution process can over-computation be further
reduced?

• Is it possible to quantify the errors and to control the accuracy when artificial
consistency errors are introduced through a reduction of over-computation?

• What are the conditions which make an efficient reduction of over-computation
possible?

• To which problems can these methods be applied to?

• What is the achievable speed-up?

• How can the performance of a method be quantified and compared?

In order to address these questions, we first make a few assumptions on the methods
used here. In this work, we restrict ourselves to the Bubnov–Galerkin form of the
finite element method (FEM) [97] and isogeometric analysis (IGA) [34, 65] for the
discretization of PDEs. In these methods, one or more steps involve solving a linear
system. Usually, these linear systems are written in matrix form in which the global
matrix is assembled from contributions of smaller local matrices. Depending on the
discretization parameters, the global matrices are usually large and sparse, whereas
the local matrices are typically small and dense. Especially in IGA, it is a well-known
fact that in traditional methods, assembling the matrices takes up a large part of
the overall time required to obtain a solution. This fact may be highlighted with the
following quote from the 2014 review article [37]:

“[…] at the moment the assembly of the matrix is the most time-consuming
part of isogeometric codes. The development of optimal assembly pro-
cedures is an important task required to render isogeometric methods a
competitive technology.”

Therefore, a large part of the present work targets the development of new assembly
procedures for IGA.

Nevertheless, even if these matrices are stored in compressed formats, they require
significantly more memory than what is needed to store the solution vectors. But not
only the memory consumption presents a challenge, also the required data transfers
and latency in loading the matrix indices and entries needs to be considered. In
particular, data transport does not only include communication across compute nodes,
but also the data transport within a compute node itself. Specifically, this includes
data movement from the main memory to the CPU and within a single CPU between
the different layers of caches and the registers [57]. An important characteristic
for quantifying the efficiency of numerical algorithms on modern computers is the

3

arithmetic intensity, i.e., the ratio of floating point operations (FLOPs) performed
per byte of memory access [57].

In order to improve on the memory consumption and data transfers, matrix-free
methods present a possible remedy. Matrix-free methods only compute the results
of matrix vector products (MVPs) without requiring an assembled global matrix
which consumes a lot of memory and causes a lot of memory traffic when its data is
accessed. The fact that most iterative solvers only require the results of MVPs and
not the actual entries of the matrix, makes these methods even more attractive.

In the following subsection, we present the state of the art of accelerated matrix
assembly methods for IGA and matrix-free approaches for the FEM.

1.2. State of the art
The Bubnov–Galerkin IGA method is a relatively new approach to the discretization
of PDEs. Its idea is strongly related to isoparametric FEMs but with the main
difference that the underlying basis functions are replaced by non-uniform rational
B-splines (NURBS) [63]. It was shown by Hughes et al. [65] that the usage of such
bases improves the interoperability between computer-aided design (CAD) and the
analysis of PDEs. However, this is not the only benefit of the IGA approach, as it has
been demonstrated in a vast amount of IGA literature. For instance, the arbitrary
smoothness of NURBS bases may improve the accuracy per degree of freedom with
respect to the FEM [34, 36, 37]. This property also facilitates the discretization of
high-order PDEs [63, 67]. These features of IGA make it a successful method in
modern computational science and engineering research. Nonetheless, assembling the
matrices takes up a large part of the overall time required to obtain a solution [37,
91]. Therefore, a lot of work deals with the acceleration of matrix assembly in IGA.

One prominent approach is the utilization of reduced integration rules for the
integration of the weak forms [8, 50, 60, 66, 93]. The objective in these approaches is
to determine optimal integration strategies which yield a similar accuracy and stability
behavior as the full integration rules, but require significantly less computational
work. Another related approach is the integration by interpolation and lookup (IIL)
proposed in [78, 79] and extended in [87]. In these works, an integrand term
from the weak form composed of the PDE coefficients and the geometry mapping
is approximated. A further approach is exploiting the tensor-product structure
and constructing low rank approximations of the stiffness matrices [62, 80]. In
these methods, multi-dimensional integration operations on tensor-product bases are
reduced to inexpensive one-dimensional operations on univariate bases.

In this thesis, we present and analyze an alternative methodology which avoids
over-computation during the assembly of matrices in IGA. It is based on an idea
originally introduced by Bauer et al. in [13] for a low-order matrix-free FEM. The
method requires performing integration for only a small fraction of the basis function
interactions and the remaining matrix entries are approximated by, for instance,
interpolation. Since our method is independent of the underlying integration rules,
it can be used in conjunction with the cutting-edge techniques mentioned above and
it should not be considered a substitute for them. Many techniques accelerating the

4

formation and assembly of matrices in IGA show their strength only when high-order
approximations are used [5, 26, 29, 61, 92], but here, we also focus on accelerating
the assembly of matrices for high-resolution grids.

As it was briefly mentioned in the previous section, matrix-free methods constitute
a possible remedy in cases where the memory capacity is limited and data transfer is
expensive. To this day, many different strategies to implement matrix-free FEMs
have been proposed. The predominant candidate for finite element discretizations is
the element-by-element approach [6, 21, 30, 53, 89]. Herein, the local dense stiffness
matrices are multiplied by local vectors and the results are added to the global
solution vector. However, storing the local stiffness matrices in memory actually
requires more memory than storing the global sparse matrix. Another possibility is to
compute only the action of the local stiffness matrix to a vector without assembling
the matrix itself. Instead of using stored local element matrices, the weak form
of a PDE may be integrated on-the-fly [28, 70, 75, 76, 82]. Similarly as in IGA,
these approaches may be further accelerated by using reduced integration rules or,
in case of tensor-product finite element spaces, by exploiting sum factorization. This
is especially beneficial for higher-order FEMs where the on-the-fly integration is a
well-suited strategy for future architectures, like GPU based supercomputers, because
of its high arithmetic intensity [11, 52, 71, 72, 77, 88]. Moreover, it can be shown that
using matrix-free methods instead of matrix-based approaches is already beneficial
for the performance if second order discretizations on hexahedral elements are used
[71].

In this thesis, however, we focus on a different matrix-free approach based on
stencils which provides an alternative to the element-by-element approach. In a
stencil-based approach, one does not iterate over the elements of the mesh, but over
the rows of the stiffness matrix. The action of the global stiffness matrix is computed
by iterating over its rows and computing scalar products with the solution vector,
yielding a new value at a single degree of freedom. In this case, the non-zero entries
of the rows in the stiffness matrix may be interpreted as so-called stencils. This
approach is widespread in finite difference discretizations, but may be applied to
finite element and IGA discretizations as well.

Stencil-based approaches work especially well when used in conjunction with
locally-structured meshes like hierarchical hybrid grids (HHGs) [18, 20, 54], since the
sparsity pattern of the matrices and thus the stencil structure remains constant over
large parts of the computational domain. By using these grids, efficient matrix-free
stencil-based methods have been successfully applied to Poisson’s problem and Stokes
flow [18, 19, 20, 47, 56].

If, for instance, the coefficient in the PDE is non-constant, the stencils need to be
computed on-the-fly which may be similarly expensive as the element-by-element
approach. In order to avoid over-computation during the matrix-free assembly of the
stencils, a stencil scaling approach for low-order finite element discretizations of scalar
elliptic PDEs on HHGs is presented in [14]. In this approach, the variable stencils
are obtained by scaling the constant reference stencils corresponding to constant
coefficient PDEs. There it is shown that the stencil scaling is able to reduce the
computational cost significantly while maintaining the order of convergence of the

5

original method’s error. In this thesis, we extend this approach by considering it for
vector-valued PDEs.

Related to the concept of stencil-based approaches, in [13], a two-scale approach
for efficient on-the-fly assembly of finite element stencils on HHGs is proposed. This
methodology is based on approximating the matrix entries originating from a standard
finite element discretization by piece-wise smooth functions. This modification is
applied to Poisson’s problem in [13] and is extended to Stokes flow with geophysical
applications in [12, 15]. In the latter two articles, the idea is applied to surrogate
element matrices which are then used to construct the stencils. Each of these
articles focuses on the massively parallel high performance computing aspects of
their respective methods and provides numerical indication for the error convergence
rates.

In this thesis, we take up on this idea of approximating the matrix entries by
casting it into a mathematically rigorous framework and providing the first error
analysis. Furthermore, we demonstrate the efficiency of this approach in a stencil-
based matrix-free finite element framework and advance it to accelerate matrix
assembly in IGA.

1.3. Outline
The thesis is structured as follows. In the remainder of this section, we provide a
short summary of the contributed articles which are part of this thesis. In Section 2,
we bring forward the notation and concepts of the mathematical tools and theories
which justify the development of our methods. In Section 3, we provide an overview
of the surrogate matrix construction and the techniques we use for solving the
emerging linear and nonlinear problems. In Section 4, we give a brief introduction to
performance modeling and illustrate its main concepts by considering a specific model
called the roofline model. Following this overview, we include the contributed core
articles in Appendix A and the further articles in Appendix B. Each contributed article
is attached alongside a summary and a description of the individual contributions of
the author of this thesis. Moreover, we provide the permissions for the publication
of the respective articles in this thesis.

1.4. Summary of results
The contributed articles address different methods to accelerate matrix assembly in
IGA and stencil-based matrix-free FEMs. Moreover, these methods are analyzed
theoretically, their performance is evaluated, and the scope of possible applications is
investigated. In core article I (Appendix A.1), we provide a mathematical framework
and a rigorous a priori error analysis with numerical verifications of the method
originally introduced for low-order matrix-free finite element discretizations by Bauer
et al. in [13]. In core article II (Appendix A.2), the ideas of the first core article
are applied to accelerate matrix assembly in the IGA setting. In core article III
(Appendix A.3), the ideas and considerations from core article II (Appendix A.2) are
advanced to the analysis of waves. In article IV (Appendix B.1), the scalar stencil
scaling approach for the FEM on hybrid grids introduced in [14] is advanced to

6

vector-valued PDEs. The following paragraphs provide brief summaries of the scope
and subject matter of each contribution.

Core articles as principal author

• Core article I [40] in Appendix A.1:
The surrogate matrix methodology: a priori error estimation

In this work, we reconsider the classical Bubnov–Galerkin FEM and analyze
a modification of it which is especially advantageous for stencil-based matrix-
free computations. The methodology’s main idea is approximating the matrix
entries originating in a standard finite element discretization by piece-wise smooth
functions. This modification is based upon a two-scale approach which was
originally introduced in [13], where it was applied to Poisson’s problem. In
this work, however, we present the first mathematically rigorous analysis of this
methodology by performing an a priori error analysis for the variable coefficient
Poisson equation. In several numerical experiments, we demonstrate the efficiency
of this method in a matrix-free framework using geometric multigrid solvers. The
reported speed-ups for all tested examples, when evaluating the surrogate stencils
on-the-fly instead of performing the numerical integration, range between a factor
of 14 and 20.

• Core article II [43] in Appendix A.2:
The surrogate matrix methodology: Low-cost assembly for isogeometric analysis

Following the analysis and application of the surrogate matrix methodology for a
low-order matrix-free FEM in core article I (Appendix A.1), we investigate its
applicability to IGA in this work. It turns out that using uniform knot vectors
in IGA has beneficial properties which can be exploited to efficiently construct
surrogate matrices. In this article, we present a methodology to avoid over-
assembling matrices in IGA. It is based on performing integration for only a
small subset of the trial and test basis function interactions while the rest is
approximated through interpolation. The majority of entries in the resulting
sparse matrices are computed without using any integration at all. We consider
the surrogate matrix methodology for Poisson’s problem and provide a priori
error estimates which are verified by numerical experiments. Furthermore, we
consider the method for the analysis of transverse vibrations of an isotropic elastic
membrane and provide an a priori analysis for the eigenvalue errors. Finally, we
perform numerical experiments showing the applicability of the surrogate method
for plate bending and Stokes’ flow problems. At just over one million degrees of
freedom, our experiments demonstrate assembly speed-ups beyond fifty times with
a simple second-order NURBS basis, without any significant loss in the accuracy
of the surrogate solution.

7

• Core article III [42] in Appendix A.3:
The surrogate matrix methodology: Accelerating isogeometric analysis of waves

Following the application of the surrogate matrix methodology to accelerate IGA
matrix assembly in core article II (Appendix A.2), we extend the method to other
applications targeting the analysis of waves. In this paper, the methodology is
applied to several model problems in wave mechanics treated in the Bubnov–
Galerkin isogeometric setting. In order to analyze the method theoretically, we
consider the Helmholtz equation as a model problem. We present an a priori
error analysis for this scenario and demonstrate that the additional consistency
error introduced by the utilization of surrogate matrices is independent of the
wave number. Additionally, we conduct a floating point complexity analysis
which establishes that the computational complexity of the methodology compares
favorably to other present fast assembly techniques for isogeometric methods.
Furthermore, we consider a time-harmonic elastodynamic wave problem with
perfectly matched layers (PML) absorbing boundary conditions and a transient
nonlinear hyperelastic wave propagation example involving multiple patches. The
numerical experiments demonstrate performance benefits in all experiments and
we observe speed-ups of up to 3178%, when compared to the standard assembly
algorithm, without losing any significant accuracy.

Further articles

• Article IV [45] in Appendix B.1:
Stencil scaling for vector-valued PDEs on hybrid grids with applications to gener-
alized Newtonian fluids

The stencil scaling approach for low-order finite element discretizations presented
in [14] marked itself successful for accelerating matrix-free methods on HHGs.
However, only scalar elliptic PDEs were considered in that work. Therefore, in
the present work, we investigate the applicability of this approach to vector-valued
PDEs and observe that the idea of the scalar stencil scaling cannot be applied
straightaway. We show that the simple scaling for vector-valued PDEs results in
the discretization of a different PDE if the coefficient is not constant. In order
to overcome this issue, we develop a new stencil scaling approach by adding a
correction term to the discrete stencils. We present how to efficiently pre-compute
these correction terms in 2D and 3D, respectively. Furthermore, we provide
theoretical computational complexity estimates demonstrating the advantages of
this new approach compared to the traditional on-the-fly integration and stored
matrix approaches. The theoretical complexity analysis is verified by performing
a roofline analysis for MVPs. Furthermore, we demonstrate the convergence rates
and the run-time of this extended stencil scaling through a number of numerical
experiments. By using this approach on the state of the art supercomputer
SuperMUC-NG, we could observe speed-ups of 64% compared to the on-the-fly
integration, without any significant loss in the accuracy of the solution.

8

2. Mathematical background
In this section, we bring forward the notation and concepts of the mathematical
tools which justify the development of our methods. First, we introduce the function
spaces we consider throughout this work and their corresponding norms and scalar
products. Afterwards, we introduce the variable coefficient Poisson equation as our
model problem. Moreover, we provide a brief introduction to the FEM, followed
by a brief introduction to IGA, and summarize the a priori error estimates of the
model problem for each approach. Finally, we describe the concept of variational
crimes which justifies the development of the surrogate matrix methodology and we
introduce further problems that go beyond the scope of the model problem.

2.1. Introduction of function spaces
First, we introduce the standard Sobolev function spaces widely used for the analysis
of PDEs. For this purpose, we follow the definitions from [2, 23, 24, 48]. Let Ω ⊆ Rd

with d ∈ {2, 3} be an open and bounded set with a piecewise smooth boundary. Let
p ∈ N with 1 ≤ p <∞. The space Lp(Ω) defined as

Lp(Ω) =

{
v : Ω→ R : v measurable,

∫
Ω
|v|p dx <∞

}
,

is a Banach space when equipped with the norm

‖v‖0,p,Ω = ‖v‖Lp
(Ω) =

(∫
Ω
|v|p dx

) 1
p

.

For p =∞, the Banach space L∞(Ω) is defined as

L∞(Ω) =
{
v : Ω→ R : v measurable, ‖v‖0,∞,Ω <∞

}
,

with the corresponding norm

‖v‖0,∞,Ω = ‖v‖L∞
(Ω) = ess sup

x∈Ω
|v(x)|.

In the special case p = 2, the space L2(Ω) is a Hilbert space with the scalar product

(u, v)0,Ω = (u, v)
L
2
(Ω)

=

∫
Ω
u v dx for all u, v ∈ L2(Ω).

Let α ∈ Nd
0 with α = (α1, . . . , αd)

T be a multi-index and let Dαv denote the
weak-derivative

Dαv =
∂|α|v

∂x
α1
1 · · · ∂x

αd
d

with |α| =
d∑

i=1

αi.

Let s ∈ N0 and p ∈ N with s ≥ 0 and 1 ≤ p ≤ ∞. Then the Sobolev space W s,p(Ω)
is defined as

W s,p(Ω) =
{
v : Ω→ R : Dαv ∈ Lp(Ω), |α| ≤ s

}
.

9

These Sobolev spaces are Banach spaces when equipped with the norm

‖v‖2s,p,Ω =
∑
|α|≤s

‖Dαv‖20,p,Ω.

Moreover, we introduce the seminorm defined as

|v|2s,p,Ω =
∑
|α|=s

‖Dαv‖20,p,Ω.

In the special case p = 2, the spaces W s,2(Ω) have a Hilbert structure. Since we will
use these spaces a lot, we denote them by Hs(Ω) = W s,2(Ω) throughout this work.
The associated scalar product of the spaces Hs(Ω) is defined as

(u, v)s,Ω = (u, v)Hs
(Ω) =

∑
|α|≤s

∫
Ω
(Dαu) · (Dαv) dx for all u, v ∈ Hs(Ω).

Additionally, we introduce the short-hand notations

‖v‖s,Ω = ‖v‖s,2,Ω and |v|s,Ω = |v|s,2,Ω.

For the incorporation of essential boundary conditions, we define the subspaces
Hs

0(Ω) ⊆ Hs(Ω) with s ≥ 1 via

Hs
0(Ω) = {v ∈ Hs(Ω) : v|∂Ω = 0} ,

where the restriction to the boundary ∂Ω is to be understood in the trace sense.
If it is clear from the context which domain Ω is meant, we drop the subscripted

Ω from the norms and scalar products in order to simplify the notation.

2.2. Definition of the model problem
We consider the variable coefficient Poisson equation as a scalar elliptic model
problem. This type of problem arises in many science and engineering applications.
For instance, it is used to obtain the potentials of, e.g., electrostatic and gravitational
fields. The problem is also of large interest since it often emerges as a part of larger
and more complicated problems. For example, some numerical schemes for the
approximate solution of the Navier-Stokes equations require to solve the Poisson
equation in each time step [31]. Moreover, it is also used in many groundwater and
porous media flow applications in which the variable coefficient may be used to model
the permeability of the medium [10].

Let K : Ω → Rd×d be a symmetric and positive definite tensor and f : Ω → R a
function. We seek for a function u : Ω→ R solving the following variable coefficient
Poisson equation with homogeneous Dirichlet boundary conditions:

−div(K∇u) = f in Ω,

u = 0 on ∂Ω.
(2.1)

10

We restrict ourselves to the case of homogeneous Dirichlet boundary conditions
since the analysis of problems involving inhomogeneous and more general boundary
conditions can often be reduced to a slightly modified problem with homogeneous
boundary conditions [23, p. 40]. In order to analyze the problem theoretically, we
narrow the spaces in which K, f , and u are in. Let K ∈ [L∞(Ω)]

d×d be a symmetric
and positive definite tensor such that its smallest eigenvalue is bounded away from
zero almost everywhere. Let f ∈ L2(Ω) and V = H1

0 (Ω). The corresponding weak
form of (2.1) reads:

Find u ∈ V satisfying a(u, v) = F (v) for all v ∈ V, (2.2)

where a : V × V → R and F : V → R are defined as

a(u, v) =

∫
Ω
∇uT

K∇v dx for all u, v ∈ V,

F (v) = (f, v)0,Ω for all v ∈ V.

The bilinear form a(·, ·) is continuous, i.e., there exists a C ∈ R with C > 0 depending
on K such that

a(u, v) ≤ C‖u‖1‖v‖1 for all u, v ∈ V.

Additionally, a(·, ·) is coercive, i.e., there exists an α ∈ R with α > 0 depending on
K and Ω such that

a(u, u) ≥ α‖u‖21 for all u ∈ V.

Moreover, F ∈ V ∗ is a bounded linear functional where V ∗ denotes the dual space
of V . Under these assumptions, the Lax-Milgram lemma asserts that problem (2.2)
is well-posed in the sense that there exists a unique solution u ∈ V which depends
continuously on the data f ; see, e.g., [48, Lemma 2.2].

The approach of constructing weak variational formulations for the PDEs of interest
does not only yield the possibility to analyze them theoretically, but also to compute
approximate solutions. The main idea is to restrict the continuous variational
formulation (2.2) to a finite-dimensional subspace Vh ⊆ V and to find a solution to
the variational formulation in Vh. In particular, we employ the Bubnov–Galerkin
method in which the trial and test spaces are chosen to be equal, as opposed to the
Petrov–Galerkin method [23, 33, 48]. The discrete problem corresponding to (2.2)
then reads:

Find uh ∈ Vh satisfying a(uh, vh) = F (vh) for all vh ∈ Vh . (2.3)

In the next subsections, we present two popular ways of choosing the finite-dimensional
subspace Vh. Additionally, we present the well-established a priori error estimates
when using these discrete spaces for the approximation of u ∈ V in (2.2).

2.3. Finite element method
A popular choice of the space Vh ⊆ V for (2.3) may be constructed using the finite
element method (FEM) [97]. Many different types of finite elements have been

11

proposed since its introduction, among them non-conforming variants which are
used in the discontinuous Galerkin approach [90]. However, we restrict ourselves to
conforming discretizations with local polynomial bases on simplicial meshes.

Let Ω be a polyhedral domain which is decomposed into triangles in 2D or
tetrahedra in 3D. These decompositions are often called meshes or grids. Since we
focus on conformal meshes only, we follow the definition of a conformal mesh from [23].
Assume Th = {T1, T2, . . . , TM} to be a set of triangles or tetrahedra decomposing Ω.
Th is called a conforming mesh if the following properties are satisfied:

1. Ω =
⋃M

i=1 Ti.

2. If Ti ∩ Tj contains exactly one element, then it is a corner vertex of Ti and Tj .

3. If Ti ∩ Tj with i 6= j contains more than one element, then Ti ∩ Tj is an edge
or face of Ti and Tj .

4. Each T ∈ Th has a diameter of at most 2h.

Additionally, a family of meshes {Th}h>0 is called shape-regular if there exists a
constant κ > 0, such that each element T ∈ Th contains a ball of radius ρT with
ρT ≥ hT /κ, where hT is half the diameter of T .

Remark 1 The HHGs employed in core article I (Appendix A.1) and article IV
(Appendix B.1) satisfy the properties of a shape-regular conforming grid family
provided that the initial input mesh satisfies them. This is because the uniform
refinements used there do not introduce any new types of elements which violate these
properties.

The meshes are used to construct the discrete function spaces Vh by associating local
basis functions to the elements in Th. Let Pp(T) be the set of polynomials up to
degree p on T ∈ Th. Then the discrete finite element space V FE

h,p may be defined as

V FE
h,p = {v ∈ C0(Ω) : v|T ∈ Pp(T) for all T ∈ Th} ∩H1

0 (Ω). (2.4)

The following Theorem 1 provides a priori error estimates for the discrete solution
uh ∈ V FE

h,p of (2.3) in the H1(Ω)- and L2(Ω)-norms [48, Theorems 3.16 and 3.18].

Theorem 1 (FEM: A priori error estimates for the model problem)
Let Ω ⊆ Rd be a polyhedral domain and let {Th}h>0 be a shape-regular family of
geometrically conformal meshes of Ω. Let u ∈ V be the solution of the continuous
problem (2.2) and let uh ∈ V FE

h,p be the solution of the discrete problem (2.3) with
Vh = V FE

h,p . If u ∈ Hs+1(Ω) with 0 ≤ s ≤ p and f ∈ L2(Ω), the following error
estimate holds true:

‖u− uh‖1 ≤ C1h
s|u|s+1,

and if, additionally, Ω is convex and K ∈ [C1(Ω)]d×d, we have

‖u− uh‖0 ≤ C0h
s+1|u|s+1,

with constants C0 > 0 and C1 > 0 independent of h and u.

12

The convexity of Ω and regularity of K is only required for the improved error
estimate in the L2(Ω)-norm. Since the operator induced by a(·, ·) is self-adjoint,
the additional regularity asserts that problem (2.2) is H2(Ω) regular and an Aubin-
Nitsche type argument may be applied [48, Theorem 3.12]. The estimate in the
H1(Ω)-norm holds independently of these assumptions.

2.4. Isogeometric analysis
In practice, the problem domains Ω are often constructed using CAD software which
use B-splines and NURBS to represent curves, surfaces, and solids. Constructing
meshes suitable for the FEM from these CAD surface and solid representations is
often very difficult and time intensive [34]. In particular, the meshes for the FEM can
often merely approximate the true domains described by NURBS, since they allow
the construction of perfect circular boundaries. Such boundaries are not exactly
representable even with an isoparametric FEM, where functions from V FE

h,p are used
to construct a map from the reference to the physical domain. In order to overcome
the issue of investing time to construct a suitable mesh, IGA uses the idea of utilizing
the same functions which represent the geometry for the discretization of the PDE.

For the definitions of B-splines and NURBS, we follow [34], but a more rigorous
and detailed description can be found in [65]. Let Ξ = {ξ1, ξ2, . . . , ξm+p+1} be a
one-dimensional non-decreasing knot vector over the unit interval with ξi ∈ [0, 1],
m ∈ N the number of B-spline basis functions associated to Ξ, p the polynomial
order, and h = max1≤k≤m−1 |ξk+1 − ξk|. We assume that Ξ is open, meaning that
ξ1 = · · · = ξp+1 = 0 and ξm = · · · = ξm+p+1 = 1. Knot vectors are called uniform if
the knots ξi are equally spaced and non-uniform if this is not the case. Moreover,
we introduce the concept of elements in IGA which are relatable to the elements in
the FEM. In 1D, the mesh corresponding to the knot vector Ξ may be defined as
the set Th = {[ξk, ξk+1] : ξk 6= ξk+1, 1 ≤ k ≤ m− 1}.

We define the univariate B-splines over the knot vector Ξ recursively using the
Cox-de Boor recursion formula [22, 35]. The basis functions for the initial case p = 0
and 1 ≤ i ≤ m are given as

bi,0(x̂) =

{
1 if ξi ≤ x̂ < ξi+1,

0 otherwise.

The basis functions for p > 0 are defined recursively in the following way

bi,p(x̂) =
x̂− ξi

ξi+p − ξi
bi,p−1(x̂) +

ξi+p+1 − x̂

ξi+p+1 − ξi+1
bi+1,p−1(x̂).

We extend the definition of the univariate B-splines on Ξ to the multi-dimensional
knot vector Ξd = Ξ ⊗ · · · ⊗ Ξ. The mesh corresponding to Ξd is defined as Th =
{[ξk1 , ξk1+1]×· · ·× [ξkd , ξkd+1] : ξki 6= ξki+1, 1 ≤ ki ≤ m−1, 1 ≤ i ≤ d}. Let N = md

and for each 1 ≤ i ≤ N , we associate a multi-index i = (i1, . . . , id)
T ∈ Nd with 1 ≤

ik ≤ m through the colexicographical relationship i = i1+(i2−1)m+...+(id−1)m
d−1.

Then the multivariate B-spline basis is given by {Bi,p}1≤i≤N with basis functions

Bi,p(x̂) = bi1,p(x̂1) · · · bid,p(x̂d),

13

for all x̂ = (x̂1, . . . , x̂d) ∈ [0, 1]d = Ω̂. Let ωi > 0 for 1 ≤ i ≤ N be fixed weight
parameters. The NURBS basis functions are then defined as

N̂i,p(x̂) =
ωiBi,p(x̂)∑N
j=1 ωjBj,p(x̂)

for all x̂ ∈ Ω̂, 1 ≤ i ≤ N.

The B-spline and NURBS basis functions satisfy the following partition of unity and
point-wise positivity properties [34, p. 22]

N∑
i=1

Bi,p(x̂) = 1,

N∑
i=1

N̂i,p(x̂) = 1 for all x̂ ∈ Ω̂, (2.5)

Bi,p(x̂) ≥ 0, N̂i,p(x̂) ≥ 0 for all x̂ ∈ Ω̂, 1 ≤ i ≤ N.

Because of the partition of unity property (2.5), the B-spline and NURBS basis
functions coincide if ωi = 1 for 1 ≤ i ≤ N . Another favorable property of the B-spline
and NURBS basis functions of degree p is, that they are p− 1 times continuously
differentiable in the absence of repeated knots.

We assume that the physical domain Ω is parameterized by a map ϕ(Ω̂) = Ω with

ϕ(x̂) =
N∑
i=1

ciN̂i,p(x̂) for all x̂ ∈ Ω̂,

where the ci ∈ Rd are called control points. The discrete subspace of V IGA
h,p ⊆ V in

the IGA context is then defined as the set of NURBS basis functions on the reference
domain Ω̂ composed with the pull-back operator ϕ−1, i.e.,

V IGA
h,p = span

{
N̂i,p ◦ϕ

−1
}
1≤i≤N

∩H1
0 (Ω). (2.6)

Remark 2 In core article II (Appendix A.2) and core article III (Appendix A.3),
we focus only on uniform open knot vectors. In this case, the B-spline basis functions
associated to the knots away from the boundary have an interesting property. They
are all alike up to a translational shift which provides a locally uniform structure in
the discretization. Such B-splines are called cardinal and they play an important role
in the construction of stencil functions and surrogate matrices described in Section 3.

The following Theorem 2 provides a priori error estimates for the discrete solution
uh ∈ V IGA

h,p of (2.3) in the H1(Ω)- and L2(Ω)-norms which can be shown by utilizing
the approximation properties of NURBS [16, Theorem 3.2] [34, Appendix 3.B] [98].

Theorem 2 (IGA: A priori error estimates for the model problem)
Let Ω ⊆ Rd be a bounded and open domain parameterized by ϕ(Ω̂) = Ω. Assume that
the IGA mesh is refined by inserting knots into Ξ without changing Ω. Let u ∈ V
be the solution of the continuous problem (2.2) and let uh ∈ V IGA

h,p be the solution

14

of the discrete problem (2.3) with Vh = V IGA
h,p . If u ∈ Hs+1(Ω) with 0 ≤ s ≤ p and

f ∈ L2(Ω), the following error estimate holds true:

‖u− uh‖1 ≤ Ĉ1h
s‖u‖s+1,

and if, additionally, Ω is a domain of class C2 and K ∈ [C1(Ω)]d×d, we have

‖u− uh‖0 ≤ Ĉ0h
s+1‖u‖s+1,

where Ĉ0 > 0 and Ĉ1 > 0 are constants independent of u and h.

As in the FEM case, the regularity of Ω and K is only required for the improved
error estimate in the L2(Ω)-norm. Since the operator induced by a(·, ·) is self-
adjoint, the additional regularity asserts that problem (2.2) is H2(Ω) regular and an
Aubin-Nitsche type argument may be applied [48, Theorem 3.10]. Theorem 2 also
demonstrates that IGA possesses the same convergence properties as the FEM from
Section 2.3, but the NURBS spaces require a control on the full norm of u instead of
only its seminorm.

The following subsection deals with the issue that the bilinear forms a(·, ·) may
not always be evaluated exactly which introduces additional consistency errors.

2.5. Variational crimes
Let a : V ×V → R be a continuous and coercive bilinear form and F ∈ V ∗ a bounded
linear functional. For instance, a(·, ·) and F (·) may be thought of as the forms of
the model problem introduced in Section 2.2. Recalling the previous subsections, we
can state the following continuous and discrete variational formulations:

Find u ∈ V satisfying a(u, v) = F (v) for all v ∈ V. (2.7a)
Find uh ∈ Vh satisfying a(uh, vh) = F (vh) for all vh ∈ Vh. (2.7b)

Additionally, we introduce ã : Vh × Vh → R as an approximation of a|Vh×Vh
which

we call the surrogate for a(·, ·) and F̃ : Vh → R as an approximation of F |Vh
. The

corresponding variational formulation using the surrogate forms is:

Find ũh ∈ Vh satisfying ã(ũh, vh) = F̃ (vh) for all vh ∈ Vh. (2.8)

In order to obtain a bound on the error of the surrogate solution ũh, we can make
use of the First Strang Lemma [23, pp. 100–101]:

Lemma 1 (First Strang Lemma)
Assume that ã : Vh×Vh → R is uniformly coercive. Then the following error estimate
holds true for the surrogate solution ũh:

‖u− ũh‖1 ≤ C2

(
inf

vh∈Vh

[
‖u− vh‖1 + sup

wh∈Vh\{0}

|a(vh, wh)− ã(vh, wh)|
‖wh‖1

]

+ sup
wh∈Vh\{0}

[
|F (wh)− F̃ (wh)|

‖wh‖1

])
,

(2.9)

with a constant C2 independent of h.

15

Henceforth, we assume that the linear forms on the right-hand side do not differ,
i.e., F̃ = F . Therefore, the second supremum in (2.9) vanishes and it is sufficient to
control only the first supremum

sup
wh∈Vh\{0}

|a(vh, wh)− ã(vh, wh)|
‖wh‖1

for vh ∈ Vh,

which we refer to as the consistency term. Lemma 1 provides a theoretical framework
to obtain a priori error estimates if the true bilinear form a(·, ·) is replaced by a
surrogate bilinear form ã(·, ·). Such surrogate bilinear forms do not need to be
particularly constructed since they often arise naturally in the discretization process.
For instance, integration rules only yield approximations of the integrals in the bilinear
forms. The usual integration rules only integrate polynomials up to a certain degree
exactly, therefore, NURBS with non-constant weights cannot be integrated without
error. In the isoparametric FEM, curved boundaries may not be represented exactly
by the underlying mesh which introduces an additional geometry approximation
error. These additional consistency errors are called variational crimes. Luckily, it
can often be shown that these variational crimes do not deteriorate the convergence
order of the discretization [24, 95, 96]. Actually, this fact is being exploited in existing
methods which intentionally use reduced or weighted integration rules to speed up
the numerical integration [8, 29, 50, 60, 66, 92, 93]. In this work, we assume that
the variational crimes introduced by the standard discretization approach do not
deteriorate the convergence order of the discretization errors.

In [13], Bauer et al. introduced a novel approach to approximate the matrix entries
in matrices emerging from a standard finite element discretization. It is based on
introducing a coarser scale H > h and relating the matrix entries by locally smooth
functions. There, the approach was applied to low order finite element discretizations
of Poisson’s problem. Afterwards, in two follow-up articles, Stokes flow was considered
in [12, 15]. Each of these articles focused on the massively parallel HPC aspects
of the respective methods and provided numerical indication for the convergence
rates. In this thesis, we take up this approach by providing the first mathematically
rigorous framework and analysis of the consistency error introduced by this approach
and by applying it to IGA. Since the original discretization matrices are replaced
by surrogates, we call this method the surrogate matrix methodology. In Section 3,
we briefly present the idea of how to construct surrogate matrices which in turn
define surrogate bilinear forms ã(·, ·). We use these surrogate bilinear forms to obtain
error estimates on the consistency error introduced by this approach. We perform
this analysis for the model problem discretized with linear finite elements in core
article I (Appendix A.1) and for IGA in core article II (Appendix A.2). Here, we
briefly sketch the rough steps of the proofs. More detailed information is available in
each of the articles.

Let q ∈ N be the freely selectable surrogate matrix approximation order, assume
that K ∈ [W q+1,∞(Ω)]d×d and that the assumptions of Theorem 1 in the FEM setting
or of Theorem 2 in the IGA setting are fulfilled. The parameter q is related to the
order of the approximation space used for the approximation of the matrix entries,
as it is shown in Section 3. In a first step, we verify that the constructed bilinear

16

forms ã(·, ·) are uniformly coercive if H is small enough. In a second step, we show
that for the model problem, the following inequality holds true for some constant
C3 > 0 depending on |K|

W
q+1,∞

(Ω)
but independent of h and H:

|a(vh, wh)− ã(vh, wh)| ≤ C3H
q+1|vh|1|wh|1 for all vh, wh ∈ Vh. (2.10)

Employing Lemma 1 and plugging (2.10) into (2.9) yields

‖u− ũh‖1 ≤ C2(‖u− vh‖1 + C3H
q+1‖vh‖1) for all vh ∈ Vh.

We choose vh to be the solution of (2.7b), i.e., vh = uh. Using the H1(Ω) error
estimate from Theorem 1 or Theorem 2 and using that ‖uh‖1 ≤ C4|uh|1 ≤ C4|u|1,
for some h-independent constant C4 > 0, we can bound the surrogate error by the
norms of the solution of (2.7a) via

‖u− ũh‖1 ≤ C2(C̃1h
s‖u‖s+1 + C3C4H

q+1|u|1),

where C̃1 ∈ {C1, Ĉ1} is the constant from either of the Theorems 1 or 2. In this
scenario, the consistency error may be bounded by C3C4H

q+1|u|1. This term only
depends on the H1(Ω)-seminorm of the solution of the continuous problem (2.7a)
in contrast to the discretization error which depends on the full Hs+1(Ω)-norm if
NURBS basis functions are used. In the FEM setting, this norm may be replaced
by the Hs+1(Ω)-seminorm. Choosing q > s − 1 and H = O(h) guarantees that
the consistency error is asymptotically dominated by the discretization error in the
H1(Ω)-norm.

In the setting of Theorems 1 and 2, we can also provide error estimates in the
L2(Ω)-norm. From the triangle inequality it follows that

‖u− ũh‖0 ≤ ‖u− uh‖0 + ‖uh − ũh‖0
≤ C̃0h

s+1‖u‖s+1 + ‖uh − ũh‖0,

where C̃0 ∈ {C0, Ĉ0} is the constant from either of the Theorems 1 or 2. Therefore,
only the term ‖uh−ũh‖0 needs to be controlled. Let wh ∈ Vh satisfy a(wh, vh) = (uh−
ũh, vh)0 for all vh ∈ Vh. The Lax-Milgram lemma asserts that |wh|1 ≤ C5‖uh − ũh‖0
for some constant C5 [48, Lemma 2.2]. Using (2.10), we obtain

‖uh − ũh‖
2
0 = a(wh, uh − ũh) = ã(wh, ũh)− a(wh, ũh)

≤ C3H
q+1|wh|1|ũh|1

≤ C3C5H
q+1‖uh − ũh‖0|ũh|1.

Finally, we obtain

‖u− ũh‖0 ≤ C̃0h
s+1‖u‖s+1 + C3C5H

q+1|ũh|1,

where |ũh|1 → |uh|1 as H → 0 and |uh|1 ≤ |u|1. In this case, choosing q > s and
H = O(h) guarantees that the consistency error is asymptotically dominated by the

17

discretization error in the L2(Ω)-norm. As above, the full norm of u may be replaced
by the Hs+1(Ω)-seminorm when finite elements are used.

In core article I (Appendix A.1), we establish this theory for a low order finite
element discretization on HHGs and verify it numerically for various benchmark
problems. In the follow up core article II (Appendix A.2), we transfer the ideas
of the method to IGA and provide similar error estimates as in core article I
(Appendix A.1). In core article III (Appendix A.3), we develop similar results for
the Helmholtz equation (see Section 2.6) and show that the additional consistency
error is independent of the wave number.

In the following subsection, we briefly present the benchmark problems considered
in the contributed articles.

2.6. Further problems
In core article I (Appendix A.1) and core article II (Appendix A.2), we present
a priori error estimates for the variable coefficient Poisson model problem when
surrogate bilinear forms are used. In the following, we briefly introduce further
benchmark problems we utilize to assert the error convergence rates and performance
of our methods. Although we do not show theoretical results for most of the further
problems, we expect them to carry over to these more involved problems. In fact, we
can verify these expectations numerically in the contributed articles.

One of the further problems considers applications in solid mechanics, or more
precisely, the problem of compressible Lamé-Navier linearized elasticity. In this
problem one wants to predict the stresses in the material and the deformation a
material undergoes when certain loads are applied to it. This model is only valid for
very small deformations in which the material behaves linearly in the strain rate. Let
Ω be as before. Additionally, we assume that the boundary of Ω is partitioned into
two relatively open sets ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and denote its outward unit
normal by n. Let ε(u) = 1

2(
#»∇u+ (

#»∇u)T) be the symmetric gradient of u and σ the
stiffness tensor of Hooke’s law for an isotropic material, i.e., σ(ε) = 2µε+ λ tr(ε)I,
where µ and λ are the Lamé parameters and I is the identity tensor [23, p. 281]. Let
f be the body forces, g the prescribed displacement, and t the external forces. The
displacement u of the material after the loads are applied is obtained by solving the
equilibrium equation

−Divσ = f in Ω,

u = g on ΓD,

σ · n = t on ΓN,

(2.11)

where Div denotes the row-wise divergence operator. We consider the following
form of the problem: Find u ∈ [V]d solving the variational form of (2.11) in which
the boundary conditions are incorporated in the right-hand side linear form. Using
Korn’s inequalities [48, Theorem 3.77, Thoerem 3.78], it is possible to prove existence
and uniqueness of a solution u. Furthermore, it is possible to derive optimal a priori
error estimates in the H1(Ω)-norm equivalent to the H1(Ω) estimates in Theorem 1
and Theorem 2 [48, Prop. 3.82] [16]. Similar optimal a priori error estimates in
the L2(Ω)-norm are only available for the pure traction problem where ΓD = ∅ or

18

g = 0 [48, Prop. 3.84] [16]. In article IV (Appendix B.1), we introduce a vector-
valued stencil scaling to solve linear elasticity problems with spatially varying Lamé
parameters.

The equilibrium equation (2.11) may also be employed to describe fluids in which
the viscous forces dominate the advective inertial forces. In this case, we additionally
demand that the mass is conserved, i.e., divu = 0. This particular type of fluid flow
is also known as incompressible Stokes flow. Examples for such type of fluids are lava
and the very slowly moving Earth’s solid mantle which is why the Stokes flow is of
large interest in the studying of Earth’s mantle convection [12, 15]. In this scenario,
we interpret u ∈ [V]d as the velocity field and introduce an additional pressure
function p ∈ L2(Ω). The corresponding stiffness tensor is given by σ(ε) = 2µε− pI,
where µ is the viscosity of the fluid [46, p. 8]. In order for a unique weak solution
(u, p) of (2.11) to exist, the bilinear forms of the weak form need to satisfy an inf-sup
condition [23, pp. 153–154]. Note that in case of ΓN = ∅, the pressure p is only
unique up to a constant [46, pp. 128–129]. Let [Vh]

d ⊆ [V]d and Qh ⊆ L2(Ω) be
the discrete subspaces for the discrete velocity uh ∈ [Vh]

d and the discrete pressure
ph ∈ Qh. For the existence of discrete solutions (uh, ph), the spaces [Vh]

d and Qh

need to form a uniformly inf-sup stable pairing [46, p. 133].
For solving the weak form (2.11) of the Stokes flow problem in core article II

(Appendix A.2), we choose the uniformly inf-sup stable isogeometric subgrid element
from [25]. In this space pairing, the velocity field is discretized on a subgrid of the
pressure grid. Each element of the pressure mesh is subdivided into 2d elements,
yielding the velocity mesh. In article IV (Appendix B.1), because of data-structure
limitations and performance reasons, we use equal order linear finite elements for the
discretization of the weak form of (2.11). This space pairing is not uniformly inf-sup
stable, therefore, we add a residual based stabilization term to the mass conservation
equation [27, 64]. This stabilization introduces a consistency error which is at least of
the same order as the discretization error [64, Theorem 4.1]. Moreover, in this article,
we consider a nonlinear generalized Stokes flow in which the viscosity µ depends on
the strain rate of the velocity modeled by a power law. This nonlinear problem is
solved by performing a method of successive approximations, in particular Picard
fixed-point iterations, which we describe in Section 3.3.

Furthermore, we consider various transient problems. As usual, the partial deriva-
tive of u with respect to the time t is denoted by u̇. For instance, in core article I
(Appendix A.1), we consider the p-Laplacian diffusion problem over the time inter-
val t ∈ [0, T], given in strong form as

u̇− div
(
‖∇u‖p−2

2 ∇u
)
= f in Ω× (0, T] ,

u = 0 on ∂Ω× (0, T] ,

u = u0 in Ω× {0} ,

where f describes the source data and u0 is the initial datum. For instance, one
possible application of the p-Laplacian diffusion problem is in image processing [73].
For p = 2, the problem reduces to the classical heat equation for which the theory

19

is well-known [48, pp. 284–286], but for p 6= 2, the problem is nonlinear. If p > 2
and the data f and u0 are regular enough, it may be shown that the problem has a
unique weak solution [74, Chapter 2]. In core article I (Appendix A.1), we solve this
nonlinear problem by performing Picard iterations in each time step using the FEM.

Moreover, we consider transient wave propagation problems in core article III
(Appendix A.3). Let W be a differentiable energy density functional, ρ0 : Ω→ R>0

be a mass density function, and α, β ∈ C, α 6= 0, two constants. The abstract wave
propagation problem over the time interval t ∈ [0, T] is given by

u = u0 at t = 0,

u̇ = v0 at t = 0,

Div ∂uW (u) + f = ρ0ü in Ω× (0, T],

αu+ β
∂u

∂n
= g on ΓD × (0, T],

∂uW (u)n = t on ΓN × (0, T].

(2.12)

In wave propagation problems, we allow the functions u to take on complex values
and the corresponding weak forms a(·, ·) are sesquilinear instead of bilinear. Such
transient problems emerge in the modeling of elastic waves which may be used for the
prediction of earthquakes and to nondestructively determine the structural integrity
of engineering components [84]. In core article III (Appendix A.3), we consider the
nonlinear response of a force impulse within a compressible neo-Hookean material by
employing the energy density functional [85]

W (u) =
λ

2
ln(det(F (u)))2 − µ ln(det(F (u))) +

µ

2

(
tr (F (u)

T
F (u))− tr (I)

)
,

(2.13)

where F (u) = I +∇u. The derivative of the energy density functional is given by

∂uW (u; δv) =
[
λ ln(det(F (u)))F−T

(u) + µ
(
F (u)− F (u)−

T
)]

: ∇δv, (2.14)

where “:” denotes the Frobenius inner product. We solve these systems using the non-
linear generalized-α method with underlying quasi-Newton–Raphson multicorrector
steps described in Section 3.4.

When W is quadratic in u, we may also define the time harmonic form of (2.12)
for a wave number k ∈ R≥0 as follows:

−Div ∂uW (u)− k2u = f in Ω,

αu+ β
∂u

∂n
= g on ΓD,

∂uW (u)n = t on ΓN.

(2.15)

Also in core article III (Appendix A.3), we consider the time-harmonic linearized
elastodynamic equations for compressible homogeneous and isotropic materials. The

20

energy density in this case is defined as

W (u) =
λ

2
tr(ε(u))2 + µε(u) : ε(u).

Note that the stiffness tensor σ of Hooke’s law in (2.11) is related to W by σ = ∂εW .
We consider a plate with a circular hole at which a periodic pressure is being applied
to. At the boundaries where the waves are leaving the domain, we apply PML
absorbing boundary conditions in order to avoid spurious reflections [17, 81].

Let W (u) = 1/2∇uT∇u, α = −ik, β = 1, and ΓD = ∂Ω. In this setting, (2.15)
results in the Helmholtz equation with impedance boundary conditions:

−∆u− k2u = f in Ω,

∂u

∂n
− iku = g on ∂Ω.

Under certain assumptions on the wave number k, the mesh width h, and the
polynomial degree p of the basis functions of Vh, the discrete variational Helmholtz
formulation has a unique solution uh ∈ Vh [49, Prop. 2.1]. More details on the
assumptions may be found in core article III (Appendix A.3). In this article, we
also extend the a priori error estimates of the surrogate matrix methodology to the
Helmholtz equation and show that the additional consistency error is independent of
the wave number k.

Moreover, we consider a fourth-order plate-bending problem in core article II
(Appendix A.2) which may be naturally discretized using IGA since the higher-order
basis functions are also of higher regularity in the absence of repeated knots. Similar a
priori error estimates as for the model problem can be shown for this type of problem
[98]. Also in core article II (Appendix A.2), we study the transverse vibrations of a
two-dimensional isotropic elastic membrane and we provide a priori error estimates
for the eigenvalue error in the presence of surrogate matrices.

In the next section, we briefly present the idea of how to construct surrogate
matrices and the techniques we use to solve the linear and nonlinear systems of
equations induced by the problems introduced in this section.

21

3. Solution techniques
In this section, we describe the techniques we use to solve the linear and nonlinear
systems of equations induced by the problems presented in the previous section.
Since the variational crime framework justifies the use of surrogate bilinear forms,
we show the overall rough idea of constructing them by using the surrogate matrix
methodology. Moreover, we provide some details on the linear and nonlinear solvers
as well as the time integration schemes we use in the articles which are part of this
thesis.

Let a : V × V → R be a continuous and coercive bilinear form and F ∈ V ∗ a
bounded linear functional. In this section, let Vh be either the finite element space
(2.4) or the IGA space (2.6). Let N = dim(Vh) be the dimension of Vh and {φi}1≤i≤N

a basis of Vh. For IGA, the NURBS basis functions are a natural choice. For linear
finite elements, the natural choice is the basis of nodal shape functions associated to
the vertices of the mesh. For higher order finite elements, shape functions associated
to the integration points may be used. Let u ∈ RN be the vector representation of
uh such that uh(x) =

∑N
i=1 ui φi(x). Henceforth, we implicitly switch between both

representations where appropriate. We define A ∈ RN×N and f ∈ RN via

[A]ij = a(φj , φi) for 1 ≤ i, j ≤ N,

[f]i = F (φi) for 1 ≤ i ≤ N.

If wave problems are considered, we allow the components of A, u, and f to be
complex which requires implementations with support for complex data types. Since
the basis functions only have small overlapping support, a large amount of entries in
A are zero which means that the matrix is sparse. Solving the variational formulation
(2.7a) is then equivalent to solving the matrix equation

Au = f.

In the surrogate matrix methodology, we replace the matrix A by a surrogate matrix
Ã and define the corresponding surrogate bilinear form implicitly as ã(uh, vh) = v

T
Ãu,

where v ∈ RN and vh(x) =
∑N

i=1 vi φi(x). With this definition, we solve the
variational equation (2.8) by solving the matrix equation

Ãũ = f.

We construct Ã such that assembling Ã or computing the action of Ã in a matrix-free
method, is computationally much cheaper than using A instead. Provided that the
constructed surrogate bilinear form induced by the surrogate matrix is coercive
and satisfies (2.10), the estimates from Section 2.5 theoretically justify the usage of
surrogate matrices.

The matrix A often inherits properties of the corresponding bilinear form a(·, ·).
In case of the model problem (2.1), the resulting matrix is symmetric and positive
definite. In core article I (Appendix A.1) and core article II (Appendix A.2), we
show that some of these properties like symmetries and kernels can be maintained
by the surrogate matrix.

23

3.1. Matrix assembly, matrix-free methods, and surrogate matrices
The global matrix A is usually assembled by contributions of dense local element
matrices AT ∈ RNT×NT for T ∈ Th where NT is the number of basis functions having
support in an element T . For instance, in an IGA discretization of order p, the
number of basis functions having support in an element is NT = (p+ 1)d if uniform
knot vectors are used. Let PT ∈ RN×NT be the operator mapping the coefficients of
the local basis functions to the corresponding coefficients in the global vector. In
practice, the operator PT is not assembled since its action is computed on-the-fly
through index computations. Formally, the assembly of the global matrix A may be
written as

A =
∑
T∈Th

PTATP
T

T .

The entries of AT are computed by numerical integration. Let QT be a set of
integration points and weights corresponding to an element T ∈ Th. For instance,
the entries of AT for the model problem from Section 2.2 may be computed via

[AT]ij =

∫
T
(∇φ(T)

j)
T
K∇φ(T)

i dx

≈
∑

(w
(T)
q ,x

(T)
q)∈QT

w(T)
q ∇φ(T)

j (x(T)
q)

T
K(x(T)

q)∇φ(T)
i (x(T)

q), (3.1)

where φ
(T)
i and φ

(T)
j are element-local basis functions. In practice, however, these

integrals are computed on a reference element T̂ with integration weights and points Q̂,
and maps ϕT : T̂ → T with det(DϕT) > 0. Let φ(T) = φ̂ ◦ϕ−1

T , ∇φ(T) = Dϕ−T

T ∇̂φ̂,
and w(T)

q = ŵq det(DϕT (x̂q)). Equation (3.1) may thus be rewritten as

[AT]ij =
∑

(ŵq ,x̂q)∈Q̂

ŵq ∇̂φ̂j(x̂q)
T
Dϕ−1

T K(ϕT (x̂q))Dϕ−T

T ∇̂φ̂i(x̂q) det(DϕT (x̂q)).

The advantage of performing the numerical integration on a reference element is that
the basis functions and its derivatives can be precomputed at the integration points
and stored in memory. Only the values corresponding to the Jacobian of ϕT , its
determinant, as well as the coefficient values K need to be recomputed for each T ∈ Th.
Performing the operations for the whole matrix at once instead of componentwise,
allows for a more efficient vectorized implementation. Additionally, if the basis
functions have a tensor-product structure, the sums over the single dimensions may
be reorganized such that the number of FLOPs is minimized. This is known as sum
factorization. In IGA, for instance, using standard Gauss integration loops requires
about O(p3d) FLOPs to form AT , but using sum factorization instead, the complexity
may be reduced to O(p2d+1) [5, 26]. Alternatively, weighted integration rules which
construct individual integration rules for each test function can reduce the number
of integration points per element from O(pd) to only O(1) [29, 92]. In return, using
such a rule reduces the complexity of assembling AT from O(p3d) to O(p2d).

In this thesis, however, we focus on a different approach based on stencils. There,
one does not iterate over the elements of the mesh, but over the rows of the global

24

sparse matrix: a
T

i = ([A]i1, [A]i2, . . . , [A]iN) for 1 ≤ i ≤ N . Row-wise approaches are
not yet popular in IGA, but the recent work in [61] illustrates their computational
advantages by combining sum factorization and weighted integration. However, we
go one step further and exploit some structure in the basis functions. Because of the
sparsity of A, each row may be written as

a
T

i = s
T

iRi for all 1 ≤ i ≤ N,

where si ∈ RNi is called stencil, Ni is the number of non-zeros in the i-th row of A,
and Ri ∈ RNi×N is a restriction matrix which removes the entries in the global vector
belonging to the zero entries of aT

i . Similarly to PT , the Ri will not be assembled
since their actions may be computed through on-the-fly index calculations. If locally-
structured meshes are used, the majority of rows possess the same sparsity pattern. In
IGA, the meshes display this property for each patch if the corresponding knot vectors
are uniform. In the FEM this is true if, for instance, HHGs are employed [18, 20, 54].
HHGs are constructed by starting with a globally unstructured macro-mesh which is
used to triangulate the input geometry. Each macro-element in the macro-mesh is
uniformly refined for a large number of times, resulting in a locally-structured mesh.
The sparsity pattern for rows belonging to basis functions within the macro-elements
is the same. If additionally the coefficient and the Jacobian of the geometry map
are constant, the stencil components are constant as well in the structured parts of
domain.

In the following, we briefly present the idea of the surrogate matrix methodology
and the construction of surrogate matrices. The rigorous and detailed description
of this methodology is beyond the scope of this subsection. For this purpose, we
refer to core article I (Appendix A.1) in the case of finite elements and to core
article II (Appendix A.2) and core article III (Appendix A.3) in the case of IGA. In
these articles, we show under certain assumptions on the geometry and the PDE
coefficient that it is possible to identify the stencil components in a structured part
of the domain by a small set of locally smooth functions, called stencil functions,
Φδ : Ω̃→ R, 1 ≤ δ ≤ D, with D � N and Ω̃ (Ω. Let I ⊆ {1, 2, . . . , N} be the index
set of stencils for which this identification by stencil functions is possible. In this
subsection, we restrict ourselves to a single set I, but depending on the number of
locally-structured parts of the domain, there may be a family of index sets {Ik}k with
a set of stencil functions associated to each of them. The number of required stencil
functions D associated to the set I depends on the discretization and dimension. We
show in core article I (Appendix A.1) that for a linear finite element discretization
on two dimensional HHGs, the general number of required stencil functions for a
macro element is D = 7. In core article II (Appendix A.2), we show that in the
interior of a single IGA patch constructed with uniform knot vectors, this number is
D = (2p+ 1)d. By enforcing symmetry and preserving the original matrix kernels,
these numbers may be further reduced.

This identification allows encoding large parts of the global matrix by just the
stencil functions Φδ. Let X̃ ⊆ Ω̃ be the set of points corresponding to the index set
I, at which the stencil functions are evaluated. With these definitions, the stencil

25

entries may be identified by

s
T

i = (Φ1(x̃i), . . . ,ΦD(x̃i)) for x̃i ∈ X̃.

We show that evaluating a stencil function corresponds to performing integration
over the common support of φi, i ∈ I, and some φj , 1 ≤ j ≤ N , with supp{φi} ∩
supp{φj} 6= ∅. Our goal is to reduce over-computation by avoiding the expensive
numerical integration for almost all x̃i ∈ X̃. Therefore, we choose a small set of
sampling points X̃s ⊆ X̃. The maximum pairwise distance between the points in X̃s

defines the coarse scale H. At each of the sampling points x̃i
s ∈ X̃s, we compute the

standard stencils sis by performing numerical integration. Note that the numerical
integration may still be performed using one of the state of the art reduced integration
schemes from Section 1.2, to further avoid over-computation.

We use these sampling points to construct an interpolation or projection operator
ΠH yielding approximations Φ̃δ = ΠHΦδ. We denote the resulting approximations as
surrogate stencil functions Φ̃δ. For the approximation spaces in IGA discretizations,
we choose the natural B-spline space of order q with knot vectors corresponding
to the sampling points. In case of the FEM, we choose polynomial basis functions
of order q on some arbitrary bounded reference domains. These are just natural
choices and any other possible approximation space may be used. It is important
to note that performing the interpolations or projections using these spaces and
evaluating the approximated functions for all x̃i ∈ X̃ is computationally cheaper
than performing standard integration for all x̃i ∈ X̃. We conduct a floating point
complexity analysis in core article III (Appendix A.3) which establishes that the
computational complexity of the methodology compares favorably to other present
fast assembly techniques for isogeometric methods. The surrogate stencil s̃i is then
defined as

s̃
T

i = (Φ̃1(x̃i), . . . , Φ̃D(x̃i)) for x̃i ∈ X̃.

In the extreme case H = h, all the stencils are computed using standard integration,
thus the surrogate and standard stencils coincide. It can be shown that for particular
coefficients, geometry maps, and for q large enough, the surrogate stencil functions
and the original stencil functions are the same, even for H > h; see Corollary 8.1
and Corollary 10.1 in core article II (Appendix A.2).

This identification of the stencil entries with a set of locally smooth functions
depends strongly on locally-structured meshes as they are obtained by uniform
refinement or by using uniform knot vectors. Another limitation is that the geometry
maps and coefficients in the PDE need to be regular enough such that the stencil
functions may be approximated well by functions of higher order. If the coefficient
or geometry map is only locally smooth in sub-patches of a locally structured part,
this limitation may be resolved by carefully choosing the interpolation spaces. For
instance, if the locations of the irregularities are known beforehand, the knot vectors
of a B-spline interpolation may be chosen accordingly.

Using these surrogate stencil functions to approximate the entries of A results in
the so called surrogate matrix Ã. In core article II (Appendix A.2) and core article III
(Appendix A.3), we present theoretical error estimates for the additional consistency

26

error introduced by this approach in an IGA discretization. For numerical verification
of these estimates and for performance benchmarking, the method is implemented in
MATLAB with the software library GeoPDEs [51, 102]. A reference implementation
with details is presented in the accompanying article [41]. We assemble the global
sparse matrix by iterating over all rows which can be described by stencil functions
and writing the row and column indices as well as the evaluated surrogate stencil
function values into a vector each. The missing rows corresponding to stencils which
may not be identified by stencil functions are assembled using standard numerical
integration and are also added to these vectors. This sparse matrix representation is
known as the coordinate list (COO) format which is often used to efficiently construct
sparse matrices. Here, values with the same indices are added up. Afterwards, the
matrix present in the COO format is compressed into one of the standard sparse
matrix formats: compressed row storage (CRS) or compressed column storage (CCS)
[9, pp. 64–65]. Since arrays in MATLAB are stored in column-major order, the
sparse matrices are internally stored in the CCS format. Using the surrogate ma-
trices in core article II (Appendix A.2), at just over one million degrees of freedom,
our experiments demonstrate assembly speed-ups beyond fifty times with a simple
second-order NURBS basis and without any significant loss in the accuracy of the
surrogate solution.

In matrix-free methods, however, the global matrices are not assembled. Instead,
everything needed for the MVP is computed on-the-fly or by using some small
stored data to speed up the evaluation. These data may include, for instance, the
reference basis functions pre-evaluated at the integration points. In the predominant
element-by-element matrix-free approach [6, 21, 30, 53, 89], the MVP is computed
by evaluating

Au =
∑
T∈Th

PT (AT (P
T

Tu)),

where the product of AT and P
T

Tu is computed on-the-fly without assembling AT .
Many articles address the optimization of this approach and its implementation on
accelerators like GPUs [28, 52, 70, 71, 72, 75, 76, 77, 82]. Sum factorization may be
utilized in the matrix-free approach as well [11, 88, 92]. It can be shown that using
these approaches yields a better performance over matrix-based approaches if higher
order discretizations are utilized [71].

Stencil-based methods are also very well suited for matrix-free methods. The action
of the global stiffness matrix is computed by iterating over the rows of the stiffness
matrix and computing scalar products with the right-hand side vector, yielding a new
value at a single degree of freedom. Blocking techniques can be used in vector-valued
PDEs to process coefficients belonging to the same basis function simultaneously.
Using the stencil, an MVP may be written as

[Au]i = s
T

i (Riu) for 1 ≤ i ≤ N.

In this scenario, the MVP with the surrogate matrix may be computed by replacing

27

the stencils by the surrogate stencils

[Ãu]i =

{
s̃
T

i (Riu) if i ∈ I,
s
T

i (Riu) otherwise,
for 1 ≤ i ≤ N,

in which the surrogate stencil functions are evaluated on-the-fly. In core article I
(Appendix A.1), we show theoretical error estimates for the additional consistency
error introduced by this approach when using a linear finite element discretization.
For numerical verification of these estimates and performance benchmarking, the
method is implemented in the massively parallel matrix-free finite element framework
HyTeG [69]. The reported speed-ups for all tested examples, when evaluating the
surrogate stencils on-the-fly instead of performing the numerical integration, range
between a factor of 14 and 20.

In article IV (Appendix B.1), we follow another approach to construct the surrogate
matrix without using stencil functions. There, we utilize a concept called stencil
scaling which we initially introduced for scalar elliptic PDEs in [14]. The approach
is based on scaling reference stencils ŝi from a constant coefficient PDE, e.g. K = I
in the model problem from Section 2.2, and where the geometry is described by an
affine linear function. If the same PDE with a non-constant coefficient is solved, the
components of ŝi are scaled by linear combinations of the coefficient. In that work,
we showed a priori error estimates and performed numerical benchmarks validating
the theoretical results and the performance. In article IV (Appendix B.1), we
extend this idea to vector-valued PDEs. We show that the simple scaling for vector-
valued PDEs results in the discretization of a different PDE if the coefficient is not
constant. In order to overcome this issue, we develop a new stencil scaling approach
by adding a correction term to the discrete stencils. We present how to efficiently
pre-compute these correction terms in 2D and 3D, respectively. Moreover, we provide
numerical verifications with theoretical and practical performance considerations.
We can show that matrix-free methods may yield a better performance than matrix-
based approaches, even for linear finite element discretizations, when combined with
stencil scaling techniques. By using this approach on the older SuperMUC Phase 2
supercomputer, we could observe maximum speed-ups of 122% and on the state of
the art supercomputer SuperMUC-NG, we can observe speed-ups of 64% compared
to the on-the-fly integration, without any significant loss in the accuracy of the
solution.

In the next subsection, we briefly review the solvers we use to solve the linear
systems described by A and Ã.

3.2. Direct and iterative solvers
In the articles which are part of this thesis, we use various methods for solving the
emerging linear systems. In this and the following subsections, the matrix A denotes
either the operator obtained by numerical integration or the surrogate matrix. We
mainly distinguish between direct and iterative solvers. Depending on the purpose
and the properties of A, we decide which method to use.

28

Direct methods do not require any assumptions on A other than invertibility. They
are based on a pivoted Gaussian elimination which may be optimized when applied
to sparse matrices. In the general case, however, computing the factorization of A
requires a lot of extra memory due to the resulting fill-in which becomes worse the
higher the dimension d is. This disadvantage makes direct solvers impractical for
solving very large linear systems. We show in core article II (Appendix A.2) that,
in two dimensions, the assembly process of IGA matrices may still be more time
consuming than solving the system with a direct solver. By using the surrogate
matrix methodology this discrepancy may be reduced. Another disadvantage of
direct solvers is that they can only be employed when the matrix is available in
assembled form.

If this is not the case, iterative solvers which only require MVPs may be used.
Here, we focus on Krylov subspace and multigrid methods which are two popular
examples of iterative solvers. The matrix A from the discretized model problem
in Section 2.2 is symmetric and positive definite. For solving the linear system
associated to A, these properties can be exploited by the conjugate gradient (CG)
Krylov subspace method [46, Chapter 2] to construct an efficient iterative solver.
However, its convergence rate depends on the condition of the system matrix which
becomes worse when the mesh is refined. The counterpart to the conjugate gradient
method for symmetric but indefinite matrices, is the minimal residual (MINRES)
Krylov method [46, Chapter 4]. In order to improve on the convergence of Krylov
subspace methods, they may be applied to the left-preconditioned system

P−1Au = P−1f,

where P−1 is called the preconditioner. Finding suitable preconditioners is problem
dependent and a lot of work deals with finding efficient preconditioners. For matrix-
based methods, incomplete factorizations which approximate full factorizations as
they are obtained by Gaussian elimination, may be used [46, Chapter 2]. For
matrix-free methods, preconditioners based on fast diagonalization exploiting the
tensor-product structure of the basis functions were developed in [88, 92].

Another large class of preconditioners is based on multigrid methods [6, 11, 18, 19,
52, 54, 71, 72, 76, 82, 99]. Multigrid methods are optimal iterative solvers in the sense
that their theoretical FLOP complexity is proportional to the number of degrees
of freedom, i.e., O(N). In geometric multigrid methods, we require a hierarchy of
nested spaces V1 ⊆ V2 ⊆ · · · ⊆ VL. The HHGs used in core article I (Appendix A.1)
and article IV (Appendix B.1) provide a natural family of hierarchically nested
meshes {T

Ĥ
, T

2
−1

Ĥ
, . . . , T

2
−L+1

Ĥ
}, where Ĥ = 2L−1h is the mesh size of the coarse

input mesh and L ∈ N the number of levels in the hierarchy. We naturally define the
space V`, 1 ≤ ` ≤ L, to be the finite element space related to the mesh T

2
−`+1

Ĥ
. Let

I`, 1 ≤ ` < L, be the operator transferring the solution from V` to V`+1. Since the
spaces are conforming and nested, we use the natural interpolation of a coarse grid
function to the finer grid, but other choices based on projections are also possible.

Assuming that the matrix on the finest level L is assembled, the matrices on
the coarser levels A`, 1 ≤ ` < L, may be recursively defined via A` = I

T

`A`+1I` for
1 ≤ ` < L. In the literature, this definition is known as the Galerkin projection. In

29

matrix-free methods, however, this definition is impractical since the MVP with the
fine level AL matrix would be required to obtain the action of a coarser level matrix.
Therefore, we repeatedly discretize the problem on each V` independently to obtain
the operators A` for 1 ≤ ` < L.

Let S`, 1 < ` ≤ L, be smoothers satisfying the smoothing property [46, Chapter 2].
A typical choice is the damped Jacobi smoother S` =

1
ωD`, where D` is a diagonal

matrix with the diagonal entries of A` and ω ∈ R a damping factor. Storing D`

requires only the space of an additional solution vector and it can be easily computed
when using the element-by-element approach. Polynomial Chebyshev accelerated
smoothers can be used to improve the smoothing properties of the Jacobi smoother
when only the diagonals of A` are available [1]. Gauss–Seidel smoothers are not
feasible with the element-by-element approach since they require all the entries of the
matrix rows and not just the diagonal value. In stencil-based methods, however, the
matrix rows are available and thus the Gauss–Seidel smoother may be utilized. Since
in our parallel HyTeG solver not all the dependencies across process boundaries can
be kept synchronized, we utilize hybrid Gauss–Seidel methods in which some degrees
of freedom are processed in a Jacobi smoother fashion. Let ν` ∈ N be the pre- and
postsmoothing steps on level `. With these definitions in mind, the multigrid V-cycle
for solving the system ALuL = fL is presented in Algorithm 1. Under the assumptions
of Theorem 1 in the H2 regular setting, the successive application of the multigrid
V-cycle with a damped Jacobi smoother, is a suitable iterative solver for the model
problem [46, Theorem 2.15]. Note that the matrix on the coarsest level used in line 3
of Algorithm 1 may be assembled and inverted by a direct solver. Alternatively, an
iterative solver may be used to avoid over-solving the coarse problem. The latter
approach also allows to utilize matrix-free methods.

Algebraic multigrid methods constitute the counterpart to geometric multigrid
methods. There, the restriction operators I

T

` are constructed algebraically without
requiring any mesh information and the coarse grid matrices are constructed by
Galerkin projections. These methods use only information of the matrix sparsity and
its entries [46, Chapter 2]. Since they require an assembled matrix, they render very
useful for the coarse grid problem in line 3 of Algorithm 1, where the matrices are
small. In large parallel applications, however, one needs to ensure that the process
local matrices do not get to small or otherwise the communication overhead impedes
a good parallel scalability.

In core article I (Appendix A.1), we directly apply geometric multigrid V-cycles to
solve the linear systems. As the smoother, we choose a hybrid Gauss–Seidel smoother
which is naturally feasible with stencil-based methods. On the coarsest level, we
either use a diagonally preconditioned CG method or the direct multifrontal massively
parallel sparse direct solver (MUMPS) [3, 4]. For improved parallel scalability of the
coarse grid solver, agglomeration techniques as provided by PCTELESCOPE [83] are
used in computations with many processes.

In core article II (Appendix A.2), we use direct solvers for the accuracy benchmarks
of the surrogate matrix methodology for all the two-dimensional problems. For
Poisson’s problem in three dimensions, however, we employ the preconditioned CG
method with HYPRE’s BoomerAMG algebraic multigrid as the preconditioner [59].

30

Algorithm 1 Multigrid V-cycle
1: function V-cycle(u`, f`)
2: if ` = 1 then
3: Solve A`u` = f` . Direct or iterative solve
4: else
5: For ν` steps u` ← u` + S−1

` (f` −A`u`) . Presmoothing
6: r`−1 ← I

T

`−1(f` − A`u`) . Restrict residual
7: u`−1 ← 0
8: u`−1 ← V-cycle(u`−1, r`−1) . Recursive coarse grid correction
9: u` ← u` + I`−1u`−1 . Add coarse grid correction

10: For ν` steps u` ← u` + S−
T

` (f` −A`u`) . Postsmoothing
11: end if
12: return u`
13: end function

In core article III (Appendix A.3), we also use direct solvers provided by MATLAB
for all problems in two dimensions. Since the discretized Helmholtz equation is
indefinite for larger wave numbers and multigrid solvers do not work as efficiently in
this case, we use the MUMPS for solving the Helmholtz equation in three dimensions.

In article IV (Appendix B.1), for solving the elliptic problems, we also directly
apply geometric multigrid V-cycles with a hybrid Gauss–Seidel smoother and a
preconditioned CG method on the coarsest level. The discretization of Stokes
flow problems results in a saddle point problem. In [39], various block-smoothers
for saddle points were analyzed, and in [55], a quantitative performance study
for massively parallel iterative Stokes solvers was performed. The inexact Uzawa
block smoother with variable V-cycles, i.e., adding two more smoothing steps per
coarser level correction, rendered itself the most efficient solver compared to a block
preconditioned MINRES Krylov subspace method and a Schur complement CG
method. Therefore, we utilize the same Uzawa-type solver for solving the Stokes
problems discussed in article IV (Appendix B.1). Utilizing this solver, the largest
considered Stokes system with about 1.03 · 1011 degrees of freedom is solved in little
more than three minutes on 12 288 compute cores of SuperMUC-NG.

In the next subsection, we present how these linear solvers are employed for solving
the nonlinear problems from Section 2.6.

3.3. Nonlinear problems
Some of the problems presented in Section 2.6 require solving a nonlinear problem.
Many methods for solving nonlinear problems need to reassemble the discrete problem
in every iteration. In such cases, the surrogate matrix methodology may be used to
speed up the reassembly and thus reducing the computing time.

For instance, the weak form of the stationary part of the p-Laplacian in Section 2.6
may be written in semilinear form as

a(w;u, v) =

∫
Ω
‖∇w‖p−2

2 ∇uT∇v dx.

31

The corresponding discrete nonlinear problem reads:

Find uh ∈ Vh satisfying a(uh;uh, vh) = F (vh) for all vh ∈ Vh,

and the corresponding nonlinear matrix equation is

A(u)u = f. (3.2)

The semilinear form a(·; ·, ·) is linear in the last two arguments and thus provides a
linearization of the nonlinear problem. These problems may be solved using Picard
iterations shown in Algorithm 2. Assuming that the function R(u) = A(u)−1f is a
contraction, the Banach fixed-point theorem asserts that the sequence generated by
Algorithm 2 converges to a unique solution of (3.2) [105, p. 166]. We utilize this

Algorithm 2 Picard iterations
1: Initialize u(0), let n = 1, and let tol be a fixed relative tolerance
2: while true do
3: Let [A]ij = a(u

(n−1)
h ;φj , φi) for 1 ≤ i, j ≤ N

4: Solve the linear system Au(n) = f for u(n)

5: if ‖u(n) − u(n−1)‖2 < tol · ‖u(0)‖2 then
6: return u(n)

7: end if
8: n← n+ 1
9: end while

iterative scheme in core article I (Appendix A.1) for solving the parabolic p-Laplacian
described in Section 2.6. In article IV (Appendix B.1), we apply the same scheme to
solve the nonlinear generalized Stokes problem in which the viscosity depends on
the strain rate and thus implicitly on the velocity. In both applications, the matrix
A in line 3 of Algorithm 2 is not being assembled and only its action to a vector is
computed, using either numerical integration or the surrogate matrix methodology.
The systems in line 4 of Algorithm 2 are only solved approximately down to a fixed
relative tolerance in order to avoid over-solving. In case of the parabolic p-Laplacian,
we perform standard multigrid V-cycles and in case of the nonlinear generalized
Stokes problem, we perform variable multigrid V-cycles with an inexact Uzawa block
smoother.

The Newton–Raphson method is another method to solve nonlinear systems. It
usually displays a better convergence rate compared to Picard’s iterations from above,
but convergence to a solution is only guaranteed if the initial guess is already close to
the actual solution and if the tangent matrices emerging during the iterative process
are invertible [86, pp. 183–185].

Let R be a residual function and the corresponding problem:

Find uh ∈ Vh satisfying R(uh; vh) = 0 for all vh ∈ Vh.

32

For instance, the residual for a scalar stationary nonlinear wave propagation problem
(see Section 2.6) reads

R(uh; δv) =

∫
Ω
∂uW (uh; δv)− f δv dx for all δv ∈ Vh.

Linearizing R at uh ∈ Vh in direction δu ∈ Vh yields

R(uh + δu; δv) = R(uh; δv) + ∂uR(uh; δv, δu) + o(‖δu‖2),

where the derivative of R with respect to u in direction δu ∈ Vh reads

∂uR(uh; δv, δu) =

∫
Ω
∂2
uW (uh; δv, δu) dx for all δv ∈ Vh.

Given a uh ∈ Vh and neglecting the higher order terms, we search for a solution
δu ∈ Vh of

R(uh + δu; δv) ≈ R(uh; δv) + ∂uR(uh; δv, δu) = 0 for all δv ∈ Vh,

and let uh ← uh + δu. Repeating this process iteratively is known as the Newton–
Raphson method shown in Algorithm 3. In the Newton–Raphson method, the tangent

Algorithm 3 Newton–Raphson method
1: Initialize u(0), let n = 1, and let tol be a fixed relative tolerance
2: while true do
3: Compute the residual vector [r]i = R(u

(n−1)
h ;φi) for 1 ≤ i ≤ N

4: Let A be the tangent matrix [A]ij = ∂uR(u
(n−1)
h ;φi, φj) for 1 ≤ i, j ≤ N

5: Solve the linear system Aδu = −r for δu
6: Let u(n) = u(n−1) + δu
7: if ‖δu‖2 < tol · ‖u(0)‖2 then
8: return u(n)

9: end if
10: n← n+ 1
11: end while

matrix needs to be reassembled in each iteration; see line 4 in Algorithm 3. When using
the surrogate matrix methodology to speed up the assembly, only an approximation
of the true tangent matrix is obtained. Therefore, the Newton–Raphson method used
in conjunction with the surrogate methodology may be interpreted as a quasi-Newton
method. Since the residual is computed using standard numerical integration, the
consistency error uh− ũh will vanish with the number of Newton–Raphson iterations.

The Newton–Raphson method may also be utilized within a predictor multicorrec-
tor algorithm to solve transient nonlinear problems. We present this application in
the following subsection.

33

3.4. Nonlinear time integration
The surrogate matrix methodology can also be used in implicit time integration
schemes for assembling the propagation matrices which propagate the solution forward
in time. For nonlinear transient problems, the propagation matrices need to be
reassembled multiple times in each time step of the simulation. This is due to the
dependence of the tangent matrix on the solution of the previous time steps and on
the iterates of the current time step. By employing the surrogate matrix methodology
to speed up the reassembly of the propagation matrices, the computing times may
be significantly reduced.

In core article III (Appendix A.3), we solve a compressible hyperelastic wave
problem modeled by (2.12) utilizing the energy functional (2.13) describing a neo-
Hookean medium through which the waves propagate. For this purpose, the system
of equations (2.12) may be discretized in time like a second order ordinary differential
equation in which a nonlinear PDE needs to be solved in each time step.

For solving the semi-discrete transient problem (2.12), we employ the nonlinear
generalized-α time integration scheme proposed in [32]. Here, we closely follow
the algorithm presented in [34, Section 7.3]. Let u

(n)
h , u̇

(n)
h , ü

(n)
h ∈ [Vh]

d be the
displacement, velocity, and acceleration at the current time tn. We identify a
function uh with the vector u ∈ Rd·N through uh =

∑N
i=1

∑d
`=1 ud(i−1)+`φie`, where

e` is the unit vector with a 1 in the `-th component and 0 elsewhere. The same
identification is made for the velocity and acceleration, respectively. The goal is
finding (u

(n+1)
h , u̇

(n+1)
h , ü

(n+1)
h) at the next time tn+1 satisfying the time-discrete

variant of system (2.12). Let ∆t = tn+1 − tn denote the time step size, and let
αm = 1

2
3−ρ∞
1+ρ∞

, and αf = 1
1+ρ∞

be the parameters from [68]. Moreover, let γ =
1
2−αf +αm and β = 1

4(1−αf +αm)2. With ρ∞ = 1
2 , this choice of parameters yields

an unconditionally stable second-order time integration scheme while introducing
some damping of the high-frequencies [34, pp. 203–204]. The residual function R
corresponding to (2.12) with W from (2.14) is defined as

R(uh, u̇h, üh; δv) =

∫
Ω
ρ0üh : δv + ∂uW (uh; δv)− f : δv dx for all δv ∈ [Vh]

d.

In each time step of the generalized-α method, we solve the following nonlinear
problem: Find (u

(n+1)
h , u̇

(n+1)
h , ü

(n+1)
h) satisfying

R(u
(n+αf)

h , u̇
(n+αf)

h , ü
(n+αm)
h ; δvh) = 0 for all δvh ∈ [Vh]

d

u
(n+αf)

h = u
(n)
h + αf (u

(n+1)
h − u

(n)
h),

u̇
(n+αf)

h = u̇
(n)
h + αf (u̇

(n+1)
h − u̇

(n)
h),

ü
(n+αm)
h = ü

(n)
h + αm(ü

(n+1)
h − ü

(n)
h),

u̇
(n+1)
h = u̇

(n)
h +∆t((1− γ)ü

(n)
h + γü

(n+1)
h),

u
(n+1)
h = u

(n)
h +∆tu̇

(n)
h

+
(∆t)2

2
((1− 2β)ü

(n)
h + 2βü

(n+1)
h).

34

In order to solve this system of nonlinear equations, we employ the predictor-
multicorrector Algorithm 4 [34, Section 7.3]. In the predictor step, we employ a
constant velocity predictor and in each corrector step, a nonlinear problem is solved
using Newton–Raphson’s method described in Section 3.3. The derivative with
respect to ü of the residual function may be computed using the chain rule, yielding

∂üR(uh, u̇h, üh; δv, δü) =

∫
Ω
ρ0αmδüh : δv + αfβ(∆t)2∂2

uW (uh; δv, δü) dx,

where the second derivative of the energy density functional for a neo-Hookean
medium is given by

∂2
uW (u; δv, δu) =

[
(µ− λ ln (det (F (u))))F (u)−

T∇δuF (u)−
T

+ µ∇δu+ λ tr
(
F (u)−1∇δu

)
F (u)−

T
]
: ∇δv.

In line 10 of Algorithm 4, the tangent matrix needs to be reassembled for each
correction step within each time step. In order to accelerate the assembly, we
approximate it by using the surrogate method which ultimately results in a quasi-
Newton–Raphson scheme as described in Section 3.3. By replacing the standard
tangent matrix by a surrogate matrix in core article III (Appendix A.3), we could
observe speed-ups of about 142% without any significant loss in accuracy when solving
a nonlinear wave propagation problem within a medium modeled by a compressible
neo-Hookean model.

35

Algorithm 4 Generalized-α predictor-multicorrector step from time tn to tn+1

1: k ← 0 and let tol be a fixed relative tolerance
2: u̇

(n+1;k)
h = u̇

(n)
h . Predictor phase

3: ü
(n+1;k)
h ← γ−1

γ u̇
(n+1;k)
h

4: u
(n+1;k)
h ← u

(n)
h +∆tu̇

(n)
h + (∆t)

2

2 ((1− 2β)ü
(n)
h + 2βü

(n+1;k)
h)

5: while true do . Multicorrector phase
6: u

(n+αf ;k)

h ← u
(n)
h + αf (u

(n+1;k)
h − u

(n)
h)

7: u̇
(n+αf ;k)

h ← u̇
(n)
h + αf (u̇

(n+1;k)
h − u̇

(n)
h)

8: ü
(n+αm;k)
h ← ü

(n)
h + αm(ü

(n+1;k)
h − ü

(n)
h)

9: Compute the residual vector

[r(k)]d(i−1)+` = R(u
(n+αf ;k)

h , u̇
(n+αf ;k)

h , ü
(n+αm;k)
h ;φie`)

for 1 ≤ i ≤ N, 1 ≤ ` ≤ d
10: Let A be the tangent matrix

[A]d(i−1)+`,d(j−1)+m = ∂üR(u
(n+αf ;k)

h , u̇
(n+αf ;k)

h , ü
(n+αm;k)
h ;φie`, φjem)

for 1 ≤ i, j ≤ N, 1 ≤ `,m ≤ d

11: Solve the linear system Aδü = −r(k) for δü

12: ü
(n+1;k+1)
h ← ü

(n+1;k)
h + δüh

13: u̇
(n+1;k+1)
h ← u̇

(n+1;k)
h + γ∆tδüh

14: u
(n+1;k+1)
h ← u

(n+1;k)
h + β(∆t)2δüh

15: if ‖r(k)‖2 < tol · ‖r(0)‖2 then
16: return (u

(n+1;k+1)
h , u̇

(n+1;k+1)
h , ü

(n+1;k+1)
h)

17: end if
18: k ← k + 1
19: end while

36

4. Performance modeling
In this section, we provide a brief introduction to performance modeling and illustrate
its main concepts by considering a specific model, called the roofline model. In general,
performance models can explain and predict the performance of a given code when
being executed on a computer. Moreover, these models can help in the decision
making progress which code optimizations are useful and which are not.

For instance, assessing only the number of FLOPs an algorithm is performing
and the memory it requires, is a too simplistic model for estimating the actual
run-time of the code. While this approach may give some initial understanding of
the computational complexity, the actual performance of a code depends heavily on
the balance between FLOPs and the required memory traffic. In fact, data access
is the most import performance-limiting factor in HPC, especially in loop-based
scientific applications where a lot of data is being moved in and out of the CPU [57].
In such applications, the available compute resources are often underutilized and
the performance is limited by the slow data paths. On a single compute node, the
slowest data path is usually the path from main memory to the CPU if all the data
fits in memory. Otherwise, if data needs to be read from hard disks, the slowest path
is usually the path from the disk to the memory.

A famous representative for a loop-based scientific code which is limited by data
access, is the MVP of a large sparse matrix with a vector, where the matrix is stored
in a compressed format [57, p. 79]. These codes are predominant in iterative solvers
for linear systems originating from discretized PDEs. Using matrix-free methods
reduces the amount of data-traffic by avoiding loading the indices and values of a
stored sparse matrix. Instead, they only need to access the source, destination, and
PDE coefficient vectors as well as some usually small helper data which often fit into
the CPU caches. The constant reference and correctional stencil components from
article IV (Appendix B.1) are a particular example of small data fitting in the caches.
The MVP is then computed by forming parts of the global matrix on-the-fly using
the PDE coefficient and helper data. By doing this, the processors are performing
more work per loaded byte from memory which allows for a better utilization of the
compute resources. In many cases, the performance of a code may be increased by
doing more FLOPs per byte of data which needs to be loaded from memory.

In order to formalize these considerations, we make some assumptions on the
computers and the loop code. We assume that a single compute node with possibly
multiple sockets is used where each socket is equipped with a CPU having possibly
multiple physical cores. Moreover, we presume the following assumptions stipulated
in [57, p. 66]:

• The loop code uses all available instructions of the CPU in an optimal way
such that all the execution units are utilized.

• All floating point arithmetics operations are performed with double precision.

• All data transfer overlaps perfectly with the arithmetic operations.

• The performance of the loop code is determined by the slowest data path.

37

0.01 0.1 1

0.1

1

10

100

L1 Bandwidth 289.84 GB/s

L2 Bandwidth 91.30 GB/s

L3 Bandwidth 22.91 GB/s

DRAM Bandwidth 4.70 GB/s

DP Vector FMA 72.39 GFLOPS

DP Vector Add 36.44 GFLOPS

DP Scalar Add 4.56 GFLOPS

Arithmetic intensity [FLOPs/byte]

P
er

fo
rm

an
ce

[G
F

LO
P

S]

Figure 1: Roofline plot obtained on single compute node of SuperMUC-NG.

• Memory latency effects can be neglected.

• The memory bandwidth can be saturated. This usually requires the simultane-
ous utilization of several cores in multicore CPUs.

The absolute peak performance of a compute node is denoted by Pmax and is
measured in FLOPS. Depending on the instructions used in a loop code, the
actual peak performance may vary. To illustrate this, we present in Figure 1 three
performance levels which were measured on a single compute node of the state of
the art supercomputer SuperMUC-NG. Each compute node is equipped with two
Intel Xeon Platinum 8174 processors with a nominal clock rate of 3.1GHz. Each
processor has 24 physical cores which results in 48 cores per compute node. If a
loop code only utilizes double-precision scalar additions, the maximum achievable
performance is 4.56GFLOPS. If the vector addition instructions are used instead,
the maximum performance is about 36.44GFLOPS, a factor of eight larger than the
scalar performance. This is due to the vector instructions included in the modern
CPUs which may perform up to eight additions in a single instruction by using
AVX-512 instructions. If multiplications are followed directly by additions, special
vector fused multiply-add (FMA) instructions may be used. These instructions allow
performing 16 FLOPs per instruction which results in a peak performance of about
72.39GFLOPS. In practice, loop codes limited by data access do not reach these
absolute performances since the slow data paths must be taken into account.

This effect can be explained by the following reasons. The code balance [57, p. 66]

Bc =
data traffic [bytes]

floating point ops [FLOPs]

of a loop code describes how many bytes of data are accessed per FLOP. The
reciprocal of Bc is also often denoted by the arithmetic intensity I = 1/Bc. The
maximum bandwidth of the slowest data path is denoted by bmax and is measured
in bytes per second (B s−1). Similar to the different peak performance levels Pmax,
there also exist different maximum bandwidth levels for the L1, L2, and L3 CPU

38

caches, as well as the dynamic random access memory (DRAM). Depending on the
size of the data and the code balance of the loop code, one of these bandwidths
may be limiting the performance. Each physical core on a SuperMUC-NG compute
node has a dedicated L1 data cache of size 32 kB and a dedicated L2 cache of size
1024 kB. Each of the two processors on the compute node has a L3 cache of size
33MB, shared across all its cores. In Figure 1, we present four bandwidth limits
measured on a single compute node. The DRAM bandwidth is the slowest data path
with a bandwidth of 4.70GB s−1. In contrast, the CPU cache bandwidths are much
larger than the DRAM bandwidth and they increase the smaller the caches become.

With the assumptions from above, the actual achievable performance P of a loop
code may be estimated by

P = min

{
Pmax,

bmax

Bc

}
= min {Pmax, I · bmax} .

This simple performance model is known as the balance or roofline model [57,
106]. Plotting the performance P for the different levels of Pmax and bmax over the
arithmetic intensity I results in the ceilings illustrated in Figure 1. This model can
be used to judge a code’s performance by measuring it experimentally and placing
the result in the roofline plot. Since this model takes data movement into account, it
gives more insight into the performance than just the percentage of the maximum
peak performance.

In article IV (Appendix B.1), we perform a roofline analysis on a compute node
of SuperMUC-NG for MVPs used for residual computations in a discretization of
linear elastostatics. There, we compare the performance of using stored matrices,
on-the-fly integration of the bilinear forms, and the presented stencil scaling method
for vector-valued PDEs. We show that matrix-free methods are beneficial regarding
both, the memory consumption and the memory traffic, even in the case of low-order
finite element discretizations if combined with stencil scaling techniques.

Nonetheless, the roofline model is a very simple performance model with some
limitations. For instance, only the bandwidth of the slowest data path is taken into
account and the remaining memory hierarchies are neglected. The roofline model also
cannot explain saturation effects in multicore CPUs. Moreover, in practice, the data
transfers and arithmetic operations do not overlap perfectly. A possible alternative
model taking these facts into account, is the execution cache memory (ECM) model
[94]. In this model, the overall runtime is decomposed into various contributions
that are combined according to machine models. Since it is tedious to set up this
model manually, tools like kerncraft [58] provide a framework to help collecting data
required for the ECM model.

39

Acronyms
CAD computer-aided design

CCS compressed column storage

CG conjugate gradient

COO coordinate list

CPU central processing unit

CRS compressed row storage

DRAM dynamic random access memory

ECM execution cache memory

GPU graphics processing unit

FEM finite element method

FLOP floating point operation

FLOPS floating point operations per second

FMA fused multiply-add

FPGA field programmable gate array

HHG hierarchical hybrid grid

HPC high performance computing

IGA isogeometric analysis

41

IIL integration by interpolation and lookup

MINRES minimal residual

MUMPS multifrontal massively parallel sparse direct solver

MVP matrix vector product

NURBS non-uniform rational B-splines

PDE partial differential equation

PML perfectly matched layers

SIMD single instruction, multiple data

42

Bibliography
[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. “Parallel multigrid smoothing:

polynomial versus Gauss–Seidel”. In: Journal of Computational Physics 188.2 (July
2003), pp. 593–610. doi: 10.1016/s0021-9991(03)00194-3.

[2] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Elsevier LTD, Oxford, June 1,
2003. isbn: 0-12-044143-8.

[3] P. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary. “Performance and scalability
of the block low-rank multifrontal factorization on multicore architectures”. In: ACM
Transactions on Mathematical Software 45 (1 2019), 2:1–2:26. doi: 10.1145/3242094.

[4] P. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. “A fully asynchronous
multifrontal solver using distributed dynamic scheduling”. In: SIAM Journal on Matrix
Analysis and Applications 23.1 (2001), pp. 15–41. doi: 10.1137/s0895479899358194.

[5] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, and G. Sangalli. “Efficient matrix
computation for tensor-product isogeometric analysis: The use of sum factorization”.
In: Computer Methods in Applied Mechanics and Engineering 285 (Mar. 2015),
pp. 817–828. doi: 10.1016/j.cma.2014.12.013.

[6] P. Arbenz, G. H. van Lenthe, U. Mennel, R. Müller, and M. Sala. “A scalable
multi-level preconditioner for matrix-free µ-finite element analysis of human bone
structures”. In: International Journal for Numerical Methods in Engineering 73.7
(2008), pp. 927–947. doi: 10.1002/nme.2101.

[7] Argonne National Laboratory. U.S. Department of Energy and Intel to deliver first
exascale supercomputer. Mar. 18, 2019. url: https://www.anl.gov/article/us-d
epartment-of-energy-and-intel-to-deliver-first-exascale-supercomputer
(visited on 03/31/2020).

[8] F. Auricchio, F. Calabrò, T. Hughes, A. Reali, and G. Sangalli. “A simple algorithm
for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis”.
In: Computer Methods in Applied Mechanics and Engineering 249-252 (Dec. 2012),
pp. 15–27. doi: 10.1016/j.cma.2012.04.014.

[9] R. Barrett et al. Templates for the solution of linear systems: Building blocks for
iterative methods. Society for Industrial and Applied Mathematics, Jan. 1994. doi:
10.1137/1.9781611971538.

[10] P. Bastian, J. Kraus, R. Scheichl, and M. Wheeler, eds. Simulation of Flow in Porous
Media. De Gruyter, Jan. 2013. doi: 10.1515/9783110282245.

[11] P. Bastian, E. H. Müller, S. Müthing, and M. Piatkowski. “Matrix-free multigrid
block-preconditioners for higher order discontinuous Galerkin discretisations”. In:
Journal of Computational Physics 394 (Oct. 2019), pp. 417–439. doi: 10.1016/j.
jcp.2019.06.001.

[12] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, and B. Wohlmuth. “Large-
scale simulation of mantle convection based on a new matrix-free approach”. In:
Journal of Computational Science 31 (Feb. 2019), pp. 60–76. doi: 10.1016/j.jocs.
2018.12.006.

[13] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, and B. Wohlmuth. “A
two-scale approach for efficient on-the-fly operator assembly in massively parallel high
performance multigrid codes”. In: Applied Numerical Mathematics 122 (Dec. 2017),
pp. 14–38. doi: 10.1016/j.apnum.2017.07.006.

43

https://doi.org/10.1016/s0021-9991(03)00194-3
https://doi.org/10.1145/3242094
https://doi.org/10.1137/s0895479899358194
https://doi.org/10.1016/j.cma.2014.12.013
https://doi.org/10.1002/nme.2101
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://www.anl.gov/article/us-department-of-energy-and-intel-to-deliver-first-exascale-supercomputer
https://doi.org/10.1016/j.cma.2012.04.014
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1515/9783110282245
https://doi.org/10.1016/j.jcp.2019.06.001
https://doi.org/10.1016/j.jcp.2019.06.001
https://doi.org/10.1016/j.jocs.2018.12.006
https://doi.org/10.1016/j.jocs.2018.12.006
https://doi.org/10.1016/j.apnum.2017.07.006

[14] S. Bauer, D. Drzisga, M. Mohr, U. Rüde, C. Waluga, and B. Wohlmuth. “A stencil
scaling approach for accelerating matrix-free finite element implementations”. In:
SIAM Journal on Scientific Computing 40.6 (2018), pp. C748–C778. doi: 10.1137/
17m1148384.

[15] S. Bauer, M. Huber, M. Mohr, U. Rüde, and B. Wohlmuth. “A new matrix-free
approach for large-scale geodynamic simulations and its performance”. In: Lecture
Notes in Computer Science. Springer International Publishing, 2018, pp. 17–30. doi:
10.1007/978-3-319-93701-4_2.

[16] Y. Bazilevs, L. Beirão Da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli.
“Isogeometric analysis: approximation, stability and error estimates for h-refined
meshes”. In: Mathematical Models and Methods in Applied Sciences 16.07 (July 2006),
pp. 1031–1090. doi: 10.1142/s0218202506001455.

[17] J.-P. Berenger. “A perfectly matched layer for the absorption of electromagnetic
waves”. In: Journal of Computational Physics 114.2 (1994), pp. 185–200. doi: 10.
1006/jcph.1994.1159.

[18] B. Bergen, G. Wellein, F. Hülsemann, and U. Rüde. “Hierarchical hybrid grids:
achieving TERAFLOP performance on large scale finite element simulations”. In:
International Journal of Parallel, Emergent and Distributed Systems 22.4 (Aug. 2007),
pp. 311–329. doi: 10.1080/17445760701442218.

[19] B. Bergen. Hierarchical Hybrid Grids: Data Structures and Core Algorithms for
Efficient Finite Element Simulations on Supercomputers. Erlangen: SCS Publishing
House, 2005.

[20] B. K. Bergen and F. Hülsemann. “Hierarchical hybrid grids: data structures and core
algorithms for multigrid”. In: Numerical Linear Algebra with Applications 11.23 (Mar.
2004), pp. 279–291. doi: 10.1002/nla.382.

[21] J. Bielak, O. Ghattas, and E.-J. Kim. “Parallel octree-based finite element method
for large-scale earthquake ground motion simulation”. In: Computer Modeling in
Engineering & Sciences 10.2 (2005), pp. 99–112. doi: 10.3970/cmes.2005.010.099.

[22] C. de Boor. “On calculating with B-splines”. In: Journal of Approximation Theory 6.1
(July 1972), pp. 50–62. doi: 10.1016/0021-9045(72)90080-9.

[23] D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastiz-
itätstheorie. Berlin Heidelberg New York: Springer, 2007. isbn: 978-3-540-72449-0.

[24] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer-Verlag GmbH, Jan. 1, 2008. isbn: 0-387-75933-6. doi: 10.1007/978-0-387-
75934-0.

[25] A. Bressan and G. Sangalli. “Isogeometric discretizations of the Stokes problem:
stability analysis by the macroelement technique”. In: IMA Journal of Numerical
Analysis 33.2 (2013), pp. 629–651.

[26] A. Bressan and S. Takacs. “Sum factorization techniques in isogeometric analysis”. In:
Computer Methods in Applied Mechanics and Engineering 352 (Aug. 2019), pp. 437–
460. doi: 10.1016/j.cma.2019.04.031.

[27] F. Brezzi and J. Pitkäranta. “On the stabilization of finite element approximations of
the Stokes equations”. In: Efficient Solutions of Elliptic Systems. Vieweg+Teubner
Verlag, 1984, pp. 11–19. doi: 10.1007/978-3-663-14169-3_2.

[28] J. Brown. “Efficient nonlinear solvers for nodal high-order finite elements in 3D”. In:
Journal of Scientific Computing 45.1-3 (2010), pp. 48–63. doi: 10.1007/s10915-010-
9396-8.

44

https://doi.org/10.1137/17m1148384
https://doi.org/10.1137/17m1148384
https://doi.org/10.1007/978-3-319-93701-4_2
https://doi.org/10.1142/s0218202506001455
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1080/17445760701442218
https://doi.org/10.1002/nla.382
https://doi.org/10.3970/cmes.2005.010.099
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1016/j.cma.2019.04.031
https://doi.org/10.1007/978-3-663-14169-3_2
https://doi.org/10.1007/s10915-010-9396-8
https://doi.org/10.1007/s10915-010-9396-8

[29] F. Calabrò, G. Sangalli, and M. Tani. “Fast formation of isogeometric Galerkin
matrices by weighted quadrature”. In: Computer Methods in Applied Mechanics
and Engineering 316 (2017). Special Issue on Isogeometric Analysis: Progress and
Challenges, pp. 606–622. issn: 0045-7825. doi: 10.1016/j.cma.2016.09.013.

[30] G. F. Carey and B.-N. Jiang. “Element-by-element linear and nonlinear solution
schemes”. In: Communications in Applied Numerical Methods 2.2 (1986), pp. 145–153.
doi: 10.1002/cnm.1630020205.

[31] A. J. Chorin. “Numerical solution of the Navier-Stokes equations”. In: Mathematics of
Computation 22.104 (1968), pp. 745–745. doi: 10.1090/s0025-5718-1968-0242392-
2.

[32] J. Chung and G. M. Hulbert. “A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method”. In: Journal of Applied
Mechanics 60.2 (June 1993), pp. 371–375. doi: 10.1115/1.2900803.

[33] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial
and Applied Mathematics, Jan. 2002. doi: 10.1137/1.9780898719208.

[34] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration
of CAD and FEA. John Wiley & Sons, 2009.

[35] M. G. Cox. “The numerical evaluation of B-splines”. In: IMA Journal of Applied
Mathematics 10.2 (1972), pp. 134–149. doi: 10.1093/imamat/10.2.134.

[36] L. B. Da Veiga, A. Buffa, J. Rivas, and G. Sangalli. “Some estimates for h–p–k-
refinement in isogeometric analysis”. In: Numerische Mathematik 118.2 (Oct. 2010),
pp. 271–305. doi: 10.1007/s00211-010-0338-z.

[37] L. B. Da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. “Mathematical analysis of
variational isogeometric methods”. In: Acta Numerica 23 (2014), pp. 157–287. doi:
10.1017/s096249291400004x.

[38] D. Drzisga, B. Gmeiner, U. Rüde, R. Scheichl, and B. Wohlmuth. “Scheduling
massively parallel multigrid for multilevel Monte Carlo methods”. In: SIAM Journal
on Scientific Computing 39.5 (2017), S873–S897. doi: 10.1137/16m1083591.

[39] D. Drzisga, L. John, U. Rüde, B. Wohlmuth, and W. Zulehner. “On the analysis of
block smoothers for saddle point problems”. In: SIAM Journal on Matrix Analysis
and Applications 39.2 (2018), pp. 932–960. doi: 10.1137/16m1106304.

[40] D. Drzisga, B. Keith, and B. Wohlmuth. “The surrogate matrix methodology: a priori
error estimation”. In: SIAM Journal on Scientific Computing 41.6 (2019), A3806–
A3838. doi: 10.1137/18M1226580.

[41] D. Drzisga, B. Keith, and B. Wohlmuth. “The surrogate matrix methodology: A
reference implementation for low-cost assembly in isogeometric analysis”. In: MethodsX
7 (2020), p. 100813. doi: 10.1016/j.mex.2020.100813.

[42] D. Drzisga, B. Keith, and B. Wohlmuth. “The surrogate matrix methodology: Accel-
erating isogeometric analysis of waves”. In: Computer Methods in Applied Mechanics
and Engineering 372 (Dec. 2020), p. 113322. doi: 10.1016/j.cma.2020.113322.

[43] D. Drzisga, B. Keith, and B. Wohlmuth. “The surrogate matrix methodology: Low-
cost assembly for isogeometric analysis”. In: Computer Methods in Applied Mechanics
and Engineering 361 (2020), p. 112776. doi: 10.1016/j.cma.2019.112776.

[44] D. Drzisga, T. Köppl, U. Pohl, R. Helmig, and B. Wohlmuth. “Numerical modeling of
compensation mechanisms for peripheral arterial stenoses”. In: Computers in Biology
and Medicine 70 (Mar. 2016), pp. 190–201. doi: 10.1016/j.compbiomed.2016.01.
015.

45

https://doi.org/10.1016/j.cma.2016.09.013
https://doi.org/10.1002/cnm.1630020205
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1090/s0025-5718-1968-0242392-2
https://doi.org/10.1115/1.2900803
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1093/imamat/10.2.134
https://doi.org/10.1007/s00211-010-0338-z
https://doi.org/10.1017/s096249291400004x
https://doi.org/10.1137/16m1083591
https://doi.org/10.1137/16m1106304
https://doi.org/10.1137/18M1226580
https://doi.org/10.1016/j.mex.2020.100813
https://doi.org/10.1016/j.cma.2020.113322
https://doi.org/10.1016/j.cma.2019.112776
https://doi.org/10.1016/j.compbiomed.2016.01.015
https://doi.org/10.1016/j.compbiomed.2016.01.015

[45] D. Drzisga, U. Rüde, and B. Wohlmuth. “Stencil scaling for vector-valued PDEs on
hybrid grids with applications to generalized Newtonian fluids”. In: SIAM Journal on
Scientific Computing 42.6 (Dec. 1, 2020), B1429–B1461. doi: 10.1137/19m1267891.

[46] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Oxford University Press,
USA, 2014. doi: 10.1093/acprof:oso/9780199678792.001.0001.

[47] C. Engwer, R. D. Falgout, and U. M. Yang. “Stencil computations for PDE-based
applications with examples from DUNE and hypre”. In: Concurrency and Computation:
Practice and Experience 29.17 (Feb. 2017), e4097. doi: 10.1002/cpe.4097.

[48] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. New York, NY:
Springer New York, 2004. isbn: 978-1-4757-4355-5. doi: 10.1007/978-1-4757-4355-
5.

[49] S. Esterhazy and J. Melenk. “An analysis of discretizations of the Helmholtz equation
in L2 and in negative norms”. In: Computers & Mathematics with Applications 67.4
(Mar. 2014), pp. 830–853. doi: 10.1016/j.camwa.2013.10.005.

[50] F. Fahrendorf, L. D. Lorenzis, and H. Gomez. “Reduced integration at superconvergent
points in isogeometric analysis”. In: Computer Methods in Applied Mechanics and
Engineering 328 (2018), pp. 390–410. issn: 0045-7825. doi: 10.1016/j.cma.2017.
08.028.

[51] C. de Falco, A. Reali, and R. Vázquez. “GeoPDEs: a research tool for Isogeometric
Analysis of PDEs”. In: Advances in Engineering Software 42.12 (2011), pp. 1020–1034.
doi: 10.1016/j.advengsoft.2011.06.010.

[52] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler. “Hybrid multigrid methods
for high-order discontinuous Galerkin discretizations”. In: Journal of Computational
Physics 415 (Aug. 15, 2020), p. 109538. doi: 10.1016/j.jcp.2020.109538.

[53] C. Flaig and P. Arbenz. “A highly scalable matrix-free multigrid solver for µFE
analysis based on a pointer-less octree”. In: Large-Scale Scientific Computing: 8th
International Conference, LSSC 2011, Sozopol, Bulgaria, June 6-10, 2011, Revised
Selected Papers. Springer Berlin Heidelberg, 2012, pp. 498–506. isbn: 978-3-642-29843-
1. doi: 10.1007/978-3-642-29843-1_56.

[54] B. Gmeiner, T. Gradl, H. Köstler, and U. Rüde. “Highly parallel geometric multigrid
algorithm for hierarchical hybrid grids”. In: NIC Symposium. Vol. 45. 2012, pp. 323–
330.

[55] B. Gmeiner, M. Huber, L. John, U. Rüde, and B. Wohlmuth. “A quantitative perfor-
mance study for Stokes solvers at the extreme scale”. In: Journal of Computational
Science (2016). doi: 10.1016/j.jocs.2016.06.006.

[56] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. “Towards textbook
efficiency for parallel multigrid”. In: Numerical Mathematics: Theory, Methods and
Applications 8.1 (Feb. 2015), pp. 22–46. doi: 10.4208/nmtma.2015.w10si.

[57] G. Hager and G. Wellein. Introduction to high performance computing for scientists
and engineers. CRC Press, 2010. doi: 10.1201/ebk1439811924.

[58] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein. “Kerncraft: A tool for analytic
performance modeling of loop kernels”. In: Tools for High Performance Computing
2016. Springer International Publishing, 2017, pp. 1–22. doi: 10.1007/978-3-319-
56702-0_1.

46

https://doi.org/10.1137/19m1267891
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1002/cpe.4097
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1016/j.camwa.2013.10.005
https://doi.org/10.1016/j.cma.2017.08.028
https://doi.org/10.1016/j.cma.2017.08.028
https://doi.org/10.1016/j.advengsoft.2011.06.010
https://doi.org/10.1016/j.jcp.2020.109538
https://doi.org/10.1007/978-3-642-29843-1_56
https://doi.org/10.1016/j.jocs.2016.06.006
https://doi.org/10.4208/nmtma.2015.w10si
https://doi.org/10.1201/ebk1439811924
https://doi.org/10.1007/978-3-319-56702-0_1
https://doi.org/10.1007/978-3-319-56702-0_1

[59] V. E. Henson and U. M. Yang. “BoomerAMG: A parallel algebraic multigrid solver
and preconditioner”. In: Applied Numerical Mathematics 41.1 (Apr. 2002), pp. 155–177.
doi: 10.1016/s0168-9274(01)00115-5.

[60] R. R. Hiemstra, F. Calabrò, D. Schillinger, and T. J. Hughes. “Optimal and reduced
quadrature rules for tensor product and hierarchically refined splines in isogeometric
analysis”. In: Computer Methods in Applied Mechanics and Engineering 316 (Apr.
2017), pp. 966–1004. doi: 10.1016/j.cma.2016.10.049.

[61] R. R. Hiemstra, G. Sangalli, M. Tani, F. Calabrò, and T. J. Hughes. “Fast formation
and assembly of finite element matrices with application to isogeometric linear
elasticity”. In: Computer Methods in Applied Mechanics and Engineering 355 (Oct.
2019), pp. 234–260. doi: 10.1016/j.cma.2019.06.020.

[62] C. Hofreither. “A black-box low-rank approximation algorithm for fast matrix assembly
in isogeometric analysis”. In: Computer Methods in Applied Mechanics and Engineering
333 (May 2018), pp. 311–330. doi: 10.1016/j.cma.2018.01.014.

[63] K. Höllig. Finite Element Methods with B-Splines. Society for Industrial and Applied
Mathematics, Jan. 2003. doi: 10.1137/1.9780898717532.

[64] T. J. Hughes, L. P. Franca, and M. Balestra. “A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a
stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order
interpolations”. In: Computer Methods in Applied Mechanics and Engineering 59.1
(Nov. 1986), pp. 85–99. doi: 10.1016/0045-7825(86)90025-3.

[65] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement”. In: Computer Methods in
Applied Mechanics and Engineering 194.39-41 (2005), pp. 4135–4195.

[66] T. J. Hughes, A. Reali, and G. Sangalli. “Efficient quadrature for NURBS-based
isogeometric analysis”. In: Computer Methods in Applied Mechanics and Engineering
199.5-8 (2010), pp. 301–313. doi: 10.1016/j.cma.2008.12.004.

[67] T. J. Hughes and G. Sangalli. “Mathematics of isogeometric analysis: a conspectus”.
In: Encyclopedia of Computational Mechanics Second Edition (2018), pp. 1–40.

[68] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. “A generalized-α method for
integrating the filtered Navier–Stokes equations with a stabilized finite element
method”. In: Computer Methods in Applied Mechanics and Engineering 190.3-4 (Oct.
2000), pp. 305–319. doi: 10.1016/s0045-7825(00)00203-6.

[69] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde. “The HyTeG finite-
element software framework for scalable multigrid solvers”. In: International Journal
of Parallel, Emergent and Distributed Systems 34.5 (Aug. 2018), pp. 477–496. doi:
10.1080/17445760.2018.1506453.

[70] M. Kronbichler and K. Kormann. “A generic interface for parallel cell-based finite
element operator application”. In: Computers and Fluids 63 (2012), pp. 135–147. doi:
10.1016/j.compfluid.2012.04.012.

[71] M. Kronbichler and K. Ljungkvist. “Multigrid for matrix-free high-order finite element
computations on graphics processors”. In: ACM Transactions on Parallel Computing
6.1 (June 2019), pp. 1–32. doi: 10.1145/3322813.

[72] M. Kronbichler and W. A. Wall. “A performance comparison of continuous and
discontinuous Galerkin methods with fast multigrid solvers”. In: SIAM Journal on
Scientific Computing 40.5 (Jan. 2018), A3423–A3448. doi: 10.1137/16m110455x.

47

https://doi.org/10.1016/s0168-9274(01)00115-5
https://doi.org/10.1016/j.cma.2016.10.049
https://doi.org/10.1016/j.cma.2019.06.020
https://doi.org/10.1016/j.cma.2018.01.014
https://doi.org/10.1137/1.9780898717532
https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1016/j.cma.2008.12.004
https://doi.org/10.1016/s0045-7825(00)00203-6
https://doi.org/10.1080/17445760.2018.1506453
https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1145/3322813
https://doi.org/10.1137/16m110455x

[73] A. Kuijper. “P-Laplacian driven image processing”. In: 2007 IEEE International
Conference on Image Processing. IEEE, 2007. doi: 10.1109/icip.2007.4379814.

[74] J. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires.
Etudes mathématiques. Dunod, 1969.

[75] K. Ljungkvist. “Matrix-free finite-element computations on graphics processors with
adaptively refined unstructured meshes”. In: Proceedings of the 25th High Performance
Computing Symposium. HPC ’17. Society for Computer Simulation International,
2017, 1:1–1:12.

[76] K. Ljungkvist and M. Kronbichler. Multigrid for matrix-free finite element com-
putations on graphics processors. Tech. rep. 2017-006. Department of Information
Technology, Uppsala University, 2017.

[77] J. Loffeld and J. Hittinger. “On the arithmetic intensity of high-order finite-volume
discretizations for hyperbolic systems of conservation laws”. In: The International
Journal of High Performance Computing Applications (2017). doi: 10.1177/1094342
017691876.

[78] A. Mantzaflaris and B. Jüttler. “Exploring matrix generation strategies in isogeo-
metric analysis”. In: Mathematical Methods for Curves and Surfaces. Springer Berlin
Heidelberg, 2014, pp. 364–382. doi: 10.1007/978-3-642-54382-1_21.

[79] A. Mantzaflaris and B. Jüttler. “Integration by interpolation and look-up for Galerkin-
based isogeometric analysis”. In: Computer Methods in Applied Mechanics and Engi-
neering 284 (Feb. 2015), pp. 373–400. doi: 10.1016/j.cma.2014.09.014.

[80] A. Mantzaflaris, B. Jüttler, B. N. Khoromskij, and U. Langer. “Low rank tensor
methods in Galerkin-based isogeometric analysis”. In: Computer Methods in Applied
Mechanics and Engineering 316 (Apr. 2017), pp. 1062–1085. doi: 10.1016/j.cma.
2016.11.013.

[81] P. J. Matuszyk and L. F. Demkowicz. “Parametric finite elements, exact sequences and
perfectly matched layers”. In: Computational Mechanics 51.1 (Mar. 2012), pp. 35–45.
doi: 10.1007/s00466-012-0702-1.

[82] D. A. May, J. Brown, and L. L. Pourhiet. “A scalable, matrix-free multigrid pre-
conditioner for finite element discretizations of heterogeneous Stokes flow”. In: Com-
puter Methods in Applied Mechanics and Engineering 290 (2015), pp. 496–523. doi:
10.1016/j.cma.2015.03.014.

[83] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith. “Extreme-scale
multigrid components within PETSc”. In: Proceedings of the Platform for Advanced
Scientific Computing Conference. PASC ’16. Lausanne, Switzerland: ACM, 2016,
5:1–5:12. isbn: 978-1-4503-4126-4. doi: 10.1145/2929908.2929913.

[84] F. Moser, L. J. Jacobs, and J. Qu. “Modeling elastic wave propagation in waveguides
with the finite element method”. In: NDT & E International 32.4 (June 1999), pp. 225–
234. doi: 10.1016/s0963-8695(98)00045-0.

[85] R. W. Ogden. Non-Linear Elastic Deformations. Guilford Publications, Apr. 26, 2013.
544 pp.

[86] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Society for Industrial and Applied Mathematics, Jan. 2000. doi:
10.1137/1.9780898719468.

[87] M. Pan, B. Jüttler, and A. Giust. “Fast formation of isogeometric Galerkin matrices via
integration by interpolation and look-up”. In: Computer Methods in Applied Mechanics
and Engineering 366 (July 2020), p. 113005. doi: 10.1016/j.cma.2020.113005.

48

https://doi.org/10.1109/icip.2007.4379814
https://doi.org/10.1177/1094342017691876
https://doi.org/10.1177/1094342017691876
https://doi.org/10.1007/978-3-642-54382-1_21
https://doi.org/10.1016/j.cma.2014.09.014
https://doi.org/10.1016/j.cma.2016.11.013
https://doi.org/10.1016/j.cma.2016.11.013
https://doi.org/10.1007/s00466-012-0702-1
https://doi.org/10.1016/j.cma.2015.03.014
https://doi.org/10.1145/2929908.2929913
https://doi.org/10.1016/s0963-8695(98)00045-0
https://doi.org/10.1137/1.9780898719468
https://doi.org/10.1016/j.cma.2020.113005

[88] W. Pazner and P.-O. Persson. “Approximate tensor-product preconditioners for very
high order discontinuous Galerkin methods”. In: Journal of Computational Physics
354 (Feb. 2018), pp. 344–369. doi: 10.1016/j.jcp.2017.10.030.

[89] B. van Rietbergen, H. Weinans, R. Huiskes, and B. Polman. “Computational strategies
for iterative solutions of large FEM applications employing voxel data”. In: Interna-
tional Journal for Numerical Methods in Engineering 39.16 (1996), pp. 2743–2767. doi:
10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.0.CO;2-A.

[90] B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equa-
tions. Society for Industrial and Applied Mathematics, Jan. 2008. doi: 10.1137/1.
9780898717440.

[91] D. Rypl and B. Patzák. “Study of computational efficiency of numerical quadrature
schemes in the isogeometric analysis”. In: Engineering Mechanics 304 (2012).

[92] G. Sangalli and M. Tani. “Matrix-free weighted quadrature for a computationally
efficient isogeometric k-method”. In: Computer Methods in Applied Mechanics and
Engineering 338 (Aug. 2018), pp. 117–133. doi: 10.1016/j.cma.2018.04.029.

[93] D. Schillinger, S. J. Hossain, and T. J. Hughes. “Reduced Bézier element quadrature
rules for quadratic and cubic splines in isogeometric analysis”. In: Computer Methods
in Applied Mechanics and Engineering 277 (Aug. 2014), pp. 1–45. doi: 10.1016/j.
cma.2014.04.008.

[94] H. Stengel, J. Treibig, G. Hager, and G. Wellein. “Quantifying performance bottlenecks
of stencil computations using the execution-cache-memory model”. In: Proceedings of
the 29th ACM on International Conference on Supercomputing - ICS ’15. ACM Press,
2015. doi: 10.1145/2751205.2751240.

[95] G. Strang. “Piecewise polynomials and the finite element method”. In: Bulletin of
the American Mathematical Society 79.6 (1973), pp. 1128–1137. doi: 10.1090/s0002-
9904-1973-13351-8.

[96] G. Strang. “Variational crimes in the finite element method”. In: The Mathematical
Foundations of the Finite Element Method with Applications to Partial Differential
Equations. Elsevier, 1972, pp. 689–710. doi: 10.1016/b978-0-12-068650-6.50030-7.

[97] G. Strang and G. J. Fix. An analysis of the finite element method. Prentice-Hall
series in automatic computation. Englewood Cliffs, NJ: Prentice-Hall, 1973. doi:
10.2307/2005716.

[98] A. Tagliabue, L. Dedè, and A. Quarteroni. “Isogeometric analysis and error estimates
for high order partial differential equations in fluid dynamics”. In: Computers & Fluids
102 (Oct. 2014), pp. 277–303. doi: 10.1016/j.compfluid.2014.07.002.

[99] R. Tielen, M. Möller, D. Göddeke, and C. Vuik. A p-multigrid method enhanced with
an ILUT smoother and its comparison to h-multigrid methods within isogeometric
analysis. Jan. 7, 2019. arXiv: 1901.01685v3 [math.NA].

[100] U.S. Energy Information Administration. 2018 Average Monthly Bill- Residential.
Oct. 1, 2019. url: https://www.eia.gov/electricity/sales_revenue_price/
pdf/table5_a.pdf (visited on 04/04/2020).

[101] U.S. Energy Information Administration. How much electricity does an American home
use? Oct. 2, 2019. url: https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
(visited on 04/04/2020).

[102] R. Vázquez. “A new design for the implementation of isogeometric analysis in Octave
and Matlab: GeoPDEs 3.0”. In: Computers & Mathematics with Applications 72.3
(2016), pp. 523–554. doi: 10.1016/j.camwa.2016.05.010.

49

https://doi.org/10.1016/j.jcp.2017.10.030
https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.0.CO;2-A
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1016/j.cma.2018.04.029
https://doi.org/10.1016/j.cma.2014.04.008
https://doi.org/10.1016/j.cma.2014.04.008
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1090/s0002-9904-1973-13351-8
https://doi.org/10.1090/s0002-9904-1973-13351-8
https://doi.org/10.1016/b978-0-12-068650-6.50030-7
https://doi.org/10.2307/2005716
https://doi.org/10.1016/j.compfluid.2014.07.002
https://arxiv.org/abs/1901.01685v3
https://www.eia.gov/electricity/sales_revenue_price/pdf/table5_a.pdf
https://www.eia.gov/electricity/sales_revenue_price/pdf/table5_a.pdf
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://doi.org/10.1016/j.camwa.2016.05.010

[103] T. Vijayaraghavan et al. “Design and analysis of an APU for exascale computing”. In:
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2017, pp. 85–96. doi: 10.1109/hpca.2017.42.

[104] M. M. Waldrop. “The chips are down for Moore’s law”. In: Nature 530.7589 (Feb.
2016), pp. 144–147. doi: 10.1038/530144a.

[105] D. Werner. Funktionalanalysis. Springer Berlin Heidelberg, 2011. doi: 10.1007/978-
3-642-21017-4.

[106] S. Williams, A. Waterman, and D. Patterson. “Roofline: An insightful visual perfor-
mance model for multicore architectures”. In: Communications of the ACM 52.4 (Apr.
2009), pp. 65–76. doi: 10.1145/1498765.1498785.

50

https://doi.org/10.1109/hpca.2017.42
https://doi.org/10.1038/530144a
https://doi.org/10.1007/978-3-642-21017-4
https://doi.org/10.1007/978-3-642-21017-4
https://doi.org/10.1145/1498765.1498785

A. Core articles
A.1. The surrogate matrix methodology: a priori error estimation

51

The surrogate matrix methodology: a priori error estimation

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth

In this article, we reconsider the classical lowest-order Bubnov–Galerkin finite element
method and analyze a modification of it which is especially advantageous for stencil-
based matrix-free computations. This methodology, which we call the surrogate matrix
methodology, is based on approximating the matrix entries emerging in a standard
finite element discretization by piece-wise smooth functions. This modification was
originally introduced by Bauer et al. in [13] where it was applied to Poisson’s problem.
Afterwards, in two follow-up articles, Stokes flow was considered in [12, 15]. Each of
these articles focuses on the massively parallel high performance computing aspects
of the respective methods and they provide numerical indication for the convergence
rates. In our work, however, we present the first mathematically rigorous framework
and analysis of this methodology by performing an a priori error analysis for the
variable coefficient Poisson equation. In this approach, a globally unstructured macro-
mesh is used to triangulate the model geometry. Each of the macro-elements in the
macro-mesh are uniformly refined for a large number of times, resulting in a fine-scale
locally-structured mesh. Afterwards, for each macro-element, a local approximation
of the fine-scale global matrix is constructed, resulting in a fine-scale surrogate matrix.
We show that the solutions obtained by using these surrogate matrices preserve the
asymptotical approximation properties of the standard fine-scale discrete solution.
In several numerical experiments, we demonstrate the efficiency of this new method
in a matrix-free framework using geometric multigrid solvers.

In Section 3, we introduce the concept of stencil functions and the construction of
surrogate matrices. Section 4 provides a short overview of the considered examples,
namely, the variable coefficient Poisson equation, the linear elastostatics model, and
the p-Laplacian diffusion problem. In Section 5, we discuss the incorporation of
non-homogeneous boundary conditions and the zero row sum property. In Section 6,
sufficient conditions for the discrete stability of the surrogate bilinear forms are briefly
discussed and some preliminary results are presented. There, we perform a rigorous
a priori error analysis of our approach applied to the variable coefficient Poisson
equation and provide estimates for the errors in the H1(Ω)- and L2(Ω)-norms. A
brief description of our matrix-free implementation using the finite element software
framework HyTeG [69] is provided in Section 8. Then, in Section 9, we present several
numerical experiments. There, we thoroughly verify the proven a priori convergence
rates for the variable coefficient Poisson equation. We also include proof-of-concept
demonstrations from numerical experiments with the linear elastostatics and p-
Laplacian diffusion problems which are complemented by performance measurements.

I was significantly involved in finding the ideas and primarily responsible for setting
up the mathematical framework and carrying out the scientific work presented in
this article. Furthermore, I was in charge of writing the article while the co-authors
contributed by making corrective changes.

52

Permission to include:

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: a priori error estimation
SIAM Journal on Scientific Computing 41.6 (2019): A3806–A3838
(see also article [40] in the bibliography)

On the following page, a copy of the first page of the consent to publish agreement
by SIAM may be found. This page includes the author’s rights. A digital version of
the consent to publish form may be found at

https://www.siam.org/publications/journals/about-siam-journals/
information-for-authors

(Accessed on 22 March 2020)

53

https://www.siam.org/publications/journals/about-siam-journals/information-for-authors
https://www.siam.org/publications/journals/about-siam-journals/information-for-authors

Society for Industrial and Applied Mathematics (SIAM)

Consent to Publish

SIAM (“Publisher”) requires Authors of articles in SIAM publications to provide a formal
written Consent to Publish. The Author must sign the agreement except, in the case of
“work-for-hire”, when the Author's employer may sign as the party that has the right to grant
rights to the Publisher. If there are multiple Authors of the material governed by this
document, the term “Author” as used here refers to each and all of them, jointly and
severally. 1

Title of Contribution (“Work”): The surrogate matrix methodology: a priori error estimation
Authors: Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
Name of Journal: SIAM Journal on Scientific Computing
Manuscript Number: M122658

1. Author's Warranty

By signing this Consent, the Author warrants all of the following: The Work has not been
published before in any form except as a preprint, unless explicitly noted as a footnote to
the title. The Work is not being concurrently submitted to and is not under consideration by
another publisher. The names listed above as authors appear in the manuscript itself, no
author entitled to credit has been omitted, and there are no unnamed authors. The Author
has the right to make the grants made to the Publisher complete and unencumbered. The
Author also warrants that the Work does not libel anyone, violate anyone's privacy or
publicity rights, infringe anyone's copyright, trademark, or trade secrets, or otherwise violate
anyone's statutory or common law rights.

2. Author's Rights

A1. The Author may reproduce and distribute the Work (including derivative
works) in connection with the Author's teaching, technical collaborations,
conference presentations, lectures, or other scholarly works and professional
activities as well as to the extent the fair use provisions of the U.S. Copyright Act
permit. If the copyright is granted to the Publisher, then the proper notice of the
Publisher's copyright should be provided.
A2. The Author may post the final draft of the Work, as it exists immediately prior
to editing and production by the Publisher, on noncommercial pre-print servers
such as arXiv.org.
A3. The Author may post the final published version of the Work on the Author's
personal web site and on the web server of the Author's institution, provided that
proper notice of the Publisher's copyright is included and that no separate or
additional fees are collected for access to or distribution of the work.

3. Publisher's Rights

Even if the Author does not transfer Copyright to the Publisher, the Author grants the
Publisher the following rights in perpetuity.

P1. The Publisher has unlimited rights throughout the world to publish and
distribute the final version of the Work in any form and in all media now known
or hereafter discovered.
P2. The Publisher has unlimited rights throughout the world to translate the final
version of the Work and exercise all rights in all media in the resulting
translations.

Notice of publication and copyright

First Published in “The surrogate matrix methodology: a priori error estimation”
in SIAM Journal on Scientific Computing 41.6 (2019), published by the Society for
Industrial and Applied Mathematics (SIAM).

DOI: https://doi.org/10.1137/18M1226580

55

https://doi.org/10.1137/18M1226580

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. S\mathrm{C}\mathrm{I}. C\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. \mathrm{c}\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. A3806--A3838

\bfT \bfH \bfE \bfS \bfU \bfR \bfR \bfO \bfG \bfA \bfT \bfE \bfM \bfA \bfT \bfR \bfI \bfX \bfM \bfE \bfT \bfH \bfO \bfD \bfO \bfL \bfO \bfG \bfY : \bfA \bfP \bfR \bfI \bfO \bfR \bfI \bfE \bfR \bfR \bfO \bfR
\bfE \bfS \bfT \bfI \bfM \bfA \bfT \bfI \bfO \bfN \ast

DANIEL DRZISGA\dagger , BRENDAN KEITH\dagger , \mathrm{A}\mathrm{N}\mathrm{D} BARBARA WOHLMUTH\dagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We give the first mathematically rigorous analysis of an emerging approach to finite
element analysis (see, e.g., Bauer et al. [Appl. Numer. Math., 122 (2017), pp. 14--38]), which we
hereby refer to as the surrogate matrix methodology. This methodology is based on the piecewise
smooth approximation of the matrices involved in a standard finite element discretization. In par-
ticular, it relies on the projection of smooth so-called stencil functions onto high-order polynomial
subspaces. The performance advantage of the surrogate matrix methodology is seen in constructions
where each stencil function uniquely determines the values of a significant collection of matrix en-
tries. Such constructions are shown to be widely achievable through the use of locally structured
meshes. Therefore, this methodology can be applied to a wide variety of physically meaningful
problems, including nonlinear problems and problems with curvilinear geometries. Rigorous a priori
error analysis certifies the convergence of a novel surrogate method for the variable coefficient Poisson
equation. The flexibility of the methodology is also demonstrated through the construction of novel
methods for linear elasticity and nonlinear diffusion problems. In numerous numerical experiments,
we demonstrate the efficacy of these new methods in a matrix-free environment with geometric multi-
grid solvers. In our experiments, up to a twenty-fold decrease in computation time is witnessed over
the classical method with an otherwise identical implementation.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . surrogate numerical methods, finite element methods, matrix-free, a priori analysis,
low order, geometric multigrid

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65D05, 65M60, 65N30, 65Y05, 65Y20

\bfD \bfO \bfI . 10.1137/18M1226580

\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . In the field of computational science, major funding initia-
tives in North America, Europe, and Asia have thrust high performance computing
(HPC) to ascendancy. In anticipation of future exascale computers, much work in
this discipline involves the deep and careful reconstruction of long-established com-
puting practices. An important characteristic of numerical algorithms aimed at these
computers is the floating-point operation (FLOP) per byte ratio. In order to achieve
optimal performance and power efficiency on future machines, the time spent on
FLOPs relative to memory transfer needs to be substantial.

Most traditional finite element softwares assemble global stiffness matrices by
looping over elements and adding the corresponding local contributions to the global
matrix. Storing the resulting sparse matrices requires significantly more memory than
just storing the degrees of freedom. However, memory consumption is certainly not
the only obstacle at the computational frontier. Indeed, at such scales, the memory
traffic and latency involved in loading indices and entries for matrix-vector products
(MVPs) also present critical challenges.

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section November
14, 2018; accepted for publication (in revised form) September 17, 2019; published electronically
December 3, 2019.

https://doi.org/10.1137/18M1226580
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : This work was supported by the European Union's Horizon 2020 research and innova-

tion programme under grant agreement 800898 and by the German Research Foundation through the
Priority Programme 1648 ``Software for Exascale Computing"" (SPPEXA) and by grant WO671/11-1.

\dagger Lehrstuhl f\"ur Numerische Mathematik, Fakult\"at f\"ur Mathematik (M2), Technische Univer-
sit\"at M\"unchen, Garching bei M\"unchen, 85748, Germany (drzisga@ma.tum.de, keith@ma.tum.de,
wohlmuth@ma.tum.de).

A3806

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3807

Since iterative solvers only require MVPs, it is not necessary to store all of the
nonzeros of the global matrix in memory. Instead, it is sufficient to compute the
nonzero entries on the fly, i.e., matrix-free. Different tactics exist to implement matrix-
free methods, but the predominant candidate for low-order finite elements is the
element-by-element approach [3, 15, 19, 26, 40], wherein local stiffness matrices are
multiplied by local vectors and later added to the global solution vector. These local
stiffness matrices may either be stored in memory---which actually requires more
memory than storing the global matrix---or computed on-the-fly. When using high-
order finite elements, the weak forms can be integrated on-the-fly using standard or
reduced quadrature formulas [17, 32, 33, 34, 36]. This is a well-suited tactic for future
machines because of its large arithmetic intensity [35].

Significant performance gains are often attributed to a problem, scale, and
architecture-specific balance between FLOPs and memory traffic. As a matter of
course, exploiting symmetries in a problem or discretization can significantly improve
the time to solution. This is often the cause of enormous speed-ups in computations
on structured meshes. Likewise, high performance of matrix-free methods can be most
easily achieved in homogeneous problems with simple geometries. Nevertheless, most
geometries coming from significant real-world problems cannot be adequately approx-
imated by fully structured meshes. A possible trade-off is to use locally structured
meshes like hierarchical hybrid grids (HHGs) where initially unstructured coarse grids
are locally refined in a uniform way. This local structure allows the application of
stencil-based finite element procedures which operate similar to finite difference meth-
ods. By using these grids, efficient stencil-based methods have been successfully ap-
plied to a wide range of problems [11, 12, 13, 24, 28]. Related approaches, suitable for
low-order finite element discretizations of elliptic partial differential equations (PDEs)
with variable coefficients, based on scaling of reference stencils, are discussed in [7, 23].

In this paper, we revisit the classical lowest-order Bubnov--Galerkin finite element
method and analyze a modification of it which is strongly amenable to stencil-based
matrix-free computation. In our approach, a macromesh, which is not required to have
any global structure, is used to triangulate the model geometry. This macromesh is
then uniformly refined a large number of times, resulting in a fine-scale locally struc-
tured mesh. For each macroelement, a local approximation of the fine-scale global
matrix delivers a fine-scale surrogate matrix which maintains the convergence proper-
ties of the fine-scale discrete solution, up to the original order of the approximation.
A related investigation [10] illustrated the promise of this methodology and provided
numerical evidence for the convergence rates which are proven here rigorously. This
work considered only Poisson's equation. Later on, Stokes flow (with variable vis-
cosity) was considered in two follow-up articles [8, 9]. Each of these initial studies
focused on the massively parallel high performance computing aspects of their re-
spective methods. These studies used the HHG software framework [11, 12, 13] in
their experiments. Here, the finite element hybrid tetrahedral grids (HyTeG) software
framework [31] is used.

In this paper, we recast the central features of the original work as a method-
ology complete with a mathematical framework suitable for rigorous analysis. The
principal novelty is the mathematical foundation developed here, which can be used
to analyze further incarnations of the methodology. In total, we consider three spe-
cific mathematical models; namely, the variable coefficient Poisson equation, linear
elastostatics, and p-Laplacian diffusion. Although our presentation demonstrates
that the surrogate matrix methodology applies to each of these models equally well,
we only employ a complete a priori analysis of the simplest model, the variable

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3808 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

coefficient Poisson equation. In our numerical experiments, we carefully verify the
proven a priori convergence rates with the variable coefficient Poisson equation. We
also include proof-of-concept demonstrations from numerical experiments with the
linear elastostatics and p-Laplacian diffusion problems.

\bftwo . \bfN \bfo \bft \bfa \bft \bfi \bfo \bfn \bfa \bfn \bfd \bfo \bfu \bft \bfl \bfi \bfn \bfe . Let V be a reflexive Banach space over \BbbR , the field of
real numbers, and let Vh \subsetneq V be a finite-dimensional subspace. Consider a continuous
and weakly coercive bilinear form a : V \times V \rightarrow \BbbR and a bounded linear functional
F \in V \ast , the topological dual of V .

In this paper, we are concerned with the solutions u, uh, and \widetilde uh of the following
three abstract variational problems.

Find u \in V satisfying a(u, v) = F (v) for all v \in V .(2.1a)

Find uh \in Vh satisfying a(uh, vh) = F (vh) for all vh \in Vh .(2.1b)

Find \widetilde uh \in Vh satisfying \widetilde a(\widetilde uh, vh) = F (vh) for all vh \in Vh .(2.1c)

In (2.1c), a surrogate bilinear form \widetilde a : Vh \times Vh \rightarrow \BbbR has been introduced. In order
to properly define \widetilde a(\cdot , \cdot), some additional assumptions on a(\cdot , \cdot) are still required; see
section 3.

The discrete variational problems (2.1b) and (2.1c) induce matrix equations for
coefficients \sansu ,\widetilde \sansu in some \BbbR N ,

\sansA \sansu = \sansf and \widetilde \sansA \widetilde \sansu = \sansf ,(2.2)

respectively. In the first case, fix a basis for Vh, say \{ \phi i\} Ni=1. For this basis, each
(i, j)-component of the stiffness matrix \sansA is simply \sansA ij = a(\phi j , \phi i). In the following

section, we present a methodology to construct a surrogate stiffness matrix \widetilde \sansA \approx \sansA
which can be used in place of the true stiffness matrix \sansA . This methodology stands
apart from technical details, such as differences in quadrature formulas. Section 4
provides a short (noncomprehensive) list of examples fitting into our framework. In
section 5, we discuss the incorporation of nonhomogeneous boundary conditions and
what we herein refer to as the zero row sum property. In section 6, sufficient conditions
for the discrete stability of surrogate bilinear forms \widetilde a(\cdot , \cdot) are briefly discussed. Next,
in section 7, we perform a rigorous a priori error analysis of our approach applied to
the variable coefficient Poisson equation. A brief description of our implementation
is given in section 8. Then, in section 9, we document several numerical experiments.
Here, a thorough verification of each error estimate in section 7 is given. This is
complemented by performance measurements for the additional examples.

Throughout this article, we assume that \Omega \subseteq \BbbR n is a bounded Lipschitz domain.
For matrices \sansM \in \BbbR l\times m, define the \ell \infty - and max-norms, \| \sansM \| \infty = maxi

\sum
j | \sansM ij | and

\| \sansM \| \mathrm{m}\mathrm{a}\mathrm{x} = maxi,j | \sansM ij | . Likewise, for any function v : \Omega \rightarrow \BbbR , we will use the similar
notation, \| v\| 0, \| v\| 1, and \| v\| 2, for the canonical L2(\Omega)-, H1(\Omega)-, and H2(\Omega)-norms,
respectively. When dealing with a subset T \subseteq \Omega , denote the related L2(T)-, H1(T)-,
and H2(T)-norms by \| v\| 0,T , \| v\| 1,T , and \| v\| 2,T , respectively. For any simplex T and
integer 0 \leq q < \infty , we denote the space of polynomials of degree at most q as \scrP q(T).
All remaining notation will be defined as it arises.

\bfthree . \bfS \bfu \bfr \bfr \bfo \bfg \bfa \bft \bfe \bfs \bft \bfi ff\bfn \bfe \bfs \bfs \bfm \bfa \bft \bfr \bfi \bfc \bfe \bfs . In this section, we present the constitutive
elements of the surrogate matrix methodology. Our approach here is to gradually
introduce the necessary concepts, all the while maintaining a clear sense of generality.
In order to arrive at a tractable framework for our problems of interest, we gradually

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3809

refine the presentation from general n-dimensional spaces to only n = 1, 2, or 3 and
from general Banach spaces to only W 1,p(\Omega) (or products thereof), where 1 < p < \infty .
The intention of proceeding in this way is to indicate that the methodology can be
applied to an extremely broad set of problems and, specifically, to most problems
where finite element methods are traditionally applied.

\bfthree .\bfone . \bfP \bfr \bfe \bfl \bfi \bfm \bfi \bfn \bfa \bfr \bfy \bfa \bfs \bfs \bfu \bfm \bfp \bft \bfi \bfo \bfn \bfs . Given a bounded domain \Omega \subseteq \BbbR n, assume
that the true bilinear form can be expressed as

a(u, v) =

\int
\Omega

G(x, u(x), v(x)) dx for all u, v \in V.(3.1a)

Additionally, upon defining supp(u) = \{ y \in \Omega : u(y) \not = 0\} for smooth functions, make
the following sparsity assumption:

G(x, u(y), v(y)) = 0 whenever y /\in supp(u) \cap supp(v).(3.1b)

These assumptions permit us to consider the discretization of most classical differ-
ential operators. Indeed, in the assumptions above, the integrand G(x, u, v) may in-
duce distributional derivatives on its second and third arguments. Meanwhile, the first
argument can be identified with the spatial argument of any associated variable coef-
ficients. For example, in the weak form of a Poisson-type equation, - div(K\nabla u) = f ,
with a variable, symmetric positive-definite diffusion tensor K(x) (cf. subsection 4.1),
we have the bilinear form

a1(u, v) =

\int
\Omega

\nabla u(x)\top K(x)\nabla v(x) dx for all u, v \in V = H1(\Omega) .(3.2)

Here, if one takes any point x \in \Omega , the integrand in (3.1a) reduces to G(x, u, v) =
\nabla u\top K(x)\nabla v. Evidently, this G satisfies the sparsity assumption (3.1b).

\bfthree .\bftwo . \bfS \bft \bfe \bfn \bfc \bfi \bfl \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs . Let \phi \in V be a test function with compact support in
\Omega , and, for any fixed y \in \BbbR n, define \phi y(x) = \phi (x - y). Now, consider any fixed set
of ordered points \BbbX = \{ xi\} in \Omega and recall (3.1a). Assuming that both \phi xi , \phi xj \in V ,
observe (via a simple change of variables) that

a(\phi xj
, \phi xi

) =

\int
\Omega

G(y, \phi xj
(y), \phi xi

(y)) dy =

\int
\Omega \delta

G(xi + y, \phi \delta (y), \phi (y)) dy ,(3.3)

where \delta = xj - xi and \Omega \delta = supp(\phi)\cap supp(\phi \delta). In the second equality, passing from
an integral over \Omega to an integral over the subset \Omega \delta \subseteq \Omega follows immediately from
the sparsity assumption (3.1b). For each fixed xi, the affine structure of the identity
above may be illuminated by collecting each contributing translation \delta into the set
D(xi) = \{ xj - xi : xj \in \BbbX , a(\phi xj

, \phi xi
) \not = 0\} and defining a stencil function

\Phi \delta
i (x) =

\int
\Omega \delta

G(x+ y, \phi \delta (y), \phi (y)) dy for each \delta \in D(xi).(3.4)

We have just reduced the computation of any a(\phi xj
, \phi xi

) to the evaluation of
scalar-valued functions enumerated by affine coordinates (xi, xj - xi). Indeed,

a(\phi xj
, \phi xi

) =

\Biggl\{
\Phi \delta

i (xi) if \delta = xj - xi \in D(xi),

0 otherwise.
(3.5)

In the present scenario, there may be a different set of translations D(xi) for every
point xi. However, if each point is drawn from a point lattice, most of the sets
D(xi) are identical. This observation is the subject of the following subsection and a
foundational principle in our approach.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3810 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Remark 3.1. In the scenario that the bilinear form is symmetric, a(u, v) = a(v, u),
it is natural to assume that the stencil functions (3.4) will inherit a similar symme-
try. Indeed, under the equivalent symmetry condition G(x, u, v) = G(x, v, u) almost
everywhere, one may easily verify that if \delta = xj - xi, then

\Phi \delta
i (xi) =

\int
\Omega \delta

G(xi + y, \phi (y), \phi \delta (y)) dy =

\int
\Omega

G(xj + y, \phi - \delta (y), \phi (y)) dy = \Phi - \delta
j (xj)

(3.6)

or, equivalently, \Phi \delta
i (xi) = \Phi - \delta

j (xi + \delta).

\bfthree .\bfthree . \bfL \bfo \bfc \bfa \bfl \bfs \bft \bfe \bfn \bfc \bfi \bfl \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs \bfa \bfn \bfd \bfl \bfo \bfc \bfa \bfl \bfl \bfy \bfs \bft \bfr \bfu \bfc \bft \bfu \bfr \bfe \bfd \bfm \bfe \bfs \bfh \bfe \bfs . An affine
point lattice \BbbL , from here on referred to only as a lattice, is a regularly spaced array of
points in \BbbR n where every point xi \in \BbbL belongs to a neighborhood containing no other
points in \BbbL . In this paper, each (possibly finite) lattice is determined by a finite linearly
independent set of translations in \BbbR n; i.e., \BbbL \subseteq \{ \delta 0+a1\delta 1+ \cdot \cdot \cdot +al\delta l : a1, . . . , al \in \BbbZ \} .

Assuming that the test function \phi \in V is sufficiently localized and each point xi is
drawn from a lattice \BbbL \subseteq \Omega , then eachD(xi) is a subset of a small number of admissible
translations D(\BbbL) =

\bigcup
\{ D(xi) : xi \in \BbbL \} , determined solely by the lattice structure. In

such a scenario, every stencil function is closely related; i.e., \Phi \delta
i (x) = \Phi \delta

j(x), whenever
both are defined. Therefore, it is prudent to drop the subscript and define only one
common stencil function \Phi \delta (x) for each \delta \in D(\BbbL). Clearly,

a(\phi xj
, \phi xi

) =

\Biggl\{
\Phi \delta (xi) if \delta = xj - xi \in D(\BbbL),
0 otherwise.

(3.7)

We are interested in exploiting (3.7) for solving a wide variety of PDEs with
curvilinear geometries. Toward this end, the following examples help motivate our
construction further.

Remark 3.2. The main scope of this work consists only of classical lowest-order
conforming Bubnov--Galerkin finite element methods. Therefore, from now on, we
assume that V is a closed subset of

\bigl[
W 1,p(\Omega)]l for some 1 < p < \infty and l \in \BbbN ,

where, unless explicitly stated otherwise, l = 1. This will allow us to define a basis
for Vh \subseteq V consisting only of (componentwise) finite element vertex functions [25].
The ideas here can be extended to high-order polynomial and nonuniform rational
basis spline (NURBS) bases; cf. [22]. Generalizations to nonconforming methods or
methods for more exotic energy spaces (e.g., H(curl) or H(div)) are also possible.

\bfthree .\bfthree .\bfone . \bfT \bfh \bfe \bfo \bfn \bfe -\bfd \bfi \bfm \bfe \bfn \bfs \bfi \bfo \bfn \bfa \bfl \bfs \bfe \bft \bft \bfi \bfn \bfg . Let V = H1
0 (\Omega), where \Omega = (0, 1)\subseteq \BbbR ,

and fix a small translation dx = 1/(N + 1). Consider the scenario where each point,
xi = xi - 1 + dx, evenly divides \Omega and \phi is the piecewise-linear hat function defined

\phi (x) = max(1 - | x|
dx , 0). Let Vh = \{ v \in H1

0 (\Omega) : v| t \in \scrP 1(t), t = (xi, xi+1) for each 1 \leq
i \leq N\} , and identify each shifted hat function with the standard basis, \phi xi = \phi i \in Vh.
Here, we may define \BbbL = \{ xi\} . In this case, for each i \geq 1, the value a(\phi i, \phi j) can
either be computed directly from (3.1a), in the standard way, or evaluated using (3.7),
assuming that each \Phi \delta is available at the onset of computation. Note that D(x1) =
\{ 0, dx\} and D(xN) = \{ - dx, 0\} , but D(xi) = \{ - dx, 0, dx\} for each 2 \leq i \leq N - 1.
Therefore, D(\BbbL) = \{ - dx, 0, dx\} . Ultimately, defining each structured stencil function
\Phi \delta (x) = \Phi ((xi, \delta);x) from an arbitrary candidate point xi, one may verify that

a(\phi j , \phi i) =

\Biggl\{
\Phi \delta (xi) if \delta = xj - xi \in \{ - dx, 0, dx\} ,
0 otherwise,

(3.8)

which is clearly the same format as (3.7).

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3811

Recall Remark 3.1. If a(\cdot , \cdot) is symmetric, then, by (3.6), \Phi dx(xi) = \Phi - dx(xi+dx)
and the number of required stencil functions can be reduced to two. In some situa-
tions---e.g., when the zero row sum property can be employed (see section 5)---only a
single stencil function is actually required.

\bfthree .\bfthree .\bftwo . \bfL \bfo \bfc \bfa \bfl \bfl \bfy \bfs \bft \bfr \bfu \bfc \bft \bfu \bfr \bfe \bfd \bfm \bfe \bfs \bfh \bfe \bfs \bfw \bfi \bft \bfh \bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs . Let m \in \BbbN 0. Beginning
with a scaled Cartesian lattice \BbbL m = 2 - m\BbbZ n, it is useful to define its intersection
with the closure of the right-angled reference simplex \^T = \{ \^x \in \BbbR n : \| \^x\| 1 < 1, \^x \cdot
ei > 0 for all i = 1, . . . , n\} . This simplicial lattice, \^Tm = \BbbL m \cap \^T , can easily be
transformed into a similar simplicial lattice Tm for any arbitrary simplex T \subseteq \Omega via
an affine transformation (see, e.g., Figure 1). Indeed, fixing the unique A \in \BbbR n\times n

and b \in \BbbR n such that T = \{ A\^x + b : \^x \in \^T\} , the corresponding lattice is clearly
Tm = \{ A\^xi + b : \^xi \in \^Tm\} . Note that there are no interior points, \r Tm = Tm \cap T = \emptyset ,
if m < 2. We also define the set of boundary points \partial Tm = Tm \setminus \r Tm, which is always
nonempty.

Let \Omega \subseteq \BbbR n, where n = 2, 3. The utility of this transformation is evident upon
considering a macro-triangulation of \Omega , say \scrT H , where each macro-element T \in \scrT H
is endowed with a simplicial lattice Tm, as defined above. Here, H = maxT\in \scrT H

HT ,
where each HT = diam(T) denotes the diameter of T . Notice that, for any fixed level
m \geq 0, all interface points xi \in \partial Tm \cap \Omega are coincident with an interface lattice point
on some neighboring simplex. We may now define the set of all vertices on level m:

\BbbX m =
\bigcup

\{ Tm : T \in \scrT H\} .

For every \BbbX m, there is a corresponding finite element mesh such that each vertex
function within a fixed macroelement T \in \scrT H is self-similar. In the cases n = 2
or 3, we are left to define each triangle or tetrahedron whose vertices coincide with
points in \BbbX m. Let [y0, y1, . . . , yk]\subseteq \BbbR n denote the convex combination of the points
y0, y1, . . . , yk \in \Omega . When n = 2, the natural construction begins by considering the
following uniform subdivision of a triangle T = [y0, y1, y2] \in \scrT H into a set of four
equal-volume triangles:

\scrS (T) =
\biggl\{ \biggl[

y0,
y0 + y1

2
,
y0 + y2

2

\biggr]
,

\biggl[
y0 + y1

2
, y1,

y1 + y2
2

\biggr]
,

\biggl[
y0 + y2

2
,
y1 + y2

2
, y2

\biggr]
,

(3.9)

\biggl[
y0 + y1

2
,
y1 + y2

2
,
y0 + y2

2

\biggr] \biggr\}
.

For an illustration of this n = 2 case, see Figure 1. For n = 3, see the construction in
[14]. Further subdivisions can then be defined recursively, viz.,

\scrS m+1(T) =
\bigcup

\{ \scrS (t) : t \in \scrS m(T)\} for all m \geq 1 .(3.10)

The set of all vertices in a given subdivision \scrS m(T) forms an evenly spaced set
of points inside T . The set of vertices in \scrS 1(T) clearly coincides with T1, and one
can easily verify from the recursive definition that the set of vertices in \scrS m(T) also
coincides with Tm. We may finally define the sequence of locally structured meshes:

\scrS m(\scrT H) =
\bigcup

\{ \scrS m(T) : T \in \scrT H\} for all m \geq 1 .(3.11)

Notice that for eachm, \BbbX m coincides with the set of all vertices in \scrS m(\scrT H). Therefore,
each point xi in \BbbX m can be identified with a vertex function \phi i supported by only the
neighboring elements appearing in \scrS m(\scrT H); see Figure 1.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3812 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Fig. 1. Illustration of three refinement steps of a single macroelement T for n = 2 with the
corresponding vertex lattices T0, T1, T2, and T3. The interior lattice points \r Tm are colored blue,
and the boundary lattice points \partial Tm = Tm \setminus \r Tm are colored in orange. Additionally, the support of
an exemplary vertex function \phi i is shaded in green.

Fig. 2. Left: Surface plots of the local stencil functions \Phi \delta
T (x), for the degenerate direction

\delta = 0 and level m = 5, from the numerical experiments recounted in subsection 9.1.1. Here, the
function is plotted over each subset conv(\r Tm)\subseteq T \in \scrT H . In this case, it clearly appears that each
stencil function can be related to the restriction of a globally continuous function \Phi \delta

T (x). This is a

result of the structure of the macromesh only. Right: Surface plots of the stencil functions \Phi \delta
T (x)

after the first time step from the experiment recounted in subsection 9.3 for the eastern direction \delta
relative to each macroelement and level m = 5. Moreover, although they are clearly related, it is
evident that the corresponding stencil functions lack any global smoothness property.

Assume that the fine mesh level, m, is chosen large enough that one may find
several points in \BbbX m which lie in the interior of some macroelement T . If xi \in \r Tm is
any such point, then the translation set D(xi) = D(\r Tm) will only contain translations
aligned with edges appearing in the original subdivision \scrS 1(T). Identifying \phi xi

= \phi i

we see that for every xi \in \r Tm and xj \in Tm,

a(\phi j , \phi i) =

\Biggl\{
\Phi \delta

T (xi) if \delta = (xj - xi) \in D(\r Tm),

0 otherwise,
(3.12)

where \Phi \delta
T : conv(\r Tm) \rightarrow \BbbR is a local stencil function for the current level m and

macroelement T and conv(\r Tm) is the convex hull of \r Tm. In general, notice that
\Phi \delta

T \not = \Phi 2\delta
T are two different stencil functions, corresponding to the same direction but

different mesh levels.
Consider the bilinear form (3.2) with a variable diffusion coefficient. A visualiza-

tion of several corresponding local stencil functions, coming from locally structured
meshes used in our numerical experiments, is given in Figure 2. It is clear from this
figure that each \Phi \delta

T has the potential to be a smooth function. We now come to the
final essential component of our surrogate methodology: the approximation of \Phi \delta

T .

Remark 3.3. The lattice structure of locally structured meshes is destroyed under
smooth, non-affine transformations \^T \rightarrow \widetilde T \subseteq \Omega . This offers a possible impediment to

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3813

Fig. 3. Illustrations of the domains T\delta in gray and \Omega \delta for six exemplary directions \delta . Left:
Northern and northwestern direction. Middle: Eastern and southeastern direction. Right: Western
and southern direction.

our construction in the case of nonpolygonal domains \Omega \not = \Omega H =
\bigcup

T\in \scrT H
T . In fact,

if a globally continuous transformation \varphi : \Omega H \rightarrow \Omega is available, with \varphi | T a smooth
bijection for every T \in \scrT H , then an equivalent method can be found using local pull-
backs of \varphi . For example, the bilinear form in (3.2), a1 : H1(\Omega)\times H1(\Omega) \rightarrow \BbbR , simply
transforms to a1,H : H1(\Omega H)\times H1(\Omega H) \rightarrow \BbbR , where

a1,H(u, v) =

\int
\Omega H

\nabla u(x)\top KH(x)\nabla v(x) dx , KH =
D\varphi - 1(K \circ \varphi)D\varphi - \top

| det (D\varphi - 1)|
.(3.13)

Therefore, from now on, we operate under the assumption that the macromesh \scrT H is
geometrically conforming, \Omega = \Omega H .

\bfthree .\bffour . \bfT \bfh \bfe \bfi \bfn \bfh \bfe \bfr \bfi \bft \bfe \bfd \bfr \bfe \bfg \bfu \bfl \bfa \bfr \bfi \bft \bfy \bfo \bff \bfs \bft \bfe \bfn \bfc \bfi \bfl \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs . Our approach is to lo-
cally project each stencil function \Phi \delta

T in (3.12) onto a high-dimensional space of poly-
nomials and later use this projection to compute approximate values of the stiffness
matrix \sansA . Let \scrT H be a shape-regular simplicial mesh, and consider a locally structured
mesh of level m subordinate to this mesh, \scrS m(\scrT H). Before moving on, observe that
definition (3.12) in fact holds for any xi, xj \in Tm if xi or xj \in \r Tm. Therefore, due
to the structure of the vertex functions in a locally structured mesh, the domain of
each \Phi \delta

T can actually be extended to a set T \delta lying between conv(\r Tm) and T . Indeed,
identifying the test function in (3.4) with the ith vertex function, \phi (x) = \phi i(x+ xi),
for an arbitrary vertex xi \in \r Tm, define

T\delta = \{ x \in T : x+ y \in T for all y \in \Omega \delta = supp(\phi) \cap supp(\phi \delta)\} .(3.14)

From now on, we assume \Phi \delta
T : T \delta \rightarrow \BbbR . See Figure 3 for a depiction of the sets in a

triangular mesh, and note that T - \delta = T\delta + \delta for every \delta \in D(Tm).
For any T \in \scrT H , let \scrP q(T\delta) denote the space of polynomials of degree at most

q on the simplex T \delta and let \Pi \delta
T : C0(T \delta) \rightarrow \scrP q(T\delta) be an L\infty -continuous projection

operator, \Pi \delta
T \circ \Pi \delta

T = \Pi \delta
T . For each macroelement T \in \scrT H and level m \in \BbbN , define the

surrogate stencil function \widetilde \Phi \delta
T : T\delta \rightarrow \BbbR to be the corresponding polynomial projection

of \Phi \delta
T . Namely,

\widetilde \Phi \delta
T = \Pi \delta

T \Phi \delta
T .(3.15)

In order to correctly argue that a polynomial approximation of \Phi \delta
T is feasible, it is

necessary to classify its regularity depending on the problem at hand. In the following
proposition, we show, under the modest assumptions above, that if G(\cdot | T , \cdot , \cdot) is a
polynomial in its first argument, then \Phi \delta

T is also a polynomial of the same degree.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3814 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Lemma 3.1. Fix a simplex T \in \scrT H . Assume that the bilinear form a(\cdot , \cdot) in (2.1a)
satisfies assumptions (3.1a) and (3.1b), where the integrand G(\cdot | T , \cdot , \cdot) is a polyno-
mial of at most degree q in its first argument. Then, for any locally structured mesh
\scrS m(\scrT H), as defined above, every local stencil function \Phi \delta

T \in \scrP q(T\delta) is a polynomial
of the same degree.

Proof. Recall definition (3.4). For every xi, xj \in \BbbX m, every stencil function
\Phi ((xi, xj - xi), x) is defined with a test function \phi \in V . Fixing any arbitrary vertex

xi \in \r Tm, identify this test function with the ith vertex function, \phi (x) = \phi i(x + xi).
Let \alpha = (\alpha 1, . . . , \alpha n) \in \BbbN 0 denote a standard multiindex, | \alpha | =

\sum n
i=1 | \alpha i| and

x\alpha = x\alpha 1
1 \cdot \cdot \cdot x\alpha n

n . By assumption, we may expressG(x, \phi \delta (y), \phi (y)) =
\sum

| \alpha | \leq l c\alpha (y)x
\alpha ,

where each coefficient function c(y) has support only in \Omega \delta = supp(\phi) \cap supp(\phi \delta).
Moreover, if x+ y \in T , then

G(x+ y, \phi \delta (y), \phi (y)) =
\sum
| \alpha | \leq l

c\alpha (y)(x+ y)\alpha =
\sum
| \alpha | \leq l

\sum
| \nu | \leq \alpha

\biggl(
\alpha

\nu

\biggr)
c\alpha (y)y

\nu x\alpha - \nu (3.16)

is clearly an equal degree polynomial in the variable x. The proof is completed by
noting that the integral in (3.4) is performed only over the variable y \in \Omega \delta and so the
stencil function acts like a convolution. Indeed, under the assumption x \in T , only
the subset of points x \in T\delta = \{ x \in T : x+y \in T for all y \in \Omega \delta \} guarantee that (3.16)
holds at every point of integration y. In this case, by linearity of integration, \Phi \delta

T is
a member of \scrP q(T\delta), with its coefficients defined by the associated integrals of the
y-dependent functions in the right-hand side of (3.16).

Corollary 3.2. In the setting of Lemma 3.1, \widetilde \Phi \delta
T = \Phi \delta

T .

Proof. Since \Phi \delta
T \in \scrP q(T\delta), we immediately see that \Pi \delta

T \Phi \delta
T = \Phi \delta

T .

\bfthree .\bffive . \bfS \bfu \bfr \bfr \bfo \bfg \bfa \bft \bfe \bfs \bft \bfi ff\bfn \bfe \bfs \bfs \bfm \bfa \bft \bfr \bfi \bfc \bfe \bfs . The main goal of the entire effort above
is to guide us in reducing the vast majority of the finite element assembly process to
the evaluation of a small set of functions which can, in fact, be locally approximated
by polynomials. As in subsection 3.3.2, let \scrT H be a shape-regular triangulation of a
domain \Omega into disjoint macro-simplices T .

Our construction of the surrogate matrix \widetilde \sansA is obviously built to exploit the lo-
cal lattice structure of locally structured meshes. As argued previously, a surrogate
stencil function \widetilde \Phi \delta

T can be used to approximate any matrix entry \sansA ij coming from a
locally structured mesh if at least one of the corresponding vertices xi or xj belongs to
\r Tm. This leaves us to define only the nonzero matrix entries coming from the mutual
interaction of vertex functions at the boundaries of the macroelements. Although
these entries could also be approximated by surrogate stencil functions---in this case,
these additional functions would be defined on each subsimplex of the macromesh
\scrT H---let us assume that they are computed directly. Because the growth of the
macromesh boundary and interface interactions grow at an order of magnitude less
than the interior interactions, computing these matrix entries directly does not affect
the asymptotic performance of the methodology. Finally, letting \partial \BbbX m =

\bigcup
T\in \scrT H

\partial Tm

denote the union of all macromesh boundary vertices, we define the general surrogate
stiffness matrix

\widetilde \sansA ij =

\left\{
\int
\Omega
G(y, \phi j(y), \phi i(y)) dy if both xi and xj \in \partial \BbbX m,\widetilde \Phi \delta

T (xi) if \delta = (xj - xi) \in D(\r Tm) and xi or xj \in \r Tm,

0 otherwise.

(3.17)

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3815

Remark 3.4. Due to the presence of the surrogate stencil functions \widetilde \Phi \delta
T , even if

\sansA is symmetric, \widetilde \sansA will generally not be. However, recalling (3.6), observe that if
a(\cdot , \cdot) is symmetric, then \Phi \delta

T (x) = \Phi - \delta
T (x+ \delta). Therefore, if we use related projection

operators \Bigl[
\Pi \delta

T\Phi
\delta
T

\Bigr]
(x) =

\Bigl[
\Pi - \delta

T \Phi - \delta
T

\Bigr]
(x+ \delta)(3.18)

for each opposing direction \delta and - \delta , then \widetilde \sansA will be symmetric. Indeed, if \delta = xj - xi,
then \widetilde \sansA ij = \Pi \delta

T\Phi
\delta
T (xi) = \Pi - \delta

T \Phi - \delta
T (xi + \delta) = \Pi - \delta

T \Phi - \delta
T (xj) = \widetilde \sansA ji .(3.19)

\bffour . \bfE \bfx \bfa \bfm \bfp \bfl \bfe \bfs . In this section, we present three example problems which easily
fit into the framework above.

\bffour .\bfone . \bfT \bfh \bfe \bfv \bfa \bfr \bfi \bfa \bfb \bfl \bfe \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfP \bfo \bfi \bfs \bfs \bfo \bfn \bfe \bfq \bfu \bfa \bft \bfi \bfo \bfn . Consider the Poisson-type
equation - div(K\nabla u) = f in \Omega , u = 0 on \partial \Omega , with a load f \in L2(\Omega) and a variable,
symmetric positive-definite tensor K. Furthermore, assume that for each index a, b,
Kab \in \scrP q(\Omega). Recall (3.2), and note that we have already shown that the weak form
of this problem can be cast into the framework above.

Assume that, within some set T \subseteq \Omega , each vertex function \phi i is a translation of a
fixed test function \phi (x) = \phi i(x - xi). Then for each \phi i, \phi j , the stiffness matrix entry

\sansA ij =

\int
\Omega

\nabla \phi i(x)
\top K(x)\nabla \phi j(x) dx(4.1)

can equally well be expressed as the evaluation (at the point xi) of a stencil function,
which, by Lemma 3.1, is simply a polynomial of the same degree as the diffusion tensor
K. In the case of locally structured meshes, there is a locally defined stencil function
\Phi \delta

T : \Omega \rightarrow \BbbR for each macroelement T and level m. In this case, each \Phi \delta
T : T \delta \rightarrow \BbbR is

a polynomial (of degree at most q) on T\delta .

\bffour .\bftwo . \bfL \bfa \bfm \'\bfe --\bfN \bfa \bfv \bfi \bfe \bfr \bfl \bfi \bfn \bfe \bfa \bfr \bfi \bfz \bfe \bfd \bfe \bfl \bfa \bfs \bft \bfi \bfc \bfi \bft \bfy . Let \vec{}\nabla and Div denote the row-wise
distributional gradient and divergence, respectively. Now define \epsilon (u) = 1

2 [
\vec{}\nabla u+(\vec{}\nabla u)\top]

to be the symmetric gradient operator \epsilon : H1(\Omega)n \rightarrow L2(\Omega)n, where n \geq 2. Consider
the following standard PDE model for the displacement u \in H1

0 (\Omega)
n of a linearly

elastic isotropic material: - Div \sigma = \vec{}f , where the stress \sigma = 2\mu \epsilon (u)+\lambda Idiv u and the
load f \in L2(\Omega)n.

The weak form of this equation is well known in the literature [20], and the
associated bilinear form is simply

a2(u, v) =

\int
\Omega

2\mu \epsilon (u) : \epsilon (v) + \lambda div(u) div(v) dx for all u, v \in
\bigl[
H1

0 (\Omega)
\bigr] n
.(4.2)

This bilinear form obviously satisfies assumptions (3.1a) and (3.1b). If we assume
that the Lam\'e parameters \mu , \lambda : \Omega \rightarrow \BbbR are piecewise polynomials on a collection of
disjoint subdomains T \in \scrT H , then each associated stencil function is also a piecewise
polynomial.

\bffour .\bfthree . \bfitp -\bfL \bfa \bfp \bfl \bfa \bfc \bfi \bfa \bfn \bfd \bfi ff\bfu \bfs \bfi \bfo \bfn . For any 1 < p < \infty , let \Delta p u = div(| \nabla u| p - 2\nabla u)
be the p-Laplacian operator. Fix a valid parameter p, and consider the nonlinear
diffusion equation \partial u

\partial t - \Delta pu = f , where f \in Lp(\Omega). A simple Euler time stepping

scheme replaces the time derivative \partial u
\partial t by the quotient uk+1 - uk

dt , where dt > 0 is

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3816 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

a fixed time step parameter. Choosing backward Euler time stepping and defining
fk = f(k \cdot dt), we arrive at a semidiscrete nonlinear elliptic PDE for the solution
variable uk, which must be solved at each step k \in \BbbN : uk - dt\Delta puk = dtfk + uk - 1.
Upon fixed point linearization of the weak form of this equation, we uncover the
following bilinear form:

b(u, v) =

\int
\Omega

dt | \nabla \widetilde u| p - 2 \nabla u \cdot \nabla v + u v dx for all u, v \in W 1,p(\Omega) .(4.3)

Here, the variable coefficient \widetilde u \in W 1,p(\Omega) is usually identified with the previous
solution iteration in the associated fixed point algorithm (cf. subsection 9.3).

The bilinear form b(\cdot , \cdot) can easily be placed into the form of (3.1a), and each
matrix entry can therefore be superseded by stencil function evaluations, \Phi \delta

T (x), as
in (3.4). Alternatively, one may split b(\cdot , \cdot) into a mass term m(\cdot , \cdot) and a dt-weighted
stiffness term a3(\cdot , \cdot). Specifically, b(u, v) = m(u, v) + dt \cdot a3(u, v), where

m(u, v) =

\int
\Omega

u v dx and a3(u, v) =

\int
\Omega

| \nabla \widetilde u| p - 2 \nabla u \cdot \nabla v dx .(4.4)

With this observation in hand, we see that b(u, v) may be discretized by a linear
combination of independent surrogates; one for m(\cdot , \cdot) and one for a3(\cdot , \cdot) (cf. sub-
section 9.3). In either approach, the variable coefficient | \nabla \widetilde u(x)| p - 2 will generally not
remain a polynomial in a subdomain of \Omega , and the accuracy of a surrogate stencil
function \widetilde \Phi \delta

T will reflect the local regularity of the solution from the previous itera-
tion, \widetilde u.

\bffive . \bfB \bfo \bfu \bfn \bfd \bfa \bfr \bfy \bfc \bfo \bfn \bfd \bfi \bft \bfi \bfo \bfn \bfs \bfa \bfn \bfd \bft \bfh \bfe \bfz \bfe \bfr \bfo \bfr \bfo \bfw \bfs \bfu \bfm \bfp \bfr \bfo \bfp \bfe \bfr \bft \bfy . It is generally
appropriate to define the surrogate stiffness matrix componentwise by the rule given
in (3.17). Nevertheless, in some problems the operator to be discretized has a kernel
which is not guaranteed to be respected by the surrogate. In such scenarios, it is
possible that better performance and accuracy can be achieved if elements of this
kernel are incorporated into the construction of the surrogate. This occurrence is
most easily illustrated with the Poisson example from subsection 4.1.

Consider the bilinear form a1 : H1(\Omega) \times H1(\Omega) \rightarrow \BbbR , defined in (3.2). Define
V \mathrm{e}\mathrm{x}\mathrm{t}
h = \{ v \in H1(\Omega) : v| t \in \scrP 1(t) for each t \in \scrS m(\scrT H)\} and Vh = \{ v \in H1

0 (\Omega) :
v| t \in \scrP 1(t) for each t \in \scrS m(\scrT H)\} \subseteq V \mathrm{e}\mathrm{x}\mathrm{t}

h . Let the corresponding vertex function bases
be \{ \phi i\} \subseteq \{ \phi \mathrm{e}\mathrm{x}\mathrm{t}

i \} with \phi i = \phi \mathrm{e}\mathrm{x}\mathrm{t}
i for 1 \leq i \leq N . In most finite element software,

a space like V \mathrm{e}\mathrm{x}\mathrm{t}
h is used to impose Dirichlet boundary conditions. Indeed, a ``lift""

of the Dirichlet data, say, u\mathrm{e}\mathrm{x}\mathrm{t}
h =

\sum
i \sansu

\mathrm{e}\mathrm{x}\mathrm{t}
i \phi \mathrm{e}\mathrm{x}\mathrm{t}

i , is generally constructed from a linear
combination of the set \{ \phi \mathrm{e}\mathrm{x}\mathrm{t}

i \} \setminus \{ \phi i\} . Then, taking \sansA \mathrm{e}\mathrm{x}\mathrm{t}
ij = a(\phi \mathrm{e}\mathrm{x}\mathrm{t}

j , \phi i) for each valid
i, j, a modified load vector \sansf \mathrm{e}\mathrm{x}\mathrm{t} = \sansf - \sansA \mathrm{e}\mathrm{x}\mathrm{t}\sansu \mathrm{e}\mathrm{x}\mathrm{t} is used in computation.

It is obvious that \nabla 1 = 0, and so a1(1, v) = 0 for any v \in H1\Omega . Therefore, by
the partition of unity property

\sum
i \phi

\mathrm{e}\mathrm{x}\mathrm{t}
i = 1, the zero row sum of the matrix \sansA \mathrm{e}\mathrm{x}\mathrm{t} also

vanishes. Namely,
\sum

j \sansA
\mathrm{e}\mathrm{x}\mathrm{t}
ij = 0. This property may be induced in the corresponding

surrogate matrix if we simply define \widetilde \sansA \mathrm{e}\mathrm{x}\mathrm{t}
ii = -

\sum
j \not =i

\widetilde \sansA \mathrm{e}\mathrm{x}\mathrm{t}
ij for every xi \in \BbbX m, where\widetilde \sansA \mathrm{e}\mathrm{x}\mathrm{t}

ij = \sansA \mathrm{e}\mathrm{x}\mathrm{t}
ij for every j where \sansA ij is not defined, and \widetilde \sansA \mathrm{e}\mathrm{x}\mathrm{t}

ij = \widetilde \sansA ij otherwise. With this
extra condition, the surrogate matrix (3.17) actually requires one fewer independent
stencil function; i.e., \Phi 0

T = -
\sum

\delta \in D(Tm)\setminus \{ 0\} \Phi
\delta
T , for every T \in \scrT H . By this definition,

although \widetilde \sansA does not satisfy the zero row sum property, the matrix \sansA - \widetilde \sansA does. Indeed,

\sansA ii - \widetilde \sansA ii = -
\sum
j \not =i

\bigl(
\sansA \mathrm{e}\mathrm{x}\mathrm{t}
ij - \widetilde \sansA \mathrm{e}\mathrm{x}\mathrm{t}

ij

\bigr)
= -

\sum
j \not =i

\bigl(
\sansA ij - \widetilde \sansA ij

\bigr)
.(5.1)

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3817

In this way, the stiffness matrix coming from linearized elasticity (4.2) is similar to
the stiffness matrix coming from the Laplacian. Indeed, the zero row sum property
can be incorporated into its surrogate via a straightforward generalization.

\bfsix . \bfA \bfn \bfa \bfl \bfy \bfz \bfi \bfn \bfg \bft \bfh \bfe \bfs \bfu \bfr \bfr \bfo \bfg \bfa \bft \bfe \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfi \bfz \bfa \bft \bfi \bfo \bfn . In this section, we define and
motivate what we see as some of the most essential features in the analysis of our sur-
rogate methods. We begin with a review of discrete stability in the context of (2.1c).

We then touch on the concept of spectral convergence of the surrogate matrix \widetilde \sansA \rightarrow \sansA ,
which helps us motivate the need to control \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}. This specific quantity will
repeatedly appear in the a priori error analysis in section 7. Recall that q is the poly-
nomial order of the image of the projection operator \Pi \delta

T appearing in the definition of

the surrogate stencil function (3.15). Lemma 6.3 demonstrates that \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x} \rightarrow 0
algebraically, at a rate dependent on the minimum of q and the local regularity r of
the diffusion tensor K.

\bfsix .\bfone . \bfD \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfs \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy . Let S = \{ v \in V : \| v\| V = 1\} be the surface of the
unit ball in V . Recall (2.2), and assume that the discretization \sansA \sansu = \sansf is stable. In
the present context, this is equivalent to the existence of a constant \alpha > 0 such that

sup
vh\in Vh\cap S

a(wh, vh) \geq \alpha \| wh\| V for all wh \in Vh .(6.1a)

Likewise, in order for the surrogate discretization \widetilde \sansA \widetilde \sansu = \sansf to be stable, we must show
that there exists a constant \widetilde \alpha > 0 such that

sup
vh\in Vh\cap S

\widetilde a(wh, vh) \geq \widetilde \alpha \| wh\| V for all wh \in Vh .(6.1b)

Inequality (6.1b) guarantees that \widetilde \sansA \widetilde \sansu = \sansf has a unique solution and that \| \widetilde uh\| V \leq \widetilde \alpha - 1\| F\| V \ast . Equally important, however, it is a necessary precursor to Strang's first
lemma, which in some cases can be used, in part, to show that \widetilde uh converges to the
exact solution u (see, e.g., subsection 7.2).

\bfsix .\bftwo . \bfS \bfp \bfe \bfc \bft \bfr \bfa \bfl \bfc \bfo \bfn \bfv \bfe \bfr \bfg \bfe \bfn \bfc \bfe . By a direct analysis of the singular values of
\sansA , (6.1b) can sometimes be proven by showing that the spectrum of \widetilde \sansA converges
to the spectrum of \sansA at a fast enough rate. The main takeaway from this section is
that spectral convergence can be guaranteed by showing that \widetilde \sansA \rightarrow \sansA in the matrix
maximum norm, \| \cdot \| \mathrm{m}\mathrm{a}\mathrm{x}. Before moving on, denote the k-smallest eigenvalue of a ma-
trix \sansM \in \BbbR N\times N as \lambda k(\sansM), and let \ell (\sansM) = max1\leq i\leq N \#\{ \sansM ij \not = 0 where 1 \leq j \leq N\}
be the maximum number of nonzero components in \sansM , taken across all individual
rows.

Proposition 6.1. Let \sansM ,\sansN \in \BbbR N\times N be symmetric matrices. Then, for each
k = 1, . . . , N , it holds that

| \lambda k(\sansM) - \lambda k(\sansN)| \leq \| \sansM - \sansN \| \infty .(6.2)

The proof of this proposition is standard, so it is placed in Appendix A. Because
\sansA and \widetilde \sansA have the same sparsity pattern, the next result follows readily.

Corollary 6.2. Let \sansA and \widetilde \sansA be the true and surrogate stiffness matrices in (2.2),

respectively. If both \sansA and \widetilde \sansA are real symmetric matrices, then

| \lambda k(\sansA) - \lambda k(\widetilde \sansA)| \leq \ell (\sansA - \widetilde \sansA) \cdot \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x} , k = 1, . . . , N.(6.3)

Moreover, \ell (\sansA - \widetilde \sansA) \leq 7 when n = 2, and \ell (\sansA - \widetilde \sansA) \leq 15 when n = 3.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3818 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Proof. Recall definition (3.17). Inequality (6.3) follows trivially from Proposi-

tion 6.1 because both \sansA and \widetilde \sansA have the same sparsity pattern. Next, \widetilde \sansA ij \not = \sansA ij only if
either i or j corresponds to a vertex basis function with support lying entirely inside
some macroelement T \in \scrT H . Without loss of generality, assume that i corresponds
to such a basis function supp(\phi i)\subseteq T . In the case n = 2, the support of this vertex
function consists of exactly 6 triangular elements and 7 vertices; see, e.g., Figure 1.
Thus, there are only 7 vertex functions \phi j (with j possibly equal to i) whose support

will intersect supp(\phi i) and \ell (\sansA - \widetilde \sansA) \leq 7. A similar argument follows for n = 3.

Remark 6.1. As stated above, if \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x} \rightarrow 0 fast enough, then Corollary 6.2
can be used in proving the stability condition (6.1b). However, (6.3) is generally a
very pessimistic bound, and, when available, we recommend using more direct means
to prove discrete stability (see, e.g., Theorem 7.1). Nevertheless, this result illustrates

the importance of controlling \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}, which is a central feature in all of the
coming analysis.

\bfsix .\bfthree . \bfC \bfo \bfn \bft \bfr \bfo \bfl \bfl \bfi \bfn \bfg \| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x} \bfw \bfi \bft \bfh \bft \bfh \bfe \bfv \bfa \bfr \bfi \bfa \bfb \bfl \bfe \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfP \bfo \bfi \bfs \bfs \bfo \bfn \bfe \bfq \bfu \bfa -
\bft \bfi \bfo \bfn . Before we begin, some new notation is required. For any tensor K : \Omega \rightarrow \BbbR n\times n,
define \| K\| L\infty (\Omega) = maxa,b \| Kab\| L\infty (\Omega); likewise, for any r \geq 0, define | K| W r+1,\infty (T) =
maxa,b | Kab| W r+1,\infty (T). From now on, the notation A \lesssim B will be used when two
mesh-dependent quantities A and B satisfy an inequality A \leq CB, where C is some
positiveH-independent constant. Likewise, when A \lesssim B and B \lesssim A, we write A \eqsim B.
Recall that for a macromesh \scrT H , the diameter of a single element T \in \scrT is denoted
HT and the mesh size is denoted H = maxT\in \scrT H

HT . We also denote the fine-scale
element diameter hT = 2 - mHT for each T \in \scrT H and h = 2 - mH.

Lemma 6.3. Let \sansA and \widetilde \sansA , respectively, be the true and surrogate stiffness ma-
trices corresponding to the bilinear form (3.2). Namely, let each component of \sansA be

given by (4.1) and each component of \widetilde \sansA be defined by (3.17) with G(x, u(y), v(y)) :=
\nabla u(y)\top K(x)\nabla v(y). Fix T \in \scrT H and 0 \leq r \leq q. If Kab| T \in W r+1,\infty (T) for each
index a, b, then \bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x},Tm
\lesssim hn - 2

T Hr+1
T | K| W r+1,\infty (T) ,(6.4a)

where \| \sansC \| \mathrm{m}\mathrm{a}\mathrm{x},Tm
= max

\bigl\{
| \sansC ij | : xi, xj \in Tm

\bigr\}
for any matrix \sansC . Moreover, if each

component Kab \in W r+1,\infty (\scrT H) =
\prod

T\in \scrT H
W r+1,\infty (T), then\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x}
\lesssim hn - 2Hr+1| K| W r+1,\infty (\scrT H) .(6.4b)

Proof. We prove only (6.4a); (6.4b) then follows immediately. Recall (3.17) and

fix T \in \scrT H . Let i and j be the indices of the maximal value | \sansA ij - \widetilde \sansA ij | =
\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x},Tm
.

Next, because the theorem trivially holds in the degenerate case
\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x},Tm
= 0, we

proceed under the assumption that \sansA ij \not = \widetilde \sansA ij . Notably, it follows from Corollary 3.2

that if each Kab| T \in \scrP q(T), then \widetilde \sansA ij = \sansA ij , and, therefore, we find ourselves in the
scenario where the diffusion tensor K| T is not a polynomial (of degree at most q).
Here, we may also freely assume that i \not = j because of (5.1). Indeed, for each i,

| \sansA ii - \widetilde \sansA ii| \leq
\sum

j \not =i | \sansA ij - \widetilde \sansA ij | \leq \ell (\sansA - \widetilde \sansA) \cdot maxj \not =i | \sansA ij - \widetilde \sansA ij | .
To fix notation in the remainder of the proof, we take \phi = \phi i and express

\widetilde \sansA ij =

\biggl[
\Pi \delta

T

\int
\Omega \delta

\nabla \phi \delta (y)
\top K(\cdot + y)\nabla \phi (y) dy

\biggr]
(xi)(6.5)

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3819

for some nonzero \delta \in D(Tm). Let \scrI T : C0(T) \rightarrow \scrP r(T) be the local Lagrange
interpolant, and define

\bigl[
\scrI n\times n
T K

\bigr]
ab

= \scrI TKab, for each index a, b. Splitting the two

matrix entries \sansA ij and \widetilde \sansA ij into polynomial and nonpolynomial parts and rewriting

\int
\Omega

\nabla \phi j(x)
\top \bigl[K - \scrI n\times n

T K
\bigr]
(x)\nabla \phi i(x) dx

(6.6)

=

\int
\Omega \delta

\nabla \phi \delta (y)
\top \bigl[K - \scrI n\times n

T K
\bigr]
(xi + y)\nabla \phi (y) dy ,

\int
\Omega

\nabla \phi j(x)
\top \bigl[\scrI n\times n

T K
\bigr]
(x)\nabla \phi i(x) dx =

\int
\Omega \delta

\nabla \phi \delta (y)
\top \bigl[\scrI n\times n

T K
\bigr]
(xi + y)\nabla \phi (y) dy ,

(6.7)

we find that

\sansA ij =

\int
\Omega

\nabla \phi \top
j \scrI n\times n

T K \nabla \phi i dx+

\int
\Omega \delta

\nabla \phi \delta (y)
\top \bigl[K - \scrI n\times n

T K
\bigr]
(xi + y)\nabla \phi (y) dy,

\widetilde \sansA ij =

\int
\Omega

\nabla \phi \top
j \scrI n\times n

T K \nabla \phi i dx+

\biggl[
\Pi \delta

T

\int
\Omega \delta

\nabla \phi \delta (y)
\top \bigl[K - \scrI n\times n

T K
\bigr]
(\cdot + y)\nabla \phi (y) dy

\biggr]
(xi).

(6.8)

Upon canceling the first two terms in the expressions above, we arrive at the inequality\bigm| \bigm| \sansA ij - \widetilde \sansA ij

\bigm| \bigm| \leq | \beta ij(xi)| + | (\Pi \delta
T\beta ij)(xi)| ,(6.9)

where \beta ij(x) =
\int
\Omega \delta

\nabla \phi \delta (y)
\top \bigl[K - \scrI n\times n

T K
\bigr]
(x+y)\nabla \phi (y) dy. Recall that the projection

\Pi \delta
T : C0(T \delta) \rightarrow \scrP (T\delta) is continuous in the L\infty (\Omega) norm. Therefore,

| (\Pi \delta
T\beta ij)(xi)| \leq \| \Pi \delta

T\beta ij\| L\infty (T\delta)(6.10)

\lesssim \| \beta ij\| L\infty (T\delta) \lesssim \| K - \scrI n\times n
T K\| L\infty (T)\| \nabla \phi \delta \cdot \nabla \phi \| L1(\Omega \delta) .

A standard scaling argument shows that \| \nabla \phi \delta \cdot \nabla \phi \| L1(\Omega \delta) \lesssim hn - 2
T . This, together

with the well-known property \| Kab - \scrI TKab\| L\infty (T) \lesssim Hr+1
T | Kab| W r+1,\infty (T), yields the

sufficient result

| \sansA ij - \widetilde \sansA ij | \lesssim hn - 2
T Hr+1

T | K| W r+1,\infty (T) .(6.11)

Remark 6.2. The proof of Lemma 6.3 can be read as a blueprint which extends
to the settings of the bilinear forms a2(\cdot , \cdot), a3(\cdot , \cdot), defined in (4.2) and (4.4). Indeed,
when a2(\cdot , \cdot) is considered, the only significant modification to the proof above is
that an interpolation operator \scrI T : C0(T) \rightarrow \scrP r(T) must be introduced for each
Lam\'e parameter \mu and \lambda . The adaption to the setting a(\cdot , \cdot) = a3(\cdot , \cdot) is obvious.
Ultimately,

\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|
\mathrm{m}\mathrm{a}\mathrm{x}

\lesssim hn - 2Hr+1 \cdot

\Biggl\{ \bigm| \bigm| \lambda \bigm| \bigm|
W r+1,\infty (\scrT H)

+
\bigm| \bigm| \mu \bigm| \bigm|

W r+1,\infty (\scrT H)
if a(\cdot , \cdot) = a2(\cdot , \cdot) ,\bigm| \bigm| | \nabla \widetilde u| p - 2

\bigm| \bigm|
W r+1,\infty (\scrT H)

if a(\cdot , \cdot) = a3(\cdot , \cdot) .

(6.12)

Moreover, the proof may be easily modified to permit surrogates \widetilde \sansA without the zero
row sum property. Likewise, scenarios involving fewer derivatives (which generally do
not possess the zero row sum property), e.g., a(\cdot , \cdot) = m(\cdot , \cdot), have similar bounds but
invoke a different scaling in h.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3820 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

\bfseven . \bfA \bfp \bfr \bfi \bfo \bfr \bfi \bfe \bfr \bfr \bfo \bfr \bfe \bfs \bft \bfi \bfm \bfa \bft \bfi \bfo \bfn \bff \bfo \bfr \bft \bfh \bfe \bfv \bfa \bfr \bfi \bfa \bfb \bfl \bfe \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfP \bfo \bfi \bfs \bfs \bfo \bfn \bfe \bfq \bfu \bfa -
\bft \bfi \bfo \bfn . In this section, we present a thorough analysis of a surrogate discretization of
the variable coefficient Poisson equation. Given a load f \in L2(\Omega) and symmetric
positive-definite tensor K : \Omega \rightarrow \BbbR n\times n, the corresponding weak form may be written
as follows.

Find u \in H1
0 (\Omega) satisfying a(u, v) = F (v) for all v \in H1

0 (\Omega) ,(7.1)

where a(u, v) =
\int
\Omega
\nabla u\top K\nabla v dx and F (v) =

\int
\Omega
fv dx. As done in section 5, define

Vh = \{ v \in H1
0 (\Omega) : v| t \in \scrP 1(t) for each t \in \scrS m(\scrT H)\} , and let the corresponding

vertex function basis be \{ \phi i\} .
\bfseven .\bfone . \bfC \bfo \bfe \bfr \bfc \bfi \bfv \bfi \bft \bfy . In the present setting, observe that each vh \in Vh can be ex-

pressed as vh(x) =
\sum

i vh(xi)\phi i(x). Therefore, due to the zero row/column sum
property (5.1), we find

\widetilde a(vh, wh) - a(vh, wh) =
\sum
i,j

\bigl(\widetilde \sansA ij - \sansA ij

\bigr)
vh(xi)wh(xj)

=
1

2

\sum
i\not =j

\bigl(
\sansA ij - \widetilde \sansA ij

\bigr)
(vh(xi) - vh(xj))(wh(xi) - wh(xj)) .

(7.2)

Due to the mutual sparsity of the matrices \widetilde \sansA and \sansA , every nonzero term in the sum
above can be rewritten as

\bigl(
\sansA ij - \widetilde \sansA ij

\bigr)
(vh(xi) - vh(xi + \delta))(wh(xi) - wh(xi + \delta)) for

some nonzero \delta . Because | \delta | \eqsim h by construction, one easily arrives at the following
upper bound:

a(vh, wh) - \widetilde a(vh, wh) \lesssim h2 - n
\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x}
\| \nabla vh\| 0\| \nabla wh\| 0 .(7.3)

We now arrive at the main result of this subsection.

Theorem 7.1. Let 0 \leq r \leq q. Assume that a(\cdot , \cdot) is coercive and that K \in \bigl[
W r+1,\infty (\scrT H)

\bigr] n\times n
. Then, for any fine enough macromesh \scrT H , the surrogate bilinear

form \widetilde a : Vh \times Vh \rightarrow \BbbR is also coercive.

Proof. Let S = \{ v \in H1 : \| v\| 1 = 1\} be the surface of the unit ball in H1.
Recall that since a(\cdot , \cdot) is coercive, there exists a coercivity constant \alpha > 0 such that
a(v, v) \geq \alpha for all v \in S. Notice that \alpha \leq a(vh, vh) \leq \widetilde a(vh, vh)+ | a(vh, vh) - \widetilde a(vh, vh)|
for all vh \in Vh \cap S and, therefore,

\alpha - | a(vh, vh) - \widetilde a(vh, vh)| \leq \widetilde a(vh, vh) for all vh \in Vh \cap S .(7.4)

Here, the second term on the left may be bounded from above using (7.3) and Lemma 6.3
as follows:

| a(vh, vh) - \widetilde a(vh, vh)| \lesssim h2 - n\| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}\| \nabla vh\| 20 \lesssim Hr+1| K| W r+1,\infty (\Omega) .(7.5)

Thus, for any small enough H, we see that 0 < \alpha - | a(vh, vh) - \widetilde a(vh, vh)| \leq \widetilde a(vh, vh),
as necessary.

\bfseven .\bftwo . \bfC \bfo \bfn \bfv \bfe \bfr \bfg \bfe \bfn \bfc \bfe \bfo \bff \bft \bfh \bfe \bfs \bfu \bfr \bfr \bfo \bfg \bfa \bft \bfe \bfs \bfo \bfl \bfu \bft \bfi \bfo \bfn \bfi \bfn \bft \bfh \bfe \bfitH \bfone \bfn \bfo \bfr \bfm . The pur-
pose of this subsection is to derive a mesh-dependent upper bound on the error in
the surrogate solution \widetilde uh of the form \| u - \widetilde uh\| 1 \leq C(K,\Omega , u)h + \widetilde C(K,\Omega , u)Hr+1.
In doing so, we choose to emphasize the primary difference from the classical \| u -
uh\| 1 \leq C(K,\Omega , u)h error estimate by absorbing the coercivity and continuity con-
stants (which depend on bothK and \Omega) into the \lesssim symbol. We begin with a particular
version of the first Strang lemma [39].

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3821

Lemma 7.2. Let S = \{ v \in H1 : \| v\| 1 = 1\} be the surface of the unit ball in H1.
Assume that \widetilde a : Vh \times Vh \rightarrow \BbbR is coercive. The following error estimate holds for the
surrogate solution \widetilde uh of the variable coefficient model problem (7.1):

\| u - \widetilde uh\| 1 \lesssim inf
wh\in Vh

\Bigl[
\| u - wh\| 1 + sup

vh\in Vh\cap S
| \widetilde a(wh, vh) - a(wh, vh)|

\Bigr]
.(7.6)

Theorem 7.3. Let 0 \leq r \leq q, and assume that K \in
\bigl[
W r+1,\infty (\Omega)

\bigr] n\times n
is sym-

metric and positive definite with \lambda 1(K) bounded away from zero almost everywhere.
Let u \in H1(\Omega) and \widetilde uh \in Vh be the unique solutions to (2.1a) and (2.1c), respectively,
where a(u, v) =

\int
\Omega
\nabla u\top K\nabla v dx and F (v) =

\int
\Omega
fv dx. Then, for any sufficiently fine

macromesh \scrT H , the following upper bound holds:

\| u - \widetilde uh\| 1 \lesssim h| u| 2 +Hr+1| K| W r+1,\infty (\Omega)| u| 1 .(7.7)

Proof. With the assumptions above, a(\cdot , \cdot) is coercive. Therefore, by Theorem 7.1,
if the macromesh \scrT H is taken fine enough, then \widetilde a : Vh \times Vh \rightarrow \BbbR is coercive. We now
bound the right-hand side of (7.6). Invoking (7.3), we find

\| u - \widetilde uh\| 1 \lesssim \| u - wh\| 1 + h2 - n
\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x}
\| \nabla wh\| 0(7.8)

for every wh \in Vh. Setting wh = \scrS \scrZ hu, the Scott--Zhang interpolant of u [38], we see
that

\| u - \widetilde uh\| 1 \lesssim \| u - \scrS \scrZ hu\| 1 + h2 - n
\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|

\mathrm{m}\mathrm{a}\mathrm{x}
| \scrS \scrZ hu| 1 \lesssim h| u| 2 + h2 - n

\bigm\| \bigm\| \sansA - \widetilde \sansA \bigm\| \bigm\|
\mathrm{m}\mathrm{a}\mathrm{x}

| u| 1 .
(7.9)

In order to finish the proof, recall that h2 - n\| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x} \lesssim Hr+1| K| W r+1,\infty (\Omega), by
Lemma 6.3.

\bfseven .\bfthree . \bfC \bfo \bfn \bfv \bfe \bfr \bfg \bfe \bfn \bfc \bfe \bfo \bff \bft \bfh \bfe \bfs \bfu \bfr \bfr \bfo \bfg \bfa \bft \bfe \bfs \bfo \bfl \bfu \bft \bfi \bfo \bfn \bfi \bfn \bft \bfh \bfe \bfitL \bftwo \bfn \bfo \bfr \bfm . In this sub-
section, we prove an L2 error estimate of the form \| u - \widetilde uh\| 0 \leq C(K,\Omega , u)h2 +\widetilde C(K,\Omega , u)Hr+1. A second result, which elicits accelerated H-convergence, is also
proved under the additional assumption

\sum
xi,\in T \delta

m

\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi) = 0, where T \delta

m =

Tm\cap T \delta . This is a property which naturally arises for the specific class of least-squares
projections introduced in subsection 8.1. Again, we emphasize the primary differences
from the corresponding classical error estimate by absorbing the standard constants
into the \lesssim symbol.

Theorem 7.4. Under the conditions of Theorem 7.3, if \Omega \subseteq \BbbR n is a convex do-
main, then the following additional upper bound on the error in the surrogate solution
holds:

\| u - \widetilde uh\| 0 \lesssim h2| u| 2 +Hr+1| K| W r+1,\infty (\Omega)| u| 1 .(7.10a)

Moreover, if r > 0 and
\sum

xi\in T \delta
m

\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi) = 0, for each T \in \scrT H and \delta \in

D(\r Tm), then

\| u - \widetilde uh\| 0 \lesssim h2| u| 2 +Hr+2| K| W r+1,\infty (\Omega)\| \nabla u\| 1 .(7.10b)

Proof. By the triangle inequality, \| u - \widetilde uh\| 0 \leq \| u - uh\| 0 + \| uh - \widetilde uh\| 0, where
uh \in Vh is the discrete solution coming from (2.1b). It can be shown that if \Omega
is convex, then u \in H2(\Omega) \cap H1

0 (\Omega); see, e.g., [29]. It then follows from standard

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3822 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

arguments that \| u - uh\| 0 \lesssim h2| u| 2; see, e.g., [16, Theorem 5.7.6]. Therefore, we only
need to analyze the term \| uh - \widetilde uh\| 0. Since, \| uh - \widetilde uh\| 0 \leq \| uh - \widetilde uh\| 1, proceeding as
in the proof of Theorem 7.3, we quickly arrive at (7.10a).

In order to prove (7.10b), first define wh \in Vh satisfying a(wh, vh) = (uh - \widetilde uh, vh)\Omega
for all vh \in Vh. Observe that the exact solution of the problem a(w, v) = (uh - \widetilde uh, v)\Omega
for all v \in H1

0 (\Omega) belongs to the space H2(\Omega)\cap H1
0 (\Omega), \| w\| 2 \lesssim \| uh - \widetilde uh\| 0. Moreover,

\| uh - \widetilde uh\| 20 = a(wh, uh - \widetilde uh) = \widetilde a(wh, \widetilde uh) - a(wh, \widetilde uh)

=
1

2

\sum
i \not =j

(\sansA ij - \widetilde \sansA ij)(\widetilde uh(xi) - \widetilde uh(xj))(wh(xi) - wh(xj)) ,
(7.11)

where the final line follows from (7.2). As remarked previously, each nonzero term in

this sum can be written as
\bigl(
\sansA ij - \widetilde \sansA ij

\bigr)
(\widetilde uh(xi) - \widetilde uh(xi + \delta))(wh(xi) - wh(xi + \delta)) for

some T \in \scrT H and nonzero \delta \in D(Tm). We can make better use of this expression with
the identity vh(xi) - vh(xi + \delta) = - \nabla vh(yi,\delta) \cdot \delta , wherein each yi,\delta is chosen from the

edge connecting xi and xi+\delta , and with the relationship \sansA ij - \widetilde \sansA ij =
\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi),

since \sansA ij - \widetilde \sansA ij \not = 0 and i \not = j. With these observations in hand, we have

2\| uh - \widetilde uh\| 20 =
\sum

T\in \scrT H

\sum
\delta \in D(\r Tm)

\sum
xi\in T \delta

m

\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi) (\nabla \widetilde uh(yi,\delta) \cdot \delta)(\nabla wh(yi,\delta) \cdot \delta)

(7.12)

\leq
\sum

T\in \scrT H

\sum
\delta \in D(\r Tm)

\sum
xi\in T \delta

m

\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi)

\Bigl(
(\nabla \widetilde uh(yi,\delta) \cdot \delta)(\nabla wh(yi,\delta) \cdot \delta) - C

\Bigr) (7.13)

\lesssim h - n\| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}

\sum
T\in \scrT H

\sum
\delta \in D(\r Tm)

\| (\nabla \widetilde uh \cdot \delta)(\nabla wh \cdot \delta) - C\| L1(T) .

(7.14)

If we set the constant above to the following average value, C := 1
\mathrm{v}\mathrm{o}\mathrm{l}(T)

\int
T
(\nabla u\cdot \delta)(\nabla w \cdot

\delta) dx, then \| (\nabla u \cdot \delta)(\nabla w \cdot \delta) - C\| L1(T) \lesssim HT | (\nabla u \cdot \delta)(\nabla w \cdot \delta)| W 1,1(T). Therefore,

\| (\nabla \widetilde uh \cdot \delta)(\nabla wh \cdot \delta) - C\| L1(T) \leq \| (\nabla \widetilde uh \cdot \delta)(\nabla wh \cdot \delta) - (\nabla u \cdot \delta)(\nabla wh \cdot \delta)\| L1(T)

(7.15)

+ \| (\nabla u \cdot \delta)(\nabla wh \cdot \delta) - (\nabla u \cdot \delta)(\nabla w \cdot \delta)\| L1(T)+\| (\nabla u \cdot \delta)(\nabla w \cdot \delta) - C\| L1(T)(7.16)

\lesssim \| \nabla (u - \widetilde uh) \cdot \delta \| 0,T \| \nabla wh \cdot \delta \| 0,T + \| \nabla (w - wh) \cdot \delta \| 0,T \| \nabla u \cdot \delta \| 0,T(7.17)

+HT \| \nabla u \cdot \delta \| 1,T \| \nabla w \cdot \delta \| 1,T .(7.18)

After summing over all T \in \scrT H and \delta \in D(Tm) and taking into account | \delta | \eqsim h, we
arrive at the bound

\| uh - \widetilde uh\| 20 \lesssim h2 - n\| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}

\bigl(
\| u - \widetilde uh\| 1 | wh| 1 + \| w - wh\| 1 | u| 1 +H\| \nabla u\| 1\| \nabla w\| 1

\bigr) (7.19)

\lesssim h2 - n\| \sansA - \widetilde \sansA \| \mathrm{m}\mathrm{a}\mathrm{x}

\bigl(
h | u| 2 +Hr+1| K| W r+1,\infty (\Omega)| u| 1 +H \| \nabla u\| 1

\bigr)
\| w\| 2(7.20)

\lesssim Hr+1| K| W r+1,\infty (\Omega)

\bigl(
H \| \nabla u\| 1 +Hr+1| K| W r+1,\infty (\Omega)| u| 1

\bigr)
\| w\| 2 .(7.21)

The proof is completed by recalling that \| w\| 2 \lesssim \| uh - \widetilde uh\| 0.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3823

Remark 7.1. As stated previously, the error estimates in Theorems 7.3 and 7.4
not do track the constants appearing in the corresponding classical estimates. When
r > 0, none of the constants in either classical estimate depend on the higher-order
norms | K| W r+1,\infty (\Omega).

Remark 7.2. As mentioned in Remark 3.2, surrogate matrices may be constructed
for high-order finite element or isogeometric methods. Likewise, Theorems 7.3 and 7.4
may be restated for some high-order surrogate methods; cf. [22, Theorem 7.4]. Many
of the details are given in sufficient detail in [22], so we only briefly summarize them
here. The upshot is as follows: so long as (6.4b) and (7.3) still hold, Theorems 7.3
and 7.4 can be generalized for any trial space Vh \subseteq H1(\Omega) with polynomial degree
k \geq 1.

Note that the proof of (6.4b) reduces to analyzing the maximum L\infty -distance
between a stencil function and its surrogate, \| \Phi \delta

T - \Pi \delta
T\Phi

\delta
T \| L\infty (T), for some macro-

element T . Up to a scale-independent constant, this quantity does not depend on k,
and so neither do the exponents of h or H in (6.4b); cf. [22, Theorem 4.2]. Moreover,
making use of (7.2), one may show that (7.3) actually holds for any nodal basis. An
analogous bound may be proven to hold for NURBS bases; see [22, Lemma 7.1]. Ulti-
mately, because each H-dependent (i.e., consistency error) term in (7.7) and (7.10) is
controlled using (6.4b) and (7.3), the H-dependent scaling in (7.7) and (7.10) remains
unchanged if k > 1. In fact, only the h-dependent scaling terms in (7.7) and (7.10) are
influenced by k. These terms behave exactly like the standard discretization errors
\| u - uh\| \bullet , \bullet = 0, 1, and high-order bounds on on such quantities are well-known in
the literature. For example, given a sufficiently smooth solution u, (7.7) changes to

\| u - \widetilde uh\| 1 \lesssim hk | u| k+1 +Hr+1| K| W r+1,\infty (\Omega)| u| 1 .(7.22)

k-dependent restatements of inequalities (7.10) are obvious and left for the reader.

Remark 7.3. The main ingredients in the error analysis presented in this section
are Lemma 6.3, Strang's first lemma, and (7.2), which simply follows from the zero row
sum property and symmetry. Simple generalizations of Lemma 6.3, for the bilinear
forms a2(\cdot , \cdot) and a3(\cdot , \cdot) have been stated in (6.12). Meanwhile, (7.2) simply follows

from the zero row sum property of \widetilde \sansA and symmetry. Therefore, we see no reason to
doubt that our analysis here can be generalized to the other problems of interest in
this paper. Hence, we proceed with numerical verification and demonstration.

\bfeight . \bfI \bfm \bfp \bfl \bfe \bfm \bfe \bfn \bft \bfa \bft \bfi \bfo \bfn . The performance of a numerical method largely depends
on its implementation. Therefore, in this section, we highlight the important features
of ours. We use the HyTeG finite element software framework [31] as the core frame-
work for all the numerical experiments in section 9. It offers efficient distributed data
structures for simplicial meshes in two and three dimensions, which serve as a basis
for the implementation of massively parallel fast iterative solvers. Its main concept is
based on the idea that a coarse input mesh is split into its geometrical primitives, i.e.,
vertices, edges, and faces, and each of these primitives is uniformly refined. Because
the primitives of the same dimension are decoupled from the others, all primitives
of the same dimension may be processed in parallel. This partitioning and the hi-
erarchy of locally structured meshes allows for efficient parallel implementations of
geometric multigrid methods. More importantly, these data structures fit perfectly
to the concept of macroelements introduced in subsection 3.3. The problems in this
paper are mainly solved by employing a geometric multigrid solver using V-cycles
with a hybrid Gauss--Seidel smoother. On the coarsest grid, either a preconditioned

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3824 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

conjugate gradient method or the multifrontal massively parallel sparse direct solver
(MUMPS) [1, 2], as provided by the PETSc interface [4, 5], is used. For improved
parallel scalability of the coarse grid solver, agglomeration techniques as provided by
\ttP \ttC \ttT \ttE \ttL \ttE \ttS \ttC \ttO \ttP \ttE [37] are used in runs with many processes.

\bfeight .\bfone . \bfP \bfo \bfl \bfy \bfn \bfo \bfm \bfi \bfa \bfl \bfl \bfe \bfa \bfs \bft \bfs \bfq \bfu \bfa \bfr \bfe \bfs \bfr \bfe \bfg \bfr \bfe \bfs \bfs \bfi \bfo \bfn . An important factor in the per-
formance of the surrogate approach is the approximation of the stencil functions \Phi \delta

T

by polynomials \widetilde \Phi \delta
T . This step in the solver process must be very fast and is usually

done in a preprocess step before the actual solve. After various preparatory experi-
ments, we have seen satisfactory performance and accuracy from simply computing\widetilde \Phi \delta

T = \Pi \delta
T\Phi

\delta
T via solving a simple least-squares problem, which we now describe.

Let T \in \scrT H be a macroelement, and recall that Tm is the associated lattice on level
m. Suppose that \Phi \delta

T is the stencil function in direction \delta \in D(Tm) which we want to
approximate. For the least-squares regression, we fix a level m\mathrm{L}\mathrm{S} with m \geq m\mathrm{L}\mathrm{S} \geq 2
and define the set of least-squares points T \delta

\mathrm{L}\mathrm{S} := Tm\mathrm{L}\mathrm{S}
\cap T \delta . Furthermore, let \{ pk\} Mk=1

be a basis of \scrP q(T), the space of polynomials with maximal degree q. Assume that
m\mathrm{L}\mathrm{S} is chosen large enough such that

\bigm| \bigm| T \delta
\mathrm{L}\mathrm{S}

\bigm| \bigm| \geq M , and introduce the following norm
on \scrP q(T): \| p\| 2T \delta

\mathrm{L}\mathrm{S}

:=
\sum

xi\in T \delta
\mathrm{L}\mathrm{S}

p(xi)
2. The least-squares regression problem, which in

turn defines \Pi \delta
T , is formalized as follows:

Find \sansc \in \BbbR M satisfying \sansc = argmin
\sansd \in \BbbR M

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \Phi \delta
T -

M\sum
k=1

dkpk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|
2

T \delta
\mathrm{L}\mathrm{S}

.(8.1)

The approximated stencil function is then defined as \widetilde \Phi \delta
T :=

\sum M
k=1 ckpk. This problem

is equivalent to solving the possibly overdetermined linear system of equations \sansB \sansc = \sansf
in a least-squares sense, where \sansB ij = pj(xi) and \sansf i = \Phi \delta

T (xi) for 1 \leq i \leq | T \delta
\mathrm{L}\mathrm{S}|

and 1 \leq j \leq N . The choice of the polynomial basis is arbitrary. However, for
an easier implementation, we employ the monomial basis, even knowing that the
resulting linear system is ill conditioned. Since it is crucial to get numerically precise
results, a stable solver for this problem has to be chosen. For this purpose, we apply
the \ttc \tto \ttl \ttP \tti \ttv \ttH \tto \ttu \tts \tte \tth \tto \ttl \ttd \tte \ttr \ttQ \ttr method from the Eigen 3.3.5 library [30], which offers a
good balance between speed and accuracy. Obviously, each of these linear systems is
independent of others; therefore, they may be solved in parallel.

Remark 8.1. Taking into account \widetilde \Phi \delta
T =

\sum M
k=1 ckpk, the first-order optimality

condition for (8.1) can be stated as
\sum

xi\in T \delta
\mathrm{L}\mathrm{S}

\bigl[
\Phi \delta

T - \Pi \delta
T\Phi

\delta
T

\bigr]
(xi) = 0. If m = m\mathrm{L}\mathrm{S},

then the secondary assumption in Theorem 7.4 is satisfied and we see higher-order
convergence in H, as stated in (7.10b). Usually, when m\mathrm{L}\mathrm{S} is close but not equal to
m, we see preasymptotic H-convergence in between the two estimates given in (7.10);
see Figure 6.

Remark 8.2. In the case where the bilinear form a(\cdot , \cdot) is symmetric, we need
only approximate a single stencil function \Phi \delta

T for both directions \delta and - \delta . Indeed,
as observed in Remark 3.1, the corresponding stencil functions are identical, up to
a shift by \delta . Furthermore, the symmetry requirement (3.18), from Remark 3.4, is
satisfied with the projection operator defined above. Indeed, one may verify that for
every \delta , T\delta = T - \delta - \delta . Therefore,\bigm\| \bigm\| \bigm\| \Phi \delta

T - \widetilde \Phi \delta
T

\bigm\| \bigm\| \bigm\| 2
T \delta

\mathrm{L}\mathrm{S}

=
\bigm\| \bigm\| \bigm\| \Phi - \delta

T - \widetilde \Phi - \delta
T

\bigm\| \bigm\| \bigm\| 2
T - \delta

\mathrm{L}\mathrm{S}

and \widetilde \Phi \delta
T (x) =

\widetilde \Phi - \delta
T (x+ \delta) .(8.2)

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3825

Thus, on simplicial meshes in two dimensions, only four instead of seven polynomials
per macroelement have to be determined and stored in memory. In some cases, where
the zero row sum property holds, the number of required polynomials may be even
reduced to three.

\bfeight .\bftwo . \bfF \bfa \bfs \bft \bfp \bfo \bfl \bfy \bfn \bfo \bfm \bfi \bfa \bfl \bfe \bfv \bfa \bfl \bfu \bfa \bft \bfi \bfo \bfn . An even more important factor with respect
to the performance of our implementation is the fast evaluation of the surrogate stencil
functions \widetilde \Phi \delta

T . Contrary to the computation of each \widetilde \Phi \delta
T , which will happen only once

per solve, these evaluations will be made during every matrix-vector multiplication.
Therefore, the costs of evaluating the stiffness matrix entries associated to a degree of
freedom may not exceed the costs of evaluating the bilinear forms with the respective
ansatz functions. In this case not only the reduction of FLOPS per degree of freedom
is of importance, but also the required memory traffic has to be taken into account.

When performing a matrix-vector multiplication in HyTeG, the degrees of freedom
in a macroelement are processed in a row-wise fashion as illustrated in the left of
Figure 4. In each row, the stencil function may be interpreted as a one-dimensional
(1D) function. We assume without loss of generality, that the 1D stencil functions are
aligned with the x-axis. This property is also inherited by the approximated stencil
function.

To further optimize the evaluation of the 1D polynomial, we exploit that the sten-
cil functions have to be evaluated on a line subdivided into uniformly sized intervals
of length h. Let (xi, yj) be a vertex node in the lattice, and let pyj (\cdot) := \widetilde \Phi \delta (\cdot , yj) be
the approximated 1D stencil function associated to row yj .

Assuming that we already have evaluated the stencil function pyj
at a point xi,

we want to evaluate it at the next point xi + h as efficiently as possible. Since the
grid points are equidistantly distributed, we can use a special case of the divided
differences, called forward differences [18, page 126].

First, we need q+1 initial helper variables \{ \Delta (k,\ell)
x0 \} with \ell = 0 and k \in \{ 0, 1, . . . , q\}

which are defined in a preprocessing step as follows:

\Delta (0,0)
x0

:= pyj
(x0) ,(8.3)

\Delta (k,0)
x0

:= \Delta
(k - 1,0)
x0+h - \Delta (k - 1,0)

x0
, k \in \{ 1, . . . , q\} .(8.4)

The values of \Delta
(k - 1,0)
x0+h are defined in a similar fashion, and the value at position

pyj
(x0) is given by \Delta

(0,0)
x0 . In order to obtain the value at pyj

(x0 + h) and to proceed

Fig. 4. Illustration of a loop through the degrees of freedom in a macroelement. In each row
of the loop, the two-dimensional stencil function may be interpreted as a 1D function (left). Seven
stencil functions have to be evaluated in order to obtain the whole stencil for a degree of freedom
(right).

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3826 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

further in line, i.e., \ell \rightarrow \ell +1, one has to update all the helper variables in the following
way:

\Delta (k,\ell)
x0

:= \Delta (k,\ell - 1)
x0

+\Delta (k+1,\ell - 1)
x0

, k \in \{ 0, 1, . . . , q\} , \ell > 0 .(8.5)

Since the second summand may not be defined for all cases, we set \Delta
(q,\ell)
x0 = \Delta

(q,0)
x0 or

equivalently \Delta
(k,\ell)
x0 = 0 for all k > q. After that, the value of pyj (x0 + h) is given by

\Delta
(0,1)
x0 . Doing this recursively yields the approximated stencil function values at all

mesh points on a single row using only q+1 helper variables and q+1 floating point
additions. When iterating through a row, in general, seven polynomial evaluations,
one for each direction, are required; cf. right of Figure 4. In the symmetric case
this may be reduced to six polynomial evaluations, since the western stencil weight
may be obtained from the previous eastern evaluation. Keep also in mind that in
the symmetric case the polynomials of approximated stencil functions in opposite
directions are the same but only evaluated at different positions; cf. Remark 8.2.
Therefore, 6 \cdot (q + 1) helper variables are required for a single row. For q = 8, these
results in 54 \cdot 8 bytes of memory which fits easily into a modern L1 CPU cache. When
moving from one lattice point to another, 6\cdot (q+1) vectorizable floating point additions
have to be performed to obtain the updated polynomial evaluations. Furthermore, in
our implementation, the polynomial degree is realized as a C++ template parameter;
therefore, all loops concerning the evaluation of a polynomial of a certain degree may
be optimized at compile time. Since our focus lies in the theoretical analysis of the
surrogate approach, thorough performance studies employing performance models
should be considered beyond the scope of this paper. Similar performance studies
have been carefully completed in [9, 10]. Thus, in the next section, we only report on
relative run times of the surrogate approach compared to the standard method, also
implemented on HyTeG, using on-the-fly quadrature of the integrals stemming from
the bilinear forms.

\bfnine . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfe \bfx \bfp \bfe \bfr \bfi \bfm \bfe \bfn \bft \bfs . In this section, we numerically verify Theorems 7.3
and 7.4, both related to the variable coefficient Poisson equation. Additionally, we
present proof-of-concept results for a linearized elasticity application and a simple p-
Laplacian diffusion problem. While not covered by the theory, we include these latter
examples to demonstrate the breadth of generality of the methodology.

All run time measurements in this sections were obtained on a machine equipped
with two Intel \mathrm{R}\bigcirc Xeon \mathrm{R}\bigcirc Gold 6136 processors with a nominal base frequency of 3.0
GHz. Each processor has 12 physical cores which results in a total of 24 physical cores.
The total available memory of 251GB is split into two nonuniform memory access
domains, one for each socket. We use version 7.3.0 of the GNU compiler collection
and specify the following compiler arguments: -\ttO \ttthree -\ttm \tta \ttr \ttc \tth =\ttn \tta \ttt \tti \ttv \tte . All the examples
in this section were executed in parallel using all available 24 physical cores.

When comparing run times from the standard and the surrogate approaches,
many factors are responsible for the relative speed-up of the surrogate approach.
Increasing the polynomial order q of the surrogate stencil functions increases not only
the run time of a multigrid iteration but also the time spent in the setup phase (i.e.,
computing each \Phi \delta

T). The cost of the setup phase, however, is mostly dominated
by the sampling level m\mathrm{L}\mathrm{S}. Therefore, when the ratio of time spent in the iterative
solver to the time spent in the setup phase(s) for solving a particular problem is
large, the setup cost is almost negligible and we see the best performance. Since the
problems in the following subsections differ in complexity and have different ratios

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3827

of solver to setup time, the observed relative speed-ups are not directly comparable.
Nonetheless, the reported speed-ups for all tested examples range between factors of
14 and 20. Such significant speed-ups are in particular important in case of dynamic
or stochastic applications. Most stochastic applications demand an enormous number
of deterministic solves resulting quite often in extreme long run times. Having such
a surrogate approach at hand can help to make stochastic approaches such as, e.g.,
multilevel Monte Carlo and its variants, more accessible for complex applications.

\bfnine .\bfone . \bfQ \bfu \bfa \bfn \bft \bfi \bft \bfa \bft \bfi \bfv \bfe \bfb \bfe \bfn \bfc \bfh \bfm \bfa \bfr \bfk \bfp \bfr \bfo \bfb \bfl \bfe \bfm . In this subsection, we examine the
surrogate method for the variable coefficient Poisson equation which has been de-
scribed and analyzed above. The strong form of the problem is

 - div (K\nabla u) = f in \Omega ,

u = g on \partial \Omega .
(9.1)

We consider both the bilinear form coming from the scalar coefficient scenario (i.e.,
K = k \cdot Id), introduced in (3.2), and the tensorial coefficient scenario, introduced
in (3.13). In the scalar coefficient experiments, we use the unit-square domain \Omega =
(0, 1)2. In the tensorial coefficient experiments, the domain \Omega has a curvilinear bound-
ary.

\bfnine .\bfone .\bfone . \bfS \bfc \bfa \bfl \bfa \bfr \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfo \bfn \bfu \bfn \bfi \bft \bfs \bfq \bfu \bfa \bfr \bfe . In the first benchmark problem
(K = k \cdot Id), we take \Omega = (0, 1)2 and employ the scalar coefficient function

k(x, y) = exp (xy) + sin (3\pi xy) + cos
\bigl(
\pi x2y

\bigr)
+ 1(9.2)

in problem (9.1). The manufactured solution u is chosen as u(x, y) = sin(x) sinh(y).
The restriction of u to the boundary is chosen as Dirichlet datum g. The right-hand-
side f is directly computed by inserting u into the equation. In this benchmark, we
fix the finest mesh size h and report on the errors depending on H and q to show the
proven \scrO

\bigl(
Hq+1

\bigr)
estimate in the H1 norm and \scrO

\bigl(
Hq+2

\bigr)
in the L2 norm. For this

purpose, h is chosen to be very small in order for the error to be mostly dominated
by the surrogate part.

The reference macromesh size is given by H0, as illustrated in the left of Figure 5.
All finer macromeshes, with associated mesh sizes H < H0, stem from uniformly
refining this reference mesh; see middle and right of Figure 5. The fine mesh, with
associated mesh size h \ll H, is the 13 times uniformly refined reference macromesh,
i.e., h = 2 - 13H0. This fine mesh has about 6.71 \cdot 107 degrees of freedom. The
approximation of the stencil functions through least-squares regression is done on

Fig. 5. Coarse macromeshes of the unitsquare with mesh sizes H = H0 (left), H = H0/2
(middle), and H = H0/4 (right). Meshes with a smaller H follow the same uniform refinement
pattern.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3828 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Table 1
Relative H1 errors (rel. H1 err.) and experimental orders of convergence (EOC) for fixed h

and varying q and H in the case of problem (9.1) with the scalar coefficient (9.2). Here, the relative
H1 error with the classical Finite element method (FEM) is 1.23 \cdot 10 - 8.

q = 1 q = 2 q = 3 q = 4
H
H0

Rel. H1 err. EOC Rel. H1 err. EOC Rel. H1 err. EOC Rel. H1 err. EOC

2 - 1 4.58 \cdot 10 - 2 -- 2.24 \cdot 10 - 2 -- 4.52 \cdot 10 - 3 -- 1.68 \cdot 10 - 3 --
2 - 2 1.61 \cdot 10 - 2 1.50 2.75 \cdot 10 - 3 3.02 4.46 \cdot 10 - 4 3.34 4.70 \cdot 10 - 5 5.16
2 - 3 4.43 \cdot 10 - 3 1.86 3.74 \cdot 10 - 4 2.88 2.88 \cdot 10 - 5 3.95 1.59 \cdot 10 - 6 4.89
2 - 4 1.15 \cdot 10 - 3 1.95 4.86 \cdot 10 - 5 2.94 1.84 \cdot 10 - 6 3.97 5.22 \cdot 10 - 8 4.93
2 - 5 2.90 \cdot 10 - 4 1.98 6.17 \cdot 10 - 6 2.98 1.17 \cdot 10 - 7 3.98 1.23 \cdot 10 - 8 2.09

Table 2
Relative L2 errors (rel. L2 err.) and experimental orders of convergence for fixed h and varying

q and H in the case of problem (9.1) with the scalar coefficient (9.2). Here, the relative L2 error
with the classical FEM is 4.10 \cdot 10 - 9.

q = 1 q = 2 q = 3 q = 4
H
H0

Rel. L2 err. EOC Rel. L2 err. EOC Rel. L2 err. EOC Rel. L2 err. EOC

2 - 1 5.75 \cdot 10 - 3 -- 1.92 \cdot 10 - 3 -- 2.90 \cdot 10 - 4 -- 9.46 \cdot 10 - 5 --
2 - 2 1.08 \cdot 10 - 3 2.42 1.26 \cdot 10 - 4 3.93 1.62 \cdot 10 - 5 4.16 1.47 \cdot 10 - 6 6.01
2 - 3 1.60 \cdot 10 - 4 2.75 8.84 \cdot 10 - 6 3.83 5.63 \cdot 10 - 7 4.85 2.47 \cdot 10 - 8 5.90
2 - 4 2.16 \cdot 10 - 5 2.89 5.96 \cdot 10 - 7 3.89 1.88 \cdot 10 - 8 4.91 4.19 \cdot 10 - 9 2.56
2 - 5 2.80 \cdot 10 - 6 2.95 3.87 \cdot 10 - 8 3.94 4.10 \cdot 10 - 9 2.19 4.05 \cdot 10 - 9 0.05

2 3 4 5 6
10 - 7

10 - 6

10 - 5

10 - 4

10 - 3

10 - 2

 - log2 (H/H0)

R
el
at
iv
e
L
2
er
ro
r

q = 1

HLS = 2 - 2H

HLS = 2 - 3H

HLS = 2 - 4H

HLS = 2 - 5H

HLS = 2 - 6H

\scrO (Hq+1)
\scrO (Hq+2)

2 3 4 5 6
10 - 9

10 - 8

10 - 7

10 - 6

10 - 5

10 - 4

 - log2 (H/H0)

R
el
at
iv
e
L
2
er
ro
r

q = 3

Standard
HLS = 2 - 3H

HLS = 2 - 4H

HLS = 2 - 5H

HLS = 2 - 6H

\scrO (Hq+1)
\scrO (Hq+2)

Fig. 6. Relative L2 errors for fixed h = 2 - 13H0, varying HLS, q = 1 (left), and q = 3 (right) in
the case of the variable coefficient Poisson equation on the unit-square with a scalar coefficient. For
q = 3 the relative L2 error obtained from the standard approach is included, since the discretization
error is dominating the surrogate error on the meshes with H \leq 2 - 5H0.

the mesh associated to mesh size H\mathrm{L}\mathrm{S} = 2 - 8H. Note that this keeps the number
of sampling points in each macroelement constant to 32 639. Each linear system is
solved by applying geometric multigrid V(2,2) iterations until a relative residual of
1 \cdot 10 - 13 is obtained.

In Tables 1 and 2, the relative H1 and L2 errors for decreasing mesh sizes H are
shown. Both tables show the expected convergence rates. In the case of the L2 norm
for q = 3 and q = 4, the convergence rate deteriorates for small macromesh sizes H
because the discretization error is dominating the total error.

In order to show the dependence of the least-squares approach on the sampling
level, we provide Figure 6. Here, we show two plots of the relative L2 errors for fixed
q \in \{ 1, 3\} , h = 2 - 13H0, and varying H\mathrm{L}\mathrm{S}. From this figure, one can see that it is

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3829

Fig. 7. Plots of true stencil functions in orange and surrogate stencil functions in blue for
\delta = 0 over the subdomain \{ (x, y)\top \in \Omega : x + y \geq 1\} in the case of the variable coefficient Poisson
equation. Top row: Fixed H = H0 and varying q = 2, 4, 6, and 8 from left to right. Bottom row:
Fixed q = 2 and varying H = H0, H0/2, H0/4, and H0/8 from left to right.

crucial to tune the sampling level fine enough in order to achieve optimal \scrO
\bigl(
Hq+2

\bigr)
convergence in the L2-norm.

Remark 9.1. The choice of sampling level m\mathrm{L}\mathrm{S} or, equivalently, H\mathrm{L}\mathrm{S} is very im-
portant since the cost of the polynomial regression grows exponentially with m\mathrm{L}\mathrm{S}.
However, choosing a value for H\mathrm{L}\mathrm{S} which is too large may violate the discrete L2

projection property required in Theorem 7.4 in order to obtain an increased order of
convergence. Therefore, it is crucial to choose a suitable H\mathrm{L}\mathrm{S} for an optimal ratio
between the accuracy of the solution and the run time of the stencil function approx-
imation. In each of our experiments, we let H\mathrm{L}\mathrm{S} = M\mathrm{L}\mathrm{S} \cdot h, where M\mathrm{L}\mathrm{S} \in \{ 2, 4\} . This
yielded satisfactory results with respect to accuracy and run time.

Furthermore, in Figure 7 we want to illustrate the dependence of the polynomial
degree q and the macromesh size H within the surrogate approach. For this purpose,
we plot the central true and surrogate stencil functions over the subdomain \{ (x, y)\top \in
\Omega : x + y \geq 1\} for different pairings of q and H. It can be observed that there is no
visible difference of both functions when either the pairing H = H0 and q = 8 or the
pairing H = H0/8 and q = 2 is chosen. Obviously, the quality of \widetilde \sansA can be improved
by either increasing q or decreasing H. For smooth coefficients K, increasing q is the
more efficient option, as in the hp-FEM context.

\bfnine .\bfone .\bftwo . \bfT \bfe \bfn \bfs \bfo \bfr \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfo \bfn \bfd \bfo \bfm \bfa \bfi \bfn \bfw \bfi \bft \bfh \bfc \bfu \bfr \bfv \bfe \bfd \bfb \bfo \bfu \bfn \bfd \bfa \bfr \bfi \bfe \bfs . In the sec-
ond benchmark problem, we study problem (9.1) with the symmetric and positive
definite tensor coefficient

K(x, y) =

\biggl[
3x2 + 2y2 + 1 - x2 - y2

 - x2 - y2 4x2 + 5y2 + 1

\biggr]
.(9.3)

Moreover, we consider the domain \Omega with the curved boundary illustrated in
Figure 8. In the following scenarios, a = 0.1 is used as the amplitude of the boundary
perturbation. The mapping from the reference unit-square to the perturbed domain
is defined by \varphi in (9.4). To map the coefficient onto the perturbed domain, we
replace the coefficient K in (9.1) by a new coefficient, K0, induced by the domain
transformation, viz.,

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3830 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

Fig. 8. Illustration of the mapping \varphi from the unit-square to the perturbed unit-square. The top
boundary is parametrized by y = a \cdot sin (2\pi x)2 + 1 and the bottom boundary by y = - a \cdot sin (2\pi x)2.

Table 3
Relative H1 errors and experimental orders of convergence for fixed h and varying q and H in

the case of problem (9.1) with the tensorial coefficient (9.3) and curved boundary. The relative H1

error with the classical FEM is 1.59 \cdot 10 - 8.

q = 1 q = 2 q = 3 q = 4
H
H0

Rel. H1 err. EOC Rel. H1 err. EOC Rel. H1 err. EOC Rel. H1 err. EOC

2 - 1 1.04 \cdot 10 - 1 -- 7.09 \cdot 10 - 2 -- 2.96 \cdot 10 - 2 -- 9.31 \cdot 10 - 3 --
2 - 2 5.41 \cdot 10 - 2 0.95 1.12 \cdot 10 - 2 2.67 4.31 \cdot 10 - 3 2.78 1.07 \cdot 10 - 3 3.12
2 - 3 1.37 \cdot 10 - 2 1.98 2.29 \cdot 10 - 3 2.29 3.14 \cdot 10 - 4 3.78 4.66 \cdot 10 - 5 4.52
2 - 4 3.72 \cdot 10 - 3 1.89 2.94 \cdot 10 - 4 2.96 2.25 \cdot 10 - 5 3.80 1.64 \cdot 10 - 6 4.83
2 - 5 9.56 \cdot 10 - 4 1.96 3.77 \cdot 10 - 5 2.96 1.46 \cdot 10 - 6 3.94 5.55 \cdot 10 - 8 4.89

Table 4
Relative L2 errors and experimental orders of convergence for fixed h and varying q and H in

the case of problem (9.1) with the tensorial coefficient (9.3) and curved boundary. The relative L2

error with the classical FEM is 4.56 \cdot 10 - 9.

q = 1 q = 2 q = 3 q = 4
H
H0

Rel. L2 err. EOC Rel. L2 err. EOC Rel. L2 err. EOC Rel. L2 err. EOC

2 - 1 1.44 \cdot 10 - 2 -- 6.43 \cdot 10 - 3 -- 3.08 \cdot 10 - 3 -- 5.41 \cdot 10 - 4 --
2 - 2 3.74 \cdot 10 - 3 1.95 6.60 \cdot 10 - 4 3.28 1.39 \cdot 10 - 4 4.47 3.54 \cdot 10 - 5 3.94
2 - 3 5.37 \cdot 10 - 4 2.80 5.75 \cdot 10 - 5 3.52 6.46 \cdot 10 - 6 4.43 6.13 \cdot 10 - 7 5.85
2 - 4 7.35 \cdot 10 - 5 2.87 3.77 \cdot 10 - 6 3.93 2.09 \cdot 10 - 7 4.95 1.28 \cdot 10 - 8 5.58
2 - 5 9.52 \cdot 10 - 6 2.95 2.40 \cdot 10 - 7 3.98 8.05 \cdot 10 - 9 4.70 4.49 \cdot 10 - 9 1.51

K0 =
D\varphi - 1(K \circ \varphi)D\varphi - \top

| det (D\varphi - 1)|
, where \varphi (x, y) =

\biggl[
x

(2ay - a) sin2 (2\pi x) + y

\biggr]
.

(9.4)

The manufactured solution u is chosen to be u(x, y) = sin(\varphi 1(x, y)) sinh(\varphi 2(x, y)).
The restriction of u to the boundary is chosen as Dirichlet datum g, and the right-
hand-side f is directly computed by inserting u into the strong form of the equa-
tion (9.1).

Here, we perform the same verification as in the previous subsection, that is, fixing
h and varying q and H with the same meshes and solver settings. In Tables 3 and 4,
the relativeH1 and L2 errors for decreasing mesh sizesH are shown. Both tables show
the expected convergence rates. In the case of q = 4, the convergence rate deteriorates
for small macromesh sizes H because the discretization error is dominating.

Additionally, we present results for fixedH = 2 - 3H0 and varying h and q. Table 5
shows the relative L2 errors and convergence rates of the standard approach and the
surrogate approach with q \in \{ 3, 5, 7\} . Only for q = 7, the L2 error coincides with the

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3831

Table 5
Degrees of Freedom (DoFs), relative L2 errors, experimental orders of convergence, and relative

time to solutions for fixed H and varying q and h in the case of problem (9.1) with the tensorial
coefficient (9.3) and curved boundary.

standard q = 3 q = 5 q = 7
h
H0

H\mathrm{L}\mathrm{S}
h

DoFs Rel. L2 err. EOC Rel. L2 err. EOC RTTS Rel. L2 err. EOC RTTS Rel. L2 err. EOC RTTS

2 - 6 20 4.2 \cdot 103 7.14 \cdot 10 - 5 - 7.15 \cdot 10 - 5 - 0.93 7.14 \cdot 10 - 5 - 0.94 7.14 \cdot 10 - 5 - 1.03
2 - 7 20 1.7 \cdot 104 1.81 \cdot 10 - 5 1.98 1.87 \cdot 10 - 5 1.94 0.87 1.81 \cdot 10 - 5 1.98 0.87 1.81 \cdot 10 - 5 1.98 0.96
2 - 8 21 6.6 \cdot 104 4.55 \cdot 10 - 6 1.99 6.76 \cdot 10 - 6 1.46 0.64 4.55 \cdot 10 - 6 1.99 0.67 4.55 \cdot 10 - 6 1.99 0.75
2 - 9 21 2.6 \cdot 105 1.14 \cdot 10 - 6 2.00 5.70 \cdot 10 - 6 0.25 0.35 1.14 \cdot 10 - 6 1.99 0.37 1.14 \cdot 10 - 6 2.00 0.41
2 - 10 21 1.1 \cdot 106 2.85 \cdot 10 - 7 2.00 6.11 \cdot 10 - 6 -0.10 0.15 3.00 \cdot 10 - 7 1.93 0.16 2.85 \cdot 10 - 7 2.00 0.19
2 - 11 21 4.2 \cdot 106 7.14 \cdot 10 - 8 2.00 6.35 \cdot 10 - 6 -0.06 0.07 1.16 \cdot 10 - 7 1.37 0.08 7.14 \cdot 10 - 8 2.00 0.10
2 - 12 21 1.7 \cdot 107 1.79 \cdot 10 - 8 2.00 6.47 \cdot 10 - 6 -0.03 0.05 9.49 \cdot 10 - 8 0.29 0.06 1.79 \cdot 10 - 8 2.00 0.07
2 - 13 21 6.7 \cdot 107 4.50 \cdot 10 - 9 1.99 6.52 \cdot 10 - 6 -0.01 0.04 9.43 \cdot 10 - 8 0.01 0.05 4.54 \cdot 10 - 9 1.98 0.07

Fig. 9. Linear elasticity problem setup (left) and initial macromesh \scrT H (right).

errors from the standard approach for all h. The relative time to solution (RTTS)
shown for the surrogate approaches is defined as the time to solution including the
setup phase of the surrogate approach divided by the time to solution of the standard
approach. In the case with the smallest h, the surrogate approach took at most only
7\% of the time of the standard approach. That is, a speed-up by more than a factor
of 14.

\bfnine .\bftwo . \bfL \bfi \bfn \bfe \bfa \bfr \bfi \bfz \bfe \bfd \bfe \bfl \bfa \bfs \bft \bfi \bfc \bfi \bft \bfy \bfe \bfx \bfa \bfm \bfp \bfl \bfe . In this subsection, we compare a stan-
dard method with a surrogate method applied to the linearized elasticity problem
presented in subsection 4.2. In our surrogate method, we employ the zero row sum
property described in section 5. We choose an annular domain composed of two
distinct and concentric materials under uniform pressure loading. The problem is
inspired by a similar three-dimensional experiment documented in [27]. Let \scrB r \subseteq \BbbR 2

be the two-dimensional open ball of radius r with the midpoint at the origin. The
computational domain is then defined as \Omega = \scrB R\mathrm{o}\mathrm{u}\mathrm{t}

\setminus \scrB R\mathrm{i}\mathrm{n}
. We split this domain into

two disjoint sets \Omega I = \scrB R\mathrm{m}\mathrm{i}\mathrm{d}
\setminus \scrB R\mathrm{i}\mathrm{n}

and \Omega O = \scrB R\mathrm{o}\mathrm{u}\mathrm{t}
\setminus \scrB R\mathrm{m}\mathrm{i}\mathrm{d}

corresponding to each
material. In our experiments, we fix R\mathrm{i}\mathrm{n} = 1 cm, R\mathrm{m}\mathrm{i}\mathrm{d} = 1.75 cm, and R\mathrm{o}\mathrm{u}\mathrm{t} = 2 cm.
Refer to the leftmost diagram in Figure 9 for an illustration of the setup. Here, the
macroelements adjacent to the boundary and the material interface are mapped to
the physical geometry by using the transformation described in [41].

Let r(x) = | x| . The strong form of the problem isD
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3832 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

 - Div (\sigma) = \vec{}f in \Omega ,

u\theta = 0 on \{ (- R\mathrm{o}\mathrm{u}\mathrm{t}, 0)
\top , (0, - R\mathrm{o}\mathrm{u}\mathrm{t})

\top , (R\mathrm{o}\mathrm{u}\mathrm{t}, 0)
\top \} ,

\sigma \cdot \^n = p\mathrm{i}\mathrm{n}\^er on \{ x \in \partial \Omega : r = R\mathrm{i}\mathrm{n}\} ,
\sigma \cdot \^n = - p\mathrm{o}\mathrm{u}\mathrm{t}\^er on \{ x \in \partial \Omega : r = R\mathrm{o}\mathrm{u}\mathrm{t}\} .

(9.5)

Here, the stress tensor \sigma is given by Hooke's law for isotropic materials as defined
in subsection 4.2. The unit vector in radial direction is denoted \^er, and the outward
pointing unit normal vector is denoted \^n. We neglect body forces and therefore set
\vec{}f = \vec{}0. The displacement is described in polar coordinates, where ur is the radial
displacement and u\theta is the tangential displacement. In order to make the system
uniquely solvable, we enforce the tangential displacement u\theta to be zero at three points;
see Figure 9. The materials are chosen to be cork in the inner domain \Omega I with an
A36 steel layer in the outer domain \Omega O. Poisson's ratio and Young's modulus for this
scenario are EI = 0.02GPa, EO = 200.0GPa, \nu I = 0, and \nu O = 0.26. The Lam\'e
parameters are obtained by the expressions \mu = E

2(1+\nu) and \lambda = E\nu
(1 - 2\nu)\cdot (1+\nu) . Note

that while these expressions induce piecewise-constant Lam\'e parameters, \lambda = \lambda (r)
and \mu = \mu (r), once the smooth domain is mapped to the computational domain
depicted on the right of Figure 9, these parameters will not be piecewise-constant
anymore due to the transformation. The pressure on the outer boundary is set to
p\mathrm{o}\mathrm{u}\mathrm{t} = 0MPa, and on the inner boundary p\mathrm{i}\mathrm{n} = 1MPa is prescribed.

In this particular scenario, there is an analytic solution available for the radial
displacement ur which has the form

ur(r) =

\Biggl\{
A \cdot r +B \cdot r - 1 if r \in [R\mathrm{i}\mathrm{n}, R\mathrm{m}\mathrm{i}\mathrm{d}] ,

C \cdot r +D \cdot r - 1 if r \in (R\mathrm{m}\mathrm{i}\mathrm{d}, R\mathrm{o}\mathrm{u}\mathrm{t}] .
(9.6)

The tangential displacement u\theta is zero everywhere due to the symmetry of the prob-
lem. In (9.6), the coefficients A, B, C, andD are uniquely determined by the following
system of linear equations:

\left[
EIR

2
\mathrm{i}\mathrm{n} EI (2\nu I - 1) 0 0

0 0 EOR
2
\mathrm{o}\mathrm{u}\mathrm{t} EO (2\nu O - 1)

R2
\mathrm{m}\mathrm{i}\mathrm{d} 1 - R2

\mathrm{m}\mathrm{i}\mathrm{d} - 1

 - EIR
2
\mathrm{m}\mathrm{i}\mathrm{d}dO - dOEI (2\nu I - 1) EOR

2
\mathrm{m}\mathrm{i}\mathrm{d}dI dIEO (2\nu O - 1)

\right]
\left[
A
B
C
D

\right] =

\left[
pinR

2
\mathrm{i}\mathrm{n}dI

poutR
2
\mathrm{o}\mathrm{u}\mathrm{t}dO
0
0

\right] ,

(9.7)

where dI := 2\nu 2I +\nu I - 1 and dO := 2\nu 2O+\nu O - 1. This system is derived after deducing
the continuity of the displacement and surface traction at the material interface, then
by incorporating the prescribed external forces at the boundaries.

In order to verify the accuracy of the surrogate method, we select the polynomial
degree q = 7 and the macromesh \scrT H , illustrated on the right of Figure 9. Note that
the discontinuity in the material parameters lies along the macroelement interfaces,
and so \lambda , \mu \in

\prod
T\in \scrT H

C\infty (T) \subsetneq W r+1,\infty (\scrT H) for any r > 0.
Each linear system is solved by applying geometric multigrid iterations with

V(3,3) cycles until the relative residual is reduced by the factor 1 \cdot 10 - 7. On the
coarsest level used in the multigrid hierarchy, we employ MUMPS as a direct solver.
In Table 6, we report on the results for varying h and present the relative L2 errors
for the standard and surrogate approach, respectively. On the finest mesh involving
about 1.8 \cdot 108 degrees of freedom, the surrogate approach required only 5\% of the

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3833

Table 6
Relative L2 errors, experimental orders of convergence, and relative time to solutions for fixed

H, q = 7, and varying h in the case of the linearized elasticity problem (9.5).

Standard q = 7
h
H

H\mathrm{L}\mathrm{S}
h

DoFs Rel. L2 err. EOC Rel. L2 err. EOC RTTS

2 - 3 20 1.1 \cdot 104 3.93 \cdot 10 - 4 - 3.93 \cdot 10 - 4 - 0.57
2 - 4 20 4.5 \cdot 104 9.66 \cdot 10 - 5 2.02 9.66 \cdot 10 - 5 2.02 0.38
2 - 5 21 1.8 \cdot 105 2.39 \cdot 10 - 5 2.02 2.39 \cdot 10 - 5 2.02 0.31
2 - 6 22 7.1 \cdot 105 5.92 \cdot 10 - 6 2.01 5.92 \cdot 10 - 6 2.01 0.19
2 - 7 22 2.8 \cdot 106 1.47 \cdot 10 - 6 2.01 1.47 \cdot 10 - 6 2.01 0.12
2 - 8 22 1.1 \cdot 107 3.68 \cdot 10 - 7 2.00 3.68 \cdot 10 - 7 2.00 0.08
2 - 9 22 4.5 \cdot 107 9.18 \cdot 10 - 8 2.00 9.19 \cdot 10 - 8 2.00 0.06
2 - 10 22 1.8 \cdot 108 2.30 \cdot 10 - 8 2.00 2.31 \cdot 10 - 8 1.99 0.05

Fig. 10. Plots of radial displacement ur (left) and the tangential stress \sigma \theta \theta (right) computed
on the fine mesh \scrS 6(\scrT H), corresponding to h = 2 - 6H, with q = 4.

1 1.2 1.4 1.6 1.8 2

0

1

2

\cdot 10 - 2

r

u
r
[c
m
]

Radial displacement ur

Analytical
Surrogate (q = 4)

1 1.2 1.4 1.6 1.8 2

0

1

2

3

4
\cdot 10 - 3

r

\sigma
\theta
\theta
[N

cm
 -
2
]

Tangential stress \sigma \theta \theta

Analytical
Surrogate (q = 4)

Fig. 11. Plots over line of the radial displacement ur (left) and the tangential stress \sigma \theta \theta (right)
computed on the fine mesh \scrS 6(\scrT H), corresponding to h = 2 - 6H, with q = 4.

time required by the standard approach while having the same accuracy. That is
a speed-up by a factor of 20. Figure 10 shows the radial displacement ur and the
tangential stress \sigma \theta \theta computed with the surrogate approach on the fine mesh \scrS 6(\scrT H),
corresponding to h = 2 - 6H, with q = 4. This is illustrated further by the plots in
Figure 11 which allow a visual comparison between ur and \sigma \theta \theta in the surrogate and
analytical solutions.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3834 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

\bfnine .\bfthree . \bfitp -\bfL \bfa \bfp \bfl \bfa \bfc \bfi \bfa \bfn \bfd \bfi ff\bfu \bfs \bfi \bfo \bfn \bfe \bfx \bfa \bfm \bfp \bfl \bfe . In this subsection, we consider the time-
dependent example introduced in subsection 4.3. Here, we solve the nonlinear p-
Laplacian diffusion problem (9.8), given in strong form as

\partial u

\partial t
 - div

\bigl(
| \nabla u| p - 2 \cdot u

\bigr)
= f in \Omega \times (0, T] ,

u = 0 on \partial \Omega \times (0, T] ,

u = u0 in \Omega \times \{ 0\} .

(9.8)

The computational domain is set to the unit disk, i.e., \Omega := \scrB 1 and the right-hand
side is set to the constant function f(x) = 2 \cdot (p\prime)p/p\prime , where p\prime = p

p - 1 is the H\"older

conjugate of p. The initial solution is set to u0(x) = 0.1\cdot
\bigl(
1 - | x| 2

\bigr)
. For this particular

problem, the stationary limit u\infty has unit magnitude; namely, u\infty (x) = 1 - | x| p\prime
[6,

Example 3.1].
Our discretization follows a standard approach where a mass matrix \sansM ij =\int

\Omega
\phi i\phi j dx and a stiffness matrix \sansA ij(\widetilde \sansu) = \int

\Omega
| \nabla \widetilde uh| p - 2\nabla \phi j \cdot \nabla \phi i dx are introduced.

At this point, \widetilde \sansu is the coefficient vector, in the \{ \phi i\} basis, of an arbitrary discrete
function \widetilde uh. The time derivative is discretized by a backward Euler scheme, and the
non-linearity in each time step is resolved by Picard fixed-point iterations. Let \sansu lk
be the coefficient vector of the discrete solution at the kth time step and lth fixed
point iteration. Employing the bilinear form (4.3) and fixing a time step size dt > 0,
the discrete problem in each time step k > 0 and fixed point iteration l > 0 reads as
follows: \Bigl(

\sansM + dt\sansA
\bigl(
\sansu l - 1
k

\bigr) \Bigr)
\sansu lk = \sansM \sansu k - 1 + dt\sansM \sansf ,(9.9)

where \sansu k - 1 is the final coefficient vector from the previous time step. In each time
step, this system is solved multiple times (once for each fixed-point iteration) by the
application of five V(2,2) multigrid cycles. The fixed-point iterations continue until

the relative increment
\| \sansu lk - \sansu l - 1

k \| 2

\| \sansu lk\| 2
is smaller than the fixed tolerance 1 \cdot 10 - 3. Then k

is incremented and a new \sansu k - 1 = \sansu lk - 1 is defined.

In our surrogate method, the stencil functions of the stiffness matrix \sansA
\bigl(
\sansu k - 1

\bigr)
are

approximated by solving the least-squares problems after every fixed-point iteration,
all the while enforcing the zero row sum property (cf. subsection 9.1). Meanwhile, the
stencil function of the mass matrix \sansM is only approximated once in a preprocessing
step because it does not depend on any free variables in the computation. The time
step surrogate polynomials of both operators are then simply summed together to
obtain the time step matrix \sansM +dt\sansA

\bigl(
\sansu k - 1

\bigr)
. This particular splitting of the surrogate

matrices, which reproduces the zero row sum property in the stiffness matrix, allows
for faster reapproximation of the time step matrix stencil function and appears to
improve the stability of the method. In this example, we did not enforce the symmetry
condition featured in subsection 3.5. Instead, whenever a vertex xi \in \BbbX m was on
the boundary of a macroelement \partial Tm, we set the surrogate stiffness matrix to the
exact value stiffness matrix \widetilde \sansA ij = \sansA ij . This minor asymmetry is more amenable to
computation because there is less data transfer and it did not affect the behavior of our
multigrid solver. In fact, this choice improved our results with this problem, which we
believe is due to better accuracy in the surrogate near the singularity in the coefficient,
i.e., at the origin x = (0, 0). The success of this approach suggests that the definition

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3835

 - 1 - 0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Solutions for t = 0

 - 1 - 0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Solutions for t = 0.1 \cdot Tend

 - 1 - 0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

Solutions for t = Tend

Stationary
Surrogate
Standard

Fig. 12. Plots of standard, surrogate, and stationary analytical solution over the line [0, 1]\times \{ 0\}
for different times t = 0, t = 0.1 \cdot T , and t = Tend.

Fig. 13. Surface plot of nonstationary p-Laplacian surrogate solution for t = Tend with p = 3
and q = 6 (left). Absolute difference between the discrete standard and surrogate solution at the
time t = Tend (right).

given in (3.17) may be relaxed in other applications as well.1 In the proximity of this
singularity and for p > 2, the coefficient depending on the solution of the previous
fixed-point iteration is getting very close to zero which serves as a challenge for the
approximated off-diagonal stencil functions. Depending on the polynomial degree q,
they might erroneously take on positive values due to overshoots which possibly results
in a loss of positive definiteness of the surrogate matrix. However, this drawback could
not be observed in the scenario considered in the following example.

The unit-disk is discretized by the macromesh \scrT H featured on the right of Figure 2.
Note that the vertices of the central macroelements meet at the origin x = (0, 0), i.e.,
exactly where the singularity occurs in the stationary limit u\infty . The simulations are
conducted on the mesh \scrS 9(\scrT H), which involves about 4.72 \cdot 106 degrees of freedom.
The macroelements adjacent to the boundary are mapped to the physical geometry
by using the mapping described in [41]. Furthermore, the least-squares regressions
are carried out on the mesh corresponding to H\mathrm{L}\mathrm{S} = 4h, and the polynomial degree of
the approximated stencil functions is fixed to q = 6. In this scenario, we consider the
p-Laplacian operator with p = 3, fix the time step size \Delta t = 1 \cdot 10 - 2, and solve until
time T\mathrm{e}\mathrm{n}\mathrm{d} = 1. Figure 12 illustrates the standard and surrogate solutions plotted over
the line [0, 1] \times \{ 0\} for different times t. In the left of Figure 13, the surface plot of
the surrogate solution is depicted. Since the difference of the solutions is very small,
we added in the right of Figure 13 a surface plot of the absolute difference of the
surrogate and standard solution at the final time t = T\mathrm{e}\mathrm{n}\mathrm{d}. The surrogate approach

1See [10] for further evidence.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3836 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

required only 5.4\% of the time required by the standard approach, that is, a speed-up
by more than a factor of 18.

\bfA \bfp \bfp \bfe \bfn \bfd \bfi \bfx \bfA . \bfP \bfr \bfo \bfo \bff \bfs .

Proof of Proposition 6.1. By the min-max theorem [21], the kth eigenvalue of \sansM
is

\lambda k(\sansM) = min
W \subseteq \BbbR N

\Biggl\{
max

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansM \sansx : \sansx \in W

\Bigr\}
: dimW = k

\Biggr\}
(A.1)

= max
W \subseteq \BbbR N

\Biggl\{
min

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansM \sansx : \sansx \in W

\Bigr\}
: dimW = N - k + 1

\Biggr\}
.(A.2)

Define \sansD = \sansM - \sansN . We first show that \lambda 1(\sansD) \leq \lambda k(\sansM) - \lambda k(\sansN) \leq \lambda N (\sansD). Indeed,

\lambda k(\sansM) \leq min
W \subseteq \BbbR N

\Biggl\{
max

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansN \sansx : \sansx \in W

\Bigr\}
+ max

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansD \sansx : \sansx \in W

\Bigr\}
: dimW = k

\Biggr\} (A.3)

\leq min
W \subseteq \BbbR N

\Biggl\{
max

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansN \sansx : \sansx \in W

\Bigr\}
: dimW = k

\Biggr\}
+ max

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansD \sansx : \sansx \in \BbbR N

\Bigr\}
(A.4)

= \lambda k(\sansN) + \lambda N (\sansD)(A.5)

and, likewise,

\lambda k(\sansM) \geq max
W \subseteq \BbbR N

\Biggl\{
min

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansN \sansx : \sansx \in W

\Bigr\}
+ min

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansD \sansx : \sansx \in W

\Bigr\}
(A.6)

: dimW = N - k + 1

\Biggr\}

\geq max
W \subseteq \BbbR N

\Biggl\{
min

\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansN \sansx : \sansx \in W

\Bigr\}
: dimW = N - k + 1

\Biggr\}
(A.7)

+ min
\| \sansx \| 2=1

\Bigl\{
\sansx \top \sansD \sansx : \sansx \in \BbbR N

\Bigr\}
= \lambda k(\sansN) + \lambda 1(\sansD) .(A.8)

This immediately leads us to the inequality | \lambda k(\sansM) - \lambda k(\sansN)| \leq max\{ | \lambda 1(\sansD)| , | \lambda N (\sansD)| \} .
Now, for at least one i, | \lambda N (\sansD)| - | \sansD ii| \leq | \lambda N (\sansD) - \sansD ii| \leq

\sum
j \not =i | \sansD ij | , by the Gershgorin

circle theorem. Therefore, | \lambda N (\sansD)| \leq
\sum

j | \sansD ij | \leq \| \sansD \| \infty . Similarly, | \lambda 1(\sansD)| \leq \| \sansD \| \infty .

\bfA \bfc \bfk \bfn \bfo \bfw \bfl \bfe \bfd \bfg \bfm \bfe \bfn \bft \bfs . The authors would like to thank Marcus Mohr and each
of the referees for the detailed feedback they gave during the review process. Their
insights significantly improved the quality of the final manuscript.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multi-
frontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 15--41.

[2] P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet, Hybrid scheduling for
the parallel solution of linear systems, Parallel Comput., 32 (2006), pp. 136--156.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A PRIORI ERROR ESTIMATION A3837

[3] P. Arbenz, G. H. van Lenthe, U. Mennel, R. M\"uller, and M. Sala, A scalable multi-
level preconditioner for matrix-free \mu -finite element analysis of human bone structures,
Internat. J. Numer. Methods Engrg., 73 (2008), pp. 927--947.

[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes,
R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and
H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.9, Argonne National
Laboratory, Lemont, IL, 2018.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-
lelism in object oriented numerical software libraries, in Modern Software Tools in Scien-
tific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkh\"auser, Basel,
Switzerland, 1997, pp. 163--202.

[6] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math.
Comp., 61 (1993), pp. 523--537.

[7] S. Bauer, D. Drzisga, M. Mohr, U. R\"ude, C. Waluga, and B. Wohlmuth, A stencil
scaling approach for accelerating matrix-free finite element implementations, SIAM J. Sci.
Comput., 40 (2018), pp. C748--C778.

[8] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. R\"ude, and B. Wohlmuth, Large-scale
simulation of mantle convection based on a new matrix-free approach, J. Comput. Sci., 31
(2019), pp. 60--76.

[9] S. Bauer, M. Huber, M. Mohr, U. R\"ude, and B. Wohlmuth, A new matrix-free approach
for large-scale geodynamic simulations and its performance, in Computational Science--
ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, F. Dongerra, and
P. M. A. Sloot, eds., Springer, Cham, Switzerland, 2018, pp. 17--30.

[10] S. Bauer, M. Mohr, U. R\"ude, J. Weism\"uller, M. Wittmann, and B. Wohlmuth, A
two-scale approach for efficient on-the-fly operator assembly in massively parallel high
performance multigrid codes, Appl. Numer. Math., 122 (2017), pp. 14--38.

[11] B. Bergen, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Effi-
cient Finite Element Simulations on Supercomputers: Hierarchische Hybride Gitter:
Datenstrukturen und Algorithmen Zur Effizienten Simulation Mit Finiten Elementen Auf
H\"ochstleistungsrechnern, SCS Publishing House, San Diego, CA, 2005.

[12] B. Bergen and F. H\"ulsemann, Hierarchical hybrid grids: Data structures and core algorithms
for multigrid, Numer. Linear Algebra Appl., 11 (2004), pp. 279--291.

[13] B. Bergen, G. Wellein, F. H\"ulsemann, and U. R\"ude, Hierarchical hybrid grids: Achieving
TERAFLOP performance on large scale finite element simulations, Internat. J. Parallel
Emergent Distrib. Syst., 22 (2007), pp. 311--329.

[14] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355--378.
[15] J. Bielak, O. Ghattas, and E.-J. Kim, Parallel octree-based finite element method for large-

scale earthquake ground motion simulation, CMES Comput. Model. Eng. Sci., 10 (2005),
pp. 99--112.

[16] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer
Science \& Business Media, New York, NY, 2007.

[17] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in 3D, J. Sci. Com-
put., 45 (2010), pp. 48--63.

[18] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, Cengage Learning,
Boston, MA, 2015.

[19] G. F. Carey and B.-N. Jiang, Element-by-element linear and nonlinear solution schemes,
Commun. Appl. Numer. Methods, 2 (1986), pp. 145--153.

[20] P. G. Ciarlet, Three-Dimensional Elasticity, Elsevier, New York, NY, 1988.
[21] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley, Hoboken, NJ,

1953.
[22] D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: Low-Cost

Assembly for Isogeometric Analysis, arXiv preprint arXiv:1904.06971, 2019.
[23] D. Drzisga, U. R\"ude, and B. Wohlmuth, Stencil Scaling for Vector-Valued PDEs with

Applications to Generalized Newtonian Fluids, arXiv preprint arXiv:1908.08666, 2019.
[24] C. Engwer, R. D. Falgout, and U. M. Yang, Stencil computations for PDE-based applica-

tions with examples from DUNE and Hypre, Concurrency Comput. Practice Experience,
29 (2017), e4097.

[25] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer Science \&
Business Media, New York, NY, 2013.

[26] C. Flaig and P. Arbenz, A highly scalable matrix-free multigrid solver for \mu FE analysis
based on a pointer-less octree, in Large-Scale Scientific Computing: 8th International Con-
ference, LSSC 2011, Sozopol, Bulgaria, June 6-10, 2011, Revised Selected Papers, I. Lirkov,
S. Margenov, and J. Wa\'sniewski, eds., Springer, Berlin, 2012, pp. 498--506.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3838 DANIEL DRZISGA, BRENDAN KEITH, AND BARBARA WOHLMUTH

[27] F. Fuentes, B. Keith, L. Demkowicz, and P. Le Tallec, Coupled variational formulations
of linear elasticity and the DPG methodology, J. Comput. Phys., 348 (2017), pp. 715--731.

[28] B. Gmeiner, U. R\"ude, H. Stengel, C. Waluga, and B. Wohlmuth, Towards textbook effi-
ciency for parallel multigrid, Numer. Math. Theory Methods Appl., 8 (2015), pp. 22--46.

[29] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.
[30] G. Guennebaud, B. Jacob, et al., Eigen, v3, http://eigen.tuxfamily.org, 2010.
[31] N. Kohl, D. Th\"onnes, D. Drzisga, D. Bartuschat, and U. R\"ude, The HyTeG finite-element

software framework for scalable multigrid solvers, Internat. J. Parallel Emergent Distrib.
Syst., 34 (2019), pp. 477--496.

[32] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element
operator application, Comput. \& Fluids, 63 (2012), pp. 135--147.

[33] K. Ljungkvist, Matrix-free finite-element computations on graphics processors with adaptively
refined unstructured meshes, in Proceedings of the 25th High Performance Computing
Symposium, HPC '17, Society for Computer Simulation International, 2017, pp. 1:1--1:12.

[34] K. Ljungkvist and M. Kronbichler, Multigrid for Matrix-Free Finite Element Computa-
tions on Graphics Processors, Tech. Rep. 2017-006, Department of Information Technology,
Uppsala University, Uppsala, Sweden, 2017.

[35] J. Loffeld and J. Hittinger, On the arithmetic intensity of high-order finite-volume dis-
cretizations for hyperbolic systems of conservation laws, Internat. J. High Performance
Comput. Appl., 33 (2019), pp. 25--52.

[36] D. A. May, J. Brown, and L. L. Pourhiet, A scalable, matrix-free multigrid preconditioner
for finite element discretizations of heterogeneous Stokes flow, Comput. Methods Appl.
Mech. Engrg., 290 (2015), pp. 496--523.

[37] D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-scale multi-
grid components within PETSc, in Proceedings of the Platform for Advanced Scientific
Computing Conference, PASC '16, New York, NY, 2016, ACM, pp. 5:1--5:12.

[38] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Math. Comp., 54 (1990), pp. 483--493.

[39] G. Strang, Variational crimes in the finite element method, in The Mathematical Foundations
of the Finite Element Method with Applications to Partial Differential Equations, A. K.
Aziz, ed., Elsevier, New York, NY, 1972, pp. 689--710.

[40] B. van Rietbergen, H. Weinans, R. Huiskes, and B. Polman, Computational strategies for
iterative solutions of large FEM applications employing voxel data, Internat. J. Numer.
Methods Engrg., 39 (1996), pp. 2743--2767.

[41] M. Zl\'amal, Curved elements in the finite element method. I, SIAM J. Numer. Anal., 10 (1973),
pp. 229--240.

D
ow

nl
oa

de
d

12
/0

8/
19

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

A.2. The surrogate matrix methodology: Low-cost assembly for
isogeometric analysis

89

The surrogate matrix methodology: Low-cost assembly for
isogeometric analysis

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth

Following the successful application and analysis of the surrogate matrix methodology
for a low-order matrix-free finite element method in core article I (Appendix A.1),
we investigate its applicability to IGA. The main idea is again based on the two-
scale approach which was introduced in the context of first-order finite elements
by Bauer et al. in [13]. It turns out that using uniform knot vectors in IGA has
some beneficial properties which can be exploited to efficiently construct surrogate
matrices. In this article, we present a methodology to avoid over-computation in the
assembly of matrices in IGA. It is based on performing integration for only a small
subset of the trial and test basis function interactions while the rest is approximated
through interpolation. The majority of entries in the resulting sparse matrices are
computed without using any integration at all. Our methodology is independent of
the integration rule used at the element or basis functions level. Therefore, it may
be used in conjunction with one of the state of the art integration schemes based on,
e.g., reduced or weighted integration. Many techniques accelerating the formation
and assembly of matrices in IGA demonstrate their strength only when high-order
approximations are used, but with this approach, performance usually grows with
h-refinement. For demonstration purposes, we implemented our surrogate methods
by modifying the assembly routines in the open-source library GeoPDEs [51, 102]. A
more detailed description of these modifications is provided in the companion article
[41] which includes references to the code in order to allow reproducibility.

In Section 2, we set up the majority of mathematical notation used in the remainder
of the paper. In Section 3, we introduce the notion of a stencil function in the
IGA context. In Section 4, we investigate the accuracy of B-spline interpolations
with regard to the approximation of stencil functions. In Section 5, we use these
interpolants of the stencil functions to define surrogate matrices for IGA. Section 6
contains a brief description of our software implementation. In Section 7, we consider
the surrogate matrix methodology for Poisson’s problem and provide a priori error
estimates which are verified by numerical experiments. In Section 8, we consider
the surrogate IGA method for the analysis of transverse vibrations of an isotropic
elastic membrane and provide an a priori analysis for the eigenvalue errors. In
Sections 9 and 10, we examine surrogate IGA methods for plate bending and Stokes
flow problems, respectively. The appendix is included to substantiate some of the
claims made in Section 3 and to support some of the analysis conducted in Section 4.

I was significantly involved in finding the ideas and primarily responsible for setting
up the mathematical framework and carrying out the scientific work presented in
this article. Furthermore, I was in charge of writing the article with the exception of
the appendix. The co-authors contributed by making corrective changes.

90

Permission to include:

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: Low-cost assembly for isogeometric
analysis
Computer Methods in Applied Mechanics and Engineering 361 (2020): 112776
(see also article [43] in the bibliography)

The following pages on copyright are excerpts from copies of the website

https://www.elsevier.com/about/policies/copyright#Author-rights

retrieved on 22 March 2020.

91

https://www.elsevier.com/about/policies/copyright#Author-rights

Notice of publication and copyright

First Published in “The surrogate matrix methodology: Low-cost assembly for isoge-
ometric analysis” in Computer Methods in Applied Mechanics and Engineering 361
(2020), published by Elsevier B.V.

DOI: https://doi.org/10.1016/j.cma.2019.112776

94

https://doi.org/10.1016/j.cma.2019.112776

Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 361 (2020) 112776
www.elsevier.com/locate/cma

The surrogate matrix methodology: Low-cost assembly for
isogeometric analysis

Daniel Drzisga∗, Brendan Keith, Barbara Wohlmuth
Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik (M2), Technische Universität München, Garching bei München, Germany

Received 12 April 2019; received in revised form 22 November 2019; accepted 26 November 2019
Available online xxxx

Abstract

A new methodology in isogeometric analysis (IGA) is presented. This methodology delivers low-cost variable-scale
approximations (surrogates) of the matrices which IGA conventionally requires to be computed from element-scale quadrature
formulas. To generate surrogate matrices, quadrature must only be performed on certain elements in the computational domain.
This, in turn, determines only a subset of the entries in the final matrix. The remaining matrix entries are computed by a
simple B-spline interpolation procedure. Poisson’s equation, membrane vibration, plate bending, and Stokes’ flow problems are
studied. In these problems, the use of surrogate matrices has a negligible impact on solution accuracy. Because only a small
fraction of the original quadrature must be performed, we are able to report beyond a fifty-fold reduction in overall assembly
time in the same software. The capacity for even further speed-ups is clearly demonstrated. The implementation used here was
achieved by a small number of modifications to the open-source IGA software library GeoPDEs. Similar modifications could
be made to other present-day software libraries.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Assembly; Surrogate numerical methods; Isogeometric analysis; A priori error analysis

1. Introduction

Avoiding unnecessary work is of utmost importance when computing at the frontiers of contemporary research.
To frame a workable definition, recall that practical simulations in science and engineering involve a large number
of possible sources of error. For instance, we highlight the categories of modeling error, numerical error, and data
error, each of which have many subcategories. The total error in a simulation is controlled by the aggregate of
each relevant source of error. In this paper, “unnecessary work” — or, more precisely, over-computation — is any
machine expense used to drive one source of error in a problem far below the total error. It cannot be overstated
that removing sources of over-computation can have an outsized influence on the computational cost of getting an
accurate solution.

In some instances, circumventing over-computation is the simplest way to accelerate a numerical algorithm. For
example, in the use of iterative methods, for both linear and non-linear problems, it has long been acknowledged
that over-solving a discretized problem is a negligent expense. Relaxing iterative solver errors usually reduces to just

∗ Corresponding author.
E-mail addresses: drzisga@ma.tum.de (D. Drzisga), keith@ma.tum.de (B. Keith), wohlmuth@ma.tum.de (B. Wohlmuth).

https://doi.org/10.1016/j.cma.2019.112776
0045-7825/ c⃝ 2019 Elsevier B.V. All rights reserved.

2 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

adjusting the tolerances naturally built into established algorithms. In other instances, sources of over-computation
are less conspicuous and avoiding them requires the development of new algorithms. For example, in the field
of uncertainty quantification, it has recently come to light that sampling error can be relaxed — and, in turn,
computational cost can be significantly reduced — by the use of a tunable surrogate response surface [1,2].

The focus of this article is the Galerkin form of isogeometric analysis (IGA) [3,4]. At first sight, in view
of the long list of computer methods which rose beforehand, the Galerkin isogeometric method may be seen
as a rather paradigmatic approach to the discretization of partial differential equations (PDEs). Indeed, Galerkin
IGA methods are little more than finite element methods which employ non-uniform rational B-spline (NURBS)
bases [5]. Although it was immediately shown by Hughes et al. [3] that the use of such a basis improves the
interoperability between computer-aided design (CAD) and PDE analysis, many other benefits of the IGA approach
were also demonstrated early on in the IGA literature. Of particular note, the arbitrary smoothness of NURBS
bases generally improves the accuracy per degree of freedom and lends itself to convenient techniques for the
discretization of high-order PDEs [5,6]. It is these and other serendipitous features of IGA which have attributing
to its truly meteoric success in modern computational science and engineering research.

It is well-established that traditional isogeometric methods face a great computational burden at the point of
matrix assembly. This is due, in part, to the large support of the basis functions. Although many other common
concerns are naturally alleviated by the IGA paradigm, this particular challenge is clearly evidenced by the expansive
literature on quadrature rules and accelerated assembly algorithms [7–19]. Indeed, we may further accentuate this
remark with the following quote from the 2014 review article [20]:

“. . . at the moment the assembly of the matrix is the most time-consuming part of isogeometric codes. The
development of optimal assembly procedures is an important task required to render isogeometric methods a
competitive technology.”

In this article, we present a simple methodology to avoid over-assembling matrices in IGA. Roughly speaking,
it requires performing quadrature for only a small fraction of the trial and test basis function interactions and then
approximating the rest through, for example, interpolation. This leads to a large sparse matrix where the majority
of entries have not been computed using any quadrature at all. Usually, such matrices will not coincide with the
ones generated by performing quadrature for every non-zero entry (cf. Section 5.4), but they can be interpreted as
surrogates for those matrices.

The main idea used here was first introduced in the context of first-order finite elements by Bauer et al. in [21].
Thereafter, applications to peta-scale geodynamical simulations were presented in [22,23] and a theoretical analysis
was given in [24]. In the massively parallel applications [21–23], it was natural to work with so-called “macro-
meshes” as well as a piecewise polynomial space for resolving the surrogate matrices. This choice was motivated
by a low communication cost across the faces of the macro-elements, a convenient cache-aware implementation, and
the fact that a hybrid mesh structure allowed for extremely fast evaluation of the three-dimensional polynomials;
see [22,23] for further details. In contrast, the surrogate matrices in this paper are computed using a B-spline
interpolation space. With this particular strategy, we demonstrate that the cost of matrix assembly in conventional
IGA codes can be reduced by an order of magnitude.

Our approach bears some similarities to the integration by interpolation and lookup (IIL) approach proposed
in [13,14]. In those two works, an integrand factor from the weak form, composed of both the coefficients of the
underlying PDE as well as the geometry mapping, is approximated. In this work, the actual entries of the final
matrix are shown to be related to a small number of smooth so-called stencil functions; instead of a factor in the
integrand, it is these stencil functions which are approximated.

An advantage of the IIL approach is that, in theory, it does not require a uniform knot vector assumption (cf.
Section 2). However, in practice, this assumption is necessary in order to obtain compact lookup tables [13]. On
the other hand, one advantage of our approach is that it can be easily implemented using existing IGA assembly
paradigms. Another advantage is that the implementation is identical whether using a B-spline or a NURBS basis.

Before moving on, some other important remarks deserve to be emphasized:

• The methodology we propose for IGA applications is essentially independent of the quadrature rule used at
the individual element or basis function level. This lays bare the possibility for it to be used in conjunction
with many other cutting edge techniques for accelerated IGA assembly.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 3

Fig. 1.1. Left: Distribution of computational cost with standard IGA. Right: Distribution of computational cost with a surrogate IGA strategy.
(Timings taken from the experiment presented in Figs. 7.5 and 7.6 for c = 3. Both experiments ran on a single compute core and the default
MATLAB backslash operator has been used as a solver.)

• For our new surrogate methods, it would be most efficient if the matrix entries which require quadrature were
to be computed based on individual basis function interactions. This leaves out standard element-by-element
assembly strategies, but would work well with the control point pairwise method proposed in [25] or, ideally,
with a row-by-row approach; e.g., [9,15,19]. Nevertheless, one should still expect to see significant speed-ups
with surrogate methods in standard element-by-element codes, at least for moderate polynomial orders. In
order to underscore this fact, we did not develop a stand-alone code. Instead, we implemented our surrogate
methods by simply modifying the assembly routines in the open-source library GeoPDEs [26,27], leaving ever
other aspect of the code fixed. For illustration, the reader may refer to the left and right sides of Fig. 1.1 to
compare the relative timings before and after some relatively minor changes were made to this software (cf.
Section 6 and [28]). In both cases, the differences in solving time and solution accuracy were negligible. We
expect that most other element-by-element IGA codes should be easy to modify in a similar manner.

• Many efficient assembly strategies for IGA see their performance advantage only in the high polynomial order
regime. Here, the performance usually grows with each h-refinement. Indeed, at just over one million degrees
of freedom, our experiments demonstrate assembly speed-ups beyond fifty times, in the exact same code, with
a simple second-order NURBS basis (see Section 7.3.3).

In our experiments, we analyze surrogate IGA methods for Poisson’s equation, membrane vibration, plate
bending, and Stokes’ flow problems. The Poisson case is analyzed in detail and the additional experiments are
provided in order to motivate further study. It is our eventual goal to adapt our methods to a matrix-free framework,
similar to what has been used recently in low-order settings [21–24]. This would certainly be helpful in order to
reach the full potential of IGA in extreme scale computations.

In the next section, we take stock of the majority of mathematical notation used in the remainder of the paper. In
Section 3, we introduce the notion of a stencil function in the IGA context. In Section 4, we investigate the accuracy
of B-spline interpolation with regard to stencil functions. In Section 5, we use interpolants of the stencil functions
(i.e., surrogate stencil functions) to define surrogate matrices for IGA. Section 6 consists of a brief description of our
software implementation. A more complete description is provided in [28]. In Sections 7–10, we examine surrogate
IGA methods for Poisson’s equation, membrane vibration, plate bending, and Stokes’ flow problems, respectively.
The Appendix is included to support some of the analysis carried out in Section 4.

2. Preliminaries

In this section, we lay out the principal mathematical focus and notation of the paper.

2.1. Model problems and notation

Let Ω ⊆Rn be a domain, n = 2, 3. Let V = V (Ω) be a Hilbert space over R, the field of real numbers, and
let V ∗ denote its topological dual. For historical reasons, we proceed by adopting notation from the h-version of
the finite element method and thus let Vh denote a finite-dimensional subspace of V . Although we also deal with

4 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 2.1. Illustration of a smooth transformation from a parametric domain Ω̂ ⊆R2 to a physical domain Ω ⊆R2.

a number of important alternatives (see, e.g., Sections 8 and 10), we are chiefly interested in the following three
problems:

Find u ∈ V satisfying a(u, v) = F(v) for all v ∈ V . (2.1a)

Find uh ∈ Vh satisfying a(uh, vh) = F(vh) for all vh ∈ Vh . (2.1b)

Find ũh ∈ Vh satisfying ã(̃uh, vh) = F(vh) for all vh ∈ Vh . (2.1c)

Here and throughout, a : V × V → R is a continuous and coercive bilinear form, ã : Vh × Vh → R is an
approximation of a|Vh×Vh , hereby deemed the surrogate for a(·, ·), and F ∈ V ∗ is a bounded linear functional.

To keep the exposition simple and to the point, we will assume that the physical domain of every problem Ω ⊆Rn

is defined as the image of a single parametric domain Ω̂ = (0, 1)n . This leaves all of our analysis in the single
patch geometry setting, Ω = ϕ(Ω̂), for some diffeomorphism ϕ : Ω̂ → Rn of sufficient regularity; see Fig. 2.1. The
single patch setting is by no means a necessary assumption. The entirety of the analysis considered here can easily
be generalized to the multi-patch setting (cf. Section 3.5). However, in order to stay in the isogeometric setting, we
assume that ϕ (̂x) =

∑
i ci N̂i (̂x), where each ci ∈ Rn is a control point vector and each N̂i (̂x) is a NURBS basis

function on the parametric domain Ω̂ . Here, NURBS basis functions are defined in the standard way, as described
in Section 2.2.

For matrices M ∈ Rl×m , define the max-norm, ∥M∥max = maxi, j |Mi j |. For any function v : Ω → R, we will use
the notation, ∥v∥0, ∥v∥1, and ∥v∥2, for the canonical L2(Ω)-, H 1(Ω)-, and H 2(Ω)-norms, respectively. Moreover,
if v is smooth, we define its support as supp(v) = {x ∈ Ω : v(x) ̸= 0}. When dealing with a domain D⊆Ω ,
denote the related L2(D), H 1(D), and H 2(D) norms by ∥v∥0,D, ∥v∥1,D, and ∥v∥2,D, respectively. Denote the space
of univariate polynomials of degree at most q by Pq . Likewise, denote the space of multivariate polynomials of
degree at most q , in each Cartesian direction ei , by Qq = [Pq]n and denote Qq (D) = { f |D : f ∈ Qq}. We will
often deal with Cartesian subdomains D = D1 × · · · ×Dn . In this case, it is natural to deal with Cartesian-Sobolev
seminorms; e.g., [f]W r,∞(D) =

∑n
i=1 ∥Dr ·ei f ∥L∞(D). Note that [f]W r,∞(D) ≤ | f |W r,∞(D) =

∑
|α|=r ∥Dα f ∥L∞(D). All

remaining notation will be defined as it arises.

2.2. Cardinal B-splines and NURBS

Let m ≥ 2p +1 and {bk}
m
k=1 be an order p B-spline basis on the unit interval (0, 1). Let N = mn and let {N̂i }

N
i=1

be a corresponding NURBS basis on Ω̂ . Namely,

N̂i (̂x) =
wi B̂i (̂x)∑
j w j B̂ j (̂x)

, x̂ = (̂x1, . . . , x̂n) ∈ Ω̂ , (2.2)

where each B̂i (̂x) = bi1 (̂x1) · · · bin (̂xn) is a multivariate B-spline of uniform order p and each wi > 0 is a
fixed weight parameter. Here and from now on, we identify every global index 1 ≤ i ≤ N with a multi-index
i = (i1, . . . , in), 1 ≤ ik ≤ m, through the colexicographical relationship i = i1 + (i2 − 1)m + · · · + (in − 1)mn−1.

Generally, a univariate B-spline basis {bk}
m
k=1 is defined by an ordered multiset, or knot vector, Ξ =

{ξ1, . . . , ξm+p+1}. In this paper, we deal only with open uniform knot vectors; i.e., ξ1, . . . , ξp+1 = 0, ξm+1, . . . , ξm+p+1

= 1, and ξk+1 − ξk =
1

m−p , otherwise. The quantity h = max1≤k≤m−1 |ξk+1 − ξk | =
1

m−p will be an important
parameter for us, which we hereby refer to as the mesh size. Clearly, we could consider NURBS spaces with

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 5

Fig. 2.2. Left: 1D B-spline basis functions {bk}
21
k=1 generated by the open uniform knot vector Ξ (2), defined in (2.3). Right: Each gray

basis function is equivalent, up to translation, to the function b(̂x). The red functions are obviously not. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

different orders p1, . . . , pn in each Cartesian direction [3,29]. In order to simplify the exposition, we avoid this
complication.

For an explicit example of an open uniform knot vector, consider

Ξ (p)
= {0, . . . , 0

p times

} ∪

{ k
19

}19

k=0
∪ {1, . . . , 1

p times

} . (2.3)

The corresponding p = 2 B-spline basis is depicted in Fig. 2.2. Observe that all but four of the basis functions
(highlighted in red) are identical, up to an equally spaced set of translations. These functions are called cardinal
B-splines [30–32].

Let x̃ (k)
= (k −

p+1
2) · h, for each k = p + 1, . . . ,m − p. In general, there are always m − 2p univariate cardinal

B-spline basis functions which can each be expressed bk (̂x) = b(̂x − x̃ (k)), for some function, b(̂x), centered at
the origin with support in (− p+1

2 · h, p+1
2 · h) (see, e.g., Fig. 2.2). The x̃ (k) correspond to the midpoints of each

function bk . Likewise, there are (m − 2p)n multivariate cardinal B-splines. That is B̂i (̂x) = B̂ (̂x − x̃i), where
x̃i =

(̃
x (i1), . . . , x̃ (in)

)
and B̂ (̂x) = b(̂x1) · · · b(̂xn). For future reference, define the set of all such x̃i as X̃. Also,

notice that the ratio of cardinal B-splines basis functions to total B-spline basis functions quickly tends to unity,(m−2p
m

)n
→ 1, as m increases.

3. Surrogate matrices: exploiting basis structure

Eqs. (2.1b) and (2.1c), respectively, induce two related matrix equations,

Au = f and Ãũ = f, (3.1)

for basis function coefficients u, ũ ∈ RN . As mentioned previously, the key idea in this paper is constructing the
majority of the surrogate stiffness matrix Ã via interpolation of the true stiffness matrix A. In this section, we first
describe exactly what is meant by this statement and then demonstrate how isogeometric analysis makes it possible.

3.1. Stencil functions

Recall (2.1b). Generally, every function vh ∈ Vh can be identified with a unique function on the domain Ω̂
through a suitable pushforward operator ϕ∗. Namely, vh = ϕ∗v̂h . Define V̂h be the set of all such v̂h , which is a
discrete space in the parametric domain Ω̂ . Accordingly, the bilinear form a : Vh × Vh → R can be identified with
a parametric domain bilinear form â : V̂h × V̂h → R in such a way that a(wh, vh) = â(ŵh, v̂h), for all ŵh, v̂h ∈ V̂h .

Let {φi } = {ϕ∗φ̂i } be a basis for Vh with {φ̂i } the corresponding basis for V̂h . The fundamental observation in
the surrogate matrix methodology now follows. If, φ̂ is some fixed reference function and, for a set of indices i, j ,
φ̂i (̂x) = φ̂(̂x − x̃i) and φ̂ j (̂x) = φ̂(̂x − x̃ j), then

â(φ̂ j , φ̂i) = â(φ̂(· − x̃ j), φ̂(· − x̃i)) := Φ (̃x j , x̃i) . (3.2)

Here, in the rightmost equality, the definition of a new scalar-valued function Φ(·, ·) has been made, wherein any
dependence on the mesh size h has been implicitly assumed. This function, Φ (̃x j , x̃i), may also be expressed in

6 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

terms of x̃i and a translation δ = x̃ j − x̃i . In this alternative characterization, after denoting Ai j = a(φ j , φi), we
may write

Ai j = Φδ (̃xi) (3.3)

and δ may be treated as a parameter. We define Φδ (̃xi) = Φ (̃xi + δ, x̃i) = Φ (̃x j , x̃i).
For a fixed number of translations δ, these so-called stencil functions, Φδ(·), can be identified with the majority

of entries in many IGA stiffness matrices. In many circumstance, each Φδ(·) is smooth and may, therefore, be
interpolated after only being evaluated at small number of points in the parametric domain x̃i ∈ Ω̂ . After denoting
the interpolants — i.e., the surrogate stencil functions — by Φ̃δ(·), we simply define

Ãi j = Φ̃δ (̃xi) . (3.4)

Remark 3.1. In some cases, the stencil functions Φδ are themselves polynomials (see, e.g., Proposition 5.1 and
Corollaries 8.1 and 10.1). Therefore, if polynomial interpolation of sufficiently high order is used, the true stiffness
matrix be generated exactly — i.e., Φ̃δ = Φδ and thus Ã = A, up to round-off error — in significantly less time
than with a traditional assembly algorithm. Otherwise, in many scenarios, a sufficiently accurate approximation of
the stiffness matrix Ã ≈ A will be generated.

3.2. B-spline basis functions

Fix V = H 1(Ω), ϕ : Ω̂ → Ω , V̂h = span{B̂i }, and, accordingly, Vh = span{Bi }, where each Bi = B̂i ◦ ϕ−1.
Consider the bilinear form a(u, v) =

∫
Ω ∇u · ∇v dx . It is easy to verify that a(·, ·) pulls back to

â(ŵ, v̂) =

∫
Ω̂

∇̂ŵ(̂x)⊤K (̂x) ∇̂v̂(̂x) dx̂ , where K =
Dϕ−1 Dϕ−⊤

| det
(
Dϕ−1

)
|
, (3.5)

with arguments ŵ, v̂ ∈ V̂ = H 1(Ω̂).
Recall Section 2.2. Assume that {B̂i } is generated by an open uniform knot vector Ξ with p > 0 fixed. Obviously,

Ai j = â(B̂ j , B̂i). In the cardinal B-spline setting, B̂i (̂x) = B̂ (̂x − x̃i) and B̂ j (̂x) = B̂ (̂x − x̃ j). Therefore, by a simple
change of variables,

Ai j =

∫
Ω̂

∇̂ B̂ (̂x − x̃i)⊤K (̂x) ∇̂ B̂ (̂x − x̃ j) dx̂ =

∫
ω̂δ

∇̂ B̂ (̂ y)⊤K (̃xi + ŷ) ∇̂ B̂δ (̂ y) d ŷ , (3.6)

where δ = x̃ j − x̃i , B̂δ (̂ y) = B̂ (̂ y − δ), and ω̂δ = supp(B̂) ∩ supp(B̂δ).
There is a natural correspondence between the density of the matrix A and the set of translations δ such that

ω̂δ ̸= ∅. Consequently, the cardinality of the set of relevant translations, D = {δ = x̃ j − x̃i : ω̂δ ̸= ∅}, is fixed for
all sufficiently large m. Namely, |D| = (2p + 1)n . Now, for each δ ∈ D, we may define the stencil function

Φδ (̃x) =

∫
ω̂δ

∇̂ B̂ (̂ y)⊤K (̃x + ŷ) ∇̂ B̂δ (̂ y) d ŷ . (3.7)

Let conv(X̃) denote the convex hull of X̃. Such functions are defined at any point x̃ ∈ conv(X̃) where
x̃ + δ ∈ conv(X̃). Ultimately, this means that the domain of Φδ , which we will denote by Ω̃δ , depends on δ

(see, e.g., Fig. 3.1). Clearly, we always have 0 ∈ D. The reader may easily verify that Ω̃0 = conv(X̃) =
⋃

δ∈D Ω̃δ

and Ω̃δ + δ ⊆ Ω̃0, for each δ ∈ D.

3.3. NURBS basis functions

The principal difference between the treatment of a NURBS basis {N̂i } and the related B-spline basis {B̂i } is
that a NURBS basis cannot be assumed to have the translation invariance property which leads directly to (3.2).
Fortunately, as we now demonstrate, this property is not entirely necessary to define a useful stencil function.

Define W (̂x) =
∑

j w j B̂ j (̂x), where {w j } are the weight parameters appearing in (2.2). It is known that W (̂x) is
unchanged under mesh refinements. Therefore, employing a similar change of variables argument as used in (3.6),
it holds that

Ai j = â(N̂ j , N̂i) = wiw j

∫
ω̂δ

∇̂

(
B̂ (̂ y)

W (̃xi + ŷ)

)⊤

K (̃xi + ŷ) ∇̂

(
B̂δ (̂ y)

W (̃xi + ŷ)

)
d ŷ , (3.8)

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 7

Fig. 3.1. Second-order cardinal B-spline basis functions B̂i (̂x) = B̂ (̂x − x̃i) (color gradient). After translation by δ =
(

−2h
0

)
(represented by

the red arrow), most of these basis functions are equal to another cardinal basis function B̂ j (̂x) = B̂i (̂x − δ) (gray). For every such function,
x̃i ∈ Ω̃δ (this subset is shaded in gray on the mesh). Clearly, this property does not hold for every cardinal basis function, as indicated by
the cardinal B-spline neighboring the boundary and the nearby (non-cardinal) basis function (red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

where, as in (3.6), δ = x̃ j − x̃i . At this point, it may be natural to divide by wiw j and define the stencil function
Φδ (̃x) from the resulting expression on the right-hand side of (3.8). Instead, we pause to consider the regularity of
W (̂x).

Recall (3.4). Since each B̂i (̂x) is only piecewise polynomial, it is clear that, in general, W ̸∈ Cq (Ω̂), for any
q ≥ p. This fact could significantly limit the accuracy of an interpolant Φ̃δ = ΠΦδ which we may wish to
construct. Therefore, we restrict our attention to W ∈ Cq (Ω̂), where q ≥ p. It turns out that this set of functions,
span{B̂i } ∩ Cq (Ω̂), is equal to the polynomial space Qp(Ω̂). Moreover, restricting to the subset Ω̃0, each weight
parameter can be expressed as wi = w(̃xi), where w(̂x) is a polynomial in Qp(Ω̃0). (See the Appendix for details.)
Therefore, for any W ∈ Qp(Ω̂), we may define

Φδ (̃x) = w(̃x)w(̃x + δ)
∫
ω̂δ

∇̂

(
B̂ (̂ y)

W (̃x + ŷ)

)⊤

K (̃x + ŷ) ∇̂

(
B̂δ (̂ y)

W (̃x + ŷ)

)
d ŷ, (3.9)

for each x̃ ∈ Ω̃δ and δ ∈ D. Clearly, Ai j = Φδ (̃xi) for each corresponding δ ∈ D. An illustration of a stencil
function coming from an IGA discretization with a NURBS basis is presented in Fig. 3.2.

Remark 3.2. Notably, when W = 1, then w = 1 also. Therefore, (3.9) is consistent with (3.7). Obviously, in
practice, neither of these expressions needs to be used in order to evaluate Φδ(·) at any point x̃i . Indeed, since
Φδ (̃xi) = Ai j , any existing IGA code already has a quadrature mechanism to compute Φδ (̃xi); cf. Section 6.
Nevertheless, these expressions are important for analysis.

3.4. Symmetric bilinear forms

When a(w, v) = a(v,w), for all w, v ∈ V , a translational symmetry is induced on the set of corresponding
stencil functions. Indeed, it is simple to see that Φ (̃x j , x̃i) = Φ (̃xi , x̃ j) and, therefore,

Φδ (̃xi) = Φ (̃xi + δ, x̃i) = Φ (̃x j − δ, x̃ j) = Φ−δ (̃x j) .

A similar conclusion can be drawn in the NURBS scenario above. Fig. 3.3 presents a visual comparison of two
stencil functions, Φδ and Φ−δ , generated by an isogeometric NURBS basis and the corresponding symmetric bilinear
form (3.5).

8 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 3.2. The graph of a stencil function Φδ : Ω̃δ → R defined by (3.9). The corresponding physical geometry Ω is depicted in Fig. 7.1(a).
In this case, δ = 0 · h and p = 2. The domain Ω̃0 is shaded gray. For further details, see Section 7.3.

Fig. 3.3. Left and right, respectively: Graphs of stencil functions Φδ (̃x) for δ =
(

2h
0

)
and δ =

(
−2h

0

)
. The associated domains Ω̃δ are

shaded in gray (cf. Fig. 3.1). Notice the translational symmetry Φδ (̃x) = Φ−δ (̃x + δ).

3.5. The multi-patch setting

In the multi-patch setting, the physical domain Ω is partitioned into a finite number of disjoint subdomains
Ω =

⋃L
k=1 Ω

(k). We may assume that each such domain or patch Ω (k), as they are usually called, can be identified
with a common parametric domain Ω̂ , through a unique NURBS mapping Ω (k)

= ϕ(k)(Ω̂). In this case, one
may define a separate set of stencil functions Φ(k)

δ (̃x) : Ω̃δ → R, for each index k. The forthcoming analysis
is immediately applicable to this setting, but treating it outright would require unnecessarily complicated notation.
We also did not consider this setting in our numerical experiments.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 9

3.6. Edge-based and face-based stencil functions

It is also possible to define stencil functions, in addition to those above, which exploit lower-dimensional
translational symmetries. For instance, many functions in the basis {N̂i } are only equivalent under translations
parallel to a given edge in the parametric domain Ω̂ . Likewise, a new family of stencil functions could be constructed
for each edge or face in a patch Ω (k). Edge-/face-based stencil functions are not considered in this work.

4. Surrogate matrices: interpolation of stencil functions

Recall (3.3) and (3.4). A surrogate matrix Ã ≈ A will be useful to us if: (1) each stencil function Φδ has high
regularity and, therefore, the high-order approximation ΠΦδ ≈ Φδ will have high-order accuracy; and (2) each
Φ̃δ = ΠΦδ can be computed and evaluated fast. In this section, we focus on the former of these two requirements.
Particulars on our implementation are withheld until Section 6.

As a simplifying accommodation, we perform all of our analysis on the largest subset of Ω̂ where every stencil
function is defined. That is, Ω̃ =

⋂
δ∈D Ω̃δ . A simple computation shows that

Ω̃ =

[
3p + 1

2(m − p)
, 1 −

3p + 1
2(m − p)

]n

⊊ Ω̂ .

All of the results in this section can be reformulated with Ω̃ replaced by Ω̃δ . However, this generalization also
requires a different operator Π for each δ ∈ D; see, e.g., [24].

4.1. B-spline interpolation

Let {B̃ j } be a degree q ≥ 0 multivariate B-spline basis on Ω̃ with the quasi-uniform knot vector Ξ̃ = Ξ̃1×· · ·×Ξ̃n

and define Sq (Ξ̃) = span{B̃ j }. We will refer to each ξ̃ j ∈ Ξ̃ , j = (j1, . . . , jn), as a sampling point and define a new
length scale parameter, hereby referred to as the sampling length, H = max| j |=1,i

{
∥̃ξ i+ j − ξ̃ i∥max : ξ̃ i+ j ∈ Ξ̃

}
.

In isogeometric analysis, the geometry determines the basis used in PDE discretization. When constructing the
surrogate stencil functions Φ̃δ , we are primarily interested in using a basis of higher order q than the underlying
spatial discretization p. Generally, such a choice q > p is desirable because it will allow us to guarantee that the
discretization error in a standard IGA method will dominate the error actually attributed to using a surrogate (cf.
Section 7.3.2).

In this paper, we only consider constructing B-spline interpolants Φ̃δ = ΠHΦδ , where ΠH is a stable local
interpolation operator onto the space Sq (Ξ̃). Various global interpolants could also be considered, as well as
sparse grid interpolants [33] and least-squares projections (cf. [24]). We see no benefit in using a NURBS basis to
approximate Φδ , even when a NURBS mapping ϕ : Ω̂ → Ω defines the physical domain. The following lemma
follows directly from [34, Theorem 4.2].

Lemma 4.1. For every bounded projection ΠH : C0(Ω̃) → Sq (Ξ̃), with ∥ΠH∥ < C0 for some H-independent
constant C0, it holds that

∥ f − ΠH f ∥L∞(Ω̃) ≤ C1 H q+1[f]W q+1,∞(Ω̃) , for all f ∈ W q+1,∞(Ω̃) ,

where C1 is a constant depending only on q, Ω̃ , and ∥ΠH∥.

Fig. 4.1 presents graphs of stencil functions, Φδ (̃x) and their surrogates Φ̃δ (̃x) obtained by B-spline interpolation
for various δ. The stencil functions are generated by an isogeometric NURBS basis and the symmetric bilinear
form (3.5).

Remark 4.1. The norm ∥ΠH∥ can be greatly influenced by the distribution of the sampling points ξ̃ j ∈ Ξ̃ . In all
of our experiments, we kept Ξ̃ ⊆ Ω̃∩X̃. This convenient choice delivered good results. When we wish to underscore
the convention Ξ̃ ⊆ Ω̃ ∩ X̃, we will denote the sampling points in Ξ̃ by x̃s

i . Moreover, from now on, dependence
on the subset Ω̃ will not be stated since Ω̃ → Ω̂ as h → 0 and the parametric domain Ω̂ = (0, 1)n is always fixed.

10 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

4.2. Regularity of the stencil functions

Define Φ̃δ = ΠHΦδ , where ΠH is any projection satisfying the assumptions of Lemma 4.1. In this subsection,
we present an essential theorem on the error in the class of surrogate stencil functions defined in (3.9). In order
to expedite our presentation, we only prove Theorem 4.2 here under an assumption which directly relates to the
B-spline basis scenario (3.7). The general proof is given in the Appendix.

Theorem 4.2. Let Φδ : Ω̃ → R be defined by (3.9) and assume that ϕ : Ω̂ → Ω induces a coefficient tensor
K ∈

[
W q+1,∞(Ω̂)

]n×n . If W ∈ Qp(Ω̂), then there exists a constant C2, depending only on p, q, ∥ΠH∥, and ϕ, such
that Φδ − Φ̃δ

L∞(Ω̃) ≤ C2hn−2 H q+1 for each δ ∈ D .

Moreover, if W (̂x) = 1, then C2 ≤ C C1 [K]W q+1,∞(Ω̂), for some C depending only on p.

Proof of Theorem 4.2, under the assumption W (̂x) = 1. For every multi-index α with α = (α1, . . . , αn), where
each 0 ≤ αi ≤ q + 1, it holds that

DαΦδ (̃x) =

∫
ω̂δ

∇̂ B̂ (̂ y)⊤ Dα K (̃x + ŷ) ∇̂ B̂δ (̂ y) d ŷ.

Therefore, ∥DαΦδ∥L∞(Ω̃) ≤ ∥Dα K∥L∞(Ω̂)∥∇̂ B̂ · ∇̂ B̂δ∥L1(ω̂δ) ≤ Chn−2
∥Dα K∥L∞(Ω̂) and, moreover, Φδ ∈

W q+1,∞(Ω̃). The result follows from Lemma 4.1 using f = Φδ . □

Remark 4.2. Observe that [K]W q+1,∞(Ω̂) = 0 iff K ∈ [Qq (Ω̂)]n×n . Generally, due to the definition of K appearing
in (3.5), this assumption can only be expected to be satisfied when the geometry map ϕ is affine. Nevertheless, if
W = 1 as well, then Theorem 4.2 would imply that Φ̃δ = Φδ ∈ Qq (Ω̃). This a useful reproduction property which
can help to verify the implementation. It also manifests in stencil functions defined from more complicated bilinear
forms than (3.5). The reproduction of stencil functions is described in a general scenario in Section 5.4.

5. Surrogate matrices: preserving structure

In this section, we discuss a number of different surrogate matrix definitions. Under both definitions, we also
show that the surrogate matrices may actually fully reproduce the very matrices they approximate. Note that these
definitions may also be employed for general matrices and not only for a stiffness matrix. If not stated otherwise,
in the following subsections we assume that the matrix A emanates from a discretization of a general bilinear form.

5.1. General surrogate matrices

In Section 3.1, the definition Ãi j = Φ̃δ (̃xi) was presented, with δ = x̃ j − x̃i . However, this is valid exclusively for
the special indices 1 ≤ i, j ≤ N with a cardinal B-spline associated to them. Of course, we may always compute
the remaining components of the surrogate matrix Ã directly, using element-wise quadrature, as done in standard
IGA assembly algorithms. Therefore, we propose the following definition:

Ãi j =

{
Φ̃δ (̃xi) if x̃i , x̃ j ∈ Ω̃ ,

Ai j otherwise.
(5.1a)

This is a convenient definition which essentially can be used for constructing a surrogate matrix from any general
bilinear form a(·, ·). Typically, this definition is used for general non-symmetric matrices, e.g., for the divergence
matrices B arising in the discretization of Stokes’ flow (cf. Section 10). However, (5.1a) can easily be improved
when the bilinear form is symmetric or has a well-known kernel.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 11

Fig. 4.1. Graphs of the stencil functions Φδ (̃x) (color gradient) and their surrogates Φ̃δ (̃x) (red) for the various δ required in populating
the upper diagonal of the stiffness matrix Ai j defined in (5.1). The sampling points x̃s

i ∈ Ξ̃ ⊊ Ω̃ ∩ X̃ used to construct the interpolant are
depicted with black dots. The subsets Ω̃ ⊆ Ω̃δ are highlighted in light gray and the remaining subsets Ω̃δ \ Ω̃ are depicted in a darker gray.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

12 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

5.2. Symmetry

If the bilinear form is symmetric, (5.1a) does not guarantee that the corresponding surrogate stiffness matrix Ã
will be symmetric. In order to enforce symmetry, it is convenient to just include the action of copying Ai j into A j i ,
for all i > j . Therefore, we propose the following symmetric surrogate matrix definition:

Ãi j =

⎧⎪⎨⎪⎩
Φ̃δ (̃xi) if x̃i , x̃ j ∈ Ω̃ and i ≤ j,
Ã j i if x̃i , x̃ j ∈ Ω̃ and i > j,
Ai j otherwise.

(5.1b)

With this definition, note that only (2p+1)n
+1

2 surrogate stencil functions need to be computed. We employ this
definition in the construction of surrogate mass matrices M which are symmetric but do not have a kernel (cf.
Section 8).

5.3. Preserving the kernel

Recall that
∑

Ni (x) = 1. In the situation a(u, v) =
∫
Ω ∇u · ∇v dx , we have that a(1, w) = a(w, 1) = 0, for

all w ∈ H 1(Ω). Therefore, 1 ∈ Vh = span{Ni } and, moreover, Av1 = 0, where v1 = (1, . . . , 1)⊤. Clearly, neither
definition (5.1a) nor definition (5.1b), will guarantee that Ãv1 = 0. Therefore, we will pose the following symmetric
kernel-preserving definition:

Ãi j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ̃δ (̃xi) if x̃i , x̃ j ∈ Ω̃ and i < j,
Ã j i if x̃i , x̃ j ∈ Ω̃ and i > j,
Ai j in all other cases where i ̸= j
−

∑
k ̸=i Ãik if i = j,

(5.1c)

With this definition, the reader may readily verify that Ãv1 = 0 and Ã = Ã⊤.

Remark 5.1. Three important comments are in order. First, in a matrix-free setting, where memory copying
cannot be performed efficiently, one can actually design a set of surrogate stencil functions Φ̃δ which preserves
the symmetry of the stiffness matrix (see, e.g., [24, Remark 3.4]). Second, in general, it is difficult to generalize
the row sum trick used in (5.1c), in a way which preserves symmetry, when the bilinear form a(·, ·) has a multi-
dimensional kernel; cf. Section 9. Third, mass matrices in isogeometric analysis conserve mass in the sense that∑

i, j Mi j = vol(Ω). Under definition (5.1a), there is no reason to expect that the same property holds for the
corresponding surrogate mass matrices M̃i j . Although such a property would be desirable, it does not appear to
significantly affect accuracy; cf. Section 8.

5.4. Polynomial reproduction

Until now, we have focused, almost entirely, on the analysis of surrogate stiffness matrices which derive from
the bilinear form generated by Poisson’s equation. Clearly, the methodology presented above can be applied to
other settings as well. The general scenario we are interested in is when a(·, ·) in (2.1a) can be expressed in the
parametric domain as

â(ŵ, v̂) =

∫
Ω̂

G (̂x, ŵ(̂x), v̂(̂x)) dx̂ for all ŵ, v̂ ∈ V̂ , (5.2a)

where, for all smooth ŵ, v̂,

G (̂x, ŵ(̂ y), v̂(̂ y)) = 0, whenever ŷ /∈ supp(ŵ) ∩ supp(̂v) . (5.2b)

We now consider the general coefficient matrix A and a cardinal B-spline basis {B̂i } (cf. Section 3.2).
Invoking (5.2b), a simple change of variables leads us to

Ai j = â(B̂ j , B̂i) =

∫
ω̂δ

G (̃xi + ŷ, B̂δ (̂ y), B̂ (̂ y)) d ŷ ,

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 13

where, as before, δ = x̃ j − x̃i and ω̂δ = supp(B̂) ∩ supp(B̂δ). Using the techniques put forth in Section 3.3, this
expression can easily be generalized for cardinal NURBS bases with polynomial weight functions W (̂x). However,
considering only the case of a cardinal B-spline basis, if G(·, ·, ·) is a Qp(Ω̂) polynomial in its first argument, we
have the following reproduction property (cf. Remark 4.2).

Proposition 5.1. Assume that (5.2a) and (5.2b) hold. For all x̂ ∈ Ω̃ , define

Φδ (̃x) =

∫
ω̂δ

G (̃x + ŷ, B̂δ (̂ y), B̂ (̂ y)) d ŷ. (5.3)

If G(·, ŷ, ŷ) ∈ Qp(Ω̂), for every ŷ ∈ Ω̂ , then Φδ ∈ Qq (Ω̃). Moreover, taking (5.1a) as the definition of the surrogate
Ã, it holds that Ã = A.

Proof. It suffices to show that Φ̃δ = Φδ , for all δ ∈ D. Let α = (α1, . . . , αn) be a multi-index, x̃α
= x̃α1

1 · · · x̃αn
n .

By assumption, we may express G (̃x, B̂δ (̂ y), B̂ (̂ y)) =
∑n

i=1
∑

αi ≤p cα (̂ y)̃xα , where each coefficient function cα (̂ y)
has support only in ω̂δ . Moreover, if x̃ + ŷ ∈ Ω̂ , then

G (̃x + ŷ, B̂δ (̂ y), B̂ (̂ y)) =

n∑
i=1

∑
αi ≤p

cα (̂ y)(̃x + ŷ)α

is clearly an equal degree polynomial in the x̃-variable. The proof is completed noting that the integral in (5.3) is
performed in the ŷ-variable over the set ω̂δ and ω̂δ ⊆ Ω̂ , for every δ ∈ D. □

6. Surrogate matrices: faster assembly with existing software

All the examples in this paper were implemented using the GeoPDEs package for Isogeometric Analysis in
MATLAB and Octave [26,27]. This package provides a framework for implementing and testing new isogeometric
methods for the solution of partial differential equations. We reused most of the original low-level functions and only
had to make changes to some high-level assembly functions. A detailed explanation of the code modifications as well
as a reference implementation with example code is provided in [28]. Nonetheless, we give here a short explanation
of the implementation in GeoPDEs. In particular, for the Poisson problem, we modified op gradu gradv tp using
the following strategy:

First, the sampling length H and the sampling points need to be specified. For this purpose, we introduce the
sampling parameter M ∈ N which relates the small scale h to the coarse scale H via H = M · h. Starting from the
first point x̃i ∈ Ω̃∩X̃, let Ξ̃ be the lattice containing every M th point x̃i ∈ Ω̃∩X̃, in each Cartesian direction. When
M does not evenly divide these points in any given Cartesian direction, include the M th endpoints x̃i ∈ ∂Ω̃ ∩ X̃ as
well; see, e.g., the black dots in Fig. 4.1. The stencil functions Φδ (̃x) are evaluated at all points x̃s

i ∈ Ξ̃ and these
values are used as the support points of the ensuing B-spline interpolant Φ̃δ (̃x).

An additional benefit of this choice is seen in that Φ̃δ (̃xs
i) = Φδ (̃xs

i), at each point x̃s
i ∈ Ξ̃ . This leads to an

increased point-wise accuracy and lower potential cost, since each entry Ãi j = Φ̃δ (̃xs
i) in the surrogate stiffness

matrix is equal to the correct entry, Ai j = Φδ (̃xs
i). Here, it is appropriate to point out that when M = 1 every point

x̃i is sampled, Ξ̃ = Ω̃ ∩ X̃. In this case, H = h and there is no difference from the surrogate Ã and the true A.
In order to evaluate Φδ (̃xs

i), we identify the matrix rows which correspond to the sampling points x̃s
i ∈ Ξ̃ .

Additionally, we include the rows which correspond to basis functions near the domain boundary. Each of these
rows needs to be assembled using quadrature formulas; see the red and green points in Fig. 6.1. The number of
interior rows depends on M , whereas the number of rows corresponding to the boundary depends on the order of
the basis functions p. After that, we identify all of the active elements which need to be assembled to compute the
estimated rows, cf. Fig. 6.2. Note that the number of required elements for each sample point depends on the order
p. In order to assemble these elements, we employ the op gradu gradv function, but skip the elements which are
not active.

To construct the interpolated stencil functions Φ̃δ , it is possible to use the builtin MATLAB functions interp2
and interp3. However, in 2D, we use the RectBivariateSpline function provided by the SciPy Python
package [35], which supports spline interpolation up to order 5. These interpolated stencil functions are then
evaluated in order to retrieve the remaining values of Ã; cf. the blue off-diagonal entries in Fig. 6.1. The assembly

14 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 6.1. Sparsity pattern of the surrogate stiffness matrix Ã. The red and green points indicate the entries of the stiffness matrix which are
evaluated in the standard way. The blue points indicate the entries which are obtained by evaluating the interpolated stencil functions. The
red points correspond to the basis functions near the boundaries and the green entries are used as supporting points for the interpolation.
Some of the diagonal entries are drawn in blue due to the modification of preserving the kernel. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6.2. The active elements (shown in gray) involved in the surrogate assembly for M = 10 with forty knots in each Cartesian direction.
The light gray elements correspond to the active boundary elements and the dark gray elements correspond to the inner active elements
required for the sampling of the stencil functions.

functions for the mass matrix, the biharmonic equation, and the Stokes problem were modified in a similar way.
For symmetric matrices, only the upper-diagonal entries are interpolated and copied to the lower-diagonal entries
(cf. (5.1b)). In the Poisson and biharmonic case, we additionally enforce the zero-row sum property by changing
the diagonal entries for all rows which include at least one interpolated value (cf. (5.1c)).

In order to show that the surrogate approach may be easily applied to other IGA frameworks, we tried to keep the
modifications as simple as possible. However, in an IGA implementation tailored to the surrogate approach, even
more properties may be exploited to achieve better performance. For example, in the current implementation, the
complete local stiffness matrices of the active elements are computed via quadrature, but in practice only a single
row of the local matrix is required. Exploiting this fact would save a significant amount of unnecessary computation,
especially as p grows, but such an implementation in GeoPDEs would also involve the modification of low-level
functions.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 15

Remark 6.1. Dirichlet boundary conditions are enforced for surrogate methods in the standard way; that is, by
eliminating dofs from the original linear system. As usual, let Ã be the full matrix without any consideration for
boundary conditions. Without loss of generality, we may assume that all the smallest global indices correspond to
the set of interior dofs, denoted by I , and all of the largest correspond to the set of Dirichlet dofs, denoted by D.
The unconstrained linear system, Ãũ = f, may then be written in block form as follows:[

ÃI I ÃI D

ÃDI ÃDD

] [
ũI

ũD

]
=

[
fI

fD

]
. (6.1)

Recall that all cardinal basis functions vanish at the domain boundary ∂Ω . Therefore, following definition (5.1c),
ÃI D = AI D and ÃDD = ADD , where AI D and ADD are the corresponding submatrices of the standard
stiffness matrix A. Furthermore, because the values of ũD are prescribed, (6.1) may be reduced to the linear
system ÃI I ũI = fI − AI DũD . This reduced system may be solved to determine all the unprescribed solution
coefficients ũI .

7. Poisson’s equation

In this section, we analyze a surrogate IGA discretization of Poisson’s equation on the domain Ω = ϕ(Ω̂). Here,
as well as in the forthcoming problems, we restrict our attention to Dirichlet boundary conditions. This simplifies
the analysis while also retaining all of its interesting features. Given a function f ∈ L2(Ω), the corresponding weak
form is the following:

Find u ∈ H 1
0 (Ω) satisfying a(u, v) = F(v) for all v ∈ H 1

0 (Ω) , (7.1)

where a(u, v) =
∫
Ω ∇u · ∇v dx and F(v) =

∫
Ω f v dx . At this point, it has been made well-understood that the

bilinear form a(·, ·) can be rewritten on the parametric domain Ω̂ , using the expression (3.5). Recalling this detail,
we continue on with the simplifying assumption K ∈

[
W q+1,∞(Ω̂)

]n×n .

7.1. Inconsistency

Recall (2.1) and (3.1) and take Vh = span{Ni }, where every Ni = N̂i ◦ ϕ−1. Analysis of surrogate methods best
proceeds using the surrogate bilinear form ã : Vh × Vh → R inherent to the surrogate matrix Ã. Explicitly,

ã(wh, vh) = v⊤Ãw,

for all wh =
∑

i wi Ni , vh =
∑

i vi Ni ∈ Vh . Here and throughout, we shall use definition (5.1c) in constructing the
surrogate stiffness matrix Ã and its associated surrogate bilinear form ã(·, ·).

In the proceeding analysis, Theorem 7.2 is of fundamental importance. Its proof is a simple consequence of
Theorem 4.2 and Lemma 7.1. From now on, for any matrix N, we use the notation |N|max = maxi ̸= j |Ni j |.

Lemma 7.1. For all vh, wh ∈ Vh , the following upper bound holds:

|a(vh, wh) − ã(vh, wh)| ≤ C3h2−n
|A − Ã|max∥∇vh∥0∥∇wh∥0 , (7.2)

where C3 is a constant depending only on ϕ and p.

Proof. In this proof, we will use the symbols “≲” and “≂” to denote upper bounds and equivalence, respectively,
up to constants depending at most on p and ϕ. For each i = 1, . . . , N , let I(i) be the set of indices j such
that supp(Ni) ∩ supp(N j) ̸= ∅ and notice that I(i) ≤ |D| = (2p + 1)n . We begin with the observation that∑

i

(
Ai j − Ãi j

)
=

∑
j

(
Ai j − Ãi j

)
= 0 due to definition (5.1c). With these two identities at hand, we find that

a(vh, wh) − ã(vh, wh) = −
1
2

∑
i, j

(
Ai j − Ãi j

)
(vi − v j)(wi − w j)

≤ |A − Ã|max

∑
i

∑
j∈I(i)

|vi − v j ||wi − w j |

≤ |A − Ã|max

∑
i

(∑
j∈I(i)

|vi − v j |
2
)1/2(∑

j∈I(i)

|wi − w j |
2
)1/2

.

(7.3)

16 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

For the time being, fix the index i = 1, . . . , N . For each coefficient vector v ∈ RN , define |v|I(i) =(∑
j∈I(i) |vi − v j |

2)1/2. One may easily check that | · |I(i) is a seminorm on RN . In order to identify its kernel,
simply observe that |v|I(i) = 0 iff v j = vi for each coefficient j ∈ I(i). Since i ∈ I(i), an equivalent way of
stating this condition is that there exists some constant C ∈ R such that v j = C for each j ∈ I(i). Now, recall that
vh(x) =

∑
i vi Ni (x) for all x ∈ Ω and consider the following alternative seminorm:

|v|Ni
= ∥∇vh∥0,supp(Ni) .

Notice that |v|Ni
= 0 iff vh(x) is equal to a constant on supp(Ni), say C ∈ R. From the partition of unity property

inherent to all NURBS bases, it must hold that C = vh(x) =
∑

j∈I(i) C N j (x) for all x ∈ supp(Ni). In other words,
since {Ni |supp(Ni)} j∈I(i) is a linearly independent set, |v|Ni

= 0 iff v j = C for each j ∈ I(i).
In the previous paragraph, we showed that the kernels of |v|Ni

and |v|I(i) are identical; namely, |v|Ni
= 0 iff

|v|I(i) = 0 iff v ∈ Qi , where

Qi = {v ∈ RN
: v j = vi for each j ∈ I(i)} .

Clearly, | · |Ni
and | · |I(i) induce norms on the quotient space RN/Qi . The next important observation is that

|Qi | = N + 1 − |I(i)|, which may be witnessed by inspection. Because dim(RN/Qi) = |I(i)| − 1 ≤ (2p + 1)n
− 1

is finite and depends only on p, it follows from the well-known equivalence of norms on finite dimensional
vector spaces (e.g., the vector space RN/Qi) that the seminorms | · |Ni

and | · |I(i) are equivalent. Of course,
the corresponding equivalence constants will depend on h, ϕ, and p. Nevertheless, a standard scaling argument is
all that is required to see that |v|I(i) ≂ h2−n

|v|Ni
. Therefore, employing (7.3), we may simply write

|a(vh, wh) − ã(vh, wh)| ≲ h2−n
|A − Ã|max

∑
i

∇vh

0,supp(Ni)

∇wh

0,supp(Ni) .

The proof is completed by applying the discrete Cauchy–Schwarz inequality to the right-hand side of the inequality
above and employing the fact that

(∑
i ∥ f ∥

2
0,supp(Ni)

)1/2 ≂ ∥ f ∥0, for all f ∈ L2(Ω). □

Theorem 7.2. Let C4 = C2 · C3. For all vh, wh ∈ Vh , the following upper bound holds:

|a(vh, wh) − ã(vh, wh)| ≤ C4 H q+1
∥∇vh∥0∥∇wh∥0 .

Proof. Obviously, we are done if a(·, ·) = ã(·, ·). Therefore, assume a(·, ·) ̸= ã(·, ·) and let i < j be the indices
of the maximal value |Ai j − Ãi j | =

⏐⏐A − Ã
⏐⏐
max > 0. Since Ã is defined by (5.1c), Theorem 4.2 leads us to the

inequality⏐⏐A − Ã
⏐⏐
max = |Φδ (̃xi) − Φ̃δ (̃xi)| ≤ C2hn−2 H q+1 .

The proof is completed using Lemma 7.1. □

Remark 7.1. In Lemma 7.1, it is important that Ã be defined using (5.1c). Indeed, in (7.3), it is the symmetry
and the zero row sum property preserved in this definition which allows |a(vh, wh) − ã(vh, wh)| to be bounded by
products of differences in the coefficients vi and w j . If we had used definition (5.1a) or (5.1b), one would have to
directly work with the upper bound

|a(vh, wh) − ã(vh, wh)| ≤ ∥A − Ã∥max

∑
i

∑
j∈I(i)

|vi ||w j | .

This, in turn, can only be finessed to arrive at an inequality like

|a(vh, wh) − ã(vh, wh)| ≤ C ′

3h−n
∥A − Ã∥max∥vh∥0∥wh∥0 , (7.4)

for some other constant C ′

3, depending only on ϕ and p. Notice the loss of an h2 scaling factor when comparing (7.2)
and (7.4). This difference could greatly affect solution accuracy.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 17

7.2. A priori error estimation

Define Vh,0 = Vh ∩ H 1
0 (Ω). The following lemma is identical in spirit to [24, Theorem 7.1]. By the Lax–Milgram

theorem, this lemma allows us to conclude that there exists a unique surrogate solution corresponding to (7.1),
namely ũh ∈ Vh,0, for every sufficiently small H > 0.

Lemma 7.3. Let α = (1 + CP)−1, where CP is the Poincaré constant for the domain Ω . If H q+1 < α · C−1
4 ,

then the surrogate bilinear form ã : Vh × Vh → R is coercive on Vh,0. Letting α̃ > 0 be the associated coercivity
constant, it also holds that α̃ → α, as H → 0.

Proof. Let S = {v ∈ H 1
0 (Ω) : ∥v∥1 = 1} be the surface of the unit ball in H 1

0 (Ω). Notice that α ≤ a(vh, vh) ≤

ã(vh, vh) + |a(vh, vh) − ã(vh, vh)| for all vh ∈ Vh ∩ S and, therefore,

α − |a(vh, vh) − ã(vh, vh)| ≤ ã(vh, vh) for all vh ∈ Vh ∩ S .

Invoking Lemma 7.1, the second term on the left may be bounded from above as follows:

|a(vh, vh) − ã(vh, vh)| ≤ C4 H q+1 .

Clearly, if C4 H q+1 < α, then 0 < α − |a(vh, vh) − ã(vh, vh)| ≤ ã(vh, vh), as necessary. □

Theorem 7.4. Let θ > 1. If u ∈ H p+1(Ω), then there exists a constant C5, depending only on p and ϕ, such that

∥u − ũh∥1 ≤ C5h p
∥u∥p+1 + θ · α−1C4 H q+1

∥∇u∥0 , (7.5a)

for every sufficiently small H > 0. Additionally, if Ω ⊆Rn is convex, then there exists a constant C6, depending
only on p and ϕ, such that

∥u − ũh∥0 ≤ C6h p+1
∥u∥p+1 + θ · CPC4 H q+1

∥∇u∥0 , (7.5b)

for every sufficiently small H > 0.

Proof. We first prove (7.5a). Let uh ∈ Vh,0 be the solution of the standard IGA discretization (2.1b) associated
to (7.1). Clearly, ∥u − ũh∥1 ≤ ∥u − uh∥1 +∥uh − ũh∥1. Moreover, by [20, Theorem 6.1], ∥u − uh∥1 ≤ C5h p

∥u∥p+1.
Recalling Lemma 7.3, we find that

α̃∥uh − ũh∥
2
1 ≤ ã(uh − ũh, uh − ũh) = ã(uh − ũh, uh) − a(uh − ũh, uh) .

After invoking Theorem 7.2, it now readily follows that ∥uh − ũh∥1 ≤ α̃−1C4 H q+1
∥∇u∥0. Since α̃ → α, in the

limit H → 0, it also holds that ∥uh − ũh∥1 ≤ θ · α−1C4 H q+1
∥∇u∥0, for all sufficiently small H > 0.

Our proof of (7.5b), also involves the triangle inequality: ∥u − ũh∥0 ≤ ∥u − uh∥0 + ∥uh − ũh∥0. If Ω is convex,
then ∥u − uh∥0 ≤ C6h p+1

∥u∥p+1. Next, find wh ∈ Vh,0 satisfying a(wh, vh) = (uh − ũh, vh)Ω , for all vh ∈ Vh,0. It
holds that ∥∇wh∥0 ≤ CP∥uh − ũh∥0. Now, observe that ∥uh − ũh∥

2
0 = a(wh, uh − ũh) = ã(wh, ũh) − a(wh, ũh).

Finally, invoke Theorem 7.2 to arrive at

∥uh − ũh∥
2
0 ≤ C4 H q+1

∥∇ũh∥0∥∇wh∥0 ≤ CPC4 H q+1
∥∇ũh∥0∥uh − ũh∥0 ,

which works to deliver the stated estimate, since ∥∇ũh∥0 → ∥∇uh∥0 ≤ ∥∇u∥0, as H → 0. □

7.3. Numerical experiments

The two bounds (7.5a) and (7.5b) need to be experimentally verified. Because both estimates depend on the two
scales h and H , in order to be overtly thorough, we should provide verification in both scales, independently. That
is, first holding the h-scale fixed and varying H and, alternatively, holding the H -scale fixed and varying h. We
forgo this verification step and instead refer the reader to similar studies with low-order finite elements in [21–24].
In this section, therefore, we verify the bounds above under the assumption H = H (h). We expect that this would
be the typical use case.

18 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 7.1. Two domains Ω for problem (7.1).

7.3.1. Overview
In our experiments with Poisson’s equation (7.1), we considered a 2D and a 3D domain Ω ; see Fig. 7.1. The 2D

domain is given by a second-order NURBS parameterization and the 3D domain is parameterized by second-order
B-splines. This particular 2D domain (Fig. 7.1(a)) was chosen instead of the 2D quarter annulus featured later
(Fig. 8.1) in order to break some symmetries which would otherwise appear in its stencil functions (Fig. 4.1).
(Additional stencil function symmetries can appear if ϕ : Ω̂ → Ω is a conformal mapping.) We also note that,
after fixing the NURBS parameterizations for the edges on the boundary of the 2D domain, the parameterization
ϕ : Ω̂ → Ω was generated as a Coons patch [29]. Because each of the four edges had polynomial weight functions
in their parameterizations, the resulting Coons patch NURBS parameterization, ϕ : Ω̂ → Ω , contained a global
polynomial weight function W (̂x) =

∑
j w j B̂ j (̂x). Consequently, the assumptions of Theorem 4.2 were satisfied in

all of our experiments.
In constructing Ã (cf. Section 6) and, thus, the surrogate stencil functions Φ̃δ = ΠHΦδ , we tried local B-spline

interpolants ΠH : C0(Ω̃) → Sq (Ξ̃) of various order 1 ≤ q ≤ 5. As stated previously (see Remark 4.1), we used the
convention Ξ̃ ⊆ Ω̃ ∩ X̃. In our 2D experiments, we explored both p = 2 or p = 3 NURBS bases and the full range
of possible q . In our 3D experiments, we only explored the case p = 2 using q = 1, 3. This limitation of our 3D
experiments was due to the restraints of the MATLAB B-spline interpolation routine we were using.

In the first set of experiments (Figs. 7.2–7.4), the sampling length H was set to H = Mh, with the constant
M = 5. In the second set of experiments (Figs. 7.5 and 7.6), we used a mesh-dependent sampling length, defined
below.

7.3.2. Constant sampling lengths
For the constant sampling strategy, with M = 5, convergence plots of the errors in surrogate solutions are

presented in Figs. 7.2–7.4. After inspecting these figures, the reader should observe that there is a noticeable
difference in the accuracy of the surrogate solutions ũh , dependent on the load f . For instance, with the “low-
frequency” manufactured solution, u(x) = sin (π x1) sin (π x2), the errors in the surrogate solutions appear to
converge to the error generated by the (standard) non-surrogate IGA solution uh asymptotically, at various rates.
However, for the “high-frequency” manufactured solution, u(x) = sin (20π x1) sin (20π x2), each of the surrogate
errors and the corresponding standard IGA error are nearly indistinguishable (except, sometimes, in the case q = 1).

This difference can be explained in a simple way. Observe that the h-dependent terms in (7.5a) and (7.5b)
are multiplied by the high-order norm ∥u∥p+1 and, meanwhile, the H -dependent terms are only multiplied by the
lower-order seminorm ∥∇u∥0. Let us call the first term in each bound the discretization error and the second term
the consistency error. Because of the presence of the high-order norm ∥u∥p+1, the discretization error is much
more sensitive to irregularities or oscillations in the solution. Another important detail not to overlook is that C4

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 19

Fig. 7.2. 2D domain. Relative errors for p = 2, M = 5, and two different manufactured solutions. Top row: u(x) = sin (π x1) sin (π x2).
Bottom row: u(x) = sin (20π x1) sin (20π x2).

Fig. 7.3. 2D domain. Relative errors for p = 3, M = 5, and two different manufactured solutions. Top row: u(x) = sin (π x1) sin (π x2).
Bottom row: u(x) = sin (20π x1) sin (20π x2).

ultimately involves high-order norms of the tensor coefficient K (̂x). Meanwhile, C5 and C6 depend (through Ω),
at most, on the H 2-norm of K (̂x).

These observations can lead in many interesting directions, but the conclusion which the reader should ultimately
arrive at is that the assembly of the stiffness matrix should only be carried out to the accuracy required by the
problem at hand. Therefore, the correct surrogate assembly strategy must take into account properties of the problem

20 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 7.4. 3D domain. Relative errors for p = 2, M = 5, and two different manufactured solutions. Top row: u(x) =

sin (π x1) sin (π x2) sin (π x3). Bottom row: u(x) = sin (20π x1) sin (20π x2) sin (20π x3).

Fig. 7.5. 2D domain with p = 2 and q = 5. Assembly times with the mesh-dependent sampling strategy M(h) = max
{

1, ⌊c · h
p−q+

1
2

q+1 ⌋

}
.

On the left, note the percentage of matrix entries computed with quadrature. Here, the percentage of entries involving non-cardinal basis
functions (roughly 1 − (m−2p

m)n) is shaded out to indicate the theoretical lower bound.

geometry and the given loads, as well as each of the parameters h, p, and q . A simple way of doing this is to use

mesh-dependent sampling lengths.

Remark 7.2. In [24], it was documented that the L2 error converged like h p+1
+ H q+2 when ΠH resembles an

L2 projection. However, when using an interpolation instead, like it is done in this work, the error converges like

h p+1
+ H q+2 whenever the interpolation order q is even and like h p+1

+ H q+1 otherwise. This parity effect can

also be observed in results of this work; see, e.g., the top right plot in Fig. 7.3. We do not prove this improved

convergence rate but refer to proofs of quadrature formulas where the same parity effect can be observed; see,

e.g., [36, Chapter 2.5].

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 21

Fig. 7.6. 2D domain with p = 2 and q = 5. Relative L2 errors for M(h) = max
{

1, ⌊c · h
p−q+

1
2

q+1 ⌋

}
, with two different manufactured solutions.

Left: u(x) = sin (π x1) sin (π x2). Right: u(x) = sin (20π x1) sin (20π x2).

7.3.3. Mesh-dependent sampling lengths
In a successful surrogate method, the discretization error should always dominate the consistency error. Of course,

however, this domination should not be exercised to such an extent that overall efficiency is compromised. As a
rule of thumb, keeping the consistency error at or below 5% of the discretization error is often acceptable. Even
within this somewhat conservative threshold, balancing the two errors appropriately can lead to very significant
performance advantages.

Let q > p and consider the mesh-dependent sampling length M(h) = max
{

1, ⌊c · h
p−q+β

q+1 ⌋

}
, where both c, β ≥ 0

are tuneable parameters. Returning the definition H = M · h, we now find that, for any c > 0,

H q+1
≤ (M · h)q+1

= cq+1h p+1+β, as h → 0 .

Here, for any β > 0, both the H 1 and L2 discretization error will eventually dominate their associated consistency
error. Therefore, this parameter exists to maintain the dominance of the discretization error, throughout mesh
refinements. We found β = 1/2 to be a suitable choice for our purposes. The parameter c, on the other hand,
must be calibrated to the problem at hand.

All run-time measurements in this sections were obtained on a machine equipped with two Intel® Xeon® Gold
6136 processors with a nominal base frequency of 3.0 GHz. Each processor has 12 physical cores which results
in a total of 24 physical cores, but only single core was used to run the following experiments. The total available
memory of 251 GB is split into two NUMA domains, one for each socket. For compatibility reasons with using
SciPy, we employed the BLAS library in version 3.7.1 provided by the operating system Ubuntu 18.04.2, but using
other optimized libraries might improve the performance of the MATLAB solver.

In Fig. 7.5 we show the assembly times our implementation accrued for various values of c, when p = 2 and
q = 5. Inspection of Fig. 7.6 clearly shows that c = 0.75 is suitable for u(x) = sin (π x1) sin (π x2) and c = 3
is suitable for u(x) = sin (20π x1) sin (20π x2). Let tstd be the time required to assemble the matrix with the
standard approach and tsurr the time using the surrogate approach. The speed-up from using the surrogate approach
is then defined as tstd

tsurr
− 1. When compared to the non-surrogate assembly strategy at just over one million degrees

of freedom, note that the first choice gives an assembly speed-up of around 1500% and the second choice gives
a speed-up of more than 5000%. These enormous speed-ups are in fact not that surprising after inspecting the
percentage of matrix entries which must be computed using traditional quadrature formulas; see, again, Fig. 7.5.

7.3.4. Constant sampling lengths with non-smooth geometry maps
In this subsection, we investigate the impact on the surrogate method above if the assumption W ∈ Qp(Ω̂) in

Theorem 4.2 is violated. For this purpose, we consider the 2D benchmark from Section 7.3.2 but with a different
geometry transformation ϕ. We start with the domain illustrated in Fig. 7.1(a) and perform knot insertion, resulting
in the control net shown in Fig. 7.7(a). The control net shown in Fig. 7.7(b) is constructed from Fig. 7.7(a) by
slightly moving the internal control point marked in green. Precisely, the control point c22 is shifted by the vector
αh · (1, 2, 0)⊤ with αh = 0.04. Note that the map described by the control net in Fig. 7.7(a) results in a geometry
map of C∞ regularity whereas the control net from Fig. 7.7(b) results in a map of C p−1

= C1 regularity if αh ̸= 0.

22 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 7.7. 2D domains equivalent to the domain in Fig. 7.1(a) generated by geometry maps of different regularity..

Fig. 7.8. 2D domain. Relative errors for p = 2, M = 5, and manufactured solution u(x) = sin (π x1) sin (π x2).

In the following, we perform a set of experiments with different choices of αh . In the first experiment, we keep
αh fixed to αh = 0.04, resulting in the control net shown in Fig. 7.7(b). In the other experiments, we choose
αh = O(h p+γ) for γ ∈ {−1, 1, 2}, i.e., αh = 0.04 · 40p+γ

· h p+γ . This particular choice of αh enforces that both
maps in the coarsest problem are the same. For any sufficiently small h > 0, the resulting geometry maps are still
of C1 regularity but converge to the smoother map as h → 0. A similar case of approximately smooth maps has
already been investigated for the low-order finite element surrogate context in [21,22].

We perform the same computations as in Section 7.3.2 but consider only the surrogate interpolation degree
q = 5 and compare the effect on the errors depending on the choice of αh . The results are presented in Fig. 7.8.
It may be observed that for αh = 0.04, the errors in the L2-norm using the surrogate method converge with a
lower rate than for αh = 0. For αh = O(h p−1), the optimal convergence rate is recovered, but the constant of the
dominating error term is larger. For αh = O(h p+γ), with γ > −1, the reference discretization errors and rates are
recovered asymptotically. This indicates that the assumption W ∈ Qp(Ω̂) may be mildly violated without losing
the convergence rates predicted by Theorem 7.4.

Remark 7.3. We sketch two approaches to improve the convergence rate of the surrogate method in cases where it
is not optimal because of irregular geometry maps. The geometry transformation ϕ described by a general control
net is built up of regions where the map is locally smooth and the lower regularity appears only at the interfaces
of these regions. These locally smooth regions may be interpreted as patches in a multi-patch IGA setting where
the surrogate method may be directly applied as described in Section 3.5. The matrix entries corresponding to the
boundaries of these patches can be obtained by performing standard numerical quadrature. An alternative possibility
is to chose the interpolation spaces in such a way that the basis functions capture the irregularity of the geometry

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 23

map. This can be done by a careful choice of the B-spline interpolation space since the locations of the irregularities
are known beforehand in a fixed control net.

8. Transverse vibrations of an isotropic membrane

One of the great advantages of the IGA paradigm is its superior accuracy in structural vibration problems. Any
worthwhile surrogate method should maintain this advantage. Therefore, in this section, we extend the analysis of the
previous section to the analysis of transverse vibrations of a two-dimensional elastic membrane. The corresponding
weak form is the following:{

Find all pairs u ∈ H 1
0 (Ω) \ {0} and λ ∈ R satisfying

a(u, v) = λm(u, v) for all v ∈ H 1
0 (Ω) , (8.1)

where a(w, v) =
∫
Ω ∇w ·∇v dx and m(w, v) =

∫
Ω wv dx . It is well-known that there are countably many solutions

to this problem, {(u(k), λ(k))}∞j=1, where each λ(k) > 0. From here on, we make the ordering assumption λ(j)
≤ λ(k),

for every j < k.

8.1. Surrogate mass matrices

So far, we have only rigorously analyzed surrogates of the elliptic bilinear form a(·, ·), written above. Using
the techniques developed thus far, results similar to Theorem 7.2 can be proven for other bilinear forms, such as
m(·, ·). Let the corresponding mass matrix and surrogate mass matrix be denoted M and M̃, respectively. Employing
definition (5.1b), we take for granted that the accompanying surrogate bilinear form m̃(·, ·) satisfies

|m(vh, wh) − m̃(vh, wh)| ≤ C7 H q+1
∥vh∥0∥wh∥0 , (8.2)

for some C7 depending only on ϕ, p, q, and ∥ΠH∥.
In the special case that the geometry mapping ϕ (̂x) is a polynomial, we have a surrogate reproduction property

of the mass form m(u, v). This property is formalized in the following corollary to Proposition 5.1.

Corollary 8.1. Assume that the domain mapping ϕ : Ω̂ → Ω is defined through a polynomial of order p,
i.e., ϕ ∈

[
Qp(Ω̂)

]n . Let M be the coefficient matrix arising from the discretization of m(·, ·) and M̃ the corresponding
surrogate matrix. If q ≥ n · p − 1, it holds that M = M̃.

Proof. Let J (̂x) be the Jacobian (tensor) of ϕ (̂x). The transformation of the integral from the physical to the
reference domain is given by

m(u, v) =

∫
Ω

uv dx =

∫
Ω̂

û v̂ det(J) dx̂.

It remains to show that G (̂x, û (̂ y), v̂(̂ y)) = û (̂ y)̂v(̂ y) det(J (̂x)) is a polynomial of degree n · p −1 in the x̂-variable.
Since ϕ ∈

[
Qp(Ω̂)

]n , it holds that det(J) ∈ Qn·p−1(Ω̂). Applying Proposition 5.1 yields the desired reproduction
property. □

8.2. A priori analysis of the eigenvalue error

Adopt the obvious notation, (u(k)
h , λ

(k)
h) and (̃u(k)

h , λ̃
(k)
h), for the standard IGA and surrogate IGA solutions

corresponding to (8.1), respectively. Due to space limitations, we only analyze the convergence of the eigenvalues
λ̃

(k)
h → λ(k).

Theorem 8.2. Let θ > 1. If u(k)
∈ H p+1(Ω), then there exists a constant C8, depending only on p and ϕ, such

that

|λ(k)
− λ̃

(k)
h |

λ(k) ≤ C8h2p
+ θ · (C4 + C7)H q+1 , (8.3)

for every sufficiently small H > 0.

24 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 8.1. The physical domain Ω for problems (8.1) and (9.1).

Proof. Clearly, |λ(k)
− λ̃

(k)
h | ≤ |λ(k)

− λ
(k)
h | + |λ

(k)
h − λ̃

(k)
h |. It is known that if u(k)

∈ H p+1(Ω), then |λ(k)
− λ

(k)
h | ≤

C8λ
(k)h2p. We now focus on the term |λ

(k)
h − λ̃

(k)
h |.

Let V (k)
h be the set of all k-dimensional subsets of Vh and fix θ > 1. Two important members of this set are

E (k)
h = span

{
u(l)

h

}k
l=1 and Ẽ (k)

h = span
{
ũ(l)

h

}k
l=1. Observe that

λ̃
(k)
h = min

Eh∈V (k)
h

max
v∈Eh

ã(v, v)
m̃(v, v)

≤ max
v∈E (k)

h

ã(v, v)
m̃(v, v)

= max
v∈E (k)

h

a(v, v)
m(v, v)

ã(v, v)
a(v, v)

m(v, v)
m̃(v, v)

≤ λ
(k)
h max

v∈E (k)
h

ã(v, v)
a(v, v)

max
w∈E (k)

h

m(w,w)
m̃(w,w)

.

(8.4)

Note that ã(v,v)
a(v,v) = 1+

ã(v,v)−a(v,v)
a(v,v) ≤ 1+C4 H q+1, by Theorem 7.2. Similarly, by (8.2), m(w,w)

m̃(w,w) = 1+
m̃(w,w)−m(w,w)

m̃(w,w) ≤

1 + θ · C7 H q+1, in the limit H → 0. These observations, together with (8.4), imply

λ̃
(k)
h ≤ λ

(k)
h + λ

(k)
h (C4 + θ · C7)H q+1 , (8.5a)

for every sufficiently small H > 0. Following a similar argument,

λ
(k)
h ≤ λ̃

(k)
h

ã(v, v)
ã(v, v)

max
w∈E (k)

h

m̃(w,w)
m(w,w)

≤ λ̃
(k)
h + λ̃

(k)
h (θ · C4 + C7)H q+1 , (8.5b)

for every sufficiently small H > 0. Note that (8.5a) implies that λ̃(k)
h ≤ θλ

(k)
h , as H → 0. After introducing this

inequality into (8.5b), we arrive at the upper bound |λ
(k)
h − λ̃

(k)
h | ≤ λ

(k)
h θ · (C4 + C7)H q+1, in the limit H → 0.

Because λ(k)
h → λ(k), we also have λ(k)

h ≤ θλ(k), as H → 0. Only elementary algebra remains in order to arrive
at (8.3). □

Remark 8.1. One upshot of Theorem 8.2 is that, if H = O(h), then one may wish to choose q + 1 > 2p, in order
to recover an optimal spectral convergence rate. Of course, for irregular geometries, it is difficult to maintain the
assumption λ(j)

∈ H p+1(Ω), and a lower q may still provide a useful approximation.

8.3. Numerical experiments

Our numerical experiments for problem (8.1) involve only the two-dimensional quarter annulus domain Ω ,
depicted in Fig. 8.1. This domain was chosen instead of Fig. 7.1(a) so that u(k)

∈ H 3(Ω), for each k. Thus,
when p = 2, Theorem 8.2 concludes that |λ

(k)
h − λ̃

(k)
h | ≤ O(h4

+ H q+1). Fig. 8.2, which shows the convergence
of the first nine eigenvalues, for p = 2, verifies this result. Recall Remark 7.2. One again witnesses the parity

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 25

Fig. 8.2. Eigenvalue convergence plots. Quarter annulus geometry with p = 2 and the constant sampling length M = 5. Note that the
“exact” solutions, λ(k), were taken from precomputed values from a high-order discretization on a much finer mesh.

Fig. 8.3. Relative differences in the computed natural frequencies from the IGA and the surrogate IGA method for 50 × 50 control points
and M = 5.

present in the L2 error of the Poisson problems above. That is, we actually observe the stronger conclusion
|λ

(k)
h − λ̃

(k)
h | = O(h4

+ H q+2) when q is even.
A close inspection of Fig. 8.2 appears to indicate that the accuracy of the surrogate solution improves as the eigen-

values grow. This observation is in line with the previous numerical results for Poisson’s equation, which showed
nearly indistinguishable solutions for the “high-frequency” manufactured solution u(x) = sin (20π x1) sin (20π x2)

26 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 9.1. Plate bending problem (9.1). Relative errors for p = 3, M = 5, and the manufactured solution u(x) = sin (π x1) sinh (π x2).

(cf. Figs. 7.2–7.4). Naturally, we should compare the accuracy of all eigenvalues computed with the standard IGA
method to those coming from the surrogate IGA method. This is done, in part, in Fig. 8.3 for both p = 2, 3. Here,
it is more meaningful to use the natural frequencies (ω(j))2

= λ(j). Notice that the differences are extremely small
across the entire range of computed frequencies.

9. Plate bending under a transverse load

Another clear advantage of IGA is the simplicity of discretizing high-order PDEs. In this section, we briefly
demonstrate that the same features hold true for surrogate IGA methods. As a proof-of-concept, consider the simple
Poisson–Kirchoff isotropic plate bending model. Given a function f ∈ L2(Ω), the corresponding weak form is the
following:

Find u ∈ H 2(Ω) ∩ H 1
0 (Ω) satisfying a(u, v) = F(v) for all v ∈ H 2(Ω) ∩ H 1

0 (Ω) , (9.1)

where a(u, v) =
∫
Ω ∆u ∆v dx and F(v) =

∫
Ω f v dx .

9.1. A higher-dimensional kernel

With the same principles as used for Poisson’s equation, one may easily design a surrogate IGA method for (9.1).
In our approach, the corresponding surrogate stiffness matrix Ã was also defined using (5.1c). Notice that this
definition does not preserve the entire kernel found in the true IGA stiffness matrix A. For instance, one may easily
verify that all linear functions lie in the kernel of a(·, ·). Therefore, Ac(1)

= Ac(2)
= 0, where c(1), c(2) are the x1-

and x2-coefficients of the control points, respectively. In our experiments, this property was only recovered in the
limits h → 0 or H → h.

9.2. Numerical experiments

Let Ω be the quarter annulus domain depicted in Fig. 8.1. Fig. 9.1 shows the convergence of the errors, in the H 2,
H 1, and L2 norms, corresponding to this geometry Ω and the manufactured solution u(x) = sin (π x1) sinh (π x2).
Even though the kernel is not preserved, the numerical results we witnessed are similar to those documented for
the p = 3 experiments in the Poisson setting (see top row of Fig. 7.3). For instance, notice that the surrogate error
with q = 2 is parallel to the reference IGA error (M = 1), in both the H 1(Ω) and L2(Ω) norms.

Remark 9.1. Although we will not provide any rigorous analysis, if we recall Remark 7.1, the similarity between
our Poisson results and those above may still appear somewhat surprising. Indeed, since only the zero row sum
property is inherited in the surrogate Ã when using (5.1c), we cannot improve on the upper bound in Lemma 7.1.
Had the entire kernel of A been preserved in Ã, we conjecture that an optimal form of this bound would involve
an h4−n scaling factor. Such a factor should permit a surrogate solution ũh of two h-orders higher accuracy.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 27

10. Stokes’ flow

In this section, we consider a surrogate IGA discretization of Stokes’ flow in a domain Ω ⊆Rn . Given a viscosity
µ ∈ R>0, a function f ∈

[
L2(Ω)

]n , and a velocity field on the boundary g ∈
[
H 1/2 (∂Ω)

]n ,
∫
∂Ω g · n ds = 0, the

corresponding weak form is the following:{
Find u ∈ [H 1(Ω)]n and p ∈ L2(Ω)/R satisfying tr u = g and

a(u, v) + b(p, v) + b(q,u) = F(v) for all v ∈ [H 1
0 (Ω)]n and q ∈ L2(Ω) ,

(10.1)

where a(u, v) =
∫
Ω µ∇u · ∇v dx , b(p, v) =

∫
Ω p ∇ · v dx , and F(v) =

∫
Ω f · v dx . In this scenario, the pressure is

not unique up to a constant, therefore we enforce the pressure to have zero mean value, i.e.,
∫
Ω p dx = 0.

10.1. Surrogate divergence matrices

Since no symmetry can be exploited, the surrogate divergence matrices B are constructed by employing
definition (5.1a). Similarly, as in the mass term arising in Section 8, we have a surrogate reproduction property
for the divergence form b(q,u), when the geometry map is described by a polynomial. This property is formalized
in the following corollary of Proposition 5.1.

Corollary 10.1. Assume that the domain mapping ϕ : Ω̂ → Ω is defined through a polynomial of order p,
i.e., ϕ ∈

[
Qp(Ω̂)

]n . Let B be the coefficient matrix arising from the discretization of b(·, ·) and B̃ the corresponding
surrogate matrix. If q ≥ (n − 1)p, it holds that B = B̃.

Proof. In the following, we only consider the cases n = 2 and n = 3. Let J (̂x) be the Jacobian of ϕ (̂x).
Assuming a gradient preserving transformation to the reference domain, the divergence ∇ ·u in the physical domain
is transformed to tr(J−1

∇̂û), where tr is the trace. Using the property J−1
= det(J)−1adj(J), where adj(J) is the

adjugate of J , the bilinear form b(·, ·) may be written as

b(q,u) =

∫
Ω

p ∇ · v dx =

∫
Ω̂

p̂ tr
(

J−1
∇̂û

)
det(J) dx̂ =

∫
Ω̂

p̂ tr
(
adj(J)∇̂û

)
dx̂.

It remains to show that G (̂x, p̂(̂ y), û(̂ y)) = p̂(̂ y) tr
(
adj(J (̂x))∇̂û(̂ y)

)
is a polynomial of degree (n − 1)p in the

x̂-variable. Applying Proposition 5.1 yields the desired reproduction property. The trace operator tr is linear, thus
it suffices to analyze the entries of adj(J). In 2D, the components of adj(J) and J only differ by their position
and sign. Since each component of J is an element of Qp(Ω̂), we conclude that each component of adj(J) is also
in Qp(Ω̂). In 3D, the components of adj(J) are made up of determinants of 2 × 2 sub-matrices of J . Taking the
trace yields

tr (adj(J)) = det
(

J22 J23
J32 J33

)
+ det

(
J11 J13
J31 J33

)
+ det

(
J11 J12
J21 J22

)
.

For the first summand, we have J22 ∈ Pp ⊗ Pp−1 ⊗ Pp, J23 ∈ Pp ⊗ Pp ⊗ Pp−1, J32 ∈ Pp ⊗ Pp−1 ⊗ Pp, and
J33 ∈ Pp⊗Pp⊗Pp−1. From this it follows that J22· J33 ∈ P2p⊗P2p−1⊗P2p−1 and J23· J32 ∈ P2p⊗P2p−1⊗P2p−1.
This means that J22 · J33 − J23 · J32 ∈ Q2p(Ω̂). Applying the same arguments to the other summands finally yields
that tr (adj(J)) ∈ Q2p(Ω̂). □

In order to discretize (10.1), an inf–sup stable space pair is required. For this purpose, we choose the isogeometric
subgrid element as described in [37]. In this discretization, the velocity field is defined on a subgrid of the pressure
where each pressure element is subdivided into 2n elements. This allows for using a velocity space of order p + 1
with C p(Ω̂) regularity and a pressure space of order p with C p−1(Ω̂) regularity.

We do not provide a priori error estimates for the Stokes problem, but in the case that the divergence matrix is
reproduced one would follow similar arguments as presented for the Poisson problem. In the scenario where the
divergence matrix is not reproduced, further work is necessary. However, the results in the next subsection suggest
that the reproduction is not required in order to obtain an optimal order of convergence.

28 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

Fig. 10.1. The computational domain Ω used in the Stokes flow problem (10.1).

Fig. 10.2. Stokes’ flow problem (10.1) with manufactured solution (10.2). The velocity is discretized with p = 3 and the pressure with
p = 2. Relative L2 velocity and pressure errors for M = 5.

10.2. Numerical experiments

Our computational study of Stokes’ flow is comprised of two separate experiments. In the first experiment,
we provide a smooth manufactured solution in order to investigate convergence rates. In the second example, we
consider a lid-driven cavity benchmark problem. Due to the discontinuous boundary conditions, the solution of
this problem has singularities at two corners of the domain. Both examples are computed on the domain shown
in Fig. 10.1 which was constructed by a Coons patch with a cubic boundary parameterization. We discretize the
problem using the aforementioned subgrid element with a third order velocity and second order pressure. The
viscosity is set to µ = 1 for all scenarios.

In the first example, the manufactured solution is chosen to be

u(x, y) =

[
sin (x) cos (y)

x+1
((x+1) cos (x)−sin (x)) sin (y)

(x+1)2

]
, p(x, y) = y sinh (x)+ C p. (10.2)

Note that this solution satisfies ∇ ·u = 0 and the constant C p ∈ R is chosen such that the pressure mean is zero. The
Dirichlet boundary condition g and the right hand side f are set accordingly to match the manufactured solution.
In Fig. 10.2, we present convergence plots for the velocity and pressure separately for different surrogate orders q
and fixed M = 5. For reference, we also include the standard discretization with M = 1 in these plots. We observe
the expected convergence orders for all q ≥ 2. In agreement with Corollary 10.1, the divergence matrices were
perfectly reproduced for every q ≥ 3.

In the second example, we consider a lid-driven cavity benchmark on the domain Fig. 10.1 where the fluid
is driven on the top edge by constant velocity g = (1, 0)⊤ and we assume no-slip boundary conditions g = 0
on the remaining parts of the boundary. The degrees of freedom corresponding to the nodal basis functions in
the top left and top right corner are set to zero. Furthermore, the volume forces are neglected, i.e., f = 0. In
Fig. 10.3(a), we show the velocity streamlines which were computed using a standard IGA approach on a mesh
with 320 × 320 control points. The effect of different surrogate approaches on the velocity streamlines may be
observed in Figs. 10.3(b)–10.3(j). In the case q = 3, where the divergence matrices are in fact reproduced, the
streamlines show the same behavior as in the standard approach even for M = 100. For other values of q and M ,
the streamline behavior is different, but the streamlines are getting closer to the reference solution the larger q and

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 29

Fig. 10.3. Lid-driven cavity benchmark velocity streamlines. The velocity is discretized with p = 3 and the pressure with p = 2 using
surrogate approaches with varying M and q . The mesh is discretized by 320 × 320 control points. Note that actually using an interpolation
order of q = 1, 2, 3 is still probably not recommended for standard practice since more accurate results should be expected with q = 5
while taking roughly the same time.

the smaller M becomes. We note that actually using an interpolation order of q = 1, 2, 3 in computation is still
probably not recommended for standard practice. For instance, assembly using q = 5 took roughly the same time
as either of these lower-order choices and, in this case, the surrogate solution (̃uh, p̃h) should be expected to be
even more accurate.

11. Conclusion

This is the second in a series of articles on the surrogate matrix methodology [24,28], but only the first to
consider its applications in isogeometric analysis. The companion article [28] can be used as a reference for
the implementation of the surrogate matrix methodology in existing IGA softwares which employ element-based
quadrature. In the present article, we considered a number of linear and static problems; namely, Poisson’s equation,
membrane vibration, plate bending, and Stokes’ flow. In [24], (static) anisotropic variable–coefficient diffusion,

30 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

linearized elasticity, and (dynamic) p-Laplacian diffusion problems were studied in the lowest order finite element
setting.

Acknowledgments

The authors wish to thank each of the referees for the detailed feedback they gave during the review process.
Their insights significantly improved the quality of the final manuscript. In particular, we wish to acknowledge the
careful reading of the second referee who pointed out a mistake in our original proof of This project has received
funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No
800898. This work was also partly supported by the German Research Foundation, Germany through the Priority
Programme 1648 “Software for Exascale Computing” (SPPEXA) and by grant WO671/11-1.

Appendix. Marsden’s identity

The purpose of this appendix is to substantiate some of the claims made in Section 3.3, as well as provide a
complete proof of Theorem 4.2. In turn, we adopt all of the notation and assumptions introduced in Section 2.2.
We begin by stating Theorem A.1, the proof of which can be found in [38]; see also [39–41].

Theorem A.1 (Marsden). Let ψk (̂y) = (ξk+1 − ŷ) · · · (ξk+p − ŷ). For any x̂, ŷ ∈ [0, 1],

(̂x − ŷ)p
=

m∑
k=1

bk (̂x)ψk (̂y) .

This theorem allows us to conclude that the expression (3.9) is valid and, moreover, w ∈ Qp(Ω̃0). This is shown
in two steps.

Corollary A.2. Let Ψ (̃ y) =
∏n

i=1
∏p−1

j=0

(j
m−p −

p−1
2(m−p) − ỹi

)
and p = (p, . . . , p) ∈ Nn . Then, for any x̃, ỹ ∈ Ω̃0,

(̃x − ỹ) p
=

∑
x̃i ∈X̃

B̂ (̃x − x̃i)Ψ (̃ y − x̃i) . (A.1)

Proof. Observe that, for each k = p + 1, . . . ,m − p, it holds that x̃ (k)
+ h = x̃ (k+1)

= ξk+1 + (p + 1) · h/2. Recall
that k = p + 1, . . . ,m − p are exactly the indices of the cardinal B-splines bk (̂x) = b(̂x − x̃ (k)). Therefore, by
Theorem A.1, we see that

(̃xi − ỹi)p
=

m−p∑
k=p+1

b(̃xi − x̃ (k))
p−1∏
j=0

(
x̃ (k)

+

(
j −

p − 1
2

)
· h − ỹi

)
,

for each i = 1, . . . , n. The result now follows from the definitions of B̂ and Ψ . □

Corollary A.2 can be used to write out an elegant expression for any polynomial in Qp(Ω̃0), in terms of cardinal
B-splines. Indeed, let α = (α1, . . . , αn) be a multi-index, let f be an arbitrary polynomial in Qp(Ω̃0), and let Dα

be the α-derivative operator, in the variable ỹ. By Taylor’s Theorem, it holds that

f (̃x) =

n∑
i=1

∑
αi ≤p

Dα f (̃ y)
α!

(̃x − ỹ)α , (A.2)

for every x̃, ỹ ∈ Ω̃0. Next, applying D p−α to both sides of (A.1), we find that

(−1)| p−α| p!

α!
(̃x − ỹ)α =

∑
x̃i ∈X̃

B̂ (̃x − x̃i)D p−αΨ (̃ y − x̃i) . (A.3)

Together, (A.2) and (A.3) imply f (̃x) =
∑

x̃i ∈X̃ B̂ (̃x − x̃i)(L f)(̃xi), where

(L f)(̃x) =

n∑
i=1

∑
αi ≤p

(−D) p−αΨ (̃ y − x̃)
p!

Dα f (̃ y) .

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776 31

We may now state our second corollary of Theorem A.1.

Corollary A.3. Let W (̂x) =
∑N

j=1w j B̂ j (̂x). If W ∈ Qp(Ω̂), then there exists a polynomial w ∈ Qp(Ω̃0) such that
wi = w(̃xi), for each x̃i ∈ X̃. Moreover, there exists a constant C, depending only on p, such that

∥w∥W r,∞(Ω̃0) ≤ C∥W∥W r,∞(Ω̂) for all r ≥ p . (A.4)

Proof. Clearly, w = LW ∈ Qp(Ω̃0). Therefore, one readily determines that ∥w∥L∞(Ω̃0) ≤ C∥W∥W p,∞(Ω̃0), for some
constant C , depending only on p. Due to the equivalence of norms on finite dimensional vector spaces (note that
the dimension of Qp(Ω̃0) depends only on p) and the fact Ω̃0 ⊆ Ω̂ , we immediately arrive at (A.4). □

We may now complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let x̃ ∈ Ω̃ be arbitrary. Then, for any δ ∈ D, we have that x̃ + δ ∈ Ω̃0. Moreover, for
every multi-index |α| = r , the product rule can be used to show that

DαΦδ (̃x) = Dα

[
w(̃x)w(̃x + δ)

∫
ω̂δ

∇̂

(
B̂ (̂ y)

W (̃x + ŷ)

)⊤

K (̃x + ŷ) ∇̂

(
B̂δ (̂ y)

W (̃x + ŷ)

)
d ŷ

]
≤ C · ∥w∥

2
W r,∞(Ω̃0)∥K∥W r,∞(Ω̂)∥W∥

2
W r,∞(Ω̂)∥∇̂W∥

2
W r,∞(Ω̂)

·
(
∥∇̂ B̂ · ∇̂ B̂δ∥L1(ω̂δ) + ∥∇̂ B̂ · B̂δ∥L1(ω̂δ) + ∥∇̂ B̂δ · B̂∥L1(ω̂δ) + ∥B̂ · B̂δ∥L1(ω̂δ)

)
,

for some C depending only on α. Since both functions K , and W are determined by the choice of Ω , A.3 and
a scaling argument show that ∥DαΦδ∥L∞(Ω̃) ≤ Chn−2, where C now depends on p, α, and ϕ. Lemma 4.1 now
completes the proof. □

References

[1] T. Butler, P. Constantine, T. Wildey, A posteriori error analysis of parameterized linear systems using spectral methods, SIAM J.
Matrix Anal. Appl. 33 (1) (2012) 195–209.

[2] S.A. Mattis, B. Wohlmuth, Goal-oriented adaptive surrogate construction for stochastic inversion, Comput. Methods Appl. Mech. Engrg.
339 (2018) 36–60.

[3] T.J. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Comput. Methods Appl. Mech. Engrg. 194 (39–41) (2005) 4135–4195.

[4] J.A. Cottrell, T.J. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, 2009.
[5] K. Hollig, Finite Element Methods with B-splines, vol. 26, Siam, 2003.
[6] T.J. Hughes, G. Sangalli, Mathematics of isogeometric analysis: a conspectus, in: Encyclopedia of Computational Mechanics, second

ed., Wiley Online Library, 2018, pp. 1–40.
[7] R.R. Hiemstra, F. Calabro, D. Schillinger, T.J. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically

refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 316 (2017) 966–1004.
[8] A. Bressan, S. Takacs, Sum factorization techniques in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 352 (2019)

437–460.
[9] G. Sangalli, M. Tani, Matrix-free weighted quadrature for a computationally efficient isogeometric k-method, Comput. Methods Appl.

Mech. Engrg. 338 (2018) 117–133.
[10] A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer, Low rank tensor methods in Galerkin-based isogeometric analysis, Comput.

Methods Appl. Mech. Engrg. 316 (2017) 1062–1085.
[11] C. Hofreither, A black-box low-rank approximation algorithm for fast matrix assembly in isogeometric analysis, Comput. Methods

Appl. Mech. Engrg. 333 (2018) 311–330.
[12] P. Antolin, A. Buffa, F. Calabró, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: the

use of sum factorization, Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828.
[13] A. Mantzaflaris, B. Jüttler, Integration by interpolation and look-up for Galerkin-based isogeometric analysis, Comput. Methods Appl.

Mech. Engrg. 284 (2015) 373–400.
[14] A. Mantzaflaris, B. Jüttler, Exploring matrix generation strategies in isogeometric analysis, in: M. Floater, T. Lyche, M.-L. Mazure,

K. Mørken, L.L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014, pp. 364–382.

[15] F. Calabró, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, in: Special Issue on
Isogeometric Analysis: Progress and Challenges, Comput. Methods Appl. Mech. Engrg. 316 (2017) 606–622.

[16] F. Fahrendorf, L.D. Lorenzis, H. Gomez, Reduced integration at superconvergent points in isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 328 (2018) 390–410.

32 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 361 (2020) 112776

[17] T.J. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg.
199 (5–8) (2010) 301–313.

[18] F. Auricchio, F. Calabro, T.J. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for
nurbs-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 249 (2012) 15–27.

[19] R.R. Hiemstra, G. Sangalli, M. Tani, F. Calabro, T.J.R. Hughes, Fast formation and assembly of finite element matrices with application
to isogeometric linear elasticity, ICES Report 19-03, The University of Texas at Austin, 2019.

[20] L.B. Da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numer. 23 (2014)
157–287.

[21] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, B. Wohlmuth, A two-scale approach for efficient on-the-fly operator
assembly in massively parallel high performance multigrid codes, Appl. Numer. Math. 122 (2017) 14–38.

[22] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, B. Wohlmuth, Large-scale simulation of mantle convection based on a new
matrix-free approach, J. Comput. Sci. 31 (2019) 60–76.

[23] S. Bauer, M. Huber, M. Mohr, U. Rüde, B. Wohlmuth, A new matrix-free approach for large-scale geodynamic simulations and its
performance, in: International Conference on Computational Science, Springer, 2018, pp. 17–30.

[24] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: a priori error estimation, SIAM J. Sci. Comput. 41 (6) (2019)
A3806–A3838.

[25] A. Karatarakis, P. Karakitsios, M. Papadrakakis, GPU Accelerated computation of the isogeometric analysis stiffness matrix, Comput.
Methods Appl. Mech. Engrg. 269 (2014) 334–355.

[26] C. de Falco, A. Reali, R. Vázquez, GeoPDEs: a research tool for isogeometric analysis of PDEs, Adv. Eng. Softw. 42 (12) (2011)
1020–1034.

[27] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl.
72 (3) (2016) 523–554.

[28] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: a reference implementation for low-cost assembly in
isogeometric analysis, 2019, arXiv preprint arXiv:1909.04029.

[29] L. Piegl, W. Tiller, The NURBS Book, Springer Science & Business Media, 2012.
[30] I.J. Schoenberg, Cardinal Spline Interpolation, vol. 12, Siam, 1973.
[31] I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. part A. on the problem of

smoothing or graduation. a first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 45–99.
[32] I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. part B. on the problem of

osculatory interpolation. a second class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 112–141.
[33] H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numer. 13 (2004) 147–269.
[34] W. Dahmen, R. De Vore, K. Scherer, Multidimensional spline approximation, SIAM J. Numer. Anal. 17 (3) (1980) 380–402.
[35] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, 2001, http://www.scipy.org. Online (Accessed

11 February 2019).
[36] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, Courier Corporation, 2007.
[37] A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique, IMA J.

Numer. Anal. 33 (2) (2013) 629–651.
[38] C. De Boor, B(asic)-spline basics, Technical report, UW–Madison Mathematics Research Center, 1986.
[39] C. De Boor, K. Höllig, S. Riemenschneider, Box Splines, vol. 98, Springer Science & Business Media, 1993.
[40] W. Dahmen, N. Dyn, D. Levin, On the convergence rates of subdivision algorithms for box spline surfaces, Constr. Approx. 1 (1)

(1985) 305–322.
[41] W. Dahmen, C.A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52 (1983) 217–234.

A.3. The surrogate matrix methodology: Accelerating isogeometric
analysis of waves

127

The surrogate matrix methodology: Accelerating
isogeometric analysis of waves

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth

Following the successful application of the surrogate matrix methodology to accelerate
matrix assembly for IGA in core article II (Appendix A.2), we extend the method to
other applications targeting the analysis of waves. In particular, this work augments
the previous article by considering multi-patch discretizations of time-harmonic,
transient, and nonlinear PDEs as particular applications of the methodology. In
this paper, the methodology is applied to several model problems in wave mechanics
treated in the Bubnov–Galerkin isogeometric setting.

In order to analyze the method theoretically, we consider the Helmholtz equation
equation as a model problem. We present an a priori error analysis for this scenario
and demonstrate that the additional consistency error introduced by the utilization
of surrogate matrices is independent of the wave number. Additionally, we conduct a
floating point complexity analysis which establishes that the computational complex-
ity of the methodology compares favorably to other present fast assembly techniques
for isogeometric methods. In the numerical examples, we verify the theoretical error
estimate for the Helmholtz equation. Furthermore, we consider a time-harmonic
elastodynamic wave problem with PML absorbing boundary conditions. In a final
example, we consider a transient nonlinear hyperelastic wave propagation example
involving multiple patches. Here, the material is modeled by a compressible neo-
Hookean material. The nonlinearity is resolved using Newton–Raphson’s method
which is relatable to a quasi-Newton method in the presence of surrogate matrices.
Moreover, the time is discretized using a generalized-α time stepping scheme. We
present evidence of an improved performance based on feasibility studies with the
MATLAB software library GeoPDEs [51, 102].

In Section 2, we introduce the various equations of interest and present certain
properties of their discretization which are required for the subsequent sections. In
Section 3, we recall the essential features of the surrogate matrix methodology in the
context of the Helmholtz equation and its extension to elastic waves. In Section 4,
we present an a priori error analysis for the Helmholtz equation for different cases of
boundary conditions. In addition, we point out particular aspects of the surrogate
method in the presence of PML and in transient and nonlinear problems. In Section 5,
we briefly remark on our implementation and its difference to the implementation
presented in [41, 43]. Furthermore, we establish its FLOP computational complexity.
In Section 6, we provide computational evidence for the performance benefits of
the methodology with respect to accuracy and run-time. Notable speed-ups can be
observed for large wave numbers without any loss in accuracy. Finally, in Section 7,
we provide some concluding remarks.

I was significantly involved in finding the ideas and primarily responsible for setting
up the mathematical framework and carrying out the scientific work presented in
this article. Furthermore, I was in charge of writing the article while the co-authors
contributed by making corrective changes.

128

Permission to include:

Daniel Drzisga, Brendan Keith, and Barbara Wohlmuth
The surrogate matrix methodology: Accelerating isogeometric analysis
of waves
Computer Methods in Applied Mechanics and Engineering 372 (2020): 113322
(see also article [42] in the bibliography)

The following pages on copyright are excerpts from copies of the website

https://www.elsevier.com/about/policies/copyright#Author-rights

retrieved on 22 March 2020.

129

https://www.elsevier.com/about/policies/copyright#Author-rights

Notice of publication and copyright

First Published in “The surrogate matrix methodology: Accelerating isogeometric
analysis of waves” in Computer Methods in Applied Mechanics and Engineering 372
(2020), published by Elsevier B.V.

DOI: https://doi.org/10.1016/j.cma.2020.113322

132

https://doi.org/10.1016/j.cma.2020.113322

Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 372 (2020) 113322
www.elsevier.com/locate/cma

The surrogate matrix methodology: Accelerating isogeometric
analysis of waves

Daniel Drzisga∗, Brendan Keith, Barbara Wohlmuth
Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik (M2), Technische Universität München, Garching bei München, Germany

Received 10 April 2020; received in revised form 1 July 2020; accepted 28 July 2020
Available online 18 August 2020

Abstract

The surrogate matrix methodology delivers low-cost approximations of matrices (i.e., surrogate matrices) which are normally
computed in Galerkin methods via element-scale quadrature formulas. In this paper, the methodology is applied to a number
of model problems in wave mechanics treated in the Galerkin isogeometric setting. Herein, the resulting surrogate methods
are shown to significantly reduce the assembly time in high frequency wave propagation problems. In particular, the assembly
time is reduced with negligible loss in solution accuracy. This paper also extends the scope of previous articles in its series
by considering multi-patch discretizations of time-harmonic, transient, and nonlinear PDEs as particular use cases of the
methodology. Our a priori error analysis for the Helmholtz equation demonstrates that the additional consistency error introduced
by the presence of surrogate matrices is independent of the wave number. In addition, our floating point analysis establishes
that the computational complexity of the methodology compares favorably to other contemporary fast assembly techniques for
isogeometric methods. Our numerical experiments demonstrate clear performance gains for time-harmonic problems, both with
and without the presence of perfectly matched layers. Notable speed-ups are also presented for a transient problem with a
compressible neo-Hookean material.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Matrix assembly; Helmholtz equation; Linear elasticity; Hyperelasticity; Surrogate numerical methods; Isogeometric analysis

1. Introduction

Many techniques to accelerate the formation and assembly of coefficient matrices in Galerkin isogeometric
analysis (Galerkin IGA) display their power only as the approximation order p grows. For example, in n-space
dimensions, sum factorization reduces the computational complexity of element-wise matrix formation from O(p3n),
realized with standard nested quadrature loops, to O(p2n+1) [1,2]. Alternatively, a weighted quadrature rule [3,4],
which specifies a different quadrature rule for each individual test function, can reduce the number of quadrature
points per element from O(pn) to simply O(1). In turn, using such a rule reduces the cost of matrix formation
in nested quadrature loops from O(p3n) to O(p2n). Combining both acceleration techniques can provide an even
greater improvement to performance if element-wise assembly is superseded by a row/column loop. Indeed,

∗ Corresponding author.
E-mail addresses: drzisga@ma.tum.de (D. Drzisga), keith@ma.tum.de (B. Keith), wohlmuth@ma.tum.de (B. Wohlmuth).

https://doi.org/10.1016/j.cma.2020.113322
0045-7825/ c⃝ 2020 Elsevier B.V. All rights reserved.

2 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

sum factorization and weighted quadrature, when used together with a row/column loop, has a floating point
computational complexity of only O(pn+1) [5].

The surrogate matrix methodology is another way to reduce the assembly time in Galerkin methods. However,
unlike the strategies mentioned above, its power comes in the small mesh size limit h → 0. In fact, the methodology
was first born out of applications in the classical lowest-order (p = 1) finite element setting [6–9]; that is, where
each of the preceding approaches mentioned above have roughly the same cost. The surrogate matrix methodology
is compatible with row/column loop assembly. It can also be combined with sum factorization and weighted
quadrature, however, that is not a focus of this work.

The fundamental observation behind the surrogate matrix methodology is that if the basis functions used in the
trial and test spaces have a specific translational symmetry, then a functional relationship can be drawn between
non-zero coefficients in the matrix and points in the reference domain. This relationship is explicitly established
via a finite number (specifically, O(pn)) of so-called stencil functions. If these stencil functions are smooth, they
need only to be sampled at a sparse collection of points (dependent upon h) in the reference domain in order to be
accurately approximated. In order to collect these sample values and, thus, define each approximate (i.e., surrogate)
stencil function, only specific rows/columns in the final matrix need to be computed via quadrature. Thereafter,
once enough samples have been collected, the remaining entries can be filled in by simply evaluating the surrogate
stencil functions; an operation with a cost of O(pnq), where q is the (B-spline) degree of the surrogate stencil
functions.

Even though q is typically chosen larger than p, the floating point complexity remains comparable to that of
other fast assembly strategies for Galerkin isogeometric methods [1–5,10–18]. More importantly, stencil functions
provide a flexible platform for efficient processor-memory access which can be used to avoid cache thrashing and
significantly reduce the time-to-solution in large scale, matrix-free, massively parallel computations. This has been
carefully demonstrated in previous work [6–9] and is also not a focus of the present contribution.

Many mathematical aspects of the surrogate matrix methodology were worked out in the isogeometric setting
in [19]. In that paper, we showed that the use of surrogate matrices introduces an additional consistency error in
the discrete solution which must be controlled by the discretization error of the original method. The a priori error
analysis, based on variational crimes [20], is not much different than that of reduced quadrature rules [16,21] or of
the integration by interpolation and look-up strategy investigated in [13,14,18].

This paper is part of a series which can be read in any order [9,19,22]. In this contribution, we advance the
mathematical development of the methodology and focus on a representative set of time-harmonic, transient, and
nonlinear wave propagation problems. In particular, we present an a priori error analysis for the Helmholtz equation
which shows that the additional consistency error introduced by the surrogate methodology is independent of the
wave number. Although, we focus only on acoustic and hyperelastic waves, we expect that our conclusions will carry
over to other material models as well as to other fields of application such as electro- and magnetodynamics and
multi-physics wave propagation. Complementary studies with vibration and plate bending are documented in [19].

As we did in [19], we present evidence of improved performance based only on small-scale feasibility studies
with the MATLAB software library GeoPDEs [23,24]. In particular, we do not consider a parallel implementation
or row/column loop assembly. Although our floating point complexity analysis holds even without row/column
loop assembly, both of these aspects are expected to only deliver added benefits to isogeometric surrogate matrix
methods.

This paper deals with the Helmholtz equation, linearized elastic waves, and hyperelastic waves modeled with
neo-Hookean materials. In Section 2, we set the stage by introducing the various equations of interest and mention
certain properties of their discretization which are required for the sections which follow. In Section 3, we describe
the essential features of the surrogate matrix methodology in the context of scalar solution variables and its extension
to vector-valued solution variables. In Section 4, we present an a priori error analysis for the Helmholtz equation. In
addition, we specify certain aspects of surrogate methods in the presence of perfectly matched layers (PMLs) and in
transient and nonlinear problems. In Section 5, we briefly remark on our implementation and establish its (floating
point operation) computational complexity. In Section 6, we provide computational evidence for the performance
benefits of the methodology. Finally, in Section 7, we give some concluding remarks.

2. Preliminaries

In this section, we introduce the equations of interest and put forward the main notation of the paper.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 3

2.1. General equations

Let Ω be a fixed Lipschitz domain in Rn , where n = 2, 3. In addition, assume that the boundary of Ω is
partitioned into two relatively open sets ΓD ∪ ΓN = ∂Ω , ΓD ∩ΓN = ∅, and denote its outward unit normal by n. Let
W be a differentiable energy density functional, ρ0 : Ω → R>0 be a mass density function, and α, β ∈ C, α ̸= 0, two
constants. Consider the following abstract wave propagation problem on Ω , taken over the time interval t ∈ [0, T]:

u = u0 at t = 0,

u̇ = v0 at t = 0,

Div ∂uW (u) + f = ρ0ü in Ω × (0, T],

αu + β
∂u
∂n

= g on ΓD × (0, T],

∂uW (u)n = t on ΓN × (0, T].

(2.1)

As usual, the partial derivative in time t is denoted by ˙ and Div denotes the (row-wise) divergence operator.
Note that when W is quadratic in u, we may also define the time harmonic form of (2.1) as follows:

−Div ∂uW (u) − k2u = f in Ω ,

αu + β
∂u
∂n

= g on ΓD,

∂uW (u)n = t on ΓN.

(2.2)

Here, k ∈ R≥0 is the wave number.

2.2. Examples

Our focus lies on a number of equations that can be cast in this abstract form of (2.1) and (2.2). In the case of
scalar-valued solution variables, we consider the energy density functional

W (u) =
c2

2
∇uT

∇u,

where c is the propagation speed. Invoking this energy functional in (2.1), one retrieves the acoustic wave equation.
On the other hand, the linearized elastodynamic equations for compressible homogeneous and isotropic materials
are obtained by employing the energy density functional

W (u) =
λ

2
tr(ε(u))2

+ µε(u) : ε(u), (2.3)

where λ and µ are the Lamé parameters and ε(u) =
1
2 (∇u + ∇uT). Lastly, we consider the nonlinear response of

a compressible neo-Hookean material by invoking the energy density functional

W (u) =
λ

2
ln(det(F(u)))2

− µ ln(det(F(u))) +
µ

2

(
tr (F(u)TF(u)) − tr (I)

)
, (2.4)

where F(u) = I + ∇u.
Note that the time-harmonic form of the acoustic wave equation is equivalent to the Helmholtz equation. In the

next subsection, we give a short summary of several mathematical aspects of the Helmholtz equation which are
used in the sequel.

2.3. Helmholtz equation

Let α = −ik, β = 1, and ΓD = ∂Ω . In this setting, (2.2) results in the Helmholtz equation with impedance
boundary conditions:

−∆u − k2u = f in Ω ,

∂u
∂n

− iku = g on ∂Ω .
(2.5)

For the sake of completeness, we now give a brief summary of results from [25,26].

4 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Begin with a fixed wave number 1 ≤ k0 ≤ k ≤ k1 and define the k-dependent norm ∥u∥
2
H = ∥∇u∥

2
L2(Ω)

+

k2
∥u∥

2
L2(Ω)

. Next, assume that Ω is convex and that the domain mapping ϕ : Ω̂ → Ω from the reference domain
Ω̂ to the physical domain Ω is smooth. Let J (̂x) be the Jacobian of ϕ (̂x), det(J) > 0. We define the sesquilinear
forms

a(u, v) =

∫
Ω

∇u · ∇v dx =

∫
Ω̂

J−T
∇̂û · J−T

∇̂v̂ det(J) dx̂,

m(u, v) =

∫
Ω

uv dx =

∫
Ω̂

ûv̂ det(J) dx̂,

b(u, v) =

∫
∂Ω

uv dx =

∫
∂Ω̂

ûv̂ det(J)∥J−Tn∥ dx̂,

(2.6)

where ∥ · ∥ denotes the Euclidean norm on Rn . The functions û on the reference domain Ω̂ are defined by the
identity û = u ◦ ϕ.

Let Vh ⊆ H 1(Ω) be a finite-dimensional subspace with basis functions of order p ∈ N corresponding to a grid
of length h. In particular, assume that p ≥ cp log k1, for a suitable constant cp ∈ R>0, and h ≤ ch

log k1
k1

, for a

properly selected constant ch ∈ R>0. The interested reader is referred to [26, Assumpt. 4.1] for more details on
these assumptions. According to [26, Prop. 2.1], the discrete variational Helmholtz formulation,⎧⎨⎩

Find uh ∈ Vh satisfying

a(uh, v) − k2m(uh, v) − kib(uh, v) =

∫
Ω

f v dx +

∫
∂Ω

gv dx for all v ∈ Vh ,
(2.7)

has a unique solution. Let u ∈ H 1(Ω) be the solution of (2.7) over the space H 1(Ω). By [27, Prop. 8.1.3],
∥u∥H ≤ C(k,Ω)

(
∥ f ∥H1(Ω)′ +∥g∥H−1/2(∂Ω)

)
, where C(k,Ω) > 0 is a wave number and domain-dependent constant.

Let the symbol ≲ denote inequality by a generic positive constant, independent of k and h. According to
[27, Prop. 8.1.4] and [28],

∥u∥H ≲ ∥ f ∥L2(Ω) + ∥g∥L2(∂Ω), (2.8a)

when Ω is convex. If, in addition, g = 0 and f ∈ H 1(Ω), then it also holds that

∥u∥H ≲ k−1
∥ f ∥H1(Ω), (2.8b)

by [26, Lemma 3.4]. According to [26, Cor. 4.6], the bounds

∥u − uh∥H ≲ (hk)p(
∥ f ∥H p−1(Ω) + ∥g∥H p−1/2(∂Ω)

)
, (2.9a)

hold for convex domains with regularity p−1 and f ∈ H p−1(Ω), g ∈ H p−1/2(∂Ω). Furthermore, if one additionally
assumes that g = 0, then one has the improved estimate

∥u − uh∥H ≲ (hk)pk−1
∥ f ∥H p−1(Ω). (2.9b)

Again, this follows from [26, Cor. 4.6]. Evidently, by the bounds above, uniform stability, i.e.,

∥uh∥H ≲ ∥u∥H , (2.10)

is obtained for all wave numbers k > 0. For more details, as well as numerous generalizations of the bounds above,
the interested reader is referred to [26] and the references therein.

Taking uh =
∑N

i=1 uiφi , where {φi }
N
i=1 is a basis for Vh , problem (2.7) induces the following matrix equation

for the coefficient vector u = [u1, u2, . . . , uN]T:

Ku − k2Mu − kiBu = f, (2.11)

where Ki j = a(φ j , φi), Mi j = m(φ j , φi), Bi j = b(φ j , φi), and fi =
∫
Ω f φi dx +

∫
∂Ω gφi dx . In the next section, we

replace (2.11) by a closely related approximation (i.e., surrogate).

3. Surrogate matrices: Exploiting basis structure

In this section, we illustrate the main ingredients of the surrogate matrix methodology in Galerkin IGA, using
the Helmholtz equation as an example. The goal is to show how to replace (2.11) by some closely related equation

K̃ũ − k2M̃ũ − kiBũ = f, (3.1)

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 5

Fig. 3.1. 1D B-spline basis functions {bk} with cardinal B-splines in gray. These B-splines come from a third-order p = 3 uniform knot
vector with m = 17. Note the points x̃k for each k = p + 1, . . . , m − p and the mesh size h (left). Each gray basis function is equivalent,
up to translation, to the function b(̂x) (right).

where M̃ ≈ M and K̃ ≈ K are faster to assemble, and the two solutions u ≈ ũ are close to identical. Note that we
choose not to replace the matrix B. Its assembly cost is of reduced complexity, since only basis functions at the
boundaries need to be considered, and this B is ultimately much sparser than either K or M. The first ingredient of
the surrogate matrix construction, is the concept of cardinal B-splines.

3.1. Cardinal B-splines

Every univariate B-spline basis {bk}
m
k=1 is defined by an ordered multiset, or knot vector, Ξ = {ξ1, . . . , ξm+p+1}

[29]. From now on, we assume that every such Ξ is an open uniform knot vector on the unit interval [0, 1]. That is,
ξ1, . . . , ξp+1 = 0, ξm+1, . . . , ξm+p+1 = 1, and ξk+1 − ξk =

1
m−p , otherwise. For large enough m, such knot vectors

deliver a vast majority of translation invariant basis functions, such as those depicted in gray in Fig. 3.1. These
functions are called cardinal B-splines [30–32]. We hereby refer to h = max1≤k≤m−1 |ξk+1 − ξk | =

1
m−p as the

mesh size parameter and define x̃k = (k −
p+1

2) · h, for each k = p + 1, . . . , m − p. See Fig. 3.1 for an illustration
of the points x̃k and the mesh size h.

The open uniform knot vectors described above generate m − 2p univariate cardinal B-spline basis functions
which can each be expressed as bk (̂x) = b(̂x − x̃k), where b(̂x) is a function centered at the origin, as depicted on the
right of Fig. 3.1. Just as in [19], we do not consider NURBS spaces with different polynomial orders p1, . . . , pn

in each Cartesian direction. Therefore, the tensor product definition of the multivariate B-spline basis, {B̂i (̂x)},
immediately delivers (m − 2p)n multivariate cardinal B-splines, B̂i (̂x) = B̂ (̂x − x̃ i), where x̃ i =

(̃
xi1 , . . . , x̃in

)
and

B̂(x) = b(x1) · · · b(xn).
Here and from now on, we identify every global index i ∈ I = {1, . . . , N = mn

} with a multi-index
i = (i1, . . . , in), 1 ≤ ik ≤ m, through the colexicographical relationship i = i1 + (i2 − 1)m + · · · + (in − 1)mn−1.
For future reference, we denote the set of all such x̃ i = x̃i by X̃. Notice that the ratio of cardinal B-spline basis
functions to total B-spline basis functions,

(m−2p
m

)n , quickly tends to unity as m increases.

3.2. Stencil functions

In Galerkin methods, stencil functions provide an explicit functional relationship between entries in the global
coefficient matrices, so long as the underlying basis has a particular structure. Here, we recall a simple definition
of stencil functions which comes about by exploiting the structure of cardinal B-splines. For a generalization to
NURBS bases made out of cardinal B-splines, see [19]. Meanwhile, for a description of stencil functions derived
from simplicial basis functions, see [9].

Begin by recalling the sesquilinear forms m(·, ·) and a(·, ·) defined in (2.6) and the notation from Section 3.1.
For B̂ : Rn

→ R, let us consider the following scalar-valued functions:

M(̃x, ỹ) = m(B̂(· − ỹ), B̂(· − x̃)) , K(̃x, ỹ) = a(B̂(· − ỹ), B̂(· − x̃)) .

It may be readily observed that

M(̃xi , x̃ j) = [M]i j and K(̃xi , x̃ j) = [K]i j

for every i, j ∈ I.

6 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 3.2. Geometry map, control net, and stencil function in the case of a single patch geometry.

Notice that the mass matrix M and the stiffness matrix K are always sparse simply because m(B̂ j , B̂i) and
a(B̂ j , B̂i) both vanish whenever the supports of B̂ j and B̂i do not overlap. For the same reason, both M(̃x, ỹ) and
K(̃x, ỹ) return zero whenever ∥ ỹ − x̃∥ ≥ 0 is large enough.

In order to demarcate from these trivial outcomes, we rewrite M(̃x, ỹ) and K(̃x, ỹ) in terms of x̃ and a translation
δ = ỹ − x̃ by defining

Mδ (̃x) = M(̃x, x̃ + δ) and Kδ (̃x) = K(̃x, x̃ + δ).

Taking δ = x̃ j − x̃i , we clearly have

[M]i j = Mδ (̃xi) and [K]i j = Kδ (̃xi). (3.2)

For this reason, we only need to pay attention to δ ∈ D, where

D = {̃x j − x̃i : supp(B̂(· − x̃i)) ∩ supp(B̂(· − x̃ j)) ̸= ∅, i, j ∈ I} .

Using the fact that each point in I is uniformly spaced through the reference domain, one can easily show that
#D = (2p + 1)n . Thus, D can be seen as a finite index set. We call each function Mδ and Kδ , enumerated by
δ ∈ D, a stencil function. The interested reader is referred to [9,19] as well as Figs. 3.2 and 3.3 for various pictures
of stencil functions.

Remark 3.1. In a multi-patch setting, the physical domain Ω is partitioned into a finite number of disjoint
subdomains Ω =

⋃L
ℓ=1 Ω

(ℓ). Each patch Ω (ℓ) is identified with the same parametric domain Ω̂ via a unique
isogeometric transformation ϕ(ℓ)(Ω̂) = Ω (ℓ). For this reason, extending the definition of the stencil functions to
account for multi-patch geometries is straightforward. Indeed, one only needs to define a separate set of stencil
functions M(ℓ)

δ and K(ℓ)
δ , for each patch index ℓ.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 7

Fig. 3.3. Geometry map, control net, and stencil function in the case of a two patch geometry.

3.3. Surrogate stencil functions

The equations in (3.2) are simply functional relationships between the entries of each submatrix M and K and
the arguments of Mδ and Kδ , respectively. In other words, evaluating Mδ at any point x̃i ∈ X̃ is operationally
equivalent to computing the matrix entry [M]i j . Therefore, evaluating Mδ (̃xi), for each δ ∈ D, requires computing
precisely all the non-zero coefficients in the i th row of M. The same observation clearly also holds when evaluating
Kδ .

If stencil functions are smooth, then they may be accurately approximated by their values at a relatively small
number of points x̃is ∈ Ω̂ . For our purposes, it is enough to let X̃s

⊆ X̃ be the set of all such sample points x̃is

and let Is
⊆ I be the corresponding set of indices. This procedure first requires collecting all pairs (̃xis , [M]is j), for

every x̃ j − x̃is ∈ D and i s
∈ Is, but may be done simply by modifying existing assembly algorithms to compute

only the required rows. Entries in surrogate matrices may then be generated by just evaluating the approximated
stencil functions at the remaining points in X̃ \ X̃s and filling in the corresponding rows I \ Is.

Define

[M̃]i j = M̃δ (̃xi) and [K̃]i j = K̃δ (̃xi) , (3.3)

where M̃δ and K̃δ are such approximations of Mδ and Kδ , respectively. If these so-called surrogate stencil
functions, M̃δ and K̃δ , are expressed in an easily evaluated basis, then M̃ (resp. K̃) can be formed much faster than
M (resp. K), simply because of the numerical integration that is avoided. Moreover, for large enough problems,
the coefficients in the surrogate stencil functions should require significantly less storage than the coefficients in
the original matrix they are used to approximate. This makes simply storing the stencil function coefficients and
reading out evaluations of M̃δ or K̃δ very desirable during each matrix–vector multiply in matrix-free methods,
especially when the matrices themselves cannot fit in main memory; see, e.g., [9].

8 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

In this paper, we construct surrogate stencil functions by interpolating Mδ and Kδ with a uniform B-spline basis
of order q ≥ 0 with a quasi-uniform knot vector Ξ̃ = Ξ̃1 × · · · × Ξ̃n , where each knot ξ̃ i ∈ Ξ̃ is taken from X̃s.
Just as the accuracy of the discrete solution uh is affected by the mesh size parameter h, the accuracy of surrogate
stencil functions is affected by a sampling length

H = max
| j |=1,i

{
∥̃ξ i+ j − ξ̃ i∥∞ : ξ̃ i , ξ̃ i+ j ∈ Ξ̃

}
. (3.4)

As a simplifying accommodation, we assume that all stencil functions Mδ and Kδ are defined at every sampling
point x̃is ∈ X̃s. As argued in [19, Section 4], this implies that X̃s

⊆ Ω̃ ⊊ Ω̂ , where

Ω̃ =

[
3p + 1

2(m − p)
, 1 −

3p + 1
2(m − p)

]n

.

For a more complete description of the interpolation strategy used in the coming experiments, as well as the
resulting analysis, see Section 5.1 and [22]. Note that explicit interpolation is not at all required to generate an
accurate surrogate. Indeed, a different least-squares regression approach, with a high-order polynomial basis, was
successfully applied in [9]. Many approximation alternatives remain to be investigated.

3.4. Structure-preserving surrogates

Constructing the complete surrogate matrices M̃ and K̃ out of the corresponding stencil functions requires the
consideration of interactions with non-cardinal basis functions. The simplest way to account for the entries of M̃
and K̃ which are not defined via (3.3) is to compute them directly with numerical quadrature, as in traditional IGA
assembly algorithms. This is the choice we make here, however, alternative choices are available by using additional
stencil functions which exploit symmetries on lower-dimensional planes, as described in [19, Section 3.6].

Exploiting the symmetry of the mass matrix, we define

[M̃]i j =

⎧⎪⎨⎪⎩
M̃δ (̃xi) if x̃i , x̃ j ∈ Ω̃ , i ≤ j,
[M̃] j i if x̃i , x̃ j ∈ Ω̃ , i > j,
[M]i j otherwise.

(3.5)

Note that this definition requires interpolating ((2p+1)n
+1)/2 stencil functions. Constructing the surrogate stiffness

matrix K̃ could follow in the same manner as (3.5), however, a surrogate matrix with better approximation properties
can be found if we attempt to preserve part of the kernel of the original matrix K.

Note that the kernel of K contains all repeated coefficient vectors, span{ [1, 1, . . . , 1]T
}. Indeed, because a(1, w) =

a(w, 1) = 0 for all w ∈ H 1(Ω) and because B-splines and NURBS have the partition of unity property∑
j B j (x) = 1, it holds that

0 = a(1, φi) =

∑
j

a(B j , φi) =

∑
j

[K]i j , for each i = 1, . . . , N .

Note that this identity may be rewritten

[K]i i = −

∑
j ̸=i

[K]i j .

For this reason, we pose the following symmetric kernel-preserving definition for the surrogate stiffness matrix:

[K̃]i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K̃δ (̃xi) if x̃i , x̃ j ∈ Ω̃ , i < j,
[K̃] j i if x̃i , x̃ j ∈ Ω̃ , i > j,
[K]i j in all other cases where i ̸= j,
−

∑
k ̸=i [K̃]ik if i = j.

(3.6)

Note that definition (3.6) requires interpolating ((2p + 1)n
− 1)/2 stencil functions. We define the corresponding

surrogate sesquilinear forms ã(u, v) = v̄TK̃u and m̃(u, v) = v̄TM̃u where u and v are the coefficient vectors of u
and v in the {φi }

N
i=1 basis, respectively.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 9

Remark 3.2. Definitions (3.5) and (3.6) also apply in the obvious way to the multi-patch setting. Indeed, they
can be simply used to define every patch-wise coefficient matrix M̃(ℓ) and K̃(ℓ) using the corresponding patch-wise
stencil functions M(ℓ)

δ and K(ℓ)
δ , respectively.

Remark 3.3. The definition of the surrogate mass matrix M̃ in (3.5) does not preserve the exact volume of the
domain in the sense that

∑
i
∑

j [M̃]i j ̸=
∫
Ω 1 dx; cf. [19, Remark 5.1]. However, the volume may still be preserved

by changing its construction in the following way. Let D be a diagonal matrix with [D]i i =
∫
Ω Bi (x) dx for each i .

The true stiffness matrix can be split into M = D+M0 where [M0]i j = [M]i j for all j ̸= i and [M0]i i = −
∑

j ̸=i [M]i j

for all i . Since M0 has the same structure and zero row-sum property as K, the surrogate matrix M̃0 may be
defined as in (3.6). Therefore, defining the mass matrix surrogate as M̃ = D + M̃0 yields the desired property∑

i
∑

j [M̃]i j =
∑

i
∑

j [M]i j =
∫
Ω 1 dx. This definition only requires the additional assembly of the diagonal

matrix D which can be stored in a vector. The required quadrature formula may also be of lower accuracy, because
functions of order p and not 2p need to be integrated. This observation is not further investigated here.

Remark 3.4. The majority of the definitions above generalize immediately to variational problems with vector-
valued solutions. Nevertheless, in the case of linear elasticity, preserving all of the infinitesimal rigid body motions
in the definition of a surrogate elasticity stiffness matrix, is more complicated and expensive than preserving the
one-dimensional kernel of K, as done in (3.6). Our numerical experiments do not show any significant need to
incorporate such a feature.

3.5. Smooth geometry transformations

In many studies (see, e.g., [5,29]) the geometry transformation ϕ : Ω̂ → Ω is not globally smooth. For
illustration, consider the singular transformation depicted in Fig. 3.2(a) which has a singularity coming from the
lack of smoothness at the top right corner of the physical domain. This singularity in the geometry transformation
implies a singularity in the determinant of the Jacobian J present in (2.6). In turn, a singularity also appears in the
corresponding stencil functions; see, e.g., Fig. 3.2(c).

Singular geometry transformations will usually introduce singular features in the stencil functions. As singular
functions are more difficult to approximate accurately, using unnecessary singular geometry maps should be avoided
with surrogate matrix methods. For instance, in the example above, the singularity may be removed simply by
using two patches instead of just one. In Fig. 3.3(b), an obvious two-patch geometry parameterization is used
and it is obvious to infer that the resulting stencil functions will be globally smooth; Fig. 3.3(b) shows one such
representative.

4. Surrogate matrices: Theory and applications

In this section, we present an a priori error estimate for the Helmholtz case which shows that the consistency
error introduced by the surrogate methodology is wave number independent. Next, we explain how the surrogate
methodology is advantageous in wave propagation problems with absorbing boundary conditions. Finally, we give
a short survey of other insights and interpretations which apply for time-dependent and nonlinear problems.

4.1. A priori error estimates for the Helmholtz equation

The following theorem certifies optimal order convergence of the discretization (3.1), under certain assumptions
on ã(u, v) = v̄TK̃u and m̃(u, v) = v̄TM̃u. Justification for the stability assumptions made in (4.1a) and (4.1b) comes
from previous work (e.g., [19]); for further details, see Remark 4.4.

Theorem 4.1. Invoke all the hypotheses of Section 2.3 and define H via (3.4). Moreover, let q1, q2 ∈ N0 and
assume that

|a(u, v) − ã(u, v)| ≲ H q1+1
∥∇u∥L2(Ω)∥∇v∥L2(Ω), (4.1a)

|m(u, v) − m̃(u, v)| ≲ H q2+1
∥u∥L2(Ω)∥v∥L2(Ω), (4.1b)

10 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

for all u, v ∈ Vh . Then, for all sufficiently small H, we have the existence of a unique solution ũ of (3.1) and the
following a priori error estimate for ũh =

∑
i ũiφi :

∥u − ũh∥H ≲ (hk)p(
∥ f ∥H p−1(Ω) + ∥g∥H p−1/2(∂Ω)

)
+ H q+1(

∥ f ∥L2(Ω) + ∥g∥L2(∂Ω)
)
, (4.2a)

where q = min{q1, q2}. If, in addition, g = 0, then we have the alternative estimate

∥u − ũh∥H ≲ k−1((hk)p
∥ f ∥H p−1(Ω) + H q+1

∥ f ∥H1(Ω)
)
. (4.2b)

Proof. Fix k > 0. Define the sesquilinear form

A(u, v) = a(u, v) − k2m(u, v) − kib(u, v) for all u, v ∈ H 1(Ω),

and denote its discrete stability constant by γh . Likewise, define the surrogate sesquilinear form

Ã(u, v) = ã(u, v) − k2m̃(u, v) − kib(u, v) for all u, v ∈ Vh .

Observe that

Ã(̃uh, v) =

∫
Ω

f v dx +

∫
∂Ω

gv dx = A(uh, v) for all v ∈ Vh . (4.3)

The assumptions on h and p from Section 2.3 imply that

γh = inf
u∈Vh\{0}

sup
v∈Vh\{0}

|A(u, v)|
∥u∥H∥v∥H

> 0.

This guarantees uniform stability of the original isogeometric discretization for all sufficiently small h. Our first
aim is to demonstrate that a similar property holds for the surrogate discretization given by (3.1). Indeed, observe
that for any arbitrary u ∈ Vh ,

sup
v∈Vh\{0}

|Ã(u, v)|
∥v∥H

≥ sup
v∈Vh\{0}

|A(u, v)|
∥v∥H

− sup
v∈Vh\{0}

|Ã(u, v) − A(u, v)|
∥v∥H

≥
(
γh − max{C1 H q1+1, C2 H q2+1

}
)
∥u∥H.

Therefore,

γ̃h = inf
u∈Vh\{0}

sup
v∈Vh\{0}

|A(u, v)|
∥u∥H∥v∥H

> γh − max{C1 H q1+1, C2 H q2+1
} > 0,

for all sufficiently small H .
Assuming sufficiently small h and H , it now follows that uh and ũh both exist and are unique. By the triangle

inequality, ∥u − ũh∥H ≤ ∥u − uh∥H + ∥uh − ũh∥H. Invoking (4.3) and then (4.1), the consistency error term,
∥uh − ũh∥H, may be bounded from above as follows:

γ̃h∥uh − ũh∥H ≤ sup
v∈Vh\{0}

|Ã(uh − ũh, v)|
∥v∥H

= sup
v∈Vh\{0}

|Ã(uh, v) − A(uh, v)|
∥v∥H

≲ H q+1
∥uh∥H.

Inequality (4.2a) now follows from (2.10), (2.8a) and (2.9a). Likewise, if g = 0, inequality (4.2b) follows
from (2.10), (2.8b) and (2.9b). □

Remark 4.1. In (4.2a), it is important to note that the consistency error ∥uh − ũh∥H, stemming from the surrogate
matrices, is independent of the wave number. Meanwhile, in the same setting, the upper bound on the discretization
error ∥u − uh∥H scales like k p. This makes the surrogate methodology very attractive for large wave number
problems, since the total error ∥u − ũh∥H will tend to be dominated by the discretization error ∥u − uh∥H.

Remark 4.2. In the special case g = 0, considered by (4.2b), it is well known that the discretization error improves
by a factor of k−1. What is perhaps surprising in the analysis above is that the consistency error of the surrogate
method will also improve by the same factor, at least provided that f ∈ H 1(Ω). This conclusion follows immediately
from the improved stability estimate (2.8b). Thus, in both the g ̸= 0 and g = 0 settings, the ratio between the
discretization error and consistency error remains O(k p).

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 11

Remark 4.3. According to results from [25,26], the error bounds may carry an additional factor of k
5
2 if Ω is not

convex.

Remark 4.4. Theorem 7.2 in [19] shows that (4.1a) holds for the surrogate stiffness matrix K̃ defined
by (3.6). Likewise, assumption (4.1b) can be shown to hold for the surrogate mass matrix M̃ defined in (3.5); cf.
[19, Section 8.1].

4.2. Perfectly matched layer boundary conditions

Open wave problems posed on unbounded domains are commonly solved on truncated computational domains.
In order to solve such problems accurately, spurious reflections of the outgoing waves, caused by the truncated
domain, need to be absorbed. One approach to simulate this behavior is the perfectly matched layer (PML) absorbing
boundary condition introduced in [33]. With this approach, the domain of interest is extended by an artificial
absorbing layer made from a special medium. Many alternative strategies for general curvilinear domains have
been proposed since then, but the underlying idea stays the same.

One possibility, which we choose to follow, is stretching the real domain into a complex domain. This stretching
is achieved by replacing the physical domain map ϕ (̂x) by an artificial map

ϕ̃ (̂x) = ϕ (̂x) + iCf(̂x),

where f is zero on the domain of interest and is smoothly increasing to unity on the layer’s boundary. The constant
C > 0 is a problem dependent penalty term controlling the strength of the absorption of the layer. Details on the
integral transformations introduced by this complex stretching may be found in [34].

The surrogate matrix methodology is very suitable for simulations with PMLs because the discretization error
∥u − uh∥H is usually bounded from below by a positive constant depending on the size and shape of the absorbing
layer. On the other hand, the consistency error ∥uh − ũh∥H only measures the distance between the two approximate
solutions and, therefore, still tends to zero as the mesh is refined. Our experience has indicated that the difference
between the standard IGA solution and the surrogate IGA solution is rarely distinguishable, even at low wave
numbers. Moreover, as we demonstrate in Section 6, the consistency error, although generally small, tends to be
largest in the absorbing layer. Because only the non-absorbing part of the domain is of interest, these errors in the
absorbing layer are of no interest. We consider PML boundary conditions for a linear elastodynamics problem with
periodic pressure loading in Section 6.3.

4.3. Discretization in time

Explicit and implicit time discretization schemes require matrices to propagate solutions forward in time.
Implicit schemes additionally require solving one or more linear systems at each time step. The surrogate matrix
methodology can also be used in such cases for assembling these propagation matrices. However, if the problem
is linear and the iteration matrices do not change over time, and unless a matrix-free approach is considered, each
matrix only needs to be assembled once. In this case, the achievable speed-up depends on the number of time steps.
Indeed, the total relative performance improvement will diminish as the number of time steps grows.

The upshot changes for nonlinear problems where the performance of the surrogate methodology is independent
of the number of time steps. Indeed, the propagation matrices need to be reassembled throughout the simulation
because they depend both on the solution at previous time steps and on the iterates of the current time step. We
showcase a time-dependent nonlinear hyperelastic wave problem in Section 6.4 and use it to compare performance.

4.4. Nonlinear problems using Newton’s method

It has already been demonstrated in [9] that the surrogate matrix methodology is suitable for nonlinear problems.
However, in that work, we only considered Picard fixed point iterations. Although our results were promising, we
found that many iterations were required to arrive at the desired solver tolerance. In this work, we chose to focus
on solving nonlinear problems with Newton’s method where the Jacobian matrix needs to be reassembled in each
iteration. Now, because the surrogate matrix methodology only yields approximations of matrices, the surrogate

12 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 5.1. The active elements (shown in gray) involved in the surrogate assembly for M = 10 with forty knots in each Cartesian direction.
The light gray elements correspond to the active boundary elements and the dark gray elements correspond to the inner active elements
required for the sampling of the stencil functions.

Jacobian matrix is simply just an approximation of the true Jacobian matrix. This means that a Newton method
combined with a surrogate method may be more easily interpreted as just a sophisticated quasi-Newton method
for the original problem. One particular consequence is that the consistency error ∥uh − ũh∥H will vanish with the
number of Newton iterations. Note that in many nonlinear problems, optimizations such as exploiting the symmetry
in (3.5) or the row-sum property in (3.6) cannot be used.

5. Surrogate matrices: Algorithmic considerations

In this section, we give a short comment on the differences of the implementation used in this paper when
compared to implementations of our previous work in [19,22]. We conclude this section with a computational
complexity estimate for the asymptotic number of floating point operations (FLOPs) required for the surrogate
matrix methodology.

5.1. Implementation

As in [19], all of the experiments documented in this paper were implemented using the GeoPDEs package
for Isogeometric Analysis in MATLAB and Octave [23,24]. Our implementation reused most of the original
functionality in GeoPDEs. A detailed explanation of the modifications and extensions is given in [22], albeit only
for the Poisson equation. Apart from the software implementation aspects, which are more or less unchanged from
our previous work, in this paper we utilized a slightly different strategy for selecting the sample points x̃s

A and we
used a different B-spline interpolation function.

Let M > 0 be a fixed integer. Roughly speaking, when constructing the multivariate B-spline functions, M̃δ

and K̃δ , our goal is to interpolate only about 1/M of the points in X̃, in each Cartesian direction. In [19], this was
done by simply taking every M th point in X̃, in each direction, and adding in every M th boundary point, if it was
skipped over. In this work, in order to better distribute the sample points, we first find the total number of points L
in one Cartesian direction in X̃, and then sample every (L −1)/ ceil{ L−1

M } point, after rounding to the nearest integer.
By starting at a given corner, this strategy makes sure boundary points are sampled and that all points are roughly
evenly spaced; cf. Fig. 5.1. Of course, other sampling point distributions, as for example Chebyshev nodes, may also
be used with this approach. Moreover, in this paper, we used the function spapi, provided by the MATLAB curve
fitting toolbox, instead of the standard MATLAB functions interp2 and interp3 or the SciPy Python function
RectBivariateSpline. spapi allows for more general higher-order B-spline interpolations although it is slightly
slower than the other functions.

Note that our method for evaluating M̃δ (̃xi) and K̃δ (̃xi) is by no means optimal; cf. [19,22]. Ideally, we would
employ a row- or column-wise loop assembly procedure and only loop over the required rows or columns as it is
done in [6–9]; see Fig. 5.2. Instead, we decided to construct our tests using an established software which employs

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 13

Fig. 5.2. Sparsity pattern of the surrogate mass matrix M̃ where H = 5h. The red and green points indicate the entries of the matrix
which are evaluated with Gaussian quadrature. The blue points indicate the entries which are obtained by evaluating the surrogate stencil
functions Mδ . The red points correspond to the basis functions near the boundaries and the green entries are used as supporting points for
the interpolation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

element-wise loops and standard Gaussian quadrature. Because the vast majority of IGA software employs element-
wise loops, our tests can provide references for many readers to predict how surrogate matrices could accelerate
their own codes. One drawback of our decision is that in order to evaluate M̃δ and K̃δ at any single point x̃i , we
had to perform quadrature on every “active element” located in the support of the basis function centered at x̃i ;
see Fig. 5.1. It is notable that we could easily overcome this wasteful expense to provide significant speed-ups; cf.
Section 6. An explanation for this, using an estimate for the asymptotic number of required floating point operations,
is given in Section 5.3.

5.2. Mesh-dependent sampling lengths

In this subsection, we recall the concept of mesh-dependent sampling lengths. Instead of using a fixed M for any
mesh, we may allow M to depend on the mesh size h. Let H be the maximum distance in any Cartesian direction,
between any two points in X̃s, cf. (3.4). Recall that q ≥ 0 is the order of the B-spline interpolation space used
in constructing the surrogate stencil functions. Generally, the error in a surrogate matrix method has the following
form:

∥u − ũh∥ ≤ Cah p+a
+ Cb H q+b , (5.1)

where ∥ · ∥ is a generic norm and each a, b ≥ 0, Ca, Cb > 0 are real-valued constants, independent of h. The
first term on the right hand side of (5.1) controls the discretization error one finds in the standard IGA method;
namely ∥u − uh∥ ≤ Cah p+a . The second term accounts for the loss of consistency in the surrogate method,
∥uh − ũh∥ ≤ Cb H q+b. See (4.2a) and (4.2b) for particular examples of such estimates in the case of the Helmholtz
equation.

A necessary property is that the discretization error dominates the consistency error in the small mesh size limit
h → 0. That is, we must design H q+b

= o(h p+a) because it will cause the surrogate method to have the same
asymptotic accuracy as the method it is replacing. If H is related to h via a constant factor M > 0, i.e., H = M ·h,
this property is guaranteed, so long as q + b > p + a. However, it is by no means necessary for H and h to be
proportional to each other or even for H = O(h).

The best performance is achieved when H = o(h); that is, when H = M · h and M = H/h → ∞ as h → 0.
Provided that q + b > p + a, a natural choice which enforces this property is the definition

M(h) = max{1, ⌊C · hϵ−1+
p+a
q+b ⌋},

where ϵ, C > 0 are a tunable parameters. Notice that this definition implies that M(h) will grow more rapidly, in
the h → 0 limit, as the interpolation order q is increased. For further information about mesh-dependent sampling
lengths, see [19, Section 7.3.3].

14 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

5.3. Floating point computational complexity

The time-to-solution in a simulation depends on the culmination of many factors, not solely the number of FLOPs.
Indeed, good performance usually relies on a good problem-, scale-, and architecture-dependent balance between
FLOPs and memory traffic. In this subsection we present a simple back-of-the-envelope complexity argument,
based only on FLOPs, for the surrogate mass matrix M̃ defined in (3.5). A complexity argument for the surrogate
stiffness matrix K̃ would be almost identical. The order estimates presented here should only be understood as crude
predictions of the overall performance to be expected in practice.

Begin with an open uniform knot vector Ξ = {ξ1, . . . , ξm+p+1} and let it define the multivariate B-spline basis
{B̂i (̂x)}, i = 1, . . . , N , described in Section 3.1. We assume that this B-spline basis forms the approximation space
Vh used in the discretization of both M and M̃. As mentioned in the introduction, the best complexity of formation
and assembly with Galerkin IGA may be as little as O(rn p) with r = p [5]. Employing standard element-wise
Gaussian quadrature, the complexity increases to O(rn p) for r = p2. Of course, such an estimate has an implicit
dependence on the mesh size h =

1
m−p . Accounting for both h- and p-dependence, the IGA assembly has at least

a complexity of O(Nrn p), where N = O(h−n) is the number of degrees of freedom.
We now argue that if H = o(h), assembling the surrogate mass matrix (3.5), with a B-spline interpolation of order

q , costs O(h−n pnq) FLOPs, with a small leading constant, regardless of the quadrature rule used. As usual in such
analysis, we assume that the univariate B-spline or NURBS basis functions and their gradients are pre-evaluated at
the quadrature points and stored in memory. This assumption, is not a great drawback because the knot vector Ξ is
uniform and so the memory footprint of the univariate basis functions evaluated at the quadrature points is small.

In order to estimate the complexity of forming M̃, we must separately account for the cost of computing each
of the different nonzero entries in the matrix. However, we immediately disregard the cost of enforcing symmetry
and assume that it only changes the constants found in the final FLOP estimate.

There are three different types of non-zero entries in M̃; see, e.g., Fig. 5.2. First, there are the entries computed
by evaluating the surrogate stencil functions M̃δ at points in X̃; cf. the blue points in Fig. 5.2. There are O(pn)
surrogate stencil functions which need to be evaluated at #X̃ = (m − 2p)n rows. Employing sum-factorization,
the final estimate of the surrogate stencil function evaluation is O(mn pnq) = O(h−n pnq). Next, there are each of
the non-zero coefficients coming from interaction with basis functions which do not have the cardinal structure;
i.e., B̂i (̂x) ̸= B̂(x − x̃i), cf. the red points in Fig. 5.2. There are O(N − #X̃) = O(mn

− (m − 2p)n) = O(mn−1) =

O(h−n+1) basis functions without this structure. In turn, there are O(h−n+1) rows/column in K̃ which are filled in
using standard IGA assembly procedures, thus providing an optimal complexity of O(h−n+1rn p). Asymptotically,
as h → 0, this contribution is negligible compared to the cost of evaluating the surrogate stencil functions. However,
for large h, this term may significantly contribute to the total performance.

Lastly, there are the computations which must be performed in order to sample the stencil functions. Recall the
identification [M]i j = Mδ (̃xi). These coefficients are precisely those appearing at the green points in Fig. 5.2. Since
each point in X̃s is at most a distance H apart, in each Cartesian direction, this leads to at most O(H−n) rows,
each with a cost of O(rn p). Written in terms of H , the cost of sampling has a total complexity of O(H−nrn p).
Exploiting the tensor-product structure of the approximation space, the B-spline interpolation itself requires n LU
decompositions of sparse univariate collocation matrices which are banded with bandwidth O(q). Computing the
LU decomposition of one such banded matrix without pivoting requires O(H−1q2) operations [35]. Applying
the forward and backward substitutions to the O(H−n+1) right-hand sides requires O(H−nq) operations. Since
the interpolation needs to be done for all O(pn) stencil functions, the total cost of the interpolation step is
O(H−1 pnq2

+ H−n pnq) FLOPs.
Having accounted for the three different types of non-zero entries, it is now evident that the cost of forming M̃

can be separated into four contributions: evaluating the stencil functions (O(h−n pnq)); numerical integration with
the non-cardinal basis functions (O(h−n+1rn p)); sampling the stencil functions (O(H−nrn p)); and performing the
interpolation of the stencil functions (O(H−1 pnq2

+ H−n pnq)). Since there are always O(h−n) rows in the final
matrix, the average complexity per row is as follows:

avg. cost =
O(h−n pnq) + O(h−n+1rn p) + O(H−nrn p) + O(H−1 pnq2

+ H−n pnq)
h−n

.

In the small mesh size limit, employing a fixed sampling parameter M > 0 throughout the full sequence of
meshes, we see that the complexity in p is still at least O(rn p). However, in this setting, the constant factor in the

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 15

Fig. 6.1. Domains considered for the Helmholtz problem.

O(rn p) term is proportional to 1/M > 0, which may be very small. In general,

avg. cost = O(pnq) + O(rn p), if H = O(h).

In the case of a mesh-dependent sampling length, limh→0
h
H = 0, so the complexity estimate is improved. Indeed,

avg. cost = O(pnq), if H = o(h).

Some remarks about these estimates are now in order. From the deductions above, it is clear that for any
interpolation order q > p, forming M̃ will have a poorer floating point complexity than O(pn+1), which is achievable
with some other methods [5]. Nevertheless, experience has lead the authors to conclude that it tends to actually be
very desirable to select a large q > p when forming any surrogate matrix. Although it is quite clear that a large
q positively influences the convergence rate of the consistency error term in (5.1), we have seen very little change
in performance with any q we have studied. One reason for this may be that the constant factor in the O(pnq)
estimate is extremely small; in particular, much smaller than the constant in front of the O(rn p) terms attributed to
performing quadrature. We posit that this may be the case because the term derives only from function evaluation
which tend to be very cache-aware operations. Note that the experiments and measurements in Section 6 use an
implementation with element-loop assembly and Gaussian quadrature; i.e., r = p2.

6. Numerical examples

In order to show the applicability and efficiency of the presented methods, we performed a set of numerical
experiments which are documented here. In Section 6.1, we consider the Helmholtz equation with various boundary
conditions, and in Section 6.2 the same problem with a non-constant wave number. In Section 6.3, we consider
a time harmonic problem involving linear elasticity. Finally, in Section 6.4, we consider a nonlinear, transient,
hyperelastic wave propagation example.

All run-time measurements were obtained on a machine equipped with two Intel® Xeon® Gold 6136 processors
with a nominal base frequency of 3.0 GHz. Each processor has 12 physical cores which results in a total of 24
physical cores. The total available memory of 251 GB is split into two NUMA domains; one for each socket.

6.1. Helmholtz equation

In this subsection, we investigate the surrogate matrix methodology in case of the Helmholtz example (2.5) and
verify the theoretical results stated in Theorem 4.1. We investigate the problem on three representative domains.
Namely, the convex domain Ω1 depicted in Fig. 6.1(a) and two non-convex domains; the quarter annulus with bumps
Ω2 depicted in Fig. 6.1(b) and the part of a spherical shell Ω3 shown in Fig. 6.1(c).

In the first set of experiments, we fix the trial space Vh and the surrogate matrix parameters and vary the wave
number. This will indicate dependence of the various errors on the wave number k. For Ω1 and Ω2 we fix m = 640
and M = 5, and for Ω3, m = 100 and M = 17. In each setting, we set p = 2 and q = 5. Let H(1)

a be a Hankel
function of the first kind and r = ∥x∥. As analytical solutions, we choose

u(r) =
i
4
H(1)

0 (kr) in 2D and u(r) =
i

4r
eikr in 3D. (6.1)

16 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 6.2. Demonstration of k-dependency on the various errors for the Helmholtz problem on Ω1 and Ω2, respectively.

Fig. 6.3. Demonstration of k-dependency on the various errors for the Helmholtz problem on Ω3 (left). Plot of the real part of the surrogate
solution for k = 30 (center). Assembly time comparison between reference (ref) and surrogate (surr) method (right).

These choices yield f = 0 so long as the origin is not included in the domain. The Robin-type boundary term g is
computed by using the analytical solution u.

The relative errors in the H-norm are presented in Fig. 6.2 for the first two domains and on the left-hand side
of Fig. 6.3 for Ω3. Additionally, we plot the real part of the surrogate solution for k = 30 in the center of Fig. 6.3
and show the assembly time comparison between the standard and surrogate method on the right-hand side of
Fig. 6.3. Already, with a fixed M = 17, a speed-up of about 251% can be observed. The discretization error in all
cases grows like k p, as predicted in Theorem 4.1. Moreover, the relative consistency error in the H-norm is almost
independent of k. This agrees well enough with our predictions since the assumptions made in Section 2.3 may not
hold for the very highest wave numbers we considered.

For our second set of experiments, we consider the non-convex domain Ω2 and the same 2D analytical solution
defined in (6.1). Here, we vary h but fix q = 5, use the mesh-dependent sampling parameter M = max

{
1, ⌊0.5 ·

m1−
p+1
q+1 ⌋

}
, and consider each k ∈ {8, 16, 32, 64, 128}. For this scenario, we plot relative total errors, relative

consistency errors, and speed-ups versus m
k ∝

1
kh .

The relative errors in the H-norm for the selected wave numbers k ∈ {8, 128} can be observed in the plot on
the left-hand side of Fig. 6.4. Here, both ∥u−uh∥H

∥u∥H
and ∥u−ũh∥H

∥u∥H
are presented. For a common wave number k, the

two relative error curves lie almost perfectly on top of each other and clearly demonstrate the estimated optimal
order of convergence, O((m

k)−2). In the center plot of Fig. 6.4, we present the relative consistency errors for each
k ∈ {8, 16, 32, 64, 128}. From this plot, it is both obvious that the consistency errors are much smaller than the
corresponding discretization errors and that they do not have any notable dependence on the ratio m/k. On the
right-hand side of Fig. 6.4, the speed-ups of the assembly time for those wave numbers are presented. The largest
speed-up of 3178% may be observed for k = 128 on the finest mesh.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 17

Fig. 6.4. Relative reference and surrogate errors in the H-norm for different wave numbers k computed on the non-convex domain
Ω2 (left). Relative consistency errors (center) and speed-up of the assembly time of the same problem (right). Recall here that M =

max
{

1, ⌊0.5 · m1−
p+1
q+1 ⌋

}
.

Fig. 6.5. Wedge domain (left). Relative H1(Ω) and L2(Ω) errors for p = 3, M = 5, and the manufactured solution u(x1, x2) =

sin (20πx1) sin (20πx2) for the Helmholtz problem with non-constant wave number k(x1, x2) from (6.2) (center and right).

6.2. Helmholtz equation with non-constant wave number

In this subsection, we consider the Helmholtz equation (2.5) in which the wave number is non-constant over the
physical domain. This type of problem occurs, for instance, in the modeling of acoustic waves with heterogeneous
wavespeed; see, e.g., [36] and the references therein. Here, we use an example inspired from [37] on the wedge
domain (0, 6) × (0, 10) ⊆R2 presented in the left of Fig. 6.5. The domain is discretized with three patches. In the
top and bottom patches, we utilize a constant wave number and in the central patch, we use a spatially varying
wave number. This choice introduces a jump in the coefficient along the patch interfaces. Since the matrix entries
corresponding to the basis functions close to the patch boundaries are integrated by the standard approach, the
surrogate method is not impeded by this discontinuity. In particular, we choose the spatially varying wave number

k(x1, x2) =

⎧⎪⎨⎪⎩
20 for 0 ≤ x2 <

x1
3 + 2,

5 sin (2πx2) + 15 for x1
3 + 2 ≤ x2 < 6 −

x1
6 ,

30 for 6 −
x1
6 ≤ x2 ≤ 10,

(6.2)

and we consider two settings.
In the first one, we consider a manufactured solution u(x1, x2) = sin (20πx1) sin (20πx2) which we use to

obtain the right-hand side f and g in (2.5). In the center and right of Fig. 6.5, we present the relative H 1(Ω) and
L2(Ω) errors for p = 3, M = 5, q ∈ {1, 2, 3, 4, 5}, and decreasing h. We observe that the surrogate method is
able to reproduce the solution of the standard approach. Moreover, the surrogate solutions exhibit the same error
convergence rates as the reference solution (M = 1) for all choices of q.

In the second setting, we provide only the source and boundary terms which do not stem from a manufactured
solution. This allows us to compare the discrete solutions only. We choose f (x) =

1
π a exp(−∥x − c∥2a−2) with

a = 5 · 10−3, c = (3, 9.5)T, g = 0, and k(x1, x2) from (6.2). For the discretization parameters, we choose p = 3,
q ∈ {1, 2, 3}, and M = 5. In the left of Fig. 6.6, we present the real part of the solution obtained with the standard

18 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 6.6. Real part of the solution obtained with the standard approach and p = 3 for the Helmholtz problem with non-constant wave
number k(x1, x2) from (6.2) and non-manufactured solution (left). Relative difference of the real part of the standard solution and the real
part of each of the surrogate solutions with increasing q ∈ {1, 2, 3} (second from left to right).

approach (M = 1). The solutions obtained with the surrogate method do not differ visually. We emphasize this
fact by showing the relative differences of the real part of the standard solution and the real part of each of the
surrogate solutions in the right of Fig. 6.6. We observe that the differences decrease with increasing q and that the
largest differences are located within the patch in which the wave number varies as well as in the left part of the
bottom patch.

6.3. Linear elastodynamics with periodic pressure loading

In this set of experiments, we focus on the time-harmonic linear elastodynamics problem (2.2) with the energy
density functional W in (2.3). We start with (2.1) and apply a pressure that fluctuates periodically, with angular
frequency ω, in the interior of the circular hole. The setup is depicted in Fig. 6.7. Let σ = ∂uW (u). On the circular
boundary, we apply a time-dependent pressure of the form −σ n ·n = p(t) =

p0√
2 π

e−iωt . The problem is transformed
into the frequency domain resulting in the time harmonic equations (2.2). In this particular experiment, we choose
ω = 50 π , p0 = 1, r0 = 1, L = 4, λ = 2, µ = 1, and ρ0 = 1. The analytical solution to this problem may be
written in polar coordinates (r, θ) as follows [38]:

ur (r) = −

p0r0ζ H (2)
1

(
ωr
γ

)
µ

(
γωr0 H (2)

0 (ωr0) − 2ζ H (2)
1 (ωr0)

) .

Here, H(2)
a is the Hankel function of the second kind, γ =

√
λ+2µ

ρ0
, and ζ =

√
µ

ρ0
.

We investigate PML absorbing boundary conditions. For this problem, the stiffness matrix K and mass matrix M
in (2.2) need to be assembled. For the surrogate matrices, this is achieved by employing definitions similar to (3.5)
and (3.6) but for the vector-valued setting mentioned in Remark 3.4. We prescribe symmetric boundary conditions
on Γ1 and Γ4 and the pressure is applied to Γ5. On the remaining boundaries, Γ2 and Γ3, homogeneous Dirichlet
boundary conditions are prescribed. The region of interest and the PML region are separated through ℓ. Each
physical coordinate xk for k = 1, 2 is mapped according to the following specific stretching function from [39,40]:

x̃k =

{
xk if 0 < xk ≤ ℓ,

xk + i C
ω

(
xk−ℓ

L−ℓ

)n
if ℓ < xk ≤ L ,

(6.3)

where ℓ = 3, n = 2, and C = 5.
As with the second set of experiments with the Helmholtz equation, we also choose to adopt a mesh-dependent

sampling parameter M = M(h) which balances of the error and performance in our favor. Here, we consider
M(h) = max

{
2,

⌊
2 · h

p−q+1/2
q+1

⌋}
, where it is implicitly understood that q > p.

For p = 2 and q = 5, the real part of the surrogate solution and difference from the standard solution are
presented in Fig. 6.8. Note that the largest difference is observed in the PML region. This can be attributed to the

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 19

Fig. 6.7. Plate with circular hole setup in linear elastodynamics problem.

Fig. 6.8. Magnitude of the real part of the solution on the finest mesh with ω = 50 π and PML boundary conditions. Surrogate IGA solution
with q = 5 and mesh-dependent sampling parameter M (left). Difference between standard and surrogate IGA solutions (center and right).

Fig. 6.9. Relative L2 errors in Ω ∩ (0, ℓ)2 and assembly times for periodic pressure loading with ω = 50π and p = 2 computed with PML
absorbing boundary conditions.

fact that the stencil functions are also affected by the stretching function (6.3). Inspecting the right-hand side of
Fig. 6.8, it is clear that the difference in the two solutions in the domain of interest, Ω ∩ (0, ℓ)2, is an order of
magnitude less than the difference in the two solutions in the PML.

Relative L2 errors in Ω ∩ (0, ℓ)2 and the associated assembly times are shown in Fig. 6.9. For all h and q
considered, ∥u−uh∥L2(Ω) is indistinguishable from ∥u− ũh∥L2(Ω). We do not observe asymptotic error convergence,
even in the standard IGA case, because of the presence of the PML. For q = 5 on the finest mesh, we observe a
speed-up of 1679%, without any degradation in the L2 error.

We refrain from showing non-harmonic linear elastodynamic examples. They are only of little relevance because
the stiffness matrix K needs to be computed only once in the first time step and can be reused for each subsequent

20 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 6.10. Problem setup (left) and patches (right).

step. Nevertheless, the surrogate approach may be of interest when applied in a matrix-free setting since K would
need to be recomputed for each matrix–vector product.

6.4. Nonlinear hyperelastic waves

In this final set of experiments, we consider transient, nonlinear, hyperelastic wave propagation obeying (2.1)
with the energy density functional (2.4). The problem setup is illustrated in Fig. 6.10. As domain, we choose the
annulus Ω = {x ∈ R2

: 1 < ∥x∥ < 2} and the time interval [0, T], with T = 7.5. We employ the material
parameters ρ0 = 1, E = 1, and ν = 0.35. The corresponding Lamé parameters are obtained via the expressions
µ =

E
2(1+ν) and λ =

νE
(1+ν)(1−2ν) . We prescribe zero initial displacements and zero initial velocity; i.e., u0 = v0 = 0.

At the boundary ∂Ω , we apply a pointwise force pulse at the right side, i.e., ∂uW (u)n = δ(x1 − 2) · f (t) · (−1, 0)T,
with

f (t) =

{
1

10 sin
(

π t
t f

)
t ≤ t f ,

0 otherwise,

where t f = 1/5. The computational domain is split into four patches, as depicted on the right hand side of Fig. 6.10,
each of which is discretized with m = 100 and p = 2. The sub-matrices belonging to each patch are assembled in
parallel.

For the time-discretization, we employ the nonlinear generalized-α method described in [41] with the damping
parameters ρ∞ =

1
2 , αm =

1
2

3−ρ∞

1+ρ∞
, and α f =

1
1+ρ∞

. Moreover, we choose ∆t = 5 · 10−3 as the time step size. At

each time step, we perform two Newton iterations. In each iteration the nonlinear matrix is being reassembled using
either the standard approach or the surrogate matrix approach, with q = 5 and M = 18. Since the mass matrix
term does not change over time, we assemble it once using the standard approach and re-use it in the subsequent
steps.

In order to compare the solutions of the standard and surrogate method, we record the displacement in y-direction
over time at two positions, x1 = (0, 1)T and x2 = (0, 2)T, in Fig. 6.11. No visual difference can be observed. On
the left-hand side of Fig. 6.12, we present the kinetic, internal, and total energy divided by two versus the time
t ≥ 0.3 for both approaches. We observe, once again, no visual difference in the two solutions. The central plot in
Fig. 6.12 shows the time required to complete each time step. For each time step, this required time includes the
right-hand side evaluation as well as the reassembly and inversion of the tangent matrices for each Newton iteration.
We use the MATLAB backslash operator to invert the emerging systems which takes on average 6.41 s per time step
independent of which assembly method is used. In total, inverting the tangent matrices in the standard approach
takes up approximately 10.7% of the time and approximately 26.6%, if the surrogate method is used. For the sake
of completeness, we present the accumulated total time and the accumulated time required for the inversion of the
systems in the right-hand side of Fig. 6.12. In this scenario, a speed-up of about 142% may be observed. Finally,
in Fig. 6.13, we illustrate the von Mises stress at different times. The faster traveling body waves reach the point
x2 first, followed by the surface waves, which result in the greatest displacements; cf. Fig. 6.11.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 21

Fig. 6.11. Displacements in y-direction u y recorded at x1 = (0, 1)T (left) and x2 = (0, 2)T (right) for the standard and surrogate method.

Fig. 6.12. Total divided by two, kinetic, and internal energy over the time interval [0.3, T] (left). Required time per time step (center).
Accumulated total time and accumulated time spent on the inversion of the tangent matrices (right).

7. Conclusion

In this work, we applied the surrogate matrix methodology to several problems emerging in the investigation
of waves in the isogeometric setting. We performed an a priori error analysis for the Helmholtz equation which
demonstrated that the additional consistency error introduced by the presence of surrogate matrices is independent
of the wave number. Moreover, we presented a floating point analysis showing that the computational complexity
of the methodology compares favorably to other state-of-the-art assembly techniques for isogeometric analysis.

We confirmed the theoretical error estimates for the Helmholtz equation by performing benchmark computations
showing the correct convergence behavior. We furthermore showed that the methodology is beneficial when applied
to wave problems with PML absorbing boundary conditions by considering a linear problem in elastodynamics.
Finally, we applied the methodology to a transient, nonlinear, hyperelastic wave propagation problem with a material
modeled by a compressible neo-Hookean material. This last example showed the efficacy of the methodology for
implicit time stepping schemes in which a nonlinear problem is solved by Newton’s method in each time step. Our
numerical experiments demonstrate clear performance gains in all experiments and we observed speed-ups of up
to 3178%, when compared to the reference assembly algorithm, without losing any significant accuracy.

Thus far, in order to address the feasibility of this methodology in isogeometric analysis, we have relied on
the MATLAB software GeoPDEs [23]. This software greatly lends itself to rapid prototyping but is not actually
suitable for high performance experiments and it only supports element-loop assembly. Element-loop assembly
is not necessary for the surrogate matrix methodology. Row/column-loop assembly would only provide better
performance. Nevertheless, because our implementations employ element-loop assembly, which is presently the
dominant assembly strategy employed in IGA software, it allows our experiments to directly suggest how surrogate
matrices would perform in many other codes.

22 D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322

Fig. 6.13. Von Mises stress σv,M in the nonlinear hyperelastic wave problem at times t ∈ {1, 2, 3, 4, 5, 6}.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank René Hiemstra for his insightful conversations about our work. This project
has received funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 800898. This work was also partly supported by the German Research Foundation through the Priority
Programme 1648 “Software for Exascale Computing” (SPPEXA) and by grant WO671/11-1.

References

[1] A. Bressan, S. Takacs, Sum factorization techniques in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 352 (2019)
437–460.

[2] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: The
use of sum factorization, Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828.

[3] F. Calabrò, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, Comput. Methods Appl.
Mech. Engrg. 316 (2017) 606–622, Special Issue on Isogeometric Analysis: Progress and Challenges.

[4] G. Sangalli, M. Tani, Matrix-free weighted quadrature for a computationally efficient isogeometric k-method, Comput. Methods Appl.
Mech. Engrg. 338 (2018) 117–133.

[5] R.R. Hiemstra, G. Sangalli, M. Tani, F. Calabrò, T.J. Hughes, Fast formation and assembly of finite element matrices with application
to isogeometric linear elasticity, Comput. Methods Appl. Mech. Engrg. 355 (2019) 234–260.

[6] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, B. Wohlmuth, A two-scale approach for efficient on-the-fly operator
assembly in massively parallel high performance multigrid codes, Appl. Numer. Math. 122 (2017) 14–38.

D. Drzisga, B. Keith and B. Wohlmuth / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113322 23

[7] S. Bauer, M. Huber, M. Mohr, U. Rüde, B. Wohlmuth, A new matrix-free approach for large-scale geodynamic simulations and its
performance, in: International Conference on Computational Science, Springer, 2018, pp. 17–30.

[8] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, B. Wohlmuth, Large-scale simulation of mantle convection based on a new
matrix-free approach, J. Comput. Sci. 31 (2019) 60–76.

[9] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: A priori error estimation, SIAM J. Sci. Comput. 41 (6) (2019)
A3806–A3838.

[10] R.R. Hiemstra, F. Calabrò, D. Schillinger, T.J. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically
refined splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 316 (2017) 966–1004.

[11] A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer, Low rank tensor methods in Galerkin-based isogeometric analysis, Comput.
Methods Appl. Mech. Engrg. 316 (2017) 1062–1085.

[12] C. Hofreither, A black-box low-rank approximation algorithm for fast matrix assembly in isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 333 (2018) 311–330.

[13] A. Mantzaflaris, B. Jüttler, Integration by interpolation and look-up for Galerkin-based isogeometric analysis, Comput. Methods Appl.
Mech. Engrg. 284 (2015) 373–400.

[14] A. Mantzaflaris, B. Jüttler, Exploring matrix generation strategies in isogeometric analysis, in: M. Floater, T. Lyche, M.-L. Mazure,
K. Mørken, L.L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014, pp. 364–382.

[15] F. Fahrendorf, L.D. Lorenzis, H. Gomez, Reduced integration at superconvergent points in isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 328 (2018) 390–410.

[16] T.J. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg.
199 (5–8) (2010) 301–313.

[17] F. Auricchio, F. Calabrò, T.J. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for
NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 249 (2012) 15–27.

[18] M. Pan, B. Jüttler, A. Giust, Fast formation of isogeometric galerkin matrices via integration by interpolation and look-up, Comput.
Methods Appl. Mech. Engrg. 366 (2020) 113005.

[19] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: Low-cost assembly for isogeometric analysis, Comput. Methods
Appl. Mech. Engrg. 361 (2020) 112776.

[20] S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 15, Springer Science & Business Media, 2007.
[21] D. Schillinger, S.J. Hossain, T.J. Hughes, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric

analysis, Comput. Methods Appl. Mech. Engrg. 277 (2014) 1–45.
[22] D. Drzisga, B. Keith, B. Wohlmuth, The surrogate matrix methodology: A reference implementation for low-cost assembly in

isogeometric analysis, MethodsX (2020) 100813.
[23] C. de Falco, A. Reali, R. Vázquez, GeoPDEs: A research tool for isogeometric analysis of PDEs, Adv. Eng. Softw. 42 (12) (2011)

1020–1034.
[24] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Comput. Math. Appl.

72 (3) (2016) 523–554.
[25] J.M. Melenk, S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J.

Numer. Anal. 49 (3) (2011) 1210–1243.
[26] S. Esterhazy, J.M. Melenk, An analysis of discretizations of the Helmholtz equation in L2 and in negative norms, Comput. Math.

Appl. 67 (4) (2014) 830–853.
[27] J.M. Melenk, On Generalized Finite Element Methods (Ph.D. thesis), research directed by Dept. of Mathematics. University of Maryland

at College Park, 1995.
[28] P. Cummings, X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math.

Models Methods Appl. Sci. 16 (01) (2006) 139–160.
[29] T.J. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,

Comput. Methods Appl. Mech. Engrg. 194 (39–41) (2005) 4135–4195.
[30] I.J. Schoenberg, Cardinal Spline Interpolation, Vol. 12, SIAM, 1973.
[31] I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part A. on the problem of

smoothing or graduation. A first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 45–99.
[32] I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of

osculatory interpolation. A second class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 112–141.
[33] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2) (1994) 185–200.
[34] P.J. Matuszyk, L.F. Demkowicz, Parametric finite elements, exact sequences and perfectly matched layers, Comput. Mech. 51 (1) (2013)

35–45.
[35] G.H. Golub, C.F. Van Loan, Matrix Computations, fourth ed., Johns Hopkins, 2013.
[36] J. Chan, R.J. Hewett, T. Warburton, Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous media, SIAM

J. Sci. Comput. 39 (6) (2017) A2935–A2961.
[37] Y.A. Erlangga, C.W. Oosterlee, C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci.

Comput. 27 (4) (2006) 1471–1492.
[38] E. Kausel, Fundamental Solutions in Elastodynamics: A Compendium, Cambridge University Press, 2006.
[39] C. Michler, L. Demkowicz, J. Kurtz, D. Pardo, Improving the performance of perfectly matched layers by means of hp-adaptivity,

Numer. Methods Partial Differential Equations 23 (4) (2007) 832–858.
[40] A.V. Astaneh, B. Keith, L. Demkowicz, On perfectly matched layers for discontinuous Petrov–Galerkin methods, Comput. Mech. 63

(6) (2018) 1131–1145.
[41] J.A. Cottrell, T.J. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, 2009.

B. Further articles
B.1. Stencil scaling for vector-valued PDEs on hybrid grids with

applications to generalized Newtonian fluids

157

Stencil scaling for vector-valued PDEs on hybrid grids with
applications to generalized Newtonian fluids

Daniel Drzisga, Ulrich Rüde, and Barbara Wohlmuth

The stencil scaling approach for low-order finite element discretizations presented in
[14] marked itself successful for accelerating matrix-free methods on HHGs. However,
only scalar elliptic PDEs were considered there. In this work, we investigate the
applicability of this approach to vector-valued PDEs and observe that the idea of
the scalar stencil scaling cannot be applied straightaway. We show that the simple
scaling for vector-valued PDEs results in the discretization of a different PDE, if
the PDE coefficient is not constant. In order to overcome this issue, we develop a
new stencil scaling approach by adding a correction term to the discrete stencils.
Although this vector-valued scaling is more expensive than the original scalar stencil
scaling, it still has the ability to reproduce the standard finite element solution in
shorter time compared to the standard on-the-fly stencil assembly.

In this work, we focus on variable coefficient vector-valued partial differential
equations as they emerge in the modeling of many physical phenomena. The
presented method is based on scaling reference stencils originating from a linear
finite element discretization of a constant coefficient PDE. This method assumes
the utilization of HHGs and it may be applied to vector-valued second-order elliptic
partial differential equations directly or as part of more complicated problems. The
major novelty of this work is the presentation of an improved method to assemble
the stencils for these problems, particularly appropriate for matrix-free solvers.

In Section 2, we state the model problem and introduce the stencil scaling approach
with the required correction term. Moreover, the efficient pre-computation of the
correction terms in 2D and 3D is presented. In Section 3, we describe an efficient
approach to compute a regularized strain rate which is then used to define the
node-wise viscosities used in the numerical examples. In Section 4, we provide
theoretical computational complexity estimates demonstrating the advantages of this
new approach compared to the traditional on-the-fly integration and stored matrix
approaches. In Section 5, we verify the theoretical complexity analysis from Section 4
by performing a roofline analysis for residual computations and the underlying MVPs.
Furthermore, we demonstrate the error convergence rates and the run-time of this
extended stencil scaling through a number of numerical experiments. In particular,
we consider experiments based on the mathematical models of linear elastostatics
and generalized incompressible Stokes flow. In the concluding example, a nonlinear
shear-thinning non-Newtonian example is considered. The largest considered example
involved solving an incompressible Stokes problem utilizing 12 288 compute cores on
the state of the art supercomputer SuperMUC-NG. Finally, in Section 6, we give
some concluding remarks.

I was significantly involved in finding the ideas and primarily responsible for setting
up the mathematical framework and carrying out the scientific work presented in
this article. Furthermore, I was in charge of writing the article while the co-authors
contributed by making corrective changes.

158

Permission to include:

Daniel Drzisga, Ulrich Rüde, and Barbara Wohlmuth
Stencil scaling for vector-valued PDEs on hybrid grids with applications
to generalized Newtonian fluids
SIAM Journal on Scientific Computing 42.6 (2020): B1429–B1461
(see also article [45] in the bibliography)

On the following page, a copy of the first page of the consent to publish agreement
by SIAM may be found. This page includes the author’s rights. A digital version of
the consent to publish form may be found at

https://www.siam.org/publications/journals/about-siam-journals/
information-for-authors

(Accessed on 22 March 2020)

159

https://www.siam.org/publications/journals/about-siam-journals/information-for-authors
https://www.siam.org/publications/journals/about-siam-journals/information-for-authors

Society for Industrial and Applied Mathematics (SIAM)

Consent to Publish

SIAM (“Publisher”) requires Authors of articles in SIAM publications to provide a formal
written Consent to Publish. The Author must sign the agreement except, in the case of
“work-for-hire”, when the Author's employer may sign as the party that has the right to grant
rights to the Publisher. If there are multiple Authors of the material governed by this
document, the term “Author” as used here refers to each and all of them, jointly and
severally. 1

Title of Contribution (“Work”): Stencil scaling for vector-valued PDEs with applications to
generalized Newtonian fluids
Authors: Daniel Drzisga, Ulrich Rüde, and Barbara Wohlmuth
Name of Journal: SIAM Journal on Scientific Computing
Manuscript Number: M126789

1. Author's Warranty

By signing this Consent, the Author warrants all of the following: The Work has not been
published before in any form except as a preprint, unless explicitly noted as a footnote to
the title. The Work is not being concurrently submitted to and is not under consideration by
another publisher. The names listed above as authors appear in the manuscript itself, no
author entitled to credit has been omitted, and there are no unnamed authors. The Author
has the right to make the grants made to the Publisher complete and unencumbered. The
Author also warrants that the Work does not libel anyone, violate anyone's privacy or
publicity rights, infringe anyone's copyright, trademark, or trade secrets, or otherwise violate
anyone's statutory or common law rights.

2. Author's Rights

A1. The Author may reproduce and distribute the Work (including derivative
works) in connection with the Author's teaching, technical collaborations,
conference presentations, lectures, or other scholarly works and professional
activities as well as to the extent the fair use provisions of the U.S. Copyright Act
permit. If the copyright is granted to the Publisher, then the proper notice of the
Publisher's copyright should be provided.
A2. The Author may post the final draft of the Work, as it exists immediately prior
to editing and production by the Publisher, on noncommercial pre-print servers
such as arXiv.org.
A3. The Author may post the final published version of the Work on the Author's
personal web site and on the web server of the Author's institution, provided that
proper notice of the Publisher's copyright is included and that no separate or
additional fees are collected for access to or distribution of the work.

3. Publisher's Rights

Even if the Author does not transfer Copyright to the Publisher, the Author grants the
Publisher the following rights in perpetuity.

P1. The Publisher has unlimited rights throughout the world to publish and
distribute the final version of the Work in any form and in all media now known
or hereafter discovered.
P2. The Publisher has unlimited rights throughout the world to translate the final
version of the Work and exercise all rights in all media in the resulting

Notice of publication and copyright

First Published in “Stencil scaling for vector-valued PDEs on hybrid grids with ap-
plications to generalized Newtonian fluids” in SIAM Journal on Scientific Computing
42.6 (2020), published by the Society for Industrial and Applied Mathematics (SIAM).

DOI: https://doi.org/10.1137/19M1267891

161

https://doi.org/10.1137/19M1267891

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. S\mathrm{C}\mathrm{I}. C\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. B1429--B1461

\bfS \bfT \bfE \bfN \bfC \bfI \bfL \bfS \bfC \bfA \bfL \bfI \bfN \bfG \bfF \bfO \bfR \bfV \bfE \bfC \bfT \bfO \bfR -\bfV \bfA \bfL \bfU \bfE \bfD \bfP \bfD \bfE \bfS \bfO \bfN \bfH \bfY \bfB \bfR \bfI \bfD
\bfG \bfR \bfI \bfD \bfS \bfW \bfI \bfT \bfH \bfA \bfP \bfP \bfL \bfI \bfC \bfA \bfT \bfI \bfO \bfN \bfS \bfT \bfO \bfG \bfE \bfN \bfE \bfR \bfA \bfL \bfI \bfZ \bfE \bfD \bfN \bfE \bfW \bfT \bfO \bfN \bfI \bfA \bfN

\bfF \bfL \bfU \bfI \bfD \bfS \ast

DANIEL DRZISGA\dagger , ULRICH R\"UDE\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} BARBARA WOHLMUTH\dagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Matrix-free finite element implementations for large applications provide an attractive
alternative to standard sparse matrix data formats due to the significantly reduced memory consump-
tion. Here, we show that they are also competitive with respect to the run-time in the low-order case if
combined with suitable stencil scaling techniques. We focus on variable coefficient vector-valued partial
differential equations as they arise in many physical applications. The presented method is based on
scaling constant reference stencils originating from a linear finite element discretization instead of
evaluating the bilinear forms on the fly. This method assumes the usage of hierarchical hybrid grids,
and it may be applied to vector-valued second-order elliptic partial differential equations directly or as
a part of more complicated problems. We provide theoretical and experimental performance estimates
showing the advantages of this new approach compared to the traditional on-the-fly integration and
stored matrix approaches. In our numerical experiments, we consider two specific mathematical
models, namely, linear elastostatics and incompressible Stokes flow. The final example considers a
nonlinear shear-thinning generalized Newtonian fluid. For this type of nonlinearity, we present an
efficient approach for computing a regularized strain rate which is then used to define the nodewise
viscosity. Depending on the compute architecture, we could observe maximum speedups of 64\% and
122\% compared to the on-the-fly integration. The largest considered example involved solving a
Stokes problem with 12288 compute cores on the state-of-the-art supercomputer SuperMUC-NG.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . matrix-free, finite elements, variable coefficients, stencil scaling

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N30, 65N55, 65Y05, 65Y20

\bfD \bfO \bfI . 10.1137/19M1267891

\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . In this article, we study the efficiency of large-scale low-order
finite element computations, and we examine which accuracy can be obtained at what
cost. High performance computing is expensive, not only in terms of investments in
supercomputer systems, but also in terms of operational cost. In particular, energy
consumption is becoming a critical factor; see, e.g., the emerging rankings such as
the GREEN500 list.1 Therefore, it is crucial to rethink long-established computing
practices and to study, quantify, and improve the efficiency of current numerical
algorithms.

We primarily strive to reduce the absolute compute times. This is, of course, a
viable goal in its own right, but the compute times are also directly related to the
required energy for a computation. At this point, we note that while scalability is
necessary for efficient large-scale parallel computing, scalability alone does not imply
an efficient use of resources. In fact, inefficient codes are often found to scale better
than efficient ones. Similarly, the asymptotic convergence rate of a discretization
scheme is an important mathematical criterion affecting the accuracy, but ultimately

\ast Submitted to the journal's Computational Methods in Science and Engineering section June 13,
2019; accepted for publication (in revised form) August 27, 2020; published electronically December
1, 2020.

https://doi.org/10.1137/19M1267891
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : This work was partly supported by the German Research Foundation through the

Priority Programme 1648 ``Software for Exascale Computing"" (SPPEXA), and by grant WO671/11-1.
\dagger Institute for Numerical Mathematics (M2), Technische Universit\"at M\"unchen, 85748 Garching bei

M\"unchen, Germany (drzisga@ma.tum.de, wohlmuth@ma.tum.de).
\ddagger Department of Computer Science 10, Friedrich-Alexander-Universit\"at Erlangen-N\"urnberg, Erlan-

gen, 91058, Germany (ulrich.ruede@fau.de).
1https://www.top500.org/green500/lists/2019/11/

B1429

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1430 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

only the error itself matters, including the constants involved. Such considerations
gain additional relevance at a time when Moore's law slows down and technological
progress is no longer producing computers that automatically run twice as fast with
every new year. In this situation, innovation and improvements must rely increasingly
on better implementations and on algorithms that are better suited for the available
architectures.

Considering efficiency in this more rigorous sense, it is found that data transport is
a critical factor in addition to the executed operations. Here, data transport includes
not only message passing communication in a large parallel cluster but also the data
transport within each node of such a cluster, i.e., from main memory to the CPU---
and even within a CPU between the different layers of caches and the registers of the
functional units [19]. The energy consumption for operations and data transport in
a typical CPU architecture has been quantified in [1]. Additionally, it is, of course
essential to exploit fine-grained concurrency in the form of multinode architectures
and by the use of vectorization. In order to achieve optimal performance, we must be
aware that the current speed of memory cannot keep up with the speed of processors
and that most of the energy is spent on the data transfers. Therefore, an important
characteristic relevant for the efficiency of numerical algorithms on modern computers
is their balance or floating-point intensity, i.e., the ratio of floating-point operations
(FLOPs) performed per byte of memory access [19].

Almost all traditional finite element libraries construct global stiffness matrices by
looping over local elements and adding their contributions to the global matrix. Even
when stored in compressed formats, these matrices require significantly more memory
than storing the solution vectors. Not only the memory consumption does present a
challenge, we also need to take into account the memory traffic and latency in loading
the nonzero matrix indices and entries.

To improve on the memory consumption and memory access, matrix-free methods
constitute a possible remedy where only the results of matrix vector products are
computed without assembling and storing the whole global matrix. Different strategies
exist to implement matrix-free methods, but the predominant candidate for low-
order finite elements is the element-by-element approach [3, 9, 12, 15, 35], wherein
local stiffness matrices are multiplied by local vectors and later added to the global
solution vector. These local stiffness matrices may be either stored individually in
memory---which actually requires more memory than storing the global matrix---or
computed on the fly. When using high-order finite elements, the weak forms can be
integrated on the fly using standard or reduced quadrature formulas [11, 24, 25, 26, 30].
This is a well-suited strategy for future architectures because of its high arithmetic
intensity [27], but we present a method that can compete with matrix-based methods
even in the low-order case. In [4], we presented an alternative matrix-free stencil
scaling approach for accelerating low-order finite element implementations suited for
scalar second-order elliptic partial differential equations (PDEs). There, it was shown
that the method was able to reduce the computational cost significantly.

Here, we will expand on this idea and present a similar matrix-free approach for
vector-valued second-order elliptic PDEs. The construction is based on the use of
hierarchical hybrid grids (HHGs) which form the basis in the HHG [6, 7, 18] and Hybrid
Tetrahedral Grids (HyTeG) [23] frameworks. These grids are constructed by starting
with an initial, possibly unstructured, simplicial triangulation of a polygonal domain
and refining each element multiple times uniformly in order to create a hierarchy of
meshes. Ultimately, we associate to each of these meshes a piecewise linear finite
element space. By exploiting the structure obtained by these uniform refinements, it is

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1431

possible to improve the performance of the finite element solver by using a stencil-based
code. Vector-valued second-order elliptic PDEs arise in the modeling of elastostatics
and fluid dynamics and play an important role in mathematical modeling. We show
that the idea of the scalar stencil scaling cannot be applied to these equations, since for
vector-valued PDEs the simple scaling results in the discretization of a different PDE
if the coefficient is not constant. Thus, there is a need for a modified stencil scaling
method that is also suited for matrix-free finite element implementations on HHGs.
Although this vector-valued scaling is more complicated and more expensive than
the scalar stencil scaling, it has the ability to reproduce the standard finite element
solutions while requiring only a fraction of the time to obtain them.

The principal novelty of this paper is the presentation of an improved method for
assembling stencils for vector-valued second-order elliptic PDEs suitable for matrix-
free solvers on HHGs coupled with a linear finite element discretization. We provide
theoretical and experimental performance comparisons which outline the advantages
of the stencil scaling approach. Furthermore, we show the convergence and the
run-times of this extended stencil scaling through numerical experiments. In these
experiments, we consider two specific mathematical models, namely, linear elastostatics
and generalized incompressible Stokes flow. In the final example, a nonlinear shear-
thinning non-Newtonian example is considered, where the viscosity depends on the
shear rate.

\bftwo . \bfM \bfo \bfd \bfe \bfl \bfe \bfq \bfu \bfa \bft \bfi \bfo \bfn \bfs \bfa \bfn \bfd \bfd \bfi \bfs \bfc \bfr \bfe \bft \bfi \bfz \bfa \bft \bfi \bfo \bfn . The goal of this paper is to speed
up matrix-free finite element implementations for solving vector-valued second-order
elliptic PDEs in a domain \Omega \subset \BbbR d, d \in \{ 2, 3\} , of the form

(2.1)

 - \bfnabla \cdot \bfitsigma = \bff in \Omega ,

\bfu = \bfg on \Gamma \mathrm{D},

\bfitsigma \cdot \bfn = \^\bft on \Gamma \mathrm{N},

where the stress \bfitsigma = \bfitsigma (\bfitvarepsilon) depends on the strain and additional material parameters.
One particular example for \bfitsigma that we investigate more thoroughly is the stress
tensor for linear elasticity with isotropic continuous materials given by Hooke's law as
\bfitsigma (\bfitvarepsilon) = 2\mu \bfitvarepsilon + \lambda tr(\bfitvarepsilon)I. Furthermore, generalized incompressible Stokes flow problems
may also be cast in this form when adding additional constraints. In this case, the
stress tensor is defined by \bfitsigma (\bfitvarepsilon) = 2\mu \bfitvarepsilon - pI, where an additional pressure variable p has
been introduced, and the incompressibility constraint \bfnabla \cdot \bfu = 0 in \Omega is enforced. The
domain boundary \partial \Omega is split into two disjoint parts, the nontrivial Dirichlet boundary
\Gamma \mathrm{D} and the Neumann boundary \Gamma \mathrm{N}. See Table 1 for a complete list of occurring
variables and their definitions.

Table 1
Required symbols and their definitions.

Symbol Definition

\bfu displacement or velocity
p pressure
\bfitvarepsilon strain: 1

2

\bigl(
\bfnabla \bfu +\bfnabla \bfu \top \bigr)

\bff body forces
\bfg prescribed displacement or velocity
\^\bft external forces
\bfn outward-pointing unit-normal vector
\lambda Lam\'e's first parameter
\mu shear modulus/dynamic viscosity

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1432 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

For the rest of this section, we restrict ourselves to the case of linear elastostatics,
since the method may be applied to the momentum balance of the Stokes equations in
the same way. This is demonstrated in the numerical results presented in subsection 5.2.
For simplicity, we consider a homogeneous Dirichlet boundary \Gamma \mathrm{D} for the rest of this
section, so \bfg = \bfzero . The weak form of (2.1) in the case of linear elastostatics employing
Hooke's law reads as follows: For a suitable space V incorporating the Dirichlet
boundary conditions, find \bfu \in V such that a(\bfu ,\bfv) = f(\bfv) \forall \bfv \in V , where

a(\bfu ,\bfv) = \langle 2\mu \bfitvarepsilon (\bfu) , \bfitvarepsilon (\bfv)\rangle \Omega + \langle \lambda \bfnabla \cdot \bfu ,\bfnabla \cdot \bfv \rangle \Omega ,(2.2)

f(\bfv) = \langle \bff ,\bfv \rangle \Omega +
\bigl\langle
\^\bft ,\bfv
\bigr\rangle
\Gamma N

.

By \langle \cdot , \cdot \rangle \Omega we denote the standard duality product in V .
In order to discretize the problem, we decompose the computational domain in

the typical HHG manner [5, 6, 7]. Let \scrT H be a possibly unstructured simplicial
triangulation of a bounded polygonal or polyhedral domain \Omega \subset \BbbR d, d \in \{ 2, 3\} . Based
on this initial grid, we construct a hierarchy of L + 2, L \in \BbbN , grids \scrT = \{ \scrT h, h =
20 H, . . . , 2 - L - 1 H\} by successive global uniform refinement. As is standard, each of
these refinements is achieved by subdividing all elements into 2d subelements. For
details of the refinement in 3D, we refer the reader to [8]. We also call \scrT H macro-
triangulation and denote its elements by T , whereas the elements of \scrT h are denoted
by th. For better readability, we drop the index h whenever its value is clear from
the context. Since our data structures require at least one interior vertex per macro-
element, we use the mesh \scrT h with h = 2 - 2H as the coarse grid in our multigrid solver
hierarchy. Each of the \scrT h for h \leq 2 - 2H has some crucial properties we want to exploit.
The element neighborhood at each vertex in the interior of a macro-element is always
the same; cf. Figure 1. Provided that the coefficient in the PDE is constant, we can
construct stencils as in a finite-difference scheme but with finite elements. Another
important property is that the neighboring elements have some similarities. In 2D,
there are always two elements attached to each stencil edge; see left-hand side of
Figure 1. These two elements t and tm are congruent and differ only by a reflection
along the stencil edge. A similar structural property holds in 3D which we discuss
later in subsection 2.4.

Associated with \scrT h is the space Vh \subset V of piecewise linear finite elements. Let
\bfite i \in \BbbR d be the canonical unit vector with (\bfite i)j = \delta ij for 1 \leq i, j \leq d, where \delta ij is the
Kronecker delta. Let further \phi i \in Vh and \phi j \in Vh be the scalar-valued linear nodal
basis functions associated with the ith and jth mesh nodes. Denote by \bfv h =

\sum
i \bfv

(j)\phi j

and \bfw h =
\sum

j \bfw
(i)\phi i linear combinations of the nodal basis function with vector-

valued coefficients \bfv (i) \in \BbbR d and \bfw (j) \in \BbbR d. We split the bilinear form (2.2) in terms
of contributions of the bilinear form aT restricted to each macro-element T \in \scrT H , i.e.,

(2.3)

a(\bfv h,\bfw h) =
\sum

T\in \scrT H

aT (\bfv h,\bfw h) =
\sum

T\in \scrT H

\sum
i,j

aT (\bfv (j)\phi j ,\bfw
(i)\phi i)

=
\sum

T\in \scrT H

\sum
i,j

d\sum
l,m=1

(\bfv (j))l(\bfw
(i))m aT (\phi j\bfite l, \phi i\bfite m).

In order to simplify notation, we introduce the operator D in place of either differential
operator, i.e., D\bfu = \epsilon (\bfu) or D\bfu = \bfnabla \cdot \bfu , and the coefficient placeholder k, i.e., k = \mu
or k = \lambda . For the rest of this subsection, we restrict ourselves to the general bilinear

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1433

Fig. 1. Element t and reflected element tm along an edge between nodes i and j in the 2D case
(left) and the 3D case (right).

form

a(\bfu ,\bfv) = \langle k \cdot D (\bfu) , D (\bfv)\rangle \Omega .

Using the standard finite element approach, this bilinear form is usually discretized
in the following way. Let it and jt be the local indices of an element t \in \scrT h associated
with the global mesh nodes i and j. We denote by kt the arithmetic mean over all the
vertex coefficient values of an element t, i.e.,

\=kt =

\sum d+1
p=1 k(\bfitx

t
p)

d+ 1
,(2.4)

where \bfitx t
p are the vertex coordinates of the local element t. Let \phi t

i and \phi t
j be the local

scalar-valued linear nodal basis functions associated with the local vertices it and jt.
Because the derivatives of the linear basis functions are constant, employing (2.4) as a
quadrature rule to approximate the bilinear form (2.3) yields

ah(\bfv h,\bfw h) =
\sum

T\in \scrT H

\sum
i,j

d\sum
l,m=1

(\bfv (j))l \cdot (\bfw (i))m
\sum

t\in \scrT i,j;T
h

\=kt
\int
t

(D(\phi t
j\bfite l), D(\phi t

i\bfite m)) dx,

(2.5)

where \scrT i,j;T
h is the set of all elements within a macro-element T adjacent to the edge

through i and j. Note that the number of elements in this set is small due to the HHG
structure. In 2D, there are only two elements adjacent to an interior edge, and in 3D
there are two types of interior edges: one type with four elements and another with six
elements adjacent to it. Please refer to subsection 2.4 for more details. Throughout
the paper, we denote the bilinear form ah(\cdot , \cdot) defined in (2.5) by nodal integration.
We note that the choice of \=kt is natural in the case when the coefficient function is
stored at the nodes. Alternative definitions, such as the evaluation of the coefficient
function at the center of an element, are also suitable, and they are preferred if the
coefficient function must be evaluated analytically.

With these considerations in mind, we define the reference stencil \^ST
ij \in (\BbbR d\times d)

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1434 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

for T \in \scrT H as a d\times d matrix for every pair of mesh nodes i and j by\Bigl(
\^ST
ij

\Bigr)
lm

=

\int
T

(D(\phi j\bfite l), D(\phi i\bfite m)) dx.

See Figure 1 for an illustration of stencils in 2D and 3D in the interior of a macro-
element. Each edge in the stencil plots corresponds to a neighbor j of a central entry
i in the mesh \scrT h. Recall that, as described in the construction of HHGs, the structure
in the interior of a single macro-element is always the same. It is also interesting
to note that in [4] each stencil weight consists of a scalar real value, but here, each
stencil weight consists of an \BbbR d\times d matrix corresponding to the interaction between
the dimensional components.

If k \equiv 1, the integrals in (2.5) may be replaced by the corresponding reference
stencils, and the bilinear forms (2.5) and (2.3) are equal on the discrete space Vh \times Vh.
The following lemma presents a decomposition of the bilinear form (2.5), which is
better suited for matrix-free methods because it has a lower operational count while
requiring a comparable amount of memory traffic. This decomposition is very similar
to a decomposition of the displacement or velocity field into a symmetric strain rate
part and an antisymmetric rotational part.

Lemma 2.1. Under the assumption that the coefficient k is affine linear on each
local element patch \omega i,j;T =

\bigcup
t\in \scrT i,j;T

h
t, the bilinear form (2.5) may be decomposed

into a symmetric part with a scaled reference stencil and a remaining antisymmetric
correction term R,

\^ah(\bfv h,\bfw h) =
\sum

T\in \scrT H

\sum
i,j

d\sum
l,m=1

\Bigl(
\^kTij \cdot (\^ST

ij)lm +
\bigl(
RT (k)ij

\bigr)
lm

\Bigr)
\cdot (\bfv (j))l(\bfw

(i))m,(2.6)

where \^kTij is specified as in (2.8).

Proof. Let the local stiffness tensor of a local element t be given by\bigl(
atij
\bigr)
lm

=

\int
t

\bigl(
D
\bigl(
\phi t
j\bfite l
\bigr)
, D
\bigl(
\phi t
i\bfite m

\bigr) \bigr)
dx.

In the following, we assume that i \not = j and that k is linear on the patch \omega i,j;T .
Additionally, we introduce the symmetric part as;tij and the antisymmetric part aa;tij of

atij defined by

as;tij =
1

2

\Bigl(
atij +

\bigl(
atij
\bigr) \top \Bigr)

and aa;tij =
1

2

\Bigl(
atij -

\bigl(
atij
\bigr) \top \Bigr)

.(2.7)

Due to our mesh structure, for each t in the interior of T , there exists a reflected
element tm; cf. Figure 1. Exploiting the fact that \nabla \phi t

i = - \nabla \phi tm
j , one can show that

the local stiffness tensors of these elements are related in the following way:

as;tij = as;t
m

ij and aa;tij = - aa;t
m

ij .

Before proceeding, we define the arithmetic mean of the coefficients on the patch \omega i,j;T

as

\^kTij =
1

| \scrT i,j;T
h |

\sum
t\in \scrT i,j;T

h

\=kt,(2.8)

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1435

where | \scrT i,j;T
h | stands for the number of elements in \scrT i,j;T

h . Using these properties, we
can rewrite the last sum in (2.5) as\sum
t\in \scrT i,j;T

h

\=kt(atij)lm =
1

2

\sum
t\in \scrT i,j;T

h

\=kt(atij)lm + \=kt
m

(at
m

ij)
lm

=
1

2

\sum
t\in \scrT i,j;T

h

\=kt(as;tij)lm + \=kt(aa;tij)
lm

+ \=kt
m

(as;t
m

ij)
lm

+ \=kt
m

(aa;t
m

ij)
lm

=
1

2

\sum
t\in \scrT i,j;T

h

(\=kt + \=kt
m

)(as;tij)lm + (\=kt - \=kt
m

)(aa;tij)
lm

= \^kTij \cdot \^Sij +
1

2

\sum
t\in \scrT i,j;T

h

(\=kt - \=kt
m

)(aa;tij)
lm

.

In the last step, we exploited the facts that for an affine linear k, we have \=kt + \=kt
m

=
2k(

xi+xj

2) = 2\^kTij , and that \sum
t\in \scrT i,j;T

h

(as;tij)lm = (\^ST
ij)lm.

With these considerations in mind, we define the tensor RT (k) for each i and j by\bigl(
RT (k)

\bigr)
ij
=

1

2

\sum
t\in \scrT i,j;T

h

(\=kt - \=kt
m

)aa;tij .(2.9)

In the case when i = j, we set the correction term
\bigl(
RT (k)

\bigr)
ii
to zero and the scaling

term \^kTii to 1 and redefine the central stencil entry as

ST
ii = -

\sum
j \not =i

\^kTij \cdot \^ST
ij +

\bigl(
RT (k)

\bigr)
ij
.

This zero-row sum property ensures that translational body motions lie in the kernel
of the discrete operator induced by (2.6).

In addition to the bilinear form (2.6), we define the following form where the
correction term R has been omitted:

\~ah(\bfv h,\bfw h) =
\sum

T\in \scrT H

\sum
i,j

d\sum
l,m=1

\^kTij \cdot (\^ST
ij)lm(\bfv (j))l(\bfw

(i))m.(2.10)

Henceforth, we refer to the bilinear form (2.6) as physical scaling and to the form
(2.10) as unphysical scaling.

\bftwo .\bfone . \bfI \bfn \bft \bfe \bfr \bfp \bfr \bfe \bft \bfa \bft \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bfu \bfn \bfp \bfh \bfy \bfs \bfi \bfc \bfa \bfl \bfs \bfc \bfa \bfl \bfi \bfn \bfg \bfi \bfn \bftwo \bfD . It may be shown that
the bilinear form corresponding to the unphysical form belongs to a different PDE.
We illustrate this for the differential operator - \bfnabla \cdot (k \bfitvarepsilon (\bfu)) in 2D. Particularly, in 2D,
a straightforward computation shows, for a differentiable coefficient k and smooth \bfu ,
that the identity

\bfnabla \cdot (k (\bfnabla \cdot \bfu)I)=\bfnabla \cdot (k\bfnabla \bfu \top)+

\biggl(
(u2),y - (u2),x
 - (u1),y (u1),x

\biggr)
\bfnabla k=\bfnabla \cdot (k\bfnabla \bfu \top)+(\bfnabla \times O\bfu)\bfnabla k

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1436 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

holds true, with the identity matrix I and

\bfnabla \times \bfw =

\biggl(
(w1),y - (w1),x
(w2),y - (w2),x

\biggr)
and O\bfw =

\biggl(
w2

 - w1

\biggr)
.

Using the above identity, we find

 - \bfnabla \cdot (k \bfitvarepsilon (\bfu)) = - 1

2
\bfnabla \cdot (k\bfnabla \bfu) - 1

4
\bfnabla \cdot (k\bfnabla \bfu \top) - 1

4
\bfnabla \cdot (k\bfnabla \bfu \top)

= - 1

2
\bfnabla \cdot (k\bfnabla \bfu) - 1

4
\bfnabla \cdot (k (\bfnabla \cdot \bfu)I) - 1

4
\bfnabla \cdot (k\bfnabla \bfu \top)\underbrace{} \underbrace{}

 - \nabla \cdot \sansA (\bfu)

+
1

4
(\bfnabla \times O\bfu)\bfnabla k\underbrace{} \underbrace{}

\sansB (\bfu)

= - \bfnabla \cdot \sansA (\bfu) + \sansB (\bfu).

The first term \bfnabla \cdot \sansA (\bfu) corresponds to a second-order differential operator for which
we have

\sansA

\biggl(
u
0

\biggr)
: \bfnabla

\biggl(
0
v

\biggr)
= \sansA

\biggl(
0
u

\biggr)
: \bfnabla

\biggl(
v
0

\biggr)
.

This property guarantees that the antisymmetric part of the associated local stencil
term is zero, and thus it can be simply scaled. The second term \sansB (\bfu) is obviously
equal to zero if k is constant; otherwise, it corresponds to a first-order differential
operator. Here we find

\bigl(
v 0

\bigr)
\sansB

\biggl(
0
u

\biggr)
= -

\bigl(
0 v

\bigr)
\sansB

\biggl(
u
0

\biggr)
and

\bigl(
v 0

\bigr)
\sansB

\biggl(
u
0

\biggr)
=
\bigl(
0 v

\bigr)
\sansB

\biggl(
0
u

\biggr)
= 0,

which yields that the symmetric part of the associated local stencil term is zero. A
more detailed comparison shows that it corresponds to the antisymmetric correction
term R. Therefore, omitting the correction term R in (2.6) with D = \bfitvarepsilon does not result
in a discretization of the PDE - \bfnabla \cdot (k \bfitvarepsilon (\bfu)) = \bff , but of - \bfnabla \cdot (\sansA (\bfu)) = \bff , for a general
k. Only in the case when k is constant in \Omega does the correction term vanish and is the
original PDE recovered. We note that the splitting of the differential operator in the
terms associated with the operators \sansA and \sansB corresponds exactly to the splitting of
the stencil entries in symmetric and antisymmetric parts. Similar considerations can
be worked out in 3D.

\bftwo .\bftwo . \bfS \bft \bfe \bfn \bfc \bfi \bfl -\bfb \bfa \bfs \bfe \bfd \bfm \bfa \bft \bfr \bfi \bfx -\bff \bfr \bfe \bfe \bfm \bfe \bft \bfh \bfo \bfd \bfs . These newly introduced bilinear
forms are very well suited for stencil-based matrix-free methods on HHGs, since the
reference stencil and the correction terms are always the same for a single macro-
element, and only the scaling terms depending on the coefficient need to be recomputed.
In section 4, we present a short analysis of the computational cost of the standard
approach by nodal integration compared to the scaling-based approaches.

In Lemma 2.1, we assume that the coefficient k is affine linear on each local patch
of elements adjacent to an edge. Therefore, if k is a global affine linear function, both
bilinear forms ah(\cdot , \cdot) and \^ah(\cdot , \cdot) are equal. Since we use linear finite elements, optimal
convergence rates may still be observed if a linear local interpolant of a nonlinear k
is used. The unphysical scaling \~ah(\cdot , \cdot), however, is only equal to the other bilinear
forms when the coefficient k is constant on the whole domain.

Remark 2.2. The definition in (2.8) may be replaced by \^kTij =
1
2 (k(\bfitx i) + k(\bfitx j)).

This approach requires fewer FLOPs, but numerical experiments suggest that using

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1437

(2.8) yields better accuracy while not having a huge impact on performance. The
memory traffic for either approach is the same because the coefficients need to be
loaded from memory anyway in order to compute the correction term. This assumes
that the layer condition [19] is satisfied when traversing the HHG data structures, so
the values of k need to be read from memory only once.

In practice, this scaling of the reference stencil is only done in the interior of
macro-elements where, asymptotically, most computations are performed in order to
evaluate the bilinear form. The physically scaled form \^ah(\cdot , \cdot) is thus redefined as

\^ah(\phi j\bfite l, \phi i\bfite m) =

\Biggl\{
ah(\phi j\bfite l, \phi i\bfite m) if xi \in \partial T and xj \in \partial T of at least one T \in \scrT H ,

\^ah(\phi j\bfite l, \phi i\bfite m) otherwise.

This definition enforces global symmetry of the matrix but requires taking into
account special boundary cases when iterating over the interior of macro-elements.
In practice, we therefore employ an alternative definition where we use the standard
bilinear form only if xi \in \partial T of at least one T \in \scrT H . This loss of global symmetry
across macro-element interfaces may cause problems for iterative solvers relying on
symmetric matrices. However, this symmetry loss can be regarded as higher-order
perturbation and in the numerical experiments provided in section 5, no degradation
of the convergence of the employed iterative solvers could be observed.

In the following two subsections, we show how to efficiently precompute most parts
of the correction term (2.9) in order for them to be suitable for stencil-based codes.
Since the correction term depends on the space dimension, we derive it separately for
2D and 3D.

Remark 2.3. The presented idea of scaling the reference stencils and thus obtaining
an accurate enough approximation of the stiffness matrix entries is only valid for linear
finite elements. However, for higher-order discretizations it is still possible to exploit the
HHG structure. There, we assume that the reference basis functions, their gradients,
and the coefficient are evaluated and stored at the quadrature points. Using these
values, the stencils are assembled similarly to those in [24]. Let \scrQ t be the set of
quadrature points in an element t \in \scrT h. Due to the HHG structure, for each qt \in \scrQ t

there exists a reflected quadrature point qtm \in \scrQ tm . For each pair of reflected elements
t and tm attached to an edge between two nodes xi and xj , we need to store the

matrices (Eqt)lm = (D(\phi j(xqt)\bfite l), D(\phi i(xqt)\bfite m)) for qt \in \scrQ t. Let \scrT i,j;T ;m
h be the

set of half of the elements within a macro-element T adjacent to the edge through i
and j which have a unique corresponding reflected element which is not in the set.
Additionally, let \omega qt be the quadrature weights corresponding to the quadrature points
in \scrQ t. The stencil ST

ij may then by computed via

ST
ij =

\sum
t\in \scrT i,j;T ;m

h

\sum
qt\in \scrQ t

| t| \omega qt (kqt + kqtm)Eqt .

\bftwo .\bfthree . \bfC \bfo \bfr \bfr \bfe \bfc \bft \bfi \bfo \bfn \bft \bfe \bfr \bfm \bfi \bfn \bftwo \bfD . In this subsection, we consider the correction
term (2.9) in the case of two dimensions, i.e., d = 2, and present a closed form of its
values. The antisymmetric part aa;tij of atij defined through (2.7) is determined by a

single variable \gamma (i,j);t and is of the following form:

aa;tij =

\biggl(
0 - \gamma (i,j);t

\gamma (i,j);t 0

\biggr)
.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1438 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Fig. 2. Local indices of an element t and its corresponding reflected element tm (left). An
element t with the three edges (right).

Let \bfn (x) = (n1(x), n2(x))
\top be the outward-pointing unit-normal of an element t \in \scrT h

for x \in \partial t, and let \bfittau (x) = (- n2(x), n1(x))
\top be the corresponding tangential vector.

In the following, we assume that the differential operator D is given by D\bfu = \bfitvarepsilon (\bfu).
Additionally, in the constant coefficient reference case, we have k = 1. Doing the same
computations with D\bfu = \bfnabla \cdot \bfu results in the same values but now just with a flipped
sign. The value \gamma (i,j);t can be rewritten as

\gamma (i,j);t =

\int
t

\bfitvarepsilon (\phi j\bfite 1) : \bfitvarepsilon (\phi i\bfite 2) - \bfitvarepsilon (\phi j\bfite 2) : \bfitvarepsilon (\phi i\bfite 1) dx =
1

2

\int
t

\phi j,y\phi i,x - \phi j,x\phi i,y dx

=
1

2

\int
\partial t

\phi i (\phi j,yn1 - \phi j,xn2) ds=
1

2

\int
\partial t

\phi i (\phi j,y\tau 2+\phi j,x\tau 1) ds=
1

2

\int
\partial t

\phi i\bfnabla \phi j \cdot \bfittau ds.

We denote the three edges of an element t \in \scrT h by E1, E2, and E3 as illustrated
in Figure 2. Since \phi i = 0 on E2 and \bfnabla \phi j \cdot \bfittau = 0 on E3, the integral is reduced to

\gamma (i,j);t =
1

2

\int
\partial t

\phi i\bfnabla \phi j \cdot \bfittau ds =
1

2

\int
E1

\phi i\bfnabla \phi j \cdot \bfittau ds =
1

2| E1|

\int
E1

\phi i ds =
1

4
.

This constant antisymmetric part aa;tij needs to be scaled by a difference of coefficients
evaluated at the vertices. Using the notation from Figure 2, the difference is obtained
by

\=kt - \=kt
m

=
1

3
(k (\bfitx pt) - k (\bfitx ptm

)) .

Finally, the correction term evaluates to

\bigl(
RT (k)

\bigr)
ij
=

1

12
(k (\bfitx pt) - k (\bfitx ptm

))

\biggl(
0 - 1
1 0

\biggr)
.(2.11)

Note that in the 2D case, the correction term is independent of the geometry, and
thus no extra information has to be stored in memory. As can be seen in the next
subsection, this is no longer the case in 3D.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1439

Fig. 3. Uniform refinement of one macro-element (left) into three subclasses (second from left).
Gray edge adjacent to blue and green subtetrahedra (third from left). Stencil at an interior node i of
a macro-tetrahedron with off-center nodes j \in \{ me, mnw, mn, ts, tse, tw, tc, bc, be, bnw, bn, ms, mse, mw\}
(right).

\bftwo .\bffour . \bfC \bfo \bfr \bfr \bfe \bfc \bft \bfi \bfo \bfn \bft \bfe \bfr \bfm \bfi \bfn \bfthree \bfD . In the 3D case, the uniform grid refinement rule
following [8] yields three subclasses of tetrahedra for each macro-element. We denote
each of these classes by a color, namely gray, blue, and green; cf. left and second from
left in Figure 3. We always associate the class corresponding to the macro-element
to the gray color. The remaining classes are arbitrarily associated to the colors blue
and green. This uniform refinement results in a stencil, which is the same for each
interior node of a macro-element. The resulting stencil is illustrated on the right in
Figure 3. We denote the edges adjacent to elements of classes blue and green only as
edges of gray type; cf. third from left in Figure 3. The edges of green and gray types
are defined similarly: An edge of blue type is adjacent only to elements of classes green
and gray, whereas an edge of green type is adjacent only to elements of classes blue
and gray. All other remaining edges are denoted as red-type edges.

In contrast to the 2D case, the general structure of the antisymmetric part of
the local stiffness tensor aa;t as defined in (2.7) for an element t \in \scrT i,j;T

h in 3D is
determined by three independent values \gamma , \beta , and \delta :

aa;tij =

\left(0 - \gamma (i,j);t - \beta (i,j);t

\gamma (i,j);t 0 - \delta (i,j);t

\beta (i,j);t \delta (i,j);t 0

\right) .(2.12)

Let \bfn (x) = (n1(x), n2(x), n3(x))
\top be the outward-pointing unit-normal of an element

t \in \scrT h for x \in \partial t. In the case of D\bfu = \bfitvarepsilon (\bfu) and k = 1, the nonzero components
of (2.12) evaluate to

\beta (i,j);t =

\int
t

\bfitvarepsilon (\phi j\bfite 1) : \bfitvarepsilon (\phi i\bfite 3) - \bfitvarepsilon (\phi j\bfite 3) : \bfitvarepsilon (\phi i\bfite 1) dx =
1

2

\int
t

\phi j,z\phi i,x - \phi j,x\phi i,z dx

= - 1

2

\int
t

\phi j,xz\phi i - \phi j,xz\phi i dx+
1

2

\int
\partial t

\phi j,z\phi in1 - \phi j,x\phi in3 ds

=
1

2

\int
\partial t

\phi i (\phi j,zn1 - \phi j,xn3) ds.

Similarly, the other components may be rewritten in terms of boundary integrals

\gamma (i,j);t =
1

2

\int
\partial t

\phi i (\phi j,yn1 - \phi j,xn2) ds and \delta (i,j);t =
1

2

\int
\partial t

\phi i (\phi j,zn2 - \phi j,yn3) ds.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1440 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Fig. 4. Local indices of an element t and its corresponding reflected element tm (left). Exploded
view of an element t depicting the four faces (right).

Equivalently, as in 2D, in the case when D\bfu = \bfnabla \cdot \bfu , the values of all three variables
are the same, and only the sign is flipped.

Let it, jt, pt, and qt be the vertex indices of a tetrahedron t \in \scrT h, where it and jt
correspond to the global nodes i and j; see Figure 4. Additionally, the corresponding
vertex coordinates of these nodes are denoted by an \bfitx with a subscript. The four faces
of t are defined by the following triplets of vertices:

F1 \equiv \{ it, jt, pt\} , F2 \equiv \{ it, jt, qt\} , F3 \equiv \{ it, pt, qt\} , and F4 \equiv \{ jt, pt, qt\} .

Since \phi i = 0 on F4 and (\bfn \times \bfnabla \phi j) = 0 on F3, applying Stokes' theorem yields\left(\delta (i,j);t

 - \beta (i,j);t

\gamma (i,j);t

\right) =
1

2

\int
\partial t

\phi i \cdot (\bfn \times \bfnabla \phi j) ds =
1

6

2\sum
f=1

\int
Ff

\bfn \times \bfnabla \phi j ds

=
1

6

2\sum
f=1

\left(
\int
Ff

\bfn \cdot (\bfnabla \times \phi j\bfite 1) ds\int
Ff

\bfn \cdot (\bfnabla \times \phi j\bfite 2) ds\int
Ff

\bfn \cdot (\bfnabla \times \phi j\bfite 3) ds

\right) =
1

6

2\sum
f=1

\left(
\int
\partial Ff

\bfittau \cdot (\phi j\bfite 1) ds\int
\partial Ff

\bfittau \cdot (\phi j\bfite 2) ds\int
\partial Ff

\bfittau \cdot (\phi j\bfite 3) ds

\right)
=

1

12
(\bfitx pt - \bfitx qt) ,

where \bfittau is the unit tangent. The antisymmetric part of the local stiffness tensor then
reduces to

aa;tij =
1

12

\left(0 (\bfitx qt - \bfitx pt)3 (\bfitx pt - \bfitx qt)2
(\bfitx pt - \bfitx qt)3 0 (\bfitx qt - \bfitx pt)1
(\bfitx qt - \bfitx pt

)2 (\bfitx pt
 - \bfitx qt)1 0

\right) .

In Figure 5, the six elements adjacent to an edge of red type are shown. Each of
these tetrahedra belongs to a class which we denote by the colors gray, green, and blue,
respectively. In each color class, we have eight tetrahedra adjacent to the inner mesh
node i. We define aa;tij to be zero if elements of the same class as t are not adjacent to
an edge, which is only the case at blue-, gray-, and green-type edges. We introduce

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1441

Fig. 5. Tetrahedra adjacent to an edge of type red with local indexing of the neighboring nodes.

a local indexing of the nodes surrounded by the edge as depicted in Figure 5 in the
following considerations.

Scaling and summing over all elements adjacent to the edge through mesh nodes i
and j yields

\Bigl(
RT (k)

\Bigr)
ij

= (\=ktgray - \=ktmgray)a
a;tgray

ij + (\=ktgreen - \=ktmgreen)a
a;tgreen
ij + (\=ktblue - \=ktmblue)a

a;tblue
ij .

(2.13)

Since

\=kt - \=kt
m

=
1

4
(k(\bfitx pt

) + k(\bfitx qt) - k(\bfitx qtm) - k(\bfitx ptm
)),

we can rewrite (2.13) by combining terms using the index notation from Figure 5 as\bigl(
RT (k)

\bigr)
ij
=
1

4
(k(\bfitx p) + k(\bfitx q) - k(\bfitx pm) - k(\bfitx qm))a

a;tgray

ij

+
1

4
(k(\bfitx q) + k(\bfitx r) - k(\bfitx qm) - k(\bfitx rm))a

a;tgreen
ij

+
1

4
(k(\bfitx r) + k(\bfitx p) - k(\bfitx rm) - k(\bfitx pm))aa;tblue

ij .

After eliminating common subexpressions, we define the three additional stencils as

\scrS T ;1
ij =

1

4

\Bigl(
a
a;tgray

ij +a
a;tblue
ij

\Bigr)
, \scrS T ;2

ij =
1

4

\Bigl(
a
a;tgray

ij +a
a;tgreen
ij

\Bigr)
, and \scrS T ;3

ij =
1

4

\Bigl(
a
a;tgreen
ij +a

a;tblue
ij

\Bigr)
.

To simplify the notation, we rename the following variables according to Figure 5:

k
(1)

\scrS 1 = k(\bfitx p), k
(2)

\scrS 1 = k(\bfitx pm), k
(1)

\scrS 2 = k(\bfitx q), k
(2)

\scrS 2 = k(\bfitx qm), k
(1)

\scrS 3 = k(\bfitx r), and k
(2)

\scrS 3 = k(\bfitx rm).

This yields the following form of the correction term RT in 3D:

(2.14) \bigl(
RT (k)

\bigr)
ij
=
\Bigl(
k
(1)
\scrS 1 - k

(2)
\scrS 1

\Bigr)
\cdot \scrS T ;1

ij +
\Bigl(
k
(1)
\scrS 2 - k

(2)
\scrS 2

\Bigr)
\cdot \scrS T ;2

ij +
\Bigl(
k
(1)
\scrS 3 - k

(2)
\scrS 3

\Bigr)
\cdot \scrS T ;3

ij .

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1442 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Ultimately, in addition to the constant reference stencil \^ST , we need to store three
stencils \scrS T ;1, \scrS T ;2, and \scrS T ;3 per macro-element in memory. Each of these stencils
needs to be scaled appropriately to obtain a computationally cheaper approximation
of the bilinear form (2.5).

\bfthree . \bfM \bfa \bfp \bfp \bfi \bfn \bfg \bfp \bfi \bfe \bfc \bfe \bfw \bfi \bfs \bfe \bfc \bfo \bfn \bfs \bft \bfa \bfn \bft \bfc \bfo \bfe ffi\bfc \bfi \bfe \bfn \bft \bfs \bft \bfo \bfn \bfo \bfd \bfa \bfl \bfv \bfa \bfl \bfu \bfe \bfs . In many
physical applications, the coefficient typically depends on the strain rate | D(\bfu)| 2 of the
velocity \bfu and is therefore a constant on each element when using a linear finite element
discretization. Since we rely on a stencil-based implementation with coefficient values
attached to the nodes in \scrT h, we shall discuss efficient techniques to map piecewise
constant values to nodal values. In this way, index computations that are needed
to access the discrete solution can be reused to access the coefficient. Furthermore,
this method is inspired by the Zienkiewicz--Zhu (ZZ) error estimator [38], where the
piecewise constant gradient of a piecewise linear function is lifted to a continuous
gradient. Under certain assumptions, this may improve the accuracy of the coefficient.
The straightforward approach would be to find the best approximation of | D(\bfu)| 2 in
the space of piecewise linear and globally continuous functions with respect to the L2

norm. This, however, involves solving a global linear system and thus is too costly
when the coefficient changes after each iteration when solving nonlinear problems.
Therefore, we refrain from a global L2 projection and focus only on a local technique
that is better suited for efficient parallel processing. One possibility is to assign to each
node the volume weighted average of | D(\bfu)| 2 over its adjacent elements. However, we
present an alternative method, which we also use in our numerical experiments.

In this approach, the discrete function \bfu is locally projected to an affine linear or
quadratic function \~\bfu , and its derivative is evaluated in order to obtain an approximate
value of | D(\bfu)| 2 at a node \bfitx i. Let \scrP m(\omega i) be the space of polynomials of order m
on the patch \omega i. The jth component of \~\bfu is obtained by solving the minimization
problem

\~uj = argmin
p\in \scrP m(\omega i)

\sum
i\in \scrI i

(p(\bfitx i) - uj(\bfitx i))
2
for m \in \{ 1, 2\} ,(3.1)

where \scrI i is the index set containing all indices of the nodal patch \omega i. Recall that in the
case of a uniform refinement in 3D, this involves 15 nodes. Solving this minimization
problem corresponds to solving a small least squares problem for each node \bfitx i. The
approximate value of | D(\bfu)| 2 evaluated at \bfitx i is then given by | D(\~\bfu)(\bfitx i)| 2, since by
construction D(\~\bfu) is continuous on \omega i. As before, the coefficient ki is obtained in a
pointwise fashion according to the physical model.

In the interior of a macro-element, the quadratic and affine linear approximations
are equivalent. Particularly, the quadratic minimizing polynomial p2 of (3.1) on a
patch \omega i in the interior of a macro-element may be written as p2(\bfitx) = (\bfitx - \bfitx i)

\top \sansA (\bfitx -
\bfitx i) + \bfitb \top (\bfitx - \bfitx i) + c for some \sansA \in \BbbR d\times d, \bfitb \in \BbbR d, and c \in \BbbR . Similarly, a minimizing
affine linear function on the same \omega i may be written as p1(\bfitx) = \~\bfitb \top (\bfitx - \bfitx i)+\~c for some
\~\bfitb \in \BbbR d and \~c \in \BbbR . Due to the symmetry of the nodes in \omega i, the quadratic and linear
parts are decoupled, and it follows that \bfitb = \~\bfitb and c = \~c. The derivatives of p2 and p1
are given by \nabla p2(\bfitx) = \sansA (\bfitx - \bfitx i) + \bfitb and \nabla p1(\bfitx) = \~\bfitb . Evaluating the derivatives at
\bfitx i, we obtain \nabla p2(\bfitx i) = \bfitb = \~\bfitb = \nabla p1(\bfitx i). Therefore, the quadratic approximation
is only required on the lower-dimensional primitives, and the computationally much
cheaper affine linear approximation may be used in the interior of macro-elements.

\bffour . \bfC \bfo \bfm \bfp \bfu \bft \bfa \bft \bfi \bfo \bfn \bfa \bfl \bfc \bfo \bfs \bft \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . Since the stencil scaling approach for vector-
valued PDEs has been introduced as a means of reducing the computational cost for

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1443

matrix-free finite element implementations, we will present a concise cost analysis.
Asymptotically, most of the computational work is done in the interior of macro-
elements. Therefore, we restrict our performance analysis to the interior of a single
macro-element. Furthermore, we ignore all performance impacts stemming from
the required communication between processes and focus our analysis on multiple
independent processes on a single compute node. We start with an estimation of the
number of required operations to compute the residual \sansy = \sansf - \sansA \sansx , where the matrix \sansA
results from a discretization of the vector-valued PDEs with a single scalar coefficient.
Additionally, theoretical estimates on the required memory and the memory traffic
are given, which are validated by experimental measurements in subsection 5.1.1.

\bffour .\bfone . \bfN \bfu \bfm \bfb \bfe \bfr \bfo \bff \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs . We start by counting the number of required
operations to compute the residual \sansy = \sansf - \sansA \sansx when using the presented method or
when storing all the stencils in memory, which corresponds to storing the global matrix
\sansA . In the case of nodal integration, we assume that the local stiffness matrices (two in
2D and six in 3D) are precomputed and stored in memory. In the scaling approach,
we assume that the reference stencils and the additional correction stencils are stored
in memory instead. We do not precompute and store values like the average of k
in (2.8) or the differences of k in (2.14). Since the stencil code is already memory
bound, storing only the nodal values of k and computing the averages and differences
on the fly compared to reading the precomputed values from memory increases the
arithmetic intensity and reduces the required memory and the pressure on the memory
buses. The required numbers of operations for the different methods are summarized
in Table 2. Please note that these numbers only give estimates on the actual number
of instructions performed by the processor since optimizing compilers may reorder,
fuse, and vectorize FLOPs, meaning that multiple FLOPs may be performed in a
single cycle. We also ignore the effect of fused multiply-add operations that are typical
for most modern CPU architectures.

Let \sansy i \in \BbbR d be the target vector components at position i, let \sansx i \in \BbbR d be the input
vector components at position i, and let \sansf i \in \BbbR d be the components of the right-hand-
side vector at position i. Furthermore, let Sij \in \BbbR d\times d be the stencil which acts on a
vector at position j in order to obtain the result at position i. The residual for all the
degrees of freedom (DoFs) at position i is computed via

\sansy i = \sansf i -
\sum
j

Sij\sansx j .(4.1)

Assuming that all the Sij for a fixed i are already computed, the number of FLOPs for
evaluating (4.1) is the same for all three approaches, as can be seen in the fifth column
of Table 2. In 2D, there are seven stencils Sij for a fixed i, and thus seven local matrix
vector multiplications have to be performed, and the results are added for a total of 26
additions and 28 multiplications. The subtraction from the right-hand side takes two
extra additions. Since there are 15 stencils in 3D, similar considerations yield that
15 \cdot 9 = 135 multiplications need to be performed. The number of additions is made
up of 15 \cdot 2 \cdot 3 = 90 additions in the matrix-vector products, 14 \cdot 3 = 42 additions in the
sum over its results, and three additions from the subtraction of the right-hand side.

In the following, we estimate the number of required operations to compute the
stencil entries Sij for the matrix-free variants and begin with the physical scaling case.

\bffour .\bfone .\bfone . \bfN \bfu \bfm \bfb \bfe \bfr \bfo \bff \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs \bfi \bfn \bft \bfh \bfe \bfp \bfh \bfy \bfs \bfi \bfc \bfa \bfl \bfs \bfc \bfa \bfl \bfi \bfn \bfg \bfc \bfa \bfs \bfe . Recall that in
the unphysical scaling case, the stencil is defined as Sij = \^kTij

\^Sij for j \not = i. The

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1444 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Table 2
Operation count for residual computation.

Method Dimension Noncentral entries Central entry Residual Total

physical scaling
2D 36 add / 36 mul 24 add / 0 mul 28 add / 28 mul 152
3D 242 add / 220 mul 123 add / 0 mul 135 add / 135 mul 855

nodal integration
2D 33 add / 48 mul 24 add / 24 mul 28 add / 28 mul 185
3D 754 add / 648 mul 207 add / 216 mul 135 add / 135 mul 2095

stored stencils
2D 0 add / 0 mul 0 add / 0 mul 28 add / 28 mul 56
3D 0 add / 0 mul 0 add / 0 mul 135 add / 135 mul 270

central entry for j = i is defined in a way to enforce the zero-row sum property, i.e.,
Sii = -

\sum
j \not =i Sij .

Computing a stencil entry for a fixed i and j with j \not = i requires computing
the value of \^kTij and scaling the reference stencil. The calculation of \^kTij requires two
multiplications and three additions in 2D, and in 3D the number of operations depends
on the number of elements adjacent to the edge through the nodes i and j. Since we are
interested in an upper bound only, we assume the worst case of two multiplications and

seven additions. Finally, due to symmetry, the scaling requires d(d+1)
2 multiplications.

These values need to be multiplied by the number of off-center stencils, which results
in the numbers shown in the third column of Table 2. Computing the central entry
requires 12 additions in each component, totaling 24 additions in 2D. In 3D, the
number of additions per component is 41, resulting in a total of 123 additions.

In order to complete the cost consideration of the physical scaling, the cost of the
correction term needs to be assessed. In 2D, the correction term (2.11) just consists of
the scaled difference of two coefficient values, which results in a total of six subtractions
and six multiplications. Adding the correction term to the scaled reference stencil
requires 12 additional additions.

For the 3D case, recall that the physically scaled stencil is defined as

Sij = \^kTij \cdot \^Sij +
\Bigl(
k
(1)
\scrS 1 - k

(2)
\scrS 1

\Bigr)
\cdot \scrS T ;1

ij +
\Bigl(
k
(1)
\scrS 2 - k

(2)
\scrS 2

\Bigr)
\cdot \scrS T ;2

ij +
\Bigl(
k
(1)
\scrS 3 - k

(2)
\scrS 3

\Bigr)
\cdot \scrS T ;3

ij

for j \not = i. There, we have three correction terms with three unique nonzero entries for
red edges and two correction terms with three unique nonzero entries for the remaining
edges which need to be scaled. The scaling term of each correction stencil requires one
addition only. This leads to 3 \cdot 3 = 9 extra multiplications and 3 + 3 \cdot 3 = 12 additions
per red-edge stencil entry. For the edges of other colors, 2 \cdot 3 = 6 extra multiplications
and 2 + 2 \cdot 3 = 8 additions are needed. Since there are eight red edges and six other
edges per stencil, the total number of operations in the third column of Table 2 is
obtained.

\bffour .\bfone .\bftwo . \bfN \bfu \bfm \bfb \bfe \bfr \bfo \bff \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs \bfi \bfn \bft \bfh \bfe \bfn \bfo \bfd \bfa \bfl \bfi \bfn \bft \bfe \bfg \bfr \bfa \bft \bfi \bfo \bfn \bfc \bfa \bfs \bfe . For the num-
ber of required operations in the nodal integration case, we recall some of the calcula-
tions from the scalar case in [4]. There, the total number of operations is reduced by
eliminating common subexpressions to compute the coefficient value at the quadrature
point. The number of additions required to obtain the noncentral stencil entries in
the scalar case is 15 in 2D and 98 in 3D. In the vector-valued case, almost all of these
numbers need to be multiplied by 4 in 2D or 9 in 3D; only the sums of the coefficients
are computed once per updated node. The computation of the common subexpressions
in 2D requires nine additions and 16 in 3D. Since the common subexpressions of

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1445

the coefficient only need to be computed once per node, this results in a total of
4 \cdot (15 - 9)+9 = 33 in 2D and 9 \cdot (98 - 16)+16 = 754 in 3D. The number of operations
for the multiplications is obtained by just multiplying the number of scalar operations
by 4 or 9, yielding 4 \cdot 12 = 48 in 2D and 9 \cdot 72 = 648 in 3D. In our case, the central
entries are not computed by the computationally cheaper method of enforcing the zero
row-sum property because the rigid body mode kernel is preserved in this way. These
values are obtained by manually counting the number of operations for the central
entries, yielding the values presented in the third and fourth rows of Table 2.

\bffour .\bfone .\bfthree . \bfN \bfu \bfm \bfb \bfe \bfr \bfo \bff \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs \bfi \bfn \bft \bfh \bfe \bfs \bft \bfo \bfr \bfe \bfd \bfs \bft \bfe \bfn \bfc \bfi \bfl \bfs \bfc \bfa \bfs \bfe . In this scenario,
the whole global matrix \sansA is stored in memory. Therefore, we assume that no costs
are involved in computing the stencil entries and only the operations to compute the
residual are required. Note that this scenario is the preferred one with respect to the
number of operations but it consumes the most memory and it has the largest impact
on memory traffic from main memory; cf. subsection 4.2.

\bffour .\bfone .\bffour . \bfC \bfo \bfm \bfp \bfa \bfr \bfi \bfs \bfo \bfn \bfo \bff \bft \bfo \bft \bfa \bfl \bfr \bfe \bfq \bfu \bfi \bfr \bfe \bfd \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs . The theoretical analysis
of the required operations yields estimates of how much CPU time could be saved in
the case when the memory bandwidth is not limited and when the overhead stemming
from index calculations is ignored. As can be seen, the savings in FLOPs are minor
in 2D, but in 3D they are quite significant. For 2D, Table 2 shows that the physical
scaling requires 82\% of the FLOPs that are needed by the on-the-fly nodal integration.
In 3D, the physical scaling requires 41\% of the FLOPs needed by the nodal integration.
However, as can be seen in the measurements in subsection 5.1.1, the compiler reduces
the number of theoretically estimated FLOPs. Using the values reported by the Intel
Advisor,2 we see that the physical scaling requires 44\% of the FLOPs needed by the
nodal integration.

\bffour .\bftwo . \bfM \bfe \bfm \bfo \bfr \bfy \bfc \bfo \bfn \bfs \bfu \bfm \bfp \bft \bfi \bfo \bfn \bfa \bfn \bfd \bfm \bfe \bfm \bfo \bfr \bfy \bfa \bfc \bfc \bfe \bfs \bfs . For the best performance,
it is not only required that the number of FLOPs is small. The memory traffic from
the main memory also has to be small relative to the required FLOPs. Therefore, we
first give a short summary on the required number of double precision variables for a
residual computation in the interior of a single macro-element in Table 3, where N is
the number of scalar degrees of freedom in the interior of a single macro-element. The
third column summarizes the number of variables required to store the discretized
functions \sansf , \sansx , \sansy , and \sansk . The fourth column summarizes the number of variables
required to store the discretized operator \sansA . Note that only for the stored stencils
approach does the memory required to store the operator grow with the mesh size.
The total memory footprint is worst for the stored stencils approach. In this scenario
135 extra scalar variables must be stored, a number that would alternatively permit
an extra level of refinement of the mesh when using one of the matrix-free approaches.
Even if storing all stencils is cheapest in terms of FLOPs, it creates a severe restriction
on the size of the problems that can be solved and leads to a very large amount of
data that must be transferred from the main memory in each matrix-vector product.

In Table 4, we present estimates on the average number of bytes which need to
be loaded from and stored in the main memory to compute the residual at a single
mesh node in 3D. We split the estimation into two extreme cases. In the optimistic
case, we assume perfect caching and that all previously loaded values stay in the fast
cache levels. In the pessimistic case, we assume no caching at all and that all the
data have to be loaded from the slow main memory. This analysis gives lower and

2https://software.intel.com/intel-advisor-xe

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1446 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Table 3
Number of double precision variables required on a single macro-element with N scalar degrees

of freedom for a residual computation.

Method Dimension Variables (\sansf , \sansx , \sansy , \sansk) Operators

physical scaling
2D 7 \cdot N 28
3D 10 \cdot N 540

nodal integration
2D 7 \cdot N 72
3D 10 \cdot N 864

stored stencils
2D 7 \cdot N 28 \cdot N
3D 10 \cdot N 135 \cdot N

upper bounds on the required main memory traffic, and the value observed in practice
will lie somewhere between these bounds. Note that stores and loads of temporary
variables required for the computation of the stencil weights are not considered in
these estimates. These values only present estimates for the number of bytes that
must be transferred from the main memory, but they are not necessarily proportional
to the time required to load and store them. In modern architectures, data are moved
in terms of cache lines that may, for example, be 64 bytes large. If numerical data
are stored contiguously, successive values can be accessed more efficiently from cache
lines that are already loaded. Furthermore, modern CPU micro-architectures employ
prefetching that can accelerate the access to regularly strided data. A detailed analysis
of such effects on the speed of numerical kernels, as presented in, e.g., [2], is beyond
the scope of this article. In Table 4, we present estimated values for the bytes to be
transferred in the optimistic and pessimistic scenarios.

For the matrix-free variants, the precomputed stencil values or local stiffness
matrices need to be loaded. In the physical scaling case, the 15 reference stencil
weights for nine block operators are required, which results in a total of 1080 bytes.
Additionally, the three additional correction stencils need to be loaded, resulting in
4320 bytes. In the nodal integration case, six local stiffness matrices with 16 entries
each need to be loaded for each of the nine operators, resulting in 6912 bytes. In the
optimistic case, these data stay in the caches and are loaded from the main memory
only in the pessimistic case.

Only one coefficient has to be loaded in the optimistic case, but in the worst case
all 15 coefficients adjacent to a mesh node need to be loaded from the main memory,
which results in 120 bytes per mesh node. In the stored stencils approach, for each
mesh node all 15 stencil weights for nine operators need to be loaded even in the
optimistic case.

Additionally, the variables \sansf , \sansx , and \sansy are accessed during an iteration. In the
optimistic and pessimistic cases, 24 bytes of \sansf need to be loaded from the main memory.
Additionally, because of write allocation, 24 bytes from \sansy need to be loaded before they
are stored, resulting in traffic of 48 bytes. Reusing cached values of \sansx in the optimistic
case requires loading 24 bytes, but in the pessimistic case all 15 neighboring values
need to be loaded, resulting in 360 bytes.

These estimates show that with poor cache reuse, the matrix-free approaches
must be expected to produce even more main memory traffic than the stored stencils
approach. However, when the layer condition is satisfied for the data traversal, and
the caches are used efficiently, the matrix-free methods may lead to reduced main
memory traffic.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1447

Table 4
Average number of bytes required to load from and store to main memory when computing the

residual at a mesh node in 3D assuming the usage of 64-bit double precision floating-point variables.

Method Optimistic Pessimistic

physical scaling 8 + 96 = 104 4320 + 120 + 432 = 4872
nodal integration 8 + 96 = 104 6912 + 120 + 432 = 7464
stored stencils 1080 + 96 = 1176 1080 + 432 = 1512

\bffive . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfr \bfe \bfs \bfu \bfl \bft \bfs \bfa \bfn \bfd \bfa \bfp \bfp \bfl \bfi \bfc \bfa \bft \bfi \bfo \bfn \bfs . In this section, we provide numerical
results to illustrate the accuracy and run-time of the new scaling approaches in com-
parison to the assembly by nodal integration in a matrix-free framework. Throughout
this section, we denote the time-to-solution by tts, and by relative tts we denote the
ratio of the time-to-solution of the stencil scaling approach with respect to the nodal
integration. The numerical solutions obtained by the corresponding bilinear forms
ah(\cdot , \cdot) and \^ah(\cdot , \cdot) are always denoted by \bfu h and \^\bfu h, respectively.

We use two machines to obtain the run-time measurements presented in the follow-
ing subsections. Most of the measurements are conducted on the newer SuperMUC-NG
system equipped with Skylake nodes. The following values are taken from [28]. Each
node has two Intel Xeon Platinum 8174 processors with a nominal clock rate of 3.1
GHz. Each processor has 24 physical cores, which results in 48 cores per node. Each
core has a dedicated L1 (data) cache of size 32 kB and a dedicated L2 cache of size
1024 kB. Each of the two processors has an L3 cache of size 33MB shared across all
its cores. The total main memory of 94GB is split into equal parts across two NUMA
domains with one processor each. We use the Intel 19.0 compiler, together with the
Intel 2019 MPI library, and specify the compiler flags -\ttO \ttthree , -\ttm \tta \ttr \ttc \tth =\ttn \tta \ttt \tti \ttv \tte , -\ttx \ttH \tto \tts \ttt .

The second machine we use for some measurements is the older SuperMUC Phase 2
system equipped with Haswell nodes. The following values are taken from [29]. Each
node has two Intel Xeon E5-2697 v3 processors with a nominal clock rate of 2.6 GHz.
Each processor has 14 physical cores, which results in 28 cores per node. Each core
has a dedicated L1 (data) cache of size 32 kB and a dedicated L2 cache of size 256 kB.
The theoretical bandwidths are 343GB/s and 92GB/s, respectively. The CPUs are
running in cluster-on-die mode. Thus, each node represents four NUMA domains each
consisting of seven cores with a separate L3 cache of size 18MB and a theoretical
bandwidth of 39GB/s. On top of this, each NUMA domain has 16 GB of main memory
with a theoretical bandwidth of 6.7GB/s available. On this second machine, we use
the Intel 18.0 compiler, together with the Intel 2018 MPI library, and specify the
compiler flags -\ttO \ttthree , -\ttm \tta \ttr \ttc \tth =\ttn \tta \ttt \tti \ttv \tte , -\ttx \ttH \tto \tts \ttt . Note that the serial runs using only a
single compute core are not limited to running on large machines such as SuperMUC
but can also be run on usual modern desktop workstations with enough memory.

All the following experiments were implemented in the HHG framework [5, 6, 7].
If not otherwise specified, we solve the linear systems by applying geometric multigrid
V-cycles directly to the system until a specified relative tolerance of the norm of the
residual is obtained. The transfers from a coarser to a finer grid are performed by a
matrix-free linear interpolation, and the restriction is performed by the corresponding
transposed matrix-free operation. As a smoother, we employ the hybrid Gauss--
Seidel method, meaning that in the interior of macro-elements standard Gauss--Seidel
iterations are performed. Across the interfaces not all dependencies are updated,
which results in a Jacobi-like method. On the coarse grid, we perform iterations of
the diagonally preconditioned conjugate gradient method up to a fixed large relative
tolerance or for a fixed number of iterations in order to avoid unnecessary oversolving.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1448 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

\bffive .\bfone . \bfL \bfi \bfn \bfe \bfa \bfr \bfe \bfl \bfa \bfs \bft \bfo \bfs \bft \bfa \bft \bfi \bfc \bfs . In this subsection, we first perform benchmarks to
verify the performance models from section 4, and we consider two problems in linear
elasticity. The first is a benchmark problem where we have an analytical solution
at hand and can compute the discretization errors directly. In the second, a more
relevant problem is investigated, where an external force is applied to a metal foam.

\bffive .\bfone .\bfone . \bfM \bfe \bfm \bfo \bfr \bfy \bft \bfr \bfa ffi\bfc \bfa \bfn \bfd \bfr \bfo \bfo fl\bfi \bfn \bfe \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . In subsection 4.2, we presented
theoretical estimates on the number of FLOPs and the memory accesses required to
compute the residual of a linear system using different strategies to obtain the matrix
entries. In this subsection, we verify these results experimentally using a specially
designed benchmark, executed on a single compute node of SuperMUC-NG. With this
benchmark, we compare the performance of the methods analyzed in subsection 4.2,
i.e., physical stencil scaling, standard nodal integration, and stored stencils approach.
The floating-point performance measurements were conducted using the Intel Advisor
2019 [21], and the memory traffic measurements were conducted by accessing the
hardware performance counters using the Intel VTune Amplifier 2019 [22].

The benchmark computes the residual y = f - Ax for a vector-valued operator A
in 3D with the same sparsity pattern as the discretized linear elasticity operator. As in
the theoretical analysis, we only consider the DoFs in the interiors of macro-tetrahedra.
The residual computation is iterated 500 times in order to obtain an averaged value,
reducing errors stemming from small fluctuations in the run-time. The benchmark is
executed using 48 MPI ranks, pinned to the 48 physical cores of a single node. This is
essential to avoid optimistic bandwidth values when only a single core accesses the
memory. Measurements with the Intel Advisor and VTune Amplifier are carried out
solely on rank 0. Moreover, all measurements are restricted to the innermost update
loop, i.e., where the actual nodal updates take place. This does not influence the
results since the outer loops are identical in all variants. Note that in each update, the
DoFs corresponding to a single mesh node are updated all at once, i.e., three DoFs
per update. We choose L = 5 as the refinement level, which yields 1.09 \cdot 106 DoFs
per macro-element. The computation involves three vector-valued variables x, y, and
f where each of them requires about 8.4MiB of storage per macro-tetrahedron. In
addition to this, the scalar-valued coefficient k requires about 2.8MiB of storage.

We assign three macro-elements to each MPI rank, which is the maximum possible
for the stored stencils approach on SuperMUC-NG. In practice, the memory limit of a
compute node would be reached even faster, since all the lower-dimensional primitives,
the multigrid hierarchy, and the communication buffers require extra memory. Using
these settings, each innermost loop is executed 500,062,500 times per MPI rank.

In Figure 6, we summarize the recorded performance results of the three approaches.
In the leftmost plot of Figure 6, the FLOPs per update are shown, which are close to
the theoretically estimated values from Table 2. The second-from-left plot presents
the total number of transferred bytes from the main memory per update. The total
memory consumption is shown in the third-from-left plot. The stored stencils approach
requires almost 15 times more memory than the matrix-free approaches. At first sight,
the stored stencils approach appears to be the most attractive with respect to the
required operations when enough main memory is available. However, the rightmost
plot shows that the physical scaling approach has a slightly lower time per update
than the stored stencils approach. This is due to the large amount of data which
needs to be transferred from the main memory in each update; cf. second-from-left
plot in Figure 6. This means that, in fact, the caches are more efficiently used in
the matrix-free approaches. Note that these measured values are also close to the

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1449

Fig. 6. Bar plots for comparing the performance and memory consumption of the nodal
integration, physical stencil scaling, and stored stencils approaches on SuperMUC-NG. Three macro-
tetrahedra are assigned to each MPI rank.

Fig. 7. Time per update on different machines with four macro-tetrahedra attached to each
MPI rank. Left: SuperMUC Phase 2. Right: SuperMUC-NG.

theoretically estimated values reported in Table 4.
The same benchmark was conducted on SuperMUC Phase 2 but with four macro-

tetrahedra assigned to each of the 28 MPI ranks. This was possible, since this machine
has more memory available per core than SuperMUC-NG. In Figure 7, we contrast the
time per update on SuperMUC Phase 2 with the time per update on SuperMUC-NG
using equal problem sizes per MPI rank. Note that both of the matrix-free methods
worked on SuperMUC-NG, but the stored stencil approach required too much memory.
Furthermore, the time per update of the physical scaling did not improve much, but
the time per update of the nodal on-the-fly integration was reduced by about 45\%.
This is due to the increased clock rate of SuperMUC-NG compared to SuperMUC
Phase 2 and the larger arithmetic intensity of the on-the-fly integration.

In order to further visualize these results, we present a roofline analysis in Figure 8
conducted on SuperMUC-NG; see [20, 36]. The abscissa shows the arithmetic intensity,
i.e., the number of FLOPs divided by the number of bytes loaded and stored in the
innermost loop. The ordinate gives the measured performance as FLOPs performed
per second. For reference, we added measured saturated memory bandwidth rooflines
as reported by the Intel Advisor. Obviously, these measured values are smaller than
the theoretically optimal ones given in the hardware specifications. The maximum
performance for double precision vectorized fused multiply-add operations is reported

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1450 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Fig. 8. Roofline analysis of the residual computation using nodal integration, physical stencil
scaling, and stored stencils approaches.

by the Intel Advisor tool as 72.39GFLOPs/s. From the roofline analysis one can see
that the nodal integration yields the best performance with respect to FLOPs per
second but is still slower in practice, since it requires more than twice the number
of operations compared to the physical scaling. The physical scaling has a smaller
arithmetic intensity and a slightly worse performance in GFLOPs/s, while the stored
stencils approach has the lowest arithmetic intensity with the worst performance. The
compiler could not autovectorize the physical scaling and stored stencils kernels. In
the nodal integration kernel, however, one of the fixed-length inner loops could be
autovectorized. This explains why the performance of the nodal integration is slightly
better than the double precision scalar add performance. Of course, the roofline
analysis constitutes only a first quantitative evaluation of the performance. Other
performance models, such as the execution-cache-memory performance model [34], can
give deeper insight.

Remark 5.1. As can be seen in Figure 8, the physical scaling approach reaches
about 5.25\% of the peak performance based on double precision vector fused multiply-
add instructions. However, considering other rooflines, the physical scaling almost
reaches the double precision scalar add performance and reaches about 10.43\% of
the double precision vector add performance. Further performance optimizations are
difficult because of the less than ideal mix of multiplies and adds and the challenging
vectorization due to the index calculations in tetrahedral elements. These investigations
and performance optimizations are beyond the scope of this paper but are part of
future work and ongoing development of software structures in HyTeG [23].

\bffive .\bfone .\bftwo . \bfL \bfi \bfn \bfe \bfa \bfr \bfe \bfl \bfa \bfs \bft \bfo \bfs \bft \bfa \bft \bfi \bfc \bfs \bfb \bfe \bfn \bfc \bfh \bfm \bfa \bfr \bfk \bfp \bfr \bfo \bfb \bfl \bfe \bfm . As a first benchmark prob-
lem, we consider a compressible linear elasticity problem on the unit cube \Omega = (0, 1)3

modeled by (2.1) with \Gamma \mathrm{D} = \partial \Omega and \Gamma \mathrm{N} = \emptyset . The material of the block is assumed
to be isotropic and heterogeneous with a varying elastic modulus E but constant
Poisson's ration \nu . In this scenario, the stress tensor \bfitsigma = 2\mu \bfitvarepsilon + \lambda tr(\bfitvarepsilon)I is given by
Hooke's law, and the Lam\'e constants \mu and \lambda are

\mu (E) =
E

2(1 + \nu)
and \lambda (E) =

\nu E

(1 + \nu)(1 - 2\nu)
.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1451

Since the stress tensor \bfitsigma depends linearly on E, we factor it out and rewrite the stress
tensor such that it depends only on the single spatially variable coefficient E, i.e.,

\bfitsigma = E(x, y, z) \cdot
\biggl(

1

(1 + \nu)
\bfitvarepsilon +

\nu

(1 + \nu)(1 - 2\nu)
tr(\bfitvarepsilon)I

\biggr)
.

The associated bilinear form in the constant case E = 1 is thus given by a linear
combination of the discussed forms, yielding

aE=1(\bfu ,\bfv) =
1

(1 + \nu)
\langle \bfitvarepsilon (\bfu) , \bfitvarepsilon (\bfv)\rangle \Omega +

\nu

(1 + \nu)(1 - 2\nu)
\langle \bfnabla \cdot \bfu ,\bfnabla \cdot \bfv \rangle \Omega .(5.1)

The scaling is then performed on the bilinear form (5.1) with E as the varying scalar
coefficient. In the following, we perform a quantitative comparison of the three
approaches by investigating their accuracy and run-time. For this purpose, we let
\bfu \ast be a manufactured solution and set the right-hand side \bff of (2.1) accordingly to
\bff = - \bfnabla \cdot \bfitsigma (\bfu \ast). The Dirichlet boundary condition is set to \bfg = \bfu \ast

\bigm| \bigm|
\partial \Omega

. This allows
for a direct computation of errors and a quantitative study on accuracy of the different
methods. By \scrI h, we denote the interpolation operator of a function on the mesh \scrT h
and by \| \cdot \| 2 the discrete L2 norm defined as

\| \bfu \| 2 =

\Biggl(
h3
\sum
i\in \scrN h

\| \bfu (\bfx i)\| 22

\Biggr) 1
2

,

where \scrN h is the set of all vertices in the mesh \scrT h. As material parameters, we choose
the Poisson's ratio of aluminum, i.e., \nu = 0.34, and a Young's modulus of the following:
form

E(x, y, z) = cos(m\pi xy z) + 2, m \in \{ 1, 2, 3, 8\} .

The manufactured solution \bfu \ast is chosen as

\bfu \ast (x, y, z) =
1

xyz + 1

\left(x3y + z2

x4y + 2z
3x+ yz3

\right) .

It is important to note that the coefficient and exact solution do not lie in the ansatz
spaces and therefore cannot be exactly reproduced.

We discretize the computational domain by 384 tetrahedra on the coarsest level
\ell = 0. The finest level considered in this subsection is L = 6. Each system of equations
is solved using a single rank on SuperMUC-NG and by employing a geometric V (3, 3)
multigrid solver until a relative residual of 10 - 8 is obtained. As a smoother, we employ
the hybrid Gauss--Seidel method, and on the coarsest level we employ a diagonally
preconditioned conjugate gradient method, since the problem is symmetric and positive
definite.

In Table 5, we report on the errors, convergence rates, number of required V-cycle
iterations, and run-times for different refinement levels \ell and coefficient parameters m.
The error on level \ell is defined as \| \scrI hL

\bfu \ast - \scrI hL
\bfv h\ell

\| 2, where \bfv h\ell
denotes the numerical

solution obtained with one of the two matrix-free approaches, i.e., \bfu h and \^\bfu h. We do
not consider the stored stencil approach in this comparison, since the problem sizes
on the finest level are too large, and the matrices could not be stored in memory.
We observe quadratic convergence in the discrete L2 norm for the assembly through

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1452 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

nodal integration and the physical scaling. On the last level L = 6, the convergence
rate is higher, since here we compare two discrete approximations on the same level.
We still keep these rows in the table for completeness and in order to compare the
relative tts even if the error is not directly comparable to the errors on the coarser
levels. Independent of the coefficient frequency, we observe a relative tts of about 61\%
for m \in \{ 1, 2, 3, 8\} .

In order to emphasize that using the unphysical scaling results in a wrong solution,
we computed the errors in this benchmark using the unphysical scaling (2.10) without
reporting them in Table 5. In this case the errors on level \ell = 6 were 3.95 \cdot 10 - 3 for
m = 1, 1.25 \cdot 10 - 2 for m = 2, 1.83 \cdot 10 - 2 for m = 3, and 2.32 \cdot 10 - 3 for m = 8.

For a performance comparison, we performed the same experiment on a compute
node of the older SuperMUC Phase 2. The number of V-cycles and errors are the same
as on SuperMUC-NG, and thus we only present the tts for both matrix-free approaches
in Table 6. On this machine, we observe a relative tts of about 45\% independent of
the coefficient frequency. This larger speedup is due to the lower clock rate of the
processor, which has already been discussed in subsection 5.1.1 and illustrated in
Figure 7.

\bffive .\bfone .\bfthree . \bfL \bfi \bfn \bfe \bfa \bfr \bfe \bfl \bfa \bfs \bft \bfo \bfs \bft \bfa \bft \bfi \bfc \bfs \bfw \bfi \bft \bfh \bfe \bfx \bft \bfe \bfr \bfn \bfa \bfl \bff \bfo \bfr \bfc \bfe \bfs . In this subsection, we pres-
ent an application of our scaling approach where an external force is applied to an
isotropic and heterogeneous material. As before, we consider the stress tensor of Hooke's
law and model the problem by (2.1), where \partial \Omega = \Gamma \mathrm{D}\cup \Gamma \mathrm{N} and \Omega = (0, 4)\times (0, 2)\times (0, 1);
cf. Figure 9 (left). The Dirichlet boundary is chosen as \Gamma \mathrm{D} = \{ (x, y, z) \in \Omega | z = 0\}
and the Neumann boundary as \Gamma \mathrm{N} = \partial \Omega \setminus \Gamma \mathrm{D}. In this scenario, we ignore volume forces,
and thus we set \bff = \bfzero . The material block is clamped at the bottom, and therefore we
set \bfg = \bfzero . Further, the following planar force \^\bft is applied to the top plane of the foam:

\^\bft (x, y, z) =

\Biggl\{
(0, 0, - 1)\top , z = 1

(0, 0, 0)\top else
GPa.

We assume that the material of interest is a metal foam, and thus we apply the
Gibson and Ashby model [37, 17] which assumes the following relationship between
the elastic modulus of the metal foam Ef and of the matrix Em:

Ef

Em
\approx \phi 2

\biggl(
\rho f
\rho m

\biggr) 2

+ (1 - \phi)
\rho f
\rho m

,(5.2)

where \rho f is the foam's density, \rho m the matrix density, and \phi the porosity of the foam.
Again, we assume the matrix to consist of aluminum with a Poisson's ratio of \nu = 0.34
and the elastic modulus Em = 70GPa. Additionally, we assume that the ratio of foam-
and matrix-density is given by a radially symmetric function of the form

\rho f
\rho m

=
1

16
x(4 - x)z(2 - y) +

1

2
,

and \phi = 1 - \rho f

\rho m
. The foam's elastic modulus Ef is then obtained by relationship (5.2).

We discretize the block with 3072 tetrahedra on the coarsest level \ell = 0. The
finest level considered in this subsection is L = 5. Each system of equations is solved
using 48 compute cores with the same multigrid solver as in the previous subsection.
Since no analytical solution is available, we assume that the solution obtained with
the reference bilinear form ah(\cdot , \cdot) is the true solution and compare it to the solutions

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1453

Table 5
Errors for the linear elastostatics benchmark problem in the discrete L2 norm, convergence rates,

number of V-cycle iterations, and time-to-solution and relative time-to-solution for nodal integration
and physical scaling recorded for different refinement levels \ell and parameters m. The measurements
were conducted on SuperMUC-NG.

Nodal integration Physical scaling Rel.
\ell DoFs error eoc iter tts [s] error eoc iter tts [s] tts

m = 1

1 1.52 \cdot 103 8.11 \cdot 10 - 3 0.00 12 0.07 8.07 \cdot 10 - 3 0.00 12 0.07 0.93
2 1.21 \cdot 104 2.12 \cdot 10 - 3 1.94 18 0.35 2.10 \cdot 10 - 3 1.94 18 0.29 0.81
3 9.72 \cdot 104 5.43 \cdot 10 - 4 1.97 25 2.97 5.39 \cdot 10 - 4 1.97 25 2.03 0.68
4 7.77 \cdot 105 1.38 \cdot 10 - 4 1.97 29 26.50 1.37 \cdot 10 - 4 1.97 29 17.13 0.65
5 6.22 \cdot 106 3.53 \cdot 10 - 5 1.97 32 230.78 3.51 \cdot 10 - 5 1.97 32 143.04 0.62
6 4.97 \cdot 107 4.71 \cdot 10 - 6 2.91 32 1848.95 4.65 \cdot 10 - 6 2.92 32 1125.28 0.61

m = 2

1 1.52 \cdot 103 8.26 \cdot 10 - 3 0.00 12 0.08 8.23 \cdot 10 - 3 0.00 12 0.07 0.93
2 1.21 \cdot 104 2.16 \cdot 10 - 3 1.93 19 0.37 2.15 \cdot 10 - 3 1.94 19 0.30 0.81
3 9.72 \cdot 104 5.54 \cdot 10 - 4 1.97 25 2.96 5.50 \cdot 10 - 4 1.97 25 2.02 0.68
4 7.77 \cdot 105 1.41 \cdot 10 - 4 1.97 29 26.40 1.40 \cdot 10 - 4 1.97 29 16.88 0.64
5 6.22 \cdot 106 3.59 \cdot 10 - 5 1.97 32 233.40 3.57 \cdot 10 - 5 1.97 32 142.98 0.61
6 4.97 \cdot 107 4.92 \cdot 10 - 6 2.87 33 1910.68 4.86 \cdot 10 - 6 2.87 33 1173.80 0.61

m = 3

1 1.52 \cdot 103 8.28 \cdot 10 - 3 0.00 12 0.07 8.30 \cdot 10 - 3 0.00 12 0.07 0.95
2 1.21 \cdot 104 2.16 \cdot 10 - 3 1.94 19 0.37 2.17 \cdot 10 - 3 1.94 19 0.30 0.81
3 9.72 \cdot 104 5.54 \cdot 10 - 4 1.97 25 2.95 5.54 \cdot 10 - 4 1.97 25 2.01 0.68
4 7.77 \cdot 105 1.41 \cdot 10 - 4 1.97 30 27.58 1.41 \cdot 10 - 4 1.97 29 16.87 0.61
5 6.22 \cdot 106 3.59 \cdot 10 - 5 1.97 32 230.73 3.59 \cdot 10 - 5 1.97 32 145.07 0.63
6 4.97 \cdot 107 4.99 \cdot 10 - 6 2.85 33 1902.81 5.04 \cdot 10 - 6 2.84 33 1160.50 0.61

m = 8

1 1.52 \cdot 103 8.67 \cdot 10 - 3 0.00 11 0.07 9.04 \cdot 10 - 3 0.00 11 0.06 0.94
2 1.21 \cdot 104 2.26 \cdot 10 - 3 1.94 18 0.36 2.44 \cdot 10 - 3 1.89 18 0.29 0.79
3 9.72 \cdot 104 5.75 \cdot 10 - 4 1.98 24 2.83 6.36 \cdot 10 - 4 1.94 24 1.96 0.69
4 7.77 \cdot 105 1.46 \cdot 10 - 4 1.98 28 25.69 1.63 \cdot 10 - 4 1.96 28 16.46 0.64
5 6.22 \cdot 106 3.72 \cdot 10 - 5 1.97 31 223.97 4.14 \cdot 10 - 5 1.98 31 138.66 0.62
6 4.97 \cdot 107 5.54 \cdot 10 - 6 2.75 32 1844.60 6.90 \cdot 10 - 6 2.58 32 1124.61 0.61

obtained using the form \^ah(\cdot , \cdot). We denote the solutions by \bfu h and \^\bfu h, respectively.
Again, we do not consider the stored stencil approach in this comparison, since the
problem sizes on the finest level are too large, and the matrices could not be stored in
memory. The error on level \ell is defined by \| \scrI hL

\bfv h\ell
 - \bfu hL

\| for \bfv \in \{ \bfu , \^\bfu \} and \ell \leq L.
See Figure 9 (right) for an illustration of the deformed metal foam computed on level
\ell = 4.

In Table 7, we report on the errors, convergence rates, number of V-cycle iterations,
and run-times for different refinement levels \ell . We do not observe optimal quadratic
convergence in the discrete L2 norm, even in the nodal integration case, because of
the lower regularity of the problem. The solution obtained by the physical scaling,
however, has the same convergence rate but with a relative tts of about 64\%.

\bffive .\bftwo . \bfG \bfe \bfn \bfe \bfr \bfa \bfl \bfi \bfz \bfe \bfd \bfi \bfn \bfc \bfo \bfm \bfp \bfr \bfe \bfs \bfs \bfi \bfb \bfl \bfe \bfS \bft \bfo \bfk \bfe \bfs \bfp \bfr \bfo \bfb \bfl \bfe \bfm . In order to show that
the new approach is also applicable to indefinite problems, we consider a generalized
incompressible Stokes problem with a variable viscosity. The stress tensor of a
generalized Newtonian fluid with viscosity \mu is given by \bfitsigma (\bfu , p) = 2\mu \bfitvarepsilon (\bfu) - pI and

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1454 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Table 6
Time-to-solution and relative time-to-solution in the linear elastostatics benchmark for nodal

integration and physical scaling recorded for different refinement levels \ell and parameters m. The
measurements were conducted on SuperMUC Phase 2.

Nodal integration Physical scaling Rel.
\ell tts [s] tts [s] tts

m = 1

1 0.10 0.08 0.88
2 0.84 0.34 0.40
3 4.48 2.39 0.53
4 42.36 20.62 0.49
5 381.03 176.84 0.46
6 3065.13 1394.86 0.46

m = 2

1 0.09 0.09 0.93
2 0.53 0.36 0.68
3 4.79 2.35 0.49
4 44.31 20.73 0.47
5 381.06 174.61 0.46
6 3170.62 1420.91 0.45

Nodal integration Physical scaling Rel.
\ell tts [s] tts [s] tts

m = 3

1 0.09 0.08 0.91
2 0.58 0.35 0.61
3 4.76 2.43 0.51
4 45.51 21.02 0.46
5 379.64 174.09 0.46
6 3159.07 1420.09 0.45

m = 8

1 0.09 0.08 0.91
2 0.49 0.42 0.85
3 4.53 2.26 0.50
4 42.36 20.35 0.48
5 369.05 168.28 0.46
6 3079.40 1374.16 0.45

depends not only on the velocity \bfu but also on the pressure p. The problem considered
in this section is modeled by the equations

 - \bfnabla \cdot \bfitsigma = \bff in \Omega ,

\bfnabla \cdot \bfu = 0 in \Omega ,

\bfu = \bfg on \Gamma \mathrm{D},

\bfitsigma \cdot \bfn = \^\bft on \Gamma \mathrm{N}

on a domain \Omega \subset \BbbR 3 with a Dirichlet boundary \Gamma \mathrm{D} and Neumann boundary \Gamma \mathrm{N}. For
the well posedness of the problem, the finite element spaces need to meet a uniform inf-
sup condition, which is not the case for an equal-order P1 discretization. Therefore, we
add a level-dependent residual-based stabilization term c\ell [10] to the mass conservation

equation, i.e., c\ell (p, q) = - h2
\ell

12 \langle \bfnabla p,\bfnabla q\rangle \Omega . If \Gamma \mathrm{N} = \emptyset , then the pressure is not unique

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1455

Fig. 9. Experimental setup and dimensions of the metal foam (left). Initial (gray) and displaced
(colored) foam after applying the force on top. The displacement is magnified by a factor of 5. The
numerical solution was computed on refinement level \ell = 4 with standard nodal integration (right).

Table 7
Errors of the linear elastostatics example with external forces in the discrete L2 norm, conver-

gence rates, number of V-cycle iterations, time-to-solution, and relative time-to-solution for nodal
integration, and physical scaling recorded for different refinement levels \ell .

Nodal integration Physical scaling Rel.
\ell DoFs error eoc iter tts [s] error eoc iter tts [s] tts

1 1.23 \cdot 104 4.46 \cdot 10 - 4 0.00 12 0.38 4.44 \cdot 10 - 4 0.00 12 0.42 1.11
2 9.86 \cdot 104 1.70 \cdot 10 - 4 1.39 16 0.64 1.69 \cdot 10 - 4 1.39 16 0.67 1.05
3 7.89 \cdot 105 6.45 \cdot 10 - 5 1.40 18 1.27 6.42 \cdot 10 - 5 1.40 18 1.20 0.94
4 6.31 \cdot 106 2.31 \cdot 10 - 5 1.48 19 4.87 2.30 \cdot 10 - 5 1.48 19 3.74 0.77
5 5.05 \cdot 107 6.59 \cdot 10 - 6 1.81 19 30.02 6.57 \cdot 10 - 6 1.81 19 19.22 0.64

up to a constant, and we enforce uniqueness by demanding that the mean value of the
pressure be zero. This equal-order discretization is inconsistent and does not conserve
the mass locally; however, the discrete solutions still converge with the optimal order.
There are possibilities of obtaining local mass conservation by a postprocess, which is
discussed in [32].

\bffive .\bftwo .\bfone . \bfS \bft \bfa \bft \bfi \bfo \bfn \bfa \bfr \bfy \bfg \bfe \bfo \bfp \bfh \bfy \bfs \bfi \bfc \bfs \bfe \bfx \bfa \bfm \bfp \bfl \bfe . To demonstrate that the presented
method is also suitable for solving geophysical problems, we present an example
inspired by convection in Earth's mantle. The domain is chosen as \Omega = (0, 1)3 with
\Gamma \mathrm{D} = \partial \Omega and \Gamma \mathrm{N} = \emptyset . In this scenario, the viscosity and the volume forces depend
on the temperature. Therefore, we construct a temperature field \vargamma , resembling a
temperature plume in Earth's mantle given by the formula

\vargamma (x, y, z) =
89 e - 30 (z+(3 r

2 + 3
4) (r -

1
2) -

3
10)

2 - 10 r2

100
+

49 e - 100 r2

50
\bigl(
e17 z - 1819

200 + 1
\bigr) ,

with r(x, y, z) =

\sqrt{}
13 (x - 1

2)
2

10 +
27 (y - 1

2)
2

10 . Note that the temperature field is not radially
symmetric, and therefore no problem reduction due to symmetry is possible. The
viscosity \mu of the fluid is then given by an exponential law with a jump across a
horizontal plane, i.e.,

\mu (x, y, z) = e - \vargamma (x,y,z) \cdot

\Biggl\{
10 - 2, z > 3

4 ,

1 else.

See Figure 10 (left) for an illustration. In cases like this, where the location of a jump
is known a priori, it is possible to resolve the jump via the macro-mesh, since the

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1456 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

standard on-the-fly integration is performed across these interfaces. If the locations
of jumps are not known beforehand, it is still possible to locally mark elements
where the standard on-the-fly integration should be performed. This solution will, of
course, reduce the performance because of the additional branches in the code and
possible load imbalances between processes. Stokes flow problems with larger viscosity
jumps or a highly heterogeneous viscosity require more sophisticated preconditioners
than the geometric multigrid solver used here. See, e.g., [33] for how to construct a
robust iterative solver in this case. Additionally, we assume a gravitational source
term \bff = \vargamma \cdot (0, 0, 10)\top arising from a Boussinesq approximation [32, 31]. Figure 10
(right) shows the velocity streamlines of the numerical solution using nodal integration
computed on a mesh with 50,331,648 tetrahedra.

Fig. 10. Viscosity \mu depending on the given plume temperature field \vargamma with isosurface \mu = 0.85
in the lower part and \mu = 0.0085 in the upper part (left). Velocity streamlines of the numerical
solution computed on a mesh with 50,331,648 tetrahedra using nodal integration (middle). Zoom on
the velocity streamlines at the center (right).

In the following scenario, the coarsest level \ell = 0 is discretized by 786,432
tetrahedra, and each system is solved using 12,288 compute cores on SuperMUC-NG.
The finest level \ell = 6 involved solving a system with about 1.03 \cdot 1011 DoFs. In order
to solve the systems, we employ the inexact Uzawa solver presented in [14], with
variable V (3, 3) cycles where two smoothing steps are added to each coarser refinement
level which enforces convergence of the method. As a smoother, we again employ the
hybrid Gauss--Seidel method but with a relaxation parameter of 0.3 in the pressure
part. On the coarsest level, we employ the diagonally preconditioned MINRES method,
since the problem is not positive definite but symmetric. The solutions obtained with
both approaches do not show any visual differences on all levels. In Table 8, we report
on the number of inexact Uzawa iterations and tts for different refinement levels \ell .
The relative tts of the physical scaling is based on the tts of the nodal integration.
The worse relative tts in comparison to the linear elasticity examples is due to the fact
that the cost of the divergence matrices and the stabilization matrix need to be taken
into account. Since the stencils of these matrices are constant on each macro-primitive
and do not depend on a coefficient, we employ specialized kernels for them in all of the
approaches. This part of the cost remains unchanged for both approaches. Therefore,
assuming an optimal relative tts of 61\% for the velocity block results in a theoretical
optimal relative tts of only about 78\% for the total Stokes operator. This value is close
to the value observed for \ell = 6 in Table 8. We observe that the number of V-cycle
iterations required to obtain the relative residual tolerance is larger for multigrid
hierarchies with fewer levels compared to a larger number of levels. Furthermore, the
tts for the levels \ell = 1 to \ell = 4 are very close to each other. Since the number of MPI
ranks is fixed and the coarse grid solver does not scale optimally, most of the time is

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1457

spent on the coarse grid if the number of multigrid levels is small. This cost of the
coarse grid solver decreases relatively if the number of multigrid levels increases and
more time is spent for smoothing on the finer levels.

Table 8
Velocity and pressure errors of the stationary geophysics example in the discrete L2 norm,

convergence rates, number of inexact Uzawa iterations, time-to-solution, and relative time-to-solution
for nodal integration and physical scaling recorded for different refinement levels \ell .

Nodal integration Physical scaling Rel.
\ell DoFs iter tts [s] iter tts [s] tts

1 4.19 \cdot 106 12 36.58 12 39.30 1.07
2 3.35 \cdot 107 11 32.58 11 34.98 1.07
3 2.68 \cdot 108 10 31.69 10 32.22 1.02
4 2.15 \cdot 109 9 32.60 9 32.38 0.99
5 1.72 \cdot 1010 9 62.84 9 54.91 0.87
6 1.03 \cdot 1011 8 262.74 8 197.58 0.75

\bffive .\bftwo .\bftwo . \bfN \bfo \bfn \bfl \bfi \bfn \bfe \bfa \bfr \bfg \bfe \bfn \bfe \bfr \bfa \bfl \bfi \bfz \bfe \bfd \bfS \bft \bfo \bfk \bfe \bfs \bfp \bfr \bfo \bfb \bfl \bfe \bfm . In this section, we consider
the scenario of a nonlinear incompressible Stokes problem where the fluid is assumed
to be of generalized Newtonian type, modeled by a shear-thinning Carreau model,

\mu (\bfu) = \eta \infty + (\eta 0 - \eta \infty)
\bigl(
1 + \kappa | \bfitvarepsilon (\bfu)| 2

\bigr) r
.

The considered parameters in dimensionless form are specified in Figure 11 (left).
These parameters stem from experimental results; cf. [16, Chapter II].

The computational domain \Omega is depicted in Figure 11 (right), discretized by 14,208
tetrahedra on the coarsest level \ell = 0. The boundary \partial \Omega is composed of Dirichlet
and Neumann parts, i.e., \partial \Omega = \Gamma \mathrm{D} \cup \Gamma \mathrm{N} with \Gamma \mathrm{D} = \{ (x, y, z) \in \partial \Omega | x < 5\} and
\Gamma \mathrm{N} = \partial \Omega \setminus \Gamma \mathrm{D}. The volume force term \bff , the external forces \^\bft , and the Dirichlet
boundary term \bfg are set to

\bff = (0, 0, 100)\top , \^\bft = (0, 0, 0)\top , and \bfg = 16 y (1 - y) z (1 - z) \cdot (1, 0, 1)\top .

We solve this nonlinear system by applying an inexact fixed-point iteration similar
to the nonlinear solver described in [13], where the underlying linear systems are
only solved approximately to prevent oversolving. The pseudocode of our approach
is presented in Algorithm 5.1. The inexact Uzawa multigrid solver described in the
previous subsection is used for the computations in this subsection. The problem is
solved using a total of 111 MPI ranks with three compute nodes on SuperMUC-NG.
Following the standard notation, the discretized saddle-point problem in a single
fixed-point iteration reads\biggl(

\sansA
\bigl(
\mu (n)

\bigr)
\sansB \top

\sansB \sansC

\biggr) \biggl(
\sansu (n+1)

\sansp (n+1)

\biggr)
=

\biggl(
\sansf
\sanszero

\biggr)
.(5.3)

In Figure 12, we plot the final viscosity profile and y-component of the velocity
along the line \theta = [0, 5]\times \{ 0.5\} \times \{ 0.42\} for both approaches computed on \ell = 4. We
see that the solutions of the nodal integration and physical scaling approaches coincide.
For the sake of completeness, we also present the unphysical scaling results, which
yield different curves in both the top and bottom of Figure 12.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1458 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

Fig. 11. Dimensionless parameters for the Carreau viscosity model (left). Experimental setup
and dimensions of channel (right).

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffive .\bfone Fixed-point iterations coupled with a multigrid solver.

Set \sansu (0) = \sanszero , \sansp (0) = \sanszero , n = 0
Set \mu (0) = \mu (\sansu (0)) by employing the local approximation from section 3
\bfr \bfe \bfp \bfe \bfa \bft

Solve system (5.3) for \sansu (n+1) and \sansp (n+1) by applying an inexact Uzawa V(3,3)-cycle

Set \mu (n+1) = \mu
\bigl(
\sansu (n+1)

\bigr)
by employing the local approximation from section 3

Set n = n+ 1
\bfu \bfn \bft \bfi \bfl maxi\{ \| \sansu (n)i - \sansu

(n - 1)
i \| 2\} < 10 - 3 \cdot maxi\{ \| \sansu (n)i \| 2\}

Solve system (5.3) for \sansu (n+1) and \sansp (n+1) by applying final Uzawa V(3,3)-cycles until
a relative residual of 10 - 3 is obtained
Set \mu (n+1) = \mu

\bigl(
\sansu (n+1)

\bigr)
by employing the local approximation from section 3

\bfr \bfe \bft \bfu \bfr \bfn \sansu (n+1), \sansp (n+1), and \mu (n+1)

In Table 9, we report on the number of fixed-point iterations, the number of final
iterations, and the absolute and relative tts for the nodal integration and physical
scaling. We observe a relative tts of about 87\% on the finest level \ell = 6.

Since the coefficient \mu changes after each multigrid V-cycle, the caching of face
stencils as was done in the previous sections is not possible. This has a large impact
on the run-time for lower levels in the hierarchy, since the cost may be dominated by
the face primitives. Only asymptotically, for fine levels, the cost of the face primitives
is small compared to the cost of the element primitives. In this numerical experiment,
the solver performance is worse than in the previous examples, because of the inherent
difficulty of the nonlinear problem and the expensive on-the-fly nodal integration of
the bilinear form on the macro-faces.

\bfsix . \bfC \bfo \bfn \bfc \bfl \bfu \bfs \bfi \bfo \bfn . We have presented a new method to improve the performance
of matrix-free operator applications for vector-valued second-order elliptic PDEs.
Although we restricted ourselves to linear finite elements on hierarchical hybrid grids,
the idea of exploiting structure and symmetry in the mesh applies for higher orders as
well, which we described in Remark 2.3. The method is based on scaling reference
stencils originating from a constant coefficient discretization by variable coefficients.
We showed that in theory a correction term is required in cases where the coefficient
is not constant. Furthermore, we presented how to precompute these correction terms
in the case of HHGs and how to rescale them using the coefficient. This new approach
was aimed at reducing memory traffic and at reducing the number of required FLOPs.
In order to show this, we first derived theoretical models about the required number of

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1459

Fig. 12. Viscosity profile (top) and profile of the velocity magnitude (bottom) plotted over \theta for
different assembly approaches.

Table 9
Relative time-to-solution comparison of the nodal integration and physical scaling approach for

the nonlinear generalized Stokes problem.

Nodal integration Physical scaling Rel.
\ell DoFs fixed-point iter final iter tts [s] fixed-point iter final iter tts [s] tts

3 4.69 \cdot 106 26 14 42.50 26 14 41.80 0.98
4 3.82 \cdot 107 29 7 127.98 29 7 121.87 0.95
5 3.08 \cdot 108 25 8 571.84 29 8 578.57 1.01
6 2.47 \cdot 109 24 7 3349.39 25 6 2925.09 0.87

FLOPs and the memory traffic. We validated these estimates using benchmarks and
numerical experiments on the supercomputer SuperMUC-NG. The results have shown
that specially designed matrix-free methods such as ours may be beneficial compared
to matrix-based methods not only for higher-order discretizations but also for low-order
discretizations, where the arithmetic intensity is lower. The numerical benchmarks and
experiments involving linear elasticity and Stokes flow also showed that our method is
faster than and comparably accurate to standard methods. Although we applied this
method using only a geometric multigrid solver, it can also be used with more scalable
coarse grid solvers, such as algebraic multigrid, or combined with preconditioners
designed for large viscosity jumps or heterogeneous viscosities in Stokes flow problems.
This makes our method attractive for highly resolved simulations on current and future
machines where the available memory is limited compared to the compute power.

\bfA \bfc \bfk \bfn \bfo \bfw \bfl \bfe \bfd \bfg \bfm \bfe \bfn \bft \bfs . The authors wish to thank the referees for the detailed
feedback they gave during the review process. Their insights significantly improved
the quality of the final manuscript. The authors gratefully acknowledge the Gauss
Centre for Supercomputing e.V. (GCS, https://www.gauss-centre.eu/) for funding
this project by providing computing time on the GCS supercomputer SuperMUC at
Leibniz Supercomputing Centre (LRZ, www.lrz.de).

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

B1460 DANIEL DRZISGA, ULRICH R\"UDE, AND BARBARA WOHLMUTH

REFERENCES

[1] A. Afzal, The Cost of Computation: Metrics and Models for Modern Multicore-Based Systems
in Scientific Computing, Master's thesis, Department Informatik, Friedrich Alexander
Universit\"at Erlangen-N\"urnberg, 2015.

[2] C. L. Alappat, J. Hofmann, G. Hager, H. Fehske, A. R. Bishop, and G. Wellein, Under-
standing HPC Benchmark Performance on Intel Broadwell and Cascade Lake Processors,
preprint, https://arxiv.org/abs/2002.03344, 2020.

[3] P. Arbenz, G. H. van Lenthe, U. Mennel, R. M\"uller, and M. Sala, A scalable multi-level
preconditioner for matrix-free \mu -finite element analysis of human bone structures, Int. J.
Numer. Methods Engrg., 73 (2008), pp. 927--947.

[4] S. Bauer, D. Drzisga, M. Mohr, U. R\"ude, C. Waluga, and B. Wohlmuth, A stencil scaling
approach for accelerating matrix-free finite element implementations, SIAM J. Sci. Comput.,
40 (2018), pp. C748--C778, https://doi.org/10.1137/17M1148384.

[5] B. Bergen, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Efficient
Finite Element Simulations on Supercomputers, SCS Publishing House, 2005.

[6] B. Bergen and F. H\"ulsemann, Hierarchical hybrid grids: Data structures and core algorithms
for multigrid, Numer. Linear Algebra Appl., 11 (2004), pp. 279--291.

[7] B. Bergen, G. Wellein, F. H\"ulsemann, and U. R\"ude, Hierarchical hybrid grids: Achieving
TERAFLOP performance on large scale finite element simulations, Int. J. Parallel Emergent
Distrib. Syst., 22 (2007), pp. 311--329.

[8] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355--378.
[9] J. Bielak, O. Ghattas, and E.-J. Kim, Parallel octree-based finite element method for large-

scale earthquake ground motion simulation, CMES Comput. Model. Eng. Sci., 10 (2005),
pp. 99--112.

[10] F. Brezzi and J. Pitk\"aranta, On the stabilization of finite element approximations of the
Stokes equations, in Efficient Solutions of Elliptic Systems, Springer, 1984, pp. 11--19.

[11] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in 3D, J. Sci. Comput.,
45 (2010), pp. 48--63.

[12] G. F. Carey and B.-N. Jiang, Element-by-element linear and nonlinear solution schemes,
Comm. Appl. Numer. Methods, 2 (1986), pp. 145--153.

[13] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.
Anal., 19 (1982), pp. 400--408, https://doi.org/10.1137/0719025.

[14] D. Drzisga, L. John, U. R\"ude, B. Wohlmuth, and W. Zulehner, On the analysis of block
smoothers for saddle point problems, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 932--960,
https://doi.org/10.1137/16M1106304.

[15] C. Flaig and P. Arbenz, A highly scalable matrix-free multigrid solver for \mu FE analysis based
on a pointer-less octree, in Large-Scale Scientific Computing: 8th International Conference
(LSSC 2011), Sozopol, Bulgaria, Revised Selected Papers, I. Lirkov, S. Margenov, and
J. Wa\'sniewski, eds., Springer, 2012, pp. 498--506.

[16] G. P. Galdi, R. Rannacher, A. M. Robertson, and S. Turek, Hemodynamical Flows:
Modeling, Analysis and Simulation, Birkh\"auser, 2008.

[17] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University
Press, 1999.

[18] B. Gmeiner, T. Gradl, H. K\"ostler, and U. R\"ude, Highly parallel geometric multigrid
algorithm for hierarchical hybrid grids, in NIC Symposium 2012 - Proceedings, J\"ulich,
Germany, NIC Ser. 45, 2012, pp. 323--330.

[19] G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists and
Engineers, CRC Press, 2010.

[20] A. Ilic, F. Pratas, and L. Sousa, Cache-aware Roofline model: Upgrading the loft, IEEE
Comput. Architecture Lett., 13 (2013), pp. 21--24.

[21] Intel Corp., Intel Advisor, https://software.intel.com/en-us/intel-advisor-xe, 2019.
[22] Intel Corp., Intel VTune Profiler, https://software.intel.com/en-us/vtune, 2019.
[23] N. Kohl, D. Th\"onnes, D. Drzisga, D. Bartuschat, and U. R\"ude, The HyTeG finite-element

software framework for scalable multigrid solvers, Int. J. Parallel Emergent Distrib. Syst.,
34 (2019), pp. 477--496.

[24] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element
operator application, Comput. \& Fluids, 63 (2012), pp. 135--147.

[25] K. Ljungkvist, Matrix-free finite-element computations on graphics processors with adaptively
refined unstructured meshes, in Proceedings of the 25th High Performance Computing
Symposium (HPC '17), Society for Computer Simulation International, 2017, pp. 1:1--1:12.

[26] K. Ljungkvist and M. Kronbichler, Multigrid for Matrix-Free Finite Element Computations

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STENCIL SCALING FOR VECTOR-VALUED PDES B1461

on Graphics Processors, Tech. report 2017-006, Department of Information Technology,
Uppsala University, 2017.

[27] J. Loffeld and J. Hittinger, On the arithmetic intensity of high-order finite-volume dis-
cretizations for hyperbolic systems of conservation laws, Int. J. High Performance Comput.
Appl., 33 (2019), pp. 25--52.

[28] LRZ, Hardware of SuperMUC-NG, https://doku.lrz.de/display/PUBLIC/Hardware+of+
SuperMUC-NG (retrieved 25 February 2020).

[29] LRZ, SuperMUC Petascale System, https://www.lrz.de/services/compute/supermuc/
systemdescription/ (retrieved 29 November 2018).

[30] D. A. May, J. Brown, and L. L. Pourhiet, A scalable, matrix-free multigrid preconditioner
for finite element discretizations of heterogeneous Stokes flow, Comput. Methods Appl.
Mech. Engrg., 290 (2015), pp. 496--523.

[31] Y. Ricard, Physics of mantle convection, Treatise on Geophysics, 7 (2007), pp. 31--81.
[32] U. R\"ude, C. Waluga, and B. Wohlmuth, Mass-corrections for the conservative coupling of

flow and transport on collocated meshes, J. Comput. Phys., 305 (2016), pp. 319--332.
[33] J. Rudi, G. Stadler, and O. Ghattas, Weighted BFBT preconditioner for Stokes flow

problems with highly heterogeneous viscosity, SIAM J. Sci. Comput., 39 (2017), pp. S272--
S297, https://doi.org/10.1137/16M108450X.

[34] H. Stengel, J. Treibig, G. Hager, and G. Wellein, Quantifying performance bottlenecks of
stencil computations using the execution-cache-memory model, in Proceedings of the 29th
ACM International Conference on Supercomputing, ACM, 2015, pp. 207--216.

[35] B. van Rietbergen, H. Weinans, R. Huiskes, and B. Polman, Computational strategies for
iterative solutions of large FEM applications employing voxel data, Int. J. Numer. Methods
Engrg., 39 (1996), pp. 2743--2767.

[36] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65--76.

[37] Y. Zhang, D. Rodrigue, and A. Ait-Kadi, High density polyethylene foams. II. Elastic
modulus, J. Appl. Polymer Sci., 90 (2003), pp. 2120--2129.

[38] O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error
estimates: Part 1: The recovery technique, Int. J. Numer. Methods Engrg., 33 (1992),
pp. 1331--1364.

D
ow

nl
oa

de
d

12
/0

9/
20

 to
 4

6.
12

8.
13

4.
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

	Introduction
	Open research issues
	State of the art
	Outline
	Summary of results

	Mathematical background
	Introduction of function spaces
	Definition of the model problem
	Finite element method
	Isogeometric analysis
	Variational crimes
	Further problems

	Solution techniques
	Matrix assembly, matrix-free methods, and surrogate matrices
	Direct and iterative solvers
	Nonlinear problems
	Nonlinear time integration

	Performance modeling
	Acronyms
	Bibliography
	Core articles
	The surrogate matrix methodology: a priori error estimation
	The surrogate matrix methodology: Low-cost assembly for isogeometric analysis
	The surrogate matrix methodology: Accelerating isogeometric analysis of waves

	Further articles
	Stencil scaling for vector-valued PDEs on hybrid grids with applications to generalized Newtonian fluids

