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Abstract. A sound statistical model for recovery rates is required for various applications

in quantitative risk management. We compare different models for predicting the recovery

rate on borrower level including linear and quantile regressions, decision trees, neural

networks and mixture regression models. We fit and apply these models on the worldwide

largest loss and recovery dataset for commercial loans provided by Global Credit Data,

where we focus on small- and medium-sized entities in the US. Additionally, we include

macroeconomic information via a predictive Crisis Indicator. The horserace is won by the

mixture regression model with regressed weight probabilities.

Keywords: Decision Tree, Loss Given Default, Mixture Model, Neural Network, predictive

Crisis Indicator

1. Introduction

Additional capital requirements and an increased awareness of the importance of credit risk

modelling are one consequence of the �nancial crisis of 2007. Capital requirements, like the

internal ratings-based approach of Basel II, allow �nancial institutions to estimate their credit

risk by own models. The main determinants of credit risk are the probability of default (PD), the

exposure at default (EAD) and the loss given default (LGD), the latter is linked to the recovery

rate (RR) via RR = 1 − LGD. We focus on the modeling of the recovery rate and compare

di�erent methods to estimate a �rm-speci�c one.

According to �297 of the Basel Comittee on Banking Supervision (2004), LGD has to be

measured as �loss given default as a percentage of the EAD.� However, there exist several methods

to calculate the LGD (resp. RR), namely the market LGD, the implied market LGD and the
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workout LGD. For loan data, the appropriate de�nition is the workout RR, which are the revenues

(R) �nancial institutions can collect reduced by all administration costs (A) during the resolution

period in case of a default divided by the outstanding amount at default (EAD). Ye and Bellotti

(2019) de�ne the RR for a defaulted loan with exposure at default EAD as:

RR =
R−A
EAD

=

∑
Collections−

∑
Admin Fee

Outstanding Balance at Default
.

With this de�nition, it is actually possible that the RR can take values greater than one or

smaller than zero. Keijsers et al. (2015) mention as an example for a RR smaller than zero

principal advances. On the contrary, in cases of penalty fees, additional interest and recovered

principal advances, the RR can attain a value greater than one. Both is frequently observed in

our data.

Our objective is to compare di�erent methods to model the recovery rate, namely linear

regression, quantile regression, decision trees with linear/quantile regression, neural networks

and mixture regression models. Thereby, we investigate how information on an economic crisis

a�ects these models.

We base this study on the LGD&EAD platform provided by Global Credit Data (GCD)

which contains information about defaulted loans; see Section 4.1 for more details. Moreover, we

aggregate the information on loan level to borrower level and focus on small- and medium sized

entities (SME) in the US. Inspired by the �ndings of Brumma and Winckle (2017), who observe

that the macroeconomic behavior during the resolution time has an in�uence on the recovery

rate, we include a predictive Crisis Indicator which predicts whether a crisis might occur during

the time of resolution in our models.

This paper is structured as follows: In the second section, we survey the literature for mod-

elling the RR. Subsequently, we provide a theoretical background of the techniques used in this

study in Section 3. Thereafter, Section 4 presents the structure of the database. The results of

the models are shown in Section 5. Section 6 summarizes the results and we discuss possibilities

for further research on the RR.

2. Literature Review

In literature, several models are suggested to estimate the RR. We give a short overview with

focus on regression models, decision trees, neural networks and mixture models.

According to Yao et al. (2015) and Bastos (2010b), classical linear regression models are the

most popular and most straightforward techniques to estimate the RR. However, Dermine and
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Carvalho (2006) and Qi and Zhao (2011) mention as drawback that in reality, RRs are bounded

and not normally distributed. Nevertheless, the linear regression model outperforms the Tobit

model and the decision tree model for UK credit card accounts in the study of Bellotti and Crook

(2009).

Many authors have adapted regression models to the situation of RRs. The inverse Gaussian

(IG) regression transforms the RR by an inverse Gaussian distribution function from the interval

(0, 1) to the real line. Qi and Zhao (2011) compare this to the inverse Gaussian regression

with beta transformation, which is also used by Gupton and Stein (2005), Loterman et al.

(2012) and Yao et al. (2015), where the assumption of beta distributed LGDs is postulated and

subsequently, the inverse Gaussian distribution is applied. Linear regression aims at predicting

the mean, whereas a quantile regression can analyze the in�uence of covariates on the entire

distribution. Krüger and Rösch (2017) emphasize that quantile regression might hence be better

suited for downturn scenarios.

In order to model the concentration of RRs at the boundaries {0, 1}, Bellotti and Crook (2009)

propose a decision tree model which is also used by Yao et al. (2015). A logistic regression model

decides whether the RR takes the values 0 or 1. Subsequently, an ordinary least squares method is

used inside (0, 1). Similarly, Loterman et al. (2012) use a logistic regression to determine whether

the RR takes the boundary values and di�erent parametric as well as non-parametric models to

explain the RR inside (0, 1), but the single application of the non-parametric models, esp. neural

networks and the least squares support vector machines, outperforms the combinations.

Besides Loterman et al. (2012), non-parametric models are also studied by several researchers:

In Bastos (2010b) and Qi and Zhao (2011), neural networks outperform the fractional response

regression resp. linear regression, Inverse Gaussian regression, Inverse Gaussian regression with

Beta transformation and the fractional response regression. However, Qi and Zhao (2011) men-

tion as drawback that neural networks are a �black-box,� because there is no straightforward

method to interpret the relationship between the independent and dependent variables.

Another type of models, which are considered in di�erent ways to predict the RR, are �nite

mixture models. Krüger and Rösch (2017) use a normal mixture distribution with two compo-

nents for LGD and �nd that it performs best with their quantile regression on the GCD subset of

US SMEs. However, Ye and Bellotti (2019) propose a two-stage model to apply a beta mixture

model for the RRs in (0, 1). This two-stage model outperforms the OLS, OLS with lasso as well

as the beta regression. In addition, Tomarchio and Punzo (2019) present zero-and-one in�ated

mixture models. A three-level multinomial model �rst decides, whether the LGD takes the value
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0, 1 or lies in (0, 1). Subsequently, �nite mixture distributions are applied to (0, 1), in which they

test di�erent component distributions.

In the study of Altman and Kalotay (2014), the transformed RR by the inverse normal

distribution is approximated as a mixture of Gaussian distributions, where only the probability

belonging to a certain component depends on covariates. Wang et al. (2018) extend this mixture

model on the Moody's Ultimate Recovery Database by introducing a Markov switching model

with two states, representing crisis and non-crisis periods to capture cyclical aspects. For each

state, there is a mixture model with four components for the transformed RR which enables the

determination of the in�uence of covariates.

Similar to the decision trees, Calabrese (2012) presents a mixed continuous-discrete model.

In her further work, Calabrese (2014) extends her model by introducing a mixture model. The

LGD is modeled as a mixture of the expansion and recession distribution where each distribution

is represented by the mixed model in Calabrese (2012). The mixtures represent the credit cycle

whether there are bad or good times.

3. Modeling Methods

This section provides a theoretical background of the techniques used in this study. We focus

on decision trees, neural networks and mixture regression models. We refer to Fahrmeir et al.

(2013), Hosmer and Lemeshow (2013) and Krüger and Rösch (2017) for more information on

regression methods, in particular for quantile regression models as well as for model selection

techniques.

3.1. Decision Tree

Since RRs are not normally distributed, a linear regression might not be adequate. As an

alternative, the RR can �rst be transformed and then, on the transformed data, a linear regression

can be applied. In the literature, e.g. in Gupton and Stein (2005), a beta transformation is used.

The transformed RR is:

Transformed RR = Φ−1(FBeta(RR,α, β)), (1)

where Φ−1 is the quantile function of the standard normal distribution function and FBeta(x, α, β)

is the distribution function of the beta distribution with shape parameters α and β, which have

to be estimated. However, this transformation can only be applied to RR ∈ (0, 1). As our dataset
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also contains observations with a RR smaller than zero or greater than one, we use a decision

tree approach as displayed in Figure 1.

Fig. 1: Structure of the decision tree model.

Firstly, a logistic regression (or a neural network) determines the probability p that the RR

is greater than or equal to 1. Then, a second classi�cation model, i.e. a logistic regression (resp.

neural network), estimates the probability q that the RR takes a value less than or equal to 0,

given that it is smaller than 1. We use a linear regression to predict the rates RR≥1 and RR≤0.

Inside (0, 1), we apply the beta transformation (1) to the RR. Subsequently, a linear regression

(or a quantile regression) estimates the rate RR(0,1). If the linear regression had been applied to

the raw RR, there would be predicted values outside (0, 1). Therefore, we �rst apply the beta

transformation and, on the transformed RR, we can use the linear regression. In contrast to

the linear regression, the estimates of the quantile regression would not exceed the open unit

interval. Therefore, we apply this regression type on the raw RR and compare the results. We

mention that, according to our results, it is better to apply the quantile regression on the raw

RR ∈ (0, 1). Hence, in the following, the corresponding results are presented. The expected RR

is expressed as a weighted average, where the weights are p, (1−p) ·q and (1−p) · (1−q). Hence,

the expected RR is:

E[RR] = p ·RR≥1 + (1− p) · q ·RR≤0 + (1− p) · (1− q) ·RR(0,1).

3.2. Neural Networks

In this section, we present the structure of feedforward neural networks following Hastie et al.

(2001) and Günther and Fritsch (2010).
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In a neural network, whose structure is presented in Figure 2, neurons are structured in layers.

The neurons are connected by synapses, which are graphs between them and the neurons of the

subsequent layers. In order to keep the model simple, we consider feedforward neural networks

with one hidden layer. The input layer contains all covariates, the so-called input variables

X1, ..., Xp, which represent the separate neurons. Each numerical attribute has its own neuron.

In case of categorical variables, dummy coding as in a linear regression is applied. The output

layer has K neurons O1, ..., OK . For regression problems with one response variable as well as

for classi�cation problems with two categories, we have K = 1. For classi�cation problems with

C classes, there are K = C output neurons, each representing one category. The hidden layer

with neurons H1, ...,HM lies in between and cannot be observed directly. A bias can be added

to the input and hidden layers as an extra neuron BI resp. BH .

Fig. 2: Structure of neural networks.

The propagation function connects the output values of the previous layer Oj,previous layer,

j ∈ previous layer such that the result can be used as input Ii,current layer for a neuron i ∈

current layer in the current layer. We use the weighted sum:

Ii,current layer =
∑

j∈previous layer

wi,jOj,previous layer.

The activation function σ transforms this value Ii,current layer to the output value of the neuron

Oi,current layer = σ(Ii,current layer). For this, we use the sigmoid function:

σ(x) = sigmoid(x) =
1

1 + exp(−x)
.

The propagation function is applied again to receive the input for the output layer. Then, for

the output neuron Ok, k = 1, ...,K, in the output layer, we apply a �nal transformation by the
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output function gk instead of the activation function. In case of regression problems, we use as

gk the identity function, whereas we apply the softmax function gk(Ik) = exp(Ik)∑K
l=1 exp(Il)

in case of

classi�cation problems.

The weights have to be estimated in the training process. Therefore, we use the backprop-

agation algorithm in case of neural networks for classi�cation problems as �backpropagation is

the most widely used algorithm for supervised learning with multilayered feed-forward networks�

according to Riedmiller and Braun (1993). In case of regression problems, we use the extension

RPROP+ algorithm of Riedmiller and Braun (1993) and refer for more information to their

original paper.

3.3. Mixture Models

In a linear regression model, we assume that the dependent variable relates to the covariates by

a �xed parameter β over all observations. This assumption is often too restrictive, calling the

need for models in which the regression coe�cient can change over di�erent clusters among the

observations. One family of models are �nite mixture models, which will be presented following

Frühwirth-Schnatter (2006), Grün et al. (2008), Leisch (2004) and Murphy (2012).

In general, a �nite mixture regression model with K components has the form:

h(y|x,ψ) =

K∑
k=1

πkf(y|x,θk), (2)

where πk, k = 1, ...,K are the weights with πk ≥ 0,
∑K

k=1 πk = 1 and ψ = (π1, ..., πK ,θ
′
1, ...,θ

′
K)

is the vector of all unknown parameters. θk denotes the component speci�c parameter vector for

the density function f . If f is a univariate normal density with component speci�c mean β′kx

and variance σ2
k, we get a mixture of standard linear regression models with θk = (β′k, σ

2
k)′.

The weights πk, k = 1, ...,K in Equation (2) are usually independent of the covariates. One

extension is the concomitant variable model by Grün et al. (2008), which assumes that the

weights depend on some variables, the so-called concomitant variables denoted by c. Then, the

mixture model can be written as:

h(y|x,ψ) =

K∑
k=1

πk(c,α)f(y|x,θk), (3)

where α denotes the parameter vector of the concomitant variables and ψ contains all parameters

including α. The remaining arguments are de�ned as in Equation (2) and the weights have to

satisfy the conditions πk(c,α) > 0 and
∑K

k=1 πk(c,α) = 1, k = 1, ...,K. Similar to Grün et al.
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(2008), we assume a multinomial logit model for the weights πk, which can be written as:

πk(c,α) =
exp(c′αk)∑K
u=1 exp(c′αu)

, (4)

for all k = 1, ...,K and with α = (α′k)′k=1,...,K and α1 ≡ 0.

For parameter estimation, we write the log-likelihood function of a sample of n observations

(x1, y1), ..., (xn, yn) as:

logL =

n∑
i=1

log h(yi|xi,ψ) =

n∑
i=1

log

( K∑
k=1

πk(c,α)f(yi|xi,θk)

)
.

Since the membership to the components is unknown, this likelihood function cannot be com-

puted directly. We use for maximum likelihood estimation the iterative Expectation-Maximation

(EM) algorithm introduced in Dempster et al. (1977). It is implemented for the concomitant

mixture models in the R-package flexmix.

4. Data

4.1. The Global Credit Data (GCD) database

As Krüger and Rösch (2017), we use a dataset of US-based small- and medium-sized entities

(SME) from Global Credit Data (GCD) for our empirical analysis. GCD is a dutch-based, not-

for-pro�t registered association whose owners are more than 50 Member-banks across the world.

The objective of GCD is to be a credit risk data pooling initiative to support the Member-banks

by their internal credit risk models inter alia for the advanced internal ratings-based approach

of Basel II. We use the LGD&EAD platform, which is the worldwide largest loss and recovery

dataset for commercial loans, and contains data relating to credit defaults since 1998 until the

end of 2016. This time period encompasses more than one full economic cycle as required by �472

in Basel Comittee on Banking Supervision (2004). Table 9 in the Appendix gives an overview

over all variables used.

We adjust the data following Höcht and Zagst (2008). First, the exposure at default has

to be strictly greater than zero as the focus of this study lies on real losses. Second, we only

consider loans where EAD + Principal Advance + Financial Claim ≥ e 5,000, such that very

small exposures are excluded. Third, the default date lies in the interval [January 2002, December

2015]. We exclude cases before the year 2002 due to modi�ed banking regulations. As the cases

after 2015 might still be unresolved, we exclude them as well. Fourth, to exclude all facilities that

are not fully resolved or exhibit unreasonable cash �ows, the following rule is applied according
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to Höcht and Zagst (2008): If the total sum of all reported cash �ows (including charge-o�s

and waivers) divided by the outstanding amount at default is smaller than 90% or greater than

105%, the facility is not considered. Fifth, only cases with resolved default status are of interest.

Finally, the RR lies in the interval [−0.5, 1.5]. All observations with smaller or greater RR are

excluded to avoid outliers.

Furthermore, we split the data into 3 groups: training, validation and test set. The training

set, in regression problems the so-called in-sample set, contains 80% of the data according to

Murphy (2012) and is used to estimate the models. In order to get an impression how well a

model can create new predictions, the trained models are applied on the test set, which is also

called out-of-sample set. This data is not used in the estimation of the model and therefore,

these results are reliable and can be compared. Some models need hyperparameters, for example

the number of hidden neurons in a neural network. Since the training data is already used and

the test data should remain independent of the modeling process, we use a third dataset, the

validation set, to �t the hyperparameters. The test set as well as the validation set both contain

10% of the data.

Fig. 3: Histogram of the recovery rate in our data (SME, US-based).

The histogram of the RR is presented in Figure 3 and shows a high concentration at full

recovery. Furthermore, there are two additional peaks near 0 and 0.5. In literature, the RR has

frequently been modeled using a bimodal structure, for example in the studies of Altman and

Kalotay (2014), Bastos (2010a), Bastos (2010b) and Qi and Zhao (2011). Similar to our data,

Ye and Bellotti (2019) use a trimodal distribution.
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4.2. Predictive Crisis Indicator

Some studies, for example Calabrese (2012) and Höcht and Zagst (2008), �nd that the recovery

rate tends to be lower during economic downturns. Brumma and Winckle (2017) observe that the

macroeconomic behavior during the resolution time has an in�uence on the recovery. Therefore,

we use a predictive crisis indicator, which indicates whether a crisis might occur in the next 18

months (the average resolution time).

To model the predictive Crisis Indicator, we �rst calculate a daily Crisis Indicator using a

modi�ed version of the algorithm of Ernst et al. (2009), where we use two-year highs instead of

half-year highs. The algorithm of Ernst et al. (2009) can be applied to any stock index, but for

the focus on recovery rates of SMEs in the US, we chose S&P500. With the Ernst et al. (2009)

algorithm, a daily Crisis Indicator is determined. To get a monthly aggregated Crisis Indicator,

we apply the following decision rule: If at least 2 days within a month are indicated as crisis, the

month in total is considered as crisis.

In the next step, a predictive Crisis Indicator needs to be built. For every month m, we

consider the period of the next 18 months [m+ 1, ...,m+ 1 + 18]. If there is at least one month

in crisis, the predictive Crisis Indicator for m is set to 1 (indicating a crisis).

Up to this point, the calculations are made on historical data and the predictive Crisis

Indicator can only be obtained, once the data for the next 18 months is available. Since the

goal of this study is to predict the RR at the date of default, the required information is not

yet available. Therefore, the predictive Crisis Indicator has to be modeled. For this, we set up

a logistic regression model with macroeconomic data and Table 1 shows the included attributes

and their impact.

Variable Positive (+)

or negative

(-) impact

Description

(Intercept) +

Implied Volatility + Implied Volatility

(TEDRATE)2 + TED Spread2

TCU - Capacity Utilization Rate for Total Industry

FEDFUNDS + E�ective Federal Funds Rate

FEDFUNDS :

(TEDRATE)2

- Interaction between FEDFUNDS &

(TEDRATE)2
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Variable Positive (+)

or negative

(-) impact

Description

T10Y3MM + Spread between 10-Year treasury Constant Ma-

turity and 3-Month Treasury Constant Maturity

(OECD_6NME)2 + Composite Leading Indicator given by the OECD

log(UNRATE) - Civilian Unemployment Rate

OECD_6NME - Composite Leading Indicator given by the OECD

Table 1: Estimated logistic regression model for the Crisis Indicator.

In this paper, the Crisis Indicator is used in di�erent ways:

(C1) We do not include the crisis information at all.

(C2) The predicted Crisis Probability calculated from the logistic regression model is included

as a covariate.

(C3) The Crisis Indicator is included as a covariate.

(C4) We split the data into crisis and non-crisis dataset and train the models on each subset.

5. Empirical Results

The focus of this study lies on mixture regression models and thus, we only brie�y present the

best results of the regression models, decision trees and neural networks and subsequently, we

concentrate on the mixture models. We also give an overall comparison of all models.

In order to decide for the best model, we use the mean squared error (MSE) measure of �t,

de�ned as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2,

where yi, i = 1, ..., n are the observed RRs and ŷi are the estimated RRs. This measure is also

used, e.g., in Calabrese (2012), Gupton and Stein (2005) and Ye and Bellotti (2019).

5.1. Regression Models

First, we consider the results of the regression models. We apply stepwise selection for model

selection in the di�erent regression problems based on the BIC, as it penalizes model complexity
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on a larger scale compared to the AIC. We will use this model selection criterion in every

regression problem in the following.

We concentrate on the linear regression model including the Crisis Indicator as well as the

models trained on the crisis and non-crisis subsets, since the results of these models performed

best (see Table 6). Regarding the included covariates within the linear models, which are pre-

sented in Table 2, we recognize that in case of crisis, the RR is only determined by the information

whether a guarantee or collateral is given and the size of EAD. Moreover, in the crisis case, the

Collateral Indicator has an impact on the RR, whereas the Primary Industry Code as well as

the Utilization Rate only have an impact in the non-crisis case. However, the linear regression

model with the Crisis Indicator includes all these attributes and additionally the variable Nature

of Default.

Variable LR on

crisis

subset

LR on

non- crisis

subset

LR incl.

Crisis

Indicator

QR incl.

Crisis

Indicator

Crisis Indicator x x

Country of Business x

Leveraged Finance Indicator x

Operating Company Indicator x

Primary Industry Code x x x

Nature of Default x x

Collateral Rank of Security x

Guarantor Rating Moodys x

Guarantee Indicator x x x x

Collateral Indicator x x x

log(EAD) x x x x

Utilization Rate x x x

Table 2: Included attributes in the linear regression models (LR) on the crisis/non-crisis

subset resp. the entire subset including the Crisis Indicator and in the quantile regression

model (QR) including the Crisis Indicator.

In case of the quantile regression model, we regress the median in order to compare the results

of the quantile regression to the results of the linear regression. The quantile regression including
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the Crisis Indicator outperforms the remaining models considering MSE (see Table 6). Therefore,

we have a look at the included variables of this model and recognize that the model selection

results in more attributes for the quantile regression as in case of the linear regression models. In

particular, the variables Country of Business, Leveraged Finance Indicator, Operating Company

Indicator, Collateral Rank of Security as well as Guarantor Rating Moodys are only included in

the quantile regression model, whereas the remaining covariates are part of both models.

5.2. Decision Tree

We use a decision tree approach in order to apply the beta transformation on the RR. Similar

to the regression models in Section 5.1, we use stepwise selection with BIC for model selection.

Besides the logistic regression, a neural network can be applied for the categorization prob-

lems. Therefore, we use the function nnet of the R-package nnet. As input, all available

attributes are used. The network is trained by the backpropagation algorithm and only has

one hidden layer for simplicity. Furthermore, the optimal number of hidden neurons is tested.

Therefore, the network is trained on the training data with di�erent numbers of hidden neurons

from 1 to 10. The prediction error of the validation set is the selection criteria and results for

both classi�cation problems, whether the RR is greater than or equal to 1 and whether the RR

is smaller than or equal to 0, in one hidden neuron. †

We �rst remark that we report the trees with the quantile regression for the median applied

on the raw RR in the open unit interval, because they outperform those on the beta transformed

RR. One reason for this might be that the RR in our dataset is trimodal and the beta distribution

might not �t well.

Table 3 gives an overview which covariates are included in the di�erent regression problems.

We focus in the unit interval on the linear regression model without crisis information and the

quantile regression including the Crisis Probability, as the results of the decision trees including

these models outperform the other decision trees. Similar to the regression problems above, the

quantile regression model including the Crisis Probability contains more variables than the linear

regression model. Furthermore, the Crisis Indicator a�ects only the logistic regression to decide

whether the RR attains a value smaller than or equal to zero.

†In general, a neural network with one hidden neuron and the sigmoid function as activation

function equals a logistic regression model. Since the estimation method is di�erent (backprop-

agation algorithm in case of a neural network and maximum likelihood estimation in case of a

logistic regression), the parameters of the two models can be di�erent.
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Variable LR

without

crisis

info for

RR ∈

(0, 1)

QR

incl.

Crisis

Proba-

bility

for

RR ∈

(0, 1)

LR for

RR ≥ 1

LR for

RR ≤ 0

Log.

Reg.

RR ≥ 1

Log.

Reg.

RR ≤ 0

Crisis Indicator x

Crisis Probability x

Country of Business x x x

Public Private Indicator x x x

Leveraged Finance Indica-

tor

x x

Operating Company Indica-

tor

x x

Primary Industry Code x

Nature of Default x x x x

Lender Issued Amount x

Collateral Rank of Security x x

Guarantor Rating Moodys x

Guarantee Indicator x x x

Collateral Indicator x x x

Entity Sales x

log(Number of Loans) x

log(EAD) x x x

Utilization Rate x x x x

Table 3: Included attributes in the regression models of the decision trees.

5.3. Neural Network

Another possibility to model the RR are neural networks whose results are shown in the following.

We begin with the description of the predetermined model parameters and present the results in
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Table 6.

In order to train neural networks for regression problems, we use the function neuralnet

of the R-package neuralnet, which applies the RPROP+ algorithm. Therefore, we set the

multiplication factors for the upper and lower learning rate to η− = 0.5 and η+ = 1.2, the

parameter threshold to 0.01 and the maximum number of iterations to 1e7. We use the sigmoid

activation function, the identity as output function and the sum of squared errors as error

function.

For reasons of simplicity, all neural networks contain one hidden layer and the optimal number

of hidden neurons is determined by minimizing the MSE on the validation set.

We use all available attributes as input variables and do not apply any model selection

in advance, because the neural network should identify the important variables by its own.

For categorical covariates, dummy variables are created just like for the regression problems.

According to Lantz (2015), we scale the metric data to the unit interval [0, 1] as it is not normally

distributed.

5.4. Mixture Regression Models

In this subsection, we present the results of the mixture regression models from Section 3.3. At

�rst, we apply the model selection to identify relevant covariates. Subsequently, the results of

the mixture models with and without concomitant variables are shown.

5.4.1. Model Parameters

Our motivation to investigate mixture regression models stems from the observation of multiple

modes. Since the RR is trimodal in our dataset, our mixture regression models have three

components. We use the package flexmix in R to �t our models. Unfortunately, there is no

model selection implemented. In addition, the EM-algorithm to �t the model does not converge

for every possible combination of input variables. For a pre-selection and in order to reduce the

overall number of covariates, we use the input variables of Krüger and Rösch (2017), who base

their study on loan data of SMEs in the US provided by GCD. We use our crisis information

instead of macroeconomic data and focus our analysis on entity level, hence we can not use all

attributes of Krüger and Rösch (2017). In conclusion, the resulting variables are log-transformed

EAD, Guarantee Indicator, Collateral Indicator, Primary Industry Code as well as the Crisis

Indicator resp. Probability. Subsequently to this pre-selection, all possible combinations of
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variables are formed and it is tested whether the EM-algorithm converges. We compare the

mixture regression models with the BIC and the best model contains the covariates Collateral

Indicator, log-transformed EAD and Crisis Probability. For simplicity reasons, this combination

of variables is also used as concomitant variables in the following. We notice that it is better to

use the Crisis Probability than the Crisis Indicator in this method.

The package flexmix provides information about the standard error as well as z- and p-value

for every coe�cient in every component. In case of a negative entry in the diagonal of the

variance-covariance matrix, the standard error can not be computed. This is partially the case

for the coe�cient of the log-transformed attribute EAD.

Therefore, we exclude this attribute for the regression problems, but it is still part of the

multinomial model. In order to distinguish the di�erent models, we refer to the model including

the EAD as covariate by the name "M1" and denote the model without the EAD as "M2." If,

additionally to the components, the probabilities to belong to the components are regressed, we

denote the models "M1C" and "M2C," since the attributes included in the multinomial models

are called concomitant variables.

5.4.2. Model Description

Comp. 1

M1 M2 M1C M2C

(Intercept) 0.9967 0.9920 0.9796 0.8051

Collateral Indicator: No -0.0045 -0.0044 -0.0111 0.0151

Collateral Indicator: Yes 0.0030 0.0014 -0.0057 -0.0285

log(EAD) -0.0003 - -0.0004 -

Crisis Probability -0.0008 -0.0012 -0.0055 0.0006

Sigma 0.0052 0.0077 0.0287 0.1818

Comp. 2

M1 M2 M1C M2C

(Intercept) 0.5158 -0.0143 0.9978 0.9921

Collateral Indicator: No -0.0087 0.0280 -0.0057 -0.0045

Collateral Indicator: Yes 0.4687 0.0362 0.0015 0.0014

log(EAD) -0.0007 - -0.0003 -
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Crisis Probability -0.0089 0.0206 -0.0007 -0.0008

Sigma 0.0195 0.0366 0.0053 0.0074

Comp. 3

M1 M2 M1C M2C

(Intercept) -0.3386 0.6348 -0.3593 0.3214

Collateral Indicator: No -0.2457 -0.1046 -0.1549 -0.0410

Collateral Indicator: Yes -0.2637 0.0465 -0.2147 -0.2223

log(EAD) 0.0814 - 0.0763 -

Crisis Probability -0.0070 -0.0505 0.0172 0.0720

Sigma 0.3077 0.2702 0.2858 0.1744

Table 4: Summary of the estimated mixture regression models.

Table 4 displays the results of the estimated models. Firstly, we consider model M1. The �rst

component of M1 is mainly determined by the intercept near one, since the remaining coe�cients

are vanishing. Furthermore, the intercept at 0.5 as well as the attribute Collateral Indicator have

the most impact on the second cluster. In contrast to the other clusters, the characteristic Yes

of the Collateral Indicator has a negative impact on the third cluster. Moreover, the in�uence

of the characteristic No of the Collateral Indicator as well as the Crisis Probability is negative.

In addition, the EAD has a slightly positive impact. The third component has the highest

�uctuations (represented in a Sigma of 0.308).

Having a look at M2, we notice that the �rst component is mainly in�uenced by the intercept

near one and the attributes have little impact. In comparison to the control group Unknown,

the categories Yes and No of the Collateral Indicator have an positive impact on the second

component. As the parameter of Yes of the Collateral Indicator is higher than the coe�cient for

No, we would expect higher values for entities having a collateral. It is counterintuitive that this

component increases its value if the Crisis Probability increases. The highest values of the third

component are expected in case of a collateral, whereas the lowest values will be attained when

there is no collateral. In addition, the value of this cluster will be higher if the Crisis Probability

is small. The attributes have the highest impact on the third cluster due to their higher absolute

values. Sigma with a value of 0.270 underlines this �nding, as it is higher than the sigma of the

�rst and second cluster.
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The �rst as well as the second component of the mixture regression model M1C are mainly

determined by the intercept near one, as the coe�cients of the covariates are near zero and

in�uence them little. Sigma of the third component is the highest, indicating higher �uctuations.

The characteristics of the Collateral Indicator in�uence the third component negative due to

their negative parameters. Moreover, the log-transformed EAD has a positive coe�cient, which

indicates that the value of the third cluster correlates to the EAD. In addition, a higher Crisis

Probability results in a higher value for this component which is counterintuitive.

In model M1C, we regress the probabilities that an observation belongs to a certain com-

ponent. In this study, a multinomial logit model is assumed for the weights πk, k = 1, ...,K

as depicted in Equation (4). One assumption of this model is α1 ≡ 0. Therefore, only the

parameters of the second and third component are given in Table 5.

Comp. 2

M1C M2C

(Intercept) 1.5822 3.6216

Collateral Indicator: No 1.1220 0.8513

Collateral Indicator: Yes -0.1528 -0.0661

log(EAD) -0.0345 -0.2217

Crisis Probability -0.4787 -0.5281

Comp. 3

M1C M2C

(Intercept) 2.2059 7.0839

Collateral Indicator: No 1.4026 2.0530

Collateral Indicator: Yes -0.1795 0.2222

log(EAD) -0.1054 -0.6220

Crisis Probability 0.2783 0.3027

Table 5: Summary of the estimated concomitant regression models.

The probability of belonging to the second component increases if no collateral is available

and decreases if a collateral is given. Moreover, a borrower with lower EAD (resp. a lower

Crisis Probability) is expected to have a higher probability of belonging to the second cluster.

Furthermore, the probability that an entity belongs to the third cluster is expected to be lower



Modeling recovery rates 19

in case of a collateral and higher in case of no collateral. The log-transformed EAD has again a

negative in�uence, whereas the Crisis Probability has a positive one.

In model M2C, we would expect that the value of the �rst component is higher in case of no

collateral than in case of a collateral. In addition, a higher Crisis Probability will lead to higher

values of the �rst component. This cluster has the highest variation which is displayed in the

high value of Sigma of 0.182. The covariates have little impact on the second component, which

is mainly determined by its intercept near one. Moreover, the value of the third cluster is lower

for an observation with a collateral than for one without any collateral. Furthermore, the third

component is expected to attain a higher value for a higher Crisis Probability.

The probability that an observation belongs to the second cluster increases if it has no col-

lateral. However, having a collateral decreases the probability. In addition, the higher the

log-transformed EAD or the higher the Crisis Probability, the lower the probability that an ob-

servation belongs to the second cluster. Furthermore, the probability that an observation belongs

to the third cluster reaches a maximum if there is no collateral. Moreover, we would expect a

lower probability that an entity belongs to the third cluster if the EAD is high or the Crisis

Probability is low.

5.5. Comparison of all models based on MSE

Table 6 shows the in-sample as well as the out-of-sample results for all models including the

linear regression model with di�erent assumptions (C1),...,(C4) on the crisis information. For

the linear regression, MSE prefers in-sample the model including the Crisis Indicator and out-

of-sample to separate the data into crisis and non-crisis subsets. Since the models on the split

data give more insights in the determinants of the RR in crisis and non-crisis case, this approach

might be preferred, as the goodness-of-�t of the models is similar.

In-sample Out-of-sample

(C1) (C2) (C3) (C4) (C1) (C2) (C3) (C4)

LR 0.1095 0.1085 0.1086 0.1087 0.1095 0.1089 0.1089 0.1082

QR 0.1382 0.1310 0.1312 0.1377 0.1418 0.1352 0.1353 0.1404

DT LR LogReg 0.1432 0.1435 0.1434 0.1457 0.1458 0.1465 0.1464 0.1475

DT LR NN 0.1395 0.1407 0.1407 0.1431 0.1417 0.1432 0.1432 0.1441

DT QR LogReg 0.1546 0.1504 0.1504 0.1590 0.1575 0.1542 0.1540 0.1624

DT QR NN 0.1513 0.1476 0.1476 0.1569 0.1541 0.1513 0.1511 0.1596
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In-sample Out-of-sample

(C1) (C2) (C3) (C4) (C1) (C2) (C3) (C4)

NN 0.0471 0.0467 0.0454 0.0995 0.1032 0.1011 0.0981 0.1010

M1 0.0375 0.0379

M2 0.0257 0.0268

M1C 0.0323 0.0326

M2C 0.0101 0.0107

Table 6: In-sample and out-of-sample results for the estimated linear regression (LR),

quantile regression (QR) models, decision trees (DT) with linear or quantile regression in

the unit interval (LR/QR) and logistic regression or neural network for the classi�cation

problems (LogReg or NN), neural networks (NN) and mixture regression models.

Having a look at the quantile regression, the model including the Crisis Indicator outperforms

the remaining models considering MSE. Moreover, the linear regression models outperform the

quantile regressions. This fact might be explained by the di�erent optimization problems. The

estimation method of the linear regression minimizes the least squares error, whereas the quantile

regression for the median minimizes the mean absolute error. However, the quantile regression

models give more insights into the structure of the distribution, since di�erent quantiles can be

modeled. We refer to Krüger and Rösch (2017) who calculate further quantile regressions for

several quantiles.

Comparing the decision trees by MSE, the models with the linear regression in (0, 1) outper-

form those with the quantile regression. Moreover, it is preferable to not include any information

about a crisis for the decision tree with the linear regression in the unit interval, whereas the

decision tree with quantile regression including the Crisis Probability outperforms the other

decision trees with quantile regression. Additionally, the trees with the neural networks for clas-

si�cation result in lower MSEs than the models with the logistic regressions. This �nding might

be explained by the slightly lower prediction error of the neural network for the classi�cation

whether the RR attains values smaller than or equal to 0. However, the di�erences in the MSE

are marginal and since the logistic regression gives some more insight in the determinants of the

RR, it might be preferable to use them. We compare the results of the decision tree approach

with the regressions on the entire dataset and recognize that the models on the entire data result

in lower MSEs than the decision trees.
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Regarding the results of the neural networks, we notice that the network including the Crisis

Probability outperforms in-sample as well as out-of-sample the other neural networks. Further-

more, we recognize that the MSE is in-sample small, whereas the results are out-of-sample similar

to the MSE of the logistic regression models. One reason for the di�erence in the MSE between

the in-sample and out-of-sample subset might be over�tting.

Finally, we consider the results of the mixture regression models. The models excluding

EAD as covariate are superior to the mixture regression models including the covariate EAD.

In addition, the models which regress the densities as well as the probabilities outperform the

mixture models with �xed probabilities. In conclusion, model M2C is the best model.

In-sample as well as out-of-sample, the mixture regression models outperform the regressions

as well as the neural networks. One reason for this might be that the mixture regression model

can display the di�erent modes better than the other models.

5.6. Practical consequences from the best models

In the following, we compare the three best models: The mixture regression model M2C, the

neural network including the Crisis Probability and the linear regression model with separate

subsets for crisis and non-crisis.

We investigate the di�erence di between the predicted RRs R̂i and the observed RRs Robs.
i :

di = R̂i −Robs.
i ,

for i = 1, ..., n where n is the number of observations. From the risk-managers point of view, a

situation in which the RR is conservatively underestimated is favorable compared to a situation

in which the RR is overestimated.

Therefore, we are interested in the number of observations where the di�erence between the

predicted RR and the observed RR exceeds a certain threshold θ ∈ {0.1, ..., 0.9} proportional to

the overall number of observations:
#{di > θ}

n
.

#{di>0.1}
n

#{di>0.2}
n

#{di>0.3}
n

#{di>0.4}
n

#{di>0.5}
n

#{di>0.6}
n

#{di>0.7}
n

#{di>0.8}
n

#{di>0.9}
n

LR 0.2975 0.2503 0.2117 0.1740 0.1310 0.0833 0.0316 0.0108 0.0013

NN 0.2859 0.2447 0.1960 0.1467 0.0937 0.0575 0.0267 0.0095 0.0015

M2C 0.1379 0.0386 0.0085 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000

Table 7: In-sample results for the di�erence between the estimated and observed RR.
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The results are presented in Table 7 for the in-sample and in Table 8 for the out-of-sample

data.

#{di>0.1}
n

#{di>0.2}
n

#{di>0.3}
n

#{di>0.4}
n

#{di>0.5}
n

#{di>0.6}
n

#{di>0.7}
n

#{di>0.8}
n

#{di>0.9}
n

LR 0.2999 0.2613 0.2263 0.1858 0.1288 0.0929 0.0359 0.0110 0.0000

NN 0.3008 0.2613 0.2061 0.1527 0.0938 0.0607 0.0304 0.0092 0.0009

M2C 0.1398 0.0414 0.0101 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

Table 8: Out-of-sample results for the di�erence between the estimated and observed

RR.

In-sample, the mixture regression model M2C overestimates the true RR by more than θ = 0.1

in 14% of all cases, whereas the linear regression model as well as the neural network overestimates

the RR even in 29% of all observations. Having a look at θ = 0.2, we recognize that the mixture

regression model M2C only overestimates the observed RR in 3.9% of all cases. The results of

the linear regression as well as the neural network are worse, since 25% of all cases predict a RR

which exceeds the true RR by more than θ = 0.2. In addition, there is no observation where

the predicted RR of the mixture regression model exceeds the true RR by more than θ = 0.6.

Exemplary, if we estimate a RR of 1, the true value is bigger than 0.4. Thus, for a case where a

full recovery is predicted, we know that at most 40% of the exposure at default will be recovered.

In case of the linear regression model as well as the neural network, there are cases where the

predicted RR overestimates the true RR by more than θ = 0.9. We refer to the same example

as above. If the estimated RR is 1, the true RR can be smaller than 0.1, which is almost a total

loss even though the model predicts a full recovery. Moreover, we notice that the behaviour of

the linear regression model and the neural network is similar.

The out-of-sample results are similar to the in-sample results. The behaviour of the linear

regression model equals the behaviour of the neural networks. Moreover, regarding the maximum

di�erence, the out-of-sample results for the mixture regression model M2C are even slightly better

than in-sample, since there is no prediction which overestimates the true RR by the value θ = 0.5.

Similar to the in-sample results, the mixture regression model overestimates the true RR by more

than θ = 0.1 in 14% of all cases, whereas the linear regression model as well as the neural network

exceed the observed RR in 30% of all observations. In addition, the true RR is overestimated by

more than θ = 0.2 in only 4.1% of all observations in case of the mixture regression model and in

26% of all observations in case of the linear regression model as well as the neural network. Since
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the maximum di�erence is smaller in case of the mixture regression model and the predicted RR

exceeds the observed RR by 0.1 resp. 0.2 in only 14% resp. 4.1% of all cases instead of 30% resp.

26% of all cases, we conclude that the mixture regression model M2C outperforms the neural

network as well as the linear regression model.

6. Summary and Conclusion

We compared di�erent models to predict the RR; namely regression methods, decision trees,

neural networks and mixture regression models. Additionally, we investigated how information

on an economic crisis can be introduced into the models.

For our analysis, we considered a dataset of US-based SMEs obtained from GCD. We use the

de�nition of the workout RR. Empirical RRs exhibit a multimodal structure with three modes

at 0, 0.5 and 1. Since earlier studies in literature point out that an economic crisis during the

time to resolution has an impact on the RR, we use a predictive Crisis Indicator (resp. Crisis

Probability).

The best models are in-sample as well as out-of-sample the mixture regression models, es-

pecially the concomitant variable model which regresses the density as well as the probability

that an observation belongs to a certain cluster. We �nd by model selection with the BIC that

including the Crisis Probability is preferable compared to including the Crisis Indicator. The

neural network outperforms in-sample the linear regression model, but the results are similar

out-of-sample. The quantile regression models lead to higher MSEs than the linear regression

models. Decision trees performed worst in our study.

Concluding, let us propose some areas for future research in predicting and modelling the

RR. In the present study, the RR can take values greater than one as well as smaller than zero

and we conclude that the mixture regression models outperform the other models. Since most

of the studies consider observations with RR in the unit interval, the question arises whether

the mixture regression models also outperform the other methods in such a restricted dataset.

In addition, there are some parameters which can be modi�ed. For regression models, we do

not consider interactions, yet. Moreover, the number of hidden layers in neural networks can be

adjusted. Additionally, di�erent activation and error functions can be tested.
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A. Attributes in this study

Table 9 gives an overview over all variables from GCD that were used.

Attributes Type Reference

Category

Borrower

(B) /

Loan (L)

Level?

Aggregation for Loan

Level

Country of Business categorical Unknown B

Public Private Indica-

tor

categorical Unknown B

Primary Industry

Code

categorical Unknown B

Leveraged Finance In-

dicator

categorical No B

Operating Company

Indicator

categorical Unknown B

Incomplete Portfolio categorical No B

Number of Loans metric B

Nature of Default categorical Unknown B

Lender Issued Amount categorical No B

Entity Sales metric B

EAD metric B

Crisis Indicator resp.

Crisis Probability

categorical No B

Collateral Indicator categorical Unknown L at least one collateral

Guarantee Indicator categorical No L at least one guarantee

Default Amount metric L Sum

Utilization Rate metric L Median

Guarantor Rating

Moodys

categorical Unknown L worst rating

Rank of Collateral categorical Unknown L worst rank

Table 9: Attributes of the data.
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