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Abstract

The growing demand of processing power in an increasing number of embedded systems de-
ployed in various circumstances has led to new challenges towards the development of such
systems. One of these challenges is a digital system’s resiliency against soft errors that can
alter internal states and lead to unforeseen and sometimes critical behavior. Simulating such
errors at a system’s early design phases can help with integrating and evaluating counter-
measures. This work introduces a fast Register Transfer Level (RTL)-based fault injection
framework for soft-error evaluations of RISC-V processor cores. To enable injections, a tool
was developed that transforms the RTL model and builds a specific injection Application Pro-
gramming Interface (API) from the core’s hardware description. The modified RTL and built
API were put to test in a proof of concept framework evaluating an open-hardware RISC-V
core’s behavior towards random bit flips in its internal states. The framework is characterized
by its utilization of automatically generated, however, core-specific sources which enable a high
fault injection capability while maintaining low simulation overhead. The evaluation results
were analyzed with respect to the probability of a certain error occurring after a random bit
flip and the probability of a specific injection target being the cause for a certain error.
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1. Introduction

1.1. Motivation

Most physical processes are controlled by information technology systems. Decentralization of
control systems, access through large scale networks and more complex application software and
inclusion of full-scale operating systems (OS) have lead to generally higher loads on embedded
systems. This growing demand of processing power for a previously reasonably complex part
of modern electronics has been met by the possibility to feature a much greater amount of
components in an increasingly smaller form factor. At the same time, testing and even more
so verification struggles to keep up with this growth. One way to encounter this development
can be to utilize virtual prototypes (VPs) of such systems in early stages of design.

While designer’s of application-level software use VP sockets to study and optimize properties of
code and its means of employment, hardware developers might have to look into more than just
the behavior of cross-compiled code. Since the deployed unit will manipulate our physical world,
the same can be the case vice versa in an unintended way. A case of this are soft errors, where
data storage elements inside the digital system are corrupted by unpredictable manipulators.
These errors normally do not damage the system’s hardware, however, might lead to erroneous
behavior, thus, output of the system to the physical world. Soft errors can manifest themselves
often by biased or unbiased bit-flips in sequential logic caused by radiation particles hitting
such elements. Elaborating the impact of these errors on the system’s application is a major
concern on the design strategies which questions the coverage of simulating soft errors in virtual
prototypes.

Current research tasked itself not only with investigating the impact of soft-errors but also how
one should approach their modeling with respect to the level of abstraction. The most promi-
nent idea is to do so on a functional or instruction level. There, instructions of the simulation
target instruction set architecture (ISA) are translated just-in-time to equivalents of the host’s
ISA, where the simulation is performed. Prominent examples for this type of are QEMU and
ETISS (TUM EI EDA n.d.). A more detailed approach is taken, when instructions are not only
translated to the host ISA but interpreted. Here, the resulting traceable and instruction-wise
execution emulates the ISA behavior (SiFive n.d.). Both ideas have in common that the small-
est notion of time is one target instruction, therefore, can be summarized as instruction set
simulation (ISS). A more fine-grained abstraction level is register transfer level (RTL). While
ISS only mimics the system’s behavior, an RTL simulation imitates the hardware itself. To
clarify the dimensions of those levels, a gearbox simulation could be imagined. Depending on
the observational goals, a simple equation describing how speed and momentum are translated
from input to output could be enough. For processing systems, such equations would corre-
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1. Introduction

spond to the ISS level. This equation will not yield any information about the gearbox’s inner
workings that enable the translation nor how certain parts interact with each other. With
the assumption of an unbreakable gearbox, an equation would be enough. However, problems
arise when a designer wants to introduce faults, where no information about alterations to
the gearbox’s behavior is known, e.g. a gear’s teeth breaks and there is no information about
how this affects the translation. In contrast, simulating the gearbox more precisely would not
depend on information about the system’s changed behavior as the new behavior is described
through the changes in the hardware itself. For processing systems, an executable model of
the gearbox’s hardware would correspond to RTL.

Since the smallest notion of data storing elements in ISS are general purpose registers (GPRs)
and optionally control and status registers (CSRs), a large portion of possible soft error victims
are left out from simulation. Research has shown that high-level error injection methodologies,
i.e. only injecting in registers and memory, can lead to highly imprecise results (Cho et al. 2013).
Therefore, RTL would be the obvious choice for the level of abstraction in soft error simulations.
However, a more fine-grained simulation comes with costs. In this case, computational effort to
simulate these additional hardware components. Minimizing this simulation effort by modifying
highly optimized cycle-accurate RTL simulators for soft error evaluation is the focus of this
work.

1.2. Contributions

In this work, the generation of an executable RTL model for a Reduced Instruction Set Com-
puter (RISC) that enables guaranteed fault injection is explored. The focus lays on;

e understanding Verilator as the main tool building the host-executable model from the
hardware description language (HDL) sources,

e modifying the Verilator RTL model in order to enable cycle-accurate, and target-explicit
injection of errors,

e proposing a proof-of-concept RTL fault injection toolchain that builds an injection frame-
work from HDL sources and with minimal manual input,

e interpreting the results of a fault injection evaluation for a RISC example (RISC-V core).

1.3. Tasks

First, the tool generating the executable model (VRTL), Verilator, has to be explored. This
concludes understanding the VRTL to find ways to perform guaranteed fault injections on
fault injection viable components, exclusively. Thus, injection targets have to be identified,

16



1.3. Tasks

located and classified in order to optimize the overall simulation process by avoiding injections
in model variables that do not correspond to real-world soft error victims.

Next, an algorithm must be developed and implemented that modifies the VRTL sources to
allow cycle-accurate injections. Then, the modified VRTL is incorporated in a simulation and
fault injection framework for a RISC-V core enabling execution of cross-compiled application
code and fault injection scheduling. At last, space (bit) and time (execution cycle) random
faults are injected and their impact on the processor core analyzed.
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2. Background

2.1. Fault Model

2.1.1. Soft Errors

As a type of transient errors in digital systems, soft errors can be mostly traced back to effects
of neutron and alpha particle impacts on circuitry. The resulting fault can be modeled as a
single event transient (SET) (Maniatakos et al. 2011) or sometimes also referred to as sin-
gle event upsets (SEUs) (Baumann 2005). SEUs can affect combinational or sequential logic.
However, sequential soft error victims, such as flip-flops and D-latches, have more impact on a
system’s behavior since their state is stored in-between system clock cycles and their state is
only updated during a short latch-up phase. On the other side, combinational logic is continu-
ously driven and converging to a stable state, thus, should have an inherent resiliency against
SEUs where the transient impact is much smaller than the clock period. In designs with large
propagation delays, thus, low clock frequencies, a SEU seldomly has an impact on combina-
tional logic since the SEU has to happen during the relatively short latch-up phase. However,
in high frequency designs a SEU might propagate more easily through the combinational logic,
thus, increasing the chance of latching the error (Baumann 2005). Correct investigation of soft
errors on combinational logic requires either a gate level model of the system or a RTL model
with a modified net list. For this thesis, the following assumptions are made regarding the soft
error model:

i) SEUs in combinational logic are disregarded.
ii) SEUs are modeled as bit flips in data storage elements.

iii) Bit flips occur right after a correct latch-up.

fault inject fault inject
7 q g2
d
> g q

clk
Figure 2.1.: Simple register stage
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2. Background

Fig. 2.1 shows a simple register stage. Register g2 is driven by combinational logic fed by q1.
Both g1 and g2, are possible victims of a soft error modeled by a fault inject.

2.1.2. Injection Model

Considering the RTL representation of a synthesized digital systems, thousands of nets and
registers can be identified. Exploring a spatial and time explicit SEU, requires defining pre-
liminary modeling rules for fault injections. In this thesis, an faulty model FI for one SEU is
described by

FI ={M,b,c, T}

Variable b refers to a single-bit of a clocked data storage element in the bit-representation of a
model M, e.g. a micro-architectural register, and ¢ to a specific clock cycle in the observation
period. The injection type T' describes whether the target’s value is flipped unbiased or biased
towards a specific state, i.e. a logically high register injected with a high-biased injection,
would not be affected, whereas a logically low one would flip to logic high. However, in this
thesis, only unbiased flips are considered.

0 c—2 c—1 c c+1 c+2 t/clock

Figure 2.2.: Single-bit target fault

Fig. 2.2 shows a timing diagram for a single-bit fault injection. Equation v(M, b, t) describes
the clean value of bit b of model M over a simulation time ¢t. v(FI,t) refers to the value over
simulation time with the faulty model. To guarantee an injection, the assumption is made,
that at the moment of injection the target is stable, i.e. retaining the faulty state (T'(v.)) at
least until the next clock cycle.

2.1.3. Fault Effect Classification

SEU do not necessarily produce errors in the affected system. Furthermore, if an error is
generated, its observed impact during and after simulation time can vary. Based on the idea of
basic fault effect classes described in (Cho et al. 2013), this work handles fault effects through
the following after-simulation-time classification:
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2.1. Fault Model

e Application Errors: The application finishes, however, output or program flow is
unexpected and varies from an error-free reference run. Additionally, in-system hardware
is not capable of detecting these errors.

(AO) Output: The output memory differs from an expected, golden value. This includes
peripherals’ in a System on Chip (SoC) context.

(AP) Program Flow: The program execution trace varies from an expected one. Consid-
ering these errors often is important for applications demanding a specific execution
time, e.g. control applications, where the controller is designed with a worst case
execution time in mind.

e System Errors: The system detects its erroneous behavior. Exceptions can be issued
and could then be handled by dedicated processes in software.

(SM) Memory Access: An invalid access to a protected memory region was detected
by a dedicated hardware component, e.g. a Memory Protection Unit (MPU).

(SI) Illegal Instruction: An invalid instruction in the pipeline has been caught.

e Application Finished Correctly: The program finishes as expected and no errors
were detected.

(MSK) Soft Error Masked: After execution no difference to the reference run can be
identified. This means, output memory, execution cycles, and micro-architectural
state of the model match the reference.

(NSK) Soft Error Not Masked: After execution no difference to the reference run can
be identified. However, the micro-architectural states differ from an expected one.

e Hang-up Error: The application does not finish and no system error is detected.

(HL) Logic Stall: The pipeline is active, i.e. instructions still progress through the
pipeline, however, no application progress can be made. Reason can be that the
program is stuck in an endless loop because the loop’s exit check continuously fails.
Both software, e.g. an OS, and hardware, e.g. a watchdog, might be able to solve
this issue.

(HP) Pipeline stall: The pipeline is inactive, i.e. continuously stalled. This state can
only be left by reset.
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2. Background

2.2. Verilator RTL

2.2.1. Verilator

The open-source tool Verilator synthesizes hardware descriptions, specified in Verilog and Sys-
temVerilog hardware description language (HDL), to executable C++ or SystemC modules.
The more general implementation as a source library enables a convenient integration of Veri-
lator RTL (VRTL) in various applications.

hardware

description Verilator

translate & optimize
hardware description

C/C++ compiler

executable compile RTL model

binary and calling testbench

Figure 2.3.: Verilator flow
(Geier 2019)

In contrast to simulators using HDL built-in simulation techniques, Verilator performs an actual
synthesis process. The output is a cycle-accurate and efficient, i.e. fast, model (Veripool n.d.).
However, due to the optimization during synthesis some issues arise:

i)

ii)

iii)

iv)

Flattened hierarchy: The output’s hierarchy does not correspond the underlying hi-
erarchical design in HDL. Verilator supports different ways to access internal variables,
however, all require adding keywords in the input sources, i.e. non-functional modifica-
tion to HDL sources.

Data types: In VRTL, there are no data types representing the bit length of a variable.

Omitting non-storing elements: Since Verilator performs a full synthesis, not all
elements of combinational logic are required. Verilog nets, e.g. wires, that connect
module instances in a hierarchical design are often left out. This saves execution time
otherwise spent on updating signals in simulator delta-cycles.

Legibility: HDL sources are synthesized to thousands of lines of mostly incompre-
hensible C++ code. This makes debugging the VRTL near impossible resulting in a
"black-box” situation.

Fig. 2.3 shows a basic Verilator use case utilizing VRTL and a C++ testbench to build an
executable binary for a given SystemVerilog project. Outputs are updated by stimulating input
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2.2. Verilator RTL

variables of the synthesized top module and calling its evaluation method. Those outputs can
be handled in the hosting framework which, in this case, is a testbench instantiating the VRTL
model.

2.2.2. Fault Injection

The issues resulting from Verilator’s optimizations described in 2.2.1 propagate to a possible
fault injection application, nonetheless. Omitted nets make soft error simulation on combina-
tional logic impossible. Code size and legibility aggravate any manual insertion of injection
points for hardware projects at complexity levels of modern processor cores. Furthermore, flat-
tened hierarchy and the indifference of data types, both in VRTL as in Verilog/System Verilog,
hinders locating possible injection targets in the first place.

As fault injections into wires or variables that are actually constants in hardware, e.g. look-
up tables or hard-wired signals, would be unnecessary, variables in the VRTL model require
classification. SystemVerilog, unfortunately, does not specify whether a declared signal is going
to be continuously, i.e. a wire, or sequentially, i.e. a register, assigned at declaration time.
Although this SystemVerilog supports such explicit declarations, implicit signal declarations
are resolved during synthesis (IEEE Computer Society 2001, IEEE Computer Society 2009).
This results in many hardware descriptions using only the signal type keyword ”logic” for all
signal declarations.

stimulate RTL

signal

| save original _ | manipulate
declaration

logicla:b] = ‘init_val |

o » »| model w/o
reset cylces

" =T T =~T

continious procedural

assignments x: variable restore

SystemVerilog
HDL

manipulate

| original
...................................................... z =~z %
=
5 2 |behavior | z:wire | [a:constant| | o register | y
< g save stimulate RTL
= manipulate —#] model w/
- arie
3] variable - - e veral Eikees
> B . | unsigned <size mod> x; | T = reset cylces g
& declaration z: register

Figure 2.4.: Signal types and classification
(Geier 2019)

A possible solution to this is proposed in (Weinzierl 2017); An algorithm categorizes VRTL
variables based on their behavior inside the VRTL model, which is illustrated in Fig. 2.4.
On the left, the difference between a signal declaration in HDL and its corresponding variable
declaration in the C++ VRTL is shown, as well as the underlying behavior. On the right, the
signal classification algorithm is shown. Each input signal x is classified as either a wire, a
constant, or a registers.
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2. Background

2.2.3. RegPicker

In (Geier 2019), the stand-alone tool RegPicker was developed which implements the classifi-
cation algorithm described in sec. 2.2.2. Furthermore, the HDL’s underlying hierarchy lost in
the Verilator synthesis is reconstructed. Together with its classification, the signal’s location
is put out in an Extensible Markup Language file (XML). The XML constitutes a sufficient
basis for a fault injection framework.

2.3. Simulation Target: RI5CY

This work focuses on applying the fault model described in sec. 2.1 to RTL models of cores
implementing the open-hardware RISC-V ISA. Recent developments, including adaptions in
commercial products, established RISC-V as an interesting topic for research.

Instruction Interface Data Interface
rdata addr addr wdata rdata

Prefetch
Buffer

I

o
T
X
|
[
) —
T )|
g? g? IR
+ +
T T
4
58|
>

Optional FFU

Figure 2.5.: RI5CY block diagram
(Traber et al. 2019)

As a proof-of-concept simulation target, a 32-bit core executing cross-compiled RISC-V bench-
mark software is chosen. RI5CY is an open-source 32-bit RISC-V derivative developed by
researchers at ETH Ziirich and the University of Bologna, in context of the Parallel Ultra Low
Power Platform (PULP) project (ETH Ziirich n.d.a, ETH Ziirich n.d.b).

2.3.1. Pipeline

RI5CY has full support of RISC-V Base Integer Instruction Set, Standard Extension for Com-
pressed Instructions, Integer Multiplication and Division Instruction Set Extension (RV32I,
RV32C, RV32M), and PULP-specific ISA extensions, which are not surveyed in this work.
Fig. 2.5 shows a block diagram of the 32-bit core and depicts its 4-stage pipeline:
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2.3. Simulation Target: RI5CY

IF Instruction Fetch. Configured to start fetching from memory address 0x80 through a
128-Bit or 4-word cache line prefetcher.

ID Instruction Decode: Interprets the fetched machine code including compressed instruc-
tions. Additionally, interrupts on illegal instructions.

EX Execute: Takes decoded instructions and schedules execution on the respective unit.

WB Write-Back: Manages storage to data memory through the Load-Store Unit (LSU) and
an optional Physical Memory Protection (PMP).

2.3.2. Configuration

The RISCY project provides either a latch-based or flip-flop-based GPR file. In this work,
the flip-flop-based implementation of the register file is used and instantiated inside the core’s
hierarchy. Furthermore, no floating point unit is added which means the GPR’s memory is
reduced to the RISC-V integer register specification shown in tab. 2.1. All simulations are
performed on machine privilege level, however, the privilege functionality might be affected by
soft errors. The levels and their respective encoding are shown in tab. 2.2.

register name description

x0 Z€ero Hard-wired zero

x1 ra Return address

x2 Sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer

xb t0 Temporary /alternate link register
x6-7 t1-2 Temporaries

x8 s0/fp  Saved register/frame pointer

x9 sl Saved register

x10-11 a0-1 Function arguments/return values
x12-17 a2-7 Function arguments

x18-27 s2-11  Saved registers
x28-31 t3-6 Temporaries

Table 2.1.: RISC-V integer registers
from: (Krste Asanovic, Rimas Avizienis, Jacob Bachmeyer, Christopher F. Batten et al. 2017)

2.3.3. Injection Targets

Feeding RI5SCY’s HDL description into RegPicker yields 327 VRTL variables as possible injec-
tion targets comprising 5753 single-bit targets.
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2. Background

level encoding name

0 00 user / application
1 01 supervised

2 10 reserved

3 11 machine

Table 2.2.: RISC-V privilege levels
from: (Waterman et al. 2014)

Fig. 2.6 shows the RISCY fault injection target cluster. The cluster is generated from RegPicker
analyzing the RI5CY HDL sources and transforming the output to a directed graph description.
Nodes of the graph are variables of the VRTL model. Edges between nodes, although hidden,
describe a weighted hierarchical relation between variables and their parent cell, where a cell
is an instance of an HDL module. Each edge’s weight corresponds to the bit-length of a
variable. Registers, thus injection targets, are colored green, wires and constants, thus for
fault injection of no concern, colored red and purple respectively. The coordinate of each node
in the force-directed graph is calculated with a converging force-layout algorithm Force Atlas
in the visualization tool Gephi (Gephi n.d.). For further clarification on RI5CY’s hierarchy,
i.e. cell relations, fig. A.2 in the appendix shows a graph of Verilator’s own XML output.
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Figure 2.6.: RI5CY injection target cluster
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24. LLVM

2.4. LLVM

LLVM, formerly Low Level Virtual Machine, comprises a compartment of modular compiler
and toolchain technologies (LLVM Foundation n.d.). The LLVM core libraries can be utilized to
build custom tools for various applications. However, this work mostly utilizes tools revolving
around LLVM’s C/C++/Objective-C compiler (Clang) Abstract Syntax Tree (AST).

a Clang Tool FunctionDecl 0x55d1792f94c0 <clangASTexample.cpp:1:1,
C/C++ - AST | line:7:1> line:1:5 main ’int, ()’
source ™ | Tooling l—> ‘-CompoundStmt 0x55d1792f9a50 <col:15, line:7:1>
|-DeclStmt 0x55d1792£f9670 <line:2:2, col:12>
| ‘-VarDecl 0x55d1792f95e8 <col:2, col:11> col:6 used x
,—I‘_AST Consumer / ol ’int’ cinit
MatchCallback | ‘-IntegerLiteral 0x55d1792f9650 <col:11> ’int’ 0
AST Matchfinder |-DeclStmt 0x55d1792£9828 <line:3:2, col:18>
A | ‘-VarDecl 0x55d1792f9730 <col:2, col:17> col:6 used X
mod. | | ’int [100]° cinit
C/C++ [ | Actions | | AST Matchers | I ‘-InitListExpr 0x55d1792f97d8 <col:15, col:17> ’int,[100]°
| ‘-array_filler: ImplicitValueInitExpr 0x55d1792f9818
source | <<invalid sloc>> ’int’

‘-ForStmt 0x55d1792f9a18 <line:4:2, line:6:2>
|-BinaryOperator 0x55d1792f9898 <line:4:9, col:11> ’bool’ ’<’

Figure 27 Clang tOOling | |-ImplicitCastExpr 0x55d1792f9880 <col:9> ’int’ <LValueToRValue>

| | ‘-DeclRefExpr 0x55d1792f9840 <col:9> ’int’

11 lvalue Var 0x55d1792f95e8 ’x’ ’int’

| ‘-IntegerLiteral 0x55d1792f9860 <col:11> ’int’ 100
| -UnaryOperator 0x55d1792f98d8 <col:16, co0l:18> ’int’
// clangASTexample.cpp I lvalue prefix ’++’
| ‘-DeclRefExpr 0x55d1792f98b8 <col:18> ’int’
| lvalue Var 0x55d1792f95e8 ’x’ ’int’

3 s s ‘-CompoundStmt 0x55d1792f9a00 <col:20, line:6:2>
int maln(VO:Ld){ ‘-BinaryOperator 0x55d1792f99e0 <line:5:3, col:10> ’int’
| lvalue ’=’
. |-ArraySubscriptExpr 0x55d1792f9988 <col:3, col:6> ’int’
int x = 0, | lvalue

|-ImplicitCastExpr 0x55d1792f9958 <col:3> ’int *’
(I <ArrayToPointerDecay>

| ‘-DeclRefExpr 0x55d1792f98f0 <col:3> ’int,[100]°
| lvalue Var 0x55d1792f9730 ’X’ ’int.[100]°
‘-ImplicitCastExpr 0x55d1792f9970 <col:5> ’int’

|
int X[100] = { }; |
|
|
|

for (; x<100; ++x)

| <LValueToRValue >
{ | ‘-DeclRefExpr 0x55d1792f9910 <col:5> ’int’
X [X] = x: | lvalue Var 0x55d1792f95e8 ’x’ ’int’
’ ‘-ImplicitCastExpr 0x55d1792f99c8 <col:10> ’int’
} I <LValueToRValue>
‘-DeclRefExpr 0x55d1792f99a8 <col:10> ’int’
} lvalue Var 0x55d1792f95e8 ’x’ ’int’
Listing 2.1: Example AST source Listing 2.2: Example AST dump

The AST is an intermediate representation of C/C++ source code. Listing 2.2 shows the AST
for the brief example code (listing 2.1). An AST Matcher, e.g. FunctionDecl for declarations
of functions orArraySubscriptExpr for accesses to array elements, can be decorated further
with more specific names to refine locating granularity. Together with Clang Tooling, the AST
Matcher library enables callbacks to specific elements in the AST; Whenever the ClangTool
traverses the AST and a previously defined condition is matched, a callback function is initiated
with a reference to the matching AST element. This allows the user application (LLVM
Frontend) to handle the code section in a desired way, e.g. analysis of transformation. In
fig. 2.7 a simple Clang Tool is shown that modifies a given source file. The tooling library
generates the AST which is then traversed in the AST Consumer.Actions can perform various
transformations on the source file, while the AST Matchers and their respective callbacks locate
the corresponding code sections.
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3. Verilator RTL Modification

3.1. Verilator Evaluation

As described in Sec. 2.2.2, the VRTL model requires modifications to enable some form of
fault injection methodolgy. Difficulties arising from flattened hierarchy and missing data type
specifications can be handled by RegPicker (Sec. 2.2.3).

Legibility is more an indirect issue, since manually accessing variables and inserting injections
inside the VRTL would not be feasible after all and the actual injections will be scheduled by
an automated framework. The remaining problem is one of Verilator’s greatest feats; Faster
models through design optimization.

3.1.1. Synthesis

At first glance, omitted nets seem to be of no concern, since no injections are performed on
combinational logic. Thus, the smallest notion of time for this VP would be one clock cycle
or rather half of a clock cycle, which would comply with the fault model proposed in Sec.
2.1. However, simply changing values of internal signals of the VRTL between calls to the
evaluation method has occasionally shown no effect, i.e. auto-masking the fault. Inspecting
the VRTL source has shown that read-after-write occurrences for registers one stage before
a module output, i.e. sequential elements driving remaining wires. Reasons can be found
with Verilator’s optimization of these output assignments: Since a net normally takes on the
value of its most dominant driver nearly immediately, Verilator simply inserts this continuous
assignment right after the driver is updated in the sequential evaluation method. This saves
costly evaluation time of combinational logic, however, results in the masking issue.

SUL f0o0
@@ N &

eval() model

Figure 3.1.: VRTL example stimuli model
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3. Verilator RTL Modification

module foo(
input logic clk,
input logic a,
output logic ol, 02, o3

);
// declarations
logic ql, q2, q3;

// cont. body

O
N
[
= O © 0N T AW N

assign ol = qil;
assign 02 = q2;
assign o3 = q3;

\V a
o
5

o
N

always_ff @(posedge clk)

O
w

15 // seq. body
<>)— d : 16 else
: 17 ql <= a;
E:> : 18 q2 <= qil;
q ——0O 19 Q3 <= !qil;
................................................. : 03 20 end
21 endmodule
Figure 3.2.: Fault injection example Listing 3.1: Example System Verilog

Fig. 3.2 describes a simple System Verilog module foo, the left-hand side diagram illustrates the
module as a conceptual implementation. Outputs o1, 02, and 03 are driven by q1, g2, and g3
respectively by the assign statement, thus, making them equivalent to nets or wires. In general
SystemVerilog provides more than one always keyword type supporting latch, combinational
or sequential procedures. The SystemVerilog keyword always_ff enables procedural blocks
modeling sequential logic behavior sensitive to the expression following the keyword. In this
example, q1, q2, and g3, are sequentially updated by a non-blocking assignment (<=) in the
clock (clk) -sensitive block. Non-blocking means that at sufficient sensitivity, the current state
of each right-hand side non-blocking assignment is elaborated, however, the actual assignment
is scheduled separately and updated at the end of the evaluation period. This means that,
even though in line 17 of the listing 3.1, q1 is apparently updated before g2 in line 18, q2 will
be updated with the value of q1 when the always_ff is entered. SystemVerilog simulators,
thus Verilator, too, have to conform to these and more specifications in (IEEE Computer
Society 2009).

1 VL_INLINE_OPT void Vfoo::_sequent__TOP__1(Vfoo__Syms* __restrict v1Symsp) {
2 // Get internal variables from symbol table

3 Vfoo*x __restrict v1TOPp VL_ATTR_UNUSED = v1Symsp->TOPp;

4

5 // Body

6 v1TOPp->foo__DOT__q2 = v1TOPp->foo__DO0T__q1l;

7 v1TOPp->foo__DOT__q3 = (1U & (~ (IData)(v1TOPp->foo__DOT__ql1)));
8 v1TOPp->02 = v1TOPp->foo__DOT__q2;

9 v1TOPp->03 = v1TOPp->foo__DOT__q3;

10 v1TOPp->foo__DOT__q1 = v1TOPp->a);

11 v1TOPp->01 = v1TOPp->foo__DOT__q1l;

12 }

Listing 3.2: Example Verilator sequential body
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3.1. Verilator Evaluation

Listing 3.2 shows foo’s VRTL (Vfoo) sequential evaluation method. The method is called each
time a positive clock edge is recognized by Vfoos’s main evaluation function which is called
by the simulation host. Furthermore, during one evaluation each register-like variable must
not be assigned more than once, since only nets can be driven by multiple sources. Fig. 3.1
illustrates the example’s stimulus, input a and clock signal together with a call to the main
evaluation function, and outputs o1, 02, o03.

3.1.2. Fault Injection

Considering a fault injection between clock cycles, e.g. by accessing Vfoo’s variables through
the VRTL symbol table v1Symsp the following observations can be made assuming no resets
are done and clock-edges are triggered, thus, applying the fault model of sec. 2.1:

e FI ={Vfoo,ql,c,flip}:
c+1: Fault propagates to g2 and g3 through q1, thus outputs 02 and 03 are updated
with a faulty state. Injection target q1 is updated by input a and o1 is assigned the
new ql.
¢+ 2: Fault has left the model.
Problem: ol never sees the injected flip.

e FI ={Vfoo,q2,¢,flip}:

¢+ 1: q1 updates injection target q2, o2 is assigned the new value of q2. Fault has
left the model.

Problem: o2 never sees the injected flip.
o '] ={Vfoo,q3,c, flip}:

¢+ 1: q1 updates injection target g3, 03 is assigned the new value of q3. Fault has
left the model.

Problem: 03 never sees the injected flip.

Consequence of this auto-masking of a section of possible injection targets is that injections
between clock cycles, i.e. between evaluation calls, violates the fault model for VRTL.
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3. Verilator RTL Modification

3.2. Moadification

Injecting the fault right after the assignment statement, would also enable updating module
outputs with faulty states. Listing 3.3 shows a pseudo-modified Vfoo that will always result in
faulty outputs. However, manually inserting these injection points in VRTL is not feasible.

void pseudo_inject(CData& target){
#define ¢ INJECTION_CLOCK
#define b INJECTION_BIT

if (clock_counter == c¢){
// flip target bit with bit-wise XOR

1

2

3

4

5 // Check for injection clock cycle
6

7

8 target = target ~ (0xl1l << b);
9

10 }
11

12 VL_INLINE_OPT void Vfoo::_sequent__TOP__1(Vfoo__Syms* __restrict v1Symsp) {

13 // Get internal variables from symbol table

14 Vfoo* __restrict v1TOPp VL_ATTR_UNUSED = v1Symsp->TOPp;
15

16 // Body

17 v1TOPp->foo__DOT__q2 = v1TOPp->foo__DOT__q1l;

18 pseudo_inject (vl1TOPp->foo__DOT__q2);

19 v1TOPp->foo__DOT__g3 = (1U & (~ (IData)(v1TOPp->foo__DOT__q1)));
20 pseudo_inject (v1TOPp->foo__DOT__qg3);

21 v1TOPp->02 = v1TOPp->foo__DOT__q2;

22 v1TOPp->03 = v1TOPp->foo__DOT__q3;

23 v1TOPp->foo__DOT__ql = v1TOPp->a);

24 pseudo_inject (v1TOPp->foo__DOT__q1);

25 v1TOPp->01 = v1TOPp->foo__DOT__q1l;

26 }

Listing 3.3: Pseudo-modified example Verilator sequential body

3.2.1. Target Variables as Extended Data Structures
Concept

One solution would be to extend each targets variable data type to return the correct or faulty
value on demand. Originally, Verilator synthesizes bit vectors to the smallest possible trivial
C/C++ data type, i.e. size-modified unsigned. Substitution of the targets data-type with
a class-like data-type at declaration can enable more specific handling of the element during
evaluation runtime. Overloading all possible arithmetic operators and conversions generates
automatic call-back functionality for each extended variable. Additionally, this would only
require changing the class definitions of the VRTL modules by modifying its member’s decla-
ration types to the overloading class type.
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3.2. Modification

template <typename BaseType_t, unsigned int FIELDS>
class ExtendedData {
public:

bool inject;

BaseType_t mVar [FIELDS];
protected:

BaseType_t& read(int index = 0) {

if (inject){
// return injected value

© 0N U e W N

}

return (mVar [index]);

==
=]

}
void write(BaseType_t newVal, int index = 0) {
mVar [index] = newVal;

= e
oW N

}
public:
inline BaseType_t& operator [](unsigned int index) {
if (index > FIELDS) exit (0);
return read(index);

e e
© 00 N O w»

}

// ASSIGNMENT Overloading

inline ExtendedData& operator =(const BaseType_t &driver){...}
inline ExtendedData& operator =(ExtendedData &driver){...}

// ARITHMETIC Overloading

inline BaseType_t& operator +(const BaseType_t &driver){...}
inline BaseType_t& operator -(const BaseType_t &driver){...}

NNN N NN NN
N OOk W NN = O

// CONVERSION Overloading
inline operator BaseType_t (){
return(read ());

w NN
o ©

}
32 ExtendedData(void): inject(false), mVar O){}

w
ot

w
@
(-}

Listing 3.4: Pseudo overloading class - extended data structure

Listing 3.4 shows a heavily shortened implementation of an extended data structure for VRTL
variables. Since Verilator generates arrays of 32-bit elements for SystemVerilog variables longer
than 64 bits, the actual data is stored in the mVar member, an array of the base or rather
original data type in VRTL specified through a template argument during compilation. Besides
arithmetic operators, implicit conversion (line 29) are overloaded to enable interaction with
more trivial data types. The protected read method returns a clean or possibly faulty version
of the data, while a write method handles correct assignment operations to the extended
VRTL variable.

Evaluation

(Dittrich 2017) already utilized overloading C++ classes as extended data-types for variables in
VRTL to support tracing in mixed-level simulations. While, this overloading approach allows
a lot of flexibility and additional functionality, e.g. run-time tracing, simulation performance
suffers.

Tab. 3.1 shows the results of a performance evaluation of the overloading approach. A VRTL
model of a 32-bit RISC (OpenRisc1000) is set against a modified VRTL according to the
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3. Verilator RTL Modification

host execution time GCC opt GCC opt

at 1M target cycles -03 -00
VRTL 0.514 s 1.511 s
VRTL (modified) 8.106 s  17.861 s
slowdown 15.77 11.82

Table 3.1.: Performance overloaded VRTL

previously introduced concept. The RTL model is run for one million cycles on a modern x86
host with Linux OS. The execution time is measured in user space yielding the actual time
spent inside the process hosting the VRTL models. Although not important for execution times
of eventually heavily optimized simulation frameworks, a look into how a compiler handles any
further modifications to the VRTL sources is interesting; Without optimizations for the Gnu
Compiler Collection (GCC) C++ compiler enabled, basic VRTL is about 12 times faster than
the modified one. However, for a strong level of optimization (O3), non-modified VRTL is more
than 15 times faster. The assumption can be made that operator overloading is not as easily
handled by the compiler with respect to code optimization as the mainly arithmetic-intensive
core of VRTL is.

The basic idea of using Verilator as a tool for RTL simulation is its speed compared to other
available simulators. Slowing down the simulation for fault injection would eliminate the
benefits of VRTL in the first place, thus, the usage.

3.2.2. Source Transformation

Concept

While the previous approach in sec. 3.2.1 mostly relied on introducing additional functionality
to VRTL variables, thus, modifying their declarations in VRTL classes, another option is to
transform the VRTL’s sources. The fundamental idea is to insert injection points in the model
source code according to the concept introduced by listing 3.3.

host execution time GCC opt GCC opt

at 1M target cycles -03 -00
VRTL 2.341 s 8.165 s
VRTL (modified) 2,622 s 10.057 s
slowdown 1.12 1.23

Table 3.2.: Performance source-transformed VRTL
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3.2. Modification

Evaluation

Tab. 3.2 shows the results of a performance evaluation of the source transformation concept. A
VRTL model of a 32-bit RISC-V core (RI5CY) is set against source-transformed VRTL. Again,
the RTL model is run for one million clock cycles on a x86 host and the simulation’s execution
time is measured as process user time. Without GCC optimization, original VRTL is 1.23
times faster than the modified VRTL. With optimization, the original is just 1.12 times faster.
Although no injections are performed, checks for a injection at each possible injection point
have to be performed which generates simulation overhead. Nonetheless, source-transformation
seems to be more efficient, since most of the overhead can be resolved during compile time,
where as overloading data types mostly influences the runtime.

Performance

Measuring execution time of the respective simulation process is a straight-forward way to
compare the two solutions on a common host. Additionally, measuring instructions per second
is commonly used and a somewhat meaningful benchmark. However, for a more independent,
therefore, sophisticated, statement regarding a simulation’s performance it is not sufficient.
Reasons for this lay with the host. OS, implementation of the native libraries, and most of all
the hardware itself can vary a lot between different simulation setups. These host-dependent
influences can be reduced by comparing the number of instructions needed by the host to
perform a certain number of target instructions in the simulation setup. This instruction
transmission figure is still affected by the host’s architecture, however, not so much by the
host’s other hardware, e.g. memory, cache, and CPU.

The instruction transmission measurement is setup up as followed: The simulation framework
instantiates the VP. The VP executes a cross-compiled binary for a certain number of target
clock cycles. In order to stimulate the VP, a clock spin is performed which is two consecutive
VRTL evaluation cycles where one is with the input clock logically high and one logically low.
For measuring the required host instructions, the whole setup is ran inside a GNU Debugger
(GDB) process. The GDB is initiated with two breakpoints; The first where the initialization
phase is done and clock spins start and the second where the program is finished. When the
debugger reaches the first breakpoint, all further execution is performed step-wise, i.e. host
instruction by host instruction, while the steps are counted. As an example target program
a Arithmetic Logic Unit (ALU) test program is used which covers a good amount of general
purpose computing in the target.

The transmission factor t; can then be calculated with

o Thost

Itarget
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3. Verilator RTL Modification

Variable I}, refers to the number of host instructions and I;4rget to the number of instructions
executed on the simulation target.

ALU test on x86 I ;
Itarget — 4, 662 hOSt ALU

VRTL 115,656,447 24,808
modified VRTL 131,660,131 28,241

slowdown 1.13

Table 3.3.: Instruction transmission VRTL

Tab. 3.3 lists the instruction transmission results for 1000 target clock cycles both on VRTL
and source-modified VRTL with compiler optimization enabled. For the used target software an
instruction transmission of 28, 241 was achieved. This means that on average, for every RISC-V
instruction on the VP, about 28 thousand host instructions have to be executed. Additionally,
the transmission factors should mirror the execution time slowdown effects of modified VRTL
presented in tab. 3.2; the modified VRTL needs about 1.14 times more instructions than its
unmodified counterpart for the same task. Additionally, since for both measurements the ALU
test was used, an instructions per second (IPS) benchmark can be formulated. For example,
while the host, an Intel I5 with 3.4 GHz, might yield 10 Giga-IPS, the simulation target,
following 7 o7,y for modified VRTL, achieves only about 354 Kilo-IPS.
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3.3. Implementation

3.3. Implementation

The following sections of this chapter describes how the VRTL modifier was implemented as a
stand-alone tool. For generating a RTL-custom injection framework, two major problems have
to be solved by the modifier tool:

1. API Builder: Providing an API for managing injections in a project integrating the
modified VRTL.

2. Injection Rewriter: Locating sequential assignments of targets in the AST and insert-
ing injections

Both problems are basically decoupled. The only interaction happens, when an injection call
accesses variables of the fault model set by the API. The API provides the user (framework)
and injection call a common target dictionary holding information about each target’s name,
bit length, and reference to the original data element in the VRTL model. Furthermore, each
target dictionary entry holds data for the injection purpose including a general injection enable,
injection counter to avoid multiple injections per clock cycle, and a mask field specifying which
bit of a multi-bit target has to be affected and which not.

Simulation Framework

TD: Target Dictionary
mod. VRTL dx

name |data & | bits | en | counter | mask
0] foo | Ox... | 32] 1 0 0x01
bar | Ox... | 1 | 0 0 0x00
2 |foobar| 0x... |722] 0 0 0x00

v1lTOPp ->foo = 0x55;
SEQ_INJ_TARGET(TD.fo00)}
v1TOPp ->bar = yv1TOPp.->foo;
SEQ_INJ_TARGET{TD. bar];

n-1[barfoo] 0x... | 1 Jo] o0 | 0x00

Figure 3.3.: Injection call with target dictionary

Fig. 3.3 illustrates the interaction between modified VRTL and the target dictionary. The
VRTL calls the injection macro SEQ_INJ_TARGET with the respective target dictionary entry.
Both, location and arbitration of the injection call have to be managed by the Injection Rewriter
(sec. 3.3.2) during the source transformation.
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#define FI_UNLIKELY(x) __builtin_expect(!!(x), 0)

#define SEQ_INJ_TARGET (TDentry) { \
if (FI_UNLIKELY ((TDentry).enable)) { \
if (((TDentry).counter <= 0) and (TDentry).mask) { \
*((TDentry).data) = *((TDentry).data) -~ (TDentry).mask; \
(TDentry).counter++; \
A
A
}

Listing 3.5: Injection macro

Listing 3.5 contains the injection macro. Since most of the time and for the majority of all
targets no injections are performed, an additional macro helps the compiler predict control
flow for better simulation performance.

3.3.1. Injection API Builder

The API Builder handles generating a corresponding injection API for a given VRTL model.
The information provided by RegPicker (sec. 2.2.3) suffices as input, i.e. all targets/registers,
their location and bit length, etc.

VRTL Injection API

Ingection RegPicker
API Target-
templates ||| XML |

e
access TD entry,

Simulation modified

Framework/User VRTL

\ /

API Builder

Figure 3.4.: API Builder process Figure 3.5.: Injection API use case diagram

Fig. 3.5 shows the use cases for the injection API. On the one hand, modified VRTL accesses the
APT’s underlying target dictionary. On the other hand, a simulation framework or API/VRTL
user, instantiating both API and modified VRTL, configures and schedules the injections, thus
accessing the target dictionary. Scheduling means arming or disarming an injection at the
exact injection cycle, which has to be managed by the simulation framework.

Target information is taken from RegPicker’s output XML and translated into corresponding
C+-+ classes, the target dictionary entries (Fig. 3.4). Template files contain all RTL-invariant
features, e.g. the target dictionary class, injection macros and a general injection API wrapper
class. The templates get extended by the modifier program with RTL-variant, or rather specific,
contents mostly related to the dictionary.

The simplified class diagram in fig. 3.6 describes the relations of the injection API’s different
classes. A common pure-abstract base class TDentry acts as an interface to each specific entry
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| TDentry |
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: + reset_maskBit(): void y
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+ set_maskBit(bit: unsigned):void | id{ <targetname>_TDentry
+ reset_maskBit(): void id +e_<targetname>:
+ read_data(pData: uint8_t*):void :‘ P "~ <targetname>_TDentry
- _
+ data: <target_data_t>* | |

+ mask: <target_data_t> |-

Figure 3.6.: Injection API target dictionary class diagram

(<targetname> TDentry), e.g. for 100 targets, there will be 100 specific entry classes. Reason
for this is that now the more specific entries can still be accessed generally even though their
member data, corresponding to their unique VRTL counterparts, varies. This concludes strong-
typed references/pointers to the VRTL data element and the equivalently typed mask. Each
target dictionary entry implements a specific set_maskBit method and a read_data method
that reads the entry’s data byte-wise. The target dictionary API class TD_APTI holds all entries
as a vector of abstract TDentry pointers. The various entries get registered in this vector
at the initialization phase of the simulator. The actual entry class instances are summed up
in a target dictionary struct member of TD_API, where as the vector enables preparing and
resetting injections by target name or dictionary index without the knowledge of the specific
entry class.

3.3.2. Injection Rewriter

The modifier’s scheme for rewriting the VRTL sources to support guaranteed injections is
illustrated as an abstract control flow in fig. 3.7. The sequential injection assignments (SIA)
have to be extracted from VRTL source file before they can be appended with their respective
injection call.

The underlying nature of inserting or rather transforming size-wise unmanageable source files
justifies the development of an LLVM-based tool for this VRTL modification.
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Figure 3.7.: VRTL source transformation algorithm

Extracting Sequential Injection Assignments

Utilizing the AST Matchfinder to efficiently extract sequential assignments that are of interest
for injection requires analyzing the properties of such assignments:

i) The assignee is a target identified beforehand, e.g. by RegPicker,
ii) the assignment is located inside a sequential evaluation method,

iii) the assignment is the last inside one compound, i.e. basic block.
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While i) and ii) are straight-forward essential properties, iii) traces back to the source’s language
boundaries. In C/C++ the largest possible bit-size of a variable is capped, e.g. 64 bit. However,
in HDLs vectors of much larger bit-size can be specified. As described in sec. 3.2.1, Verilator
handles this by specifying arrays where each field has up to 32-bit and essentially breaks
up assignments into multiple field-individual ones executed one after another in the same
compound. In addition, when variables have to be accessed bit-wise, i.e. not the full bit-vector
is assigned a new value, Verilator synthesizes this similarly to multiple field access, however,
for a single field in the same compound. Inserting the injection macro at the first occurrence of
a target’s assignment in the same compound could then lead to a self-masking process, i.e. an
injection-following assignment might overwrite the injection. This issue is engaged by ensuring
only the last, or rather, dominant, assignment for a single target in a compound statement has
an injection point.

AST Consumer /AST Matchfinder

I
L

Sequential Function: I Non-Sequential Function: | I Compound | I Assignment |

i—

-: Global sequential injection assignments
-: Global list of injection targets
aSF: Active sequential function newA: New assignment
activeC: Active compound statement of active newC: New compound statement
sequential function

asSF|
newC

asF
aSF.activeC

Figure 3.8.: LLVM Tool - Finding sequential injection assignments

Fig. 3.8 shows a simplified interpretation of the LLVM/Clang AST Matcher-Callback setup
for SIAs in the VRTL sources. There are four concurrently running AST Matcher-Callback
pairs in use:

e Sequential Eval Function Declaration: Matches function declarations that corre-
spond to VRTL sequent function declarations. On callback, a new active sequential
function (aSF) ob is generated.

e Compound: Matches all braced statements. If an active sequential function is found,

the new compound object is added to the function object. The function objects saves
the last found compound statement (active compound).
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e Assignment: Matches all assignments. If the new assignment is found in the previously
defined target list, it gets added to the active sequential function object’s active compound
statement.

e Non-Sequential Function: Matches all miscellaneous function declarations, i.e. non-
sequential function. If a sequential function is active when this matcher is raised, the
AST traversal left this aSF’s declaration’s body. Therefore, the aSF was fully analyzed
and its STAs can be extracted. The extraction iterates over all compounds returning only
the dominant sequential assignments. Afterwards, the aSF gets discarded which avoids
further assignments or compounds being added.



4. Simulation

4.1. Simulation Framework

The simulation framework manages the modified VRTL core, an injection scheduler, and a user
interface (UI). Additionally, a reduced virtual SoC (VSoC) is modeled. For better simulation
performance, the framework is implemented in C++, which allows an efficient executable. Fig.
4.1 shows the framework’s components and structure.

load_binary( ),

configure( ) info() Mmem_read()
schedule() data_read()

Target Dictionary |

At it

i [namq{ databit cntr|masy
0] foo] 0x. .| 32 0x01
1] barj Ox..| 1 0x00
2[foobal 0x..| 22 0x00)

nfrariof 0x.J 1f o 0 fox00

Figure 4.1.: Simulation framework
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4.1.1. Modified VRTL Core

The modified VRTL core, as described in section 3.2, is integrated in the simulation as gen-
erated by the modification tool. Further modifications would break the abstraction layer
generated by the automated design flow.

4.1.2. Reduced Virtual System on Chip

The simulation framework also mocks a reduced VSoC for the VRTL core. Although Verilator
enables a SystemC model for better transaction-level modeling, the C++ output is used as the
focus of this work is on the RISC cores and not on any additional peripherals. Therefore, the
VSoC has to provide only the memory for the core to interface with. Since RISCY has a data
memory interface and an instruction memory interface, both have to be modeled by the VSoC
and their transactions forwarded to the virtual memory.

Interface to VRTL

In short, the following functionality has to be provided by the virtual SoC component to the
VRTL model:

i) Clock spin: Stimulate with clock clock cycles.
ii) Control: Set control outputs, e.g. enable instruction fetch, reset, ...

iii) Instruction memory: Provide instruction fetch with instruction data in the virtual
memory.

iv) Data memory: Support load and store access to the virtual data memory.

Interface to Simulation Framework

Additionally, these tasks issued by the simulation framework have to be handled:

i) Boot: Load a cross-compiled binary to the virtual instruction memory and initliaze
control signals.

ii) Execute: Run the model for a certain amount of clock cycles.

iii) Reset: Set the model to a pre-defined state.
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iv) Injection hook: Before evaluating a new clock cycle a possible injection scheduler hook
function is called.

The simulation framework poses the first instance of manual input for each new RTL model
in the proposed simulation toolchain. The reason is that it has an interface with the VRTL
core, which is not standardized. For example, the examined RISCY RISC-V core has a slim
input/output profile assuming that more complex interfaces are implemented on top of it,
e.g. connect the memory interfaces with a on-chip bus. On the other hand, cores like the
OpenRisc1000 implement an on-chip wishbone-bus interface on the RTL’s top module.

4.1.3. Injection Scheduler

The injection scheduler block acts as an interface to the target dictionary API generated
by the modification stage. Additionally, a hook method can be called by the main clock-
spin evaluation method in the framework, thus, allowing the scheduler to decide whether an
injection should be performed in the current cycle. Injections can be scheduled by passing the
target’s index or name in the dictionary to the scheduler. Additionally, either the exact bit
and clock cycle can be specified or both selected randomly. For random bit, a pseudo random
number generator (PRNG) selects a bit within the bit-length of the target. For random clock
cycle, the PRNG generates a random number within a configurable interval, e.g. before the
faulty simulation, a reference run could be used to determine the actual program cycle count,
thus, an injection-effective time interval.

1 void RV32_SoCFrame:: 1 void TargetInjectScheduler::
2 clockspin(uint64_t cycles) { 2 hook(void){
3 for (; cycles; cycles--) { 3
4 //Call injection scheduler hook 4 if (mInjListSet.size()<=0) return
5 TIS->hook (); 5
6 6 if (mPU->mCycles <
7 //Low clock evaluate 7 mInjListSet [0]->mInjectionCycle) return;
8 mCore->clk_i = 0; 8 else
9 mInst_I->update (mCore->clk_i); 9 {
10 mData_I->update (mCore->clk_i); 10 if (PU->mCycles <=
11 mCore->eval (); 11 mInjListSet [0]->mInjectionCycle)
12 12 {
13 //High clock evaluate 13 mInjListSet [0]->arm();
14 mCore->clk_i = 1; 14 }
15 mInst_I->update (mCore->clk_i); 15 else
16 mData_I->update (mCore->clk_i); 16 {
17 mCore->eval () ; 17 mInjListSet [0]->disarm();
18 18 mInjListDone.push_back(mInjListSet [0]);
19 //Increment cycle count 19 mInjListSet.erase(mInjListSet.begin());
20 mPU->mCycles++; 20 }
21 } 21 }
22 } 22 }
Listing 4.1: Virtual SoC clock-spin Listing 4.2: Injection scheduler hook

For each simulation run multiple injections can be scheduled. Each injections in stored in
a buffer sorted for earliest first, i.e. lowest clock cycle injection first. Listing 4.1 shows the
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simulations clock-spin method calling the injection scheduler hook in line 5. Inside the hook,
checks are performed whether any injections are scheduled (line 3) and the current clock cycle
(mPU->mCycles) is an injection cycle (line 5, 6, 9 and 10). If an injection cycle is reached,
the injection is armed meaning the enable flag in the respective target dictionary gets set.
On the next call to the hook function the injection gets disarmed, deleted from the todo-list
(mInjListSet) and appended to a done-list mInjListDone. Considering the hook method
being called in every clock cycle, the sorted list ensures better performance, since no iterations
over the injection list have to be performed.

4.1.4. User Interface

For individual handling of the simulation framework, a Ul provides dynamic configuration and
execution. The GDB inspired command line interface supports the inputs listed in tab. 4.1.
The inputs are grouped in help, soc, mem, and inject;
help displays interface help for all groups or a specific one,
soc includes commands controlling the simulation target,
mem lets the user read virtual memory content, and hash the virtual memory,
inject can return information regarding the target dictionary and scheduled injections.
Additionally, the interval for random injections can be set. The load and store func-
tions enable reproducing injection schedules, e.g. a previously stored configuration can
be reloaded from configuration file. Injections can be added explicitly or randomly. Fur-
thermore, a hash function performs a hash over all data elements registered in the target
dictionary.

On soc run commands the Ul returns the following:

e Application finished: The application finished its execution. This is detected by a
return from the target software’s main function

e Cycles done: The model was executed for the set amount of cycles without detecting
any system errors.

e System level fault: The system detected an exception, e.g. an illegal instruction.

e Core hang-up: A maximum amount of clock cycles was reached without finishing the
program or set amount of clock cycles.
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group command required options example

help help

soc run [cycles: int] soc run 100
load <binary> soc load ./foo.bin
reset soc reset
info soc info

mem  read <address> [bytes:=4] mem read OxFF 4
hash mem hash

inject  info [option: inject info schedule

{schedule, targets}]

load <config file> inject load ./config.txt
store <config file> inject store ./config.txt
interval <L>:<U> inject interval 0:100
hash inject hash
add [target] [bit] [cycle] inject add

Table 4.1.: User interface input table
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4.2. Simulation Setup

The simulation setup can be partitioned in a simulation run and a classification of its results.
Both are performed by individual Python scripts. To gather meaningful information about soft
error effects on the core under test a large number of random injections have to be managed.
The sum of all individual simulation runs is called an evaluation.

hardware Verilator
description translate & optimize
Stage I: hardware description
Verilation
RegPicker
extract & classify
Stage II: signal variables
Extraction
VRTL modifier
imnsert injection pointy
Stage TIT: & build Injection API
Modification
C/C++ compiler
compile modVRTL
model and framework
Stage IV:

Framework Build

executable
model

Figure 4.2.: Simulation framework toolchain

4.2.1. Target Software

An application program has to be generated. This is done by invoking the GNU RISC-V GCC
for the target architecture (RISC-V n.d.). A custom linker script ensures correct linkage with
the VSoCs memory space. Furthermore, a simple assembly startup file defines correct program
boot behavior and exception handling. The resulting cross-compiled binary can then be passed
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1 req. executed data memory data memory instruction
evat clocks instructions reads writes fetches
ALU 5,904 4,658 1,823 383 1,393
MUL 16,528 11,706 4,813 1,610 3,443
AES 142,355 106,101 34,737 12,205 33,985

Table 4.2.: Target software test properties

through the UI to the simulation framework.

The bare-metal code is based on RISC-V test suits provided by the PULP project. The tests
normally confirm whether a core implementing the RISC-V ISA operates as expected. Besides
checking the basic functionality of the ISA, each test frequently accesses data memory, where
its results are stored. Tab. 4.2 lists some properties, such as read and write accesses to memory,
of the tests under normal circumstances, i.e. neither errors nor injections. Evaluation of the
RI5CY core was done for an Arithmetic Logic Unit (ALU) test, a Multiplier (MUL) test, and an
Advanced Encryption Standard (AES) test. In used prefetch buffer configuration, RI5CY reads
128-bit of instruction data per fetch from memory, which translates to four non-compressed
instructions.

4.2.2. Evaluation

To generate a multitude of simulation results as fast as possible, a cluster of linux host machines
is used. Each host runs a Python script interacting with the simulation framework’s Ul by
opening a pipelined sub-process. The individual result of a simulation run is appended to a
host-unique result file in a simulation setup common directory on the server.

Fig. 4.3 shows the control flow and result for a complete evaluation. The simulation run is
initialized with the executable model from the simulation framework toolchain’s output and
a cross-compiled application software. Listing 4.3 shows an example for a single simulation
result returned by the framework’s Ul. For clarification, the Ul commands invoked by the
python script are inserted as green lines in the listing and output from the UI in purple. Each
simulation run gets a simple header with an index and time stamp determining its start and
identity. At first, the framework gets passed the cross-compiled binary’s file-location which
initiates the VSoC (line 5). Then, the injection interval is set to a significant value, e.g. the
expected executing cycles, and a random injection is added and read back (lines 7-9). The
simulation is now set up and a endless run invoked (line 13). When the scheduler hook injects
the fault, the action is reported by the UI (line 14). In this example, the application software’s
main function returns to the startup files call to main(), which indicates its finishing state
in line 15. Finally, internal information of the VSoC is read out (line 16). This includes the
total number of clock cycles and instructions, a hash over the data and instruction memory, a
hash over all target dictionary entries’ data, and two memory access flags. The memory access
flags indicate whether the load script-defined address spaces were violated, i.e. a write to the
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1
. 3 2 29 NEW_LOG: 18/02/2020 15:49:33
appllcatlon exeCUtable 3 HHHHHHABAR BB HAH ARG B R BB G RSB ARG B R AR SRS BB BB R AR SRS B R R RS H GBS H
binary model 4 # RiScy SoCFrame command line UI v0.9 #
D #UHHHABHBHGHAB RSB R AR SRS B BB BHAH ARG B R BH G RSB R B R B R GBS RSB R 1S
6 // soc load application.bin
Hr—J 7 #[CORE] Core settings: PULP_SECURE = 1, N_PMP_ENTRIES =
16, N_PMP_CFG 4
. . . 8 // inject interval 0:5904
Simulation Script 9 // inject add
. 10 // inject info schedule
Host 0 ] simulate framework 11 #TODO:
. : : ; 12 #LEGEND: (index): target-name[bits] - <bit> at <cycle>
simulation ith application .bin & 13 #(318): TOP.top. ¢ !
random injection __PVT__riscv_core_i_cs_registers_i_pmp_reg_q[768] -
T.eSU'lts J 530 at 3016
14 // soc run
15 #INJECT (3016): TOP.top.
_riscv_core_i_cs_registers_i_pmp_reg_q armed.
fault effect 16 #RESULT: Application finished.
_ 3 3 17 // soc info
probability Analy51s SCI‘lpt 18 #INSTRUCTIONS: 4658
analyze all hosts® 19 #CLOCK_CYCLES: 5904
A 20 #DATAMEM_HASH: fa055b23cd7d95al
fault effect results to generate 21 #INSTMEM_HASH: 9bdleef2d276b31f
fault statistics 22 #TARGET_HASH: 925a24adcb9dc587
causation 23 #DATAMEM_ACC: 1
24 #INSTRMEM_ACC: 1

Figure 4.3.: Evaluation run Listing 4.3: Simulation run output

instruction ram was performed or a read from an invalid address.

The memory hashes are used to reduce the amount of data needed to store each simulation
result of an evaluation. Due to hashing, information is lost and a fine-grained statement about
a soft-errors effect is harder to make. However, fault effect classification is still possible, since
mostly a general effect on the system and not on the individual application is investigated.
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5.1. Error Classification

The individual simulation results of one evaluation are classified according to the fault effects
listed in sec. 2.1.3. The errors are prioritized such that a more severe core hang-up that
also generated a memory corruption is declared a hang-up fault and not an application level
fault. Tab. 5.1 shows the possible fault effects and their priority level. Fault effects on the
same priority level can overlap, e.g. a simulation run can be classified both as an Application
Output Error (AO) and an Application Program Flow Error (AP).

key priority type

HP 0 Hang Error - Pipeline Stall

HL 1 Hang Error - Logic Stall

SI 2 System Error - Illegal Instruction
SM 3 System Error - Memory Access
AO 4 Application Error - Output

AP 4 Application Error - Program Flow
NSK 5 Soft Error Not Masked

MSK 6 Soft Error Masked

Table 5.1.: Fault effect priority levels

Fig. 5.1 illustrates the classification process. After the simulation result, including execution
result, memory hashes, instruction count and total clock cycles, is read, a check is performed
whether a hang-up was detected. If additionally, the maximum instruction count was reached,
i.e. instructions were still executed, the fault is declared a logic hang-up. This means, the core
still executed instructions, however, no program termination was accomplished. In reverse, i.e.
the maximum instruction count was not reached, a pipeline hang-up occurred. If the simulation
returned a system error, either an illegal memory access or an illegal instruction was detected.
The next priority level involves application level faults. Here, output corruption is checked
by comparing the memory hash value with an expected one. Additionally, the program flow
could have been corrupted which is checked by comparing the simulation’s instruction and
cycle count. At last, meaning the application must have finished without errors, the algorithm
checks the hashed injection target data for deviations to an error-free run. No deviation means
that the soft-error was fully masked.
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Figure 5.1.: Fault effect classification
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5.2. Results Analysis

There are different ways and dimensions to analyze the simulation results. Since injections
are randomized in space (bits) and time (clock cycle), relations between fault effects and both
dimensions can be formulated. In this work’s proof-of-concept evaluations, however, the focus
is on the space dependency of specific fault effects with only a small notion to individual time
dependencies. Information gathered from fault effect classification of all simulation runs in the
evaluation is used to observe the following relations:

i) Fault effect probability: Assuming that every injection target bit has an equal prob-
ability being affected by a soft-error, what is the probability of a certain fault effect
occurring. Furthermore, the effect that different application code has on the effect is
examined.

ii) Fault effect causation: Assuming that a certain fault effect occurred, what is the
probability that a soft-error in an specific injection target was the cause. Additionally,
with a large enough statistical sample size, time dependencies of certain fault effect causes
can be observed.

5.2.1. Statistical Fault Effect Probability

For each evaluation (ALU, MUL, AES) a finite number of unique injections exist, i.e. the
initial population N. This number can be calculated by multiplying the vector of all target
bits with the vector of the individual application execution cycles. For the evaluation-common
target RISCY, RegPicker identified 327 target registers making up 5753 individual target bits.
For the ALU evaluation, this results in an initial population Nary of 33.97e6. For MUL and
AES, 95.09¢6 and 818.97e6 respectively. These huge population sizes mean that a verification-
level evaluation, i.e. all possible simulations are evaluated, would take a very long time. For
example, verifying the AES test would take 818.97e6 x 142,355 total simulation cycles on the
model or 818.97e6 x 106, 101 instructions under perfect conditions, e.g. no evaluation overhead
or simulations with time-outs. Assuming the estimated IPS of 354e3 (see sec. 3.2.2) for the
modified VRTL, this would result in a total 245e6 seconds, or 7.8 years, of simulation time for
a single-core simulation process. Obviously, not a worthwhile figure.

(Leveugle et al. 2009) introduced a way how a minimum sample size n for a given initial
population N, a desired margin of error e and confidence ¢ (cut-off point with respect to a
normal distribution), can be calculated. The prerequisites are that n is uniformally distributed
over N and the probability of a specific fault effect p is unknown.

N

= 2 N-1
L+e® x t2xpx(1—p)

n

(5.1)
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Equation 5.1 shows (Leveugle et al. 2009)’s formula to calculate the sample size. Since p is
unknown and the most conservative approach is a large sample size, the highest n is gained by
assuming p = 0.5 regardless of a rational probability of an effect. Furthermore, eq. 5.1 can be
converted to calculate a margin of error for a given confidence level, sample size, and initial
population:

px(l—p) N-—-n
=t 2
o=ty 0p), N 6:2)

For each evaluation of the RI5CY core, the sample size varied. For example, the ALU test was
simulated about 4.6 million times. Assuming each bit and cycle has an equal probability being
selected for injection, at 5753 injection bits and approximately 6000 simulation clock cycles
about one seventh of all possible injections were evaluated. The uniformity of the injections is
illustrated in fig. 5.2 for the ALU test. Each dot represents a single simulation with its target
bit displayed on the vertical axis and the injection cycle on the horizontal axis.
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Figure 5.2.: Evaluation cluster

With eq. 5.2, each evaluation’s fault effect probability results can be given with the addition
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that this result is within a margin of error at a fixed confidence level. Applied to the statistical
fault injection proposed by (Leveugle et al. 2009), this results in the error margins listed in
tab 5.2 for the various evaluations done on the RI5CY core. For example, for the ALU test a
probability of 3.49% for a random injection resulting in an application level fault was observed.
This figure can now be said to be with a confidence of 99.8% within the unknown correct
probability for application level faults and an error margin of 0.0663%. For the AES test,
which has a large population size and small sample size with respect to the other two tests, a
higher margin of error has to be considered when formulating statements regarding fault effect
probabilities. The error margins should be kept in mind when evaluating the statistical results
for all tests.

initial sample t=1.96 t = 2.5758 t = 3.0902
population N size n 95% conf. 99% conf. 99.8% conf.

ALU 33,965,712 4,683,165 e =0.0420% e =0.0553% e = 0.0663%
MUL 95,085,584 3,704,735 e =0.0499% e =0.0656% e = 0.0787%
AES 818,968,315 2,590,085 e =0.0608% e =0.0799% e = 0.0959%

eval.

Table 5.2.: Evaluation error margins for given confidence levels

5.2.2. Data Processing and Visualization

Although a confident statement about error probabilities can be formulated with a relatively
small sample size, interpreting effect causes requires looking at more than just the end result
of a simulation run. To evaluate relations between injection space and time more easily, the
evaluation data is further processed and visualized.

Causation Clusters

The evaluation results are analyzed and fault effect occurrences counted. To examine fault
causation, the effect is set in relation to a specific injection target (space) being the initial
cause for deviations from the golden reference model. The resulting statistic yields a space
dependent probability for faults. For better interpretation of the individual fault effect causes,
each multi-bit target is one possible cause. This has the consequence, that a large target, e.g.
the register files memory element with 1024 bits, will naturally have a larger impact during
the evaluation due to its inherent size, thus, occurrence ratio in random injections. Therefore,
two analysis cases are taken into account:

a) Unweighted causation statistic: A large target might have an inherently higher
impact factor

b) Weighted causation statistic: All causes are inversely weighted with their size, i.e.
the smaller the target, the higher is its impact factor
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For visualization purposes, the cause statistics are merged with the models hierarchy and
formed to a force-directed graph analog sec. 2.3.3. Fig. A.l, showing the RI5CY target
cluster, can be used as a reference graph identifying the RISC-V core’s components and its
purple-colored injection targets. The visualization tool Gephi takes data in XML-like formats.
For this use case, the RegPicker XML file was transformed to a node/edge representation and
each target, i.e. node, is decorated with its proportional share in the various fault effects as
XML attributes. The tool can be configured to display node colors and their label size in
relation to one of its attributes’ value. For example, all nodes have an attribute signalClass
according to RegPicker’s classification and the tool can color each node depending on this
attributes’ value, e.g. green for wires and purple for registers. Similarly, all nodes can be
colored depending on their respective proportional cause for a fault effect, e.g. a hang-up.

Heat Maps

Furthermore, execution time dependency can be evaluated, e.g. does a target always result in
a specific effect or only at particular instants in the execution. For this, the sparse evaluation
sample (matrix S ) is mapped to a more coarse-grained, thus dense, representation of the initial
population (matrix Z). The matrix rows N represent the injection space (bits) and the matrix
columns M the injection time (execution cycles). To allow better comparisons between different
evaluations, the matrix size (M x N) is constant for all evaluations. Each element z, ,, holds a
value calculated from the occurrences of a specific fault effect resulting from a injection in the
respective sector (multiplicities of unique simulation parameters are filtered out). For example,
the ALU test normally has 5904 execution cycles in the reference model and 5753 injection
bits. Since not all possible simulations (5904 x 5753) are performed, each simulation run is
mapped to a sector of the initial population size, i.e. an element of Z. For each individual fault
effect, one Z-matrix is generated and all evaluation results mapped to the respective matrix
and its element. The array of Z-matrices is referred to as ¢ and its construction is described
in the pseudo code algorithm 1. Each Z-matrix of ¢ is initialized with some form of invalid or
Not-a-Number (NaN) value. Reason is that this allows distinguishing sectors not creating a
specific effect from ones where no information regarding an effect is available. In other words,
a sector where no data is available must not be interpreted as fault-free.

The Z-matrices can be visualized by so called heat maps. Fig. 5.3 shows the heat map gained
from mapping the evaluation sample and all results of erroneous fault effects of the ALU test
to a (1000 x 250)—Z—matrix. Therefore, one element of Z covers a sector of 6 x 23 cycles and
bits respectively. Erroneous fault effects refer to all fault effect classes excluding NSK and
MSK. Dark blue coloration means the section mostly results in masking effects, while a bright
yellow means high amounts of error effects. The pattern allows to identify vulnerable injection
targets and also their time dependency. For example, a bright continuous line could mean,
that a target or bit space almost always results in a fault, while a discontinuous one points
to a error-dependency towards certain stages in the model’s execution. The heat map is not
intended to actually determine which injection bit and which cycle was responsible for a fault.
However, this type of visualization can be a starting point for more fine-grained inspections.
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5.2. Results Analysis

Algorithm 1: Mapping sparse evaluation results to dense effect matrices

function Z-Map (N, M, B,C, R, F);
Input : Maximum number of rows NV and columns M,

sum of all injection bits B and maximum injection cycle: C,
set of all fault injection evaluation results: R, set of all fault effects: F’

Output: Set of Z-matrices for each effect in F: ¢
Function scalelnt(z, X, Y) is

y=zxY/X;
return |y;

end
for f in F do

C[f]=NaN(M x N) ; /* Initialize ¢ with Not-a-Number-matrices

end
for » in R do

Z = ([faultEffect(r)] ; /* Get Z-matrix w.r.t. the result’s fault effect
m =scalelnt(injectCycle(r), C, M) ; /* Scale result’s injection cycle
n =scalelnt (injectBit(r), B, N) ; /* Scale result’s injection bit
Zm.n = Z[m][n]

if zp,n = NaN then

‘ Zman =0 /* Initialize if element was not accessed yet
end
Zmn = Zmn +1; /* Increment element value
end
return ¢

*/

*/
*/
*/
*/

*/

space [target bit]

1

0.8
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0.2

0 1000 2000 3000 4000 5000

time [exe. cycle]

Figure 5.3.: Erroneous fault effects, ALU test - heat map

normed effect count
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6. Results

6.1. Fault Effect Probability

After classification, a script counts the occurrences of a specific fault effect and sets these in
proportion to the total number of simulation runs. The resulting statistic yields a probability
figure for a random soft-error resulting in a certain fault. Additionally, the evaluation is further
split into pure micro-architectural injections and injections into register file like parts of the
model. All probability values have to be taken into consideration with respect to the confidence
levels listed in tab. 5.2. First of all, the sum of all results is examined.

All Targets
group count % key count %

MSK
Hang-Up Pipeline 4,374 0.0934 HP /

Hang-Up Logic 31,707 0.677 HL // g

41.9%
System Error 205,448 4.39 SM 123,294 60.0 \
SI 82,154  40.0 |

L
Application Error 163,335 3.49 A0 102,519 62.8 3,4§§

AP 106,478 65.2 S*

49.5% .

Not Masked 2,317,138 49.5 NSK A
Masked 1,961,163 419 MSK
NSK

> 4,683,165

Table 6.1.: Fault effect probability, ALU test - all targets

Tab. 6.1 lists the ALU evaluation results for both micro-architectural and register file injections,
i.e. all targets. Overall, 4374, or rather 0.0934 percent, of all injections lead to a hang-up where
the pipeline gets stalled and 0.677 percent result in a hang where instructions are executed,
but the application never finishes. Around 4.39 percent result in system faults of which about
40 percent are due to illegal instructions in the pipeline and 60 percent due to invalid memory
access. These faults can be detected and handled during run-time. On the other side, silent
corruptions in form of application errors make up about 3.49 percent of the simulations. Here,
output memory is corrupted with a chance of 63 percent and program or execution flow with
another 65 percent meaning an overlap of those two fault effects, i.e. the error corrupted both
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6. Results

output and resulted in program execution deviations. 42 percent of all injections were entirely
masked once a simulation run was completed, while about half of all the runs showed some

deviation in the architectural states of the model but no error.

rou count % ke count %
g p ° Yy ° MSK
Hang-Up Pipeline 4,855 0.0975 HP
Hang-Up Logic 39,082 0.785 HL /‘ ’
43.1 %
System Error 206,399 4.14 SM 123,266 59.7
SI 83,133 40.3
—— H*
Application Error 186,538 3.75 A0 125,135 67.1
AP 114,991 61.6 S*
48.1 % A¥
Not Masked 2,397,535 48.1 NSK
/
Masked 2,145,771 431 MSK ,
NSK
> 4,980,180
Table 6.2.: Fault effect probability, MUL test - all targets
group count %  key count % MSK
Hang-Up Pipeline 2,305 0.0980 HP
Hang-Up Logic 14,031  0.761 HL / -
43.8%
System Error 78,599 3.34 SM 39,786 506
SI 38,813 494
—— H*
Application Error 74,089 3.15 AO 47,350  63.9 g
AP 69,355 93.6
48.9 % A*
Not Masked 1,150,042 48.9 NSK
Masked 1,030,264  43.8 MSK
S 2,353,196 NSK

Table 6.3.: Fault effect probability, AES test - all targets

Comparing the different application or target software results with each other, there seems to
be not much difference between the various application softwares with respect to fault effect
probabilities. The AES test shows a smaller overall ratio of system and application level errors,
however, almost all (94 %) of application level faults can be classified as program flow errors.
The numbers for MUL and AES can be found in tab. 6.2 and 6.3.
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6.1. Fault Effect Probability

Control and Status Registers

group count % key count %
Hang-Up Pipeline 0 0 HP
Hang-Up Logic 0 0 HL MSK
System Error 0 0 SM 0 0 12.1%
S o 0 2.57%
A0 0 0 85.4 % AP
Application Error 32,170  2.57 NSK
AP 32,170 100.0
Not Masked 1,069,434 85.4 NSK
Masked 150,972 12.1 MSK

z 1,252,576

Table 6.4.: Fault effect probability, ALU test - CSR targets

Next, a look at injections into targets related to register file like hardware components is
taken. This includes the components making up the GPR and CSR. Tab. 6.4 shows the ALU
fault effect statistics for CSR target injections. In general, the statement can be made that
these injections rarely result in hang-ups and system errors. However, program flow seems to
be affected. The reason for this is, that the simulation framework uses the CSR to evaluate
the number of executed instructions. With the classification from 5.1 that uses the returned
instruction count from the framework, obviously, a deviation in execution flow occurs. This
result has to be taken with a grain of salt, since only the instruction count storage might be
affected and not the actual program flow. Manual inspection of these simulation runs confirm
this. The instruction count is in a higher than possible number due to the maximum amount
of clock cycles performed. After all, these errors can still be seen as such since application
software might depend on performance and status registers. The results for the MUL and AES
test are nearly equivalent to the ALU test. For completeness, the numbers can be found in
tab. A.2 and A.5 in the appendix.
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General Purpose Registers

group count %  key count %
Hang-Up Pipeline 0 0 HP
Hang-Up Logic 28,664 3.56 HL MSK
System Error 42,867 5.32 SM 9,742 773 13-9\%
SI 33,125 22.7 74.6 % |
Application Error 21,703  2.69 AO 20,660 95.2 NSK W HL
AP 11,678 53.8 S*
Not Masked 601,125 74.6 NSK A*
Masked 111,842 13.9 MSK
> 806,201

Table 6.5.: Fault effect probability, ALU test - GPR targets

Tab. 6.5 shows the fault effect statistics for GPR target injections. To interpret these GPR
injection results a basic knowledge of the RISCV GPRs is helpful. In tab. 2.1 the GPRs and
their fundamental usage is listed. The area making up the 32-bit hard-wired zero register (x0)
is ignored, since the assumption was made that this component would be hard-wired, thus, not
actually a sequential logic, i.e. flip flop, in real hardware. This leaves around 992 injectable
bits or around one sixth of RI5CY’s total injection targets. Hang-ups, however only logic stalls,
occur with a probability of 3.56 percent. System errors with mostly illegal instructions being
the cause occur with 5.32 percent. Application errors happen with 2.69 percent probability,
while mostly affecting the model output. Interestingly, injections not affecting the program
rarely result in a complete mask (13.9 percent), while with three quarters of all injections most
remain in the model. The GPR as a component seems to be more vulnerable to hang-ups
and system errors than the core as a whole. The large amount of illegal instruction system
errors can be traced back to bit-flips to the GPR area where the stack pointer and function
return address is stored (x1 and x2). Furthermore, the high occurrence rate of not-masked
injections might be related to a large portion of the register file not being used, thus, not
regularly updated during run-time by the ALU test program.

The results for the MUL and AES test are varying from the ALU test, meaning that fault
effects resulting from injections into the GPR seem to be application dependent. The AES
test might be more resilient to application level faults, which may be explained by the longer
test masking stack-related memory errors more easily due to the higher access occurrences (the
output is compared only at the end of each evaluation). The numbers for MUL and AES can
be found in tab. A.1 and tab. A.4.
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6.1. Fault Effect Probability

Micro-architectural Targets

group count %  key count %

MSK
Hang-Up Pipeline 4374 0.168 HP
Hang-Up Logic 3,043 0.117 HL
SM 113,552 69.8 LA
System Error 162,581  6.26 ’ :

SI 49,029 30.2 |

\ - H*
Application Error 109,363 4.21 AO 81,799 748 \ 421%

AP 62,535 57.2

24.9 % §
Not Masked 646,566  24.9 NSK A
Masked 1,672,240  64.6 MSK \
3 2,598,167 NSK

Table 6.6.: Fault effect probability, ALU test - micro-architectural targets

At last, micro-architectural-exclusive injections for the ALU software can be examined in tab
6.6. In contrast to GPR injections, micro-architectural injections show pipeline stalling hang-
ups (0.172 percent), however, both, application and system level fault rates are higher with
4.2 and 6.3 percent respectively. While error free runs occur mostly at the same rate as they
do with GPR injections, the probability of complete masking is with 66 percent higher in
micro-architectural injections than in GPRs.

Compared to the ALU test, the AES result is not much different for micro-architectural injec-
tions. On the other hand, for the MUL test, a higher rate of application level faults can be
observed. This might be explainable by the additional micro-architectural hardware (multiplier
units) used in the MUL compared to ALU and AES test which solely utilize the ALU of the
RI5CY core. In addition, AES has with 0.55 percent a much higher rate of logical hang-ups
than its counterparts (0.117 for ALU and 0.119 for MUL). Again, the much longer execution
time, thus, number of branching and jumps, resulting from the high repetitiveness of the crypto
algorithm seem to increase the risk for logical hang-ups. The results can be found in tab. A.3
and A.6 for MUL and AES respectively.
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6.2. Fault Effect Causation

The fault effect causes are examined according to the data processing ideas presented in sec.
5.2.2. Primarily, this survey focuses on causes for fault effects in the ALU test, however
discrepancies between the ALU and the MUL or AES are taken into consideration. For better
visibility, all causation cluster figures are scaled to the weighted fault effect proportion, while
tables listing influential targets show both, weighted and unweighted values.

6.2.1. Hang-up Errors

The overwhelming portion of hang-ups are caused by injections in the GPR. In these cases
the core’s pipeline still executes instructions, however, the application does not finish because
of some loop body might be infinitely executed due to a failing exit check. Such logic errors
can be caught by watchdog-like system components checking the application’s progress. More
problematic are hang-ups caused by a stuck pipeline, i.e. no instructions propagate through
the processing stages.

Hang-up - Pipeline Stall
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Figure 6.1.: Hang-up pipeline stall, ALU test - causation cluster
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6.2. Fault Effect Causation

Fig. 6.1 shows the weighted causation cluster evaluation for pipeline stalling hang-up effects
in the RI5CY core (ALU test). The intensity of (red) coloration and label size of each node or
rather target indicate its proportional share in overall pipeline stalling hang-up faults. There
is not much difference between the weighted and unweighted statistic which means that these
hang-up errors mostly depend on the individual target, i.e. its function in the RISC-V core.
With the exception of the MUL test, where the FSM in the utilized multiplier unit might cause
additional pipeline stalls, the results are test independent.

un- /weighted [%]

target module function
ALU MUL AES

priv_lvl g cs_registers_i 37.0/39.0 36.2/37.8 35.1/36.8 ]Pg,i]c_v privilege
CS load_store_unit.i 23.1/24.4 21.9/22.8 23.7/24.8 current state FSM
CS LO_buffer_i 22.2/21.3 22.2/21.5 21.9/20.9 current state FSM
CS prefetch_bufferi 17.5/15.1 17.1/15.3 15.7/13.4 current state FSM
mulh_CS mult_i 0/0 1.74/1.69 0/0 current state FSM
cst_restore_uret_id  riscv_core_i 0.23/0.26 0.83/0.93 3.50/411 estore PC (user-

mode handling)

Table 6.7.: Hang-up pipeline stall - influential targets

Tab. 6.7 lists the most influential injection targets with their respective causation ratio. These
hang-ups are produced by injections into delicate registers, e.g. finite state machine (FSM)
current state storage and the core’s privilege level. For the FSM cases, the system does not
seem to be able to regenerate by itself and, in some instances, gets stuck at fetching new
instructions. Even worse is an injection in the privilege level register, since here an injection
always leads to a stuck pipeline. Reason might be that the test program normally stays in
machine mode and a flip changes either to supervised mode or sets the level to the reserved, or
rather undefined, mode (see. tab. 2.2). The privilege level has crucial influence on the systems
pipeline as it may result in failing instruction fetch attempts due to the memory protection
unit blocking access.

Fig. A.21 shows the pipeline stall effect heat map for the ALU test. The lower line contains
the FSM registers for the Prefetch Buffer and LO Buffer. The upper line is built from data
regarding the privilege level register and LSU FSM. Overall, both lines seem to be more or
less continuous which indicates that these hang-up effects are not application/time dependent.
However, further, more fine-grained, analysis of those targets’ fault effect might reveal things
like cycle or value-dependency. For example, injections in the current state register of these
FSMs might only result in stalls if a certain state is active and then corrupted.
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Hang-up - Logic Stall

Logic or application level stalls mostly result from injection into the GPRs memory elements
(see tab. 6.8). Fig. 6.2 shows the causation cluster, while the heat map in fig. A.22 displays
a more irregular pattern compared to pipeline stalling hang-ups. A closer inspection of the
responsible simulations reveals that mostly the return address, stack and global pointer register
regions are the causing sectors in the register file. In the heat map, some of the traces are
discontinuous which suggests that their respective targets make the core vulnerable only at

specific moments, thus, are influenced by the application code and application progress.

Figure 6.2.: Hang-up logic stall, ALU test - causation cluster

un- /weighted [%]

target module function
ALU MUL AES

mem register_file_i 90.4/80.8 91.6/83.6 56.4/38.8 register file memory

. . reg. file write
we_a_dec register_file_i 2.43/4.90 2.37/4.66 2.46/3.48 enable port a
addr_q prefetch_buffer.i 1.62/3.26 1.55/3.04 5.18/7.31 prefetch address

i i reg. file write
we_b_dec register_file_i 1.35/2.72  1.60/3.16 2.07/2.92 enable port a
LO_buffer LO_buffer_i 1.17/2.22  0.54/1.01 6.87/9.21 128-bit instr. cache
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6.2. Fault Effect Causation

6.2.2. System Errors

Fig. 6.3 shows the ALU evaluation’s system error causation cluster. Fig. A.10 focuses on
memory access errors and fig A.9 illustrates illegal instruction fault causes. Again, the GPR
register and components related to the instruction fetch have a high influence on this fault
effect (see tab. 6.9). The corresponding heat map for the ALU test is depicted in fig. A.23.
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Figure 6.3.: System error, ALU test - causation cluster

System Error - Memory Access

Beside the LSU, IF, and ID pipeline components, ALU related targets as a part of the execution
stage, show an additional high ratio of causation behavior for memory access violations by
affecting potential load and store addresses. This can be related to the ALU being used to
calculate memory addresses for storing the test values, thus, accessing invalid address spaces
if the address value was corrupted.
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un- /weighted [%]

target module function

ALU MUL AES
mem register_file_i 20.9/11.7 16.1/8.64 23.7/13.5 register file memory
LO_buffer LO_buffer_i 15.6/16.7 17.0/17.7 13.0/14.1 128-bit instr. cache
addr_q prefetch_bufferi 9.65/10.8 10.2/10.9 10.9/12.4 prefetch address
instr_rdata_id riscv_core_i 6.47/6.27 6.27/6.88 5.38/6.14 instr. data (IF)
alu_operand_a_ex riscv_core_i 5.47/5.14 5.14/5.65 4.57/5.20 ALU op. a (ID)
alu_operand_b_ex riscv_core_i 5.05/4.75 4.74/5.21 4.38/4.99 ALU op. b (ID)
imm_b id_stage_i 3.94/4.43 4.33/4.75 4.03/4.60 ALU immediate b

data_addr_int load_store_unit_i 2.90/3.26 3.31/3.64 3.20/3.65 LSU addr. (EX)

Table 6.9.: System error causation - influential targets

System Error - lllegal Instruction

For illegal instructions mostly GPR or instruction fetch and decode related targets are an issue,
while executing modules are not.

6.2.3. Application Errors

Fig. 6.4 shows the evaluation’s application error causation cluster. Fig. A.15 focuses on
targets silently corrupting the systems output and fig A.16 illustrates fault causes altering the
application’s execution progress. The overall fault pattern is very similar to the system error
one. However, these application level errors are not as easily detectable by the core itself. For
example, a storage address might have been corrupted but the altered address value might
still be in a region viable to the memory protection. More classically, the actual data written
to system outputs varies from what should have been calculated by the application. Overall,
almost every module or region of the system can produce an application error. The heat map
is shown in fig. A.24. Most prominently a thick and continuous line around bit index 4,000
can be seen which corresponds to the program counter registers.

Application Error - Output

For output corruptions, the most parts of the system under test can have an affect. The
comparison between MUL and ALU/AES test shows, that even though some hardware parts
are not utilized by an application, they can still produce fault effects. For example, in the ALU
and AES tests, the multiplier and division units are not used, however, are identified by the
framework as causing application level faults. In this specific case, these faults were caused,
like in pipeline stalling effects, by current state registers of FSMs.
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Figure 6.4.: Application error, ALU test - causation cluster

Application Error - Program Flow

For program or execution flow corruption, the pattern resembles the output corruption pattern,
however, parts of the CSR take over as most influential ones, e.g. the program counter registers.

This phenomenon is described in sec. 6.1.
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un- /weighted [%]

target module function

ALU MUL AES
PCCR_q cs_registers.i  15.9/15.0 14.9/14.0 17.1/15.7 performance counters
mem register_filei 13.3/9.27 10.7/7.55 5.12/3.46 register file memory
LO_buffer LO_buffer_i 12.9/13.5 15.2/15.6 16.5/16.8  128-bit instr. cache
instr_rdata_id riscv_coredi  4.57/4.94 4.34/4.63 5.67/5.967 instr. data (IF)
alu_operand_a_ex riscv_coredi  3.98/4.30 3.60/3.84 3.98/4.18 ALU op. a (ID)
alu_operand_b_ex riscv_coreii  3.85/4.16 3.21/3.42 3.73/3.92 ALU op. b (ID)
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6.3. Conclusion

6.3. Conclusion

Several consequences can be formulated for the evaluation results. The more statistical ap-
proach observing the probability of a fault effect appearing considering random injections can
show an overall vulnerability of the evaluated RISC-V core to soft errors. In case of RIGCY
with a bare-metal test software evaluated without any additional resiliency methods applied,
the RISC-V core has shown a good response, i.e. soft error resiliency. The overall number
of hang-up effect (pipeline and logic stalls), for example, might seem quite high at around
0.8 percent, however, the majority of these errors could be either handled or avoided by mea-
sures on the software level in the first place. For example, (Weinzierl 2017) explored multiple
compiler-based solutions that check the control flow by software signatures or duplicate in-
structions to introduce redundancy. These software measures could reduce the rate of logic
hang-ups observed in this thesis’ evaluation.

Similarly, the system can handle the observed system errors itself provided its protecting com-
ponents are configured in such a way and a defined state is reached by the system on its after
a fault. However, the pipeline stalling faults would remain. This sub-group, which makes up
about 0.1 percent of all evaluations results, has to be solved by hardware measures. In general,
there are two approaches for this; Either resolving the fault effect or avoiding it in the first
place.

Avoiding errors would require to increase the hardware’s resiliency against the causing effects,
i.e. neutron and alpha particle effects on the chip. While random access memory (RAM),
both static and dynamic, are frequently considered for radiation hardening, micro-architectural
parts often are not. (Baze et al. 2000) proposed radiation hardening techniques for CMOS
logic through placement of transistors in biased and isolated wells. Amongst other things
the work showed examples for resilient inverters that, in form of cross-coupled pairs, are the
basic components for sequential logic. Electronic suppliers also provide radiation tolerant SoC
platforms that, for example, can be found in aerospace applications (Microchip Technology
Inc. n.d.). Resolving, or rather detecting and correcting an error, could be done by some
additional hardware performing continuous checks. This could either be a quite forceful action
like resetting the system to a error free state, e.g. by a watchdog, or a more gentle one;
Sequential logic paths are implemented multiple times, then, a majority vote decides what the
correct value for each path has to be since multiple soft-errors on the same path are very unlikely
(Baumann 2005). This and other redundancy methods increase area usage of the protected
hardware, therefore, are sometimes not feasible for the whole digital system. Implementing the
redundancy only on critical sections could pose a trade-off between cost and the gained soft
error resiliency.

The results from this work’s evaluation process have shown some of these critical sections
for the RISCY core in form of vulnerable micro-architectural targets. Some form of majority
vote could be added to the core’s various finite state machine registers that were showing an
especially high ratio of pipeline-stalling hang-up effects.
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7. Summary

In this work, a fast, guaranteed fault injection framework based on the Verilator HDL simulator
was developed. To enable Verilator’s output (VRTL) simulations of soft errors, its C++ sources
had to be modified. Due to the size of the VRTL, manual modifications were not feasible.
Additionally, two modification types were evaluated with source-transformation coming out on
top. Therefore, a LLVM-based and model-agnostic source transformation tool was developed
that inserts injection points in the source code. An API builder automatically generates an
individual Injection API for a each modified VRTL, thus, allowing high compiler optimization
capabilities for executable simulation.

A possible design flow was proposed through a toolchain that builds an efficient injection frame-
work from hardware description to executable simulation. As proof-of-concept, the modified
VRTL of a RISC-V ISA implementing core was extended to a fault injection simulation frame-
work. The framework was fed with over 10 million random injection runs for three different
test program. In each simulation run, one space- and time-random bit flip of the model’s
sequential logic was applied and the effect on the core under test observed. From the mass
of simulation run results, an evaluation for statistical probability of a certain fault effect was
formulated. Furthermore, each fault effect was examined for causation in the model. Thus,
existing vulnerabilities of certain parts of the core under test could be located.

Most fault effects can be handled either by additional features, like proper exception han-
dling, of the examined core itself or by software-based resiliency enhancements. The remaining
vulnerabilities, mostly pipeline stalling effects, would need further hardware-based measures.

In future works, the framework could be extended to support additional peripherals. Verila-
tor’s SystemC capabilities could be utilized to integrate high-level models of such hardware
components, thus, enabling more complex virtual prototypes with fault injection capability.
Furthermore, while the work for this thesis was carried out, Verilator added multi-threaded
simulation support. Spreading the high CPU load for the RTL model to multiple cores of the
host machine could speed up the simulation even further. The framework currently allows
uncomplicated modeling of soft errors through random injections, however, deliberate faults
could be simulated and serve as a basis for a fault attack evaluation of RISC-V cores.
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Fault Effect Probability - MUL Test

group count % key count %
Hang-Up Pipeline 0 0 HP
Hang-Up Logic 26,796 4.19 HL MSK
System Error 24,766  3.87 SM 2,042 8.25 12.4%

SI 22,724  91.75 NSk 77.3%
Application Error 14,609 228 O 1374 943 : _ HF

AP 9,797 67.1 h gk
Not Masked 494,589 77.3 NSK A*
Masked 79,096 124 MSK
> 639,856

Table A.1.: Fault effect probability, MUL test - GPR targets

group count % key count %
Hang-Up Pipeline 0 0 HP
Hang-Up Logic 0 0 HL MSK
System Error 0 0 SM 0 0 11.9%

51 0 0 2.76 %

AO 0 0 85.4% AP
Application Error 27,291  2.76

AP 27,291  100.0 NSK
Not Masked 845,367 85.4 NSK
Masked 117,421 11.9 MSK
> 990,079

Table A.2.: Fault effect probability, MUL test - CSR. targets
group count % key count %
Hang-Up Pipeline 3,611 0.176 HP
Hang-Up Logic 2,444 0.119 HL
ep o 67.1%
System Error 129,001 6.28 SM 90,189 69.9
SI 38,812 30.1 O
Application Error 96,157 4.68 AO 8,889 820 4. 68 gk
AP 47,903 49.8
21.7% ~~

Not Masked 444918  21.7 NSK A*
Masked 1,378,049 67.1 MSK
> 2,054,180 NSK

Table A.3.: Fault effect probability, MUL test - micro-architectural targets
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Fault Effect Probability - AES Test

group count % key count %
Hang-Up Pipeline 0 0 HP MSK
Hang-Up Logic 9,487  2.12 HL ,
21.3
System Error 20,782 4.65 SM 7143 344 %
SI 13,639 65.6
*
Application Error 4,192 0.937 A0 3914 934 70.9% 0-%@ }i
AP 3,813 91.0 8
NSK A*
Not Masked 317,342 70.9 NSK
Masked 95,473 21.3 MSK
> 447,276
Table A.4.: Fault effect probability, AES test - GPR. targets
group count % key count %
Hang-Up Pipeline 0 0 HP
Hang-Up Logic 0 0 HL MSK
System Error 0 0 SM 0 0 12.0%
ot 0o 0 2.66 %
AP
Application Error 18,407  2.66 AO 0 0
AP 18407 1000 NSK
Not Masked 590,624 85.4 NSK
Masked 82,903 12.0 MSK
) 691,934
Table A.5.: Fault effect probability, AES test - CSR targets

group count % key count %
Hang-Up Pipeline 2,504 0.174 HP
Hang-Up Logic 7,368 0.513 HL
System Error 66,927 4.66 SM 37,110 55.5

SI 29,817 44.5
Application Error 61,044 4.25 AO 49,454 81.0

AP 56,258  92.2
Not Masked 357,192 24.9 NSK
Masked 941,600  65.5 MSK
D 1,436,635 NSK

Table A.6.: Fault effect probability, AES test - micro-architectural targets
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Fault Effect Causation - Hang-up Error Clusters
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Fault Effect Causation - System Error Clusters
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Figure A.9.: (SI) Illegal instruction, ALU test

Figure A.10.: (SM) Memory access, ALU test
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Figure A.12.: (SM) Memory access, MUL test
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Fault Effect Causation - Application Error Clusters

0 00 o
0,0 050050
OO (o) (ehrre)
OOOOOOO %08000 %
) %00 9508 0,095%60 %
O%O 0o ©08a0 o.ooooooo 0
0500.0.08%0 00%68e32°
6990 2° R LS PG0
0950 00920520
00500 50 O%OOOOO
(e _loYeNe)
00 °
00
00070
oe L0 o
090, oS 00°% Q%5032 o
005000 00 00000
095000 ogdf 000
o§oo0 A o
000 o & _ex
o0
o0, o n.n 00,200 .
020 ©0g60 0 5 02050 00
% 0920 oo $09000%° % %00 06 %5 6002° 950200020
OOOOO 0O0p @~ o OOOOQOOO 00 090
052206 009 0000E 80, 00 00
o O 000 00 O@® 209 3
80 6505000
&L 0080800
090080050
©096085080°
0220, ©0950980
OO%OOO ol o oooooo
0%%P 0% 00
%200 ©0g°
00 220 o
LO_buffe 0ac
02700
— 000
Ooo
Figure A.15.: (AO) Output, ALU test
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Figure A.19.: (AO) Output, AES test Figure A.20.: (AP) Program flow, AES test
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Fault Effect Causation - Heat Maps
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Figure A.21.: Hang-up pipeline stall, ALU test - heat map
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Figure A.22.: Hang-up logic stall, ALU test - heat map
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Figure A.23.: System errors, ALU test - heat map
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Figure A.24.: Application errors, ALU test - heat map
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