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1 Einleitung 

In the first part of this chapter, the backgroud study of this thesis will be introduced, The found 

issues of the previous study will be discussed and the motivation of this thesis will be mentioned. 

In the second part, the goal to be achieved will be declared in detail and the structure of the work 

will be illustrated. 

1.1 Relevance of the work 

The content of this thesis is based on the work of YU [1], in which a metric is developed to quantify 

the evaluation of traffic complexity in highway scenarios. This metric starts from the analysis of 

concept “Complexity” and has derived 10 factors which can influence the complexity of the traffic 

situation from the perspective of the automated ego-vehicle. The metric defines a Region of 

Interest (ROI), which is a close area around the ego-vehicle and determined by the longitudinal 

velocity of ego-vehicle. The calculations of all factors are then restricted in this area. The value 

of each influence factor will be calculated and normalized into a number between 0 and 1. Finally, 

with identical weighting factors for all influence factors and linear combination of all normalized 

values, a number between 0 and 1 can be obtained. This number is then considered as the 

indicator or measurement for the level of complexity of the traffic situation around the ego-vehicle. 

For instance, scenarios with a result in interval 0 and 1/3, can be seen to have a low level of 

complexity, those in interval 1/3 and 2/3 are the ones with a medium level of complexity, scenar-

ios with a result larger than 2/3 are considered to be very complex.  

Before launching vehicles with automated functions, a large number of various tests need to be 

conducted to ensure their performance in the real-world traffic. Generation of test scenarios ba-

sically follows two principles. One is based on comprehensiveness, which requires expert 

knowledge and experience. The other is based on real-world traffic data. Scenarios from real-

world traffic data can make the test environment closer to the real world. However, these sce-

narios can be countless in the real world and it is impossible to test them all. With the developed 

metric the complexity of all scenarios can be calculated. Scenarios with high level of complexity 

are assumed to be the most difficult ones and can usually lead to critical situations. These sce-

narios can be used for testing and the process of selecting test cases can therefore be more 

objective, more efficient and more economic.  

However, this metric to quantify the complexity of traffic situation has some flaws and limitations. 

Some flaws for instance, when evaluating the factor “number of connections between traffic par-

ticipants within ROI”, the ROI is divided into twelve sectors, only connections between vehicles 

from two sectors next to each other in lateral and longitudinal direction are considered, While in 

the reality, vehicles in diagonal direction of the ego-vehicle, namely, vehicles in front of ego or 

behind ego in adjacent lanes can influence ego-vehicle’s behaviour with respect to lane change. 

These connections in diagonal directions of the ego-vehicle need to be taken into consideration 
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as well. One limitation of the metric is that, all ten derived influence factors are scene-based. A 

scene is a snapshot of the traffic situation, while a scenario is a temporal sequence of consecu-

tive scenes (A clear distinction between scene and scenario can be found in ULBRICH ET.AL‘s 

work [2]). Therefore, factors, which can describe the characteristics of a scenario, are missing. 

One major problem of the developed metric is that, the ten derived factors are considered as 

equally important, which is not realistic. Besides, after normalization, values of different factors 

lie in different ranges. For some factors, it is common to obtain a normalized value of 0.5, while 

for some, 0.5 can already be seen as a very large value. Considering all factors as equally im-

portant can lead to overestimation or underestimation, which will make the scenarios selected 

through this metric not so convincing and representative. Therefore, this thesis will serve as an 

improvement and extension of the previous work, where some shortcomings and problems will 

be improved and perfected.  

1.2 Goal and structure of the work  

As explained in the last section, this thesis aims to improve and perfect the previous work. The 

content of this thesis consists of the following chapters. The metric developed in the previous 

work will be introduced in the chapter “State of the art”. The methods for sensitivity analysis 

which study the influence of different inputs on the output of a system will be included in this 

chapter as well. The method of the work is explained in the third chapter, which is made up of 

three sections. The first section will improve the shortcomings in the previous work. In the second 

section some factors which are not considered in the previous work, but can also influence the 

complexity of the scenario, will be included in the metric. The third section tries to figure out the 

influence of each factor has on scenario complexity and the relative importance of each factor. 

The former will be achieved with the help of a sensitivity analysis. The latter corresponds to the 

weighting factor of each influence factor, which will be determined with the help of conducting an 

online survey. A questionnaire will be designed for the survey and will be introduced in this sec-

tion. In the fourth chapter the results of the questionnaire for the survey will be analyzed and the 

weighting factors of each influence factor will be determined based on these results. A sensitivity 

analysis will be conducted one more time with newly determined weighting factors and the result 

will be compared with the one using equal weighting factors. The work of the thesis is summa-

rized in the fifth chapter. Further discussions related to the topic of this thesis will be mentioned 

in the last chapter. 
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2 State of the art  

This chapter consists of two parts. In the first part, the metric developed in the previous work will 

be introduced. In the scecond part, the definition and several methods of sensitivity analysis will 

be explained, which can be used to study how influential each factor is on the complexity of the 

scenario. 

2.1 Background of the work 

As mentioned in the first chapter, the content of this thesis is based on the work of YU [1]. The 

developed metric of the previous work is based on the following prerequisites, these prerequi-

sites will be also kept for this thesis:  

1. The traffic situation is analysed from the perspective of an automated vehicle. It 

differs from the situation of considering ego-vehicle as a human driving vehicle. On 

the one hand, the perception of human drivers can be different even for the same 

traffic situation, since their capabilities to see, to hear and to response are not the 

same. In contrast, the perception of an automated vehicle is more objective and 

consistent. On the other hand, a human driver can evaluate the surrounding envi-

ronment qualitatively, while an automated vehicle can obtain the movement state 

of a surrounding vehicle quantitatively with help of different sensors.  

2. The metric is developed for the purpose of traffic situation analysis in highway sce-

narios. Whether the metric can be adapted for evaluation of other types of 

scenarios remains in discussion and will not be included in this thesis.  

3. The objects used for the analysis are restricted to dynamic elements of a scenario, 

namely the different types of traffic participants and their movements, which corre-

sponds to the fourth layer of the five-layer-model developed by BAGSCHIK ET AL. [3] 

(Figure 2.1). Factors like infrastructure, weather condition, etc. will not be consid-

ered.  

Same as the previous work, HighD dataset will continue to be used, which is a naturalistic da-

taset recorded by a drone at different locations of German highways (Detailed introduction of the 

dataset can be found in the second chapter of the previous study [1, pp. 14-16] and the official 

website of the dataset [4]).  

2.1.1 Influence factors 

The highway section recorded by the drone is about 420 meters long and contains two or three 

lanes. Arbitrary one of the vehicles appearing in the section can be seen as an automated ego-
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vehicle. The complexity of the scenario which ego-vehicle is in, will be decided by the traffic 

participants around it. Vehicles with different distances to the ego-vehicle have different degrees 

of influence on ego-vehicle. Vehicles too far away from ego-vehicle will barely have any influence. 

Therefore, a Region of Interest (ROI) is defined, which is a close area around ego-vehicle. Only 

surrounding vehicles appearing in ROI will be taken into consideration. The length of this area is 

decided by the longitudinal velocity of ego-vehicle, which is twice the safety distance in front of 

the ego-vehicle and once the safety distance behind the ego-vehicle (Figure 2.2). Safety distance 

is calculated through the following formula:  

𝑑𝑠𝑎𝑓𝑒 = 1.8𝑠 ∙ 𝑣𝑒𝑔𝑜,𝑥 (2.1) 

𝑣𝑒𝑔𝑜,𝑥  is the longitudinal velocity of ego-vehicle in m/s. A graphical representation of ROI is 

shown in Figure 2.2, which is the area marked with colour red. Its width includes the lane which 

ego-vehicle is currently in, and the lane left and/or right to ego-vehicle if available. If ego-vehicle 

is in the middle lane of a three-lane highway, ROI will have a width of three lanes, for other cases 

(ego-vehicle not in the middle lane of a three-lane highway or ego-vehicle on a two-lane highway) 

ROI has a width of two lanes. 

Figure 2.1: Five-layer-Model [3] 

Figure 2.2: Region of Interest 
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Based on the definition of ROI, only vehicles within ROI will be considered for the evaluation of 

derived factors, which will be explained in detail in the following text. All factors in the previous 

work are scene-based, which means the values of these factors can be calculated for every 

scene of the scenario.  

Factor 1: Types of surrounding vehicles 

Different types of vehicles have different characteristics of movement, with more types more 

dynamic can be brought to the scenario. Since in HighD dataset only information of passenger 

car and truck is available, therefore only these two types will be considered. Thus, total number 

of types of surrounding vehicles is one of the following three possibilities: 0 (no vehicle around 

ego-vehicle within ROI), 1 (surrounding vehicles are all passenger cars or all trucks) and 2 (both 

passenger cars and trucks are present, which is the example shown in Figure 2.2) 

Factor 2: Number of surrounding vehicles 

This statement is self-explanatory, which is the total number of traffic participants within ROI 

except ego-vehicle. In the example in Figure 2.2 this number is 2. 

Factor 3: Dynamic of surrounding vehicles 

This factor obtains a weighted average value of the dynamic parameters of related surrounding 

vehicles and gives an overview of the dynamic of the scenario. The weighting factors are decided 

by the positions of surrounding vehicles and their movement relative to ego-vehicle. The area of 

ROI is divided into 12 sectors, vehicles of each sector will be assigned with a label indicating 

their positions within ROI (Figure 2.3). The detailed process of division can be found in [1, pp. 

22-24]. 

Figure 2.3: classification of surrounding vehicles 

The weighting factors are determined using a case discrimination. In longitudinal direction, if the 

absolute value of a surrounding vehicle’s velocity or acceleration is larger than ego-vehicle, 

weighting factors are assigned according to Figure 2.4 (a). If smaller than ego-vehicle, weighting 

factors from Figure 2.4 (b) will be assigned. In lateral direction, if a surrounding vehicle has a 

velocity or acceleration towards right, the ones on the left side of ego-vehicle will be weighted 

more. Vice versa, if a surrounding vehicle has velocity or acceleration towards left, the ones on 

the eight side of ego-vehicle are more likely to have influence and will be weighted more. 

Weighted average value of dynamic with respect to longitudinal velocity is then calculated with 

the following formula: 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑣,𝑥 =
∑ |𝑣𝑖,𝑥| ∙
𝑛
𝑖=1 𝑤𝑣𝑥,𝑖
∑ 𝑤𝑣𝑥,𝑖
𝑛
𝑖=1

 (2.2) 
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“leftalong”

“rightalong ”

“leftfollow”

“middlefollow”

“rightfollow”

“leftpre”

“middlepre”

“rightpre”
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subscript 𝑣𝑥 indicates velocity in longitudinal direction, 𝑛 is the total number of surrounding ve-

hicles, 𝑤 is the assigned weighting factor of the corresponding vehicle. Dynamic with respect to 

longitudinal acceleration, lateral velocity and acceleration are calculated similarly.  

Figure 2.4: Weighting factors of dynamic parameters in longitudinal direction (vehicle labelled 

“egopos” will be assigned with 3 if its velocity is not larger than the threshold value of 

10 km/h, else with 5) 

Figure 2.5: Weighting factors of dynamic parameters in lateral direction (vehicle labelled “egopos” 

will be assigned with 3 if its velocity is not larger than the threshold value of 10 km/h, 

else with 5) 

Factor 4: Variation of the dynamic parameters 

This factor calculates the difference between the largest and smallest value of respective dy-

namic parameters. The variation in terms of longitudinal velocity can be expressed with the 

following formula: 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑣,𝑥 = max(𝒗𝒙) − min⁡(𝒗𝒙) (2.3) 

𝒗𝒙  is a vector containing the longitudinal velocities of all surrounding vehicles within ROI, 

max(𝒗𝒙) is the maximum among it and min⁡(𝒗𝒙) the minimum. Variation with respect to longitu-

dinal acceleration, lateral velocity and acceleration can be calculated with the same principle. 

This factor gives a hint of how different the behaviours of the surrounding vehicles are.  

Factor 5: Connectivity 

This factor reflects the level of mutual influence between traffic participants. The existence of 

vehicles in two sectors of ROI (defined in Figure 2.3) next to each other in lateral and longitudinal 

direction defines the existence of one connection between these two sectors. Maximal 17 con-

nections between total 12 sectors can exist according to this definition (Figure 2.6).  
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Figure 2.6: Connections within a scenario 

Factor 6: Deviation of surrounding vehicles from predicted trajectories 

Better prediction of surrounding vehicles’ behaviour helps to improve the judgement of ego-ve-

hicle on the scenario, which enables the automated ego-vehicle to take actions in time, so that 

critical situations can be avoided. Based on the results of literature research [1, pp. 31-34], the 

trajectories of surrounding vehicles (except vehicles labelled “leftleading”, “middleleading” and 

“rightleading”) are predicted with a constant acceleration model. The velocities of a surrounding 

vehicle at the actual time step (in the actual frame) in lateral and longitudinal directions are seen 

as the initial values of a movement with constant accelerations (accelerations at actual time step) 

in both directions. The time interval to be predicted is the time necessary for ego-vehicle from 

current velocity to come to a halt with a deceleration of 10 m/s2 (Eq. Fehler! Verweisquelle 

konnte nicht gefunden werden.). The detailed interpretation and implementation of this factor 

can be found in [1, pp. 34-37]. 

𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =
𝑣𝑒𝑔𝑜,𝑥

10𝑚 ∙ 𝑠−2
 (2.4) 

Factor 7: Possible actions of ego-vehicle 

Factor 8: Possible actions of surrounding vehicles 

Although Factor 6 may offer a hint of uncertainty within a scenario to a certain extent, it does not 

take the existence of other vehicles into consideration. Factor 7 and 8 can make up for this 

deficiency. These two factors will be evaluated based on the same principle. By observing the 

occupancy status of the eight nearest sectors around a vehicle, which can be ego-vehicle or a 

surrounding vehicle (in case of a surrounding vehicle, it will be temporally regarded as an “ego-

vehicle” and the nearest eight sectors around it  will be observed), the number of possible move-

ment can be counted. Table 2.1 shows the possible actions under certain circumstances. As can 

be seen that the maximal number of possible actions is 8. A small difference between Factor 7 

and 8, namely between ego-vehicle and surrounding vehicle regarding evaluation is that, the 

three deceleration actions will not be included for ego-vehicle. Therefore, the maximal number 

of possible actions for ego-vehicle is 5.  

 

 

“egopos”

“leftalong”

“rightalong ”

“leftfollow”

“middlefollow”

“rightfollow”

“leftpre”

“middlepre”

“rightpre”

“leftleading”

“middleleading”

“rightleading”

Driving direction 
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Table 2.1: Possible actions of a vehicle 

Factor 9: time-gap 

This factor serves as an indicator for the question, how precisely does one action have to be 

executed, namely how difficult it is for ego-vehicle to perform an action. For instance, with exist-

ence of a vehicle “leftfollow”, how difficult is it for ego-vehicle to change from current lane to the 

left adjacent lane? A value similar to time-headway is calculated and used as a measurement 

for such cases. Vehicles considered for this factor are the ones labelled with “leftfollow”, “right-

follow”, “leftpre”, “middlepre”, “rightpre”. Time-gap for each of these vehicles can be expressed 

with the following formula: 

𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑙𝑎𝑏𝑒𝑙 =
𝑑𝑙𝑎𝑏𝑒𝑙
𝑣𝑒𝑔𝑜.𝑥

 

            𝑙𝑎𝑏𝑒𝑙 ∈ {𝑙𝑒𝑓𝑡𝑓𝑜𝑙𝑙𝑜𝑤, 𝑟𝑖𝑔ℎ𝑡𝑓𝑜𝑙𝑙𝑜𝑤, 𝑙𝑒𝑓𝑡𝑝𝑟𝑒,𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑟𝑒, 𝑟𝑖𝑔ℎ𝑡𝑝𝑟𝑒} 

(2.5) 

𝑑𝑙𝑎𝑏𝑒𝑙 is the distance between ego-vehicle and a surrounding vehicle with corresponding label. 

For surrounding vehicles in front of ego-vehicle, this distance is the range from ego-vehicle’s 

front to surrounding-vehicle’s back. For surrounding vehicles behind ego-vehicle, this distance 

is then the range from surrounding-vehicle’s front to ego-vehicle’s back (Figure 2.7). The final 

value of this factor is the average value of all related surrounding vehicles. In Figure 2.7 the 

factor value is the average value of 𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑟𝑖𝑔ℎ𝑡𝑓𝑜𝑙𝑙𝑜𝑤 and 𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑙𝑒𝑓𝑡𝑝𝑟𝑒. 

Nr. Action Occupancy status of relevant sectors 

1 Deceleration Always possible when moving forward 

2 Acceleration No vehicle labelled “middlepre“  

3 Lane change to the left 

No vehicle labelled “leftalong“ and no vehicle labelled 

”leftfollow” moving forward very fast (a left adjacent 

lane is available). 

4 
Acceleration after lane change 

to the left 

Lane change to the left possible and no vehicle labelled 

“leftpre” 

5 
Deceleration after lane change 

to the left 

Lane change to the left possible and vehicle labelled 

“leftpre” exists 

6 Lane change to the right 

No vehicle labelled “rightalong“ and no vehicle labelled 

”rightfollow” moving forward very fast (a right adjacent 

lane is available). 

7 
Acceleration after lane change 

to the right 

Lane change to the right possible and no vehicle la-

belled “rightpre”  

8 
Deceleration after lane change 

to the right 

Lane change to the right possible and vehicle labelled 

“rightpre” exists 
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Figure 2.7: Time-gap between ego-vehicle and surrounding vehicles 

Factor 10: Blind Spot  

The area not reachable by various sensors of the automated ego-vehicle is defined as the blind 

spot. Large area of blind spot rises the uncertainty of the scenario and makes it difficult for ego-

vehicle to deal with unexpected situations. Various sensors, which are supposed to be installed 

at different positions of a vehicle, are assumed to be installed at only two positions for simplifi-

cation. One is in the middle of ego-vehicle’s front and is for the detection of surrounding vehicles 

in front of ego-vehicle’s midpoint. The other is in the middle of ego-vehicle’s back and is for the 

detection of surrounding vehicles behind ego-vehicle’s midpoint (Figure 2.8). The algorithm for 

the calculation of these discrete blind spot areas can be found in [1, pp. 42-48]. 

Figure 2.8: Blind spot area within ROI 

2.1.2 Normalization and Complexity 

In the last section it is introduced, how each factor is defined and calculated. The values of these 

factors can lie in very different ranges. For instance, types of surrounding vehicles can be from 

0 to 2, number of surrounding vehicles can be from 0 to larger than 10, the variation of dynamic 

parameters of surrounding vehicle can range from 0 to about 15 m/s, etc. In addition to different 

ranges, the units of these values are different as well. Therefore, it is necessary to normalize 

these values, so that they can be brought to the same scale for the calculation of complexity. 

How the value of each factor is normalized is listed in Table 2.2. Variables with subscript 

“value“ indicate the actual value of influence factors. Subscript “norm” (or variables on the left 

side of the equation) indicate the normalized values and “ref” the reference value used for nor-

malization.  

 

 

 

 

 

Driving direction

                    

𝒗   ,𝒙

Blind spot area
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Table 2.2: Normalization of influence factors 

Nr. Influence factor Normalization (Scene-based value) 

1 Types of surrounding vehicles 𝑡𝑦𝑝𝑒𝑛𝑜𝑟𝑚 =
𝑡𝑦𝑝𝑒𝑣𝑎𝑙𝑢𝑒
𝑡𝑦𝑝𝑒𝑟𝑒𝑓

, 𝑡𝑦𝑝𝑒𝑟𝑒𝑓 = 2 

2 Number of surrounding vehicles 𝑣𝑒ℎ𝑛𝑜𝑟𝑚 =
𝑣𝑒ℎ𝑣𝑎𝑙𝑢𝑒
𝑣𝑒ℎ𝑟𝑒𝑓

, 𝑣𝑒ℎ𝑟𝑒𝑓 = 11 

3 Dynamic of surrounding vehicles 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚 =
1

4
(𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑣𝑥 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑣𝑦 +

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑎𝑥 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑎𝑦), with: 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑣𝑥 =
𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑣𝑎𝑙𝑢𝑒,𝑣𝑥

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑣𝑥
, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑣𝑥 = 35⁡𝑚/𝑠, 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑣𝑦 =
𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑣𝑎𝑙𝑢𝑒,𝑣𝑦

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑣𝑦
, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑣𝑦 = 0.65𝑚/𝑠, 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑎𝑥 =
𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑣𝑎𝑙𝑢𝑒,𝑎𝑥

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑎𝑥
, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑎𝑥 = 0.65⁡𝑚/𝑠

2, 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑛𝑜𝑟𝑚,𝑎𝑦 =
𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑣𝑎𝑙𝑢𝑒,𝑎𝑦

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑎𝑦
, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓,𝑎𝑦 = 0.22⁡𝑚/𝑠

2. 

4 
Variation of dynamical parame-

ters 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚 =
1

4
(𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑣𝑥 + 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑣𝑦 +

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑎𝑥 + 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑎𝑦), with: 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑣𝑥 =
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒,𝑣𝑥

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑣𝑥
, 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑣𝑥 = 15⁡𝑚/𝑠, 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑣𝑦 =
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒,𝑣𝑦

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑣𝑦
, 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑣𝑦 = 1.3⁡𝑚/𝑠, 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑎𝑥 =
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒,𝑎𝑥

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑎𝑥
, 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑎𝑥 = 1.5⁡𝑚/𝑠

2, 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚,𝑎𝑦 =
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒,𝑎𝑦

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑎𝑦
, 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓,𝑎𝑦 = 0.5⁡𝑚/𝑠

2. 

5 Connectivity 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑓

, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑓 = 17 

6 
Deviation from predicted trajec-

tory 
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑟𝑚 =

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓

, 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑓 = 1.4⁡𝑚 

7 Possible actions of ego-vehicle 𝑝𝑎𝑛𝑜𝑟𝑚,𝑒𝑔𝑜 = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 = 0

1

4
(−𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 + 5)⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 > 0

 

8 
Possible actions of surrounding 

vehicles 
𝑝𝑎𝑛𝑜𝑟𝑚,𝑠𝑢𝑟 = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟 = 0

1

7
(−𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟 + 8)⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟 > 0

 

9 Time gap 𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑛𝑜𝑟𝑚 = 𝑒
−0.4∙𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑣𝑎𝑙𝑢𝑒 

10 Blind spot 𝑟𝑎𝑡𝑖𝑜 = ⁡
𝑆𝑏𝑙𝑖𝑛𝑑_𝑠𝑝𝑜𝑡

𝑆𝑅𝑂𝐼
 

The complexity of each scene is achieved by linear combination of the normalized values of 

these influence factors. Each influence factor will be equally weighted and their weighting factors 

add up to 1. 
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Cscene =∑𝑤𝑖 ∙ 𝑓𝑖

10

𝑖=1

, 𝑤𝑖 =
1

10
 (2.6) 

𝑤𝑖 and 𝑓𝑖 represent the weighting factor and normalized value of factor 𝑖. There are 10 factors in 

total. Cscene is the complexity of a scene. Vector 𝐂𝐬𝐜𝐞𝐧𝐞 contains the complexity of every scene 

belonging to the same scenario. Complexity of the scenario Cscenario is defined as the average 

complexity of all scenes in this scenario: 

𝐶𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑚𝑒𝑎𝑛⁡(𝑪 𝒄 𝒏 ) (2.7) 

2.2 Sensitivity analysis 

In the previous work the final results of complexity are obtained by linear combination of normal-

ized values of influence factors with equal weight. The problem of equal weighting factors has 

already been mentioned in section 1.1. On the one hand, it is unrealistic that all factors are 

equally important. For instance, factors which reflex the uncertainty or criticality of the scenario 

should be weighted more compare with other factors. On the other hand, since the normalized 

values of different factors have different ranges, for some 0.5 is quiet large value, while for others 

0.5 is only in a medium level. Thus, although weighting factors are the same, the factors are 

actually not equally weighted due to different ranges of their values. Based on these two consid-

erations, it is necessary to make adjustments to the weighting factor of each influence factor, so 

that the scenarios selected through this metric can be more convincing and more representative.  

Deciding the relative importance of each influence factor can be a subjective process, which will 

be discussed in detail in the next section. The results are on the one hand influenced by the 

weighting factors, and on the other hand influenced by the values of influence factors. Since 

different values have different distributions, changes in different factors can cause different influ-

ences on the result of complexity. This kind of influence can be studied objectively with the so 

called “Sensitivity Analysis”, whose definition according to the work of SALTELLI ET AL. [5, p. 1]is 

the study of how uncertainty in the output of a model is distributed among or caused by the 

uncertainty of different inputs of this model (the model can be numerical or otherwise). Before 

conduction of sensitivity analysis, an uncertainty analysis of the model needs to be carried out 

first. One possibility for such analysis is the Monte Carlo analysis [5, pp. 6-7], which will be ex-

plained in detail in the following text. 

𝑥1, 𝑥2, … . , 𝑥𝑚 are the inputs of the system, 𝑚 is the total number of inputs. Their distributions are 

expressed in 𝑁(𝑥1̅̅ ̅, 𝜎𝑥1) , 𝑁(𝑥2̅̅ ̅, 𝜎𝑥2) ,…, ⁡𝑁(𝑥𝑚̅̅ ̅̅ , 𝜎𝑥𝑚) , with 𝑥1̅̅ ̅ ,𝑥2̅̅ ̅ ,…, ⁡𝑥𝑚̅̅ ̅̅  the mean values and 

𝜎𝑥1,⁡𝜎𝑥2,…, 𝜎𝑥𝑚 the standard deviations of respective inputs. For simplification it is assumed that 

these inputs are independent of each other. A sample or a set of inputs can be obtained by 

drawing one element from each distribution. 𝑛 sets of inputs can be expressed with a 𝑛 x 𝑚 

matrix (Figure 2.9). With each set of inputs (𝑥1
(𝑖), 𝑥2

(𝑖), … , 𝑥𝑚
(𝑖)
) an output 𝑦(𝑖) (𝑖 = 1,2,… , 𝑛) can be 

calculated. Furthermore the average value, standard deviation, distribution, etc of outputs of the 

model can be obtained as well.  
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Figure 2.9: Uncertainty analysis (Monte Carlo analysis) 

Based on the results of uncertainty analysis, the sensitivity analysis can then be performed in 

several ways. Since the model used in this thesis is linear, these methods will be introduced with 

help of a linear model (Eq.(2.8)).The methods introduced in the rest part of this section can all 

be refered to SALTELLI ET AL. [5, pp. 10-20]’s work. 

𝑦 =∑𝑤𝑖 ∙ 𝑥𝑖

𝑚

𝑖=1

 (2.8) 

𝑦 is a single output, 𝑥1, 𝑥2, … , 𝑥𝑚 are the m input factors, 𝑤1, 𝑤2, … , 𝑤𝑚 are coefficients which can 

be for instance system characteristic parameters or weighting factors. At the same time these 

methods are based on the assumption that the input factors are independent from each other.  

Scatterplots 

Without need for further computation after uncertainty analysis, a scatterplot can be created for 

each input factor. Taking input 𝑥1 for example, its scatterplot can be created by plotting points 

with coordinates (𝑥1
(1), 𝑦(1)) , (𝑥1

(2), 𝑦(2)) ,… , (𝑥1
(𝑛), 𝑦(𝑛)) in a coordinate system. The influence 

level of each input can be determined by observing the shape of respective point cloud. If the 

shape of point cloud is close to a circle, then this input has little influence on output. If the point 

cloud shows a linear relationship between this input factor and the output, the stronger this rela-

tionship is, the more influential is this input factor. 

Derivative  

Derivative is a common and simple way used to describe how sensitive is the change of output 

caused by a change in input. The result can be seen as a measure for relative importance of 

respective input factor 𝑥𝑖 (Eq.(2.9)). 

𝑆𝑥𝑖
𝑝
=
𝜕𝑦

𝜕𝑥𝑖
, 𝑖 = 1,2,… ,𝑚 (2.9) 

𝑝 stands for “partial derivative”. For the model mentioned in Eq. (2.8), the input factors are sup-

posed to be equally important according to the result of this method, since their weighting factors 

are all equal to 𝑤. However, according to the assumption these input factors have different val-

ues of standard deviation. Therefore, it is not convincing to make the conclusion that they are 

equally important.  
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Sigma-normalized Derivative 

To make up for the shortcoming of derivative, sigma-normalized derivative is developed by tak-

ing standard deviation of respective input factor into consideration (Eq.(2.10)). Thus, the original 

derivative 𝑆𝑥𝑖
𝑝

 is weighted and normalized by the ratio of standard deviation between input and 

output.  

𝑆𝑥𝑖
𝜎 =

𝜎𝑥𝑖𝜕𝑦

𝜎𝑦𝜕𝑥𝑖
, 𝑖 = 1,2,… ,𝑚 (2.10) 

If all input factors are standardized (the input is subtracted by its mean value and then divided 

by its standard deviation), there exists the following relationship between standard deviation of 

output and standard deviation respective input factor: 

𝜎𝑦
2 =∑𝑤𝑖

2𝜎𝑥𝑖
2

𝑚

𝑖=1

 (2.11) 

By replacing 
𝜕𝑦

𝜕𝑥𝑖
 in Eq. (2.10) with 𝑤𝑖  and replacing 𝜎𝑦  in Eq. (2.11) with 

𝜎𝑥𝑖
𝑆𝑥𝑖
𝜎 𝑤 , following 

conclusion can be obtained. The value of (𝑆𝑥𝑖
𝜎 )2 offers information about how much the input 

factor 𝑥𝑖 contributes to the variance of the output. If every input factor has a normal distribution 

with 0 as the average value.  (𝑆𝑥𝑖
𝜎 )2 of all input factors will add up to 1: 

∑(𝑆𝑥𝑖
𝜎 )2

𝑚

𝑖=1

= 1 (2.12) 

Standardized Regression Coefficient  

Another possibility is the application of linear regression. By calculating the squared difference 

between the output of linear regression model and the output obtained by uncertainty analysis 

the coefficients 𝑘0 and 𝑘𝑖 can be determined (least-square). 

𝑦(𝑗) = 𝑘0 +∑𝑘𝑖

𝑚

𝑖=1

𝑥𝑖
(𝑗)
, 𝑗 = 1,2,… , 𝑛⁡ (2.13) 

Standardized regression coefficient (SRC) 𝛽𝑥𝑖 is defined as 𝑘𝑖
𝜎𝑥𝑖
𝜎𝑦

. Since the actual outputs are 

obtained with linear model, therefore, if 𝑛 is large enough the value of 𝛽𝑥𝑖 should be almost the 

same as that of 𝑆𝑥𝑖
𝜎 . Similar to sigma-normalized derivative, if all input factors has a normal 

distribution with an average value 0, the sum of squares of SRC is equal to 1 as well: 

∑(𝛽𝑥𝑖)
2

𝑚

𝑖=1

= 1 (2.14) 

For linear models, SRC has the same effect compared to sigma-normalized coefficients. The 

difference is that, SRC shows better robustness and reliability when applied to nonlinear models, 

since compared to sigma-normalized derivative SRC is multidimensional (However, if 𝑛 is not 

large enough and the number of inputs is large, SRC would not be a very precise method).  
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3 Method 

In this chapter, several deficiencies in the previous work will be improved. The metric will be 

extended with three more factors, which are not included in the previous work, but might have 

influence on the complexity as well. The main goal of this chapter is to study the relationship 

between influence factors and complexity. A sensitivity analysis will be conducted with equal 

weighting factors to evaluate the degree of influence of each factor on complexity. A 

questionnaire will be desgined so that the knowledge and experience of experts can be taken 

into consideration when determining the weighitng factors of each factor. An overview of the 

content and process of the work is show in the following figure.  

Figure 3.1: Flow chart of the method 

 

Starting Point: 
Previous work

Improvement of factors from
previous work

Extend the metric by three 
new factors

Sensitivity analysis

Determination of weighting
factors based on the result of 

designed questionnaire

End

Following factors are included:
• Connectivity
• Possible actions of ego-vehicle
• Possible actions of surrounding vehicles

Following factors are included
• Time-to-Brake
• Number of actions of ego-vehicle
• Number of actions of surrounding vehiclesEqual weighting factors

Updated weighting factors

Content of the questionnaire: 
• Basic information of respondents
• Evaluation of 13 influence factors
• Comparison of different factor groups
• Evaluation of complexity of 20 scenarios
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3.1 Improvement of the previous work  

In this section some shortcomings in the previous work will be corrected, which involves factor 

“Connectivity”, “Possible actions of ego-vehicle” and “Possible actions of surrounding vehicles”. 

3.1.1 Connectivity 

One major change to be made is the definition of connectivity. Previously, connectivity is defined 

as the total number of connections, for which only the ones in lateral and longitudinal direction 

are taken into consideration. This consideration is incomplete for the real-world traffic. For the 

case that ego-vehicle intends to change to the left or right adjacent lane, or that vehicles labelled 

“leftpre” or “rightpre” can possibly cut in in front ego-vehicle, the connections between ego-vehi-

cle and surrounding vehicles in diagonal directions need to be considered as well (Figure 3.2).  

Figure 3.2: Connections after improvement 

In the previous definition, a connection will be counted, as long as the sectors next to each other 

in longitudinal direction or lateral direction are occupied, regardless of the number of vehicles in 

each sector. However, in the reality, it is possible that there is more than one vehicle in one 

sector, which can all have influence on vehicles from the neighboring sector. For more accuracy, 

the total number of connections will consist of the following four parts: First, if there are 𝑠𝑖 vehi-

cle(s) within sector 𝑖⁡(𝑖 = 1,2, … ,12), the number of connections within sector 𝑖 will be 𝑠𝑖 − 1. For 

all sectors, this number will be ∑ (𝑠𝑖 − 1)
12
𝑖=1 . Second, for connections between vehicles from two 

adjacent sectors in lateral direction, situations will be divided into four categories shown in Figure 

3.3. If one of the two sectors are vacant, number of connections in lateral direction in this case 

will be 0 (Figure 3.3(1)). If each one of the two sectors have exactly one vehicle, number of 

connections will be 1 (Figure 3.3(2)). If one sector is occupied with one vehicle and the other 

with two, the number of connections will be 2 (Figure 3.3(3)). One sector occupied with more 

than two vehicles is very unlikely in the reality. Finally, if both sectors are occupied with two 

vehicles, the number of connections will be 4 (Figure 3.3(4)). In general, number of connections 

between two adjacent sectors can be expressed as 𝑠𝑖 ∙ 𝑠𝑗 (𝑠𝑖 and 𝑠𝑗 are the numbers of vehicles 

of two laterally adjacent sectors 𝑖 and 𝑗). Third, the calculation of connections between two lon-

gitudinally adjacent sectors remain unchanged, namely if both sectors are occupied, regardless 

of the number of vehicles, one connection will be counted. The reason for this is that, for cases 

with more than one vehicle in a sector, the connections within sector has already been counted, 

the connection between sectors need to be counted only once, since one vehicle does not have 

direct interaction with a vehicle behind/in front of its following/preceding vehicle (Figure 3.4). The 
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fourth part are the connections in diagonal direction. If there is a vehicle with label “leftfollow”, 

“rightfollow”, “leftpre” or “rightpre” (namely within the sector in diagonal direction of ego-vehicle), 

a connection will then be counted. The number of vehicles within one sector does not play a role 

here, for case with two vehicles within one sector, only the one closer to ego-vehicle can have 

large enough influence. Therefore, there are maximal 4 connections in diagonal direction.  

Figure 3.3: Definition of connections in lateral direction 

Figure 3.4: Definition of connection in longitudinal direction 

When implementing the second and third part of the connections (connections between sectors) 

with MATLAB, each two adjacent sectors will be seen as a group (Figure 3.3 and Figure 3.4).  In 

lateral direction there are 8 (2 x 4) such groups in total. The number of connections of each group 

will be examined and expressed as 𝑐𝑙𝑎𝑡.𝑚⁡(𝑚 = 1,2, . . ,8). The total number of connections in 

lateral direction adds up to ∑ 𝑐𝑙𝑎𝑡,𝑚
8
𝑚=1 . In longitudinal direction there are 9 (3 x 3) such groups 

in total. The number of connections of each group is expressed as  𝑐𝑙𝑜𝑛.𝑛⁡(𝑛 = 1,2, . . ,9). The total 

number of connections in the longitudinal direction adds up to ∑ 𝑐𝑙𝑜𝑛,𝑛
9
𝑛=1 . Together with the con-

nections in diagonal directions 𝑐𝑑𝑖𝑎𝑔 and the connections within sectors  ∑ (𝑠𝑖 − 1)
12
𝑖=1 , the total 

number of connections within the entire ROI can be expressed with the following formula: 

c𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒 =∑(𝑠𝑖 − 1)

12

𝑖=1

+ ∑ 𝑐𝑙𝑎𝑡,𝑚

8

𝑚=1

+∑𝑐𝑙𝑜𝑛,𝑛

9

𝑛=1

+ 𝑐𝑑𝑖𝑎𝑔 (3.1) 

Since the possibility of two vehicles appearing in one sector is relatively small, the reference 

value used for normalization will be increased by 4 from the original value, which corresponds to 

the four newly added connections between the ego-vehicle and surrounding vehicles in diagonal 

direction. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑓 is now equal to 21.   

3.1.2 Possible actions of ego-vehicle and surrounding vehicles 

The other factors being improved are possible actions of ego-vehicle and of surrounding vehicles. 

The maximal number of possible actions of ego-vehicle is 5 and of a surrounding vehicle is 8. In 

the previous work, these two factors are normalized in such a way, that the normalized values 
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are zero for no possible actions and 1 for there is only one possible action. The argumentation 

for this is that, situations are supposed to be simple for two extreme cases, namely there is no 

surrounding vehicles and the vehicle (in this case the vehicle can be ego-vehicle or a surrounding 

vehicle) has all the possibilities, or all sectors around the vehicle are occupied with other vehicles 

and it has no option for other movement but to maintain the current state. For these two cases 

the factors values should be zero after normalization. The largest normalized value is supposed 

to appear at a position where a vehicle has a particular number of possibilities.  

According to the interpretation of these factors in the previous work [1, p. 38], these factors 

should “reflect the indistinction of the target situation”, which is one of the characteristic of com-

plex scenario. However, from the perspective of ego-vehicle, this characteristic is more reflected 

by the possible actions of surrounding vehicle. The behaviors of surrounding vehicles will be 

difficult to predict if they have large number of possible actions, which brings more ambiguity for 

ego-vehicle. The possible actions of ego-vehicle itself more reflects the effort with respect to 

decision making for the current traffic situation. If ego-vehicle has no possible actions or all the 

possibilities, the decision making would be an easier process. Based on these considerations, 

the normalization of the values of these two factors will be improved. A monotone increasing 

function will be used for the normalization of possible actions of surrounding vehicles, so that 

larger number of possible actions of surrounding vehicle reflects more ambiguity of the scenario 

for ego-vehicle (Eq. (3.2)).  

𝑝𝑎𝑛𝑜𝑟𝑚,𝑠𝑢𝑟 =
1

8
𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟, 𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟 = 1,2,… , 8 (3.2) 

𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟 represents the average value of number of possible actions of surrounding vehicles 

and 𝑝𝑎𝑛𝑜𝑟𝑚,𝑠𝑢𝑟 is the normalized value of 𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑠𝑢𝑟.  

For normalization of possible actions of ego-vehicle a piecewise function is chosen, so that the 

two extreme cases mentioned above indicate small effort for decision making for ego-vehicle 

and medium range of possible actions requires more effort. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑛𝑜𝑟𝑚,𝑒𝑔𝑜 = {

1

2
𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 = 0,1,2

−
1

2
𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 +

5

2
, 𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 = 3,4,5

 (3.3) 

𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜 is the number of possible actions of ego-vehicle and 𝑝𝑎𝑛𝑜𝑟𝑚,𝑒𝑔𝑜 the normalized value 

of 𝑝𝑎𝑣𝑎𝑙𝑢𝑒,𝑒𝑔𝑜. With this method, the maximal normalized value 1 appears when ego-vehicle has 

2 or 3 possible actions (Figure 3.5).  

Figure 3.5: Normalization of possible actions of ego-vehicle 
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3.1.3 Time-gap 

In the previous work, time-gap is defined as the longitudinal distance between ego-vehicle and 

the surrounding vehicle (with label “leftfollow”, “rightfollow”, “leftpre”, “middlepre” or “rightpre”) 

divided by the longitudinal velocity of ego-vehicle. If the corresponding position of a surrounding 

vehicle is vacant, then the related time-gap has a default value of 6 s. The value 𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑣𝑎𝑙𝑢𝑒 

used for normalization in Table 2.2 is actually the average value of all five vehicles with labels 

mentioned above. In most cases, only one or two of the five sectors are occupied, for other 

empty sectors time-gap has the default value 6. This will lead to a large 𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑣𝑎𝑙𝑢𝑒 after av-

eraging and a very small normalized value. Therefore, assuming   𝒎 _   𝒗  𝒖  is a vector 

containing time-gap value of all five sectors, only the maximal value will be used for the normal-

ization. The expression in Table 2.2 can be expressed as: 

𝑡𝑖𝑚𝑒_𝑔𝑎𝑝𝑛𝑜𝑟𝑚 = 𝑒
−0.4∙max⁡(  𝒎 _   𝒗  𝒖 ) (3.4) 

3.2 Extension of the previous work  

In this section three factors which are not included in the previous work will be introduced and 

taken into consideration for the evaluation of complexity.  

3.2.1 Time-to-Brake 

In the previous work it has been distinguished between the two concept “complexity” and “criti-

cality”. If a scenario is critical for ego-vehicle, which means that ego-vehicle is on the verge of 

an accident. The ten influence factors are derived based on the characteristics of “complexity”. 

A complex scenario can be critical at the same time or it can evolve into a critical situation in a 

time. Namely, these two concepts are not mutually exclusive. However, criticality has not been 

included in the previous work. Therefore, an influence factor reflecting the scenario’s criticality 

or the potential of getting critical will be complemented to the previous work.  

In NOH ET AL.’s work [6], three values are used as “threat measures” to evaluate the possibility 

of collision. The first value is time-to-collision, which is calculated from the distance between two 

vehicles, divided by the speed difference of the two vehicles. The second value is the safety 

distance ought to be kept, so that minimum safety can be ensured. The third value being used 

is time-to-brake, which is defined as the time remaining for ego-vehicle to take emergency brake 

to avoid collision in case the preceding vehicle suddenly comes to a standstill.  

In JUNIETZ’s work [7], a Trajectory Criticality Index (TCI) was introduced for the assessment of 

criticality, which consists of three elements: acceleration, reaction time and precision. Accelera-

tion is selected as an element because this maneuver is usually inevitable in a critical situation. 

Normalization of acceleration is achieved with help of Kamm’s circle. Under the premise that the 

coefficient is known. Acceleration will be normalized by dividing it by the maximum achievable 

acceleration  𝜇 ∙ 𝑔, with 𝜇 the friction coefficient and 𝑔 the gravitational constant. Since the fric-

tion coefficient can only be estimated for many reasons, instead of a friction circle, other shapes 

like a rhombus or a cross can be used to ensure that the maximum achievable acceleration will 

not be exceeded (the boundaries of other shapes lie within the friction circle). The second ele-

ment reaction time takes two situations into consideration: in the first situation where no evasion 

maneuver is possible, only time-to-brake in longitudinal direction will be considered. In the 
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second situation where there is possibility to evade the collision, time-to-steering in lateral direc-

tion will be calculated. The final reaction time is the larger value of time-to-brake and time-to-

steering. The normalized value is achieved by using a reference value of 2 s and a monotone 

decreasing function. The third element precision observes the dynamic in lateral direction. The 

reaction time for this component consists of two parts: the first part is the time necessary for ego-

vehicle to catch up with the preceding vehicle, the second part is obtained by dividing lateral 

distance between two vehicles with the lateral velocity of ego-vehicle. The value for this element 

is normalized with help of a reference value of 2 s and a monotone decreasing function as well.  

The three elements used for TCI are based on the human driver experience. Some measures 

used by the research mentioned above are not very appropriate for automated vehicles. An au-

tomated vehicle should be able to keep a safety distance to the preceding vehicle automatically 

with help of, for instance, an ACC system. Therefore, it is not likely to get into a critical situation 

due to not keeping the safety distance. The first two measures of NOH ET AL.’s work [6] will not 

be considered. In other words, the criticality of a scenario from the perspective of an automated 

ego-vehicle should mainly be caused by the unexpected or unpredicted behaviors of surrounding 

vehicles, not the improper behaviors of ego-vehicle. Since friction coefficient is not available in 

HighD dataset, element “Acceleration” from JUNIETZ’s work [7] will not be considered as well. 

The element “Precision” in TCI has already been taken into consideration as a separate influence 

factor “time-gap” in the previous work [1, pp. 40-41]. Based on the consideration above, time-to-

brake will be selected in this thesis as a newly added influence factor, which indicates the criti-

cality of a scenario.  

For this factor not all vehicles in front of ego-vehicle will be observed, only the one labelled with 

“middlepre” (if there are two vehicles have this label, only the one closer to ego-vehicle will be 

considered). If ego-vehicle has a larger velocity in longitudinal direction than the preceding vehi-

cle, the time will be calculated, which ego-vehicle needs to decelerate until it has the same 

velocity as the preceding vehicle with constant maximum deceleration 𝑎𝑚𝑎𝑥  (-10 m/s2). 

𝑑𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑟𝑒 represents the distance between ego-vehicle’s front and the preceding vehicle’s rear. 

The distance covered during movement with constant deceleration can be expressed with the 

following formula: 

𝑑𝑑𝑒𝑐 =
𝑣𝑒𝑔𝑜,𝑥
2 − 𝑣𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑟𝑒,𝑥

2

2 ∙ |𝑎𝑚𝑎𝑥|
 (3.5) 

𝑣𝑒𝑔𝑜,𝑥 and 𝑣𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑟𝑒,𝑥 represent the longitudinal velocity of ego-vehicle and vehicle “middlepre” 

respectively. For instance, if ego-vehicle moves with a constant velocity of 30 m/s and vehicle 

“middlepre” stands in still. Then ego-vehicle needs 45 m to come to a standstill. It is noticeable, 

that this distance is only a bit shorter than the safety distance used to determine the area of ROI, 

which is 54 m (30 m/s x 1.8 s). The time which remains for ego-vehicle to take the decision is 

then: 

𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 =
𝑑𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑟𝑒 − 𝑑𝑑𝑒𝑐

𝑣𝑒𝑔𝑜,𝑥
 (3.6) 

The result can be negative, in which case a critical situation is considered to be inevitable even 

ego-vehicle takes an emergency brake. The corresponding normalized value in this case will be 

1. A reference value of 2 s is used for normalization when 𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 is positive. If 𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 > 2𝑠, 

the corresponding normalized value will be 0. If 𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 is between 0 and 2, like in JUNIETZ’s 

work [7], a monotone decreasing function will be used for normalization (Eq. (3.7)).  
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𝑡𝑡𝑏𝑛𝑜𝑟𝑚 = {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 < 0
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 > 2

1 −
𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒
2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑡𝑡𝑏𝑣𝑎𝑙𝑢𝑒 ≤ 2

 (3.7) 

𝑡𝑡𝑏𝑛𝑜𝑟𝑚 represents the value after normalization. This value will be calculated for each scene of 

the scenario.  

3.2.2 Number of actions of ego-vehicle and surrounding vehicles 

The factors derived in the previous work and the newly added factor in section 3.2.1 are only 

scene-based, which means that the factors are calculated for each scene of a scenario. The 

value of each factor is usually the average value, maximum or minimum of all scenes, therefore, 

reflects the average level or extreme level of different aspects of a scenario. There has not been 

a factor which is scenario-based and reflects the characteristic of the scenario. Based on this 

consideration, the two factors “number of actions of ego-vehicle and surrounding vehicles” are 

included for the evaluation of scenario complexity.  

In SCHÖRNER’s work [8] several action templates are defined to describe the development of 

state of a vehicle. The different action templates distinguish from each other according to differ-

ent ranges of acceleration they are in, from strong deceleration to strong acceleration. This 

method of description will be adapted in this section for the evaluation of new factors. For ego-

vehicle and surrounding vehicles, it will be distinguished between number of actions in longitu-

dinal direction and in lateral direction. In lateral direction the number of actions is the number of 

lane changes, it can be obtained by counting how many times the lane ID of a vehicle has 

changed during the scenario. For longitudinal direction it is necessary to first determine a time 

interval, in which an action template or a driving state Is defined.  The number of actions in 

longitudinal is then the number of times a vehicle’s driving state changes.  

HighD dataset has a frame rate of 25 fps. The time interval between two consecutive frames is 

0.04 s. In other words, the situation in the road section is captured every 0.04 s. For the definition 

of driving state, a time interval of 0.4 s can be obtained when taking 10 consecutive frames as a 

unit. The acceleration of the driving state can be calculated from the average value of longitudinal 

accelerations of these 10 frames. 𝑛𝑓 is the total number of frames of a vehicle (ego-vehicle or 

surrounding vehicle). The number of states can be calculated by dividing 𝑛𝑓 by 10 and applying 

ceiling function to the result of division (Eq. (3.8)).  

𝑛𝑠𝑡𝑎𝑡𝑒 = ⌈𝑛𝑓/10⌉ (3.8) 

𝑛𝑠𝑡𝑎𝑡𝑒 represents the number of states. Ceiling function maps the input to an integer, which is 

the smallest integer larger than input. For instance, a vehicle has in total 323 frames, this value 

divided by 10 results in 32.3. 𝑛𝑠𝑡𝑎𝑡𝑒 is supposed to be the smallest integer larger than 32.3, 𝑛𝑠𝑡𝑎𝑡𝑒 

is equal to 33. A visualization of this process is shown in the following figure, that the movement 

of a vehicle in a scenario is divided into a series of driving states. 
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Figure 3.6: Definition of a driving state 

Since in HighD dataset the longitudinal acceleration of each vehicle in each frame is available, 

the longitudinal acceleration of a state 𝑠𝑖 ⁡(𝑖 = 1,2, … , 𝑛𝑠𝑡𝑎𝑡𝑒) can be obtained by calculating the 

mean value of accelerations of all frames contained in state 𝑠𝑖 (Eq. (3.9)). 

𝑎𝑠𝑖 =

{
 

 
𝑎𝑠𝑖,1 + 𝑎𝑠𝑖,2 + + 𝑎𝑠𝑖,10

10
, 𝑖 = 1,2, … , 𝑛𝑠𝑡𝑎𝑡𝑒 − 1

𝑎𝑠𝑖,1 + 𝑎𝑠𝑖,2 + + 𝑎𝑠𝑖,𝑗
𝑗

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 𝑛𝑠𝑡𝑎𝑡𝑒 , 𝑗 ≤ 10

 (3.9) 

𝑠𝑖,𝑗 is the 𝑗-th frame of state 𝑠𝑖. Since 𝑛𝑓/10 is not always an integer, in other words, the number 

of frames contained in the last state 𝑠𝑛𝑠𝑡𝑎𝑡𝑒 can sometimes be less than 10. For the example 

mentioned above, the last state of the vehicle with 323 frames has only 3 frames. In this case, 

the acceleration of last state will be the mean value of these 3 frames.  

Several thresholds are defined, so that if 𝑎𝑠𝑖 lies in a certain range, the state will be characterized 

correspondently. If 𝑎𝑠𝑖 is larger than -0.2 m/s2 and smaller than 0.2 m/s2, the vehicle is consid-

ered to be in a state where it moves with a nearly constant velocity. If 𝑎𝑠𝑖 is larger than 0.2 m/s2 

and smaller than 2 m/s2, than it is in a state where it moves with a normal acceleration. If 𝑎𝑠𝑖 is 

larger than 2 m/s2, then the vehicle is considered to be experiencing a strong acceleration. If 𝑎𝑠𝑖 

is smaller than -0.2 m/s2 and larger than -3 m/s2, the vehicle is in a state with normal deceleration. 

If 𝑎𝑠𝑖 is smaller than -3 m/s2 and larger than -6m/s2, the level of deceleration is categorized as 

strong. If 𝑎𝑠𝑖 is smaller than -6 m/s2, the vehicle is probably running into a critical situation and 

taking an emergency brake. A summary can be seen in the table below: 

Table 3.1: Definition of a vehicle’ 

 

Range of     Driving state    (state code) 

𝑎𝑠𝑖 ≤ −6𝑚/𝑠
2 Emergency brake (-3) 

−6𝑚/𝑠2 < 𝑎𝑠𝑖 ≤ −3𝑚/𝑠
2 Strong deceleration (-2) 

−3𝑚/𝑠2 < 𝑎𝑠𝑖 < −0.2𝑚/𝑠
2 Normal deceleration (-1) 

−0.2𝑚/𝑠2 ≤ 𝑎𝑠𝑖 ≤ 0.2𝑚/𝑠
2 Constant driving (0) 

0.2𝑚/𝑠2 < 𝑎𝑠𝑖 < 2𝑚/𝑠
2 Normal acceleration (1) 

2𝑚/𝑠2 < 𝑎𝑠𝑖 Strong acceleration (2) 

1st frame/scene 𝑛𝑓-th frame/scene

1st driving state 2nd driving state 𝑛𝑠𝑡𝑎𝑡𝑒
th driving state

Time span of a scenario

… …10 x 0.04s 10 x 0.04s

11st frame/scene 21st frame/scene
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It is noticeable that categorization of driving states for acceleration and deceleration is not sym-

metric, the absolute value of deceleration considered as strong level is much larger than that of 

acceleration. The reason for this difference is that, larger deceleration can more easily be 

achieved by lightly pressing the brake pedal when compared with acceleration.  

For better visualization of the development of driving state of a vehicle, each type of state is 

assigned an integer as its code (in the brackets behind each type of state). An example is shown 

in Figure 3.7, which is from vehicle 110 in the 1st track. The blue line in the graph is the develop-

ment of longitudinal acceleration. Each red dot represents a type of driving state of 10 

consecutive frames. As can be seen that, the first 4 red dots have the value 1, which corresponds 

with the state “normal acceleration”. The following red dots have the value 0, which means that 

the vehicles moves with nearly constant velocity, In the last roughly 40 frames, the acceleration 

is smaller than -0.2m/s2, this state is reflected by the last 4 red dots with value -1. The vehicle 

has experienced change of state twice. Namely from “normal acceleration” to “constant driving” 

and from “constant driving” to “normal deceleration”.  An action is defined as one change of state, 

then in this scenario the number of actions of this vehicle is 2.  

Figure 3.8 shows the distribution of number of actions of all vehicles from the 1st track. The 

vehicles from the 1st track have on average about 300 frames, which is a scenario about 12 

seconds. As can be seen from the graph that, most vehicles have less than 5 actions, this can 

be used as a reference value for normalization. However, the situation can be quite different 

when looking at the results in the 25th track, in which the number of actions of a vehicle can 

sometimes be larger than 20. In this case, 5 will be no longer suitable as a reference value for 

normalization. For the vehicles in the 1st track, assuming it takes them on average 12 seconds 

to pass a road section of 420 m (length of road section recorded by drone in HighD dataset), the 

average speed of these vehicles can be up to 35 m/s. While most vehicles in the 25th track have 

a velocity only half of this value or even smaller, it takes them twice as much or more time to 

pass the same road section, which results in larger number of frames, larger number of driving 

states and larger number of actions. This is also a reasonable result, since if the vehicles move 

with a small velocity on the highway, it is very likely that the vehicles are in a traffic jam. Situation 

like this often involves the stop-and-go type of movement, frequent braking, starting, acceleration 

and deceleration will then result in frequent changes of driving states, which then leads to large 

number of actions.  

Figure 3.7: Development of driving state of vehicle Nr.110 from track 1 
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Figure 3.8: Distribution of number of actions of vehicles from the 1st track 

Since large number of actions is normal for traffic flow with small velocity, so it does not neces-

sarily relate to very complex situations. Therefore, for a reasonable normalization of this value 

number of frames should be taken into consideration. The solution to this problem is to define 

the reference value proportionally according to the number of frames. Table 3.2 shows the val-

ues of this factor of several tracks (only vehicles in negative driving direction). Column “Nr” 

contains the track number. “𝑛𝑜𝑓̅̅ ̅̅ ̅” contains the average number of frames of all vehicles from 

corresponding track. “ego.x” represents the number of actions of ego vehicle in longitudinal di-

rection and “ego.y” the one in lateral direction, namely the number of lane changes. “sur.x” 

represents the average value of number of actions of surrounding vehicles in longitudinal direc-

tion and “sur.y” the total number of actions of surrounding vehicles in lateral direction. Under 

each category, taking “ego.x” as an example, “𝑛𝑜𝑎̅̅ ̅̅ ̅” is the mean value of number of actions of 

ego-vehicles in this track. Column “0.9” shows the 90th percentile value and “0.95” the 95th 

percentile value. The reference value used for the category “ego.x” should cover the majority of 

the situations, However, for different tracks, the values in column “0.95” are very different. It is 

noticeable, that these values are proportional to the values of column “𝑛𝑜𝑎̅̅ ̅̅ ̅” to a certain extent. 

When dividing the values of column “𝑛𝑜𝑎̅̅ ̅̅ ̅” with the ones of “0.95”, following results are obtained: 

63.4, 55.28, 55.28, 56.88, 54.74, which are very close to each other. This value can be under-

stood as the number of frames per action. To ensure that a reference value can cover most 

cases and yet not to large. A value of 50, which is smaller than the results just calculated is 

selected for the determination of a reference value (Eq.(3.10)). Namely, for reference value one 

action is defined for every 50 frames.  

𝑛𝑜𝑎𝑒𝑔𝑜,𝑥,𝑟𝑒𝑓 =
𝑛𝑒𝑔𝑜,𝑓𝑟𝑎𝑚𝑒

50
 (3.10) 

𝑛𝑒𝑔𝑜,𝑓𝑟𝑎𝑚𝑒 is the number of frames of ego-vehicle. 𝑛𝑜𝑎𝑒𝑔𝑜,𝑥,𝑟𝑒𝑓 represents the reference value of 

number of actions in longitudinal direction for ego-vehicle. Larger number of frames leads to 

larger reference value.  
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Table 3.2: Number of actions of several tracks 

A surrounding vehicle usually does not stay in the ROI of ego-vehicle through the entire scenario. 

It can for instance only be present in the first few seconds, then leave the ROI due to slower 

speed or lane change. Or it can appear in the middle of the scenario due to cut in. Therefore, 

the number of frames of surrounding vehicle in a scenario (from ego-vehicle’s perspective) is not 

larger than ego-vehicle. This will lead to a smaller number of driving states and smaller number 

of actions. Due to this reason the reference value used for surrounding vehicles 𝑛𝑜𝑎𝑠𝑢𝑟,𝑥,𝑟𝑒𝑓 will 

only be half of ego-vehicles.  

𝑛𝑜𝑎𝑠𝑢𝑟,𝑥,𝑟𝑒𝑓 =
𝑛𝑒𝑔𝑜,𝑥,𝑟𝑒𝑓

2
 (3.11) 

As mentioned above, the number of actions of a vehicle in lateral direction corresponds with the 

times of lane change. 𝑛𝑜𝑎𝑒𝑔𝑜,𝑦 and 𝑛𝑜𝑎𝑠𝑢𝑟,𝑦 represent the number of actions in lateral direction 

of ego-vehicle and of all surrounding vehicles respectively. Since lane change is not frequent in 

a short road section (category “ego.y” and “sur.y” in Table 3.2) and can increase the level of 

complexity of the scenario once it happens, so the number of actions in lateral direction will not 

be normalized separately with a reference value. Eq. (3.12) shows the normalized value of num-

ber of actions by taking both longitudinal and lateral direction into consideration. 

𝑛𝑜𝑎𝑒𝑔𝑜,𝑛𝑜𝑟𝑚 = (
𝑛𝑒𝑔𝑜,𝑥,𝑣𝑎𝑙𝑢𝑒

𝑛𝑒𝑔𝑜,𝑥,𝑟𝑒𝑓
+ 𝑛𝑜𝑎𝑒𝑔𝑜,𝑦)/2 (3.12) 

𝑛𝑒𝑔𝑜,𝑥,𝑣𝑎𝑙𝑢𝑒 is the number of actions in longitudinal direction. 𝑛𝑜𝑎𝑒𝑔𝑜,𝑛𝑜𝑟𝑚 is the value after nor-

malization. The calculation is similar for surrounding vehicles in the scenario. The only difference 

is that, for surrounding vehicle, the average value of number of actions in longitudinal direction 

𝑛𝑠𝑢𝑟,𝑥,𝑣𝑎𝑙𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is used. 

𝑛𝑜𝑎𝑠𝑢𝑟,𝑛𝑜𝑟𝑚 = (
𝑛𝑠𝑢𝑟,𝑥,𝑣𝑎𝑙𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛𝑠𝑢𝑟,𝑥,𝑟𝑒𝑓
+ 𝑛𝑜𝑎𝑠𝑢𝑟,𝑦)/2 (3.13) 

The ten factors from the previous work (with improvement) and the new factor time-to-brake are 

scene-based and obtain a result for each different scene. The factors number of actions for ego-

vehicle and for surrounding vehicles are scenario-based and obtain a result for each scenario, 

which consists of a series of consecutive scenes. For the calculation of complexity these two 

factors will be considered the same for all scenes. Thus, 13 factors in total are available for the 

evaluation of complexity (Table 3.3).   

  ego.x ego.y sur.x sur.y 

Nr 𝒏  ̅̅ ̅̅ ̅̅  𝒏  ̅̅ ̅̅ ̅̅  0.9 0.95 𝒏  ̅̅ ̅̅ ̅̅  0.9 0.95 𝒏  ̅̅ ̅̅ ̅̅  0.9 0.95 𝒏  ̅̅ ̅̅ ̅̅  0.9 0.95 

1 317 1.63 4 5 0.13 1 1 1.08 2 2.5 0.49 2 2 

7 276 1.55 4 4 0.12 1 1 1.03 2 2.33 0.59 2 2 

8 276 1.39 3 4 0.17 1 1 0.86 1.6 2 0.78 2 3 

12 455 3.82 7 8 0.07 0 1 2.69 4 4.43 0.64 2 2 

25 1040 9.94 16 19 0.06 0 1 4.46 7.05 8.13 0.66 2 2 
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Table 3.3: Summary of all influence factors 

In the previous work, the average value of complexities of all scenes contained in a scenario is 

used as the measure for scenario complexity. Four the accuracy of the result, only the frames 

with complete ROI are used for the calculations. Frames, in which ROI is partially outside the 

road section, are cast away. The problem of using the average value is that some complex 

scenes in a scenario might be ignored due to low level of complexity of the rest of the scenes in 

this scenario. Regardless of the duration of complex situation, it always has the possibility to turn 

into a critical situation. To make up for this shortage the maximal complexity of all scenes con-

tained in a scenario is selected in this thesis to indicate the complexity of the scenario (Eq. (3.14)). 

In this case, the ROI does not need to be completely in the highway section. All frames of a 

vehicle can be used for the calculation of complexity. 

Cscenario = max⁡(𝑪 𝒄 𝒏 ) (3.14) 

𝑪 𝒄 𝒏  is a vector containing the complexity of all scenes in the scenario.  

3.3 Analysis of influence factors 

The major goal of this thesis is to find out more information from the influence factors. In the first 

part of this subchapter, a sensitivity analysis is conducted to study the relationship between dif-

ferent factors and to offer theoretical support for the determination of relative importance of each 

influence factor. In the second part a questionnaire is designed for experts who have experience 

in this field. Their opinions towards these influence factors will be asked. The weighting factors 

of influence factors will be determined by taking the results of the questionnaire, namely the 

opinions of experts into consideration.  

Nr. Influence factor 

1 Types of surrounding vehicles within ROI 

2 Number of surrounding vehicles  

3 Number of connections between traffic participants within ROI 

4 Dynamic of surrounding vehicles 

5 Variation of dynamical parameters of the surrounding vehicles 

6 Deviations of the surrounding vehicles from the predicted trajectories 

7 Number of possible actions of ego-vehicle  

8 Number of possible actions of surrounding vehicles 

9 Time-gap between ego-vehicle and surrounding vehicles 

10 Time-to-Brake  

11 Blind-spot area  

12 Number of actions of ego-vehicle performed in the scenario 

13 Number of actions of surrounding vehicles performed in the scenario 
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3.3.1 Sensitivity analysis with equal weighting factors 

First it is necessary to clarify some concepts. According to SALTELLI ET AL.’s work [5], sensitivity 

analysis can be used to determine the relative importance of each input factor. To be more ac-

curate, sensitivity analysis helps to study how the variation of the output is distributed among the 

variation of inputs. In other words, if varying one input and keeping other inputs fixed, the degree 

of caused variation at output is different for different inputs. This character can be more accu-

rately defined as the influence level of an input factor. It depends on the distribution of the input 

factor and is different from the concept “importance degree”. A factor considered to be important 

by experts, whose variation may not be very influential on the final output. Therefore, in this work 

it is distinguished between the “influence level” and “importance degree” of an influence factor. 

The former will be analyzed with sensitivity analysis in this section. 

A method for visualization and three indicators is introduced for sensitivity analysis in section 2.2. 

Scatterplot has the advantage of offering an immediate visual description of the relationship be-

tween each influence factor and the complexity compared with using indicators. Compared with 

derivative, sigma-normalized derivative (SND) and SRC are more robust and reliable. Since 

sigma-normalized derivative and SRC are equivalent for linear model with enough large amount 

of data, for simplification the indicator SND will be used for this thesis.  

Arbitrary track with large enough number of vehicles is selected for the sensitivity analysis. The 

scatterplots in the following section are based on the data in track 7 (the 458 vehicles in negative 

driving direction). Since unlike parameters in physical models, the weighting factors in the linear 

model used in this thesis cannot be predefined, therefore equal weighting factors will be used 

for the time being. In section 4.2 the weighting factors will be determined based on the results of 

questionnaire, a new round of sensitivity analysis will be conducted with the updated weighting 

factors. 

Scatterplots 

Track 7 has 458 vehicles, which are 458 scenarios. For the creation of scatterplots, the normal-

ized values of all 13 factors are calculated for each frame of each vehicle in the track, the 

complexity of each frame is obtained by application of the linear model with equal weighting 

factors. Since the complexity of a scenario is defined as the maximal complexity of all scenes, 

the scene with maximal complexity will be extracted and its normalized values and complexity 

will be used for sensitivity analysis. A scatterplot can be created for each influence factor with its 

x-axis the normalized value of influence factor and y-axis the value of complexity. Each plot will 

contain 458 points representing the data of 458 vehicles.  

Figure 3.9 shows the scatterplots of all influence factors based on the data in track 7. It is notice-

able that for factor “type of surrounding vehicles”, its normalized value concentrates at value 0.5 

and 1. Because only two types of vehicles are available in HighD dataset, therefore, as long as 

there is any surrounding vehicle, the number of types is either 1 or 2, which results in 0.5 and 1 

after normalization. For factor “time-to-brake” most points have a normalized factor value 0, only 

a small amount of points has a value larger than 0. The reason for this phenomenon is that, in 

most cases a safety distance is kept from the preceding vehicle, the possibility of occurrence of 

a critical situation is very small. For factor “time-gap” is the same situation. These scatterplots 

offer an important information, that the distribution of normalized values of different influence 

factors are different. For some a value larger than 0.5 is normal, while for some others it is rare. 
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Figure 3.9: Scatterplots of all influence factors for vehicles from the 7th track (only vehicles in nega-

tive driving direction) 
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With help of scatterplots not only the relationship between inputs (respective influence factor) 

and output (complexity) can be studied, the relationship between different inputs (influence fac-

tors) can be checked as well. When comparing each factor with every other factor, 78 

scatterplots need to be created for 13 factors, which is very time consuming. For simplification, 

relationships between factors, which obviously are not related to each other, such as “time-gap” 

and “ratio”, “possible actions of ego-vehicle” and “number of actions of ego”, etc. will not be 

included. The scatterplots of several selected pairs are shown in Figure 3.10.  

Figure 3.10: Relationships between different influence factors (7th track) 

A relative clear linear relationship can be observed between factor “Number of surrounding ve-

hicles” and factor “Number of connections”. As the number of surrounding vehicles increases, 
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number of connections increases as well. Other than this pair of factors, the relationship within 

other pairs are not very clear. Therefore, it can be concluded, that in general the 13 influence 

factors are independent from each other, which is a precondition for the following sensitivity 

analysis.  

Although scatterplot offers a good possibility to visualize the influence level of each influence 

factor on complexity and the relationships between different influence factors. However, this 

evaluation is only qualitative, the influence level of different factors cannot be compared. In order 

to find out the most influential and least influential factors, quantitative method is necessary, 

which is the sensitivity analysis adapted in the following section.  

Sigma-normalized derivative 

One precondition for the application of sigma-normalized derivative for the measurement of in-

fluence level of each input is that, these inputs should be independent from each other, which 

has already been proved  Therefore, sigma-normalized derivative is used to obtain theoretical 

support for influence level of each factor.   

Based on the data used for scatterplots, the normalized values for all influence factors and com-

plexity of each scenario (vehicle) is now available. The standard deviation of each influence 

factor for all vehicles can easily be calculated with help of MATLAB or EXCEL. The SND can be 

obtained by using Eq. (2.10). Table 3.4 shows the results of the 7th track. Column “𝑆𝑥𝑖
𝜎 ” contains 

the value of SND and column “Ranking” is the rank of factors when ordering the influence factors 

with respect to SND. Factor with the highest ranking (1) has the largest SND and is supposed to 

be the most influential factor.  

Table 3.4: Sensitivity analysis with sigma-normalized derivative for the 7th track 

Nr. Influence factor 𝑺𝒙 
𝝈  Ranking 

1 Types of surrounding- vehicles 0.2094 4 

2 Number of surrounding-vehicles 0.1401 9 

3 Number of Connections 0.1392 10 

4 Variation 0.1769 6 

5 Dynamic 0.1490 8 

6 Deviation 0.2790 2 

7 Pa of ego-vehicle 0.1505 7 

8 Pa of surrounding-vehicles 0.2158 3 

9 Time-gap 3.03E-16 13 

10 Ratio 0.1364 11 

11 Time-to-Brake 0.1201 12 

12 Noa of ego-vehicle 0.1930 5 

13 Noa of surrounding vehicles 0.3322 1 

To avoid accidental results, such analysis is conducted for three more tracks with large enough 

amount of vehicles, including track 1 (negative driving direction, labeled with “ew”), track 8 and 
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track 15 (positive driving direction, labeled with “we”),. Figure 3.11 shows the ranking of all influ-

ence factors of these four tracks, which are highly consistent.  

Figure 3.11: Ranking of influence factors with help of sigma-normalized derivative 

On average factor 6 “deviation of surrounding vehicles from predicted trajectories” has the high-

est rank, which means that this factor is most influential on the complexity. Factor 9 has on the 

contrary the lowest rank and has least influence on the complexity. When looking at further sev-

eral factors with high ranks, such as factor 1 “types of surrounding vehicles”, factor 7 “possible 

actions of ego vehicle”, factor 13 “number of actions of surrounding vehicles”, these are the ones 

with majority of normalized values not less than 0.5, which can be observed in Figure 3.9. On 

the contrary, factors like “time-gap” and “time-to-brake”, whose normalized values are mostly 0, 

have very low ranks and have the least influence on the complexity. Factors like “dynamic of 

surrounding vehicles” and “variation of surrounding vehicles” have most of their normalized val-

ues around 0.5, for them it is noticeable that their ranks lie somewhere in the middle as well.  

With help of the sensitivity analysis, the influence level of each influence factor can be quantified. 

However, it does not answer the question of the importance degree of each factor. It is possible, 

that a very influential factor according to the opinions of experts is not important, or in the oppo-

site, an important factor is not influential on the result. To avoid such situations, it is necessary 

to rank the influence factors with respect to their importance degree.  

3.3.2 Design of the Questionnaire 

The ordering of influence factors with respect to their degree of importance will be determined 

by taking the knowledge and experience of experts into consideration. The opinions of experts 

will be collected with the help of an online survey conducted in the form of a questionnaire. The 

questionnaire will be created with the Software Limesurvey [9], which is an open source, web-

server-based software. It allows users to design and publish online surveys through web inter-

face. According to SEDLMEIER ET AL. [10, pp. 101-102] creation of a questionnaire usually 

consists of the following steps, which will be followed during the design process of the question-

naire used for this thesis: 

• Theoretical preparation 

• Decision on the form of the questionnaire 

• Selection of items 
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• Analysis of items 

• Reliability analysis 

• Validity analysis 

• Normalization 

Theoretical preparation 

The goal of designing the questionnaire is to determine the importance degree of the total 13 

factors with respect to the assessment of complexity. The content of the questionnaire is based 

on the study of complexity from previous work [1] and the content from section 3.1 to section 0 

in this thesis. 

Decision on the form of the questionnaire 

The questionnaire is supposed to take the respondents not more than 15 minutes to finish. The 

attitudes of respondents towards questions like “How important do you consider this factor” or 

“How complex do you consider this scenario” cannot be quantified. Therefore, the questionnaire 

will mainly consist of question type in from of array with 3-point choice and 5-point choice. So 

that the attitudes of respondents can be measured and quantified to a certain extent. Figure 3.12 

shows an example of how a 5-point choice array type question looks like in Limesurvey.  

Figure 3.12: 5 point choice – Array type question [11] 

Selection of items and analysis of items 

The questionnaire of the survey consists of four parts: basic information of respondents, evalu-

ation of influence factors, comparison of factor groups and evaluation of scenario complexity.  

In the first part some basic information about the respondents are asked, which include the ages, 

nationalities of respondents, the type of vehicle they usually drive, driving experience they have, 

if they work in the field of automobile industry, and if their work is related to safety assessment 

of automated vehicles. A screenshot of one of these questions is shown in Figure 3.13. 

Figure 3.13: Question example in the 1st part of the questionnaire 
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In the second part of the questionnaire 13 influence factors are required to be evaluated sepa-

rately (10 factors from the previous work with improvements and three newly added factors 

introduced in section 3.2). A brief introduction of every factor and an explanation of its eventual 

influence on the complexity will be given. The question is asked in a form of a 5-point choice. 

The experts are asked to assign a number between 1 and 5 to the factor indicating its degree of 

importance with respect to the assessment of traffic situation complexity for automated vehicles 

(1 corresponds to “not important” and 5 corresponds to “very important”). A comment field is 

given after evaluation of each factor, so that the opinions of the experts about the factor can be 

collected, for instance, the reason for their answer or if they have other interpretations of the 

factor. Figure 3.14 is a screenshot of the first factor as an example.  

In the second question group the importance degree of each influence factor is evaluated indi-

vidually. It is inevitable, that several factors are assigned to the same level of importance. For 

this situation, the factors need to be compared with each other. However, if a comparison is 

made between every two different factors, 78 comparisons need to be made in total. This would 

be very time-consuming for the respondents. To solve this problem, all factors have been divided 

into the following six groups. Each group will be compared with every other group with respect 

to their importance degree for the assessment of traffic situation complexity. The comparison will 

be done with the help of a 3-poin choice array type question. Figure 3.15 shows the matrix to 

compare Group 1 with all the other groups. 15 such sets of comparison are to be completed. A 

comment field is offered at the end of this part of the questionnaire, so that the respondents can 

have the option to express their opinions if they think differently.  

• Group 1 – Dynamic elements: types of surrounding vehicles, number of sur-

rounding vehicles, number of connections 

• Group 2 – Dynamic: dynamic of surrounding vehicles, variation of dynamic pa-

rameters of surrounding vehicles 

• Group 3 – Possible actions: possible actions of ego-vehicle, possible actions of 

surrounding vehicles 

• Group 4 – Number of actions: number of actions of ego-vehicle, number of ac-

tions of surrounding vehicle 

• Group 5 – Precision of actions: time-gap, time-to-Brake 

• Group 6 – Uncertainty: deviation of surrounding vehicles from predicted trajecto-

ries, blind spot area 
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Figure 3.14: Question example in the 2nd part of the questionnaire 

Figure 3.15: Question example in the 3rd part of the questionnaire 

Based on the information of the first three parts, the order of influence factors regarding their 

importance degree and the weighting factors of these factors can already be determined. In the 

last part of the questionnaire videos of 20 scenarios will be offered. This part of the survey serves 

mainly as validation for the metric. On the one hand, the complexity of these scenarios will be 

calculated objectively with the developed metric and the newly determined weighting factors. On 

the other hand, the respondents are required to evaluate the complexity of each scenario sub-

jectively and assign a number between 1 and 5 to it indicating the complexity level of the scenario 
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(1 corresponds to “not complex” and 5 corresponds to “very complex”). This question will be 

created using an array type 5-point choice. The results of the metric will be compared with the 

answers of respondents. Since the perception and evaluation of the environment is different 

between sitting in the car and observing the scenario through an animated video, to better sup-

port the decision making of respondents, some information will be provided additionally for each 

scenario. This information cannot be obtained by simply observing the animation video but is 

fundamental for the evaluation of a scenario. The available information includes the longitudinal 

velocity of each vehicle in the scenario (Figure 3.16, velocity is marked with yellow next to each 

vehicle), variation with respect to longitudinal velocity, dynamic of surrounding vehicles with re-

spect to longitudinal velocity and number of actions of surrounding vehicles in longitudinal 

direction. Not all values of influence factors of a scenario will be offered, so that the respondents 

will not be affected by the criteria of the developed metric during decision making process.  

The selection of the scenarios for the questionnaire is based on the complexity calculated by the 

metric (13 influence factors with equal weighting factors). So that these scenarios are as repre-

sentative as possible and cover the variety of the traffic situation, the selection of the scenarios 

will be based on the following criteria: 

• Since in different tracks the traffic flows have different dynamic, the scenarios are 

selected from several different tracks instead of just one. 

• The scenarios should cover as many maneuvers as possible. For instance, cut in, 

cut out, overtake, follow up, etc. 

• The complexities of the scenarios should be distributed as evenly as possible in 

the range of 0 and 1. 

• The additional information provided for all scenarios should cover a range respec-

tively as large as possible.  

• Although all vehicles in the scenario are with human drivers, the selected scenarios 

should fulfil the assumption, that ego-vehicle is an automated vehicle and is sup-

posed to drive intelligently. Behaviors like follow driving at very high speed or 

overtake from the right side should be avoided. 

Figure 3.16: Question example in the 4th part of the questionnaire 

The selected scenarios are listed in Table 3.6. The information listed from the leftmost column 

to the rightmost column includes the scenario number, track number (to which track the scenario 
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belongs), ID of ego-vehicle, dynamic with respect to longitudinal velocity (“Dynamic_vx”), varia-

tion with respect to longitudinal velocity (“Variation_vx”), average value number of actions of 

surrounding vehicles (“Noa_sur”) and the maximal complexity of all scenes of a scenario 

(“C_max”). The distribution of scenario complexity (“C_max”) and three other values offered as 

additional information can be seen from Figure 3.18 and Figure 3.21. 

Reliability analysis 

According to the explanation in SEDLMEIER ET AL.’s [10, pp. 81-82] work reliability indicates the 

consistency of the test and shows how well a test measures what it should. If a test is reliable 

means that identical results can be obtained over repeated tests. The test will be unreliable if 

repeated tests deliver different results.  

In the field of social science scale is usually classified into four levels tracing back to STEVENS’ 

[12] work, which are nominal, ordinal, interval and ratio. As introduced above, most of the ques-

tions created in this questionnaire are in the form of array with 3-point choice and 5-point choice. 

Taking the question in Figure 3.14 as an example, the attitude of the respondent towards the 

importance degree of an influence factor is divided into five levels from not important to very 

important. The distance between neighboring levels or ranks is unknown and the order of the 

level is monotone. Such scalar belongs to ordinal scalar. The reliability of a test with ordinal 

scalar can be quantified with help of a coefficient called Cronbach’s Alpha, developed by Amer-

ican educational psychologist CRONBACH [13]. Usually a test will be considered satisfactory in 

regard to satisfactory when the Cronbach’s Alpha is larger than 0.7 [14] (Table 3.5). 

Table 3.5: Cronbach’s Alpha 

Cronbach’s Alpha Reliability / Intern consistency 

α ≥ 0.9 Excellent 

0.9 > α ≥ 0.8 Good 

0.8 > α ≥ 0.7 Acceptable 

0.7 > α ≥ 0.6 Questionable 

0.6 > α ≥ 0.5 poor 

0.5 > α Unacceptable 

The coefficient α will be calculated with the following formula: 

α =
𝑛

𝑛 − 1
(1 −

∑ 𝑉𝑖
𝑛
𝑖=1

𝑉𝑡
) (3.15) 

𝑛 is the number of items. In the second part of the questionnaire 13 factors are to be evaluated, 

so the number of items in this case in 13. 𝑉𝑖 is the variance of item 𝑖 and 𝑉𝑡is the variance of the 

total score. Evaluating a respondent the first factor with 5 (very important), then the score for this 

item will be 5. Total score is the sum of scores of all items.  

Validity analysis 

A test will be considered valid, when it measures what it claims to measure [10, pp. 85-88]. In 

the context of this thesis, if the tests measure the complexity of the traffic situation from the 
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perspective of an automated vehicle, or if the selected items really the latent features ought to 

be measured. A common example is that if a IQ-test truly measures the intelligent level of re-

spondents or does its content actually measure something else like EQ. There are different 

aspects of validity, the one involved in this work refers to content validity. The evaluation of con-

tent validity can be very subjective since it requires the knowledge of experts in relevant fields. 

Since the topic of this work is relatively new and the development of the metric is based on a lot 

of research done by people with knowledge and experience in this field. Therefore, the tests in 

the questionnaires will be for the time being considered as valid.  

There is no necessary connection between the reliability and validity of a test. A valid test can 

be unreliable, and a reliable test can be invalid. Shows a good visualization of the relationship 

between these two concepts. 

Figure 3.17: Reliability and validity 

Normalization 

This step is necessary when the respondents are divided into different groups according to some 

characteristics, which lead to the difference of their answers. For instance, the height ranges 

between men and women are different. Since the respondents of the questionnaire for this thesis 

is not divided into different groups, this step is not necessary for this work. 

 

 
Reliable and Valid Reliable and Invalid Unreliable and valid Unreliable and Invalid
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Table 3.6: Selected Scenarios for the questionnaire 

 

Nr. Track Nr. Ego-ID Dynamic_vx Variation_vx Noa_sur C_max 

1 04 577 113.4 9.18 0 0.4935 

2 04 996 94.84 2.28 0 0.5039 

3 05 163 74.1 1.46 0.22 0.4606 

4 08 934 111.89 12.63 0.06 0.4354 

5 10 265 35.6 0.03 0 0.1678 

6 10 760 158.91 9.13 1 0.6214 

7 10 820 102.73 1.96 1.5 0.2367 

8 11 298 85.86 2.9 1.75 0.3093 

9 11 636 96.95 4.53 2.56 0.5227 

10 11 1081 75.89 1.86 0.33 0.3273 

11 11 1347 115.34 2.69 2 0.3514 

12 12 1051 102.27 7.46 0.49 0.894 

13 12 1116 71.46 2.72 0.5 0.6482 

14 12 1123 63.37 4.91 0.69 0.6061 

15 12 1317 60.61 5.62 0.17 0.6823 

16 12 1322 60.3 4.82 0.13 0.7726 

17 22 31 124.8 16.25 2 0.6703 

18 25 371 23.75 3.31 6.25 0.4203 

19 25 900 37.58 5.06 4.18 0.5615 

20 25 2173 45.82 0.88 4.8 0.383 
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Figure 3.18: Distribution of maximal complexities of selected scenarios  

Figure 3.19: Distribution of dynamic with respect to longitudinal velocity of selected scenarios 

Figure 3.20: Distribution of variation with respect to longitudinal velocity of selected scenarios 

Figure 3.21: Distribution of number of actions of surrounding vehicles of selected scenarios 
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4 Results 

In the first part of this chapter, the results of the questionnaire will be presented and analyzed, 

the weighting factors of the influence factors will be determined based on these results. In the 

second part of this chapter, the complexities of 20 scenarios offered in the questionnaire will be 

calculated with newly determined weighting factors, to compare the results of the develped 

metric and the opinions of the experts. In the third part, a sensitivitty analysis will be conducted 

with new weighting factors. 

4.1 Results from the questionnaire 

This subchapter will present and analyze the responses from the experts. In total 40 responses 

are collected, 20 of them are completely finished and the rest are only partially answered.  

Basic information of respondents  

In the first part of the questionnaire some questions about the basic information of the 

respondents are asked. 35 people have answered all the questions in this part. Amough the 35 

people, the majority of them are from Germany. The distribution of nationalities of the 

respondents is shown in Figure 4.1. The respondents have an average age of about 31 years 

old. 70.27% of them, namely 26 of them have driving experience larger than 10 years. Except 

one respondent, the rest 34 respondents have passanger car as their mobile vehicles. 78.38% 

of the respondents (29) work in the automobile industry and 56.76% (21) have experience in the 

field of safety assessment of automated vehicles.  

Figure 4.1: Nationalities of the respondents 

As can be seen that, the majority of the respondents have many years of driving experience. 

The majority of them are in the automobile industry and their work is related to the safety 

assessment of automated vehicles, this makes their responses for the questions asked in the 

survey valuable and can be used for the research.   
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Evaluation of influence factors 

In the second part of the questionnaire, the respondents are required to evaluate the importance 

degree of each influence factor independently with respect to the assessment of traffic situation 

complexity from the perspective of ego-vehicle. 25 respondents have answered all the questions 

in this part. 20 of them work in the automobile industry and 17 of them have experience in the 

field of safety assessment of automated vehicles. According to the work of RICHARDSON [15, p. 

79], a minimum number of 20 data records can already indicate the validity of the test. Therefore, 

25 data records would be sufficient for the following analysis.  

The results of this part are shown in Table 4.2. The indices from 1 to 13 in the first row indicate 

the first to the thirteenth factor (the factor corresponding to each index see Table 3.3). The indi-

ces from 1 to 25 in the leftmost column represents the IDs of the 25 respondents. Starting from 

the second row, each row represents a respondent’s assessment of the importance degree of 

the 13 factors (assessing with a number from 1 to 5 indicating ascending importance degree, 

from “not important” to “very important”). For instance, the element in the third row and the fifth 

column means that, the respondent with ID 2 consider the fifth factor as very important. The 

evaluations of all factors by one respondent adds up to the result in the rightmost column under 

the name “sum”, which is also called “total score” in statistics.  

Reliability analysis 

First step is to analyze the reliability of the test, namely how well this part of the questionnaire 

measures the importance degree of the factors or if the responses are internally consistent. Ta-

ble 4.1 lists the variance of each influence factor 𝑉𝑖⁡(𝑖 = 1,2,… ,13) and the variance of the total 

score 𝑉𝑡. With help of the formula Eq.(3.15) introduced in section 3.3.2, Cronbach’s Alpha for 

this test can be calculated as follow: 

α =
13

13 − 1
(1 −

∑ 𝑉𝑖
13
𝑖=1

𝑉𝑡
) = 0.8216 (4.1) 

α has a value between 0.8 and 0.9. According to the criteria in Table 3.5 the test is evaluated as 

“good” with respect to reliability and the data records can be used for further analysis.  

Table 4.1: Variance of influence factors 

Kruskal-Wallis test 

The purpose of this part of the questionnaire is to find out the importance degree of each influ-

ence factor and try to rank these factors according to their importance degrees. First step is to 

find out if these factors really differ from each other with respect to importance degree. The data 

records in Table 4.2 have the following characteristics: first, the items (factors) are independent 

from each other. Second, ordinal scales are used for the evaluations. Third, the distribution of 

evaluations of each item does not necessarily conform to a normal distribution or have specified 

parameters. The method used to study the central tendencies of such data records is the Krus-

kal-Wallis test, also known as “H test”, developed by KRUSKAL ET AL. [16, pp. 585-587] in 1952. 

The advantage of this method is that, it has very low requirements for the distribution of data and 

the items do not necessarily to have equal number of samples (in case of Table 4.2 all items 

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6 𝑉7 𝑉8 𝑉9 𝑉10 𝑉11 𝑉12 𝑉13 𝑉𝑡 

1.24 0.91 1.06 1.00 1.50 0.88 1.51 0.99 1.76 1.59 1.04 1.67 1.42 68.51 
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have equal number of samples 25). This method calculates the mean rank of each item and 

tests if these mean ranks differ from each other. In the field of statistics, a null hypothesis (denote 

𝐻0) is proposed before testing. It will be assumed that there is no association among the data 

until the results overrule this assumption. In this case, the null hypothesis is that, there is no 

difference between the influence factors with respect to importance degree.  

Table 4.2: Evaluation of the influence factors  

The mean rank of each item will be calculated in the following way. All elements in Table 4.2 

(except the indices and the rightmost column) are ranked in an ascending order (from 1 to 5) 

regardless of the items they belong to. After ordering these 325 (25 x 13) elements will eventually 

look like 1, 1, …, 1, 2, 2, …,2, 3, …, 3, 4, …, 4, 5, …, 5 and have a rank from 1 to 325. The ranks 

of elements belonging to the same item will be added and the rank sum of each item can be 

obtained. Mean rank of each item is obtained by dividing its rank sum by the number of elements 

 1 2 3 4 5 6 7 8 9 10 11 12 13 sum 

1 1 5 3 4 3 5 4 4 2 2 5 2 2 42 

2 3 4 3 5 5 5 5 4 2 5 5 3 5 54 

3 2 4 4 4 3 4 3 4 2 2 3 2 3 40 

4 2 5 5 4 1 5 5 5 5 5 5 1 1 49 

5 3 3 4 4 4 3 3 3 3 3 2 3 3 41 

6 3 2 4 4 3 2 2 2 4 4 4 3 3 40 

7 2 4 4 4 5 4 3 4 5 4 3 4 4 50 

8 3 4 2 3 4 5 2 4 2 2 4 3 4 42 

9 2 4 3 5 5 5 5 4 2 5 5 4 5 54 

10 2 4 4 5 5 5 5 4 2 5 5 4 5 55 

11 5 5 5 5 5 5 5 5 5 5 5 5 5 65 

12 4 2 3 4 5 4 2 2 2 1 3 1 5 38 

13 3 4 4 5 1 5 4 2 5 2 3 1 5 44 

14 4 3 1 1 5 5 1 3 3 3 5 4 4 42 

15 4 4 4 5 5 5 3 3 5 5 5 3 3 54 

16 4 4 5 5 5 4 3 4 5 3 4 4 4 54 

17 2 3 3 4 3 4 3 2 4 4 3 2 2 39 

18 5 5 5 5 5 4 5 5 5 5 5 4 4 62 

19 4 5 5 5 4 5 5 5 4 4 4 5 5 60 

20 4 5 5 4 4 4 4 3 4 4 3 4 3 51 

21 5 5 5 5 5 4 4 4 5 5 5 4 4 60 

22 2 4 3 2 4 5 5 5 3 3 5 5 5 51 

23 3 2 4 4 3 3 2 4 1 2 2 2 4 36 

24 3 4 4 5 5 2 3 3 3 3 4 5 5 49 

25 2 4 4 4 3 5 3 3 3 3 4 2 2 42 
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owned by it, which is 25 for all items. The results are shown in Table 4.3. The rank sum for some 

items is not a integer but a decimal number. The reason for this is that the tied elements, e.g. 

the elements with the same rank share the average rank. For instance, two elements with the 

same value tied for the fourth and fifth rank will share the average rank of 4.5. A visualization of 

the mean rank of all influence factors is shown in Figure 4.2. As can be seen that, factor 6 “de-

viation of the surrounding vehicles from the predicted trajectories” has the highest mean rank 

and factor 1 “types of surrounding vehicles” has the lowest mean rank. 

Table 4.3: Mean rank of each influence factor 

Item/Factor Number of elements Rank sum Mean rank 

1 25 2766.50 110.66 

2 25 4342 173.68 

3 25 4207 168.28 

4 25 5016 200.64 

5 25 4683.50 187.34 

6 25 5165.50 206.62 

7 25 3736.50 149.46 

8 25 3760.50 150.42 

9 25 3570 142.80 

10 25 3762 150.48 

11 25 4639.50 185.58 

12 25 3109 124.36 

13 25 4217 168.68 

Figure 4.2: Mean rank of all influence factors 

With the mean rank of each item, the test statistic of this method H can then be calculated with 

the following formula, it indicates the discrepancies of the rank sums of different items:  
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H =
12

𝑁(𝑁 + 1)
∑
𝑅𝑖
2

𝑛𝑖
− 3(𝑁 − 1)

𝑘

𝑖=1

= 29.668, 𝑁 =∑𝑛𝑖

𝑘

𝑖=1

 (4.2) 

𝑛𝑖 is the number of elements of item 𝑖, in this case they are all equal to 25. 𝑁 is then the total 

number of elements 325. 𝑘 is the total number of items which is 13. 𝑅𝑖 represent the rank sum 

for item 𝑖. Add all these values to the formula and obtains 29.688 for the test statistic. With this 

result the significance, denoted 𝑝-value, can be examined. Significance of the result is defined 

as the probability that an extreme result can be obtained if the null hypothesis holds [10, pp. 371-

401]. Usually with a significance level 𝑝 < 0.05 the null hypothesis can be rejected [17, p. 43] or 

the corresponding critical value is smaller than the value of H for 𝑝 = 0.05. The number of items 

in this test is larger than 5 and therefore 𝐻 satisfies the condition for the application of Chi-square 

distribution, also known as 𝜒2-distribution [10, pp. 549-550] (Chi-square distribution does not 

work well for small size data). Part of the Chi-square distribution table is shown in Figure 4.3. 

The horizontal indices represent the significance level 𝑝 and the vertical indices under the name 

“df” the degree of freedom of the test obtained by the number of items minus one:  

df = k − 1 (4.3) 

In this case df has the value 12 (k = 13). As can be seen from the table that, with the significance 

level 𝑝 = 0.05 and the degree of freedom 12, the critical value of 21.03 can be extracted. If the 

value of test statistic H is larger than is critical value, the difference will be considered as signifi-

cant and the null hypothesis can be rejected. The H calculated by Eq. (4.2) is larger than the 

critical value (29.668 > 21.03). Therefore, the assumption that all influence factors having same 

importance degree fails. The central tendencies of these factors do differ from each other.  

Figure 4.3: Part of Chi-square distribution table [18] 

Dunn’s test 

Until now with help of the Kruskal-Wallis test, a conclusion can be made, that the 13 influence 

factors are not equally important with respect to the assessment of traffic situation complexity 

from the perspective of ego-vehicle. However, the conclusion does not answer the question, 

which factor differs from which factor and how significantly. To solve this problem a post-hoc-

test is necessary. The most used method for such problems is the Dunn’t test [19], with which 

multiple pairwise comparisons between items can be conducted using rank sums. For 𝑘 items 

in total 𝑘(𝑘 − 1)/2 pairwise comparisons are to be performed, the number in case of 13 items is 

78. The null hypothesis for each pairwise comparison of the test is that, the probability of observ-

ing a value randomly from the first group larger than that from the second group is 50%. In other 

words, there is no significant difference between the two groups or the two items. The conduction 

of Dunn’s test is based on mean rank obtained in Kruskal-Wallis test. The null hypothesis can 

be rejected when the following inequality is satisfied [20]: 

 

p

df 0.995 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01

---

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72

12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22

…
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𝑄0.05 <
|𝑅𝑖̅ − 𝑅𝑗̅|

√(
𝑁(𝑁 + 1)
12

−
∑ 𝜏𝑠

3 − 𝜏𝑠
𝑟
𝑠=1

12(𝑁 − 1)
) (
1
𝑛𝑖
+
1
𝑛𝑗
)

 
(4.4) 

𝑅𝑖̅ is the mean rank of item 𝑖 and 𝑅𝑗̅ is the mean rank of item 𝑗. As already mentioned above, 𝑁 

is the total number of observations, which is 325. 𝑛𝑖 and 𝑛𝑗 are the number of elements of item 

𝑖 and 𝑗 respectively. 𝜏𝑠 is the number of tied observations. The summation term will be zero if 

there is no tied observations. 𝑄0.05 ist he critical value for a significance level 𝑝 = 0.05. Differ-

ence of mean ranks between every two factors are listed in Table 4.4. The indices in the leftmost 

column represent the factors sorted by their mean ranks in a descending order. The horizontal 

indices represent the difference of mean rank between factor 𝑖 and the factor specified by the 

number (factor 𝑖 has a higher mean rank). For instance, the column 𝑖 − 8 shows the mean rank 

difference between factor 𝑖 and factor 8 (𝑖 = 6,4,5,11,2,13,3,10). Dunn’s test answers the ques-

tion, that how large this difference is so that the compared factors can be considered significantly 

different. 

Table 4.4: Mean rank difference between items 

There are many programs which can perform this test. The program used in this thesis is the 

MATLAB function developed by CARDILLO [21]. The comparison starts from the factor with the 

highest mean rank, namely factor 6. It will be compared with the factor with the second, third, … 

and at last the smallest mean rank. Then the factor with the second largest mean rank will be 

compared with the factors with smaller mean ranks in their descending order. Such comparison 

goes on until the last two factors with smallest mean ranks. The result of Dunn’s test is shown in 

Table 4.5. In total 78 comparisons are conducted. The column with name “Comparison” contains 

the indices of factors compared with each other. For instance, “6-1” means the comparison 

     - 1    - 12    - 9    - 7    - 8    - 10    - 3    - 13    - 2    - 11    - 5    - 4 

6 95.96 82.26 63.82 57.16 56.20 56.14 38.34 37.94 32.94 21.04 19.28 5.98 

4 89.98 76.28 57.84 51.18 50.22 50.16 32.36 31.96 26.96 15.06 13.30  

5 76.68 62.98 44.54 37.88 36.92 36.86 19.06 18.66 13.66 1.76   

11 74.92 61.22 42.78 36.12 35.16 35.10 17.30 16.90 11.90    

2 63.02 49.32 30.88 24.22 23.26 23.20 5.40 5.00     

13 58.02 44.32 25.88 19.22 18.26 18.20 0.40      

3 57.62 43.92 25.48 18.82 17.86 17.80       

10 39.82 26.12 7.68 1.02 0.06        

8 39.76 26.06 7.62 0.96         

7 38.8 25.10 6.66          

9 32.14 18.44           

12 13.7            

1             
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between factor 6 and factor 1. 𝑄 is the value calculated by the expression on the right side of Eq. 

(4.4). Column “𝑄0.05” contains the corresponding critical value at significance level 𝑝 = 0.05. The 

column 𝐻0 indicate if the null hypothesis holds. With “N” the null hypothesis is rejected, which 

means that there is significant difference between the two factors. With “Y” the rejection of null 

hypothesis is failed and the difference between two factors is considered as not significant. As 

can be seen from the result that. Only two pairs of factors are judged to be different from each 

other significantly, namely factor 6 and 1, factor 4 and 1. When looking at Table 4.4, the differ-

ence of mean rank of these two pairs are the two largest differences in the left upper corner of 

the table. When observing Figure 4.2, factor 6 and 4 are the two factors with the highest mean 

ranks and factor 1 has the smallest mean rank. 

Factor 6 “deviation of the surrounding vehicles from the predicted trajectories” is related to the 

uncertainty of a scenario. If the behavior of a surrounding vehicle is very different from the result 

of prediction of ego-vehicle, the risk of getting involved in a critical condition will increase. Factor 

1 “types of surrounding vehicles” is considered as the least important factor by the respondents. 

This factor is included for the assessment for the complexity in the first place is that, different 

types of traffic participants move differently. For instance, compared with trucks, the movement 

of passenger cars are more flexible and more dynamic. Several respondents have offered the 

following arguments based on their experience for their choices: the types of traffic participants 

can be identified, and the mode of each type can be preprogrammed, so that the behaviors of 

different types of vehicles can better be predicted and therefore this factor will not have much 

influence on the complexity.  

Comparison between factor groups 

In case that the importance degree cannot be distinguished from each other very clearly, which 

is the situation based on the results of the analysis of the second part of the questionnaire. In 

the third part of the questionnaire, 13 factors are divided into 6 groups according to the different 

aspects reflected by them in a scenario. The respondents are required to compare these groups 

with respect to their importance degree. In total 24 respondents have finished all the questions 

in this part.  

The results are visualized with help of a bar graph in Figure 4.4. The information contained in 

each bar shows the distribution of attitudes of respondents towards a pair of comparison between 

two groups illustrated with the label in horizontal axis. For instance, the label of the first bar 

“Group 1 - 2” means that Group 1 being compared with Group 2. The numbers in the bar show 

that, 12 respondents think factors in Group 1 are less important than the ones in Group 2, 9 

respondents think they are equally important and the rest 3 think that the factors in Group 1 are 

more important. By observing all bars in the graph, Group 6 is considered to be more important 

when comparing with any other group and therefore can be seen as the most important factor 

group. By observing bar “Group 1 - 2 ”, “Group 2 - 3”, “Group 2 - 4” and “Group 2 - 5”, the number 

of respondents who consider factors from Group 2 more important is obviously larger than the 

number of respondents with reversed opinions. Therefore, Group 2 can be treated as the second 

most important factor group. Similarly, Group 5 can be seen as the third most important factor 

group when observing bar “Group 1 -5”, “Group 3 - 5” and “Group 4 - 5”. Among the remaining 

three groups, the number of respondents who think factors from Group 3 are more important, is 

larger than the number of respondents with reversed opinions. Group 3 be the fourth most im-

portant factor Group. By observing bar “Group 1 - 4”, the number of respondents with opposite 
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positions are almost the same and the majority respondents think these two groups are equally 

important. Therefore, Group 1 and Group 4 are judged as equally important. 

Figure 4.4: Comparison between different factor groups 

Based on the analysis above, the groups can be ranked as follow in a descending order accord-

ing to their importance degree: Group 6 > Group 2 > Group 5 > Group 3 > Group 1 = Group 4. 

Figure 4.5 shows the result when marking the factor in Figure 4.2 with the group number which 

they belong to (G6 means Group 6). As can be seen that the four factors with the highest mean 

ranks belong to the two groups which are considered by the respondents as the most important. 

The mean ranks of factors from Group 3 and Group 6 lie somewhere in the middle and are not 

necessarily higher than the ones from Group 1 and Group 4. By observing the bar “Group 1 - 5” 

and “Group 3 - 5” it can be noticed that, the difference of number of respondents with opposite 

positions is only 3, which is not very large. This difference is only 2 when comparing Group 4 

and 5. In other words, the difference between Group 1 and 4 and Group 3 and 5 is not very large 

with respect to their importance degree. This does not conflict with the results from the second 

part of the questionnaire. The order of these groups regarding their importance can now be up-

dated: Group 2 and 6 > Group 3 and 5 ≈ Group 1 and 4.  

Figure 4.5: Mean rank of all factors with group number 
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Table 4.5: Results of Dunn’s test 

Comparison 𝑸 

 

𝑸𝟎.𝟎𝟓 

 

𝑯𝟎 

 

Comparison 𝑸 

 

𝑸𝟎.𝟎𝟓 

 

𝑯𝟎 

 6-1 3.747171 3.40676 N 11-3 0.675553 3.40676 Y 

6-12 3.212196 3.40676 Y 11-13 0.659933 3.40676 Y 

6-9 2.492127 3.40676 Y 11-2 0.464687 3.40676 Y 

6-7 2.232058 3.40676 Y 2-1 2.460887 3.40676 Y 

6-8 2.194571 3.40676 Y 2-12 1.925912 3.40676 Y 

6-10 2.192228 3.40676 Y 2-9 1.205843 3.40676 Y 

6-3 1.49715 3.40676 Y 2-7 0.945774 3.40676 Y 

6-13 1.481531 3.40676 Y 2-8 0.908287 3.40676 Y 

6-2 1.286284 3.40676 Y 2-10 0.905944 3.40676 Y 

6-11 0.821597 3.40676 Y 2-3 0.210866 3.40676 Y 

6-5 0.752871 3.40676 Y 2-13 0.195247 3.40676 Y 

6-4 0.233515 3.40676 Y 13-1 2.265641 3.40676 Y 

4-1 3.513656 3.40676 N 13-12 1.730665 3.40676 Y 

4-12 2.978681 3.40676 Y 13-9 1.010596 3.40676 Y 

4-9 2.258612 3.40676 Y 13-7 0.750528 3.40676 Y 

4-7 1.998543 3.40676 Y 13-8 0.71304 3.40676 Y 

4-8 1.961056 3.40676 Y 13-10 0.710697 3.40676 Y 

4-10 1.958713 3.40676 Y 13-3 0.01562 3.40676 Y 

4-3 1.263636 3.40676 Y 3-1 2.250021 3.40676 Y 

4-13 1.248016 3.40676 Y 3-12 1.715045 3.40676 Y 

4-2 1.052769 3.40676 Y 3-9 0.994976 3.40676 Y 

4-11 0.588083 3.40676 Y 3-7 0.734908 3.40676 Y 

4-5 0.519356 3.40676 Y 3-8 0.697421 3.40676 Y 

5-1 2.994301 3.40676 Y 3-10 0.695078 3.40676 Y 

5-12 2.459325 3.40676 Y 10-1 1.554943 3.40676 Y 

5-9 1.739256 3.40676 Y 10-12 1.019968 3.40676 Y 

5-7 1.479188 3.40676 Y 10-9 0.299899 3.40676 Y 

5-8 1.4417 3.40676 Y 10-7 0.03983 3.40676 Y 

5-10 1.439357 3.40676 Y 10-8 0.002343 3.40676 Y 

5-3 0.74428 3.40676 Y 8-1 1.5526 3.40676 Y 

5-13 0.72866 3.40676 Y 8-12 1.017625 3.40676 Y 

5-2 0.533414 3.40676 Y 8-9 0.297556 3.40676 Y 

5-11 0.068727 3.40676 Y 8-7 0.037487 3.40676 Y 

11-1 2.925574 3.40676 Y 7-1 1.515113 3.40676 Y 

11-12 2.390598 3.40676 Y 7-12 0.980138 3.40676 Y 

11-9 1.670529 3.40676 Y 7-9 0.260068 3.40676 Y 

11-7 1.410461 3.40676 Y 9-1 1.255045 3.40676 Y 

11-8 1.372974 3.40676 Y 9-12 0.720069 3.40676 Y 

11-10 1.370631 3.40676 Y 12-1 0.534975 3.40676 Y 
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Evaluation of complexities of scenarios 

In the last part of the questionnaire, the respondents are offered the videos of 20 scenarios and 

are required to evaluate the complex degree of these scenarios subjectively. The questions are 

asked in the form of 5-point choice. An integer from 1 to 5 is assigned by respondents to each 

scenario indicating its complexity level, with 1 corresponding to “not complex” and 5 “very com-

plex”. 20 respondents have finished this part of the questionnaire completely and this number is 

sufficient for the evaluation of the test. All videos are available on the internet and are reachable 

with the websites listed in Appendix A. 

The data type of the results is the same as that in the second part of the questionnaire, which is 

ordinal scale. Therefore, the methods used in the previous part can be adopted for this part as 

well. Goal is to rank these scenarios according to their complexity level. First step is to check the 

reliability of the test. If the test is proved reliable, the Kruskal-Wallis test will then be conducted 

to see if there is any significant difference among the scenarios regarding their complexity level. 

If true a post-hoc Dunn’s test will be conducted to discover which scenarios are significantly more 

complex than the others. Due to larger size of data, the detailed results of the responses cannot 

be covered in the text. A summarization is shown in Table 4.6. The indices in the leftmost column 

represent the complexity level. The horizontal indices from 1 to 20 represent the 1st to the 20th 

scenario. Each column shows the distribution of evaluation by respondents. For instance, for the 

5th scenario, 16 respondents have this with 1 (“not complex”) evaluated and 4 respondents with 

2.  

Table 4.6: Results of the fourth part of the questionnaire 

Same as in the second part of the questionnaire, Eq. (3.15) is applied for the calculation of 

Cronbach’s Alpha. In this case, the number of items 𝑛 = 20, 𝑉𝑖 is the variance of each item (sce-

nario, Eq. (4.5)). The result is 0.8560 and lies in the interval of 0.8 and 0.9. According to Table 

3.5, the test can be evaluated as “Good” with respect to reliability.  

C level 1 2 3 4 5 6 7 8 9 10 

1 7 2 4 1 16 15 9 10 10 5 

2 6 8 7 10 4 5 5 8 7 14 

3 6 7 4 5 0 0 5 2 1 1 

4 1 2 3 4 0 0 1 0 2 0 

5 0 1 2 0 0 0 0 0 0 0 

 

C level 11 12 13 14 15 16 17 18 19 20  

1 4 1 2 0 0 1 2 9 0 2  

2 6 8 4 4 2 7 12 8 5 8  

3 6 7 5 5 5 8 6 1 8 6  

4 4 3 7 6 9 3 0 2 5 4  

5 0 1 2 5 4 1 0 0 2 0  
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α =
20

20 − 1
(1 −

∑ 𝑉𝑖
20
𝑖=1

𝑉𝑡
) = 0.8560 (4.5) 

For Kruskal-Wallis test, null hypothesis 𝐻0 for the test is: there is no difference between scenar-

ios regarding their complex level, all scenarios are assumed to be equally complex. The mean 

rank of each scenario is calculated, and the results are shown in Table 4.7. Figure 4.6 shows 

the mean rank of all scenarios is a descending order (“s” in horizontal axis means “scenario”). In 

the second part, the test statistic 𝐻 is calculated, then its value is compared with the critical value 

in Chi-square distribution table for the significance level 𝑝 = 0.05. The null hypothesis can be 

rejected if 𝐻 is larger than the critical value. Alternatively, 𝑝 value can be calculated based on 

the mean ranks of all items and the result will be compared with 0.05. If 𝑝 is smaller than 0.05, 

then there is significant difference among items and the null hypothesis will be rejected. This 

calculation can be performed with a MATLAB function 𝑘𝑟𝑢𝑠𝑘𝑎𝑙𝑤𝑎𝑙𝑙𝑖𝑠. After application of this 

function 𝑝 has a value of 1.3833 × 10−23, which is far smaller than 0.05. Therefore, significant 

difference exists between scenarios regarding their complexity levels. In the next step, Dunn’s 

test is conducted to identify the scenarios which are most significant complex.  

Table 4.7: Mean rank of all scenarios  

Figure 4.6: Mean rank of all scenarios in a descending order 

Scenario N Rank sum Mean rank Scenario N Rank sum Mean rank 

1 20 3420 171 11 20 4332 216.6 

2 20 4535 226.75 12 20 4839 241.95 

3 20 4365 218.25 13 20 5456 272.8 

4 20 4576 228.8 14 20 6175 308.75 

5 20 1486 74.3 15 20 6508 325.4 

6 20 1605 80.25 16 20 4952 247.6 

7 20 3069 153.45 17 20 3830 191.5 

8 20 2426 121.3 18 20 2802 140.1 

9 20 2683 134.15 19 20 5663 283.15 

10 20 2908 145.4 20 20 4570 228.5 
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In the Dunn’s test, pairwise comparison is conducted between every two different item (scenario), 

in this case is 190 pairs of comparison (number of items 𝑘 = 20). The null hypothesis for each 

comparison is that the involved two scenarios are equally complex. Same calculation as the 

second part of the questionnaire is conducted. Due to large amount of data, Table 4.8 only shows 

the pairs, whose null hypothesis are rejected. In other words, there is significant difference be-

tween the pair of scenarios regarding their complexity level. As can be seen that the scenarios 

on the left side of symbol “-” are the ones with higher mean ranks. There is significant difference 

between these scenarios and the 5th and 6th scenario, which are the two scenarios with the lowest 

mean ranks. When ordering the scenarios with descending mean rank like in Figure 4.6, from 

the 11th scenario to the ones with higher mean rank, the difference between this scenario and 

the 5th or 6th scenario is judged as significant.  

Table 4.8: Pairs with significant difference regarding complexity level 

Results of the two methods can now be compared. For ordinal scale, median is often used to 

examine the central tendency of the data. When mapping the five levels of complexity in the 

questionnaire to the interval of complexity from 0 to 1, level 1 corresponds to a complexity be-

tween 0 and 0.2, level 2 corresponds to complexity interval (0.2, 0.4),…, level 5 corresponds to 

(0.8, 1.0). A visualization of this mapping is shown in Figure 4.7. The area which shows the 

consistency of the two methods is marked with color blue. As can be seen that, the majority of 

the points lie in this area. The outliers account for 15% of the total (3 of 20). Figure 4.8 compares 

the two methods by using mean ranks and the calculated complexity in Table 3.6. As can be 

seen that, scenarios with higher complexities usually have higher mean ranks, which means that 

they are evaluated by more experts with higher level of complexity. A linear relationship can be 

found between the results of these two methods. However, same as Figure 4.7 outliers exist as 

well. There is one scenario with a complexity larger than 0.9, but its mean rank is only the fifth 

highest. On the contrary, there is also a scenario, which according to the result of the metric is 

not very complex (complexity between 0.3 and 0.4), however is considered as the third most 

complex scenario by the experts. Ideally, the results of the metric will be more convincing if more 

points lie closely to the fitting line. In Figure 4.7, more dots should lie in the blue marked area. 

The goodness of this fit can be measured by norm of residuals, which is obtained with the fol-

lowing equation: 

Pairs with significant difference 

15-5 14-5 19-5 13-5 16-5 12-5 4-5 20-5 2-5 3-5 11-5 

15-6 14-6 19-6 13-6 16-6 12-6 4-6 20-6 2-6 3-6 11-6 

15-8 14-8 19-8 13-8        

15-9 14-9 19-9 13-9        

15-18 14-18 19-18 13-18        

15-10 14-10 19-10         

15-7 14-7 19-7         

15-1 14-1          

15-17           
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normr = ⁡√𝑟1
2 + 𝑟2

2 + + 𝑟20
2  (4.6) 

𝑟𝑖⁡(𝑖 = 1,2,… ,20) is the difference between the observed value and fitted value of the 𝑖-th sce-

nario. For the calculation of complexity with equal weighting factors, the norm of residuals is 

0.4818. 

Figure 4.7: Comparison of results evaluated by experts and by metric  

Figure 4.8: Comparison between the results of questionnaire and of metric 

4.2 Determination of weighting factors 

As already discussed in section 3.3.1. Some factors have strong influence on complexity, while 

some have very weak influence. The purpose of adjusting the weighting factors is to make the 

factors, which are very important according to the opinions of experts, very influential on the 

complexity, and the factors which are not important should have small impact on complexity.  

According to the results of the second and third part of the questionnaire, only the difference 

between factor 6 and 1 and factor 4 and 1 are considered significant, namely for the majority of 

influence factors, their difference with respect to importance degree for complexity is not very 

large. Therefore, equal weighting factors are selected as the initial condition for the variation of 
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weighting factors. In total 121 combinations of weighting factors are created for the evaluation of 

complexity. The sum of weighting factors of each group is equal to one. The norm of residuals 

of each combination is shown in Figure 4.9. The 1st point is the initial state (equal weighting 

factors). These 121 combinations are divided into 8 groups marked in color yellow in the graph. 

The detailed information of each group can also be seen in Table 4.9. The first column of the 

table is the group number. The second column shows the corresponding range of combination 

of each group. Under the third column it is described how weighting factors are distributed among 

factors within each group.  

In the 1st group, the weighting factor of influence factor 1 𝑤1 varies from equal factor 0.0769 

(equal weighting factor) slowly to 0, while the rest of the influence factors share the same 

weighting factors 𝑤𝑟. This corresponds to the first 8 combinations of weighting factors. As can 

be seen from the graph that, as 𝑤1 gets smaller, the norm of residuals increases instead of de-

creasing. The same situation happens in the 2nd, 3rd and 4th group for influence factor 12, 9 and 

7, which are the ones with lowest mean ranks (Figure 4.2). Similar actions can be done for the 

four factors with highest mean ranks (factor 6, 4, 5 and 11), the weighting factor of this factor 

varies from 0.0769 to 0.3, the rest of the influence factors are equally weighted (Group 5 to 8 in 

Figure 4.9). It is noticeable that when increasing weighting factor of factor 5, norm of residuals 

increases dramatically. One explanation for this is that, according to the result in 3.3.1 factor 6 

is the most influential factor. When same degree of variance of an input happens, the variance 

at output is supposed to be the largest if this variance is caused by the most influential factor, in 

this case caused by factor 6.  

Figure 4.9: Norm of residuals of different combinations of weighting factor 

The purpose is that, the most important factors should also be the most influential ones. For 

factor 6 it is already the case. It has the highest mean rank and is considered by the experts the 

most important factor. At the same time, it is the most influential one as well. Therefore, the 

weighting factor of factor 6 can remain unchanged. When comparing Figure 3.11 and Figure 4.5, 

it is noticeable that, factor 4 is supposed to be the second most important factor, however ac-

cording to the results of sensitivity analysis, its influence on complexity is only in a medium level. 

Factor 1 and Factor 12 are the two least important factors, but their influence on the complexity 

is larger than factor 4. Therefore, in the first step, the weighting factor of factor 4 will be increased 

and factor 1 and 12 will be less weighted, so that factor 4 can have large influence on the result 

and factor 1 and 12 have less influence. The applied weighting factor in the first try is [0.01, 0.087, 

0.087, 0.1, 0.087, 0.077, 0.087, 0.087, 0.087, 0.087, 0.1, 0.02, 0,084]. With this combination of 

weighting factors, the sensitivity analysis is conducted for track 7 and 8 (Since the results of 

 

1 2 3 4 5 6 7 8
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sensitivity analysis of different tracks are highly consistent (Figure 3.11), the analysis will be 

conducted here for only two tracks instead of four to save computing time). The results are shown 

in Figure 4.10. As can be seen that, the rank of factor 4 has been improved, and the influence 

level of factor 1 and 12 is reduced. When using this combination of weighting factors to calculate 

the complexity of selected scenarios in the questionnaire and comparing the result with the eval-

uation of experts, the norm of residuals of the fitting line is increased to 0.5367 (Figure 4.11). 

The reason for increase of norm of residuals is that, when observing Figure 4.9, the decrease of 

weighting factor of factor 1 and 12, the increase of weighting factor of factor 4 all leads to increase 

of norm of residuals, only increase of weighting factor of factor 11 can reduce this level. The 

weighting factors of the rest factors remain almost the same, therefore the cause of increase of 

norm of residuals is more than that of decrease.   

Table 4.9: Different combinations of weighting factors 

Figure 4.10: Sensitivity analysis with updated weighting factor (1) 

The result in Figure 4.10 can then be compared with Figure 4.2 again, the weighting factors of 

factor 7 and 13 can be decreased, since they are not very important but have high level of influ-

ence. The weighting factors of factor 4, 5 and 11 can furthermore be increased to increase their 

influence level. The updated weighting factor is now: [0.01, 0.0667, 0.0667, 0.15, 0.1, 

0.077 ,0.0667, 0.0667, 0.08, 0.0667, 0.2, 0.02, 0.03]. The result of sensitivity analysis is shown 

in Figure 4.12. When applying this combination of weighting factors to the calculation of com-

plexity of selected scenarios in the questionnaire, the norm of residuals will be increased to 

Nr Combi. range Description 

1 1 - 8 𝑤1 ∈ {0.0769, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,0},𝑤𝑟 = (1 − 𝑤1)/12 

2 9 - 15 𝑤12 ∈ {0.06, 0.05, 0.04, 0.03, 0.02, 0.01,0},𝑤𝑟 = (1 − 𝑤12)/12 

3 16 - 22 𝑤9 ∈ {0.06, 0.05, 0.04, 0.03, 0.02, 0.01,0},𝑤𝑟 = (1 − 𝑤9)/12 

4 23 - 29 𝑤7 ∈ {0.06, 0.05, 0.04, 0.03, 0.02, 0.01,0},𝑤𝑟 = (1 − 𝑤7)/12 

5 30 - 52 𝑤6 ∈ {0.08, 0.09, 0.10,… , 0.28, 0.29, 3.0},𝑤𝑟 = (1 − 𝑤6)/12 

6 53 - 75 𝑤4 ∈ {0.08, 0.09, 0.10,… , 0.28, 0.29, 3.0},𝑤𝑟 = (1 − 𝑤4)/12 

7 76 - 98 𝑤5 ∈ {0.08, 0.09, 0.10,… , 0.28, 0.29, 3.0}, ⁡𝑤𝑟 = (1 − 𝑤5)/12 

8 99 - 121 𝑤11 ∈ {0.08, 0.09, 0.10,… , 0.28, 0.29, 3.0},𝑤𝑟 = (1 − 𝑤11)/12 
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0.5906 after comparing with the evaluation of experts (Figure 4.13). As can be seen in Figure 

4.12, the influence level of factor 4, 5 and 11 is improved further. The influence level of 7 and 13 

is decreased.  

Figure 4.11:  Comparison of evaluations by experts and by metric using updated weighting factor (1) 

Figure 4.12: Sensitivity analysis with updated weighting factor (2) 

Figure 4.13: Comparison of evaluations by experts and by metric using updated weighting factor (2) 

 

 

 



4 Results 

57 

Further adjustment of weighting factors is possible, so that the ranking of influence level is coin-

cident with the ranking of importance degree. The following weighting factors are adapted after 

making finer adjustments: [0.01, 0.08, 0.08, 0.15, 0.12, 0.08, 0.05, 0.05, 0.08, 0.08, 0.17, 0.02, 

0.03]. The result of sensitivity analysis is displayed in Figure 4.14. As can be seen that, except 

factor 7, the ranking of influence level of other factors is almost coincident with the ranking of 

their importance degree. However, the norm of residuals of both evaluations is further increased 

to 0.6120 (Figure 4.15). 

Figure 4.14: Sensitivity analysis with updated weighting factor (3) 

Figure 4.15: Comparison of evaluations by experts and by metric using updated weighting factor (3) 

The question, which combination of weighting factors should be used, depends on the empha-

sized criterium. If the evaluation of experts is reliable and the results of the metric should be 

consistent with the opinions of experts, then the first combination of weighting factors can be 

adopted. With this combination the influence level of some important factors is improved and the 

difference between results of two evaluations will not be very large, which is a good compromise 

of both sides.  
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5 Summary 

This work aims to perfect the metric for quantitative evaluation of traffic situation complexity from 

the perspective of automated ego-vehicle.  

It has improved some shortcomings existing in the previous work. For the influence factor 

“connectivity” the connections between ego-vehicles and surrounding vehicles in diagonal 

directions are taken into consideration as well. The normalization of values of some factors is  

corrected. For factor “number of possible actions of ego-vehicle”, a piecewise function is used 

for normalization. The factor has the highest normalized value when ego-vehicle has 2 or 3 

possible actions instead of just 1, which is also the opinions of the experts according to their 

comments in the questioonnaire, that the situation is more complex when the number of possible 

actions is somewhere in between. Because in this case more efforts is required for the decision 

making process. For the normalizeation of factor “time-gap”, the maximal value of time-gap 

between ego-vehicle and a surrounding vehicle (with one of the following five labels: “leftfollow”, 

“rightfollow”, “leftpre”, “middlepre”, “rightpre”) is used instead of the average value. Since very 

rare that more that three of the five sectors are occupied, the normalized value is usually very 

small when using the average value.  

This work has added three more factors to the original ten for the evaluation of complexity. One 

is a scene-based factor “time-to-brake”, which is the reamining time for ego-vehicle to take an 

emergency brake if the preceding vehicle (vehicle labeled “middlepre”) comes to a sudden halt. 

This factor is included so that the criticality of a traffic situation can be reflected. The other two 

factors are scenario-based, which means instead of being calculated in each scene, they are 

calculated for each scenario and the values remain the same throughout the scenario. These 

factors are “number of actions of ego-vehicle/surrounding vehicle”. These two factors can 

indicate the dynamic of the traffic flow. If large number of actions is involved, this means that the 

vehicle in a situation where it has to frequently accelerate and decelerate and is probably in a 

traffic jam. 

In the previous work the complexity is calculated with help of a linear model and equal weighting 

factors of all influence factors without any argumentation. This works studies the relationship 

between different influence factors and attempts to offer argumentation for the determination of 

weighting factors. A sensitivity anaylsis is conducted first with equal weighting factors to see how 

influential each influence factor is on the complexity.  Sigma-normalized derivative is used as a 

measurement. Factor “types of surrounding vehicles”, “connectivity”, ”deviation” and “possible 

number of actions of surrounding vehicles” are the most influential ones. The concept “influence 

level” of a factor differs from its “importance degree” with respect to the assessment of complexity. 

The former depends on the distribution of the normalized values of respective factors and 

requires the knowledge and experience of experts. The importance degree of influence factors 

is determined based on the results of a questionnaire answered by experts. Based on the 

analysis of the results, factor 6 and factor 4 are considered as the most two important factors, 

factor 1 is then the least important. The difference between factor 6 or 4 and factor 1 is 
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considered to be significant with respect to importance degree for the evaluation of complexity. 

The difference among other influence factors is not so significant. The final determination of 

weighting factors has taken the results of both sensitivity analysis and the questionnaire into 

consideration. Ideal situation or the purpose is that, the most influentail factors are the most 

important ones as well, at the same time, the scenario complexity evaluated by experts can be 

as close to the results of complexity evaluted by the develped metric as well. Sometimes these 

two conditions cannot be both satisfied and a compromise is necessary.  
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6 Discussion and outlook 

The complexity in this work depends on the values of 13 influence factors, which are evaluated 

without consideration of state of the art of automated vehicle. For instance, the factor “types of 

surrounding vehicles” is included since different types of traffic participants have different 

characteristics of driving. However, according to the feedback of some experts in the 

questinnaire, automated vehicle is able to identify the type of a vehicle and therefore better 

predict its behavior. Or for factor “number of surrounding vehicles”, as the number of surrounding 

vehicles gets larger the computation time rises as well. However, for the automated vehicle which 

plans the trajectory based on the empty space around it the computation cost will not be high, if 

there are many surrounding vehicles. Similarly for factor “deviation of surrounding vehicles from 

the predicted trajectories”, the quality of prediction depends on the algorithm applied by the 

automated vehicle.  

For determination of influence factors, it is a bit difficult to adapt the weighting factors by taking 

both influence level and importance degree of influence factors into consideration. Maybe except 

a linear model a more sophisticated model can be used. In this work it is preferred, that the 

results of the metric should be close to the ones of experts. This has the precondition, that the 

evaluation of experts is reliable. However, in the reality, it is possible that the evaluation of a 

person is very intuiitve and lacks of quantitative analyzation. Another problem is that,  although 

the scenarios for the evaluation by experts are selected as representative as possible, but its 

total number is only 20. To obtain a more convincing result a larger number of scenarios are 

necessary for the validation.  
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Anhang A Appendix A List of scenar-

ios 

1: https://www.youtube.com/watch?v=9ojVyRYyiPk 

2: https://www.youtube.com/watch?v=w4S5mX6DXis 

3: https://www.youtube.com/watch?v=xnmLJZqJTag 

4: https://www.youtube.com/watch?v=f-d44ulvFMo 

5: https://www.youtube.com/watch?v=K2engJ8GETs 

6: https://www.youtube.com/watch?v=3uV1l8jdsXY 

7: https://www.youtube.com/watch?v=TQXLO8SpihE 

8: https://www.youtube.com/watch?v=ibNUY904Cdk 

9: https://www.youtube.com/watch?v=zm9Uj428oeU 

10: https://www.youtube.com/watch?v=xGOdYsfN5hA 

11: https://www.youtube.com/watch?v=ZnhlrH6uVHk 

12: https://www.youtube.com/watch?v=WkWs-1os60s 

13: https://www.youtube.com/watch?v=2V8Wb8wAzp0 

14: https://www.youtube.com/watch?v=XfLf5S1gr_Q 

15: https://www.youtube.com/watch?v=8ifA54kV7Bo 

16: https://www.youtube.com/watch?v=Y1GkeFIcACk 

17: https://www.youtube.com/watch?v=k26SAxLzXAM 

18: https://www.youtube.com/watch?v=GDx7PADYuhQ 

19: https://www.youtube.com/watch?v=3zDyRoRxtMk 

20: https://www.youtube.com/watch?v=UjIoIs7uH8M 

 


