
Creation of Complex Test Scenarios for
Automated Vehicles by Means of
Evolutionary Algorithm

Semester Thesis

at the Department of Mechanical Engineering of Technical University of Munich

Supervised by Prof. Dr.-Ing. Markus Lienkamp
Thomas Ponn, M.Sc.
Chair of Automotive Technology

Submitted by Yuanfei Lin
Heiglhofstraße 66
81377 München

Submitted on May 02, 2020

Chair of Automotive Technology
Department of Mechanical Engineering
Technical University of Munich

Project description

Creation of Complex Test Scenarios for Automated Vehicles by
Means of Evolutionary Algorithm

Nowadays, the automotive industry is going through a period of continuous changes, which
are mainly related to the need for electrification of the traditional means of transport and to the
search for an unsupervised driving mode: autonomous Driving. In order to launch automated
driving vehicles onto the market, it is necessary that they behave safely in a constant way.
However, because theoretically infinitely many different situations can occur in real traffic, it is
not possible to check the entire parameter space. Therefore, an attempt is made to filter out the
most relevant and complex scenarios from the large number of possible scenarios.

In particular, in this work, the trajectories of the surrounding traffic are to be determined so
that the complexity of the traffic situation becomes maximum. To solve this problem, different
approaches can be followed as shown in [1], [2]. One powerful possibility to generate the most
complex scenarios is the use of global optimization methods, specifically evolutionary algorithm.

The following points are to be investigated by Mr. Yuanfei Lin:

• Literature research and showing the state-of-the-art

• Evaluation of various optimization methods, use of a suitable optimization process,
validation and discussion of the method

• Introduction of final objective function and generating results from real data

• Addition of constraints for acceleration/deceleration

• Documentation of the procedure and the results achieved

The elaboration should document the individual work steps in a clear form. The candidate
undertakes to write the master thesis independently and to state the scientific sources used by
him.

The submitted work remains the property of the chair as an examination document and may only
be made accessible to third parties with the consent of the chair holder.

Announcement date: 02.11.2019 Submission date: 02.05.2020

Prof. Dr.-Ing. Markus Lienkamp Thomas Ponn, M.Sc.

Chair of Automotive Technology
Department of Mechanical Engineering
Technical University of Munich

Geheimhaltungsverpflichtung

Herr: Lin, Yuanfei

Gegenstand der Geheimhaltungsverpflichtung sind alle mündlichen, schriftlichen und digitalen
Informationen und Materialien die der Unterzeichner vom Lehrstuhl oder von Dritten im Rahmen
seiner Tätigkeit am Lehrstuhl erhält. Dazu zählen vor allem Daten, Simulationswerkzeuge und
Programmcode sowie Informationen zu Projekten, Prototypen und Produkten.

Der Unterzeichner verpflichtet sich, alle derartigen Informationen und Unterlagen, die ihm
während seiner Tätigkeit am Lehrstuhl für Fahrzeugtechnik zugänglich werden, strikt vertraulich
zu behandeln.

Er verpflichtet sich insbesondere:

• derartige Informationen betriebsintern zum Zwecke der Diskussion nur dann zu verwen-
den, wenn ein ihm erteilter Auftrag dies erfordert,

• keine derartigen Informationen ohne die vorherige schriftliche Zustimmung des Be-
treuers an Dritte weiterzuleiten,

• ohne Zustimmung eines Mitarbeiters keine Fotografien, Zeichnungen oder sonstige
Darstellungen von Prototypen oder technischen Unterlagen hierzu anzufertigen,

• auf Anforderung des Lehrstuhls für Fahrzeugtechnik oder unaufgefordert spätestens
bei seinem Ausscheiden aus dem Lehrstuhl für Fahrzeugtechnik alle Dokumente und
Datenträger, die derartige Informationen enthalten, an den Lehrstuhl für Fahrzeugtech-
nik zurückzugeben.

Eine besondere Sorgfalt gilt im Umgang mit digitalen Daten:

• Für den Dateiaustausch dürfen keine Dienste verwendet werden, bei denen die Daten
über einen Server im Ausland geleitet oder gespeichert werden (Es dürfen nur Dienste
des LRZ genutzt werden (Lehrstuhllaufwerke, Sync&Share, GigaMove).

• Vertrauliche Informationen dürfen nur in verschlüsselter Form per E-Mail versendet wer-
den.

• Nachrichten des geschäftlichen E-Mail Kontos, die vertrauliche Informationen enthalten,
dürfen nicht an einen externen E-Mail Anbieter weitergeleitet werden.

• Die Kommunikation sollte nach Möglichkeit über die (my)TUM-Mailadresse erfolgen.

Die Verpflichtung zur Geheimhaltung endet nicht mit dem Ausscheiden aus dem Lehrstuhl
für Fahrzeugtechnik, sondern bleibt 5 Jahre nach dem Zeitpunkt des Ausscheidens in vollem
Umfang bestehen. Die eingereichte schriftliche Ausarbeitung darf der Unterzeichner nach
Bekanntgabe der Note frei veröffentlichen.

Der Unterzeichner willigt ein, dass die Inhalte seiner Studienarbeit in darauf aufbauenden
Studienarbeiten und Dissertationen mit der nötigen Kennzeichnung verwendet werden dürfen.

Datum: 02. Mai 2020

Unterschrift:

Chair of Automotive Technology
Department of Mechanical Engineering
Technical University of Munich

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Garching, den 02. Mai 2020

Yuanfei Lin

Chair of Automotive Technology
Department of Mechanical Engineering
Technical University of Munich

Declaration of Consent, Open Source

Hereby I, Lin, Yuanfei, born on November 05, 1995, make the software I developed during my

Semester Thesis available to the Institute of Automotive Technology under the terms of the

license below.

Garching, May 02, 2020

Yuanfei Lin

Copyright 2020 Lin, Yuanfei

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restriction,

including without limitation the rights to use, copy, modify, merge, publish, distribute, subli-

cense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-

AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-

ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE

USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents

List of Abbreviations ... III

Formula Symbols.. V

1 Introduction .. 1

1.1 Autonomous Driving ... 1

1.2 Goal and Structure of the Work.. 1

2 State of the art... 3

2.1 HighD Dataset .. 3

2.2 Complexity Analysis ... 4

2.2.1 Definition of ROI.. 5

2.2.2 Classification of Surrounding Traffic.. 5

2.2.3 Influence Factors... 6

2.3 Optimization Methods ... 7

2.3.1 Background Knowledge.. 8

2.3.2 Genetic Algorithm.. 8

2.3.3 Particle Swarm Optimization ... 10

2.3.4 Simulated Annealing .. 12

2.3.5 Pattern Search.. 13

3 Methodology ... 15

3.1 Model Assumption.. 15

3.1.1 Ego-Vehicle .. 16

3.1.2 Surrounding Vehicles ... 18

3.1.3 Time-Step Adaption ... 18

3.1.4 Time-Gap Adaption ... 20

3.2 Interface with Clusters .. 21

3.2.1 Scenario Selection .. 21

3.2.2 Coordinate Transformation.. 21

3.2.3 Missing Frames Complement .. 22

3.2.4 Input of the initial Data ... 22

I

3.2.5 Data Structure Transformation ... 22

3.3 Complexity Evaluation .. 23

3.4 Penalty Function .. 24

3.4.1 Penalty of Location .. 24

3.4.2 Penalty of Velocity ... 27

3.4.3 Penalty of Jerk.. 28

3.5 Objective Function ... 28

3.6 Tuner for Optimizer ... 29

3.6.1 Definition of Evaluation Methods .. 30

3.6.2 Problem Setting with Pre-processing .. 30

3.6.3 Optimization Algorithm ... 33

3.6.4 Post-Verification .. 38

4 Results and discussion .. 39

4.1 Results using Genetic Algorithm ... 39

4.1.1 Parameter Variation ... 39

4.1.2 Scenario Test ... 42

4.2 Results using Particle Swarm Optimization .. 43

4.2.1 Parameter Variation ... 43

4.2.2 Scenario Test ... 45

4.3 Discussion of the Results ... 46

4.3.1 Comparison of the Optimization Result ... 47

4.3.2 Quantitative Post-Verification... 47

4.3.3 Analysis of Exploitation and Exploration .. 50

4.3.4 Subjective Qualitative Evaluation ... 52

5 Summary and Outlook ... 55

5.1 Summary ... 55

5.2 Outlook.. 56

List of Figures .. i

List of Tables .. iii

Bibliography... v

Appendix ... ix

II

List of Abbreviations

ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
AEB Auto Emergency Braking
AV Automated Vehicles
CAS Collision Avoidance System
CDF Cumulative Distribution Function
DE Differential Evolution
EA Evolutionary Algorithm
GA Genetic Algorithm
GPS Generalized Pattern Search
GSS Generating Set Search
HighD Dataset from German Highways
IDM Intelligent Driver Model
LKA Lane Keep Assist
MADS Mesh Adaptive Direct Search
MOBIL Minimizing Overall Braking Induced by Lane Changes
PS Pattern Search
PSO Particle Swarm Optimization
ROI Region of Interest
SA Simulated Annealing
SAE Society of Automotive Engineers

III

Formula Symbols

Formula Symbols Unit Description

x , x ′ m x-coordinate

y, y ′ m y-coordinate

Posx m Longitudinal position of vehicle

Posx m Lateral position of vehicle

x t m Position of particle

ltot m Total length of lane change process

wcw m Lane change width

O m Lateral deviation

a, b, e m Ellipse parameters

Ttot s Time horizon of one scenario

Tg s Time-gap

Ts s Time-step

Top s Optimization duration

Tsim s Running time of one simulation

s0 m Linear jam distance

s1 m Non-linear jam distance

p1 m Individual optimal position

p2 m Global optimal position

dsa f e m Safety distance

Cs m Safety coefficient

SROI m2 Area of ROI

vx m/s Longitudinal velocity

vy m/s Lateral velocity

vv m/s Velocity of vehicle

vt m/s Velocity of particle

V

v0 m/s Desired Velocity

ax m/s2 Longitudinal acceleration

ay m/s2 Lateral acceleration

jx m/s3 Longitudinal jerk

jy m/s3 Lateral jerk

bx ,com m/s2 Comfortable deceleration

ψc
◦ Course angle

φ ◦ Orientation

p - Politeness factor

δ - Acceleration exponent

δbias - Constant bias

δth - Switching threshold

f - Normalized values of influence factors

w - Weights of influence factors

w0 - Inertia weight

c1 - Cognitive learning factor

c2 - Social learning factor

PI - Performance indicator

nop - Number of parameters

nov - Number of variables

P - Penalty function

C - Complexity evaluation function

J - Objective function

η - Algorithm efficiency

Nveh - Number of vehicles

Nf - Number of frames

Nc - Number of complexity attribute

NGA - Population size

NPSO - Swarm size

Tg,GA, Tg,PSO - Number of generations

C f - Crossover fraction

Ct - Crossover type

St - Selection type

Er - Elite Ratio

Iniss - Initial swarm span

A0 - Initial population/swarm matrix

1 Introduction

At present, the automotive industry is undergoing a significant change, mainly due to the large-
scale introduction of electric and hybrid drives, shared mobility, individual mobility, connected
vehicles, and autonomous driving [3]. In order to launch automated driving vehicles onto the
market, it is necessary that they behave safely in a constant way. However, because theoretically
infinitely many different situations can occur in real traffic, it is not possible to check the entire
configuration space [4]. Therefore, an attempt is made to filter out the most relevant and complex
scenarios from a large number of possibilities. In particular, in this thesis, the trajectories of the
surrounding traffic are to be determined so that the complexity of the traffic situation around
the vehicle under test (ego-vehicle) becomes maximum. One powerful possibility to generate
the most complex scenarios is the use of global optimization methods, specifically Evolutionary
Algorithm (EA).

1.1 Autonomous Driving

Autonomous driving has great potential nowadays, and it can change the transportation system
by improving safety, comfort, and intelligence on the road. Society of Automotive Engineers
(SAE) announced a visual chart for use with its J3016TM “Levels of Driving Automation” standard
that defines six levels of driving automation, as shown in Figure 1.1, from no automation to full
automation.

The safety benefits of Automated Vehicles (AV) from level 3 to 5 are paramount. To ensure safe
driving for higher automation level, a great deal of technologies is developed to avoid collision
and enhance driving comfort with advanced hardware and software. According to Weast [5]
2020 will be the year that Advanced Driver Assistance Systems (ADAS)-equipped vehicles are
becoming the new normal. Customers will get more familiar with automated driving technology,
which will hopefully lessen fear around AV of level 3-5. It is predicted that the percentage of AV
on the road will reach 75 percent by 2040, with an estimated marketing value of $7 trillion by
2050 [6].

1.2 Goal and Structure of the Work

Only a few techniques were developed for the automatic test case generation of hybrid dynamics
for the requirements of autonomous systems. The goal of this thesis is to develop a sufficient
optimizer to generate highway scenarios for AV with high complexity, which also obeys the
traffic rules and meets physical possibilities. Based on the previous work, final functions of
complexity evaluation from Yu [8][9] and the clusters generated from Dataset from German
Highways (HighD) by Breitfuss [10] will be included as the underlying inputs for the optimizer,

1

1 Introduction

Figure 1.1: The levels of driving automation for on-road vehicles from SAE [7]

the simulation model of vehicles and optimization structure in [2] will be partially preserved and
improved. The development of complex test scenarios is implemented in Matlab with its global
optimization toolbox (Version 2019b).

The remainder of this thesis is organized as follows: After briefly introducing the complexity
analysis method, optimization algorithms and HighD dataset in Chapter 2, Chapter 3 firstly
explains the model used in simulator and constructs an interface with clusters generated from
HighD, then the complexity evaluation and penalty function are integrated to an objective function,
which is the last function used for optimization. Following it, a tuner for the optimizer is built up
to achieve better optimization performance. Next, the results using different EA are listed and
discussed in Chapter 4. In the last chapter, the shortcomings of the optimization method and
possible improvements are summarized. The overview of how the present thesis approaches
the topic is visualized in Figure 1.2.

Introduction

(Chapter 1)

State of the art

(Chapter 2)

Methodology

(Chapter 3)

Results and discussion (Chapter 4)

Summary and outlook (Chapter 5)

Complexity Analysis

Optimization Methods

Model Assumption Interface with clusters

Objective Function Tuner for Optimizer

Genetic Algorithm Particle Swam Optimization

Complexity Evaluation Penalty Function

HighD Dataset

Figure 1.2: Work structure of this thesis

2

2 State of the art

In this section, the essential fundamental part of this thesis is presented. Firstly, the underlying
data-set used in this thesis, named HighD, will be explained. Then the complexity evaluation of
test scenarios in HighD for AV will be introduced. Finally, to enhance the complexity, a short
introduction of optimization methods and their implementation with Matlab will be presented.

2.1 HighD Dataset

In our previous works, Villalobos [1] and Mayr [2] generate complex scenarios under simple
configuration of vehicles and limited complexity metrics, since the information from background
research is not enough. Thus it is necessary to look into the available dataset with more traffic
information.

A large-scale naturalistic vehicle trajectory data-set from German highways called HighD [11]
consists of measurements from six locations with 110000 vehicles and a total driven distance of
45000 km. The drone recorded the behaviour of vehicles passing a highway section of 420 m
as shown in Figure 2.1. This information is sufficient to analyze highway scenarios and can be
used as input to the optimizer.

Figure 2.1: The recording setup of HighD [11]

Figure 2.2 depicts the global coordinate system of HighD with the upper left corner as origin, the
horizontal axis to the right as the x-axis and the downward vertical axis as the y-axis.

3

2 State of the art

Figure 2.2: The global coordinate system of HighD[12]

Furthermore, some important information of coordinate and data structure transformation from
[12] is listed in Table 2.1, which is the basis for the interface in next chapter.

Table 2.1: Important information of coordinate system in HighD

Name Description

Frame Rate in Hz The frame rate which was used to record the video discretely (25 Hz).

Vehicle Type Vehicles tracked including cars and trucks.

Lane Markings The y positions of the lane markings that separated by ";".

Width in m The width of the post-processed bounding box (corresponding to the vehicle).

Length in m The length of the post-processed bounding box (corresponding to the vehicle).

x in m The x position of the upper left corner of the vehicle’s bounding box.

y in m The y position of the upper left corner of the vehicle’s bounding box.

xVelocity in m/s The longitudinal velocity in the image coordinate system.

yVelocity in m/s The lateral velocity in the image coordinate system.

xAcceleration in m/s2 The longitudinal acceleration in the image coordinate system.

yAcceleration in m/s2 The lateral acceleration in the image coordinate system.

2.2 Complexity Analysis

In the work of Breitfuss [10], the real data from HighD is extracted to various clusters. Based
on the processed data, Yu [8][9] develops a method to evaluate the traffic scenarios of HighD,
which can be adopted as adequate metrics of the complexity in highway.

Complexity is what characterizes all evolved, open systems, where the structure and organization
have emerged over time through processes of self-organization [13]. Focusing on the problem
of road complexity, the adversity of the situation usually depends on the environment and the
behaviours of traffic participants. To organize all information in one scenario, we propose to use
an adapted layered model for scene representation from Bagschik et al. [14] based on the work
of Schuldt [15] as shown in Figure 2.3.

The fourth layer (L4) lists all stationary and moving objects that do not belong to the infrastructure
(L2). Besides, the manoeuvres, as well as the interactions of the objects in the fourth layer, are
defined. Because of the diversity of sensors and infrastructure in real traffic, it is difficult to unify
their impact on the complexity analysis. Therefore, the method for quantitative evaluation of
traffic complexity proposed in [8][9] only focus on the fourth layer.

4

2 State of the art

Road-level (L1)

Traffic infrastructure (L2)

Temporary manipulation (L3)

Objects (L4)

Environment (L5)

Figure 2.3: Layer model for the representation of driving scenes adapted from [16]

2.2.1 Definition of ROI

In one scenario, there are dozens of vehicles appearing, and it is impossible to involve all of
them in the complexity analysis. In addition, the influence caused by the vehicles beyond a
certain distance is negligible, thus a concept called Region of Interest (ROI) is introduced.

Since a safety distance dsa f e of one vehicle is often defined as half of the current velocity (km/h)
and the behaviours of vehicles ahead impact more on the decision-making of the ego-vehicle,
the ROI in the longitudinal direction is defined as the area of two safety distance forwards
and one backwards. In the lateral direction, it is intuitive to consider the currently located and
adjacent lanes, as shown in Figure 2.4. In the following analysis of complexity, only the vehicles
within ROI will be considered.

, ∙ ,

, ,

, ,

,

, ,

,

Car 2

Car 1

, ∙ ,

Figure 2.4: Demonstration of ROI adapted from [8] (Blue part: ROI of Car 1 driving in the middle lane;
green part: ROI of Car 2 in the edge lane, only area of two lanes are considered in the
lateral direction)

2.2.2 Classification of Surrounding Traffic

The surrounding traffic should be classified according to its position or behaviour before com-
plexity evaluation, to make the observation more convenient and distinguish the influence degree
of different positions in the ROI of ego-vehicle.

Since the area in front of ego-vehicle plays a more influential role than the area behind, the 8-
nearest-neighbour model that introduced by Wang et al. [17] is extended to 11-nearest-neighbour
according to the work of Antona-makoshi et al. [18]. Correspondingly the ROI can be divided into

5

2 State of the art

4 longitudinal sections according their hierarchy of effects, which is presented by their relative
position to ego-vehicle in ROI. Five dividing lines are defined in Eq. (2.1). To illustrate the
hierarchy of effects of each section, 1st section(xs1

xs0
) is called "leading", 2nd (xs2

xs1
) "pre", 3rd

(xs3
xs2

) "along", 4th (xs4
xs3

) "follow".

xs0
= ROIend ; xs4

= ROIstar t ;

xs3
= xego −

1
2 ·wid thego − 5m;

xs2
= xego +

1
2 ·wid thego + 5m;

xs1
=

xs0+xs2
2 ;

(2.1)

Combining the assignment in lateral direction according to their relative lane position ("left",
"middle", "right") 12 sectors is determined and a 4x3 matrix is defined indicating the occupation
state of surrounding vehicles with labels. The finial label assignment of surrounding traffic is
shown in Figure 2.5.

()

Figure 2.5: Label assignment of surrounding traffic within ROI modified from [8]

2.2.3 Influence Factors

There exist aggregately 13 influence factors for complexity evaluation in [9]. During the simulation,
the complexity of each frame will be calculated, and all the influence factors have equal weights,
which sums to 1. For the final complexity evaluation of the whole scenario, the complexity of all
frames will be averaged as Eq. (2.2):

C =
Ts

Ttot

Ttot/Ts
∑

j=1

f T
j · w (2.2)

with

w = [w1, w2, ..., wNc
];

w1 = w2 = ...= wNc
;

Nc
∑

i
wi = 1

(2.3)

where Ttot presents the duration of the whole scenario, Ts the discrete time-step, Nc the number
of the complexity attributes, vector f the normalized values of influence factors and w the
corresponding weight vector.

Within the ROI of the ego-vehicle, we can summarize the influence factors as shown in Table
2.2 to evaluate the complexity of the highway traffic according to the definition in [9].

6

2 State of the art

Table 2.2: List of influence factors for complexity evaluation in [9]

Nr. Description Domain Symbol

1 Number of surrounding traffic nb_num

2 Types of surrounding traffic nb_t ype

3 Number and type of actions by surrounding traffic noa_nb

4 Possible actions of surrounding traffic pa_nb Surrounding

5 Variation of action parameters of surrounding traffic variat ion Traffic

6 Dynamic of surrounding traffic d ynamic

7 Interactions between traffic participants connect ion

8 Deviation from predicted state devi_eu

9 Number and type of actions required to be performed noa_ego Ego

10 Possible actions of ego-vehicle pa_ego Vehicle

11 Occluded area (in percentage) within ROI rat io Sense/Plan

12 Time-gap t g Criticality

13 Time-to-break t2b

To combine the different influence factors, normalization of these values as post-processing is
necessary. Using the results from [9] the original normalization values are shown in Table 2.3,
where pa denotes the possible actions of ego-vehicle or surrounding vehicles, BS the blind spot
which is not visible to the driver, and SROI the area of the entire ROI. For instance, according to
Figure 2.5, when each sector is occupied by exactly one vehicle, the value of nb_num is now
assigned with 11. Then the nb_numnorm is equal to 1 after normalization , and the fnb_num in this
situation is determined correspondingly.

Table 2.3: Normalization values of influence factors [9]

Factor Value Factor Value

nb_num 11 nb_t ype 2

noa_nb 10 pa_nb 8

variat ion

¨

vx : 15 m/s, vy : 1.3 m/s

ax : 1.5 m/s2, ay : 0.5 m/s2 d ynamic

¨

vx : 35 m/s, vy : 0.65 m/s

ax : 0.65 m/s2, ay : 0.22 m/s2

connect ion 17 devi_eu 1.4

noa_ego 20 rat io
∑

BS/SROI

pa_ego

3.25 · pa+ 0.5, if pa<2;

7, if 2≤ pa ≤ 3;

−3.25 · pa+ 16.75, otherwise

t2b

t2b, if t2b<0;

2, if 0≤ t2b ≤ 2;

Inf, otherwise

t g e−0.5·t g

2.3 Optimization Methods

After obtaining the initial data from HighD and the metrics of complexity evaluation, the optimiza-
tion structure can be established. An optimization problem is to find the best solution from all
feasible solutions in a certain time. In this section, the algorithms of basic optimization methods
are described and a combination with the commands in Matlab will be made to implement the
optimization algorithm.

7

2 State of the art

2.3.1 Background Knowledge

First, some background knowledge of optimization algorithm and its implementation tools need
to be introduced.

As an effective optimization tool, EA uses simulated evolution to explore the solutions for complex
real world problems, which becomes very prevalent tool for searching, optimization and providing
solutions to complex problems [19]. The most popular EA include Genetic Algorithm (GA),
Particle Swarm Optimization (PSO). In the work of Klischat et al. [20], an approach of utilizing
EA (Differential Evolution (DE) and PSO) to tackle the resulting highly critical test scenarios for
AV is presented, which uses the drivable area as a measure for criticality and shows a sufficient
result. Mayr [2] compares the performance of different optimization algorithms with Matlab and
uses PSO to generate complex scenarios under simple configurations.

There are many tools to implement optimization algorithms, such as Matlab, Python, and
etc. Global Optimization Toolbox in Matlab provides functions that search for global solutions
to problems that contain multiple maximum or minimum [21, p.1-2], which is useful for the
optimization problem to find the most complex scenario under certain circumstances. Toolbox
solvers such as EA (GA, PSO included), Simulated Annealing (SA), Pattern Search (PS) can
help us to generate different kinds of optimization algorithms.

2.3.2 Genetic Algorithm

Genetic Algorithm (GA) is a method for solving both constrained and unconstrained optimization
problems based on a natural selection process that mimics biological evolution [21, p.5-2]. GA
is a sub-class of EA, which can be viewed as a search procedure that generates potential
solutions to a problem, tests each for suitability and then generates new solutions [22]. The
basic procedure of GA is shown in Algorithm 1.

Algorithm 1 Genetic Algorithm
1: procedure GA
2: set ending condition . max time, max generation ect.
3: import initial population
4: while ending condition not satisfied do
5: evaluate population . assign score to each individual with the objective function
6: select parents . based on selection rules
7: generate offspring . based on reproduction options (crossover, mutation)

8: return best individual . with minimum or maximum value

It can be found in Algorithm 1 that, there exist three main types of rules to obtain the new
generation, that is, selection rules, crossover rules and mutation rules, which will mainly affect
the optimization performance.

• selection rules: The individuals that contribute to the population for the next
generation are selected, which can be called parents. Among them, some of the
original ones will remain, and some newly created individuals will also be saved
according to different rules. Different selection types [21, p.11.31-32] are explained
in Table 2.4.

8

2 State of the art

Table 2.4: The options of selection type

Name Description

Stochastic uniform A single random value is uniformly used to select the position of parents
by choosing at evenly spaced intervals.

Roulette The parents are selected by simulating roulette, and the fitness value of
each individual in a population corresponds to the area of the roulette
wheel proportion.

Remainder Firstly, the size of individuals are scaled to be suitable for the selection
function. Then the parents are assigned deterministically from the inte-
ger part of the scaled value, and the roulette selection is used for the
remaining fractional part.

Tournament It involves running several "tournaments" among the individuals, which is
chosen at random from the population. The winner of each tournament
(the one with the best fitness) is selected as parents.

• crossover rules: Crossover stands for the recombination operator, which combine
two parents to form offspring iteratively. Table 2.5 shows the varied functions
supplied by Matlab [21, p.11.35-36].

Table 2.5: The options of crossover type

Name Description

Scattered A random binary vector such as [1 0 0 ... 1] is used. The position with a
value of 1 will be selected from the first parent, with a value of 0 from the
second, the offspring is then formed.

Single point A single point is chosen randomly, and parts to the right of that point are
swapped between the two parents.

Two-point Two crossover points are chosen randomly and the parts within the two
points are swapped between the two parents.

Intermediate Offspring is created by taking a weighted average of the parents with
parameter Ratio using the following formula, which can be a scalar or
row vector.

child = parent1 + rand ∗ Ratio ∗ (parent2 − parent1) (2.4)

Heuristic Offspring lies on the line containing the two parents and have a smaller
deviation from the parent with the better fitness value (e.g. parent1)
according to the Eq. (2.5).

child = parent2 + Ratio ∗ (parent1 − parent2); (2.5)

• mutation rules: Mutation applies random changes to individual parent and then
derives the new offspring. The different ways that GA make small random changes
in the individuals in the population to create mutation offspring are shown in Table
2.6 [21, p.11.33-35].

Besides using mutation and crossover, a certain number of individuals are guaranteed to survive
to the next generation, which is called el i te and whose size should be less than or equal to the
population size. In the reproduction option of Matlab GA toolbox, the scale for crossover, and
mutation in one generation can be determined by the value of crossover fraction C f . Based on

9

2 State of the art

Table 2.6: The options of mutation function

Name Description

Gaussian A random number taken from a normal Gaussian distribution is added to
each entry of the parent vector. The standard deviation of this distribution
is determined by the parameters scale and shrink. Scale determines the
standard deviation at the first generation, while shrink controls how the
standard deviation shrinks as generations go by. The shrink is usually
assigned with 1, which means the amount of mutation will decrease to 0
at the final step.

Uniform Firstly a fraction of the vector entries of an individual for mutation is
selected. Then the algorithm replaces each selected entry by a random
number selected uniformly from the range for that entry.

Adaptive Feasible The mutation chooses a direction and step length that satisfes bounds
and linear constraints with respect to the last successful or unsuccessful
generation.

this, the general flow chart of GA is described in Figure 2.6, which also explained the key points
for improving its performance.

Initialization

Population

Parent

Selection

ParentsReproductionOffspring

Survivor

Selection

Termination

Figure 2.6: General flow chart of GA

In addition, the typical syntaxes of GA in Matlab [21, p.12-7] are:

1 [val ,fval] = ga(fun ,nvars)

2 [val ,fval] = ga(fun ,nvars ,A,b,Aeq ,beq ,lb ,ub,nonlcon ,options)

which consists of input arguments (@ f un: fitness function, nvars: the number of independent
variables, A · val ≤ b: linear inequalities, Aeq · val = beq: linear equalities, l b ≤ val ≤ ub:
possible range between lower bound l b and upper bound ub, nonlcon: nonlinear constraints,
options:optimization options) and output variables of GA (val: the final individual, f val: the
value of the objective function for val). If the above-mentioned input argument is empty, it can
be replaced by [].

2.3.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is also a population-based stochastic optimization algorithm,
which is motivated by the intelligent collective behaviour of some animals such as flocks of birds
or schools of fish [23]. Similar to the population in GA, particle (single individual) information
iterates in each generation to adjust the direction of the searching process.

10

2 State of the art

Algorithm 2 Particle Swarm Optimization
1: procedure PSO
2: set ending condition . max time, max iteration ect.
3: initialize particle swarm
4: while ending condition not satisfied do
5: evaluate particle fitness . assign score with the objective function
6: calculate the individual historical optimal position (pbest)
7: calculate the swarm historical optimal position (gbest)
8: update particle velocity and position . according to Eq. (2.6)

9: return best particle . with minimum or maximum value

By default, PSO creates particles at random within bounds initially, which also called the swarm.
To control the span of the initial swarm, the "InitiaSwarmSpan" option in Matlab can be varied.
Next, the moving of particles afterwards depends on the velocity vector. For the local particle,
the velocity and position update equations are derived as shown in Eq. (2.6) [23].

(

v i
t+1 = w0 · v i

t + c1 · rand · (pi
t − x i

t) + c2 · rand · (pg
t − x i

t)

x i
t+1 = x i

t + v i
t+1

(2.6)

where the position and velocity of the particle i at time t can be denoted by x i
t and v i

t , w0 is
called inertia weight, c1 self adjustment weight, c2 social adjustment weight, pi the individual
optimal position (pbest), pg the optimal position in the local neighbourhood (gbest), and rand
returns a random number between 0 and 1.

To explain the above equations, Figure 2.7 depicts the update scheme of particle velocity and
position. Each particle’s new velocity v i

t+1 is a function of its current velocity v i
t , the vector that

points to the particle’s own best location that saved in the memory (pi
t − x i

t) and the vector that
points to the best location of the particles inside the swarm (pg

t − x i
t). Then the next position x i

t+1
is determined.

+

+

Figure 2.7: Position and velocity update of particles in PSO [23]

Thus the whole working flow of PSO can be summarized in Figure 2.8. Each particle continually
adjusts its speed and trajectory in the search space based on the aforementioned information,
then moves closer towards the global optimum with each iteration.

11

2 State of the art

Initialization

Population of

particles

Loop particles

and evaluate

fitness

Global best (gbest) and

personal best (pbest)

Update particle

positions and

velocities

Termination

Figure 2.8: General flow chart of PSO

The following syntax of PSO in Matlab attempts to find a vector val that achieves a local minimum
of @ f unc [21, p.12-116]. The input and output arguments are similar to the ones defined in GA.
Notably, the PSO toolbox in Matlab does not support the variables with constraints.

1 [val ,fval] = particleswarm(fun ,nvars)

2 [val ,fval] = particleswarm(fun ,nvars ,lb ,ub,options)

2.3.4 Simulated Annealing

Simulated Annealing (SA) is an effective and useful algorithm in solving unconstrained and
bound-constrained optimization problems [21, p.8-2]. The concept “annealing” is derived from
thermodynamics, which specifies the way that metals cool and anneal [24]. SA uses the objective
function of an optimization problem instead of the energy of a material.

From [25] the algorithm of SA can be derived as shown in Algorithm 3, where s defines the
state space, E the energy (goal) function, P the acceptance probability function, neighbour the
candidate generator procedure and temperature the annealing schedule temperature, which
should be specified before each optimization process.

Algorithm 3 Simulated Annealing
1: procedure SA
2: k = 0 . k is the number of iteration
3: s = s0 . initial state
4: while k!= kmax do
5: T = temperature((k+ 1)/(kmax))
6: choose a random neighbour snew . neighbour(s)
7: if the acceptance probability function P satisfied then
8: s = snew . P(E(s), E(snew), T)≥ rand

9: k = k+ 1
10: return the final state s

Figure 2.9 shows the convergence process of SA. The initial temperature must be large enough
to generate the same probabilities for the transitions in different directions, i.e., moving uphill
and downhill. Detailed introduction and Matlab command can be viewed in [21, p.12-127].

12

2 State of the art

()

Iterations

Energy at initial state

Move downhill: unconditionally accepted

Move uphill: accepted within certain probability

Energy at freezing point

Figure 2.9: Convergence process of SA

2.3.5 Pattern Search

Pattern Search (PS) generates and maintains multi-dimensional search directions in a dynamic
manner [26] without requiring any information about the gradient of the objective function, which
is also known as derivative-free, direct search or black-box optimization method.

The procedure of pattern search updated from [27] is outlined in Algorithm 4, where ∆ denotes
the search step, Pk the generating matrix, pk a column of Pk, and Ω the neighbourhood of the
current solution.

Algorithm 4 Pattern Search
1: procedure PS
2: initialize ∆0 . default search step
3: initialize p0 . initial solution
4: ∆=∆0
5: while ending condition not satisfied do
6: Ω= {p0 +∆ · pk} . for each column of Pk
7: evaluate the nearest neighbours in Ω
8: if improvement exists then
9: update p to the best neighbour

10: ∆=∆
11: else
12: ∆=∆/2
13: return the final solution p

Generalized Pattern Search (GPS), Generating Set Search (GSS) and Mesh Adaptive Direct
Search (MADS) are widely used in PS [28, p.1250-1251] to control how the searching process
polls the mesh points at each iteration, which will highly affect the optimization performance.
Specific examples and implementation in Matlab are introduced in more detail in [21, p.4-19].

13

3 Methodology

In this chapter, all optimizer-related interfaces, models, and functions will be introduced, which
plays an important role in building the entire optimization system and improving its performance.
Figure 3.1 depicts the flow chart of the whole optimization process. In section 3.1, the model
assumption of vehicles in the simulator will be introduced. The following sections will explain
the interface with clusters, the structure of objective function (complexity evaluation and penalty
function), and the tuner of the optimizer.

Clustering

Simulator

(Sec. 3.1)

Interface

(Sec. 3.2)

HighD

Dataset

Initial Data

Complexity

Evaluation

(Sec. 3.3)

Penalty

Function

(Sec. 3.4)

Data Structure:

Clusters

Acceleration

Values

Optimizer
Ending

condition?
End Yes No

Objective Function

(Sec. 3.5)

Tuner

(Sec. 3.6)

Scenario

Optimization

Data Structure: Vehicles

Figure 3.1: Flow chart of the whole optimization process

3.1 Model Assumption

In this section the model assumptions used in the simulator will be introduced, i.e., the dynamic
models for ego-vehicle and surrounding traffic. In the general vehicle model, any brusque press
on the throttle or the brake pedal would correspond to a discontinuity of the acceleration input
[29]. Therefore, it is assumed that the control inputs of vehicles are piece-wise continuous
functions with finite limits at the discontinuity points, which can be denoted by D0 as the examples
in Figure 3.2. On account of the observation limitation in HighD, the input of optimizer is further
considered as a combination of piece-wise constant functions, which is a special case of D0.
Furthermore, the velocity and position of the vehicles commanded in acceleration in the simulator
will be correspondingly continuous and differentiable. Thus the acceleration values as input are
admissible for the simulator.

15

3 Methodology

T
0

T
1

T
2

T
3

T
4

T
5

-1

0

1

2

T
0

T
1

T
2

T
3

T
4

T
5

-1

0

1

2

Figure 3.2: Examples of D0 function (left: piece-wise continuous function, right: piece-wise constant
function)

3.1.1 Ego-Vehicle

The dynamics of ego-vehicle can be considered separately along the x- and y-direction, i.e.,
in longitudinal and lateral direction. The longitudinal dynamic of ego-vehicle is simulated by
Intelligent Driver Model (IDM), which is a simple time-continuous car-following model for the
simulation of highway traffic. Then a lane change model with Minimizing Overall Braking Induced
by Lane Changes (MOBIL) rules is applied, and the multi-lane traffic is correspondingly simulated
in combination with IDM.

Longitudinal Dynamic: IDM is used for the deterministic modeling of longitudinal motions,
which is based on Adaptive Cruise Control (ACC) system and suitable to describe the longitudinal
dynamics for AV approximately [30].

To reach the desired speed in a accident-free manner, the optimal acceleration or deceleration
within time-step Ts for any vehicle with general IDM is described by

a∗x ,α(sα, vα,∆vα) = ax ,max ,α[1− (
vα
v0
)δ − (

s∗(vα,∆vα)
sα

)2] (3.1)

with the desired gap s∗, the maintenance of the gap sα and approach rate ∆vα:

s∗(vα,∆vα) = s0,α + s1,α

Ç

vα
v0
+ Tg,αvα +

vα∆vα
2
p

ax ,max ,αbx ,com,α

sα = xα−1 − xα − lα
∆vα = vα−1 − vα

(3.2)

where parameters with index α− 1 show the current value of leading vehicle, α the value of
ego-vehicle. The other parameters are summarized in the Table 3.1:

Table 3.1: List of the parameters used by IDM in [2]

Parameter Symbol value

Desired Velocity v0 scenario-specific(m/s)
Time-Gap Headway Tg 1.8 s

Maximum Acceleration ax ,max 3 m/s2

Comfortable Deceleration bx ,com 8 m/s2

Acceleration Exponent δ 4

Length of car l 5 m

Linear Jam Distance s0 2 m

Non-linear Jam Distance s1 3 m

16

3 Methodology

Lateral Dynamic: In order to determine whether the lane should be changed, the MOBIL
rules proposed by Schmidt [31] are introduced. A specific lane change depends on the two
following vehicles in the current and the target lanes. As shown in Figure 3.3, the successive
vehicles in the target and current lanes are denoted by b′ and b respectively. The acceleration
ac denotes the value on the current lane for AV, whilst ãc refers to the situation in the target lane.
Likewise, ãb and ãb′ present the acceleration of the old and new followers after the lane change
of ego-vehicle.

b

b’

c

’

b

b’ c’
~

~

~

Figure 3.3: Nearest neighbours of AV considering lane change [32] (left: before lane change, right: after
lane change)

Firstly, the possibility of executing a lane change will be checked with the safety criterion in
Eq. (3.3), where ãb′ should not exceed a given safe limit |bsa f e| that is assigned with 8 m/s2

according to [2, p.30]:

|ãb′ | ≤ |bsa f e| (3.3)

Under this prerequisite, the incentive criterion [32] in Eq. (3.4) and (3.5) is introduced to check
whether a lane should be changed and whether it improves the individual local traffic situation.

Condition 1: changing lane from left to the right:

ac + p(ab + ab′)> ãc + p(ãb′ + ãb) +δth −δbias (3.4)

Condition 2: changing lane from right to the left:

ãc + p(ãb′ + ãb)> ac + p(ab + ab′) +δth +δbias (3.5)

The politeness factor p determines the degree of the influence of the lane-changing decision
and is assigned with 0.5 to balance the egoistic and the altruistic behaviour of ego-vehicle. The
keep-right directive of the lane usage rule in Europe is implemented by a constant bias δbias

and the switching threshold δth, which are assigned with 0.3 m/s2 and 0.1 m/s2 respectively
according to [32, p.10].

Moreover, for the planned lane change after MOBIL-checking, the ego-vehicle will move along
an adapted cosine trajectory according to [31, p. 41-42]. The lateral deviation O(x(t)) of the
vehicle from the road center line can be described by Eq. (3.6) for a lane change to the left (−)
or to the right (+).

O(x(t)) = O(x0)±
wcw

2
(1− cos(

x(t)− x0

ltot
)π) (3.6)

17

3 Methodology

with

ltot = vt

√

√

√
wcw ·π2

2 · ay,max
(3.7)

where x(t) indicates the abscissa where the ego-vehicle is located, x0 the starting longitudinal
location of lane change, ltot the total length of the lane change process, wcw the change width,
and ay,max the maximal lateral acceleration which can be defined as 3 m/s2 according to [2,
p.30], with the purpose of ensuring a good dynamic performance of ego-vehicle.

3.1.2 Surrounding Vehicles

The surrounding vehicle models are not so complicated and intelligent by comparison, and only
need to allow acceleration values as input and obtain the corresponding configuration. A system
dynamic model for vehicles in [33] is thus suitable. It consists of the state vector x = [x y vv ψc]
and input vector u = [ax ay], where vv indicates the velocity in natural coordinate and ψc the
course angle, which can be approximated by the orientation φ in degree. A corresponding
simplified non-linear vehicle model is described by Eq. (3.8).

ẋ

ẏ

v̇v

ψ̇c

=

vv · cos(ψc)

vv · sin(ψc)

ax
ay
vv

(3.8)

It can also be interpreted from time t − 1 to t in a discrete time-step Ts as:

vv,t

ψc,t

x t

yt

=

vv,t−1

ψc,t−1

x t−1

yt−1

+

ax ,t
ay,t
vv,t

cos(ψc,t) · vv,t

sin(ψc,t) · vv,t

· Ts (3.9)

3.1.3 Time-Step Adaption

Before getting into the details of interface with HighD, we must choose a appropriate time-step Ts

to enhance the efficiency and maximize the accuracy of the optimizer. Normally, the performance
of a search algorithm can be evaluated using the following criteria adapted from [34, p.13]. Due
to the use of optimization algorithm as described in Section 2.3, the second item optimality is not
considered here.

• Accuracy: Accuracy can be understood as the degree of fit to the original data. By
comparing original data from HighD and the results of the simulator, the accuracy
of the model is intuitively observed before optimization. Since the integral of
acceleration is velocity and integrating velocity can derive position, the accumulated
position deviation in the final frame ∆Pos f of Nveh vehicles as shown in Eq. (3.10)
can well indicate the inaccuracy of the simulator.

∆Pos f =
Nveh
∑

i=1

Ç

∆Pos2
x ,i, f +∆Pos2

y,i, f (3.10)

18

3 Methodology

• Space complexity: Space complexity describes how much memory is needed to
perform the search algorithm, which can be estimated by the number of parameters.
For a given time interval Ttot , the number of optimization parameters nov, i.e.,
the lateral and longitudinal accelerations, and the time-step Ts have the following
relationship:

nov = 2 · (Nveh − 1) ·
�

Ttot

Ts

�

(3.11)

where coefficient 2 denotes the division of longitudinal and lateral acceleration,
Nveh the total number of vehicles in the scenario and b·c the largest integer no larger
than Ttot/Ts.

• Time complexity: Time complexity can be measured with the running time of one
simulation in Matlab, which is represented by Tsim. It is not completely decoupled
from space complexity, since an increase of nov will also lead to longer calculation
time.

The original time-step is 0.04 s, since the frame rate is 25 Hz according to Table 2.1. For the
purpose of preventing additional deviations caused by interpolation, the selected observation
values are all multiples of 0.04: [0.04; 0.08; 0.12; 0.16; 0.20]. In addition, to get all results
approximately on the same scale, a min-max normalization method as Eq. (3.12) is used, where
vector value denotes the combination of aforementioned variables in all time-steps.

valuei,norm =
valuei −min(value)

max(value)−min (value)
(3.12)

Since the HighD itself has precision errors, and the scenario configuration must have deviated
from the original one during the optimization process, the weight of ∆Pos f here is smaller than
the other components. Therefore, the performance indicator of different time-steps PIts can be
regarded as the weighted summation of the aforementioned criteria after normalization:

PIts =∆pos f ,norm + 2 · Tsim,norm + 2 · nopnorm (3.13)

After collecting multiple samples from HighD and calculating the value of PIts, Figure 3.4 shows
the box and whisker plot for different time-steps. In general, a high time-step can reduce the time
and space complexity but introduce larger deviation from original data. Although the variation
in time-step 0.16 s is slightly more dramatic than others, it obtains the lowest value of PIts on
average, i.e., it has overall better search performance in qualitative judgment. As a result, the
time-step of the simulator is assigned with 0.16 s for the latter optimization.

19

3 Methodology

0.04 0.08 0.12 0.16 0.20

Time-Step (s)

1

2

3

4

5

P
I ts

Figure 3.4: Box and whisker plots for time-step and performance indicator (based on cluster
"data_12_tracks_ew" and "data_25_tracks_ew" from [10])

3.1.4 Time-Gap Adaption

The above-mentioned changes to the vehicle model will also cause corresponding altering in the
scenarios. In the Eq. (3.2), the desired gap s∗ highly depends on the value of time-gap headway
Tg . The larger the time-gap, the farther the ego-vehicle must be away from the leading vehicle.
However, in the original HighD dataset, the vehicle assumed to be AV did not drive according
to the IDM and MOBIL models but moved forward in a collision-free manner. Therefore, when
IDM is used in the simulator, it is likely that the ego-vehicle will maintain an excessive distance
from the vehicle in front, even may collide with the rear vehicles . The former will result in a high
penalty function, while the latter will affect the optimization performance, e.g., domain t g and
t2b are hard to increase.

According to [30, p.11], the realistic bounds of safe time headway, i.e., time-gap can be chosen
in the range of [1, 3]. The German law recommends the time-gap of a relatively large value of
1.8 s [35, p.244], because it is difficult for the driver to estimate it through a safe distance in
actual highway scenarios. For the purpose of better estimating the behaviour of AV in complex
scenarios, the time-gap should not be set as the same as recommanded [36]. Furthermore,
the time-gap is usually set between 1.0 and 1.8 s during the simulation, which is a commonly
observed headway gap reported in [37]. Figure 3.5 depicts that drivers leave longer time-gap at
lower speeds than at higher speeds, and the median is about 1.2 s at a speed interval of [72,
108[km/h. As a result, the time-gap used in this thesis is assigned to 1.2 s.

Figure 3.5: Box and whisker plots for speed and time-gap [37]

20

3 Methodology

It should also be emphasized that although the time-gap here and the one called t g in the
complexity evaluation refer to the same quantity, the latter is only used to describe the criticality,
which does not affect the behavior of the vehicles directly.

3.2 Interface with Clusters

After introducing the model assumptions, the next step is to establish a connection between the
simulator and the HighD dataset. The following introduces several important parts of building
interfaces with clusters generated from [10].

3.2.1 Scenario Selection

There are thousands of different scenarios in HighD, and after clustering they are divided into
different categories. Based on the clusters in [10], the information of the scenarios such as the
total number of vehicles Nveh can be obtained directly. By observing and combining 11-vehicles-
model that introduced in Section 2.2.2, a fact can be derived that the number of vehicles in the
entire scenario is less than 6 is of little significance, since vehicles are generally not too close
to each other on the highway and their restrictions on ego-vehicle are limited. For this reason,
before selecting a scenario each time, a visualization tool is needed to observe whether the
original one is representative and suitable, which is thus sometimes more subjective.

3.2.2 Coordinate Transformation

As introduced by [10], the coordinate system of clusters from HighD is similar to the one that
shown in Figure 2.2. The main difference is that the origin of the lane coordinate in the cluster is
on the upper bound of the northernmost lane and the vehicles are all driving from left to right. In
addition, the ID of the lane is reversed as described in Figure 3.6.

laneId:1

laneId:2

laneId:3

A

B

C

D

Figure 3.6: Coordinate system of clusters [10]

In the simulator, the global coordinate system of lane marking is also fixed and there exist two
types of lane system in HighD: two lanes and three lanes as shown in Figure 3.7.

It is assumed that the vehicles in the simulator can be simplified with a bounding box to simulate
its motion. Unlike the definition in clusters, the origin of vehicle’s local coordinate falls at the
center of the bounding box. Therefore, the original vehicle coordinate (x , y) in clusters should be
transformed into a new coordinate (x ′, y ′) as follows, and the values of speed and acceleration

21

3 Methodology

LaneID: 2

LaneID: 1
Bounding box

(’, ’)

(,) LaneID: 3

LaneID: 2

LaneID: 1 Bounding box

(’, ’)

(,)

Figure 3.7: Lane coordinate system in simulator (left: 2 lanes, right: 3 lanes)

remain the same.

x ′ = x +
leng th

2

y ′ = y +
wid th

2

(3.14)

3.2.3 Missing Frames Complement

Since the observation data of HighD is based on a fixed lane range, the vehicles entering later
or leaving earlier lost part of the information such as position, velocity, and etc. In order to
maintain the consistency of each vehicle and the continuity of the entire scenario, we assume
that the aforementioned vehicles keep driving at a constant speed in the lost frames, i.e., their
longitudinal and lateral accelerations are zero. In this way, the integrity of the scenarios is
guaranteed.

3.2.4 Input of the initial Data

What is important for the simulator is the initial data of each vehicle, such as the lane information,
the initial position of vehicles and etc., which is already processed by the coordinate transfor-
mation and the missing frames complement. Here we distinguish between the configuration of
ego-vehicle and surrounding vehicles in order to correspond to their respective models. The
summary of initial data is shown in Table 3.2.

After obtaining the above basic information, the initial orientation φ[◦] of all the vehicles can be
calculated by the following formula:

φ = arctan
vy

vx
(3.15)

3.2.5 Data Structure Transformation

The clusters generated from HighD and the complexity evaluation functions share the identical
data structure named "Clusters", which contains the vehicle information and differs from the
one called "Vehicles" in simulator. As shown in Figure 3.1, the form of the vehicle data from the
simulator needs to be integrated to be consistent with "Clusters" before evaluating the complexity.
Table 3.3 lists the correspondence between the two data structures, where N f denotes the
number of frames in one scenario.

22

3 Methodology

Table 3.2: Summary of initial data

Aspect Details

Lane information number of lanes

ordinate of lane markings in m

cluster name

ID

Scenario information number of vehicles (ego-vehicle included)

total time Ttot in s

initial complexity C0

initial penalty function P0

initial position in m (x ′, y ′)

Ego-vehicle initial velocity in m/s (vx , vy)

size of bounding box in m (leng th, wid th)

name and type of vehicles

initial positions in m (x ′, y ′)

Surrounding vehicles initial velocities in m/s (vx , vy)

size of bounding boxes in m (leng th, wid th)

longitudinal and lateral accelerations in m/s2

Table 3.3: Correspondence between the data structures in clusters and simulator

"Clusters" "Vehicles"

id The order of the vehicle (ego=1)

frames [1; 2; ... ; N f]

bbox [posx posy leng th wid th]

xVelocity

yVelocity ValueMatrix

xAcceleration

yAcceleration

lane lane

initialFrame 1

finalFrame N f

drivingDirection 1

class Name

ROI ROI

3.3 Complexity Evaluation

As stated by the complexity analysis method in Section 2.2, a total of 13 influence factors are
considered in the complexity evaluation as shown in Table 2.2. However, the above analysis is
based on the original HighD, and the original values for normalization in Table 2.3 are obtained
by observing most normal traffic conditions, which have relatively low complexity in general.
Consequently, before starting optimization, the complexity evaluation should be slightly modified
to adapt to more complex scenarios and be consistent with the model assumptions defined in
Section 3.1. To prevent redundant statements, we only list the difference between the optimizer
and the work of Yu [8][9] as follows:

23

3 Methodology

• Time-step in traffic prediction: The original time-step in HighD was 0.04 s.
Consequently, it was not used as a variable in [8, p.34-35] and all relevant formulas
in traffic prediction used it as fixed by default. After the time-step adaption in
Section 3.1.3, we should change it to 0.16 s in related calculations.

• Normalization value for factor variat ion: Typical indicators of the dynamical
changes are the variation of velocity and acceleration, and it was obtained from
the following formulas:

(

variat ionvx/v y = max(vx/vy)−min(vx/vy)

variat ionax/a y = max(ax/ay)−min(ax/ay)
(3.16)

The average longitudinal acceleration value of middle-class cars in the velocity
range of 0-60, 0-80, 0-100 and 0-120 km/h is 2.9 m/s2, while the average longitu-
dinal deceleration value of middle-class cars comes to 8.9 m/s2 [38, p. 466, 472].
Knowing from [2, p.30], the lateral acceleration of cars ranges from -3 to 3 m/s2.
The range of vy will become larger at the same time, but it should still be smaller
than vx in the straight road. Due to its heavy weight and the traffic regulations, the
allowable ranges of truck will be smaller than that of car. Still, for convenience, an
overestimated calculation is used here, i.e., the normalized value of the car is used
uniformly for all vehicles. Thus, the normalized value of aspects vy , ax and ay are
changed from 1.3 m/s, 1.5 m/s2, 0.5 m/s2 to 12 m/s, 12 m/s2, 6 m/s2 respectively.
Moreover, the value of vx remains unchanged, since the original value can already
normalize almost all possibilities.

Besides, the average complexity of the whole scenario is more representative than the maximum,
since the scenario is continuous and can be regarded as a whole. Thus, we use C to denote the
average complexity of one scenario.

3.4 Penalty Function

To ensure that the vehicles do not exceed certain boundary conditions (traffic rules included)
and the physical feasibility of its motion when increasing the complexity of scenarios, a penalty
function is introduced. According to the existing highway driving requirements, three aspects
of vehicles, i.e., location, velocity, and jerk will be considered during optimization process as
shown in Table 3.4. Correspondingly, Eq. (3.17) calculates the total penalty function P of the
whole scenario with N f frames.

P =
N f
∑

i=1

(
3
∑

j=1

Ploc, j,i + Pvel,i + Pacc,i) (3.17)

3.4.1 Penalty of Location

Figure 3.8 explains the vehicle configurations of allowed and penalized situations respectively
when checking the location item. Next, we will discuss them in detail from three aspects as
described in Table 3.4.

24

3 Methodology

Table 3.4: Penalty function category

Aspect Penalty Item Description

posy +wid th/2> Ymax ;
posy −wid th/2< Ymin

(1) Prevent vehicles from leaving the highway

Location Drive over the lane marking too long (> 3 s) (2) Prevent vehicles in critical situations

Ellipse value e′ < 2 (3) Prevent collisions between vehicles

Velocity vv < 0m/s
Prevent stopping on the highway and driving in
the reverse direction

Jerk jx > 20m/s3; jy > 10m/s3 Prevent physical infeasibility (jerk limitation)

(a) Check the lateral location

(b) Check the driving time over the lane marking

EgoEgo

(c) Check the collisions between ego- and surrounding vehicles

Car iCar i

(d) Check the collisions between surrounding vehicles

Figure 3.8: Different examples of checking the locations in penalty function (left: allowed situation, right:
penalized situation)

(1) Prevent vehicles from leaving the highway Since the only to be optimized variable is
the acceleration set of the vehicles, it is necessary to consider that the vehicles should not drive
off the boundary of highway, which is the first requirement that the locations need to meet. In
addition, because the orientation of the vehicles in straight highway is generally small, it may
happen that part of the vehicle exceeds the boundary in the actual situation, the main check here
is whether the y-coordinate meets the requirements as shown in Figure 3.8a. Then adapting
from [2, p.37] the penalty function Ploc,1 of leaving the highway in ith frame is calculated as
follows:

Ploc,1,i =

(

5 · i · |posy,i +wid th/2|, i f posy,i +wid th/2> Ymax

5 · i · |posy,i −wid th/2|, i f posy,i −wid th/2< Ymin

(3.18)

25

3 Methodology

(2) Prevent vehicles in critical situations After observing several optimization results, it was
found that the vehicles may ignore the lane markings and drive over the lane for a long time
as shown on the right of Figure 3.8b. Normally, on the highway, vehicles drive over the lane
marking for a while only when they change lanes. With the purpose of simplifying the calculation
process, it is approximately assumed that the lateral distance of the vehicle passing the lane
marking when changing lanes is equal to its width. According to the data in [39] and HighD,
the average width of a mid-size vehicle is about 6 to 6.5 feet (1.83-1.98 m) long. Therefore, as
claimed by the process of changing lanes in Figure 3.9, the time for the vehicle itself (about 2 m)
to cross the lane marking is about 3 s. The corresponding maximal number of frames can be
derived by Eq. (3.19).

Completion time

Lane change

duration

335

0

3.6

7.2

340 345 350

Time (sec)

L
a

te
ra

l
p

o
s
it
io

n
 (

m
)

355 360

Figure 3.9: Definition of lane-change initiation and completion time points modified from [40]

f rameslane,max =
�

3 s
Ts

�

=
�

3 s
0.16 s

�

= 18 (3.19)

Considering the whole scenario, the corresponding penalty function Ploc,2 can be measured by
Eq. (3.20), where f rameslane denotes the number of frames that the vehicle drives over the lane
marking.

Ploc,2 = f rameslane,max · f rameslane, i f f rameslane > f rameslane,max (3.20)

(3) Prevent collisions between vehicles The collision prevention check between vehicles is
carried out using an ellipse equation with ellipse value e as shown in Figure 3.10. In order to
ensure a proper safety distance and maintain the rough side clearance, value a, b of ellipse are
defined by Eq. (3.22) and e is assigned with 2. Adapting from [2, p.38], when the surrounding

26

3 Methodology

vehicles are within the ellipse of the vehicle to be observed as shown on the right of Figure 3.8d,
such behaviour will be penalized. The ellipse equation is:

(xoth − xobs)2

a2
+
(yoth − yobs)2

b2
= e (3.21)

with
(

a = 1
2 · (leng thobs + leng thsur)

b = 1
2 · (wid thobs +wid thsur)

(3.22)

where variable with the subscript obs denotes the observed vehicle and with oth the other
vehicles, which is also equivalent to:

(xoth − xobs)2

a′2
+
(yoth − yobs)2

b′2
= 1 (3.23)

with a′ =
p

e · a and b′ =
p

e · b.

’

Figure 3.10: Definition of ellipse with e = 2 (left: value a, b, right: value a′, b′)

It should be emphasized here, the situation of ego-vehicle will be detected separately from
surrounding vehicles. For ego-vehicle as shown in Figure 3.8c, the surrounding vehicles are only
not allowed to approach from the rear because the collision with leading vehicles can be avoided
by the IDM. In order to prevent double calculations and improve efficiency, surrounding vehicles
only check each other once to meet the above requirements for collision prevention. To this, the
penalty function of preventing collisions between vehicles in ith frame is derived as follows:

Pvel,3,i = Ael l · eBel l ·e′ , i f e′ =
(xoth,i − xobs,i)2

a2
+
(yoth,i − yobs,i)2

b2
< e = 2 (3.24)

where coefficients Ael l and Bel l are assigned with 24000 and -10.08 according to the definition in
[2].

3.4.2 Penalty of Velocity

In the previous definition of Mayr [2, p.37], the lower limit of the speed was 5 m/s, which was to
take into account the congested road conditions without dropping to a low velocity. However, it
has been found in practice that low-speed driving may also produce high complexity and we can
set it to a lower value. Therefore, the speed limit here is changed to 0 m/s, which means that
the vehicle can not stop on the road or drive in the reverse direction. If the velocity in ith frame

27

3 Methodology

does not meet the requirements, it can be penalized by Eq. (3.25).

Pvel,i = 50 · i · (vv,i)
2, i f vv < 0 m/s (3.25)

3.4.3 Penalty of Jerk

To ensure the physical feasibility, the upper and lower limits of the acceleration of surrounding
traffic are considered as the search boundary. In addition, the experience is that, the driving is
more uncomfortable due to jerk than acceleration and the drastic change of vehicle acceleration
within a limited time is also not physically possible.

According to the description in [41, p.56], the moving average over half a second of the lateral
jerk shall not exceed 5 m/s3, which is a conservative value for normal situations. Known from
[42], vehicles can now initiate emergency braking with a jerk of up to 20 m/s3. For the purpose
of meeting the requirements of complex scenarios and prevent the conservatism, a high limited
value 20 m/s3 is allowed to the longitudinal jerk for the optimization.

-10 -5 0 5 10 15

Lateral jerk

0.0001

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

0.999

0.9999

P
ro

b
a
b

il
it

y

Figure 3.11: Distribution of lateral jerk in HighD (based on cluster "data_25_tracks_ew" from [10])

However, the current road is straight, thus the lateral acceleration will not change greatly in a
limited time theoretically. And from the distribution in Figure 3.11 generated from HighD, it can
be seen that lateral jerk is concentrated between -5 and 5 m/s3. As a result, the lateral jerk
limitation is assigned to 10 m/s3 in the optimizer. Next, the corresponding penalty function can
be calculated by Eq. (3.26), when the longitudinal and lateral jerk jx , jy in ith frame exceed the
limit value.

Pacc,i =

(

20, i f jx ,i > 20 m/s3

10, i f jy,i > 10 m/s3
(3.26)

3.5 Objective Function

Given the state x (t) subject to the model introduced in Section 3.1, the initial configuration from
HighD in time t0 and the input a(·), i.e. accelerations of the surrounding vehicles, the objective
function of the optimizer can be calculated in each iteration of optimization process, which is

28

3 Methodology

denoted by J(x(t), u(t), t0). It has the following relationship with the previous defined complexity
evaluation in Section 3.3 and penalty function in Section 3.4 according to Algorithm 5:

J = P − C (3.27)

Algorithm 5 Calculation of objective function
procedure

Import initial data from HighD . through interface
Import acceleration values for all frames a0 . as input
Run the simulator and get data structure "Vehicles"
Interface with complexity evaluation and calculate the average complexity C
Calculate the penalty function P
Get the objective function J
return J

As a result, the purpose of the optimization algorithm is to find the optimal acceleration input
a∗(·) as shown in Eq. (3.28) to minimize the value of the objective function, which means that
the penalty function is made as small as possible to maximize the average complexity in the
whole scenario. The dimension of a is equal to the number of variables nov in Eq. (3.11).

a∗(·) = argmin
a(·)

J(x (t), a(t), t0) = argmin
a(·)

P − argmax
a(·)

C (3.28)

3.6 Tuner for Optimizer

After all the above preparations are completed, here launch into the generation of high complex
scenario through optimization methods. As depicted in Figure 3.1, there exist many factors to be
considered in the optimization process to enhance its performance, and it is beneficial to divide
the optimizer into different parts at the beginning. Therefore, Figure 3.12 illustrates the metrics
of tuning optimizer in a graphical form. It shows that the tuner of our optimizer depends on the
problem setting (scenarios), the optimization algorithm, the way of configuring and analyzing the
tuner, and the feedback from post-verification. In the next subsections, the evaluation methods of
optimization result will be determined firstly and then the details of the tuner will be discussed in
order to enhance the optimization performance. It is worth noting that configuring and analyzing
the tuner is integrated in the other three parts, which are not discussed separately.

Tuner for configuring and analyzing

Optimization Algorithm

Method

Option

Parameter

Variation

Problem Setting

(Scenarios with

pre-processing)

Post-verification

Figure 3.12: Tuner for optimizer

29

3 Methodology

3.6.1 Definition of Evaluation Methods

Before going deeper to the tuner, the evaluation methods of final result should be defined. [43]
provides two atomic performance measures for EA: one regarding solution quality and one
regarding optimization speed, which is similar to the metrics called accuracy and complexity
described in Section 3.1.3. Therefore, solution quality can be represented by the final value of
objective function at certain time node or the optimization speed. Moreover, the performance
metrics that are usually used in EA are the best fitness and the mean fitness. But using the
mean fitness is not meaningful in our problem, whereas EA can lead to a large variance in the
search period. Thus the best fitness is preferable here. As a result, in this thesis the following
performance evaluation methods are mainly used:

• At maximal run-time or generation algorithm performance is defined as the final
best fitness, which can be denoted by the increment of average complexity ∆C in
% as shown in Eq. (3.29), since our main concern in the objective function is the
change of complexity.

∆C =
C f − C0

C0
· 100% (3.29)

where C0 means the initial average complexity and C f the final average complexity.

• Algorithm performance is measured by the trend and speed of optimization pro-
cess, i.e., the change of objective function, within a given number of run-time or
generations, when there is little difference between the final best fitness.

3.6.2 Problem Setting with Pre-processing

By reason of the IDM and MOBIL model introduced in Section 3.1, the ego-vehicle will maintain
a greater distance from the leading vehicle than the original one in HighD or change lanes
accidentally, although the time-gap is already adapted in Section 3.1.4. This may cause
surrounding vehicles to collide with or drive too close to ego-vehicle, such as the situation
in Figure 3.14, which is undesirable and manageable before optimization. Therefore, for the
purpose of improving the efficiency of optimization and preventing excessive attention on
reducing the penalty function at the beginning, pre-processing is used here to avoid collision
caused by surrounding vehicles. According to Eq. (3.30) the initial positions x f ol low/behind,0 of
the vehicles behind ego-vehicle should be reduced if the safety condition is satisfied, where Cs

denotes the safety coefficient that is assigned to 10 m to keep a safety distance between the
centers of vehicles initially. Notably, the collision caused by the lane change of ego-vehicle is not
pre-processed here, since it can be solved by the initialization of the solution space later.

∆x f ol low/behind,i,0 = x f ol low/behind,i,0 − (Cs −min(xego − x f ol low/behind)),

i f min(xego − x f ol low/behind)< Cs
(3.30)

As introduced in Section 3.2, the initial configuration of vehicles can be obtained from the clusters.
We first chose clusters with three lanes that obviously have more vehicles, and sort them by their
complexity. Next, visualization tools are used to view the representativeness of the scenario and
subjectively select its time interval. For instance, we should cover the situations that ego-vehicle
drives in different lanes, as well as with a high-speed or medium-low speed. And the vehicle
type should include both car and truck. In the end, three typical scenarios are sorted out in total
with different complexities. Scenario 1 and 2 are mainly used to explore the best optimization

30

3 Methodology

parameters in EA, while Scenario 3 has a high complexity originally and is suitable for detecting
the performance of the optimizer. The vehicle information of all scenarios are listed in Appendix
A.1.

Scenario 1 After coordination transformation and missing frames complement, Scenario 1
was intercepted for 10 seconds and the initial configuration is depicted in Figure 3.13. Table 3.5 -
3.6 briefly introduce the initial information corresponding to the description in Table 3.2.

Figure 3.13: Initial configuration of scenario 1

Table 3.5: Lane information of Scenario 1 and 2

Item Details

Number of lanes 3

Ordinate of lane markings in m [0; 3.74; 7.38; 11.29]

Table 3.6: Scenario information of Scenario 1

Item Details

Cluster name data_25_tracks_ew

ID cluster_veh13_nr02

Number of vehicles 13

Total time in s 10 (original: 29.72)

Initial complexity 0.4111

Initial penalty function 4020.2

In this scenario, the vehicles behind will not collide with ego-vehicle originally. However, after
using the new model and adapting the time-gap, the ego-vehicle will change lane by MOBIL rules,
although there is still a vehicle called "Truck 3" in lane 1, resulting in a penalty function greater
than 0. But this situation can actually be avoided, e.g., by pre-accelerating and pre-decelerating
the vehicles in the initial solution space, thus the pre-processing is not required here.

31

3 Methodology

In addition, the number of variables nov1 to be optimized can be directly calculated using Eq.
(3.31):

nov1 = 2 · (Nveh,1 − 1) ·
�Ttot,1

Ts

�

= 2 · 12 ·
�

10
0.16

�

= 1512
(3.31)

Scenario 2 With the same lane situation defined in Table 3.5, the ego-vehicle of Scenario 2 is
driving on the third lane and surrounded by 7 vehicles. Due to the IDM model of ego-vehicle,
Figure 3.14 shows that the vehicle named "Car6" will get too close to the ego-vehicle, since
min(xego − x f ol low) is equal to 4.87 m, which is less than Cs. For this reason, the initial position
of "Car6" will reduce Cs − min(xego − x f ol low) = 5.23 m correspondingly. The pre-processed
configuration of scenario 2 is depicted in Figure 3.15. Table 3.7 show the remaining initial
information.

Figure 3.14: One fragment of original Scenario 2 with potential collision

Figure 3.15: Initial configuration of Scenario 2 after pre-processing

Table 3.7: Scenario information of Scenario 2

Item Details

Cluster name data_25_tracks_ew

ID cluster_veh08_nr105

Number of vehicles 8

Total time in s 16 (original: 27.68)

Initial complexity 0.3070

Initial penalty function 0

Similar to Scenario 1, Eq. (3.32) calculates the number of variables nov2 to be optimized in
Scenario 2.

nov2 = 2 · (Nveh,2 − 1) ·
�Ttot,2

Ts

�

= 2 · 7 ·
�

16
0.16

�

= 1400
(3.32)

32

3 Methodology

Scenario 3 For the purpose of detecting whether the optimizer after parameter variation has
the ability to handle scenarios with high complexity, scenario 3 is excerpted from HighD and
depicted in Figure 3.16.

Figure 3.16: Initial configuration of Scenario 3

Checking the penalty function, no collision is found initially, thus the pre-processing is not
required here. The corresponding information of Scenario 3 is shown in Table 3.8-3.9.

Table 3.8: Lane information of Scenario 3

Item Details

Number of lanes 3

Ordinate of lane markings in m [0; 3.89; 7.69; 11.66]

Table 3.9: Scenario information of Scenario 3

Item Details

Cluster name data_12_tracks_ew

ID cluster_veh21_nr02

Number of vehicles 21

Total time in s 8 (original: 17.2)

Initial complexity 0.5311

Initial penalty function 20

The number of variables nov3 to be optimized in this scenario is derived as follows:

nov3 = 2 · (numveh,3 − 1) ·
�Ttot,3

Ts

�

= 2 · 20 ·
�

8
0.16

�

= 2000
(3.33)

3.6.3 Optimization Algorithm

Since the optimization algorithm can only find the quasi-optimal solution according to a certain
rule, it requires tedious setting and adjusting of the hyper-parameters. According to the algorithm
design in [43], the performance of optimization process is mainly determined by design details,
i.e. parameter values. This subsection will introduce the general settings of the optimizer, the
choice of optimization algorithm and corresponding parameter variation.

33

3 Methodology

General Settings The input variables of the optimizer are the longitudinal and lateral accel-
erations of the surrounding vehicles, whose size is determined by nov from Eq. (3.11). Each
vehicle has two acceleration values per time-step and the corresponding order is:

a =

ax ,1,t0
; ay,1,t0

; · · · ; ax ,(Nveh−1),t0
; ay,(Nveh−1),t0

; · · · · · · ; ax ,1,Ttot
; ay,1,Ttot

;

· · · ; ax ,(Nveh−1),Ttot
; ay,(Nveh−1),Ttot

 (3.34)

Furthermore, realistic upper and lower limits of the longitudinal and lateral accelerations should
be specified before optimizing. According to the documentation in [2, p.39], the acceleration
limits of different vehicle types in HighD are declared in Table 3.10.

Table 3.10: Limits of longitudinal and lateral acceleration adapted from [2]

Type Item Lower Limit in m/s2 Upper Limit in m/s2

Track longitudinal acceleration -7.0 1.0

lateral acceleration -1.0 1.0

Car longitudinal acceleration -9.0 3.0

lateral acceleration -3.0 3.0

Method Options In Section 2.3 the definition and process of widely used optimization algo-
rithms are introduced. Mayr [2, p.40-44] describes a efficiency test of optimization algorithms for
exploring maximal complexity, which starts with identical value and scenario. The efficiency η
is measured by the ratio of the reduction of the objective function ∆J to the optimization time
Topt with the same maximum calculation time 1500 s, which can be described by Eq. (3.35).
The results in Figure 3.17 shows the ∆J in three situations, which suggests that PSO and GA
possesses higher efficiency and better performance than PS and SA.

η=
∆J
Topt

· 100%=
1− Jend/Jstar t

Topt
· 100% (3.35)

Figure 3.17: The comparison of different starting scenarios and starting values [2]

In addition, PSO has been shown to work better when its empirical parameters are properly
selected with higher exploration opportunity, while SA and PS works worse, which can not
guarantee an optimal solution within the same iterations [44]. GA offers similar structures as

34

3 Methodology

PSO under the same framework of EA, and it can better deal with problems with constraints.
Hence, the optimization methods are mainly focused on PSO and GA in this work.

Parameter Variation It is important to note that the value of parameters in EAs is not specified
in general. Depending on particular design choices one might obtain different values [43]. As
mentioned in Section 2.3, finding a good set of parameter values is also a complex optimization
task with a nonlinear objective function, interacting variables, noise, and a lack of analytic solvers.
Traditional in the area of optimization calculation distinguishes two approaches for the selection
of parameter values: parameter tuning(offline) and parameter control(online) [45]. Therefore, in
order to reduce the computational complexity, we chose to adjust parameters at the design layer
instead of during problem solving. The main objective here is to analyze and investigate the
different performance of EA with parameter variation to provide better parameter combination for
effective optimization.

• GA: The general framework of GA is shown in Figure 2.6. Each arrow in the figure
and the aforementioned rules in Section 2.3 will affect the performance of GA.
Nevertheless, the optimal choices of these rules vary from different optimization
problems, and it is impossible to know their corresponding relationship before
optimization. Therefore, the mainly investigated parameters are the (1) population
size, (2) number of generations, (3) crossover fraction, (4) elite ratio, (5) crossover
type, (6) mutation option, (7) selection type, and (8) initial population matrix.

In each set, one of the aforementioned parameters is varied according to the
options in Table 3.11, while the remained are maintaining constant. Using variable-
controlling approach, the undetected values will be selected from Table 3.12
through "rule of thumb" rules.

Table 3.11: Summary of values for investigated parameters in GA

Parameter Values

Population size(NGA) 50, 100, 150, 200, 250, 300

Number of generations (Tg,GA) 50, 100, 300, 500, 1000

Crossover Fraction (C f) 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%

Elite Ratio (Er) 2%, 10%, 18%, 26%, 34%, 42%, 50%

Crossover Type (Ct) scattered, single point, two-point, intermediate, heuristic

Mutation Option (scale, shrink) scale: 1, 5, 10, 20, 50; shrink: 1

Selection Type (St) stochastic uniform, remainder, roulette, tournament

Initial Population Matrix (A0)
(1) Initialize only one row with original data from HighD, the rest
take random values within the upper and lower bounds

(2) Initialize only half of the rows same as the original data from
HighD, the rest take random values within the upper and lower
bounds

(3) Initialize all rows same as the original data from HighD

(4) Initialize all rows using the original data plus a random deviation
within a predefined range

(5) Initialize all rows with a new set of acceleration values using
pre-acceleration and deceleration approach in the longitudinal
direction, which is generated from the original data and based
on the relative position of surrounding vehicles to the ROI of ego-
vehicle

35

3 Methodology

Table 3.12: The default values of the uninvestigated parameters in GA

Parameter Value

Population size (NGA) 100

Number of generations (Tg,GA) 100

*Max Time (Tt,GA/s) 7200

Crossover Fraction (C f) 80%

Elite Ratio (Er) 10%

Crossover Type (Ct) Scattered

Mutation Option (scale, shrink) 20, 1

Selection Type (St) Stochastic uniform

Initial Population Matrix (A0) Option (5)

Notably is that the max time Tt,GA is only used as the termination condition for
population size variation, since the larger the population size under the same
generation, the longer the search time, which will affect the parallelism of the
comparison.

In addition, the option (5) of generating initial population matrix (A0) utilize a pre-
acceleration and deceleration method in longitudinal direction according to the
relative position of surrounding vehicles to the ego-vehicle’s ROI in original data.
Figure 3.18 depicts the corresponding partition of highway based on ROI, which
differs from the way of label assignment in Figure 2.5. In sections - and --, the
vehicles in front of ego-vehicle decelerate in the longitudinal direction, whilst the
vehicles in the rear accelerate in sections + and ++, so that the initial acceleration
vector a0 allows the surrounding vehicles to stay in the ROI as long as possible, and
the behaviour of ego-vehicle is also more constricted. In order to reduce collisions
caused by acceleration and deceleration, the variations of ax in the sections within
the ROI (+ and -) are half of the outside the ROI (++ and --). Moreover, it can
be also derived from the empirical Cumulative Distribution Function (CDF) of ax

in Figure 3.19, that in most cases the vehicles are accelerating, so the value of
pre-deceleration is greater than that of pre-acceleration.

Figure 3.18: ROI-based partition of highway

-3 -2 -1 0 1 2 3

Longitudinal Acceleration

0

0.2

0.4

0.6

0.8

1

F
(a

x
)

Figure 3.19: Empirical CDF of ax in HighD (based on cluster "data_25_tracks_ew" from [10])

36

3 Methodology

After adjusting and testing the range of the values adopted in this thesis are as
follows:

Section--: [-0.4, 0]; Section-: [-0.2, 0]

Section++: [0, 0.06]; Section+: [0, 0.03]

The specific values within the range is determined according to the population size
with the requirement to fill the entire matrix A0 as much as possible with a uniform
distribution. For instance, when the population size is 100, section-- takes 10
values equidistant from -0.4 to 0, section ++ selects 10 equidistant values from 0 to
0.06, and so on. It should be noted that, in fact, the aforementioned range and the
way to choose the specific values are not crucial for the optimization performance,
since the GA itself has mutation option, and PSO is also based on global search
with exploration.

• PSO: Similar to GA, the framework in Figure 2.8 shows the significant steps of
PSO. From this, combining the iteration scheme in Figure 2.7 and reusing parts of
the settings in GA, the following parameter variations are investigated: (1) swarm
size, (2) number of iterations, (3) inertia range, (4) self adjustment weight, (5)
social adjustment weight, (6) initial swarm span, and (7) initial swarm matrix. The
initial swarm matrix here is equivalent to the initial population matrix above, which
are used to initialize the search space at the beginning and denoted by A0.

With the same principle as used in GA, the values of investigated and uninvesti-
gated parameters are shown in Table 3.13 and 3.14 respectively.

Table 3.13: Summary of values for investigated parameters in PSO

Parameter Values

Swarm size (NPSO) 50, 100, 150, 200, 250, 300

Number of Iterations (Tg,PSO) 50, 100, 300, 500, 1000

Inertia Range (w0) [0.01 1], [0.01 2], [0.01 5], [0.01 10], [0.01 50]

Self Adjustment Weight (c1) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Social Adjustment Weight (c2) 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

Initial Swarm Span (Iniss) 500, 1000, 1500, 2000, 2500, 3000

Initial Swarm Matrix (A0)
(1) Initialize only one row with original data from HighD, the rest
take random values within the upper and lower bounds

(2) Initialize only half of the rows same as the original data from
HighD, the rest take random values within the upper and lower
bounds

(3) Initialize all rows same as the original data from HighD

(4) Initialize all rows using the original data plus a random deviation
within a predefined range

(5) Initialize all rows with a new set of acceleration values using
pre-acceleration and deceleration approach in the longitudinal
direction, which is generated from the original data and based
on the relative position of surrounding vehicles to the ROI of ego-
vehicle

The max time Tt,PSO is also only used as the termination condition for swarm size
variation. Notably, the inertia range is considered more in smaller range, because
larger one leads to the new velocity being more in the same direction as the old,
and to stabilize the swarm too early. Furthermore, when c2 = 0, there is no shared

37

3 Methodology

Table 3.14: The default values of the uninvestigated parameters in PSO

Parameter Value

Swarm size (NPSO) 100

Number of Iterations (Tg,PSO) 100

*Max Time (Tt,PSO/s) 7200

Inertia Range (w0) [0.1 2]

Self Adjustment Weight (c1) 2

Social Adjustment Weight (c2) 2

Initial Swarm Span (Iniss) 2000

Initial Swarm Matrix (Inim) Option (5)

information between particles, which is cognition-only, the probability to get the
optima is very small because of the loss of interaction between individuals. Similarly,
when c1 is equal to 0, the particle has no cognitive ability, and the algorithm only
has the ability to get to the new searching area by particles’ cooperation with each
other [46]. Thus they all start with a non-zero value here.

3.6.4 Post-Verification

After the procedures above are finished, we need to analyze and verify the optimization results
qualitatively and quantitatively, to judge whether the given requirements are satisfied and observe
which algorithm has better optimization performance.

There exist two qualitative critical issues in search strategies when using EA: exploiting the
best solution and exploring the search space [47, p.158]. Exploration means that the search in
the solution space is more abundantly. The algorithm will try its best to “forget” its ancestors
through exploration, in particular, the influence of the good ancestors at local optima should be
reduced, which leads to a development in another direction to find different solutions. In contrast,
exploitation develops in a particular direction using the good ancestors, which converges the
algorithm faster, but will probably let the searching area fall into the local minimum. Therefore,
one way to compare optimization performance is to see if the exploration and exploitation are
well balanced through the hyper-parameters used in EA.

On the other hand, we can also quantitatively analyze the results of optimization. The 13
influence factors in complexity evaluation listed in Table 2.2 can be classified according to their
intuitive degree. For instance, nb_t ype and nb_num respectively represent the type and number
of surrounding vehicles, which can be directly observed from the configuration, while the value
of devi_eu is challenging to judge from the scenarios directly since it presents the behaviour of
surrounding vehicles abstractly. In this way, these factors are divided into three categories as
shown in Table 3.15 and can be investigated to check the optimization quality respectively.

Table 3.15: The categories of influence factors in complexity evaluation

Category Item

Intuitive nb_t ype, nb_num, variat ion, d ynamic, rat io

Medium t g, t2b, connect ion

Complicated noa_nb, noa_ego, pa_ego, pa_nb, devi_eu

38

4 Results and discussion

The following sections will present and analyze the results of the tuner for the optimizer. Section
4.1 will inspect the optimization results using GA. Firstly the final hyper-parameters based on the
results of parameter variation will be selected, and then they will be used to optimize the three
example scenarios. In the same way, the results of PSO will be listed in Section 4.2. Finally, in
Section 4.3, the above results using EA will be discussed and compared though post-verification
from quantitative and qualitative aspects.

To achieve the above sets of problems, the simulator and solver for optimization were coded in
Matlab 2019b with the global optimization toolbox. The optimization processes were run on a
computer with a 3.6-GHz Intel Xeon processor and a memory of 64 GB with four cores.

4.1 Results using Genetic Algorithm

In this section, the results using GA will be listed in detail, i.e., parameter variation and scenario
tests with the derived optimal parameters. Owing to lack of time, only two scenarios (Scenario 1
and 2) are used for the investigation of parameter variation, and we finally test three scenarios
that are depicted in Section 3.6.3.

4.1.1 Parameter Variation

According to the description in Section 3.6.3, the parameter variation of GA is investigated with
the setting in Table 3.11. The remaining parameters during the investigation are maintaining
constant according to the default values in Table 3.12. As mentioned in Section 3.6.1, the
complexity increment ∆C in % in Eq. (3.29) and the trend of the optimization process (change of
objective function) are mainly used as performance evaluation methods here. The results are
shown in Figure 4.1.

• Population Size Variation: To measure the impact of population size, the com-
plexity increments (%) of different values are compared in Figure 4.1a. The termi-
nation condition is that the optimization time reaches 7200 s. It can be observed
that there is no significant change between different population sizes. Besides, a
“small” population size could guide the algorithm to poor solutions, while a “large”
population size could make the algorithm expend more computation time in finding
a solution [48]. Under this prerequisite, the result suggests to set NGA to be located
in interval [100, 200]. Besides, in order to enhance the computational efficiency,
i.e, more iterations in a certain time, the population size NGA is finally set to 100 in
the optimizer.

39

4 Results and discussion

50 100 150 200 250 300

Population Size

0

20

40

60

80

100
C

o
m

p
le

x
it

y
 I
n

c
re

m
e
n

t(
%

)

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

It
e
ra

ti
o

n

Scenario 1: complexity

Scenario 1: iteration

Scenario 2: complexity

Scenario 2: iteration

(a) Comparison of population size variation

0 200 400 600 800 1000

Number of Generation

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t(
%

)

Scenario 1

Scenario 2

(b) Comparison of generation variation

10 20 30 40 50 60 70 80 90

Crossover Fraction in %

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(c) Comparison of crossover fraction variation

20 40 60 80 100

Generation

-0.52

-0.5

-0.48

-0.46

-0.44

-0.42

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

10%

20%

30%

40%

50%

60%

70%

80%

90%

(d) Comparison of optimization process of
crossover fraction variation (Scenario 1)

2% 10% 18% 26% 34% 42% 50%

Elite Ratio in %

0

20

40

60

80

100

C
o

m
p

le
x

it
y

 I
n

c
re

m
e

n
t

in
 % Scenario 1

Scenario 2

(e) Comparison of elite ratio variation

20 40 60 80 100

Generation

-0.55

-0.5

-0.45

-0.4

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

scattered

singlepoint

twopoint

intermediate

heuristic

(f) Comparison of crossover type variation

0 10 20 30 40 50

Scale in mutation

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(g) Comparison of mutation option variation

20 40 60 80 100

Generation

-0.56

-0.54

-0.52

-0.5

-0.48

-0.46

-0.44

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

stochunif

remainder

roulette

tournament

(h) Comparison of selection type variation

40

4 Results and discussion

10
-3

10
-2

10
-1

10
0

Range of deviation

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %
Scenario 1

Scenario 2

(i) Comparison of the range of deviation in the op-
tion (4) of initialization

20 40 60 80 100

Generation

-1

-0.5

0

2000

4000

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n option (1)

option (2)

option (3)

option (4)

option (5)

(j) Comparison of initialization method variation
(Scenario 1)

Figure 4.1: Results of parameter variation using GA under the setting in Table 3.11 and Table 3.12

• Generation Variation: The results that are shown in Figure 4.1b indicate that
when the generation is less than 500, increasing its number can significantly
improve the optimization results. Although the curve of Scenario 1 shows a slight
improvement when using the generation of 1000, its time complexity is considerable
in turn, which is also undesirable. Therefore, the number of generation Tg,GA is
assigned with 500.

• Crossover Fraction Variation: Combining the results that in Figure 4.1c and
4.1d, it can be clearly found that when crossover fraction is less than 60%, the
optimization process converges more quickly with a bigger value, which shows a
bad performance. The change between 60% and 80% is not particularly noticeable.
Additionally, observing the curves in Figure 4.1d of Scenario 1, crossover fraction
C f can be set to 80%, which shows a better optimization trend.

• Elite Ratio Variation: As depicted in Figure 4.1e, when the proportion of elite is
larger, the final complexity increment is generally smaller, especially in Scenario 2.
Therefore, here 2% is taken as the final assignment of elite ratio Er .

• Crossover Type Variation: With the trend of the optimization curves under differ-
ent crossover types in Figure 4.1f, it can be seen that the decline rate of the curve
"scattered" is faster than others, especially after 50 generations, thus "scattered" is
chosen as the final crossover type.

• Mutation Option Variation: The results in Figure 4.1g show that the curves
of scale variation in the mutation rules that is described in Table 2.6. For both
scenarios they have a local optimal solution at 10. Consequently, here scale is
finally taken as 10.

• Selection Type Variation: Although the shape of the optimization curves in Figure
4.1h are slightly different for each selection type, there is almost no difference
in the final fitness of objective function. For this reason, we choose the default
selection function directly in Matlab GA toolbox, that it, stochastic uniform.

• Initialization Method Variation: The most crucial step in the functioning of GA
is the generation of an initial population, as shown in Algorithm 1. It has been
recognized that if the initial population is appropriate, then the optimizer has a
better possibility of finding a good solution [49].

41

4 Results and discussion

The assumption is that the initial population can be seeded with the original solution
from HighD (option (1), (2), (3)) or adjusted solutions in a pseudo-random way
(option (4), (5)), as shown in Table 3.11 and Figure 4.1j. Regarding option (4), the
randomness is varied by the symmetrical range of deviation. The corresponding
results are shown in Figure 4.1i and recommend the optimal range of 1 (±0.5),
which obtains a higher complexity with zero penalty function after optimization,
especially in Scenario 1.

Moreover, comparing the five different initialization methods in Figure 4.1j, the best
way to generate the initial population is option (5), i.e., initializing the rows with a
new set of acceleration values using pre-acceleration and deceleration method
in the longitudinal direction based on the original data. It can reduce the value of
penalty function to zero and increase the complexity before optimization starts,
especially when a collision is caused by MOBIL rules in Scenario 1. Then the
efficiency of optimization will be improved and the search process can find better
solutions easier.

As a result, Table 4.1 summarized the optimal hyper-parameters in the optimizer using GA.

Table 4.1: The optimal parameters of GA

Parameter Value

Population size (NGA) 100

Number of generations (Tg,GA) 500

Crossover Fraction (C f) 80%

Elite Ratio (Er) 2%

Crossover Type (Ct) Scattered

Mutation Option (scale, shrink) 10, 1

Selection Type (St) Stochastic uniform

Initial Population Matrix (A0) Option (5)

4.1.2 Scenario Test

After obtaining the optimal parameters of GA, we can use them to test three defined scenarios.
Table 4.2 shows the final optimization results of complexity evaluation, penalty function, and the
corresponding running time.

Table 4.2: The optimization results of three scenarios using GA

Scenario 1 Scenario 2 Scenario 3

Initial Complexity 0.4111 0.3070 0.5311

Final Complexity 0.5570 0.3871 0.6834

Initial Penalty Function 4020.2 0 20.0

Details Collision between vehicles - Beyond jerk limitation

Final Penalty Function 0.00007 0.00007 0.0017

Details Collision between vehicles Collision between vehicles Collision between vehicles

Running Time in s 30061.71 28599.65 33018.71

42

4 Results and discussion

Next, the distribution of complexity in the whole scenario, i.e., complexity of each frame, is
depicted in Figure 4.2. A dotted line indicates the average complexity. It can be seen that through
GA, basically the complexity of each frame has been improved. And the three scenarios have
increased by 35.50%, 26.1% and 28.6% respectively.

20 40 60

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Scenario 1 : original

Scenario 1 : optimized

(a) Scenario 1

20 40 60 80 100

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Scenario 2 : original

Scenario 2 : optimized

(b) Scenario 2

10 20 30 40 50

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Scenario 3 : original

Scenario 3 : optimized

(c) Scenario 3

Figure 4.2: Complexity comparison of three scenarios

In another way, the complexity evaluation of the optimized scenarios can be conducted with
the help of a Kiviat-diagram, as shown in Figure 4.3, where each axis represents one of the 13
influence factors with its normalized complexity value.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

0.00
0.20
0.40
0.60
0.80
1.00

nb_type
nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

tg

ratio

t2b

noa_ego

noa_nb
nb_type

nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

tg

ratio

t2b

noa_ego

noa_nb

original optimized using GA

0.00
0.20
0.40
0.60
0.80
1.00

nb_type
nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

tg

ratio

t2b

noa_ego

noa_nb

0.00
0.25
0.50
0.75
1.00
1.25

Figure 4.3: Kiviat-diagram to visualize the complexity of three scenarios

4.2 Results using Particle Swarm Optimization

Similar to Section 4.1, the results of parameter variation and scenario tests using PSO are listed
in this section.

4.2.1 Parameter Variation

According to Table 3.13, seven hyper-parameters are investigated in PSO in total. As depicted
in Figure 4.4, the choice of the final parameters can be derived from the results of parameter
variation.

• Swarm Size Variation: From the results in Figure 4.4a, the complexity increment
by PSO does not change much with the swarm size variation, especially for

43

4 Results and discussion

50 100 150 200 250 300

Swarm Size

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

It
e
ra

ti
o

n

Scenario 1: complexity

Scenario 1: iteration

Scenario 2: complexity

Scenario 2: iteration

(a) Comparison of swarm size variation

0 200 400 600 800 1000

Number of Generation

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(b) Comparison of iteration variation

20 40 60 80 100

Generation

-0.38

-0.36

-0.34

-0.32

-0.3

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

[0.01 1]

[0.01 2]

[0.01 5]

[0.01 10]

[0.01 50]

(c) Comparison of inertia range variation (Scenario
1)

0.5 1 1.5 2 2.5 3

c
1

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(d) Comparison of self adjustment weight variation

0.5 1 1.5 2 2.5 3

c
2

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(e) Comparison of social adjustment weight varia-
tion

500 1000 1500 2000 2500 3000

Initial Swarm Span

0

20

40

60

80

100

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
in

 %

Scenario 1

Scenario 2

(f) Comparison of initial swarm span variation

0 0.2 0.4 0.6 0.8 1

Range of deviation

0

20

40

60

80

100

120

C
o

m
p

le
x
it

y
 I
n

c
re

m
e
n

t
(%

)

0

20

40

60

80

100

120

P
e
n

a
lt

y
 r

e
d

u
c
ti

o
n

 (
%

)

Scenario 1: complexity

Scenario 1: penalty

Scenario 2: complexity

Scenario 2: penalty

(g) Comparison of the range of deviation in the op-
tion (4) of initialization

20 40 60 80 100

Generation

-1

-0.5

0

2000

4000

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

option (1)

option (2)

option (3)

option (4)

option (5)

(h) Comparison of initialization method variation
(Scenario 1)

Figure 4.4: Results of parameter variation using PSO under the setting in Table 3.13 and 3.14

44

4 Results and discussion

Scenario 2. That is, PSO is not sensitive to the swarm size. Since larger swarm
sizes require more function evaluations and increase the computing efforts for
convergence, the swarm size NPSO is finally assigned with 50 in the optimizer.

• Iteration Variation: Similar to GA, to balance the accuracy and complexity of the
search algorithm, the number of iteration Tg,PSO is recommended to 500 according
to Figure 4.4b.

• Inertia Range Variation: The curves in Figure 4.4c show the optimization process
under different inertia ranges. When the inertia range is too large, particles might
easily pass over but without catching good solutions, since the range [0.01 5],
[0.01 10] and [0.01 50] decrease slower than others. While with a smaller range
the particles may not have sufficient opportunity to explore more space beyond
local regions. As a result, the final inertia range w0 is located in [0.01 2].

• Self Adjustment Weight Variation: As depicted in Figure 4.4d, it appears that
the setting of 0.5 for self adjustment coefficient c1 is appropriate for both scenarios,
which behaves better than other values clearly.

• Social Adjustment Weight Variation: As shown in Figure 4.4e, the value of 1 for
social adjustment weight c2 is a relative better choice among the whole range.

• Initial Swarm Span Variation: The Figure 4.4f implies that the setting of the initial
swarm span does not affect the optimization performance generally. Therefore,
the default value 2000 in Matlab is used in the optimizer.

• Initialization Method Variation: Similar to that described in GA, five methods are
also selected here to initialize the search space. Regarding option (4) in Figure
4.4g, it can be seen that this initialization method has no effect on increasing
complexity, especially in Scenario 1 with a high initial penalty function. According
to Figure 4.4h, PSO is not very sufficient at reducing the penalty function with the
option (1)-(4) in Scenario 1. Option (5) can avoid the high penalty function at the
beginning, which is regarded as the final choice for the initialization method.

In view of the above observations, the corresponding optimal hyper-parameters for PSO are
outlined in Table 4.3:

Table 4.3: The optimal parameters of PSO

Parameter Value

Swarm size (NPSO) 50

Number of Iterations (Tg,PSO) 500

Inertia Range (w0) [0.01 2]

Self Adjustment Weight (c1) 0.5

Social Adjustment Weight (c2) 1

Initial Swarm Span (Iniss) 2000

Initial Swarm Matrix (Inim) Option (5)

45

4 Results and discussion

4.2.2 Scenario Test

Much the same as GA, the three pre-defined scenarios are tested using PSO with the optimal
parameter that listed in Table 4.3. The optimization results of three scenarios, the distribution of
complexity in each scenario, and the Kiviat-diagram are depicted in Table 4.4, Figure 4.5 and
4.6, respectively. It can be concluded that, the complexity increment of three scenarios are 24%,
22.8% and 10.7% respectively.

Table 4.4: The optimization results of three scenarios using PSO

Scenario 1 Scenario 2 Scenario 3

Initial Complexity 0.4111 0.3070 0.5311

Final Complexity 0.5097 0.3765 0.5878

Initial Penalty Function 4020.2 0 20.0

Details Collision between vehicles - Beyond jerk limitation

Final Penalty Function 0 0 0.0004

Details - - Collision between vehicles

Running Time in s 14127.80 14568.41 16339.97

20 40 60

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Scenario 1 : original

Scenario 1 : optimized

(a) Scenario 1

20 40 60 80 100

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Scenario 2 : original

Scenario 2 : optimized

(b) Scenario 2

10 20 30 40 50

Frames

0

0.2

0.4

0.6

0.8

1
C

o
m

p
le

ix
it

y

Scenario 3 : original

Scenario 3 : optimized

(c) Scenario 3

Figure 4.5: Complexity comparison of three scenarios

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

nb_type
nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

ratio

t2b

noa_ego

noa_nb
nb_type

nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

tg

ratio

t2b

noa_ego

noa_nb

original optimized using PSO
nb_type

nb_num

connection

variation

dynamic

devi_eu

pa_nbpa_ego

tg

ratio

t2b

noa_ego

noa_nb

0.00
0.20
0.40
0.60
0.80
1.00

0.00
0.20
0.40
0.60
0.80
1.00

0.00
0.25
0.50
0.75
1.00
1.25

tg

Figure 4.6: Kiviat-diagram to visualize the complexity of three scenarios

46

4 Results and discussion

4.3 Discussion of the Results

Two performance tests for the optimizer were carried out for both EA algorithms under considera-
tion, namely, PSO and GA. Next, this subsection will compare the results of the two optimization
algorithms and discuss them quantitatively (in Section 4.3.1 and 4.3.2) and qualitatively (in
Section 4.3.3 and 4.3.4).

4.3.1 Comparison of the Optimization Result

As introduced in Section 2.3, both GA and PSO can solve highly nonlinear, mixed integer
optimization problems, which is proved by the aforementioned results. The curves in Figure
4.7 depict the optimization process and convergence situation of three scenario tests with two
methods. It shows that GA has the highest convergence rate and yields the best value of
objective function for all scenarios. However, it runs with expensive computational cost as
shown in the Table 4.2 and 4.4, since it requires sorting the fitness value among the optimization
process, which is not needed in PSO. Besides, in Scenario 1 and 3, GA did not fully converge at
500 generations, but according to the result of generation variation in Figure 4.1b, it changes
basically only slightly when the number of generation continues to increase.

100 200 300 400 500

Generation

-0.6

-0.55

-0.5

-0.45

-0.4

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

GA

PSO

(a) Scenario 1

100 200 300 400 500

Generation

-0.4

-0.35

-0.3

-0.25

-0.2

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

GA

PSO

(b) Scenario 2

100 200 300 400 500

Generation

-0.7

-0.65

-0.6

-0.55

-0.5
O

b
je

c
ti

v
e
 F

u
n

c
ti

o
n

GA

PSO

(c) Scenario 3

Figure 4.7: Comparison of optimization process using GA and PSO respectively

Figure 4.8 depicts the complexity distribution in the whole scenarios using the two optimization
methods. It can be seen that the difference of optimization effect of using GA and PSO in
Scenario 2 is not obvious, whilst the performance of GA in Scenario 1 and 3 is better than that
of PSO quantitatively.

20 40 60

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Original

GA

PSO

(a) Scenario 1

20 40 60 80 100

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Original

GA

PSO

(b) Scenario 2

10 20 30 40 50

Frames

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ix

it
y

Original

GA

PSO

(c) Scenario 3

Figure 4.8: Complexity comparison of three scenarios

47

4 Results and discussion

4.3.2 Quantitative Post-Verification

The performance of optimization not only lies in the final value of the objective function, but
its quality also needs to be verified from the aspect of complexity. According to the categories
in Table 3.15, we observe whether the complexity influence factors have really increased
quantitatively as expected, which mainly focuses on the "intuitive" ones.

According to Figure 4.3 and 4.6, the optimizer has the ability to handle all given scenarios, even
the one with high initial complexity (Scenario 3). It can be also observed that not every influence
factor increases or changes during the optimization process, the main contributing factors can
be summarized as Table 4.5 and Figure 4.9.

Table 4.5: Main contributing factors to complexity increment

Scenario 1 Scenario 2 Scenario 3

Factor Increment Factor Increment Factor Increment Factor Increment

GA d ynamic +0.41 noa_nb +0.17 nb_t ype +0.30 d ynamic +0.71

nb_num +0.27 nb_t ype +0.16 noa_nb +0.23 devi_eu +0.66

devi_eu +0.25 connect ion +0.17

rat io +0.22

PSO rat io +0.28 d ynamic +0.17 nb_t ype +0.27 devi_eu +0.30

connect ion +0.22 nb_num +0.13 connect ion +0.15 d ynamik +0.23

dy
na

m
ic

de
vi
_e

u

no
a_

nb

co
nn

ec
tio

n
ra

tio

nb
_n

um

nb
_t

yp
e

Main Influence Factor

0

0.5

1

1.5

2

F
re

q
u

e
n

c
y

(a) GA

dy
na

m
ic

de
vi
_e

u

no
a_

nb

co
nn

ec
tio

n
ra

tio

nb
_n

um

nb
_t

yp
e

Main Influence Factor

0

0.5

1

1.5

2

F
re

q
u

e
n

c
y

(b) PSO

Figure 4.9: Histogram of main influence factors using GA and PSO respectively

Obviously, the main contributing factors of the two optimization methods are similar, and basically
the ones in PSO is a subset of GA according to Figure 4.9. And the large amount of change is
almost caused by "intuitive" factors, such as d ynamic, nb_num and etc. From this perspective,
the optimization directions of the two methods are comparable, but GA generate a more sufficient
result.

Next, we further analyze the "intuitive" influence factors to see if they really meet the requirements.
For convenience, the following selects Scenario 1 with a more obvious change in complexity to
compare and analyze the optimization quality of GA and PSO. It can be seen from Figure 4.2
that the maximum complexity of Scenario 1 after using GA optimization is at the 52nd frame,
which has increased from 0.3528 to 0.7202. The specific configuration is shown in Figure 4.10.

48

4 Results and discussion

Similarly, Figure 4.11 presents the 47th frame of Scenario 1 with the greatest complexity after
using PSO. From Figure 4.5, the complexity at this frame increases from 0.2716 to 0.6013.

(a) Original with complexity 0.3528

(b) Optimized using GA with complexity 0.7202

Figure 4.10: Configuration of 52nd frame of Scenario 1

(a) Original with complexity 0.2716

(b) Optimized using PSO with complexity 0.6013

Figure 4.11: Configuration of 47nd frame of Scenario 1

Intuitively, the differences of nb_t ype, nb_num and rat io can be observed from Figure 4.10 and
4.11 directly. In original and optimized configuration, there are both two types of vehicles in ROI
and the number of surrounding vehicles in the ROI has increased. And the number increased by
GA is larger. Additionally, since rat io represents the area that can not be reached by the sensor
set, which is related to the non-transparency, obviously the beams generated by the ego-vehicle
after optimization are occupied more than in the original one.

Regarding variat ion and d ynamic, the vehicle physical parameters play an important role,
especially speed, acceleration and jerk. Firstly, it needs to be checked whether they meet the
physical requirements after optimization according to Section 3.4. For reasons of space and
clarity, the analysis results are listed in the Appendix A.2 in detail. It can be concluded that all
velocity, acceleration and jerk values of surrounding vehicles not only varied more dramatically
than before but also meet the requirements in Table 3.4 and 3.10 respectively, reflecting physical
feasibility for both algorithms. Besides, vehicles in front of ego-vehicle are basically decelerating
or driving at a quasi-constant speed, while vehicles behind ego are mainly accelerating. Notably
is that under the influence of MOBIL rules, at the 60th frame of results from GA in Figure 4.12a,
ax of ego-vehicle (marked by black dash line) drops directly from -0.18 m/s2 to -8m/s2, which
is caused by the setting of maximal deceleration in Section 3.1 and results in a abnormal high
jerk in the longitudinal direction. Similarly, when using GA to optimize Scenario 3, this situation
also appears in the 48th frame as shown in Figure 4.12c, which also obtains a larger value of
d ynamic than using PSO. From this perspective, both GA and PSO show a good optimization

49

4 Results and discussion

result in these two factors, whilst GA is likely to make the dynamic behaviours of the vehicles
more complicated.

10 20 30 40 50 60

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(a) ax in Scenario 1(GA)

10 20 30 40 50 60

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(b) ax in Scenario 1(PSO)

5 10 15 20 25 30 35 40 45 50

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(c) ax in Scenario 3(GA)

5 10 15 20 25 30 35 40 45 50

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

Cars6 Cars11 Cars15Cars2

(d) ax in Scenario 3(PSO)

Figure 4.12: Comparison of longitudinal acceleration using GA and PSO

In the next step, we will further analyze some "complicated" factors. It can be clearly seen that
the curves of ego-vehicle in Figure 4.12 is smoother than others because of using IDM, thus the
factors highly related to ego have not changed much during the optimization, such as noa_ego
and pa_ego. Besides, regarding the factor devi_eu, the changes in Scenario 3 after using GA
are relatively large. Explained by [8, p.67], high speed of ego-vehicle can lead to larger deviation
because of longer prediction horizon compared to scenarios with low speed, which is consistent
with the velocity situations of three scenarios as shown in Appendix A.2: the speed range of
ego-vehicle in Scenario 1 after using GA is in [11.29, 15.41] m/s, Scenario 2 in [11.46, 15.88]
m/s, and Scenario 3 in [19.50, 22.18] m/s.

Other factors either have not changed much after optimization in both methods, or are more
complicated to understand directly. Moreover, the most influential factors are those that are more
intuitive, thus the other factors in "medium" and "complicated" categories will not be discussed
here. In summary, the results can show that the proposed GA method can not only have
better optimization performance, but also obtain higher quality solution than PSO with the same
optimization direction quantitatively.

4.3.3 Analysis of Exploitation and Exploration

After comparing the difference between the optimization results of two methods, the mechanism
behind can be discussed qualitatively. The following will analyze the relationship of exploitation
and exploration in GA and PSO respectively, according to the introduction in Section 3.6.4.

50

4 Results and discussion

• GA: As described in [50], mutation in GA is needed to explore new states and
helps the algorithm to avoid local optima, while crossover option increases the
average quality of the population. Therefore, from the point of view in [51, p.35:5],
a mutation operator is more of an exploration operator, whilst the selection of elite
and crossover can be mainly seen as an exploitation operator. But in many cases,
it is difficult to conclude whether newly created individuals created by a crossover
and/or mutation operator will fall into the exploration or exploitation zones.

In our optimizer, the final hyper-parameters of GA are listed in Table 4.1. From
this we can conclude that the whole algorithm is more biased to explore at the
beginning, since the value of scale in the mutation option is 10, which means
the first generation is expanded to a larger search space. And the initialization
matrix A0 adopts a method of pre-acceleration and deceleration, which provides
more search possibilities for the algorithm initially. In the latter part of the search,
exploitation dominates. The crossover fraction C f is set to 80%, which indicates
that more children are generated under the scattered combination of parents than
through mutation. On the other hand, the setting of shrink to 1 in the mutation
option helps reduce the mutation deviation in the exploration period. There exists
still a certain possibility of exploration, for instance, the elite ratio is relatively
low, only 2 elites with good fitness are remained to the next generation and still
20% children are generated through mutation. In this way, a remarkable balance
between exploration and exploitation of the search space in GA is achieved.

• PSO: Similar to GA, particle-based search in PSO is applied for high diversity
during the early part of the search for global exploration of the full range of the
search space. In the last stage of the search, local exploitation is achieved for
more accuracy in the optimum solution.

In this aspect, the algorithm attempts to balance exploration and exploitation by
combining local and global search ability, that is represented by pbest and gbest
in Algorithm 2. In particular, with appropriate initial swarm at the beginning such
as initial swarm span and initial swarm matrix, the algorithm tries to explore more
search space. After that, the setting of inertia range, coefficient c1 and c2 help
the algorithm to achieve the refinement of the optimal solution, which can also be
understood as exploitation. Since the mechanism is based on the floating point
arithmetic, it could explore any potential values within the solution space.

Based on the aforementioned observation, one general interpretation is that EA should start
with exploration and then gradually change into exploitation in the optimization process for our
problem.

According to the optimization curves in Figure 4.7, it is clear that the positions of the starting point
are similar for both algorithms, but the value of objective function in PSO converges slower than
GA afterwards and the descent is sometimes step-wise. One explanation is that the possible
space of the optimal solution is relatively small, since the initial configuration of the vehicles
are already given, and the vehicles needs to drive within the ROI as long as possible, which
should also obey the traffic rules and even maintain the physical feasibility. Thus the search
algorithm must explore more at the beginning with sufficient solution possibilities, otherwise
the efficiency of simply exploring is relatively low, that is the same for both algorithms. In the
later exploitation phase, because initial population matrix given in the beginning is based on the
original data in HighD and the change of acceleration values already meets the requirements of

51

4 Results and discussion

jerk limitation, crossover between different fragments in parents can make the search process
easier to exploit a better solution without introducing a high penalty function. But PSO does not
have a crossover-like option. Although it can find a good start particle swarm initially through
exploration, the swarm exploitation is then more based on random selection around the current
solution, which is represented by the factor rand in Eq. 2.6. Thus it is easy to stuck in a local
optimal during the search process or explore more solutions that probably trigger high penalty
function. As a result, GA exhibits better optimization efficiency than PSO under the exploration
and exploitation framework.

4.3.4 Subjective Qualitative Evaluation

Although the above optimization results meet the quantitative requirements, through qualitative
observation of the entire scenarios, it can still be found that the vehicles have many unrealistic
behaviours.

In the first place, according to the final penalty function in Table 4.2 and 4.4, after optimization
there are still vehicles that do not meet the location requirements in Section 3.4, i.e., collisions will
occur between vehicles or the vehicles are driving too close, especially using GA. For example,
Figure 4.13a and 4.13b show the above situations happened in Scenario 3 after optimization
using two methods. Besides, after optimization with GA, many vehicles in the last frame have
a relatively large orientation such as in the final configuration of Scenario 3 in Figure 4.13c,
which is very strange and impractical. And there still exists a high probability of collision between
vehicles as the scenario continues.

(a) 18th frame using GA (b) 50th frame using PSO

(c) Last Frame using GA

Figure 4.13: Parts of penalized or unrealistic configurations of Scenario 3 after optimization

Next, the behaviours of ego-vehicle only depend mainly on the situation of heading vehicles
according to IDM, which seems to be “dumb”. For instance, in Scenario 2, the distance between
the ego-vehicle and "car3" at the beginning does not meet the time-gap requirements as shown in
Figure 3.15. No matter before or after the optimization, the ego-vehicle always decelerates at the
beginning, instead of overtaking or choosing other “intelligent” behaviours. Besides, observing
the trajectories of the surrounding vehicles optimized by GA, some unrealistic behaviours can
also be found. In Scenario 1 and 3 where the values of d ynamic are higher after optimization
using GA, the lateral accelerations of the vehicles change more drastically. In this way, there will
occur a impractical tremor movement of surrounding traffic as shown in Figure 4.14. And the
vehicles change lanes only in a collision-free manner, such as "car7", which basically does not
happen in actual situations.

52

4 Results and discussion

Figure 4.14: Trajectories of vehicles in Scenario 3 after optimization using GA

Overall, the optimization results using PSO are more in line with actual situations, although the
complexity after optimization is not as high as GA. But these behaviours can be improved to
some extent, for example, by setting a more complex and comprehensive penalty function. In
order to pick out scenarios that can be used in practice, more work needs to be done in the
future, such as smoothing the trajectories of surrounding traffic.

53

5 Summary and Outlook

In this chapter, the work of this thesis will firstly be summarized. In the second part, some
possible extensions of this work will be discussed.

5.1 Summary

Theoretically, to secure and release AV, an infinite number of test cases must be checked to
cover all scenarios of real traffic. The resulting test space is not manageable even with modern
methods and simulation tools. One possibility is the scenario-based approach, which only takes
the most interesting and relevant scenarios into account in order to limit the infinite test space to
a finite number of test cases.

In this work, we present an optimization-based approach to generate more complex test scenarios
for AV by means of EA. To this end, the original HighD dataset (Section 2.1) and corresponding
complexity metrics (Section 2.2) are integrated to the optimizer through an interface in Section
3.2, which keeps their data structure and coordinate system highly consistent. Next, the model of
ego-vehicle and surrounding vehicles are introduced in the simulator in Section 3.1 to generate
the configuration of different scenarios. Moreover, with the purpose of allowing the vehicles
to obey by traffic rules and maintain the physical feasibility, we introduced a penalty function
(Section 3.4) and combine it with the final adapted complexity metrics (Section 3.3) to form an
objective function in Section 3.5 to be optimized. Then an optimizer is constructed through the
simulator of scenarios, the objective function, and its tuner. To avoid the collision between the
vehicles caused by the change of the model of the AV, we also proposed the intelligent method
to pre-process the scenario and initialize the search space with possible solutions, as shown in
Section 3.6.2. Then we performed tuning experiments with two optimization algorithms (GA and
PSO) in Section 3.6 to achieve better performance. After the analysis of the results of parameter
variation, the optimal hyperparameters of the two methods are determined and utilized to test
three example scenarios in Section 4.1 and 4.2. Under these prerequisites, this work then offers
insight into the algorithm behavior of EA in Section 4.3, with the relationship of exploration and
exploitation. In the end, after quantitatively and qualitatively discussing the results of optimization
and post-verifying the physical feasibility, it can be concluded that GA offers better optimization
performance and quality than PSO, which is more suitable for the optimizer, but the optimized
result is still not realistic enough to be used in practice.

Therefore, unlike previous works, the optimization approach here is highly related to the actual
highway situation and can ensure the physical possibilities of the motion of traffic participants
through the defined objective function. It can also keep the relationship between exploration
and exploitation in EA well balanced and achieve a sufficient optimization performance with the
tuned parameters.

55

5 Summary and Outlook

5.2 Outlook

Regarding future work, we see several promising directions. The most straightforward track is to
extend the models in the optimizer. The existing AV model is relatively simple, IDM and MOBIL
are only used to simulate the ACC in multiple lanes. Moreover, the implementation of MOBIL
does not consider the shape and size of the vehicle, but regards the vehicle as a mass point,
so that an undesirable lane change may occur sometimes. Criticality assessment requires ego-
vehicle to be equipped with more functions, such as Lane Keep Assist (LKA), Auto Emergency
Braking (AEB) and Collision Avoidance System (CAS). Besides, the selected scenarios are all
with the straight road. In HighD and actual situations, there exist more complicated situations
such as intersections. The current optimizer can then easily be projected to different road
geometry, e.g., by setting more longitudinal and horizontal constraints for the surrounding traffic
and ego-vehicle.

There is still a lot of work to be done on improving the performance of optimization in the
future. Due to computational and time limitations, the number of scenarios used by the tuning
of parameters is limited and is not represented to a certain extent, which can be explored in
more depth later. Furthermore, the parameter values during the tuning of the optimizer is now
selected to be constant at the design layer, which can also be realized by parameter control
method, i.e., they undergo changes while the EA is running in the algorithm layer. For instance,
reinforcement learning is a class of unsupervised machine learning approach, through which the
trade-off problem between exploration and exploitation can be better solved while searching for
the optimal behavior policy. This may be a way to improve the performance of PSO, which has
excellent computing efficiency. Additionally, in this thesis, the influencing factors of complexity
are equal-weighted, and there is actually a coupling relationship between different influence
factors, e.g., nb_num and connect ion. Thus there still exists a potential possibility to improve
the optimization performance by decoupling. Last but not least, there are still many unrealistic
points from subjective evaluation introduced in section 4.3.4, which can be solved by adding
more constraints in the optimization process or introducing new vehicle models.

56

List of Figures

Figure 1.1: The levels of driving automation for on-road vehicles from SAE [7] 2

Figure 1.2: Work structure of this thesis.. 2

Figure 2.1: The recording setup of HighD [11] ... 3

Figure 2.2: The global coordinate system of HighD[12] ... 4

Figure 2.3: Layer model for the representation of driving scenes adapted from [16] ... 5

Figure 2.4: Demonstration of ROI adapted from [8] (Blue part: ROI of Car 1 driving
in the middle lane; green part: ROI of Car 2 in the edge lane, only area
of two lanes are considered in the lateral direction)............................... 5

Figure 2.5: Label assignment of surrounding traffic within ROI modified from [8] 6

Figure 2.6: General flow chart of GA .. 10

Figure 2.7: Position and velocity update of particles in PSO [23]............................. 11

Figure 2.8: General flow chart of PSO.. 12

Figure 2.9: Convergence process of SA ... 13

Figure 3.1: Flow chart of the whole optimization process 15

Figure 3.2: Examples of D0 function (left: piece-wise continuous function, right:
piece-wise constant function) .. 16

Figure 3.3: Nearest neighbours of AV considering lane change [32] (left: before lane
change, right: after lane change) ... 17

Figure 3.4: Box and whisker plots for time-step and performance indicator (based
on cluster "data_12_tracks_ew" and "data_25_tracks_ew" from [10]) 20

Figure 3.5: Box and whisker plots for speed and time-gap [37] 20

Figure 3.6: Coordinate system of clusters [10] ... 21

Figure 3.7: Lane coordinate system in simulator (left: 2 lanes, right: 3 lanes)............ 22

Figure 3.8: Different examples of checking the locations in penalty function (left:
allowed situation, right: penalized situation)... 25

Figure 3.9: Definition of lane-change initiation and completion time points modified
from [40].. 26

Figure 3.10: Definition of ellipse with e = 2 (left: value a, b, right: value a′, b′) 27

Figure 3.11: Distribution of lateral jerk in HighD (based on cluster "data_25_tracks_ew"
from [10])... 28

i

List of Figures

Figure 3.12: Tuner for optimizer .. 29

Figure 3.13: Initial configuration of scenario 1 ... 31

Figure 3.14: One fragment of original Scenario 2 with potential collision 32

Figure 3.15: Initial configuration of Scenario 2 after pre-processing 32

Figure 3.16: Initial configuration of Scenario 3 ... 33

Figure 3.17: The comparison of different starting scenarios and starting values [2]...... 34

Figure 3.18: ROI-based partition of highway ... 36

Figure 3.19: Empirical CDF of ax in HighD (based on cluster "data_25_tracks_ew"
from [10])... 36

Figure 4.1: Results of parameter variation using GA under the setting in Table 3.11
and Table 3.12 ... 41

Figure 4.2: Complexity comparison of three scenarios .. 43

Figure 4.3: Kiviat-diagram to visualize the complexity of three scenarios 43

Figure 4.4: Results of parameter variation using PSO under the setting in Table 3.13
and 3.14.. 44

Figure 4.5: Complexity comparison of three scenarios .. 46

Figure 4.6: Kiviat-diagram to visualize the complexity of three scenarios 46

Figure 4.7: Comparison of optimization process using GA and PSO respectively 47

Figure 4.8: Complexity comparison of three scenarios .. 47

Figure 4.9: Histogram of main influence factors using GA and PSO respectively 48

Figure 4.10: Configuration of 52nd frame of Scenario 1 .. 49

Figure 4.11: Configuration of 47nd frame of Scenario 1 .. 49

Figure 4.12: Comparison of longitudinal acceleration using GA and PSO................... 50

Figure 4.13: Parts of penalized or unrealistic configurations of Scenario 3 after opti-
mization .. 52

Figure 4.14: Trajectories of vehicles in Scenario 3 after optimization using GA 53

Figure A.1: Analysis of physical parameters in original Scenario 1........................... xiv

Figure A.2: Analysis of physical parameters in Scenario 1 after using GA................. xiv

Figure A.3: Analysis of physical parameters in Scenario 1 after using PSO............... xv

Figure A.4: Analysis of physical parameters in original Scenario 2........................... xvi

Figure A.5: Analysis of physical parameters in Scenario 2 after using GA................. xvii

Figure A.6: Analysis of physical parameters in Scenario 2 after using PSO...............xviii

Figure A.7: Analysis of physical parameters in original Scenario 3...........................xviii

Figure A.8: Analysis of physical parameters in Scenario 3 after using GA................. xix

Figure A.9: Analysis of physical parameters in Scenario 3 after using PSO............... xx

ii

List of Tables

Table 2.1: Important information of coordinate system in HighD 4

Table 2.2: List of influence factors for complexity evaluation in [9]............................. 7

Table 2.3: Normalization values of influence factors [9]... 7

Table 2.4: The options of selection type ... 9

Table 2.5: The options of crossover type .. 9

Table 2.6: The options of mutation function .. 10

Table 3.1: List of the parameters used by IDM in [2] ... 16

Table 3.2: Summary of initial data ... 23

Table 3.3: Correspondence between the data structures in clusters and simulator 23

Table 3.4: Penalty function category .. 25

Table 3.5: Lane information of Scenario 1 and 2.. 31

Table 3.6: Scenario information of Scenario 1 ... 31

Table 3.7: Scenario information of Scenario 2 ... 32

Table 3.8: Lane information of Scenario 3 .. 33

Table 3.9: Scenario information of Scenario 3 ... 33

Table 3.10: Limits of longitudinal and lateral acceleration adapted from [2] 34

Table 3.11: Summary of values for investigated parameters in GA 35

Table 3.12: The default values of the uninvestigated parameters in GA 36

Table 3.13: Summary of values for investigated parameters in PSO 37

Table 3.14: The default values of the uninvestigated parameters in PSO 38

Table 3.15: The categories of influence factors in complexity evaluation...................... 38

Table 4.1: The optimal parameters of GA ... 42

Table 4.2: The optimization results of three scenarios using GA 42

Table 4.3: The optimal parameters of PSO ... 45

Table 4.4: The optimization results of three scenarios using PSO............................. 46

Table 4.5: Main contributing factors to complexity increment.................................... 48

Table A.1: Initial configuration of ego-vehicle in Scenario 1...................................... xi

Table A.2: Initial configuration of surrounding vehicles in Scenario 1 xi

iii

List of Tables

Table A.3: Initial configuration of ego-vehicle in Scenario 2...................................... xii

Table A.4: Initial configuration of surrounding vehicles in Scenario 2 xii

Table A.5: Initial configuration of ego-vehicle in Scenario 3...................................... xii

Table A.6: Initial configuration of surrounding vehicles in Scenario 3 xiii

iv

Bibliography

[1] Eduardo Villalobos, „Generation of Complex Test Scenarios for Automated Vehicles by
Means of Machine Learning,“ Master Thesis, Mechanical engineering, Technical University
of Munich, Munich.

[2] Sebastian Mayr, „Generation of Complex Test Scenarios for Automated Vehicles by
Means of Particle-Swarm-Optimization,“ Master Thesis, mechanical engineering, Technical
University of Munich, Munich.

[3] B. Kaltenhäuser, K. Werdich, F. Dandl and K. Bogenberger, „Market development of
autonomous driving in Germany,“ Transportation Research Part A: Policy and Practice,
vol. 132, pp. 882–910, 2020, doi: 10.1016/j.tra.2020.01.001.

[4] B. Kim, Y. Kashiba, S. Dai and S. Shiraishi, „Testing Autonomous Vehicle Software in the
Virtual Prototyping Environment,“ IEEE Embedded Systems Letters, vol. 9, no. 1, pp. 5–8,
2017, doi: 10.1109/LES.2016.2644619.

[5] „. After 2019’s reality check, what’s ahead for driverless cars in 2020? – TechCrunch
2020.4.16,“ 2020-4-16. Available: https://techcrunch.com/2020/01/02/after-2019s-reality-
check-whats-ahead-for-driverless-cars-in-2020/.

[6] Y. Wang, Z. Su, K. Zhang and A. Benslimane, „Challenges and Solutions in Autonomous
Driving: A Blockchain Approach,“ IEEE Network, pp. 1–9, 2020, doi: 10.1109/MNET.001.
1900504.

[7] S. Jannifer. „SAE J3016 automated-driving graphic: SAE Standards News: J3016 automated-
driving graphic update,“ 2020-4-16. Available: https://www.sae.org/news/2019/01/sae-
updates-j3016-automated-driving-graphic.

[8] X. Yu, „Method for quantitative evaluation of traffic complexity on the highway,“ Semester
Thesis, mechanical engineering, Technical University of Munich, Munich, 2019.

[9] X. Yu, „Improvements and analysis of traffic complexity evaluation method in highway
scenario for automated vehicles,“ Master Thesis, mechanical engineering, Technical
University of Munich, Munich, 2020.

[10] M. Breitfuß, „Extraktion komplexer Verkehrsszenarien aus Realdaten mittels Clusteranaly-
severfahren und deren Optimierung,“ Semester Thesis, mechanical engineering, Technical
University of Munich, Munich, 2020.

[11] R. Krajewski, J. Bock, L. Kloeker and L. Eckstein, eds. „The highD Dataset: A Drone
Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly
Automated Driving Systems,“ (Maui, HI). IEEE, 11/4/2018 - 11/7/2018. isbn: 978-1-7281-
0321-1. doi: 10.1109/ITSC.2018.8569552.

[12] „. The highD Dataset,“ 2020-3-26. Available: https://www.highd-dataset.com/format.

[13] Carlos Gershenson, Complexity: 5 Questions, Automatic Press/VIP, 2008.

v

https://doi.org/10.1016/j.tra.2020.01.001
https://doi.org/10.1109/LES.2016.2644619
https://techcrunch.com/2020/01/02/after-2019s-reality-check-whats-ahead-for-driverless-cars-in-2020/
https://techcrunch.com/2020/01/02/after-2019s-reality-check-whats-ahead-for-driverless-cars-in-2020/
https://doi.org/10.1109/MNET.001.1900504
https://doi.org/10.1109/MNET.001.1900504
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic
https://doi.org/10.1109/ITSC.2018.8569552
https://www.highd-dataset.com/format

Bibliography

[14] G. Bagschik, T. Menzel and M. Maurer, „Ontology based Scene Creation for the Develop-
ment of Automated Vehicles,“ Available: http://arxiv.org/pdf/1704.01006v5.

[15] F. Schuldt, „Ein Beitrag fur den methodischen Test von automatisierten Fahrfunktionen
mit Hilfe von virtuellen Umgebungen - English title: Towards testing of automated driving
functions in virtual driving environments Towards testing of automated driving functions
in virtual driving environments,“ Ph.D.dissertation, Technische Universitat Braunschweig,
Braunschweig, 2017.

[16] G. Bagschik, T. Menzel and M. Maurer, „Ontology based Scene Creation for the Devel-
opment of Automated Vehicles,“ in 2018 IEEE Intelligent Vehicles Symposium (IV 2018):
Changshu, Suzhou, China, 26-30 June 2018, Changshu, 2018, pp. 1813–1820, isbn:
978-1-5386-4452-2. doi: 10.1109/IVS.2018.8500632.

[17] J. Wang, C. Zhang, Y. Liu and Q. Zhang, „Traffic Sensory Data Classification by Quantifying
Scenario Complexity,“ in 2018 IEEE Intelligent Vehicles Symposium (IV 2018): Changshu,
Suzhou, China, 26-30 June 2018, Changshu, 2018, pp. 1543–1548, isbn: 978-1-5386-
4452-2. doi: 10.1109/IVS.2018.8500669.

[18] A.-M. Jacobo, O. Koichiro, K. Eiichi and T. Satoshi, „Development of a safety assurance
process for autonomous vehicles in japan,“ 2019. Available: https://www-esv.nhtsa.dot.
gov/Proceedings/26/26ESV-000286.pdf.

[19] P. A. Vikhar, „Evolutionary algorithms: A critical review and its future prospects,“ in
ICGTSPICC 2016: Proceedings : International Conference on Global Trends in Signal
Processing, Information Computing and Communication : 22-24 December 2016, Jalgaon,
India, Jalgaon, India, 2016, pp. 261–265, isbn: 978-1-5090-0467-6. doi: 10.1109/ICGTSPI
CC.2016.7955308.

[20] M. Klischat and M. Althoff, „Generating Critical Test Scenarios for Automated Vehicles with
Evolutionary Algorithms,“ in 2019 IEEE Intelligent Vehicles Symposium (IV 2019): Paris,
France 9-12 June 2019, Paris, France, 2019, pp. 2352–2358, isbn: 978-1-7281-0560-4.
doi: 10.1109/IVS.2019.8814230.

[21] Matlab. „Global Optimization Toolbox User’s Guide: R2020a,“ [Online]. Available: https:
//www.mathworks.com/help/gads/.

[22] D. B. Fogel, D. Liu and J. M. Keller, Fundamentals of Computational Intelligence, Hoboken,
NJ, USA, John Wiley & Sons, Inc, 2016, isbn: 9781119214403. doi: 10.1002/9781119214
403.

[23] D. Wang, D. Tan and L. Liu, „Particle swarm optimization algorithm: an overview,“ Soft
Computing, vol. 22, no. 2, pp. 387–408, 2018, doi: 10.1007/s00500-016-2474-6.

[24] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, „Optimization by simulated annealing,“
Science (New York, N.Y.), vol. 220, no. 4598, pp. 671–680, 1983, doi: 10.1126/science.
220.4598.671.

[25] „. Simulated annealing,“ 2020-4-21. Available: https://en.wikipedia.org/w/index.php?title=
Simulated_annealing&oldid=952273439 [visited on].

[26] N. V. Findler, C. Lo and R. Lo, „Pattern search for optimization,“ Mathematics and Com-
puters in Simulation, vol. 29, no. 1, pp. 41–50, 1987, doi: 10.1016/0378-4754(87)90065-6.

[27] Z. Hu, Y. Bao and T. Xiong, „Electricity load forecasting using support vector regression
with memetic algorithms,“ TheScientificWorldJournal, vol. 2013, p. 292575, 2013, doi:
10.1155/2013/292575.

vi

http://arxiv.org/pdf/1704.01006v5
https://doi.org/10.1109/IVS.2018.8500632
https://doi.org/10.1109/IVS.2018.8500669
https://www-esv.nhtsa.dot.gov/Proceedings/26/26ESV-000286.pdf
https://www-esv.nhtsa.dot.gov/Proceedings/26/26ESV-000286.pdf
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1109/IVS.2019.8814230
https://www.mathworks.com/help/gads/
https://www.mathworks.com/help/gads/
https://doi.org/10.1002/9781119214403
https://doi.org/10.1002/9781119214403
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=952273439
https://en.wikipedia.org/w/index.php?title=Simulated_annealing&oldid=952273439
https://doi.org/10.1016/0378-4754(87)90065-6
https://doi.org/10.1155/2013/292575

Bibliography

[28] L. M. Rios and N. V. Sahinidis, „Derivative-free optimization: a review of algorithms and
comparison of software implementations,“ Journal of Global Optimization, vol. 56, no. 3,
pp. 1247–1293, 2013, doi: 10.1007/s10898-012-9951-y.

[29] Hugh Durrant-Whyte, Nicholas Roy and Pieter Abbeel, „Fast Trajectory Correction for
Nonholonomic Mobile Robots Using Affine Transformations,“ in Robotics: Science and
systems VII, H. F. Durrant-Whyte, N. Roy and P. Abbeel, ed. Cambridge, Mass.: MIT
Press, op. 2012, pp. 265–272, isbn: 9780262305969. Available: http://ieeexplore.ieee.org/
document/6301042.

[30] R. Malinauskas, „The Intelligent Driver Model: Analysis and Application to Adaptive Cruise
Control,“ Thesis, Mathematics, Clemson University, 2014. Available: https://tigerprints.
clemson.edu/all_theses/1934 [visited on 05/2014].

[31] C. Schmidt, Hardware-in-the-Loop-gestützte Entwicklungsplattform für Fahrerassisten-
zsysteme – Modellierung und Visualisierung des Fahrzeugumfeldes, 1st ed., Göttingen,
Cuvillier Verlag, 2011, isbn: 9783869557274. Available: https://ebookcentral.proquest.
com/lib/gbv/detail.action?docID=5020338.

[32] A. Kesting, M. Treiber and D. Helbing, „General Lane-Changing Model MOBIL for Car-
Following Models,“ Transportation Research Record: Journal of the Transportation Re-
search Board, vol. 1999, no. 1, pp. 86–94, 2007, doi: 10.3141/1999-10.

[33] P. Junietz, F. Bonakdar, B. Klamann and H. Winner, „Criticality Metric for the Safety
Validation of Automated Driving using Model Predictive Trajectory Optimization,“ pp. 60–
65, doi: 10.1109/ITSC.2018.8569326.

[34] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach / Stuart J. Russell
and Peter Norvig ; contributing writers, Ernest Davis [and seven others], (Prentice Hall
series in artificial intelligence), Third edition, global edition, Boston, Pearson, 2016, isbn:
1292153962.

[35] G. Underwood, Traffic and Transport Psychology: Theory and Application, 1. Aufl., s.l.,
Elsevier professional, 2005, isbn: 0080443796. Available: http://site.ebrary.com/lib/alltitles/
docDetail.action?docID=10190084.

[36] A. Loulizi, Y. Bichiou and H. Rakha, „Steady-State Car-Following Time Gaps: An Empirical
Study Using Naturalistic Driving Data,“ Journal of Advanced Transportation, vol. 2019, no.
3, pp. 1–9, 2019, doi: 10.1155/2019/7659496.

[37] G. M. Arnaout and S. Bowling, „A Progressive Deployment Strategy for Cooperative
Adaptive Cruise Control to Improve Traffic Dynamics,“ International Journal of Automation
and Computing, vol. 11, no. 1, pp. 10–18, 2014, doi: 10.1007/s11633-014-0760-2.

[38] H. Burg and A. Moser, Handbuch Verkehrsunfallrekonstruktion: Unfallaufnahme, Fahrdy-
namik, Simulation, (ATZ / MTZ-Fachbuch), Wiesbaden, Springer Fachmedien Wiesbaden,
2017, isbn: 9783658161422. Available: https://ebookcentral.proquest.com/lib/gbv/detail.
action?docID=4858696.

[39] Reference. „What Is the Width and Length of the Average Car?,“ [Online]. Available:
https://www.reference.com/world-view/width-length-average-car-9eb7b00283fb1bd8.

[40] T. Toledo and D. Zohar, „Modeling Duration of Lane Changes,“ Transportation Research
Record: Journal of the Transportation Research Board, vol. 1999, no. 1, pp. 71–78, 2007,
doi: 10.3141/1999-08.

[41] UNITED NATIONS, „Uniform provisions concerning the approval of vehicles with regard to
steering equipment: Addendum 78: UN Regulation No. 79,“ p. 21, 2018.

vii

https://doi.org/10.1007/s10898-012-9951-y
http://ieeexplore.ieee.org/document/6301042
http://ieeexplore.ieee.org/document/6301042
https://tigerprints.clemson.edu/all_theses/1934
https://tigerprints.clemson.edu/all_theses/1934
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=5020338
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=5020338
https://doi.org/10.3141/1999-10
https://doi.org/10.1109/ITSC.2018.8569326
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10190084
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10190084
https://doi.org/10.1155/2019/7659496
https://doi.org/10.1007/s11633-014-0760-2
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=4858696
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=4858696
https://www.reference.com/world-view/width-length-average-car-9eb7b00283fb1bd8
https://doi.org/10.3141/1999-08

Bibliography

[42] F. Greis. „Wie die Uber-Software den tödlichen Unfall begünstigte,“ 6.11.2019. Available:
https://www.golem.de/news/ermittlungsberichte-wie-die-uber-software-den-toedlichen-
unfall-beguenstigte-1911-144832.html.

[43] A. E. Eiben and S. K. Smit, „Parameter tuning for configuring and analyzing evolutionary
algorithms,“ Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19–31, 2011, doi:
10.1016/j.swevo.2011.02.001.

[44] F. Jia and D. Lichti, „a Comparison of Simulated Annealing, Genetic Algorithm and Particle
Swarm Optimization in Optimal First-Order Design of Indoor Tls Networks,“ ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W4,
pp. 75–82, 2017, doi: 10.5194/isprs-annals-IV-2-W4-75-2017.

[45] D. P. Chau, M. Thonnat, F. Brémond and E. Corvée, „Online parameter tuning for object
tracking algorithms,“ Image and Vision Computing, vol. 32, no. 4, pp. 287–302, 2014, doi:
10.1016/j.imavis.2014.02.003.

[46] Y. He, W. J. Ma and J. P. Zhang, „The Parameters Selection of PSO Algorithm influencing
On performance of Fault Diagnosis,“ MATEC Web of Conferences, vol. 63, no. 3, p. 02019,
2016, doi: 10.1051/matecconf/20166302019.

[47] L. Lin and M. Gen, „Auto-tuning strategy for evolutionary algorithms: balancing between
exploration and exploitation,“ Soft Computing, vol. 13, no. 2, pp. 157–168, 2009, doi:
10.1007/s00500-008-0303-2.

[48] T. Chen, K. Tang, G. Chen and X. Yao, „A large population size can be unhelpful in
evolutionary algorithms,“ Theoretical Computer Science, vol. 436, pp. 54–70, 2012, doi:
10.1016/j.tcs.2011.02.016.

[49] E. K. Burke, S. Gustafson and G. Kendall, „Diversity in Genetic Programming: An Analysis
of Measures and Correlation With Fitness,“ IEEE Transactions on Evolutionary Computa-
tion, vol. 8, no. 1, pp. 47–62, 2004, doi: 10.1109/TEVC.2003.819263.

[50] G. Zhao, W. Luo, H. Nie and C. Li, „A Genetic Algorithm Balancing Exploration and
Exploitation for the Travelling Salesman Problem,“ in Fourth International Conference on
Natural Computation, 2008: ICNC ’08 : 18 - 20 Oct. 2008, Jinan, China ; held jointly with
the 5th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD
2008), Jinan, Shandong, China, 2008, pp. 505–509, isbn: 978-0-7695-3304-9. doi: 10.
1109/ICNC.2008.421.

[51] M. Črepinšek, S.-H. Liu and M. Mernik, „Exploration and exploitation in evolutionary
algorithms,“ ACM Computing Surveys, vol. 45, no. 3, pp. 1–33, 2013, doi: 10.1145/
2480741.2480752.

viii

https://www.golem.de/news/ermittlungsberichte-wie-die-uber-software-den-toedlichen-unfall-beguenstigte-1911-144832.html
https://www.golem.de/news/ermittlungsberichte-wie-die-uber-software-den-toedlichen-unfall-beguenstigte-1911-144832.html
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.5194/isprs-annals-IV-2-W4-75-2017
https://doi.org/10.1016/j.imavis.2014.02.003
https://doi.org/10.1051/matecconf/20166302019
https://doi.org/10.1007/s00500-008-0303-2
https://doi.org/10.1016/j.tcs.2011.02.016
https://doi.org/10.1109/TEVC.2003.819263
https://doi.org/10.1109/ICNC.2008.421
https://doi.org/10.1109/ICNC.2008.421
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1145/2480741.2480752

Appendix

A Appendix .. xi

A.1 Initial Configuration of vehicles ... xi

A.1.1 Scenario 1 ... xi

A.1.2 Scenario 2 ... xii

A.1.3 Scenario 3 ... xii

A.2 Analysis of physical Parameters .. xii

A.2.1 Scenario 1 ... xii

A.2.2 Scenario 2 ... xvi

A.2.3 Scenario 3 ...xviii

ix

A Appendix

In this chapter, The supplementary information required for the analysis and discussion in the
third and fourth chapters is enumerated, including the analysis of initial configuration of vehicles
and their physical parameters before and after optimization.

A.1 Initial Configuration of vehicles

In this section, the initial configuration of vehicles of different scenarios used in this thesis is
introduced.

A.1.1 Scenario 1

The initial configurations of vehicles in Scenario 1 are shown in Table A.1 and A.2.

Table A.1: Initial configuration of ego-vehicle in Scenario 1

Item Details

Position in m (3.78, 5.26)

Velocity in m/s (13.41, 0)

Orientation in ◦ 0

Size of bounding boxes in m (4.85, 2.02)

Table A.2: Initial configuration of surrounding vehicles in Scenario 1

Name Position in m Velocity in m/s Orientation in ◦ Size of bounding box in m

Truck 1 (189.21 ,9.76) (10.93, 0.03) 0.16 (8.19, 2.50)

Truck 2 (153.10, 9.67) (10.86, 0.01) 0.05 (16.88, 2.50)

Truck 3 (42.90, 9.78) (9.05, -0.05) -0.31 (16.17, 2.50)

Truck 4 (30.37, 5.64) (14.20, 0.04) 0.16 (7.18, 2.50)

Car 1 (82.61, 9.58) (10.51, -0.05) -0.27 (4.24, 1.72)

Car 2 (65.44, 8.58) (10.64, -0.05) -0.27 (4.14, 1.72)

Car 3 (50.73, 1.23) (14.86, 0.02) 0.07 (4.55, 1.72)

Car 4 (28.56, 0.04) (15.01, 0.01) 0.03 (4.85, 1.77)

Car 5 (7.30, 9.71) (9.95, -0.08) -0.46 (4.45, 1.82)

Car 6 (-2.02, 1.72) (14.56, 0.00) 0.00 (4.75, 1.92)

Car 7 (-21.98, 6.36) (13.97, 0.00) 0.00 (4.75, 1.92)

Car 8 (-24.61, 1.86) (14.83, -0.09) -0.35 (4.45, 1.82)

xi

A Appendix

A.1.2 Scenario 2

Table A.3 and A.4 introduce the initial configuration of ego- and surrounding vehicles in Scenario
2 respectively.

Table A.3: Initial configuration of ego-vehicle in Scenario 2

Item Details

Initial position in m (2.81, 1.29)

Initial velocity in m/s (12.48, 0.09)

Initial orientation in ◦ 0.41

Size of bounding boxes in m (4.35, 1.82)

Table A.4: Initial configuration of surrounding vehicles in Scenario 2

Name Position in m Velocity in m/s Orientation in ◦ Size of bounding box in m

Truck 1 (65.71, 5.88) (11.31, -0.02) -0.10 (12.94, 2.50)

Car 1 (47.06, 1.69) (13.03, -0.06) -0.26 (3.89, 1.72)

Car 2 (29.86, 6.02) (11.19, 0.04) 0.20 (4.65, 1.92)

Car 3 (18.48, 2.03) (12.66, 0.04) 0.18 (5.26, 2.22)

Car 4 (15.54, 6.20) (11.36, 0.04) 0.20 (4.14, 1.82)

Car 5 (-2.33, 5.89) (9.95, -0.08) -0.46 (4.04, 1.71)

Car 6 (-23.35, 0.99) (12.45, 0.09) 0.41 (4.75, 1.82)

A.1.3 Scenario 3

According to Table A.5 and A.6, the initial configuration of vehicles in Scenario 3 can be found.

Table A.5: Initial configuration of ego-vehicle in Scenario 3

Item Details

Initial position in m (55.57, 5.54)

Initial velocity in m/s (22.18, -0.11)

Initial orientation in ◦ -0.28

Size of bounding boxes in m (4.14, 1.92)

A.2 Analysis of physical Parameters

In this section, the changing processes of horizontal and vertical speeds, accelerations, and
jerks of all vehicles in three scenarios originally and using GA, PSO will be depicted sequentially,
which supports the quantitative analysis in Section 4.3.2.

A.2.1 Scenario 1

Figure A.1-A.3 depict the physical parameters of vehicles in Scenario 1 respectively.

xii

A Appendix

Table A.6: Initial configuration of surrounding vehicles in Scenario 3

Name Position in m Velocity in m/s Orientation in ◦ Size of bounding box in m

Truck 1 (156.20, 1.63) (6.93, 0.05) 0.41 (7.07, 2.22)

Truck 2 (92.16, 9.70) (20.41, 0.02) 0.05 (16.88, 2.50)

Car 1 (221.93, 2.47) (9.83, -0.07) -0.41 (4.65, 2.02)

Car 2 (205.79, 1.75) (10.43, -0.05) -0.27 (4.55, 1.82)

Car 3 (187.38, 2.66) (8.84, -0.10) -0.65 (4.45, 1.92)

Car 4 (174.02, 1.26) (7.23, -0.02) -0.16 (4.14, 1.92)

Car 5 (144.55, 2.32) (6.85, 0.01) 0.08 (4.55, 1.82)

Car 6 (134.08, 1.89) (7.21, 0.05) 0.40 (5.05, 1.92)

Car 7 (117.18, 1.64) (6.48, -0.01) -0.09 (4.04, 1.72)

Car 8 (108.78, 2.07) (5.67, -0.01) -0.10 (4.24, 1.82)

Car 9 (126.10, 6.00) (18.17, -0.08) -0.25 (4.14, 1.82)

Car 10 (97.70, 2.25) (6.25, -0.17) -1.56 (4.95, 2.02)

Car 11 (126.52, 10.55) (23.31, 0.11) 0.27 (4.14, 1.82)

Car 12 (93.29, 6.24) (19.00, 0.12) 0.36 (4.85, 2.02)

Car 13 (69.74, 1.46) (10.18, 0.04) 0.22 (4.65, 1.92)

Car 14 (47.89, 9.92) (21.31, 0.13) 0.34 (3.94, 1.92)

Car 15 (54.66, 1.14) (9.81, -0.08) -0.47 (5.05, 2.02)

Car 16 (13.66, 1.46) (11.64, 0.00) 0.00 (4.85, 1.82)

Car 17 (38.18, 2.31) (9.76, -0.02) -0.11 (5.05, 2.02)

Car 18 (19.42, 5.33) (20.44, 0.03) 0.08 (4.95, 1.92)

Original:

10 20 30 40 50 60

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(a) vx

10 20 30 40 50 60

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(b) vy

10 20 30 40 50 60

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

xiii

A Appendix

10 20 30 40 50 60

Frames

-60

-40

-20

0

20

40

60

j x
 [

m
/s

3
]

(e) jx

10 20 30 40 50 60

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.1: Analysis of physical parameters in original Scenario 1

Using GA:

10 20 30 40 50 60

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(a) vx

10 20 30 40 50 60

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(b) vy

10 20 30 40 50 60

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

10 20 30 40 50 60

Frames

-50

-40

-30

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

10 20 30 40 50 60

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.2: Analysis of physical parameters in Scenario 1 after using GA

xiv

A Appendix

Using PSO:

10 20 30 40 50 60

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(a) vx

10 20 30 40 50 60

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Truk2

Cars1

Cars2

Cars3

Truk3

Cars4

Truk4

Cars5

Cars6

Cars7

Cars8

Ego

(b) vy

10 20 30 40 50 60

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

10 20 30 40 50 60

Frames

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

10 20 30 40 50 60

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.3: Analysis of physical parameters in Scenario 1 after using PSO

xv

A Appendix

A.2.2 Scenario 2

In the following figures A.4-A.6 the physical parameters in Scenario 2 will be illustrated.

Original:

10 20 30 40 50 60 70 80 90 100

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(a) vx

10 20 30 40 50 60 70 80 90 100

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(b) vy

10 20 30 40 50 60 70 80 90 100

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60 70 80 90 100

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

20 40 60 80 100

Frames

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

20 40 60 80 100

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.4: Analysis of physical parameters in original Scenario 2

Using GA:

10 20 30 40 50 60 70 80 90 100

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(a) vx

10 20 30 40 50 60 70 80 90 100

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(b) vy

xvi

A Appendix

10 20 30 40 50 60 70 80 90 100

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60 70 80 90 100

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

20 40 60 80 100

Frames

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

20 40 60 80 100

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.5: Analysis of physical parameters in Scenario 2 after using GA

Using PSO:

10 20 30 40 50 60 70 80 90 100

Frames

0

5

10

15

20

25

v
x
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(a) vx

10 20 30 40 50 60 70 80 90 100

Frames

-2

-1

0

1

2

3

v
y
 [

m
/s

]

Truk1

Cars1

Cars2

Cars3

Cars4

Cars5

Cars6

Ego

(b) vy

10 20 30 40 50 60 70 80 90 100

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

10 20 30 40 50 60 70 80 90 100

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

xvii

A Appendix

20 40 60 80 100

Frames

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

20 40 60 80 100

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.6: Analysis of physical parameters in Scenario 2 after using PSO

A.2.3 Scenario 3

Similarly, Figure A.7-A.9 show the physical parameters of Scenario 3.

Original:

5 10 15 20 25 30 35 40 45 50

Frames

0

10

20

30

40

v
x
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(a) vx

5 10 15 20 25 30 35 40 45 50

Frames

-2

-1

0

1

2

3

4

5

v
y
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(b) vy

5 10 15 20 25 30 35 40 45 50

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

5 10 15 20 25 30 35 40 45 50

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

5 10 15 20 25 30 35 40 45 50

Frames

-10

-5

0

5

10

15

j x
 [

m
/s

3
]

(e) jx

5 10 15 20 25 30 35 40 45 50

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.7: Analysis of physical parameters in original Scenario 3

xviii

A Appendix

Using GA

5 10 15 20 25 30 35 40 45 50

Frames

0

10

20

30

40

v
x
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(a) vx

5 10 15 20 25 30 35 40 45 50

Frames

-2

-1

0

1

2

3

4

5

v
y
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(b) vy

5 10 15 20 25 30 35 40 45 50

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

5 10 15 20 25 30 35 40 45 50

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

5 10 15 20 25 30 35 40 45 50

Frames

-60

-40

-20

0

20

j x
 [

m
/s

3
]

(e) jx

5 10 15 20 25 30 35 40 45 50

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.8: Analysis of physical parameters in Scenario 3 after using GA

xix

A Appendix

Using PSO:

5 10 15 20 25 30 35 40 45 50

Frames

0

10

20

30

40

v
x
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(a) vx

5 10 15 20 25 30 35 40 45 50

Frames

-2

-1

0

1

2

3

4

5

v
y
 [

m
/s

]

Cars1

Cars2

Cars3

Cars4

Truk1

Cars5

Cars6

Cars7

Cars8

Cars9

Cars10

Cars11

Cars12

Truk2

Cars13

Cars14

Cars15

Cars16

Cars17

Cars18

Ego

(b) vy

5 10 15 20 25 30 35 40 45 50

Frames

-8

-6

-4

-2

0

2

4

a
x
 [

m
/s

2
]

(c) ax

5 10 15 20 25 30 35 40 45 50

Frames

-3

-2

-1

0

1

2

3

a
y
 [

m
/s

2
]

(d) ay

5 10 15 20 25 30 35 40 45 50

Frames

-20

-10

0

10

20

j x
 [

m
/s

3
]

(e) jx

5 10 15 20 25 30 35 40 45 50

Frames

-10

-5

0

5

10

j y
 [

m
/s

3
]

(f) jy

Figure A.9: Analysis of physical parameters in Scenario 3 after using PSO

xx

	Contents
	List of Abbreviations
	Formula Symbols
	1 Introduction
	1.1 Autonomous Driving
	1.2 Goal and Structure of the Work

	2 State of the art
	2.1 HighD Dataset
	2.2 Complexity Analysis
	2.2.1 Definition of ROI
	2.2.2 Classification of Surrounding Traffic
	2.2.3 Influence Factors

	2.3 Optimization Methods
	2.3.1 Background Knowledge
	2.3.2 Genetic Algorithm
	2.3.3 Particle Swarm Optimization
	2.3.4 Simulated Annealing
	2.3.5 Pattern Search

	3 Methodology
	3.1 Model Assumption
	3.1.1 Ego-Vehicle
	3.1.2 Surrounding Vehicles
	3.1.3 Time-Step Adaption
	3.1.4 Time-Gap Adaption

	3.2 Interface with Clusters
	3.2.1 Scenario Selection
	3.2.2 Coordinate Transformation
	3.2.3 Missing Frames Complement
	3.2.4 Input of the initial Data
	3.2.5 Data Structure Transformation

	3.3 Complexity Evaluation
	3.4 Penalty Function
	3.4.1 Penalty of Location
	3.4.2 Penalty of Velocity
	3.4.3 Penalty of Jerk

	3.5 Objective Function
	3.6 Tuner for Optimizer
	3.6.1 Definition of Evaluation Methods
	3.6.2 Problem Setting with Pre-processing
	3.6.3 Optimization Algorithm
	3.6.4 Post-Verification

	4 Results and discussion
	4.1 Results using Genetic Algorithm
	4.1.1 Parameter Variation
	4.1.2 Scenario Test

	4.2 Results using Particle Swarm Optimization
	4.2.1 Parameter Variation
	4.2.2 Scenario Test

	4.3 Discussion of the Results
	4.3.1 Comparison of the Optimization Result
	4.3.2 Quantitative Post-Verification
	4.3.3 Analysis of Exploitation and Exploration
	4.3.4 Subjective Qualitative Evaluation

	5 Summary and Outlook
	5.1 Summary
	5.2 Outlook

	List of Figures
	List of Tables
	Bibliography
	Appendix
	A Appendix
	A.1 Initial Configuration of vehicles
	A.1.1 Scenario 1
	A.1.2 Scenario 2
	A.1.3 Scenario 3

	A.2 Analysis of physical Parameters
	A.2.1 Scenario 1
	A.2.2 Scenario 2
	A.2.3 Scenario 3

