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“No one can give you any answers. There aren’t any. You
have to discover for yourself – you must learn to navigate

the mystery.”

Bill Hicks
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Abstract

The rise of the New Space era has led to a rapid increase in the availability and
accessibility of high-resolution Earth observation data, and with it, the need for efficient
mechanisms to extract insights. To this end, data fusion has become an indispensable
tool for the large-scale exploitation of ever-growing remote sensing data archives. A
particularly important case is the joint exploitation of highly complementary data
captured by synthetic aperture radar (SAR) and optical sensor modalities.

However, the first step in image-based data fusion endeavours is the determination of
correspondences and the subsequent alignment of the various data sources. In this
context, the main objective of this thesis is to expand the current research on the
application of deep learning to the problem of SAR-optical image matching. The aim
is to develop a fully automatic deep learning-based SAR-optical matching pipeline
capable of matching high-resolution imagery.

The objective is achieved through the investigation and development of deep learning-
based solutions to the various sub-problems within the realm of SAR-optical matching.
This thesis focuses on the core sub-problem of accurately determining corresponding
points across these modalities, and proposes numerous deep matching architectures to
address this problem in different ways. These supervised networks are found to out-
perform existing SAR-optical matching approaches across the board, with one such
approach significantly raising the bar for high-resolution SAR-optical matching. Fur-
thermore, approaches to matching under scarce data conditions are also investigated.
However, the complexity of these formulations and the numerous additional deep learn-
ing related challenges mean that these approaches require more research to be compa-
rable to existing approaches’ matching accuracy and precision.

Additionally, the sub-problems of SAR-optical feature detection and outlier identifi-
cation are addressed from a multi-modal deep learning perspective. The proposed
solution to the multi-modal feature detection problem is found to significantly increase
the accuracy of the correspondence network – in comparison to the commonly-used
single modality feature detection approach. Furthermore, the use of a convolutional
neural network for outlier identification is found to further increase the overall matching
accuracy.

Finally, these various developments are combined to form a comprehensive, deep learning-
based framework for matching SAR and optical imagery. This matching pipeline is
evaluated on large-scale high-resolution test imagery, and is found to provide spatially
diverse correspondences with an accuracy and precision suitable for their use in other
data fusion endeavours.

The contributions of this thesis are described in detail in the six peer-reviewed papers,
which comprise the body of this thesis. In summary, the results highlight both the
progress made and the remaining challenges in the realm of SAR-optical matching,
and lay the groundwork for further development of generalizable solutions to SAR-
optical image matching based on deep learning methods.
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Zusammenfassung

Der Anbruch eines neuen Zeitalters der Raumfahrt hat zu einem rasanten Anstieg
der Verfügbarkeit und Zugänglichkeit zu hochauflösenden Erdbeobachtungsdaten und
damit zu einem gestiegenen Bedarf für effizienter Mechanismen zur Gewinnung von
Erkenntnissen geführt. Zu diesem Zweck ist die Datenfusion zu einem unverzichtbaren
Werkzeug für die umfassende Nutzung ständig wachsender Fernerkundungsdatenar-
chive geworden. Ein besonders wichtiger Fall ist die gemeinsame Nutzung hoch kom-
plementärer Daten, die mit Radar mit synthetischer Apertur (SAR) und optischen
Sensormodalitäten erfasst werden.

Der erste Schritt bei bildbasierten Datenfusionsbemühungen ist jedoch die Bestim-
mung von Entsprechungen und die anschließende Ausrichtung der verschiedenen Daten-
quellen. In diesem Zusammenhang besteht das Hauptziel dieser Arbeit darin, die
aktuelle Forschung zur Anwendung von Deep Learning auf das Problem der SAR-
optischen Bildanpassung zu erweitern. Ziel ist es, eine vollautomatische, auf Deep
Learning basierende SAR-optische Matching-Pipeline zu entwickeln, mit der hochau-
flösende Bilder abgeglichen werden können.

Das Ziel wird durch die Untersuchung und Entwicklung von Deep-Learning-basierten
Lösungen für die verschiedenen Teilprobleme im Bereich der SAR-optischen Anpassung
erreicht. Diese Arbeit konzentriert sich auf das Unterproblem der genauen Bestimmung
entsprechender Punkte über diese Modalitäten hinweg und schlägt zahlreiche Deep-
Matching-Architekturen vor, um dieses Problem auf unterschiedliche Weise anzuge-
hen. Es wurde festgestellt, dass diese überwachten Netzwerke bestehende SAR-optische
Anpassungsansätze auf breiter Front übertreffen, wobei ein solcher Ansatz die Mess-
latte für hochauflösende SAR-optische Anpassungen erheblich höher legt. Darüber hin-
aus werden Ansätze zum Matching unter knappen Datenbedingungen untersucht. Die
Komplexität dieser Formulierungen und die zahlreichen zusätzlichen Herausforderun-
gen im Zusammenhang mit Deep Learning führen jedoch dazu, dass diese Ansätze
weitere Forschungsarbeit erfordert, um mit der Genauigkeit und Präzision bestehender
Ansätze vergleichbar zu sein.

Zusätzlich werden die Unterprobleme der SAR-optischen Merkmalserkennung und der
Ausreißeridentifikation aus einer multimodalen Deep-Learning-Perspektive angesprochen.
Es wurde festgestellt, dass die vorgeschlagene Lösung für das Problem der Erkennung
multimodaler Merkmale die Genauigkeit des Korrespondenznetzwerks erheblich erhöht
– im Vergleich zu dem üblicherweise verwendeten Ansatz zur Erkennung einzelner
Merkmale. Darüber hinaus wurde festgestellt, dass die Verwendung eines Faltungs-
Neuronalen Netzwerks zur Identifizierung von Ausreißern die Gesamtanpassungsge-
nauigkeit weiter erhöht.

Schließlich werden diese verschiedenen Entwicklungen kombiniert, um ein umfassendes,
auf Deep Learning basierendes Framework für die Anpassung von SAR- und optischen
Bildern zu bilden. Diese Matching-Pipeline wird anhand hochauflösender Testbilder in
großem Maßstab ausgewertet und liefert räumlich unterschiedliche Entsprechungen mit
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einer Genauigkeit und Präzision, die für ihre Verwendung in anderen Datenfusionsbe-
mühungen geeignet sind.

Die Beiträge dieser Arbeit werden in den sechs von Experten begutachteten Arbeiten,
die den Hauptteil dieser Arbeit bilden, ausführlich beschrieben. Zusammenfassend
heben die Ergebnisse sowohl die erzielten Fortschritte als auch die verbleibenden Her-
ausforderungen im Bereich der SAR-optischen Anpassung hervor und bilden die Grund-
lage für die Weiterentwicklung verallgemeinerbarer Lösungen für die SAR-optische Bil-
danpassung auf der Grundlage von Deep-Learning-Methoden.
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1. Introduction

1.1 Motivation
In recent years technological advancements in sensor systems, the miniaturisation of
satellites and ride-share based launch solutions have significantly reduced the barrier
of entry to space and thus led us into the New Space era (Butler, 2014; Denis et al.,
2017). The birth of this era has led to a rapid increase in the number of space-borne
Earth observation missions being founded at both a national and international level,
across multiple sectors. This in turn has fuelled an exponential growth in the amount
and diversity of available Earth observation data. Furthermore, it has brought on the
need for the development of advanced and efficient means to exploit this vast data
in order to tackle some of humanities most pressing challenges, as outlined by the
United Nations in the Sustainable Development Goals (United Nations, 2015). For
this reason data fusion has become a key topic within the field of remote sensing, as it
enables maximal utilisation of information generated by past, present and future Earth
observation missions (Gamba, 2014; Zhang, 2010).

Despite algorithmic advancements and the importance of the data fusion within remote
sensing; data fusion has largely been constrained to application across similar modal-
ities, in the case of high-resolution fusion, or low and medium resolution, in the case
of multi-modal fusion. The core reason behind this lies within the fundamental need
for being able to determine corresponding points, and perform subsequent alignment
of data sources prior to being able to embark on data fusion endeavours. Within the
realm of image based data, as commonly dealt with in remote sensing, these correspon-
dences are obtained via the process of image matching, whereby common points are
co-located across a set of images. This process is largely considered solved, from an
operational standpoint, when dealing with data from the same or similar modalities,
such as optical and infrared imagery. However, this is not the case when looking to
determine correspondences in high-resolution and multi-modal settings.

Synthetic aperture radar (SAR) and optical imagery constitute two of the most widely
used and available data sources within remote sensing. This, combined with their
vastly different yet highly complementary characteristics, makes SAR and optical data
fusion, and thus matching, a highly warranted pursuit (Schmitt et al., 2017; Tupin,
2010).

The imaging concepts employed by SAR and optical sensors are vastly different, which
makes finding common points and defining generic similarity metrics a challenging
task. Synthetic aperture radar relies on a side-looking acquisition, and range-Doppler
geometry to capture the physical properties of a scene, such as moisture content and
surface roughness. This leads to geometric image distortions such as layover, foreshort-
ening and radar shadow which have no analogous concepts in the optical domain. On
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(a) Sentinel-2 (b) Sentinel-1

(c) PRISM (d) TerraSAR-X

Figure 1.1: Example of optical (a,c) and SAR (b,d) imagery of the
same scene at different resolutions. Images (a) and (b) have a ground
sampling distance of 10m and are considered to be medium resolution,
while (c) and (d) have a ground sampling distance of 2.5m and are
considered to be high-resolution, as defined by (Thenkabail, 2018).

the other hand, optical imagery is formed using a projective acquisition geometry and
is often captured at near-nadir angles, thus reducing the geometric distortion of the
scene. However, unlike SAR, optical imagery captures the chemical characteristics of a
scene, but this acquisition can only take place under cloud-free and daylight conditions
and thus introduces illumination and shadow inconsistencies across the scene.

These factors combined with the different wavelengths captured by each modality lead
to significantly different geometric and radiometric properties between SAR and op-
tical imagery. Thus an object which is visible in SAR imagery, may appear with a
completely different nature in the optical image, if it appears at all. Furthermore,
SAR imagery suffers from a deterministic, multiplicative noise, called speckle, which
further distorts the interpretability of features within the image. These factors, specif-
ically those relating to geometric differences, become more even more pronounced as
the resolution of the imagery is increased, this can clearly be seen in Figure 1.1.

By this very nature, the determination of corresponding points between high-resolution
SAR and optical imagery, as defined by Thenkabail (2018), is a multi-facetted and
deeply complex task, even for human experts. While several approaches to SAR-optical
matching have been developed over the years, the majority of these approaches rely
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on intensity-based methods (Chen et al., 2003; Siddique et al., 2012; Suri & Reinartz,
2010) or hand-crafted features (Ma et al., 2017; Xiang et al., 2018; Ye et al., 2016).
Intensity-based methods rely directly on pixel intensity values and are thus sensitive
to speckle and the radiometric differences between SAR and optical imagery. Feature-
based methods, on the other hand, rely on hand-crafted feature detectors to detect
and describe similar points across the modalities. Although these approaches perform
better than purely intensity-based methods, they still lack robustness to speckle, and
more so to geometric differences between the scenes. More recently, a number of
deep learning based approaches to single modality remote sensing image matching
have been proposed, along with a few approaches specifically tailored towards SAR-
optical matching (Bürgmann et al., 2019; Hoffmann et al., 2019; Merkle, Luo, et
al., 2017; Mou et al., 2017). Due to the ability of deep neural networks to learn
complex representations of data, these matching approaches have shown promising
results and better robustness to speckle and radiometric differences between SAR and
optical imagery. However, even in the case of deep learning these approaches have been
limited to medium resolution imagery, or flat rural areas where geometric differences
between the modalities are still constrained. Furthermore, these approaches still largely
rely on manually selected features, or features generated from expensive, auxiliary
processes.

Thus the development of a generic approach to high-resolution SAR-optical matching,
which is not constrained to hand-crafted features, or specific geometric conditions, is
still an open problem and forms the basis for the topic of this thesis.

1.2 Objectives
This thesis aims to expand current research on the application of deep learning to SAR-
optical image matching, and the sub-problems involved within this domain. To a larger
degree, this thesis aims to transfer knowledge from the domains of deep learning and
image matching into the domain of remote sensing, by providing a toolbox of solutions
to the various challenges and formulations of the SAR-optical matching problem.

The main objective of this thesis is the development of a novel, fully automatic deep
learning-based SAR-optical matching pipeline capable of matching high-resolution SAR
and optical imagery. Such a pipeline would handle all aspects of the matching process;
from multi-modal feature recommendation, to the determination of SAR-optical cor-
respondences and finally, the removal of outliers. In order to achieve this, numerous
sub-objectives were formed and investigated, these can be summarized as follows:

• Deep learning-based approaches to matching
The development of various deep matching architectures which enable the match-
ing of high-resolution SAR and optical imagery.

• Matching under scarce data
The development of deep learning-based techniques, and semi-supervised meth-
ods to enable matching and improve robustness of existing networks when large-
scale labelled training datasets are not available.
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• Large-scale dataset creation
The creation of large-scale SAR-optical correspondence datasets which are suit-
able for training deep neural networks in a supervised manner.

• Auxiliary tasks for end-to-end matching
The investigation and implementation of a multi-modal feature detection mech-
anism. As well as the development of an outlier identification mechanism which
does not rely on auxiliary feature transfer models.

1.3 Thesis Structure
The structure of the thesis is as follows:

Chapter 2 introduces fundamental concepts related to SAR and optical imaging modal-
ities, and image matching. It further provides a review of existing approaches and the
state-of-the-art in SAR-optical matching in Section 2.3. Chapter 3 describes the key
contributions of this thesis, to which the related publications are contained within
Chapter 4. Chapter 5 provides a unified evaluation of the proposed approaches to
SAR-optical matching. Finally, Chapter 6 provides a discussion of the findings and
outlines future directions for research into SAR-optical matching.
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2. Theoretical Background

This chapter introduces the reader to the foundational concepts which are required for
understanding the challenges involved within SAR-optical matching, and contributions
of this thesis. Firstly, the chapter addresses the basic concepts of SAR and optical
sensors and the differences between their image characteristics. This is followed by
a general overview of general image matching concepts which form the basis of prior
work, and from which the key ideas for addressing SAR-optical matching have been
built upon. Finally, this chapter provides a review of previous work in SAR-optical
image matching and an analysis of the current the state-of-the-art.

2.1 Spacebourne Optical and Synthetic Aperture
Radar Imagery

The taxonomy of Earth observation sensors can be split up in many ways based on the
operational frequency or bandwidth of the sensor. However, for the case of this thesis, it
is most useful to divide the taxonomy by the acquisition geometry; into projective, and
doppler geometries. Within these classes, focus is drawn to the two main subclasses,
namely optical and synthetic aperture radar (SAR) imagery. These two modalities
constitute the most important modalities within space-borne remote sensing as they
capture vastly different characteristics of a scene. Still, each does so with a unique set
of benefits and drawbacks.

Through the use of data fusion, the drawbacks of one modality can be augmented
by the benefits of the other, and thus a more complete picture of the scene can be
created (Schmitt et al., 2016). However, this highly complementary nature is also
what makes matching SAR and optical imagery a deeply complex problem. In this
section, the fundamental principles of optical and SAR sensors are presented. These
are relevant for the reader to gain an understanding of the differences between the
modalities. Furthermore, the different characteristics of these modalities are explored,
and finally, the key aspects which need to be addressed to match SAR and optical
imagery successfully are outlined.

As this section is designed to provide the reader with an overview of the fundamental
concepts of SAR and optical imagery relevant to the image matching problem, the
reader is referred to the following resources for an in-depth review of SAR (Cumming
et al., 2005), optical (Prasad et al., 2011) and general remote sensing (Lillesand et al.,
2015) sensors.



6 Chapter 2. Theoretical Background

2.1.1 Fundamentals of Optical and SAR Imaging
Both SAR and optical sensors image a scene through the use of the electromagnetic
(EM) spectrum. However, their imaging mechanism and the information which can
be derived from the EM-spectrum at these various frequencies are inherently different
(Lillesand et al., 2015).

Active and Passive Sensors

Optical sensors are passive imaging devices, which means they take advantage of ex-
isting sources of illumination and the natural reflective properties of objects to form
images. In the case of optical Earth observation imagery, the sun is used as a global
illumination source. Thus optical image sensors tend to operate on a sun-synchronous
orbit to ensure the scene is well illuminated during acquisition. On the other hand,
SAR uses the principle of active sensing, whereby the sensor acts as both an illumi-
nation source as well as the acquisition unit. A scene is thus imaged by alternating
between emitting bursts of EM-radiation and measuring the strength and time delay of
the reflected signal. The proportion of the signal which is reflected towards the sensor
by an object is known as backscatter.

The Electromagnetic Spectrum

Given that objects interact (reflect and absorb) different parts of the EM-spectrum in a
unique manner, several realizations of optical and SAR sensors exist, each designed for
a specific purpose and to take advantage of the properties observable within a particular
part of the EM-spectrum. Optical sensors detect very high-frequency radiation within
the visible to thermal infrared section of the EM-spectrum. In contrast, SAR sensors
operate at much lower frequencies within the microwave section of the spectrum. It
is this use of lower frequencies which allow SAR sensors to be mostly independent
of atmospheric conditions, and thus they can acquire imagery through thick clouds,
or smoke. The same, however, is not true for optical sensors which require clear
atmospheric conditions to observe ground level reflections within the visible light and
near-infrared spectrum.

In large, optical sensors can be classified, by the number of spectral bands which they
image, into hyperspectral, multispectral, and panchromatic sensors. Whereby hyper-
spectral sensors image the full optical subsection of the EM-spectrum into hundreds
of narrow spectral bands, while panchromatic sensors image the visible light spectrum
using a single, wide spectral band. Similarly, SAR sensors can also be classified based
on their operational bandwidth into C, L and X-band, with L-band being the lowest
frequency and thus the highest level of vegetation and soil penetration. However, due
to the relationship between wave-length and spatial resolution present in SAR imagery,
(Cumming et al., 2005), X-band imagery exhibits the highest spatial resolution and
thus provides the detailed information about surface structure. In optical imagery,
a similar trade-off exists, except it is between spatial resolution and spectral resolu-
tion. Due to data storage and throughput constraints hyperspectral and multispectral
images tend to have a lower resolution than panchromatic imagery. The operational
frequency and bandwidth of each of these sensors within the EM-spectrum is further
described by Figure 2.1.
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Figure 2.1: The electromagnetic spectrum with the position and band-
width of various classes of optical and SAR sensors depicted. As the
intensity of the panchromatic imagery is a function of multiple wave-
lengths, the depiction of blue as black and infrared as white is merely

for effect and not a true mapping of the colour space.

Image Acquisition Geometry

Apart from their illumination and operating spectrum differences, optical and SAR
sensors rely on vastly different imaging techniques and acquisition geometries. Optical
sensors make use of a linear array of photosensitive detectors which simultaneously
record the reflection of light from the Earth’s surface. Thus each image pixel directly
represents the accumulation of reflected radiation for a specific area on the ground. In
optical imaging, the sensor array is often positioned such that the acquisition occurs
from a near-nadir (downward looking) perspective, with the image being formed in
a line by line along the azimuth (flight direction) as the satellite orbits over a scene
(Girard et al., 2003).

In contrast to this, SAR sensors utilize a single antenna to emit EM-signals and mea-
sure the corresponding magnitude, range and Doppler-shift of these signals in the
backscatter. As only a single detector element exists, SAR is based around the concept
of synthesizing an aperture in the azimuth direction in order to form a 2-dimensional
image (Cumming et al., 2005; Orth, 2018). Due to this imaging concept, SAR sensors
are required to be side looking in order to prevent ambiguities in the image formation
process. The angle between the SAR antenna and an object on the ground is known as
the incidence angle, θ, and it plays a large role in the geometric distortions which are
present in SAR imagery, as will be discussed in the next section. Due to this imaging
concept, the SAR image is formed along the slant range, where each pixel represents
the accumulation of backscatter from points which are the same distance away from the
sensor. The acquisition geometry of optical and SAR sensors is depicted in Figure 2.2.

Image Geo-localization

An important aspect of remote sensing imagery which separates it from other types
of imagery is the absolute geo-localization of the data. This refers to the fact that
each pixel in an optical or SAR image can be related back to a specific area on the
Earth, with the area being directly related to the spatial resolution of the sensor. For
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Figure 2.2: Illustration of (a) optical and (b) SAR image acquisition
geometry. The optical sensor has a nadir geometry with a rectangular
footprint, and fixed area pixel, while the SAR sensor has a side-looking
geometry with a non-regular footprint which is forms the aperture as
the sensor progresses along the azimuth. SAR pixels are formed along

the slant range, based on the time-of-flight of the signal.

this reason satellites continuously monitor their state (attitude, position and velocity)
relative to the Earth. Using this state, an Earth model and sensors specific image
formation models it is possible to perform the geo-localization process for both optical
and SAR imagery.

For optical sensors, the image formation process of a single line in the image can be
mathematically modelled by a set of co-linearity equations which form a perspective
projection model. This same model is used for full-frame cameras in conventional
computer vision applications. The perspective projection is then applied to each line
in the image to relate 3-dimensional ground coordinates, to pixel coordinates within the
sensors image frame, thereby geo-localizing the image (Girard et al., 2003). A similar
process can be applied to SAR imagery by modelling the projection of Earth coordinates
to slant-range image coordinates using a set of range-Doppler equations (Cumming et
al., 2005). The 3-dimensional ground coordinates used in the geo-localization process
for both sensors usually take the form of measured ground control points (GCPs) or
are derived from existing surface models. Thus the accuracy of these points directly
affects the geo-localization accuracy of the imagery.

Furthermore, the geo-localization process in both modalities relies on knowledge of
the sensor state. However, the estimation of this state is fraught with errors and
uncertainties. Due to the nature of the optical imaging process, these state errors have
a significant effect on the absolute geo-localization accuracy. This is because small
angular errors in the satellite attitude propagate into large offset errors on the ground.
Thus for high-resolution optical sensors, these inaccuracies can lead to geo-localization
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errors of tens of meters (Merkle, 2018). In contrast, the effect of state inaccuracies on
SAR geo-localization is significantly lower as they are primarily compensated for in the
SAR sensor model and signal-processing procedures. Thus high-resolution SAR sensors
can produce geo-localized imagery with sub-meter accuracy, and in some situations
centimeter accuracy (Eineder et al., 2010).

2.1.2 Geometric and Radiometric Characteristics
Due to the previously discussed differences between the SAR and optical image ac-
quisition process, the character of the resultant imagery is vastly different, as seen in
Figure 1.1. While optical imagery is easily interpretable by humans, due its imaging
concept being similar to that of the human eye, SAR imagery is difficult for humans to
interpret without the use of auxiliary information or expert knowledge (Schulz et al.,
2009).

In this section the key characteristics of each modality are described and compared to
provide the reader with an understanding of the considerations which need to be held
in mind when developing and evaluating SAR-optical matching approaches.

Geometric Characteristics

Due to their distinct imaging concepts, the geometric characteristics of a scene appear
differently in optical and SAR imagery. When imaging flat terrain these geometric
differences are negligible. However, if the scene contains objects with a height above
ground the geometric distortions become significant, especially in the case of high-
resolution imagery.

In the case of optical imaging, objects perpendicular to the azimuth get projected
away from the sensor in the image plane. However, due to the near-nadir acquisition
geometry used in optical sensors, these distortions remain moderate throughout the
scene. On the contrary, the time-of-flight based imaging principle used in SAR imagery
leads to above ground objects being projected towards the sensor in the image plane.
To further clarify these differences in projection, the case of imaging a building with
SAR and optical sensors is presented in Figure 2.3.

In Figure 2.3 the distortion of the roof (towards and away from the sensor) can be
clearly seen in the SAR and optical image planes. Furthermore, the reason why distor-
tions are negligible for ground level objects is also visible. What is not visible from the
figure are the other types of geometric distortions which are present in SAR imagery,
and which have no analogous concept in optical imagery. These differences can further
be seen in the real-world example imagery depicted in Figure 2.4.

Layover, foreshortening and shadow are three additional types of geometric distortion
which occur when imaging above ground objects using SAR, and which have a signif-
icant impact on the appearance of the resultant imagery (Curlander, 1982). Layover
occurs when the slope of the object is greater than the incidence angle, θ, thus caus-
ing mixing of the ground and object backscatter and an inversion of the object in the
image. This distortion is particularly common in urban and mountainous regions, and
is one of the biggest challenges for SAR-optical matching. Foreshortening refers to the
absolute distance between two points being shortened upon projection to the image
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Figure 2.3: Comparison of optical (red) and SAR (blue) image forma-
tion concepts. The raised points (a) and (c) can be seen being projected
towards the sensor in the SAR image plane, and away from the sensor in
the optical image plane. Point (b) which is on the Earth is not geomet-
rically distorted by the different modalities, and projects to the same

locations in both images. While (d) is not visible to either sensor.

plane. This occurs when the slope of the terrain or object is less than the θ or if the
slope is facing away from the sensor with an angle of less than 90◦ − θ. While the
distance is shortened there is no inversion of the object.

The final distortion, shadowing, occurs when there is no direct line-of-site from the
sensor to the object, thus no information can be obtained and the region appears dark
in the final image. Shadowing commonly occurs in urban and mountainous areas where
a raised point obscures the few of the ground or objects behind it. An example of these
three SAR specific geometric effects can be seen in Figure 2.5

Although layover and foreshortening have no analogue in optical imagery, shadow-
ing can be thought of as being similar to occlusion. The main difference being that
shadowing appears as a dark region in the SAR image (as the visible face is subject to
layover), while in an optical image the visible face falls away from the sensor to occlude
the objects behind it.



2.1. Spacebourne Optical and Synthetic Aperture Radar Imagery 11

Figure 2.4: Two examples of optical and SAR imagery of the same
scene, highlighting the distortion of tall objects in each modality.
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Radiometric Characteristics

An objects response to EM-radiation is dependent on both object properties, such
as roughness, conductivity, and reflectivity, as well as on the polarization and wave-
length of the exciting signal. As the frequency of the signals used in SAR and optical
image formation differ by several degrees of magnitude, it is not surprising that the
radiometric properties of the resultant imagery are vastly different.

As optical sensors operate within the range of visible and infrared radiation, the pixel
values in optical imagery can be interpreted as a characterization of the chemical com-
position of the scene. On the other hand, the lower frequency used in SAR imaging
provides less information about the chemical composition and more about the struc-
tural and geometric properties of the scene. The intensity of pixels in a SAR image
directly related to the roughness, electrical conductivity and orientation of the object
relative to the sensor (Curlander, 1982).

Another effect of the lower frequency of SAR imagery is the salt-and-pepper like noise,
speckle, which occurs across the image. This is not noise, but rather the effects of
additive and destructive interference which arises due to multi-path effects and mul-
tiple scatterers existing within the same resolution cell. Speckle, as well as the other
radiometric differences, can be seen in Figure 1.1.

2.1.3 Considerations for SAR-Optical Matching
From the discussion on image geo-localization in Section 2.1.1, it can be seen that
finding correspondences between SAR and optical imagery can lead to improvements
in optical geolocalization (Müller et al., 2012). While this is an important use case
many other applications exist, such as SAR-optical stereogrammetry (Bagheri et al.,
2018; Qiu et al., 2018), location of ground control points (GCPs) in optical imagery
(Bürgmann et al., 2019) and many other data fusion tasks (Schmitt et al., 2017; Tupin,
2010).

Given the substantial radiometric and geometric differences which exist between SAR
and optical imagery, as discussed in Section 2.1.2, it is clear as to why matching these
modalities is a deeply complex problem. These differences directly affect the robustness
and suitability of various matching approaches to the problem. Furthermore, they make
human interpretation and manual matching of the imagery a difficult task, even for
experts. This has a significant effect on the availability of labelled training data, and
the suitability of supervised learning on the matching problem.

At low and medium resolutions the geometric differences are, in many cases, negligible
and the matching problem is largely reduced to dealing with the radiometric differences.
However, as the resolution increases the geometric distortions become more pronounced
and add to the complexity of the problem. This is especially true in urban and sub-
urban areas where layover and shadowing are common occurrences and begin to interact
with each other due to the density of above ground structures.

In Chapter 3 the problem of matching high-resolution optical and SAR imagery is
addressed, and various proposals are made as to how to deal with these complexities
from both a deep learning, as well as, an image matching perspective.
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2.2 The Fundamentals of Image Matching
Image matching has long been a topic of research within the field of computer vision
and almost all fields related to image analysis and processing, including remote sensing
(Gruen, 2012; Szeliski, 2010). While there have been a significant developments in im-
age matching approaches across the board, the majority of approaches remain domain
specific and are not directly transferable to other modalities (Gruen, 2012).

However, domain specific approaches to image matching often take inspiration from
computer vision methodologies and thus many parallels exist between them. Most
notably, the fundamental concepts and taxonomy of image matching approaches are
transferable across domains.

In general the image matching process can be broken down into three steps, namely,
feature detection, matching and outlier removal. While these three stages often exist
as separable components of a matching pipeline, it is also possible that two or more of
them are combined into a single step. However, each component fulfils an important
role in the image matching process and is required in order to enable fully automatic
image matching, irrespective of the imaging modality.

In this section each of these foundational components are described and a high-level
overview of the most common methodologies for each are described. Due to the breadth
and depth of research in image matching the discussion is limited to methodologies
which have later seen adaptation within the field of SAR-optical image matching.
For a complete review of image matching approaches and methodologies the reader is
referred to (Steger et al., 2018; Szeliski, 2010). Furthermore, for an in-depth review
of the historical development of image matching within photogrammetry and remote
sensing the reader is referred to (Gruen, 2012).

2.2.1 Feature Detectors
Features can be defined as sub-regions in an image which contain a pattern that is
distinctive from immediately nearby pixels. Thus features can usually be linked to a
physical image or object property such as corners, edges or blobs (Leng et al., 2019; Li
et al., 2015).

The role of a feature detector is to find these high saliency and descriptive local regions,
such that a spatial extent can be extracted, and matching algorithms can be applied
in order to determine correspondences between images.

While many feature detectors have been proposed, they are very tightly coupled to a
specific modality. This combined with a broad diversity of image conditions (i.e. illu-
mination and viewpoint changes, image quality, resolution) means that no ideal feature
detector exists, and the design or selection of a feature detector is mostly dependent
on the application (Salahat et al., 2017). This problem is further exacerbated when
dealing with feature detection in multi-modal imagery, where the goal of the detector
is not only to locate salient features but to do so in a manner which ensures that there
is an overlap between the features detected in each modality.

For these reasons many feature detectors are designed around the use of secondary
information, such as image gradients. This allows for the detector to be adapted
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to for use across a wide range of modalities by replacing the gradient operator with
the applicable operator for the new modality. Furthermore, features based on image
gradients are less affected by varying image conditions, and thus lead to improved
robustness of the detector Leng et al. (2019). The utility of this approach can be seen
in the widespread and continued use of the Harris corner detector (Harris et al., 1988),
as well as the Scale Invariant Feature Transform (SIFT) (Lowe, 2004).

While being one of the oldest gradient-based feature detectors, the Harris corner de-
tector remains in widespread use due to its simple nature. The Harris detector is based
around finding 3× 3 pixel regions which exhibit high variation (a large sum of squared
difference) when subject to a small translation in any direction (Harris et al., 1988).
Regions which exhibit a high variation in a single direction are labelled as edges, while
regions with high variation in multiple directions are labelled as corners. On the other
hand, low variation regions are deemed to be unsuitable as feature points. Due to
the simplicity of this approach, it is computationally efficient and produces a large
number of feature points. To reduce the overall number of features, Harris detectors
usually include a non-maximal suppression (NMS) phase which limits the final set of
features by suppressing the response of non-maximal features within a certain radius
of a local-maxima (Szeliski, 2010).

Compared to the Harris detector, the Scale Invariant Feature Transform (SIFT), pro-
posed by Lowe (2004), is a computationally expensive feature detection algorithm.
However, it has become one of the most widely used and adapted feature detectors
due to its robustness and adaptability (Burger et al., 2016; Suri, Schwind, et al., 2010;
Xiang et al., 2018). To detect robust feature points, SIFT constructs a difference of
Gaussian (DoG) pyramid. This is done by convolving each level of an image scale space
(octave) by a set of Gaussian kernels of increasing standard deviation. The differences
between adjacent filtered images in each octave are then computed to form the DoG
pyramid. Local extrema are then detected by comparing each pixel to its eight spatial
neighbours, as well as the nine pixels in the scale space above and below it. If the
pixel value is larger or smaller than all of its neighbours, it is considered a candidate
feature point. Next, the keypoint location is optimized to sub-pixel accuracy, and then
two final checks are applied to remove unstable feature points, such as edges. These
checks are based on the eigenvalues of the Hessian matrix for the key-points, and follow
similar criteria to the Harris corner detector to differentiate corners from edges.

While both Harris and SIFT still see extensive utilization in many image matching
pipelines, in recent years, there has been a move away from hand-crafted feature detec-
tors in favour of learned detectors (DeTone et al., 2018; Laguna et al., 2019; Yi et al.,
2016). This has primarily been driven by the maturation of deep learning techniques
and image matching within optical computer vision applications. However, while these
learned detectors have shown state-of-the-art results in conventional computer vision
applications, they are not yet suitable for use in SAR-optical matching. This is due
to the large amounts of training data they require, or the training mechanism is based
around a set of assumptions which do not hold under multi-modal conditions.
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2.2.2 Methodologies for Matching
The matching stage of the pipeline is responsible for determining which points across
a set of images are likely to represent the same point in actuality. This is the fun-
damental stage in an image matching pipeline, and the feature detection and outlier
removal stages can be seen as auxiliary tasks which simplify the problem of determining
correspondence by reducing the search space and removing errors.

Historically matching approaches can largely be separated into two main classes, namely,
intensity-based and feature-based matching (Shapiro et al., 1992). However, more re-
cently the third class of matching approaches has appeared, namely, deep matching.
These approaches rely on the descriptive nature of feature maps extracted by convolu-
tional neural networks (CNNs) to enable matching in complex high-dimensional spaces
(Fischer et al., 2014).

Intensity-based Matching

Intensity-based approaches rely directly on pixel intensity values to determine corre-
spondences across a set of images. These approaches usually forego the feature detec-
tion stage of the matching pipeline in favour of a more direct, albeit, computationally
intensive approach.

To determine correspondences across images, intensity-based methods make use of
similarity metrics which compute the agreement between image regions based on the
intensity values within the sub-region. Due to this, these methods are generally imple-
mented in a sliding window manner whereby a small template is progressively moved
within a larger search region to determine the point of best correspondence (Ghaffary,
1986), as depicted in Figure 2.6.

To ensure a diverse spatial distribution of correspondences, intensity-based methods
frequently select search and template patches based on a uniform grid of points sampled
across the images to be matched. However, this approach relies on the assumptions
that the images are related by a local offset and that the upper bound of this offset
is known. As this is the case in most SAR-optical matching tasks, where the geo-
location and upper bound of the optical geo-localization error are known, intensity-
based methods have seen significant use within this domain. In cases where the images
are not coarsely aligned, intensity-based methods fall back to a global search which
comes at a considerable computational cost (Zitová et al., 2003).

While less common for image matching, intensity-based methods can be initialised
using features detected in one image and the assumption of small local offsets between
images. This approach is known as optical-flow (Horn et al., 1981) and is commonly
used in video-based object tracking.

Due to the reliance on raw intensity values, and the multitude of distortions which
can occur, the design of a robust similarity metric is paramount to the success of
intensity-based matching methods. Within the realm of remote sensing, and multi-
modal matching the most frequently used similarity metrics are based on normalized
cross-correlation (NCC) and mutual information (MI) (Merkle, 2018; Suri & Reinartz,
2010; Wang et al., 2012).
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Figure 2.6: Illustration of the sliding window mechanism used in
intensity-based matching approaches. The template patch T is itera-
tively moved across a defined search window in a left-to-right, top-to-
bottom manner. For each offset, a similarity metric is computed between
T and the overlapped region R, within the search window. The resul-
tant value is an indication of the likelihood of the offset being the point

of correspondence between T and R.

Cross-correlation metrics, such as NCC, are based on the idea of finding the offset which
maximizes the correlation function between the search and template patch (Ghaffary,
1986). This implies calculating the NCC similarity metric between the overlapping
regions for each offset within the search window, as depicted in Figure 2.6.

Considering an image patch R of size (N ,M) and centered at the point (x, y) in the
reference image I, the NCC similarity metric between this region and a template patch
T of size (N ,M), extracted from the input image I′, is defined as,

NCC(x, y) =

∑
(u,v)∈T

(
R(x+ u, y+ v)−Ru,v

) (
T(u, v)−T

)
√ ∑

(u,v)∈T

(
R(x+ u, y+ v)−R

)2 ∑
(u,v)∈T

(
T(u, v)−T

)2 (2.1)

Where (u, v) ∈ T represents the set of all pixel offsets in the template patch and
R(x+ u, y+ v) and T(u, v) are the intensity values of the region and template at the
offset (u, v). Furthermore, T, and R represent the mean intensity value of the template
patch, and the image region overlapping with the template patch, respectively. To
determine the point of maximum correspondence the NCC is computed at each (x, y)
coordinate in the search region. The argument of the maxima is then selected to be the
point of correspondence if the maxima is above a predefined threshold (Zitová et al.,
2003).

Another widely used similarity metric for intensity-based matching, is mutual infor-
mation (MI). It is computes the similarity between two image patches based on a
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comparison between their pixel intensity distributions. Thus the MI between a tem-
plate patch T and an image region R, cropped from the search window at (x, y), can
be defined as follows,

MI(T, R) = H(T) +H(R)−H(T, R), (2.2)

where H(◦) represents the marginal Shannon entropy of the respective patch, and
H(T, R) is the joint entropy. Both the marginal and joint entropy can be directly
calculated from a 2-dimensional co-occurance matrix of T and R image intensities, as
per the formulations presented in (Chen et al., 2003).

As with NCC, the process of determining the most likely point of correspondence
involves computing the MI at every location (x, y) within the search window, and then
selecting the argument of the maxima as the point of correspondence. The MI value
has a range from 0 to 1 with 1 indicating that the patches are identical. Thus the point
of correspondence can be further verified using a threshold on the maximum MI value.

Both NCC and MI include normalization mechanism, which allows for these metrics
to be relatively robust to changes in illumination and other radiometric distortions
between the template and search images. However, due to the direct approach of these
methods, they are very sensitive to geometric differences and can often break down
quickly even under modest geometric distortions.

Feature-based Matching

Feature-based approaches to matching rely on the description of distinctive salient
features within the image space. These points are usually found using hand-crafted
feature detectors, as was discussed in Section 2.2.1.

Once features have been detected, a feature description algorithm is used in order
to create a unique vector description of the feature which can be used for matching.
This is commonly done by extracting a small template patch around the identified
feature point and performing a series of transformations on it in order to derive an
N -dimensional latent vector for the feature. This vector should not only be unique,
but should also have the property that similar features are mapped to a similar location
within the latent space (Szeliski, 2010).

Correspondences are then determined by computing a matching score between sets of
feature vectors extracted from multiple images. In many cases these matching scores
are simply computed as the Euclidean distance between two vectors, however, they can
be based on other metrics too. A pair of feature vectors is thus labelled as corresponding
when the matching score exceeds a predefined threshold.

From this it can be seen that the success of feature-based matching is highly dependent
on the design of a good feature descriptor. Over the years a wide variety of feature de-
scriptors have been designed which trade-off speed, accuracy and robustness depending
on the application. However, to date, the SIFT descriptor (Lowe, 2004) still remains
the most widely used descriptor and has seen a number of modifications for application
in other domains, and to improve speed and robustness (Chen et al., 2003; Wu et al.,
2013).
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The SIFT feature descriptor is a 128-dimensional vector which encodes information
about the local image gradients around a feature point. To form this vector a 16× 16
pixel window is selected around the previously detected feature point. The gradient
vectors for each pixel within this window are computed, and a Gaussian weighting is
then applied to prioritize gradients nearest to the feature point. The descriptor window
is then sub-divided into sixteen 4× 4 windows and an eight bin gradient histogram
is computed for each sub-window. These histograms are then concatenated and the
resultant vector is normalized to unit length to form the final feature vector.

The application of Gaussian weighting and the normalization of the feature vector make
SIFT descriptors largely invariant to small translational offsets as well as to large vari-
ability in contrast and illumination. However, this invariance does not translate to
robustness when considering multi-modal imagery with vastly different image proper-
ties, although modifications to SIFT have been proposed to deal with these cases (Suri,
Schwind, et al., 2010; Xiang et al., 2018).

The biggest constraint of feature-based approaches lies in the fact that the feature
detector and descriptor need to be carefully designed such that the same feature points
can be located and accurately matched across a set of images. Thus they are often
designed to with a specific application or sensor modality in mind, and do not translate
well to other modalities without modification. This constraint becomes more complex
to resolve when dealing with matching across different modalities, where features can
have vastly different appearances, and large geometric distortions can exist between
images.

Deep Matching

In recent years deep learning-based approaches to image matching have gained much
popularity and are evermore becoming the go-to approach in image correspondence
problems. This is primarily due to the ability of deep Convolutional Neural Net-
works (CNNs) to model complex features and relationships within the image domain
(O’Mahony et al., 2019; Schönberger et al., 2017). Which has allowed for the de-
velopment of deep matching solutions which are more robust to variation in image
condition and view-point than their intensity and feature-based predecessors. These
improvements have, however, come at the cost of increased computational complexity;
although this is less and less becoming a deciding factor in algorithm selection.

Fischer et al. (2014) provided one of the earliest insights into applying deep learning to
the image matching problem, by using features extracted from the last layer of a CNN
in place of SIFT as a feature descriptor. In doing so, it was shown that the features
learned by CNNs can outperform conventional feature descriptors in image matching
tasks.

Unlike intensity and feature-based matching approaches which have a relatively fixed
methodological form, deep matching approaches have been developed in many forms
which often take inspiration from these methodologies. Initial deep matching architec-
tures aimed to replace the similarity metrics used in intensity-based methods (Fischer
et al., 2014; Zagoruyko et al., 2015), or the feature descriptor component of feature-
based methodologies (Balntas et al., 2016; Han et al., 2015; Simo-Serra et al., 2015).
In both these initial forms of approaches, the networks relied on pre-existing feature
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Figure 2.7: Taxonomy of 2-stream matching architectures. Each
stream consists of a CNN which either (a) share weights W across all
layers, (b) share weights in high-level layers to allow for initial feature
independence, or (c) are completely independent to allow for modality-

specific features to be learned at all levels.

detectors or template style matching, where correspondences were determined between
fixed-size image patches. However, in recent years deep matching architectures have
evolved to offer a comprehensive solution to the image matching problem by handling
feature detection, matching and outlier removal in a single end-to-end deep learning
architecture, and thus being able to operate on full-scale imagery DeTone et al. (2018)
and Yi et al. (2016).

However, out of the diverse arrangement of deep matching architectures which exist,
two-stream network architectures, such as those depicted in Figure 2.7, have shown the
most promise for matching applications which involve geometric distortions or multi-
modal imagery (Liu et al., 2018; Simo-Serra et al., 2015; Zagoruyko et al., 2015; Zhu
et al., 2019).

Two-stream networks commonly take one of two forms; either they include a decision (or
metric) network which directly outputs a similarity score, as depicted in Figure 2.7. Or
they output feature vectors for each stream which are then matched using conventional
distance metrics such as the Euclidean distance.

While two-stream networks and other deep matching approaches have grown in popu-
larity due to their robustness, accuracy and adaptability, they are still limited to use
within a specific domain or application. However, unlike other methodologies, this
limitation is not inherent in their design but instead based upon the data and loss
functions which were used to train the model. Thus deep matching approaches can
easily be adapted and modified for use in other domains, given sufficient labelled train-
ing data and computational resources. Furthermore, recent deep matching approaches
have begun to explore the use of self-supervised methods to reduce the requirement
for labelled training data (DeTone et al., 2018). However, these approaches require
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mathematical models of the expected distortions and image space transformations to
generate artificial scenarios which accurately model reality.

The constraints introduced by the need for large-scale labelled training data, as well as
accurate mathematical models of feature transfer are by far the biggest obstacles facing
the development and success of deep matching within complex multi-modal domains.

2.3 SAR-Optical Matching: A Review
Optical and SAR are two of the most important modalities in spaceborne remote
sensing applications. Due to the highly complementary nature of their imagery (Sec-
tion 2.1) data fusion of these modalities has become a critical task in deriving insights
for global-scale Earth observation applications (Schmitt et al., 2017; Zhang, 2010). For
this reason, research into SAR-optical image matching has grown substantially, with
a wide range of approaches having been proposed over the years. In this section, a
review of the existing approaches to the SAR-optical matching problem is provided,
and the open problems which this thesis aims to address are highlighted.

One of the seminal works in this domain was proposed by Li et al. (1995), who ap-
proached the problem as an image registration task. Whereby strong contours in each
modality where extracted and then iteratively aligned.

Several years later, after significant developments within the field of traditional image
matching, Dare et al. (2000) proposed the first work detailing the use of domain-specific
features for SAR-optical matching. This lead to various feature-based approaches being
developed, which were primarily based around the idea of using edge and contour
segments as features within a regression-based matching framework (Cheng et al.,
2004; Zhaohui et al., 2004).

The development and growing reputation of the SIFT descriptor (Lowe, 2004), within
the domain of traditional computer vision applications, lead to many modifications of
it being proposed for use in remote sensing image matching (Dellinger et al., 2015;
Gong et al., 2014; Suri, Schwind, et al., 2010). While these approaches provided a
relatively successful means of matching spacebourne SAR imagery, they still failed
to provide a means for enabling SAR-optical matching. This was largely due to the
features detected by these SAR-specific SIFT implementations being independent of
those detected in the optical domain (Ma et al., 2017).

To address this a number of additional modifications were added to the SIFT pipeline
in order to enforce consistency between the detected feature points and extracted de-
scriptors in each modality (Fan et al., 2012; Fan et al., 2014; Xu et al., 2015). However,
these approaches were largely limited by the fundamental concept of SIFT, which is
related to the use of image gradients for feature detection and description. In op-
tical imagery the concept of image gradients is largely related to edges and object
boundaries, while in SAR imagery speckle and the nature of the imaging concept leads
to ambiguous object boundaries and significant fluctuations in local intensity. Thus
the original and modified SIFT detectors could still not provide robust features for
matching in high-resolution environments.
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To account for these large differences between SAR and optical imagery at higher
resolutions, Ye et al. (2016) argued for the use of an auxiliary image representation as
a proxy for image gradients. This lead to the development of the histogram of oriented
phase congruency (HOPC) descriptor. In a similar vein, Xiang et al. (2018) coupled
modality specific gradient operators with a Harris scale-space to better account for the
vast radiometric differences between the modalities. Li et al. (2020) combined these
insights and phase-congruency to develop the Radiation-variation Insensitive Feature
Transform (RIFT).

Unlike feature-based approaches, which have seen a rich and diverse history of devel-
opment, intensity-based methods have seen limited see use in SAR-optical matching.
A significant reason for this is their lack of robustness to extreme differences in radio-
metric and geometric distortions. However, this comes with the exception of Suri and
Reinartz (2010), who successfully confirmed the use of MI as a similarity metric for
matching SAR and optical imagery. This approach was later extended to include a
genetic search algorithm which lead to improved robustness and a lower computational
cost (Fischer et al., 2018).

Although these previous approaches can detect and match features across SAR and
optical modalities, their success has primarily been limited to within the bounds of
specific geometric and radiometric constraints. Often these constraints restrict them
to use within flat, semi-urban or rural environments where the differences between SAR
and optical imagery are primarily constrained to the radiometric properties.

Driven by the success and maturation of deep learning for conventional image matching
tasks, Section 2.2.2, remote sensing practitioners adopted these methodologies to ad-
dress the shortcomings of feature-based approaches for SAR optical matching. In doing
so, several deep matching approaches have been proposed which deal with the inherent
heterogeneity between SAR and optical imagery. The seminal works on SAR-optical
deep matching were proposed in short succession by Merkle, Luo, et al. (2017) and
Mou et al. (2017). While both these approaches made use of two-stream networks, the
approaches they took to the matching problems were fairly distinct. Merkle, Luo, et al.
(2017) proposed a siamese network which operated on a search and template patch to
create pixel-wise feature descriptors. These were then matched using a dot-product
to create a correspondence heatmap, from which the match could be extracted. Al-
ternatively, Mou et al. (2017) proposed the use of a pseudo-siamese architecture with
modality-specific streams and a fusion (metric) network to compute a similarity score
for a SAR-optical patch pair. Later this approach was adapted by Citak et al. (2019)
to include SAR and optical saliency maps as an attention mechanism in the modality-
specific streams. Bürgmann et al. (2019) argued for the use of a modified HardNet
architecture (Mishchuk et al., 2017) to incorporate the use of hard negative mining and
a triplet loss in the SAR-optical matching problem. Hoffmann et al. (2019) trained a
single stream Fully Convolutions Network (FCN), using the concatenation of the opti-
cal and SAR imagery as input, to estimate the similarity between the patches. Taking
a multi-stage, multi-scale approach, Ma et al. (2019) used features extracted from a
fine-tuned VGG16 (Simonyan et al., 2015) model to propose a coarse-to-fine registra-
tion pipeline. In a vastly different approach, Generative Adversarial Networks (GANs)
were proposed to translate SAR patches into pseudo-optical template patches which
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could then be matched in the optical domain using standard intensity and feature-based
methods (Merkle, Auer, et al., 2017).

Although significant progress has been made in development of SAR-optical matching
methodologies, the accuracy and success of these matching methods is largely reliant
on the quality of the feature points which are used for the extraction of candidate patch
pairs. However, this problem has received little focus over the years due to the inherent
complexity of determining jointly visible, and salient features across such vastly dif-
ferent modalities. Thus previous matching approaches have relied on the detection of
features using computationally intensive auxiliary data (Bürgmann et al., 2019; Merkle,
Luo, et al., 2017), or assumed correspondence based purely on geo-localization (Citak
et al., 2019; Hoffmann et al., 2019; Ma et al., 2019). While these approaches have
worked for creating training datasets and evaluating matching methodologies, the as-
sumptions they hold or data they require have limited the application and development
of deep SAR-optical matching approaches to medium resolution imagery or semi-urban
areas. Thus the development of a deep learning-based SAR-optical matching pipeline
suitable for matching high-resolution imagery, across a wide range of scenes has not
yet been achieved.

To this end, the main contribution of this thesis is the further development of existing
matching methodologies into a scalable, comprehensive and fully-automatic framework
for end-to-end matching of high-resolution SAR and optical imagery without the re-
liance on auxiliary data or strong assumptions.
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3. Deep Learning for SAR-Optical Image
Matching

This chapter presents the key contributions of this thesis in terms of developing deep
learning-based approaches to enable automatic matching of high-resolution SAR and
optical imagery. The addressed topics directly relate to the publications in Chapter 4
which form the basis of this cumulative thesis.

Firstly, the topic of deep learning and SAR-optical correspondence is addressed, and
various architectures are proposed to enable matching of these modalities. Following
which the topic of scarce data is presented and solutions to dealing with the lack of
large-scale training data are proposed. Finally, deep learning-based architectures for
feature detection and outlier removal are proposed and these various sub-tasks are
chained together in a logical manner to complete the requirements for a comprehensive
SAR-optical matching framework.

3.1 Deep Learning for Determining SAR-Optical
Correspondences

Peer-Reviewed Publications Related to this Section

Hughes, L. H., Schmitt, M., Mou, L., Wang, Y., & Zhu, X. X. (2018). Identifying
corresponding patches in SAR and optical images with a pseudo-Siamese
CNN. IEEE Geoscience and Remote Sensing Letters, 15 (5), 784–788.

Hughes, L. H., Marcos, D., Lobry, S., Tuia, D., & Schmitt, M. (2020). A frame-
work for sparse matching of SAR and optical imagery [Under Review].
ISPRS Journal of Photogrammetry and Remote Sensing.

Schmitt, M., Hughes, L. H., & Zhu, X. X. (2018). The SEN1-2 dataset for deep
learning in SAR-optical data fusion. ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, IV-1, 141–146.

As introduced in Section 2.2, the concept of image matching is largely based around
three sub-tasks, namely, feature detection, correspondence and outlier removal. While
feature detection and outlier removal play an important role in enabling large-scale
image matching, the determination of correspondences remains the most fundamental
sub-task in image matching endeavours. The importance of the image correspondence
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problem in SAR-optical matching is founded in the need for a method which can
determine similarity across the vast differences between the modalities.

As discussed in Section 2.3, past approaches to determining correspondences between
SAR and optical imagery have largely been based around hand-crafted feature descrip-
tors (Suri, Schwind, et al., 2010; Xiang et al., 2018; Ye et al., 2016; Ye et al., 2017).
Although these approaches have seen successful application in SAR-optical matching,
their application is largely constrained to specific scene geometry and sensor resolu-
tions. More recently, advancements in deep learning have shown the ability for deep
matching architectures to outperform conventional feature-based matching approaches
(Schönberger et al., 2017). Based on these advancements, a number of deep matching
approaches have been proposed towards the problem of determining correspondences
between SAR and optical imagery (Merkle, 2018; Mou et al., 2017). These initial
SAR-optical deep matching approaches have shown great promise in being robust to
the large radiometric differences between the modalities. However, these approaches
are far from being robust to geometric distortions, and have largely been proposed in
the frame of initial investigations (Mou et al., 2017) or for use in rural and suburban
areas (Merkle, 2018).

Taking inspiration from these initial investigations, and the advancements made within
conventional deep matching, two novel deep learning-based approaches to the SAR-
optical correspondence problem were developed within the scope of this thesis. Fur-
thermore, to support the development of generalizable deep learning based solutions,
two large-scale SAR-optical correspondence datasets were also created.

3.1.1 Datasets for Deep Matching
One of the largest determining factors in the success and generalizability of supervised
deep learning methods, is the quality and quantity of the data used to train and evaluate
the model (Sun et al., 2017).

In conventional applications, a manual labelling process is often used to create large-
scale labelled datasets. However, the vast radiometric and geometric differences be-
tween SAR and optical imagery (Section 2.1.1) make this task intractable, even for
domain experts. Automated approaches have been proposed for creating SAR-optical
correspondence datasets (Merkle, 2018; Wang et al., 2018). However, the methods
either rely on computational complex processes (Wang et al., 2018), or are based on
strong assumptions (i.e. only using non-urban areas) that limit the generalization of
models trained on them (Merkle, 2018).

Thus prior to the development of deep-matching approaches, and within the frame of
this thesis, two novel, large-scale SAR-optical correspondence datasets are created. The
first dataset, called SEN1-2, is based on openly available medium resolution imagery.
While the second dataset is based on high-resolution imagery from the Urban Atlas
project (Schneider et al., 2010).

SEN1-2: Medium Resolution

The SEN1-2 dataset consists of 282,384 corresponding pairs of Sentinel-1 SAR and
Sentinel-2 optical imagery. The dataset was created using the Google Earth Engine
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(GEE) platform and data catalogue (Gorelick et al., 2017), and every patch was man-
ually verified by removing patches which contained artefacts, clouds or other errors.

Sentinel-1 ground-range-detected (GRD) data products acquired in interferometric
wide swath (IW) mode were used as the basis of the dataset. To ensure precise ortho-
rectification the products were calibrated and terrain corrected based on precise orbit
information and a 30m DEM (either SRTM-DEM or ASTER-DEM depending on the
latitude). For simplicity, the σ0 backscatter coefficient in Decibels, and VV polariza-
tion were used to create the SAR patches. Each image has a spatial resolution of 5m in
azimuth and 20m in range, and uses square 10× 10m pixel spacing. For the Sentinel-
2 imagery only the red, green and blue channels (bands 4,3 and 2) were selected to
create the resultant RGB images. As the Sentinel-2 imagery is provided as accurately
geo-referenced granules, no further pre-processing was required. However, the initial
image selection was filtered by cloud coverage, to ensure the images contained as few
clouds as possible.

In order to generate a globally representative dataset, locations were sampled uni-
formly across the landmasses of the Earth. An approximately 100km2 region was cre-
ated around each point, and a season identifier was randomly assigned. These season
identifiers were later used to specify the time range, according to northern hemisphere
meteorological seasons, of imagery to use in creating a mosaic for each region.

The resultant mosaicked images were then exported from GEE and tiles of 256× 256
pixels were created for each scene. During the tiling process a stride of 128 pixels
was used to create patches with an overlap of 50%. This was deemed to be the best
trade-off between patch independence and the number of patches per scene. Finally,
each SAR and optical patch was visually inspected to ensure that no no-data areas,
clouds, shadows or other significant artefacts were present. If an artefact was found in
either the SAR or optical imagery, the patch pair was removed from the dataset. A
summary of the final dataset, and the distribution of the 282,384 patches is depicted
in Figure 3.1, while a collection of example patches is shown in Figure 3.2.

As the SEN1-2 dataset is based on medium resolution imagery, the geometric differences
between the modalities become less apparent. This combined with the fact that the
source imagery is accurately co-registered, means that correspondence between the
image patches can be assumed based on the geo-location. Thus the complexity of the
image matching largely related to the radiometric differences between the modalities.
While this is a simpler problem, the SEN1-2 dataset has still seen widespread use in the
development of many other deep learning based approaches (Bürgmann et al., 2019;
Citak et al., 2019; Hoffmann et al., 2019).

Urban Atlas: High-Resolution

The original Urban Atlas dataset (Schneider et al., 2010) consists of 46 manually
co-registered, high-resolution SAR and optical images acquired over 13 cities across
Europe. The spatial distribution of these cities is depicted in Figure 3.3. The SAR
images were acquired by the TerraSAR-X sensor operating in stripmap mode with a
spatial resolution of 1.25m. These images were then processed into Enhanced Ellipsoid
Corrected (EEC) data products (Breit et al., 2009). The optical images were acquired
at a spatial resolution of 2.5m by the panchromatic PRISM sensor. As mentioned
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(a) (b)

Figure 3.1: The spatial and seasonal distribution of the final SEN1-
2 dataset, after the removal of artefact-affected patches and regions.
(a) shows the spatial distribution of the regions and selected seasons,
(b) depicts the breakdown of patches within the dataset by season and

quantity.

Figure 3.2: Some exemplary patch-pairs from the SEN1-2 dataset.
Top row: Sentinel-1 SAR image patches, bottom row: Sentinel-2 RGB

image patches.

in Section 2.1, the geo-coding of optical imagery suffers from inaccuracies, and thus
the alignment between the TerraSAR-X and PRISM imagery contained errors of on
average around 23 meters. As part of the Urban Atlas project, an intensive manual
co-registration was carried out to reduce these errors to within 3 meters.

To simplify the process of creating and using the dataset, the SAR imagery is resampled
to a spatial resolution of 2.5m. These accurately aligned SAR and optical images then
served as the basis for the creation of a high-resolution SAR-optical correspondence
dataset which is suited for deep learning applications. This accurate alignment and
ortho-rectification means ground-level points can be assumed to be corresponding.
With this in mind, a Harris corner detector was applied to the optical imagery to create
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Figure 3.3: The spatial distribution of cities in the Urban Atlas
dataset. The cities for the creation of the training, validation and testing
datasets are depicted as green triangles, yellow squares and blue circles

respectively.

an initial set of points which contain salient features, in at least in one modality. Non-
maximal suppression was then used to reduce the overall number of points and ensure
minimal overlap between the final patches. As the assumptions about correspondence
only hold for ground-level points, OpenStreetMap (OpenStreetMap contributors, 2017)
data was used to filter the point set by excluding points which were too near to building
footprints, forests or other raised structures. After filtering, patches of size 256× 256
pixels were extracted around each point in the SAR and optical images. Finally, the
optical imagery was normalized to a range of [0, 255], while the SAR backscatter was
converted to Decibels and clipped to the global 3σ range, [10, 30]dB. This lead to a
final dataset of 50,872 corresponding patch pairs, split into 40,314 training pairs, 4,205
validation pairs and 6,353 testing pairs, respectively. Some exemplary patch pairs are
depicted in Figure 3.4, along with the suggested assignment of train, test and validation
scenes.

While this high-resolution dataset is still based on the assumption of ground-level
correspondence, this assumption only affects the center pixel in each patch. Thus the
dataset captures a diverse set of scenes, including rural and dense urban areas, which
makes it suitable for learning more generalizable models. However, due to the approach
taken in creating the dataset, there are no guarantees that the SAR patches contain
salient features. Although this can affect the learning process, the filtering based on
OpenStreetMap features (i.e. roads and railways), combined with the large spatial
extent of the patches significantly reduces the likelihood of the corresponding SAR
patches containing no salient features.
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Figure 3.4: Some exemplary patch-pairs derived from the UrbanAtlas
dataset. Top row: TerraSAR-X patches, bottom row: PRISM optical

patches. The ground sampling distance of the patches is 2.5m.

3.1.2 Pseudo-Siamese Architecture for SAR-Optical
Similarity

The seminal deep matching approach proposed by Merkle, Luo, et al. (2017) was based
upon the successes of two-stream networks within the realm of conventional image
matching problems (Zagoruyko et al., 2015). However, matching using two-stream
networks with shared weights, such as siamese architectures, is inadvisable as they
are based in the assumption that the features of the imagery fall within a common
manifold. This assumption does not hold true for SAR and optical imagery, which
have vastly different radiometric and geometric properties.

Thus it was proposed by (Mou et al., 2017) to first transform the imagery to a common
feature manifold using independent CNNs, before matching. Based on this, a pseudo-
siamese network architecture with two identical, yet separate streams, and a spatially-
aware fusion network was proposed within the frame of this thesis. This architecture
constrains the network to learning meaningful representations, of the input SAR and
optical imagery, which fall within a common manifold that is matchable by the fusion
network. The proposed network architecture is depicted in Figure 3.5.

The architecture of each stream is based on the well-known VGG16 architecture, pro-
posed by the Oxford Visual Geometry Group (Simonyan et al., 2015). Each stream is
consists of a series of 3× 3 convolutional kernels followed by batch normalization and
Rectified Linear Unit (ReLU) activation. The use of stacked layers of small kernels, to
describe larger receptive fields, increases the non-linearity and thus descriptive nature
of the network. Padding is added at all stages throughout the network to preserve
the spatial dimensions of the features maps through the convolution operator. Addi-
tionally, 2× 2 max-pooling operators, with a stride of 2, are added at various points
in the network to reduce the spatial dimensionality of the feature maps. The fusion
network operates on the concatenation of the reduced and transformed SAR and opti-
cal feature maps, and consists of two consecutive convolutional laters, followed by two
fully-connected layers. The convolutional layers follow the same 3× 3 kernel structure,
but make use of a stride of 2, rather than a max-pooling, to further reduce the spatial
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Figure 3.5: Pseudo-siamese CNN architecture for SAR-optical image
matching. The optical stream is shown in blue, and the SAR stream in
green, while the fusion network is depicted by the yellow convolutional

layers and red fully connected layers.

dimensionality of the combined feature maps. The final stage of the fusion network
consists of a 512-channel, followed by a 2-channel fully connected layer.

The network was trained as a one-hot encoded binary classification problem, using
(non-)corresponding SAR-optical patch pairs, from a deterministically partitioned sub-
set of the SARptical dataset (Wang et al., 2018), and a Binary Cross Entropy (BCE)
loss. Thus the output of the final layer at inference time can be directly interpreted as
a measure of similarity between the input patches.

When evaluated on an independent subset of the SARptical dataset, with a patch size of
112× 112 pixels, the networks was able to achieve an accuracy of 77% with a fixed false
positive rate of 5%. This performance was found to degrade rapidly if smaller patches
were used, as depicted in Figure 3.6. Thus highlighting the importance of spatial
context in SAR-optical matching. Exemplary results highlighting the performance of
the pseudo-siamese network for matching high-resolution SAR and optical patches are
presented in Figure 3.7.

While these first results showed great promise, further investigation highlighted signif-
icant shortcomings of the SARptical dataset and lead to the author questioning the
suitability of this dataset for deep learning applications. Thus within the frame of this
thesis the pseudo-siamese architecture was retrained and evaluated on the Urban Atlas
datasets presented in Section 3.1.1. These results are presented in Chapter 5, within
the scope of a comparative evaluation of the deep matching methodologies described
as part of this thesis.

3.1.3 Multi-Scale Feature Space Matching
The pseudo-siamese architecture, as well as many other dual-stream SAR-optical match-
ing approaches, are designed such that they can be used as a replacement for conven-
tional similarity metrics such as NCC and MI. However, when applied in this manner,
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Figure 3.6: The performance of the pseudo-siamese architecture in
relation to the size fo the input SAR and optical patches.

they are computationally expensive as they need to be evaluated at each offset within
the search window, as described by Figure 2.6. Furthermore, existing approaches to
SAR-optical matching primarily rely on features extracted from the final layers of deep
CNNs. These features contain rich global semantic information; however, this comes
at the cost of being low resolution and translation invariant. Thus it is argued that
they lack the fine detailed features needed to capture minor offsets, which are impera-
tive to determining accurate correspondence between high-resolution SAR and optical
imagery.

Thus an alternative architecture which formulates the SAR-optical correspondence
problem as a multi-scale search problem was proposed, herein referred to as the Cor-
rASL network. Under this formulation, the goal of the network is to determine the
most likely point of correspondence for the center pixel of an optical template patch
within a larger SAR search region.

The architecture follows a pseudo-siamese design and is based around the concept
of convolutional hypercolumns (Hariharan et al., 2015). Each stream consists of a
feature extraction and feature reduction sub-network, and matching is performed using
a feature-space correlation operator.

The modality specific hypercolumns are constructed by upsampling, using bi-linear
interpolation, and stacking the feature maps extracted from each of the layers of the
feature extraction network. The depth of the hypercolumn is then reduced to 256
channels, using a series of three 1×1 convolutional layers. To allow for the accentuation
of salient features, a spatial attention map (as proposed by Woo et al., 2018) is created
and applied to each hypercolumn. Finally, the hypercolumns are normalized along the
channel dimension using L2 normalization.

The template hypercolumn is then matched within the search hypercolumn using a
feature space correlation operation with valid padding. The resultant correspondence
map is then upsampled and zero padded to match the extent of the search window.
The final output of the network is a heatmap, for which the maximum value represents
the point of correspondence of the center pixel of the template patch within the search
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(a) True Negatives (b) False Positives

(c) False Negatives (d) True Positives

Figure 3.7: Exemplary positive and negative predictions of correspon-
dence, achieved using the proposed pseudo-siamese CNN.

region. The full architecture of the correspondence network, as well as the input and
output datum, is depicted in Figure 3.8.

The network was trained using 256 × 256 pixel SAR search patches and cropped,
128× 128 pixel, optical template patches from the Urban Atlas dataset proposed in
Section 3.1.1. To prevent overfitting, and to better simulate conditions of misalign-
ment, the optical template patches were cropped, from their respective full-size optical
patches, using a random offset from the center pixel. A spatial softmax operator is
then applied to the output heatmap, and a weighted mean squared error (MSE) loss
is computed between the activated heatmap and a 2D Kronecker delta function. Ad-
ditionally, an L1 regularization term is included in the objective function to encourage
sparsity in the correspondence heatmap. An example of the training inputs is depicted
in Figure 3.9. Similarly, the process of determining correspondence from the network
output is shown in Figure 3.10.

When evaluated on independent patch pairs extracted from SAR and optical imagery of
8 spatially diverse cities, see Section 3.1.1, the network was able to accurately (within
1 pixel) determine the point of correspondence 46.9% of the time with an average
matching error of 2.1 pixels, and mean average precision of 2.62 pixels. Some exemplary
matching results are depicted in Figure 3.11.

While the overall matching accuracy might initially appear low, it should be recalled
that the approach used in creating the dataset could not provide guarantees of joint
feature visibility. Thus the dataset is likely to include several SAR patches which
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Figure 3.8: The network architecture showing the layer details for
the SAR branch with Conv(k, s, p) and MaxPool(k, s), representing a
convolutional layer, and pooling layer, with a kernel of size k, stride
of s, and padding of p, respectively. Convolution followed by ReLU is
represented as ConvR(k, s, p), and the addition of batch normalization

as ConvRB(k, s, p).

(a) (b) (c) (d)

Figure 3.9: A single training sample created from the Urban Atlas
dataset. (a) The SAR search patch cropped around the location of the
optical Harris corner (represented by the red cross), (b) the optical patch
from which the template patch (depicted by the red box) is extracted
with a random offset during training, (c) The extracted template patch,
and (d) the 2D Kronecker delta based ground truth label representing

the true point of correspondence.

contain no salient features, and thus cannot be matched. However, as the network
directly outputs a heatmap, it is theorised that the shape of the correspondence surface
captured by the heatmap can be used to filter out failed matching attempts. This
hypothesis was investigated within the frame of this thesis, and a deep learning-based
solution is presented in Section 3.3.3.

3.1.4 Summary
In this section two large-scale SAR-optical datasets, the medium resolution SEN1-2
dataset and the high-resolution Urban Atlas-based dataset, were presented. These
datasets were created with the application of SAR-optical deep matching in mind.
However, their applicability goes beyond this application and they are suited for a
multitude of SAR-optical deep learning-based data fusion endeavours.

Furthermore, two novel deep matching architectures were proposed for the matching
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(a) (b) (c) (d)

Figure 3.10: The process by which the correspondence heatmap can
be used to determine the corresponding point for the center pixel of
the optical template patch. (a) The search window with its center pixel
marked by a red plus, (b) the resultant heatmap from the correspondence
network with its center pixel aligned to that of the search window, and
the peak point of correspondence depicted by a blue plus. (c) The
center of the optical template patch is aligned to the peak point of
correspondence, (d) the final alignment of the optical template patch,

with the located point of correspondence marked by the blue plus.

Figure 3.11: Accurately matched results achieved using the
correlation-based matching network (CorrASL). The first row shows the
correspondence heatmaps for each results. While the second row shows
the optical template patch overlaid within the SAR search window by
aligning the center pixel with the point of maximal correspondence.

of high-resolution SAR and optical imagery. The pseudo-siamese architecture framed
the problem as a similarity metric problem whereby the network was trained to learn
a generalizable similarity metric for comparing SAR and optical image patches. In
this configuration the pseudo-siamese architecture is best suited towards feature point
matching applications, whereby the assumption is made that an intersection exists
between the sets of detected feature points in each modality, or that an ideal multi-
modal feature point detector exists. As at this time neither of these assumptions
is robust enough for operational application, thus the pseudo-siamese network is best
applied as a replacement for conventional similarity metrics in a search-based matching
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framework. However, when applied in this manner it is computationally expensive,
which can be prohibitive to matching across large regions.

To combat some of the short-comings of pre-existing approaches, as well as the pseudo-
siamese approach, an alternative multi-scale feature space deep matching architecture
was proposed. This architecture is based on multi-scale convolutional hypercolumns
and incorporates the search process as part of the matching network through the in-
clusion of a feature-space correlation operator. Thus the architecture is much more
computationally performant than the pseudo-siamese architecture. However, this for-
mulation of the matching problem relies strongly on assumptions that the point of
correspondence is within the search window, and that the supporting region is unam-
biguous. Furthermore, the pixel values in the produced correspondence heatmaps do
not represent an absolute score of similarity, but rather a relative one. This means the
maximum value of the heatmap alone cannot be used to determine if the match was suc-
cessful or not, unlike the in the heatmaps produced when applying the pseudo-siamese
network.

3.2 Matching with Scarce Data

Peer-Reviewed Publications Related to this Section

Hughes, L. H., & Schmitt, M. (2019). A semi-supervised approach to SAR-optical
image matching. ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, IV-2/W7, 71–78.

Hughes, L. H., Schmitt, M., & Zhu, X. X. (2018). Mining hard negative samples
for SAR-optical image matching using generative adversarial networks.
Remote Sensing, 10 (10), 1552.

The large diversity of high-resolution SAR and optical sensors available, and the com-
plexity involved in the creation of large-scale labelled datasets, means the learning of
generalizable matching strategies for SAR-optical imagery is likely to remain a scarce
data problem for many years to come. While this statement might appear contradic-
tory in relation to the new datasets and methods presented in Section 3.1, it does not
negate the value of these approaches. However, methods trained on a dataset contain-
ing only data from one optical and one SAR sensor are unlikely to be able to generalize
to data from sensors with different properties. This is both due to the visible differ-
ences between the modalities becoming more extreme as spatial resolution increases,
as well as due to the inherent nature of learning models from data which restricts the
applicability of those models to the same data manifold. Thus it is important to in-
vestigate the effects of small data on matching, and develop techniques which enable
the learning of useful models in the presence of small data.

To this end this section presents two novel deep learning-based approaches for applica-
tion in small data environments. The first approach is focussed on reducing over-fitting
and improving performance of models when limited labelled training data is available,
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Figure 3.12: The proposed generative hard-negative mining frame-
work. The GAN is trained to create hard-negative samples based on
the input image patch. Together with the original corresponding optical
patch, these samples are then used to train the SAR-optical matching

network.

while the second approach is aimed at exploiting the vast archives of unlabelled train-
ing data to train a deep matching architecture with a limited number of high accuracy
labels.

3.2.1 Hard Negative Mining with Generated Samples
Networks trained on small datasets tend to overfit the training data, and thus lose
their ability to generalize to unseen data, such as the test set. This effect, in turn,
leads to a large number of false-positive (FP) or false-negative (FN) results in the
final classification output, as the network is biased towards one prediction output.
In the domain of SAR-optical matching, the reduction of FP correspondences is an
essential task as many downstream data fusion tasks are more sensitive to incorrect
correspondences than to a small number of correspondences.

A common approach to improving the discriminability between classes in classification
tasks, and thus reducing the false-positive rate (FPR), is hard negative mining (Felzen-
szwalb et al., 2008). However, the standard implementation of hard negative mining
relies on the assumption that during training, as the FPR decreases, sufficient negative
samples exist that hard negative samples can still be mined. While this is generally
true for large datasets, in the case of small datasets, this assumption breaks down
quickly, and the training procedure collapses back to the random selection of negative
samples. Thus a generative approach to hard negative mining was proposed. In this
approach, a Generative Adversarial Network (GAN) architected such that it could be
trained to generate the SAR patches in the training set. The continuous latent space
created through this training procedure could then be sampled to create a set of hard
negatives. The overall framework is depicted in Figure 3.12.

To enable the generation of high-resolution samples which are slightly augmented ver-
sions of an input sample, three main functions needed to be achieved by the GAN.
Firstly, a GAN architecture and training mechanism capable of producing high-fidelity
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imagery is required. Secondly, the output of the GAN needs to be conditioned on
the input imagery. Finally, the latent space produced by the conditioning needs to be
locally smooth such that it can be sampled to allow for output to create variations of
the input imagery.

To this end, the ProGAN architecture proposed by Karras et al. (2018) was extended,
by converting the generator network into a Variational Autoencoder (VAE). In this
manner, the input image patch is used to learn a smooth latent distribution for the
training data, which is then sampled to obtain a nearby latent vector. This latent
vector is then used by the generator to create a novel variant of the input patch which
is suitable for use as a hard negative sample. This style of network architecture is also
commonly known as a VAEGAN or Adversarial VAE (Larsen et al., 2016).

The decoder network of the VAE is directly based off of the ProGAN generator network,
and consists of a fully-connected bottleneck layer followed by a series of convolutional
modules. Each convolutional modules consists of a nearest-neighbour upsampling layer,
a convolutional layer, a leaky ReLU (LReLU) activation function and a pixel-wise
feature vector normalization layer (PixelNorm) (Karras et al., 2018).

The encoder network is constructed by mirroring the structure of the previously de-
scribed decoder network. Thus the upsampling layers are replaced with average pooling
layers which act to downsample the feature maps. Additionally, two fully-connected
layers are added to the head of the network, after the existing bottleneck layer, which
are used to represent the latent space as a mean and standard deviation. These lay-
ers are required for imposing a prior distribution on the latent space, as well as to
reparameterize the sampling operation such that it is differentiable.

The discriminator has an equivalent structure to the encoder network, with two mi-
nor adaptations. The first is the inclusion of a mini-batch standard deviation layer,
which adds an additional feature map to the second last convolutional layer. This
was done in order to increase variation in the network, and prevent overfitting of the
discriminator. The second modification is the replacement of the bottleneck layer with
a fully-connected layer which reduces the output of the last convolutional layer to a
single scalar value. This scalar value represents a score of the ’realness’ of the evaluated
image.

The network was trained using the progressive growing procedures proposed by Karras
et al. (2018) and the dual GAN and VAE losses defined by Larsen et al. (2016). The
training procedure started with an image resolution of 4 pixels and gradually increased
this by a factor of 2 as the losses stabilized at the current resolution. This process
was continued until the final resolution of 128 pixels was achieved. The use of sub-
networks which share a common number of layers with a similar structure reduced the
complexity involved in transitioning between resolutions during training. An example
of the outputs of the generator network, as the training progressed, are depicted in
Figure 3.13.

In order to use the proposed generative network to create hard negative samples, it is
trained on all the SAR patches contained in the dataset which is to be used to train
the final matching architecture, in this case, the pseudo-siamese architecture presented
in Section 3.1.2. In doing so the encoder learns the latent distribution of the training
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(a) (b) (c) (d) (e)

Figure 3.13: An example of progressively grown images taken at in-
creasing image resolutions during the training processes. The images
have a resolution of (a) 8 × 8 pixels, (b) 16 × 16 pixels, (c) 32 × 32

pixels, (d) 64× 64 pixels and (e) 128× 128 pixels, respectively.

Generated
Hard Negative

Original SAR
Image Patch ϵ

zμ σEnc Dec

Figure 3.14: The inference network used to generate hard negative
samples. The position of the input patch within the latent space is pa-
rameterized by a Gaussian distribution, this distribution is then sampled
to create a latent code z which describes a nearby, but novel data point.

samples and the decoder learns to reconstruct the input imagery from this distribution.
As the assumption is that the dataset is small, the network will likely overfit the training
set. However, as the goal is not to generate completely novel samples, this is of little
consequence within this application and can in some cases be beneficial to the realism
of the generated samples.

Post training, the discriminator network is discarded and the VAE is used to generate
hard negative SAR samples for each SAR image patch in the original training dataset.
As the latent space is continuous and follows a unit normal distribution, a slightly
augmented version of the input patch can be created by sampling the latent distribution
near to the location of the encoded input patch within the latent space. This process
is depicted in Figure 3.14.

The set of generated SAR-like images are then combined with the original dataset, such
that each corresponding SAR-optical patch pair is extended to include a generated
SAR-like hard-negative sample, which is labelled as non-corresponding. A few samples
of an extended dataset are shown in Figure 3.15.

Finally, the extended dataset is used to train the SAR-optical deep matching net-
work. This is done by combining the appending the extended dataset to the original
training dataset, such that each training sample appears twice; once with a random
non-corresponding SAR patch and once with a generated non-corresponding SAR-like
patch. Table 3.1 summarizes the results of applying GAN based hard negative mining
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(g) Optical (h) SAR (i) Generated

Figure 3.15: Generation of SAR-like image patches with the hard neg-
ative GAN. The original corresponding pair of (a) optical and (b) SAR
patches is extended to include a (c) generated hard negative sample.

Table 3.1: Details of SAR-optical matching results under the appli-
cation of various hard-negative training strategies and at different false

positive rates (FPR)

Precision Recall Acc. Max Acc. FPR
Method (5% FPR) (Max Acc.)
Random 0.83 0.84 0.76 0.83 0.16
Nearest Neighbour 0.77 0.96 0.70 0.85 0.21
Traditional Hard Neg. 0.79 0.89 0.72 0.83 0.19
Proposed Approach 0.83 0.87 0.81 0.86 0.13

to the training of the pseudo-siamese architecture presented in Section 3.1.2. The re-
sults clearly show that generative hard negative mining leads to a significant decrease
in the false positive rate (or an increase in accuracy when fixing the FPR to 5%) over
the baseline as well as alternative negative mining strategies. Thereby, highlighting
the value of the proposed approach in training robust classifiers with scarce data.

3.2.2 Semi-Supervised SAR-Optical Matching
Although the hard-negative mining approach significantly improves the robustness of
models learnt on small data, it does not enhance their generalizability. The reason
for this is that models learnt directly from data are only as diverse as the dataset
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Figure 3.16: The SAR stream of the proposed semi-supervised match-
ing network architecture. The autoencoder learns to generate a diverse
latent space z, through self-supervised reconstruction of the input. The
discriminator network is used to condition the latent distribution to an
arbitrary prior, using an adversarial training scheme. The optical stream
mirrors the SAR stream, and the discriminator is shared between the

two.

itself. Thus to learn more robust, and diverse models under small data conditions, the
SAR-optical matching problem was reformulated as a semi-supervised learning task.

Semi-supervised learning constitutes a set of techniques for exploiting stores of un-
labelled data to support learning diverse models in data constrained environments
(Chapelle et al., 2006). Thus the goal behind this reformulation is to utilize the vast
stores of unlabelled data, which exist in the domain of remote sensing, to support the
learning of diverse and generalizable SAR and optical image representations. In this
manner, the SAR-optical matching task can be learnt, based on these representations,
using a limited number of labelled training samples.

Taking inspiration from the supervised matching networks developed by Liu et al.
(2018) and Mukherjee et al., 2017, a dual autoencoder (AE) architecture was proposed.
This architecture allows for the use of unlabelled and unpaired data to train the domain-
specific autoencoders. Furthermore, the latent code generated in the AE bottleneck is a
natural feature descriptor which is used for the SAR-optical matching task. Alignment
between the SAR and optical latent spaces is achieved using a supervised matching
task, based on a small dataset of labelled correspondences, and a joint adversarial
loss which is implemented using a discriminator network. The overall structure of the
architecture is depicted in Figure 3.16.

The encoder network is based on the VGG11 (Simonyan et al., 2015) architecture, and
thus follows the structure of the pseudo-siamese architecture presented in Section 3.1.2.
Similarly, it consists of blocks of 3× 3 convolutions, batch normalization, LRelU acti-
vation and max-pooling. The decoder network mirrors the encoder network shape, but
instead consists of blocks of 3× 3 transposed convolutions, for upsampling the feature
maps, followed by 3× 3 convolutional layers, and ReLU activation throughout.

The autoencoders were trained on alternating batches of labelled corresponding images
pairs, and unlabelled image pairs. For batches containing unlabelled data, the training
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was supervised by a MSE reconstruction loss computed between the input image and
the image reconstructed from the generated latent code. In doing so the aim was
to ensure the latent code could accurately represent the key features of the input
image. For labelled batches an additional matching loss was included as part of the
training process. The matching loss took the form of a contrastive matching loss
(Hadsell et al., 2006), computed between the pair of latent codes generated by the
(non-)corresponding input pair. The contrastive loss encourages the network to learn a
latent space where corresponding pairs are near to each other, while non-corresponding
pairs have a squared norm distance of at least m (Chopra et al., 2005).

While this training strategy encourages the network to align the latent space for corre-
sponding samples, it does not guarantee the smoothness or alignment of the manifold
beyond these samples. Thus a discriminator network was introduced to impose a con-
tinuous prior distribution, a multivariate normal distribution in this case, on both the
SAR and optical latent spaces (Makhzani et al., 2016). The discriminator network
consists of three fully-connected layers, two of which are followed by a LReLU activa-
tion, while the final layer uses a sigmoid activation. A single discriminator network is
shared between the SAR and optical AEs, such that it further encourages the latent
spaces to follow a similar distribution.

The encoder and discriminator network form the bases of a GAN, whereby the real
samples are drawn from a prior distribution and the fake samples are made up of the
latent codes generated by the SAR and optical encoders. The generative loss was
included in the autoencoder loss function used to supervise the encoder network while
the discriminator was trained independently on alternating batches.

The networks were trained using the 128× 128 pixel patches extracted from the high-
resolution Urban Atlas dataset, presented in Section 3.1.1. The training dataset was
split into supervised and unsupervised subsets with varying amounts of supervised data,
namely 100%, 75%, 50%, 25% and 5%. After training the decoder and discriminator
networks are discarded, and the encoder networks are used to match an optical template
patch within a SAR search window using the cosine-distance between the descriptors
at each location.

The matching performance for each scenario is depicted, in Figure 3.17, as histograms/density
functions of the pixel distance between the detected point of correspondence and the
ground truth location. Furthermore, Figure 3.18 depicts matching heatmaps obtained
over a variety of scenes containing varying building density and difficulty.

From Figure 3.17 it is clear that the 1-percentile performance of all the approaches is
relatively similar. However, beyond that it is clear that a non-linear relationship exists
between the amount of supervision and the accuracy of the obtained matches. This
is further clarified by the smoothness, and consistency of the heatmaps presented in
Figure 3.18. The heatmaps for the 50% supervision task are significantly noisier than
in the case of 25% or 5% supervision, which more often manage to obtain the correct
point of correspondence for the optical template.

At first glance, this behaviour seemed counter-intuitive, however, an analysis of the
literature (Dai et al., 2017) lead to the hypothesis that the unsupervised reconstruction
loss and supervised matching loss are orthogonal to some degree. Thus, by optimizing



3.2. Matching with Scarce Data 41

0 10 20 30 40
Distance from Ground Truth (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Pr

op
or

tio
n 

of
 m

at
ch

ed
 p

ai
rs

Fully Supervised Baseline

(a) 100%

0 10 20 30 40
Distance from Ground Truth (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
op

or
tio

n 
of

 m
at

ch
ed

 p
ai

rs

75% Supervised

(b) 75%

0 10 20 30 40
Distance from Ground Truth (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
op

or
tio

n 
of

 m
at

ch
ed

 p
ai

rs

50% Supervised

(c) 70%

0 10 20 30 40
Distance from Ground Truth (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
op

or
tio

n 
of

 m
at

ch
ed

 p
ai

rs

25% Supervised

(d) 25%

10 20 30 40
Distance from Ground Truth (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
op

or
tio

n 
of

 m
at

ch
ed

 p
ai

rs

5% Supervised

(e) 5%

Figure 3.17: Histograms reflecting the precision of the determined
matched point when compared to the ground truth location for vary-
ing degrees of supervision. The dashed black line represents the mean
matching distance while the dashed blue line represents the 1-percentile

matching distance.

for both losses in the baseline method, the network ends up in a local minimum which
is not necessarily well suited to either task. Furthermore, the reduction in labelled
data can be interpreted reweighting the supervised and unsupervised terms of the loss
function, thus explaining why, in some cases, lower amounts of supervision appear to
provide better matching results.

Although the overall accuracy, and number of matching is lower than that achieved
for the multi-scale matching approach presented in Section 3.1.3, the overall result still
provides key insights. Firstly, that semi-supervised techniques, with very sparse data,
are still able to produce successful matches. Secondly, it highlights the difficulties of
matching high-resolution SAR and optical data without spatial context (i.e. using only
feature descriptors). Finally, it reinforces the hypothesis that the heatmaps produced
for successful matches appear to be visually separable from those of failed matches,
and thus could be filtered out using deep learning approaches.

3.2.3 Summary
In this section, two different approaches to enabling matching under scarce data were
presented. The first approach presented a generative approach to the problem of hard
negative mining. In doing so, artificial SAR images were used to extend a small training
dataset with hard negative samples, such that the network learned more robust decision
making features. This provided a significant improvement to the robustness of the
pseudo-siamese matching network, trained on a small dataset, without affecting the
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(a) (b) (c) (d)

(e) Optical (f) 100% (g) 75% (h) 50% (i) 25% (j) 5%

Figure 3.18: Correspondence maps produced under varying conditions
of data scarcity, on example scenes of differing density. (a-d) exemplary
SAR test scenes, corresponding rows depicting (e) optical image patch,
and (f - j) correspondence maps when trained with supervision percent-

age of 100%, 75%, 50%, 25% and 5% respectively.

overall accuracy. However, this method should not be interpreted as a mechanism for
improving network generalization, but rather as a means to enhance the performance
of a specialized network (a network trained and applied on a specific set of data, in a
particular region).

The second approach focussed on evaluating the use of unlabelled data to learn generic
feature representations, which could be jointly trained for matching using a small num-
ber of labelled samples. Although the network performance was limited, even when
trained in a fully supervised manner, some key observations were made. Firstly, it
was shown that even with minimal training data, the network is still able to deter-
mine correspondences between certain patches (mainly in sparse suburban regions)
with reasonable accuracy. Secondly, the complex dynamics between unsupervised and
supervised learning tasks were uncovered, and the incompatibility between features re-
quired for reconstruction and those needed for matching were highlighted. Finally, the
hypothesis that correspondence heatmaps hold essential information for the automated
removal of outliers was further corroborated.
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Due to the need for additional supporting networks, these approaches are significantly
more computationally intensive to train than fully supervised matching networks. How-
ever, they provide useful mechanisms for achieving/supporting SAR-optical matching
in when obtaining additional labelled training data is intractable due to cost, time
or accessibility constraints. Furthermore, these techniques are applicable beyond the
scope of SAR-optical matching and could provide useful insights and mechanisms to
other fields suffering from scarce data, or complex labelling tasks.

3.3 A Comprehensive Framework for SAR-Optical
Matching

Peer-Reviewed Publications Related to this Section

Hughes, L. H., Auer, S., & Schmitt, M. (2018). Investigation of joint visibility
between SAR and optical images of urban environments. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
4 (2), 129–136.

Hughes, L. H., Marcos, D., Lobry, S., Tuia, D., & Schmitt, M. (2020). A frame-
work for sparse matching of SAR and optical imagery [Under Review].
ISPRS Journal of Photogrammetry and Remote Sensing.

While the SAR-optical matching sub-task has been the focus of much previous research,
both as part of this thesis as well as in the broader community, it does not constitute the
entire matching process. In general, matching methodologies need to be initialised with
feature points or search regions to make the matching task computationally feasible
and improve the likelihood of finding corresponding points. The quality of these feature
points, or regions, is thus critical to the success of the matching process, as low-quality
initialisations will inevitably lead to a higher number of inaccurate correspondences.
Furthermore, even the most sophisticated matching methodologies will produce outliers
in the form of incorrect, or inaccurate correspondences. Thus the addition of an outlier
removal task is of equal importance in guaranteeing the success of the matching sub-
task.

Due to the inherent complexities involved in determining jointly visible features across
vastly heterogenous data sources, such as SAR and optical imagery, previous matching
pipelines have almost exclusively relied on features detected in a single modality. These
approaches make the assumption that specific types of features have a higher likelihood
of being jointly visible in both modalities, and are thus often limited to a single type of
feature such as road intersections (Merkle, 2018) or strong scatterers (Bürgmann et al.,
2019). Although these assumptions hold in some cases they are an over simplification
of the factors involved in a feature being jointly visibility, and their hand-crafted nature
limits their scope of application to specific types of scenes.

To this end an investigation into joint feature visibility is conducted, in order to de-
termine the expected upper bound of feature visibility under typical image acquisition



44 Chapter 3. Deep Learning for SAR-Optical Image Matching

geometry. Based on these insights a novel approach to determining regions which are
likely to contain jointly visible salient features is proposed. Furthermore, as outliers
are inevitable in any matching approach, a deep learning-based approach to outlier
detection is proposed which operates directly on correspondence heatmaps to deter-
mine the probability successful matching. Finally, these two novel mechanisms are
combined with a correspondence network, see Section 3.1, in order to create a com-
prehensive matching framework which allows for the determination of correspondences
across large and diverse scenes without strong assumptions about scene or acquisition
geometry.

3.3.1 Joint Feature Visibility
Although joint feature visibility is affected by both radiometric and geometric dif-
ferences between SAR and optical imagery, it is the geometric differences which are
hardest to compensate for in the feature detection process. The reason for this is that
the unknown scene geometry plays a significant role in which features are jointly visible.
Thus before deciding on a feature detection strategy an investigation into the expected
upper bound of joint visibility was performed, to gain an understanding of the various
contributing factors and the expected types and density of detectable features. In this
context the term joint visibility refers to the number of pixels which are imaged and
corresponding in both the SAR and optical modalities.

In order to perform a detailed analysis of a scene in terms of joint visibility, a frame-
work for pixel-wise modelling and interpretation of a scene was required. The SimGeoI
framework (Auer et al., 2017) is an object-level simulation framework which enables au-
tomated alignment and interpretation of SAR and optical remote sensing images. Thus
extensions to this framework were made to enable pixel-level alignment and simulation
of the scene. To achieve this an additional, iterative pixel modelling and ray-tracing
procedure was added to the original SimGeoI pipeline. These extensions are depicted
in Figure 3.19.

As depicted in Figure 3.19, the pixel-level simulation occurs by modelling each pixel
in a normalized Digital Surface Model (nDSM) by a small sphere in world coordinates
according to its relative (X,Y ) coordinates and respective DSM height. Each sphere
model is then independently projected into the image frame using a modality specific
ray-tracing engine, with the camera defined according to the SAR or optical sensor
metadata as per the standard SimGeoI procedure. The location of the sphere in world
coordinates, as well as its projected position in the sensor specific image frame is
then used to sample the various interpretation layers generated during the object-
level simulation. In doing so the image to DSM correspondence for each pixel, in
each modality is known, along with its modality specific interpretation class. Based
on this data, and a set of filtering operations, it is trivial to determine pixel-wise
correspondences and visibility between the SAR and optical image domains. In doing
so cross-modal and joint visibility maps can be produced for a scene.

Cross-modal visibility maps indicate which pixels in the present modality are not visible
in the corresponding modality. For instance, the optical cross-modal visibility map
would depict which pixels in the optical domain correspond with radar shadow in the
SAR domain, and similarly for the SAR cross-modal map. While the joint visibility
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Figure 3.19: Extension of the SimGeoI framework to pixel-wise simu-
lation and interpretation. The process encapsulated in the dashed blue
area is run in parallel and is independent for each sub-DSM. The results
are collated at the end, into a single results file for the specified image.
Yellow: inputs which are obtained from the original SimGeoI pipeline
in Fig. 1. Blue: Collated output file containing pixel-wise results for a

single satellite image.

map combines these cross-modal maps to indicate which pixels are visible in both
acquisitions. Examples of each, for a subset of a scene, are presented in Figure 3.20.

The red pixels in Figure 3.20 represent pixels which are not visible in both modalities
due to geometric reasons. The yellow pixels in the visibility maps describe regions in
the image whose visibility is dependent on the spatial relationship between the sensors
and the geometric distortions which occur during imaging. All other pixels represent
regions which are jointly imaged by both sensors, and are unlikely to be subject to
geometric distortion.

Based on these maps a quantitative estimate of the upper bound for joint feature
visibility was carried out by determining the ratios of visible and non-visible pixels.
Thus as urban regions constitute the most complex geometric differences between SAR
and optical modalities and analysis was run on typical inner city scene, based on
Munich, Germany. The results of this analysis are presented in Table 3.2.

Thus based on purely geometric constraints it can be seen that the upper bound of
feature visibility in a typical urban environment, is relatively low - being around 55%
in an urban environment which largely consists of mid-rise buildings. Furthermore, it
can be seen that building rooftops and flat ground regions constitute the regions of
highest joint visibility and thus provide the most likely candidate regions for finding
matchable features. However, it should be noted that the joint feature visibility is
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(a) Optical (b) SAR

(c) Joint Visibility

Figure 3.20: Cross-modal visibility maps for optical (a) and SAR (b)
images; and joint visibility map (c), of Frauenkirche (church) Munich.
(a) Red: radar shadow extent; yellow: building facades. (b) Red: optical
occlusions; yellow: layover facade extent. (c) Red: Not jointly visible

points; yellow: uncertain vertical points (i.e. facades).

Table 3.2: Breakdown of the scene coverage of various layers in the
cross-modal and joint visibility maps.

Image Type Not Jointly Visible Uncertain Jointly Visible
SAR Image 9.50% 17.77% 72.73%
Optical Image 14.53% 14.73% 70.74%
Scene 25.89% 18.89% 55.22%
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likely to be significantly lower that 55% in reality as this bound does not account for
feature saliency and radiometric differences which can further affect feature visibility
across modalities.

3.3.2 Finding Good Points to Match
The task of designing a multi-modal feature point detector to detect intersecting sets of
salient feature points across modalities is highly nuanced and dependant on many inter-
related factors, as discussed in Section 3.3.1. This is especially true at high-resolution,
where both geometric and radiometric effects play a role in the appearance of features
and the likelihood of those features being jointly visible.

However, by incorporating prior information, in the form of geo-referencing, the SAR-
optical matching task can be formulated as a correspondence search problem, see Sec-
tion 3.1.3. Under this formulation, there is no need for a precise multi-modal feature
detector, as the correspondence task relies on support regions with a greater spatial
extent than in conventional feature matching tasks. Thus a deep learning-based ar-
chitecture was proposed to guide the selection of multi-modal search and template
regions, such that the likelihood of determining correspondence between these regions
is increased.

The proposed architecture is comprised of two independent CNNs, one for each modal-
ity, and a simple fusion operator. The output of each CNN is a modality-specific map
which indicates the likelihood of a region being matchable in the other modality. These
maps can then be merged into a cross-modality scene goodness map using the fusion
operator.

To account for possible geo-registration errors, and geometric distortions, which lead
to offsets between corresponding points across modalities, the domain-specific good-
ness maps are created at a low spatial resolution. This ensures that the maximum
expected offset between the modalities is collapsed into a single pixel in the output
maps. Furthermore it guarantees that the domain-specific goodness maps are aligned
before fusion, so that common points of high goodness can be extracted.

The domain-specific networks consist of the first four convolutional layers of the VGG11
architecture (Simonyan et al., 2015), followed by two additional 3× 3 convolutional
layers, each with a stride of 2. The number of feature channels is then reduced using
two fully connected layers implemented using 1× 1 convolutional blocks. Finally, an
average pooling layer with a kernel size of 4 and unity stride ensures the network
has a receptive field size of 128 × 128 pixels. Thus the proposed good regions can
encapsulate a maximum offset of 64 pixels between the modalities, with a granularity
of 32 pixels. These specific values were chosen based on the maximum expected offset
for the Urban Atlas dataset presented in Section 3.1.1, as well as the insights gained
into template patch size from the design of correspondence networks, see Section 3.1.
The full architecture can be seen in Figure 3.21.

The domain-specific goodness networks were trained using corresponding SAR-optical
patch pairs from the high-resolution Urban Atlas dataset (Section 3.1.1). The good-
ness problem was then formulated as a binary classification task using a BCE loss,
and binary goodness labels for each patch. Due the complexity of creating ground
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Figure 3.21: The goodness network architecture showing the layer
details for the SAR branch with Conv(k, s, p) and (Max/Avg)Pool(k, s),
representing a convolutional layer, and pooling layer, with a kernel of
size k, stride of s, and padding of p, respectively. ReLU and batch
normalization are represented by suffixing R and B to Conv, while non-

maximal suppression is represented as NMS.

Table 3.3: The binary classification performance of the goodness net-
works with respect to the patches in the test dataset.

Modality Accuracy Precision Recall
SAR 63.6 68.9 69.0
Optical 65.1 69.8 71.3

truth labels for goodness, a weakly-supervised approach was taken. Thus the good-
ness labels were derived from the matching loss, between the SAR and optical patch,
when matched using the CorrASL SAR-optical correspondence network presented in
Section 3.1.3. Taking this approach presented two main benefits: firstly it removed
human bias from the labelling of good regions for matching, and secondly, it encour-
aged the goodness networks to learn which types of features in one modality generally
transfer to matchable features in the other modality. The classification accuracy of the
domain specific goodness networks on the test dataset is presented in Table 3.3.

The results of the classification task presented in Table 3.3 highlights the complexity
of determining matchable regions across vastly heterogeneous domains, such as SAR
and optical. However, the low classification accuracy in the test dataset can also be
a side-effect of the feature selection mechanism used during dataset creation (as only
optical corner points were considered). In order to assess the benefit of the goodness
network to matching, it was applied within that context for the selection of candidate
patches.

The first step to using the trained goodness networks to extract candidate search
and template regions is to fuse the SAR and optical goodness maps into a cross-
modality scene goodness map. This fusion is performed using a minimum operator,
which selected the minimum response for each pixel between the two domain-specific
goodness maps. Secondly, a localized spatial non-maximum suppression (Dusmanu
et al., 2019) was applied, using a 3× 3 kernel, to suppress secondary peaks and thus
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highly overlapping regions. The goodness maps at each stage of the fusion process are
depicted in Figure 3.22.

(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Example of scene goodness maps produced by the domain
specific networks, and the final, fused goodness map. (a) and (b) are
the optical and SAR images of the scene. (c) and (d) are the respective
domain-specific goodness maps. (e) is the cross-modality goodness map
created by minimum fusion of (c) and (d). The final scene goodness,
after non-maximal suppression is shown in (f), whereby bright pixels

represent identified regions of high goodness.

Finally, candidate patches are extracted around the points of high goodness by trans-
forming these point locations into the original image space. Some examples of regions
with high and low goodness as well as misclassified regions are depicted in Figure 3.23.
These examples are derived from the corresponding SAR-optical patch pairs in the test
dataset.

From Figure 3.23 it can be seen that regions identified as having high goodness con-
tain strong, unambiguous and discriminable features in both modalities, while the low
goodness regions lack these properties. False positive and false negative regions share
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(a) True Negative (b) False Positive (c) False Negative (d) True Positive

Figure 3.23: Examples of regions of low and high goodness (a) and
(d) respectively, along with misclassified regions (b) and (c). The SAR
patch is shown on the left, and optical on the right for each of the patch

pairs.

similar properties, whereby strong features exist in both domains, however, the fea-
tures contain some ambiguity with respect to matching. In these cases the goodness
network appears to fallback on the scene object density as a measure of goodness.

When matching regions of high goodness using the CorrASL network, described in
Section 3.1.3, the number of accurately matched points increased by approximately
13%-points to an accuracy of 59% with a mean matching distance of 1.62 pixels. How-
ever, the total number of candidate patches decreased substantially, and thus the final
set of correspondences was smaller than when only using optical domain features. How-
ever, many downstream data fusion do not require large sets of correspondences but
rather require that correspondences are accurate and spatially diverse (Bagheri et al.,
2018; Müller et al., 2012; Qiu et al., 2018).

3.3.3 Removing Outliers
Even in the best case scenario, where the proposed candidate patches meet all the
requirements for increasing the likelihood of matching, outliers and incorrect matches
will still exist. This is especially true in the case of matching under extreme hetero-
geneity, where joint feature visibility is cannot be guaranteed due to the significant
differences in radiometric properties, and the complex geometric distortions present in
the imagery. Thus the final stage of the feature matching pipeline is to detect and
remove as many outliers as possible, such that the final set of correspondences contains
only points which are most likely to be inliers.

In classical computer vision the task of identifying and removing outliers has largely
been based around statistical methods, such as the Random Sampling and Consensus
(RANSAC) algorithm (Fischler et al., 1981). However, these approaches rely on models
for the expected transfer of feature between images. In the case of SAR-optical match-
ing, these models are difficult to construct due to the mathematically complex nature
of the SAR imaging process, as described in Section 2.1.1. Thus many of the previ-
ously discussed SAR-optical matching approaches rely on filtering out matches based
on their similarity scores. While this approach works for obvious incorrect matches,
it fails to filter out incorrect matches which occur due to spatial symmetry (i.e. two
nearby objects with a similar structure) or ambiguities within in the scene.
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(a) (b) (c)

Figure 3.24: Examples of common patterns seen in the correspondence
heatmaps. For brevity only the valid region of the heatmap is depicted.
(a) Single, strong response with a low spread. (b) A matching ambiguity
exists along a single direction (c) A strongly multimodal response, with

a wide spread.

Based on previous observations made within the scope of this thesis, it was hypothesized
that the correspondence heatmaps produced by these networks can provide insights
into the quality of a matching result. This hypothesis was based on the observation
that good matches tend to exhibit a single narrow peak, while incorrect matches are
often multi-modal, ambiguous, or have a wide spread. Examples of various trends seen
within correspondence heatmaps are presented in Figure 3.24.

Thus a CNN architecture was proposed, and the outlier removal task was formulated
as a binary classification problem, whereby the probability of a matching result repre-
senting an inlier was predicted based on the correspondence heatmap.

The backbone of the proposed Outlier Reduction Network (ORN) borrows from the
architecture of the feature extraction network proposed in Section 3.1.3. However,
the first convolutional layer makes use of instance normalization, as opposed to batch
normalization. This adaptation was made as the heatmaps produced by the correspon-
dence network have a variable dynamic range and thus cannot be considered to come
from the same distribution. Furthermore, as the outlier identification task is a binary
classification problem, the head of the network was also adapted to be more suited to
this task. This modification included the addition of an adaptive average pooling layer
(AdaptAvgPool), which pools the entire spatial extent to produce a single value. Fur-
thermore, a sigmoid activation was applied to the final layer of the network such that
the output score directly represents the probability that a heatmap was generated by a
successful matching process. The full architecture details are presented in Figure 3.25.

The ORN was trained using correspondence heatmaps created during the training of
a SAR-optical matching network, the CorrASL network in this case. Similarly, the
training labels were derived as a binarization of the heatmaps respective matching
loss. Using these data, the network was trained in a supervised manner using a BCE
loss function. In this way, human bias is mostly removed from the labelling process,
and the network has the flexibility to learn which heatmap features best represent
successful matching.

Evaluating the trained ORN on a test dataset, produced in the same manner as the
training dataset, a binary classification accuracy of 81%, with a precision of 76.1% and
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Figure 3.25: The architecture of the Outlier Reduction Network
(ORN). Conv(k, s, p) and MaxPool(k, s), representing a convolutional
layer, and a max-pooling layer, with a kernel of size k, stride of s, and
padding of p. ReLU, instance normalization and batch normalization

are represented by the suffixes R, I and B, respectively.

(a) True Negative (b) False Positive (c) False Negative (d) True Positive

Figure 3.26: Examples of heatmaps corresponding to incorrectly (a)
and correctly (d) matched regions, along with mis-classified correspon-
dence heatmaps (b) and (c). The ORN only makes use of the valid

region of the heatmap for classification.

a recall of 89.5%, was achieved. These results confirm the hypothesis that the corre-
spondence surface holds key information for determining whether or not the matching
process was successful. Figure 3.26, provides visual examples of both positive and
negative classification results.

The classification results, depicted in Figure 3.26, show that the classification of success-
ful correspondences relies upon more than just the local peak characteristics, although
this is an essential factor. Furthermore, these results highlight why classification based
purely on the maximum response within the heatmap may lead to a higher number of
outliers.

The addition of the ORN to the matching pipeline was further shown to improve
the overall accuracy and precision of the final correspondence set, irrespective of the
features used to initialize the matching task. Thus highlighting the importance of the
outlier removal process, and the proposed approach in performing this task.

3.3.4 Matching High-Resolution SAR and Optical Imagery
Although recently proposed deep matching architectures, within the domain of optical
computer vision, are trained in an end-to-end manner (DeTone et al., 2018; Dusmanu et
al., 2019), the initial approaches were based on a modular structure consisting of many
sub-networks which were chained together (Yi et al., 2016). This modular approach
was initially proposed in order to simplify the matching process into manageable sub-
problems, each with clearly defined data boundaries and goals.
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Figure 3.27: Architecture of the proposed comprehensive SAR-optical
matching framework. SAR and optical images of the same scene are
provided as inputs. The goodness network creates a cross-domain scene
goodness map which is used to guide the selection of candidate patches.
These patches are then matched using a correspondence network, and
outliers identified and removed using an outlier reduction network.

Given the recency of SAR-optical deep matching and the lack of prior investigations into
deep learning-based feature detection and outlier removal for SAR-optical matching
applications, this thesis has approached the development of a comprehensive SAR-
optical matching framework from a modular point of view. To this end various deep
neural networks have been proposed to address the sub-tasks of feature detection,
correspondence and outlier removal.

Thus it was proposed to link these individual solutions to form a comprehensive deep
learning-based SAR-optical matching framework which is suited to determining corre-
spondences across large, high-resolution SAR and optical scenes. An overview of the
sub-components and the proposed framework architecture is depicted in Figure 3.27.

From Figure 3.27, the three main components of the proposed framework can be
seen. The cross-domain scene goodness map generated by the goodness network (Sec-
tion 3.3.2) is used to extract candidate patch pairs for matching. Each candidate pair
consists of a SAR search extent and an optical template patch. These candidate pairs
are then matched by a correspondence network which formulates the matching task
as a search task and provides as output a correspondence heatmap. Within the frame
of this thesis, multiple SAR-optical correspondence architectures have been proposed
(Section 3.1 and Section 3.2.2), all of which are capable formulating the correspondence
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task in this manner. Finally, the resultant correspondence heatmaps are classified ac-
cording to the likelihood that they represent a successful correspondence. A threshold
is applied to filter out low probability correspondences. Finally, the identified set of
inliers is used to create the correspondence set by assigning correspondence between
the center pixel of the optical template patch and the point of maximal response in the
correspondence heatmap - which is spatially aligned to the SAR search extent.

Although end-to-end trainable models have a number of benefits related to their ability
to jointly optimize over all sub-problems, these benefits come with significantly more
complex data requirements and a lack of flexibility in the network at inference time.
Thus the modular approach employed in this thesis allows for each of the sub-networks
to be replaced or adapted according to the specific data available and the requirements
of the downstream data fusion tasks. Furthermore, it allows for the independent eval-
uation of each of the sub-tasks such that future research can be better focussed to
specific pain points within the SAR-optical matching problem.

3.3.5 Summary
In this section an investigation into the effects of scene and imaging geometry on joint
feature visibility was conducted. The results of this investigation highlighted the low
level of joint visibility in urban environments, and thus the difficulty of designing gen-
eralizable SAR-optical feature point detectors. Based on these findings, a novel deep
learning-based approach to multi-modal feature detection was proposed. The proposed
approach reformulated feature point detection problem as a good region detection prob-
lem whereby the goal was to identify image regions in each modality which exhibited
a structure and saliency that had a high likelihood of being matchable in the other
modality.

Furthermore, a novel approach to outlier detection was proposed, which does not rely
on robust statistics, nor mathematical models of feature transfer between images. In-
stead, it uses a CNN to directly identify successful matches from the structure of the
correspondence heatmap surface. In this way, it can be used to filter out correspon-
dence results which have a higher uncertainty or may be ambiguous.

Finally, it was described how to combine this goodness network and outlier removal
network with an existing correspondence network (such as those presented within the
frame of this thesis), to form a comprehensive SAR-optical matching framework.

Individually the goodness network and the ORN each lead to substantial improvements
to the accuracy and precision of the matching results produced by the correspondence
network. However, these improvements come at the cost of a reduced number of corre-
spondences in the final set. While this is not always ideal, it is deemed acceptable for
a large number of downstream data fusion tasks, such as co-registration (Merkle, Luo,
et al., 2017; Müller et al., 2012; Suri & Reinartz, 2010) and SAR-optical stereogram-
metry (Bagheri et al., 2018; Qiu et al., 2018), which favour high accuracy and spatial
diversity over the total number of correspondences.
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4. Publications Supporting this Thesis

This dissertation is founded in the framework of thesis by publication, and thus is
comprised of several of peer-reviewed publications. These publications provide an in-
depth look into the various challenges and potential deep learning-based solutions to
the SAR-optical image matching problem, as discussed in Chapter 3.

In the spirit of research and the doctoral process, the core publications of this thesis
are supplemented by additional publications which do not directly contribute to the
scope of this thesis, or were not subject to the peer-review process. However, they were
created during this period of doctoral research and thus further highlight the authors
contributions to the advancement of science, well-beyond the scope of the thesis. They
are listed at the end of this chapter for completeness.
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ABSTRACT:

In this paper, we present a work-flow to investigate the joint visibility between very-high-resolution SAR and optical images of urban
scenes. For this task, we extend the simulation framework SimGeoI to enable a simulation of individual pixels rather than complete
images. Using the extended SimGeoI simulator, we carry out a case study using a TerraSAR-X staring spotlight image and a Worldview-
2 panchromatic image acquired over the city of Munich, Germany. The results of this study indicate that about 55% of the scene are
visible in both images and are thus suitable for matching and data fusion endeavours, while about 25% of the scene are affected by either
radar shadow or optical occlusion. Taking the image acquisition parameters into account, our findings can provide support regarding the
definition of upper bounds for image fusion tasks, as well as help to improve acquisition planning with respect to different application
goals.

1. INTRODUCTION

One of the most important examples for the exploitation of com-
plementary information from different remote sensing sensors
is the joint use of synthetic aperture radar (SAR) and optical
data (Tupin, 2010, Schmitt et al., 2017). While SAR measures
the physical properties of an observed scene and can be ac-
quired independently of daylight and cloud coverage, optical sen-
sors measure chemical characteristics, and require both daylight
and clear environmental conditions. Nevertheless, optical data
is significantly easier to interpret for human operators and usu-
ally provides more details at a similar resolution. In contrast
to this, SAR data not only includes amplitude information, but
phase too, which enables a high-precision measurement of three-
dimensional scene topography and the deformations thereof.

The challenge of fusing SAR and optical data is greatest when
data of very high spatial resolutions covering complex built-up ar-
eas are to be fused. One example for this is very-high-resolution
(VHR) multi-sensor stereogrammetry as discussed by (Qiu et al.,
2018). In this application sparse tie-point matching is combined
with estimation of the corresponding 3D point coordinates. While
the study demonstrated the general feasibility of sparse SAR-
optical stereogrammetry of urban scenes, it also brought to light
the difficulties involved with robust tie-point matching in the do-
main of VHR remote sensing imagery. These difficulties, which
had also been discussed by (Zhang, 2010, Dalla Mura et al., 2015,
Schmitt and Zhu, 2016) before, are caused by the vastly differ-
ent imaging geometries of SAR and optical images. This dif-
ference hinders any straight-forward alignment by exploiting the
image geo-coding or classical image-to-image registration meth-
ods, and makes prior information about the acquisition and 3D
scene geometry a necessity. Even with the use of prior 3D scene
knowledge, SAR and optical image tie-point matching still relies
on image based multi-modal matching methods. However, these
methods are not robust to artefacts caused by the fundamental
nature of the imaging geometries (Dalla Mura et al., 2015). For

example, multi-path signals, speckle and layover in SAR images
can create visual features which have no valid correspondence in
the optical image. Nevertheless, image similarity metrics might
still detect structurally similar areas in the optical image which
then leads to incorrectly matched tie-points. Similarly, points
visible in the SAR image might be occluded in the optical im-
age and thus could end up incorrectly matched. These incorrectly
matched pixels will lead to a degraded, and sometimes meaning-
less, fusion product.

In order to be able to develop more sophisticated fusion tech-
niques, it is imperative that the causal effects between scene ge-
ometry, imaging modality and acquisition parameters are fully
understood, such that an intuition can be built up as to what scene
parts are jointly visible between SAR and optical images of com-
plex urban scenes.

In this paper we make use of a remote sensing simulation frame-
work in order to get a feeling for the smallest common denom-
inator, i.e. to produce joint visibility maps for VHR SAR and
optical images. Using these maps we aim to provide a better un-
derstanding of the causal relationships between the various imag-
ing factors and their effects on the upper bound of possible fusion
products. For this task, we first extend the SimGeoI simulation
framework (Auer et al., 2017) to allow for dense, pixel-wise sim-
ulation of SAR and optical images. Using this extended frame-
work, we develop a processing chain to create easily interpretable
joint visibility maps of VHR SAR-optical images. Finally, we
produce such joint visibility maps for a test dataset consisting of a
TerraSAR-X staring spotlight and a Worldview-2 image acquired
over the city of Munich, Germany, to provide the first educated
estimation regarding the limitation of SAR-optical data fusion for
urban scenes.

The remainder of this paper is structured as follows: Section 2
describes our adaptions to the SimGeoI simulation framework,
while Section 3 explains how the adapted framework can be
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used to generate joint visibility maps. Section 4 shows the re-
sults achieved on real experimental SAR and optical very-high-
resolution imagery. Finally, we discuss our findings in Section 5
and provide a conclusion in Section 6.

2. EXTENSION OF SIMGEOI FOR JOINT VISIBILITY
MAPPING

2.1 The SimGeoI Simulation Framework

SimGeoI (Auer et al., 2017) is an object-level simulation frame-
work which enables automated alignment and interpretation of
SAR and optical remote sensing images. The SimGeoI frame-
work makes use of prior scene knowledge, remote sensing image
metadata and a ray-tracing procedure in order to simulate the re-
mote sensing images, and derive object level interpretation layers
of the scene from these images. The SimGeoI work-flow is sum-
marized in the flowchart shown in Fig. 1.

The prior scene knowledge is defined by a digital surface model
(DSM) provided in UTM coordinates. The DSM is represented
by a raster file with pixel values describing the height of each
point in the scene. The second input, the image metadata, is ex-
tracted directly from the original remote sensing images, which
also have to be geo-coded to a UTM coordinate system. The
image metadata and geometric prior knowledge in the same co-
ordinate system allow for automated alignment of remote sensing
images based on simulation techniques.

The first stage of the process consists of filtering and decompos-
ing the raw DSM in order to create a digital terrain model (DTM)
and a normalized DSM (nDSM) (Ilehag, 2016). DTM and nDSM
are then triangulated in order to form a closed 3D scene model
from the 2.5D DSM data. The next stage is to extract sensor
parameters from the image metadata. These parameters include
sensor perspective, image properties and average scene height
and are used to define signal source, sensor perspective, and im-
age parameters for the ray tracing procedure. Surface parameters
are defined appropriately in order to separate object (white) from
background (black) in generated images. The image simulation
then takes place using a sensor specific ray-tracing engine, Geo-
RaySAR (Tao et al., 2011) for SAR and GeoRayOpt (Auer et al.,
2017) for optical images, and the defined scene model and sensor.
This ray tracing step is repeated for the DSM, nDSM and DTM,
respectively. Finally the simulated images are geo-coded by ro-
tating the images to a north-east orientation, and then correcting
for the constant shift caused by different imaging planes between
the original image and the simulated images. With this the simu-
lated images are geo-coded into the UTM coordinate system and
aligned with both the DSM and the original image data.

Using the simulated images from the DSM, DTM and nDSM,
SimGeoI is able to create various object-level interpretation lay-
ers of the scene (Auer et al., 2017). These layers include: ground
and vegetation extent; as well as shadow and layover in the case
of SAR images; and sun shadow and building extent in the optical
case. As the simulated images have been aligned to the DSM and
are geo-coded in the same coordinate frame as the original im-
ages, these interpretation layers can be used to extract and com-
pare object-level features between remote sensing images of the
same scene, from different view points or imaging modalities.

While SimGeoI provides accurate image alignment, and various
interpretation layers to aid in understanding SAR and optical im-
ages, these insights are only applicable to the object-level of a

Figure 1. Automated simulation and alignment of remote
sensing images with SimGeoI. The red framed section

represents the core of SimGeoI which is responsible for the
ray-tracing of the DTM, DSM, and nDSM and geo-coding of the

resulting images. Yellow: user provided inputs, blue: output
products which are used in later processes.

scene. However, to fully understand all the factors involved in
joint visibility of image parts and features across multi-modal re-
mote sensing data, and to build up an intuition of the upper bound
of fusion products we require a more fine-grained interpretation
of the scene.

2.2 Extension of SimGeoI for the Simulation of Individual
Pixels

In order to perform a detailed analysis of the scene in terms
of joint visibility, and uncertainty with respect to artefacts and
imaging modality, we extend the SimGeoI framework to enable
pixel-level alignment and simulation of the scene. To achieve
this pixel-level simulation we add an iterative pixel modelling
and ray-tracing procedure as an additional stage to the original
SimGeoI pipeline. These additions are depicted in Fig. 2.

Our pixel-level simulation starts by segmenting the preprocessed,
non-triangulated nDSM into sub-DSMs using a grid based sys-
tem. This is done in order to ensure large scenes can be processed
in a parallel manner, as each sub-DSM is independent in the ray-
tracing phase. Each sub-DSM is then processed in a pixel-wise
manner, where each DSM pixel is modelled as a small sphere
with its original X, Y coordinates, and a height corresponding
to the DSM height at that point. It should be noted that each
pixel is used to create a separate 3D model, such that only a sin-
gle sphere exists in each model. These pixel-wise models are
then fed into the ray-tracing engine, along with the camera defi-
nition which was created as per the standard SimGeoI simulation
procedure. The simulated image, which contains only a single
activated pixel, for each pixel-wise model is then geo-coded and
aligned with the original remote sensing image. The location of
the activated pixel, in UTM coordinates, is then extracted and
used to sample the various interpretation layers generated during
the object-level simulation. By doing so we are able to not only
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Figure 2. Our extension of the SimGeoI framework to pixel-wise
simulation and interpretation. The process encapsulated in the
dashed blue area is run in parallel and is independent for each

sub-DSM. The results are collated at the end, into a single
results file for the specified image. Yellow: inputs which are
obtained from the original SimGeoI pipeline in Fig. 1. Blue:
Collated output file containing pixel-wise results for a single

satellite image.

obtain a pixel-wise correspondence between the multi-modal re-
mote sensing images, as well as image pixel to DSM correspon-
dence, but also a pixel-level interpretation of the scene. The DSM
pixel coordinate, simulated image pixel coordinates, and pixel in-
terpretation flags for each pixel are then collated and stored in a
tabular format.

It should be noted that due to the DSM being a 2.5D raster rep-
resentation of the scene, vertical regions in the DSM appear as
discontinuities when converted to a 3D point cloud representa-
tion. Thus our simulation process is unable to obtain pixel corre-
spondences, and interpretation of the facade regions of buildings.
These vertical discontinuities can be seen more clearly in Fig. 3.

Figure 3. An exemplary point cloud which was extracted from a
DSM. The vertical discontinuities are clearly visible as white

patches in the point cloud.

Furthermore, as we simulate the DSM pixels individually, imag-
ing effects such as occlusion and radar shadow are not accounted
for during simulation. Thus we are able to obtain the theoretical
image pixel coordinates for every DSM pixel, irrespective of its

true visibility in the original remote sensing image.

3. GENERATING JOINT VISIBILITY MAPS

Using the outputs of the extended SimGeoI framework described
in Section 2 for both the SAR and optical images, we are able to
derive joint visibility maps for the scene. However, as the DSM
pixels are simulated independently, we first need to apply a sensor
specific post-processing stage to the results in order to generate
additional interpretation layers. These layers are used to impose
the original scene geometry constraints on the simulation results.
The results from post-processing can then be fused into a final
dataset which is used to generate the joint visibility maps. The
post-processing and merging process is depicted in Fig. 4 and
described in detail below.

Figure 4. Our post-processing and merging stage. The process
highlighted in blue is run separately for both the SAR and
optical pixel-wise results. The projected and sorted image

coordinates for both the SAR and optical simulation are then
processed to enforce geometric constraints and finally merged
into a single output result. Yellow: inputs from previous stages

of the pipeline, Blue: the final merged and post-processed
pixel-wise interpretation and correspondence dataset which is

used to create our joint visibility maps.

3.1 Post-Processing

As the simulation results do not account for the geometric con-
straints of the scene, we use a post-processing step to add ad-
ditional interpretation flags to each pixel. These flags specify
whether the pixel is subject to any geometric constraints. As
these constraints are different between SAR and optical images
we require a sensor specific approach to post-processing.

In the case of the optical image simulation, as all the DSM pix-
els are simulated independently it is possible that many co-linear
points exist. Co-linear points are points in the 3D scene which
line along the same line of projection, and thus are not truly vis-
ible as only the point closest to the camera will be seen. The
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other points along this line of projection will be occluded. For
this reason we add an additional interpretation flag to the opti-
cal simulation results specifying whether a simulated pixel is oc-
cluded or not. In order to determine co-linear points we make
use of a simple strategy which does not require storing inter-
mediate ray-tracing products. Firstly the geo-coded image pixel
coordinates are converted to image (x, y)-coordinates such that
co-linear points have the same (x, y)-coordinates in the image
space. We then select the image pixel which has the greatest cor-
responding DSM pixel height as the visible pixel, and define all
other pixels as being occluded. This strategy holds due to the
fact that the remote sensing images we are using are guaranteed
to be taken from an aerial vantage point within a relatively small
range of image incidence angles. A visual description of why this
assumption and technique works can be seen in Fig. 5.

Figure 5. Simplified imaging geometry of an optical satellite
sensor. It can be seen that colinear spheres (green), will project
to the same image plane (blue) coordinates. However, only the

sphere with the greatest height will truly be visible on the image
plane.

For SAR images, post-processing is used to determine the extent
of facade layover in the image. While SimGeoI provides a lay-
over interpretation layer, this layer masks all scene object-pixels
which are subject to layover. However, as the roof structure re-
mains the same and is not often heavily distorted by layover we
wish to exclude it from this mask. The reasons for excluding the
roof region of buildings is that this region is often jointly visible
and may contain important features. Layover pixels are additive
in nature and contain, for instance, signal components from both
the ground and a building. For this reason we wish to only mask
the layover regions which contain ground signal and signal from
the facade of the building, not the roof. this is achieved by con-
verting the geo-coded image coordinates to (x, y)-pixel coordi-
nates, and then extracting the pixel with the greatest height to be
the building roof. The duplicate pixels are then defined as the lay-
over extent of the building facade. This strategy holds as only a
direct signal response occurs on the surface of the modelled DSM
pixel sphere. A visual argument for this post-processing stage is
depicted in Fig. 6.

3.2 Merging SAR and Optical Simulations

As the SAR and optical images are simulated independently of
each other, it is required that we merge their simulation files in
order to be able to assess joint visibility between the original im-
ages. When we split the nDSM into sub-DSMs we make use of

Figure 6. Simplified model of a SAR sensor, and the formation
of layover (green) and shadow (red) in a simple scene. The

magenta spheres will map to the same image coordinates in the
layover region. However, we can ignore the point on the

building facade as it is not modelled due to the DSM being 2.5D.
Thus by selecting the point with the greatest height we are able
to extract the roof extent of the layover, and thereby can obtain

the extent of the facade.

a grid based strategy, such that each grid block can be assigned
a unique identifier. Furthermore, when processing the individual
pixels in each sub-DSM, the pixels are labelled and processed
in a left to right, top to bottom manner. This ensures that each
DSM pixel has a unique identifier. Additionally, the SAR and
optical simulations make use of the same DSM, thus the DSM
identifiers in the SAR and optical image simulation results are
equivalent and can be matched by a simple inner join on the data.
This enables us to easily determine corresponding pixels between
the original SAR and optical images as well as the joint visibil-
ity of pixels based on filtering the merged result set by features
described in the various interpretation layers and marking the ap-
propriate pixels in the original images. For exemplary demon-
stration, a small subsection of a final merged simulation result set
is presented in Tab. 1.

Table 1. An example of a merged simulation output. Note: the
UTM coordinates have been reduced in precision for formatting

reasons.

block id B2674 B2593 B2594
point id P186 P889 P341

UTMx sar 691489.874 691481.371 691477.364
UTMy sar 5334883.531 5334887.031 5334881.032
height sar 655.292 655.290 655.282
shadow sar 0 0 0
layover sar 1 1 1
ground sar 0 0 0
facade sar True False False
UTMx opt 691414.419 691405.919 691401.919
UTMy opt 5334878.698 5334882.199 5334876.201
height opt 655.292 655.290 655.282
shadow1 opt 0 0 0
layover1 opt 274 0 498
ground1 opt 0 0 0
layover2 opt 274 0 498
shadow2 opt 0 0 0
ground2 opt 0 0 0
occluded opt False True False
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In order to generate the joint visibility maps we use the merged
pixel-wise simulation product, as well as the original remote
sensing images. Using these data, generating joint visibility maps
for both the SAR and optical images becomes a trivial task. By
filtering the dataset to only include the points which make up a
specific interpretation layer in either the SAR or optical image,
we are able to exploit the list of corresponding SAR and optical
image coordinates and plot the extent of this interpretation layer
in both images. An example of a joint interpretation layer gener-
ated in this manner is depicted in Fig. 7.

(a) (b)

Figure 7. An example of an interpretation layer mask. The
extent of radar shadow in the SAR image (a), as well as the

extent of shadowed pixels in the optical image (b), is shown in
white. Black pixels are unaffected by radar shadow.

4. EXPERIMENT AND RESULTS

4.1 Test Data

For our experiments we make use of a dataset consisting of VHR
optical and SAR images, as well as a DSM of the city of Munich,
Germany. The DSM of the Munich scene was derived from a
Worldview-2 stereo image pair and has a horizontal resolution of
0.5m and vertical resolution of 1m. The details of the remote
sensing images are summarized in Tab. 2.

Table 2. Parameters of the test images over Munich, Germany

Data WorldView-2 TerraSAR-X

Acquisition
Date

12/07/2010 07/06/2008

Imaging Mode panchromatic staring spotlight

Off-nadir angle
(at scene center)

14.5◦ 49.9◦

Orbit 770km 515km

Heading angle 189.0◦ 188.3◦ descending

Pixel spacing
(east, north)

0.5m 0.5m

4.2 Joint Visibility Map Results

In order to understand which pixels are visible in both the SAR
and optical images, we propose the concept of cross-modal and
joint visibility maps. These maps describe which pixels can be
seen in both images, and thus which pixels are appropriate for
matching and fusion applications such as stereogrammetry or tie
point detection for image registration.

By masking the facade layover extent and optical occlusion in-
terpretation layers in the SAR image, and the radar shadow and

facade extent layers in the optical image, cross-modal joint visi-
bility maps are generated for the scene described in Section 4.1.
These cross-modal joint visibility maps can be seen in Figs. 8 and
9. A cropped area around the Frauenkirche (church) is depicted
in Fig. 10. For easier reference, the extent of this area is marked
by a white frame in Figs. 8 and 9.

In addition to these cross-modal joint visibility maps, we create
a joint visibility map which is the projection of both cross-modal
joint visibility maps onto an ortho-image, in our case an Open-
StreetMap layer. This joint visibility map, seen in Fig. 11, repre-
sents the full extent of visible, non-visible and uncertain regions
of the scene with respect to both sensors.

Figure 8. Cross-modal joint visibility map of Munich projected
onto the WorldView-2 image. Red: radar shadow extent; yellow:

building facades.

Figure 9. Cross-modal joint visibility map of Munich projected
onto the TerraSAR-X image. Red: optical occlusions; yellow:

facades layover extent.

The red pixels in these figures represent regions of each image
which are not visible in the other modality. For example, in the
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(a)

(b)

(c)

Figure 10. Cross-modal joint visibility maps for optical (a) and
SAR (b) images; and joint visibility map (c), of Frauenkirche

(church) Munich. (a) Red: radar shadow extent; yellow:
building facades. (b) Red: optical occlusions; yellow: layover

facade extent. (c) Red: Not jointly visible points; yellow:
uncertain vertical points (i.e. facades).

case of the optical joint visibility map shown in Fig. 8, the red

pixels represent areas of the optical image which cannot be seen
in the SAR image due to radar shadow. The yellow pixels in the
joint visibility maps describe regions in the image which have
high uncertainty with respect to matching, or whose visibility is
dependent on the spatial relationship between the sensors and the
geometric distortion effects which occur during imaging. For in-
stance, in the SAR visibility map (Fig. 9), the yellow regions rep-
resent the extent of building facade in the layover region, while
the yellow in the optical visibility map describes the extent of the
facade in the optical image. In the case of the joint visibility map,
Fig. 11, the red and yellow pixels are formed by combining the
results of the cross-modal joint visibility maps described above.

Figure 11. Joint visibility map of Munich projected onto an
OpenStreetMap layer. Red: image parts that are not jointly
visible due to radar shadow or optical occlusion; yellow:

uncertain vertical areas (e.g. facades).

The regions in red cannot be matched and thus do not contribute
to the fusion product as they are only visible in one of the im-
ages. In contrast, the areas in yellow can still provide useful data,
and high quality matching results, if the imaging parameters and
scene structure are such that:

• the SAR and optical sensors image the same facade,

• the layover of the facade does not overlay another area with
prominent signal response,

• the image matching technique does not rely purely on image
geo-coding for defining search areas,

• the scene structure is such that the building facades produce
matchable features in both the SAR and optical domain.

5. DISCUSSION

The results presented in Section 4 show that even when account-
ing for imaging effects such as radar shadow, optical occlusions
and facade uncertainty, a significant portion of the scene remains
jointly visible, even in complex urban scenes. However, many ef-
fects such as sensor baselines, scene geometry, and sensor view-
ing angels affect the extent of non-visible and uncertain pixels.
In this section the effects of these factors on the joint visibility of
the scene will be discussed.
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5.1 Effect of Sensor Baseline

The baseline between the SAR and optical sensors determines the
extent of the scene which is imaged. From our test scene we can
see how a relatively wide baseline, coupled with different view-
ing directions, leads to the SAR and optical sensors capturing dif-
ferent building facades. Furthermore, this non-zero baseline also
introduces larger regions of non-jointly visible points as the radar
shadow and optical occlusions do not overlap, as is clear when
comparing the cross-modal joint visibility maps (Figs. 8 and 9)
to the final joint visibility map (Fig. 11).

As it was shown by (Qiu et al., 2018) in order to have favourable
conditions for stereogrammetry, the baseline between the sen-
sors should be as small as possible. This small baseline is also
favourable for joint visibility. It ensures that the radar shadow
(red pixels in Fig. 8) overlaps with the points which are occluded
in the optical images (red pixels in Fig. 9), thus decreasing the
non-visible regions.

However, a small baseline is not favourable for SAR-optical im-
age matching as the layover of the building falls towards the sen-
sors on the SAR image plane, while the building extent in the op-
tical image falls away from the sensor. Thus it increases the num-
ber of uncertain (yellow) pixels in our joint visibility map. Fur-
thermore, building facade images appear mirrored with respect
to each other, while the roof structure remains in the same ori-
entation, thus making purely image-based matching approaches
more difficult. While prior information about the scene can as-
sist in determining search regions to find corresponding features,
and can provide information as to flips and rotations required for
patch comparison, the matching of these features remains a diffi-
cult task.

5.2 Effect of Viewpoint and Scene Geometry

The viewing angle of the sensors on the scene combined with the
scene geometry have the largest part to play in the joint visibility
of scene parts. From the results presented in Fig. 10a we are able
to see how the high Frauenkirche building causes a large number
of pixels to be lost in the optical image due to the extensive radar
shadow experienced at a viewing angle of θ = 49.9◦. The extent
of the radar shadow can be reduced by decreasing the viewing
angle. However, this is at the cost on increasing the extent of the
layover. In order to ensure that the layover does not fall on nearby
buildings, and thereby cause interference with other feature rich
areas, it is beneficial to ensure that the extent of the radar shadow
is larger than the extent of the layover. From our test scene and
resulting joint visibility map, Fig. 11, we can observe that the
layover region is smaller than the shadow region, as there is little
overlap between red and yellow pixels. This favorable condition
is always true for incidence angles greater than θ = 45◦.

In the optical case we see that it is preferable to have a view-
ing angle as close to nadir as possible. In doing so the number of
ground points which are occluded by building structures (red pix-
els in Fig. 9) is minimized. Furthermore, a small viewing angle
also reduces the extent of the building facade seen (yellow pixels
in Fig. 8) and thus the uncertainty in matching facade regions.
Unlike the SAR imaging case, there is no trade-off between a
large and small viewing angle in the optical case. For our optical
test data, a small viewing angle of θ = 14.5◦ was used, and the
resulting cross-modal joint visibility map depicts this in the small
extent of the facade and occluded regions.

In order to decrease the number of not jointly visible pixels, the
smallest viewing angle obtainable by the SAR sensors should be
utilized (20◦ for TerraSAR-X). However, while this provides the
greatest joint visibility the extent of the uncertain regions will
be large, and thus could degrade matching accuracy and fusion
products. For this reason we argue that the optimal viewing angle
needs to be considered with reference to the application and scene
structure at hand, in order to ensure accurate feature matching
can occur but also that a large enough number of pixels remain
available to produce a meaningful fusion product.

5.3 Upper Bound of Data Fusion

Apart from developing an intuition as to how scene geometry,
viewing angles and sensor baseline play a role in joint scene visi-
bility, we can also extract a theoretic upper bound for data fusion
from our joint visibility maps. In order to do this we obtain quan-
titative results as to the coverage of the scene, when viewed from
a nadir angle. These results are presented in Table 3, both from
the point of view of the individual images as well as regarding the
full scene extent.

Table 3. Breakdown of the scene coverage of various layers in
the cross-modal and joint visibility maps.

Image Type Not Jointly
Visible

Uncertain Jointly Visi-
ble

SAR Image 9.50% 17.77% 72.73%
Optical Im-
age

14.53% 14.73% 70.74%

Scene 25.89% 18.89% 55.22%

From the breakdown in Table 3 it is clear that in our test scene
only slightly more than half of its extent is jointly visible in both
the SAR and the optical satellite image, while the rest is either
missing because of optical occlusion or radar shadowing, or un-
certain because of belonging to vertical surfaces (i.e. facades).
As the imaging geometries of our test scene are typical and are
not extreme in viewing angle, scene geometry nor sensor base-
line, it can be inferred that this upper bound is likely achievable
for scenes of a similar nature.

5.4 Simulation Limitations

As our simulation process makes use of a 2.5D DSM, several lim-
itations exist in our output data. The main limitation is that we
cannot obtain pixel-level correspondences on building facades,
even when both sensors image the same facade. This leads to
building facade pixels being missing from the final merged sim-
ulation results, and thus we cannot draw precise conclusions as
to the level of joint visibility present in the facade regions. How-
ever, we can infer the possibility of joint visibility based on our
joint visibility maps, and the sensors viewing angles of the scene.

Furthermore, due to not modelling facades, it is possible that
incorrect correspondences can occur when the visible co-linear
point lies on a building facade and occluded points on a building
rooftop or on the ground. We can see this situation by observing
the scene in Fig. 5 and noting how the ray passing through all the
facades of the tall building may land upon the roof of the lower
building and thus provide an incorrect response. However, due to
optical remote sensing data having a look angle of less than 45◦,
and more commonly less than 25◦, as well as the optical scene
being modelled using an nDSM, such a situation will only occur

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-129-2018 | © Authors 2018. CC BY 4.0 License.

 
135

62 Chapter 4. Publications Supporting this Thesis



with closely spaced buildings of significantly different heights.
Furthermore, in order for such an error to have a negative influ-
ence on the accuracy of the joint visibility maps, the incorrectly
labelled point needs to occur with the same incorrect label in both
the SAR and optical cross-modal visibility maps.

In the case of the SAR simulation, the effects of not modelling the
building facades are not as apparent. This is due to the fact that
the rooftop and facade points layover onto the ground, and while
the facade pixels are not simulated these ground and rooftop pix-
els are, thus encapsulating the full extent of the layover.

6. CONCLUSION AND OUTLOOK

Through our experiments for the first time a strong intuition on
the bounds of joint visibility in multi-modal remote sensing was
gained – backed by quantitative results. To achieve this, we de-
veloped a framework which allows for pixel-wise correspondence
to be determined between multi-modal remote sensing images.
This framework can provide the basis for many other applica-
tions involving the investigation of joint-visibility as well as for
data acquisition in applications where high quality labelled data
and correspondence information is required, such as training deep
matching algorithms.

We further developed an intuition as to the appearance and ef-
fect of the various factors involved in the imaging of the scene.
We were able to show why a small baseline between the sen-
sors is favourable for stereogrammetry applications. We further
described the trade-off between non-visible regions and uncer-
tain regions and present an argument for why the selection of the
scene viewing angle is mainly dependent on factors influencing
the SAR image. Our results further describe the joint visibility
for our test scene is around 55%, even without any optimizing of
viewing angle or sensors baselines. This number can serve as an
approximate upper bound for matching and image fusion endeav-
ours. Since our test scene was fairly typical, it can be expected
that this upper bound approximately extends to scenes with a sim-
ilar structure and imaging geometry.

In future work the simulation of the building facades will be in-
cluded in order to gain a more accurate understanding of the na-
ture of uncertain areas in the image, and to what degree these
areas remain uncertain and difficult to match. An investigation
into the visibility of strong feature points, and their transferabil-
ity between the SAR and optical domain will be discussed, with
the aim of assisting in the selection of high quality feature points
and regions to aid matching in SAR-optical stereogrammetry. We
will further present a mathematical framework to allow for eas-
ier selection of an optimal viewing angle and baseline for use in
matching and SAR-optical stereogrammetry data acquisition.
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Identifying Corresponding Patches in SAR and
Optical Images With a Pseudo-Siamese CNN
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Abstract— In this letter, we propose a pseudo-siamese
convolutional neural network architecture that enables to solve
the task of identifying corresponding patches in very high-
resolution optical and synthetic aperture radar (SAR) remote
sensing imagery. Using eight convolutional layers each in two
parallel network streams, a fully connected layer for the fusion
of the features learned in each stream, and a loss function
based on binary cross entropy, we achieve a one-hot indication
if two patches correspond or not. The network is trained and
tested on an automatically generated data set that is based
on a deterministic alignment of SAR and optical imagery via
previously reconstructed and subsequently coregistered 3-D point
clouds. The satellite images, from which the patches comprising
our data set are extracted, show a complex urban scene contain-
ing many elevated objects (i.e., buildings), thus providing one
of the most difficult experimental environments. The achieved
results show that the network is able to predict corresponding
patches with high accuracy, thus indicating great potential for
further development toward a generalized multisensor key-point
matching procedure.

Index Terms— Convolutional neural networks (CNNs), data
fusion, deep learning, deep matching, image matching, optical
imagery, synthetic aperture radar (SAR).

I. INTRODUCTION

THE identification of corresponding image patches is used
extensively in computer vision and remote sensing-related

image analysis, especially in the framework of stereoapplica-
tions or coregistration issues. While many successful hand-
crafted approaches, specifically designed for the matching of
optical images, exist [1], to this date, the matching of images
acquired by different sensors still remains a widely unsolved
challenge [2]. This particularly holds for a joint exploitation
of synthetic aperture radar (SAR) and optical imagery caused
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Fig. 1. Simple detached multistory building as (Left) SAR amplitude image
and (Right) optical photograph.

by two completely different sensing modalities: SAR imagery
collects information about the physical properties of the scene
and follows a range-based imaging geometry, while optical
imagery reflects the chemical characteristics of the scene and
follows a perspective imaging geometry. Hence, structures
elevated above the ground level, such as buildings or trees,
show strongly different appearances in both SAR and optical
images (see Fig. 1), in particular when dealing with very high-
resolution (VHR) data.

In order to deal with the problem of multisensor key-
point matching, several sophisticated approaches have been
proposed, e.g., exploiting phase congruency as a generalization
of gradient information [3]. However, even sophisticated hand-
crafted descriptors reach their limitations for highly resolving
data showing densely built-up urban scenes, which—in the
SAR case—is often difficult to interpret even for trained
experts.

Therefore, this letter aims at learning a multisensor
correspondence predictor for SAR and optical image patches
of the state-of-the-art VHR data. Inspired by promising
results achieved in the context of stereomatching for optical
imagery [4], [5], we also make use of a convolutional neural
network (CNN). The major difference of this letter to these
purely optical approaches is that we focus on the aforemen-
tioned, distinctly more complicated multisensor setup and,
therefore, design a specific pseudo-siamese network architec-
ture with two separate, yet identical convolutional streams
for processing SAR and optical patches in parallel instead of
a weight-shared siamese network in order to deal with the
heterogeneous nature of the input imagery.

II. NETWORK ARCHITECTURE

A. Pseudo-Siamese Convolutional Network

Since SAR and optical images lie on different manifolds,
it is not advisable to compare them directly by descriptors

1545-598X © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Proposed pseudo-siamese network architecture and layer configuration.

designed for matching optical patches. Siamese CNN archi-
tectures are not suitable for this task either, as weights
are shared between the parallel streams, thus implying the
inputs share similar image features. In order to cope with
the strongly different geometric and radiometric appearances
of SAR and optical imagery, in [6], we proposed a pseudo-
siamese network architecture with two separate, yet identical
convolutional streams, which process the SAR patch and the
optical patch in parallel and only fuse the resulting information
at a later decision stage. Using this architecture, the network
is constrained to first learn meaningful representations of
the input SAR patch and the optical patch separately and
to combine them on a higher level. The work presented in
this letter is an extension of [6] by improving the fusion
part of the network architecture, using a different training
strategy, and resorting to nonlocally prefiltered SAR patches
instead of temporal mean maps. In addition, we evaluate the
network on a deterministically partitioned data set instead of a
randomly partitioned one, as random partitioning will always
cause positively biased results due to overlapping regions in
patches.

The architecture of the proposed network is shown in Fig. 2.
It is mainly inspired by the philosophy of the well-known
VGG Nets [7]. The SAR and optical image patches are passed
through a stack of convolutional layers, where we make use of
convolutional filters with a very small receptive field of 3 × 3
rather than using larger ones, such as 5×5 or 7×7. The reason
is that 3×3 convolutional filters are the smallest kernels to cap-
ture patterns in different directions, such as center, up/down,
and left/right, but still have an advantage: the use of small
convolutional filters will increase the nonlinearities inside the
network and thus make the network more discriminative.

The convolution stride in our network is fixed to 1 pixel;
the spatial padding of convolutional layer input is such
that the spatial resolution is preserved after convolution,
i.e., the padding is 1 pixel for the all 3 × 3 convolutional
layers in our network. Spatial pooling is achieved by carrying
out seven max-pooling layers, which follow some of the con-
volutional layers. They are used to reduce the dimensionality
of the feature maps. Max pooling is performed over 2×2 pixel
windows with stride 2.

The fusion stage of our proposed network is made up
of two consecutive convolutional layers, followed by two
fully connected layers. The convolutional layers consist of
3 × 3 filters, which operate over the concatenated feature maps
of the SAR and optical streams, in order to learn a fusion
rule which minimizes the final loss function. Max pooling
is omitted after the first convolutional layer in the fusion
stage, and a stride of 2 is used in order to downsample the
feature maps while preserving the spatial information [8].
The use of 3 × 3 filters and the absence of max pooling
after the first convolution allow the fusion layer to learn a
fusion rule, which is somewhat invariant to spatial mismatches
caused by the difference in imaging modalities. This is due
to the fact that the fusion layer uses 3 × 3 convolutions
to learn relationships between the features while preserving
nearby spatial information. The lack of max pooling means
that these learned spatial relationships are preserved as not
only the maximal response is considered, while the stride of
2 is used to reduce the feature size. The final stage of the
fusion network consists of two fully connected layers: the
first of which contains 512 channels; while the second, which
performs one-hot binary classification, contains 2 channels.

In a nutshell, the convolutional layers in our network apart
from the fusion layer generally consist of 3 × 3 filters and
follow two rules: 1) the layers with the same feature map
size have the same number of filters and 2) the number of
feature maps increases in the deeper layers, roughly doubling
after each max-pooling layer (except for the last convolutional
stack in each stream). All layers in the network are equipped
with a rectified linear unit as an activation function, except
the last fully connected layer, which is activated by a softmax
function. Fig. 2 shows the schematic of the configuration of
our network.

B. Loss Function

We make use of the binary cross-entropy loss for training

our network. Let X = (x sar
1 , xopt

1 ), (x sar
2 , xopt

2 ), . . . , (x sar
n , xopt

n )

be a set of SAR-optical patch pairs, where x sar
i , xopt

i ∈
RD×D,∀i = 1, . . . , n and yi is the one-hot label for the pair
(x sar

i , xopt
i ) (with [1, 0] denoting a dissimilar pair, and [0, 1]

denoting a similar pair). We then seek to minimize the binary
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cross-entropy loss

E = 1

n

n∑

i=1

yi · log f
(
x sar

i , xopt
i , θ

)
(1)

where f (x sar
i , xopt

i , θ) denotes the output vector of the softmax
function when comparing the input pair (x sar

i , xopt
i ) with the

current network parameters θ .

C. Configuration Details

Fig. 2 shows the full configuration of our network. Apart
from the previously discussed architecture, we also make
use of batch normalization after the activation function of
each convolutional layer. This leads to an increase in the
training speed and reduces the effects of internal covariate
shift. In order to reduce overfitting during training, we made
use of L2-regularization, with λ = 0.001, for the convolution
kernels of the SAR and optical streams, and dropout with a
rate of 0.7 for the first fully connected layer.

III. AUTOMATIC PATCH POOL GENERATION

For training and testing purposes, a large pool of cor-
responding and noncorresponding SAR and optical image
patches is needed. While the classical work on deep matching
for optical imagery can usually rely on easy-to-achieve optical
patch pools (see, for example, the Phototourism Patch data
set [4], [9]), annotating corresponding patches in VHR optical
and SAR imagery of complex urban scenes is a highly
nontrivial task even for experienced human experts. Thus, one
of the contributions of this letter is the introduction of a fully
automatic procedure for SAR-optical patch pool generation.

A. “SARptical” Framework

In order to solve the challenge of automatic data set gen-
eration, we resort to the so-called “SARptical” framework of
Wang et al. [10], an object-space-based matching procedure
developed for mapping textures from optical images onto
3-D point clouds derived from SAR tomography. The core
of this algorithm is to match the SAR and optical images in
3-D space in order to deal with the inevitable differences
caused by different geometrical distortions. Usually, this would
require an accurate digital surface model of the area to link
homologue image parts via a known object space. In con-
trast, the approach in [10] creates two separate 3-D point
clouds, one from SAR tomography and one from optical
stereo matching, which are then registered in 3-D space to
form a joint (“SARptical”) point cloud, which serves as the
necessary representation of the object space. The flowchart of
the approach can be seen in Fig. 3. In order to estimate the
3-D positions of the individual pixels in the images, the algo-
rithm requires an interferometric stack of SAR images as well
as at least a pair of optical stereoimages. The matching of the
two point clouds in 3-D guarantees the matching of the SAR
and the optical images. Finally, we can project the SAR image
into the geometry of the optical image via the “SARptical”
point cloud and vice versa.

Fig. 3. Flowchart of the patch-pool generation procedure.

B. Data Preparation

For the work presented in this letter, we made use of a
stack of 109 TerraSAR-X high-resolution spotlight images of
the city of Berlin, acquired between 2009 and 2013 with about
1-m resolution, and of nine UltraCAM optical images of the
same area with 20-cm ground spacing. After the reconstruction
of the “SARptical” 3-D point cloud, 8840 pixels with high
SNR (>5 dB) were uniformly sampled from the nonlocally
filtered master SAR amplitude image and projected into the
individual optical images, yielding a total of 10 108 cor-
responding optical pixels. The reason for the difference in
pixel numbers is that each of the nine optical multiview
stereoimages is acquired from a different viewing angle,
making it possible for each SAR image pixel to have up to
nine corresponding optical image pixels. The actual number
of corresponding optical pixels is dependent on the visibility
of the SAR pixel from the respective optical point of view.

All SAR patches are centered at their corresponding
SAR image pixels. Their size is fixed at 112 × 112 pixels
with a pixel spacing of about 1 m. In analogy, the optical
patches are centered at the corresponding optical pixels. After
resampling to adjust the pixel spacing, the SAR patches were
rotated, so that both patches align with each other as a first
approximation.

In order to reduce bias when training our network, we ran-
domly selected a single correct optical correspondence for
each SAR image patch during the final data set preparation.
In addition, we randomly assign one wrong optical correspon-
dence to each SAR patch in order to create negative examples.
Thus, eventually, we end up with 17 680 SAR-optical patch
pairs (see Fig. 1 for an example of the class of correct
matches).

As final preprocessing steps, the optical patches were con-
verted to gray scale, and all patches were normalized [11] to
a radiometric range of [0; 1] with subsequent subtraction of
their means.

C. Patch Pool Partitioning

In order to provide a fair experimental design, we partition
the patch pool in the following manner: 9724 (55%) of the
patch pairs are used as training data set, 2652 (15%) as
validation set, and 5304 (30%) as test data set. It has to be
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Fig. 4. Comparison of different patch sizes.

noted that we do not partition the patch pool on a purely ran-
domized basis but rather resort to a deterministic partitioning
method in order to avoid positively biased test results. The
full extent SAR and optical images are first deterministically
partitioned and then each partition is processed to generate
positive and negative samples for training, validation, and
testing, respectively.

IV. EXPERIMENTS AND RESULTS

A. Training Details

The network was trained using the Adam [12] opti-
mization algorithm as it is computationally efficient and
exhibits faster convergence than standard stochastic gradi-
ent descent methods. The optimization hyperparameters are
fixed to β1 = 0.9 and β2 = 0.999 with a learning rate
of αt = 0.0009. The learning rate was found via a grid
search method on our training and validation data, while the
β−parameters were kept at their recommended values. Prior
to training the network, weight vectors were initialized using
the truncated uniform distribution described in [13], and the
bias vectors were initialized with zero values. Training was
conducted with 2 Nvidia TitanX GPUs using class balanced,
minibatches of 64 SAR-optical patch pairs (32 corresponding
and 32 noncorresponding pairs) over 30 epochs; training took
on average 25 min with a single forward pass taking around
3 ms to complete.

We trained five versions of our proposed network, each
at a different patch size, in order to evaluate the effect of
patch size on classification accuracy. Patch cropping was
done on-the-fly with the new patch being cropped from the
center of a larger patch—this was done as the center pixel
is the point of correspondence between the SAR and optical
patch. Furthermore, we seeded our random number generator
with a fixed value of 0, at the start of training for each patch
size, in order to prevent the randomization effects between
networks.

B. Evaluation Results

We evaluate the proposed network with different input patch
sizes using our testing patch pool (described in Section III),
which has further been cropped around the center pixel to
produce new testing pools with different patch sizes.

The accuracy versus false positive rate curves correspond-
ing to different patch sizes can be seen in Fig. 4. Table I reports

TABLE I

CONFUSION MATRIX VALUES FOR DIFFERENT PATCH SIZES

Fig. 5. Results of key-point matching experiment. (a) Confusion matrix
showing the matching scores for all SAR and optical key-point patches.
(b) Spread of incorrect matches ordered by the similarity score.

the corresponding confusion matrix values for our proposed
network evaluated with each patch size; it is to be noted that
the confusion matrix is the reflective of the network at the
point of highest overall performance for each patch size.

C. Key-Point Matching Results

In order to evaluate the proposed network’s performance
in a real-world, key-point matching scenario, we selected
100 neighboring TomoSAR key-points in the SAR image
and extracted the corresponding SAR and optical patch pairs.
We selected these key points from a localized area within our
test set so as to reproduce the conditions found in a real-world
key-point matching application. We then compared every SAR
and optical patch in the selected patch set in order to determine
the performance of our proposed network in the presence of
large numbers of potential mismatches.

In Fig. 5(a), we can see a matrix depicting the similarity
scores of the various pair comparisons, where corresponding
SAR and optical patches are given the same index number.
It should be noted that in determining a binary value for
correspondence, a threshold is applied to these similarity
scores. Fig. 5(b) shows the sorted scores for all nonsimilar
optical patches, making it easier to see the number and strength
of incorrect matches in the patch pool.

V. DISCUSSION

Generally, the results summarized in Section IV-B indicate
a promising discriminative power of the proposed network.
However, the following major points must be considered when
interpreting the results.

A. Influence of the Patch Size

As Table I and Fig. 4 clearly indicate, the patch size strongly
affects the discriminative power of the network. This result is
likely due to the effects of distortions in SAR images, which
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Fig. 6. Exemplary patch correspondence results.

are acquired in a range-based imaging geometry. Thus when
patches are cropped to smaller regions, we likely crop out
defining features, which are used for matching between the
SAR and optical domain. This can be intuitively understood
by referring to Fig. 1, where we can see the effects of layover
and multipath reflections of the building in the SAR image
and a near top down view of the same building in the optical
image. Taking away explanatory context will thus render the
matching more difficult. All further discussion will be with
reference to the results we obtained using the largest patch
size, 112 pixels.

B. Comments on the Discriminative Power
of the Proposed Network

In summary, our approach obtains an accuracy exceeding
77% on a separate test data set when fixing the false positive
rate to 5%, which falls into the same order of magnitude as
what can be achieved using the powerful handcrafted HOPC
descriptor in combination with an L2-norm cost function [3].

Furthermore, our approach produced a clear diagonal pattern
in Fig. 5(a), which depicts its ability to accurately determine
the correct correspondence in a key-point matching scenario.
Upon further investigation, it was found that the network
achieved 43% top-1 matching accuracy and 74% top-3 accu-
racy, while 8% of points had no valid matches detected within
the key-point set. This was found to be due to large amounts
of layover and extreme differences in view point between the
SAR and optical patches (see false negatives in Fig. 6).

C. Possible Reasons for False Predictions

From the randomly chosen prediction examples shown
in Fig. 6, it can be observed that many of the false positives
and false negatives are erroneously matched under extreme
differences in viewing angle between the SAR and optical
patches. While this may partially be solvable by resorting to
larger patch sizes, providing valuable context, there might be
a need to exclude image parts with all too strong distortions
from further processing.

VI. CONCLUSION

In this letter, a pseudo-siamese CNN for learning to identify
corresponding patches in VHR SAR and optical images in a
fully automatic manner has been presented. A first evaluation
has shown promising potential with respect to multisensor

key-point matching procedures. In order to ensure transferabil-
ity to other applications not based on key points, e.g., dense
matching, we will work on the generation of additional training
patches, whose center pixel does not rely on specific key
points. In addition, we will test the approach on data coming
from a completely different source. In the end, we expect
this letter to help paving the way for generalized SAR-optical
image matching procedures.
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ABSTRACT:

While deep learning techniques have an increasing impact on many technical fields, gathering sufficient amounts of training data is a
challenging problem in remote sensing. In particular, this holds for applications involving data from multiple sensors with heteroge-
neous characteristics. One example for that is the fusion of synthetic aperture radar (SAR) data and optical imagery. With this paper,
we publish the SEN1-2 dataset to foster deep learning research in SAR-optical data fusion. SEN1-2 comprises 282,384 pairs of corre-
sponding image patches, collected from across the globe and throughout all meteorological seasons. Besides a detailed description of
the dataset, we show exemplary results for several possible applications, such as SAR image colorization, SAR-optical image matching,
and creation of artificial optical images from SAR input data. Since SEN1-2 is the first large open dataset of this kind, we believe it will
support further developments in the field of deep learning for remote sensing as well as multi-sensor data fusion.

1. INTRODUCTION

Deep learning has had an enormous impact on the field of remote
sensing in the past few years (Zhang et al., 2016, Zhu et al., 2017).
This is mainly due to the fact that deep neural networks can model
highly non-linear relationships between remote sensing observa-
tions and the eventually desired geographical parameters, which
could not be represented by physically-interpretable models be-
fore. One of the most promising directions of deep learning in re-
mote sensing certainly is its pairing with data fusion (Schmitt and
Zhu, 2016), which holds especially for a combined exploitation
of synthetic aperture radar (SAR) and optical data as these data
modalities are completely different from each other both in terms
of geometric and radiometric appearance. While SAR images are
based on range measurements and observe physical properties of
the target scene, optical images are based on angular measure-
ments and collect information about the chemical characteristics
of the observed environment.

In order to foster the development of deep learning approaches
for SAR-optical data fusion, it is of utmost importance to have ac-
cess to big datasets of perfectly aligned images or image patches.
However, gathering such a big amount of aligned multi-sensor
image data is a non-trivial task that requires quite some engineer-
ing efforts. Furthermore, remote sensing imagery is generally
rather expensive in contrast to conventional photographs used in
typical computer vision applications. These high costs are mainly
caused by the financial efforts associated to putting remote sens-
ing satellite missions into space. This changed dramatically in
2014, when the SAR satellite Sentinel-1A, the first of the Sentinel
missions, was launched into orbit by the European Space Admin-
istration (ESA) in the frame of the Copernicus program, which is
aimed at providing an on-going supply of diverse Earth observa-
tion satellite data to the end user free-of-charge (European Space
Agency, 2015).

Exploiting this novel availability of big remote sensing data, we
publish the so-called SEN1-2 dataset with this paper. It is com-
prised of 282,384 SAR-optical patch-pairs acquired by Sentinel-

1 and Sentinel-2. The patches are collected from locations spread
across the land masses of the Earth and over all four seasons. The
generation of the dataset, its characteristics and features, as well
as some pilot applications are described in this paper.

2. SENTINEL-1/2 REMOTE SENSING DATA

The Sentinel satellites are part of the Copernicus space program
of ESA, which aims to replace past remote sensing missions in
order to ensure data continuity for applications in the areas of
atmosphere, ocean and land monitoring. For this purpose, six
different satellite missions focusing on different Earth observa-
tion aspects are put into operation. Among those missions, we
focus on Sentinel-1 and Sentinel-2, as they provide the most con-
ventional remote sensing imagery acquired by SAR and optical
sensors, respectively.

2.1 Sentinel-1

The Sentinel-1 mission (Torres et al., 2012) consists of two polar-
orbiting satellites, equipped with C-band SAR sensors, which en-
ables them to acquire imagery regardless of the weather.

Sentinel-1 works in a pre-programmed operation mode to avoid
conflicts and to produce a consistent long-term data archive built
for applications based on long time series. Depending on which
of its four exclusive SAR imaging modes is used, resolutions
down to 5 m with a wide coverage of up to 400 km can be achieved.
Furthermore, Sentinel-1 provides dual polarization capabilities
and very short revisit times of about 1 week at the equator. Since
highly precise spacecraft positions and attitudes are combined
with the high accuracy of the range-based SAR imaging prin-
ciple, Sentinel-1 images come with high out-of-the-box geoloca-
tion accuracy (Schubert et al., 2015).

For the Sentinel-1 images in our dataset, so-called ground-range-
detected (GRD) products acquired in the most frequently avail-
able interferometric wide swath (IW) mode were used. These im-
ages contain the σ0 backscatter coefficient in dB scale for every
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pixel at a pixel spacing of 5 m in azimuth and 20 m in range. For
sake of simplicity, we restricted ourselves to vertically polarized
(VV) data, ignoring potentially available other polarizations. Fi-
nally, for precise ortho-rectification, restituted orbit information
was combined with the 30 m-SRTM-DEM or the ASTER DEM
for high latitude regions where SRTM is not available.

Since we want to leave any further pre-processing to the end user
so that it can be adapted to fit the desired task, we have not carried
out any speckle filtering.

2.2 Sentinel-2

The Sentinel-2 mission (Drusch et al., 2012) comprises twin polar-
orbiting satellites in the same orbit, phased at 180◦ to each other.
The mission is meant to provide continuity for multi-spectral im-
age data of the SPOT and LANDSAT kind, which have pro-
vided information about the land surfaces of our Earth for many
decades. With its wide swath width of up to 290 km and its high
revisit time of 10 days at the equator (with one satellite), and 5
days (with 2 satellites), respectively, under cloud-free conditions
it is specifically well-suited to vegetation monitoring within the
growing season.

For the Sentinel-2 part of our dataset, we have only used the red,
green, and blue channels (i.e. bands 4, 3, and 2) in order to gen-
erate realistically looking RGB images. Since Sentinel-2 data are
not provided in the form of satellite images, but as precisely geo-
referenced granules, no further processing was required. Instead,
the data had to be selected based on the amount of cloud cover-
age. For the initial selection, a database query for granules with
less than or equal to 1% of cloud coverage was used.

3. THE DATASET

In order to generate a multi-sensor SAR-optical patch-pair dataset,
a relatively large amount of remote sensing data with very good
spatial alignment needs to be acquired. In order to do this in
a mostly automatic manner, we have utilized the cloud-based
remote sensing platform Google Earth Engine (Gorelick et al.,
2017). The individual steps of the dataset generation procedure
are described in the following.

3.1 Data Preparation in Google Earth Engine

The major strengths of Google Earth Engine are two-fold from
the point of view of our dataset generation endeavour: On the
one hand, it provides an extensive data catalogue containing sev-
eral petabytes of remote sensing imagery – including all available
Sentinel data – and other freely available geodata. On the other
hand, it provides a powerful programming interface that allows
to carry out data preparation and analysis tasks on Google’s com-
puting centers. Thus, we have used it to select, prepare and down-
load the Sentinel-1 and Sentinel-2 imagery from which we have
later extracted our patch-pairs. The workflow of the GEE-based
image download and patch preparation is sketched in Fig. 1. In
detail, it comprises the following steps:

3.1.1 Random ROI Sampling In order to generate a dataset
that represents the versatility of our Earth as good as possible,
we wanted to sample the scenes used as basis for dataset produc-
tion over the whole globe. For this task, we use Google Earth
Engine’s ee.FeatureCollection.randomPoints() function
to randomly sample points from a uniform spatial distribution.

Since many remote sensing investigations focus on urban areas
and since urban areas contain more complex visual patterns than
rural areas, we introduce a certain artificial bias to urban areas by
sampling 100 points over all land masses of the Earth and another
50 points only over urban areas. The shape files for both land
masses and urban areas were provided by the public domain geo-
data service www.naturalearthdata.com at a scale of 1:50m.
If two points are located in close proximity to each other, we re-
moved one of them to ensure non-overlapping scenes.

This sampling process is carried out for four different seed values
(1158, 1868, 1970, 2017). The result of the random ROI sam-
pling is illustrated in Fig. 2a.

3.1.2 Data Selection In the second step, we use GEE’s tools
to filter image collections to select the Sentinel-1/Sentinel-2 im-
age data for our scenes. Since we want to use only recent data
acquired in 2017, this first means that we structure the year into
the four meteorological seasons: winter (1 December 2016 to 28
February 2017), spring (1 March 2017 to 30 May 2017), summer
(1 June 2017 to 31 August 2017), and fall (1 September 2017 to
30 November 2017). Each season is then associated to one of the
four sets of random ROIs, thus providing us with the top-level
dataset structure (cf. Fig. 3): We structure the final dataset into
four distinct sub-groups ROIs1158 spring, ROIs1868 summer,
ROIs1970 fall, and ROIs2017 winter.

Then, for each ROI, we filter for Sentinel-2 images with a maxi-
mum cloud coverage of 1% and for Sentinel-1 images acquired in
IW mode with VV polarization. If no cloud-free Sentinel-2 image
or no VV-IW Sentinel-1 image is available within the correspond-
ing season, the ROI is discarded. Thus, the number of ROIs is
significantly reduced from about 600 to about 429. For example,
all ROIs that were located in Antarctica are rendered obsolete,
since the geographical coverage of Sentinel-2 is restricted to 56◦

South to 83◦ North.

3.1.3 Image Mosaicking Continuing with the selected image
data, we use the Google Earth Engine in-built functions ee.Ima-
geCollection.mosaic() and ee.Image.clip() to create one
single image for each ROI, clipped to the respective ROI extent.
The ee.ImageCollection.mosaic() function simply compos-
ites overlapping images according to their order in the collection
in a last-on-top sense. As mentioned in Section 2.2, we select
only bands 4, 3, and 2 for Sentinel-2 in order to create RGB im-
ages.

3.1.4 Image Export Finally, we export the images created
in the previous steps as GeoTiffs using the GEE function Ex-

port.image.toDrive and a scale of 10m. The downloaded
GeoTiffs are then pre-processed for further use by cutting the
gray values to the ±2.5σ range, scaling them to the interval [0; 1]
and performing a contrast-stretch. These corrections are applied
to all bands individually.

3.1.5 First Manual Inspection We then visually inspect all
downloaded scenes for severe problems. These can mostly be-
long to one of the following categories:

• Large no-data areas.
Unfortunately, the ee.ImageCollection.mosaic() func-
tion does not return any error message if it does not find a
suitable image to fill the whole ROI with data. This mostly
happens to Sentinel-2, when no sufficiently cloud-free gran-
ule is available for a given time period.
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Figure 1. Flowchart of the semi-automatic, Google Earth Engine-based patch extraction procedure.

(a) (b)

Figure 2. Distribution of the ROIs sampled uniformly over the land masses of the Earth: (a) Original ROIs, (b) final set of scenes after
removal of cloud- and/or artifact-affected ROIs.

• Strong cloud coverage.
The cloud-coverage metadata information that comes with
every Sentinel-2 granule is only a global parameter. Thus,
it can happen that the whole granule only contains a few
clouds, but the part covering our ROI is where all the clouds
reside.

• Severely distorted colors.
Sometimes, we observed very unnatural colors for Sentinel-
2 images. Since we want to create a dataset that contains
naturally looking RGB images for Sentinel-2, we also re-
moved some Sentinel-2 images with all too strange colors.

After this first manual inspection, only 258 scenes/ROIs remain
(cf. Fig. 2b).

3.1.6 Tiling Since our goal is a dataset of patch-pairs that can
be used to train machine learning models aiming at various data
fusion tasks, we eventually seek to generate patches of 256×256
pixels. Using a stride of 128, we reduce the overlap between
neighboring patches to only 50% while maximising the number
of independent patches we can get out of the available scenes. We
end up with 298,790 Sentinel-1/Sentinel-2 patch-pairs after this
step.

3.1.7 Second Manual Inspection In order to remove sub-
optimal patches that, e.g., still contain small clouds or visible mo-
saicking seamlines, we have again inspected all patches visually.
In this step, 16,406 patch-pairs are manually removed, leaving
the final amount of 282,384 quality-controlled patch-pairs. Some
examples are shown in Fig. 4.

3.2 Dataset Availability

The SEN1-2 dataset is shared under the open access license CC-
BY and available for download at a persistent link provided by

the library of the Technical University of Munich: https://

mediatum.ub.tum.de/1436631. This paper must be cited when
the dataset is used for research purposes.

4. EXAMPLE APPLICATIONS

In this section, we present some example applications, for which
the dataset has been used already. These should serve as inspi-
ration for future use cases and ignite further research on SAR-
optical deep learning-based data fusion.

4.1 Colorizing Sentinel-1 Images

The interpretation of SAR images is still a highly non-trivial task,
even for well-trained experts. One reason for this is the miss-
ing color information, which supports any human image under-
standing endeavour. One promising field of application for the
SEN1-2 dataset thus is to learn to colorize gray-scale SAR im-
ages with color information derived from corresponding optical
images, as we have proposed earlier (Schmitt et al., 2018). In
this approach, we make use of SAR-optical image fusion to cre-
ate artificial color SAR images as training examples, and of the
combination of variational autoencoder and mixture density net-
work proposed by (Deshpande et al., 2017) to learn a conditional
color distribution, from which different colorization samples can
be drawn. Some first results resulting from a training on 252,384
SEN1-2 patch pairs are displayed in Fig. 5.

4.2 SAR-optical Image Matching

Tasks such as image co-registration, 3D stereo reconstruction, or
change detection rely on being able to accurately determine sim-
ilarity (i.e. matching) between corresponding parts in different
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Figure 3. Structure of the final dataset.

Figure 4. Some exemplary patch-pairs from the SEN1-2 dataset. Top row: Sentinel-1 SAR image patches, bottom row: Sentinel-2
RGB image patches.

Figure 5. Some results for colorized SAR image patches. In each
row, from left to right: original Sentinel-1 SAR image patch,

corresponding Sentinel-2 RGB image patch, artificial color SAR
patch based on color-space-based SAR-optical image fusion,

artificial color SAR image predicted by a deep generative model.

images. While well-established methods and similarity measures
exist to achieve this for mono-modal imagery, the matching of
multi-modal data remains challenging to this day. The SEN1-2
dataset can assist in creating solutions in the field of multi-modal
image matching by providing the large quantities of data required
to exploit modern deep matching approaches, such as proposed
by (Merkle et al., 2017) or (Hughes et al., 2018): Using a pseudo-
siamese convolutional neural network architecture, correspond-

ing SAR-optical image patches of a SEN1-2 test subset can be
identified with an accuracy of 93%. The confusion matrix for the
model of (Hughes et al., 2018) trained on 300,000 corresponding
and non-corresponding patch pairs created from a SEN1-2 train-
ing subset can be seen in Tab. 1. Furthermore, some exemplary
matches achieved on the test subset are shown in Fig. 6.

Table 1. Confusion Matrix for Pseudo-siamese patch matching
trained on SEN1-2

ŷ/y non-match match
non-match 93.84% 6.16%
match 6.02% 93.98%

Figure 6. Some true positives achieved in SAR-optical image
matching. The first row depicts the Sentinel-1 SAR image patch,

while the second row depicts the corresponding Sentinel-2
optical patch as predicted by a pseudo-siamese convolutional

neural network.
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4.3 Generating Artificial Optical Images from SAR Inputs

Another possible field of application of the SEN1-2 dataset is to
train generative models that allow to predict artificial SAR im-
ages from optical input data (Marmanis et al., 2017, Merkle et
al., 2018) or artificial optical imagery from SAR inputs (Wang
and Patel, 2018, Ley et al., 2018, Grohnfeldt et al., 2018). Some
preliminary examples based on the well-known generative adver-
sarial network (GAN) pix2pix (Isola et al., 2017) trained on
108,221 SEN1-2 patch pairs are shown in Fig. 7.

Figure 7. Some preliminary examples for the prediction of
artificial optical images from SAR input data using the pix2pix

GAN. In each row, from left to right: original Sentinel-1 SAR
image patch, corresponding Sentinel-2 RGB image patch,

artificial GAN-predicted optical image patch.

5. STRENGTHS AND LIMITATIONS OF THE DATASET

To our knowledge, SEN1-2 is the first dataset providing a really
large amount (> 100,000) of co-registered SAR and optical im-
age patches. The only other existing dataset in this domain is the
so-called SARptical dataset published by (Wang and Zhu, 2018).
In contrast to the SEN1-2 dataset, it provides very-high-resolution
image patches from TerraSAR-X and aerial photogrammetry, but
is restricted to a mere 10,000 patches extracted from a single
scene, which is possibly not sufficient for many deep learning
applications – especially since many patches show an overlap of
more than 50%. With its 282,384 patch-pairs spread over the
whole globe and all meteorological seasons, SEN1-2 will thus be
a valuable data source for many researchers in the field of SAR-
optical data fusion and remote sensing-oriented machine learn-
ing. A particular advantage is that the dataset can easily be split
into various deterministic subsets (e.g. according to scene or ac-
cording to season), so that truly independent training and testing
datasets can be created, supporting unbiased evaluations with re-
gard to unseen data.

However, also SEN1-2 does not come without limitations: For ex-
ample, we restricted ourselves to RGB images for the Sentinel-2
data, which is possibly insufficient for researchers working on the
exploitation of the full radiometric bandwidth of multi-spectral
satellite imagery. Furthermore, at the time we carried out the
dataset preparation, GEE stocked only Level-1C data for Sentinel-
2, which basically means that the pixel values represent top-of-
atmosphere (TOA) reflectances instead of atmospherically cor-
rected bottom-of-atmosphere (BOA) information. We are plan-
ning to extend the dataset for a future version 2 release accord-
ingly.

6. SUMMARY AND CONCLUSION

With this paper, we described and released the SEN1-2 dataset,
which contains 282,384 pairs of SAR and optical image patch-
es extracted from versatile Sentinel-1 and Sentinel-2 scenes. We
assume this dataset will foster the development of machine learn-
ing, and in particular, deep learning approaches in the field of
satellite remote sensing and SAR-optical data fusion. For the fu-
ture, we plan on releasing a refined, second version of the dataset,
which contains not only RGB Sentinel-2 images, but full multi-
spectral Sentinel-2 images including atmospheric correction. In
addition, we might add coarse land use/land cover (LULC) class
information to each patch-pair in order to foster also develop-
ments in the field of LULC classification.
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Abstract: In this paper, we propose a generative framework to produce similar yet novel samples for
a specified image. We then propose the use of these images as hard-negatives samples, within the
framework of hard-negative mining, in order to improve the performance of classification networks in
applications which suffer from sparse labelled training data. Our approach makes use of a variational
autoencoder (VAE) which is trained in an adversarial manner in order to learn a latent distribution of
the training data, as well as to be able to generate realistic, high quality image patches. We evaluate
our proposed generative approach to hard-negative mining on a synthetic aperture radar (SAR) and
optical image matching task. Using an existing SAR-optical matching network as the basis for our
investigation, we compare the performance of the matching network trained using our approach to
the baseline method, as well as to two other hard-negative mining methods. Our proposed generative
architecture is able to generate realistic, very high resolution (VHR) SAR image patches which are
almost indistinguishable from real imagery. Furthermore, using the patches as hard-negative samples,
we are able to improve the overall accuracy, and significantly decrease the false positive rate of
the SAR-optical matching task—thus validating our generative hard-negative mining approaches’
applicability to improve training in data sparse applications.

Keywords: synthetic aperture radar; generative adversarial networks; data fusion; dataset augmentation

1. Introduction

In recent years, data fusion has become a hot topic in the field of remote sensing, specifically the
fusion of heterogeneous image data. This increased interest has largely been driven by the improved
availability of remote sensing imagery acquired by different sensors [1].

As with any image based data fusion endeavour, a key first step is the determination of
corresponding image parts. While considered a somewhat solved problem in traditional computer
vision, image matching remains a challenging task when dealing with heterogeneous remote sensing
data. One prominent example of this is matching synthetic aperture radar (SAR) and optical satellite
imagery, where the sensors have vastly different geometric and radiometric properties making image
matching a deeply complex problem [2].

In order to deal with these challenges, several sophisticated approaches have been proposed.
Ye et al. [3] propose exploiting phase congruency as a generalization of the gradient information
in order to match multimodal images. The approach presented in [4] extends this use of phase
congruency to create a radiation-invariant feature transform, which is less susceptible to nonlinear
radiation distortions. Using an epipolar-like search strategy and template matching, Qiu et al. [5]
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proposed a strategy for simultaneous tie-point matching and 3D reconstruction relying on classical
signal- and descriptor-based similarity measures.

While these approaches perform well in some circumstances, most still rely on hand-crafted
features and template matching which are difficult to adapt and often suffer from poor discriminability
in very high resolution (VHR) imagery. An example of such a failure case can be found when matching
very high resolution (VHR) heterogeneous imagery of urban environments, which—in the SAR case—is
often difficult even for trained experts to interpret and match [6].

More recently, deep learning has been applied to numerous optical image matching problems with
great success. Initial approaches replaced handcrafted feature descriptors with descriptors learned
using convolutional neural networks (CNN) [7,8]. However, these were soon outperformed by learning
an end-to-end similarity metric for image matching, directly from the data [9,10].

Based on the demonstrated successes in computer vision, deep learning approaches have been
gaining interest in the remote sensing community [11]. One possible application is found in the
matching of extremely multimodal Earth observation imagery. Merkle et al. [12] proposed the use of
a Siamese CNN architecture to compute the relative shift between SAR and optical image patches,
with the goal of improving the geo-localization accuracy of optical imagery. Taking inspiration
from this success, Mou et al. [13] proposed the use of a pseudo-Siamese CNN in order to frame the
SAR-optical correspondence problem as binary classification. With this approach, they provided
a proof of concept towards the applicability of CNNs for matching heterogeneous remote sensing
imagery. Hughes et al. [14] extended this initial investigation through a modified fusion layer and
softmax loss function in order to compute a similarity probability score. Additionally, the investigation
was extended to simulate a real-world feature matching scenario and was able to achieve around
86% accuracy with an 11% false positive rate (FPR). Taking a different approach, Merkle et al. [15]
proposed the use of a generative adversarial network (GAN) to generate SAR like patches from
medium resolution optical images. These generated SAR like patches were then used as the template
in a template matching application. This hybrid approach was able to achieve an accuracy of 82% when
the threshold for alignment was limited to an error of three pixels.

While these results show great promise for future applications, there has been little to no focus
placed on the importance of matching within the scope of a low false positive rate (FPR)—which is
arguably more important than achieving a high true positive rate. This requirement is largely driven by
the need to reduce outliers in matching results in order to assist downstream applications subsequent
to the matching step. This is especially true in multimodal data fusion tasks, such as SAR-optical
stereogrammetry [5], where few other methods exist to detect and remove incorrect correspondences.

One common approach to improve the discriminability between classes in classification tasks,
and thus reduce the FPR, is known as hard negative mining. This technique uses hard samples
(samples which are statistically similar but belong to different classes) as negative examples during
the training phase of the classifier [16]. Unlike the randomly assigned negative pairs used in [14],
hard negative mining progressively increases the difficulty of the negative examples that the network is
trained on. This is done by augmenting the data loading pipeline to replace or append the dataset with
data samples which had the greatest misclassification in the previous training iteration. In other words,
the samples which are classified as the incorrect class in the most certain manner are now included
in the next training iterations as negative examples, thus reinforcing to the classifier that the result
is incorrect.

While hard negative mining is simple to implement, it requires that the original dataset is large
enough such that, even for low false positive rates, sufficient negative samples exist that can be used
as hard negative samples for training. In conventional deep learning applications, this data constraint
is often not an issue, as datasets are large enough or can easily be extended. However, for SAR-optical
matching applications, this is not the case. While access to remote sensing imagery is becoming easier,
and images are geo-coded, the vast differences in imaging geometry mean that geo-coded points
cannot be trivially matched. This is particularly true for very high resolution data (see Figure 1).
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Thus, expert knowledge or the use of computationally expensive procedures are often required in
order to align and match the images such that an accurate patch pair dataset can be produced and
labeled [17–19].

(a) (b) (c) (d)
Figure 1. An illustrative example of the vast differences between synthetic apature radar (SAR) and
optical remote sensing imagery of the same scene. The corresponding image patch-pairs (a–d) would
prove challenging to determine correspondence, even for experts in the field.

To overcome these issues related to data sparsity, researchers have turned to generative networks
in order to generate artificial data which can be used to augment or pre-train deep architectures and
thus reduce the requirement for large amounts of labeled data [20–23]. Zheng et al. [21] propose
using a generative adversarial network (GAN) to generate unlabeled data which was used to improve
the baseline in a person-re-identification task. They argued that the imperfect, generated samples
act as a form of regularization and thus lead to a more discriminative classifier. In [22], the authors
train a SAR to optical transcoding GAN in order to learn key features between various different land
surfaces. The top layers of the generator are then used as the main feature extraction sub-network in a
multi-modal land cover classifier. Their results show a significant improvement when compared to
training the classifier from scratch. Ref. [23] utilizes a GAN to generate negative triplet embeddings in
order to allow the discriminator to learn better embedding models.

Marmanis et al. [24] generated VHR SAR patches in order to increase their dataset size for
training a SAR image classification network. While the quality of their generated images appears
reasonable, they were unable to realize any conclusive results as to whether generated data improved
their classification network. Ao et al. [25] proposed a Dialectical-GAN in order to generate VHR SAR
imagery from a low resolution Sentinel-1 SAR image prior. However, their results were used as a proof
of concept in image translation and were not applied to training of other tasks.

In this paper, we propose an alternative formulation of hard negative mining that can be applied
to data sparse applications, such as SAR-optical matching, in order to improve the discriminability of
the network and thus reduce the false positive rate. The main contributions are summarized as follows:

Firstly, a GAN architecture is proposed which is capable of generating realistic SAR images which
look similar to an existing SAR image, but are modifiable via a continuous latent space. We validate
that our generated SAR images are suitable for hard negative mining.

Secondly, we describe how these generated SAR images can be used as hard negative samples to
train an existing SAR-optical matching network.

Finally, we demonstrate the effectiveness of our proposed approach by evaluating it on the
matching network proposed in [14], and show how we are able to significantly decrease the false
positive rate via hard negative mining for the first time.

2. Generative Framework for Hard Negative Mining

In this section, the main structure of our proposed approach to hard negative mining will be
described, including our GAN based architecture and training procedure. We will further describe
how this architecture can be incorporated into the SAR-optical matching network proposed in [14] in
order to augment the training procedure with hard negative samples and thus reduce the false positive
rate. An overview of our approach can be seen in Figure 2.
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Figure 2. The proposed generative hard-negative mining framework. The GAN is trained to create
hard-negative samples based on the input image patch. Together with the original corresponding
optical patch, these samples are then used to train the SAR-optical matching network.

2.1. Proposed Generative Architecture

2.1.1. Generator

In order to generate hard negative SAR samples, which are suitable for training a VHR SAR-optical
matching network, we make use of a generative model which is trained in an adversarial setting.
More specifically, we extend the ProGAN architecture proposed by Karras et al. [26] to include an
encoder network which learns a latent representation of our data. This latent representation in turn is
used to generate new images. These modifications re-position the original generator network as the
decoder network in an autoencoder (AE). We additionally impose a prior over our latent space, p(z),
to transform this AE into a variational autoencoder (VAE) which learns a distribution for our input
data rather than a discrete latent code. Our proposed VAE consists of two sub-networks: an encoder
network and a decoder network. The encoder network (Enc) learns to produce a latent representation,
z, from an input sample, x, by

z ∼ Enc(x) = q(z|x). (1)

Analogously, the decoder network (Dec), which follows the structure of the generator in [26],
learns the mapping from z back to the data space by

x̃ ∼ Dec(z) = p(x|z). (2)

Additionally, we regularize the encoder network by imposing a unit Gaussian prior on the latent
distribution p(z), such that z ∼ N (1, 0).

The decoder network of our VAE follows the design of the ProGAN [26] generator network
and is made up of a fully connected bottleneck layer followed by multiple convolutional modules,
each of which consists of a nearest neighbor upsampling layer, followed by a convolutional layer,
leaky rectified linear unit (LReLU) activation function and a pixel-wise feature vector normalization
stage. The pixel-wise normalization layer was added by Karras et al. [26] in order to improve training
stability as GANs are inherently unstable and suffer from mode collapse where the generated data
collapses to a single sample and thus loses diversity. For full details of the workings of each of the
layers in the decoder, we refer the reader to [26] for brevity.

Our encoder network is created by mirroring the structure of the decoder network, and replacing
the upsampling operations with an average-pooling downsampling operation. Additionally, a fully
connected layer with linear activation is added to the top convolutional layer in order to create the
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bottleneck required for mapping 2D features to a latent distribution. This mirrored structure has the
benefit of simplifying the training procedure (as will become evident in Section 2.2). The structure of
our generator VAE is shown in detail in Table 1.

Table 1. A detailed overview of the encoder and decoder network structure.

Encoder Act. Output Shape

Conv 1 × 1 LReLU N × 1 × 128 × 128
Conv 3 × 3 LReLU N × 128 × 128 × 128
Conv 3 × 3 LReLU N × 256 × 128 × 128
Downsample - N × 256 × 64 × 64

Conv 3 × 3 LReLU N × 256 × 64 × 64
Conv 3 × 3 LReLU N × 512 × 64 × 64
Downsample - N × 512 × 32 × 32

Conv 3 × 3 LReLU N × 512 × 32 × 32
Conv 3 × 3 LReLU N × 512 × 32 × 32
Downsample - N × 512 × 16 × 16

Conv 3 × 3 LReLU N × 512 × 16 × 16
Conv 3 × 3 LReLU N × 512 × 16 × 16
Downsample - N × 512 × 8 × 8

Conv 3 × 3 LReLU N × 512 × 8 × 8
Conv 3 × 3 LReLU N × 512 × 8 × 8
Downsample - N × 512 × 4 × 4

Conv 3 × 3 LReLU N × 512 × 4 × 4
Conv 4 × 4 LReLU N × 512 × 1 × 1
Fully Connected Linear N × 1024 × 1 × 1

Mean Split N × 512 × 1 × 1
Std. Deviation N × 512 × 1 × 1

Decoder Act. Output Shape

Latent Vector - N × 512 × 1 × 1
Conv 4 × 4 LReLU N × 512 × 4 × 4
Conv 3 × 3 LReLU N × 512 × 4 × 4

Upsample - N × 512 × 8 × 8
Conv 3 × 3 LReLU N × 512 × 8 × 8
Conv 3 × 3 LReLU N × 512 × 8 × 8

Upsample - N × 512 × 16 × 16
Conv 3 × 3 LReLU N × 512 × 16 × 16
Conv 3 × 3 LReLU N × 512 × 16 × 16

Upsample - N × 512 × 32 × 32
Conv 3 × 3 LReLU N × 512 × 32 × 32
Conv 3 × 3 LReLU N × 512 × 32 × 32

Upsample - N × 512 × 64 × 64
Conv 3 × 3 LReLU N × 256 × 64 × 64
Conv 3 × 3 LReLU N × 256 × 64 × 64

Upsample - N × 256 × 128 × 128
Conv 3 × 3 LReLU N × 128 × 128 × 128
Conv 3 × 3 LReLU N × 128 × 128 × 128
Conv 1 × 1 Linear N × 1 × 128 × 128

Following the standard procedure for VAEs, we can define the loss for our proposed generator as
the reconstruction error and a prior regularization term, such that LVAE = Lrecon + Lprior. However,
using pixel-wise reconstruction errors with images often leads to blurry and noisy results [27]. Thus, we
follow the approach proposed by Larsen et al. [28]. By exploiting the fact that our decoder network
can be viewed as the generator network of a standard GAN, we incorporate the standard GAN loss
into our VAE loss [29]. In doing so, we combine the advantages of the high-quality generative nature
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of GANs with the VAEs ability to encode data into an inherently probabilistic latent space z. Our loss
terms can now be defined as LVAE = Lrecon + Lprior + LGAN, with:

Lrecon = ‖x− x̃‖ , (3)

Lprior = DKL (q(z|x)‖p(z)) , (4)

LGAN = log (Dis(x)) + log (1−Dis(x̃)) + log (1−Dis(Dec(zp))), (5)

where zp is a sample from our prior p(z), Dis is our discriminator, and DKL is the
Kullback–Leibler divergence.

2.1.2. Discriminator

The discriminator network for our proposed hard negative GAN is designed to be able to
distinguish between real SAR image patches and generated SAR-like image patches. The discriminator
accepts grayscale images in the form of either the original SAR image patch x or the generated
patch x̃ = Dec(Enc(x)) as input and outputs a scalar score representing how real the images are.
This approach is slightly different to standard GANs where the output of the discriminator is a
probability [29].

Apart from the bottleneck layers, our discriminator follows the same structure as our encoder
network described in Section 2.1.1. The top layers of the discriminator consist of two fully connected
layers which reduce the output of the convolutional layers to a single scalar. A linear activation
function is then applied to this value in order to obtain a scalar score of image ‘realness’. An additional
difference between the encoder and discriminator architecture is the inclusion of a mini-batch standard
deviation layer which adds an additional feature map to one of the last layers of the discriminator.
Karras et al. [26] added this layer in order to increase variation in the network. The full details of the
discriminator are described in Table 2.

Table 2. A layer-wise overview of the discriminator network structure.

Discriminator Act. Output Shape

Conv 1 × 1 LReLU N × 1 × 128 × 128
Conv 3 × 3 LReLU N × 128 × 128 × 128
Conv 3 × 3 LReLU N × 256 × 128 × 128
Downsample - N × 256 × 64 × 64

Conv 3 × 3 LReLU N × 256 × 64 × 64
Conv 3 × 3 LReLU N × 512 × 64 × 64
Downsample - N × 512 × 32 × 32

Conv 3 × 3 LReLU N × 512 × 32 × 32
Conv 3 × 3 LReLU N × 512 × 32 × 32
Downsample - N × 512 × 16 × 16

Conv 3 × 3 LReLU N × 512 × 16 × 16
Conv 3 × 3 LReLU N × 512 × 16 × 16
Downsample - N × 512 × 8 × 8

Conv 3 × 3 LReLU N × 512 × 8 × 8
Conv 3 × 3 LReLU N × 512 × 8 × 8
Downsample - N × 512 × 4 × 4

Mini-batch Std. Dev. - N × 513 × 4 × 4
Conv 3 × 3 LReLU N × 512 × 4 × 4
Conv 4 × 4 LReLU N × 512 × 1 × 1
Fully Connected Linear N × 1 × 1 × 1

2.2. Training Procedure

Our training procedure combines the training procedure of [26] with the dual GAN and VAE loss
definitions of [28], as described in Section 2.1.1.
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2.2.1. Progressive Growing

We initialize our networks to start the training process with an image resolution of 4× 4 pixels.
We then gradually increase this resolution by a factor of 2 after a specified number of training iterations.
In order to prevent jolting the system when a new layer is added, we closely follow the process
described in [26]. Adding new layers to the networks in a smooth manner consists of a two stage
approach. During the transition phase, we treat layers which operate on the higher resolution as a
residual block whose weight α increases linearly from 0 to 1 over a set number of training iterations.
Additionally, we interpolate between two resolutions of the input image, in a similar manner to
how the generator combines the new and old resolution. The second stage is the stabilization phase,
whereby the networks are trained for a specific number of iterations before the resolution is doubled
again. All of the networks are grown in this manner from a low resolution of 4× 4 pixels to our final
resolution of 128× 128 pixels. Using networks that have a similar structure simplifies the process of
managing multi-resolution data and eases the complexity involved in transitioning between layers.
An example of the networks training progression is depicted in Figure 3.

(a) (b) (c) (d) (e)
Figure 3. An example of progressively grown images taken at increasing image resolutions during the
training processes. (a–e) shows the resolution growth from 8× 8 pixels up to 128× 128 pixels with the
resolution doubling at each stage.

This progressive growing approach drastically speeds up training of the GAN and improves
the overall training stability as the network only needs to learn small transformations between the
previous and next layers.

2.2.2. WGAN-GP Loss

While the proposed training approach greatly improves stability and reduces the chances of mode
collapse, it does not solve the issue of large gradients which occur when generating high resolution
images. This gradient issue occurs due to the fact that fake images are significantly easier to distinguish
at high resolutions and thus large gradients propagate from the discriminator.

In order to prevent this gradient problem, and further increase the stability of training, we make
use of the improved Wasserstein GAN loss with gradient penalty (WGAN-GP) [30]. This loss function
is used to train the discriminator network, as well as to replace the standard GAN loss LGAN which is
used to train our generator network (Equation (5)). Thus, our new loss functions can be defined as

LDis = E
x∼Preal

[Dis(x)]− E
x̃∼p(x|z)

[Dis(x̃)]
︸ ︷︷ ︸

Original Critic Loss

+ λ E
x̂∼Px̂

[(‖∇x̂Dis(x̂)‖ − 1)2]

︸ ︷︷ ︸
Gradient Penalty

, (6)

LVAE = − E
x̃∼p(x|z)

[Dis(x̃)]− E
zp∼p(z)

[Dis(Dec(zp))]

︸ ︷︷ ︸
Original Generator Loss

+ E
q(z|x)

[log (
q(z|x)
p(z)

)]

︸ ︷︷ ︸
KL-Divergence

+ γ
N

∑
i
‖x−Dec(Enc(x))‖

︸ ︷︷ ︸
Reconstruction Error

, (7)

where Px̂ is implicitly defined as sampling uniformly between pairs of points sampled from the data
distribution Preal and the decoder distribution p(x|z) and λ and γ are weighting coefficients which are
set as hyper-parameters.
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2.2.3. Additional Training Details

Using the losses defined in Equations (6) and (7), we train our network using the Adam gradient
descent with the momentum approach. The learning rate is initialized to 0.001 for the decoder and
discriminator networks and 0.0005 for the encoder network. Additionally, the moving average filter
parameters for the Adam optimizer are set to β1 = 0, β2 = 0.99 for all networks. Training data is fed
to the network using an initial mini-batch size of 128 samples. However, this number is decreased
to 16 samples as the resolution increases. All three sub-networks are grown simultaneously with a
transition rate and stabilization rate of 60,000 images or approximately 10 epochs each.

Additionally, as per the findings of [28], we do not propagate the error signals from the LGAN

losses to the encoder network. Furthermore, as the decoder network receives error signals from both
LGAN and Lrecon, we set the weighting term δ = 0.6 to add a slight preference to the network’s ability
to reconstruct the input over its ability to fool the discriminator. We also include reconstructed samples
x̃, as well as samples from our prior distribution p(z) in our GAN objective, as this was found to
produce better results than using only samples from the prior distribution. The inner training loop is
detailed in Algorithm 1.

Algorithm 1: Training our Hard Negative GAN
ΘEnc,ΘDec,ΘDis ← Glorot uniform initialization
repeat

X← random mini-batch from dataset
Z←Enc(X)
Lprior ← DKL (q(Z, X)|p(Z))
X̃←Dec(Z)
Lrecon ←

∥∥X− X̃
∥∥

Zp ← samples from prior N (0, I)
Xp ←Dec(Zp)
LWGAN ← Dis(X)− Dis(X̃) See Equation (6)
LDec ← Dec(X̃)+ Dis(Dec(Zp)) See Equation (7)
Update network according to gradients
ΘDis

+←−∇ΘDis(LWGAN + λLGP)

ΘEnc
+←−∇ΘEnc(Lprior + Lrecon)

ΘDec
+←−∇ΘDec(γLrecon- LDec)

until convergence;

2.3. Generating Hard Negative Samples

In order to generate hard negative samples, we train our proposed GAN on 6629 SAR images from
the training data which are used to train the SAR-optical matching network. In doing so, the encoder
network learns the latent distribution of our training data and the decoder network learns to reconstruct
the input data from this distribution. After training, the discriminator network is discarded and the
VAE is used to generate hard negative SAR samples. As the latent space is continuous and follows
a unit normal distribution, we can create novel, yet similar SAR patches by sampling the latent
distribution near to the location of the encoded input image. This process is depicted in Figure 4.

These generated, SAR-like images are then used as hard negative samples in the SAR-optical
matching training dataset. This is done by creating a non-corresponding patch-pair which consists
of the generated SAR image, and the optical image which corresponds to the original SAR image,
which was used to generate the hard-negative. Some examples of the appended dataset can be seen in
Figure 5.
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Figure 4. The inference network used to generate hard negative samples. The latent code z used to
generate patches is created by sampling the latent distribution near to the original image. To keep
the network end-to-end differentiable, this sampling is done via a re-parameterization trick using
ε ∼ N (1, 0) to add randomness.

(a) (b) (c)
Figure 5. Using the proposed generative framework, we are able to generate SAR-like image patches
(c) that can then be combined in conjunction with the original SAR patch (b), and a corresponding
optical patch (a) in order to create a training dataset containing hard-negative samples.

3. Experiments and Results

In this section, we describe our experimental procedure and present results with respect to our
network’s ability to generate realistic SAR patches, and the suitability of these patches as hard negative
samples for training the SAR-optical matching network of [14].

3.1. Dataset

We train our proposed hard negative GAN and the SAR-optical matching network of [14] on a
dataset of corresponding unfiltered TerraSAR-X and UltraCam image patch pairs [17]. The patch pairs
are generated from imagery taken of a study area in Berlin, Germany, which is depicted in Figure 6.
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Figure 6. The common region of interest, in Berlin, Germany from which TerraSAR-X and UltraCam
image patches were cut to generate the the SARptical dataset [17].

The dataset is deterministically split into a training, testing and validation set using the cutting-cake
method proposed in [14]. Using this deterministically split dataset, we reduce the chances of the
training and testing datasets having too similar distributions. Our datasets consist of 6629 (75%),
1327 (15%), and 885 (10%) corresponding image pairs for the training, testing and validation sets,
respectively.

The non-corresponding pairs for the testing and validation datasets are created by assigning a
randomly selected SAR image patch to each optical image. In doing so, we ensure that all experiments
are subject to the same testing and validation datasets, and that our datasets are balanced in terms of
corresponding and non-corresponding pairs.

The non-corresponding pairs for our training dataset are assigned according to the requirements
of each experiment, in order to evaluate the success of our method.

The optical data was converted to gray-scale and all data were normalized to a radiometric range
of [0; 1] and then standardized by subtraction of their means [14,19]. Furthermore, we make use of
pair-wise data augmentation steps which include rotation, horizontal flipping, and translation.

3.2. Qualitative Evaluation of Generated Negative Samples

Measuring the quality of generated images is a challenging task, especially in the case of high
resolution data [31]. Thus, we resort to a visual qualitative assessment of the generated hard negative
SAR patches. These results can be seen in Figure 7.

Figure 7. A selection of generated hard-negative samples (bottom row) and the corresponding training
TerraSAR-X patch (top row). It can be seen that the generated patches have strong SAR-like features,
which resemble those of the original patch, and are difficult to distinguish from the original patches.
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3.3. Matching SAR and Optical Images

We apply our methods to the SAR-optical matching network proposed in [14]. This network has
a pseudo-Siamese architecture which learns modal specific features for SAR and optical images in
parallel. It then combines these features through a data fusion layer in order to obtain a prediction of
whether the two patches match based on the content of the center pixel. The network architecture can
be seen in Figure 8.

Figure 8. The pseudo-Siamese convolutional matching network proposed in [14]. The network attempts
to predict the probability that the given input pair are corresponding in terms of the alignment of the
center pixel in each patch. ( c© 2018 IEEE).

For all of our experiments, we train the network using the Adam optimizer with a learning rate of
αlr = 0.00005. All of the networks are trained using early stopping based on the validation accuracy
for a maximum period of 20 epochs.

3.4. Effect of a Hard Negative Inclusion Method

In order to evaluate our approach, we need to include our generated non-corresponding pairs
into the existing training dataset. As we were unsure of the best approach for training the matching
network with generated hard negatives, we evaluated two different training approaches with two
dataset inclusion methods. These four approaches are defined below:

1. Fine-tuning with generated hard negatives,
2. Fine-tuning with concatenated dataset,
3. Training from scratch with generated hard negatives,
4. Training from scratch with concatenated dataset.

The generated hard negative dataset consists only of the original corresponding patch-pairs and
their respective hard-negative patch-pairs, which were created as described in Section 2.3. In order to
create the concatenated dataset, we combined the generated hard-negative dataset with the original
training dataset in order to form a final dataset with both generated hard-negatives and randomly
assigned hard-negatives for each of the corresponding patch-pairs. In order to keep the positive and
negative classes balanced, we included each corresponding patch-pair twice.

To allow us to fine-tune the matching network, we first pre-trained it using the original training
dataset which consists of randomly assigned negative patch-pairs for 30 epochs. This network was
then fine-tuned using a lower learning rate of α = 0.000008 and early stopping.
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We evaluated the trained networks performance using the receiver–operator characteristic (ROC)
in order to determine which approach leads to the most favourable results. The ROC curves for each
of the four approaches are depicted in Figure 9.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Testing ROC Curve

concat from scratch (AUC: 0.931)

concat fine-tuning (AUC: 0.917)

hard neg. fine tuning (AUC: 0.871)

hard neg. from scratch (AUC: 0.501)

Figure 9. The receive operator characteristic (ROC) curves for various approaches for using generated
hard-negatives in the training of a SAR-optical matching network. From these various experiments,
it can be seen that including the generated hard-negatives into the original dataset leads to a matching
network with better performance than using only generated negative samples for training.

A simple measure of the network’s performance as a binary classifier is the area under the curve
(AUC) of the ROC curve. From Figure 9, one can see that training the matching network used from
scratch using a combined dataset provides the best performance. Thus, we select this approach as the
proposed method of hard-negative inclusion, and will use it in further experiments.

3.5. Comparison to Existing Approaches

We compare the performance of the matching network trained using our proposed method to
three alternative approaches, namely, random negative assignment, traditional hard-negative mining,
and nearest neighbor assignment. These approaches are further detailed below:

Random negative assignment creates non-corresponding negative patch pairs by randomly selecting
a SAR image patch from the patch pool and assigning it to a randomly selected optical patch.
This random selection is done in a non-replacement manner such that every randomly created patch
pair is unique and non-corresponding. This method is the most computationally efficient method for
negative pair assignment, but it makes strong assumptions about the ‘closeness’ of the data.

Traditional hard-negative mining [32], starts training with random negative assignment and then
iteratively updates the set of non-corresponding patch pairs at the end of each training epoch.
The updates are performed by tracking the classification score of each patch-pair during training.
The patch-pairs which were most severely mis-classified (non-corresponding pairs which were
classified as corresponding with a high probability) are then explicitly labelled as negative pairs and
added to the dataset, the remaining negatives pairs are reinitialized using random negative assignment.
This process is computationally expensive and degrades to continuous random assignment when the
false positive rate is low and/or the training dataset is small.

Nearest neighbor assignment [33], is a boostrapping method for hard-negative mining and is
performed prior to training. For each positive patch pair, a non-corresponding pair is created by
selecting the nearest neighbor SAR image from the training set. The nearest neighbor is defined as the
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image patch in the training dataset that has the greatest similarity to the positive image patch. In our
case, we make use of the normalized cross correlation (NCC) score to determine which SAR images
are most similar to each other. We then generate a non-corresponding patch pair using the SAR image
with the greatest NCC score when compared to the positive = pair SAR image.

A detailed comparison of the results is presented in the form of an ROC comparison plot
(see Figure 10). From the ROC plot, we can see that our approach provides a higher accuracy under the
constraint of a low false positive rate. We further provide a detailed account of the precision and recall
of the various approaches, as well as the respective accuracies when the decision boundary is tuned
(on the validation set after training) to provide a maximum FPR of 5% or a maximum overall accuracy
(see Table 3). From these results, our method is shown to boost the performance of the matching
network on almost all fronts.
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Figure 10. Comparison of training results, in the form of ROC curves, for the matching network
performance on a test set when trained using randomly assigned negative pairs to three hard-negatives
mining approaches. It can be seen that our proposed approach has a steeper onset than the other
approaches, thus indicating better performance during matching.

Table 3. Details of SAR-optical matching results under the application of various hard-negative training
strategies and at different false positive rates (FPR).

Method Precision Recall Acc. (5% FPR) Max Acc. Max Acc. FPR

Random 0.83 0.84 0.76 0.83 0.16
Nearest Neighbour 0.77 0.96 0.70 0.85 0.21
Traditional Hard Neg. 0.79 0.89 0.72 0.83 0.19
Proposed Approach 0.83 0.87 0.81 0.86 0.13

4. Discussion

Generally, the results presented in Section 3 show that we are able to generate high quality
hard-negative samples, and to use them to successfully train a SAR-optical matching network.
The results further indicate that following this approach leads to a significant improvement in the
overall performance and discriminability of the matching network, without the need for additional
training data. In this section, we will further explore these results to gain a deeper understanding of
the mechanisms at play.

4.1. Generative Ability

Considering the generated images presented in Figure 7, it is clear that our proposed generative
framework is able to learn a diverse latent representation of the training dataset. By sampling this
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latent distribution, we are able to generate realistic VHR SAR-like images. The generated images are
largely indistinguishable from the original TerraSAR-X patches and depict many SAR-like features
such as layover, speckle, and radar shadow. Additionally, and arguably most importantly for our
application, the images generated by sampling the posterior are visually similar to the original images
but still contain novel components.

4.2. Effects of Data Inclusion Approach

As Figure 9 clearly indicates, the method of incorporating the generated hard negatives into the
training procedure of the matching network plays a large role in the effectiveness of the approach.
Training the network using both randomly assigned and generated non-corresponding pairs produced
significantly better results than using only the generated samples. This is likely due to the generated
samples adding sufficient variability to the dataset to act as independent datapoints, thus essentially
increasing the size of the training dataset. This theory is backed up by the result of training from scratch
using only the generated images as negative samples. In this case, it becomes clear that the validation
and training dataset have a larger disparity in their distributions. Thus, apart from increasing the
dataset size, training using both distributions likely has a regularization effect on the training of
the network.

Additionally, Figure 9 shows that training from scratch is only a better approach when we include
non-correspondences created using real data, even if these are just created using a random assignment
approach. This is evident, from the case of training, that the matching network from scratch using
only generated negative features where the network fails to learn any discriminative boundary that is
suitable for matching real data. This is likely a consequence of the generated manifold being a Gaussian
approximation to the original manifold and thus the distributions could have disjoint supports, and is
subject to future investigation.

4.3. SAR-Optical Matching Performance

The comparison of our proposed approach to three alternative training methodologies shows
promise for the use of generative hard-negative mining in improving matching performance in data
sparse applications. As Figure 10 and Table 3 clearly indicate, training with generative hard-negative
mining significantly improves the discriminative power and accuracy of the matching network when
evaluated on an independent test dataset. Using this approach, we were able to train the matching
network to achieve an accuracy exceeding 80% when the false positive rate is fixed to 5%. Additionally,
the matching network was able to achieve an overall higher accuracy with a 3% point reduction in
false positives.

The results of the traditional hard-negative mining agree with the literature, which states that
the technique fails to add benefits if the dataset is significantly not large enough, as it effectively falls
back to a random negative procedure [16,32]. Overall, this approach fails to improve any aspect of the
original matching network, and in many ways preforms as a combination of the worst aspects of the
other approaches, achieving an overall accuracy that matches that of the randomly assigned negatives,
but with a worse false positive rate.

An interesting result is that of the nearest neighbor hard-negatives. These negative patches
are assigned according to which image in the training dataset is the closest to the input image in
a normalized cross-correlation (NCC) sense. As NCC is often used as a signal-based measure for
multi-modal (including SAR-optical) image matching, it would appear to be a good choice for selecting
hard-negatives. However, this approach produces the worst overall accuracy and false positive
performance. It is suspected that the NCC hard-negatives cause the non-corresponding pairs to be
too similar to the corresponding pairs, thus creating a matching problem which is too complex for the
given network to resolve. This suspicion is further backed up by the high recall but low precision,
which indicates that the network has become biased towards predicting patch pairs as corresponding
(see Table 3).
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4.4. Comments on Computational Overhead

Although our approach leads to the best performance of the SAR-optical matching network,
this comes at the cost of a large computational overhead. This is caused by the fact that we need to
train a relatively large and complex generative network. However, we can compute the dataset of
negative samples prior to training the matching network, which allows for swapping out the online
requirements of RAM and an additional GPU for additional storage capacity. In doing so, we reduce the
computational burden of our approach to a once-off cost per dataset. Training this generative network
for our small training dataset took 96 hours on a single NVidia GTX 1080 GPU. During training,
the matching network using our offline approach took around 20 min on the same hardware.

On the other hand, traditional hard-negative mining directly impacts the computational cost
of training the matching network. As it is performed on-the-fly, the computational burden persists
across experiments and training operations. In the case of our investigation, the training time of the
matching network increased to 25 min; however, this time increase grows along with the dataset
size. Additionally, the training time memory requirements for the network increase as we need to
keep a history of predicted labels for each item in the dataset so that items can be replaced by better
hard-negative samples.

Thus, the added upfront computational expense of our approach may work better in environments
with limited computational resources but sufficient storage capacity.

5. Conclusions

With this paper, we have proposed a generative framework for hard-negative mining that can
be used in data sparse image matching applications to improve the discriminability and accuracy
of the matching network. By combining the strong latent space encoding features of a variational
autoencoder with the high quality generative capabilities of generative adversarial networks, we are
able to produce realistic SAR-like image patches in a conditional manner. In doing so, we are able to
produce a structurally similar, but novel SAR patch for each SAR image in our training dataset. We can
then combine these SAR and SAR-like images with a corresponding optical image in order to create a
balanced dataset of corresponding and non-corresponding patch pairs that can be used for training
SAR-optical matching networks.

By applying this generative hard-negative approach to the existing SAR-optical matching network
proposed in [14], we were able to confirm the capabilities of our approach in improving matching
accuracy and reducing a false positive rate when tested on an independent dataset. Within the scope
of sparse training data, our proposed method shows a significant improvement in matching accuracy
at low FPRs and a small improvement in overall accuracy (but with a significant improvement in FPR)
when compared to two commonly applied hard negative mining techniques.

Our generative hard-negative mining framework has applicability outside of the realm of
SAR-optical matching. It is believed that this approach to hard-negative mining can be applied to many
other problems that suffer from similar data constraints, both within and outside of remote sensing.
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ABSTRACT:

Matching synthetic aperture radar (SAR) and optical remote sensing imagery is a key first step towards exploiting the complementary 
nature of these data in data fusion frameworks. While numerous signal-based approaches to matching have been proposed, they often 
fail to perform well in multi-sensor situations. In recent years deep learning has become the go-to approach for solving image matching 
in computer vision applications, and has also been adapted to the case of SAR-optical image matching. However, the hitherto proposed 
techniques still fail to match SAR and optical imagery in a generalizable manner. These limitations are largely due to the complexities 
in creating large-scale datasets of corresponding SAR and optical image patches. In this paper we frame the matching problem within 
semi-supervised learning, and use this as a proxy for investigating the effects of data scarcity on matching. In doing so we make an 
initial contribution towards the use of semi-supervised learning for matching SAR and optical imagery. We further gain insight into 
the non-complementary nature of commonly used supervised and unsupervised loss functions, as well as dataset size requirements for 
semi-supervised matching.

1. INTRODUCTION

The collection and exploitation of complementary information
from multi-modal data sources enables a deeper understanding of
the world and is critical in many applications across multiple do-
mains. A key first step in any data fusion process is determining
correspondences among these data sources in order to align and
further exploit the complementary information in each modality
(Schmitt and Zhu, 2016). In the case of image-based data fusion
this relates to determining corresponding image regions across
images which may have been acquired by different sensors, at
different viewpoints and at various resolutions.

While the task of determining correspondences in conventional
computer vision applications, such as structure from motion and
pose estimation, has seen great progress and is solved to the de-
gree of being usable operationally, it is still an open and rele-
vant problem in the field of remote sensing. This is especially
true when considering the case of determining correspondences
in highly complementary, but vastly different image sources such
as between synthetic aperture radar (SAR) and optical imagery
(Schmitt et al., 2017).

As can be seen in Figure 1, the vastly different image acquisition
schemes of SAR and optical sensors lead to imagery that not only
depicts different properties of a scene, but also contains signifi-
cantly different geometric distortions and imaging artifacts. Syn-
thetic aperture radar imagery captures the physical characteristics
of a scene, such as surface roughness or water content, while op-
tical imagery provides details as to the chemical composition of
the target area. Furthermore, SAR imagery suffers from imag-
ing artifacts such as speckle, layover and radar shadow - none
of which are present in optical imagery. These vast differences
make determining correspondences between the data a challeng-
ing task.

Although many traditional feature matching methods have been
proposed for matching SAR and optical data, e.g. (Ye and Shen,

(a) (b)

(c) (d)

Figure 1: An example of corresponding SAR and optical patch
pairs. Matching the image pairs in (a,b) and (c,d) proves to be a
challenging task, even for domain experts.

2016, Ye et al., 2017, Dellinger et al., 2015), many of them still
exhibit sub-optimal performance especially in high and very high
resolution imagery. The advent and success of deep learning in
developing robust solutions to the correspondence problem in
traditional computer vision settings, e.g. by (Han et al., 2015,
Zagoruyko and Komodakis, 2017), has lead to its application to
multi-modal matching within remote sensing, e.g. in (Mou et al.,
2017, Merkle et al., 2017a, Hughes et al., 2018b). Despite deep
networks being universal function approximators, the results of
their application to the SAR and optical matching problem have
been mixed and with varying degrees of robustness and general-
izability. These effects can be attributed to three main challenges:
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firstly the intractability of creating large-scale annotated datasets
due to SAR imagery being difficult, even for experts, to interpret;
secondly the complex nature of SAR image formation which pre-
vents the creation of realistic, synthetic datasets and finally the
natural ineffectiveness of transfer learning techniques to extract
meaningful feature representations from SAR, and lesser so, from
optical space-borne imagery. These factors are all directly im-
pacting on the feasibility of training the complex deep networks
required to accurately determine correspondences between com-
plex multi-modal data sources such as SAR and optical data.

To this end, we propose the use of semi-supervised learning to
relax the requirements for large-scale labeled data in order to
learn a well-generalizing SAR-optical image matching network.
As semi-supervised learning has not yet been applied within this
domain, the question still remains as to how much labeled data
is required, and how well features learned in an unsupervised
manner generalize to support supervised tasks. Additionally, we
strive to understand the effects of data scarcity on the accuracy
of learned SAR-optical descriptors, and the interplay between
the unsupervised and supervised objectives. The main contribu-
tions of this paper can be summarized as follows: We formulate
a semi-supervised approach to SAR-optical image matching and
use this approach as a framework to assess the relative effect of
data scarcity on the network’s ability to learn meaningful descrip-
tors for SAR-optical image matching.

2. RELATED WORK

2.1 Deep Learning for SAR-Optical Matching

Deep learning is becoming an increasingly important method in
the toolbox of remote sensing practitioners, especially in the area
of data fusion, and thus also SAR-optical matching (Zhu et al.,
2017).

The first notable examples of this were provided in short suc-
cession by (Merkle et al., 2017b) and (Mou et al., 2017) who
both proposed variants of a 2-stream architecture. (Merkle et
al., 2017b) trained a siamese network to predict the relative shift
between SAR and optical patches in order to improve the geo-
localization accuracy of the optical data, while (Mou et al., 2017)
trained a pseudo-siamese variant as a binary correspondence clas-
sifier. Taking inspiration from these seminal works, we extended
the network proposed by (Mou et al., 2017) by enhancing the fea-
ture fusion stage and converting the output to a similarity score
based on the soft-max probability (Hughes et al., 2018b).

Taking a different approach to the problem, (Merkle et al., 2018)
proposed the use of a generative adversarial network (GAN) to
generate SAR-like templates from optical image patches. These
templates were then used as input to standard template matching
approaches such as mutual information (MI) or normalized cross
correlation (NCC).

These works all make use of supervised learning, which require
large-scale labeled datasets – in this case, corresponding SAR-
optical patch pairs. As such many of them lack robustness and
generalizability, due to the intractability of creating large datasets
of pixel-wisely matched VHR imagery of urban scenes.

In an attempt improve on this, we proposed a novel hard-negative
mining strategy which does not increase the requirements for
training data in previous work (Hughes et al., 2018a). To do this,
we trained a conditional GAN to generate SAR patches which

could be used directly, along with a corresponding optical image,
for hard-negative mining. However, this approach is computa-
tionally expensive and does not completely resolve the problems
caused by the scarcity of labeled data in SAR-optical matching
problems.

2.2 Semi-supervised Learning

Semi-supervised learning constitutes a set of techniques for ex-
ploiting large-scale unlabeled datasets in order to support the
learning in environments where labeled data is scarce (Chapelle
et al., 2009). While many such methods exist, they all are cen-
tered around the same basic principles. Namely, to exploit unla-
beled data in an unsupervised, or self-supervised manner to learn
generalizable features, and to use small amounts of labeled data
to steer learning towards a specific task.

(Zhang et al., 2016) and (Rasmus et al., 2015) proposed combin-
ing supervised classification with an unsupervised autoencoder-
based reconstruction loss for image recognition. (Lai et al., 2017)
trained a deep network using an adversarial loss to predict the
flow field between a pair of images. This method used sparse
depth information from LiDAR for supervision, while using an
image consistency loss for unsupervised training. (Mukherjee
et al., 2017) proposed the use of deep matching autoencoders to
learn a common latent space between multi-modal data. This was
achieved using a statistical dependency measure to pair unlabeled
data during training and supervised with corresponding training
pairs. Using a multi-phase training approach (Bui et al., 2018)
pretrained a classifier for each domain in a supervised manner and
then used a second training phase to learn a transformation be-
tween the learned embeddings for cross-domain image retrieval.

Autoencoders and reconstruction losses form a fundamental part
of many semi-supervised learning approaches. However, they are
still most often used as an auxiliary loss in supervised learning for
matching multi-modal data (Ngiam et al., 2011, Liu et al., 2018).
This is largely due to increased complexity of semi-supervised
learning and the fact that these techniques lend themselves best to
well conditioned problems (Cholaquidis et al., 2018). While the
image matching problem is known to be ill-conditioned, auto-
encoders have still shown success in the domain of supervised
learning for multi-modal matching. Thus in this paper, we will
propose extensions to supervised autoencoder based matching
techniques to allow for semi-supervised learning in within this
domain.

3. SEMI-SUPERVISED SAR OPTICAL MATCHING

In this section, we describe our proposed SAR-optical matching
network, including the use of autoencoders for semi-supervised
learning of descriptors from labeled and unlabeled data, and the
use of an adversarial loss for aligning these descriptor latent
spaces. Further, we describe the training procedure and how
matching can be achieved using the final trained network. An
overview of the proposed architecture can be seen in Figure 2.

3.1 Network Architecture

In a similar vein to the matching networks proposed by (Liu et
al., 2018) and (Mukherjee et al., 2017), we propose a dual au-
toencoder network in order to learn SAR and optical descriptors
which can later be matched in a computationally efficient man-
ner. In doing so we are able to exploit the self-supervised nature
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Figure 2: A single branch of the proposed network architecture. The autoencoder learns a meaningful latent code space z by learning
to reconstruct the input image, while the discriminator network conditions the distribution of the latent codes using adversarial training
and an arbitrary prior distribution. The optical branch is an exact mirror of the SAR branch and the discriminator network is shared
between the branches.

of autoencoders to learn useful features from unpaired SAR and
optical imagery. Furthermore, we use the latent code generated
in the bottleneck as a natural descriptor and jointly train each do-
main specific autoencoder to align these latent codes. This align-
ment is achieved through the incorporation of a supervised loss
function which is optimized using a small dataset of correspond-
ing SAR-optical patch pairs.

Autoencoders typically consist of two networks, namely, an en-
coder and a decoder. Our proposed encoder network is based
on the VGG11 (Simonyan and Zisserman, 2015) architecture.
This architecture was chosen as a base due to its relative sim-
plicity and low number of parameters. Furthermore, it has been
used as a base to achieved state-of-the-art results in a variety of
tasks (Iglovikov and Shvets, 2018), and is thus considered to be a
good starting point for the exploration of semi-supervised learn-
ing for SAR-optical matching. The decoder network is based on a
combination of convolutional and transposed convolution layers
which are used to upsample the latent code in order to reconstruct
the original image. The autoencoders for each modality (i.e. SAR
and optical) have identical architectures and do not share any lay-
ers or weights. This allows for the learning of modality-specific
features. As shown in Figure 2, the encoder network consists
of blocks of 3 × 3 convolutions, batch normalization and activa-
tion with a Leaky ReLU function with a negative slope of 0.2.
Similarly, the decoder network is made up of blocks of 3 × 3
transposed convolutions with a stride of 2 and ReLU activation,
followed by a 3 × 3 convolutional layer and a ReLU activation.
The depth of the feature maps are detailed in Figure 2.

For a given a SAR-optical image pair Is, Io we train the encoders
Encs,Enco to generate a descriptive latent code, zs or zo respec-
tively, such that the decoder networks, Decs,Deco, can create an
approximate reconstruction of the original inputs from the latent
code. For a non-corresponding SAR-optical patch pair we seek
to minimize the reconstruction loss such that,

Lrecon = ‖Is − Ĩs‖2 + ‖Io − Ĩo‖2, (1)

where Ĩs and Ĩo are the reconstructed images generated by

z ∼ Enc(I), (2)

Ĩ ∼ Dec(z) (3)

using the appropriate, domain specific encoder and decoder net-

works.

For a pair of images labeled as either corresponding or non-cor-
responding, we augment the reconstruction loss, Lrecon, with a
contrastive matching loss,

Lmatch = y(‖zo − zs‖22)+
(1− y){max

(
0,m− ‖zo − zs‖22

)
}, (4)

where y is the target label (zero for non-corresponding and one
for corresponding), and m is the margin. The contrastive loss
encourages the network in learning a latent space where corre-
sponding pairs are near to each other, while non-corresponding
pairs have a squared norm distance of at least margin m (Chopra
et al., 2005). To ease the tuning of the margin hyperparameter,
we took the L2 norm of the each of the descriptor vectors zo and
zs prior to the calculation of the contrastive loss. This ensures
that both descriptors are on the hypersphere before matching and
allows the use of normalized measures such as the cosine distance
for matching the descriptors. This is significantly more efficient
than descriptor-specific matching networks as the descriptors can
be precomputed for each image patch.

In the end, the semi-supervised matching network is trained by
minimizing the respective reconstruction losses Lrecon for all
SAR and optical data (paired and unpaired), while additionally
minimizing the matching loss Lmatch for labeled, i.e. paired,
data:

Lsemisuper =
∑

i∈Da

[
Lrecon

(
Iis, Ĩis

)
+ Lrecon

(
Iio, Ĩio

)]
+

∑

j∈Dl

Lmatch

(
Enc(Ijs ),Enc(Ijo)

)
, (5)

where Da and Dl represent the datasets of all, and labeled (cor-
responding and non-corresponding) SAR-optical patch pairs, re-
spectively. Optimizing both the modality-specific reconstruction
loss as well as the joint matching loss enables the network to
learn to extract important features and generate descriptive latent
codes from unlabeled data, while learning to align these latent
spaces using a smaller labeled dataset.

While autoencoders are capable of learning complex data man-
ifolds, these manifolds are often poorly conditioned with weak
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supports. Thus they often do not extend well to unseen data, such
as imagery with a slightly different data distribution or from a
different spatial region. This is due to the fact that the manifold
is only smooth near to existing samples, i.e. the training samples.
To reduce these effects, and simplify the alignment between the
modality specific latent distributions we propose to impose a con-
tinuous prior distribution p(z) on the respective latent codes. This
is realized through the reformulation of our modality specific au-
toencoders as adversarial autoencoders with a joint adversary, and
is described in the following.

3.2 Adversarial Training

An adversarial autoencoder is an autoencoder which is regular-
ized by matching the generated posterior q(z) to an arbitrary prior
p(z). This is achieved through a min-max game in which the
generator network, the encoder (Enc) of the autoencoder, learns
to maximize the error of a discriminator network (Dis), while the
discriminator learns to minimize the classification error of sam-
ples coming from the prior and the posterior (Makhzani et al.,
2016). This objective function can be expressed as:

min
Enc

max
Dis

E
z∼p(z)

[log(Dis(z))] + E
I∼Da

[log(1− Dis(Enc(I)))].

(6)

In order to prevent the discriminator being able to learn the prior
and posterior distributions too easily, the discriminator network
is kept relatively shallow and simplistic. In our case, the discrim-
inator is comprised of three fully connected layers of decreasing
size, each of which is followed by a Leaky ReLU activation with
a negative gradient of 0.2. The last layer of the discriminator uses
a sigmoid activation to classify the input vector as either coming
from the prior or posterior distribution. This network structure
can be seen in Figure 2.

As we wish for the SAR and optical latent spaces to be aligned,
such that corresponding pairs appear nearby in the code space,
we impose the same prior on both latent distributions and solve
the min-max problem over both encoders and the shared discrim-
inator. This is done by alternating between updating the discrimi-
nator network and the generator (encoder) network using samples
from the full dataset of labeled and unlabeled SAR-optical pairs.

Due to instabilities which can arise during the optimization of the
min-max game (Equation 6), we replace the traditional genera-
tive adversarial loss with a Wasserstein-distance-based loss (Gul-
rajani et al., 2017). The Wasserstein loss strives to optimize the
min-max game in terms of distributions rather than directly as a
classification problem, and is thus more robust against gradient
explosion and problems of mode collapse. Thus our final semi-
supervised matching network is trained by minimizing the dis-
criminator and autoencoder objective functions,

Ldis =
∑

i∈Da

(
Dis(Enc(Iis)) + Dis(Enc(Iio))− 2

(
Dis(zip)

))
,

(7)

Lae = Lhnet −
∑

i∈Da

(
Dis(Enc(Iis)) + Dis(Enc(Iio))

)
, (8)

where zip is a sample from an arbitrary prior distribution p(z).
In our case, we define p(z) as a normal distribution such that
p(z) ∼ N (0, 5).

3.3 Implementation Details

We implement the proposed approach using the PyTorch deep
learning framework (Paszke et al., 2017). The optimization of the
autoencoders is performed using the Adam solver with β1 = 0.9
and β2 = 0.99 and a weight decay of 10−4. The discrimina-
tor network is optimized using stochastic gradient descent (SGD)
with a momentum of 0.9, weight decay equal to 3 · 10−4 and a
learning rate of 4 · 10−3.

The learning rate for the Adam optimizer was determined us-
ing the search method proposed by (Smith and Topin, 2017),
whereby the learning rate is rapidly increased from a small value,
10−7, over consecutive batches while the loss is recorded. The
learning rate is then selected to be in the region where the loss
decreased in a smooth and constant manner (region of highest
gradient). Using this approach we found the optimum learning
rate for the Adam optimizer to be in the range of 5 · 10−5 and
5 · 10−4. This learning rate range was then used to initialize a
one-cycle policy learning rate scheduler to dynamically vary the
learning rate during training (Smith and Topin, 2017). The full
network was then trained in an end-to-end manner for 100 epochs
with a batch size of 32.

To improve the stability of the adversarial training the discrim-
inator was trained using an update schedule with five times the
frequency of that of the generator. Furthermore, the discrimina-
tor weights were clipped to the range of [−0.1, 0.1] in order to
preserve the 1-Lipschitz constraints required for the Wasserstein
loss (Petzka et al., 2017, Gulrajani et al., 2017).

Data augmentation was used to improve generalization and pre-
vent overfitting due to the relatively small supervised dataset
which we used. The data augmentation scheme included 1) hori-
zontal and vertical flipping with a probability of 0.5 for each cor-
responding image pair, 2) the addition of Gaussian white noise
with a standard deviation of σ = 0.02 to the optical image, and
3) scaling of image intensities by a randomly selected factor of
[0.95, 1.05], with a probability of 0.2. In order to preserve the
accuracy of the labeled dataset, the same flipping and scaling
transformations were applied to each image in the image pair.
For the unlabelled dataset, these transformations are applied in-
dependently to each image.

4. EXPERIMENTS

4.1 Experimental Setup

As large-scale SAR-optical correspondence datasets are difficult
to produce for very high resolution imagery, especially in urban
areas, we make use of the UrbanAtlas dataset and reduce the re-
gion of interest for matching to areas which are mainly comprised
of rural and semi-urban areas. In doing so we can limit the ge-
ometric differences between the SAR and optical imagery, and
thus can derive corresponding points using the geo-localization
information. While this approach may contain inaccuracies, these
are assumed to be small at the spatial resolution of the dataset.

The UrbanAtlas dataset is comprised of high resolution (2.5m
GSD) TerraSAR-X and PRISM imagery of 23 cities across Eu-
rope. In order to increase the probability of salient features be-
ing present in both images we applied a Harris corner detector
to the optical domain and applied a non-maximal suppression fil-
ter with a spatial constraint to ensure a minimum distance of 128

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-71-2019 | © Authors 2019. CC BY 4.0 License.

 
74

4.5. A Semi-Supervised Approach to SAR-Optical Image Matching 95



Figure 3: The distribution of the cities which were used for train-
ing (yellow), testing (black) and validation (white).

pixels between feature points. These feature points were then
used as the center point when cutting SAR and optical patches,
of 256 × 256 pixels, from the scenes. For training we extracted
50,000 patch pairs from 12 cities; 10,000 patch pairs from 3 cities
for validation and 10,000 patch pairs from 8 cities for testing. The
distribution of the cities into training, testing and validation sets
is depicted in Figure 3.

In order to optimize the supervised loss we require both positive
and negative training pairs. In order to achieve this we utilized a
center crop of 128×128 pixels as the positive training pair, and an
off center random crop of 128×128 to form a non-corresponding
negative pair. The motivation for cropping both the positive and
negative pair from the same patch was that nearby regions are
likely to be more similar, giving the negative pair a similar dis-
tribution to the positive pair. This is expected to provide harder
negative examples than purely random patch selection.

During pre-processing, all image patches were scaled to the range
[0, 1] and then standardized to zero mean and one standard devi-
ation using the normal distributions as calculated from the SAR
and optical images of the training set, i.e. NSAR(0.5, 0.2) and
NOpt(0.45, 0.15). All other hyper-parameters were kept fixed
for each scenario, such that the only variable was the degree of
supervision.

For prediction at test time, we make use of a sliding win-
dow search procedure with a fixed optical template patch and a
256× 256 SAR image search region. Matching is performed by
calculating a descriptor for the central optical patch, and compar-
ing this to the descriptors generated from a 128 × 128 sliding
window over the SAR image. Thus, we obtain a 256×128×128
descriptor volume for the SAR search region. The final corre-
spondence map is then computed by calculating the cosine sim-
ilarity between the descriptor volume and the descriptor of the
optical template patch.

4.2 Matching under Data Scarcity

In order to assess our proposed network’s ability to learn robust
and discriminative features under conditions of data scarcity, we
train the network with varying degrees of supervision. This fur-
ther allows us to assess the effects of data scarcity on training
the network, as well as the dynamics between the supervised and
unsupervised loss functions.

We split the training dataset into supervised and unsupervised
subsets with ratios of 100%, 75%, 50%, 25% and 5% supervised
data to unsupervised data. The supervised subset is then over-
sampled to ensure that the distribution remains balanced. The
network is then trained using alternating batches of unsupervised
and supervised data.

The results of matching for these various scenarios are depicted
as histograms/density functions of the pixel distance between the
detected matching point and the ground truth location, as seen in
Figure 4.

From Figure 4 it is clear that there is a non-linear relationship
between the level of supervision and the number of well matched
pairs. This relationship is particularly evident when observing the
1-percentile for each of the scenarios. The overall shape of the
distribution should be noted too as it provides important insights
into the network’s matching abilities.

Due to the complexities of matching SAR and optical imagery it
is expected that matching efforts will only yield a few correspon-
dences. Thus it is often easier to obtain an intuition for the per-
formance of a matching algorithm through a qualitative investiga-
tion of the correspondence maps for successful and unsuccessful
matches. To this end Figure 5 depicts a few such examples for
test scenes of varying building density and difficulty.

In an ideal matching scenario we would expect the correspon-
dence maps, as shown in Figure 5, to have a single point of corre-
spondence (red pixel) at the center, with the values at other offsets
being relatively low in comparison (blue). However, in reality it
is much more common to see a Gaussian like spread around the
point of correspondence, with the peak value indicating the cor-
rect shift for maximal correspondence. From Figure 5 we can
clearly see these point spread functions which depict the point of
correspondence.

5. DISCUSSION

5.1 Semi-Supervised Matching

The examples in Figure 5 were selected as a fair depiction of
the range of results which were obtained. From these examples,
and in a qualitative manner, it is clear that the network is able
to achieve SAR-optical matching, specifically in rural and semi-
urban areas, across many levels of supervision.

On the other hand, the number of accurately matched points re-
mains low, as evident from Figure 4. However, a large majority of
data fusion tasks (such as stereogrammetry or image registration)
require only a few reliable matches, i.e. they rely on a low false
positive rate instead of only a high true positive rate. In conjunc-
tion, a high number of false negatives does not negatively impact
follow-on applications.

The low number of detected correspondences is related to the vast
differences in geometry between SAR and optical imagery which
leads to salient points in the optical domain not always being vis-
ible in the SAR domain. Thus, the matching of these specific
points becomes intractable even in the case of a fully supervised
approach – which by nature of having more examples to learn
from – should perform better than a semi-supervised approach.
This outcome is also depicted in results corresponding to the SAR
scene in Figure 5c, whereby the sharp edges and corners of the
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Figure 4: Histograms reflecting the precision of the determined matched point when compared to the ground truth location for varying
degrees of supervision. The dashed black line represents the mean matching distance while the dashed blue line represents the 1-
percentile matching distance.

building in the optical domain is not clearly visible in the SAR
domain.

The relative consistency of these correspondence maps, across
multiple levels of data scarcity, support the hypothesis that using
a shared adversary and supervised objective function, we are able
to align these latent spaces in a meaningful way for cross domain
matching; even with very little data.

Furthermore, we note from Figure 5 that the spread of the cor-
respondence peak appears to grow as we decrease the amount of
supervision. This is providing insight into the increased uncer-
tainty in the matching process as the latent distributions are only
aligned at a small number of locations. Furthermore, and perhaps
more importantly, we note that in the case of failed correspon-
dences the correspondence map no longer represents a Gaussian
like distribution and instead becomes multi-modal or somewhat
random – as depicted in the results corresponding to Figure 5c.
This observation could perhaps be exploited in future work to fil-
ter out failed correspondences, or to design more sophisticated
correspondence point selection schemes; as selecting the point of
correspondence based on a single value rather than based on the
distribution of values is susceptible to noise.

5.2 Effects of Data Scarcity

From the examples depicted in Figure 5 the impression arises
that the proposed network performs best in semi-urban scenes
(cf. Figure 5b), while it also shows reasonable performance in
rural scenes (cf. Figure 5a). In urban scenes (Figure 5c-d), how-
ever, the matching accuracy varies significantly at different levels
of supervision with the corresponding point shifting to a variety
of locations. The reason for the better performance in semi-urban
environments is likely due to the well distributed nature of objects
in the scene, which allows the network to observe enough diver-
sity in a patch that the descriptor can accurately capture the inher-

ent details. In rural scenes, more often than not, there are fewer
visual features and the scene has a relatively high self-similarity
index, and thus the descriptors at multiple locations are similar.
In urban scenes, the dense spacing of buildings, and thus the in-
creased layover effects coupled with the 2.5m resolution obfus-
cate features and degrade the lower level structure of the scene,
thus creating regions which have similar visual appearance, and
in turn similar descriptors and multiple peaks in the correspon-
dence map.

From Figure 4 the effects of data scarcity are visible in the over-
all distribution of the matching errors. As the amount of super-
vision is decreased the histogram becomes more skewed towards
the right, and the number of successful matches for lower thresh-
old values decreases significantly. This can be clearly observed
when comparing the histograms of the fully supervised baseline
(cf. Figure 4a) network to that of the scenario where only 5%
supervision (cf. Figure 4d) was employed, where the former has
a tighter distribution with a lower mean matching error, while the
latter has a long tail and a very right-skewed distribution.

From further evaluation of Figure 4 it is clear that there isn’t a
linear trend between the number of accurately matched pairs and
the amount of supervision used during training. This is evident
in the accumulation of the number of matches which fall in the 1-
percentile. Through this observation it is clear that 75% supervi-
sion and 25% supervision both have a higher number of low-error
matches than the baseline approach.

At first glance this outcome can seem counter intuitive, however,
an analysis of the literature (Dai et al., 2017) leads to the hy-
pothesis that the unsupervised reconstruction loss and supervised
matching loss are orthogonal to some degree. Thus, by optimiz-
ing for both losses in the baseline method the network ends up
in a local minimum which is not necessarily best suited to ei-
ther task. The reduction in the amount of supervision in the net-
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(a) (b) (c) (d)

(e) Optical (f) 100% (g) 75% (h) 50% (i) 25% (j) 5%

Figure 5: Correspondence maps produced under varying conditions of data scarcity, on example scenes of differing density. (a-d)
exemplary SAR test scenes, corresponding rows depicting (e) optical image patch, and (f - j) correspondence maps when trained with 
supervision percentage of 100%, 75%, 50%, 25% and 5% respectively.

work can be likened to applying some weighting function to the
loss functions, and thus prioritizing the one objective over the
other. In doing so the network is able to find a better optimum for
the latent space generation task (reconstruction and adversarial
losses) and the alignment of these spaces becomes an auxiliary
task. While we would prefer to improve matching over recon-
struction, it appears from the results that the prioritization of the
adversarial task (by decreasing the supervision level) does in turn
improve the matching task in some situations. This, however,
would need to be subject to further investigation to fully under-
stand the dynamics at play.

6. SUMMARY AND OUTLOOK

In this work, we proposed a semi-supervised approach to learn
modality-specific features which are matchable via a simple
distance-based metric, in our case cosine similarity. The ap-
proach consists of modality-specific autoencoders, which learn
feature representations from unlabeled data, and are trained in
an adversarial manner to enforce smoothness on the latent space.
These learned representations (descriptors) are then aligned, us-

ing a supervised matching loss such that matching can be per-
formed.

We further evaluated the effects of data scarcity on learning
meaningful feature descriptors for SAR-optical matching by
training our proposed network at varying levels of supervision
and analysing the matching results in the form of correspondence
maps, as well as the precision achieved for matching on our test
set.

Overall we showed that even under very low data conditions, i.e.
only 5% of supervision, we were able to obtain accurate cor-
respondences in rural and semi-urban areas. While the overall
number of accurate (1-percentile) correspondences was low, the
strong structure of their correspondence maps leads us to believe
that they could be filtered out during a post-processing step. This
will be subject to further investigation in future work.

Furthermore, we found that the unsupervised and supervised ob-
jective functions are not fully complementary. That leads to a
stunted baseline approach due to the strong trade-offs in the fea-
ture space required for each task. However, it was found that
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decreasing the amount of supervision can be sufficient to enable 
the network to learn a better latent distribution, and thus achieve 
higher accuracy in matching. This paper provides an initial con- 
tribution to the use of semi-supervised learning to exploit unla- 
belled training data in order to support SAR-optical matching, 
where training data is usually scarce and difficult to obtain. In 
future work we will investigate post-processing methods for ex- 
tracting high accuracy correspondences based on the structure of 
their correspondence maps. We will further investigate the hy- 
pothesis that lowering supervision signals is equivalent to apply- 
ing a weighting between the loss functions, and then will inves- 
tigate ways of automatically learning an inverse weighting to re- 
prioritize the matching/alignment task objective over the unsu- 
pervised objectives.
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ABSTRACT
SAR and optical imagery provide highly complementary information about observed scenes. A com-
bined use of these two modalities is thus desirable in many data fusion scenarios. However, any data
fusion task requires measurements to be accurately aigned. While for both datas sources images are
usually provided in a georeferenced manner, the geo-localization of optical images is often inaccurate
due to propagation of angular measurement errors. Many methods for the matching of homologous
image regions exist for both SAR and optical imagery, however, these methods are unsuitable for
SAR-optical image matching due to significant geometric and radiometric differences between the
two modalities. In this paper, we present a three-step framework for sparse image matching of SAR
and optical imagery, whereby each step is encoded by a deep neural network. We first predict regions
in each image which are deemed most suitable for matching. A correspondence heatmap is then gen-
erated through a multi-scale, feature-space cross-correlation operator. Finally, outliers are removed
by classifying the correspondence surface as a positive or negative match. Our experiments show that
the proposed approach provides a substantial improvement over previous methods for SAR-optical
image matching and can be used to register even large-scale scenes. This opens up the possibility of
using both types of data jointly, for example for the improvement of the geo-localization of optical
satellite imagery or multi-sensor stereogrammetry.

1. Introduction
Two of the most used modalities for space-borne remote

sensing are Synthetic Aperture Radar (SAR) and optical im-
agery, since the information they provide about observed
scenes is highly complementary. Thus SAR-optical data fu-
sion has become a relevant area of research within the field
of remote sensing (Schmitt et al., 2017).

As with any data fusion task, a fundamental first step
is the alignment of the various data sources. In the case of
image-based data fusion this alignment usually takes place
through the process of image matching. More specifically
this relates to the determination of corresponding points or
regions across images which have different viewpoints, res-
olutions and may have been acquired by different sensors.

In classical computer vision, where problems are often
restricted to a single modality or sensor, the task of image
matching is largely considered to be solved to the degree of
being usable. However, this is not true when dealing with
highly heterogeneous datasets and multiple modalities such
as in the case of SAR-optical image matching. Although re-
mote sensing imagery often contains geographical coordi-
nates for each pixel, we cannot rely on this geocoding to pro-
vide accurate correspondences as optical imagery often con-
tains significant geolocalization errors (Merkle et al., 2017;
Müller et al., 2012). Thus we need to rely on an image
matching process which is subject to many complexities re-
lated to the large geometric and radiometric differences be-
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tween the SAR and optical modalities (Schmitt et al., 2017;
Hughes et al., 2019). For instance, the geometric distortions
present in SAR imagery, such as layover, foreshortening and
radar shadow, have no direct analogues in the optical do-
main. Optical imagery, on the other hand, suffers from illu-
mination effects, related to clouds, object shadows, and the
global scene illumination.

To tackle these challenges, researchers took inspiration
from classical computer vision and developed a number of
approaches for SAR-optical matching. Suri and Reinartz
(2010) used mutual information to create a histogram-based
method of registering SAR and optical imagery. Later a
multitude of hand-crafted approaches were developed which
were aimed at improving the performance of the scale-invariant
feature transform (SIFT) detection and description algorithm
(Lowe, 2004), by adapting the gradient operator and scale-
space to be more suited to the properties of SAR imagery
(Dellinger et al., 2015; Gong et al., 2014; Suri et al., 2010).
These approaches were relatively successful in matching im-
ages in the SARdomain, however, they failed tomatch across
modalities as the detected and described features were in-
dependent of those features detected in the optical domain
(Ma et al., 2017). This is partially due to the vast radio-
metric differences between SAR and optical imagery. To
address this, (Ye and Shen, 2016) proposed the histogram
of oriented phase congruency (HOPC) descriptor whereby
phase congruency was used as a proxy for gradient informa-
tion. This ensures a commonality between features and de-
scriptors in both modalities. Xiang et al. (2018) argued for
the use of modality-specific gradient operators with a Harris
scale-space to better handle the large radiometric differences
while still allowing for repeatable features to be detected
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across modalities. Li et al. (2020) combined these previ-
ous approaches and the use of phase congruency to create
Radiation-variation Insensitive Feature Transform (RIFT),
which was shown to be less sensitive to rotational and ra-
diometric differences across modalities while still providing
repeatable features.

While feature based methods are able to find correspon-
dences between SAR and optical modalities, their success is
limited to imagery which obeys specific geometric and ra-
diometric constraints. These constraints often include the
limitation to flat, sub-urban or rural environments where the
SAR and optical geometry is similar and the radiometric
properties are more strongly correlated (Li et al., 2020; Xi-
ang et al., 2018; Ye and Shen, 2016).

At a higher level, the constraints on geometric and ra-
diometric differences are a consequence of the hand-crafted
nature of the feature detectors and descriptors and thus also
exist in single domain matching problems. For instance,
in classical computer vision many handcrafted approaches
break down under large baselines, or strong radiometric dif-
ferences. For this reason, and with the advent of modern
deep learning techniques, there has been a strong movement
towards deepmatching – or learning to solve the imagematch-
ing problem directly from data (Kuppala et al., 2020).

Fischer et al. (2014) demonstrated that features extracted
from the last layer of a Convolutional Neural Network (CNN),
pretrained on ImageNet, can outperform the SIFT descriptor
in image matching tasks. This lead to the development of a
number of CNN-based descriptors, which learned similar-
ity metrics directly from corresponding image patch pairs.
Simo-Serra et al. (2015) proposed the use of a siamese net-
work trainedwith pairs of corresponding and non-correspon-
ding patches, and a Euclidean distance metric to learn a 128-
dimensional descriptor for image matching. A similar ap-
proach was proposed in (Zagoruyko and Komodakis, 2015),
however, an additional networkwas added to focus thematch-
ing around the center of the image patch pair. Building on
these approachesHan et al. (2015) proposedMatchNet, which
made use of a triplet loss and hard negative mining to bet-
ter discriminate between corresponding and non-correspon-
ding patch pairs. In (Balntas et al., 2016a) and (Balntas
et al., 2016b), a triplet-based approach was proposed, which
used a simple shallow network and thus lead to a drastic im-
provement in computational and training performance with-
out sacrificing accuracy. Taking a different approachYi et al.
(2016) proposed a learned variant of SIFT, in which each
component of the SIFT matching pipeline was implemented
as an independent CNN trained using SIFT as the ground
truth.

Driven by these successes remote sensing practitioners
turned to deep learning to address the various shortfalls of
handcrafted approaches for matching SAR and optical im-
agery (Hughes et al., 2019). To this end a number of ap-
proaches have been developed which specifically account for
the multi-modal and inherently heterogenous nature of the
imagery. The first notable examples of deep SAR-optical
matching made use of (pseudo-)siamese networks: Merkle

et al. (2017) proposed a siamese network to directly predict
the relative shift between a larger SAR search patch and a
smaller optical template patch. Similarly, Mou et al. (2017)
framed the matching as a binary classification problem and
trained a pseudo-siamese network to predict the correspon-
dence of the center pixel between SAR and optical patches.
Taking inspiration from these initial works we extended the
pseudo-siamese network proposed in (Mou et al., 2017) to
include a more robust fusion network and modified the bi-
nary classification problem to output a similarity index based
on a soft-max activation (Hughes et al., 2018). Citak and
Bilgin (2019) proposed the use of SAR and optical visual
saliency maps as an attention mechanism in the feature ex-
traction arms of a siamese matching network. Wang et al.
(2018) use a self-learned deep neural network to directly
learn the mapping between a source and reference image
with the goal of applying this mapping remote sensing image
registration. Bürgmann et al. (2019) proposed modifications
to HardNet (Mishchuk et al., 2017) and applied it to match-
ing SAR Ground Control Points (GCPs) in optical imagery.
Hoffmann et al. (2019) trained a Fully Convolutional Net-
work (FCN) to learn a similarity metric which was invari-
ant to small affine transformations between SAR and optical
patch pairs. Ma et al. (2019) proposed a two-step, coarse-
to-fine registration method based on features extracted from
fine-tuned VGG16 model (Simonyan and Zisserman, 2015).

Althoughwe have seen significant progress in thematch-
ing of SAR and optical imagery, these approaches rely on the
selection of good feature points for the extraction of match-
able candidate search and template patches. Given the large
differences between SAR and optical imagery it is often the
case that salient features are not visible in both domains.
Thus the selection of candidate patches in previous works
has largely relied on features extracted from a single modal-
ity (Bürgmann et al., 2019; Merkle et al., 2017; Hughes and
Schmitt, 2019) or assumed correspondence based on geo-
localization (Citak and Bilgin, 2019; Hoffmann et al., 2019;
Ma et al., 2019). For instance in (Merkle et al., 2017) the lo-
cations of road intersections extracted from OpenStreetMap
(OSM) data were used as features for extracting candidate
regions for matching. While this showed reasonable results,
OSM data is known to have varying accuracy and is not
globally consistent (Vargas-Muñoz et al., 2019). Further-
more, the approach also required significant preprocessing
and manual intervention. Bürgmann et al. (2019) made use
of GCPs derived from a geodetic stereo SAR approach as
features for the extraction template patches from the SAR
image. The generation of these GCPs is computationally
complex and requires multiple SAR acquisitions of the same
scenewith specific acquisition geometry. Furthermore, these
GCPs are not generic features and often do not exist in rural
areas.

Even in the best case scenario, where the proposed can-
didate patches meet all the requirements for increasing the
likelihood of matching, outliers and incorrect matches will
still exist. This is both due to the ambiguity and the complex-
ity of the task of matching under extreme heterogeneity. The
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Sec 2.1
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Sec 2.2
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Matched
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Figure 1: The proposed SAR-optical matching framework. First the SAR and optical images of the scene are processed by the
goodness network to create a scene-wise map of suitability of regions for matching. Candidate search (green boxes) and template
patches (blue boxes) are then extracted from the local maxima and the correspondence network is used to determine the point of
correspondence via feature-space cross correlation, then producing a correspondence heatmap. The quality of the match is then
assessed by the outlier reduction network to filter out incorrect or ambiguous correspondences.

task of identifying and removing outliers in classical com-
puter vision usually falls on statistical approaches such as the
RANdom Sampling and Consensus (RANSAC) algorithm
(Fischler and Bolles, 1981). These approaches, however,
have not seen use in SAR-optical matching due to the com-
plexity of modelling the feature transfer between domains
in the presence of large geometric differences. Therefore,
the removal of outliers in SAR-optical matching approaches
has largely relied on filtering matches based purely on the
similarity score. Thus many of the previously mentioned ap-
proaches suffer from high false positive rates, which degrade
the performance of downstream tasks.

In this paper we propose a fully-automated, multi-scale
SAR-opticalmatching framework to address some of the short-
falls and constraints of previous approaches. This frame-
work is comprised of three neural networks used in sequence:
first is a goodness network, made of domain-specific sub-
networks. This first network highlights regions with a high
likelihood of containing salient features which are match-
able across modalities. Second is a multi-scale matching
network, architected around a feature space correlation func-
tion, which produces correspondence heatmaps for thematch-
ing of candidate patches. Finally, an outlier reduction net-
work is used to directly estimate the quality of the match-
ing result and allow for the removal of incorrect matching
results. We evaluate the effectiveness of the individual sub-
components, as well as the complete SAR-optical matching
pipeline on a large and diverse dataset of high resolution
SAR and optical imagery.

2. Multi-modal Feature Proposal and
Matching Framework
In this section we detail the architecture and design of

the three components which make up the proposed end-to-
end SAR-optical matching framework. An overview of the
framework and definition of these main components is de-
picted in Figure 1.

2.1. Goodness Network
The first stage of our framework aims at extracting the

candidate patches which are used, by the correspondence
network, for matching SAR and optical imagery. To extract
these patches, we assess the goodness of regions for match-
ing, i.e. the suitability of a region for matching.

This assessment is made using two independent domain-
specificCNNs, each one producing amap indicating the like-
lihood of a region being matchable. With each network be-
ing trained on a singlemodality, but supervised by thematch-
ing loss generated by the correspondence network (see Sec-
tion 3.2 for details), we expect the domain specific CNNs to
learn which features are likely to be discernible in the other
modality. These two maps are then merged into a cross-
modality scene goodness map.

To cope with the geo-coding errors which exist in opti-
cal remote sensing imagery and the large differences in ge-
ometry between SAR and optical imagery, we generate the
goodness maps at a reduced resolution. This allows for the
coarse alignment of the SAR and optical goodness maps,
and thus the extraction of jointly good regions, i.e. regions
which have a high goodness in both domains. While this
alone solves the correspondence problem, it only does so at
a significantly reduced resolution and thus the identified re-
gions are used to extract candidate patches for higher reso-
lution matching with the correspondence network presented
in the next section. Furthermore, in identifying regions for
matching in this manner we reduce the overall number of
candidate points. However, many downstream applications
of the determined correspondences only require a few, well
distributed and accurately matched feature points.

The modality specific networks are based on the VGG11
architecture (Simonyan and Zisserman, 2015) and are de-
scribed in Table 1. This base was chosen due to its simplic-
ity, relatively low number of parameters and proven perfor-
mance in a variety of tasks (Ma et al., 2019; Iglovikov and
Shvets, 2018; Hughes and Schmitt, 2019). The backbone
architecture consists of four blocks of two 3 × 3 convolu-
tional layers, with each convolutional layer being a sequence
of convolution, activation by a rectified linear unit (ReLU)
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Table 1
Overview of the domain specific goodness networks.
Conv(k, s, p) and MaxPool(k, s) represent a convolutional layer
and a pooling layer, with a kernel of size k, a stride of s, and
a padding of p, respectively

Block Layer # Filters

Conv(3,1,1) -> ReLU -> BN 321 Conv(3,1,1) -> ReLU -> BN 32
MaxPool(2,2)
Conv(3,1,1) -> ReLU -> BN 642 Conv(3,1,1) -> ReLU -> BN 64
MaxPool(2,2)
Conv(3,1,1) -> ReLU -> BN 1283 Conv(3,1,1) -> ReLU -> BN 128
MaxPool(2,2)
Conv(3,1,1) -> ReLU -> BN 1284 Conv(3,1,1) -> ReLU -> BN 128
Conv(3,2,1) -> ReLU -> BN 128
Conv(3,2,1) -> ReLU -> BN 64
Conv(1,1,0) -> ReLU 64
Conv(1,1,0) -> ReLU 1

Head

AvgPool(Np,Nk) -> Sigmoid

and batch normalization (BN). The first three convolutional
blocks are downsampled by a factor of 2 using max-pooling.
The head of the network consists of two convolutional layers
with a stride of 2 (thus downsampling the spatial dimension
of the tensor by a factor of 2), followed by fully connected
layers implemented using a 1 × 1 convolutional block. Thus
creating a network with an effective downsampling scale of
32, which is slightly larger than the maximum expected off-
set as reported by Merkle et al. (2017). Finally, an average
pooling layer, with a kernel size Np and stride Nk ensures
a receptive field that accounts the maximum expected off-
set between the domains, as well as the size of the desired
template patch.

The cross domain goodness networks are trained using
co-registered SAR-optical patch pairs, Is, Io, as well as a bi-nary label, ym, which represents if the pair is matchable.

The networks are trained using a Binary Cross Entropy
(BCE) loss function:

g = − 1
N

N∑
i
yi log(ỹi) + (1 − yi) log(1 − ỹi), (1)

where yi is a binary label indicating if the pair can bematched,
ỹi is the predicted label, and N is the total number of sam-
ples.

To produce the cross-modality scene goodness map G,
we select either theminimumormaximumgoodness response
for each pixel across the modalities and then apply the spa-
tial non-local-maximum suppression proposed in (Dusmanu
et al., 2019):

Ĝij =
exp(Gij)∑

kl∈ij
exp(Gkl)

, (2)

(a) (b)

(c) (d)

(e) (f)

Figure 2: Example of scene goodness maps produced by the
domain specific networks, and the final, fused goodness map.
(a) and (b) are the optical and SAR images of the scene.
(c) and (d) are the respective domain-specific goodness maps.
(e) is the minimal response cross-modality goodness map G
and (f) the final cross-modality scene goodness map Ĝ, where
points of high goodness are clearly visible.

where Gij is the value of G at pixel (i, j), andij is a 3 × 3
window centered on (i,j). An example of the domain spe-
cific, and cross-modality scene goodness maps is depicted
in Figure 2.

Finally, candidate patches are extracted around the points
of high goodness by transforming these point locations into
the original image space. This is done by undoing the pool-
ings and strides to find the point in the original image space.
2.2. Correspondence Network

The goodness network informs about regions of the two
images that seem to be interesting to findmatching keypoints,
but does that only at a coarse resolution. The next step is
to find a fine grained matching keypoint between the two.
To do so, a second correspondence network slides a small
subpatch of the optical image (template patch, It, of sizet × t ) over the wider SAR image (search patch, Is, ofsizes ×s) in search of a match. In other words, the cor-
respondence network aims to determine themost likely point
of correspondence for the center pixel of the template patch
within the search region. This can be seen as equivalent to
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(a) (b)

(c) (d)

Figure 3: Example of the process by which the correspondence
heatmap can be used to determine the corresponding point for
the center pixel of the optical template patch. (a) The search
window with its center pixel marked by a red plus, (b) the
resultant heatmap from the correspondence network with its
center pixel aligned to that of the search window, and the peak
point of correspondence depicted by a blue plus. (c) The center
of the optical template patch is aligned to the peak point of
correspondence, (d) the final alignment of the optical template
patch, with the located point of correspondence marked by the
blue plus.

finding the offset which leads to the best overall alignment
of the template within the search patch. An example of the
matching process using a candidate patch pair, and the out-
put correspondence map is depicted in Figure 3.

Existing approaches to SAR-opticalmatching largely rely
on features extracted from the final layers of deep CNNs.
While these features contain global semantic information they
are low resolution and invariant to disturbances such as trans-
lation. Thus it can be argued that they lack the fine de-
tailed features required to accurately determine correspon-
dence between images. For this reason we architected our
correspondence network around the concept of convolutional
hypercolumns (Hariharan et al., 2015) which are constructed
by stacking feature maps extracted from multiple levels of a
shallow CNN.

The correspondence network consists of two four-layer
CNNs, one for each modality, from which feature maps are
extracted to form the modality specific hypercolumns. The
number of channels in each hypercolumn is then reduced by
a modality specific feature reduction network, before being
matched using a feature space correlation operator.

The hypercolumn is constructed by extracting featuremaps
at each of the four layers of the feature extraction network.
These feature maps are then upsampled, using bi-linear in-
terpolation and stacked into a hypercolumn. The depth is
then reduced to the desired number of features,d , using aseries of 1 × 1 convolutional layers. To improve response of
salient features in each modality, a spatial attention map, as
proposed in (Woo et al., 2018), is created and applied to each
hypercolumn. The reduced hypercolumn is then normalized
along the channel dimension using L2 normalization.

The search and template hypercolumns are then matched
in feature space using a correlation operation and valid padding.
Finally, the result is upsampled and padded to match the ex-
tent of the search window. The output of which is a heatmap
containing the matching scores for each offset of the tem-
plate window within the search window. The full architec-
ture of the correspondence network, as well as the input and
output datum, is depicted in Figure 4.

We can train the network using a 2D Kronecker delta
function as the ground truth, whereby the position of the unit
impulse is parameterized as the true point of correspondence
of the template patch within the search patch. The network
is then trained via backpropagation using a modified mean-
squared error (MSE) loss,

mse = 1
1 +0

∑
i
wi

(
yi − fss(ỹi)

)2 , (3)

wi = yi
01

+ (1 − yi), (4)

where, yi and ỹi represent the target labels and the predictedheatmap of the itℎ sample. The function fss is a spatial soft-max operation which is applied to the predicted heatmap
in order to convert the matching scores into a probability
distribution with the peak at the point of correspondence.
The softmax activation relates all points in the heatmap and
thus to obtain a strong peak it encourages the suppression
of the matching score in other regions. As the ground truth
map contains only a single non-zero value we make use of a
weighting vector, wi, to ensure the loss at the peak is given
the same importance as the loss created by all non-corre-
sponding points in the heatmap. This further exaggerating
the requirement for a strong peak in the heatmap. Thus 1and0 represent the count of the number of zero- and non-
zero pixels in yi.Due to the spatial softmax operation fss, which normal-
izes ∑

x,y ỹ = 1, and the loss function which prioritizes
peakiness, the network tends to overfit the training dataset.
It achieves this by exploiting the peak-to-peak range of the
pre-activated heatmaps, ŷi. To reduce overfitting, encouragesparsity, and limit the dynamic range of ŷi, we augment ourmse loss with an L1 regularization term. Thus the overall
loss function can be expressed as

cor = mse + �∑
i
|ŷi|, (5)

where � is a hyperparameter to adjust the strength of the reg-
ularization.
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Figure 4: The correspondence network architecture showing the layer details for the SAR branch with Conv(k, s, p) and
MaxPool(k, s), representing a convolutional layer, and pooling layer, with a kernel of size k, stride of s, and padding of p, respec-
tively. Convolution followed by ReLU is represented as ConvR(k, s, p), and the addition of batch normalization as ConvRB(k, s, p).

(a) (b) (c)

Figure 5: Examples of common patterns seen in the corre-
spondence heatmaps. For brevity only the valid region of the
heatmap is depicted. (a) High likelihood of an accurate match
as the heatmap contains only a single, strong response with
a low spread. (b) A matching ambiguity exists along a single
axis, which leads to a lower likelihood of the correct point of
correspondence being identified. (c) A strongly multimodal re-
sponse, with a wide spread which leads to multiple ambiguities
in matching and thus a lower confidence.

2.3. Outlier Reduction Network
Due to the nature of the spatial softmax operation, which

is applied to the correspondence heatmaps, ỹ will likely al-
ways contain a small cluster of pixels which exhibits a strong
response. However, the magnitude and location of these pix-
els is insufficient to discern the quality of the matching re-
sult. Thus we hypothesise that a better approach in deter-
mining the matching quality is to analyze the topology of
the pre-softmax heatmap, ŷ. We base this hypothesis on the
observation that good matches tend to exhibit a single nar-
row peak, while incorrect matches are often multi-modal, or
have a wide spread. Examples of various correspondence
heatmaps are presented in Figure 5.

To this endwe train anOutlier ReductionNetwork (ORN)
on ŷ to classify good and bad matches. The overall goal
of the ORN is to reduce the overall number of inaccurate
matches of the correspondence network, as a low false pos-
itive rate is more important than a high number of matches
for many downstream applications of SAR-optical matching
such as, for example, image coregistration or stereogramme-
try (Müller et al., 2012; Merkle et al., 2017; Qiu et al., 2018;

Table 2
An overview of the layers of the ORN architecture.

Layer # Filters

Conv(7,1,0) -> ReLU -> IN 32
MaxPool(3,2)
Conv(5,1,0) -> ReLU -> BN 64
MaxPool(3,2)
Conv(5,1,0) -> ReLU -> BN 128
MaxPool(3,2)
Conv(3,1,0) -> ReLU -> BN 128
Conv(1,1,0) -> ReLU 128
Conv(1,1,0) 1
AdaptAvgPool
Sigmoid

Bagheri et al., 2018).
The ORN is based on the same architecture as the cor-

respondence feature extraction network, with some minor
modifications. As the heatmaps produced by the correspon-
dence network are not normalized and have a variable dy-
namic range, they cannot be assumed to have been drawn
from the same distribution. Thus we adapt the input layer to
use instance normalization (IN), instead of BN, as it oper-
ates on each sample independently. We formulate the prob-
lem of determining outliers as binary classification, and thus
we need to adapt the head of the network to be suitable for
this task. This modification includes the addition of an adap-
tive average pooling layer (AdaptAvgPool), which pools the
entire spatial extent to output a single value, and a sigmoid
activation to allow for training using a BCE loss.

Training is then supervised using ground truth labels which
are derived based on the accuracy of the matching result as
reported by the correspondence network, this process is de-
scribed in detail in Section 3.3. The problem can be sum-
marized as: given a correspondence heatmap ŷ, is it more
likely to represent a successful or unsuccessful match. The
full architecture is described in Table 2.

L.H. Hughes et al.: Preprint submitted to Elsevier Page 6 of 15

4.6. A Deep Learning Framework for Sparse Matching 105



A Framework for Sparse Matching of SAR and Optical Imagery

Figure 6: The distribution of cities in the Urban Atlas dataset.
The cities used for training, validation and testing are depicted
as green triangles, yellow squares and blue circles respectively.

3. Datasets and Workflow
While the logical structure of the framework follows from

the goodness network via the correspondence network to the
outlier reduction network, as depicted in Figure 1, this is not
the case for training. As the training of goodness and out-
lier reduction networks rely on a trained correspondence net-
work, we start by describing the dataset for the correspon-
dence network followed by the description of the datasets,
derived from the correspondence network outputs, which are
used for training the goodness and outlier reduction networks.
We further provide insights into the assumptions which were
made and outline the way in which training, validation and
testing samples were selected.
3.1. SAR and Optical Correspondence

To train the correspondence network we require a large
dataset of salient candidate search and template patches with
known points of correspondence. Due to the complexity of
creating such a dataset, and the intractability of manually an-
notating correspondence across heterogenous domains, we
rely on simplifying assumptions (such as the correspondence
of points at ground level in co-registered imagery) and the
Urban Atlas dataset (Schneider et al., 2010) to generate our
training and validation data.

The Urban Atlas dataset consists of manually co-regis-
tered, high resolution TerraSAR-X and PRISM imagery over
23 European cities and their surrounding areas. The imagery
has a ground sampling distance (GSD) of 1.5m and 2.5m
respectively, and has been manually co-registered such that
there is accurate correspondence for pixels at ground level.
We downsample the TerraSAR-X imagery tomatch the GSD
of the PRISM imagery in order to reduce the complexity of
the problem. The 23 cities are then divided into three groups
for training, validation and testing. This division and the dis-
tribution of the cities can be seen in Figure 6.

We then apply a Harris corner detector to the optical im-
ages to select points which are salient in at least one modal-
ity. Using these points, and the knowledge that the SAR and
optical data in the Urban Atlas data set has been accurately
co-registered, we select the corresponding points from the
SAR imagery using the geo-reference information for each

(a) (b)

(c) (d)

Figure 7: A single training sample from our correspondence
dataset. (a) The SAR search patch cropped around the lo-
cation of the optical Harris corner (represented by the red
cross), (b) the optical patch from which we extract the tem-
plate search patch with random offset during training (depicted
by the red box), (c) The extracted template patch, and (d) the
derived ground truth label representing the true point of cor-
respondence.

pixel. We then use OpenStreetMap data and non-maximal
suppression to reduce the overall point set to contain points
which are more likely to be at ground level, such as near
roads, and away from buildings and forested areas. This step
is performed as in the case of co-registered data, the assump-
tion of correspondence, at the same geo-location, only holds
for points with no height above the ground.

We then cut 256 × 256 pixel patches from the SAR and
optical imagery, centred around the identified points of cor-
respondence. Then during trainingwe randomly crop a 128×
128 template patch from the optical patch, with a maximum
offset of 32 pixels around the center (accounting for the max-
imum shift (Merkle et al., 2017)). In doing so we ensure that
the correspondence network learns tomatch the template im-
age to the search window under realistic conditions, while
allowing for the generation of ground truth data for the su-
pervision and evaluation of the training process. An example
of a candidate patch pair and the corresponding ground truth
label is depicted in Figure 7.

The 128 × 128 pixel extent of the optical template patch
was chosen such that it captures sufficient spatial context
to enable matching under the assumed worst case scenario,
while remaining small enough to allow for better selectivity
and finer grained matching. The extent of the SAR search
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patch was then selected such that is allowed for a maximum
matching offset of up to 32 pixels (Merkle et al., 2017), while
ensuring that even under extreme cases there is sufficient
spatial context for matching.

We then standardise the dynamic range of the SAR im-
agery, and convert the speckle into an approximate additive
Gaussian noise model. This is done by converting the pixel
values to Decibels (dB) and then clipping their range to the
3� range of the training images, ISAR ∈ [10, 30]dB. For the
optical imagery we simply normalize the values to the range
of Iopt ∈ [0, 1] by dividing through by 255.

While the test scenes are processed in the same manner
as the training and validation scenes, the candidate patches
are only useful for the evaluation of the correspondence net-
work. Thus to evaluate the entire pipeline in an end-to-end
manner we also create larger test scenes which can be used
for evaluation. The train, test and validation patches are ex-
tracted from spatially distinct regions with a maximum patch
overlap of 50%, while the 8 larger test scenes are created
from each testing city and are thus spatially diverse and con-
tain no overlap. The final dataset consists of 40,314 training
candidate patch pairs, 4,205 validations pairs and 6,353 test-
ing pairs, as well as, 8 larger test scenes.
3.2. Goodness

As no goodness dataset exists, and the creation of such a
dataset is non-obvious for manual annotation, we rely on the
trained correspondence network to identify patches which
can act as positive and negative samples for training and
evaluating the goodness network.

To do this we make use of the SAR and optical patches
from the correspondence datasets, as well as the recorded
matching loss, mse, and an L2 correspondence point errorfor each sample e. We then create binary goodness labels
for each sample by thresholding − log(mse) and the L2 er-ror. The negative log loss is used to invert the loss and re-
duce the dynamic range, which makes the task of selecting
thresholds easier. We label the patch pairs such that,

Si =
{

1 if − log(mse) ≥ 1.2 and e ≤ 1
0 if − log(mse) ≤ 1 or e ≥ 2.5

(6)

where Si is the itℎ patch pair. The values for the thresholds
were chosen based on the training dataset such that we avoid
possibly ambiguous samples, this process is depicted in Fig-
ure 8. The negative log loss allows for easier selection of
patches which produce correspondence heatmaps with de-
sirable properties (low matching loss), such as a single peak
with a narrow spread and small values everywhere else, while
the L2 threshold ensures that these heatmaps actually corre-
spond to positive matches.

As the correspondence dataset was created with no guar-
antees of mutually visible features, there is a large imbalance
in the final goodness dataset with manymore negative exam-
ples being present. To correct this we reduce the number of
negative samples, by random selection, to be equal to the
number of positive samples.
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Figure 8: A plot of the negative log matching loss versus the
L2 pixel error for the training dataset. The region from which
positive samples are drawn is highlighted in blue, and the neg-
ative samples are drawn from the area in red.

The final step in creating the goodness dataset is to crop
the SAR search patches to the same extent as the correspon-
ding optical template patch. This is done as the goodness
score is derived only from the maximum point of correspon-
dence, thus regions beyond the extent of the template patch
do not contribute to whether the patchwas good formatching
or not.
3.3. Outlier Reduction

To train the outlier removal network we make use of the
valid region of the heatmaps generated from the correspon-
dence network. These heatmaps are used as inputs to the out-
lier reduction network and the binary training labels indicate
whether they were the result of a successful or unsuccessful
matching result.

The generation of the heatmap labels follows the same
approach to labelling as the previously described goodness
dataset. However, we only apply the L2 threshold as the la-
bel relies solely onwhether the patchwas accuratelymatched.
Some labelled examples from the training dataset are shown
in Figure 9.

4. Implementation Details
Due to the data requirements discussed in Section 3, we

first train the correspondence network and then use the re-
sults of this training to generate the data needed to train the
goodness and outlier reduction networks.

The average pooling parameters of the goodness network
were set as p = 4 and k = 1. This corresponds to cre-
ating a receptive field of 128 × 128 pixels, which is large
enough to account for co-registration errors of up to 160me-
ters between domains, while exhibiting a 75% overlap be-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Examples of the positive (a-d) and negative (e-h)
correspondence heatmaps used to train the outlier reduction
network. Only the valid region of the heatmap is used as the
padded area contains no additional information.

Table 3
The hyperparameters used for training each of the sub-
networks, where lr is the learning rate, �1 and �2 control the
momentum.

Network lr �1 �2 weight decay

SAR Goodness 5 × 10−5 0.9 0.999 0
OPT Goodness 9 × 10−4 0.9 0.999 0
Correspondence 1 × 10−4 0.9 0.999 1 × 10−6
Outlier Reduction 1 × 10−4 0.9 0.999 1 × 10−6

tween the evaluated regions. Furthermore, the hypercolumn
depthd of the correspondence network was set to 256.

We make use of the PyTorch deep learning framework
(Paszke et al., 2019) to implement all aspects of our proposed
pipeline. The various sub-networks were randomly initial-
ized using the method proposed by (He et al., 2015), and
are trained using the Adam solver (Kingma and Ba, 2014).
The hyperparameters used for the solver are specified in Ta-
ble 3. For each of the sub-networks the optimal learning
rate was determined using the search method proposed by
(Smith, 2017).

We make use of a fixed batch size of 16 samples, which
constitutes the maximum batch size that could be used to
train the correspondence network on a Nvidia GTX1080Ti
GPU. This batch size further allowed for both goodness net-
works and the outlier reduction network to be trained si-
multaneously on the same GPU. The correspondence net-
work was trained for 50 epochs, while the remaining sub-
networks were trained for 1000 epochs due to the relatively
small dataset size in comparison to the correspondence dataset
size.

Data augmentation was used to improve generalization
and reduce the risks of overfitting. This step was found to be
of increased importance when training the goodness and out-
lier reduction networks due to the reduced dataset size. The
data augmentation pipeline consisted of horizontal (HF) and
vertical flipping (VF), image scaling (IS) by a factor of±0.1,
intensity scaling (CS) by a random value between (0.7, 1.3),

Table 4
The probabilities used in the data augmentation pipeline while
training each sub-network.

Network HF VF IS CS CD

SAR Goodness 0.5 0.5 0 0.7 0.8
OPT Goodness 0.5 0.5 0 0.7 0.8
Correspondence 0.5 0.5 0 0 0
Outlier Reduction 0.5 0.5 0.1 0 0.8

Table 5
Correspondence network configurations used in the ablation
study. The use of a specific layer or inclusion of regularization
is indicated by a yes (Y) or no (N).

Network Attention Spatial Softmax L1 Reg.

CorrBase N N N
CorrA Y N N
CorrAS Y Y N
CorrASL Y Y Y

and coarse image dropout (CD) of between (1%, 5%) of the
image pixels, taken on a version of the image which is down-
sampled to between (80%, 98%) of the original size. Each
of these augmentations is applied is applied with a certain
probability in. The probabilities used for augmentation dur-
ing the training of each network can be found in Table 4.

To aid future development and in the interest of openness
in science, a full implementation of the framework has been
released1.

5. Experiments and Results
In this section we first motivate our architectural choices

by performing ablation studies. We further evaluate the per-
formance of the individual sub-networks in comparison to
existing methods, as well as their effects on the accuracy of
the final set of correspondences. Finally, we evaluate the
overall performance of the matching framework over a larger
test scene.
5.1. Ablation Study

To aid the design of the correspondence network described
in Section 2.2we performed an ablation study to compare the
performance of the network as various architectural and reg-
ularization elements were added. We tested four variants of
the correspondence network which are detailed in Table 5.

The networks were trained as previously described, and
the random elements in the training process were made de-
terministic such that all networks were trained on the same
data and augmentations. Finally, we evaluated the perfor-
mance of the various networks using the validation dataset
to prevent biasing our architecture selection to the test data.

We evaluate performance in terms of matching accuracy
and precision. Whereby, matching accuracy is defined by
the percentage of matches which have an L2 distance to the

1https://github.com/system123/SOMatch
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Table 6
Influence of attention (A), spatial-softmax activation (S) and
L1 regularization (L) on the matching performance (evaluated
on the validation dataset) of the correspondence network.

Matching Accuracy Matching Precision

Network
≤ 1px
[%]

avg. L2
[px]

mAP
[px]

CorrBase 28.44 2.34 1.27
CorrA 28.13 2.36 1.25
CorrAS 44.42 3.0 1.99
CorrASL 54.46 2.32 1.53

ground truth point of correspondence of at most one pixel,
as well as the mean L2 error. Matching precision is defined
as the mean average precision (mAP), where the standard
deviation is used as a measure of precision. The results of
the ablation study are described in Table 6.

From Table 6, it can be see that the addition of the spa-
tial softmax operator leads to a significant improvement in
terms of matching accuracy, however, this comes with a re-
duction in precision. The addition of the L1 regularization
term further improves the matching accuracy while simulta-
neously only having slightly reduced precision over the base-
line network with attention. Thus the CorrASL network was
selected as the preferred architecture for our SAR-optical
matching framework, and all further experiments are con-
ducted with reference to this result.
5.2. Matching Results

As the correspondence network plays a vital role in train-
ing the goodness and outlier reduction networks, it is im-
perative that we evaluate its performance relative to existing
methods. To do sowemake use of two relevant and available
methods: Normalized Cross Correlation (NCC) (Burger and
Burge, 2009), as well as the pseudo-Siamese matching ap-
proach (PSiam) presented in (Hughes et al., 2018).

To ensure a fair comparison we retrained the pseudo-
siamese approach on the same dataset, and under the same
data augmentations and pre-processing as our correspondence
network. As the pseudo-siamese network requires corre-
sponding and non-corresponding SAR-optical patch pairs,
for training, we applied random offsets for the creation of
the non-corresponding pairs. Furthermore, both the SAR
and optical pairs were cropped to an extent of 128 × 128
pixels. During the evaluation phase we apply the pseudo-
siamese network over the full extent of the SAR search patch,
using a sliding window approach, to generate a correspon-
dence heatmap.

Table 7 shows the matching accuracy and precision for
the baselinemethods compared to the proposedmethodwhen
assessed on our ground-level Harris corner derived test dataset.

FromTable 7 it is clear that our proposedmatching archi-
tecture provides a significant improvement in matching ac-
curacy as well as precision over the selected baseline meth-
ods. The discrepancy between the test precision in and the
validation precision reported in Table 6 is most likely due to

Table 7
A comparison of the matching accuracy and precision (evalu-
ated on the testing dataset) of NCC (Burger and Burge, 2009),
PSiam (Hughes et al., 2018) and our proposed correspondence
network.

Matching Accuracy Matching Precision

Network
≤ 1px
[%]

avg. L2
[px]

mAP
[px]

NCC 8.2 7.85 6.81
PSiam 18.4 5.22 5.93
CorrASL 46.9 2.1 2.62
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Figure 10: The median correspondence heatmap peak shape
along the (a) x-axis and (b) y-axis for each of the evaluated
approaches.

a wider diversity of scenes being used for testing.
In Figure 10 we evaluate the peakiness and smoothness

of correspondence heatmaps generated by the various meth-
ods. Both of these are desirable properties as they lead to
better selectivity and interpretability, while reducing ambi-
guity in the resultant heatmaps. To perform this evaluation
we compare the shape of the heatmaps at locations surround-
ing the point of correspondence. We normalize the heatmaps
of the successful matches, for each method, such that their
dynamic range is comparable, and their peaks are aligned.
We then generate the median heatmaps and analyze the row
and column cross-sections, relative to the global maximum
peak.

From Figure 10, it is evident that both NCC and PSiam
approaches suffer from a high number of localmaximawhich
leads to a lower dynamic range in the heatmaps, and a less in-
terpretable result. Our proposed solution on the other hand
has a tendency to produce smooth heatmaps with a single
global maximum for accurately matched results.

We further investigate the quality of the produced corre-
spondence heatmaps through a qualitative process by evalu-
ating a subset of example heatmaps. This subset was selected
based on scenes where all three methods obtained a similar
matching accuracy. We thus evaluated the correspondence
heatmaps in three categories, namely, positive matches (less
than 1 pixel error), inaccurate matches (between 3 and 5 pix-
els error) and unsuccessful matches where by the L2 error
is larger than 7 pixels. An example result for each category
can be seen in Figure 11, Figure 12 and Figure 13, respec-
tively. For each heatmap the true point of correspondence is
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(a)

(b) (c) NCC

(d) PSiam (e) CorASL

Figure 11: A positive matching result where (c) NCC, (d)
Pseudo-Siamese(Hughes et al., 2018), and the proposed ap-
proach (e), could all find the correspondence of the template
patch (b) within the search region (a) with an accuracy of ≤ 1
pixel. The true point of correspondence is located at center
point of (a),(c),(d) and (e). For brevity only the valid region
of the heatmaps in (c-e) is depicted.

(a)

(b) (c) NCC

(d) PSiam (e) CorrASL

Figure 12: An inaccurate match, where (c) NCC, (d) Pseudo-
Siamese (Hughes et al., 2018), and the proposed approach
(e), all had a matching error of between 3 and 5 pixels when
matching the template patch (b) within the search region (a).
The expected point of correspondence is in the center of (a),
(c), (d) and (e), however, we can see it is slightly offset from
center in (c),(d) and (e). For brevity only the valid region of
the heatmaps in (c-e) is depicted.

the center of the search window, and all heatmaps are com-
puted with valid padding.

Figure 11 shows the single global peak produced using
the correspondence network, compared to the reasonableNCC
result, and the very noisy PSiam heatmap. The same trends
continue when observing matches with slight inaccuracies,
in Figure 12, although in this case the result achieved with
the proposed method looses smoothness and local maxima
begin to develop. Finally, in the case of unsuccessful match-
ing, Figure 13, the heatmap shape for all methods deterio-
rates to have multiple local maxima, although these all occur
along the direction of ambiguity. Figure 12 and Figure 13
indicate that our method fails in a predictable manner, and
thus the hypothesis, that correspondence heatmaps can be
used directly for the detection of outliers, holds true.

(a)

(b) (c) NCC

(d) PSiam (e) CorrASL

Figure 13: An unsuccessful match, where (c) NCC, (d)
Pseudo-Siamese (Hughes et al., 2018), and the proposed ap-
proach (e), all had a matching error larger than 7 pixels when
matching the template patch (b) within the search region (a).
The true point of correspondence is located at center point of
(a),(c),(d) and (e). For brevity only the valid region of the
heatmaps in (c-e) is depicted.

Table 8
Performance of the goodness networks with respect to the
test dataset. The first two rows are the results when select-
ing candidate patches based on the domain specific goodness
only. While the last two rows represent the accuracy for the
cross domain goodness results when fusing the SAR and optical
goodness maps using the minimum and maximum operators,
respectively.

Modality Accuracy Precision Recall
SAR 63.6 68.9 69.0
Optical 65.1 69.8 71.3
Cross-Min 62.1 75.1 61.6
Cross-Max 67.0 66.4 88.7

5.3. Goodness Results
To gain an understanding for the performance of the do-

main specific goodness networks, as well as the effects of
minimum or maximum fusion on the cross-domain good-
ness, we assess the binary classification accuracy with re-
spect to the test dataset. The results for this investigation are
described in Table 8.

The overall, relatively low accuracy of the goodness net-
work, see Table 8, highlights the complexity of determin-
ing matchable regions across vastly heterogeneous domains,
such as SAR and optical. However, by comparing the cross-
domain goodness results we see an improvement in the pre-
cision of the goodness network when using minimum fu-
sion, and a large improvement in recall when using maxi-
mum fusion. These results show how the selection of the
fusion algorithm, for producing the cross-domain goodness,
has a significant effect on the trade off between the num-
ber of identified regions and the confidence of those regions
containing good features for matching.

Figure 14 depicts examples of regions with high and low
goodness, as well as regions which were incorrectly clas-
sified. These example regions were drawn from the cross-
domain goodness results generated using minimum fusion.
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(a) True Negative (b) False Positive

(c) False Negative (d) True Positive

Figure 14: Examples of regions of low and high goodness (a)
and (d) respectively, along with misclassified regions (b) and
(c). The SAR patch is shown on the left, and optical on the
right for each of the patch pairs.

From Figure 14 we can see that the identified regions
of high goodness contain strong, unambiguous and discrim-
inable features in both modalities, while the low goodness
regions lack these properties. In the case of the false posi-
tive regions, strong features do exist in both domains, how-
ever, these features are potentially ambiguous or lack dis-
criminability. The same properties can be seen in the false
negative results.

As the purpose of the goodness network is to improve the
matching accuracy of the correspondence network, by pre-
selecting regions which have a higher probability of being
correctly matched, we further evaluate the goodness network
through the process of matching. Table 9, shows the match-
ing performancewhenwematch against the test patcheswhich
have been identified to have either a high domain specific,
or cross-modality goodness. The proportion of the original
test dataset which was identified to have high goodness is
described as the number of regions (# Regions).

From the results presented in Table 9 it is evident that
the pre-filtering of regions, based on goodness, leads to im-
proved matching accuracy and precision over the baseline
(Table 7). Furthermore, the low percentage of good regions
found in the evaluation dataset hints to the non-optimal choice
of using optical domain Harris corners to create the dataset.

Another interesting observation is that the use of min-
imum fusion, provides a large boost in accuracy and pre-
cision with respect to the single modality, and Cross-Max
goodness. While Cross-Max goodness leads to the identifi-

Table 9
The percentage of the dataset used for matching (# Regions),
and matching performance obtained when pre-selecting search
and template patches based on their domain specific and cross-
domain goodness scores. The first row represents the match-
ing results when matching without the pre-selection of good
patches.

Goodness
# Regions

[%]
≤ 1px
[%]

avg. L2
[px]

mAP
[px]

CorrASL 100 46.9 2.1 2.62
SAR+CorrASL 55 54.7 1.97 1.69
Opt+CorrASL 62 54.9 1.94 1.58
Cross-Min+CorrASL 48 59.8 1.62 1.24
Cross-Max+CorrASL 75 53.7 2.01 1.87

cation of the most regions, although this comes at the cost of
decrease in accuracy. Thus these results agree with the ob-
servations, made with respect to Table 8, about the selection
of fusion approach and the trade-off between precision and
recall.

While the use of high goodness regions leads to improved
matching performance, it comes at the cost of having fewer
overall correspondences as the regions are significantly larger
than those used to compute point features. This, however, is
deemed to be an acceptable trade-off as many downstream
tasks such as co-registration (Müller et al., 2012; Suri and
Reinartz, 2010; Merkle et al., 2017) and SAR-optical stere-
ogrammetry (Qiu et al., 2018; Bagheri et al., 2018) favour
accuracy and spatial diversity over the number of correspon-
dences.
5.4. Outlier Reduction

The final component of the proposed matching pipeline
is the outlier reduction network. We evaluate its performance
in classifying the correspondence heatmaps of the test dataset.
We further investigate the effects the inclusion of the ORN
has on matching accuracy and finally we evaluate the full
matching framework in an end-to-end manner on the test
dataset.

A binary classification accuracy of 81%, with a precision
of 76.1% and a recall of 89.5%, was achieved when evaluat-
ing the ORN on the test dataset. This shows that the classi-
fication of successful matches can be achieved based on the
correspondence heatmap alone. Figure 15, provides visual
examples of both positive and negative classification results.

The correspondence surface shapes, as shown in Fig-
ure 15, highlight that the network relies on more than just the
local characteristics of the peak for classification although
these do appear to have a relatively strong effect.

In Table 10 we investigate the effect of the outlier reduc-
tion network on matching performance. To do so we apply
the ORN to the matching heatmaps of both the test dataset
matching results, as shown in Table 7, as well as the min-
imum fusion (Cross-Min) goodness results, Table 9. The
latter resulting in an equivilant end-to-end evaluation of the
network.

From Table 10 it is clear that the addition of the outlier
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(a) True Negative (b) False Positive

(c) False Negative (d) True Positive

Figure 15: Examples of heatmaps corresponding to incorrectly
(a) and correctly (d) matched regions, along with mis-classified
correspondence heatmaps (b) and (c). The ORN only makes
use of the valid region of the heatmap for classification.

Table 10
Final matching results after removing outliers as classified by
the ORN.

Dataset ≤ 1px
[%]

avg. L2
[px]

mAP
[px]

CorrASL+ORN 54.1 1.30 1.09
Cross-Min+CorrASL+ORN 65.2 1.71 1.13

reduction network substantially increases the accuracy of the
resultant set of correspondences, irrespective of the features
or regions used for matching. However, the matching perfor-
mance using the the full framework in an end-to-end man-
ner achieves an overall better result with higher accuracy and
improved precision.
5.5. Large-Scale Scene Matching

While we have evaluated the performance the individual
sub-components of our framework, as well as the framework
as a whole, these investigations have remained limited to the
patch-based test dataset. Thus to fully evaluate the end-to-
end performance and applicability of our proposed frame-
work, we apply it to the task of determining correspondence
on a large-scale test scene (approximately 0.8km × 1.8km)
which has not undergone manual co-registration. The exam-
ple scene is taken from the city of Portsmouth, England and
is depicted in Figure 16 with the final set of correspondences
overlaid.

To examine the improvement in co-registration we take
the mean shift derived from the final set of correspondences
and apply this to the optical scene in order to align it with
the SAR image. The checkerboard overlays in Figure 17a,c
depict subsets of the original, non-coregistered scene. While
Figure 17b,d show the same subsets after the alignment has
been adjusted using themean shift of the predicted set of cor-
respondences. Themean shift was found to be (11.03,−12.74)
pixels with a standard deviation of (1.99, 2.20) pixels in the
x and y dimensions, respectively.

From Figure 16 it can be seen that our proposed frame-

Figure 16: The final set of correspondences superimposed on
the PRISM optical image, taken near the city of Portsmouth,
England.

work does not produce a large set of correspondences. How-
ever, Figure 17 highlights the accuracy and utility of these
correspondences in being able to, seemingly, accurately co-
register SAR and optical imagery. While our method for
correcting co-registration can be improved by using the cor-
respondences as GCPs to correct the overall optical sensor
model (Müller et al., 2012), in the case of our relatively small
and flat test scene, such an approach is unlikely to provide a
large increase in accuracy over the mean shift method which
we followed.

6. Conclusion
In this paper we proposed an end-to-end framework for

the sparse matching of SAR and optical imagery. The frame-
work consists of three sub-components, each of which were
trained to perform a specific task within the standard pro-
posal, matching, outlier detection pipeline. The goodness
network proposes candidate patches with a high chance of
being matchable in both domains. The correspondence net-
work performs cross correlation on amulti-scale, feature space
to produce a correspondence heatmap, which is finally fil-
tered by the outlier reduction network in order to reduce the
number of false positive correspondences.

We demonstrated that, individually, each of these sub-
components improves the matching accuracy and precision
achieved on a test dataset in comparison to existing SAR-
opticalmatching approaches, namelyNCC (Burger andBurge,
2009) and Pseudo-Siamese (Hughes et al., 2018). We fur-
ther evaluated the pipeline in and end-to-end manner and
showed that it was able to achieve and average L2 (distanceto ground truth correspondence) of 1.71 pixels with a preci-
sion of 1.13 pixels. Finally, we demonstrated the effective-
ness of our framework in producing an accurate set of cor-
respondences which can be applied to the task of improving
the overall geo-localization accuracy of optical imagery.

Still, there is room for improvement: the size of the final
correspondence set is mostly limited by the goodness and
outlier reduction networks. Thus in future work we will in-
vestigate alternative architectures for the goodness network
which can operate on the full scale image while still account-
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(a) Original (b) Mean-shift Corrected

(c) Original

(d) Mean-shift Corrected

Figure 17: Checkerboard overlays comparing the alignment
of a TerraSAR-X image to the original (non-coregisterd),
and mean-shifted optical imagery for two subsets of the
Portsmouth, England test scene. The original imagery is de-
picted in (a) and (c), while the mean-shift, correct imagery is
shown in (b) and (d). All images have a pixel spacing of 2.5
meters.

ing for the offsets between domains. Furthermore, recent re-
search has shown success in progressive training strategies,
whereby multiple sub-components are trained in an iterative
and alternating manner (Karras et al., 2017; Shaham et al.,
2019). The application of such an approach to training the
goodness and correspondence network could reduce the ef-
fects of the non-optimally selected training points, by allow-
ing the network to iteratively refine these locations, and thus
potentially lead to improved performance.
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5. Experimental Evaluation

Since the various architectures proposed throughout Chapter 3 were all trained and
evaluated under different data conditions and assumptions, it is difficult to compare
their results directly. To this end, and in the name of completeness, this chapter aims
to evaluate the various contributions of this thesis in a comparable manner.

The investigation is focussed on evaluating the performance of the various correspon-
dence networks proposed throughout this thesis (see Section 3.1 and Section 3.2.2).
Furthermore, the effects of using good regions for matching, and performing outlier
removal using the ORN (see Section 3.3.3) are evaluated in terms of their influence on
the accuracy of the resultant correspondence set. Finally, the comprehensive matching
framework proposed in Section 3.3.4 is assessed within the frame of a large-scale scene
co-registration problem.

5.1 Experimental Setup
In order to train and evaluate the previously proposed methods (see Chapter 3) in
a comparable manner, the evaluations need to be conducted under similar data and
experimental conditions. To this end common datasets with equivalent train/test splits
need to be created, and evaluation mechanisms and metrics need to be defined.

This section details the setup and definitions required for comparable experiments to
be conducted. Furthermore, to gain a more complete picture of the contributions of
this thesis, within the scope of the broader work on SAR-optical matching, a few openly
available baseline approaches are introduced.

5.1.1 Datasets
As previously mentioned, to produce comparable results the various architectures need
to be trained and evaluated on similar data. As the focus of this thesis is on matching
high-resolution SAR and optical imagery the Urban Atlas-based dataset, proposed in
Section 3.1.1, was chosen to form the basis of the data used for these investigations.

The Urban Atlas dataset was utilized as described in Section 3.1.1, with the training,
validation and testing datasets being created from imagery of different cities around
Europe, as depicted in Figure 3.3. This lead to the creation of sub-datasets containing
40,314, 4,205 and 6,353 corresponding high-resolution SAR-optical patch pairs, for
training, validation and testing respectively. Each patch pair consists of a SAR and
optical patch of 256× 256 pixels, with the point of correspondence between the patches
being located at the center pixel.
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5.1.2 Training and Evaluation
As each architecture is trained differently, with unique input data and target label crite-
ria, the previously described datasets needed to be further adapted to each architecture
and training mechanism.

The pseudo-siamese architecture (PSiam) proposed in Section 3.1.2 is trained using
(non-)corresponding SAR-optical patch pairs, with binary labels for supervision. Thus
the training and validation datasets are further modified to create suitable input data
and labels for training the PSiam network. The corresponding patch pairs are created
by cropping 128× 128 pixel patches around the center pixel of the SAR and optical
imagery. The non-corresponding pairs are then formed by cropping 128 pixel patches
randomly from one of the four corners of the larger SAR patch and pairing this with
the optical patch from the corresponding pair.

The semi-supervised network (SSNet), introduced in Section 3.2.2, requires a super-
vised and unsupervised dataset for training. As the supervised dataset requirements
match that of the PSiam network, the same dataset is used. On the other hand, the
unsupervised dataset has no strict criteria and requires no labelled data. Thus to en-
sure equivalency, in the amount of data used to train the networks, the unsupervised
dataset is created by removing target labels from 75% of the training samples. The
removal of these supervised samples is done such that overlapping patches do not cre-
ate data leakage events (i.e. in a spatially diverse manner). Furthermore, to better
understand the performance of the feature vector based matching network at the center
of the SSNet design, the SSNet is also trained in a fully supervised manner using all
the available labels.

In a different manner to the previous two approaches the feature-space correlation
network (CorrASL), described in Section 3.1.3, is trained using a large 256× 256 pixel
SAR search patch, and a 128× 128 optical template patch, and is supervised with a
2D Kronecker delta function. The procedure for creating and training the CorrASL
network using the Urban Atlas dataset is described in Section 3.1.3.

Each architecture was then trained from scratch on the Urban Atlas dataset until con-
vergence. The optimal hyperparameters and specific training algorithms are detailed
in the publications from which this thesis is comprised, see Chapter 4.

Based on the expected inputs and outputs of the goodness and outlier reduction net-
works, which form the supporting tasks in the comprehensive matching framework
described in Section 3.3.4, the correspondence networks were evaluated in terms of
a template search problem. Thus the PSiam network and SSNet were applied in a
rolling window manner in order to generate correspondence heatmaps. These could
then be used to determine the best point of correspondence for the center pixel of the
optical template patch. As the CorrASL architecture is inherently designed around
solving the correspondence problem as a template search problem, no modifications
to the inference process were required. Based on this formulation of the SAR-optical
correspondence problem, the same test dataset was used for all three networks, thus
ensuring comparable results across the different methodologies.
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5.1.3 Evaluation Metrics
To evaluate the performance of the correspondence networks, as well as the effects of
the goodness and outlier reduction networks on matching, various metrics need to be
defined.

An accurate correspondence is defined as being within a 1 pixel radius of the ground
truth location. Thus matching accuracy can be interpreted as the percentage of the
test dataset which was accurately matched to within 1 pixel of the ground truth.
Additionally, the matching accuracy of a network can be evaluated as the average L2
distance, taken over the final correspondence set, between the determined point of
correspondence and the ground truth location.

The matching precision of the final correspondence set is defined as the mean average
precision (mAP), whereby the standard deviation is used as a measure of precision.
The precision is calculated across the set of positive correspondences, as the threshold
for accuracy is increased from 1 pixel up to the maximum allowable offset of 32 pixels.
These individual precisions are then averaged to compute the mAP. Prior to outlier
removal, the precision (standard deviation) is a biased metric as it cannot account for
outliers, thus the mAP provides a better overall evaluation of the networks precision
as it equally weights the precision under differing definitions of accuracy.

5.1.4 Baseline Methods
Three baseline methods are used to better evaluate the performance of the proposed
SAR-optical matching methodologies in relation to the scope of existing work on
the topic. Based on availability and reproducibility the normalized cross-correlation
(NCC), mutual information (MI) (Suri & Reinartz, 2010) and deep matching archi-
tecture (DeepMatch) proposed by Merkle (2018) are used as baseline methods for
comparison.

Although neither NCC nor MI are well suited to large geometric differences, both
methods have still seen widespread use in SAR-optical matching due to their simplicity
and ease of application. Both methods were described in Section 2.2.2, and are thus
not described further.

The deep matching network (DeepMatch) proposed by Merkle, Luo, et al. (2017)
is based on a 2-stream siamese architecture, and directly outputs correspondence
heatmaps which are created using the dot product between the template feature vec-
tor and search space feature vectors. An overview of the DeepMatch architecture is
depicted in Figure 5.1.

The DeepMatch architecture frames the matching problem as a multi-class classification
problem, whereby the network tries to predict the offset of the template patch within
the search window using predefined offset classes. Thus to match the data requirements
of the network the datasets used for training the CorrASL network were used as the
basis for training the DeepMatch architecture, with some minor modifications. The
first modification was to crop template patches of 201× 201 pixels and search regions of
221×221 pixels, this is based on the requirements of the DeepMatch architecture. Thus
it should be noted the DeepMatch network can only estimate correspondence within



120 Chapter 5. Experimental Evaluation

Figure 5.1: The DeepMatch network architecture with a detailed
overview of the convolutional layers of each stream. As the network is
based on a siamese architecture the weights of the template and search

streams are shared. Image taken from (Merkle, Luo, et al., 2017).

a maximum radius of 10 pixels from the true point of correspondence. The second
modification was to form a 441-dimensional one-hot encoded target vector whereby
each position represents a specific offset of the template within the window. Using
these modification the DeepMatch network was then trained in accordance with the
description provided in (Merkle, Luo, et al., 2017).

5.2 Computational Performance
Given the diversity of available SAR and optical sensors, and the lack of a global-scale
SAR-optical correspondence dataset it is likely that deep learning matching approaches
will need to be retrained, or at least fine-tuned to perform optimally with different
sensors, or in other geographical locations. Thus the training time of the various
approaches is an important consideration in evaluating the usability of deep matching
methods.

Furthermore, the inference time of various matching approaches is an equally important
consideration, as the trade-off between computational efficiency and accuracy is largely
dependant on the application. For instance, in matching across large spatial regions it is
impractical to run slow correspondence algorithms in order to gain a slight improvement
in accuracy.

Thus the computational performance of the various approaches is evaluated in terms
of their training and inference times. The results of these evaluations are presented
in Table 5.1. Since absolute timings hold little meaning, due to the dependence on
the underlying hardware and the number of samples evaluated, the computational
efficiency is reported in computational units (CUs) where 1 CU is defined as the time
taken for the NCC baseline algorithm to evaluate a single correspondence.
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Table 5.1: The computational performance of the various approaches
in terms of training and inference time. Measurements are relative to one
computational unit (CU) which is defined by the time taken for NCC to
evaluate one correspondence. It should be noted that algorithms marked
with (*) are largely restricted to CPU processing for inference, due to

system and algorithm constraints.

Method Training
[CU/Epoch]

Inference
[CU/Sample]

NCC N.A. 1
MI (Suri & Reinartz, 2010)* N.A. 417
DeepMatch (Merkle, Luo, et al., 2017) 86,466 4
PSiam (Section 3.1.2)* 8,915 404
CorrASL (Section 3.1.3) 54,665 9
SSNet 100% (Section 3.2.2) 154,516 19
SSNet 25% (Section 3.2.2) 134,240 19

From Table 5.1 it is clear that similarity metrics which are not inherently designed
around matching using correlation or the dot product, such as MI and PSiam, are sig-
nificantly less performant during inference. On the other hand, the remaining networks
have a reasonably similar performance with the network depth and complexity, having
the most significant effect on the final computational efficiency. In terms of training
time, the SSNet, with its complex training algorithm, is by far the slowest approach.
Although the PSiam architecture is the most performant network to train, the fixed
fusion stage of the architecture severely limits its performance during inference. The
CorrASL network provides a good trade-off between inference efficiency and training
time.

5.3 Correspondence Results
The various proposed and baseline matching methodologies are evaluated in both a
quantitative as well as a qualitative manner. The evaluation is performed by matching
between the candidate patch pairs defined in the previously described Urban Atlas-
based test dataset. Under these conditions the template patch is cropped around the
center pixel of the optical patch, which corresponds to a ground-level Harris corner
feature in the optical domain, as outlined in Section 3.1.1. The template patches used
for evaluation are 128× 128 pixels in size for all networks. With the exception of the
DeepMatch baseline, which requires template patches of 201× 201 pixels. The size of
the search patches are 256× 256 pixels in all cases.

Using these test data and the metrics defined in Section 5.1.3, the performance of the
deep matching architectures developed within this thesis are compared against baseline
matching approaches. The results of this evaluation are detailed in Table 5.2.

From the results presented in Table 5.2 it is clear that the CorrASL network sig-
nificantly outperforms other SAR-optical matching methodologies. As the CorrASL
architecture is somewhat comparable to the PSiam and DeepMatch architectures in
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Table 5.2: A comparison of the matching accuracy and precision
achieved by various SAR-optical matching approaches on the Urban

Atlas-based dataset.

Matching Accuracy Matching Precision

Method ≤ 1 pixel
[%]

µ
[pixel]

mAP
[pixel]

NCC 8.2 7.85 6.81
MI (Suri & Reinartz, 2010) 13.7 4.25 3.88
DeepMatch (Merkle, 2018) 14.3 4.37 3.32
PSiam (Section 3.1.2) 18.4 5.22 5.93
CorrASL (Section 3.1.3) 46.9 2.1 2.62
SSNet 100% (Section 3.2.2) 9.1 13.82 11.47
SSNet 25% (Section 3.2.2) 7.6 19.67 12.55

terms of depth and parameters, the improved performance can be attributed to the
use of hypercolumns, which encode image features in a multi-scale feature space that
can be efficiently matched using standard cross-correlation operators.

More generally, it can be seen that supervised deep matching methods provide improved
matching accuracy almost across the board. With the exception of the SSNet variants,
which fail to outperform the all the intensity-based baseline methods. As previously
discussed in Section 3.2.2, the lower performance of the SSNet architecture is primarily
due to the non-complementarity between the reconstruction loss and the matching loss
used to train the network. This hypothesis is further corroborated by the fact that the
SSNet frames SAR-optical matching in terms of feature vectors, in the same manner
as the DeepMatch architecture, and relies on a VGG backend which is similar to the
PSiam network. Therefore it should be able to achieve comparable performance to
these two networks when trained in a fully-supervised manner. Thus more work is
required to reformulate the unsupervised feature representation learning in a manner
which better supports matching applications. However, even under these non-optimal
conditions, both the fully supervised and partially supervised variants achieve similar
matching accuracy as a standard NCC approach.

The design of the PSiam network was based around the idea that the network should
have independent streams for each modality, such that modality-specific features can
be learnt before fusion. Based on Table 5.2, it is clear that this design decision leads
to improved accuracy over the siamese-based DeepMatch network. However, the same
improvements are not reflected in the matching precision or average matching error.
The design of the fusion network and the formulation of matching as a binary classifi-
cation problem are the driving factors behind the networks reduced precision. Under
this design and training formulation, the network does not learn the spatial structures
associated with correspondence as a search problem, i.e. each evaluation in the search
region is treated as an independent event and thus the network does not learn to encode
spatial consistency as part of the result.

Apart from the matching accuracy and precision, the structure and smoothness of
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SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

Figure 5.2: Exemplary correspondence heatmaps generated by the
various approaches when matching the optical template within the SAR
search region, across scenes with unique and unambiguous structures.
The expected point of correspondence is located in the center of the
heatmap, and only the valid region of heatmaps are depicted for brevity.

the generated correspondence heatmaps are essential factors to consider if the cor-
respondence network is to be incorporated into the matching framework proposed in
Section 3.3.4. As previously mentioned, the reason for this is that the ORN relies on the
structure of the correspondence heatmaps to identify inaccurate matches. Thus exam-
ples of the correspondence heatmaps produced by each of the various approaches, under
increasingly difficult matching conditions, are illustrated in Figure 5.2, Figure 5.3, and
Figure 5.4, respectively. It should be noted that only the valid region of the heatmaps
are depicted for brevity, and the colormap used ranges from blue to yellow, with yellow
representing the highest matching score.

The candidate patches presented in Figure 5.2 contain unique salient features in both
the SAR and optical modalities. Thus the majority of matching approaches were
able to determine the point of correspondence correctly. However, only the heatmaps
produced by the CorrASL and MI methodologies are representative of optimal matching
in both examples, i.e. contain a single, narrow peak at the point of correspondence.
Even though successful matching was achieved by the NCC, DeepMatch and PSiam
approaches, their respective heatmaps contain multiple peaks and no definite structure
which could be used by the ORN network to classify the correspondence as a success.
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SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

Figure 5.3: Exemplary correspondence heatmaps generated by the
various approaches when matching the optical template within the SAR
search region, across scenes with strong structure in one orientation
which could lead to matching ambiguities. The expected point of cor-
respondence is located in the center of the heatmap, and only the valid

region of heatmaps are depicted for brevity.

On the other hand, SSNet variants produce smoother heatmaps with a more consistent
structure, although the localization of the point of correspondence is less accurate than
in other approaches.

The same trends can be seen in the case of the examples presented in Figure 5.3.
However, the candidate patches in these examples contain features which could lead to
ambiguous matching results in a specific direction. This phenomenon is observable in
the spread of the correspondence peak being elongated along the ambiguous direction.
Once again, even under more difficult matching conditions, the heatmaps produced by
the CorrASL method provide a strong response at the point of correspondence and
predictably capture the structure of the matching ambiguities.

In both examples depicted in Figure 5.4, the CorrASL network is the only method-
ology which is still able to determine the correct point of correspondence accurately.
Furthermore, all the approaches, except for DeepMatch, manage to produce heatmaps
which capture the matching ambiguities in a somewhat reasonable manner.

Based on these evaluations, it is clear that the CorrASL architecture provides robust
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SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

SAR Search Region

Template NCC MI DeepMatch

PSiam CorrASL SSNet100 SSNet25

Figure 5.4: Exemplary correspondence heatmaps generated by the
various approaches when matching the optical template within the SAR
search region, across scenes which have a high likelihood to create am-
biguities. The expected point of correspondence is located in the center
of the heatmap, and only the valid region of heatmaps are depicted for

brevity.
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SAR-optical matching performance, and can do so while producing correspondence
heatmaps with a predictable and descriptive structure.

Similarly, the heatmaps produced by the SSNet variants encode the ambiguities of the
matching process. However, they fail to accurately and uniquely encode the location of
correspondence correctly. One interesting observation is that the heatmaps produced
by the partially-supervised variant (SSNet25) are very similar in structure to those
produced when the network is trained in a fully supervised manner (SSNet100). Thus
highlighting the networks ability to learn a consistent matching strategy even when
supervised with significantly less data, and further backs up the hypothesis that the
networks converged to a sub-optimal solution, rather than the architecture being ill-
suited to the SAR-optical matching process.

5.4 Good Regions and Outlier Removal
As introduced in Section 3.3.2, the purpose of the goodness network is to improve the
matching accuracy of the correspondence network by preselecting regions which have a
higher likelihood of being correctly matched. On the other hand, the outlier reduction
network, presented in Section 3.3.3, aims to improve the accuracy of the final set of
corresponding points by identifying outliers based on the structure of the heatmaps
generated by the correspondence network.

Thus to gain a better understanding of their individual and combined impact on the
overall matching accuracy, a small scale ablation study was performed. Based on the
evaluation of the proposed correspondence network architectures, the CorrASL model
was selected as the matching approach to be used in this investigation.

Firstly, both the goodness and outlier reduction networks are trained on datasets de-
rived from the training and validation dataset used to train the CorrASL network.
The training and dataset creation details are as discussed in Section 3.3. Next, the
goodness network is applied to the previously defined test dataset, and patch pairs
which do not exhibit high goodness are removed from the dataset. The optical tem-
plate patch is then extracted around the identified point of highest goodness, and the
SAR-optical pair are then matched using the CorrASL network. Finally, the ORN is
then applied to the resultant heatmap, and a threshold of 0.5 is applied to the output
to classify the matching process as (un)successful. The effect of each of these processes
on matching accuracy is then evaluated throughout the matching pipeline. The results
of this investigation are presented in Table 5.3.

From Table 5.3 it can be observed that individually, and jointly, the application of
the goodness network and ORN lead to improved matching performance. When both
networks are added to the matching pipeline, there is a further improvement in the
accuracy, although the average L2 error increases slightly. This increase is due to the
accumulation of errors which occurs when two non-perfect filters are applied sequen-
tially.
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Table 5.3: The effects of the goodness and outlier reduction networks
on the accuracy of the final set of correspondences, in relation to the
baseline approach which performs no pre or post filtering on the test

dataset or correspondence set.

Accuracy Precision

Pipeline ≤ 1 pixel
[%]

µ
[pixel]

mAP
[pixel]

CorrASL 46.9 2.1 2.62
Goodness + CorrASL 59.8 1.62 1.24
CorrASL + ORN 54.1 1.30 1.09
Goodness + CorrASL + ORN 65.2 1.71 1.13

5.5 Large-Scale Scene Matching
To evaluate the performance and applicability of the SAR-optical matching framework,
proposed in Section 3.3.4, under realistic conditions, the correspondence network used
in the framework needs to be selected. Based on the previous investigations, the Cor-
rASL network (see Section 3.1.3) was selected to fulfil this role due to its significantly
higher matching performance and computational efficiency.

Although the individual components of the framework have been evaluated, the exper-
imental conditions under which these evaluations took place are not comparable to the
conditions present in real-world matching scenarios. Thus to gain an insight into the
suitability of the proposed framework for identifying correspondences under real-world
conditions, it is applied to the problem of determining corresponding points between
large-scale test scenes which have not undergone manual co-registration.

To this end two large-scale test scenes were extracted from the areas surrounding
the cities of Portsmouth, England and Sofia, Bulgaria, both of which belong to the
selection of test cities in the Urban Atlas dataset. The test scenes have a spatial extent
of approximately 0.8× 1.8km, and 4.0× 5.0km, respectively. The optical image of each
scene, with the final set of correspondences overlaid, is depicted in Figure 5.5.

From Figure 5.5, it can be seen that while the proposed matching framework does not
produce a large set of correspondences, the resultant set is well spatially distributed.
The spatial diversity of the identified correspondences is an important property for a
number of data fusion tasks, particularly in applications where the correspondences
are to be used as tie-points.

To further examine the suitability of the final correspondence set for use in SAR-
optical data fusion endeavours, a qualitative evaluation of the accuracy of the points
is performed within the frame of SAR-optical co-registration. As the test scenes have
not been manually co-registered, the derived correspondences are used to improve the
geo-referencing between the SAR and optical imagery. This is achieved by computing
the mean shift between the corresponding SAR and optical point sets. The resultant
mean-shift is then applied to the optical scene in order to align it with the SAR image.
For the Portsmouth scene the mean-shift (x, y) was found to be (11.03,−12.74) pixels
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(a) Portsmouth, England

(b) Sofia, Bulgaria

Figure 5.5: The final set of identified correspondences overlaid, in red,
on the corresponding optical image of (a) Portsmouth, England with a
spatial extent of 0.8× 1.8km and (b) Sofia, Bulgaria with an extent of
4.0× 5.0km. The final correspondence set size for (a) is 27 points, and

for (b) is 68 points.
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(a) Original (b) Mean-shift Corrected

Figure 5.6: Checkerboard overlays comparing the alignment of a
TerraSAR-X image to the original (non-coregistered), and mean-shifted
optical PRISM imagery for two subsets of the Sofia, Bulgaria test scene.
The original imagery is depicted in (a) and (c), while the mean-shift,
correct imagery is shown in (b) and (d). All images have a pixel spacing

of 2.5 meters.

with a standard deviation of (1.99, 2.20) pixels. Similarly, for the Sofia test scene
the mean-shift was determined to be (8.48, 9.12) pixels with a standard deviation of
(1.74, 3.01) pixels. Checkerboard overlays of sub-regions within each of the test scenes
are depicted in Figure 5.6 and Figure 5.7 for Sofia and Portsmouth respectively.

Figure 5.6 and Figure 5.7 highlight the accuracy and utility of the proposed match-
ing framework in being able to identify spatially diverse correspondences which are
sufficiently accurate to enable co-registration of high-resolution SAR and optical im-
agery. Although the co-registration method employed in this evaluation is simplistic,
the results still lead to a noticeable improvement in co-registration of the imagery.
Furthermore, more advanced techniques such as using the correspondences as GCPs to
correct the overall optical sensor model, as described by Müller et al. (2012), could lead
to further improved co-registration accuracies; however, this investigation is beyond the
scope of this thesis.
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(a) Original (b) Mean-shift Corrected

(c) Original

(d) Mean-shift Corrected

Figure 5.7: Checkerboard overlays comparing the alignment of a
TerraSAR-X image to the original (non-coregistered), and mean-shifted
optical PRISM imagery for two subsets of the Portsmouth, England test
scene. The original imagery is depicted in (a) and (c), while the mean-
shift, correct imagery is shown in (b) and (d). All images have a pixel

spacing of 2.5 meters.
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6. Conclusion and Outlook

6.1 Summary and Conclusion
This dissertation has investigated the applicability of deep learning as a toolkit for
formulating solutions and sub-components in the challenging task of creating a fully
automatic SAR-optical matching pipeline. In this process, several sub-objectives were
defined and investigated to address the various sub-problems encountered within the
larger frame of SAR-optical image matching.

As an initial contribution, two large-scale datasets containing corresponding pairs of
SAR-optical imagery were created. These datasets were designed and validated to be
suitable for training and evaluating deep learning-based SAR-optical image matching
architectures, although they are applicable to a wide range of SAR-optical data fusion
endeavours. The first dataset is a global-scale medium resolution SEN1-2 dataset, while
the second dataset is based on the Urban Atlas dataset which contains high-resolution
SAR and optical imagery from 23 cities around Europe.

Centred around this high-resolution data, numerous methodological contributions were
summarized within this thesis. Firstly, two supervised deep learning-based matching
architectures were proposed. The first of which was a pseudo-siamese architecture
which was inspired by the seminal deep matching work of Mou et al. (2017). Although
the experimental evaluation of this approach showed promising results when framing
matching under the assumption of an ideal cross-domain feature detector, later investi-
gations conducted under more realistic operating conditions highlighted some shortfalls
of relying solely on high-level features and having a fixed size fusion network. Based on
these lessons, a second architecture (CorrASL) was proposed, centred on the concept of
convolutional hypercolumns. These hypercolumns capture feature representations at
different scales and are matchable via a standard cross-correlation operator. Through
experimental evaluation, this architecture was found to significantly outperform exist-
ing SAR-optical matching methodologies in terms of accuracy and precision. Further-
more, the correspondence heatmaps produced by the correlation operator were found
to encode the structure of the matching result, as hypothesized and later validated, in
such a way that they could be used to identify inaccurate matching results.

Based on the premise that the ability of deep matching networks to generalize is largely
dependant on the diversity of the data used to train them, it was hypothesized that
matching data from different sensors than those in the dataset would require new
datasets or model fine-tuning. Under this hypothesis, it was seen that many formula-
tions of SAR-optical matching can still be considered small data problems. Thus two
deep learning-based methodologies were proposed which addressed different challenges
of matching SAR and optical imagery under small data constraints. On the one hand,
a generative adversarial network was used to create artificial hard negative samples
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which were in turn used to augment the training of the pseudo-siamese network. This
strategy was shown to improve the discriminability of the trained network without
requiring any actual additional training data.

On the other hand, a semi-supervised deep matching architecture was proposed to ex-
ploit the masses and diversity of unlabelled training data available in Earth observation
data archives. An unsupervised autoencoder architecture was used to learn descrip-
tive modality-specific feature latent spaces, which were aligned using an adversarial
loss and a small number of labelled training samples. During the evaluation, it was
found that even under low levels of supervision (25% labelled data) the network can
learn feature representations which are similar to those learned under full supervision.
However, the features encoded in the latent space were found not to be descriptive
enough to enable accurate matching. One possible reason for this is due to the non-
complementary nature of the losses used in the supervised and unsupervised training
iterations, thus causing the network to converge to a solution which is not particularly
well suited towards either task. However, the preliminary results are promising and
warrant further research and investigation.

Much of the research contained in this thesis and the existing literature focuses on
developing solutions to the correspondence problem. However, determining the point
of correspondence between two images does not constitute the whole image matching
pipeline. Thus in order to address the main objective of this dissertation, to create
a fully automatic deep learning-based SAR-optical matching pipeline, mechanisms for
cross-domain feature detection and outlier removal were developed. Firstly, the feature
detection sub-task was reframed as a region proposal problem, whereby the aim was to
detect regions in each modality which has a high likelihood of being salient and visible
in the other modality. To this end, the goodness was proposed to identify these regions
which could then be used as candidate input patches for the correspondence network.
This approach of feature detection led to an increase in the accuracy and precision
of the final set of identified correspondences over the accuracy achieved when using
feature points extracted from a single modality. Secondly, an outlier detection network
was developed to learn to identify unsuccessful correspondences based on the structure
of the heatmaps produced by the correspondence network. This approach to outlier
detection was then experimentally validated and found to be effective at identifying
outliers without the need for explicitly modelling the feature point transformations
across the images. However, more research is required to reduce the number of suc-
cessful matches which are discarded by the ORN, and to improve the density of feature
points proposed by the goodness network.

Finally, the goodness network, multi-scale correspondence network and outlier reduc-
tion network were linked together to create a fully automatic SAR-optical matching
pipeline. This pipeline was then evaluated in an end-to-end manner by determining
correspondences between poorly geo-referenced high-resolution SAR and optical im-
agery across various scenes. When using the resultant set of correspondences to better
align the images, the overall geo-referencing error was substantially reduced. Thus,
achieving the main objective set out in this thesis to develop a novel, fully automatic
deep learning-based SAR-optical matching pipeline capable of matching high-resolution
SAR and optical imagery across a diverse range of scenes.
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Despite the significant advancements made within the frame of this thesis, the robust
and large-scale matching of high-resolution SAR and optical imagery remains an open
problem and thus will remain an active area of research for many years to come.
However, this thesis has provided a strong case for the continued use of deep learning
as the go-to methodological framework for the continued pursuit and development of
a generalizable and globally applicable SAR-optical matching pipeline.

6.2 Open Problems
Although the matching accuracy and number of detectable correspondences remain
limited by the unfavourable conditions for joint scene visibility between high-resolution
SAR and optical imagery, there is still significant room for improvement over what is
achievable by the proposed SAR-optical matching framework. Thus, numerous avenues
for future investigation remain open, the most immediate of which, as seen by the
author, are:

• The extension of the goodness network to a full resolution region proposal network
such that more candidate patches can be extracted which in turn should lead to
a higher number of detected correspondences.

• The further exploration of semi-supervised learning, and more specifically a ro-
bust formulation of the SAR-optical matching problem as a semi-supervised learn-
ing task. This will allow for the exploitation of the vast amounts of existing,
unlabelled Earth observation data.

• The continued research and development of multi-scale CNN architectures for
determining SAR-optical correspondences. The use of multi-scale hypercolumns,
proposed in this thesis, significantly improved the matching performance obtain-
able by deep matching architectures and thus warrants further investigation.

• The formulation of the entire SAR-optical matching pipeline as an end-to-end
trainable network. Based on recent trends and results in conventional deep
matching literature, end-to-end trainable matching pipelines further remove hu-
man bias from the various sub-tasks and thus allow the network to learn stronger
representations and formulations for matching.

• The inclusion of prior scene and sensor knowledge into the matching pipeline. As
information about the sensor state is known, this information could theoretically
be included into the matching process to resolve ambiguities caused by the vastly
different geometries of the sensors.

6.3 Outlook
Given the rise of the New Space era, the number of SAR and optical remote sensing
sensors is growing rapidly, with many companies striving to create large clusters of
high-resolution Earth observation satellites with high frequency revisit times. This
increase in the accessibility and availability of SAR and optical remote sensing data
has become a driving factor behind the need to develop algorithms and mechanisms to
extract valuable insights from this data in an automated and efficient manner.
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Furthermore, as the information obtainable from these modalities is highly comple-
mentary, the increase in the availability of data has further increased the relevance and
importance of SAR-optical data fusion research. This is nowhere better seen than in
the fact that the two largest remote sensing-based research competitions, namely, the
IEEE Data Fusion Contest (Yokoya et al., 2020) and the SpaceNet Challenges (Sher-
meyer et al., 2020), both provided large-scale SAR-optical datasets for use in their
respective 2020 competitions.

With these trends likely to continue into the foreseeable future, the need for efficient,
high-resolution SAR-optical matching methodologies, required to enable data fusion
endeavours, will continue to grow. To this end, the research presented within the
frame of this thesis has shown the great potential for the application of modern deep
learning techniques to the challenging task of matching high-resolution SAR and optical
imagery.

It will therefore continue to be of utmost importance to strengthen the connection
between the fields of deep learning and remote sensing. The deep learning community
need to better understand the complexity of working with vastly heterogenous data
such that they can develop models and methodologies which are better suited to non-
optical data sources and scarce training data. While, the remote sensing community
need to combine their strong domain expertise with deep learning techniques to develop
modern methodologies for the extraction of valuable insights from the masses of data
being produced, thus ushering in the New era of global Earth observation.
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