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Abstract

Medical imaging plays a steadily increasing role in clinical workflows as well as in
pre-clinical biomedical research. The rise of machine learning has enabled a series
of breakthroughs in medical image analysis, addressing a long-standing need for
higher automation and quality in interpretation of this data. However, the adoption
in clinics and laboratories remains slow. A combination of scarcity of labeled training
data, limited reliability of those labels, and insufficient generalization and robustness
of the models forms a high adoption barrier and causes underwhelming performance
in practical settings.

This dissertation aims at addressing these bottlenecks by developing efficient
training strategies for models that generalize well and appreciate the imperfection of
labels. Chapter A.1 introduces DeepMACT, the first ever whole body analysis of the
complete metastatic spread of tumors in mice with the help of deep neural networks.
Despite little available training data, a highly efficient 2D approach to solving the
3D detection task enabled a performance en par with a human expert. Trained on
one line of breast cancer, DeepMACT generalized well for other tumors and also
enabled assessing the efficacy of therapeutic antibodies as a treatment option. In
Chapter A.2, the limits of model generalization were tested. Networks were trained
on synthetic and real data from highly different biomedical domains (e.g., human
blood vasculature in MRI versus microscopy data from the murine nervous system).
The cross-prediction performance across these domains revealed the potential of
synthetic training data and transfer learning for improved generalization. Further
work describes a deep learning pipeline for automated multi-organ segmentation in
murine whole-body scans termed AIMOS. The approach generalizes across imaging
modalities, exceeds the segmentation performance of the state-of-the-art and is en par
with human experts. AIMOS can be trained from scratch with as little as 10 samples
and furthermore provides localized metrics of intrinsic ambiguity in the scans. Lastly,
additional work explores further applications on (imaged-based) learning models
biomedical modeling in the field of pre-clinical neuroscience on the basis of image-like
spectral representations of auditory stimuli.

The recent success of machine learning for medical image analysis is still largely
confined to highly controlled settings. The work presented here shows that resolving
the bottlenecks for adoption in the wild poses an underappreciated frontier in our
field of science and may be key to turning academic achievements into better health.
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Zusammenfassung

Medizinische Bildgebung spielt eine immer wichtigere Rolle im klinischen Betrieb sowie in der
vorklinischen, biomedizinischen Forschung. Getrieben vom steten Bedarf an Automatisierung
und Qualitätssteigerung in der Auswertung dieser Daten, ermöglichte der Siegeszug des
maschinellen Lernens eine Reihe an Durchbrüchen in der medizinischen Bildanalyse. Jedoch
hält maschinelles Lernen in den Kliniken und Laboren nur langsam Einzug. Eine Kombination
aus Knappheit annotierter Traingingsdaten, begrenzter Verlässlichkeit dieser Annotationen,
und einer unzureichenden Allgemeingültigkeit und Robustheit der Modelle stellt eine hohe
Hürde für den Praxiseinsatz dar und führt zu enttäuschenden Ergebnissen.

Diese Dissertation setzt sich zum Ziel, jene Hürden durch die Entwicklung effizienter
Trainingsstrategien für Modelle mit hohem Grad an Allgemeingültigkeit und unter Berück-
sichtigung der Fehlerhaftigkeit der Annotationen zu mindern. Das Kapitel A.1 stellt Deep-
MACT vor, die erste Analyse der kompletten metastatischen Ausbreitung von Tumoren in
Ganzkörperaufnahmen von Mäusen auf Basis tiefer neuronaler Netze. Trotz der geringen
Trainingsdatenmenge erlaubte ein hocheffizienter 2D Ansatz des 3D Detektionsproblems eine
Präzision vergleichbar mit der menschlicher Experten. DeepMACT wurde nur auf eine Art
von Brustkrebs trainiert, konnte die Problemlösung jedoch auf andere Tumore verallgemein-
ern und darüber hinaus auch die Wirksamkeit von therapeutischen Antikörpern beurteilen.
In Kapitel A.2 werden die Grenzen der Verallgemeinerungsfähigkeit von neuronalen Netzen
ausgelotet. Die Modelle wurden auf synthetische und echte Daten aus unterschiedlichsten
biomedizinischen Domänen trainiert (z.B. menschliche Blutgefäße im MRT oder mikroskopis-
che Aufnahmen des Nervensystems von Mäusen). Die Kreuzvorhersage über diese Domänen
hinweg legte das Potential synthetischer Trainingsdaten und des Wissenstransfers für die
Verallgemeinerungsfähigkeit von Modellen offen. Im Weiteren wird ein lernendes System
namens AIMOS für die automatisierte Multi-Organ-Segmentierung in Ganzkörperaufnahmen
von Mäusen entwickelt. Der Ansatz lässt sich auf verschiedene Bildgebungsverfahren verall-
gemeinern, übertrifft die Präzision des bisherigen Standes der Wissenschaft und entspricht
der Segmentierungsqualität von Experten. AIMOS kann bereits mit nur etwa 10 Aufnahmen
von Grund auf trainiert werden und ermöglicht darüber hinaus eine lokalisierte Einschätzung
von Uneindeutigkeiten in der Aufnahme. Letztlich werden in weiteren Arbeiten Anwendun-
gen lernender biomedizinischer Modelle im Feld der vorklinischen Neurowissenschaften
untersucht auf Basis bildähnlicher Repräsentationen der Spektren auditiver Stimuli.

Die Erfolgsgeschichte maschinellen Lernens in der medizinischen Bildanalyse spielt sich
immer noch in Versuchsbedingungen ab. Die Werke hier zeigen jedoch auf, dass die Über-
windung praktischer Hürden ein unterschätztes Forschungsfeld ist, das in der Überführung
akademischer Erfolge in eine bessere Gesundheitsversorgung eine Schlüsselrolle einnimmt.
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1. Introduction and methods

1.1. Biomedical imaging

From clinical diagnostics in hospitals to pre-clinical research in biology labs, our
society relies on a set of highly developed imaging techniques to obtain visual
information not accessible to the eye. Technological advances dramatically increased
the informative power of the obtained images while reducing the financial cost,
resulting in a ever more central role of biomedical imaging in fundamental research
as well as clinical procedures.

1.1.1. Development of and modalities in clinical imaging

The term clinical imaging describes a variety of imaging modalities commonly used in
clinical settings, for instance in radiology departments of hospitals. The predominant
goal of clinical imaging is to provide supporting information to find, specify, or
validate the diagnostic assessment of a human patient. However, imaging also plays a
role during treatment planning (for instance, for radiation therapies), during surgery
(for instance, to monitor the position of surgical instruments), and for assessment of
treatment effectiveness.

A variety of imaging modalities have been developed, each optimized for specific
procedures and together providing complementary information (see Fig. 1.1). The
most commonly used imaging modalities in clinical settings can be primarily grouped
by the nature of the acquired signal. While many variants of each modality exist, the
variants of each modality follow the same fundamental principles as outlined below.

Radiography and X-ray computed tomography

As one of the oldest of all modalities, radiographs date back to 1895 when Wilhelm
Röntgen experimented with cathodes and discovered the X-ray band of the electro-
magnetic spectrum. Exposing his wife to the radiation, Röntgen created the first
radiograph visualizing the bones of her hand. Since then, the fundamental principle
of radiography (acquiring the X-ray projection with photosensitive material or sen-
sors) has remained unchanged. X-ray computed tomography (CT), while following
the same underlying principle, enables the acquisition of volumetric scans. This is
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1. Introduction and methods

Figure 1.1.: Clinical imaging modalities provide complementary information.
Whole-body scans of a woman; A) fusion of scans obtained with PET and
CT, B) T1 TSE MRI image, C) T2 STIR MRI image with fat saturation, D)
contrast-enhanced T1 WATS MRI image. Taken from Derlin et al. 2013

achieved by reconstructing a 3D map of X-ray absorption from a large set of planar
X-ray projections acquired at different angles along an axis of rotation. Both, radiogra-
phy and CT visualize the contrasts of bones (also see Fig. 1.1A) and lungs especially
well but provide little visual information about soft organs that mostly consist of
water (e.g. in the abdomen). Injection of contrast-enhancing agents, however, allows
to partially overcome this limitation. Despite being among the most commonly used
imaging modalities, the health risk associated with this ionizing radiation exposure
limits the use of X-ray based imaging.

Ultrasonography

Free of any medical risks and available at low costs, ultrasonography is among
the most widely used imaging modalities. It exploits the differences in acoustical
impedance of different tissues as a basis for visualization. Piezoelectric transducers
generate acoustic waves in the megahertz range, which are partially reflected at
boundaries of tissues with different impedance. Measuring the time difference
between generation and echo detection and the signal strength of the echo allows to
compute the a profile of acoustic properties of the tissue. Complementary to X-ray
based imaging, ultrasound provides much stronger contrasts for soft abdominal
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1. Introduction and methods

organs, muscles, blood vessels, or tendons.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is based on a more complex mechanism and is
characterized by a large variety of variants and protocols, each optimized for specific
imaging requirements. Very strong magnetic fields, up to the range of several teslas,
align the magnetic spin of single protons, which form the nucleus of hydrogen atoms.
Radiofrequency pulses at the resonance frequency of the protons changes the spin,
which subsequently relax back to the equilibrium and emit radio waves while doing
so. This emission is the acquired signal to form an image. The location of emission
can be reconstructed by overlaying the primary magnetic field with gradient fields that
vary over space and time, which enables highly resolvable spatial encoding of the
acquired signals. Since hydrogen atoms mostly occur in watery tissue and fat, MIR is
especially well suited to visualize soft tissue such as abdominal organs. Modifying
the stimulation pulse patterns allows to tailor the resulting correspondence between
tissue characteristics and image contrasts (see Fig. 1.1B-D), proving complementary
information.

Nuclear imaging

In contrast the previously described methods, nuclear imaging acquires a signal from
within the body that does not rely on external stimulation. The most commonly used
variants, positron emission tomography (PET) and single-photon emission computed
tomography (SPECT), acquire the signal from radioactive substances. Typically,
nuclear imaging is used for functional rather than anatomical imaging. For instance, it
can provide information about metabolic processes by using glucose combined with
radioactive fluorine-18 as a tracer. Such a signal will correlate with the metabolic
activity of tissue, which is typically especially high in tumors. An example can be
seen in Fig. 1.1A, where Derlin et al. 2013 used this tracer to monitor treatment
effectiveness in a patient with multiple myeloma.

Beyond these most commonly used modalities, hybrid solutions (such as PET-CT)
and further approaches (such as photoacoustic imaging) exist but will not be detailed
here.

1.1.2. Imaging in pre-clinical research

Beyond the applications in clinical settings, biomedical imaging plays a central role in
pre-clinical and biological research. While some of the underlying image acquisition

4



1. Introduction and methods

principles are very similar, it is important to appreciate the differences in its objective
and in the boundary conditions. In pre-clinical research settings, the goal of imaging
is very much centered around scientific questions on the fundamental working
mechanisms in biology and of pathological conditions. This has consequences for
what kind of imaging can be used and how it is used.

Importantly, most of biomedical research is not done on living humans but rather
on (human or non-human) tissue samples or on laboratory animals, adding a di-
verse and powerful set of methods that cannot be used in clinical settings due to
technical, medical, and moral considerations. For instance, invasive and post mortem
procedures allow a more direct observation of the region of interest. But also biotech-
nological methods such as genetic modification play pivotal roles in opening up what
kind of imaging can be performed to answer scientific questions. However, this goes
along with a much higher degree of variability in imaging protocols, reducing the
comparability of data acquired in different settings.

The range of pre-clinical imaging modalities reflects the breadth of biomedical
research questions and spans several orders of magnitude of spatial resolution and
field of view, from whole-body imaging techniques also used in clinical settings
such as CT or MRI down to sub-cellular resolution imaging in optical microscopy or
electron microscopy.

If used for smaller specimens or small laboratory animals such as mice, X-ray based
computed tomography is often performed with specialized variants termed micro-CT,
which provides higher spatial resolution within a smaller field of view as compared
to the clinical variant. This enables whole-body scans of small animals down to a
resolution on the range of 0.1 mm (Holdsworth and Thornton 2002). However, while
such high-resolution, volumetric whole body scans already provide a great level of
detail, they are a far cry from resolving cellular or sub-cellular details.

If such level of detail is needed, biomedical researchers can turn to a variety of
imaging modalities based on optical microscopy. The simplest of which, bright-
field optical microscopy, provides highly magnified views of white light transmitted
through thin slices of tissue specimens. Combined with the application of functionally
staining agents such as hematoxylin and eosin (H&E), this modality is capable of
revealing the sub-cellular structure of tissue down to single cell nuclei (see Fig. 1.2)
and is widely used for histological analysis.

A more sophisticated variant of optical microscopy, fluorescence microscopy, is not
based on transmission of white light but rather exploits the nature of fluorophores
to emit light of a given wavelength after being excited with light of a shorter (more
energetic wavelength). This allows highly selective signal acquisition by removing
any non-specific light of other wavelengths with optical filters. In combination with
naturally occurring fluorescent tissue properties and artificially introduced fluorescent
staining, this provides highly resolved images of selective structures of interest (see

5



1. Introduction and methods

Figure 1.2.: Preclinical imaging is used in biomedical research. Functionally stained
images of tissue specimens from the prostate; A-F) Fluorescence mi-
croscopy imaging, tissue stained with eosin (green) and DRAQ5 (purpple).
G-J) Bright-field microscopy imaging, tissue stained with hematoxylin
and eosin (H&E). K-M) High-resolution of images allows identification of
cell nulcei. Taken from Elfer et al. 2016

Fig. 1.2A-F).
As light is scattered and attenuated when travelling trough tissue, optical mi-

croscopy is limited to 2D image acquisition of thin samples of tissue. While variants
such as confocal microscopy also allow encoding of depth, such optical microscopy
is traditionally not capable of providing volumetric scans at whole body scale as
micro-CT, for instance, is capable of. Thus, biomedical researchers are confronted
with a trade-off between resolution, field of view and volumetric acquisition, and
functional staining. Recent developments around tissue clearing and volumetric
light-sheet fluorescent microscopy aim at overcoming this restriction.

1.2. Tissue clearing

One major bottleneck that restricts optical microscopy to 2D images or thin 3D vol-
umes is the scattering and attenuation of light in biological tissue. More specifically,

6



1. Introduction and methods

this is caused by the different optical refractory indices (RI) of the fundamental com-
ponents of biological tissue (e.g., water, proteins, lipid membranes; see Tuchin 2015).
The goal of tissue clearing is to enable the unrestricted transmission of light through
tissue by equalizing the optical refractory index, thereby rendering it transparent.

1.2.1. Overview of tissue clearing approaches

While the origins of research on rendering tissue transparent date back to more than
over hundred years ago Spalteholz 1914, only recent work by Erturk et al. 2012 and
others (e.g., Kubota et al. 2017) lead to a breakthrough in large-scale tissue clearing.
Tissue clearing methods can be grouped along three main approaches (as described
by Cai 2019; Richardson and Lichtman 2015), based on (organic) solvents (see Fig.
1.3A), water (see Fig. 1.3B,C), or hydrogels (see Fig. 1.3D). In all approaches, the RI
of the tissue is equalized by either replacing or removing components or by changing
the RI of a given component.

For instance, in water-based tissue clearing, the comparatively low RI of water is
increased by dissolving high RI hydrophilic reagents such as fructose. In organic-
solvent based tissue clearing, the main approach used for experiments detailed in
Chapters A.1, A.2 and B.1, the tissue is dehydrated with tetrahydrofuran (THF), the
lipids are removed with dichloromethane (DCM), and the RI of the tissue is matched
with benzyl alcohol/benzyl benzoate (BABB) or dibenzyl-ether (DBE) (see Erturk
et al. 2012).

1.2.2. Challenges in whole-body clearing

When applying tissue clearing methods not only to dissected organs but to entire
laboratory animals such as mice, further steps need to be considered to achieve results
suitable for whole-body imaging (Cai 2019). First, some tissues are especially difficult
to clear. For instance, some clearing methods require removal of blood, hair, and,
importantly, the skin (Tainaka et al. 2014). Second, some clearing methods enlarge
the volume of the tissue, which further complicates whole-body imaging in which
the physical size of the imaging chamber is a common bottleneck. Both challenges
were addressed by recent work of Pan et al. 2016 and Cai et al. 2018 with the uDISCO
and the vDISCO protocols, in which also hard and dense organs like the skin and
bones are rendered transparent and in which the overall volume is decreased rather
than increased.

7



1. Introduction and methods

Figure 1.3.: Tissue clearing methods render specimens transparent by equalizing
the refractory index (RI). There are 3 main approaches to tissue clearing.
A) Solvent-based tissue clearing. B-C) Water-based tissue clearing. D)
Hydrogel-based tissue clearing. Taken from Richardson and Lichtman
2015

8



1. Introduction and methods

1.2.3. Obtaining selective signal contrast

However while clearing the tissue is required to enable large-scale volumetric mi-
croscopy, it is not sufficient. Imaging is performed to visualize desired structures
of interest and thus, requires a form of (optical) contrast to the background tissue.
Hence, the structures of interest (for instance, certain cell types) need to be stained in
a way that is compatible with the tissue clearing procedure.

There are at least 4 fundamentally different approaches to achieve this. Laboratory
mice can be genetically engineered such that certain cells endogenously express
fluorescent proteins. Blood vessels, for instance, can be stained by injecting fluorescent
dyes (see our publication in Section B.2; Todorov et al. 2020). Furthermore, so-called
immunolabeling makes use of antibodies to selectively target cells of interest with
fluorescent components (Renier et al. 2014). Lastly, specialized nano-particles can be
used to target desired cells, enabling fluorescent signals with high signal-to-noise
ratio (Cai et al. 2018).

1.3. Light-sheet fluorescent microscopy

Once a tissue sample is rendered transparent and structures of interest have been
selectively stained with fluorophores, the prerequisites are fulfilled to take optical
microscopy from 2D to 3D. Dodt et al. 2007 were the first to achieve this with the
help of a light-sheet fluorescence microscope.

1.3.1. Volumetric signal acquisition

The basic working principle is shown in Fig. 1.4. For confocal microscopy, the
excitation source illuminates the entire sample from the direction of the objective; the
detection region is confined to the confocal plane, which enables volumetric signal
acquisition. For light-sheet microscopy, this is achieved by selectively illuminating
planes using an excitation source perpendicular to the detection to the objective.
Besides enabling a wide-field acquisition of imaging data, light-sheet microscopes
also spare out-of-plane regions for illumination, reducing detrimental effects such as
photo bleaching of samples.

The combination of tissue clearing with light-sheet fluorescent microscopy enables
to combine the large field of view of volumetric imaging modalities such as CT or
MRI with the high resolution and selective staining of fluorescent microscopy. This
approach allows acquiring whole-body scans of entire animals at cellular resolution,
a breakthrough in biomedical imaging.

However, it is noteworthy that some challenges remain. First, the illumination is
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Figure 1.4.: Volumetric microscopy. In contrast to confocal microscopy (A,B), in light-
sheet microscopy only a selected plane of the specimen is illuminated
and emits fluorescent light that is acquired by the sensor. Taken from
Huisken and Stainier 2009

not guaranteed to be uniform within the plane of interest, causing spatial gradients
in the acquired signal strength. Second, the light sheet is not perfectly planar and not
infinitesimally thin. This causes an anisotropy in the resulting resolution and image
quality (see Fig. 1.5).

1.3.2. Reconstruction of whole-body scans

Due to technical limitations detailed below, it is not possible to directly acquire
volumetric whole-body scans at cellular resolution but they need to be reconstructed
from a set of scans from smaller sub-regions.

The first limitation comes from a trade-off between resolution and field of view.
Choosing a highly magnifying objective reduces the field of view that can be acquired
at once. To cover areas larger than that requires to move the objective laterally to
the next region. This process is called tiling and the individual tiles are recombined
post acquisition. Since the sample is not moved in the chamber and the position
of the objective can be precisely monitored, comparatively simple computational
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Figure 1.5.: Anisotropy in light-sheet microscopy. The imperfection of the light sheet
reduces spatial resolution and image quality along the axial dimension of
the acquired volumetric scan. Taken from Weigert et al. 2018

procedures such as rigid registration are sufficient to recombine the tiles at high
precision. However, the tiles are typically unevenly illuminated, causing a signal peak
in the center of the tile and lower signal strengths at the borders. After recombination,
this can yield a stripe-like pattern in the reconstructed scan. This is an important
limitation for further automated image processing, as detailed further below.

The second limitation is associated with the maximum acquisition depth in the
tissue. Even after tissue clearing, the tissue is not perfectly transparent and shows
residual attenuation and scattering of signals. This limits the maximum acquisition
depth. Volumetric scanning of large specimens such as entire mice thus benefits from
a two-step approach. First, the upper half of the specimen (facing the objective) is
scanned. Then, the sampled is turned upside-down to scan the second half of the
specimen. This yields two subsets of volumetric scans. However, the recombination is
more challenging than for the tiles since the exact location of the re-positioned sample
is difficult to assess. Thus, the recombination requires a more complex stitching using
potentially non-rigid registration. Not only is this computationally expensive but this
step can also introduce artifacts along the interface.

1.4. Biomedical image analysis

Driven by macro-trends of aging population, professionalization of health systems,
and technological advances, the use of medical imaging has dramatically increased
over the past decades - a development accompanied by an equally dramatic increase
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in associated cost (see Smith-Bindman et al. 2008). The growing volume of medical
images and cost reduction pressures fuel the need for automation in analysis of
biomedical images.

1.4.1. Differences to natural image analysis

The scientific field of biomedical image analysis is tightly coupled with the fields
of general computer vision and analysis of natural images. Traditionally, much of
the progress in medical image analysis has been driven by innovation in natural
image analysis, a trend that became even more apparent with the rise of deep neural
networks (also see Tajbakhsh, Shin, et al. 2016).

However, it is important to appreciate the fundamental differences between natural
images (e.g., photos) and medical images. First, biomedical images may follow
different statistics since they are largely visual representations of reconstructions
from acquired signals. Second, natural images are typically 2D data with 3 color
channels; medical images, in contrast, are typically volumetric (3D) grey-scale data.
Third, publicly available data sets and annotations for data sets tend to be orders of
magnitude smaller than for natural images. While data sets with 100-200 samples are
considered large in the field of biomedical image analysis (e.g., see Rosenhain et al.
2018), popular data sets for natural images are in the range of millions of samples
(e.g., ImageNet; see Deng et al. 2009).

As discussed in the sections further below, all these differences have intricate effects
on what kind of problems need to be solved and how they need to be solved to enable
automated analysis of biomedical images. This caused the field of biomedical image
analysis to differentiate from natural images, forming a scientific community of its
own.

1.4.2. Fundamental problem classes in image analysis

While the scientific and practical problems addressed in the field of biomedical image
analysis are manifold, most work can be associated with one of three fundamental
problem classes - for natural as well as for biomedical image analysis.

Classification

Classification describes the task of deriving a categorical, global decision on basis
of the presented image sample. Given a pre-defined list of classes, the image needs
to be allocated to one of these typically mutually exclusive classes. In the field of
biomedical image analysis, this could be the decision whether a tumor is benign or
malignant, for example.
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Detection and localization

Detection and localization are two related tasks of deciding whether an object or
feature of interest is present (detection) and where in the image it is (localization).
In biomedical settings, this could be the task of finding the bounding box around a
tumor in an image.

Segmentation

Segmentation takes the task of localization further to the level of finding the exact
outline of that object, associating each pixel with that object or as background. As a
further variant of this, instance segmentation would further keep several instances of
an object class apart. For instance, by individually segmenting several metastases of
a tumor in a single image.

Algorithmic image analysis is as old as digital images themselves. However, the
rise of machine learning has brought a fundamental shift in image analysis from
rule-based to learning-based approaches - as described below.

1.4.3. Rule-based image analysis algorithms

Traditionally, images have been analyzed by designing a set of custom-tailored rules
(explicit algorithms) to solve a specific problem. Without the claim of completeness,
such rule-based approaches often rely on explicit feature detection and intensity-based
segmentation as core building blocks to solve a given task. Here, the term feature often
refers to low-level features such as certain intensity gradients, edges, or simple visual
patterns. These can be detected by applying transforms to the image, for example
the convolution with a fixed, explicitly defined filter kernel. For instance, edges in
images can be detected by convolution with discrete Laplace Gaussian operators. An
example can be seen in Fig. 1.6A. Combining and further analyzing sets of low-level
features allows to detect or localize more abstract features, for example outlines
characteristic of brain tumors (for example, see Sharma et al. 2012).

An example for a rule-based approach to segmentation is the distance transform
watershed. Here, the image is first binarized and then for each white pixel, the
distance to the nearest black pixel is computed (distance transform). Subsequently,
a watershed algorithm can segment gray-scale objects even if they were previously
overlapping. This method has been successfully used for decades, for example for
cell segmentation (see Malpica et al. 1997).
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Figure 1.6.: Rule-based image analysis. A) Structural analysis of a brain MRI scan
using an Laplacian Gaussian filter operator; taken from Gunawan et
al. 2017 B) Watershed algorithm (with distance transform) to segment
instances of blobs.

1.4.4. Learning-based approaches to image analysis

Learning-based approaches fundamentally differ from rule-based approaches. Instead
of defining a specialized set of rules how to solve a problem, a generic algorithm learns
to solve the problem from the data - typically using pairs of data and corresponding
solutions (supervised learning). More specifically, learning means that the parameters
of a generic algorithm are automatically and iteratively fitted so that the algorithmic
output converges to the desired solution.

Support vector machines

The first learning-based approaches in image analysis were built on top of rule-based
feature extraction methods, for instance by classifying a set of features from an
image using support vector machines (SVM) (also see O’Mahony et al. 2019 for a
comprehensive overview on the relation of rule-based to learning based methods for
image analysis). A SVM divides data samples into subspaces by finding boundaries
that optimally separates samples of distinct groups (see Fig. 1.7). This can be achieved
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with linear or with non-linear boundaries (hyperplanes) by transforming the data into
a higher dimensional space in which the samples can be separated linearly. SVMs
optimize the hyperplanes to minimize the heterogeneity of samples withing each
subspace and to maximize the space around the boundaries that are free of any
samples.

Figure 1.7.: Support vector machines (SVM). The space of data samples with known
classes (a) can be subdivided with linear (b) or non-linear (c) boundaries
to optimally separate the sample groups. Taken from Van Den Burg and
Groenen 2016

Artificial neurons

The concept of an artificial neuron forms the basic building block of neural networks,
the most dominant class of machine learning approaches in image analysis. Inspired
by the principles of neural information processing, artificial neurons mimic the
process of neural excitation via synapses and the propagation of the signal to next
neurons (see Fig. 1.8). Each neuron receives input from several other neurons, with
weighting that mimics the synaptic strength. The excitation state of the neuron is
thus driven by a weighted sum of inputs.

In biological neurons, not every excitation causes the activation (discharge of action
potential) of the neuron; this only occurs if a certain threshold is passed. This behavior
is modeled with a non-linear activation function φ, which characterizes the mapping
of excitation state to the output that is passed to the next signal. Typical non-linear
activation functions are the sigmoid function of linear rectification. Mathematically,
the activation function expands the computational capabilities of an artificial neuron
from linear operations (weighted sum) to non-linear operations.
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Figure 1.8.: Artificial neural networks. The concept of an artificial neuron forms the
basic building block (left). A perceptron is the simplest architecture of
artificial neural networks (right). Taken from Di Noia et al. 2013

Perceptron

Combining several artificial neurons to a three-layer network forms a perceptron, the
simplest architecture of artificial neural networks (see Fig. 1.8). Despite its simple
structure, perceptrons are, in theory, already capable of approximating any arbitrary
function mapping the input x to the output y (see Irie and Miyake 1988). In such
setups, the first layer is termed the input layer, which is follow by the hidden layer.
The number of hidden layers and the number of neurons per layer determine the
computational power of the network but also the complexity (number of parameters)
of the network - a common trade-off.

If the number of layers increase, these networks are often calle1 deep networks. To
differentiate them from other architectures (e.g., convolutional neural networks; see
below), these architecture are also commonly referred to as fully connected neural
networks. This means that every neuron of a given layer receives input from all
neurons of the previous layer, not only a subset of them. Learning to solve a given
task for neural networks requires to fit the network weights in order to derive the
desired output y. Achieving this has been and remains the key challenge in deep
learning.

Backpropagation and gradient descent

Although dating back to the 1960s, the backpropagation algorithm was only es-
tablished in the late 1980s as the governing principle in training neural networks
(Rumelhart et al. 1986). The idea of backpropagation is to assess the error between
predicted output ŷ and desired output y, and propagate it backwards through the en-
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tire network in order to iteratively adjust all network weights into the right direction.
To determine whether a given network weight w needs to be increased or decreased
in order to reduce the error E, the gradient of the error with respect to the weights is
computed for all weights:

∇E[~w] ≡
[

∂E
∂w0

,
∂E

∂w1
, · · · ∂E

∂wn

]
The training of the network thus occurs by gradually and iteratively updating the

weights into the opposite direction of the gradient. This happens layer by layer. The
update step size can be controlled with the parameter η, often referred to as the
learning rate:

∆~w = −η∇E[~w]

∆wi = −η
∂E
∂wi

In order to achieve this, the non-linear activation function of the artificial neurons
needs to be differentiable. On a global level, the entire procedure follows the concept
of gradient descent to find the (potentially local) minimum of the differentiable error
function. A large variety of optimization approaches have been developed to achieve
this efficiently and robustly, e.g. the Adam Optimizer (see Kingma and Ba 2014).

Convolutional neural networks

While a sufficiently large fully connected network can, in principle, approximate any
arbitrary function (as shown before), there are important practical limitations to
this approach. The number of network parameters that need to be fitted increases
exponentially with the numbers of layers and units per layer. Thus, even moderately
deep networks cannot be practically fitted with a typically limited amount of training
samples. With a special focus on image analysis, a major breakthrough was achieved
with the introduction of convolutional neural networks (CNNs, see Mairal et al. 2014).

In contrast to their fully connected counterparts, a unit in a CNN only receives
input from a small number of spatially proximate units from the previous layer (see
left panel of Fig. 1.9). A single convolutional kernel is moved over the entire spatial
range of the input and only the parameters of that comparatively small kernel need
to be fitted for that layer. While each given unit only receives direct input from a
small number of units from the prior layer, the units in the last layer indirectly receive
input from a much larger region, if not the complete region, of the input. This enables
the network to develop a hierarchical representation of ever more complex, abstract
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Figure 1.9.: Convolutional neural networks. A convolutional neural network is
based on (spatial) convolutions on a selected subset of units from the pre-
vious layer (left). This concept can be extended along a feature dimension
(right). Taken from Mairal et al. 2014

features that may not be restricted to small subregions of the input data - without the
need of connecting every single possible combination of units.

As visualized in the right panel of Fig. 1.9, this concept can be further extended
along a feature dimension. A unit then not only contains one data point to represent
a feature of a given spatial location but a set of data points. In such setups, the
convolutional kernel is extended by this dimensionality. In combination with spatial
reduction techniques such as pooling operations, CNNs often encode more abstract
representations (large number of feature channels) that are less tied to a spatial
dimension in deep layers.

The U-net architecture

While a large variety of different and highly specialized CNN architectures have been
developed for classification, detection/localization, and segmentation tasks in image
analysis, one network architecture stands out for biomedical image segmentation:
the U-net. Introduced in 2015, it drastically improved the state-of-the-art for such
tasks and has emerged as the standard in its class (see Ronneberger et al. 2015; this
article alone has received more than 15,000 citations as of mid 2020). The U-net
architecture is depicted in Fig. 1.10. At its core, it consists of convolutional layers,
pooling layers, and so-called skip connections. To derive fine pixel-wise segmentations
of complex objects in an image, it combines non-localized, high-level abstract feature
representations with highly localized, low-level feature representations.
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Figure 1.10.: The U-net architecture. The U-net architecture is a specialized CNN that
has proven especially successful for segmentation tasks in biomedical
images. Taken from Ronneberger et al. 2015

This is achieved by using a deep stack of encoding units, which detect characteristic
object features, and a corresponding stack of decoding units, which segment each
object at pixel-level. Each encoding unit performs two convolutions, extracting
information about the environment for each pixel and representing that information
in a third dimension — the feature channels. Before being passed on to the next
encoding unit, the image is spatially downsampled with a pooling operation. Together,
this means that the neural network is steadily increasing the feature channels and
steadily decreasing the spatial resolution, enforcing the network to learn even more
abstract features in the deeper layers, before mapping the information relevant to the
object of interest back to the original resolution in the decoding upward path. This
happens by upsampling the abstract, low-resolution information from lower layers
and concatenating it with the less abstract, but higher-resolution information from
the encoding path via skip connections.

Optimized variants of the U-net architecture form a backbone of many contributions
presented in this dissertation. As described in more detail further below, enabling
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adoption of deep learning methods in clinical and pre-clinical settings is at the core
of the motivation of this dissertation and the use of widely used architectures like the
U-net is thus a well-considered design choice.

1.4.5. Bottlenecks in adoption of learning-based approaches

It may seem that the fundamental challenges of biomedical image analysis were
largely solved, especially with respect to the dramatic breakthroughs achieved with
the recent developments in deep learning. However, in practice the adoption of deep
learning in biomedical research as well as in clinical settings (such as the workflow
of radiology assessments in hospitals) is slow (see Thaler and Menkovski 2019).
Analyzing the underlying causes of slow adoption reveals that key problems remain
unsolved and represent major bottlenecks in practice (see Tajbakhsh, Jeyaseelan, et al.
2020 for a comprehensive overview).

Availability of training data. Even with the development of CNNs (Mairal et al.
2014), deep neural networks still require large amounts of training data in supervised
learning. While research on unsupervised or weakly supervised learning methods
aims to reduce this need and progresses in achieving this (Fabiyi 2019), supervised
learning remains the most effective training strategy. Thus, large amounts of training
data are needed. In practice, this is often not the case for two major reasons. First, the
data itself in the medical context is often not readily available due to ethical and legal
restrictions on sharing and using this data. While some public data sets exist, they
tend to be relatively small (as discussed earlier) and are limited to a few specialized
use cases. Second, the data needs to be annotated manually to provide a reference.
This is especially time-consuming and costly for medical data as it requires deep
medical expertise and as the data is often given as volumetric scans, which requires
the annotation of hundreds of images for a single sample.

Quality of training data. The quality of available training data poses a further
bottleneck. As also shown in this dissertation, even the annotations of highly trained
human experts cannot be assumed to reflect a commonly agreed-upon ground truth.
On the one hand, annotation tends to be a tiring, repetitive task that is prone to human
error due to insufficient attention and diligence. On the other hand, medical images
are often intrinsically hard to interpret and not completely conclusive (Warfield et al.
2006; Jungo et al. 2018). Training neural networks on partially flawed data samples
not only reduces the overall performance of the final model but also can lead to
unexpected behaviour as the network may mimic the errors present in the training
data.

Generalization and robustness to variability. Furthermore, neural networks tend
to be not very robust to unexpected variability in the data. Even though a trained
network may perform well in a given task of a given data set (e.g., segmenting a brain
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tumor in an MRI scan), small changes in the data may drastically reduce the utility of
the trained network. In the given example, it may be enough to use an MRI scanner
from a different manufacturer to render the trained algorithm completely useless.
Also, small changes in the task may require partial or complete retraining of the
network. For example, if the task where not to segment a brain tumor in an MRI scan
but a region of ischemic stroke, a large part of the work needs to be repeated. This
lack of robustness, scalability, and generalization poses a bottleneck for the adoption
in practical settings where such kind of variability in data and tasks are unavoidable.

1.5. Ambition and contribution of this dissertation

Motivated by the observations described in section 1.4.5, the underlying motivation
and ambition of this dissertation is to enable a more wide-spread adoption of powerful
deep learning approaches in clinical and pre-clinical image analysis. Tackling the
bottlenecks listed above can reduce the technical barrier of adopting deep learning
solutions and reduce the cost of doing so.

The main contributions of this dissertation are driven by this ambition and cen-
tered around finding strategies to overcome scarcity of training data, to deal with
imperfect annotations, and to improve generalization and robustness. In chapter A.1,
a highly data-efficient approach was developed to solve the 3D task of localizing
and segmenting tumor metastases with a 2D network, which requires substantially
smaller training data sets. The approach was shown to generalize across different
tumor types despite substantially different metastatic characteristics. In chapter A.2,
the generalizability of neural network training was assessed across highly different
domains: vessel segmentation in human brains in MRI scans, vessel segmentation
in mouse brains in 3D light-sheet microscopy, and segmentation of the peripheral
nervous system in mouse bodies in 3D light-sheet microscopy. Further, a neural
network was designed to segment the main organs in whole-body scans of mice, not
only exceeding state-of-the-art in performance but also providing localized measures
of contradicting human interpretation of the data. Lastly, additional work explores
further applications on (imaged-based) learning models biomedical modeling in the
field of pre-clinical neuroscience on the basis of image-like spectral representations
of auditory stimuli (chapter A.4 and chapter A.5) and assesses the performance of
these models (chapter A.3). Interestingly, this image-based approach for biomedical
modeling of neuronal information processing was shown not only to be very effective
but also revealing about the underlying biological dynamics.
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In this chapter, the main contributions of this dissertation will be reflected in the
light of the problem statements presented in section 1.4.5 and ambitions presented in
section 1.5. Finally, a perspective on future developments and concluding remarks
provide a more opinionated view on the scientific context of this dissertation.

2.1. Resolving bottlenecks for deep learning in
biomedical image analysis

The introductory chapter described the key breakthroughs that led to the rise of
deep learning in biomedical image analysis (also see Maier et al. 2019) and further
identified a (non-comprehensive) list of 3 key bottlenecks that slow or hinder the
adoption in practice. Examples of these bottlenecks from the work presented in this
thesis are discussed below in order to derive prerequisites of general relevance to
resolve these bottlenecks.

Availability of training data. The scarcity of large, curated, and annotated biomed-
ical datasets is a widely appreciated problem (Willemink et al. 2020). This problem
aggravates for highly resolved volumetric scans with large fields of view such as the
whole-body light-sheet microscopy datasets used in this study. A single sample may
be in the range of 5, 000x5, 000x10, 000 pixels (which corresponds to the terabyte scale
in file size). Not only is the overall number of samples often limited to the lower
2-digit range but annotation tends to be extremely expensive. Finding all metastases
with a diameter of a few pixels in such large volumetric scans took an educated
experts more than 2 months for a sample size of 2 (see the work in Chapter A.1). The
cost of annotation even increases for curvilinear structures such as blood vessels (see
the work in Chapter A.2 and B.2). Thus, a first prerequisite for wide-spread adoption
of deep learning in biomedical image analysis is the development of strategies for
highly data efficient training of networks.

Generalization and robustness. Once a model has been trained, seemingly small
changes in the model requirements, in the biological sample, or in the data acquisition
may drastically reduce the utility of the model. While the need for generalization and
robustness against these changes is widely appreciated, it remains an active field of
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research with many unsolved problems (Raghu et al. 2019). Especially in pre-clinical
settings of biomedical research, experimental protocols and imaging procedures
are inherently non-standardized and evolving. Also for the work presented in this
dissertation, changes in the clearing protocol, the staining method, or the microscopic
setup affect the characteristics of the acquired image. A second prerequisite to ensure
sustainability and scalability of deep learning solutions is a deep understanding of
transfer learning and domain adaption.

Quality of training annotations. Supervised machine learning algorithms rely on
a reference (here: image annotations) to learn a task. Often, this reference is referred
to as ground truth, which may cause misunderstandings as the annotations of a single
human expert are neither guaranteed to be correct nor to be objective or unbiased (
Tajbakhsh, Shin, et al. 2016). As also shown in Chapters A.1 and B.1, human error and
bias can be substantial. A third prerequisite for successful adoption of deep learning
is thus to appreciate intrinsic data uncertainty and the defectiveness of human annotation.

2.2. Detection of cancer metastases

The work in Chapter A.1 establishes DeepMACT, an integrated pipeline for analysis
of cancer metastases in mice. The pipeline combines the steps of tissue clearing,
3D light-sheet fluorescent microscopy, deep learning based metastasis detection,
and subsequent statistical analysis. Resolving several prior limitations along each
step, this study marks the first time an animal could be screened for all metastasis
throughout the entire body, even detecting single disseminated cancer cells. Beyond
that, also the effectiveness of therapeutic antibodies could be assessed by determining
which metastases were successfully targeted and which ones were missed. The study
received substantial attention from the scientific community (for example, it was
featured as a Research Highlight in Le Bras 2020) and from the general media (e.g., from
the Federal Ministry of Education and Research as part of Wissenschaftsjahr 20191, from
Frankfurter Rundschau2, from N-TV3). Furthermore, it was awarded the Rolf Becker-
Preis 2020 (EUR 50,000) for the "best original work in the entire field of experimental or
clinical medicine as a result of a research project affiliated with Ludwig-Maximilians-
University Munich". DeepMACT overcomes one of the central limitations, scarcity of
training data, by solving the 3D task of detecting, localizing, and segmenting small
metastases in large volumetric scans with a 2D architecture. In short, subsamples

1https://www.wissenschaftsjahr.de/2019/neues-aus-der-wissenschaft/dezember-2019/neuer-
algorithmus-erkennt-automatisch-krebsmetastasen/

2https://www.fr.de/wissen/krebs-metastasen-spur-13369131.html
3https://www.n-tv.de/mediathek/videos/wissen/KI-Lupe-spuert-kleinste-Metastasen-auf-

article21455498.html
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of data are projected along all 3 spatial dimensions; each projection is analyzed and
building the outer product of each 2D analysis enables recombination and subsequent
3D reconstruction at high precision. Training a 2D network requires exponentially less
training data (also compare Ronneberger et al. 2015 and Çiçek et al. 2016), allowing
DeepMACT to be trained effectively with very few annotation samples - reaching
a detection performance comparable to that of a human expert (also see Vestjens
et al. 2012; Ehteshami Bejnordi et al. 2017). Furthermore, DeepMACT also addresses
the need for generalization. The approach of localized detection in subsamples of
whole-body scans enables the network to generalize across different cancer lines
despite their different organotropic metastatic characteristics (see Nguyen et al. 2009;
Hingorani et al. 2003; Schonhuber et al. 2014; Iorns et al. 2012). Here, DeepMACT
was trained on data from mice with metastases from human MDA-MB-231 mammary
carcinoma but successfully detected metastases from other breast cancer lines as well
as prancreatic and lung cancer.

2.3. Transfer learning across biomedical domains

The work in Chapter A.2 analyzes how deep learning solutions can be generalized
across biomedical domains on the example of curvilinear structures. Specifically, it
analyzes to which degree transfer learning can help for the segmentation of blood
vessels (also see F. Zhao et al. 2019), and the peripheral nervous system. This
work tests the limits of generalization by training a single network architecture for
fundamentally different biomedical data domains and by cross-predicting across
these domains: blood vessels in MRI scans of human brains (Tetteh et al. 2018),
blood vessels in light-sheet microscopy scans of mouse brains (further work on this
was published and is listed in Chapter B.2), and the peripheral nervous system in
light-sheet microscopy scans of entire mice. In line with literature (Van Opbroek et al.
2015; Khan et al. 2019), transfer learning was shown to be effective despite the large
shift in domains - especially under the constraint of sparsity of training data. For
example, a network trained on a large, but distant dataset (synthetic data and human
MRI data) matches the performance of the same network trained on small training
dataset from the target domain. One important aspect of this work is the transfer
from synthetically generated training data (Schneider et al. 2012). Despite its obvious
differences to the target domains, exploiting it for transfer learning consistently
helped across all domains, suggesting its importance in strengthening generalization.
This approach also inspired further work beyond the biomedical community (CVPR
2020: Parshotam and Kilickaya 2020).
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2.4. Whole-body organ segmentation

The work in Chapter B.1 introduces AIMOS, a deep learning based pipeline for the
automated segmentation of major organs (brain, heart, lungs, liver, kidneys, and
spleen) and the skeleton in whole-body scans of mice. The approach generalizes
across imaging modalities (here: contrast-enhanced as well as native micro-CT and
two variants of light-sheet microscopy). It works orders of magnitude faster than
prior, rule-based methods (see H. Wang, Stout, et al. 2011; Van Der Heyden et al. 2018)
and outperforms them in terms of segmentation quality (also see Akselrod-Ballin
et al. 2016; Yan et al. 2017). The segmentation performance matches or exceeds the
quality of human expert annotations for all organs. Importantly, it also follows a
data efficient training strategy. The AIMOS network can be trained with as little as
10 samples, at which it already reaches around 90% of its maximum performance.
Again, transfer learning was shown to be an effective method to further reduce the
need for annotated training data, underlining the generalizability of the approach.
For example, if pre-trained on a public contrast-enhanced CT dataset (Rosenhain
et al. 2018), AIMOS already reached 84% of its maximum performance on native CT
data (which has much lower contrasts) after being trained on a single data sample.
Another important contribution from this study focuses on errors and bias in human
expert labels and on intrinsic data ambiguity. The variability of human annotations
was already discussed by prior literature (e.g., Warfield et al. 2006). Kohl et al. 2018
addressed this by training networks to mimic this behavior and producing equally
variable predictions. The work in Chapter B.1 takes a different angle of view and
addresses this in two ways: first, it shows that evaluating a deep learning model on a
test set annotated by the same individual as the training set, a common practice in
the field (e.g., Baiker et al. 2010; Khmelinskii et al. 2011; H. Wang, Han, et al. 2019),
overestimates the generalization performance as the models learns the individual
bias of the human annotator. Thus, at least a second, independently created test set
is needed to determine the true performance. Second, it addresses the variability of
human annotations by not only predicting the organ segmentations but also those
image regions where human annotators are most likely to disagree.

2.5. Image-based models of neuronal processing

Lastly, additional work explores further applications on image-based learning models
biomedical modeling in the field of pre-clinical neuroscience (chapter A.4 and chapter
A.5) and assesses the performance of these models (chapter A.3). Here, auditory
stimuli are transformed to two-dimensional image-like spectral representations (fre-
quency vs. time). Interestingly, this image-based approach for biomedical modeling
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of neuronal information processing was shown not only to be very effective but also
revealed the underlying dynamics of neuronal processing (see chapter A.4).

2.6. Perspective on future deep learning adoption

For biomedical research in pre-clinical settings, the power of machine learning meth-
ods has the potential to truly transform an entire field of science. In combination
with novel imaging techniques such as volumetric light-sheet microscopy, which
yields unprecedented, cellular detail of large specimens up to entire animals, deep
learning based image analysis enables to address biomedical problems at scale and
with high precision that would exceed the analytic capabilities of human experts.
Towards this vision, efficient training strategies and generalization will be key. Be-
sides strengthening our understanding of what and how networks learn, the field of
biomedical, pre-clinical image analysis would benefit from establishing structures
already common in clinical image analysis: public and curated datasets and high-
profile challenges. Furthermore, the potential of synthetic training data yields great
potential to lower the financial, personal, and technical barrier to adopt deep learning
approaches in everyday lab settings. Last but not least, breaking up scientific silos be-
tween biology and computer science by fostering deeply integrated collaborations will
help bridging the gap between these fields of science. For medical image analysis in
clinical settings, the adoption in practice seems to be restricted by different problems.
While public challenges, a predominant form of scientific discourse in the field, have
fueled technical innovation, they will be less helpful driving further improvements.
As also shown in this dissertation, the race for ever higher performance scores may
only seemingly lead to improvements. Critical problems such as the defectiveness of
human expert annotations, intrinsic ambiguity in the medical images, and the long
tail of variability in medical images seem insufficiently appreciated. Algorithms that
win challenges may still miserably fail in clinical settings for this reason.

2.7. Concluding remarks

The success of deep learning in biomedical image analysis is astonishing and repre-
sents a major step forward for human health. But the research seems too confined
to highly controlled settings and the state-of-the-art does not meet the requirements
for deployment in practical settings. The bottlenecks for wide-spread adoption in
radiological workflows and biomedical research should not be discarded as mere
implementation problems. They pose an underappreciated frontier in our field of
science and may be key to turning academic achievements into better health.
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SUMMARY

Reliable detection of disseminated tumor cells and of
the biodistribution of tumor-targeting therapeutic
antibodies within the entire body has long been
needed to better understand and treat cancermetas-
tasis. Here, we developed an integrated pipeline for
automated quantification of cancer metastases and
therapeutic antibody targeting, named DeepMACT.
First, we enhanced the fluorescent signal of cancer
cells more than 100-fold by applying the vDISCO
method to image metastasis in transparent mice.
Second, we developed deep learning algorithms for
automated quantification of metastases with an ac-
curacy matching human expert manual annotation.
Deep learning-based quantification in 5 different
metastatic cancer models including breast, lung,

and pancreatic cancer with distinct organotropisms
allowed us to systematically analyze features such
as size, shape, spatial distribution, and the degree
to which metastases are targeted by a therapeutic
monoclonal antibody in entire mice. DeepMACT
can thus considerably improve the discovery of
effective antibody-based therapeutics at the pre-
clinical stage.

INTRODUCTION

The metastatic process is complex and affects diverse organs

(Hanahan and Weinberg, 2011; Lambert et al., 2017; Massagué

and Obenauf, 2016). As most cancer patients die of metastases

at distant sites developing from disseminated tumor cells with

primary or acquired resistance to therapy, a comprehensive

and unbiased detection of disseminated tumor cells and tumor
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targeting drugs within the entire body is crucial (de Jong et al.,

2014). Such technology would help to explore mechanisms

affecting tumor metastasis and drug targeting in preclinical

mouse models much more reliably, hence substantially contrib-

uting to the development of improved therapeutics. So far, such

efforts have been hampered by the lack of (1) imaging technolo-

gies to reliably detect all individual metastases and dissemi-

nating tumor cells in mouse bodies, and (2) algorithms to quickly

and accurately quantify large-scale imaging data. Here, we

developed an analysis pipeline that allows us to efficiently over-

come these limitations.

First, we built upon recently developed tissue clearing

methods for entire fixed mice (Cai et al., 2019; Pan et al., 2016;

Tainaka et al., 2014; Yang et al., 2014) to address the imaging

problem. Typically, fluorescent labeling of cancer cells in vitro

or in vivo is achieved by endogenous expression of fluorescent

proteins such as GFP, YFP, and mCherry, which emit light in

the visible spectrum. However, many tissues in the mouse

body show high autofluorescence in this range (Tuchin, 2016;

Zipfel et al., 2003), which hinders reliable detection of single can-

cer cells or small cell clusters in mouse bodies based on their

endogenous fluorescent signal. To circumvent this problem,

we chose to implement the vDISCO technology (Cai et al.,

2019), which enhances the signal of fluorescent proteins of can-

cer cells more than 100-fold in cleared tissues, enabling reliable

imaging not only of large metastases but also micrometastases

throughout the entire body.

Second, systematic analysis of metastasis in adult mouse

bodies requires quantitative information such as location, size,

and shape of all individual metastases. Manual detection and

segmentation of numerous metastases in highly resolved full

body scans is an extremely laborious task that may take several

months per mouse for an expert annotator. In addition, automa-

tion by filter-based 3D object detectors is not reliable, as

different body tissues have different levels of contrast (Pan

et al., 2016), causing a high rate of false-positive and false-nega-

tive metastasis detections. Recent studies have demonstrated

the high efficacy of deep learning-based analysis of biomedical

images, compared to filter-based or manual segmentation

methods (Camacho et al., 2018; Christiansen et al., 2018; Esteva

et al., 2017; Kermany et al., 2018; Sullivan et al., 2018; Topol,

2019; Wang et al., 2019). To enable automated, robust, and

fast mapping of all metastases in transparent mice, we devel-

oped an efficient deep learning approach based on convolu-

tional neural networks (CNNs) and optimized it for vDISCO

imaging data and metastasis distribution patterns.

Resolving these two bottlenecks allowed us to build an inte-

grated, highly automated pipeline for analysis of metastasis

and tumor-targeting therapeutics, which we named DeepMACT

(deep learning-enabled metastasis analysis in cleared tissue).

Using DeepMACT, we detected cancer metastases and even in-

dividual disseminated tumor cells in mouse bodies, including

many metastases previously overlooked by human annotators.

Furthermore, this enabled analyzing the targeting efficiency of

a therapeutic antibody against carbonic anhydrase XII on the

level of individual metastases. As a scalable, easily accessible,

fast, and cost-efficient method, DeepMACT enables a wide

range of studies on cancer metastasis and therapeutic strate-

gies. To facilitate adoption of DeepMACT, a step-by-step

handbook (Methods S1), the protocols for clearing and imaging,

the deep learning algorithm, the training data, and the trained

model are available online to address diverse questions in can-

cer research.

RESULTS

Focusing on a clinically relevant tumor model, we transplanted

human MDA-MB-231 mammary carcinoma cells, expressing

mCherry and firefly luciferase, into the mammary fat pad of

NOD scid gamma (NSG) mice and allowed the tumors to grow

and metastasize for 6–10 weeks (Figure 1A; Iorns et al., 2012;

von Neubeck et al., 2018). Furthermore, we injected the fluores-

cently tagged 6A10 therapeutic antibody that has been shown to

reduce tumor burden in this model (Gondi et al., 2013; von Neu-

beck et al., 2018). To comprehensively assess cancer cell

dissemination and therapeutic antibody targeting in mouse

bodies at the level of individual micrometastases, we developed

DeepMACT. In short, we transcardially perfused the animals us-

ing standard PFA fixation and applied the vDISCO method to

enhance the fluorescent signal of tumor cells. After light-sheet

microscopy, the 3D image stacks of entire transparent mouse

bodies were analyzed using deep learning algorithms. The

DeepMACT pipeline consists of (1) vDISCO panoptic imaging

of cancer metastases in transparent mice, and (2) deep

learning-based analysis of cancer metastasis and antibody

drug targeting (Figure 1B).

DeepMACT Step 1: vDISCO Imaging of Cancer
Metastases in Optically Cleared Mice
We previously developed the vDISCO technology to image sin-

gle fluorescent cells in mouse bodies through intact bones and

skin (Cai et al., 2019). The vDISCOmethod utilizes bright fluores-

cent dyes conjugated with nanobodies to enhance the fluores-

cent signal of the cells that is weakened during the fixation and

clearing process. Here, we first applied vDISCO to increase

the fluorescence signal of mCherry-expressing cancer cells. By

enhancing the tumor cell fluorescence with anti-mCherry or

anti-GFP nanobodies conjugated to Atto-594 or Atto-647N

dyes, we found that nanobodies can increase the signal strength

of cancer cells over 100 times compared to imaging the endog-

enous mCherry signal after clearing (Figure S1). Owing to this

significant enhancement in signal contrast, we could readily

detect micrometastases buried in centimeters-thick mouse

bodies (Figures S1F–S1L) e.g., in deep brain and spinal cord re-

gions through the intact skull and vertebrae (Figures S1F and

S1I, yellow arrowheads). To confirm the specificity of vDISCO

enhancement of the signal from mCherry expressing cancer

cells, we performed the following experiments: (1) we stained

control mice without a tumor transplant, thereby lacking

mCherry expression, and found no labeling in any of the analyzed

organs (Figure S2A); and (2) we analyzed the primary tumors and

lungmetastases from themouse bodies by staining them using a

specific anti-luciferase antibody, which confirmed that endoge-

nous mCherry fluorescence co-localized with both the signals

from nanobodies and from the anti-luciferase antibody (Figures

S2B and S2C).
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Because the detection of smaller-sized tumor cell clusters,

which may represent dormant cancer cells or incipient metasta-

tic nodules, is critical, we next tested if vDISCO allows imaging

cancer micrometastases in mouse bodies. In order to compare

our approach to conventional methods, we also acquired biolu-

minescence images of mice before applying DeepMACT. In line

with previous findings (Iorns et al., 2012), we detected the

earliest large metastasis of transplanted MDA-MB-231 cells at

the axillary lymph node of mice by bioluminescence (Figures

2A and S3). However, bioluminescence imaging did not reveal

any detailed information such as size or shape and failed to

show the presence of micrometastases.

After bioluminescence assessment, we applied vDISCO using

anti-mCherry signal enhancing nanobodies conjugated to Atto-

647N and imaged the mouse bodies first using epifluorescence

in 2D (Figures 2B–2G), then using light-sheet microscopy in 3D

(Figures 2H–2L). In epifluorescence, we could readily see both

the primary tumor (Figure 2F) and the major metastases at the

axillary lymph node (Figure 2D), which were also detected by

bioluminescence imaging (Figure 2A), albeit as a bulk signal,

lacking information on real size and shape. Importantly, our

approach allowed the visualization of several micrometastases

in the lungs with conventional epifluorescence imaging, which

were not visible in bioluminescence (compare the magenta

Figure 1. Experimental Design and Sche-

matic of the DeepMACT Pipeline for Anal-

ysis of Cancer Metastases and Antibody

Drug Targeting

(A) Illustration of the experimental workflow for

tumor transplantation and antibody application.

(B) Steps of the DeepMACT pipeline on full-body

mouse scans. First, the mice are fixed and pro-

cessed with the vDISCO protocol to enhance the

fluorescent signal of cancer cells. Transparent

mice are subsequently imaged from head to toe

using light-sheet microscopy, revealing all me-

tastases. Light-sheet images are assembled into a

complete 3D image of the mouse. Next, convolu-

tional neural networks are trained to identify and

segment all micrometastases in the fluorescence

signal. The trained algorithms are then applied

to 3D images to detect cancer metastases

and an antibody-based drug targeting in full-body

mouse scans.

marked regions in Figures 2A with 2B,

and red arrowheads in 2E; more exam-

ples shown in Figure S3). Thus, vDISCO

followed by epifluorescence imaging,

which can be completed within minutes,

already provided greater details and

sensitivity compared to bioluminescence

imaging. Next, we imaged entire fixed

transparent mice using a light-sheet mi-

croscope (Cai et al., 2019) in 3D to detect

individual micrometastases throughout

the body (Figure 2H). In the chest area,

we could see various metastases not

only in the lungs (yellow segmented region in Figure 2I) and

lymph nodes, but also at the base of the neck and surrounding

tissues (Figures 2J–2L; Video S1). Importantly, light-sheet micro-

scopy scanning allowed us to image even single disseminated

tumor cells in the mouse body. Examples of single disseminated

tumor cells resolved in full body scans are shown in Figure 2M

(see also Video S2), which were further verified by high-magnifi-

cation light-sheet microscopy imaging showing the colocaliza-

tion of each single tumor cells with a single nucleus stained by

PI (Figure 2N). Thus, our approach allows for the first time to

detect micrometastases in full body scans of mice in 3D down

to the size of individual cells.

DeepMACT Step 2: Deep Learning for Detection and
Quantification of Metastases
We developed an optimized deep learning-based approach to

detect and segment all cancer metastases in full-body scans

of mice. This framework solves the 3D task of detecting and seg-

menting metastases in volumetric scans with CNNs that process

2D projections of small sub-volumes (Figure 3A). In brief, we first

derived three 2Dmaximum intensity projections (aligned with the

x, y, and z axes) for each sub-volume in order to increase the

signal-to-noise ratios (SNRs). We fed the resulting projections

to the CNN and obtained 2D probability maps, in which each
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pixel value represents the estimated probability that this pixel

identifies a metastasis under the given projection. We then re-

constructed a 3D segmentation from the three projections

observing increased reliability in detecting true positive metasta-

ses while safely ignoring non-metastatic tissue that would pro-

duce false positives in the individual projections. For example,

in Figure 3B, the green arrows show successful detection of a

real metastasis and the red arrows show successful ignoring of

a structure that could be mistaken for a metastasis from a single

2D projection. This approach was highly effective in detecting

and segmenting metastases in the imaging data, yielding a bi-

nary mask for all metastases in the body.

The core of our architecture makes use of CNNs (Figure 3C),

structurally similar to the established U-net (Ronneberger et al.,

2015), which learn to distinguish metastases from the back-

ground signal. This is achieved by using a deep stack of encod-

ing units, which detect characteristic cancer features, and a

corresponding stack of decoding units, which segment each

metastasis at pixel-level. Each encoding unit performs two con-

volutions, extracting information about the environment for each

pixel and representing that information in a third dimension—the

feature channels. Before being passed on to the next encoding

unit, the image is spatially down-sampled. Together, this means

that the neural network is steadily increasing the feature chan-

nels and steadily decreasing the spatial resolution, enforcing

the network to learn even more abstract representations of the

data (i.e., features) in the deeper layers, before mapping the in-

formation relevant to cancer cells back to the original resolution

in the decoding upward path. This happens by up-sampling the

abstract, low-resolution information from lower layers and

concatenating it with the less abstract, but higher-resolution in-

formation from the encoding path via skip connections (some

exemplary visualizations of the computational stages are pre-

sented in Figures S4A–S4C).

To assess the reliability of our automated deep learning archi-

tecture, we applied it to a fresh test set of a full-body scan, which

was neither used for training the CNNs nor to optimize hyper-

parameters. The datasets were manually annotated by human

experts and any disagreements between experts were jointly re-

viewed and discussed in order to derive a refined, commonly

agreed reference annotation (see STAR Methods for details).

We then systematically compared the performance of our

deep learning approach to that of established detectionmethods

as well as the performance of a single human annotator, calcu-

lating F1-score (also known as Dice score), a common perfor-

mance measure based on both the metastasis detection rate

(recall) and false positive rate (precision).

As shown in Figure 3D, we found that DeepMACT reached an

F1-score of 80%, outperforming existing filter-based detectors

such as the ImageJ Object Detector (18%) or a custom-made

filter-based detector (36%) by a large margin. The similar perfor-

mance of 3D CNNs such as a customized 3D U-net (38%) high-

lights the benefit of the specialized DeepMACT approach for the

tumor models we tested. Indeed, the detection performance of

DeepMACT comes very close to the level of a single human

expert annotator with an F1-score of 83%. The slightly higher

F1-score of the human annotator ismainly driven by the high pre-

cision. However, the human annotator missed around 29% of all

micrometastases (examples are shown in Figures S4D–S4F) and

detecting those false negatives would require a repetitive and

very laborious re-analysis of the entire animal scans, requiring

up to several months of human work time. On the other hand,

the F1-score of DeepMACT is a result of a balance between pre-

cision and recall, which can be freely adjusted via the model’s

threshold. For DeepMACT, we can increase detection rate

(recall) over 95%. While this also increases the false-positive

rate, correcting the false positive data requires only a review of

detected signals by a human annotator, which we completed

within 1 h per mouse in this study (a typical example for a false

positive detection is shown in Figures S4G–S4I). Combining

the DeepMACT prediction with this quick review yielded an F1-

score of 89%, exceeding the performance of a single human

annotator. A more detailed analysis on the trade-off between

precision and recall is shown in Figure S4J. Notably, DeepMACT

could detect micrometastases�30 times faster than filter-based

detectors and over 300 times faster than a human annotator (Fig-

ure 3E). Even taking the time for a manual review of the Deep-

MACT prediction into account, the total processing speed was

still 8 times faster than filter-based detectors and over 60 times

faster than a human annotator, who was already supported by

a dedicated and interactive software, custom-built for this task

and these data; without annotation software, the human manual

Figure 2. DeepMACT Step 1: vDISCO Visualization of Metastases in a Full-Body Scan of a Mouse

(A) Bioluminescence image of a NSG female mouse before vDISCO which was taken 2 months after MDA-MB-231 cancer cell implantation into the mammary

fat pad.

(B–G) Epifluorescence images of the samemouse after vDISCO showmetastases (magenta) in greater detail compared to bioluminescence. (B) shows the entire

mouse, (C-G) shows magnifications of the areas marked with white dashed lines in (B), including small micrometastases that can be readily detected in the lungs

(E, red arrowhead) and in the leg (G), in addition to the primary tumor (F) andmajor metastases (C and D) that are also visible in bioluminescence as bulk signal (A).

(H) 3D visualization of the transparent mouse body imaged by light-sheet microscopy.

(I) Lateral views of the 3D segmentation obtained from the light-sheet imaging data corresponding to the magenta-boxed region indicated in (A), (B), and (H). For

simplicity, only a few organs are segmented: the heart (cyan) and the lungs (yellow); the mouse body is shown in transparent gray and the metastases are in

magenta.

(J–L) Original light-sheet microscopy data (500 mmprojections) showing metastases from the three different sagittal planes indicated in (I) with the corresponding

letters.

(M and N) Single cell metastases identified in the brain and in the lungs by full-body light-sheet microscopy scans using a 1.13 objective with 6 mm lateral

resolution (tumor cells in magenta and nucleus labeled with propidium iodide [PI] in cyan) (red arrowheads in M). The same metastases were re-imaged by light-

sheet microscopy with a 123 objective. Single plane images showed the colocalization of each micrometastasis with a single nucleus (yellow arrowheads in N).

Panels in (M) show images acquired with a 1.1x objective, panels in (N) show images acquired with a 12x objective.

See also Figures S1, S2, and S3 and Videos S1 and S2.
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annotation would be estimated to take several months for a sin-

gle mouse. Thus, DeepMACT can complete months to years of

human labor within hours without compromising on segmenta-

tion quality.

DeepMACT Reliably Detects Micrometastases in
Different Tumor Models
After establishing the DeepMACT pipeline, we used it to analyze

full mouse bodies. Apart from the primary tumor and the

Figure 3. DeepMACT Step 2: Schematic and Performance of the Deep Learning Algorithm

(A) Representation of the deep learning inference workflow to efficiently derive 3D detection and segmentation exploiting three 2D computational operations.

(B) Visualization of the computational stages; the green arrow shows successful detection of a metastasis, the red arrow shows elimination of a false positive

detection in the 3D reconstruction stage.

(C) High-level representation of the network architecture with an encoding and a decoding path.

(D and E) Comparison of our deep learning pipeline, DeepMACT, to alternative automated methods and manual segmentation by a human expert in terms of

detection performance (D; error bars show SEM) and processing time (E).

See also Figure S4.
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macrometastasis in the axillary lymph node, we could detect

hundreds of micrometastases of varying sizes throughout the

body, especially in the lungs (Figures 4A and 4B). Overall, Deep-

MACT identified 520 micrometastases throughout the entire

body in this particular mouse, of which there were 306 in the

lungs and 214 throughout other organs of the body (Figure 4C).

We found that micrometastases are mostly located in the inner

tissue layers (�1 cm depth from the surface), as shown by co-

lor-coding in Figure 4D, making them particularly difficult to

detect by other methods. To analyze the spatial distribution

with regard to the lung anatomy, we registered all 306 lung mi-

crometastases to themouse lung lobes.We found thatmicrome-

tastases were evenly distributed in all lobes (Figure 4E). Interest-

ingly, the micrometastases were randomly distributed

throughout the lungs regardless of their size, suggesting inde-

pendent colonization at multiple sites. Furthermore, we quanti-

fied the size and relative location of all micrometastases in the

entire body (Figures 4F–4L). While 79% of micrometastases

were within 1 mm to the nearest neighboring micrometastasis,

we also found highly isolated micrometastases as distant as

9.3 mm apart from their nearest neighbor (Figure 4G). Impor-

tantly, we found a large number of micrometastases with esti-

mated cell counts of a few hundred cells or less (Figures 4F

and 4H) and diameters less than 50–100 mm (Figure 4I), which

would be very difficult to detect in mice by other methods.

Comparing the micrometastases in the lungs with those in the

torso, we found that the tumor burden in the lungs was more

than a hundred times higher in this tumor model (Figure 4J).

Also, micrometastases in the lungswere, on average, 30% larger

in diameter (Figure 4K), with a more than 2-fold higher estimated

cell number per metastasis, compared to micrometastases in

the rest of the torso (Figure 4L).

To verify the robustness and applicability of the DeepMACT

pipeline for a wider range of experimental settings, we conduct-

ed additional studies. First, we implanted a solid tumor (MDA-

MB-231 breast cancer grown in another mouse for 10 weeks)

into a healthy mouse and analyzed it right away, leaving no

time for metastases to form. As expected, no metastases could

be found in this control, indicating that tumor cells do not detach

from a solid tumor during the tissue clearing procedure and

that no artifacts (such as potential unspecific nanobody accumu-

lations during the staining procedure) would be mistaken for me-

tastases (Figure 5A).

Second, we applied the pipeline to 3 different tumor models

with distinct metastatic propensity and organotropism. A nude

mouse intracardially injected with human MCF-7 estrogen re-

ceptor (ER)-positive breast cancer cells developed metastases

throughout the body, with a substantial burden in the lungs (49

metastases), liver (18), and kidneys (11), but also in the bones

(2; indicated by yellow arrows) and the brain (1) (Figure 5B). A

C57BL/6 mouse transplanted with murine syngeneic R254

pancreatic cancer cells, however, did not develop any metasta-

ses in the brain, kidneys or bones, but rather in the lungs (8), the

liver (6), and also in distinct tissues such as the peritoneum (Fig-

ure 5C; metastasis in peritoneum indicated with a magenta

arrow). A further model using the human brain metastatic lung

cancer cell line H2030-BrM3 transplanted in nude mice only

showed few metastases in the liver (2) or kidneys (1) but many

in the brain (31) (Figure 5D). These experiments demonstrate

that the DeepMACT pipeline can reliably detect micrometasta-

ses in a variety of tumor models with distinct organotropisms,

including different immunodeficient or immunocompetent

mouse strains, syngeneic tumors and xenotransplants. Further-

more, metastases can be quantified and assessed by Deep-

MACT in organs in which this is difficult to achieve by other

methods, such as bones and the brain.

In a third experiment, we tested the potential of DeepMACT to

study the progression of the metastatic process over time. We

injected MDA-MB-231 cancer cells intracardially and analyzed

the distribution of metastases 2 days, 6 days, and 14 days after

injection (Figures 5E–5G). We found metastases in the brain,

lungs, liver, kidneys, bones, and other organs at all time points.

Moreover, our results showed a substantial increase in the total

metastatic burden in the mouse bodies as well as in the lungs as

the primary metastatic organ (Figure 5H).

Importantly, neither the increase in overall tumor burden for

the time course study nor the differential distribution of metasta-

ses across organs for any of the cancer models tested were

clearly revealed by bioluminescence images (Figure S5). Thus,

our pipeline is the first to enable quantitative analyses of micro-

metastases in full-body scans, greatly enhancing our ability to

assess the metastatic process in a comprehensive manner.

Figure 4. Deep Learning-Based Detection and Segmentation Enables Quantitative Analysis at the Level of Individual Metastases
(A and B) 3D rendering of a mouse transplanted with MDA-MB-231 cells in the mammary fat pad after light-sheet microscopy imaging in lateral and ventral views,

respectively. Metastases in the mouse body are shown in magenta. The white arrowhead indicates the primary tumor and the yellow arrowhead indicates

metastases in the axillary lymph node (A.L.N.). (A) and (B) show the same mouse at different perspectives.

(C and D) Deep learning reconstructions of all detected metastases (A.L.N. and primary tumor indicated with dashed circles) color-coded by organ (C) and depth

along the z axis (D), cropped to the white box in (B) to show higher level of detail.

(E) Detailed view of metastases in the lung region (corresponding to the black box in C) in a projection of 3D deep learning-based detection, with metastases

registered to individual lung lobes (shown in different colors).

(F) Validation of cell count estimates by comparing to manual count. 73% of the estimates are within a 20% margin (green region), and all estimates are within a

35% margin (red region) of the manual count (n = 26 randomly selected sample regions).

(G–I) Deep learning-based distributions; blue bars show individual metastases, the black line shows the Gaussian kernel density estimation.

(G) 3D distance to nearest neighboring metastasis.

(H) Estimates of cell counts per metastasis.

(I) Metastasis diameter averaged in 3D space.

(J–L) Quantitative comparison between metastases in the lungs and the rest of the torso; bars indicate 95% confidence intervals.

(J) Tumor density as share of metastatic tissue of the entire volume is two orders of magnitude higher in lungs versus the rest of the torso.

(K) Metastasis diameter (averaged in 3D space) is significantly higher in lungs (p < 0.001; two-sided t test). Error bars show standard deviations.

(L) Cell count estimate per metastasis is significantly higher in lungs (p < 0.001; two-sided t test). Error bars show standard deviations.
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DeepMACT Reveals Therapeutic Antibody Targeting at
the Level of Single Metastases
A number of tumor-targeting monoclonal antibodies have

become part of the standard treatment for various solid and he-

matological malignancies and many more are in early or late

stages of clinical development (Barker and Clevers, 2006; Pan-

dey and Mahadevan, 2014). However, so far there has been no

methodology to determine the distribution of therapeutic

antibodies across the entire body, down to the level of single

micrometastases. Here, we used DeepMACT to assess the

biodistribution of the therapeutic monoclonal antibody 6A10

directed against human carbonic anhydrase XII (CA12) (Battke

et al., 2011; Gondi et al., 2013; von Neubeck et al., 2018).

CA12 is overexpressed in various types of cancers, and blocking

its activity with the antibody 6A10 reduces tumor growth (Gondi

et al., 2013) and increases the sensitivity of tumors to chemo-

therapy (von Neubeck et al., 2018). We intravenously injected

20 mg of 6A10 conjugated to Alexa-568 9 weeks after transplan-

tation ofMDA-MB-231 cells and perfused themouse 2 days after

the antibody injection for full-body-scale analysis, enhancing the

tumor signal with Atto-647N. Because Alexa-568 excitation/

emission spectra overlap with the endogenous mCherry signal

of the transplanted cancer cells, we confirmed that the vDISCO

pipeline completely eliminates the signal from endogenously ex-

pressed mCherry (Cai et al., 2019; Figure S6).

We first acquired 2D images with epifluorescence microscopy

and observed an accumulation of the 6A10 antibody at the pri-

mary tumor (Figures 6A and 6E; tumor shown in magenta, thera-

peutic antibody in cyan) and the metastases at the axillary lymph

node (Figures 6A and 6B). Focusing on the lungs, we detected

micrometastases that were targeted by the 6A10 antibody (Fig-

ure 6C, white arrow) and others that were not (Figure 6D, yellow

arrow). Acquiring 3D scans with light-sheet microscopy, we as-

sessed the complete biodistribution of the therapeutic antibody

and micrometastases throughout the mouse body (Figures 6F–

6H; Video S3). The axillary lymph node metastases and the mi-

crometastases in the lungs are shown in Figure 6F. Analyzing

the signal of individual micrometastases and the 6A10 antibody

by light-sheetmicroscopy in 3D, we could evaluate the efficiency

of antibody drug targeting for all themicrometastases (Figure 6G,

white arrows). We also verified the targeting of micrometastases

by the 6A10 antibody in different organs such as lungs and kid-

ney, using confocal microscopy (Figure S7).

Next, we used DeepMACT to systematically assess and quan-

tify the efficiency of antibody drug targeting in full body scans at

the level of single micrometastases (Figure 6I). While overall 77%

of metastases were targeted by the antibody, we found that

significantly more micrometastases were targeted in the lungs

(85%) as compared to the rest of the body (66%) (Figure 6J;

Videos S3 and S4). To further assess the efficiency of drug tar-

geting for micrometastases in the lung versus the rest of the

body, we evaluated the antibody concentration by quantifying

the antibody signal contrast (relative signal strength versus local

surrounding; see STARMethods for details; Figure 6K). Metasta-

ses in the lungs generally tended to have a higher antibody signal

ratio, in line with the higher share of targeted metastases. In

addition, the antibody signal ratio was much more narrowly

distributed compared with micrometastases outside the lungs.

The lower average and wider distribution of antibody signal ratio

in the micrometastases in the rest of the body indicate that there

is a substantially higher variance in the antibody targeting to the

cells of those micrometastases. While some are very strongly

targeted, many others are not targeted at all. The largest quartile

of micrometastases was significantly more likely targeted (88%)

than the smallest quartile (67%) (Figure 6L). We also identified

various off-target binding sites throughout the body (i.e., binding

of the therapeutic antibody to mouse tissues), which is presum-

ably due to unspecific interactions because 6A10 does not bind

to murine CA12 (cyan inset in Figure 6H). Overall, these data

demonstrate that DeepMACT provides a powerful platform to

track the biodistribution of therapeutic antibodies along with mi-

crometastases in mouse bodies. Thus, it represents the first

method that allows quantitative analysis of the efficiency of anti-

body-based drug targeting at the full body scale, with a resolu-

tion down to the level of individual micrometastases.

Exploring Potential Mechanisms of Antibody Drug
Targeting
The above results demonstrated that antibody-based drugs,

which are the basis of many targeted/personalized treatments,

may miss as many as 23% of the micrometastases. Next, we

aimed to explore potential mechanisms that might explain this

failure. We first hypothesized that the efficiency of targeting of

micrometastases might depend on the availability of nearby

blood supply transporting the therapeutic antibody. To explore

if the vascularization of defined tissue regions can have an effect

on antibody drug targeting, we performed lectin labeling of ves-

sels in the lungs, where most of the micrometastases are

located. Analyzing diverse micrometastases of different sizes,

we found that each of them had blood vessels within a distance

of 1–6 mm (Figures 7A and 7B). This distance is smaller than even

a single cell diameter (�10 mm) suggesting that absence of

nearby blood vessels could not be the major reason for the

lack of antibody drug targeting (Tabrizi et al., 2010).

Figure 5. DeepMACT Reliably Detects Metastases in All Organs for a Variety of Tumor Models

Metastasis detections in full-body 3D light-sheet microscopy scans; each dot represents a metastasis, color-coded by organ; black metastasis within organ

outlines are not inside that organ but rather above or below it.

(A) A control mouse was perfused immediately after implantation of a solid tumor (MDA-MB-231; dashed circle), leaving no time for metastases to form.

(B) MCF-7 breast cancer cells were intracardially injected in a nude mouse.

(C) Pancreatic cancer cells (R254) were transplanted into the pancreas (dashed circle) of a C57BL/6 mouse.

(D) H2030-BrM3 lung cancer cells were intracardially injected in a nude mouse.

(E–G) Three NSG mice were intracardially injected of MDA-MB-231 breast cancer cells and sacrificed after 2 days (E), 6 days (F), and 14 days (G).

(H) DeepMACT analysis shows increase in tumor burden over the three time points.

Yellow arrows indicate metastases in bones; the magenta arrow indicates a metastasis in the peritoneum.

See also Figure S5.
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Figure 6. The DeepMACT Pipeline Enables Quantitative Analysis of Drug Delivery Efficacy at the Level of Single Metastases

A mouse transplanted in the mammary fat pad with MDA-MB-231 cells was intravenously injected with 6A10 anti-CA12 antibody 9 weeks later.

(A) Epifluorescence image of a processed mouse.

(B-E) Magnifications of the different areasmarked with white dashed lines in (A), showing details of both tumormetastases (enhanced with Alexa647N nanobody,

shown in magenta) and 6A10 antibody (conjugated with Alexa568, shown in cyan) distributions and their overlay. While most of themicrometastases are targeted

by the antibody (C, white arrowhead), there are some that are not (D, yellow arrowhead).

(F) Full-body 3D light-sheet scan, cropped to the chest region, shows the distributions of metastases (magenta) and antibody (cyan).

(G) Detailed view of the boxed region in (F) showing very small micrometastases targeted by the therapeutic antibody (white arrowheads).

(H) 3D rendering of a mouse body light-sheet scan showing the tumor signal in magenta and the 6A10 antibody signal in cyan (co-localization of the signals is

shown in white). The cyan inset shows an example of off-target accumulation of the 6A10 antibody.

(I) Deep learning-based reconstruction of the animal in (H) showing targeted metastases in green and untargeted metastases in red; the dashed circles represent

the primary tumor and A.L.N metastases.

(J) A significantly higher share of metastases are targeted in the lungs versus the rest of torso (p < 0.001, two-sided t test). Error bars show standard deviations.

(K) Comparison of the distributions of 6A10 antibody signal ratio (signal strength in metastasis versus local surrounding; see the STARMethods for further details)

per metastasis in the lungs versus the rest of torso. The dashed line indicates a ratio of 1 (equal signal strengths).

(L) Share of targeted metastases as a function of their size (split into quartiles of average metastasis diameter; p < 0.001, two-sided t test). Error bars show

standard deviations.

See also Figures S6 and S7 and Videos S3 and S4.
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Next, we hypothesized that the tumormicroenvironment at the

sites ofmetastases could be related to the efficiency of targeting.

If so, we would expect a non-random spatial distribution of tar-

geted and untargeted metastasis on a local scale. To address

this, we turned to DeepMACT and assessed the local clustering

of micrometastases targeted by the antibody. We quantified the

distances between micrometastases and their nearest neighbor

for all micrometastases in the entire body, differentiating be-

tween targeted and untargeted nearest neighbors. The distance

between two neighboring metastases is smaller for two targeted

metastases (�0.8 mm) than for two untargeted or a mixed pair of

an untargeted and a targeted metastasis (consistently at �1.7–

2.0 mm) (Figures 7C and 7D). Importantly, the average distance

from an untargeted to the nearest targeted metastasis is signifi-

cantly larger than from a targeted one. This would not be ex-

pected in a random distribution and indicates a clustering on a

local scale. Thus, these analyses suggest the existence of fac-

tors in tumor microenvironments influencing the efficiency of

antibody drug targeting.

DISCUSSION

Unbiased, comprehensive detection of cancer metastases and

the biodistribution of tumor-targeting therapeutics at the level

of single micrometastases would substantially accelerate pre-

clinical cancer research. Toward this goal, we capitalized on

a powerful tissue clearing and imaging method combined

with deep learning-based analysis, enabling us to visualize

and analyze cancer metastasis in transparent mouse bodies.

The resulting DeepMACT workflow is a straightforward method

for systemic analysis of micrometastases and therapeutic anti-

body drug distribution at the full body scale and with a resolu-

tion down to individual micrometastases within days, a task

that would otherwise take several months to years of human la-

bor. Thus, DeepMACT-based evaluation of entire transparent

mouse bodies instead of selected tissues/organs can foster

the development and translation of new therapies from pre-

clinical research much more efficiently than traditional

methods.

Figure 7. Potential Mechanisms of Metastasis Targeting by Therapeutic Antibody

(A) Confocal images of a large and a small metastasis (<5 cancer cells) in the lungs of a mouse transplanted with MDA-MB-231 cells and intravenously injected

with 6A10 anti-CA12 antibody, labeled with lectin (green) and Hoechst (blue).

(B) Distribution of metastasis size and distance to the nearest vessel, showing that most of the metastases are close to vessels (distance <6 mm; n = 50).

(C) Deep learning-based reconstruction of lung metastases with and without 6A10 antibody targeting.

(D) Deep learning-based quantification of distance between metastases and their nearest neighbor. The average distance from an untargeted to the nearest

targetedmetastasis is significantly (p < 0.001; two-sided t test) larger than from a targeted one; this shows local clustering of targeted and untargetedmetastases

(see the STAR Methods for further details). Error bars show 95% confidence intervalls for the estimation of the mean.
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To further facilitate easy adoption of our technology by diverse

labs, we provide (1) a handbook (Methods S1) with detailed step-

by-step instructions for carrying out the DeepMACT pipeline; (2)

various resource videos and troubleshooting tips; (3) a package

including the trained DeepMACT algorithm and annotated data;

and (4) an online version of the DeepMACT algorithm that can be

executed via any web browser (hosted by the Code Ocean initia-

tive) without downloading any code or installing any software

(links to these resources are provided in STAR Methods).

DeepMACT Technology
Here, we set out to make use of recent technologies that can pro-

vide scalable and unbiased histological assessment of entire bio-

logical specimens. Most full body scale clearing and imaging

studies have so far relied on visualization of endogenous fluores-

cent signal, which is not sufficiently strong to allow imaging and

quantification of metastases in transparent mice (Kubota et al.,

2017; Pan et al., 2016). To overcome this, we adopted the vDISCO

mouse clearing and staining technology, as it can enhance the

fluorescent signal in fixed and cleared tissues by more than 100

times (Cai et al., 2019), ensuring reliable detection of micrometa-

stases. Because vDISCOemploys nanobody enhancement of the

endogenous fluorescent signal, currently up to 21 types of fluo-

rescent proteins can be labeled with available nanobodies. In

addition, conjugation of existing nanobodies with fluorescent

dyes at diverse spectra, including those in the near infrared range

would help to generate more options for multiplex experiments

including imaging of more than one type of fluorescently labeled

cell along with conjugated therapeutic antibodies.

Second, we developed a highly efficient deep learning archi-

tecture based on U-net like CNNs exploiting 2Dmaximum-inten-

sity projections with high SNR to reliably detect metastases in

3D. Deep learning-based detection not only serves the purpose

of automation but also provides a very effective tool in finding

metastases that would be easily overlooked by humans. In our

data, an expert human annotator missed around 29% of all me-

tastases. This is in line with previous studies where human ex-

perts missed 1 in 4 breast cancer metastases in histopathology

(Vestjens et al., 2012), a problem that is further exacerbated if hu-

mans work under time pressure (Ehteshami Bejnordi et al.,

2017). Motivated by this, deep-learning-based approaches for

cancer and metastasis detection have recently started gaining

substantial momentum for various imaging modalities, also

beyond microscopy (Litjens et al., 2016; Liu et al., 2019; Steiner

et al., 2018; Wang et al., 2017).

Here, we used an MDA-MB-231 cancer cell-based tumor

model to train the algorithms. While training deep networks in

generalmay require large training datasets to diversify their appli-

cations, the U-net-like architecture at the core of DeepMACT can

be easily adopted to other cancer models (Bhatia et al., 2019;

Falk et al., 2019; Wang et al., 2018). Indeed, after learning to

detect the characteristic shape and appearance of micrometa-

stases against the background signal, DeepMACT successfully

analyzed 3 additional tumor models we used here without further

training: MCF-7 estrogen receptor positive breast cancer model,

H2030-BrM3 lung cancermodel, and R254 syngeneic pancreatic

cancer model. Therefore, it would require little effort to apply our

algorithms to different types of tumor models. Also, adapting the

algorithm to applications in which, for instance, shape and size

differ substantially from MDA-MB-231 metastases, would not

require training from scratch. Adjusting design parameters such

as the size of subvolumes (see the STAR Methods and the

detailed handbook [Methods S1] for DeepMACT that we provide)

allows the straightforward adaptation of the algorithm to new

data with different SNR, metastasis sizes, or spatial resolution

of the scan. Furthermore, building upon our pre-trained algo-

rithms, which are freely available online, allows retraining the al-

gorithm with substantially less training data.

To ensure high computational efficiency, our approach sol-

ves the three-dimensional task of detecting and segmenting

the metastases by exploiting two-dimensional representations

of the data. This is important because 2D maximum-intensity-

projections increase SNR when there is little background noise

owing to the high specificity of the labels in vDISCO clearing.

3D convolutions are exponentially more expensive in terms of

model complexity (number of parameters) as well as computa-

tional load than 2D convolutions, thus requiring more powerful

computing resources and more data annotated in 3D to train

the algorithm. Importantly, the increased number of parameters

is detrimental to model performance, unless the amount of

training data is further increased. In this study, the 3D CNNs

we tested failed to reach a high level of detection performance

due to limited availability of training data, a common constraint

in practice given the cost associated with annotating data

(especially in 3D). In addition, the more efficient nature of our

approach allows training the entire algorithm on a standard

workstation with an ordinary GPU within a few hours; applying

the trained algorithm to a new dataset takes in the order of

15 min, highlighting the scalability and cost-efficiency of our

pipeline. Thus, the DeepMACT architecture is designed to

enable widespread adoption of our approach by minimizing

data annotation and computing requirements while allowing

for easy adaptation to other experimental setups (such as

different tumor models).

DeepMACT Detection of Micrometastases and Tumor-
Targeting Drugs
Methods such as magnetic resonance imaging (MRI), computed

tomography (CT), and bioluminescence imaging have been

widely used to visualize cancer growth at the primary site and

distant body regions (Condeelis andWeissleder, 2010; Massoud

and Gambhir, 2003, 2007; Ntziachristos, 2010; Pichler et al.,

2008; Timpson et al., 2011). While thesemethods provide crucial

longitudinal information on the size of the primary tumor and

large metastases, they typically can only resolve structures

larger than 75 mm, hence they do not have the resolution to

detect smaller micrometastases consisting of fewer cells.

Unbiased high-throughput mapping of tumor micrometasta-

ses in full body scans of rodents can be a valuable tool to un-

cover the biology behind the dissemination of tumor cells. We

show here that DeepMACT is a powerful pipeline for detecting

and mapping cancer metastases in mouse bodies, allowing

identification of the precise locations of even the smallest

disseminated tumors. Complex analysis, e.g., of the size, loca-

tion, and density of micrometastases could be performed in a

short time throughout the body, without dissecting any
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pre-defined region. In addition to detecting themicrometastases

in the selected organs such as the lungs and liver, we also iden-

tified numerous micrometastases throughout the torso. For the

MDA-MB-231 breast cancer line, we could show that metasta-

ses are present in deep tissues such as the brain or distant

locations such as hindlimb bones as early as 2 days after cardiac

injection. DeepMACT also allowed us to assess important differ-

ences between distinct cancer models in terms of overall meta-

static propensity and organotropism. For example, as expected

from previous reports (Nguyen et al., 2009) the H2030-BrM3 lung

cancer line developed the highest fraction of brain metastases

among all cancermodels tested and alsometastasized to bones.

However, DeepMACT allowed us to comprehensively charac-

terize the distribution of metastases throughout the body,

revealing for instance that this model has a high propensity to

metastasize to lungs, but produces much fewer liver metastases

than any other model tested. The pancreatic tumor, on the other

hand, metastasized neither to the brain nor to the kidneys but

disseminated for instance into the peritoneum—a pattern

observed commonly in human patients as well as in several

different mouse models of the disease (Hingorani et al., 2003;

Lenk et al., 2017; Ryan et al., 2014; Schönhuber et al., 2014).

Overall, we find that our results agree with the existing literature,

but while previous studies were structurally limited to selective

analysis of micrometastases in small tissue samples, the results

shown here represent the first systematic, unbiased, and

comprehensive full-body scale screening for micrometastases

for these cancer models.

While precise assessment of therapeutic antibody bio-

distribution is critical for evaluating its specificity and utility for tu-

mor treatment, there has been nomethod so far that can provide

such information down to the level of individual micrometastases

on full body scale scans. Here, we applied DeepMACT to study

not only the distribution of single metastases but also of a ther-

apeutic monoclonal antibody. We demonstrated that the on-

target and off-target binding of antibody drugs throughout the

body can readily be assessed by DeepMACT. For example, we

observed that not all micrometastases in the lungs were targeted

by the anti-CA12 therapeutic antibody 6A10. Understanding why

antibody-based therapeutics do not target all metastases would

be important for developing more effective treatments. Toward

this goal, we studied the potential mechanisms that could

contribute to the lack of targeting. Vascular staining demon-

strated that blood vessels were present in the immediate vicinity

of all examined metastases in the lungs, suggesting that insuffi-

cient vascularization is unlikely to be a common cause for the

failure of antibody drug targeting in this model. Interestingly,

DeepMACT analysis found that micrometastases located in

close proximity are more likely to be targeted. This suggests

that the local microenvironment within metastatic niches plays

an important role in determining the efficiency of antibody target-

ing, e.g., by altering antibody penetration, binding affinity and

clearance. Furthermore, heterogeneity of antigen expression

on the surface of tumor cells and internalization and degradation

of antigen/antibody complexes might also affect therapeutic

antibody targeting efficiency. While our findings are based on

one therapeutic antibody, they nevertheless highlight a potential

use case for applying the DeepMACT pipeline in pre-clinical

studies aimed at understanding and improving the specificity

and efficacy of tumor treatments.

In conclusion, DeepMACT is a powerful technology combining

unbiased full body scale imaging with automated analysis. It

enables visualization, quantification, and analysis of tumor mi-

crometastases and antibody-based therapies in mice with high

resolution and an accuracy equivalent to that of human experts

but speeding up the workflow by orders of magnitude compared

to traditional methods. Because this technology is time- and

cost-efficient, scalable, and easily adoptable, it can be used to

study metastasis and optimize antibody-based drug targeting

in diverse tumor models.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human carbonic anhydrase (CA) XII-specific

antibody (6A10)

Battke et al., 2011 https://doi.org/10.1007/s00262-011-0980-z

Anti-Firefly Luciferase antibody Abcam ab21176; RRID:AB_446076

AlexaFluor 488 goat anti-rabbit IgG antibody Life Technologies A11034; RRID:AB_2576217

Chemicals, Peptides, and Recombinant Proteins

Phosphate Buffer Saline containing Heparin Ratiopharm GmbH N68542.03

4% paraformaldehyde (PFA) Morphisto 11762.01000

CUBIC reagent – urea Carl Roth 3941.3

CUBIC reagent – Ethylenediamine Sigma-Aldrich 122262

CUBIC reagent – Triton X-1000 AppliChem A4975,1000

EDTA Carl Roth 1702922685

Sodium hydroxide Sigma-Aldrich 71687

Goat serum GIBCO 16210072

Bovine Serum Albumin Sigma-Aldrich A7906

Methyl-beta-Cyclodextrin Sigma-Aldrich 332615

trans-1-Acetyl-4-hydroxy-L-proline Sigma-Aldrich 441562

Sodium azide Sigma-Aldrich 71290

DISCO solution – tert-butanol Carl Roth AE16.3

DISCO solution – Tetrahydrofuran Sigma-Aldrich 186562

DISCO solution – Dichloromethane Sigma-Aldrich 270997

DISCO solution – Benzyl alcohol Sigma-Aldrich 24122

DISCO solution – Benzyl benzoate Sigma-Aldrich W213802

Diphenyl ether Alfa Aesar A15791

Vitamin E (DL-alpha-tocopherol) Alfa Aesar A17039

Atto647N conjugated anti-RFP/mCherry nanobody Chromotek rba647n-100; RRID:AB_2631440

Atto594 conjugated anti-RFP/mCherry nanobody Chromotek rba594-100; RRID:AB_2631390

Atto647N conjugated anti-GFP nanobody Chromotek gba647n-100; RRID:AB_2629215

Hoechst 33342 Thermo Fisher Scientific 21492H

Propidium iodide Sigma-Aldrich P4864

Gelatin Sigma-Aldrich G2500

Alexa 488 conjugated Lectin Invitrogen W11261

Fluorescent mounting medium Dako 10097416

RPMI 1640 medium GIBCO 11875093

Deposited Data

Raw data and data labels for DeepMACT This paper http://discotechnologies.org/DeepMACT/

Experimental Models: Cell Lines

Human: MDA-MB-231 breast cancer cells von Neubeck et al., 2018 https://doi.org/10.1002/ijc.31607

Human: MCF-7 ATCC ATCC HTB-22

Human: H2030-BrM3 Nguyen et al., 2009 https://doi.org/10.1016/j.cell.2009.04.030

Murine: R254 von Burstin et al., 2008 https://doi.org/10.1002/ijc.23780

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ali Ertürk (erturk@

helmholtz-muenchen.de). The lab protocol as well as the algorithms and data for the DeepMACT pipeline are freely available and

have been deposited to http://discotechnologies.org/DeepMACT/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Spontaneous breast cancer metastasis model
Female NSG (NOD/SCID/IL2 receptor gamma chain knockout) mice were obtained from Jackson Laboratory and housed at the an-

imal facility of the Helmholtz Center Munich and the Institute of Stroke and Dementia research Munich. All animal experiments were

conducted according to institutional guidelines of the Ludwig Maximilian University of Munich and Helmholtz Center Munich after

approval of the Ethical Review Board of the Government of Upper Bavaria (Regierung von Oberbayern, Munich, Germany). MDA-

MB-231 breast cancer cells transduced with a lentivirus expressing mCherry and enhanced firefly luciferase (Vick et al., 2015)

were counted, filtered through a 100 mm filter and resuspended in RPMI 1640 medium (GIBCO, 11875093). 2x106 cells per mouse

were injected transdermally in a volume of 50 ml into the 4th left mammary fat pad of 3-4 months old female NSG mice. For the intra-

cardial injection model used for the time-course study, 1x105 cells per mouse were injected in a volume of 100 ml PBS into the left

ventricle of female NSG mice as described before (Campbell et al., 2012). In brief, the mice were anesthetized using an isoflurane

vaporizer and placed ventral side up on a heating pad to keep the body temperature around 37�C. Then the chest area was shaved

and cleaned by 70% ethanol. The midway point between top of xiphoid process and the sternal notch was marked and the injection

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

NOD/SCID/IL2 receptor gamma chain (NSG) knockout

mouse line: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

Jackson Laboratory 005557

NMRI nude mouse line: Rj:NMRI-Foxn1nu/nu Janvier Labs NMRI-nu

C57BL/6J mouse line Jackson Laboratory 000664

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

AxioZoom EMS3 software Carl Zeiss AG https://www.zeiss.com/microscopy/int/products/stereo-

zoom-microscopes/axio-zoom-v16.html#downloads

Living Image software 4.2 Caliper Life Sciences https://www.perkinelmer.com/lab-products-and-services/

resources/in-vivo-imaging-software-downloads.html

Photoshop CS6 Adobe https://www.adobe.com/products/photoshop.html

ImSpector Aberrior/LaVision https://www.lavisionbiotec.com/

Amira FEI Visualization

Sciences Group

http://www.vsg3d.com/

Imaris Bitplane AG https://imaris.oxinst.com/

Vision4D Arivis https://www.arivis.com/de/imaging-science/arivis-vision4d

Python Anaconda distribution Anaconda https://www.anaconda.com/distribution/

Scipy package for Python Jones et al., 2001 https://www.scipy.org

Seaborn package for Python Waskom, 2012 https://seaborn.pydata.org/

PyTorch deep learning framework for Python Paszke, 2016 https://pytorch.org/

Cuda NVIDIA https://developer.nvidia.com/cuda-downloads

CuDNN NVIDIA https://developer.nvidia.com/cudnn

DeepMACT algorithm This paper http://discotechnologies.org/DeepMACT/

Other

Online demonstration (‘‘compute capsule’’ on

CodeOcean.com) of DeepMACT

This paper https://codeocean.com/capsule/

8c13691f-7f9a-4af4-8522-c26f581c9e83/tree?

ID=a8ba18d2bf5046b08fafe2d6a42bfd7a

Resource website for DeepMACT This paper http://discotechnologies.org/DeepMACT/

Resource website for DISCO clearing Cai et al., 2019 http://discotechnologies.org/vDISCO/
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point slightly on the left (anatomical) side of sternum was defined. Finally, the injection was conducted by a 0.5 mL insulin syringe

(B.Braun, Omnican 50, U100 Insulin 0.5 mL / 50 I.U, 30G x ½’’, 9151125) with a bright red blood pulse back in the syringe as a suc-

cessful sign. After injection, gentle pressure around the injection site was applied to prevent inner bleeding and the mice were kept in

a recovery chamber (Mediheat, 34-0516) at 30�C until they fully recovered from the anesthesia.

Tumor growth was monitored by bioluminescence measurement (photons/second) of the full body using an IVIS Lumina II Imaging

System (Caliper Life Sciences) as described (Vick et al., 2015). Briefly, mice were anesthetized with isoflurane, fixed in the imaging

chamber and imaged 15 minutes after Luciferin injection (150 mg/kg; i.p.). Bioluminescence signal was quantified using the Living

Image software 4.2 (Caliper Life Sciences).

Estrogen positive breast cancer model and brain metastatic lung cancer model
Animal experiments were approved by the veterinary department of the regional council in Darmstadt, Hesse, Germany. Xenograft

transplantations were performed in athymic 5-6 week old female NMRI nu/nu mice (Janvier Labs) that were kept in a specific path-

ogen-free animal facility according to the institutional guidelines of the University of Giessen and University of Frankfurt. Intracardial

injections were performed as described before (Sevenich et al., 2014). In brief, prior to the tumor cell injection, subconfluent cells,

lentivirally transduced with a construct expressing mCherry and enhanced firefly luciferase, were harvested and kept on ice in sterile

PBS until the inoculation. Mice were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine and the depth of anesthesia was

confirmed by the absence of toe reflexes. The chest was sterilized using 70% ethanol and 1x105 MCF-7 cells, or 5x104 H2030-BrM3

in a total volume of 100 ml PBSwere injected stepwise into the left cardiac ventricle using a 26G needle. Success of the injections was

monitored by pulsating reflux of arterial blood into the syringe. Metastatic growth wasmonitored by in vivo bioluminescence using an

IVIS Lumina II Imaging System 5 minutes after an intraperitoneal injection of 150 mg/kg luciferin.

Pancreatic cancer model
Immunocompetent (wild-type C57BL/6) mice were housed at the animal facility of the Klinikum rechts der Isar of TUM. All animal

studies were conducted in compliance with European guidelines for the care and use of laboratory animals and were approved

by the Institutional Animal Care and Use Committees (IACUC) of Technische Universität München, Regierung von Oberbayern

and UK Home Office. The low passaged primary pancreatic cancer cell line R254, derived from a genetically engineered KPCmouse

(LSL-KrasG12D/+;LSL-Trp53R172H/+;Ptf1aCre/+) on a C57BL/6 background as described previously (Eser et al., 2013; von Burstin

et al., 2009; von Burstin et al., 2008), was transducedwith lentiviral particles expressing EGFP and Firefly Luciferase. 2.5x103 cells per

mouse in 20 ml Dulbecco’s modified Eagle medium were implanted orthotopically into the pancreas of 2-3 months old male mice.

Tumor growth was monitored by bioluminescence measurement of the entire body. In brief, mice were anesthetized with midazo-

lam/medetomidine/fentanyl, injected with D-luciferin (Synchem, Kassel, Germany) at 150 mg/kg intraperitoneally (IP) and imaged

after 10minutes using a cooled back-thinned, charge-coupled device camera (OrcaII ER, Hamamatsu, Herrsching, Germany) equip-

ped with an image intensifier for 10-120 s; bin size, 2; gain, 700. A photographic grayscale image was taken, and the bioluminescent

signals were displayed in pseudocolors and projected on the grayscale image using SimplePCI software (Hamamatsu).

Injection of therapeutic antibody
9 weeks after tumor cell injections, one mouse was randomly chosen for different experimental procedures including injection of a

human carbonic anhydrase (CA) XII-specific antibody (6A10) (Battke et al., 2011). In brief, 20 mg of 6A10 antibody conjugated with

Alexa-568 was injected into the tail vein of the mouse. 48 hours later, the mouse was perfused for vDISCO pipeline including

enhancing endogenous mCherry fluorescence and clearing as described in the Method Details section.

METHOD DETAILS

Perfusion and tissue preparation
The mice were deeply anesthetized using a combination of midazolam, medetomidine and fentanyl (MMF) (1ml/100 g of body mass

for mice; i.p.). Then, the chest cavity of the animals were opened for the standard intracardial perfusion with heparinized 0.01 M PBS

(10-25U/ml of Heparin as final concentration, Ratiopharm, N68542.03; 100-125mmHg pressure using a Leica PerfusionOne system)

for 5-10 minutes at room temperature until the blood was washed out, followed by 4% paraformaldehyde (PFA) in 0.01 M PBS

(pH 7.4) (Morphisto, 11762.01000) for 10-20 minutes. The skin was carefully removed and the mouse bodies were postfixed in

4% PFA for 1 day at 4�C and transferred to 0.01 M PBS.

Tissue clearing and staining
uDISCO mouse body clearing

The uDISCO protocol to clear bodies of mice was described previously (Pan et al., 2016). In brief, a transcardial-circulatory system

was established involving a peristaltic pump (ISMATEC, REGLO Digital MS-4/8 ISM 834; reference tubing, SC0266). Two channels

from the pump were set for the circulation through the heart into the vasculature: the first channel pumped the clearing solution into

themouse body and the second channel collected the solution exiting themouse body and recirculated the solution back to the orig-

inal bottle. For the outflow tubing of the first channel, which injected the solution into the heart, the tip of a syringe (cut from a 1 mL
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syringe-Braun, 9166017V) was used to connect the perfusion needle (Leica, 39471024) to the tubing. Meanwhile, the inflow tubing of

the second channel, which recirculated the clearing solutions, was fixed to the glass chamber containing the mouse body. The

amount of solutions for circulation depended on the capacity of the clearing glass chamber. For example, if the maximum volume

of glass chamber is 400 ml, 300 mL of volume of solution was used for circulation.

All clearing steps were performed in a fume hood. First, the mouse body was put in a glass chamber and the perfusion needle was

inserted into the heart through the same hole that was used for PFA perfusion. Then, after covering the chamber with aluminum foil

the transcardial circulation was started with a pressure of 230 mmHg (60 rpm on the ISMATEC pump). The mouse bodies were

perfused for 6 hours with the following gradient of tert-butanol (Carl Roth, AE16.3): 30 Vol%, 50 Vol%, 70 Vol%, 90 Vol% (in distilled

water),100 Vol% twice, and finally with the refractive index matching solution BABB-D4 containing 4 parts BABB (benzyl alcohol +

benzyl benzoate 1:2, Sigma, 24122 and W213802), 1 part diphenyl ether (DPE) (Alfa Aesar, A15791) and 0.4% Vol vitamin E (DL-

alpha-tocopherol, Alfa Aesar, A17039), for at least 6 hours until achieving transparency of the bodies. As the melting point of tert-

butanol is between 23 to 26�C, a heating mat set at 35-40�Cwas used for the two rounds of 100% tert-butanol circulation to prevent

the solution from solidifying.

vDISCO mouse body immunostaining and clearing

The detailed protocol of vDISCOwas described previously (Cai et al., 2019). The following nanobodies and dyeswere used formouse

body immunostaining: Atto647N conjugated anti-RFP/mCherry signal-enhancing nanobodies (Chromotek, rba647n-100), Atto594

conjugated anti-RFP/mCherry signal-enhancing nanobodies (Chromotek, rba594-100), Atto647N conjugated anti-GFP signal-

enhancing nanobodies (Chromotek, gba647n-100), Hoechst 33342 (Thermo Fisher Scientific, 21492H), Propidium iodide (PI, Sigma,

P4864). Please note that different batch of nanoboosters coming from different companies can have different penetration and sta-

bility performances. Please check http://www.discotechnologies.org/vDISCO/ for updates on which nanoboosters to use.

To perform the mouse body immunolabeling, a simplified transcardial-circulatory system using the same type of peristaltic pump

was established (ISMATEC, REGLO Digital MS-4/8 ISM 834; reference tubing, SC0266). In short, one reference tubing was con-

nected by two connectors (Omnilab, 5434482) from both ends and extended by additional PVC tubing (Omnilab, 5437920). The

head part from a 1 mL syringe (Braun, 9166017V) was cut and inserted into the outflow PVC tubing as a connector for the perfusion

needle (Leica, 39471024). Next, a PBS perfused and PFA fixed mouse body was placed into a 250 mL glass chamber (Omnilab,

5163279) and 200 mL of 0.01 M PBS was filled immediately into the chamber. Note that the sample will be kept in the same chamber

through the entire immunolabeling and clearing process, it should be always embedded in the respective solutions till the moment of

imaging. Then, the inflow tubing of the transcardial-circulatory systemwas fixed underneath the surface of PBS in the glass chamber

using adhesive tape and the pumping circulation was started until the air bubbles were completely removed from the tubing system.

The mouse body decolorization, decalcification and immunolabeling steps were conducted subsequently after inserting and fixing

the perfusion needle into the heart of the sample through the same pinhole made during sample preparation.

In general, the animals were first perfusedwith decolorization solution for 2-3 days at room temperature to remove remaining heme

and blood before immunostaining. The decolorization solutionwhich is a 1:4 dilution of CUBIC reagent 1 (Susaki et al., 2014) in 0.01M

PBS was refreshed twice during the decolorization step. CUBIC reagent 1 was prepared as a mixture of 25 wt% N,N,N,N’-tetrakis

(2-hydroxypropyl) ethylenediamine (Sigma-Aldrich, 122262), 25wt%urea (Carl Roth, 3941.3) and15wt%Triton X-100 in 0.01MPBS,

as described in the original publication. Next, after washing with 0.01 M PBS for 3 hours 3 times, the samples were perfused with the

decalcification solution (10 wt/vol% EDTA in 0.01 M PBS, pH to 8–9, Carl Roth, 1702922685) for 2 days and for 1 more day with per-

meabilization solution containing 0.5% Triton X-100, 1.5% goat serum (GIBCO, 16210072), 0.5 mM of Methyl-beta-cyclodextrin

(Sigma, 332615), 0.2% trans-1-Acetyl-4-hydroxy-L-proline (Sigma, 441562), 0.05% sodium azide (Sigma, 71290) in 0.01 M PBS.

Before the immunostaining step, additional 0,22 mm syringe filters (Sartorius 16532) were attached to the inflow tubing to prevent

the potential accumulation of nanobody aggregates and high pressure pumping at 160–230 mmHg (45–60 rpm) was maintained

through the entire labeling process. Then the immunostaining solution was prepared as a mixture of permeabilization solution and

35 ml of nanobody (stock concentration 0.5 – 1 mg/ml), 10 mg/ml Hoechst or 300 ml of propidium iodide (stock concentration

1mg/ml) and filtered by the same 0,22 mm syringe filter before use. Subsequently the animals were perfused for 5-6 days with

200 mL of immunostaining solution at room temperature and further passively labeled in the same staining solution with extra

5 mL of signal-enhancing nanobody with gentle shaking for 2 days at 37�C or at room temperature. Then the mice were connected

back to the circulation system and perfused with washing solution (1.5% goat serum, 0.5% Triton X-100, 0.05% of sodium azide in

0.01 M PBS) for 12 hours twice at room temperature and at the end with 0.01 M PBS for 3 hours 3 times at room temperature.

After completing the mouse body immunolabeling step, the mouse bodies were passively cleared using 3DISCO (Ertürk et al.,

2012) at room temperature with gentle shaking (IKA, 2D digital) under a fume hood. For dehydration, the mouse bodies were incu-

bated in 200 mL of the gradient tetrahydrofuran (THF, Sigma, 186562) in distilled water (6-12 hours for each step): 50 Vol% THF, 70

Vol% THF, 80 Vol% THF, 100 Vol% THF and again 100 Vol% THF; then the mouse bodies were incubated for 3 hours in dichloro-

methane (Sigma, 270997), and finally in BABB until the tissue were rendered completely transparent. During all clearing steps, the

glass chamber was sealed with parafilm and covered by aluminum foil to prevent extra solution evaporation and fluorescence

quenching. For details, see also the step-by-step handbook (Methods S1).

Rehydration and immunostaining of cleared tissue

Anti-Firefly Luciferase (dilution 1:2000, Abcam, ab21176) and AlexaFluor 488 goat anti-rabbit IgG (H+L) (dilution 1:400, Life Technol-

ogies, A11034) were used to verify the specificity of anti-RFP/mCherry signal-enhancing nanobody labeling. After identification of
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metastases in the lungs of vDISCO-processed mice, lung tissue was dissected and rehydrated by applying the reverse gradient of

tert-butanol used for uDISCO clearing, as follows (6 hours each at 37�C with gentle shaking): 100 Vol% twice, 90 Vol%, 70 Vol%, 50

Vol%, 30 Vol% and 0.01 M PBS twice at room temperature. Rehydrated samples were cut into 1 mm sections using a vibratome

(Leica, VT1200S) and were incubated in 0.01 M PBS containing 0.2% gelatin (Sigma, G2500), 0.5% Triton X-100, 0.05% sodium

azide and 5% normal goat serum for 1 day at 37�C. The sections were then incubated with the primary antibodies diluted in the

same solution overnight at 37�C, washed twice in PBS at room temperature, incubated with secondary antibodies diluted in the

same solution for 4 hours at 37�C and at the end washed in PBS three times at room temperature (related to Figure S2B).

Lectin vasculature labeling in lung tissue

The bodies of mice were perfused and collected as described above. After checking with epifluorescence stereomicroscopy (Zeiss

AxioZoom EMS3/SyCoP3), the lung lobes with multiple metastases were dissected and sliced into 20 mm thick tissue sections by

using a cryostat (Leica, CM3050S). The lung sections were washes 2 times with 0.01 M PBS and then incubated in Alexa 488 con-

jugated Lectin (4 mg/ml, Invitrogen, W11261) at 4�C overnight. The sections were then stained with Hoechst 33342 (10 mg/ml, Thermo

Fisher Scientific, 21492H) for 5 minutes at room temperature to visualize the nucleus. After washing 2 times with PBS, the slides were

mounted with fluorescent mounting medium (Dako, 10097416) and were ready for confocal microscopy (related to Figure 7A).

mCherry signal enhancement in lung tissue

20 mm thick lung tissue sections were washed with 0.01 M PBS 2 times before starting the enhancement process. One-hour incu-

bation in blocking solution containing 1% Bovine Serum Albumin (Sigma, A7906), 2% goat serum (GIBCO, 16210-072), 0.1% Triton

X-100 and 0.05% Tween 20 (Bio-Rad, 161-0781) in PBS, was performed at room temperature. Then the staining solution was pre-

pared in 1%Bovine Serum Albumin and 0.5% Triton X-100 in PBS. Atto647N conjugated anti-RFP/mCherry signal-enhancing nano-

bodies was diluted 1:500 in the staining solution and the lungs sections were incubated overnight at 4�C. After the treatment with

nanobodies, the lungs sections were washed 3 times with PBS for 5 minutes with gentle shaking. After nuclear staining by Hoechst

33342 (10 mg/ml) and post wash with PBS as described before, the slides were mounted with fluorescence mounting medium and

were ready for confocal microscopy (related to Figure S2C).

Image acquisition
Epifluorescence stereomicroscopy imaging

Cleared mouse bodies were fixed in the original clearing chamber and were imaged with Zeiss AxioZoom EMS3/SyCoP3

fluorescence stereomicroscope using a 1x long working distance air objective lens (Plan Z 1x, 0.25 NA, Working distance

(WD) = 56 mm). The magnification was set as 7x and imaging areas were selected manually to cover the entire mouse bodies.

The images were taken with GFP, RFP and Cy5 filters and files were exported as RGB images in JPEG format. For high resolution

imaging of individual metastasis, higher zoom factor can be applied up to 112x.

Light-sheet microscopy imaging

Single plane illumination (light-sheet) image stacks were acquired using an Ultramicroscope II (LaVision BioTec), allowing an axial

resolution of 4 mm. For low magnification full-body screening of tumor and antibody signals we used a 1x Olympus air objective

(Olympus MV PLAPO 1x/0.25 NA [WD = 65 mm]) coupled to an Olympus MVX10 zoom body, which provides zoom-out and -in

ranging from 0.63x up to 6.3x. Using 1x objective, we imaged a field of view of 2 3 2.5 cm, covering the entire width of the mouse

body. Tile scans with 60% overlap along the longitudinal y axis of the mouse body were obtained from ventral and dorsal surfaces up

to 13mm in depth, covering the entire volume of the body using a z-step of 10 mm. Exposure timewas 150ms, laser power was 3 to 4

mW (70% to 95% of the power level) and the light-sheet width was kept at maximum. Alternatively, the mouse bodies were scanned

with a dipping 1.1x objective (LaVision BioTec MI PLAN 1.1x/0.1 NA [WD = 17 mm]) coupled with an Olympus revolving zoom body

unit (U-TVCAC). In brief, 3x8 tile scanswith 25%overlap were obtained fromboth sides to 11mm in depth, covering the entire volume

of the body using a z-step of 6 mm. Light-sheet width was set at 80% and exposure time was 80 ms. The laser power was adjusted

depending on the intensity of the fluorescent signal to avoid reaching saturation. For themouse displayed in Figure 6H, the lower part

of the jaw was removed to fit the mouse head into imaging chamber; this was not the case for any other mouse presented in

this study.

After low magnification imaging of the full scale mouse body, organs (including lungs, liver, kidneys, brain, spleen, intestines and

bones) were imaged individually using high magnification objectives (Olympus XLFLUOR 4x corrected/0.28 NA [WD = 10 mm],

LaVision BioTec MI PLAN 12x/0.53 NA [WD = 10 mm] and Zeiss 20x Clr Plan-Neofluar/0.1 NA [WD = 4 mm]) coupled to an Olympus

revolving zoom body unit (U-TVCAC) kept at 1x. High magnification tile scans were acquired using 20% overlap and the light-sheet

width was reduced to obtain maximum illumination in the field of view. For the data used for the comparison of signal profile plots of

lungmetastases taken in red and far-red channels and for the analysis of endogenous fluorescence signal depletion after the uDISCO

protocol, we used the sameMVX10 zoom body, coupled this time with a 2x objective (Olympus MVPLAPO2XC/0.5 NA [WD = 6mm])

at zoom body magnification 6.3x and 2.5x respectively.

Confocal microscopy imaging

For imaging the thick cleared specimens such as dissected tissues, pieces of organs or whole organs were placed on 35 mm glass

bottom Petri dishes (MatTek, P35G-0-14-C), then the samples were covered with one or two drops of the refractive index matching

solution such as BABB or BABB-D4. Sealing of this mounting chamber was not necessary. The samples were imaged with an in-

verted laser-scanning confocal microscopy system (Zeiss, LSM 880) using a 40x oil immersion lens (Zeiss, EC Plan-Neofluar
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40x/1.30 Oil DIC M27) and a 25x water immersion long-working distance objective lens (Leica, NA 0.95, WD = 2.5 mm), the latter one

was mounted on a custom mounting thread. The z-step size was 1-2.5 mm. For imaging the lung tissue sections with Lectin staining,

with nanobodies or with Anti-Firefly Luciferase staining, the slides were imaged with the same inverted laser-scanning confocal mi-

croscopy system with a z-step size of 2 mm.

Reconstructions of full-body scans

For epifluorescence microscopy reconstructions (2D montage of entire mouse), the collected images were stitched semi-automat-

ically using Adobe Photoshop photomerge function. After saving the stitched images as TIFF or JPEG files, the signal from individual

imaging channels can be extracted by using Split Channels function in ImageJ.

For light-sheet microscopy reconstructions (3D montage of entire mouse), the image stacks were acquired and saved by

ImSpector (LaVision BioTec GmbH) as 16-bit grayscale TIFF images for each channel separately. The stacks were first stitched

with Fiji (ImageJ2) and fused together with Vision4D (Arivis AG). For details, see also the step-by-step handbook (Methods S1).

Further image processing was done mostly in Fiji: first, the autofluorescence channel (imaged in 488 excitation) was equalized for

a general outline of the mouse body. The organs were segmented manually by defining the regions of interests (ROIs). Data visual-

ization was done with Amira (FEI Visualization Sciences Group), Imaris (Bitplane AG), Vision4D in both volumetric and maximum in-

tensity projection color mapping.

QUANTIFICATION AND STATISTICAL ANALYSIS

General data processing
All data processing after image volume reconstruction was performed in Python using custom scripts based on publicly available

standard packages comprising SciPy (Jones et al., 2001), Seaborn (Waskom, 2012), and Pandas (McKinney, 2008). Deep Learning

models were built using the PyTorch framework (Paszke, 2016). Since a single full body scan is in the order of several terabytes due to

its high resolution (the data used for training had a voxel size of (10mm)3), the volumewas divided into 1176 subvolumes of (350px)3 (or

(3.5mm)3) to enable efficient processing. Subvolumeswere overlapping by 50px to ensure any givenmetastasis is fully captured by at

least one subvolume to avoid artifacts of divided metastases at subvolume interfaces. Please note that the size and overlap of

subvolumes are design choices that allow easy adaptation to different datasets, e.g., with different SNR, metastasis sizes, or spatial

resolution of the scan. Final analyses were conducted on the re-assembled full volume whereby reconcatenation ruled out any dou-

ble-counting at previously overlapping subvolumes.

Data annotation by human experts
To provide ground truth in the form of a commonly agreed upon reference annotation for training, as well as for evaluation of the al-

gorithms developed, full body scans of twomice (withMDA-MB-231 tumor cells transplanted in themammary fat pad) weremanually

annotated by a group of human experts. This manual process was augmented with a set of tools to reduce the total workload from an

estimated total duration of several months down to 150 person-hours net annotation time.

Automatic annotation with fixed filter kernel
To avoid starting from scratch to annotate two volumes of several thousand z-slices, an automatic detection and segmentation

method was applied to provide a basis for manual correction. Due to the insufficient performance of established methods (in this

case: the 3D Object Detector for ImageJ; Bolte and Cordelières, 2006), we developed a custom-made filter based detector tailored

to the specifics of this dataset. In brief, we handcrafted a spatial filter kernel optimized to detect the most common metastases and

applied it with 3D convolutions to the dataset; subsequent binarization and connected-component analysis yielded seed points collo-

cated with metastases. This allowed for further analyses of the immediate local neighborhood of these candidate regions; a local 3D

segmentation was derived by selective region growing around these seed points based on the local signal intensity distribution up to

a mean foreground signal limited to 4 standard deviations above the mean signal in the local surrounding. Finally, obvious false pos-

itives were filtered out. Together, this approach generated a first proposal for the data annotation that at least captured the most

obviousmetastases while producing an acceptable rate of false positives. As shown in the results section, the quality of this proposal

was about twice as good as compared to the 3D Object Detector in ImageJ (35% instead of 18% in F1-score). Importantly, further

fine-tuning of filters and parameters and any additional automated pre- or post-processing did not improve the results, indicating that

a F1-score of 35%may be close to the performance limit of such approaches with fixed filter kernels and fixed decision rules for such

kind of data.

Manual annotation correction by human experts
This first proposal served as a basis for human annotation. In general, three kinds of manual correction were needed to derive a good

annotation: removal of false positives, addition of false negatives (previously missed metastases) and adjustment of the 3D segmen-

tation of eachmetastasis. To avoid the need to perform this task individually for each of the 350 layers of a (350px)3 data subvolume, a

custom tool with an interactive graphical user interface was developed. Based on maximum intensity projections along each dimen-

sion, the tool allowed to review, adjust, add, and remove each potential metastasis in the subvolume with a few mouse clicks,
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drastically speeding up the annotation process from hours to minutes per subvolume. Different perspectives (X, Y, Z) and viewing

modes (e.g., projections, orthogonal slices, adjusted contrasts, 3D renderings) for each individual metastasis allowed the annotator

to take maximally informed decisions even in less obvious cases.

Refinement of annotation to ground truth
A small fraction (3%) of the entire dataset was labeled several times by the annotators without their awareness to assess human la-

beling consistency. Since the difference in annotation for a given subvolume between two trials of a single annotator was about as big

as between two independent annotators and quite substantial (the agreement between two trials of the same annotator or between

annotators only reached an F1-score of 80%–85%) we decided to invest additional time to refine the entire dataset. First, all experts

(3 graduate students with extensive experience in the field of imaging and tumor biology) jointly discussed examples of annotation

differences to build a common understanding. Annotations of subvolumes with the biggest discrepancies were again reviewed and

refined. Furthermore, this analysis revealed that themost prevalent source of annotation error was overlookedmetastases (false neg-

atives). Here, around 29% of metastases were missed in the human annotation, in line with previous studies (Ehteshami Bejnordi

et al., 2017; Vestjens et al., 2012). To effectively identify all missed metastases in the entire dataset, our deep learning algorithm

(see next section) was trained on the status quo of the annotations and applied to the dataset with high sensitivity. This yielded a

long list of potential candidates. With the help of another custom-built, interactive graphical user interface, all potential candidates

were manually reviewed by the annotators and either discarded or manually adjusted and added to the segmentation (this is the

manual refinement step referred to in Figures 3D and 3E). A small set of potential metastases, for which human annotators could

not take a conclusive decision even after joint discussion, was recorded separately, but not added to the segmentation. These labo-

rious steps ensured the generation of a high-quality ground truth for training the algorithm and, importantly, for evaluating its perfor-

mance in comparison to a single human annotator. Here, this selectively iterative approach of refining annotations based on the input

of several human experts was chosen due to the substantial amount of manual work involved with reviewing our high-resolution

scans. Since a full review of one person takes about a month of full-time work, repeating this process several times would be desir-

able but too costly. In applications where several, independent full annotations are available, advancedmathematical frameworks for

refining decisions from different experts to a single decision can be applied in order to avoid a bias toward individual decisions (Ma-

vandadi et al., 2012a, 2012b).

Deep learning for metastasis detection
Implementation of DeepMACT model architecture

Inspired by the established U-net architecture (Ronneberger et al., 2015), we designed a deep learning approach that is depicted in

Figure 3A and briefly described in the results section. The architecture of the CNN at its core (Figure 3C) is characterized by an en-

coding downward path and a decoding upward path comprising a total of 7 levels, in which each level also has a lateral skip-connec-

tion that bypasses the deeper levels and feeds the output of the encoding unit directly to the corresponding decoding unit. Each

encoding unit increases the number of feature channels per pixel with the help of two kernel-based convolutions (kernel size: 3;

padding: 1; dilation: 1; stride: 1) followed by batch normalization and a rectifying linear unit (ReLU). While the first convolutional

step increases the number of feature channels, this number stays constant for the second convolutional step. Before being passed

on to the next encoding stage, the spatial resolution is halved using max-pooling (kernel size: 2, stride: 2). Decoding units take two

inputs: the output from the previous layer is spatially upsampled by a factor of two (bilinearly) and concatenated along the feature

dimension with the output of the corresponding encoding unit, bypassing the deeper levels. A first convolutional step (same param-

eters as before) decreases the number of feature channels, which is again kept constant in the two subsequent convolutions. The

24-feature channel output of the last decoder is mapped to logits in the 2D space with a convolutional step without padding, batch

normalization, or a rectifying linear unit.

Implementations of customized 3D U-net

To compare the DeepMACT approach with CNNs that operate on volumetric data with 3D convolutions, we implemented several

customized versions of 3D U-nets (Çiçek et al., 2016). In this alternative approach, the volumetric data is directly fed to the network

(instead of projections) to predict a 3D probability volume (without reconstruction from 2D predictions). While following the overall

architectural approach of the DeepMACT implementation, we replaced 2D with 3D convolutional operators. We implemented a va-

riety of derivations by changing the total number of levels of en- and decoding units and thus, the maximum number of feature chan-

nels, which both drivemodel complexity in terms of number of parameters. The best-performing implementation consisted of 3 levels

of en- and decoding units with a maximum number of feature channels of 48; the corresponding performance values are reported in

Figures 3D and 3E (leaner or more complex models yielded comparable or lower performance). All other parameters and procedures

(e.g., for training and testing) are identical to the DeepMACT implementation.

Training, validation, and test sets

Following established standards, model training and evaluation was based on k-fold cross-validation (k = 5). Thus, the annotated

dataset was split into mutually exclusive sets for training and validation (80%) and for testing (20%). This process was repeated

k times, yielding a total of 5 mutually exclusive test sets that are collectively exhaustive. The network weights and all design choices

and hyperparameters (such as batch size, learning rate, etc) were optimized solely with the training and validation set to avoid
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overfitting on the specifics of the test set. The dataset was confined to subvolumeswithin the torso of themouse body as subvolumes

containing near-zero values outside the body contain no useful information to train or test on. In contrast to all metastases in the entire

body, the tumor tissues of the primary tumor and the auxiliary lymph node are several orders of magnitude larger (i.e., they follow very

different statistics than all micrometastases) and were thus excluded. The signal from one subvolumewas corrupted by a dirt particle

and thus also excluded. In total, these exclusionsmade up less than 1%of the total scan volume. The split between the three subsets

(training, validation, testing) of the data was done on a subvolume level (from which the three projections are created afterward) to

avoid information leak between different projections from the same subvolume.

Training procedure

The model training was conducted in two steps. First, a large number of models spanning a broad set of different hyperparameters

were trained for 10 epochs using another (nested) k-fold cross-validation (k = 5) within the training and validation set. Second, the

model with the best-performing set of hyperparameters (presented here) was trained for the remaining epochs. Thus, any hyperpara-

meter choice wasmade without looking at the performance on the test set. Themodel was trained for 40 epochs of the entire training

dataset, using random vertical and horizontal flips of the data to augment its variance (further training epochs did not improve the

predictive power). We used a batch size B of 4 but found that other batch sizes work similarly well. Each input was normalized by

its local subvolume peak value, which was found to work better than normalization to the global volume peak value or non-linear nor-

malizations. To calculate the gradients for network weight optimization (i.e., to train the model), we used weighted binary cross en-

tropy as a loss function for a given prediction bY compared to the ground truth Y, giving more weight w for foreground (FG) pixels p

versus background pixels (BG) to account for the class imbalance (i.e., that metastases are very sparsely distributed in space):
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A small numerical offset ε = 10�4was applied for numerical stability. We found equal weights or a slightly stronger bias to foreground

to work almost equally well (here, we used wFG = 2 and wBG = 0.5), larger biases had negative effects. Additionally, we allowed the

network to optimize the share of training data that contains at least some foreground by ignoring parts of training data in which no

foreground is present. A share of 90% training data with at least some foreground optimized the performance on the validation set

and was thus chosen. The network was trained using the Adam optimizer (Kingma and Ba, 2014); the initial learning rate was set to

10�4 andwas gradually decreased by a factor of 10 to aminimumof 10�7 every time the loss function reached a plateau formore than

2 epochs. A single training run over 40 epochs takes only around 20-30 minutes on a normal workstation equipped with a NVIDIA

Titan XP GPU.

Testing procedure and inference mode

As mentioned before, we applied k-fold cross-validation. Thus, in each of the k = 5 folds the model was tested on fresh data that was

not seen by the model during training and validation. Together, all 5 sets span the entire annotated dataset. As depicted in Figure 3A,

the trained algorithm in inference mode was used to generate probability masks for each of the three projection perspectives (PXY,

PYZ, PZX), in which the pixel value indicates the network’s confidence that this pixel is part of a metastasis in the given sub-volume s.

Building the outer product of the three probability masks allows to recombine the three judgements of the network in 3D space:
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This 3D recombination PV of the 2D probability maps yields a final predicted segmentation mask after binarization. By default, the

confidence threshold was set to 50%; however, changing this parameter allows to manually adjust the trade-off between sensitivity

and specificity, if desired (also see Figure S4). Please note that the F1-score for evaluation is not affected by this trade-off (i.e., a bet-

ter detection rate at the cost of a higher false positive rate would not artificially increase the F1-score and vice versa). Subsequent

connected-component analysis converts the output to an explicit list and segmentation of predicted metastases in 3D space.

Importantly, DeepMACT did not have to be re-trained to be applied to the full body scans (n = 7) obtained for other tumor models

(intracardially injected MDA-MB-231 breast cancer cells, MCF-7 breast cancer cells, R254 pancreatic cancer cells, H2030 lung can-

cer cells). Thus, the metastasis distribution for these scans could be readily inferred within minutes without further training data

annotation.

Performance evaluation

The same performance evaluation procedure was used for the comparison shown in Figure 3D, including the performance of a single

human annotator. A standard test for detection tasks, the F1 score quantifies the accuracy of a model by combining precision (share

of true positives among all positive predictions, including false positives) and recall (share of predicted positives among the sumof the

true positive and false negative predictions). It is mathematically equivalent to the Sørensen–Dice coefficient (‘‘Dice score’’), which is

the commonly used name for pixel-wise image segmentation. The F1 score is defined as:

F1= 2$
precision$recall

precision+ recall
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For all comparisons of detection and segmentation performance, the ground truth (refined by several human experts as described

above) is used as a reference. We quantified the performance of the proposed deep learning algorithm based on its prediction of the

test set. For a comparison, the segmentations as provided by established tools like the 3D Object Detector in ImageJ, our custom-

made detector as described above, as well as the annotation as provided by a single human annotator (before joint refinement) were

quantified in the same manner. Overlapping segmentations for metastases were counted as true positive predictions, non-overlap-

ping predictions as false positives and metastases not detected by the prediction as false negatives. Predictions corresponding to

the small set of cases unclear to the group of human experts (see above) were neither counted as true positive predictions nor as false

negatives, i.e., they neither increased nor decreased the performance evaluation. All performance evaluations were conducted on

the entirety of the test set as a whole. To quantify the inherent variance, the distribution of performance results was estimated

with n = 1000 resampled test sets (of same size) using the bootstrapping approach. The correctness of the exact three-dimensional

outline of each metastasis (segmentation) was verified by assessing the volumetric overlap with the three-dimensional outline drawn

by human annotators. This confirmed an overlap accuracy in 3D of 90% for the worst segmentation; importantly, 90% of all detected

metastases were segmented with an accuracy of 97.5% or higher.

Analysis of individual metastases
Organ registration

For the full body scale light-sheet scans (e.g., Figures 4C, 4F, and 5) the outlines of selected organs of interest (all lung lobes, brain,

both kidneys, heart, liver) were manually segmented as multi-point polygons in a stack of slices in 3D using Fiji. For each metastasis

detected by our deep learning architecture we assessed whether its center of mass falls into the 3D segmentation of one of those

organs using a custom Python script. Any metastasis not registered to one of these organs is referred to as located in ‘‘the rest of

the torso’’ in thismanuscript. The 3D segmentation of the lungswas also used to compute the overall lung volume to assess the tumor

density in Figure 4J, which we quantified as the share of the sum of the volume of all metastases registered to an organ of the entire

organ volume.

Metastasis characterization

The output of our deep learning architecture is a binary segmentation volume for all metastases. We applied connected component

analysis to derive an explicit list of metastases fully characterized in 3D. Based on each metastasis 3D shape and voxel-based

volume V, we computed its average diameter as

davg = 2

ffiffiffiffiffiffi
3V

4p

3

r
In order to put the metastasis size into context, we computed an estimate of the number of cells per metastasis. To this end, we

measured the diameter of single cells and estimated the number of cells for a given metastasis volume based on volumetric extrap-

olation. We confirmed the accuracy of the estimations by the number of nuclei (PI or Hoechst labeled) in n = 26 samples. On average,

the estimates were off by 3.5 cells (10.3%). For 73% of all samples checked, the estimates were off by less than 20%; the worst es-

timate was 35% off the actual count (39 instead of 60 cells). The estimated numbers may include other cell types present in the me-

tastases apart from tumor cells, e.g., immune cells, vascular cells and fibroblasts. Given that metastasis sizes in full body scans can

vary by orders of magnitude (see Figure 4H) this estimation accuracy was deemed sufficient to derive insightful conclusions from cell

count estimates.

The distance of each metastasis i to its nearest neighboring metastasis was measured in 3D space as the Euclidian distance be-

tween their center of masses CoM:

distNNi = min
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCoMi;x � CoMj;xÞ2 +

�
CoMi;y � CoMj;y

�2
+ ðCoMi;z � CoMj;zÞ2

q
Drug targeting analysis

We assessed the 6A10 antibody targeting of a given metastasis by analyzing the distribution of the fluorescent signal strength within

the 3D segmentation of each metastasis (xm) versus the distribution in its local surrounding (250 mm around the metastasis) xs. For

each signal distribution, the number of voxels within the metastasis segmentation nm or in its local surrounding ns can be seen as the

number of observations of the underlying true (but unknown) distributions. The degree of targeting was estimated by quantifying the

ratio of mean signal strength within the segmentation to themean signal strength in its surrounding (e.g., in Figure 6K). We refer to this

as antibody signal ratio. A ratio larger than 1 means that the antibody signal strength within the 3D segmentation of the metastasis is

higher than around it (see dashed line in Figure 6K). Whether or not ametastasis was deemed ‘‘targeted’’ was assessedwith a version

of the t test to determine whethermean of the observed signal distribution in themetastasis xmwas significantly at leastD = 50% (ratio

of 1.5) above themean of the observed signal distribution in the local surrounding xs. Importantly, a t test is valid for the signals despite

their highly non-normal underlying distribution as the number of observations far exceeds the requirements of the central limit the-

orem (i.e., while the signals are not normally distributed, the estimation of their means is normally distributed due the high number of

observations). This was verifiedmanually. However, due to a typically much larger number of observations in the local surrounding xs
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than for the metastasis itself xm, the statistical test was not performed with a Student’s t test but with theWelch’s t test that corrects

the degrees of freedom for an unequal number of observations for both distributions:

t =
meanðxmÞ � ð1+DÞmeanðxsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

stdðxmÞ2
nm

+ stdðxsÞ2
ns

q

DFadjusted =

 
stdðxmÞ2

nm

+
stdðxsÞ2

ns

!2,�
stdðxmÞ2

nm

�2
nm � 1

+

�
stdðxsÞ2

ns

�2
ns � 1

Analysis of fluorescence signal profiles

We considered the fluorescence signal profiles from each channel: excitation 470 nm, 561 nm and 647 nm. These profiles were

plotted in the same z stack and normalized as percentage over the maximum peak. To compare the reduction of the background

and the improvement of the signal over background ratio (SBR) in far-red and near far-red channels, we analyzed lung metastases

expressing mCherry imaged with excitation 545/561 nm after uDISCO clearing, lung metastases labeled with anti-mCherry nano-

body conjugated with Atto594 imaged with excitation 590 nm and lung metastases labeled with anti-mCherry nanobody conjugated

with Atto647N imaged with excitation 640 nm after vDISCO clearing (n = 3 tumors per each experimental group which consisted of 3

animals per each imaging modality). The signal profile was measured from a defined straight line covering the tumors and surround-

ing tissue background and all the values of the plot from a representative animal per each experimental group were shown in a repre-

sentative line chart (Figure S1D). Finally, the normalized plots represented in Figure S1E were calculated by normalizing the plots of

lung metastases obtained as described above over the average signal intensity of the respective surrounding background.

To compare the signal-to-background ratio (SBR) in Figures S6C and S6D, the samples were labeled with anti-mCherry nanobody

conjugated with Atto647N and primary tumors were imaged with excitation 470 nm, 561 nm and 640 nm respectively after vDISCO

clearing. Fluorescence signal intensity profiles and background normalized profiles for each channel were plotted with the same

strategy as described above.

Metastasis diameter and vessel distance

Metastasis diameters were verifiedmanually. For quantifying the distance betweenmetastases and vessels, ten points on the border

of each metastasis were randomly selected and the shortest distance from these points to the closest vessel wall were measured.

The presented distance between each metastasis and nearest vessels was quantified by averaging these ten measurements. In Fig-

ure 7B, 50 metastases were quantified to generate the scatterplot; each scatter point represents one single metastasis.

DATA AND CODE AVAILABILITY

The lab protocol as well as the algorithms and data for the DeepMACT pipeline are freely available and have been deposited to http://

discotechnologies.org/DeepMACT/. For convenience, this includes a fully functional demonstration script (including data).

ADDITIONAL RESOURCES

Fully functional online demo of DeepMACT: https://codeocean.com/capsule/8c13691f-7f9a-4af4-8522-c26f581c9e83/tree?

ID=a8ba18d2bf5046b08fafe2d6a42bfd7a

Further details on the vDISCO protocol: http://discotechnologies.org/vDISCO/

Registration for in-person workshops: http://discotechnologies.org/workshop/

Videos on tissue clearing: https://www.youtube.com/channel/UCAVXKhQ_ZjEdkAdFR5HwjrQ
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Supplemental Figures
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Figure S1. vDISCO Nanobody Enhancement of the Fluorescent Signal of Cancer Cells, Related to Figure 2

(A-C) Representative light-sheet images of mCherry expressing tumor metastases in the lungs of cleared mice that were not enhanced with nanobodies (A),

metastases treated with an anti-mCherry nanobody conjugated to Atto594 (B) or an anti-mCherry nanobody conjugated to Atto647N (C).

(D) Plots of signal intensity profiles along the yellow lines in panels A-C: non-enhanced mCherry (orange), mCherry enhanced with Atto594 (magenta) or mCherry

enhanced with Atto647N (cyan) (n = 3 representative metastases).

(E) Intensity profiles of the fluorescence signal in (D) normalized over the background.

(F-I) 3D light-sheet examples of deep-tissue imaging of Atto647N-enhanced tumormetastases in transparentmice after vDISCO. Tumormicrometastases can be

detected (yellow arrowheads) which are located several millimeters deep in the brain (F), liver (G), kidney (H) and spinal cord (I) respectively.

(J-L) Examples of micrometastases detected in bone marrow (J), ovary (K) and muscle (L). Note that all the micrometastases shown in G-L were imaged with a

1.1x objective from the MDA-MB-231 tumor model (intracardial injections), except the bone marrow metastasis in (J), which was from the MCF-7 tumor model.



Figure S2. Confirmation of the Specificity of Nanobody-Enhanced Staining inMice BearingmCherry-Expressing Tumors, Related to Figure 2

(A) Comparison between an animal bearing an mCherry expressing tumor and a C57BL/6N control animal, which were both enhanced with an anti-mCherry

nanobody conjugated to Atto647N (magenta) and imaged by light-sheet microscopy. No signal is detected in organs from the C57BL/6N control. Note that the

background is enhanced to demonstrate the absence of signal in the high-magnification images.

(B) Confocal images of metastatic lung tissue immunolabeled with an anti-firefly luciferase antibody (green) after rehydration of the cleared tissue; Atto647N-

enhanced cancer cells and cell nuclei are shown in magenta and gray, respectively.

(C) Confocal images of a metastasis in the lung of an animal labeled with an anti-mCherry nanobody conjugated to Atto647N. The enhancing nanobody is shown

in magenta, mCherry is shown in green and cell nuclei are shown in blue indicating that nanobody-enhancement specifically detects mCherry.



Figure S3. Examples of Tumor Metastasis Detection in Mice Using Bioluminescence Imaging versus vDISCO and Epifluorescence Micro-

scopy, Related to Figure 2

Mice were transplanted in the mammary fat pad with mCherry and firefly luciferase expressing MDA-MB-231 cells and imaged with bioluminescence followed by

vDISCO clearing and epifluorescence imaging.

(A-D) We found that bioluminescence imaging with normal exposure is not sufficiently sensitive to detect all the metastases in low tumor load mice. For example,

the mice in (A and B) and (C and D) had very similar bioluminescence images with normal exposure. Applying vDISCO to these mice, we found no tumor me-

tastases in one case (A and B) and a large metastasis (red arrowhead) in axillary lymph nodes (A.L.N. metastasis) (C and D) using a fluorescence stereo mi-

croscope. Although the signal from the primary tumor is strong in both normal and high exposure bioluminescence images (A and C, yellow box), metastases in

lungs (A and C, red boxes) are not visible, but are detected by epifluorescence imaging (D, yellow arrowhead). In epifluorescence images, the tumors (A647N-

labeled) are shown in magenta and the background, scanned in 488 nm, is shown in green.

(E-H) In mice with high tumor load, a bulk heatmap of metastatic distribution can be obtained by bioluminescence imaging, without detailed shape and size

information. In contrast, vDISCO resolved single micrometastases in whole mouse bodies even with a fluorescence stereo microscope. Especially in the lungs,

even micrometastases with a diameter smaller than 100 mm could be resolved in intact mice (F, yellow arrowhead).



Figure S4. Performance of DeepMACT, Related to Figure 3

(A-C) Visualization of the computational stages of DeepMACT for three different regions. (A) DeepMACT is capable of identifying very low signal peaks but

correctly disregards them at the 3D reconstruction stage; the inset shows the region in the white box with a 10-fold increased brightness. (B) While most me-

tastases are correctly identified, few small and dim metastases may be obscured by background structures from some perspectives and consequently be

removed at the 3D reconstruction stage (red arrow) (C) In many cases, even a single 2D probability map may already be sufficient for a correct prediction.

(D-F) Examples of metastases that were missed by human annotators but found by DeepMACT (yellow arrows). (E and F) show higher magnifications of the

regions in the green and yellow boxes in (D), respectively (regions cropped in 3D); the brightness of (E and F) was increased by 200% compared to (D).

(legend continued on next page)



(G-I) Example of false positive predictions byDeepMACT. The image in (I) shows the same region as in (H) but in the autofluorescence channel (excitation: 488 nm)

to confirm that the signal peak in (H) is not caused by metastatic tissue. The region in (H and I) was cropped in 3D.

(J) DeepMACT performance as a function of model confidence threshold (default: 50%) compared to a single human annotator. While the DeepMACT F1 score

peaks around a model confidence threshold of 40%–50%, the threshold can be adjusted to increase recall or precision.



Figure S5. Bioluminescence Imaging of Different Cancer Models, Related to Figure 5

(A) Bioluminescence images with normal and long exposure from ventral and dorsal views of a mouse collected 21 days after intracardial (i.c.) injection of MCF-7

ER positive breast cancer cells.

(B) Bioluminescence images of a mouse collected 10 days after intracardial injection of H2030-BrM3 lung cancer cells.

(C) Bioluminescence images of a mouse collected 14 days after pancreatic injection of R254 cancer cells. Note that the C57BL/6 mouse line used in this model

has black fur and therefore a different appearance in overlaid photographic/bioluminescence images compared to the other mouse strains.

(D-F) Bioluminescence images of the time-course experiments shown in Figure 5. Themicewere intracardially injectedwithMDA-MB-231 breast cancer cells and

sacrificed 2 days, 6 days and 14 days post injection, respectively.



Figure S6. Elimination of Endogenously Expressed mCherry Signal from Tumors after vDISCO, Related to Figure 6

(A) Tumor metastases in lungs from a mouse transplanted with MDA-MB-231 cells in the mammary fat pad were imaged with a fluorescence stereomicroscope

before and after vDISCO clearing, showing that the endogenously expressed mCherry signal was eliminated after the THF and BABB incubation steps.

(B) Light-sheet microscopy images of primary tumor with background fluorescence imaged in the green channel (ex: 470 nm, left), mCherry signal in the red

channel (ex: 561 nm, middle), and the enhanced mCherry signal (Atto647N) in the far-red channel (ex: 640, right) after vDISCO clearing.

(C) Signal intensity profiles along the yellow lines in panel B were plotted: Channel 470 (orange), Channel 561 (magenta) and Channel 640 (cyan) (n = 3 mice).

(D) Normalized fluorescence signal profiles of the data in (C), showing that the endogenous mCherry signal was depleted to background levels after vDISCO

clearing.



Figure S7. Verification of Antibody Targeting in Different Organs by Confocal Microscopy, Related to Figure 6

(A-F) Confocal images of metastases in the lung (A-C) and kidney (D-F) of a mouse transplanted with MDA-MB-231 cells (labeled with an anti-mCherry nanobody

conjugated to Atto647N, magenta) and treated with therapeutic antibody 6A10 conjugated to Alexa568 (cyan). Examples of the colocalization of metastatic cells

with the 6A10 antibody are indicated with yellow arrowheads (C and F).
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Abstract

Novel microscopic techniques yield high-resolution volumetric scans of complex anatomical
structures such as the blood vasculature or the nervous system. Here, we show how transfer
learning and synthetic data generation can be used to train deep neural networks to segment
these structures successfully in the absence of or with very limited training data.

Keywords: Deep learning, transfer learning, synthetic data, vasculature, neural pathways.

1. Introduction

Recent advances in tissue-clearing (Ertürk et al., 2012; Chung and Deisseroth, 2013) com-
bined with 3D light-sheet microscopy (3D LSM ) overcome previous imaging limitations:
they enable volumetric acquisition at cellular resolution of entire organisms (Cai et al.,
2018; Pan et al., 2019; Stefaniuk et al., 2016; Mano et al., 2018). This yields unprece-
dented insight into the micro-anatomy at the macro-scale, e.g., to study highly connected
structures like the brain vasculature or the peripheral nervous system. Differences in these
structures have been associated with a wide range of disorders (Joutel et al., 2010; Li et al.,
2010). Thus, segmentation and characterization of these anatomical structures is crucial
to study causes and effects of such pathologies. However, manual segmentation of complex
structures is very time-consuming, especially in high-resolution volumetric scans. While
this motivates the need for deep learning it also implies a high cost of labeling. Here, we
substantially reduce the need for manually labeled training data using transfer learning,
an approach gaining attention (Van Opbroek et al., 2015; Khan et al., 2019). In short, we
show that training deep networks on synthetic data is already sufficient to learn the basic
underlying task across different anatomical structures, species, and imaging modalities.

2. Methods

Here, we present results from three widely different applications: human brain vessels
(MRI), mouse brain vessels and the mouse peripheral nervous system (both 3D LSM ).
The same network was trained either on a small labeled set from the respective application

∗ Joint first authors

c© 2019 J.C. Paetzold et al.



Transfer Learning for 3D Segmentation

(”real data”), on synthetically generated data, or on a combination of both. The synthetic
data used is identical for all three applications. We chose DeepVesselNet as our architec-
ture; the schedule for pre-training on synthetic data and refinement on real data match the
methods of (Tetteh et al., 2018). The methods for generation of synthetic training data is
described in (Schneider et al., 2012). MRI scans from human brain vasculature are taken
from (Tetteh et al., 2018) (voxel size: 300µm x 300µm x 600µm). Volumetric scans of
the brain vasculature (voxel size: (3µm)3) and the peripheral nervous system (voxel size:
(10µm)3) were obtained using DISCO tissue clearing and fluorescent light-sheet microscopy
as described in (Cai et al., 2018). Representative 2D cross-sections of the synthetic data
and segmentations of all three applications are shown in Figure 1.

3. Results

Transfer learning from synthetic data (Table 1, Part 1). For segmenting the human
vasculature from MRI scans, training the net on the synthetic data alone yields very good
results, 81% in F1-score (note: the synthetic data set had been designed for this application).
Training on the real data for this application yields a higher F1-score of 86%. The best
result (87%), however, is achieved by a combination of both: pre-training on synthetic data
and fine-tuning on real data. Interestingly, the network also converges about 50% faster in
this case (data not shown). Motivated by this observation, we repeated this experiment for
3D LSM scans of the mouse brain vasculature. Again, the same pattern can be observed
and the combination of synthetic with real data (F1-score of 76%) outperforms synthetic
data (71%) or real data alone (73%). Taking the approach yet further, we applied the
approach to 3D LSM full body scans of the peripheral nervous system of a mouse. While
training on synthetic data alone was not very successful (16%) as compared to real data
(49%), the gain from combining both was almost completely additive (64%).

Figure 1: A) Synthetic training data was designed to resemble vasculature of human brain
in MRI scans. B-D) Predicted segmentations of 3 different applications: MRI
scans of human brain vasculature (B), 3D LSM of mouse brain vasculature (C),
and peripheral nervous system (D; shown here: innervated muscle fibres)

Transfer learning across domains (Table 1, Part 2). Here, we trained the network
on a combination of synthetic data and the real data from a given application and then
predicted on data from another application. When predicting on human vasculatures from
MRI scans, the refinement step on real data from another application after pre-training on

2
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synthetic data leads to worse results (left column: 43% and 36%) compared to training on
synthetic data alone (81%, see Part 1). However, when training the model on synthetic
data and real data of human vessels in MRI scans (first row of Part 2), the performance
on 3D LSM scans of mouse brain vessels (72%) or the mouse peripheral nervous system
(49%) is about as good as when trained on the respective real data alone. Also, while
the domain transfer from mouse vasculature to mouse nervous system only yields mediocre
results (35%), it works well the other way around: refining a model trained on synthetic
data with real data from the nervous system to segment brain vessels almost works as well
(75%) as if it had been refined on data within the same domain (76%, see Part 1).

Table 1: Quality of predicted segmentations (F1-score) for 3 different applications

4. Discussion

Our results demonstrate how pre-training on synthetically generated data can accelerate
model convergence and boost the overall segmentation performance. For a given desired
performance, this thus means a reduced need for manually labeled training data, which is
very expensive for complex structures in 3D scans. Importantly, a single synthetic data
set that was originally designed to represent human vessels also works well for applications
from different species, anatomical structures, and imaging modalities. This suggests that
the features learned from the synthetic data are of general use for the abstract segmentation
tasks, highlighting the generalizability of the approach. Thus, the expensively labeled data
for a given application does not have to be used to learn a basic task but rather can be
preserved for refining the pre-trained model to the specifics of the application (such as
contrast, noise, background structures). Interestingly, this approach may also be of use in
cases where no training data is available at all. For instance, we could show that a model
trained on synthetic data and real data from another application can match the performance
of a model trained from scratch on real data from the application of interest. Together,
these results highlight the importance of transfer learning towards the goal of resolving a
key bottleneck in adoption of deep learning: the high cost of data annotation.
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Good metrics of the performance of a statistical or computational model are essential

for model comparison and selection. Here, we address the design of performance

metrics for models that aim to predict neural responses to sensory inputs. This is

particularly difficult because the responses of sensory neurons are inherently variable,

even in response to repeated presentations of identical stimuli. In this situation, standard

metrics (such as the correlation coefficient) fail because they do not distinguish between

explainable variance (the part of the neural response that is systematically dependent

on the stimulus) and response variability (the part of the neural response that is

not systematically dependent on the stimulus, and cannot be explained by modeling

the stimulus-response relationship). As a result, models which perfectly describe the

systematic stimulus-response relationship may appear to perform poorly. Two metrics

have previously been proposed which account for this inherent variability: Signal Power

Explained (SPE, Sahani and Linden, 2003), and the normalized correlation coefficient

(CCnorm, Hsu et al., 2004). Here, we analyze these metrics, and show that they are

intimately related. However, SPE has no lower bound, and we show that, even for good

models, SPE can yield negative values that are difficult to interpret. CCnorm is better

behaved in that it is effectively bounded between −1 and 1, and values below zero

are very rare in practice and easy to interpret. However, it was hitherto not possible

to calculate CCnorm directly; instead, it was estimated using imprecise and laborious

resampling techniques. Here, we identify a new approach that can calculate CCnorm

quickly and accurately. As a result, we argue that it is now a better choice of metric than

SPE to accurately evaluate the performance of neural models.
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1. INTRODUCTION

Evaluating the performance of quantitative models of neural information processing is an essential
part of their development. Appropriate metrics enable us to compare different models and select
those which best describe the data. Here, we are interested in developing improvedmetrics to assess
models of the stimulus-response relationships of sensory neurons, in the challenging (but common)
situation where the stimulus-response relationship is complex, and neuronal responses are highly
variable. In this case, the development of appropriate performance metrics is not trivial, and so
there is a lack of consensus about which metrics are to be used.
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The classical way to record and model neural responses has
been to repeatedly present an animal with a small, well-defined
set of stimuli (such as sinusoidal gratings of different orientations,
or sounds of different frequencies). The neural responses to
repeated presentations of each stimulus are then averaged. Using
a small stimulus set, it may be possible to present the same
stimulus enough times that this averaging succeeds in reducing
the effect of neuronal response variability (Döerrscheidt, 1981).
It may then be possible to produce models which accurately
describe the relationship between the stimulus and the averaged
responses. These models can then be accurately evaluated by
comparing the modeled and actual neuronal responses using
standard metrics such as correlation coefficient. Under these
circumstances, the correlation coefficient may be appropriate and
can easily be interpreted—a poor model will have a correlation
coefficient close to 0, a perfect model will have a correlation
coefficient close to 1, and the square of the value of the correlation
coefficient equals the proportion of the variance in the neural
responses that the model is able to account for.

However, recent work in sensory neuroscience has
increasingly focused on the responses of neurons to complex
stimuli (Atencio and Schreiner, 2013; David and Shamma,
2013), and even natural stimuli (Prenger et al., 2004; Asari and
Zador, 2009; Laudanski et al., 2012). For such stimuli, even
very sparse sampling of the stimulus space may require the
presentation of very large numbers of different stimuli (at least
of order 2d for d stimulus dimensions; also see Shimazaki and
Shinomoto, 2007). This makes it difficult to repeatedly present
stimuli enough times for response variability to simply average
out. Estimating mean responses for a particular stimulus is thus
subject to sampling noise, and in addition to that, the neuron
under study may also be “intrinsically noisy” in the sense that
only a small proportion of the response variability may be
attributable to variability of the stimulus. Such situations are very
common in sensory neuroscience, and they can render the use
of correlation coefficients to evaluate the performance of models
that map stimuli to responses very misleading. If only a fraction
of the neural response variability is stimulus linked, then even a
perfect model of that stimulus linkage will only ever be able to
account for some fraction of the variance in the observed neural
response data. This places a limit on the maximum correlation
coefficient that can be achieved, and the interpretation of the
raw correlation coefficients becomes ambiguous: for example, a
relatively low correlation coefficient of 0.5 might be due to an
excellent model of a noisy dataset, or of a rather poor model of a
dataset with very low intrinsic and sampling noise, or something
in between.

Different approaches for taking neural variability into account
when measuring model performance have been developed. To
get an unbiased estimate of mutual information, Panzeri and
Treves (1996) suggested a method to extrapolate information
content to an infinite number of trials (also see Atencio et al.,
2012). Roddey et al. (2000) compared the coherence of pairs of
neural responses to independent stimulus repetitions to derive a
minimum mean square error (MMSE) estimator for an optimal
model. The difference between the model prediction error and
the MMSE of an optimal model allows the quantification of the

model performance relative to the best possible performance
given the neural variability.

Based not only on pairs, but even larger sets of neural
responses to independent stimulus repetitions, Sahani and
Linden developed the very insightful decomposition of the
recorded signal into signal power and noise power (Sahani and
Linden, 2003). This has lead to the signal power explained
(SPE), a measure based on variance explained which discounts
“unexplainable” neural variability. While the work of Roddey
et al. (2000) was already based on the differentiation between
explainable and unexplainable neural response components,
Sahani and Linden (2003) provided explicit estimations for those
components. The SPE measure has been widely adopted, albeit
under various names such as predictive power, predicted response
power, and relative prediction success (Sahani and Linden, 2003;
Machens et al., 2004; Ahrens et al., 2008; Asari and Zador, 2009;
Rabinowitz et al., 2012). Also, it has been used as a basis for
specific variants of measures for model performance (Haefner
and Cumming, 2009).

Focusing on coherence and the correlation coefficient, Hsu
and colleagues developed a method to normalize those measures
by their upper bound (CCmax), which is given by the inter-
trial variability (Hsu et al., 2004). This yields the normalized
correlation coefficient (CCnorm). Following their suggestion, the
upper bound can be approximated by looking at the similarity
between one half of the trials and the other half of the trials
(CChalf ). This measure has also been used by Gill et al. (2006)
and Touryan et al. (2005). Others used the absolute correlation
coefficient and controlled for inter-trial variability by comparing
the absolute values with CChalf (Laudanski et al., 2012).

The two metrics SPE and CCnorm have been developed
independently, but they both attempt—in different ways—to
provide a method for assessing model performance independent
of neuronal response variability. Here, we here analyze these
metrics, show for the first time that they are closely related, and
discuss the shortcomings of each. We provide a new, efficient
way to directly calculate CCnorm and show how it can be used
to accurately assess model performance, overcoming previous
shortcomings.

2. CRITERIA OF MODEL EVALUATION

Neural responses are often measured as the membrane potential
(Machens et al., 2004; Asari and Zador, 2009) or as the time-
varying firing rate (Sahani and Linden, 2003; Gill et al., 2006;
Ahrens et al., 2008; Rabinowitz et al., 2011; Laudanski et al.,
2012; Rabinowitz et al., 2012) (which we will use without loss
of generality). Thus, a measure of performance for such models
should quantify the similarity of the predicted firing rate ŷ and
the recorded firing rate y (also known as the peri-stimulus time
histogram, PSTH):

y(t) = 1

N

N
∑

n=1

Rn(t) (1)

where Rn is the recorded response of the nth stimulus
presentation and N is the total number of stimulus presentations
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(trials). Both Rn(t) and y(t) are a function of the time bin t, but
the argument t will not be shown for rest of the manuscript.
Each value of the vector Rn contains the number of spikes that
were recorded in the corresponding time bin. Note that, given
the trial-to-trial variability of sensory responses, the recorded
firing rate y is only an approximation of the true (but unknown)
underlying firing rate function that is evoked by the presentation
of a stimulus (also see Kass et al., 2003). It is a sample mean which
one would expect to asymptote to the true mean as the number
of trials increases (N → ∞). As will be discussed in detail at a
later point, the difference between the recorded firing rate y and
the true underlying firing rate is considered to be noise under the
assumption of rate coding. This is the unexplainable variance that
reflects the variability of the neuronal response. As the number of
trials increases, the difference between y and the true underlying
firing rate decreases and so does the non-deterministic and thus
unexplainable variance in the signal.

With the recorded firing rate y being the target variable for the
prediction ŷ, a measure of model performance needs to quantify
the similarity between both signals, i.e., the prediction accuracy.
Note that model performance is not necessarily the same as
prediction accuracy (see next section).

3. SIGNAL POWER EXPLAINED

Two somewhat related metrics which are widely applied in
statistics are the “coefficient of determination” (CD) and the
“proportion of variance explained” (VE). Both these metrics
essentially incorporate the assumption that the quantitative
observations under study—in our case the responses of a
sensory neuron or neural system—are the sum of an essentially
deterministic process which maps sensory stimulus parameters
onto neural excitation, plus an additive, stochastic noise process
which is independent of the recent stimulus history (Sahani and
Linden, 2003). Consequently, if a model is highly successful
at predicting the deterministic part, subtracting the predictions
from the observations should leave only the noise part, but
if its predictions are poor, the residuals left after subtracting
predictions from observations will contain both noise and
prediction error. Thus, smaller residuals are taken as a sign of
better prediction. The CD is an index that quantifies the size of
the residuals relative to the size of the original observation in
a quite direct manner as a sum of squares, and subtracts that
unaccounted for proportion from 100% to give an estimate of the
proportion of the signal that is accounted for by the model. Thus

CD = 1−
∑

t(y(t)− ŷ(t))2
∑

t y(t)
2

(2)

The VE quantifies prediction accuracy in a largely analogous
manner, but instead of using the “raw” sum of squares of the
observations and the residuals, it instead uses the respective
sample variances, measured around their respective sample
means:

VE = 1− Var(y− ŷ)

Var(y)
(3)

This makes the VE insensitive to whether the mean of the
predicted responses closely corresponds to the mean of the
observed responses over all t, which can sometimes be an
advantage. Even small errors (biases) in the mean of the
prediction can be penalized quite heavily by the CD measure as
these will accumulate over every sample. The VEmeasure can be
thought of as deeming such biases as unimportant, and focusing
solely on how well the model predicts the trends in the responses
as a function of t.

CD and VE have a long established history in statistics, but
neither provide an unambiguous measure of model performance
because large amounts of residual variance, and therefore low
VE or CD values, could arise either if the model provides a
poor approximation to underlying deterministic and predictable
aspects of the process under study, or if the model captures the
deterministic part of the process perfectly well, but large amounts
of fundamentally unpredictable noise in the system nevertheless
cause the amount of residual variance to be large. In other words,
even a perfect model cannot make perfect predictions, because
the neuronal response has a non-deterministic component. Even
if the model was completely identical to the neuron in every
aspect, it would nevertheless be unable to explain 100% of the
variance in the neuronal responses because the PSTHs collected
over two separate sets of stimulus presentations cannot be
expected to be identical and the first set does not perfectly predict
the second. Furthermore, since the number of trials N used to
determine any one PSTH is often rather low for practical reasons,
observed PSTHs are often somewhat rough, noisy estimators of
the underlying neural response function (also see Döerrscheidt,
1981; Kass et al., 2003; Shimazaki and Shinomoto, 2007). A
good measure of model performance for sensory neural systems
should take these considerations into account and judge model
performance relative to achievable, rather than total, prediction
accuracy. Such considerations led Sahani and Linden (2003) to
introduce metrics which split the variance in an observed PSTH,
the total power (TP), into the signal power (SP), which depends
deterministically on recent stimulus history, and the stochastic
noise power (NP). Only the SP is explainable in principle by a
model, and the signal power explained (SPE) thus aims to quantify
model performance relative to the best achievable performance.
SPE is defined as:

SPE = Var(y)− Var(y− ŷ)

SP
(4)

SP = 1

N − 1

(

N × Var(y)− TP
)

TP = (N − 1)×
N
∑

n=1

Var(Rn) (5)

SPE is quantified as the ratio of the explained signal power relative
to the explainable signal power1. The explained signal power is

1Please note that we do not use the notation of Sahani and Linden (2003). However,

all definitions are identical. Sahani and Linden define the power P of a signal r as

the “average squared deviation from the mean: P(r) = 〈(rt − 〈rt〉)2〉” where 〈.〉
denotes the mean over time. This is identical to the variance of the signal, which

we use.
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calculated by subtracting the variance of the residual (the error)
from the total variance in the observed firing rate. The explainable
signal power SP is calculated according to formulas developed
in Sahani and Linden (2003) and reproduced below (Equation
13). Good models will yield small error variance and thus a large
SPE - and vice versa. However, this measure lacks an important
characteristic: it is not bounded. While a perfect model would
yield an SPE of 100%, the measure has no lower bound and can
go deeply into negative values when the variance of the error is
bigger than the variance of the neural signal. This shortcoming
of the SPE metric can be exposed by reformulating parts of the
equation. First, observe that for two random variables X and Y
the variance of their difference can be expressed as :

Var(Y − X) = Var(Y)+ Var(X)− 2× Cov(X,Y) (6)

Applying this reformulation to Equation 5 reveals that:

SPE = Var(y)− Var(y− ŷ)

SP
= 2× Cov(y, ŷ)− Var(ŷ)

SP
(7)

Consider a particularly bad model, which produces predictions
that are no better than the output of a random number
generator. The covariance between the predictions and the
neural responses will then be close to zero, but the variance
(i.e., the power of the predicted signal) of the predicted
signal may nevertheless be large. The SPE for such a model
would be a negative number equal to −Var(ŷ)/SP. This is a
counterintuitive property of the SPE metric: the “proportion
of the signal power that is explained” by a list of random
numbers should be zero, not negative. Also, two bad models
that are equally unable to capture the trends of the signal
they are trying to predict and thus have near zero covariance
may nevertheless have widely different negative SPE values, but
how negative their SPE values are may have little systematic
relationship to how large their prediction errors are on average,
which makes small or negative SPE values very difficult to
interpret.

This can be illustrated with a simple hypothetical example.
Imagine a visual cortex simple cell responding to a sinusoidal
contrast grating stimulus with a sinusoidal modulation of its
firing rate, so its observed response is a sine wave, let’s say, of
an amplitude of ±1 spikes/s around a mean firing rate of 10
spikes/s at a modulation rate of 1 Hz. Let us further assume
that model A predicts sinusoidal firing at a 2 Hz modulation
rate with an amplitude of ±2 spikes/s around a mean of 10
spikes/s, and model B predicts a sinusoidal firing at 2 Hz with
an amplitude of ±1 spikes/s around a mean of 100 spikes/s.
Since neither model A nor B correctly predicted the rate of
the sinusoidal firing rate modulations, and because sine waves
of different frequencies are orthogonal, both models will have
covariance of zero with the observed data. Thus, they have a
negative SPE, as the signal variance is greater than zero. And
because model A predicted larger amplitude fluctuations than
model B, and thus has greater variance, the SPE ofmodel Awill be
more negative than that of model B, which one might be tempted
to interpret tomean thatmodel A performedworse. However, the

discrepancy or prediction error between observed and predicted
rates for model A will never be more than 3 spikes/s, while that
of model B will never be less than 88 spikes/s, and the more
negative SPE of model A contrasts sharply with the fact that
model A produces a much smaller mean squared prediction
error than model B. Furthermore SPE can yield negative values
even when there is a reasonable amount of covariance between
model and prediction, if the variance in the predicted signal is
also sizable. This is illustrated in Figure 1. Not only is such a
measure rather hard to interpret, but it can be misleading. Due
to the missing lower bound the values can not only become
negative, but the exact value also depends on the variance of
the prediction. Consider the prediction with 60% noise in the
lower right panel of Figure 1. While this prediction is surely not
a good one, the fact that data and model prediction co-vary to
a fair degree is nevertheless readily apparent, and it would be
hard to argue that a model predicting a flat, arbitrary, constant
firing rate (say 800 spikes/s) would be a better alternative. Yet
the variance of any predicted constant firing rate would be
zero and so would be their SPE, which may seem indicative
of a “better explanatory power” of the constant rate model
compared to the “60% noise” added model of Figure 1 with its
SPE = −39%, but the noisy model clearly captures some of
the major peaks in the data while constant rate models don’t
even try.

These examples illustrate that models can be thought of as
being wrong in different ways. They can be “biased,” predicting
an incorrect overall mean response rate, they can be “scaled
wrong,” predicting fluctuations that are too small or too large,
or they can fail to predict the trends and dynamics of the
data, leading to near zero covariance between observation and
prediction. Different metrics of model performance will differ
in how sensitive they are to these different types of error.
SPE is sensitive both to poor scaling and poor covariance,
but not to bias. Some might argue, quite reasonably, that
this combined sensitivity to two types of error is a virtue:
When SPE values are large then we can be confident that
the model achieves both good covariance and good scaling.
However, the downside of this joint sensitivity is that small or
negative SPE values have limited diagnostic value because they
could be due to small covariance or to overestimated (but not
underestimated) predicted variance, or some combination of the
two. Consequently, as we will illustrate further in section 6, SPE
values below about 0.4 become very difficult to interpret, andmay
be much at odds with other commonly used measures of model
performance.

Negative values of the SPE have been previously reported
(Machens et al., 2004; Ahrens et al., 2008) and have been
interpreted as a sign of overfitting of the model. Overfitting
usually manifests itself as a decline in covariance between data
and predictions in cross-validation tests, and as such would result
in small or negative SPEs, but because SPE will become negative
for any prediction which has a residual variance that is larger than
the variance of the target signal, negative SPE is not a specific
diagnostic of overfitting. Also negative SPEs do not necessarily
imply that a model performs worse than a “null model” which
predicts constant responses equal to the mean firing rate. In fact,
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FIGURE 1 | Illustration of the missing lower bound of SPE. Left panel: The simulation was created by adding increasing white noise (w) to an actual prediction ŷ

generated by an artificial neural network: ŷα = αw+ (1− α)ŷ with 0% ≤ α ≤ 100%, negative values of the deteriorated ŷα set to 0. Top right panel: The original

prediction ŷ of the neural network (red) and the actual neural response (black). Lower right panel: The deteriorated prediction at a noise level of 60% (SPE = −39%).

any model predicting any arbitrary constant value (even a “dead
neuron model” predicting a constant firing rate of 0 spikes/s) will
have an SPE of zero and might on that basis be judged to perform
better than other models generating noisy but fairly reasonable
predictions (see Figure 1).

Of the three different types of error just discussed, large
bias, poor scaling, small covariance, SPE is sensitive to two,
covariance and scaling, although it is particularly excessively
large, but not excessively small, scaling, that will drive SPE
values down. Perhaps it is inevitable that single performance
measures which are sensitive to multiple different types of
error become very difficult to interpret as soon as performance
becomes suboptimal. To an extent, whether one deems it
preferable to have an error metric that is sensitive to bias,
scaling and low covariance all at once, or whether one chooses
a metric that is more specific in its sensitivity to only one
of type of error is a matter of personal preference as well
as of what one is hoping to achieve, but joint sensitivity to
multiple different types of error is certainly problematic when
the measure is to be used for model comparison, given that the
relative weighting of the different types of error in the metric
may not be readily apparent and it is unlikely to reflect how
problematic the different types of error are in modeling. A
constant bias, which would, for example, be heavily penalized
by the CD metric discussed at the beginning of this section,
can be easily fixed by adding or subtracting a constant value
from the predictions. Similarly, scaling errors can be easily
fixed by multiplication by a scalar. These two types of error
pertain only to the relatively uninteresting stationary statistical
properties of the data. They are in some sense trivial, and easily
remedied through a simple linear adjustment. Low covariance, in
contrast, is indicative of a much more profound inability of the
model to capture the nature or dynamics of the neural stimulus-
response relationships. In our opinion, the assessment of model
performance should therefore rely first and foremost measures
which are highly sensitive to poor covariance and insensitive
to bias or scaling, and we discuss measures which have these
properties in the next section. If needed, these could then be

supplemented with additional metrics that can diagnose biases
or scaling errors.

4. ABSOLUTE AND NORMALIZED
CORRELATION COEFFICIENT

Another measure widely used in statistics, Pearson’s product-
moment correlation coefficient can also be used to assess the
similarity of two time-varying signals. The correlation coefficient
quantifies the linear correlation and maps it to a value between
−1 and +1. To distinguish it from a normalized variant that will
be used later in this section, the (absolute) correlation coefficient
will from now on be abbreviated as CCabs. It is defined as:

CCabs =
Cov(X,Y)√
Var(X)Var(Y)

(8)

CCabs satisfies many of the criteria that one might desire in a
good measure of model performance. It quantifies the similarity
between observation and prediction, it is bounded between −1
and +1, and it can be interpreted easily and unambiguously.
The normalization by the square root of the variances makes
CCabs insensitive to scaling errors, and the formulae for Var()
and Cov() have subtractions of means built in that make CCabs

insensitive to bias, so that only the ability of Y to follow trends
X is being quantified. However, like VE, it does not isolate
model performance from prediction accuracy, which is inevitably
limited by neural variability. In other words CCabs might be small
either because the model predictions Y are poor, or because
the measured neural responses X are fundamentally so noisy
that even an excellent model cannot be expected to achieve a
large CCabs. This was also noted by Hsu and colleagues who
went on to develop an approach to quantify and account for the
inherent noise in neural data (Hsu et al., 2004). Specifically, they
introduced a method for normalizing coherence and correlation
to the neural variability, which has later been applied as a
performance measure (Touryan et al., 2005; Gill et al., 2006). Hsu
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and colleagues define the normalized correlation coefficient as
follows (Hsu et al., 2004)2:

CCnorm = CCabs

CCmax
with

CCmax =
√

√

√

√

√

2

1+
√

1
CC2

half

CChalf >0
=

√

√

√

√

2

1+ 1
CChalf

(9)

Where CCmax is the maximum correlation coefficient between
the recorded firing rate y and the best prediction ŷ that a perfect
model could theoretically achieve. More specifically, CCmax is the
correlation coefficient between the recorded firing rate y (which
is based on N trials) and the true (but unknown) underlying
firing rate function, which could only be determined precisely
if the system was completely stationary and an infinite number
of trials could be conducted (N → ∞). Even though the
true underlying firing rate function can therefore usually not
be determined with high accuracy through experiments, useful
estimates of CCmax can nevertheless be calculated using the
formulae in Equation 9. Following the methods of Hsu et al.
(2004), CChalf is determined by splitting the data set into halves,
and calculating the correlation coefficient between the PSTH
constructed from the first half and the PSTH constructed from
the second half of the trials. This approach determines CCmax by
effectively extrapolating from N trials to the value that would be
expected for N → ∞.

Note that there are 1
2

( N
N/2

)

different ways to choose N/2 out

of N trials, and each such split of the data will yield a slightly
different value for CChalf . Thus, in theory, the best estimate
would average over all possible values of CChalf calculated for
each possible split. In practice, this resampling technique can be
computationally expensive, given the fact that there are already
92, 378 combinations for N = 20 trials. Averaging over a smaller
number of randomly chosen splits may often be sufficient, but
this yields an imprecise estimation of CCmax.

In summary, CCnorm provides a feasible method for capturing
model performance independently of noise in the neural
responses. It gives values bounded between -1 and +1 (in practice,
they are bounded between 0 and +1, as model predictions
are either correlated or not correlated, but typically not anti-
correlated to the firing rate). Furthermore, the measure lends
itself to unambiguous interpretation, and its limitations are well-
known. Finally, it is normalized so that its value does not depend
on the variability of a particular data set. Thus, the normalized
correlation coefficient CCnorm fulfills the criteria for a useful
measure of model performance, but its current definition is based
in a laborious and potentially imprecise resampling technique.

2The expression for CCmax can be derived from the work of Hsu et al. (2004) in

two steps. First, Equations 6 and 8 from Hsu et al. (2004) are combined and solved

for γARM . Second, the analogy of the coherence γ 2 and the squared correlation

coefficient CC2 allows to replace γARM with CCmax and γR1,M/2R2,M/2
with CChalf .

In the notation of Hsu and colleagues γ 2
ARM

denotes the coherence of the mean

response over M trials with the true (but unknown) underlying firing rate A, i.e.,

the maximum achievable coherence of a perfect model.

5. A CONSOLIDATED APPROACH TO
QUANTIFYING NEURAL VARIABILITY

As will have become clear in the previous sections, the two
measures SPE and CCnorm follow the same logic in that
both measure prediction accuracy and normalize it by a
quantification of the inherent reproducibility of the neural
responses that are to be modeled (SP or CCmax, respectively).
In this section we will show that these two approaches
of normalization not only follow the same logic, but are
mathematically largely equivalent. This provides a deeper
insight into the underlying concept and gives rise to a more
elegant and efficient technique to normalize the correlation
coefficient.

Following the methods of Sahani and Linden (2003)3, the
signal power SP (i.e., the deterministic part of the recorded firing
rate y) can be expressed as:

SP = 1

N − 1

(

N × Var(y)− TP
)

(10)

= 1

N − 1

(

N × Var

(

1

N

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(11)

= 1

N − 1

(

N × 1

N2
Var

(

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(12)

= 1

N − 1

(

1

N
× Var

(

N
∑

n= 1

Rn

)

− 1

N

N
∑

n= 1

Var(Rn)

)

(13)

Where TP is the total power (i.e., the average variance of a single
trial) and Rn is the recorded neural response of the nth trial. Since
the normalization factor of SPE is the inverse of SP it will be
convenient to express it as:

1

SP
= N(N − 1)

Var

(

N
∑

n= 1
Rn

)

−
N
∑

n= 1
Var(Rn)

(14)

Furthermore, using Equation 14 the ratio of the noise power NP
over SP can be expressed as:

NP

SP
= TP − SP

SP
= TP

SP
− 1 =

(N − 1)×
N
∑

n= 1
Var(Rn)

Var

(

N
∑

n= 1
Rn

)

−
N
∑

n= 1
Var(Rn)

− 1

(15)

For CCnorm the normalization factor is the inverse of CCmax

and, following the methods of Hsu et al. (2004), it is currently
determined with an indirect resampling method using Equation

3Again, please note that Sahani and Linden (2003) use r(n) to denote the average

over trials. In order to facilitate the reformulation of the equation we do not use

this abbreviated notation. Despite this difference in notation, this definition of SP is

identical to the definition provided by Sahani and Linden (Equations 1 on Page 3).
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9. We will now show how CCmax can be computed directly by
exploiting the relation between SPE and CCnorm.

The coherence γ 2
AB between a source signal A and a noisy

recording B of this signal can be related to the signal-to-
noise ratio, i.e., the coherence is just a function of the noise
process itself (see Marmarelis, 1978 for details). In the context
of neural recordings, Hsu et al. (2004) used this relation to
express the coherence of the true (but unknown) underlying
firing rate function (the source A) to the observed PSTH
(the noisy recording B) as a function of the signal-to-noise
ratio of the recording. They quantified this in terms of
signal power of the frequency domain signals, but since the
power of corresponding time and frequency domain signals
is identical, we can rewrite their expression (see formulas 5
and 6 of Hsu et al., 2004) directly in terms of NP and SP
to get:

γ 2
AB = SP

SP + 1
NNP

(16)

The derivation of the coherence function between the true
underlying firing rate function and the observed neural response
is analogous for the squared correlation coefficient between both
signals (also see Hsu et al., 2004 for details on this analogy). Thus,
we can apply the same principle to express the the inverse of
CCmax as:

1

CCmax
=
√

1+ 1

N
× NP

SP
(17)

Combining Equation 17 with Equation 15 now allows us to
express the inverse of CCmax as:

1

CCmax
=

√

√

√

√

√

√

√

√

1+ 1

N











(N − 1)×
N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

− 1











(18)

=

√

√

√

√

√

√

√

√

1− 1

N
+

(1− 1
N )×

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(19)

Based on Equation 8 and 9 the normalized correlation coefficient
CCnorm between the recorded firing rate y and the model
prediction ŷ can now be expressed as:

CCnorm = CCabs

CCmax
= Cov(y, ŷ)
√

Var(y)Var(ŷ)

1

CCmax
(20)

= Cov(y, ŷ)
√

Var(y)Var(ŷ)

√

√

√

√

√

√

√

√

1− 1

N
+

(1− 1
N )×

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(21)

= Cov(y, ŷ)
√

Var(y)Var(ŷ)

√

1− 1

N

√

√

√

√

√

√

√

√

1+

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(22)

= Cov(y, ŷ)
√

Var(ŷ)

√

1− 1
N

√

1
N2Var

(

N
∑

n=1
Rn

)

√

√

√

√

√

√

√

√

1+

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(23)

= Cov(y, ŷ)
√

Var(ŷ)

√

√

√

√

√

N(N − 1)

Var

(

N
∑

n=1
Rn

)

√

√

√

√

√

√

√

√

1+

N
∑

n=1
Var(Rn)

Var

(

N
∑

n=1
Rn

)

−
N
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Var(Rn)

(24)

= Cov(y, ŷ)
√

Var(ŷ)

√

N(N − 1)

√

√

√

√

√

1

Var

(

N
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n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(25)

= Cov(y, ŷ)
√

Var(ŷ)

√

√

√

√

√

N(N − 1)

Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

(26)

= Cov(y, ŷ)
√

Var(ŷ)

√

1

SP
(27)

In other words, we can now express CCnorm as a simple
function of SP. The previous derivation also shows that both
methods, SPE and CCnorm, use the covariance to quantify the
prediction accuracy and take the neural variability into account
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by normalizing with the signal power SP. This has several
implications. First, SPE will not reveal more about the prediction
accuracy than CCnorm, because SPE and CCnorm quantify the
similarity of the prediction and the neural response solely based
on the covariance of both signals. It is well known that the
(normalized) correlation coefficient is based on covariance, but
it has hitherto not been made explicit that this is also the
case for SPE. Note that SPE uses only the covariance to assess
prediction accuracy and thus, cannot reveal more information
about the similarity of both signals than CCnorm. Second, how
both measures quantify neural variability is not only related, but
mathematically equivalent. Third, in order to calculate CCnorm

it is not necessary to laboriously compute an approximation
to CCmax from repeated subsampling of the data to generate
computationally inefficient and potentially imprecise estimates
of CChalf . Instead, the normalization factor can be explicitly
calculated with Equation 27, using Equation 13 for SP as
suggested by Sahani and Linden (2003). The close relationship
between bothmeasures can also be visualized by squaringCCnorm

(left panel of Figure 2).
In summary, CCnorm as defined in Equation 27 provides

an insightful measure of model performance. It quantifies the
prediction accuracy using the covariance and isolates model
performance by taking the amount of intrinsic variability in the
observed neural responses into account. It is in theory bounded
between -1 and 1, and in practice values below zero are very rarely
observed. If they do occur, their interpretation is unambiguous:
negative CCnorm implies anticorrelation between prediction and
data. CCnorm thus behaves uniformly well whether called upon to
quantify the performance of good and of poor models, in contrast
to SPEwhich behaves well, and very similarly to CCnorm, for good
models, but becomes increasingly harder to interpret as model
performance declines.

6. EXPERIMENTAL VALIDATION

The previous sections show the problems caused by the missing
lower bound of SPE from a theoretical point of view and illustrate
them with a simulation (Figure 1). This section demonstrates
the implications from a practical point of view by comparing
the predictive performance of models for the activity of single
neurons in the auditory system in three different experimental
settings.

6.1. Neural Recordings
All animal procedures were approved by the local ethical review
committee and performed under license from the UK Home
Office. Ten adult pigmented ferrets (seven female, three male;
all >6 months of age) underwent electrophysiological recordings
under anesthesia. Full details are as in the study by Bizley
et al. (2010). Briefly, we induced general anesthesia with a
single intramuscular dose of medetomidine (0.022 mg/kg/h)
and ketamine (5 mg/kg/h), which was maintained with a
continuous intravenous infusion of medetomidine and ketamine
in saline. Oxygen was supplemented with a ventilator, and
we monitored vital signs (body temperature, end-tidal CO2,
and the electrocardiogram) throughout the experiment. The

temporal muscles were retracted, a head holder was secured
to the skull surface, and a craniotomy and a durotomy
were made over the auditory cortex. We made extracellular
recordings from neurons in primary auditory cortex (A1)
and the anterior auditory field (AAF) using silicon probe
electrodes (Neuronexus Technologies) with 16 or 32 sites
(spaced at 50 or 150 µm) on probes with one, two, or four
shanks (spaced at 200 µm). We clustered spikes off-line using
klustakwik (Kadir et al., 2014); for subsequent manual sorting,
we used either spikemonger (an in-house package) or klustaviewa
(Kadir et al., 2014). The time-discrete neuronal firing rate
was approximated by binning spikes in 5 ms windows and
averaging the spike count in each bin over all trials (compare to
Equation 1).

6.2. Acoustic Stimuli
Natural sounds were presented via Panasonic RPHV27
earphones, which were coupled to otoscope specula that were
inserted into each ear canal, and driven by Tucker-Davis
Technologies System III hardware (48 kHz sample rate). The
sounds had root mean square intensities in the range of 75–
82 dB SPL. For Experiment 1, we presented 20 sound clips
of 5 s duration each, separated by 0.25 s of silence. Sound
clips consisted of animal vocalizations (ferrets and birds),
environmental sounds (water and wind) and speech. The
presentation of these stimuli was repeated in 20 trials. For
Experiments 2 and 3, we presented 45 sound clips of 1 s duration,
again separated by gaps of silence. The sound clips consisted of
animal vocalizations (sheep and birds), environmental sounds
(water and wind) and speech. The presentation of these stimuli
was repeated in 10 trials. The silent gaps and the first 0.25 s
thereafter have been removed from the data set.

6.3. Neuronal Modeling
For Experiment 1, the responses of 119 single neurons were
predicted with an LN model, a widely used class of models
comprising a linear and a nonlinear stage (Chichilnisky, 2001;
Simoncelli et al., 2004). The linear stage fits a spectro-temporal
receptive field (STRF), which is a linear filter that links the
neuronal response to the stimulus intensities of 31 log-spaced
frequency channels (with center frequencies ranging from 1 to
32 kHz) along the preceding 20 time bins (covering a total
of 100 ms stimulus history). The linear stage was fitted using
GLMnet for Matlab (Qian et al.; see http://web.stanford.edu/~
hastie/glmnet_matlab/). The nonlinear stage fits a sigmoidal
nonlinearity to further maximize the goodness of fit to the
neural response using minFunc by Mark Schmidt (University
of British Columbia, British Columbia, Canada; http://www.di.
ens.fr/~mschmidt/Software/minFunc.html). For Experiment 2,
the same model class was used to predict the response of 77
single neurons. For Experiment 3, the responses of 43 single
neurons were model with a standard neural network comprising
620 units in the input layer (31 frequency channels times 20
time bins of stimulus history), 20 hidden units and a single
output unit. Hidden units and the output unit comprised a
fixed sigmoidal nonlinearity. The connection weights of the
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FIGURE 2 | Left panel: Same figure as the left panel of Figure 1, but including CCnorm and its squared values for reference. Note that, for good

predictions (values above ca 50%), CC2
norm and SPE are almost identical, both yielding very similar estimates of the proportion of “explainable variance explained.”

This is as might be expected given the equality of Equation 7 and 28 when ŷ → y. However, as the prediction performance declines below 50%, CC2
normand SPE

increasingly and sharply diverge. Right panel: Scatter plot of performance scores for predictions of neuronal responses from three different experiments. Each marker

reflects the performance score of the prediction of the response of a single neuron. The black dashed line visualizes where SPE equals CC2
norm. The values of CCnorm

have been multiplied with their absolute value to demonstrate that negative values only occur for SPE, but not for CCnorm. The solid red line shows the values for the

simulation of Figure 1, the dotted red line and the red cross mark the performance scores of the 60% noise simulation of the lower right panel in Figure 1.

Corresponding to the overlap of SPE and CCnorm for good predictions, the red line approaches the dashed black line.

network were fitted with backpropagation using the Sum-
of-Functions Optimizer (Sohl-Dickstein et al., 2013). Both,
the STRF weights of the LN models and the connection
weights of the neural networks were regularized with a penalty
term on the L2-norm in order to avoid overfitting. In all
cases, models were trained and tested using a cross-validation
procedure. All free model parameters were fitted on a training
set comprising 90% of all data. The predictive performance of
a model for a given neuron was assessed by measuring SPE
and CCnorm for the model predictions of the neural response
to the remaining 10% of the data set. This procedure was
repeated 10 times, each time with a distinct 10% of data. The
model performance was computed as the mean across all 10
performance measurements.

6.4. Results
We predicted neuronal responses to acoustic stimuli with
different model classes in order to address the question how the
choice of a performance measure affects the interpretability of
the results in a practical setting. To this end, we measured the
predictive performance of models with two different methods,
SPE and CCnorm. The right panel of Figure 2 shows a scatter
plot in which each marker indicates the performance scores
that the respective measures assign to a given prediction for
a given neuron. Instead of raw CCnorm values, here we chose
to plot the signed square of CCnorm as a percentage on the
x-axis. This choice is motivated by the fact that the square
of the correlation coefficient, also known as the coefficient of
determination, quantifies the “proportion of variance explained”
by a statistical regression model, and CC2

norm × 100 should thus
be interpretable directly as a measure of “percent explainable
variance explained” by the model. We plot the signed square

to ensure that there are no artificial constraints keeping the x-
values positive: the fact that there x-range of the data is entirely
positive while the y-range extends well into negative territory
veridically reflects the way the respective underlying metrics,
CCnorm and SPE, behave in practice. For those cases in which the
model predicts the actual neuronal response quite well, one can
observe a very tight relation between the SPE value and the signed
squared value of CCnorm, i.e., both provide very similar, sensible
measures of “percent explainable variance explained.” However,
as expected from the theoretical analysis of both measures in
the previous sections, this relation diminishes for cases in which
the models poorly predicted the neuronal response. For those
cases where there is little or no correspondence between the
prediction and the response, the value of CCnorm approaches
zero (by definition), and for some of those cases, the value of
SPE also approaches zero, but for many others the SPE value
becomes a large negative number. Substantially negative SPEs
are seen even for some cases for which the |CCnorm| × CCnorm

indicates that the model was able to capture as much as 20–
30% of the explainable, stimulus driven variability in the neural
firing rate. Thirty percent variance explained may not be a stellar
performance for amodel, but it certainly does not seem deserving
of a negative test score. Indeed, the experimental results are
generally in accordance with the simulation in general, shown
as a red line in the right panel of Figure 2. The simulation is
identical to the one in Figure 1. To simulate SPE and CCnorm for
a wide range of good and bad predictions, a good prediction was
deteriorated by adding an increasing amount of white noise. Just
as for the data from the three experiments, SPE values match the
square of CCnorm for good predictions, but go deep into negative
values for noisy predictions. For comparison, the SPE andCCnorm

values of the example in the bottom right panel of Figure 1 (60%
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noise added) are marked with dotted lines in the right panel of
Figure 2. In summary, the analysis of the experimental data from
three experiments validate the theoretical analysis of the previous
sections.

Figure 2 also visualizes the practical implications of the
missing lower bound of SPE. SPE was from its inception
described to be a “quantitative estimate of the fraction of
stimulus-related response power captured by a given class of
models” (Sahani and Linden, 2003). This interpretation is in
conflict with values below zero because a fraction of a signal
power cannot be negative. Furthermore, as was discussed in the
previous sections, it is even difficult to assign an unambiguous
interpretation to small or negative SPE values because a variety
of poor models which vary widely in the size of their residual
error can have similar small or negative SPEs, and may have
SPEs below those of constant mean firing rate models of
arbitrary value with an SPE of zero (including the “dead neuron
model”), even if their residual error is smaller than that of
these null models. If researchers are trying to quantify how
well a particular class of models can describe the response
properties of a sizeable sample population of neurons, a small
number of somewhat spurious very negative values can heavily
affect the overall population mean. For instance, the mean SPE
value across the population of 77 neurons in Experiment 2 is
just 15%, because a few very negative values drag down the
average. But, as we have discussed in section 6, much of the
negativity in those SPE values simply reflects a large variance
in the predictions, which on its own is not very relevant,
and constraining the SPE to values of zero or above would
raise the mean performance by more than a quarter to over
19%.

7. CONCLUSION

Inter-trial variability of neural responses to repeated
presentations of stimuli poses a problem for measuring the
performance of predictive models. The neural variability
inherently limits how similar one can expect the prediction of
even a perfect model to be to the observed responses. Thus,
when using prediction accuracy as a measure of performance,
inherent response variability is a confound, and the need to
control for this has been widely acknowledged (e.g., Panzeri and
Treves, 1996; Sahani and Linden, 2003; Hsu et al., 2004; David
and Gallant, 2005; Laudanski et al., 2012).

Different approaches for taking neural variability into account
when measuring model performance have been developed.
To get an unbiased estimate of mutual information, Panzeri
and Treves (1996) have suggested a method to extrapolate
information content to an infinite number of trials (also see
Atencio et al., 2012). Sahani and Linden have developed the
very insightful decomposition of the recorded signal into signal
power and noise power (Sahani and Linden, 2003). This has
lead to the signal power explained (SPE), a measure based
on variance explained which discounts “unexplainable” neural
variability. This measure has been widely adopted, albeit under
various names such as predictive power, predicted response
power, and relative prediction success (Sahani and Linden, 2003;

Machens et al., 2004; Ahrens et al., 2008; Asari and Zador,
2009; Rabinowitz et al., 2012). Also, it has been used as a
basis for specific variants of measures for model performance
(Haefner and Cumming, 2009). Focusing on coherence and the
correlation, Hsu and colleagues have developed a method to
normalize those measures by their upper bound (CCmax), which
is given by the inter-trial variability (Hsu et al., 2004). This yields
the normalized correlation coefficient (CCnorm). Following their
suggestion, the upper bound can be approximated by looking at
the similarity between one half of the trials and the other half of
the trials (CChalf ). This measure has also been used by Gill et al.
(2006) and Touryan et al. (2005). Others have used the absolute
correlation coefficient and controlled for inter-trial variability
by comparing the absolute values with CChalf (Laudanski et al.,
2012).

In this study we have analyzed in detail two measures of
model quality that account for neural response variability, SPE
and CCnorm. We have revealed the shortcomings of SPE, which
has no lower bound and can yield undesirable negative values
even for fairly reasonable model predictions. Furthermore, we
have uncovered the close mathematical relationship between
SPE and CCnorm, consolidated both approaches and arrived
at several insights. First, both measures quantify prediction
accuracy using the covariance (and only using covariance).
Second, bothmeasures quantify neural variability using the signal
power (SP) (and only using SP). Third, when the variance of
the prediction error approaches zero, SPE becomes identical
to the square of CCnorm. And finally, it is not necessary to
approximateCCmax using computationally expensive and inexact
resampling methods because CCnorm can be calculated directly
via SP:

CCabs =
Cov(y, ŷ)

√

Var(ŷ)Var(y)
CCnorm = Cov(y, ŷ)

√

Var(ŷ)SP
(28)

SP =
Var

(

N
∑

n=1
Rn

)

−
N
∑

n=1
Var(Rn)

N(N − 1)
(29)

This consolidated definition of CCnorm is not only more
elegant, precise, and efficient, but it also sheds light on how
CCnorm can be interpreted. It is almost identical to the well-
known Pearson’s correlation coefficient CCabs, but the variance
(power) of the recorded signal is replaced with the signal
power SP, i.e., the deterministic and thus predictable part
of the signal. As demonstrated, using SPE as a measure of
model performance can yield misleading results and will limit
interpretability of the results. However, CCnorm has been shown
to fulfill the criteria of Section 2 for insightful measures: it
is bounded, interpretable, and comparable across data sets.
Thus, CCnorm is a well-defined and helpful tool to assess model
performance4.

4Matlab code for all measures can be found on GitHub: https://github.com/

OSchoppe/CCnorm.
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Note, however, that CCnorm cannot be estimated accurately
if the data are excessively noisy. Equation 28 requires SP
to be large enough to estimate with reasonable accuracy.
For very noisy data or too few trials, observed SP values
can become dominated by sampling noise, and may then
behave as near zero random numbers. This would render
CCnorm estimates unstable, allowing them to become spuriously
large (if SP is small and underestimates the true value) or
even imaginary (if the SP underestimate is severe enough to
become negative). Thus, if SP or CCmax are small or have a
very wide confidence interval, CCnorm values must be treated
with caution.
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Abstract: Cortical sensory neurons are commonly characterized using the receptive
field, the linear dependence of their response on the stimulus. In primary auditory
cortex neurons can be characterized by their spectrotemporal receptive fields, the
spectral and temporal features of a sound that linearly drive a neuron. However,
receptive fields do not capture the fact that the response of a cortical neuron results
from the complex nonlinear network in which it is embedded. By fitting a nonlinear
feedforward network model (a network receptive field) to cortical responses to natural
sounds, we reveal that primary auditory cortical neurons are sensitive over a substan-
tially larger spectrotemporal domain than is seen in their standard spectrotemporal
receptive fields. Furthermore, the network receptive field, a parsimonious network
consisting of 1-7 sub-receptive fields that interact nonlinearly, consistently better
predicts neural responses to auditory stimuli than the standard receptive fields. The
network receptive field reveals separate excitatory and inhibitory sub-fields with
different nonlinear properties, and interaction of the sub-fields gives rise to important
operations such as gain control and conjunctive feature detection. The conjunctive
effects, where neurons respond only if several specific features are present together,
enable increased selectivity for particular complex spectrotemporal structures, and
may constitute an important stage in sound recognition. In conclusion, we demon-
strate that fitting auditory cortical neural responses with feedforward network models
expands on simple linear receptive field models in a manner that yields substantially
improved predictive power and reveals key nonlinear aspects of cortical processing,
while remaining easy to interpret in a physiological context.
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that the response of a cortical neuron results from the complex nonlinear network in which it

is embedded. By fitting a nonlinear feedforward network model (a network receptive field)

to cortical responses to natural sounds, we reveal that primary auditory cortical neurons are
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linear properties, and interaction of the sub-fields gives rise to important operations such as

gain control and conjunctive feature detection. The conjunctive effects, where neurons

respond only if several specific features are present together, enable increased selectivity

for particular complex spectrotemporal structures, and may constitute an important stage in

sound recognition. In conclusion, we demonstrate that fitting auditory cortical neural

responses with feedforward network models expands on simple linear receptive field mod-

els in a manner that yields substantially improved predictive power and reveals key nonlin-

ear aspects of cortical processing, while remaining easy to interpret in a physiological
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Author Summary

Linear filter descriptions of sensory neurons have been with us since the 1970s, and have
been enormously influential. But such models, and more recent nonlinear variants, are
rather like modeling the entire network as a single neuron, failing to account for the neu-
ron's response being a consequence of a network of many nonlinear units. Here we show
how these limitations can be overcome by using recent advances in machine learning to fit
“network receptive field models” to neural responses to natural sounds. Feedforward net-
works of 1–7 nonlinearly-interacting lower-order model neurons are required to model a
cortical receptive field. Each lower order neuron is tuned to somewhat different stimulus
features, arranged together in complex but interpretable structures, which cover a far
wider range of sound frequencies and delays than current receptive field models indicate.
The NRF models capture important nonlinear functional characteristics in auditory corti-
cal neurons, including multiplicative gain control and conjunctive feature selectivity,
where neurons respond when certain features are present together but not in isolation.
This enables NRFs to predict the responses of auditory cortical neurons with considerably
greater accuracy than conventional models.

Introduction

Developing models capable of quantitatively predicting neural responses to sensory stimuli is
key to understanding the neural computations underlying perception. A widespread model of
sensory neurons, including cortical sensory neurons, is the receptive field (RF), which describes
the best-fitting linear transformation from the stimulus to the neural response [1–16]. RF mod-
els, although simple and useful, are only moderately effective in capturing neural responses
since processing by networks of neurons includes highly nonlinear operations. Consequently,
they can fail to produce adequate descriptions of neural responses, particularly to natural sti-
muli [17,18].

While spectrotemporal receptive fields (STRF) of neurons in primary auditory cortex (A1)
can be quite broad and complex, many of them are punctate, typically little more than a point
in time and frequency, indicating little of the likely complexity of cortical processing [19]
(although see [12]). Adding specific nonlinearities to STRF models [17], for example by apply-
ing output nonlinearities [19,20] to create linear-nonlinear (LN) models, improves prediction
somewhat. However, basic LN models, consisting of just a single STRF and an output nonline-
arity, still fail to capture the interactions of sensory filters that are bound to occur naturally in
the neural networks of ascending sensory pathways. Recently, more complex and often nonlin-
ear STRF models [20–25] of A1 neurons have achieved improved predictions of experimental
data, although sometimes at the expense of being very computationally intensive. These newer
models have tended to concentrate on better modeling of features local to the neuron, such as
synaptic depression [23] or refractoriness [22]. Other valuable approaches adopted to charac-
terize the feature selectivity of A1 neurons are more phenomenological in nature [20].

Here we take a very different approach, one that embodies the fact that a neuron's response
is the result of it being embedded in a network of many neurons, each of which is a nonlinear
unit. We take advantage of recent advances in the training of artificial neural networks [26] to
produce a new type of RF model, the network receptive field (NRF), which can be rapidly fitted
to neural response data. The NRF model is composed of a hierarchical feedforward network of
20 LN units, embodying the fact that cortical neurons integrate the output of many lower order
neurons. Although our choice of 20 possible feed-forward connections does not reflect the full
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range of converging inputs that cortical neurons receive, this approach stands in contrast to the
above mentioned recent models of A1 responses [20–24], which use only one, or in some cases
two, STRF-like units. In fact, we show here that up to seven effective units are required to
model a cortical receptive field.

Receptive field models tend to include large numbers of free parameters, which can lead to
problems with “overfitting”: the many free parameters of the model may capture unimportant
or coincidental details or noise in the training set. This can result in the model appearing to
successfully capture the stimulus-response relationships in the training set, but subsequently
performing poorly when the model is used to predict neural responses to novel stimuli that
were not part of the training set. To prevent the risk of overfitting affecting our results we took
the following steps: First, during model fitting, the NRF was regularized by the summed magni-
tudes of the network's weights (L1-norm), which automatically prunes away superfluous
weights and hidden units (from an initial 20 hidden units). This produces parsimonious and
readily interpretable connection patterns that provide insights into the underlying circuitry.
Second, we made extensive use of cross-validation during model training (see below) and
assessed the performance of all models using a generalization test set which the models had not
been exposed to during training.

Together, the regularization, cross-validation and generalization testing adopted here
ensure that the improved performance exhibited by our NRF models is not a trivial conse-
quence of the larger number of degrees of freedom that these models can bring to bear, but
rather reflect the fact that the structure of these models renders them better able than conven-
tional LN receptive field models to capture aspects of the sensory processing performed by the
auditory pathway. Thus, using electrophysiological recordings from ferret auditory cortex, we
find that NRF models consistently outperform LN models in predicting the responses of audi-
tory cortical neurons to natural stimuli. The fitted NRF models of auditory cortical neurons
reveal sensitivity over substantially wider time and frequency ranges than conventional LN and
STRF models, and the NRFs also reveal distinct nonlinear properties, including gain control
and conjunctive feature selectivity, features that may be critical to auditory cortex function.
Conjunctive feature selectivity, where neurons respond when certain features are present
together but not in isolation, allows neurons to show increased selectivity to specific complex
spectrotemporal structures and may provide a valuable stage in the sound recognition process.

Results

Network receptive field models of neural responses in auditory cortex

To investigate the ability of NRFs to account for cortical sensory responses, we fitted models to
neural responses to clips of natural sounds. Seventy-six single-unit responses were recorded
with multi-channel electrodes in the ferret primary auditory cortical areas, A1, and the anterior
auditory field (AAF). The stimuli comprised 20 clips of natural acoustic scenes, each of 5 s
duration, including ferret vocalizations, speech, and environmental sounds. The model fitting
process is shown schematically in Fig 1. and described in detail in the Materials and Methods.
The first step in the NRF model was to generate a first order approximation of auditory nerve
response patterns to the stimuli, referred to here as the “cochleagram”, by measuring the log
amplitude of the sound in each of 34 log-spaced frequency channels, spanning 0.5 to 22.6 kHz
with ⅙ octave spectral resolution and 5 ms temporal resolution. The task of the model was
then to predict the firing patterns recorded from the cortical neurons, also binned with 5 ms
time resolution, from the previous 100 ms (20 time bins) of stimulus history.

In accordance with principles of model selection and assessment [27], we divided the neural
response data into a cross-validation set and a test set. The cross-validation set was then
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divided again into a training set that was used to fit the model parameters, and a validation set
on with which the model's capacity to predict neural response was then assessed. By this
means, the optimum value for general settings of the model (hyperparameters, such as the
degree of regularization) could be determined. This fitting was repeated ten times for ten differ-
ent ways of dividing the cross-validation set, to ensure a robust assessment of the optimum
model hyperparameter values. Note that the model fits, for both the LN and NRF models,
tended to differ little in their receptive field forms over these ten fits, despite having slightly dif-
ferent datasets and different randomly chosen weight initializations, indicating the robustness
of the fitting procedure (for details and quantification see Materials and Methods). Once the
optimum hyperparameters were obtained, the model was re-fitted using the full cross-valida-
tion dataset. Finally, the test dataset that was put aside was used to assess the fitted model's
capacity to predict responses to sounds not encountered at any stage of the fitting (i.e. to “gen-
eralize”). All model performance data reported below refer to results obtained with the test set.

A conventional LN model and an NRF model were fitted for each cortical neuron in our
dataset. The LN model comprised a linear STRF, used to calculate the activation of the model
neuron, and a sigmoidal output nonlinearity (Fig 1A). The linear STRF on its own also pro-
vided a basic linear (L) model. The NRF model was a rate-based, feed-forward neural network
(a multilayer perceptron), with units that integrate inputs linearly followed by a nonlinear
transformation to produce their output [28]. The NRF effectively computes a weighted sum of
several LN models, where each hidden unit (HU) instantiates one LN model, and their outputs

Fig 1. Schematics of the models. (A) The linear-nonlinear (LN) model. (B) The network receptive field (NRF) model, a feedforward

neural network

doi:10.1371/journal.pcbi.1005113.g001
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are combined linearly as they converge on the output unit (OU). The resulting OU activation
passes through a further sigmoidal nonlinear activation function (Fig 1B) to yield the NRF
model’s prediction of the neural firing rate. The network units have no memory from time
point to time point; the model does not use any recurrent or convolutional elements. All mod-
els (LN and NRF) were fitted by minimizing the squared error between the model’s estimate of
the neural response and the actual neural firing rate (see Materials and Methods for details).
Importantly, L1-norm regularization of the connection weights was used to find a parsimoni-
ous representation. A recently developed algorithm [26] allowed for good NRF models to be
fitted rapidly and efficiently for all 76 cortical neurons in our dataset.

NRF models describe neural responses better than LN models

To assess the models’ predictive power, we measured how well they were able to predict
responses to a “test set” of stimuli which were not part of the training set used during model fit-
ting. The NRF tends to better predict the amplitude of sharp peaks in the observed neural
response than the LN model (Fig 2A and 2B, seconds 3–4 are from the training set, seconds
4–5 are from the test set). We quantified the quality of the response prediction by calculating
the normalized correlation coefficient (CCnorm) between predicted and observed neural
responses [29,30]. A CCnorm of 0 would indicate that the model fails to predict the neural
responses any better than chance, while CCnorm values of 1 indicate predictions that are at the
highest achievable accuracy (see Materials and Methods). For the great majority of neurons
(70/76), the NRF achieved higher CCnorm values than the LN model (p = 6.3×10−15, n = 76,
sign test; Fig 2C), with the mean CCnorm for the NRFs being 0.73, compared to 0.67 for the LN
model. The CCnorm for the L-model, the prediction using the STRF but without processing
through the fitted sigmoidal output nonlinearity, was 0.60, significantly less than both the NRF
(76/76, p = 2.6×10-23, n = 76, sign test) and the LN model (75/76, p = 2.0×10−21, n = 76, sign
test). The CCnorm value for the NRF model may approach the maximum possible given the
duration of the STRFs (100 ms) used by the NRF model [31] (See Discussion). We also report
the raw mean correlation coefficient (CCraw), which was 0.61 for the NRF model, and 0.56 for
the LN model, to enable comparison with previous publications (but note, that differences in
raw CCraw values between different studies are difficult to interpret, as will be discussed further
below). As expected, for this measure too, the great majority of neurons (70/76) were signifi-
cantly better fit by the NRF than the LN model (p = 6.3×10−15, n = 76, sign test). The CCraw for
the linear model was 0.50, significantly less than both the NRF (76/76, p = 2.6×10−23, n = 76,
sign test) and the LN model (75/76, p = 2.0×10−21, n = 76, sign test).

The capacity of the NRF model to predict better than the LN model is also robust to the exact
choice of test set. This is evident from examining the prediction quality for the validation sets,
which, in order to require the model to generalize across stimulus types, comprised 2 of the 20
sounds, chosen at random. The mean CCnorm for the validation set, averaged over all 10 folds, is
greater for the NRF model (0.76) than the LN model (0.71), with significantly more neurons (69/
76) showing a greater CCnorm for the NRF model than the LN model (p = 6.4x10-14, n = 76, sign
test).

To investigate how well the models are able to predict peak responses in the test set, we also
measured the “peak activity mean squared error”, which was defined as the MSE between the
observed firing rates and those predicted by the models during periods where the observed fir-
ing rate exceeded two standard deviations above the mean firing rate (the “2σ-threshold”, dot-
ted line in Fig 2B). It is readily apparent that the peak activity MSE of the NRF model is smaller
than that of the LN model for the great majority of neurons (p = 5.2×10-16, n = 76, sign test; Fig
2D). The peak activity MSE, averaged over all neurons, was 27% smaller for the NRF model
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than for the LN model (Fig 2E). This reduction of prediction error during periods of peak exci-
tation appears to drive the improved performance of the NRF model relative to the LN model.
This is indicated by much smaller average improvement (8%) for the NRF over the LN model
when the MSE was measured over the entire neural response (Fig 2F).

Note that all the model performance data in Fig 2. were calculated exclusively from test sets
that the models were not exposed to during training. This is essential to ensure that appropriate
model comparisons were made. NRF models have significantly more free parameters than con-
ventional LN models, and, if tested on the training data, might trivially outperform the LN
models by overfitting noise in the training data, but such overfitting would become

Fig 2. A neural network receptive field model predicts the response of auditory cortical neurons better than the LN

model. (A) Cochleagram for a 2 s sound stimulus snippet. (B) The neural response firing rate to the stimulus snippet shown in

A (black line) for one example neuron, shown alongside the predicted responses of the LN-model (dotted cyan line) and the

NRF model (red line). The thin dotted black line indicates the 2σ-threshold, which was used to identify periods of large response

peaks. (C) Prediction quality (normalized correlation coefficient) of the NRF model plotted against that of the LN-model for all

76 neurons in our dataset. (D) Mean squared error (MSE) of the prediction during peak response times of the NRF models

plotted against error of the LN-models. (E) Average peak activity MSE (pMSE) over the whole dataset for the NRF and the LN

models. (F) Average MSE of the predictions generated by NRF and LN models as in E, but calculated across the whole

response to the test stimuli, not just the peak response period.

doi:10.1371/journal.pcbi.1005113.g002
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disadvantageous when the models were used to make predictions for novel stimulus sets. The
fact that NRF models outperform LN models on previously unseen data indicates that the NRF
models mimic aspects of the behavior of the cortical neurons which the structure of LN models
cannot account for.

NRFs reveal that cortical neurons are better described by the interaction

of multiple, diverse sub-receptive-fields

We first qualitatively examined the fitted characteristics of the two models (Fig 3; each of the
10 numbered rows shows an example neuron; neuron 1 was used in Figs 1 and 2B). In our
dataset, as is quite commonly the case, the LN model STRFs are rather “punctate”, i.e. the
model neuron is driven almost exclusively by stimulus elements clustered narrowly in fre-
quency and recent stimulus history, often an excitatory point with some weak lagging inhibi-
tion (Fig 3A, the top panel shows the STRF for each neuron). Moreover, the LN model tends to
operate in the near-threshold region of the nonlinear activation function (Fig 3A, lower panel
for each neuron), with activations straddling the expansive part of the sigmoidal output
function.

The NRF model reveals more complex tuning properties (Fig 3B–3D, for the same 10 exam-
ple neurons). Each NRF model had 20 HUs, but because the model training incorporated a reg-
ularization term that penalizes ineffectual and redundant synaptic weights (see Materials and
Methods), HUs could develop substantive synaptic weights only if these were able to “explain”
aspects of the firing of the biological neuron that were not already covered by the other HUs in
the feedforward network. Any HUs that were redundant would have their input and output
weights, and hence their overall contribution to the NRF, shrink to negligibly small values. We
found that, of the 20 HUs in each NRF, most turned out to be redundant during the course of
model fitting, and each NRF ended up with a relatively small number of “effective” HUs
(between 1 and 7), which were the only ones to send strong signals to the output neuron (Fig
3B; for each neuron, each column shows an 'effective' HU with an STRF, top panel, and a non-
linearity, bottom panel). The variance, calculated over the full stimulus set, of an HU's
weighted-output (HU output × output weight) provides a measure of the HU's 'effectiveness'
(Fig 3D, top panel), with HUs with a variance�5% (Fig 3D, red line) of the sum of the vari-
ances of all 20 HUs being considered effective. The weighted-output of an effective HU varies
greatly as it rises and falls to signal the presence or absence of particular stimulus features. In
contrast, the weighted-output variance of an “ineffective” HU is close to zero. Thus, an NRF
with three effective HUs (Fig 3B, neuron 1) has three weighted-output variances above the 5%
threshold (Fig 3D, top panel, neuron 1).

HUs can be classified into excitatory or inhibitory units according to whether their output
weight is positive or negative, after adjusting the model to account for HUs where the input
weights are predominantly negative and the output weight negative, which is effectively an
excitatory HU, and also adjusting for HUs that show the converse (see Materials and Methods).
If the plotted line of an HU's nonlinear activation function is red, it is excitatory, whereas if it is
blue, the HU is inhibitory (Fig 3B, bottom panel for each HU). The STRFs of HUs are more
diverse in form than the STRFs of the LN model, and together appear to cover a wider range of
frequencies and times (Fig 3B, top panel for each HU). For display purposes only, the weights
of the inhibitory HU STRFs in Fig 3 have their signs inverted so as to show their influence on
the OU (see Materials and Methods, “The displayed STRFs”).

We can examine how the HUs interact if we “zoom in” on a part of the STRF's frequency
and temporal range marked by high levels of sensitivity (Fig 3C, 'zoomed' region identified by
the black bars along the axes of the STRF for the first HU of each neuron in Fig 3B). Contours
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delineate the time-frequency regions of high sensitivity for each of the effective HUs, using
shades of red for excitatory HUs and shades of blue for inhibitory HUs (Fig 3C). Here, for each
excitatory HU, time-frequency regions of high sensitivity were defined as those for which the
STRF's weights (as shown in Fig 3C) exceeded half the maximum weight. For the inhibitory
effective HUs, high-sensitivity regions were where the STRF weights fell below half the mini-
mum weight. For many neurons, the high-sensitivity regions of the STRFs for different HUs
align in close but distinct locations in spectrotemporal space to form apparent structures, sug-
gesting the presence of conjunctive sensitivity to ordered features (see Discussion).

OUs tend to operate “near threshold” (where “threshold” is the lowest possible output
value, see Materials and Methods), with activations (Fig 3D, bottom panel per neuron, black
histogram) mostly confined to the expansive part of their nonlinear activation function (Fig
3D, bottom panel, red line), just like the LN model. However, the same is not always true for
the effective HUs, many of which experience activations (Fig 3B, bottom panels per neuron,
black histogram) that sometimes fall in the linear range of their nonlinear activation function
(Fig 3B, bottom panels, red or blue line), or even operate over the compressive, upper range of
their nonlinear activation function.

NRF models have between 1 and 7 effective hidden units

For the NRF model, the most common number of effective HUs of a neuron was 2; this was the
case for 42% (32/76) of neurons (Fig 4A). Such 'bi-feature' neurons always have one excitatory
and one inhibitory HU (Fig 4B). A few 'uni-feature' neurons, with only an excitatory effective
HU, made up 5% (4/76) of our sample (Fig 4A). The remaining 53% (42/76) were 'multi-fea-
ture' neurons with between 3 and 7 (mode = 5) effective HUs (Fig 4A), which tended to have
more excitatory HUs than inhibitory HUs (p = 0.035, n = 76, sign test; Fig 4B).

NRF models reveal wider integration over time and frequency than LN

models

To quantify the time and frequency tuning widths of LN model STRFs, we first calculated the
“power STRF” for each neuron by squaring the weights in the STRF (see Materials and Meth-
ods). The temporal tuning width was then determined by summing the power STRF over the
frequency bands and counting the number of time bins with power�25% of the maximum.
Multiplying this count by the temporal bin size gave the temporal tuning width at quarter-
height. The frequency tuning width at quarter-height was measured analogously by summing
the power STRF over time and multiplying the number of bins exceeding a quarter of the maxi-
mal power by the width of each frequency channel.

Fig 3. Example STRFs and nonlinearities for both models. Each numbered row is an example neuron. (A) STRFs

(top) and nonlinearities (bottom) for the LN model. Green bars mark 0–20 sp/s. The nonlinearities are superimposed over

the distribution of activations. The green dot on the nonlinear activation function marks the mean output value. (B) Hidden

unit (HU) ’STRFs’ (top) and nonlinearities (bottom) for the NRF model. If the nonlinearity curve is red, it is an excitatory

HU, if blue, it is inhibitory. Otherwise format as in A. Note that the STRFs of inhibitory units have been multiplied by -1 for

display purposes, to indicate the direction of their influence on the final neural output (See Materials and Methods, The

displayed STRFs). One would therefore not necessarily expect to observe extensive inhibitory areas such as those in

some of these HU display STRFs in physiological recordings, as such inhibitory fields would most likely manifest in

biological networks as excitatory fields that feed on to the next neuron via inhibitory synapses. (C) HU STRFs in B plotted

together as contours. The contours are at 50% of an STRF’s maximum (if an excitatory HU) or of its minimum (if an

inhibitory HU). Each panel in column C only shows a sub-region of the full spectrotemporal range of the STRFs; it is an

expansion of an area of interest, whose frequency range and temporal range are shown by the black bars on the edges of

the first HU STRF of the neuron. (D) Top: the variance of weighted-output, the input to the output unit (OU), of each HU.

The red line marks a variance of 5%, the threshold for distinguishing effective HUs from their “ineffective” counterparts.

Bottom: OU nonlinearities for the NRF model for the same 10 cortical neurons. Format as bottom panel in A.

doi:10.1371/journal.pcbi.1005113.g003
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Fig 4. Properties of the feedforward neural network model. (A) Histogram of the number of effective hidden units

(HU) of the NRF model fits for each neuron. (B) Distribution of the number of effective excitatory and inhibitory HUs

for each neuron. (C) Frequency tuning width of the NRF model versus that of the LN model. The red dot indicates the

average frequency tuning width of both models. (D) Temporal tuning width of the power STRF of the NRF model

versus that of the LN model. The red dot indicates the average temporal tuning width of both models. (E) A plot of the

expansive/compressive (EC) score (which measures how the nonlinear activation function is used) against the

excitatory/inhibitory (IE) score for all 246 effective HUs from the 76 neurons. Contour plot shows the density. (F)

Distribution of the EC score for excitatory (red) and inhibitory (blue) HUs. (G) Distribution of the EC score for the

output unit of the NRF model (red) and for the LN model (cyan). (H) Distribution of the EC score for excitatory (red)
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To obtain comparable measurements of overall tuning widths for the NRF models, we cal-
culated power STRFs for each of the NRF model’s HUs, then summed their power STRFs,
weighted by the strength of the signals that they contribute to the OU, which was quantified as
the variances of their weighted-outputs, as shown in the bar charts in Fig 3D. Quarter-height
frequency and temporal tuning widths were then calculated from the weighted sum power
STRF in the same way as for the LN model power STRFs.

The quarter-height frequency and the temporal tuning width for the NRF model was, for
most neurons, significantly larger than for the LN model (n = 76, p = 1.6×10−3 and
p = 1.8×10−12, respectively, sign-test; Fig 4C and 4D respectively). On average, the frequency
tuning width for the NRF model was 0.83 octaves, which is 54% larger than the 0.54 octaves for
the LN model. The average temporal tuning width for the NRF model was 28.2 ms, which is
99% larger than the 14.2 ms for the LN model. We also carried out analogous analyses for fre-
quency and temporal tuning widths measured at half-height, which produced similar results,
showing significantly larger tuning widths in the NRF model for both frequency and time (27%
and 46% larger, respectively, n = 76, p = 0.033 and 1.7×10−7, respectively, sign-test).

Inhibitory and excitatory receptive sub-fields have different nonlinear

properties

We next examined whether excitatory or inhibitory HUs differ in the extent to which they
operate over the expansive, linear or compressive part of their output nonlinear activation
function. For each effective HU in our dataset, we computed an expansive/compressive mea-
sure (EC score) and inhibitory/excitatory measure (IE score; see Materials and Methods for
details). Both EC and IE scores are bounded between -1 and 1. A unit with a negative EC score
operates predominantly in a near-threshold, expansive region of its nonlinearity, while a posi-
tive score indicates that it operates in a compressive, saturating region, and a score close to zero
indicates operation in a linear region. Negative IE scores mean that a unit is (predominantly)
inhibitory and positive scores that it is excitatory. EC scores are plotted against IE scores for all
246 effective HUs from the 76 neurons in Fig 4E. Superimposed on the scatter plot is a contour
plot reflecting the density estimate of the scatter in the “EC/IE space”. The density estimation
used a kernel with its bandwidth optimized to smooth away statistically spurious peaks [32].
The HUs fell into two broad clusters: the first, dense cluster is excitatory (IE� 0) and expansive
(EC< 0), whereas the other, broader cluster is inhibitory (IE < 0) and more linear (EC� 0).

To confirm this observation, we divided the neurons into excitatory (IE� 0) and inhibitory
(IE< 0), and separately plotted the distribution of the EC score for each, again using a kernel
density estimator with optimally chosen kernel bandwidth (Fig 4F). The EC scores of the 115
inhibitory HUs (blue) were more or less symmetrically distributed around 0, indicating that
these HUs mostly operate in a linear region, whereas the great majority of the 131 excitatory
HUs have EC scores <0, indicating that they tend to operate in the near threshold, expansive
region of their output nonlinear activation function. The difference in the median EC value of
the two distributions was significant (p = 6.1×10−6, rank sum test), confirming the EC/IC space
clustering observations (Fig 4E). The distribution of EC scores for the OUs of the NRF model
for all 76 neurons (Fig 4G, red), shows that the OUs operate largely near threshold, in the
expansive region (EC < 0). This is similar to the case for the EC scores in the LN model (Fig
4G, cyan), where all the neurons also operate in the expansive region (EC< 0).

and inhibitory (blue) HUs for the bi-feature neurons. (I) Distribution of the EC score for excitatory (red) and inhibitory

(blue) HUs for the multi-feature neurons.

doi:10.1371/journal.pcbi.1005113.g004
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If we restrict the above analysis to only the HUs of uni-feature and bi-feature neurons (Fig
4H, for density estimation the bandwidths from Fig 4E were used), we observe that the median
EC values of the 36 excitatory and 32 inhibitory HUs differ significantly (p = 4.8×10−5, rank
sum test), as is the case for all HUs (Fig 4F). If we restrict the EC distribution analysis to multi-
feature neurons alone we again observe the same pattern (p = 2.4×10−3, rank sum test) as for
all HUs (Fig 4I, again the Fig 4E bandwidths were used). However, the 36 excitatory HUs for
the uni-feature and bi-feature neurons are significantly (p = 1.7×10−6, Levene's test) more
tightly clustered than the 95 excitatory HUs of multi-feature neurons, indicating that the uni-
and bi-feature neurons show less diversity in their use of the nonlinear activation function. The
decrease in diversity for the 32 inhibitory HUs of uni- and bi-feature neurons relative to the 83
inhibitory HUs of the multi-feature neurons is also significant (p = 0.032, Levene’s test).

Potential functional role of nonlinear characteristics

We have seen that NRF models capture more of the response properties of auditory cortical
neurons than conventional LN models, and that they achieve this through the interplay of
modest numbers of excitatory and inhibitory HUs. In this section, we consider which func-
tional properties of cortical neurons might be captured by the NRF models. We identify two
such properties: gain control and multi-feature sensitivity.

Gain control. We can use simulations derived from our modeling to show that the inter-
play of excitation and inhibition seen in the NRF models enables them to exhibit gain control.
For an example bi-feature neuron (neuron 2 of Fig 3), we plotted the OU firing rate as a func-
tion of the activation of the excitatory HU (Fig 5A). Using different hues from red to magenta,
this dependence of OU firing rate on excitatory HU activation is shown for 7 different levels of
inhibitory HU activation, which were also chosen to span the range of the inhibitory HU acti-
vation. Observe that increasing the inhibitory drive reduces the slope of the relationship
between excitatory drive and OU firing rate. In other words, the inhibitory input reduces the
gain of the excitatory drive on the OU: the effect of the inhibition is more “divisive” than “sub-
tractive”. This form of gain control is not observed if we feed the inhibition into the excitatory
HU instead of the OU; instead a threshold shift, i.e. a “subtractive inhibition”, is seen (Fig 5B).
Gain control is also not observed if the HU output functions are linear rather than sigmoidal.
We measure the gain as the steepest slope of the OU-firing-rate vs. excitatory-HU-activation
curves (Fig 5A). For the bi-feature neurons the gain tends to decrease with increasing inhibi-
tory HU activation (Fig 5C), with the gain for 31/32 neurons being lower for the highest inhibi-
tory HU activation than it is for the lowest inhibitory HU activation.

Multi-feature selectivity. We have seen that NRFs can reveal multiple excitatory fields of
several HUs arranged closely together, but distinct, in time-frequency space (Fig 3C). This
raises the question of what advantage parsing these excitatory regions out over several HUs
rather than just combining them in a single STRF, as in an LN model, would bring. To address
this, we have plotted the activity of the components of the NRF of one multi-feature neuron
(neuron 5 in Fig 3) during 800 ms of test-set auditory stimulation. Plotted are the OU output
(Fig 5D) and effective HU weighted-outputs (excitatory HUs, Fig 5E, inhibitory HUs, Fig 5F).
Note that the weighted-outputs of the excitatory HUs are often correlated, and that the OU
tends to give a substantial response only when the weighted-output of more than one excitatory
HU peaks at the same time. For example, at 4.2 s (Fig 5E, left black box), one of the excitatory
HUs is highly active, but the other two are not, and the OU gives little response, while at 4.75 s
(Fig 5E, right black box) two HUs are active and the OU response is ~6 times higher.

Given that the output and excitatory HUs tend to operate over the expansive, near-thresh-
old range of the nonlinear activation function, one might expect a conjunctive effect to be
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common, whereby the OU “goes substantially above threshold” only when several features of
the excitatory HUs occur together. To examine how single excitatory HUs on their own can
drive the OU, we ran the natural sounds through the NRF model with all but one of its excit-
atory HUs disabled (set below 'threshold'). We did this for each excitatory HU in turn to obtain
the response of the OU if it only had that one excitatory HU. Then, to provide a conservative
comparison with the original model, we summed the OU response for all of those single excit-
atory HU reduced-NRF models (for example, a 3 excitatory HU NRF would produce 3 single
excitatory HU reduced-NRF models, whose responses were summed). We then determined the
number of time bins for which this summed response was above the 2σ-threshold (Fig 5D, as
in Fig 2B), and called this number the summed-reduced-NRF peak time. We compared this to

Fig 5. Functional implications of the neural network model fits. (A) The effect of activation of the inhibitory hidden unit (HU) on

the relationship between output unit (OU) firing rate and excitatory HU activation, for an example bi-feature neuron’s NRF. The

steepest slope of each curve is its gain. Activation in all plots is normalized to span 0–1, where 0 is the 1st centile and 1 the 99th

centile of the distribution of activations over the stimulus set (Fig 3C). (B) The effect of inhibiting the excitatory HU (instead of the

OU) on the same relationship for the same example NRF. (C) The gain as a function of inhibitory HU activation for all 32 bi-feature

neurons (black lines). For each neuron the gain is normalized to be 1 when the normalized inhibitory HU activation is 0. Red/

magenta line: the mean. Note that the full range of excitatory HU activations, from threshold to saturation of the HU, was examined

to find the steepest slopes and hence the gain (i.e. beyond the 1st and 99th centiles). (D) The OU firing rate of an NRF model fit for

an example multi-feature neuron (red line). The dotted line is the 2σ-threshold. (E) The weighted-output (the input to the OU, HU

output × output weight) from the 3 effective excitatory HUs. (F) The weighted-output from the single effective inhibitory HU for this

neuron. (G) The distribution of peak time ratio for all multi-feature neurons. The peak time ratio is the number of times the sum of

the outputs of all reduced-NRF models exceeded the 2σ-threshold, relative to the number of times the output of the full NRF did so.

The reduced-NRF models of a neuron each retain just one of the excitatory HUs.

doi:10.1371/journal.pcbi.1005113.g005
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the number of time bins during which the response of the original model exceeded the 2σ-
threshold; we called this number the NRF peak time. We did this for all 36 neurons with more
than one excitatory HU. Across the 36 neurons, the NRF peak time typically (for 78%, 28/36,
of the neurons) exceeded the summed-reduced-NRF peak time (p = 1.2×10−3, sign test). Fig
5G shows the distribution over the neurons of the peak time ratio, the neuron's summed-
reduced-NRF peak time (the number of times the summed single excitatory HU response was
above the 2σ-threshold) divided by its NRF peak time (the number of times the 2σ-threshold
was surpassed by the unmodified model). Here we can see the strength of the conjunctive
effect, the summed single excitatory HU response exceeded the 2σ-threshold less than half as
often as the unmodified model alone (peak time ratio < 0.5) for 67% (24/36) of the multi-fea-
ture neurons. This implies that, for many of the multi-feature neurons, spectrotemporal fea-
tures often interact in a conjunctive, supra-additive manner. Such neurons require the
simultaneous presence of multiple particular features to produce a substantial response, and
respond very little to just one such feature alone. This need not have been the case, as it could
have been that each feature alone could substantially drive the neuron, as is seen for 22% (8/36)
of the neurons, which have a peak time ratio�1.

Discussion

The network models we developed here represent a substantial improvement over conven-
tional LN models in that they are able to produce more accurate predictions of the responses of
cortical neurons to natural sounds, while remaining sufficiently parsimonious that they it can
be quickly fitted using limited data and interpreted in a manner relevant to the known physiol-
ogy of the auditory pathway. The NRF models are significantly more complex than LN mod-
els–in fact, their number of degrees of freedom is greater in proportion to the number of HUs
in the network. Nevertheless, compared to the enormous complexity of the lemniscal auditory
pathway, in which individual neurons receive potentially thousands of converging inputs, the
model complexity remains very modest. Accordingly, and as with all models of cortical pro-
cessing, we cannot expect the artificial neural network to replicate the biological network in
any strict anatomical detail. Instead, given their capacity to predict the responses of auditory
cortical neurons to natural sounds, we propose that the NRF models capture important aspects
of the general signal processing performed by the neural circuitry driving the recorded neu-
rons, and that this is likely to apply to other areas of the brain too.

Primary auditory cortical neurons are nonlinearly sensitive to a broad

spectrotemporal domain

Our results indicate that auditory cortical neurons likely integrate more widely over time and
frequency than linear STRF or LN models would suggest (Fig 4C and 4D). That this integration
is highly nonlinear may be the reason why linear STRFs do not effectively measure this broad
tuning. Although they can be quite complex [12], LN model cortical STRFs tend to be relatively
simple in structure [13]. Given the extensive network that constitutes the central auditory path-
way, it seems likely that more sophisticated processing is being carried out than implied by lin-
ear STRFs. NRF models may help to shed light on the nature of this processing, as they reveal a
diversity, complexity and breadth of spectrotemporal integration well beyond that which can
be described by conventional LN models.

One consequence of this finding relates to models of sparse representation of natural sounds
[33], a hypothesized method by which the brain may perform unsupervised learning of the sta-
tistical structure of the environment. These sparse models result in projective fields (for many
parameter settings) that are often broad in frequency and particularly in time. Our results
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suggest that many neurons with punctate STRFs may be better described by NRF models with
broader tuning, which is more consistent with these sparse representational models.

The neurons are well characterized by 1–7 features that segregate into

inhibitory and excitatory features

Although we found that many of our cortical neurons can be characterized as bi-feature (one
inhibitory and one excitatory HU), we also found many multi-feature neurons, with 3–7 effec-
tive HUs, typically with slightly more excitatory HUs than inhibitory (Fig 4A and 4B). It is
interesting to speculate that the bi-feature neurons may mostly be located in granular cortical
layers and the multi-feature neurons in the supra/infragranular layers, since the former receive
most of the thalamic inputs and are known to show simpler tuning properties than neurons in
the supra/infragranular layers [34].

The features (HU STRFs) naturally segregate into those that inhibit the neuron and those
that excite it (Fig 4E). The excitatory features tend to operate in the expansive part of the NRF
model’s nonlinear activation function, ‘near threshold’, whereas the inhibitory features tend to
operate in the more linear part of the nonlinear activation function (Fig 4F). We speculate that
the excitatory and inhibitory HUs may reflect the massed effects on the recorded neuron of
directly connected excitatory neurons and inhibitory neurons, respectively. Should this be the
case, the difference in nonlinear characteristics may reflect the observation that inhibitory neu-
rons tend to have higher evoked and spontaneous firing rates than excitatory neurons [35],
thus placing inhibitory inputs further above threshold than excitatory inputs and perhaps pro-
viding them with a more linear dependence on input.

Bi-feature neurons

Many (42%) of the neurons showed NRF fits with just two effective HUs, one excitatory and
one inhibitory. The excitatory HU operates near threshold (expansive), and the inhibitory HU
is more linear. The OU is also expansive. Under this arrangement, the inhibition acts on the
output in a manner that appears to decrease the gain (Fig 5A–5C). A number of possible mech-
anisms, which might work in isolation or together, have been proposed for gain control,
including synaptic depression [36], shunting inhibition [37] and recurrent connectivity [38].
The NRF model illustrates another possible mechanism—feedforward expansive excitation
and feedforward linear inhibition acting together on a neuron with an expansive nonlinearity.
In vivo patching approaches may provide a method to explore this possibility, since it may be
possible to measure the inhibition and excitation separately, as well as assess the output nonlin-
earity. The above discussion prompts two modifications to the model to be examined in future
work. The first is to include some explicit gain control mechanism, for example, HUs with a
divisive effect as a functional model of shunting inhibition. The second is to add an additional
layer, which will allow for HUs to depend more directly on nonlinear measures like the stan-
dard deviation of the stimulus and perhaps capture the use of gain control to normalize for
contrast, as has been observed for auditory neurons with artificial stimuli [19,39–41].

Multi-feature neurons

The multi-feature neurons are quite a diverse group, and substantially larger population sam-
ples would therefore be needed to look for trends in their properties and investigate whether
they form identifiable groups that may serve distinct purposes. However, we can make a num-
ber of observations. Although the HUs of multi-feature neurons show more diverse nonlinear-
ity characteristics than bi-feature neurons, they still tend towards having expansive-range
excitatory HUs and linear-range inhibitory HUs. The set of STRFs of multi-feature neurons
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can be quite complex and varied (Fig 3B), and can show distinctly structured relationships
between these STRFs (e.g. neurons 7 and 8, Fig 3C). Often the spectrotemporal regions of high
sensitivity (half-height tuning area) of HU STRFs do not substantially overlap (e.g. neurons 1,
4 and 9, Fig 3C). However, some overlap of high sensitivity regions in the STRFs can occur,
between excitatory HUs (e.g. neurons 5–8, Fig 3C), between inhibitory HUs (neuron 7, Fig
3C), and between excitatory and inhibitory HUs (neurons 6, 7, and 10, Fig 3C).

Given that the model fitting process penalizes redundant STRF weights, the presence of
spectrotemporal overlap in STRFs of different HUs may indicate that the NRF is using multiple
HUs to alter the nonlinearity of the input-output mapping in order to achieve a better fit to the
true output nonlinearity of the biological neuron. However, for the most part, the high sensitiv-
ity regions of HU STRFs are non-overlapping, suggesting that additional factors drive the
diversity of multi-feature neuron STRFs. In a number of cases, excitatory fields of different
HUs align consecutively along the time axis, sometimes with some overlap (e. g. neurons 4, 6, 7
and 10, Fig 3C). This may to some extent capture the relationship between sound intensity and
response latency found in both the auditory nerve and the cortex [42], as in some cases the
shorter latency HU also has a higher ‘threshold’ (i.e. has a lower EC value, e.g. neuron 4, Fig
3C). However, this is unlikely to be the whole story, because in other cases different excitatory
HUs exhibit distinct well-separated regions of temporal tuning (e.g. neuron 10, Fig 3C). In
addition, STRF excitatory fields may also align over the frequency axis (e.g. neurons 1, 5 and 8,
Fig 3C) or align diagonally over time and frequency (e.g. neurons 6 and 9, Fig 3C).

For many multi-feature neurons (although far from all), the NRF requires that multiple
excitatory HUs are activated simultaneously to produce a substantial response (Fig 4D–4G).
That the NRF model can capture such supra-additive sensitivity to particular conjunctions of
multiple spectrotemporal features, while the LN model cannot, may explain why the NRF
model is better able to predict the peak amplitudes of the responses of cortical neurons. This
conjunctive feature selectivity allows for increased selectivity for particular complex spectro-
temporal patterns consisting of a number of more basic features, a characteristic with an obvi-
ous potential role in sound recognition.

Related work

A number of methods have been used previously to examine the spectrotemporal sensitivity of
auditory cortical neurons. Previous studies have attempted to extend the application of the LN
model to auditory cortical data, mostly using maximum-likelihood methods. Indeed, several
studies have used approaches that have fundamental similarities to the one we explore here, in
that they combine or cascade several linear filters in a nonlinear manner. One such body of
work that improved predictions over the LN model is based on finding the maximally-informa-
tive dimensions (MID) [20,21,34,43–46] that drove the response of auditory cortical neurons.
This method involves finding usually one or two maximally informative linear features that
interact through a flexible 1D or 2D nonlinearity, and is equivalent to fitting a form of LN
model under assumptions of a Poisson model of spiking variability [46–48]. When this method
was applied to neurons in primary auditory cortex it was found that the neurons’ response
properties are typically better described using two features rather than one [20,34], in contrast
to midbrain neurons which are well fitted using a single feature [43]. That result thus seems
consistent with ours, in that we found NRFs fitted to cortical responses most commonly
evolved to have two effective HUs (or input features). Another approach, that has been found
to improve predictions of auditory cortical responses, is to apply a multi-linear model over the
dimensions of frequency, sound level, and time lag, and for the extended multi-linear model
also over dimensions involved in multiplicative contextual effects [21]. However, the above

Network Receptive Field Modeling Reveals Non-linear Characteristics of Auditory Cortical Neurons

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005113 November 11, 2016 16 / 30



studies in auditory cortex [20,21,34,43] did not use natural stimuli, and hence might not have
been in the right stimulus space to observe some complexities, as STRFs measured with natural
stimuli can be quite different than when measured with artificial stimuli [49]. An advantage of
the NRF model is that its architecture is entirely that of traditional feedforward models of sen-
sory pathways in which activations of lower level features simply converge onto model neurons
with sigmoidal input-firing rate functions. NRFs can therefore be interpreted in a context that
is perhaps simpler and more familiar than that of, for example, maximally informative dimen-
sion models [20,44].

Other developments on the standard LN model have included model components that can
be interpreted as intraneuronal rather than network properties, such as including a post-spike
filter [22] or synaptic depression [23], and have also been shown to improve predictions. Pillow
and colleagues [50,51] applied a generalized linear model (GLM) to the problem of receptive
field modelling. Their approach is similar to the basic LN model in that it involves a linear
function of stimulus history combined with an output nonlinearity. However, unlike in LN
models, the response of their GLM also depends on the spike history (using a post-spike filter).
This post-spike filter may reflect intrinsic refractory characteristics of neurons, but could also
represent network filter effects. A GLM model has been applied to avian forebrain neurons
[22], where it has been shown to significantly improve predictions of neural responses over a
linear model, but not over an LN model.

Although they haven’t yet been applied to auditory cortical responses, it is worth mention-
ing two extensions to GLMs. First, GLMs can be extended so that model responses depend on
the history of many recorded neurons [50], representing interconnections between recorded
neurons. While this approach is thus also aimed at modeling network properties, it is quite dif-
ferent from our NRF model, where we infer the characteristics of hidden units. Second, the
extension of the GLM approach investigated by Park and colleagues [52] included sensitivity to
more than one stimulus feature. Thus, like our NRF or the multi-feature MID approach, this
“generalized quadratic model” (GQM) has an input stage comprising several filters which are
nonlinearly combined, in this case using a quadratic function. One might argue that our choice
for the HUs of a sigmoidal nonlinearity following a linear filter stage, and the same form for
the OU, is perhaps more similar to what occurs in the brain, where dendritic currents might be
thought of as combining linearly according to Kirchhoff ’s laws as they converge on neurons
that often have sigmoidal current-firing rate functions. However, we do not wish to overstate
either the physiological realism of our model (which is very rudimentary compared to the
known complexity of real neurons) or the conceptual difference with GQMs or multi-feature
MIDs. A summation of sigmoidal unit outputs may perhaps be better motivated physiologi-
cally than a quadratic function, but given the diversity of nonlinearity in the brain this is a
debatable point.

Another extension to GLMs, a generalized nonlinear model (GNM), does, however, employ
input units with monotonically-increasing nonlinearities, and unlike multi-neuron GLMs or
GQMs, GNMs have been applied to auditory neurons by Schinkel-Bielefeld and colleagues
[24]. Their GNM comprises a very simple feedforward network based on the weighted sum of
an excitatory and an inhibitory unit, along with a post-spike filter. The architecture of that
model is thus not dissimilar from our NRFs, except that the number of HUs is fixed at two, and
their inhibitory and excitatory influences are fixed in advance. It has been applied to mamma-
lian (ferret) cortical neural responses, uncovering non-monotonic sound intensity tuning and
onset/offset selectivity.

For neurons in the avian auditory forebrain, although not for mammalian auditory cortex,
GNMs have also been extended by McFarland and colleagues to include the sum of more than
two input units with monotonically-increasing nonlinearities [53]. Of the previously described
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models, this cascaded LN-LN ‘Nonlinear Input Model (NIM)’ model bears perhaps the greatest
similarity with our NRF model. Just like our NRF, it comprises a collection of nonlinear units
feeding into a nonlinear unit. The main differences between their model and ours thus pertain
not to model architecture, but to the methods of fitting the models and the extent to which the
models have been characterized. The NIM has been applied to a single zebra finch auditory
forebrain neuron, separating out its excitatory and inhibitory receptive fields in a manner simi-
lar to what we observe in the bi-feature neurons described above.

One advantage of the NRF over the NIM is that the fitting algorithm automatically deter-
mines the number of features that parsimoniously explain each neuron's response, obviating
the need to laboriously compare the cross-validated model performance for each possible num-
ber of hidden units. Another difference is that the NRF is simpler while still maintaining the
capacity to capture complex nonlinear network properties of neural responses; for example,
the NIM [53] had potentially large numbers of hyperparameters (four for each hidden unit or
“feature”) that were manually turned, something that would be very difficult to do if the model
needed to be fitted to datasets comprising large numbers of neurons. In contrast, the NRF has
only one hyperparameter for the entire network, which can easily be tuned in an automated
parameter search with cross-validation. Consequently, we have been able to use the NRF to
characterize a sizeable population of recorded neurons, but so far no systematic examination of
the capacity of the NIM to explain the responses of many neurons has been performed.

Another recent avian forebrain study [54] used a maximum noise entropy (MNE) approach
to uncover multiple receptive fields sensitive to second-order aspects of the stimulus. Unlike the
above two GNM [24,53] approaches, this model does not have hidden units with sigmoidal non-
linearities, but finds multiple quadratic features. The MNE predicted neural responses better
than a linear model, although still poorly, with an average CCraw of 0.24, and it was not deter-
mined whether it could out-predict an LN model. Note, however, that the CCraw values reported
in that study do not distinguish stimulus-driven response variability from neural “noise”. Conse-
quently, it is unclear whether the relatively modest CCraw values reported there might reflect
shortcomings of the model or whether they are a consequence of differences in the species, brain
regions and stimuli under study. Finally, perhaps the most relevant study in the avian forebrain
used a time delay feedforward neural network to predict responses of zebra finch nucleus ovoida-
lis neurons to birdsong [55]. These authors reported that the network predicted neural responses
better than a linear model, but performed no quantitative comparisons to support this.

Advances on the LN model have also been applied in other brain regions. Various advances
on the LN model have also been made in studies of primary visual cortex, and of particular rel-
evance are the few cases where neural networks have been used to predict neural responses.
Visual cortical responses to certain artificial stimuli (randomly varying bar patterns and related
stimuli) have been fitted using a single hidden layer neural network, resulting in improvements
in prediction over linear models for complex but not simple cells in one study [56] and over
LN-like models in another study [57]. However, the challenge we tackle here is to predict the
responses to natural stimuli. In this respect we are aware of only one similar study by Prenger
and colleagues [58] which used a single hidden layer neural network to predict responses to
series of still images of natural scenes. The network model in this study gave better predictions
than an LN model with a simple rectifying nonlinearity. However, the improvements had lim-
ited consistency, predicting significantly better in only 16/34 neurons, and it did worse than an
LN model applied to the power spectra of the images. Additionally, the CCraw of the model pre-
dictions with the neural data were somewhat small (0.24). This appears to contrast with the
seemingly better performance we obtained with our NRF model.

These apparent differences in model performance may, however, not all be attributable to
differences in model design or fitting. In addition to the fact we already noted that low CCraw

Network Receptive Field Modeling Reveals Non-linear Characteristics of Auditory Cortical Neurons

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005113 November 11, 2016 18 / 30



values might be diagnostic of very noisy neurons rather than shortcomings of the model, we
also need to be cognizant of the differences in the types of data that are being modeled: we
applied our model responses of auditory cortical neurons to natural auditory sound recordings,
whereas Prenger and colleagues [58] applied theirs to visual cortical neuron responses to ran-
dom sequences of photographs of natural scenes. Furthermore, the neural responses to our sti-
muli were averaged over several repeats, whereas the above study did not use repeated stimuli,
which may limit how predictable their neural responses may be. However, there are also nota-
ble structural differences between their model and ours. For example, the activation function
on the OU in the Prenger et al. study [58] was linear (as with [56] but not [57]), whereas the
OU of our NRF has a nonlinear activation function, which enables our NRF to model observed
neuronal thresholds explicitly. Furthermore, we used a notably powerful optimization algo-
rithm, the sum-of-function optimizer [26], which has been shown to find substantially lower
values of neural network cost function than the forms of gradient descent used in the above
neural network studies. Finally, the L1-norm regularization that we used has the advantage of
finding a parsimonious network quickly and simply, as compared with the more laborious and
often more complex methods of the above three studies: L2-norm-based regularization meth-
ods and hidden unit pruning [58], early stopping and post-fit pruning [56] or no regularization
and comparing different numbers of hidden units [57].

Predictive capacity and possible model improvements

The predictions of the NRF models correlate with the observed neural responses with a CCnorm

of 0.73 on average. Asari and Zador [31] estimated an upper limit on the performance that any
model of A1 neurons might be able to achieve in predicting responses from a given duration of
stimulus history. Our models predict responses from the last 100 ms of stimulus history, for
which Asari and Zador [31] give an upper performance limit of 0.5–0.55 “signal power explained”
(SPE). For SPE values in this range, SPE is approximately equal to the square of CCnorm [59], so
that an upper limit SPE of 0.5–0.55 corresponds to an upper limit CCnorm of 0.71–0.74. This sug-
gests that the NRF may possibly be capturing the majority of the neural response that is depen-
dent on the stimulus, given the duration of stimulus history provided (100 ms).

The performance upper bound reaches its maximal plateau when about 3 s of stimulus his-
tory are provided [31]. This suggests that the most important way of advancing neural network
models of auditory cortex might be to include a substantially longer stimulus history in the
analysis. However, simply extending the number of time bins in the current model some 30
fold further into the past would likely lead to far too many free parameters. A better option
might be to extend the approach presented here in the direction of convolutional or recurrent
neural networks. Artificial recurrent neural networks have been applied successfully to sound
recognition problems [60], and it is well known that feedback projections are common features
of the auditory pathway. Developing recurrent versions of the NRFs introduced here is there-
fore likely to be important, particularly if we hope to develop successful models of higher order
auditory cortical neurons.

Conclusions

In summary, we have shown that fitting feedforward network models (with regularization of
the weights to be sparse) to single neuron activity in primary cortical areas (A1/AAF) allows
for better predictions of their responses to natural sounds, and has the potential to unmask
some of the nonlinear signal processing strategies used by the auditory brain. This approach
reveals more of the underlying richness and nonlinearity of cortical processing in an easily
interpretable form. Neural responses to natural sounds in A1/AAF appear to be dependent on
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multiple features in the stimulus space that often interact in structured nonlinear ways, and
depend upon a substantially larger spectrotemporal domain than is suggested by linear models
with a simple output nonlinearity.

Materials and Methods

Electrophysiological recording

To assess the capacity of NRFs to account for cortical sensory responses, we fitted models to neu-
ral responses to clips of natural sounds. Single-unit responses were recorded with multi-channel
electrodes in the ferret primary auditory cortex (A1) and the anterior auditory field (AAF),
which are both considered to be primary cortical areas [61]. All animal procedures were per-
formed under license from the United Kingdom Home Office and were approved by the local
ethical review committee. For full details of the recording procedures see [62]. In brief,
electrophysiological recordings were made from 6 adult pigmented ferrets under ketamine (5
mg/kg/h) and medetomidine (0.022 mg/kg/h) anesthesia. Bilateral extracellular recordings were
made in A1/AAF using either 16 or 32 channel silicon probe electrodes (Neuronexus Technolo-
gies). Because these primary cortical fields share a common tonotopic gradient [61,63], we did
not attempt to assign our sample of 76 units to one or other of these regions.

Stimuli

In this study we modeled the responses of neurons to 20 clips of natural sound recordings.
Each clip was 5 s long, and presented at a sampling rate of 48,828.125 Hz, using earphones as
described by [19]. The clips were presented in random order, with a ~1 s silent interval between
clips, and were repeated 20 times. The natural sound recordings included animal sounds (e.g.
ferret vocalization and birdsong), environmental sounds (e.g. water and wind), and speech.
The RMS intensity of clips ranged from 75 to 82 dB SPL. Data recorded during the first 250 ms
after the onset of each stimulus were discarded, leaving an effective set of neural responses to
20 repeats of 20 sounds of 4.75 s duration each.

Preprocessing of neural data and stimuli

NRF and LN models were fitted to the relationship between the neural data and the sound sti-
muli, after appropriate preprocessing as described below.

Neural data. Recorded spikes were sorted offline using Spikemonger, in-house software
built around Klustakwik [64], to isolate single units. For each neuron, for each clip, peri-stimulus
time histograms (PSTHs) were constructed, counting spikes in 5 ms bins, averaging over all 20
repeats, and subsequently smoothing with a 21 ms wide Hanning window [29] to estimate the
spike count PSTH yn(tn) for each neuron at time tn, where tn is the time since the start of clip n (n
goes from 1 to N = 20, tn from 1 to Tn = 949). For fitting the NRF model the spike counts were
also linearly rescaled to span the standard network nonlinear activation function (see below), so
spike count 0 mapped to -σ1 and spike count 1 to +σ1, where σ1 = 1.7159. For model comparison,
all spike counts were rescaled back, and for display all spike counts were rescaled to spike rates.
To identify those neurons that were driven by the stimuli, we calculated a “noise ratio” (NR) sta-
tistic for each neuron [19,65] and excluded from further analysis any neurons with a NR>40.

Cochleagram. To transform the sound stimuli into a simple approximation of the activity
pattern received by the auditory pathway, we processed the sound waveforms to calculate log-
scaled spectrograms ('cochleagrams'). For each sound, the power spectrogram was taken using
10 ms Hamming windows, overlapping by 5 ms. The power across neighboring Fourier fre-
quency components was then aggregated using overlapping triangular windows comprising 34
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frequency channels with center frequencies ranging from 500 Hz to 22,627 Hz (⅙ octave spac-
ing). Next, the log was taken of the power in each time-frequency bin, and finally any values
below a low threshold were set to that threshold. These calculations were performed using code
adapted from melbank.m (http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html). Both
the LN and the NRF models were trained to predict the firing rate yn(tn) at time tn from a snip-
pet of the cochleagram extending 100 ms (20 time bins) back in time from tn. The input to the
models at time tn is thus a 34×20 matrix (F = 34 frequency channels by H = 20 stimulus history
time bins) of log sound power values preceding time tn. We denote this as xnfτ(tn), where n is
the index of the presented clip, f indexes the frequency bands, and τ indexes time history bins
preceding time tn. For fitting the NRF model, xnfτ(tn) was also normalized so the whole dataset
had zero mean (<xnfτ(tn)>nfτ = 0) and unit variance. To simplify notation we define t as all the
times tn of all the sound clips n, where t goes from 1 to Tn × N. This gives y(t) and xfτ(t).

LN model

Linear stage. The LN model (Fig 1A) consists of two stages: a linear STRF followed by a
sigmoidal output nonlinearity. The linear part of the model is:

âðtÞ ¼
X

f ;t

wf txf tðtÞ þ b

where âðtÞ is the model neuron's “activation”, and wfτ is the synaptic weight for frequency band f
and history bin τ (all the weights compose the STRF). The bias b represents the neuron's back-
ground activity level. wfτ and b are the free parameters of the model, and were estimated by
regressing y(t) against xfτ(t) using 'glmnet' [66]. Thus âðtÞ can be seen as the best linear predic-
tion from xfτ(t) of y(t). To avoid overfitting and to find a parsimonious model, the regression was
regularized by penalizing the L1-norm of wfτ (LASSO regression). The strength of the regulariza-
tion was controlled with a hyperparameter λ. The optimum value of λ was found using k-fold
cross-validation for a set of log-spaced values and for each neuron, and the λ that gave the best
prediction was chosen (see Training, validation, and testing of models below). The resulting âðtÞ
serves as the input to the nonlinear stage for our LN-model, and as the linear prediction (output)
of the purely linear L-model used for the model comparisons which are described in Results.

Nonlinear stage. The second stage involved fitting a logistic sigmoid nonlinear activation
function,

ŷðtÞ ¼
r1

1þ expð� ðâðtÞ � r3Þ=r2Þ
þ r4

which mapped the linear activation âðtÞ to the predicted PSTH ŷðtÞ so as to minimize the
error between the predicted PSTH and the observed PSTH y(t). Recent work [67] indicates
that choosing different nonlinear output functions from a wide range of plausible candidates
has only modest effects on the ability of LN models to capture neural response properties. We
therefore did not attempt to systematically explore different types of output nonlinearity or to
make the choice of nonlinearity as physiological as possible, but rather focused on an output
nonlinearity that is simple, well characterized and widely used in the artificial network litera-
ture. The four parameters ρi of the function were fitted by minimizing the squared error

E ¼
X

t

ðŷðtÞ � yðtÞÞ2

using a quasi-Newton iterative numerical method (http://www.cs.ubc.ca/~schmidtm/Software/
minFunc.html).
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NRF model

Model description. NRFs (Fig 1B) model cortical responses using a rate based feedfor-
ward artificial neural network (multilayer perceptron) with one hidden layer of J = 20 hidden
units (HU) converging onto a single output unit (OU). Each unit in the network operates in a
fashion similar to an LN model—each unit integrates inputs through a set of linear weights,
and this linear activation is passed through a nonlinear activation function to compute its out-
put. The activation of the j-th HU aj(t) is,

ajðtÞ ¼
X

f ;t

wjf txf tðtÞ þ bj

where wjfτ is the weight from frequency band f and time delay τ to HU j, and bj is the bias on
the HU. The output of the HU is zj(t), given by,

zjðtÞ ¼ gðajðtÞÞ

where g(z) is a nonlinear function. The OU then provides the prediction ŷðtÞ, of the firing rate
y(t), as a weighted sum of the HU outputs, also passed through the nonlinear activation func-
tion. The activation ao(t) of the OU is,

aoðtÞ ¼
X

j

wjzjðtÞ þ bo

where wj is the weight from HU j to the OU, and bo is the bias on the OU. The output ŷðtÞ of
the OU is;

ŷðtÞ ¼ gðaoðtÞÞ

which is the model’s prediction of the rescaled firing rate (see Preprocessing of neural data and
stimuli). For both HUs and OUs, the nonlinear activation function g(z) was a hyperbolic tan-
gent function:

gðzÞ ¼ r1tanhðz=r2Þ

In the LN model, the parameters σi of the nonlinear activation function were optimized for
each neuron, but in the NRF model these parameters were fixed to ρ1 = 1/tanh(2/3)� 1.7159
and ρ2 = 3/2, which ensures that g(±1) = ±1. Using this particular form of nonlinear activation
function [68] facilitates efficient learning with error backpropagation by maintaining statistical
properties of the input distribution. Furthermore, for a given network with tanh activation
functions, there is an equivalent network with logistic activation functions (for which units
have non-negative outputs), which can be found with a simple linear rescaling of the weights
and biases (see page 109 of [69]). This rescaling does not affect the structure of the STRFs. We
use this equivalent network for display in the Results (for details see The adjusted network
below). Note that the nonlinearities g(z) employed by the NRF and the LN models are equiva-
lent except for a scaling and shifting.

Learning. The free parameters of the NRF, wjfτ+, bj, wj and bo, were optimized by minimiz-
ing the following objective function:

E ¼
1

2

X

t

ðŷðtÞ � yðtÞÞ2 þ l
X

j;f ;t

jwjf tj þ
X

j

jwjj

 !

This objective function is the sum of two terms: The first term quantifies total square error
between the observed PSTH y(t) and the PSTH ŷðtÞ predicted by the model. The second term,
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proportional to the sum of the absolute values of all the weights in the network (the L1-norm of
the weight vectors), serves to regularize the weights. That is, it puts a “cost” on non-zero synap-
tic weights and will tend to drive most weights to close to zero, except for a few, and thereby
encourages parsimonious models and prevents overfitting. The regularization was therefore
similar to the LASSO regression used to fit the LN model, which also incorporates an L1-norm
regularization term.

For both the NRF and the LN models, the constant λ is the hyperparameter that determines
the strength of the regularization. Its optimum value was determined using k-fold cross-valida-
tion (k = 10) over a log-spaced range, and for each model and neuron the value of λ that gave
the best prediction for each neuron was chosen (see Training, validation, and testing of models).
The NRF was initialized with the weights and biases independently drawn from a uniform dis-
tribution between�1=

ffiffiffiffiffi
M
p

where M is the number of incoming connection weights and biases
to a given unit of the network. The objective function of the NRF model was minimized using
the Sum-of-Functions Optimizer, a recently developed algorithm which combines a Newton
method with batch stochastic gradient descent, and which is substantially faster and finds
lower minima than other optimization algorithms for multilayer feedforward networks [26].
The optimizer was run for 40 iterations, but usually settled within 20. On a desktop PC (Intel
Xeon 8-core 3.1GHz CPU) it took on the order of hours to fit all 76 neurons, including the
10-fold cross validation.

Training, validation, and testing of the models

For both the LN models and the neural networks, the model parameters (weights w and biases
b, and for the LN models also the parameters of the nonlinear activation function ρi) were
found through the model fitting steps just described, but the models can only perform effec-
tively if the model hyperparameters (regularization strength λ and, for the NRFs, also the num-
ber of HUs J) are appropriately chosen. We therefore conducted a parameter search which
systematically explored the behavior of the models for a range of hyperparameters in a cross-
validation test. To this end, the entire data set of 95 s duration (20 natural sound clips of 4.75 s
duration each) was first split into a cross-validation set (80%) and a test set (20%). The test set
was the last 20% (0.95 s) of each of the 20 sounds. The test set was put aside. The cross-valida-
tion set was then used to determine the hyperparameters by using k-fold cross-validation
(k = 10). The cross-validation set was split into a training set (90% of the cross-validation set,
that is the first 3.8s of 18 of the sounds) and a validation set (the remaining 10% of the cross-
validation set, that is first 3.8s of 2 of the sounds).

The following steps were performed for each neuron and for each model. For a given λ, the
model was first fitted on the training set, then the fitted model was used to predict the PSTH of
the reserved validation set, and the prediction performance quantified by the normalized corre-
lation coefficient (see Performance measures). This process was repeated k = 10 times, each
time using a different non-overlapping 10% of the data as a validation set. The above process
was performed for a log spaced set of λ values. Then the λ was chosen that maximized the
mean prediction performance of the 10 validation sets. Optimum λ differed across neurons
(for both LN and NRF models), and over the two models, and was thus set separately for each
model and neuron. A similar process was also performed over J, the number of HUs, for a
number of reasonable λ values. However, as NRF prediction performance varied little as a func-
tion of J, this was simply set to 20 for all neurons.

Then for each neuron, both models were re-fitted to the full cross-validation set, using the
optimum λ values, and each model was used to predict the PSTH of the test set. The prediction
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performance of two fitted models was compared using the performance measures described
below. These model fits are the ones used throughout the results section.

To verify that the model fits (at the best λ for each neuron) were consistent across the ten
different cross-validation fits, we quantitatively compared the STRF of the effective HUs
obtained for each validation set. For a given neuron, the effective HU from a given fit that was
most correlated with the effective HU from a different fit was found on average to share a cor-
relation coefficient of 0.82, while the second most correlated pair of HUs across fits shared a
correlation coefficient of 0.69. These high correlation coefficients are indicative of a high degree
of consistency. We verified that, in the absence of repeatable fits, one would expect these corre-
lation coefficients to be close to zero by randomly permuting the weights within every effective
HU STRF matrix. This randomization caused the correlation coefficients to drop to 0.06 and
0.02 respectively.

Performance measures

Model performance was quantified using three different performance measures: the normal-
ized correlation coefficient CCnorm, the mean squared error MSE, and the peak activity mean
square error pMSE. While the MSE is a well known quantifier of “goodness of fit”, the other
two require further explanation.

Normalized correlation coefficient. CCnorm quantifies model performance relative to a
theoretically achievable maximum and independently of physiological noise. We use it as our
standard performance measure in this paper, as it has a number of desirable properties [59],
including the fact that it discounts the intrinsic noise of neural responses and quantifies the
proportion of the stimulus driven response variability that is captured by the model. If the
(Pearson's) correlation coefficient CCraw between observed and predicted responses is low,
then this could either indicate that the model is poor, or that the firing of the neuron under
study is poorly stimulus driven and thus fundamentally quite unpredictable by a model that
relies on stimulus history as the only explanatory variable. CCnorm does not have that short-
coming, and thus provides a more objective measure of model performance. We calculated the
CCnorm [29,30] as the ratio of the CCraw between the model’s predictions ŷðtÞ and the real
PSTH y(t), over the maximum correlation coefficient CCmax that is achievable by a perfect
model, given the inherent variability of a particular set of neural responses:

CCnorm ¼
CCraw

CCmax

CCmax is defined as the correlation coefficient between the PSTH of the recorded dataset con-
structed from the R repeats of the stimulus (here: R = 20) and the PSTH for an infinite number
of repeats. CCmax cannot be measured directly, but, one can compute good estimates [29,30] of
CCmax using the formula:

CCmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ 1

CChalf

s

Here CChalf is the correlation coefficient of the mean PSTH of R/2 repeats with the mean
PSTH of the remaining R/2 repeats. CChalf depends on the particular split of the R observations,
and in order to minimize error the splitting is repeated many times and the values of CChalf are
averaged. We took the average CChalf over a randomly chosen 126 combinations.

Peak activity mean square error. The pMSE is the MSE between the predicted and
observed PSTH for those parts of the signal where the observed firing rate is above the “2σ-
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threshold”, defined as two standard deviations above the mean firing rate to the sound. That is:

pMSE ¼
1

X

t

pðtÞ

X

t

pðtÞðŷðtÞ � yðtÞÞ2

where p(t) is a binary window function consisting of all the binary window functions pn(tn) for
each clip n. The binary window functions isolate the peaks of the signal:

pnðtnÞ ¼

(
1 if ynðtnÞ � mn þ 2sn

0 if ynðtnÞ < mn þ 2sn

)

where μn is the average firing rate and σn its standard deviation for sound clip n. See Preprocess-
ing of neural data and stimuli for how t relates to tn, put briefly, we define t as all the times tn of
all the sound clips n.

Quantifying model properties

The adjusted network. While a biological neuron can only produce positive firing rate
outputs and its 'synaptic output weights' are either only excitatory or only inhibitory, the non-
linear activation function of the NRF model allows both positive and negative outputs and is
symmetric around zero. Likewise, with the NRF the same weight can be either positive or nega-
tive. While these aspects of the NRF model thus lack biological realism, they do offer distinct
practical advantages. First, there is a considerable literature on how to train this type of multi-
layer perceptron model efficiently [28,68]. Second, it gives a network the freedom to discover
during training how many excitatory or inhibitory neurons it requires, obviating the need to
stipulate a fixed set of excitatory HUs and a fixed set of inhibitory HUs from the outset. How-
ever, the fact that the output and weights of a NRF unit can span both positive and negative val-
ues makes the distinction between excitatory and inhibitory neurons less categorical and
somewhat ambiguous. Nevertheless, this can be resolved because an equivalent 'adjusted' net-
work of excitatory and inhibitory units with logistic activation functions (and hence non-nega-
tive outputs) can be found, thus overcoming this problem [69]. Hence we can take advantage
of the ease of training tanh networks while preserving the interpretability of logistic networks.
This 'adjusted network' was used for all results.

In making the adjusted network, we first consider whether a HU is excitatory or inhibitory.
The NRF unit output nonlinearities preserve the sign of the unit activation, so whether the j-th
HU of an NRF has an overall inhibitory or excitatory effect on the OU will not only depend on
the sign of the synaptic weight wj that connects these two units, but also on the sign of the
“expected activation” of the HU, which in turn depends on whether the HU’s STRF is com-
posed mostly of negative or positive weights. To give an extreme example, a HU with all nega-
tive STRF weights and a negative wj would have a positive, excitatory influence on the output
neuron. Whether a HU should be considered excitatory or inhibitory thus depends on the
product of wj and the sum of the weights of its STRF

X

f ;t

wjf t. If both are positive or both nega-

tive, the HU is excitatory, otherwise it is inhibitory. This is potentially confusing when readers
are used to the idea that, whether a HU is inhibitory or not, can simply be determined from the
sign of its output synaptic weight. Note, however, that the equation governing the NRF model
unit’s nonlinearity is symmetric and odd, so that for HU j, multiplying wj, bj, and wjfτ by -1
leaves the influence of that HU on the OU completely unchanged. Consequently, we can ensure
that all our inhibitory HUs do indeed have negative values for wj and all excitatory HUs have
positive ones by switching the signs of wj, bj, and wjfτ in all those HUs for which

X

f ;t

wjf t was
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found to be negative after training. In the interest of easier interpretation, that is what we did,
producing the 'partially adjusted' NRF model.

Next let us consider how to further adjust the network to have non-negative outputs. For
the partially adjusted NRF model, threshold is simply the most negative output value -ρ1

(where weighted-output ranges from -ρ1wj to +ρ1wj). The explanation for this is as follows: An
excitatory HU (positive wj) can equivalently be seen as a neuron with a positive-only output,
whose weighted-output goes from 0 to +2ρ1wj, acting on an OU whose resting state is less by
-ρ1wj. An inhibitory HU (negative wj) can equivalently be seen as a neuron with a positive-only
output, whose weighted-output goes from 0 to -2 ρ1wj, acting on an OU whose resting state is
greater by +ρ1wj. Making these adjustments thus produces the final 'adjusted' network, which
was used for all the results.

The inhibitory/excitatory score. As discussed, the HUs of the NRF model are not 'hard-
wired' as excitatory or inhibitory, but each after fitting may nevertheless be “predominantly”
excitatory or inhibitory in its influence on the OU. The sign of their output weight and the bal-
ance of positive and negative weights in the STRF will determine whether the HU is predomi-
nantly excitatory or inhibitory. To quantify the extent to which a HU is inhibitory or excitatory
we calculated an inhibitory/excitatory (IE) score for each HU j:

IE ¼ signðwjÞ

X

f ;t

wjf t

X

f ;t

jwjf tj

This IE score is bounded between -1 and 1. For a positive wj, if all elements wjfτ are non-neg-
ative (and at least one is not 0), IE = 1, if all elements are non-positive (and at least one is not
0), IE = -1. For a negative wj, the opposite is true. If the sum of the negative elements equals the
sum of the positive elements, IE = 0. This measure was used to investigate whether excitatory
or inhibitory HUs play different functional roles in the NRF (Fig 4E).

The expansive/compressive score. The distributions of HU activation in the nonlinearity
plots (Fig 3B) are calculated with the adjusted model. The expansive/compressive (EC) score
measures where the unit tends to operate along the nonlinear activation function:

EC ¼
r6

r1

X

t

zjðtÞ � r4 � r5

The EC score is the average output of the unit over all the stimuli, scaled to be between -1 at
threshold and +1 at saturation. For the NRF model ρ1 = 1.7159, ρ4 = 0, ρ5 = 0, ρ6 = 1 and for
the OU we replace zj(t) with ŷðtÞ. For the LN model, ŷðtÞ replaces zj(t), ρ1 and ρ4 are the fitted
values from the nonlinearity, and ρ5 = 1 and ρ6 = 2. The average output (unscaled EC) for each
unit is shown as the green dot on its nonlinear activation function (Fig 3A, 3B and 3D).

The displayed STRFs. The HU SRTF weights (Fig 3B, top panels of each HU) are shown
with each element sign-reversed for the inhibitory HUs. Plotting HU STRFs in this manner
thus ensures that the STRF plots always show the direction of effect of an STRF weight on the
model output, rather than on the HU. This was done to facilitate the comparison between NRF
HU STRFs and LN model STRFs.

Measuring the contours, and temporal and spectral tuning width of the STRFs. To
obtain smooth contours for high sensitivity regions of the HU STRFs (Fig 3C), we spline inter-
polated the HU’s display STRF onto an evenly spaced grid at 8 times the resolution, with 7
additional values between each frequency, and 7 between each time. For the excitatory HUs the
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contours at half the maximum value of this matrix were plotted. For the inhibitory HUs, the
contours at half the minimum value of this matrix were plotted.

To get a measure of the tuning width (Fig 4C and 4D), we calculated the power STRF by tak-
ing the square of each element of the interpolated STRF. Next, to measure the frequency tuning
width, we summed the power STRF over all the time bins and then determined the maximum
value of the resulting vector. The half-height frequency tuning width was defined as the num-
ber of elements of this vector�50% of this maximum value, multiplied by the frequency range
covered by each bin in the interpolated STRF (⅙ × ⅛ = 1/48 octaves). Quarter-height fre-
quency tuning widths were defined analogously at �25%. The half- and quarter-height tempo-
ral tuning widths were calculated analogously.
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present a model of neural responses in the ferret auditory cortex (the IC Adaptation
model), which takes into account adaptation to mean sound level at a lower level
of processing: the inferior colliculus (IC). The model performs high-pass filtering
with frequency-dependent time constants on the sound spectrogram, followed by
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model. We find that the IC Adaptation model consistently predicts cortical responses
better than the standard LN model for a range of synthetic and natural stimuli. The
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without sacrificing parsimony. Furthermore, the time constants of adaptation in the
IC appear to be matched to the statistics of natural sounds, suggesting that neurons
in the auditory midbrain predict the mean level of future sounds and adapt their
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Incorporating Midbrain Adaptation to Mean Sound Level
Improves Models of Auditory Cortical Processing
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Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels
of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural
world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present
a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound
level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time
constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN)
model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of
synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacri-
ficing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds,
suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately.

Key words: adaptation; auditory cortex; inferior colliculus; mean sound level; model; spectrotemporal receptive field

Introduction
Adaptation to stimulus statistics is an important process in sen-
sory coding, whereby neurons adjust their sensitivity in response

to the statistics of recently presented stimuli (Fairhall et al., 2001;
Wark et al., 2007; Carandini and Heeger, 2012). For example,
neurons in the auditory nerve (Wen et al., 2009), inferior collicu-
lus (IC; Dean et al., 2008), and cortex (Watkins and Barbour,
2008; Rabinowitz et al., 2013) shift their dynamic ranges to com-
pensate for changes in the mean level of recent sound stimula-
tion. Neurons in the auditory periphery (Joris and Yin, 1992),
midbrain (Rees and Møller, 1983; Kvale and Schreiner, 2004;
Dean et al., 2005; Nelson and Carney, 2007; Dahmen et al., 2010;
Rabinowitz et al., 2013), and higher auditory pathways (Nagel
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Significance Statement

An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their
response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve
their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex
receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory
midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no
new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other
sensory modalities too.
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and Doupe, 2006; Malone et al., 2010; Rabinowitz et al., 2011)
also adapt to the variance of recently presented stimuli. Similar
processes operate in the visual (Mante et al., 2005) and somato-
sensory (Garcia-Lazaro et al., 2007) systems, and it has been pro-
posed that these forms of adaptation allow the nervous system to
efficiently represent stimuli across the wide range of intensities
and contrasts found in the natural world (Fairhall et al., 2001).

Functional models aimed at predicting responses of sensory
neurons generally do not incorporate adaptation to stimulus sta-
tistics. In the auditory system, such models typically involve
variations of the spectrotemporal receptive field (STRF), the
standard computational model of neuronal responses (Aertsen et
al., 1980; Aertsen and Johannesma, 1981; deCharms et al., 1998;
Klein et al., 2000; Theunissen et al., 2000; Escabí and Schreiner,
2002; Miller et al., 2002; Fritz et al., 2003; Linden et al., 2003; Gill
et al., 2006; Christianson et al., 2008; David et al., 2009; Gou-
révitch et al., 2009). Each STRF is a set of coefficients that describe
the best linear approximation to the relationship between the
spiking responses of a neuron and the power in the spectrogram
of the sounds heard by the animal.

In principle, STRFs are powerful computational tools because
they provide both a way to characterize neurons, by quantifying
their sensitivity to different sound frequencies, and to predict
responses to arbitrary new stimuli (deCharms et al., 1998;
Schnupp et al., 2001; Escabí and Schreiner, 2002). In practice,
STRFs are only moderately successful in achieving this (Linden et
al., 2003; Machens et al., 2004). To improve the predictive power
of STRFs, nonlinear extensions have been proposed, including
output nonlinearities (Atencio et al., 2008; Rabinowitz et al.,
2011), feedback kernels (Calabrese et al., 2011), second-order
interactions, and input nonlinearities (Ahrens et al., 2008; David
et al., 2009; David and Shamma, 2013). However, prediction ac-
curacy remains far from perfect. Also, some of these approaches
add complexity to the model and can be difficult to interpret in
biological terms. Here we take an alternative approach that seeks
to improve the prediction accuracy of STRF-like models by in-
corporating a simple, adaptive, nonlinear preprocessing step that
mimics the physiological properties of neurons in the auditory
midbrain.

Adaptation to mean sound level in the IC has been character-
ized by Dean et al. (2008), who measured how the time constants
of adaptation in guinea pigs vary with frequency. This informa-
tion can be used to build a model of adaptation to stimulus sta-
tistics in the IC, which can then be incorporated into an STRF
model of neural responses. We recorded the responses of neurons
in ferret auditory cortex to a range of sounds and constructed
STRF models relating the responses to the sound spectrograms.
We then augmented these models by incorporating a nonlinear
transform of the spectrogram, which captures adaptation to
mean sound level in the IC. Since the IC provides an obligatory
relay for ascending inputs to the auditory cortex, this transform
was incorporated at the input stage of the model, forming a non-
linear–linear–nonlinear (NLN) cascade. This NLN model pro-
vides a substantial improvement over the standard STRF models
in describing and predicting the responses of cortical neurons.

Materials and Methods
Experimental procedures
All animal procedures were approved by the local ethical review commit-
tee and performed under license from the UK Home Office. Ten adult
pigmented ferrets (seven female, three male; all �6 months of age) un-
derwent electrophysiological recordings under ketamine–medetomidine
anesthesia. Full details are as in the study by Bizley et al. (2009). Briefly,

we induced general anesthesia with a single intramuscular dose of me-
detomidine (0.022 mg � kg �1 � h �1) and ketamine (5 mg � kg �1 � h �1),
which was then maintained with a continuous intravenous infusion of
medetomidine and ketamine in saline. Oxygen was supplemented with a
ventilator, and we monitored vital signs (body temperature, end-tidal
CO2, and the electrocardiogram) throughout the experiment. The tem-
poral muscles were retracted, a head holder was secured to the skull
surface, and a craniotomy and a durotomy were made over the auditory
cortex. We made extracellular recordings from neurons in primary au-
ditory cortex (A1) and the anterior auditory field (AAF) using silicon
probe electrodes (Neuronexus Technologies) with 16 or 32 sites (spaced
at 50 or 150 �m) on probes with one, two, or four shanks (spaced at 200
�m). Stimuli were presented via Panasonic RPHV27 earphones, which
were coupled to otoscope specula that were inserted into each ear canal,
and driven by Tucker-Davis Technologies System III hardware (48 kHz
sample rate). We clustered spikes off-line using klustakwik (Kadir et al.,
2014); for subsequent manual sorting, we used either spikemonger (an
in-house package) or klustaviewa (Kadir et al., 2014).

Stimuli
We used several stimulus classes: two types of dynamic random chords
(DRCs), temporally orthogonal ripple combinations (TORCs), modu-
lated noise, and natural sounds.

DRCs (deCharms et al., 1998; Schnupp et al., 2001; Rutkowski et al.,
2002; Linden et al., 2003) consist of sequences of superposed pure tones
whose levels are chosen pseudorandomly. Each chord contained 31 pure
tones whose frequencies were log-spaced between 1 kHz and 32 kHz at
1/6 octave intervals. Each chord lasted 62.5 ms with 5 ms linear ramps
between chords. The levels were chosen from a uniform distribution
between 30 and 70 dB sound pressure level (SPL). We also included
variable-rate DRCs, a novel stimulus designed to have a richer modula-
tion structure, while retaining the other advantages of DRCs. In this case,
each chord lasted 10.4 ms, but the level of each tone was kept constant for
between 1 and 12 chords (lengths were chosen from a uniform distribu-
tion, independently for each frequency), rather than changing on every
chord.

TORCs (Klein et al., 2000) consist of superposed noise stimuli with
spectrograms modulated by superpositions of sinusoids. We used a set of
30 TORCs (each 3 s long) covering frequency space from 1 to 32 kHz,
with temporal modulations from 4 to 48 Hz and frequency modulations
up to 1.4 cycles/octave.

The modulated noise stimulus was generated using the sound texture
synthesis algorithm developed by McDermott and Simoncelli (2011).
The modulated noise had a pink power spectrum between 1 and 32 kHz
and a white modulation spectrum between 13.3 and 160 Hz. This stim-
ulus has a somewhat naturalistic structure, but without the complex
higher-order statistical relationships of real, natural sounds.

In the first series of experiments (BigNat), we presented natural
sounds only. We made recordings from 535 units in six ferrets (five
female, one male). There were 20 sound clips of 5 s duration each, sepa-
rated from each other by �0.25 s silence. We recorded responses to the
clips, presented in random order and repeated this 20 times. The sound
clips included recordings of animal vocalizations (e.g., ferrets and birds),
environmental sounds (e.g., water and wind), and speech. The sequences
had root mean square intensities in the range 75– 82 dB SPL. We pre-
sented the sounds at a sampling rate of 48,828.125 Hz. We discarded data
recorded in the first 250 ms after the onset of each stimulus, leaving an
effective data size of 20 � 95 s (20 repeats of 20 sounds with a duration of
4.75 s each).

In the second series of experiments (Comparison), we presented natural
sounds, DRCs, TORCs, and modulated noise in an interleaved fashion, to
enable comparison between different stimulus types. We recorded responses
to the clips, presented in random order, and repeated this 10 times. Record-
ings were made from 220 units in four ferrets (two female, two male). The
stimulus sampling rate was 97,656.25 Hz. Again, we discarded the first
250 ms after the onset of each stimulus, leaving an effective data size of 5 �
10 � 45 s (five stimulus types with 10 repeats of 45 s each).

In the Comparison dataset, the natural sounds were 1 s snippets of
vocalizations (human, bird, sheep) and environmental sounds. These
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were separated by silent gaps, and the silent periods along with the first
250 ms of neural responses after each silent period were removed.

Neural responses
For each unit, we counted spikes in 5 ms time bins and averaged these
counts over all trials to compute the peristimulus time histogram
(PSTH). We smoothed the PSTH with a 21 ms Hanning window (Hsu et
al., 2004) to estimate each neuron’s evoked firing rate. We denote the
(trial-averaged) neuronal response as yt.

Unit selection criterion
Only units whose firing rate was modulated in response to the stimuli in
a reliable, repeatable manner were included for analysis. We measured
this using the noise ratio (NR; Sahani and Linden, 2003; Rabinowitz et al.,
2011) for the PSTH of each unit:

noise ratio �
noise power

signal power
�

total variance � explainable variance

explainable variance
.

Each unit was included in our analyses if it had a noise ratio of �200
across the entire dataset (i.e., across all natural stimuli for the BigNat set
or across all stimulus classes for the Comparison set). Three hundred of
535 units were included from the BigNat set and 77 of 220 from the
Comparison set.

Log-spectrograms
We characterized the power in each stimulus using a log-spaced, log-
valued spectrogram. We first calculated the spectrogram of each sound
using 10 ms Hanning windows, overlapping by 5 ms (giving 5 ms tem-
poral resolution). We then aggregated across frequency using overlap-
ping triangular windows with log-spaced characteristic frequencies to
compute the signal power in each frequency band, using code modified
from melbank.m by Mike Brookes (Imperial College London, London,
UK; http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html). For
the BigNat stimulus, we used 34 log-spaced frequencies from 500 to
22.627 Hz (1/6 octave spacing). For the Comparison stimuli, we used 31
log-spaced frequencies from 1 to 32 kHz (also 1/6 octave spacing). Fi-
nally, we took the logarithm of the resulting values, and values lower than
a threshold (approximately equivalent to the mean activity caused by a 0
dB SPL flat spectrum noise) were set to that threshold, giving the log-
spectrogram, Xtf, at time t and frequency f.

As input to the models, we reorganized Xtf as a three-tensor Xtfh, where
Xtfh gives the sound intensity (elements of Xtf) for the recent stimulus

history, h � 0 to H-1 time bins in the past, from time t, at frequency f, i.e.,
Xtfh � X(t-h),f. For STRF estimation, we used a history length of 20 bins of
5 ms duration (100 ms total).

Model testing and comparison
To fit and test our models, we used a k-fold testing procedure (k � 10) for
both datasets. Thus, each dataset was split into 10 segments consisting of
a contiguous 10% of the data. One of the 10 segments was set aside as a
test set, and the model was trained on the remaining 90% of the data (the
training set) to fit the STRF and the parameters of the nonlinearity.
Model performance was then measured with the unused test set, i.e., the
model was used to predict the neural response to the test set stimulus. We
repeated this process 10 times, each time using a different segment as a
test set, and averaged the performance measure over the 10 segments.

Linear–nonlinear STRF model
We described the responses of cortical neurons using two models. The
first was a standard linear–nonlinear (LN) model (Chichilnisky, 2001;
Simoncelli et al., 2004; Fig. 1A) relating neural responses, yt, to the log-
spectrogram, Xtf, of the stimuli. To do this, we first found the STRF kfh,
the linear approximation to the mapping between the PSTH, yt, and the
log-spectrogram, Xtf. We estimated kfh by minimizing (subject to regu-
larization; see below) the mean squared error between the PSTH, yt, and
its linear estimate from Xtf. This linear estimate, zt, is given by the follow-
ing:

zt � �
f, h

Xtfhkfh. (1)

Previous studies have used separable kernel estimation (Linden et al.,
2003; Rabinowitz et al., 2011), which sometimes provides better descrip-
tions of auditory neurons than inseparable approaches ( particularly us-
ing DRC stimuli). Here, however, we used inseparable kernels to allow
for the possibility of inseparable kernel structure with the TORCs and
modulated noise stimuli. To estimate inseparable kernels, we used glm-
net for Matlab (J. Qian, T. Hastie, J. Friedman, R. Tibshirani, and N.
Simon, Stanford University, Stanford, CA; see http://web.stanford.edu/
�hastie/glmnet_matlab/), which uses elastic net regularization. This
technique can optimize kfh using a linear combination of L1 (Willmore et
al., 2010) and L2 (Willmore and Smyth, 2003) penalties we have used in
the past, with a parameter, �, that determines the relative strength of each
penalty. We explored three approaches: using an L1 penalty (� � 1),
using an L2 penalty (� � 0), and optimizing � for each unit. Here we

Figure 1. Two models of the stimulus–response relationship for auditory neurons. A, Standard LN model. The log-spectrogram of the sound waveform, Xtf, is operated on by a linear kernel, kfh,
and sigmoid output nonlinearity to produce a model, ŷt, of the neuronal response. B, The IC Adaptation model augments the LN model by adding a nonlinear transform of the spectrogram. The
dashed arrows indicate the alternative processing paths for the Standard LN and IC Adaptation models. The nonlinear transform consists of high-pass filtering each frequency band of the
spectrogram by subtracting the convolution of that frequency band with an exponential filter with time constant � (shown by the vertical line), followed by half-wave rectification. The resulting
modified spectrogram, Xtf

IC, is then used as an alternative input to the standard LN model.
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present the results obtained using L2 regularization, but the results are
similar for the other forms of regularization. The regularization param-
eter, �, determines the strength of regularization. To determine the op-
timal choice of �, we reserved a randomly chosen 10% of each training set
for cross-validation. STRFs were estimated using the remaining 90% of
the training set, using a wide range of choices of �. We then selected the
STRF that provided the best prediction (minimum mean square error)
on the cross-validation set. The use of three separate subsets (where
STRFs are fitted using one set, the regularization parameter is chosen
using a second set, and prediction scores are measured using a third set),
minimizes overfitting in both model fitting and assessment.

We then fitted a sigmoid (logistic) nonlinearity to relate the output of
the linear model, zt, to the neural responses by minimizing the mean
squared error between the PSTH, yt, and the nonlinear estimate of the
PSTH, ŷt:

ŷt � a �
b

1 � exp ���zt � c	/d	
, (2)

where a is the minimum firing rate, b is the output dynamic range, c is the input
inflectionpoint,andd is thereciprocalof thegain(Rabinowitzetal.,2011,2012).
All parameters a, b, c, and d were fitted to the whole training set, using minFunc
by Mark Schmidt (University of British Columbia, British Columbia, Canada;
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html).

To ensure that this sequential fitting procedure did not adversely affect
our results, we also fitted the STRF and the sigmoid output nonlinearity
using two other fitting methods (for the Comparison dataset only). The
first was an iterative procedure where we estimated the STRF, then esti-
mated the sigmoid, then inverted the sigmoid and refitted the STRF, and
repeated for 10 iterations. The second was a neural network with linear
input units, one logistic hidden unit, and a final linear output unit; this
model was fitted using backpropagation. Both of these models are iden-
tical in mathematical form to the original model and only differ in the
fitting procedure. We found that they provided very similar results (data
not shown) to the sequential fitting procedure.

Nonlinear–linear–nonlinear STRF models
To extend the LN model to incorporate our knowledge about adaptation
to mean sound level in the IC, we introduced a nonlinear transformation
of the log-spectrogram, producing the IC Adaptation model (Fig. 1B). To
test the importance of different aspects of this model, we also used several
variations as controls.

IC Adaptation model. We convolved every frequency band in the log-
spectrogram of the stimulus with an exponential filter, Efh:

Xtf
l � �

h
X(t�h),f Efh, where Efh �

1

Nf
exp� � h/�f	. (3)

Nf was a normalization constant, chosen so that the exponential filter for
each frequency band summed to 1. Here, the number of time bins, H, is
499, giving 2.5 s of history. The time constants, �f, of the filters varied with
sound frequency, following the frequency dependence of the time con-
stant found by Dean et al. (2008). The relationship we used was a linear
regression (Fig. 2) relating �f (in milliseconds) to the logarithm of the
units’ characteristic frequency (in hertz):

�f � 500 � 105log10� f 	, (4)

so that �f depends on the logarithm of frequency, between �f � 500 Hz �
217 ms and �f � 32 kHz � 27 ms.

The time-varying response of each exponential filter, Xtf
l , was then

subtracted from the corresponding frequency band in the log-
spectrogram, Xtf, giving a high-pass-filtered version, Xtf

h � Xtf � Xtf
l ,

which was then half-wave rectified to give Xtf
IC � �Xtf

h� 
. We then used Xtf
IC

in place of Xtf for STRF analysis.
No-half-wave-rectification model. This model is the same as the IC

Adaptation model, but without half-wave rectification; i.e., Xtf
h was used

for STRF analysis.
Median-� model (�med). This model is the same as the IC Adaptation

model, but a fixed time constant [� med � 160 ms; equal to the median of

the time constants measured by Dean et al. (2008)] was used for all
frequency channels instead of the frequency-dependent �f.

Minimum-� model (�min). This model is the same as the IC Adaptation
model, but with � min � 27 ms.

Maximum-� model (�max). This model is the same as the IC Adaptation
model, but with � max � 217 ms.

Performance measures
Prediction performance was primarily assessed using the normalized
correlation coefficient (CCnorm), as introduced for coherence by Hsu et
al. (2004), and used for the correlation coefficient by Touryan et al.
(2005). The prediction accuracy, as quantified by the raw correlation
coefficient, CCraw, is affected both by model performance and by the
variability of neural responses to the stimulus. To correct for the contri-
bution of response variability, and measure only model performance, we
use CCnorm, defined as the ratio of the CCraw to the theoretical maximum
CCmax:

CCnorm �
CCraw

CCmax
. (5)

CCmax is the correlation coefficient between the recorded mean firing
rate across all repeats of the stimulus and the (unknown) true mean firing
rate (measured over infinite repeats) and is an upper limit on model
performance. Following Hsu et al. (2004) and Touryan et al. (2005), we
estimated CCmax using the following:

CCmax � � 2

1 � 1/CChalf
, (6)

where CChalf is the correlation coefficient of the mean PSTH for one-half
of the trials with the mean PSTH for the other half of the trials. We took
the mean CChalf over all 126 possible combinations for the Comparison
dataset (10 trials) and over 126 randomly chosen sets of half of the trials
for the BigNat dataset (20 trials).

Natural sound analysis
In addition to modeling the neural responses, we performed an analysis
of a database of natural sound recordings with the aim of asking how the
distribution of IC adaptation time constants reported in the literature
across frequencies (Dean et al., 2008) might relate to the properties of the
natural acoustic environment. Most sounds in the database were re-
corded by us under various conditions (ranging from open air to an
anechoic chamber). An additional seven sound recordings were taken
from the freesound.org database. We arranged the sounds into seven

Figure 2. Time constants of adaptation to stimulus mean observed by Dean et al. (2008) in
the guinea pig IC. The x-axis shows the characteristic frequency of each IC unit, and the y-axis
shows the time constant of an exponential fit to the adaptation curve for the corresponding
unit. The line is our regression fit to these data (Eq. 4).
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broad categories: breaking wood sounds, crackling fire, rustling foliage,
vocalizations (human, frog, bird, sheep), walking footsteps on numerous
surfaces, ocean and river water (“water”), and rain and thunderstorms
(“weather”). We calculated the log-spectrogram, Xtf, of each sound (as
for the STRF analysis) and estimated the time-varying mean level in each
frequency band, �tf, by convolution with a boxcar filter of length, Tav (for
eight log-spaced values of Tav between 15 and 1000 ms), arranged so that
�tf at time t contained the mean sound level between t and t 
 Tav. Thus,
�tf is an estimate of the mean sound level in a given frequency band in the
immediate future.

We concatenated all sounds in a given category (including, at most,
10 s from any single sound). We then estimated a set of linear filters, Efh

nat

(one per frequency band, sound category, and value of Tav), which oper-
ated over 2.5 s of sound history and were optimized to produce an esti-
mate, �̂tf, of the time-varying mean level, �tf:

�̂tf � �
h

X(t � h),fEfh
nat. (7)

The kernels, Efh
nat, were constrained to be exponential in shape as follows:

Efh
nat � Af exp� � h/�f

nat	. (8)

Estimating the kernels therefore consisted of fitting two parameters: Af

(amplitude) and �f
nat (time constant). We optimized these parameters to

minimize the mean squared error between �̂tf and �tf using fminsearch
in Matlab. Both parameters were allowed to vary freely for different
frequencies.

Results
Using the methods described above, we presented a range of
natural and synthetic sounds to anesthetized ferrets and recorded
responses of neurons in the primary cortical areas A1 and AAF.
We modeled these responses using a classical LN model of spec-
trotemporal tuning as well as using a novel model that included a
nonlinear input stage that incorporates adaptation of IC neurons
to stimulus statistics (the IC Adaptation model). We compared
the predictive power of the two models by measuring the accu-
racy of their prediction of neural responses to a reserved test set of
sounds.

The IC Adaptation model predicts responses to natural
sounds more accurately than conventional LN models
We first evaluated the performance of the IC Adaptation model
on the responses of each unit to a set of natural sounds (BigNat
dataset). Natural sounds provide the ultimate test of models of
neural responses because of their ecological relevance. A good
model should be able to predict responses to natural sounds, but
this is often challenging because of the variety and statistical com-
plexity of sounds that are encountered in daily life.

We first compared the performance of the IC Adaptation
model and standard LN model using a correlation coefficient
(CCraw). To accurately assess performance, we measured predic-
tions using a 10-fold testing procedure: for each stimulus type, we
selected 10 nonoverlapping subsets of the data to be our test
dataset. For each test set, we fitted an LN model using the rest of
the data and used the LN model to predict responses to the test
set. We measured the mean CCraw (over all 10 test sets) between
the LN model predictions and the actual neural responses. Using
this measure suggests that there is an advantage for the IC Adap-
tation model over the LN model (Fig. 3A).

However, CCraw is affected by neuronal response variability as
well as by model performance, as can be seen from the relation-
ship between the colors of the points in Figure 3A and the model
performance. The red points show data from units with a high
noise ratio; these have highly variable responses and conse-
quently have low values of CCraw. The blue points show data from

units with a low noise ratio; these have relatively reliable re-
sponses and so have high values of CCraw. To reduce this con-
found between model performance and neuronal response
variability, we used the normalized correlation coefficient

Figure 3. Comparison of the ability of the standard LN model and the IC Adaptation model to
predict neural responses to natural sounds. A, B, Scatterplots showing the correlation coeffi-
cients between model predictions and actual neural responses (BigNat dataset). The x-axis
shows performance of the standard LN model, the y-axis shows performance of the IC Adapta-
tion model, and colors indicate the NR of each unit. A, Raw correlation coefficient CCraw. B,
Normalized correlation coefficient CCnorm. C, Scatterplot showing how the difference in CCnorm

between the two models varies with NR. The solid line is a linear regression, and the shaded area
shows the 95% confidence intervals on the regression.
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(CCnorm; see Materials and Methods) as our primary measure of
model performance. CCnorm is the ratio of CCraw to the estimated
maximum possible correlation coefficient given the level of re-
sponse variability in the data, CCmax. Since CCmax is a constant
for each unit, using CCmax does not affect the relative perfor-
mance of two models for that unit (i.e., for models 1 and 2,
CCnorm

(1) /CCnorm
(2) � CCraw

(1) /CCraw
(2) ). However, it gives a more accu-

rate picture of the performance of the models across the whole
dataset.

For both the CCnorm and the CCraw measures, the IC Adapta-
tion model provided better predictions than the LN model in
77% of neurons (Fig. 3A,B). The mean CCnorm for the IC Adap-
tation model was 0.64 compared with 0.59 for the LN model. This
improvement in performance is highly significant (p �� 0.0001,
paired t test; df � 299).

It is conceivable that the advantage of the IC Adaptation
model could, at least in part, be an artifact of data quality. For
example, half-wave rectification of the stimulus spectrogram re-
moves parts of the sound whose level is lower than the mean. This
reduces the effective dimensionality of the stimulus set and may
also reduce the effective number of STRF parameters that must be
estimated. Because simple models require less data to constrain
them than complex models, it is possible that this might give the
IC Adaptation model an artificial advantage over the LN model
for noisy neurons.

To rule out this possibility, we investigated the relationship
between CCnorm and the NR. The NR quantifies the relative con-
tributions of unpredictable and stimulus-driven variability in the
neuronal responses (see Materials and Methods); a low NR indi-
cates that a neuron was reliably driven by the stimulus. A scatter-
plot of the difference in CCnorm for the two models (Fig. 3C)
shows that the advantage of the IC Adaptation model is only
weakly dependent on the NR, indicating that the IC Adaptation
model is generally superior to the LN model, regardless of the NR.

The IC Adaptation model also outperforms conventional LN
models when tested with commonly used synthetic stimuli
An important aspect of any model is its generality. If the IC Ad-
aptation model is a better model of cortical neurons than the
standard LN model, it should provide better predictions of cor-
tical responses to a wide range of stimuli. In one sense, testing the
model on natural sounds is a good test of generality, because an
appropriate collection of natural sounds will sample the space of
ecologically relevant stimuli. However, it is also important to test
the model using synthetic stimuli that have been widely used in
neurophysiology experiments because they have been designed
to exhibit well defined statistics that may provide particularly
stringent tests of the model.

We therefore tested the IC Adaptation model on a second
dataset (Comparison) in which several stimulus classes were pre-
sented to each unit, randomly interleaved. The classes were
DRCs, TORCs, modulated noise, and natural sounds (see Mate-
rials and Methods for details). We fitted the IC Adaptation model
and the LN model to each stimulus class in turn and measured
predictions using CCnorm for reserved test data from the same
class (see Materials and Methods). For every stimulus class, we
found that the IC Adaptation model performs better than the LN
model (Fig. 4A). This difference is significant at p � 0.0001 or
better (paired t test) for every stimulus class except TORCs (for
which p � 0.07). Across all stimulus classes, the mean CCnorm for
the IC Adaptation model was 0.53 compared with 0.47 for the LN
model.

How well do models fare when fitted with one class of sound
stimuli and tested with another?
Another important test of generality is that a model should be
able to generate accurate predictions across stimulus classes. For
example, if the model is trained on DRCs, it should be able to
generate accurate predictions of responses to natural sounds.
This has been a problem for STRF models of sensory neurons,

Figure 4. A, Comparison of the LN and IC Adaptation models for several stimulus classes,
when models are trained and tested on the same stimulus class (dots show the mean of the
within-class predictions for all units). B, Percentage improvement in mean model performance

between the LN and IC Adaptation models, �CC�norm
� , when models are trained (rows) on one

stimulus class and tested (columns) on another (cross-class predictions; Comparison dataset
only). C, Difference between prediction performance of control models with fixed time con-
stants (� med, � min, and � max) and without half-wave rectification, compared with the LN
model for each stimulus class (colors as in Fig. 4A).
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which often perform much worse for cross-class prediction than
for within-class prediction (Olshausen and Field, 2005).

To test cross-class predictions, we fitted the IC Adaptation
model and the LN model to each stimulus type in the Compari-
son dataset in turn and measured predictions using CCnorm for
reserved test sets of data from other sound classes. We tested all
combinations of within- and cross-class predictions by training
and testing on every combination of stimulus classes and plotted
the percentage difference in mean performance between the

IC Adaptation model and the LN model, �CC�norm
� � 100 	

�CC�norm
IC � CC�norm

LN 	/CC�norm
LN (Fig. 4B). In 20 of 25 cases, the IC

Adaptation model performed better than the LN model. The five
cases where the LN model performed better than the IC Adapta-
tion model all involve TORC stimuli. It appears that TORCs are
an unusual case where the IC Adaptation model performs partic-
ularly poorly. This may be explained by the fact that the TORCs
are regularly interleaved with periods of silence. Our log-
spectrograms thresholded all stimuli (see Materials and Meth-
ods) to prevent model predictions from being disproportionately
affected by large negative sound levels. Normally, this has little
effect on the IC Adaptation model, but during periods of silence,
the IC Adaptation will adapt to the threshold value. As a result,
the precise value of this threshold will significantly affect model
predictions.

When trained on synthetic stimuli and tested on natural
sounds (NS, right-hand column), the IC Adaptation model al-
ways outperformed the LN model, suggesting that the IC Adap-
tation model provides superior generalization from synthetic to
natural stimuli.

It is also notable that the percentage improvements are slightly
higher (though not significantly so) for cross-class predictions
(off-diagonal elements; median � 22%) than for within-class
predictions (main diagonal; mean � 13%; difference not signif-
icant according to a rank-sum test). This indicates that the IC
Adaptation model has no negative effect on the generality of
STRF models; in fact, it may improve cross-class generalization
relative to the LN model.

Both frequency-dependent time constants and half-wave
rectification contribute to the success of the IC adaptation
model
The IC Adaptation model adds two main components to the
standard LN model: high-pass modulation filtering by subtrac-
tion using exponential filters with time constants derived from
Dean et al. (2008) and half-wave rectification of the resulting
filtered log-spectrogram. To test whether both of these compo-
nents are essential to the model, or whether either component on
its own is sufficient, we investigated the effects of manipulating
the IC Adaptation model in two ways.

In one set of manipulations, we produced control models
where the frequency dependence of the time constants, �f, was
removed. We replaced the frequency-dependent time constants
with three fixed time constants: � med � 160 ms, � min � 27 ms,
and � max � 217 ms (corresponding to the median, minimum,
and maximum of the time constants observed by Dean et al.
(2008) across the range of frequencies in our log-spectrogram).
In the second set, we kept the frequency-dependent time con-
stants but removed the half-wave rectification from the IC Adap-
tation model. We compared the performance of these control
models with the LN and IC Adaptation models for within-class
predictions on all stimulus types (Fig. 4C). All of the control
models perform better than the LN model when performance is

averaged across stimulus type, and the IC Adaptation model out-
performs all of the controls (Fig. 4C, left-hand column).

For each individual stimulus class (Fig. 4C, other columns),
the IC Adaptation model performs better than or equivalently to
the controls in almost all cases. The only exception is the model
without half-wave rectification (no-HWR), which performs bet-
ter than the IC Adaptation model for a single stimulus class,
TORCs. However, the no-HWR model performs significantly
worse for DRCs, modulated noise, and natural sounds (Compar-
ison dataset). Overall, these results suggest that both frequency
dependence of the time constants and half-wave rectification are
important components of the IC Adaptation model.

Why are the adaptation time constants in IC distributed as
they are?
To investigate why the time constants of adaptation in the IC
exhibit the characteristic frequency-dependent distribution that
has been described previously, we asked whether sound levels in
natural sounds exhibit a similar frequency-dependent distribu-
tion, which would imply that the IC time constants are optimized
to match the statistical structure of natural sounds.

Specifically, we assumed that mean sound level is a nuisance
variable and that the role of adaptation to mean sound level in the
IC is to subtract this nuisance variable from the neural represen-
tation of sound. To perform this subtraction, the IC must esti-
mate the mean level in each frequency band. If the mean level is
stable over time, an adaptation process with a short time constant
should be able to reliably estimate the mean. If the mean level is
unstable, a longer time constant will be required to produce a
reliable estimate. We therefore measured the stability of the mean
level using the autocorrelation of the spectrogram of natural
sounds. A narrow autocorrelation function indicates that sound
level is poorly correlated over time (unstable), whereas a wide
autocorrelation function indicates that sound level is well corre-
lated over time (stable). Given the results of Dean et al. (2008), we
might expect that low frequencies will have narrower autocorre-
lation functions than high frequencies.

For a large set of natural sounds, we took the spectrogram of
each sound and measured the autocorrelation of the spectrogram
for each frequency band (see Materials and Methods). The mean
(across all sounds) of the resulting autocorrelation functions is
shown in Figure 5A. The width of the autocorrelation function
(Fig. 5, black lines) varies with frequency, as predicted from the
data of Dean et al. (2008). The widths range from 10 ms at the
lowest frequencies (500 Hz) to 260 ms at the highest frequencies
(32 kHz).

We also investigated what time constants are required to op-
timally estimate the mean sound level in different frequency
bands. We took a large set of natural sounds and divided them
into seven broad categories (see Materials and Methods). For
each category, we estimated a set of linear kernels (one for each
frequency channel) that optimally predict the mean level of the
next Tav ms of sound, based on the past 2.5 s of sound. Each kernel
was constrained to have an exponential shape. The time constants
of the exponential kernels were optimized separately for each
frequency channel, and for 8 log-spaced values of Tav, (between
15 ms and 1000 ms).

The time constants for the lowest and the highest frequency
bands (centered at 70 Hz and 20 kHz, respectively) are plotted as
a function of Tav in Figure 5B. In all cases, the mean time con-
stants for low frequencies (Fig. 5B, red line; error bars show SE)
are consistently higher than those for high frequencies (Fig. 5B,
blue line). This confirms that longer time constants are required
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to reliably estimate the mean for low frequencies. We find that as
the length of the averaging window, Tav, increases, the optimal
time constants increase. This effect begins to saturate above 250
ms. We also find that there is substantial variation between sound
categories (the range from the minimum to maximum value is
shown by the red and blue shaded regions). However, for every
sound category, the optimal time constants are typically larger for
low-frequency sounds than for high-frequency sounds, suggest-
ing that this is a consistent property of natural sounds.

To compare the time constants measured by Dean et al. (2008)
with the time constant range that is optimal for natural sounds,
we took the results of the above analysis and measured the whole
range of time constants obtained (across all sound categories and
values of Tav from 250 ms upward) for each frequency band. The
results, plotted in Figure 5C (solid line indicates center; shaded
region indicates range), are in good agreement with the time
constants for IC neurons from Dean et al. (2008) (dots and re-
gression line). The two datasets show very similar inverse rela-
tionships between time constant and frequency. Most of the IC
data fall within the range of time constants that might be consid-
ered optimal. Nevertheless, there is significant variation, both
within the data of Dean et al. (2008) and among the time con-
stants for different sound categories. This may reflect optimiza-
tion of subpopulations of neurons in IC for different subsets of
natural sounds with different temporal autocorrelations. Overall,
these results support our hypothesis that the time constants of
adaptation to mean level in the IC are indeed optimized to enable
neurons in the auditory midbrain to estimate and then subtract
the mean sound level in each frequency band.

Discussion
Developing predictive, quantitative models of the response prop-
erties of individual neurons is fundamental to our ability to de-
scribe and understand information processing in the brain.
Although STRF-based models have their limitations, they remain
valuable and provide simple models for describing the behavior
of sensory neurons. Many of the more sophisticated models
(Sharpee et al., 2004, 2011; Ahrens et al., 2008; Atencio et al.,
2009; Calabrese et al., 2011; Schinkel-Bielefeld et al., 2012) re-
quire many more parameters and may also be difficult to inter-
pret biologically. Thus, a key challenge is to extend STRF models
so that they more accurately describe neuronal behavior, while
remaining simple and biologically relevant. Here we have shown
that we can significantly improve STRF models of neurons in
the auditory cortex by introducing a simple nonlinear input
transform that reflects adaptation to stimulus statistics in the
midbrain.

Advantages and power of nonlinear input stages
It is widely accepted that it can be useful to add a nonlinear
output stage to the basic STRF model, resulting in an LN model
(Chichilnisky, 2001). A nonlinear output stage has numerous
advantages over the purely linear model. Sigmoid (or similar)
functions can model threshold and saturation effects that are
present in real neurons. However, the output of an LN model is
only a simply transformed version of the output of the linear
model. Introducing a nonlinear input stage is potentially far
more powerful, because it allows the model to perform poten-
tially quite complex nonlinear computations. In principle, un-
limited nonlinear processing of the input can be performed
before the linear summation stage, so that the full NLN model
can perform complex computations. However, in practice it is
difficult to harness this power because models that involve com-
plex input transformations typically involve large numbers of
free parameters, which are difficult to estimate given that neuro-
physiological datasets are always limited and noisy. We therefore
need a way to introduce appropriate nonlinear transformations
of the input without introducing many free parameters.

Here we have circumvented this problem by constraining the
model nonlinear input transformations to replicate known oper-
ations of early stages of the sensory pathway. To the extent that
the sensory systems are hierarchically organized, we can charac-

Figure 5. A, Autocorrelation of the spectrogram of an ensemble of natural sounds. The black
lines indicate the point where the autocorrelation has decreased to 1/e. B, Optimal time con-
stants for predicting the mean sound level of natural sounds in a window of length Tav ms into
the future. This is plotted as a function of the window size, for frequency bands centered on a
low value (70 Hz; red line) and a high value (20 kHz; blue line). Lines indicate mean, error bars
show SEM, and shaded regions indicate entire range. C, Optimal time constants for prediction of
the mean level of natural stimuli in each frequency band. The shaded region indicates the range
of time constants in that frequency band; the solid line indicates the middle of the range. The
dots indicate time constants observed in guinea pig IC by Dean et al. (2008), and the dashed line
is the linear regression of those time constants against log(frequency).
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terize the input by recording the response properties of neurons
at earlier stages of processing. In the present case, we have used a
model of the characteristics of neurons in the IC as the input to a
model of the behavior of cortical neurons. Because the parame-
ters of this input transformation can be determined by recording
neuronal responses in the IC, it is possible to incorporate a well
characterized transformation without introducing any free pa-
rameters whatsoever, which is what we have done here.

Relationship with other models
The IC Adaptation model includes a nonlinear input transforma-
tion with three components: adaptation to the stimulus mean,
half-wave rectification, and frequency-dependent time constants
of adaptation. Other models in the auditory literature have intro-
duced nonlinear input stages to STRF models but have not exam-
ined this particular combination. For example, the synaptic
depression model by David and colleagues (David et al., 2009;
David and Shamma, 2013) contains similar adaptation to the
stimulus level, but without half-wave rectification or frequency-
dependent time constants. It is therefore similar to one of the
controls used here. We find that both the half-wave rectification
and the frequency-dependent time constants introduced by the
IC Adaptation model significantly improve the power of the
model to predict neural responses to most new stimuli.

The context model described by Ahrens et al. (2008) has a
considerably greater model complexity than our IC Adaptation
model and is therefore, in principle, capable of far more powerful
nonlinear transformations, including nonmonotonicity. How-
ever, it also introduces many additional free parameters, which
are difficult to fit reliably to neural data. This limits the improve-
ments in predictive power that can be achieved in practice. The IC
Adaptation model, in contrast, has no more free parameters than
the LN model and therefore provides some of the benefits of the
context model without introducing extra model complexity.

Time constants of adaptation
This study builds on the results of Dean et al. (2008), who found
that neurons in the guinea pig IC adapt to the mean level of recent
sound stimulation and that this adaptation has frequency-
dependent time constants. We found that the specific time con-
stants measured in that study were valuable in improving our
models of ferret cortical neurons.

We show (Fig. 5C) that the time constants are optimized
for a specific representation of the sound waveform. We as-
sumed that the time-varying mean sound level in each fre-
quency band, �tf, is a nuisance variable, which does not need
to be included in the neuronal representation of sound. If this
is the case, then a plausible role for adaptation to mean sound
level in the IC is to subtract an estimate, �̂tf, of the time-
varying mean (in a time window, Tav) from the sound level,
Xtf, so that the responses of IC neurons are functions of Xtf �
�̂tf rather than �tf itself. We also assumed that the adaptation
process estimates future values of �̂tf by exponential averaging
over recent values of Xtf. Finally, we assumed that the time
constants of this adaptation process are optimized so that, for
each frequency band, �̂tf is as close as possible to the true
mean, �tf. Using only these assumptions, we were able to de-
rive optimal time constants for each frequency band in the
spectrogram and found that these time constants are a good
match for the real time constants measured in IC. This sup-
ports our hypothesis that adaptation in IC is optimized to
subtract the time-varying mean in each frequency band of
natural sounds.

It may initially seem surprising that time constants measured
for neurons in the guinea pig IC should be relevant for a different
species. However, since our natural sound analysis makes no as-
sumptions that are specific to guinea pigs, the time constants
should be similar for a range of species. While our assumption
that mean sound level is a nuisance variable is a good general
principle, we expect that there is some behaviorally valuable in-
formation in the absolute sound level that will also need to be
transmitted. It is notable that in the auditory system adaptation is
not complete, and even neurons which adapt optimally will not
perfectly estimate and subtract �tf. As a result, some residual
information about mean level will still be transmitted to the au-
ditory cortex.

Future directions
The IC Adaptation model is a simple, easily implemented exten-
sion of classical STRF models of auditory neurons. It improves
predictions of the behavior of neurons in the auditory cortex by
incorporating a model of adaptation to stimulus statistics at an
earlier stage of processing. Because it introduces no free param-
eters, it neither increases the complexity of the model nor the
amount of data required to fit it.

In the present study, we have modeled adaptation to mean
sound level in the IC and applied this to the responses of neurons
in A1/AAF. It is likely that this work can be generalized to other
structures in the auditory system. For example, further adapta-
tion to stimulus mean is present in the responses of cortical neu-
rons (Rabinowitz et al., 2013) and may have a thalamic or cortical
origin. Future studies could experimentally characterize adapta-
tion properties in these structures and use this to improve models
of neurons in primary and higher auditory cortices.

In the visual system, adaptation to stimulus mean luminance
is also present (Dawis et al., 1984; Rodieck, 1998; Mante et al.,
2005) but is not yet routinely incorporated into receptive-field
models of visual neurons (for review, see Sharpee, 2013).
Nishimoto and Gallant (2011) found that incorporating lumi-
nance (and contrast) normalization did not significantly improve
models of processing in MT; however, their model of normaliza-
tion was a general one that did not closely match the characteris-
tics of any particular adaptation process, and their stimuli
contained a relatively narrow range of luminances. An approach
similar to the one used here, using measured time constants of
adaptation, may be better able to improve predictions of neural
responses to motion and other visual stimuli.

Finally, neurons at multiple levels of the visual (Fairhall et al.,
2001; Carandini and Heeger, 2012), somatosensory (Garcia-
Lazaro et al., 2007), and auditory (Rabinowitz et al., 2011) sys-
tems show adaptation to higher-order statistics such as stimulus
variance. Using an approach very similar to the one presented
here, it should be possible to incorporate adaptation to higher-
order stimulus statistics into neural models at multiple levels of
different sensory pathways.
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B.1. Deep learning-enabled organ segmentation with
uncertainty quantification of whole-body mouse
scans

Authors: O Schoppe, C Pan, J Coronel, H Mai, Z Rong, M Todorov, A Müskes, F
Navarro, A Ertürk, and B H Menze

Abstract: Whole-body imaging of mice is a key source of information for research.
Segmentation of major organs in such scans is a prerequisite for quantitative analysis
but is a tedious and error-prone task if done manually. Here, we present a deep
learning solution called AIMOS that automatically segments major organs (brain,
lungs, heart, liver, kidneys, spleen) and the skeleton with unrivalled accuracy. AIMOS
segments a whole-body scan in less than a second, orders of magnitude faster than
prior algorithms, and matches or exceeds the segmentation quality of state-of-the-
art approaches and the segmentation quality of human experts. We demonstrate
direct applicability for biomedical research with an exemplary analysis of the bio-
distribution of cancer metastases. Furthermore, we show that expert annotations
are subject to human error and bias. Importantly, AIMOS addresses this issue
by identifying the regions where humans are most likely to disagree, and thereby
localises and quantifies this uncertainty for improved downstream analysis. In
summary, AIMOS is a powerful open-source tool to increase scalability, reduce bias,
and foster reproducibility in many areas of biomedical research.

Date of submission: 30.04.2020
Journal name: Nature Communications (Springer Nature)
Publication status: In revision

Individual contribution: project conception and coordination, experimental design,
data analysis, leading author of manuscript
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B.2. Machine learning analysis of whole mouse brain
vasculature

Authors: M Todorov*, J Paetzold*, O Schoppe, G Tetteh, V Efremov, K Voelgyi, M
Duering, M Dichgans, M Piraud, B Menze, A Ertürk
*Joint first authorship

Abstract: Tissue clearing methods enable the imaging of biological specimens with-
out sectioning. However, reliable and scalable analysis of large imaging datasets in
three dimensions remains a challenge. Here we developed a deep learning-based
framework to quantify and analyze brain vasculature, named Vessel Segmentation
& Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network
(CNN) with a transfer learning approach for segmentation and achieves human-level
accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J,
CD1 and BALB/c mouse brains at the micrometer scale after registering them to
the Allen mouse brain atlas. We report evidence of secondary intracranial collateral
vascularization in CD1 mice and find reduced vascularization of the brainstem in
comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifica-
tions of the angioarchitecture of cleared mouse brains and yields biological insights
into the vascular function of the brain.

Date of publication: 11.03.2020
Journal name: Nature Methods (Springer Nature)

Individual contribution: support with project coordination, support with exper-
imental design, support with data analysis, support for creation and revision of
manuscript
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B.3. Cellular and Molecular Probing of Intact Human
Organs

Authors: S Zhao, M Todorov, R Cai, R al-Maskari, H Steinke, E Kemter, H Mai, Z
Rong, M Warmer, K Stanic, O Schoppe, J Paetzold, B Gesierich, M Wong, T Huber,
M Duering, O Bruns, B Menze, J Lipfert, V Puelles, E Wolf, I Bechmann, A Ertürk.

Abstract: Optical tissue transparency permits scalable cellular and molecular investi-
gation of complex tissues in 3D. Adult human organs are particularly challenging
to render transparent because of the accumulation of dense and sturdy molecules
in decades-aged tissues. To overcome these challenges, we developed SHANEL, a
method based on a new tissue permeabilization approach to clear and label stiff
human organs. We used SHANEL to render the intact adult human brain and kidney
transparent and perform 3D histology with antibodies and dyes in centimeters-depth.
Thereby, we revealed structural details of the intact human eye, human thyroid,
human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore,
we developed a deep learning pipeline to analyze millions of cells in cleared human
brain tissues within hours with standard lab computers. Overall, SHANEL is a robust
and unbiased technology to chart the cellular and molecular architecture of large
intact mammalian organs.

Date of publication: 20.02.2020
Journal name: Cell, Cell Press (Elsevier)

Individual contribution: coordination of machine learning work (data processing,
quantitative experiments), support for manuscript revision
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B.4. Gold Nanoparticle Mediated Multi-Modal CT
Imaging of Hsp70 Membrane Positive Tumors

Authors: M Kimm, M Shevtsov, C Werner, W Sievert, Z Wu, O Schoppe, B Menze, E
Rummeny, R Proksa, O Bystrova, M Martynova, G Multhoff, S Stangl

Abstract: Imaging techniques such as computed tomographies (CT) play a ma-
jor role in clinical imaging and diagnosis of malignant lesions. In recent years,
metal nanoparticle platforms enabled effective payload delivery for several imaging
techniques. Due to the possibility of surface modification, metal nanoparticles are
predestined to facilitate molecular tumor targeting. In this work, we demonstrate the
feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody function-
alized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging.
Membrane-associated Hsp70 is exclusively presented on the plasma membrane of
malignant cells of multiple tumor entities but not on corresponding normal cells,
predestining this target for a tumor-selective in vivo imaging. In vitro microscopic
analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell
lines after internalization via the endo-lysosomal pathway. In preclinical models,
the biodistribution as well as the intratumoral enrichment of AuNPs were examined
24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis,
histological analysis confirmed the presence of AuNPs within tumor cells. In contrast
to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected
selectively inside tumor cells in different tumor mouse models. Furthermore, a
machine-learning approach was developed to analyze AuNP accumulations in tumor
tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the
guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution
of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic
imaging techniques and spectral-CT-based tumor delineation in vivo.

Date of publication: 22.05.2020
Journal name: Cancers, MDPI

Individual contribution: coordination and implementation of machine learning work
(data processing, quantitative experiments), support with writing the manuscript

138



B. Appendix B: overview of further work not included in this dissertation

139



B. Appendix B: overview of further work not included in this dissertation

B.5. Red-GAN: Attacking class imbalance via
conditioned generation. Yet another medical
imaging perspective

Authors: A Qasim*, I Ezhov*, S Shit, O Schoppe, J Paetzold, A Sekuboyina, F Kofler,
J Lipkova, H Li, B Menze
*Joint first authorship

Abstract: Exploiting learning algorithms under scarce data regimes is a limitation
and a reality of the medical imaging field. In an attempt to mitigate the problem,
we propose a data augmentation protocol based on generative adversarial networks.
We condition the networks at a pixel-level (segmentation mask) and at a global-level
information (acquisition environment or lesion type). Such conditioning provides
immediate access to the image-label pairs while controlling global class specific
appearance of the synthesized images. To stimulate synthesis of the features relevant
for the segmentation task, an additional passive player in a form of segmentor is
introduced into the adversarial game. We validate the approach on two medical
datasets: BraTS, ISIC. By controlling the class distribution through injection of syn-
thetic images into the training set we achieve control over the accuracy levels of the
datasets’ classes.
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