
Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

Toward Control of Multi-agent Systems:
Cooperative Navigation of Autonomous Agents
in Unknown Environments
Ertuğ Olcay

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs
genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Veit St. Senner
Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Boris Lohmann

2. Prof. Maruthi R. Akella, Ph.D.
The University of Texas at Austin
Austin (TX), USA

Die Dissertation wurde am 23.06.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 03.12.2020 angenommen.





Abstract

Cooperative control of multi-agent systems has been investigated intensively for many
different purposes. These include not only technical applications, such as swarm robotics,
transportation and logistics but also control of human crowds and even understanding
of collective behavior of animal groups. From the control engineering perspective, in-
fluencing autonomous, interacting multiple agents in a harmonic way is a challenging
task. Since the motivation in usage of multiple agents is mostly to increase efficiency
at low operational costs, multi-robot systems usually consist of simple, low cost robots.
Engineering applications of mobile multi-agent systems vary from exploration and re-
connaissance missions to surveillance systems.
This thesis proposes cooperative navigation methods, which are particularly suitable for
agents with basic equipment, such as simple range sensors and communication devices.
Especially agents, which are operated indoors, may not use a global positioning system.
Hence, they have to localize themselves in a map using sensors and odometry. However,
in real-world applications, the map of the environment usually does not contain all
information, such as obstacles and restricted areas. Hereby, we focus on different specific
problem sets and propose novel solutions for them. The considered scenarios cover
collective motion planning toward a global target position, trajectory tracking, and area
coverage with multiple agents. Beyond collective navigation by preventing inter-agent
collisions, obstacle avoidance is one of the primary objectives in each considered task.
Unknown obstacles in the workspace of agents usually bring about decision problems
in collective motion planning. Particularly, complex obstacle geometries are difficult
to handle in cooperative fashion. Since the communication ability of agents is limited,
preserving connectivity, in other words, cohesive behavior, is desired in most tasks
except area coverage. Through spatial proximity, agents can exchange more information
and thus, localize themselves better in the unknown environment using aggregated
information from other agents within their communication range.
The main tools in our control mechanisms are potential field approach, geometry-
based algorithms and grid-based methods. Potential field-based interactions among
the agents, along with virtual forces for obstacle avoidance, yield a common problem
called local minima. For this issue, we propose cooperative control strategies with
geometry-based algorithms to determine waypoints to escape from local minima and
employ grid-based methods to virtually build the unknown workspace. Hereby, an elab-
orate exchange of information plays a significant role. A further method considered for
collective navigation in this work employs optimal control. The presented strategies in
this thesis are suitable for different scenarios. The abilities, advantages and drawbacks
of the proposed navigation schemes are discussed and demonstrated with numerical
experiments.
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1 Introduction
To return to the difficulty which has been stated with
respect both to definitions and to numbers, what is the
cause of their unity? In the case of all things which
have several parts and in which the totality is not, as
it were, a mere heap, but the whole is something beside
the parts, there is a cause; for even in bodies contact
is the cause of unity in some cases, and in others vis-
cosity or some other such quality.

— Aristotle, Complete Works - Book VIII1

Rephrasing Aristotle, a system is something beside, and not the same, as its subsystems.
Local interactions among the subsystems and their individual behaviors may yield global
behaviors. Also many complex tasks can be divided into smaller tasks and these are
allocated to the individual entities, the so-called agents, which are directly or indirectly
interconnected with each other. In this way, a global complex problem can be solved by
the agents in a collaborative fashion. Modeling, control, and predictions using multi-
agent systems (MASs) have been intensively studied in different disciplines, including
computer science, biology, statistical physics and engineering. The agents in a multi-
agent system represent dynamical subsystems that can refer to autonomous robots,
unmanned aerial vehicles (UAVs), sensors or humans depending on the problem.
Due to their efficiency, low cost, flexibility, and reliability, MASs have a wide range of
applications in computer networks, robotics, modeling, and smart grids [43]. Computer
networks are complex systems due to the high number of interconnected devices. For
example, MAS-based approaches were proposed for control, monitoring and security
of computer networks [116, 63]. In addition, MAS-based modeling techniques help
to simulate human social behavior, decision-making and opinion-forming, where the
humans are agents [61, 72], [153, 156]2.
Robots are continuously developed to take over the dull, dirty and dangerous tasks
from humans, also known as the 3-Ds. Most of these tasks can be performed more
efficiently and even sometimes with lower operational costs by multiple robots than by
a single robot. In order to achieve a common goal, multiple robots require cooperative
control strategies. Based on the characteristics defined in [118, p. 1], a cooperative
MAS should have the following features:

1Translated by W. D. Ross.
2The supervised student thesis [159] is also an example for the MAS-based modeling of a social
system.
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2 Chapter 1. Introduction

• Trajectories of all the agents evolve collaboratively toward accomplishing a com-
mon objective. The common objective can be interpreted as the equilibrium point
of the system.

• Agents can usually exchange some information via a communication network.
• Agents can generally interact with a dynamically changing physical environment,

which might have an influence on the system’s dynamics and communication
network.

• A state change of each agent may be subject to both constraints in kinematics
and dynamics.

For further theory about cooperative control, the reader is referred to [118] and the
study [69] gives an overview on the collective control of MASs. In addition, the book [82]
summarizes the methods and challenges in the control of dynamic networked systems.
Besides cooperative control systems, there are natural systems that do not require ex-
ternal instructions for a specific task. Such systems are referred to as self-organized sys-
tems, which are a subcategory of MAS. Internal influences through interactions among
the agents yield some form of order out of an initially disordered system. This natural
order is usually a pattern arising mostly in physical and biological systems. Examples
of self-organization include crystallization, the growth of snowflakes and galaxies. For
further insights into the topic, the reader is referred to the literature [15, 30, 56, 138].
A form of self-organization can also be observed in biological systems with species that
exhibit cooperative behavior to achieve a common goal (see Fig. 1.1). An example for
this form of organization in nature is flocking behavior. Flocking represents a collective
motion of a large number of self-driven and interacting individuals in a group. This col-
lective behavior exhibited by entities aggregating together frequently appears in nature.

(a) Bees in the honeycomb
storing nectar in its cells.

(b) Fisch school. (c) Geese flying in formation.

Figure 1.1: Cooperative behaviors in nature3.

3 (a): https://pixabay.com/de/photos/honigbienen-bienenstock-honig-326337/
(b): https://pixabay.com/de/photos/fisch-schwarm-unterwasser-tauchen-1190393/
(c): https://pixabay.com/photos/formation-migratory-birds-geese-508038/

https://pixabay.com/de/photos/honigbienen-bienenstock-honig-326337/
https://pixabay.com/de/photos/fisch-schwarm-unterwasser-tauchen-1190393/
https://pixabay.com/photos/formation-migratory-birds-geese-508038/


1.1. Motivation 3

There are resemblances between schooling, swarming and herding behavior. The term
flocking can also refer to swarm behavior in insects, herding behavior in land animals,
and schooling of fishes. However, flocking usually denotes the motion of a population
with a common velocity. Besides, swarming mainly refers to the phenomenon of cohesive
motion, which does not necessarily require a common velocity [37].

1.1 Motivation

The research field of control of multi-robot systems and swarm robotics continues to
draw inspiration from the behavior of cooperative animals in nature [46]. The mecha-
nisms of cooperation, local interactions and communication between agents have been
under increasing levels of investigation for many different purposes. Since all self-
organizing systems do not have a reasonable goal, it is of interest to externally initiate
a goal and steer a group toward desired objectives. A simple example for such an exter-
nal control could be a herding dog that steers the flock (Fig. 1.2). Such external control
mechanisms of group behaviors have been investigated for their potential engineering
applications, especially for the control of multi-robot systems.
Autonomous multi-robot systems have a wide range of applications such as building the
maps of unknown areas, discovery and exploration of certain regions [42]. In addition,
monitoring, reconnaissance and rescue with swarms of autonomous mobile robots are
other possible tasks for muti-robot systems [132, 84, 131, 96, 77]. Data collection in
unknown or partially known environments [144], transportation in a warehouse [71],
robot formation4 and vehicle platooning [122, 48] are some further applications. A
detailed description of different problems and approaches for MAS can be found in
[115].

Figure 1.2: A herding dog coordinates a group of sheep5.

In many multi-agent control problems, multiple agents collaboratively work on a com-
mon task. One of the major issues in many multi-robot coordination tasks is the difficult
operation areas with complex obstacles and restricted domains. Autonomous vehicles

4We refer the reader to [135] for an elaborate study on formation control systems.
5 https://bit.ly/2wWAEgT

https://bit.ly/2wWAEgT


4 Chapter 1. Introduction

and robots utilize different kinds of navigation strategies. Motion planning approaches
for autonomous robots can be generally divided into two categories.
The first one is the global navigation approach (global motion planning or offline plan-
ning), which assumes that the robot receives a map of the environment before path
planning. This map can include all static obstacles and boundaries of the considered
area. In this case, an optimal path is computed based on the prior knowledge of the en-
vironment. Optimal control-based schemes [25, 87] and graph traversal algorithms such
as A* algorithm [59] have been investigated for motion planning in this category. The
weakness of these approaches is that the robot cannot handle environmental changes
during an operation.
The second strategy is the local navigation approach (local motion planning or online
planning), which does not require prior information about the environment. The robot
can plan its actions autonomously based on sensor data and react to unexpected events
in the workspace. Over the past two decades, several methods have been proposed for
local navigation of multi-agent systems. The ability of robots to localize themselves on a
map and to plan elaborated motions are the basics of many local navigation approaches.
There are several Simultaneous Localization And Mapping (SLAM) algorithms that
allow robots to build a map of the environment and, at the same time, use this map
to compute their location. Since some SLAM algorithms are based on probabilistic
methods, a combination of SLAM with other navigation mechanisms may increase
efficiency [92]. Further information on robot localization techniques can be found in
[32]. Artificial potential field-based methods are widespread approaches, which are
based on the generation of artificial attraction, repulsion, and alignment forces [54,
98, 73, 75]. Further similar approaches also exist, such as the Vector Field Histogram
(VFH) [24, 137, 80], which exhibits problems in handling local minima6 (e.g., concave
obstacles). Another method is Model Predictive Control (MPC) [5], which is applied
to minimize a cost function repeatedly at each time step using a nonlinear dynamic
model of the system. It is well-suited for changing environments in motion planning.
However, this method is generally computationally intensive, especially in multi-agent
settings.
In many cases, the operation area of the agents is usually unknown or partially known. A
possible collision or loss of some agents during a task can cause expenses and lead to the
failure of the mission. Hence, collision-free path planning of multi-robot systems is one
of the keys to a successful mission. Perception of the environment, object recognition,
position and velocity control are some of the constituent parts of robot guidance tasks.
Many of the existing strategies either consider idealized, simple small obstacles or do
not enable agents to escape from non-convex obstacles. Camera-based approaches are
often used for object identification and obstacle avoidance. However, the acquisition
costs for multiple robots can be high depending on the number of agents. Furthermore,
high-intense sunlight or smoky environments can reduce their performance. Due to the
low acquisition as well as their operational costs and simplicity, sensor-based approaches
are popular in cooperative motion planning.

6The problem of local minimum will be explained in Chapter 4.
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1.2 Statement of Contribution

In this thesis, we mainly focus on the navigation of dynamic multi-agent systems con-
sidering various agent dynamics and different problems. Control and navigation of
swarming multi-agent systems are inspired by flocking behavior in nature. Three sim-
ple rules were defined to imitate flock-like behavior in a multi-agent system, cohesion,
separation, and alignment [123], which are consistently taken into consideration in our
approaches, especially in multi-agent rendezvous problems7. The aim of this thesis is
to extend the literature on cooperative navigation. On top of this, the main goal of this
work is to develop viable approaches using distributed control strategies, which are easy-
scalable with respect to the system size (agent number), adaptable to environmental
changes and simple to implement.
In Chapter 3, we investigate the evolution and properties of the Cucker-Dong model
[37], which represents a self-organizing system under specific conditions. The model
is quite stable with respect to separation without any condition. Thus, preserving
this property, we extended the Cucker-Dong model to build a target-tracking and an
obstacle-avoiding flock. This extension includes the obstacle avoidance algorithm to
avoid convex obstacles and we have added a common group objective to the CD model.
Study [152] was published in connection with this chapter.
With the aforementioned motivation, in Chapter 4, we deal with a rendezvous problem
and propose a heuristic information-driven algorithm for flocking systems to escape from
concave obstacles and to prevent local minima. In this setting, the agents receive only
the environmental information by using their sensors and via communication with other
agents. The proposed method uses cellular decomposition of the workspace. With this
algorithm, agents can explore the unknown workspace and create their information
maps through local information exchange. In addition, recognition of concave obstacles
allows the agents to perform escape maneuvers from possible local minima. Study [155]
was published in connection with this chapter.
In Chapter 5, we propose a collective navigation framework considering the same
problem as in the previous chapter. The presented framework is based on a tangential
escape schema and a sophisticated information sharing via communication network. In
contrast to the previous chapter, the communication protocol allows multiple robots
to efficiently explore an unknown area through exchange of local information about
critical points in the workspace along with actions of neighboring agents. Study [158]
was submitted in connection with this chapter.
Chapter 6 addresses a cooperative coverage problem with multiple autonomous agents,
which can be applied to exploration missions and even to floor cleaning. For this
purpose, the exploration area is decomposed into identical cells. In many similar ap-
proaches, however, either the robots know the obstacle locations, or they are not capable
of identifying their environment completely. In this chapter, we propose a sensor-based
framework to cover a given workspace simultaneously with multiple mobile agents in
a cooperative fashion without any prior knowledge of the environment. With our ap-

7In rendezvous problems, all agents desire to meet at a predefined location.



6 Chapter 1. Introduction

proach, the agents are capable of avoiding collisions with different shaped obstacles and
autonomously constructing a virtual map of the whole area by identifying inaccessible
domains. Study [157] was published in connection with this chapter.
In Chapter 7, we are concerned with the control of a group of autonomous agents
with limited information through guidance of a single controlled agent, which is called
the leader. In this setting, the leader is the only agent that knows the predetermined
objective of the group and the environment. The agents in the group can only interact
with the agents within their communication range. In addition, they cannot perceive
the obstacles and interact with them. In order to control the leader, we utilize an
optimal control strategy. With this method, the leader applies optimal interventions
and steers the entire system toward group objectives. Considered objectives include
rendezvous problem, trajectory tracking, and avoiding collisions with obstacles at the
same time. Study [154] was published in connection with this chapter.

1.3 Outline of the Thesis

This thesis includes theoretical results in the cooperative and decentralized coordina-
tion of multiple autonomous agents for different application objectives. The thesis is
organized in eight chapters, each one focusing on a specific problem.
Chapter 1 presents a general introduction to multi-agent systems, some of its applica-
tions and research problems investigated in this thesis.
Chapter 2 gives an overview of the theoretical background required to understand the
upcoming chapters. It provides certain preliminaries for this dissertation. The basic
notions of graph theory are presented because the concepts developed in this work
frequently employ graph-theoretic approaches. Furthermore, preliminaries on modeling
and control of cooperative agents, which are often applied in this work, are introduced.
Chapter 3 explores the potential of Newton-type particle systems with interacting parti-
cles for swarm navigation applications. The agents (particles) considered in this chapter
use simple rules to organize themselves without any external intervention. However, the
self-organization usually emerges under certain initial conditions. With the motivation
of utilizing some properties of self-organized agents, the Cucker-Smale and the Cucker-
Dong model are reviewed first. Furthermore, a navigation concept is proposed, which
is built upon the Cucker-Dong model. Finally, numerical experiments are conducted to
demonstrate the abilities of the concept.
Chapter 4 considers a local path planning problem for coordination of multi-agent
systems in environments with complex obstacles without having any prior knowledge.
A challenging factor in this chapter is the limited sensor and communication range
of the agents. For the cooperative navigation, a potential function-based approach
is employed. However, artificial potential field methods are usually plagued by being
trapped into a local minimum. In order to overcome this problem, a heuristic escape
strategy is proposed, which enables the agents to recognize possible local minima in an
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anticipatory fashion and plan an appropriate motion through a multi-criteria decision-
making process to escape from the potential trap.
Chapter 5 addresses the same problem as in Chapter 4 and presents an analytical nav-
igation framework that solely exploits the sensing information and shared data among
the agents for collision-free motion planning. The decentralized navigation concept em-
ploys potential fields to guarantee inter-agent collision avoidance, preserve proximity
and increase safety in collision avoidance with obstacles. In addition, a sophisticated
algorithm that uses local communication and information exchange is developed to en-
able the agents to make early decisions and simultaneous, optimal collective maneuvers
in complex environments.
Chapter 6 deals with efficient area coverage using a mobile sensor network. The sensors
denote agents with limited communication bandwidths and sensing performance. The
challenge is that the agents explore a given workspace in a cooperative manner without
having any prior knowledge of the environment. For this purpose, an area coverage
algorithm for multiple mobile agents is developed. The proposed algorithm includes
cooperative motion planning, autonomous map creation and a scheme for sensor-based
recognition of inaccessible regions on the constructed map.
Motivated by the hierarchical group dynamics in nature, an optimal control-based con-
cept for the coordination of multi-agent systems with an external leader is presented
in Chapter 7. After a brief introduction to optimal control and numerical optimization
approaches, the optimal control problem is formulated and solved using a numerical
method. The proposed framework is validated in a simulation environment considering
various group objectives.
Finally, Chapter 8 summarizes the thesis, provides concluding remarks and an outlook
for future research directions.
The figures shown in this Introduction were licensed under a Creative Commons license.
The figures in the rest of the work were produced by the author of this thesis.





2 Theoretical Background
This chapter introduces the theoretical basis that will be frequently applied in upcom-
ing chapters. First, the essential preliminaries on graph theory, lattice-type geometry,
perception of obstacles by means of sensors, its modeling for simulation purposes and
mathematical tools to work with differentiable functions are presented. Finally, the
general assumptions used in the thesis are summarized.

2.1 Preliminaries

The mathematical description of the network topology of a flocking or a swarming MAS
is mainly based on graph theory. Thus, a basic knowledge is required to understand
the geometrical structure of flocks. Moreover, the structural dynamics of flocks are de-
scribed via artificial collective potentials. Their background is provided in the following
sections. Since the dynamics of agents applied in the approaches in Chapter 4 - 7 are
mainly based on those in [100], many of the preliminaries are also drawn from this work.
All vectors and matrices will be characterized in bold. Note that in later chapters,
slightly different notations than those used in this chapter may be used. They will be
clearly explained and solely used in that particular chapter.

2.1.1 Basic Notations of Graph Theory

Modeling and control of multi-agent systems bring graph theory and system dynam-
ics together. A simple graph G without multiple edges or self-loops is an ordered or
unordered pair G = (V , E) consisting of:

• V = {1, .., n}, a set of n vertices (or nodes) and

• E ⊆ {(i, j) : i, j ∈ V , j 6= i}, a set of edges, also referred to as links or lines.
With (i, j) ∈ E ⇔ (j, i) ∈ E , the graph is undirected, i.e., the edges between nodes do
not have a specific direction and exchanged information is bidirectional. In the context
of this thesis, the vertices represent the agents and the edges represent the inter-agent
connections. The quantities |V| and |E| denote the order and the size of graph.
The adjacency matrix of a graph is a square matrix A = [aij] representing the con-
nectivity of vertices on a graph by containing non-zero elements in aij if and only if
the nodes i and j are connected by an edge. If the graph does not have self-loops, all
diagonal elements aii are equal to 0. In the case of an undirected graph, the adjacency
matrix is symmetric (A = A>). Moreover, the adjacency matrix of a weighted graph

9
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can contain elements of any value from 0 to 1. In an unweighted graph, only 0- and 1-
elements exist in the adjacency matrix. The set of neighbors of each node i is defined
as

Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E}. (2.1)

A =



0 0 1 1 0
0 0 0 1 0
1 0 0 1 0
1 1 1 0 1
0 0 0 1 0


Figure 2.1: Example for an undirected, unweighted simple graph with 5 vertices and

the corresponding adjacency matrix.

In a MAS, each node representing an agent i has an interaction range r > 0. If the
Euclidean distance between the agent i and an agent j with j ∈ V is shorter than r,
they are considered spatial neighbors.
Let p = (p>1 , . . . ,p>n )> ∈ Rmn be the configuration of all n nodes of the graph with all
nodes i ∈ V and their positions pi ∈ Rm. Then, the pair (G,p) is called a structure
that consists of a graph and the configuration of all its nodes.
For an interaction range r > 0, a proximity net G(p) = (V , E(p)) can be defined
with the set of edges between vertices, which are spatial neighbors. Together with the
configuration of positions of all nodes, (G(p),p) is called a proximity structure.
The proximity net is undirected if all interaction ranges r are identical. In this work,
since the agents are able to communicate with each other within a given identical
communication range, all proximity nets are undirected, i.e. the communication is
bidirectional. For more details on graph theory and its application in networked control,
the reader is referred to [89].

2.1.2 Lattice-Type Geometry among Agents

In order to describe the geometry of a flock by a proximity net, let Vα = {1, 2, . . . , n}
be the set of vertices and Eα ⊆ {(i, j) : i, j ∈ Vα, j 6= i} be the set of edges of a graph
Gα free of multiple edges or self-loops. The adjacency matrix with aij 6= 0⇔ (i, j) ∈ Eα
of this graph is symmetric. The set of all vertices Vα represents the members of the
flock. These physical agents will from now on also be referred to as α-agents.
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The distance between two α-agents j and i is defined as the Euclidean norm ‖ · ‖ in
Rm, i.e., dij = ‖pj − pi‖ with (i, j) ∈ Vα. Since the α-agents can only communicate
within a certain specified interaction range, for the communication of two agents, the
distance between them has to be smaller than their interaction range rc1. The agents
that are within the interaction range are called neighboring agents or neighbors. The
neighborhood of an agent i is defined as follows:

N α
i = {j ∈ Vα : ‖pj − pi‖ < rc}. (2.2)

With the set of edges given by

Eα(p) = {(i, j) : i ∈ Vα, j ∈ N α
i }, (2.3)

a proximity net Gα(p) = (Vα, Eα(p)) can be defined.
Flocking agents usually tend to form certain regular spatial structures. In most cases,
each α-agent is desired to keep a predefined distance d, (rc > d > 0) to its neighbors.
The mathematical boundary condition for this can be given as

‖pj − pi‖ = d, ∀j ∈ N α
i (p). (2.4)

If condition (2.4) is fulfilled by all agents, they obtain a geometric pattern referred to in
[100] as the α-lattice (see Fig. 2.2(a)). In reality, flocking agents only approximate the
α-lattice configuration. Therefore, [100] additionally refers to a quasi-α-lattice form.
Agents in a quasi-α-lattice configuration satisfy

−δ ≤ ‖pj − pi‖ − d ≤ δ ∀(i, j) ∈ Eα(p), δ � d, (2.5)

where δ denotes a small tolerance for the distance between the agents. Such a configu-
ration is illustrated in Fig. 2.2(b) as an example.
The accuracy of the lattice-type formation can be analyzed by evaluating the deviation
energy given by

E(p) = 1
(|Eα(p)|+ 1)

n∑
i=1

∑
j∈Nαi

ψ(‖pj − pi‖ − d). (2.6)

where the function ψ is a pairwise potential, e.g., ψ(z) = z2. A more detailed expla-
nation of potential functions follows in Section 2.2 and Section 4.1. The ideal α-lattice
structure is reached at the global minimum of the deviation energy E(p) = 0. However,
even the deviation energy values on the order of 10−3 yield quasi-α-lattice structures.
Hence, for an ideal lattice structure, quite a low energy is required.

1The interaction range rc is also called communication range in later sections.
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(a) α-lattice structure (b) Quasi-α-lattice structure

Figure 2.2: Illustration of lattice-type geometries.

2.1.3 Perception of Obstacles

In this thesis, we design different sensor-based motion planning methods for multiple
agents. Hence, we assume that the α-agents are equipped with sensors to detect the
presence of obstacles. The interaction topology between agents and obstacles are de-
scribed by means of sensor data and thus, the so-called virtual β-agents are created. A
β-agent is the virtual projection of an α-agent onto the obstacle. In this way, agents
can virtually interact with obstacles.
Mathematically, an obstacle k lies within the neighborhood of an α-agent if it is posi-
tioned inside a predefined radius rs > 0 describing the obstacle detection range or the
sensing range. The set of detected obstacles is given by

N β
i = {k ∈ Vβ : ‖p̂i,k − pi‖ < rs}, (2.7)

where Vβ = {1, 2, . . . , ñ} is the set of all obstacles with ñ ∈ N. The virtual position
and velocity of each β-agent is denoted by (p̂i,k, v̂i,k) ∈ Rm×Rm. An α-agent can sense
multiple β-agents at the same time in narrow pathways shown in Fig. 2.3.
With the set of edges described by

Eβ(p) = {(i, k) : i ∈ Vα, k ∈ Nβ
i }, (2.8)

a directed, bipartite proximity net Gβ(p) = (Vβ, Eβ(p)) can be defined.
In order to ensure that the α-agents keep a certain safe distance ds to the obstacles
(rs > ds > 0),

‖p̂i,k − pi‖ = ds ∀k ∈ N β
i (p), (2.9)
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Figure 2.3: Different types of obstacles in the sensing region of an α-agent and their
representations as β-agents. O1 represents an ostacle with a hyperplane
boundary and O2 represents a spherical obstacle.

we will utilize later artificial repulsive forces. Satisfying condition (2.9) enables the
agents to have a safe distance from the obstacles and thus, to avoid colliding with
them.
In order to create a β-agent on an obstacle Ok, we have to determine its virtual position
and velocity by using the sensor data. The virtual state (p̂i,k, v̂i,k) is basically the pro-
jection of the physical state onto the edge of the detected obstacle. The computation of
these in a simulation environment is performed using the following calculation schemes
based on obstacle geometry.

1. Obstacles with a Hyperplane Boundary

p̂i,k = Ppi + (Im −P)yk, v̂i,k = Pvi, (2.10)

where P is the projection matrix defined as

P = Im − aka>k , (2.11)

and ak is the unit normal passing through a point yk on the obstacle. Hereby,
Im ∈ Rm×m denotes an m-dimensional unit matrix.

2. Spherical Obstacles
For a spherical obstacle with radius Rk and center point yk, the virtual state of
β-agents is computed as follows:

p̂i,k = µpi + (1− µ)yk, v̂i,k = µPvi (2.12)
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with the projection matrix P = Im − aka>k . In this case, ak = (pi−yk)
‖pi−yk‖

represents
the unit vector from the center point yk to the position of α-agent. µ = Rk

‖pi−yk‖defines a distance ratio of radius to real distance from the center point and has a
value in the range (0, 1].

Remark 2.1. The equations for spherical obstacles in (2.12) can be simply reformulated
as

p̂i,k = pi + (1− µ)(yk − pi), v̂i,k = µvi − µvi⊥ = µ(vi − vi⊥).

The appropriate portion of the vector from α-agent to the center point (yk−pi) is added
to the agent’s current position pi. This portion corresponds to (1 − µ). In this way,
p̂i,k describes a point on the obstacle’s surface. Additionally, the virtual velocity v̂i,k is
computed by subtracting the component of the agent’s velocity vi in the direction of the
obstacle center point vi⊥ from the agent’s current velocity vi. Then, this is weighted
with the distance ratio µ. M

Remark 2.2. These computation procedures are useful for the simulation. In real sys-
tems, p̂i,k can be perceived by means of sensors and v̂i,k is calculated using sensor
measurements. M

2.1.4 Gradient Systems

The interactions among the agents in a MAS can be modeled using artificial potential
fields, which generate artificial reactive forces (attractive or repulsive). In this thesis,
some terms to control agent interactions are designed as gradient systems.
Mathematically denoted, a function V : Rn → R≥0 defined from the state space of n
dimensions to the real scalar value is called a potential function, which may refer to the
energy of a system. Assuming that V (x) is twice differentiable, then the gradient of
V (x) is defined by

∇V (x) = (∂V/x1, . . . , ∂V/xn). (2.13)

Any point x∗ satisfying ∇V (x∗) = 0 is a critical point. Checking the second derivative,
namely the Hessian matrix H of the energy function, gives hints about this point. A
positive definite H indicates a local maximum and a negative definite H indicates a
local minimum [34].
With the aforementioned definitions, a gradient system is a dynamic system of the form

ẋ = f(x) = −∇V (x), (2.14)

where V (x) is a potential function. In dynamics of a multi-agent system, f(x) can
represent a force acting on an agent at the position x. The following properties regarding
the gradient systems are important.
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• V̇ (x) ≤ 0 and V̇ (x) = 0 if x is an equilibrium point of (2.14).
• At any point, where f(x) 6= 0, the trajectories of (2.14) are orthogonal to the

level sets of V (x). The critical point x∗ with f(x∗) can be an isolated minima
of V (x) when a neighborhood of x∗, which does not contain any other minima,
exists. Following this, x∗ is an asymptotically stable equilibrium point of (2.14)
[136].

For a further introduction to gradient systems, the reader is referred to [29, 136, 145].

2.1.5 σ-Norm

Since the Euclidean norm is not differentiable at z = 0, the so-called σ-norm is intro-
duced, which ensures differentiability of potential functions at any point. The σ-norm
is not an actual norm but the mapping of a vector. Using a fixed parameter ε > 0, the
map Rm → R≥0 is defined as

‖z‖σ = 1
ε

[√
1 + ε‖z‖2 − 1

]
(2.15)

with the gradient of the σ-norm σε(z) = ∇‖z‖σ given by

σε(z) = z√
1 + ε‖z‖2

= z

1 + ε‖z‖σ
. (2.16)
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(a) Plots of the σ-norm and the Euclidean norm.
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Figure 2.4: Plots using ε = 0.1.
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2.1.6 Smoothing of Functions

In order to smooth potential functions and generate weighted adjacency matrices, a
scalar bump function ρh(z) is helpful. In this thesis, we use the following bump function

ρh(z) =


1, z ∈ [0, h)
1
2

[
1 + cos(π (z−h)

(1−h))
]
, z ∈ [h, 1]

0, otherwise
(2.17)

where h ∈ (0, 1) (cf. [100, 105]).
This function is especially beneficial in our case because it only gives nonzero values
in an interval defined by h. Thus, it can be used to generate the forces acting only in
the specified interaction ranges. Also, the influence of the virtual force decreases with
values of z ≥ h, which represents the influence of forces decreasing at a greater distance.
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Figure 2.5: Plot of the bump function (2.17) using h = 0.2. This function will be later
used to calculate the forces between interacting agents.

By using the aforementioned bump function, a smoothed spatial adjacency matrix can
be defined element-wise with rα = ‖rc‖σ and aii = 0 ∀(i,p) by:

aij(p) = ρhα

(
‖pj − pi‖σ

rα

)
, j 6= i. (2.18)

The adjacency matrix then contains zero elements for α-agent pairs, whose respective
distances to each other are greater than rα.
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Analogous to that, the adjacency matrix for the interaction between β- and α-agents
can be defined by

bik(p) = ρhβ

(
‖p̂i,k − pi‖σ

dβ

)
, k 6= i, (2.19)

where dβ < rβ with dβ = ‖ds‖σ, rβ = ‖rs‖σ.

2.2 Modeling of Collective Potential Functions

A flock is supposed to form an α-lattice structure as described in Section 2.1.2. There-
fore, it is appropriate to design a collective potential function by considering the devi-
ation energy. The solutions satisfying the constraints (2.5) should be local minima of
such a function V (p) : Rmn → R≥0 and vice versa. This would guarantee that all the
agents struggle to maintain a certain distance d to their neighbors. In order to have
differentiable potential functions, we reformulate the constraints using σ-norm:

‖pj − pi‖σ = dα, ∀j ∈ N α
i (p) (2.20)

where dα = ‖d‖σ. This induces a smooth collective potential function given by

V (p) = 1
2
∑
i

∑
j 6=i

ψα(‖pj − pi‖σ), (2.21)

where ψα(z) is a smooth pairwise potential function, which generates repulsive or at-
tractive forces between two individual agents dependent of the distance. Multiplying
the term with 1

2 eliminates the double-count of the term ψα(z) due the summation. The
potential ψα(z) should have a finite cut-off at rα = ‖rc‖σ and the global minimum lies
at z = dα (see Fig. 2.6(b)). In order to construct ψα(z) with a finite cut-off, an action
function ϕα(z) is defined as follows:

ϕα(z) = ρhα(z/rα)ϕ(z − dα) (2.22)

with ϕ(z) defined as

ϕ(z) = 1
2 [(a+ b)σ1(z + c) + (a− b)] , (2.23)

where σ1 = z√
1+z2 and ϕ(z) is an uneven sigmoid function (Fig. 2.6(a)) with parameters:

0 < a ≤ b, c = |a−b|√
4ab , which guarantee ϕ(0) = 0. Using the bump function results in

(2.22) yields ϕα(z) = 0 for all z ≥ rα (and also for z < 0). This means that the potential
disappears if the distance between two agents is larger than their communication range.
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The pairwise potential can then be defined by the integral over a corresponding action
function ϕα(z) as follows:

ψα(z) =
∫ z

dα
ϕα(s)ds. (2.24)
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(a) Plot of the action function ϕα(z).
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(b) Smooth pairwise potential with finite cut-off
in the global minimum at dα.

Figure 2.6: Plots of action function and potential function with parameters: d = 7, dα =
14.3, rc = 1.2d, rα = 18.38, ε = 0.1, a = 5, b = 5, hα = 0.9.

2.3 Multi-Agent Systems with Double-Integrator Dynamics

Many flocking, formation and consensus algorithms have been widely developed based
on double-integrator dynamics. The motion of a wide range of vehicle classes, such as
UAVs, holonomic ground vehicles or robots, can be simply modeled by using double-
integrators.
The motion of an agent in a group usually emerges not only based on the virtual
interaction forces through perception of other agents and obstacles, but also based on
a group objective. A double-integrator multi-agent system can be described in the
following form:

ṗi = vi,
v̇i = ui,

where ui ∈ Rm is the control input of agent i (e.g., m = 2, 3). In order to model
and analyze the collective dynamics, a Laplacian matrix L is defined, which is a tool
frequently employed in graph theory. The Laplacian matrix describes the relations
between nodes and edges of a graph. In the context of the present work, it represents
the relations among the agents in the MAS and it is used for the stability analysis. The
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Laplacian matrix of the graph G consists of a diagonal matrix D and the adjacency
matrix A:

L = D−A, ∈ Rn×n (2.25)

where the entries of D are the row sums ∑n
j=1 aij of A. This is also called the degree

matrix of the graph. The following properties of L are of interest for this work:
• L has nonnegative eigenvalues

Re{λi} ≥ 0, i = 1, 2, . . . n

and satisfies the following for an undirected graph:

z>Lz = 1
2
∑

(i,j)∈E
aij(zi − zj)2. z ∈ Rn (2.26)

• The rank of L indicates the number of connected components2 of the graph:
– c ≥ 1 connected components, if rank(L) = n− c
– The graph is connected, if rank(L) = n− 1

The multi-agent system can be described in a more compact way by means of the
Kronecker product, which is defined by

A⊗B = [aijB].

With this, each ij-th block of the Kronecker product of two matrices A ⊗ B equals
aijB, which yields an nm-dimensional Laplace matrix:

L̂︸︷︷︸
nm×nm

= L︸︷︷︸
n×n

⊗ Im︸︷︷︸
m×m

. (2.27)

This allows a reformulation of the first property (2.26):

z>L̂z = 1
2
∑

(i,j)∈E
aij(zi − zj)2, z ∈ Rnm (2.28)

where z> = (z>1 , z>2 , . . . , z>n ) is a single column vector and zi ∈ Rm. The vectors used
here can represent the position or velocity of agents.

2The connected component in the graph denotes a set of vertices that are linked to each other by
edges.
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LaSalle’s Invariance Principle

Since the stability of flocking systems is analyzed by means of the LaSalle’s invariance
principle in later chapters, we recall [68, Theorem 4.4] and explain it in a few words.
We consider an autonomous system

ẋ = f(x), (2.29)

where f : D → Rn with the domain D ⊆ Rn and the equilibrium point xR satisfying
f(xR) = 0. LaSalle’s approach is basically an extension of the Lyapunov’s stability the-
orem. The Lyapunov’s theorem continues with assumption of the equilibrium position
at the origin xR = 0. The system is considered asymptotically stable if a continuously
differentiable function V (x) exists such that V (x) : D → R with D ⊆ Rn, V (x) is posi-
tive definite on D, and V̇ (x) is negative definite on D. The function V (x) is also called
the Lyapunov function. The Lyapunov function fails to satisfy the asymptotic stability
condition if V̇ (x) is only negative semidefinite. In this case, further investigations can
be done based on the LaSalle’s invariance principle which says:
X is a compact, positively invariant set with respect to (2.29) and V : X → R is a
continuously differentiable function, which satisfies the condition V̇ (x) ≤ 0 in X . The
set Y is a set of all points in X for which Y = {x ∈ X |V̇ (x) = 0}. If M is the
largest positive invariant set in Y, then every solution starting in X approaches to M
for t→∞.
Let xR = 0 be an equilibrium point of the system (2.29). Let a function V (x) : D → R

be a continuously differentiable one so that V (x) on D is positive semidefinite and V̇ (x)
on D is negative semidefinite. The equilibrium point xR = 0 is asymptotically stable if
the largest positive invariant subsetM of Y = {x ∈ D|V̇ (x) = 0} equalsM = {0}.
In this work, the energy of flocking systems is described by the Hamiltonian function
H(p,v), which is comparable to V (x) in LaSalle’s invariance principle. In this way,
we can follow Lyapunov’s theorem regarding stability. In addition, the cases with
Ḣ(p,v) = 0 are explained with LaSalle’s invariance principle.

2.4 General Assumptions

Since the main focus of this work is laid on the theoretical development of motion
planners, we have some general assumptions to reduce complexity in development and
design. These are summarized in the following.

• In the considered scenarios, measurements are without delay. For dealing with an
unknown, varying delay of measurements in a networked control system, we refer
to [114].

• Sensor uncertainties are neglected so that the measurements are without noise.
For dealing with noisy measurements, we refer to the distributed Kalman Filter
(DKF) for an improved collective state prediction [102, 74, 103, 104, 143, 78].
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Using DKF, agents fuse multiple measurements and covariance matrices in order
to improve their estimations in a distributed way.

• The systems considered in this work do not have unmodeled dynamics. Study
[76] can help if the agent dynamics are subject to uncertainties.

• Communication between agents occurs without package loss and time delay.





3 Control of a Self Driven
Particle System

The inevitable fate of large groups is to perish because
of lack of unity.
— Napoleon Bonaparte, Aphorisms and Thoughts

Parts of the following chapter have been published in [152].

Napoleon Bonaparte mentions in his book Aphorisms and Thoughts that large groups
tend to dissolve as a result of missing consensus. Similarly, particles in a particle system
require also some conditions or cooperative mechanisms for a collective behavior.
In 1987, Reynolds proposed three simple rules for computer animation of flocks of birds
[123]. The first rule is alignment, which is a behavior that causes velocity match with
agents close by. The second rule is cohesion, which makes agents stay close to each
other. The last rule is separation that avoids collision with nearby flock mates.
A pioneering study on flocking is the Vicsek model, which aimed to show the collec-
tive motion of self-propelled particles [139]. The work of Vicsek et al. inspired many
researchers and it was extended in study [33]. Based on this work, Cucker and Smale
introduced a particle model in [39], the so-called Cucker-Smale (CS) model, describing
the evolution of a flock and analyzed its velocity consensus behavior. Moreover, this
model had also great impact on further studies later [130, 112, 55].
Many control strategies for flocking of multi-agent systems have been studied in recent
years. In [41], the coordinated control of a group of autonomous mobile robots using
sliding-mode controllers was investigated. Another attempt was model predictive flock-
ing control to improve formation of agents [150]. Furthermore, Bongini et al. proposed
sparse control, which is a control strategy to ensure flocking by actuating only a few
agents instead of actuating the entire group at once [21, 22].
An intensively studied strategy to control flocks is the leader-follower approach. In the
leader-based approach, the flock is controlled by a virtual leader [75] or by a physical
leader, which is viewed by all follower agents [133, 134, 79, 117]. Another strategy is
the optimal control technique investigated in the frame of leader-follower approach [65].
The chapter is structured as follows: After a general introduction to alignment models
in Section 3.1, we begin with the Cucker-Smale model in Section 3.2. In Section 3.3,

23
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Figure 3.1: Information exchange between four agents.

the Cucker-Dong (CD) model and its main properties are reviewed in detail. Section
3.4 focuses on the leader-following strategy and its application to the CD model to
navigate a group. In addition to the leader-based navigation, the reactive control law
based on potential functions is applied to avoid circular and polygon-shaped obstacles.
This section is based on [152], a contribution by the author of this thesis. In Section
3.5, simulation results are shown.

3.1 Introduction to Alignment Models

3.1.1 Dynamics and the Consensus State

Before we analyze the Cucker-Smale model and the Cucker-Dong model, we should
define the properties of the so-called alignment models. Imitation is the mechanism
that mainly determines the dynamics of the alignment systems, so that after a certain
time, several states of the agents match. According to [21], the dynamics of a system
with N agents are described by the following differential equations in a general form:

ṗi(t) = vi(t),

v̇i(t) =
N∑
j=1

gij(t)(vj(t)− vi(t)),
(3.1)

for i = 1, . . . , N with N ∈N. The state of each agent is defined by (pi,vi) ∈ Rm×Rm,
which represent the position and velocity of the i-th agent in an m-dimensional space,
respectively. The term (vj(t) − vi(t)) expresses the effort of the agent i to adapt its
velocity to that of the agent j. The exchange of information about the individual
states required for the matching is defined by the function gij(t). If this matching
occurs without external interventions, we call the process self-organization. Hereby, the
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predominant state after the alignment of velocities is called consensus and is of central
importance for the analysis of the system.

(a) Velocities before the
alignment process.

(b) Velocities after
the alignment pro-
cess.

Figure 3.2: The alignment process.

The mean velocity of the agents is given by

v̄(t) = 1
N

N∑
i=1

vi(t). (3.2)

A system converges to the state of consensus if the following holds for each agent
i = 1, . . . , N (cf. [21], p. 8):

lim
t→+∞

‖vi(t)− v̄(t)‖ = 0. (3.3)

The velocity of each agent vi includes the mean velocity v̄ and the undesired deviation
v⊥i (Fig. 3.3). This can be written as:

vi(t) = v̄(t) + v⊥i (t). (3.4)

Figure 3.3: Partition of vi in v̄ and v⊥i .



26 Chapter 3. Control of a Self Driven Particle System

Equation (3.3) is thus identical to the following expression (cf. [21], p. 15).

lim
t→+∞

‖v⊥i ‖ = 0. (3.5)

In this case, the velocity of each agent does not deviate from the mean velocity and
thus, the alignment process is completed. The evolution of the mean velocity can be
formulated as

˙̄v(t) = 1
N

N∑
i=1

v̇i(t)

= 1
N

N∑
i=1

N∑
j=1

gij(t)(vj(t)− vi(t))

= 1
N

 N∑
i=1

N∑
j=1

gij(t)vj(t)−
N∑
i=1

N∑
j=1

gij(t)vi(t)


= 1
N

 N∑
i=1

N∑
j=1

gij(t)vj(t)−
N∑
i=1

N∑
j=1

gji(t)vj(t)


= 1
N

N∑
j=1

(
N∑
i=1

gij(t)−
N∑
i=1

gji(t)
)

vj(t).

(3.6)

Since we assume that the information exchange is undirected, the ratio of information
transfer from agent i to agent j is identical to that from agent j to agent i. This implies
that

gij(t) = gji(t), (3.7)

holds for t ≥ 0. Using (3.7) in (3.6) yields

˙̄v(t) = 0 (3.8)

for t ≥ 0. Thus, the average velocity v̄ has a constant value and it is independent of
time. We can write the consensus state v∞ = lim

t→+∞
v̄(t) as follows:

v∞ = 1
N

N∑
1=1

vi(0). (3.9)

This indicates that the state of consensus depends only on the initial values of the
system pi(t = 0) and vi(t = 0) (see [21], p. 9).
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3.1.2 Dispersion and Dissent

It is guaranteed that the system can converge to the consensus state for all arbitrary
initial values pi(0) and vi(0). Hence, a detailed analysis of the system is required to
evaluate its convergence behavior.
For a global analysis, i.e., in order to evaluate the system at the macro level, it is not
appropriate to consider the state variables pi and vi of each agent separately. For this
purpose, the terms dispersion and dissent are introduced. These terms define the state
of the system in a global fashion, but they do not allow to make any statements about
the individual states of the agents at the micro level.
The dispersion Γ(t) is defined as

Γ(t) = 1
2N2

N∑
i=1

N∑
j=1
‖pi(t)− pj(t)‖2. (3.10)

This is the mean square distance between the agents. Thus, the dispersion can be seen
as a measure for the distribution of the agents in space (Fig. 3.4).

(a) High dispersion (b) Low dispersion

Figure 3.4: Illustration of the dispersion.

The dissent Λ(t) is given as

Λ(t) = 1
2N2

N∑
i=1

N∑
j=1
‖vi(t)− vj(t)‖2, (3.11)

and it describes the mean square velocity difference between the agents. The dissent is
a measure of the deviation of the system from the consensus state.
By utilizing

N∑
j=1
‖vi(t)− vj(t)‖2 = N‖vi(t)− v̄(t)‖2 (3.12)

and (3.4), we can rewrite (3.11) as

Λ(t) = 1
N

N∑
i=1
‖v⊥i (t)‖2. (3.13)
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(a) High dissent (b) Low dissent (c) The consensus state

Figure 3.5: Illustration of the dissent.

This is a more convenient definition of the dissent that will be used from now on.
Furthermore, with (3.5), another definition of convergence to consensus can be given
as

lim
t→+∞

Λ(t) = 0. (3.14)

3.2 The Cucker-Smale Model

The Cucker-Smale (CS) model introduced in [39] is an example for the alignment model.
It describes the evolution of a flock and its dynamics are given by the following differ-
ential equations (cf. [39], p. 853):

ṗi(t) = vi(t),

v̇i(t) = 1
n(r)

N∑
j=1

a(‖pi(t)− pj(t)‖)(vj(t)− vi(t)).
(3.15)

The CS model has an identical form to (3.1). The interaction between the agents is
described by the function a : R0,+ → [0, H], which is defined as

a(r) = H

(1 + r2)β . (3.16)

This function is shown in Fig. 3.6 and depends on the following parameters:
• r denotes the distance between two agents.
• H defines the strength of agent i to adapt its velocity to that of agent j.
• β determines the rate of decrease in the information exchange between two agents

due to their distance from each other.
The normalizing term 1

n(r) in (3.15) describes the limited attention span of an agent
or its limited ability to process information. If an agent i has only a few interaction
partners in its environment, it interacts more strongly with these. This has a positive
impact on the rate of its velocity match. On the other hand, if there are many agents
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Figure 3.6: Interaction function a(r) with H = 1.

in the environment of agent i, it has to allocate its attention more, which reduces the
ability to match its velocity. In [21], a normalizing term is proposed as

n(t) = 1∑N
j=1 Φ(‖pi(t)− pj(t)‖)

(3.17)

with

Φ(r) = 1
(1 + r2)β . (3.18)

Thereby, the information that agent i exchanges with agent j at time t is divided by
the total information acquired by agent i at time t. However, this results in a directed
interaction:

a(‖pi(t)− pj(t)‖)∑N
k=1 Φ(‖pi(t)− pk(t)‖)

6= a(‖pj(t)− pi(t)‖)∑N
k=1 Φ(‖pj(t)− pk(t)‖)

. (3.19)

This means that the information flow from agent i to agent j is not identical to that
from agent j to agent i. However, this contradicts the assumption (3.7), which says
gij(t) = gji(t). Therefore, the term 1/N is simply used for the normalization, which is
an approximation of 1/Φ(r) and ensures an undirected information exchange.
In this way, the dynamics of the Cucker-Smale model can be rewritten as (cf. [38])

ṗi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a(‖pi(t)− pj(t)‖)(vj(t)− vi(t)).
(3.20)
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3.2.1 Evolution of the Consensus through Self-Organization

The behavior of convergence to the consensus state, which denotes the decrease of
dissent, is of particular interest in this section. Thus, we consider the evolution of
consensus in the CS model. Since the system is not a closed-loop using output feedback,
the consensus error (vi − v̄) cannot be reduced automatically. At first glance, the
differential equations in (3.20) do not have any terms that describe repelling forces,
which may yield an increase in dissent. Hereby, the only alignment term is a(‖pi(t)−
pj(t)‖)(vj(t)−vi(t)). One can propose that even without a controller, the dissent may
decrease and thus, the system converges to the consensus state. In the following, we
analyze this proposition. The time derivative of the dissent is given by

d
dtΛ(t) = d

dt
1
N

N∑
i=1
‖v⊥i (t)‖2 = 2

N

N∑
i=1

v̇⊥i (t) · v⊥i (t). (3.21)

As formulated in (3.4), the velocity vi of an agent is composed of the average velocity
v̄ and the undesired velocity deviation (error) v⊥i . The error can be defined as

v⊥i = vi − v̄ (3.22)

and its time derivative is as follows:

v̇⊥i = v̇i − ˙̄v. (3.23)

Inserting (3.23) into (3.21) yields

d
dtΛ(t) = 2

N

N∑
i=1

v̇i(t) · v⊥i (t)− 2
N

N∑
i=1

˙̄v(t) · v⊥i (t). (3.24)

Using the statement ˙̄v(t) = 0 from (3.8) results in

d
dtΛ(t) = 2

N

N∑
i=1

v̇i(t) · v⊥i (t). (3.25)

By inserting v̇i(t) from 3.20 into (3.25), we finally obtain the following:

d
dtΛ(t) = 2

N2

N∑
i=1

N∑
j=1

a(‖pi(t)− pj(t)‖)(vj(t)− vi(t)) · v⊥i (t) (3.26)

for the time derivative of the dissent. For (3.16), it holds a(‖pi(t) − pj(t)|) ≤ H with
H ≥ 0. Thus, we can define an upper boundary as

d
dtΛ(t) ≤ 2

N2H
N∑
i=1

N∑
j=1

(vj(t)− vi(t)) · v⊥i . (3.27)
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The following inequality always holds,

N∑
i=1

N∑
j=1

(vj(t)− vi(t)) · v⊥i (t) ≤ 0 (3.28)

and it yields

d
dtΛ(t) ≤ 0. (3.29)

This shows that the dissent decreases without an external intervention.

3.2.2 Conditions for the Guaranteed Convergence

The expression (3.29) implies that the system converges to the consensus state. How-
ever, there is no guarantee for the absolute convergence Λ(t) = 0. There might be a
certain time instant t∗, at which d

dtΛ(t∗) = 0 holds. This would mean that the dis-
sent decreases no longer, but rather converges to a constant value Λ(t∗) > 0. As (3.9)
denotes, the consensus state depends only on the initial values. Therefore, we briefly
analyze the initial conditions required for the absolute convergence to the consensus
state.
As mentioned at the beginning of the chapter, it is inconvenient to consider the states
of the agents separately. Therefore, the terms dispersion and dissent were introduced.
In the previous section, we have formulated the time derivative of dissent (3.26) and
noted that it decreases over time. The right-hand side of the equation is dependent of
pi(t) and vi(t). However, we seek another formulation for the derivative of dissent in
relation to dispersion. In [21], the following inequality is formulated.

2
N2

N∑
i=1

N∑
j=1

a(‖pi(t)− pj(t)‖)(vj(t)− vi(t)) · v⊥i (t) ≤ −2a
(√

2NΓ(t)
)

Λ(t). (3.30)

With this, the following holds

d
dtΛ(t) ≤ −2a

(√
2NΓ(t)

)
Λ(t). (3.31)

Assume that there exists T > 0, for which Λ(t) > 0 and Λ(0) > 0. We integrate
the inequality (3.31) using the Gronwall-Bellman lemma [106, Theorem 1.2.2]1 and we
obtain

Λ(t) ≤ Λ(0) exp
(
−2

∫ t

0
a
(√

2NΓ(s)
)
ds
)
, t ∈ [0, T ]. (3.32)

1The lemma allows to derive explicit boundaries from the implicit information of a certain integral
inequality.
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Obviously, the dissent exponentially decreases since the function a(r) is strictly positive.
The proposition in [31] defines a relation between Λ(0) and Γ(0) for the convergence of
Λ(t) to 0 for t→∞.
Proposition 3.1 (Conditional consensus emergence). (cf. [31, Proposition 1])
Let the state of each agent (pi,vi) be such that Γ(0) and Λ(0) satisfy∫ ∞

√
Γ(0)

a
(√

2Nr
)
dr ≥

√
Λ(0). (3.33)

Then, the solution of (3.20) with initial state (pi(0),vi(0)) tends to consensus.
It should be noted that this is a sufficient but not necessary condition. This means that
consensus will certainly emerge in the system if condition (3.33) is satisfied. However,
it is highly strict because there are cases in which the system converges to consensus,
despite

√
Λ(0) >

∫∞√
Γ(0) a

(√
2Nr

)
dr.

Fig. 3.7 shows simulations with different initial values using the parameters N = 8,
H = 1, β = 0.8 verify the presented condition for the consensus emergence. It can be
seen that consensus emergence depends on the initial states.
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Figure 3.7: Consensus emergence of the CS model with different initial states.
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3.3 The Cucker-Dong Model

This section introduces a particle model, on which the next section is strongly based,
and its analysis. In the previous section, we have investigated an alignment model, in
which certain states of the agents match after the alignment process is completed. In
other words, we extensively considered the agents’ velocities in the CS model, which
determine the consensus criterion. Hereby, the local confinement and collision freedom
of the agents are in the foreground. Local confinement means the restriction of distances
of the agents from each other. This property will also be referred to cohesion in this
work.
Since the CS model does not guarantee inter-agent collision avoidance, it has been
updated by Cucker and Dong [37] with a repulsive term. The CD model also describes
the dynamics of N ∈N agents [37, 36].
The dynamics of the CD model are given by the following system of differential equa-
tions (cf. [37], p. 1011):

ṗi(t) = vi(t),

v̇i(t) =
N∑
j=1

a
(
‖pj(t)− pi(t)‖2

)
(pj(t)− pi(t)) +

N∑
j=1

f
(
‖pi(t)− pj(t)‖2

)
(pi(t)− pj(t)) ,

(3.34)

for i = 1, . . . , N without damping term. The dynamics consist of the attraction and
repulsion terms. The attraction force is defined as

a(r) = H

(1 + r)β , H > 0, β ≥ 0, (3.35)

where H and β are constant parameters and the maximum of the function a(r) is at
a(0). For the collision avoidance, a repulsion term of the form

f(r) = r−s, s > 1, (3.36)

is introduced (see Fig. 3.8). The position differences between agents determine the
direction of distance-dependent forces. In addition, the interaction between two agents
becomes weaker with increasing distance. The fundamental difference between the CS
model and the CD model is that the presence of forces in the CD model depends on
the distance between the agents. However, in the CS model, the distance between the
agents is only relevant for the interaction strength. Furthermore, the agents in the CD
system exchange only information about their positions, but not about their velocities.
Therefore, it is reasonable to suppose that the CD system behaves more chaotically
than the CS system due to the limited information items exchanged among the agents.
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Figure 3.8: Functions of attraction and repulsion terms (H = 1, β = 0.5, s = 0.5).

In the CS model, the velocities of the agents are identical after a successful alignment
process. Aligned velocities result in a constant distance between the agents. However,
the demand for cohesive behavior in the CD system allows variable distances between
the agents.
In order to analyze the stability of the CD system, it is beneficial, as in the CS model,
to define a property that describes the system on its macro level. For this purpose,
we consider the total energy E(t) of the system. This consists of the kinetic energy
Ekin(t), the potential energy Epot,a(t) due to the attraction forces, and the potential
energy Epot,f (t) due to the repulsion forces. Since the integral of the force over the
distance range gives the energy, it follows

Epot,a(t) = 1
2

N∑
i=1

N∑
j=1

∫ ‖pi(t)−pj(t)‖2

0
a(r)dr (3.37)

and

Epot,f (t) = 1
2

N∑
i=1

N∑
j=1

∫ ∞
‖pi(t)−pj(t)‖2

f(r)dr. (3.38)

Furthermore, the kinetic energy of the system can be given by

Ekin(t) =
N∑
i=1
‖vi(t)‖2. (3.39)

Thus, the total energy of the system (see [37], p. 1011) is defined as follows:

E(t) =
N∑
i=1
‖vi(t)‖2

︸ ︷︷ ︸
Ekin

+ 1
2

N∑
i,j=1

∫ ‖pi(t)−pj(t)‖2

0
a(r)dr

︸ ︷︷ ︸
Epot,a

+ 1
2

N∑
i,j=1

∫ ∞
‖pi(t)−pj(t)‖2

f(r)dr
︸ ︷︷ ︸

Epot,f

. (3.40)
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An important property of (3.34) is that the total energy of the system is constant. We
can prove this by considering the derivative of the total energy as

d
dtE(t) = d

dt

N∑
i=1
‖vi(t)‖2+ d

dt
1
2

N∑
i,j=1

∫ ‖pi−pj‖2

0
a(r)dr+ d

dt
1
2

N∑
i,j=1

∫ ∞
‖pi−pj‖2

f(r)dr. (3.41)

For clarity, the terms are derived separately with r2
ij = ‖pi − pj‖2.

d
dt

N∑
i=1
‖vi(t)‖2 =2

N∑
i=1

v̇i(t) · vi(t)

=2
N∑

i,j=1
a(rij(t)2)(pj(t)− pi(t)) · vi(t)

+ 2
N∑

i,j=1
f(rij(t)2)(pi(t)− pj(t)) · vi(t)

=−
N∑

i,j=1
a(rij(t)2)(pj(t)− pi(t)) · (vi(t)− vj(t))︸ ︷︷ ︸

A

+
N∑

i,j=1
f(rij(t)2)(pi(t)− pj(t)) · (vi(t)− vj(t))︸ ︷︷ ︸

B

.

(3.42)

d
dtEpot,a (r(t)) = d

drEpot,a(r) ·
d
dtr(t)

= 1
2

N∑
i,j=1

a(r2
ij) · 2 · (pj(t)− pi(t)) · (vi(t)− vj(t)

=
N∑

i,j=1
a(r2

ij)(pj(t)− pi(t)) · (vi(t)− vj(t))︸ ︷︷ ︸
C

.

(3.43)

d
dtEpot,f (r(t)) = d

drEpot,f (r) ·
d
dtr(t)

= 1
2

N∑
i,j=1

f(r2
ij) · 2 · (pj(t)− pi(t)) · (vi(t)− vj(t))

= −
N∑

i,j=1
f(r2

ij)(pi(t)− pj(t) · (vi(t)− vj(t))︸ ︷︷ ︸
D

.

(3.44)
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If the terms are added together, term A is canceled by term C and term B is canceled
by term D. Therefore, the total energy of the system remains constant for t ≥ 0 and
d
dtE(t) = 0. Thus, E(t) = E(0) holds. Since the stability of the system is considered
as a function of energy, it depends only on the initial state of the system.
Fig. 3.9 and Fig. 3.10 show the trajectory of the agents and the corresponding energy
function, respectively. The parameters N = 8, H = 1, β = 0.8, s = 2 are used for the
simulation. The initial values were generated with random values; pi(0) ∈ [−1, 1] and
vi(0) ∈ [−1, 1].
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Figure 3.9: Trajectories of the agents.
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Figure 3.10: Evolution of the total energy, kinetic energy and potential energy.

Obviously, the kinetic energy Ekin and the potential energy Epot are always comple-
mentary so that the total energy Etotal remains constant.
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3.3.1 Cohesion

The CD model mainly deals with cohesion in a collision avoiding manner. The basic
requirement for cohesion is that ‖pi(t)−pj(t)‖ <∞ for all pairs (i, j) ∈ {1, . . . , N} and
for 0 ≤ t < T . Under specific conditions, cohesion can be guaranteed. The following
theorem gives these conditions based on the initial energy of the system (3.34).
Theorem 3.1. (cf. [23, Theorem 1])
For any system with N agents defined by (3.34) satisfying ‖pi(t) − pj(t)‖2 > 0 for all
i 6= j and initial energy

E(0) < 1
2

∫ ∞
0

f(r)dr,

there exists a unique solution2 (p(t),v(t)) of the system (3.34) with initial state (p(0),v(0)).
In addition, assume that one of the two following hypotheses holds.

1) β ≤ 1
2) β > 1 and E(0) < (N − 1)

∫∞
0 a(r)dr

Then, the group is cohesive and collision-avoiding.
Remark 3.1. For more details about Theorem 3.1, the reader is referred to [37, Theorem
2.1]. M

In order to determine under which conditions the system has cohesive behavior, we
consider the total energy E(t). With the definition of a(r) in (3.35), f(r) in (3.36) and
with the property E(t) = E(0), the following

E(t) = E(0) = 1
2

N∑
i,j=1

∫ ‖pi(t)−pj(t)‖2

0

H

(1 + r)β dr + 1
2

N∑
i,j=1

∫ ∞
‖pi(t)−pj(t)‖2

r−sdr +
N∑
i=1
‖vi(t)‖2

≥ 1
2

N∑
i,j=1

∫ ‖pi(t)−pj(t)‖2

0

H

(1 + r)β dr

(3.45)

holds (see [37], p. 1015). In order to prove these conditions, we assume that there
exists a positive constant B0 such that, for all t ≥ 0, ‖pi(t) − pj(t)‖ < B0 with i 6= j.
In addition, there is an agent q, which has the same distance ‖pq(t)−pi(t)‖ = B0 from
all other agents i ∈ {1, . . . , N} \ {q}. With (3.45), the total energy can be given as

E(0) ≥
N∑

i=1,i 6=q

∫ ‖pq(t)−pi(t)‖2

0

H

(1 + r)β dr

≥ (N − 1)
∫ B2

0

0

H

(1 + r)β dr.

(3.46)

2p = (p>
1 , . . . ,p>

N )> ∈ RmN , v = (v>
1 , . . . ,v>

N )> ∈ RmN
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Figure 3.11: Evolution of the maximum distance between two agents for β < 1.

In order to compute the latter integral, the following cases dependent on β have to be
differentiated

E(0) ≥


H(N−1)

(1−β)

(
(1 +B2

0)1−β − 1
)

for β 6= 1

H(N − 1)log(1 +B2
0) for β = 1.

(3.47)

It follows from (3.47) that the upper bound B0 for the possible distance between two
agents ‖pi(t)− pj(t)‖ can be defined as

B0 ≤


((

(1−β)
H(N−1)E(0) + 1

) 1
1−β − 1

) 1
2

for β 6= 1,
(
exp

(
1

H(N−1)E(0)
)
− 1

) 1
2 for β = 1.

(3.48)

A further case differentiation is made to corroborate the conditions in Theorem 3.1.

1) β ≤ 1:

Assume that ‖pi(t) − pj(t)‖ is restricted. It should hold that B0 < ∞. Looking
at the right side of the inequalities in (3.48), obviously, B0 = ∞ is only possible
if E(0) = ∞. In order to guarantee cohesion for all pairs (i, j) ∈ {1, . . . , N}
for 0 ≤ t < T , the energy of the system has to satisfy E(0) < ∞ because∫∞

0 f(r)dr <∞.
For example, using the parameters N = 8, H = 1, β = 0.8, s = 2 in (3.48) results
in an upper boundary of B0 = 49.9 for the distance between two agents. The
simulation verifies that this value is never exceeded (Fig. 3.11). The trajectories
of the agents are the same as in Fig. 3.9 due to the identical parameters and initial
states.

2) β > 1:
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In order to ensure cohesion for the case β > 1, we consider the inequality (3.48)
and rewrite it as

B2
0 ≤

(
(1− β)
H(N − 1)E(0) + 1

) 1
2(1−β)

− 1 (3.49)

≤
(

1− β − 1
H(N − 1)E(0)

)− 1
2(β−1)

− 1. (3.50)

Since the exponent of the first term in (3.50) is always negative, the base is not
allowed to be zero. Otherwise, it would hold B2

0 = ∞. Thus, the following
inequality

1− β − 1
H(N − 1)E(0) > 0

has to be true. This results in the following condition for cohesion:

E(0) < H(N − 1)
β − 1 =: ϑ, (3.51)

where ϑ is called the critical energy threshold (cf. [37, p. 1015], [23, p. 197]).
The simulation with the parameters N = 8, H = 1, β = 1.2, s = 2 demonstrates
that the maximum distance between two agents continuously increases and is
therefore unbounded (Fig. 3.12). The noncohesive behavior is also remarkable in
the trajectories of agents (Fig. 3.13).
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Figure 3.12: Evolution of the maximum distance between two agents for β > 1 and
E(0) > ϑ.
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Figure 3.13: Trajectories of the agents for β > 1 and E(0) > ϑ.

3.3.2 Collision Avoidance

Another property of the CD model is collision avoidance. A system defined by (3.34)
is collision-free if ‖pi(t)− pj(t)‖ > 0 for all pairs (i, j) ∈ {1, . . . , N} for 0 ≤ t < T . In
order to investigate a condition for this, we first assume that two agents z and q collide
and it holds ‖pz(t) − pq(t)‖2 = 0. All other agents (i, j) ∈ {1, . . . , N} \ {z, q} fulfill
‖pi(t)− pj(t)‖2 > 0. The initial energy of the system in this case can be given by

E(0) = 1
2

N∑
i,j=1

∫ ‖pi(t)−pj(t)‖2

0
a(r)dr + 1

2

N∑
i,j=1

∫ ∞
‖pi(t)−pj(t)‖2

f(r)dr +
N∑
i=1
‖vi(t)‖2

≥1
2

∫ ‖pz(t)−pq(t)‖2

0
a(r)dr + 1

2

∫ ‖pq(t)−pz(t)‖2

0
a(r)dr

+ 1
2

∫ ∞
‖pz(t)−pq(t)‖2

f(r)dr + 1
2

∫ ∞
‖pq(t)−pz(t)‖2

f(r)dr

≥
∫ ∞

0
f(r)dr

=∞.

(3.52)

This proves that a collision between two agents can only occur if the initial energy of
the system is infinite, which contradicts the assumption of energy boundedness.
In order to determine the possible minimum distance between two agents ‖pz(t) −
pq(t)‖ = d0, we formulate the following inequality:

E(0) ≤ 1
2

∫ ∞
‖pz−pq‖2

f(r)dr + 1
2

∫ ∞
‖pq−pz‖2

f(r)dr

≤
∫ ∞
d2

0

f(r)dr.
(3.53)
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Solving the integral yields

d0 ≥ ((s− 1)E(0))
1

2(1−s) . (3.54)

For the parameters N = 8, H = 1, β = 0.8 or β = 1.2, s = 2, the minimum possible
distance between two agents is d0 ≈ 0.0894, which is independent of the value of the
parameter β (Fig. 3.14).
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Figure 3.14: Minimum distance between two agents for β = 0.8 and β = 1.2.

3.4 Leader-Following Cucker-Dong Model

In this section, we introduce a virtual leader to the CD model to enable the agents
trajectory tracking skills. The virtual leader is not a physical entity, but the state
expression of an imaginary object moving along a desired trajectory viewed by all
agents. The state of the virtual leader is (pr,vr) ∈ Rm × Rm and its dynamics are
modeled as follows:

ṗr(t) = vr(t),
v̇r(t) = fr(pr,vr),

(3.55)

with (pr(0),vr(0)) = (p0,v0). For the rendezvous problem, we aim to utilize the cohe-
sion and collision avoidance properties of the CD model. As mentioned in the previous
section, the CD model can guarantee cohesion only under certain initial conditions. If
these are not satisfied, a feedback controller is required to ensure cohesion. However, if
a virtual leader exists, cohesion is naturally ensured for 0 ≤ t < T because all agents are
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attracted from a reference point. In the extended CD system, each agent is actuated
and has the following dynamics:

ṗi = vi,

v̇i =
N∑
j=1

a
(
‖pj(t)− pi(t)‖2

)
(pj(t)− pi(t)) +

N∑
j=1

f
(
‖pi(t)− pj(t)‖2

)
(pi(t)− pj(t))

− bvi + uβi + uγi ,
(3.56)

where bvi is a damping term, uβi and uγi are control inputs for obstacle avoidance and
tracking term, respectively.

3.4.1 Collision Avoidance in the Leader-Following CD Model

One distinctive property of the CD model is the guaranteed inter-agent collision avoid-
ance, which is mentioned in Section 3.3. In order to examine if collision avoidance
is guaranteed also in the existence of the aforementioned new control inputs, we as-
sume that two agents z and q collide and ‖pz(t) − pq(t)‖2 = 0. For all other pairs
(i, j) ∈ {1, . . . , N} \ {z, q}, ‖pi(t) − pj(t)‖2 > 0 holds. Note that the control inputs
are arbitrary and bounded. The total energy of the system can be explicitly described
similarly to (3.40) as follows:

E(t) = 1
2

N∑
i,j=1

∫ ‖pi(t)−pj(t)‖2

0
a(r)dr

+ 1
2

N∑
i,j=1

∫ ∞
‖pi(t)−pj(t)‖2

f(r)dr +
N∑
i=1
‖vi(t)‖2

+ Eβ(t) + Eγ(t)

≥ 1
2

∫ ‖pz(t)−pq(t)‖2

0
a(r)dr + 1

2

∫ ‖pq(t)−pz(t)‖2

0
a(r)dr

+ 1
2

∫ ∞
‖pz(t)−pq(t)‖2

f(r)dr + 1
2

∫ ∞
‖pq(t)−pz(t)‖2

f(r)dr

+ Ezq
β (t) + Ezq

γ (t)

≥
∫ ∞

0
f(r)dr︸ ︷︷ ︸
∞

+Ezq
β (t) + Ezq

γ (t) =∞,

(3.57)

where Eβ and Eγ are energies explicitly through uβi and uγi , respectively. E
zq
β and Ezq

γ

are partial energies through the agent pair (z, q).
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Based on (3.57), the collision of two agents (z, q) can only occur if the energy of the
system is infinite. Therefore, E(0) < ∞ is the only requirement for collision-free nav-
igation. Since the control inputs uβi and uγi are assumed to be bounded, E(0) < ∞
is satisfied in any case. As it is shown, additional control inputs do not influence the
inter-agent collision avoidance property of the CD model.

3.4.2 Reactive Control for Obstacle Avoidance

For the reactive control, we assume that every agent can measure the relative position
between the closest point on an obstacle and itself. In this section, only two kinds of
obstacles are considered, circular and convex polygon-shaped obstacles (see Fig. 3.15).
The main idea is based on [100] explained in Section 2.1.3 and the high-level workflow
is briefly itemized in the following:

1. Determining if an obstacle is within the sensing range rs of an agent.
2. Creating a virtual β-agent that is a projection of the agent onto the edge of the

obstacle.
3. Adding a control term uβi such that the agent does not collide with the β-agent.

In the simulation environment, β-agents on polygon edges are calculated using (2.10)
and β-agents on circular obstacles are created by means of (2.12). If a vertex point is
detected, it is treated as a circular obstacle but with a small imaginary radius (e.g.,
Rk ≤ 0.01). In a later chapter in this thesis, we will revisit the vertex point detection
(endpoint detection) for practical implementation.
For the collision avoidance with obstacles, the control term uβi is defined similarly to
the repulsive component of the CD dynamics and it is given by

uβi =
N∑
j=1

fβ
(
‖pi(t)− p̂i,k(t)‖2

)
(pi(t)− p̂i,k(t)) , (3.58)

with

fβ(r) = (r − δ)−sβ , sβ > 1.

The repulsive force generated by fβ(r) helps agents to keep a certain distance δ to the
detected obstacle.

3.4.3 Navigational Feedback

In order to define a collective group objective for the flock, we introduce a virtual leader
called the γ-agent. The γ-agent is not considered by the agents to be a physical agent.



44 Chapter 3. Control of a Self Driven Particle System

A

B

C

D

rs

δ
α-agent β-agent

ykOk
δ

Figure 3.15: Illustration of a circular and a polygon-shaped obstacle with the virtual
β-agent.

However, it is possible to include a physical γ-agent into the flock. The dynamics of
the virtual agent are given by

ṗr(t) = vr(t),
v̇r(t) = fr(pr,vr),

where (pr,vr) ∈ Rm × Rm represent the position and velocity of the virtual target,
respectively. Moreover, the virtual leader can also be a static target point (vr = 0).
The control input for tracking is defined as follows

uγi = −c1(pi(t)− pr(t))− c2(vi(t)− vr(t)), c1, c2 > 0. (3.59)

This term guarantees cohesive behavior by attracting the agents to a dynamic ren-
dezvous point. The constant parameters c1 and c2 in (3.59) are weighting factors to
influence the strength of the tracking feedback.

3.5 Numerical Examples

In this section, we present results of numerical tests with the proposed control scheme.
In the first simulation, the virtual leader moves along a circular trajectory with a
constant speed of ‖vr‖ = 1. We consider a system of N = 20 agents in the two-
dimensional plane m = 2. The agents are randomly placed in the box [−2, 2]× [−2, 2]
and initial velocities vi(0) ∈ R2 are randomly selected from [−1, 1]× [−1, 1], as shown
in Fig. 3.16(a). The initial position of the virtual leader is the center point of the
flock. The parameters for the simulation are: H = 1, s = 2, β = 0.5, b = 0.05, c1 =
c2 = 1, sβ = 1, δ = 1, rs = 1.5. Fig. 3.16(b) shows that the group tracks the virtual
leader. In addition, two closely located circular obstacles can be avoided by preserving
inter-agent collision avoidance (Fig. 3.16(c)-Fig. 3.16(d)).
In Fig. 3.16(e), it can be seen that almost all agents maintain a specific minimum
distance to the polygon-shaped obstacle. However, one agent is closer to the obstacle.
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The reason might be that the force through navigation and the interaction forces among
other agents are higher than the repulsion force of the β-agent at that time instant.
Fig. 3.16(e) demonstrates that the group can avoid the triangle obstacle by preserving
their cohesion. Moreover, leaving the obstacle behind, the group quickly returns to the
virtual leader (Fig. 3.16(f)).
In the second simulation, the initial configuration of agents is the same as in the first
simulation and the virtual leader moves along a sinusoidal trajectory with a constant
speed of ‖vr‖ = 1. Fig. 3.17(a) shows again that the group can avoid the triangle
obstacle by preserving their cohesion. Due to the all-to-all connection of agents in the
CD system, the group has a high tendency to cohesion (Fig. 3.17(b)).
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Figure 3.16: CD flocking of N = 20 agents - Tracking a circular trajectory.
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Figure 3.17: CD flocking of N = 20 agents - Tracking a sinusoidal trajectory.

3.6 Chapter Highlights

In this chapter, we extended the Cucker-Dong model for a particle system to build
a target-tracking and an obstacle-avoiding flock. This extension includes a common
group objective and an obstacle avoidance algorithm to work with convex obstacles.
In order to do this, we introduced two control inputs. The leader itself is called the
γ-agent and moves along a predefined trajectory. The obstacle-avoiding reactive control
term is designed similarly to the repulsive term in CD dynamics. This repelling force
is activated once an obstacle is detected by an agent.
A property of the CD flock is that it usually does not allow fragmentation due to a
high tendency to cohesion. Moreover, with increasing distance between two agents, the
interaction forces converge to zero. Thus, if an agent has a long distance to the rest of
the group due to fragmentation during obstacle avoidance, it might be hard to catch
up with the rest of the group because the interaction strength between the agent and
the rest of the group decreases.
Since we considered only convex obstacles, collisions can still occur under some obstacle
configurations e.g., if most agents perpendicularly move to the edge of a polygon-shaped
obstacle, which yields balance among virtual forces. Such complex cases are investigated
in later chapters. According to our experience, a group with more agents is beneficial
because of high cohesive energy.
The supervised student thesis [165] has contributed to the development of this chapter’s
results.





4 Potential Function-Based
Control Scheme

Parts of the following chapter have been published in [155].

Cooperative, multiple agents are employed for many different tasks to increase the
efficiency and success of a mission. The navigation of autonomous, mobile multi-robot
systems in changing environments is a challenging problem that has been investigated
in recent years. However, many of the existing collective path planning approaches do
not guarantee a reliable escape in environments with complex, non-convex obstacles
without any prior knowledge. Local motion planning approaches are usually suitable
for these kinds of problems. The robots can plan their actions autonomously using
sensor measurements and react to their environment. The proposed approach in this
chapter falls into this category.
The outline of this chapter is structured as follows: In Section 4.1, the potential fields
are briefly introduced. In Section 4.2, we dive into the details of the modeling of
flocking behavior using artificial potential fields. This section includes the modeling of
interactions among agents and navigation. In addition, the section provides analysis of
collective dynamics, which will be helpful in the next chapter. Section 4.3 introduces
the obstacle avoidance mechanism, which is also employed in Chapter 5 and Chapter 6.
Section 4.4 describes the issue of local minima. In Section 4.5, we propose a heuristic
algorithm to preview local minima and escape from them. This section is based on [155],
a contribution by the author of this thesis. Section 4.6 illustrates the effectiveness of
the presented approach through simulation scenarios.

4.1 Potential Fields

Potential field methods have been widely applied for the cooperative control of multiple
robots, especially for collision avoidance due to its simplicity. Interactions between the
agents and reactions of agents to obstacles can be modeled by means of the artificial
potential field method. This approach defines the potential energy as a function of
distance U : Rn → R≤0 to obstacles, targets or to another agent. The agents receive
artificial attractive-repulsive forces by following the negative gradient of such potential
functions (−∇U), so that the energy is minimized.

49
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In local path planning approaches with limited perception capacity of agents, the arti-
ficial forces are activated only if an obstacle or another agent is within the the sensing
range. Two agents would attract each other until they have the minimum distance d.
However, if the distance falls below d, a virtual repulsion force should ensure that the
agents do not collide with each other and instead return to their α-lattice configuration.
In the case of obstacle detection, the agent should only receive artificial repulsive forces
from the detected object.
Such requirements can be fulfilled by means of potential field functions. The best known
example for potential fields is the Earth’s gravitational field, which has the gravitational
potential as its potential function. The artificial potential field approaches usually suffer
from the problem of local minima, which will be explained later in Section 4.4.

4.2 Flocking using Artificial Potential Fields

In this section, the dynamics of the agents1 are formulated. For path planning, the
agents are considered as point masses and their dynamics are modeled based on poten-
tial functions. The robots receive virtual attractive and repulsive forces by following
the gradient of a potential field. For path planning, we consider only the position and
velocity of each robot i in an m-dimensional space, (pi,vi) ∈ Rm×Rm. The dynamics
of each mobile agent i are described using the following system of differential equations:

ṗi = vi, (4.1)
v̇i = ui, (4.2)

where ui ∈ Rm is the control input. For the time-discrete implementation, however,
the dynamics of the system can be given as

p(tk + 1) = pi(tk) + vi∆t,
v(tk + 1) = vi(tk) + ui∆t,

(4.3)

where ∆t is a finite step size and tk is the k-th time step. Since the agents have a
limited communication radius rc, the neighborhood of an agent is defined as

N α
i = {j ∈ V : ‖pj − pi‖ < rc}, (4.4)

where V = {1, . . . , n}, n ∈ N, is a set of all agents. N α
i is an undirected, time-varying

network of neighboring agents. Thus, the communication among robots in this set is
bidirectional.

1The agents can be seen as holonomic vehicles.
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In order to establish a flock-like behavior, a deviation energy is generated as a function
depending on the distance between two agents. For the differentiability of this function
at z = 0, a mapping, the so-called σ-norm, is used as follows [100]:

‖z‖σ = 1
ε

[
√

1 + ε‖z‖2 − 1], (4.5)

with a fixed parameter ε > 0. For a smooth transition between 0 and 1 in the definition
of spatially-weighted neighborhood matrix and for the interaction forces, we use the
bump function defined as:

ρh(z) =


1, z ∈ [0, h)
1
2 [1 + cos(π (z−h)

(1−h))], z ∈ [h, 1)
0, otherwise

(4.6)

where h ∈ (0, 1). With the help of (4.6), we can define the adjacency matrix A = [aij]
of the network N α

i as follows:

aij(p) = ρh

(
‖pj − pi‖σ

rα

)
∈ [0, 1], j 6= i

with rα = ‖rc‖σ. In this thesis, we aim to utilize the benefits of flocking behavior (cohe-
sion, separation and alignment properties). Due to the ease of analysis and robustness
in terms of collective behavior, the dynamics of the multi-agent system are described
similarly to those in the flocking algorithm in [100]. The control input is given by the
following dynamics:

ui = uαi + uβi + uγi , (4.7)

where uαi is the control input for flock-like behavior, uβi is for the obstacle avoidance
and uγi is for the navigation. These control inputs will be explained in detail later on.

4.2.1 (α, α)-Interaction

The collective behavior without navigation and obstacle avoidance was described by
[100] and it was called free-flocking. The main objective of this was to keep α-agents
together in a flock, avoid inter-agent collisions, and form an α-lattice structure.
The control input uαi of each agent is given by

uαi = cα1
∑
j∈Nαi

ϕα(‖pj − pi‖σ)nij
︸ ︷︷ ︸

Gradient-based term

+cα2
∑
j∈Nαi

aij(p)(vj − vi)
︸ ︷︷ ︸

Consensus term

, (4.8)
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where nij = σε(pj − pi) =
pj − pi√

1 + ε‖pj − pi‖2
a vector from pj to pi and ε ∈ (0, 1) a

constant of the σ-norm. The parameters cα1 , cα2 are positive constants.
The control input describes the interaction among the α-agents. The first term in (4.8),
the so-called gradient-based term, is responsible for the position control of the agent i.
The second term represents the consensus term that may act as artificial damping force
between the agents to align their velocities. The necessary potential function for the
gradient-based term has been formulated in Section 2.2.
Remark 4.1. The control input uαi fulfills all Reynolds rules. However, the flocking
behavior strongly depends on the initial states of the agents. Solely using this control
input is known as (α, α)-protocol of flocking [100]. Since this includes no group objective,
the protocol fails to work for most initial states and fragmentation occurs. M

4.2.2 Navigation

Introducing a group objective, such as a common target position, the so-called γ-agent,
makes all agents move toward the same position. In this way, they come closer and this
increases the chance that they get into communication range of each other. Thus, the
group can build an α-lattice structure more easily. The control term for the navigation
is defined similarly to that in Section 3.4.3 as follows

uγi : = fγi (pi,vi,pd,vd)

= −cγ1σ1(pi − pd)− c
γ
2(vi − vd), c1, c2 > 0

(4.9)

where (pd,vd) ∈ R2 ×R2 represents the desired goal position and the desired velocity,
respectively.
Remark 4.2. In order to track a target point moving sinusoidally with high speed and
a large amplitude, high values for cγ1 , cγ2 are necessary, but this can be at the expense of
the α-lattice form. The reason for this is that the navigation input can be stronger than
the (α, α)-interaction and exceed its priority, although navigation is usually a secondary
goal in the navigation of flocking systems. M

4.2.3 Collective Dynamics

With the help of the mathematical tools presented in Section 2.3, the collective dynam-
ics of the flock can be formulated as follows:

ṗ = v (4.10)
v̇ = −∇V (p)− L̂(p)v + fγ(p,v,pd,vd) (4.11)

where V (p) is a smooth collective potential function given in Eq. (2.21), which depends
on the positional configuration of the agents. The gradient term in (4.11) represents
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the collective gradient-based term (cf. (4.8)). The second term with L̂(p) is the nm-
dimensional Laplacian matrix of the graph G(p), which is constructed according to
Eq. (2.27). Together with the velocity configuration v of the flocking system, the
Laplacian term allows to describe the collective consensus term and the kinetic energy
of the system. The third term fγ(p,v,pr,vr) corresponds to the collective navigational
feedback, which will be described in detail later. With fγ ≡ 0, the Hamiltonian function
describing the energy of the system ((4.10)-(4.11)) is given by

H(p,v) = V (p) +
n∑
i=1
‖vi‖2, (4.12)

where the first term and the second term represent the potential and the kinetic en-
ergy of the system, respectively. Based on the property of positive semi-definiteness
introduced in Eq. (2.26) and the square sum formulation (2.28) of the nm-dimensional
Laplacian matrix, the change in energy

Ḣ = −vTL̂(p)v ≤ 0 (4.13)

is negative and thus, the system must be dissipative.2

The present states (p,v) do not guarantee the boundedness of the solution, especially
if the flock disperses. For the stability analysis of the system described by (4.10) and
(4.11), defining new suitable states is the key to success so that we can employ LaSalle’s
invariance principle.
For this purpose, study [100] proposes to split the dynamics of the system into trans-
lational and structural dynamics. These are described using moving reference states
defined as

p̃i = pi − pc
ṽi = vi − vc

(4.14)

where pc = 1
N

∑N
i=1 pi is the average position and vc = 1

N

∑N
i=1 vi is the average velocity

of the system.
Despite the new formulation of the states, the relative positions and velocities of agents
to one another remain identical so that p̃i − p̃j = pi − pj and ṽi − ṽj = vi − vj. It
follows that

V (p) = V (p̃), ∇V (p) = ∇V (p̃)

with p̃ = (p̃>1 , . . . , p̃>n )> ∈ Rmn. Analogously, the description of the (α, α)-interaction
does not change. According to [100, Lemma 2, p. 406], the collective navigation term
can be given as

fγ(p,v,pd,vd) = g(p̃, ṽ) + 1n ⊗ h(pc,vc,pd,vd) (4.15)

2Ḣ is only a time derivative (cf. [99, Appendix A.2]).
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with3

g(p̃, ṽ) = −c1p̃− c2ṽ, (4.16)

h(pc,vc,pd,vd) = −c1(pc − pd)− c2(vc − vd), (4.17)

where ṽ = (ṽ>1 , . . . , ṽ>n )> ∈ Rmn. With these, we can reformulate the collective dy-
namics of the flocking system (Eqs. (4.10) and (4.11)) by decomposing them into

structural dynamics


˙̃p = ṽ
˙̃v = −∇V (p̃)− L̂(p̃)ṽ + g(p̃, ṽ)

(4.18)

and

translational dynamics

ṗc = vc
v̇c = h(pc,vc,pd,vd).

(4.19)

Apparently, the structural dynamics describes the motion of the α-lattice in the moving
frame and the translational dynamics depicts the total displacement of the flock center.
With these reformulations, the stability analysis of the flocking system is possible by
using LaSalle’s invariance principle.

4.2.4 Stability Analysis of the Flocking System

For later analysis in this thesis, it is worth understanding the stability concept of the
flocking system applying (4.8) and (4.9). The stability of the flocking system can be
defined based on the following properties:

1. The stability of a desired equilibrium state of translational dynamics.
2. The stability of certain equilibrium states of structural dynamics.

Since the translational dynamics depend only on linear terms, the first property is easy
to analyze. The velocity match and the convergence of positions to a predefined state
depends only on time and the parameters cγ1 and cγ2 . However, the second property is
more difficult to analyze, because considerably more factors play a role, such as the
potential energy, the kinetic energy and the navigation term. Since a target position or
a tracking task is common in technical applications of flocking systems, we introduce
the stability considering the navigation term fγ 6= 0.
The structural dynamics of the agents can be formulated as follows:

˙̃p = ṽ,
˙̃v = −∇U(p̃)−D(p̃)ṽ,

(4.20)

31n represents an n-dimensional vector whose elements are all equal to one.



4.2. Flocking using Artificial Potential Fields 55

where U(p̃) and D are the so-called aggregate potential function and the damping
matrix, respectively.

U(p̃) = V (p̃) + c1J(p̃) (4.21)
D(p̃) = c2Im + L̂(p̃) (4.22)

with the moment of inertia J(p̃) = 1
2
∑n
i=1 ‖p̃i‖2. The Hamiltonian function representing

the structural energy of the system is defined as

H(p̃, ṽ) = U(p̃) +K(ṽ), (4.23)

where K(p̃) is the kinetic energy. For a group of agents with the structural dynamics
(4.20) and with the assumption that K(p̃(0)) and J(p̃(0)) are finite, the following
statements hold (cf. [100, Theorem 2]):

1. The group of agents remains cohesive for all times t ≥ 0.
2. Nearly every solution of the structural dynamics converges to the equilibrium

state (p̃∗,0), where p̃∗ is a local minimum of U(p̃).
3. All agents asymptotically move with the same velocity.
4. Assuming that the initial structural energy of the flocking system is less than

(k + 1)c∗ with c∗ = ψα(0) and k ∈ Z+. Then, at most, k different α-agent pairs
can collide. This means that in the case of k = 0 a collision-free navigation can
be guaranteed.

For proofs of the statements, the reader is referred to [100, p. 408-409]. Since the proof
of the third statement is relevant for the proof of Proposition 5.1 in Chapter 5, we
briefly mention it in the following.

Proof. The derivative of the Hamiltonian with respect to time is given as

Ḣ(p̃, ṽ) = −ṽ>(c2Im + L̂(p̃))ṽ = −c2(ṽ>ṽ)− ṽ>L̂ṽ < 0. (4.24)

This indicates that the system is strictly dissipative for ṽ 6= 0, because the energy
H(p̃, ṽ) falls monotonically for H(p̃(0), ṽ(0)) <∞.
According to LaSalle’s invariance principle, as described in Section 2.3, all solutions of
(4.20), which lie in an invariant set X , converge to the largest invariant set E = {p̃, ṽ ∈
X : Ḣ = 0}. Note that we consider a dynamic system for all t ≥ 0 and G(p(t)) to be a
connected graph. The condition Ḣ = 0 for (4.24) is only fulfilled if all relative velocities
represented by means of vc match: ṽ1 = ṽ2 = . . . = ṽn and ṽ = 0. With this, it follows
that ṽi = 0, ∀i and the velocities match (v1 = v2 = . . . = vn).
It can be also concluded that almost all configurations (p̃, ṽ) asymptotically converge
to an equilibrium state (p̃∗,0), which is a local minimum of U(p̃).

�
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4.3 Obstacle Avoidance

For the obstacle avoidance, we assume that every agent can measure the relative position
of the closest point on the edge of an obstacle. An obstacle is detected if the Euclidean
distance between the agent and obstacle is less than the sensing range as described in
Section 2.1.3. A virtual β-agent is created, which is a projection of α-agent i on the
edge of the object. In this way, each agent can identify a set of detected obstacle points
at a given time instant,

N β
i = {p̂i,k

∣∣∣ ‖p̂i,k − pi‖ < rs}, (4.25)

where rs is the sensor range for obstacle detection and p̂i,k is the detected point within
the sensors, which has the shortest distance to the agent’s current position. In order
to ensure obstacle avoidance, the potential for interaction between α- and β-agents is
defined as follows:

Vβ(p) =
∑
i∈Vα

∑
k∈Nβi

ψβ(‖p̂i,k − pi‖)σ. (4.26)

The action function to keep a safe distance ds from an obstacle can then be defined as

ϕβ(z) = ρhβ(z/dβ)(σ1(z − dβ)− 1), (4.27)

where dβ < rβ with dβ = ‖ds‖σ and rβ = ‖rs‖σ. The function (4.27) is purely repulsive
and only takes negative values between 0 < z < dβ, and with all other values, it remains
at zero (see Fig. 4.1(a)). Using the action function, a repulsive pairwise potential can
be given by

ψβ(z) =
∫ z

dβ

ϕβ(s)ds ≥ 0. (4.28)

The control input for keeping a safe distance from an obstacle is defined as

uβi = cβ1
∑
k∈Nβi

ϕβ(‖p̂i,k − pi‖σ)n̂i,k + cβ2
∑
k∈Nβi

bi,k(p)(v̂i,k − vi), (4.29)

with

n̂i,k =
p̂i,k − pi√

1 + ε‖p̂i,k − pi‖2
, bi,k(p) = ρhβ

(
‖p̂i,k − pi‖σ

dβ

)
,

where v̂i,k is the projection of the vi onto the edge of the obstacle k and cβ1 , c
β
2 are

the positive constant parameters. Moreover, bi,k defines the element of the weighted
adjacency matrix related to agent i and obstacle k.
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(a) Plot of the action function ϕβ(z).
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(b) Smooth pairwise potential with finite cut-off
in the global minimum at dβ .

Figure 4.1: Parameters for plots: ds = 8, dβ = 17.2, ε = 0.1, hβ = 0.9.

Remark 4.3. The parameters cνη are positive constants for all η = 1, 2 and ν = α, β, γ.
The priorities of the control objectives flocking-like behavior, obstacle avoidance and
navigation are defined by these weighting factors. M

4.4 The Local Minimum Problem

In the following, we describe the problems in artificial potential field-based schemes for
local path planning. There are many flocking algorithms using the potential function
approach. A potential function depends on the distance among agents or between
agents and obstacles. However, one common issue in potential function approaches is
that agents can be trapped at a local minimum, where repulsive and attractive forces
are balanced (Fig. 4.2(a)). As a result, agents stay stuck behind an obstacle because the
gradient vector is zero at a local minimum [98]. Thus, the agents cannot move toward
their prescribed objective and the mission might not be successfully accomplished.
Various strategies have been investigated to overcome these problems, especially for
single-robot navigation. Sensor-based approaches for collective motion planning in-
clude elimination of a local minimum by reconstructing potential functions through
additional forces such as the artificial rotational forces proposed in [40]. In this way,
the agents can escape from local minima so that the balance between artificial forces are
broken. An issue arising in many elimination-based methods is that the success of the
escape heavily depends on particular obstacle configurations, especially its concaveness.
In addition, escape-based approaches do not always guarantee success in intricate pas-
sageways. However, they have a potential to accomplish complex navigation tasks in
swarms through communication, evaluation of environmental information and collective
intelligence.
An interesting fact in using rotational force fields in combination with the algorithm
of Olfati-Saber [100] is that the escape of agents from some concave obstacles heavily
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gested in [40].

Figure 4.2: Conceptual illustration of issues due to the local minimum problem.

depends also on the position of the target point and the concaveness of the obstacle. A
typical phenomenon is that an agent first moves through the artificial rotational force
away from an obstacle. Then, it loses the perception of the obstacle edge and is driven
by the tracking force to its previous position as illustrated in Fig. 4.2(b).
In this chapter, each robot has a range sensor with a limited sensing range rs and
without having prior information about the workspace, it is challenging to navigate
the group in an optimal way because the obstacles or restrictions in the operation area
cannot be fully perceived with relative short sensing ranges. This requires an elaborated
communication and with this, efficient motion planning. Furthermore, each agent can
only receive the relative position of its neighbors and exchange information only with
other robots within its limited communication bandwidth rc.

4.5 An Information-Driven Algorithm for an Improved Obstacle
Avoidance

Multiple agents are used for cooperative tasks in complex areas. Possible collisions or
the loss of some agents during a task may involve costs and lead to failure of the oper-
ation. In many studies, control and obstacle avoidance in flocking systems are achieved
through potential function-based schemes. However, escape from non-convex obstacles
has been barely considered. Due to local minima, concave obstacles are important
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issues in the navigation of flocking systems. In study [40], a rotational force field in
combination with the repulsive force was used to escape from local minima.
The present method described in this section both derives from and builds upon the
flocking algorithm in [100], in which artificial potential functions are applied to avoid
collisions and convex obstacles. For this concept, we introduce certain carefully de-
signed rotational forces to the flocking algorithm presented in [100] that share certain
similarities with the work [40]. In addition, we enable the agents’ ability to recognize
possible non-convex obstacles in an anticipatory fashion and replace their target points
temporarily through a multi-criteria decision-making process to avoid potential traps.
This is based on local information exchange among agents. Furthermore, agents can
perform early maneuvers by utilizing local information in case of an upcoming obstacle
and local minimum.

4.5.1 Proposed Algorithm

In the proposed concept, the tracking term (4.9) is reconstructed so that possible local
minima can be eliminated by setting a virtual temporary target point for each agent
based on local information sharing and processing. The concept consists of two heuristic
algorithms: The decision for an escape maneuver and the planing of the escape maneu-
ver itself. For this purpose, we utilize a rotational force field, which is constructed by
extending the control concept for flocking systems presented in Sections 4.2 and 4.3.

4.5.1.1 Artificial Rotational Forces

Various approaches have been studied to overcome the local minimum problem for
flocking multi-agent systems. In the study [40], a rotational force field was proposed
as a solution for it. The idea is based on an additional tangential force parallel to the
edge of an obstacle, which breaks the balance between attractive and repulsive forces
and generates a global rotational motion. Similarly to the method presented in [40], we
extend the existing obstacle avoidance term by a new tangential force as follows:

uβi = cβ1
∑
k∈Nβi

ϕβ(‖p̂i,k − pi‖σ)n̂i,k + cβ2
∑
k∈Nβi

bi,k(p)(v̂i,k − vi) +
∑
k∈Nβi

fβri,k (4.30)

with

fβri,k = wβi n
β
i,k (4.31)

and

nβi,k = cβri
‖pi − p̂i,k‖

 yi − ŷi,k
−(xi − x̂i,k)

 , (4.32)
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where pi =

xi
yi

 and p̂i,k =

x̂i,k
ŷi,k

 are the position of α-agent i and the generated

virtual β-agent, respectively. Unit normal vector nβi,k is thus always perpendicular to
the vector connecting an agent to the obstacle and it holds: 〈(pi− p̂i,k),n

β
i,k〉 = 0. The

direction of the rotational force cβri can be defined as follows:

cβri =

+1, Clockwise rotation
−1, Counter-clockwise rotation

(4.33)

In Eq. (4.31), wβi is a critical parameter, which represents a positive gain to adjust the
escape strength of agent i from concave obstacles and it is given by

wβi = (1 + c)(‖fαβi ‖+ λ0), (4.34)

where λ0 is a positive factor and independent of the other terms. fαβi is defined as
the sum of the repulsive force generated virtually through the obstacle and the first
component of the tracking term (4.9). This is given as

fαβi = cβ1
∑
k∈Nβi

ϕβ(‖p̂i,k − pi‖σ)n̂i,k + cγ1σ1(pi − pr). (4.35)

The constant parameter c in (4.34) strengthens or weakens the rotation. This is related
to the angle between fαβi and nβi,k. If this is smaller than π

2 then c = c1, otherwise c = c2.
These constants can be chosen as −1 < c1, 0 < c2 and c1 < c2. This can be explained
as follows: If the angle between fαβi and nβi,k is less than 90◦, the agent already receives
a small amount of force along the obstacle. In this case, a strong rotational force is not
necessary. However, if the angle is greater than 90◦, a component of fαβi counteracts fβri,k
and thus, a greater gain wβi is required to tangentially escape from the obstacle. This
is illustrated in Fig. 4.3. Note that the unit vector of fβri,k corresponds to nβi,k.
Remark 4.4. The algorithms in this section are designed for the clockwise rotation
direction, cβri = +1. M

4.5.1.2 Information Map and Information Exchange

The proposed algorithm requires communication of acquired information. For this
purpose, the given workspace is virtually modeled by the agents as a grid with a finite
number of cells. During the operation, each agent generates its own information map
that includes the sensed obstacle points and thus defines the occupied cells in the
virtual cellular map of the workspace. Similarly to [147, 13, 125], the workspace is
decomposed into equal-sized cells. Hereby, Mi is the information map of agent i . In
addition, each agent is capable of memorizing the unit normal vector nβi,k required for
the rotational force and creates its own history of tangential vectors Ni. Agents can
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Figure 4.3: Illustration of the forces used for the rotational force field.

share this information with their neighboring agents via local communication. For each
agent i, whose sensing range is rs, its information map is updated in the following way:

• In the beginning of a mission (t = 0), the information map Mi and the history of
tangential vectors Ni are empty. This means that the agent i assumes that the
workspace is obstacle-free.

• Once an obstacle is detected by the agent i, the coordinates of the nearest point
on the edge of the obstacle are stored in the information map Mi. In addition,
the unit normal vector nβi,k used to generate the additional force (4.31), which is
tangential to the edge of the detected obstacle, is saved in the Ni.

• If an agent j is in the communication range of the agent i,

‖pj − pi‖ < rc,

they can exchange their information maps and the history of tangential vectors,

Mi = Mj, Ni = Nj.

4.5.1.3 Decision for the Strategy

Using Algorithm 4.1, agents can recognize potential concave obstacles and make deci-
sions for their escape strategy based on the gathered information. Each agent uses its
sensor activity. In order to identify the current detection status, each agent uses a flag
si defined by

si(t) =

1, if an obstacle within the sensing range rs
0, otherwise

(4.36)
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Firstly, we check if any rotation direction and any information about an obstacle are
available. The tangential forces for the rotation are indicated with orange-colored ar-
rows in Fig. 4.4. If the agent i has performed more than two different rotations and if
it currently senses an obstacle, control Strategy 1 is activated (line 7, cf. Fig. 4.4(c)).
More than two different rotation directions denote that the agent might attempt to
escape from a concave obstacle. In addition, we check if the tracking direction and
tangential force have the identical x-direction (line 11). A movement in the opposite
direction or perpendicular to the tracking direction usually indicates that the agent is
trapped in a concave obstacle (Fig. 4.4(b)). In this case, Strategy 2 should be applied.
Each agent defines its individual safe area based on its information map Mi. An agent,
which uses a clockwise rotational force field, is in its safe area if its current y-coordinate
yi is greater than the y-coordinates of all detected points.
This means a point in Mi with the greatest y-coordinate. If the agent arrives at its safe
area (the green-colored area in Fig. 4.4), the control is switched to its initial strategy
(line 14 - Strategy 3 ).
The last strategy is designed for recognizing the end position of an obstacle. If an agent
realizes that it is at the end of an obstacle, it switches to another control strategy (line
4). If none of the defined conditions is met, the initial strategy (Strategy 3 ) is activated.

4.5.1.4 Escape Strategies from Non-Convex Obstacles

Agents initially have a global target position (pd, vd = 0). By using Algorithm 4.2,
each agent calculates an individual virtual goal (pvi , vvi = 0), which is based on sensing
information and on the previously determined escape strategy. In obstacle-free areas
and for Strategy 3, the tracking input is applied in a regular way according to Eq. (4.9).
Otherwise, the control input for tracking (4.9) is modified by replacing pd temporarily
by pvi as follows:

uγ,tempi = −cγ1vσ1(pi − pvi )− c
γ
2v(vi − vvi ). (4.37)

When Strategy 1 is active, the target point pd is replaced temporarily by a new virtual
target position pvi . Considering the last detected point on the obstacle p̂lasti (light blue-
colored cross in Fig. 4.4(c)) and the unit vector nlasti lastly applied to generate the
rotation, the new virtual target point is given as

pvi = p̂lasti + ā · nlasti + b̄. (4.38)

For Strategy 2, first, the occupied and unoccupied cells in the workspace are defined
according to the information map Mi. Occupied cells are colored with light blue in
Fig. 4.4. Then, the point in the information map with the greatest y-coordinate is
determined (dark green-colored cross in Fig. 4.4(b)). If there are many points with the
identical y-coordinate, the one with the minimum x value is chosen (i.e., (xmin, ymax)).
Following this, the agent calculates the center points of the nearest unoccupied cells
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Algorithm 4.1 : Decision for the escape strategy
Data : pi, pd, p̂lasti , Ni, Mi, si
Result : target_control

1 Ni =
{
n1
i ,n2

i . . .nni
}
, Mi =

{
m1
i ,m2

i . . .m
q
i

}
2 pi = [xi, yi], p̂lasti =

[
x̂lasti , ŷlasti

]
3 if Ni is not empty and Mi is not empty then
4 if x̂lasti ≤ x-obstacle end position and si = 1 then
5 Apply Strategy 4 ;
6 return

7 if size(Ni) > 2 and si = 1 then
8 Apply Strategy 1 ;
9 return

10 for j = 1 : size(Ni) do
. ni,x: x-component of nzi , Vx: x-component of (pi − pd)

11 if ni,x
‖ni,x‖ ≤

Vx
‖Vx‖ and Mi is not empty then

12 Apply Strategy 2 ;
13 return
14 else if yi > max(Ymap) . Ymap represents the set of y-coordinates

of all detected points.

15 then
16 Apply Strategy 3 ;
17 else
18 Apply Strategy 3 ;

19 else
20 Apply Strategy 3 ;
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in the workspace corresponding to (xmin, ymax). The new temporary target point is
defined based on the center point of one of these areas with the greatest y-coordinate
and the minimum x-coordinate (= p̂targeti ) in the following way:

pvi = p̂targeti + c̄. (4.39)

p̂targeti is illustrated with the purple-colored star symbol in Fig. 4.4(b).
Strategy 3 is the initial control strategy, where the target point remains unchanged.
Moreover, with Strategy 4 (Fig. 4.4(d)), the temporary target point is placed using
p̂lasti after detection of the endpoint of an obstacle and the pvi is given by

pvi = p̂lasti + d̄. (4.40)

The parameter ā is a constant and b̄, c̄ and d̄ represent constant vectors.

Algorithm 4.2 : Execution of the escape maneuvers
Data : pi, vi, pd, nlasti , p̂lasti , Ni, Mi, si
Result : uγ,tempi , uγ

1 if Strategy 1 is active then
2 Define a new temporary target point using Eq. (4.38);
3 else if Strategy 2 is active then
4 Define occupied and unoccupied cells using the information map Mi;
5 Determine the position of a detected point with (xmin, ymax) in the information

map;
6 Calculate the center points of the nearest unoccupied cells;
7 Set a new temporary target point using Eq. (4.39);
8 else if Strategy 3 is active then
9 The target point remains unchanged;

10 else if Strategy 4 is active then
11 Set a new temporary target point based on p̂lasti using (4.40);
12 else
13 The target point remains unchanged;

4.6 Simulation Studies

In this section, we present results of the simulations to demonstrate the effectiveness
of the proposed algorithm. For the simulations, we performed numerical experiments
with a concave semi-circular obstacle and a concave inclined frame. Both have concave
characteristics with respect to the agents’ direction of motion.
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(a) Strategy 3 (b) Strategy 2

(c) Strategy 1 (d) Strategy 4

Figure 4.4: Illustration of the proposed escape strategies. The yellow-colored cross de-
notes the temporary target point and the red-colored one represents the
global target point.

We consider a system of N = 5 agents in the two-dimensional plane m = 2. The
agents are randomly placed in an area of [−5, 5] × [11, 21] and their initial velocities
vi(0) ∈ R2 are [0, 0]. In all tasks, the target position is defined at pd = (80, 25)>.
The workspace is defined in an area of [−6, 100] × [0, 80] with a cell size of [2 × 2].
The values of the flocking parameters, the weighting factors of the applied control
terms and the parameters for the rotational force are given in Table 4.1. Since safety
is generally an important criterion in navigation, the obstacle avoidance (uβ) has the
highest priority. The second important task is the target tracking (uγ) and then the
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flocking (uα). According to these task priorities, the constant weighting factors are
chosen as: cβ1 > cγ1 > cα1 .
Fig. 4.5 shows the positions of the agents for the important instants t = [1 s, 20 s, 28 s, 50 s]
and their trajectories up to these time instants. The blue triangles represent the posi-
tions and the directions of motion of the agents, and the red-colored cross corresponds
to the global target point pd. It can be seen that the group can avoid the concave semi-
circular obstacle. In addition, the exchange of information maps as well as the rotation
information enables some agents to make an early decision for an escape maneuver
without detecting the obstacle.
In the second simulation, the initial configuration of agents is the same as in the
first simulation. Fig. 4.6 shows the positions of the agents for the time instants
t = [2 s, 20 s, 41 s, 80 s] and their trajectories. Here, it can be observed that all agents
follow a similar path to the target point (t = 41 s). The reason for the joint path is
that the agents set their virtual temporary target point to a point above the sensed
position with the greatest y-coordinate (Algorithm 4.1, line 11). However, in the case of
an inclined frame, agents have to move along the obstacle’s edge to find an exit to the
safe area. Thus, they have to sense the obstacle (Algorithm 4.1, line 7). After leaving
the obstacle behind, the group quickly focuses on the global target point.
The fact that a specific direction of rotation is given results in agents having to perform
only a clockwise rotation to escape from obstacles. This may not always be the most
efficient way because it might prolong the path to the target point and limit the appli-
cation in many areas. However, it is a reliable way to move away from simple concave
obstacles preserving the cohesive behavior.

Table 4.1: Parameter setting.

Flocking parameters

d ds rc rs ε

7 0.6 · d 1.2 · d 1.2 · ds 0.1
a b hα hβ m

5 5 0.2 0.9 2

Weighting of terms

cα1 cβ1 cγ1 cγ1v

20 80 30 70
cα2 cβ2 cγ2 cγ2v

2
√
cα1 2

√
cβ1 2

√
cγ1 2

√
cγ1v

Rotation parameters
c1 c2 cβri λ0

0 1 1 1

Escape parameters
ā b̄ c̄ d̄

10 (2,−2)T (0, 5)T (−5, 5)T
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Figure 4.5: Snapshots of a group of N = 5 agents during the escape from a concave
semi-circular obstacle.
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Figure 4.6: Snapshots of a group of N = 5 agents during the escape from a concave
inclined frame.

4.7 Chapter Highlights

In this chapter, we proposed an information-driven algorithm for flocking systems to
escape from simple concave obstacles and to prevent local minima. With this algorithm,
each agent can explore the workspace and generate an information map through local
information exchange. In addition, the existing flocking algorithm in [100] is extended
by judicious design of an extra term to generate a rotational force field. Information
exchange and recognition of concave obstacles make it possible for the agents to perform
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early escape maneuvers. In this way, the success rate of a mission with multiple agents
can be increased. However, for the escape from more complex obstacles, more sophis-
ticated information processing and decision-making algorithms are needed. Moreover,
it is possible to extend the concept for variable rotation direction in order to generate
more optimal paths for the agents.
The supervised student thesis [160] has contributed to the development of this chapter’s
results.



5 Collective Navigation
Framework for a Multi-Agent
System

The content of the following chapter has been published in [158].

Beside potential field-based methods and VFH, which are plagued by being trapped
into a local minimum, there are escape-based methods to overcome local minima. Per-
forming a spiral motion around a specific point [88, 49], generating elliptic trajectories
[140] and adding a reactive rotational force field [40] are some of these strategies. Coop-
erative, decentralized navigation of multi-robots through information exchange among
group members and data evaluation is another approach for planning optimal collec-
tive motions [45]. An important challenge in escape-based approaches are concave and
labyrinth-like obstacles, which can appear in indoor applications.
The main contributions of this chapter are summarized as follows:

(i) First, we formulate a single-robot navigation strategy similar to that in study
[28], which employs only sensors. This method allows a robot to navigate in
an unknown static environment by using only range sensors. We extend it to a
decentralized multi-robot navigation framework, where each robot only needs to
communicate with its neighbors for motion planning in an independent way.

(ii) Second, by means of local communication and information exchange, we enable
the robots to make early decisions and perform simultaneous, optimal collective
maneuvers during a task in a distributed manner. Furthermore, using neighbor-
to-neighbor communication increases flexibility and scalability with respect to
the system size (agent number). In addition, we use potential fields to guarantee
inter-agent collision avoidance, preserve proximity and increase safety in collision
avoidance with static obstacles. Moreover, in this study, we consider the limited
sensor and communication range of the robots to be a challenging factor.

The chapter is organized as follows: Motivated by the local minimum problem in nav-
igation, Section 5.1 presents a navigation scheme for a single robot, which is mainly
based on [27]. In Section 5.2, we extend the scheme from the previous section and pro-
pose a novel approach for the navigation of a multi-robot system. Subsequently, Section
5.3 presents simulation results to show the effectiveness of the proposed approach in
highly complex environments.

69
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5.1 Single Robot Navigation

In this section, we briefly introduce a navigation schema for a single agent (N = 1),
which we extend with a communication interface, collective motion planning framework
and potential forces in later sections. The proposed approach is mainly inspired by the
tangential navigation schema presented in [28]. In obstacle-free areas, agents use the
control term (4.9) to move toward the desired goal position. However, the proposed
approach in [28] is based on the reconstruction of the navigation term (4.9) by allocat-
ing temporary virtual goal positions considering the obstacle geometry to avoid local
minima.
The dynamics of each mobile agent is described by double-integrators as in previous
chapters.

ṗi = vi,
v̇i = ui,

where (pi,vi) ∈ R2 ×R2 denote the position and velocity of agents, respectively.

5.1.1 Tangential Navigation

Once an obstacle is in the range of rtan (rs > rtan > ds), ‖p̂i,k − pi‖ ≤ rtan, the
robot starts to perform the tangential navigation and it travels parallel to the obstacle.
Firstly, the robot determines the angle γ for the rotation matrix to project the desired
goal position as follows

γi =

βi − αi − 90◦, if βi ≥ 0◦

βi − αi + 90◦, if βi < 0◦
(5.1)

where the angles αi and βi are the orientation of the robot relative to the desired goal
position and to the closest obstacle point, respectively, as shown in Fig. 5.1. The angle
βi is in the range ]−180, 180] and defines the relative position of an obstacle to the
robot. If βi < 0◦, the obstacle is to the right of the robot. If βi > 0◦, the obstacle is on
the left.
According to Eq. (5.1), the rotation direction of the agent depends on its orientation to
the obstacle. For a better cohesive behavior in complex environments, we can predefine
a primary direction of rotation using the following parameter:

cr =

−1, for clockwise rotation
1, for counter-clockwise rotation

(5.2)

In this case, the rotation angle should be calculated as follows:

γi = βi − αi + cr · 90◦. (5.3)
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Desired 
goal

Virtual 
goal

Figure 5.1: Illustration of the tangential navigation schema.

The angle γi is used as a rotation angle for the calculation of the virtual goal position
pvi defined as

pvi = pi +

cos(γi) −sin(γi)
sin(γi) cos(γi)

 (pd − pi). (5.4)

The control input for the navigation is calculated similar to Eq. (4.9) as follows

uγi = −cγ1
(
cn ·

pi − pvi
‖pi − pvi ‖

)
− cγ2vi, (5.5)

where cn is a positive constant for specifying a constant acceleration toward the virtual
goal position.

5.1.2 Corner Avoidance

The characteristic of a concave corner is that the robot simultaneously senses two
different points on an obstacle. Each sampling time (each 0.02 s, for our simulation
setup), the motion planner checks if two different points are sensed. If two obstacles
are detected at the same time, the robot applies the corner avoidance maneuver.
Firstly, the robot classifies the detected obstacle points for the motion planning. Here,
the normal vector to the obstacle, which lies in the direction of motion vi in front of the
agent, is defined as n90, the other one as n. The corresponding sensed obstacle points
are declared as p̂i,n90 and p̂i,n. In order to calculate the rotation angle γi, we introduce
the angle εi, which is defined between n to n90, measured from n (Fig. 5.2(a)). The
rotation angle for projection of a new temporary, virtual goal position is defined as
follows:

γi =

βi − αi − τi, if εi ≥ 0◦

βi − αi + τi, if εi < 0◦
(5.6)
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(a) Corner detection. (b) Corner avoidance maneuver.

Figure 5.2: Corner avoidance schema.

with

τi = |εi|+ 90◦. (5.7)

The angle εi defines the necessary direction of rotation in an indirect way, e.g., εi ≥ 0◦
results in a counter-clockwise rotation. Finally, the virtual goal position is calculated
as

pvi = pi +

cos(γi) −sin(γi)
sin(γi) cos(γi)


0.5 · ds · cos(θdi )

0.5 · ds · sin(θdi )

 , (5.8)

where θdi describes the desired orientation of the robot to the current, temporary goal
position (Fig. 5.2(b)). The angle θdi is defined as the angle between the x-axis of the
inertial coordinate system and the line linking the agent’s position and the desired goal
position.1 Note that the robot sets the virtual goal point to a closer area with the aim
of generating a weaker attraction force compared to the tangential navigation. In this
way, it performs more precise and safer maneuvers in the corners.

5.1.3 Motion Planning at Obstacle Extremities

While a robot follows an obstacle tangentially, it loses the sensing contact shortly after
reaching the obstacle endpoint. Without proper motion planning, it would move back
to the desired goal position and might get into a local minimum instead of performing
a suitable maneuver to turn around the obstacle extremity.
For the endpoint detection, we introduce a binary flag Ptan as in [28]. During the
tangential navigation, the robot continuously senses the obstacle, Ptan = 1. The flag
is only reset to 0 once there is no longer an obstacle inside the radius rtan. If the
flag Ptan is reset from 1 to 0, the robot recognizes the case endpoint and utilizes the

1The angle θdi is measured from the positive x-axis.
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Figure 5.3: Motion planning at the obstacle endpoint.

detected obstacle point from the last time instant (p̂i,k(tk−1) = p̂i,e), illustrated by the
blue-colored cross in Fig. 5.3, as a center point for its rotational motion. Furthermore,
the calculated angle (βi(tk−1) = βi,e) is also stored. Along a circular path, the robot
iteratively calculates virtual goal positions rotating around p̂i,e by a defined angle of
rotation δ. The angle of rotation for the maneuver is formulated as:

γi =

+δ, if βi,e ≥ 0◦

−δ, if βi,e < 0◦
(5.9)

where δ > 0◦ represents the value of the predefined rotation angle. In the next step,
the virtual goal position is determined on a circular path by the following equation:

pvi = p̂i,e +

cos(γi) −sin(γi)
sin(γi) cos(γi)

ni,e, (5.10)

with

ni,c = pi(tk)− p̂i,e
‖pi(tk)− p̂i,e‖

· rtan,

where the radius of the circular path is equal to rtan. Once the agent reaches a virtual
goal position on the circular path, e.g., ‖pv1

i − pi‖ < 1, it determines a new one, e.g.,
pv2
i (see Fig. 5.3). In this way, the agent keeps setting new goal positions until the

following condition is fulfilled:

|αi| ≤ δ. (5.11)

This allows the robot an optimal orientation with respect to the desired goal position
pd to leave the circular path and to move toward the desired goal position.



74 Chapter 5. Collective Navigation Framework for a Multi-Agent System

5.2 The Proposed Navigation Approach for a Multi-Agent
System

The proposed approach is based on the navigation algorithm for a single robot de-
scribed in Section 5.1 and extends it by means of a novel communication interface for
collective motion planning. With the help of inter-agent communication, agents are
capable of perceiving and acting upon the environment by using the information from
the communication network. In this section, we introduce the communication interface.
The basic principle of the navigation scheme presented in Section 5.1 is the tangential
projection of a virtual goal position. In the case of multiple agents, the continuous
creation of an individual, virtual goal position may yield a decomposition of the group or
collisions. In order to prevent this, the information about the projection of a new, virtual
goal should be communicated within the neighborhood of each agent. In addition, the
critical points identified on an obstacle, such as corners and endpoints, should also be
shared for a collective navigation strategy.
Fig. 5.4 shows the critical points for the communication scenarios. The first scenario
depicts the tangential navigation along an obstacle. The second scenario is the detection
of a corner and the third one represents the detection of an obstacle extremity. These
scenarios are communicated independently from one other. In this way, the agents
also acquire knowledge about the area and utilize the information for localization. The
desired principles for the communication process in our approach are as follows:
• An agent should consider only the most relevant information for its next action.
• Only the contemporary information in the communication network should be

considered.
• Detection before communication: A detected obstacle point has a higher priority

than information received through communication in motion planning. Naviga-
tion based on the information aggregated from the communication network may
result in a collision if an obstacle is detected. Hence, in such cases, the detected
obstacle point is primarily taken into consideration for the next action of the
agent. In this way, the agent can certainly avoid a possible collision with the
obstacle.

5.2.1 Structure of the Communication Interface

The communication network contains information packages aggregated by means of own
sensors and the information received from other agents via communication. Note that
the information items received from the communication network will be identified later
by the upper index c. In our concept, we define three types of information packages:
orientation information, information about endpoints and information about corners.
Each type of information package consists of several different items.
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Orientation information Corner

Endpoint

Figure 5.4: The critical points for the communication scenarios.

Figure 5.5: Orientation information.

Orientation Information

The information package consists of several items. The core item is the goal orientation
θi and the detected point on the obstacle p̂i,k. The angle goal orientation describes
the angle between the x-axis of the inertial coordinate system and the line linking the
agent’s position with the current virtual goal position.2 A further important item is
statusi, which defines the current action of the agent and is included in the information
package. We implemented several statuses that are explained later (see Section 5.2.3), as
shown in Table 5.1.3 Through the assigned statuses, an agent receiving an information
package can identify the actions of its neighboring agents. The last item is t̂i, which
represents the detection time of an obstacle.
Information about Endpoints

At the endpoint of an obstacle, the agent starts to move on a circular path in the
direction of the desired goal position. This motion is planned by means of the last
detected point p̂i,e and the angle ωi,e between the normal vector from the agent to
the obstacle and the x-axis of the inertial coordinate system.4 Moreover, the goal

2The angle θi is measured from the positive x-axis.
3The transitions between the action statuses are given as pseudo code in Appendix A.
4ωi,e is defined from the positive x-axis.
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Table 5.1: Definition of action statuses.

statusi Definition

0 Motion toward the desired goal position
1 Obstacle detection and tangential navigation
2 Handling the endpoint of an obstacle
3 Corner avoidance maneuver
4 Orientation phase
5 Tangential navigation based on received information
6 Waiting mode

orientation at the time instant of endpoint detection θi,e is another important item in
planning the motion of the agent. The agent that identifies an endpoint (shown in red,
Fig. 5.6(a)) shares the items p̂i,e, ωi,e, θi,e within its neighborhood.

Information about Corners

For collective motion planning, robots require information. An agent stores and com-
municates its goal orientation during the entry into the corner θi,ent and exit from the
corner θi,ex. Another important item in this information package is the corner point
p̂i,c (blue-colored cross in Fig. 5.6(b)), which is determined by calculating the point at
which two lines intersect. The agents can calculate the intersection point easily using
p̂i,n, p̂i,n90 , θi,ent and θi,ex. Specifying these parameters allows the group of agents to
make a proper collective decision for the corner avoidance maneuver.

(a) Information about an endpoint. (b) Information about a corner.

Figure 5.6: Information about endpoints and corners.
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5.2.2 Evaluation of Information from the Communication Network

In contrast to a single robot navigation, robots in a multi-robot system are exposed to
many information pieces at the same time through local communication. For the depth
of the information processing, it is not sufficient to evaluate only the position, velocity
and heading of neighboring robots. In order to prioritize the acquired information
items, each agent evaluates these based on their registration time and sender-related
information.
Each agent examines the relevance of the orientation information based on a weighted
mean value function and assigns a relevance value rel defined in the interval ]−∞, 10].
Based on this, each agent makes a decision for its next action in the motion planning.
For example, an agent considers an information item with rel = 10 as very relevant.
Moreover, the agent ignores an information item with rel ≤ 0. In the following, we will
define the components of the relevance function with linear sub-functions and discrete
expressions.
• Age of the information: In order to evaluate the temporal relevance of an

information package, we define a linear relationship between the current time tk
and the registration time of the information t̂c by another agent in the network
as follows:

relt = 10− 10 · (tk − t̂c)
dt

, (5.12)

where dt ∈ R is a constant representing the duration time during which an infor-
mation can have positive relevance.
• Distance from the detected obstacle: In order to evaluate the relevance re-

garding the distance of a communicated obstacle point, it is important to identify
the location of the detected point with respect to the agent’s motion. If it is
located in front of the agent relative to its direction of motion, the distance-based
relevance is defined as

reldist = 10− 10 · ‖p̂c − pi‖
dx

, (5.13)

where dx ∈ R is the maximum distance required by ‖p̂c − pi‖ for a positive
relevance. However, if the point p̂c is behind the agent with respect to the agents’
motion perspective, the distance relevance obtains a negative value as

reldist = −10 · ‖p̂c − pi‖
dx

. (5.14)

If there is no orientation information in the agent’s communication network, the
distance relevance is defined as 0.
• Relevance of the orientation based on the previous time step: During

the tangential navigation, each agent continuously expects only minor changes to
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its orientation. For this purpose, each agent compares its current goal orientation
θi(tk) with one of the existing, new orientations θc in its communication network.
The relevance of expectation of orientation is expressed as

relexp = 10− 10 · |θi(tk)− θc|
dθ

, (5.15)

where dθ is the maximum allowed difference between the angles for a positive
relevance value.
• Evaluation of the sender: Agents also examine the sender of the information.

To determine the relevance, it is important to know whether the sender is the
owner of the information or just forwards received information from another agent.

relo =

10, for information sent directly
0. for information sent indirectly

(5.16)

• Evaluation of information statuses: Finally, statusc is included in the evalu-
ation. As shown in Table 5.1, an information package contains different statuses
that express the sender’s current action. The relevance of actions, which represent
a reorientation of the agent, is evaluated with reltype = 10. However, if an agent
is following an obstacle tangentially, then reltype = 5. Otherwise, the relevance is
zero.

reltype =


10, if statusc = 4 ∨ statusc = 3
5, if statusc = 1
0. otherwise

(5.17)

We formulate the weighted arithmetic mean of the individual relevance values reln as
follows

reln = ctype · reltype + co · relo + cexp · relexp + cdist · reldist + ct · relt
ctype + co + cexp + cdist + ct

, (5.18)

where n ∈ Si and Si is the set of all information packages in the communication network
of agent i. The parameters cz represent the weighting factor of the components of the
relevance value. Various weighting factors can yield different behaviors in the swarm.
Furthermore, the maximum relevance value of the existing information packages in the
network is defined as

relmax = argmax
reln∈Ri

(reln), (5.19)
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where Ri is the set of all the relevance values of the available information packages for
the agent i. If the following condition holds

reln ≥ 0.95 · relmax, (5.20)

the agent considers an information package to be relevant and applies the corresponding
goal orientation θi(tk+1) = θc in the next time step tk+1. However, if more than one
information package fulfills condition (5.20), the mean value of all corresponding goal
orientations from the relevant information packages are determined.
In addition to the introduced relevance criteria, the agent checks its distance to the
communicated endpoints and corners as follows

ds ≤ ‖pi − p̂ce‖ ≤ Rrel,

ds ≤ ‖pi − p̂cc‖ ≤ Rrel,
(5.21)

where Rrel ∈ R denotes the upper boundary of the relevance range. An endpoint or a
corner is then considered if it is within a defined relevance range of the agent. Note: If
two different critical points are within the specified range, the closer one is utilized for
the next action.

5.2.3 Collective Navigation Using Shared Information

In the navigation approach for a single robot, we defined several scenarios: tangential
navigation, corner avoidance, motion planning at obstacle extremities. In this section,
we explain how to adapt these to a multi-agent system by systematically communicating
the presented action statuses. A detailed explanation of the transitions between the
action statuses is given as pseudo codes in Appendix A. At the beginning of the collective
navigation, each agent has the relevant information based on the evaluation scheme
proposed in Section 5.2.2. The initial status of the agents is defined as status 0. An
agent with this status follows the desired goal pd using the control term in Eq. (4.9)
(Algorithm A.1).

5.2.3.1 Collective Tangential Navigation

If an agent detects an obstacle in the range of rtan, it starts to move toward a virtual
goal, tangentially to the obstacle. The calculation of the virtual goal is analogous to
the navigation algorithm for a single agent. This action is referred to as status 1 in
the communication network and the agent sends information with status = 1 to the
neighboring agents (Algorithm A.2).
However, the control input uαi according to Eq. (4.8) intervenes if the ideal distance
d between the agents is exceeded. As a result of this, the agent sensing an obstacle
can move away from it through attractive forces and leave the tangential navigation
range rtan (Fig. 5.7(a)). This can distort the navigation. In order to prevent this, the
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(a) Loss of contact. (b) Incorrect navigation.

Figure 5.7: Illustration of problems due to uαi .

agent sensing an obstacle applies only the horizontal component of uαi along the vector
(pvi − pi). In this way, it is not influenced by forces vertical to the obstacle. The input
uαi is reformulated for this case as uα,ti .
The input uαi can also cause incorrect navigation through an obstacle. If the distance
between two adjacent agents is less than the desired distance, uαi generates repulsive
forces. This may allow an agent to detect an obstacle unnecessarily and start tracking
it (status 1). In order to prevent an incorrect transition from status 0 to status 1,
we introduced the so-called ignorance condition as follows

(|υi| > 90◦ ∧ |βi| > 91◦) ∨
‖p̂i,k − pi‖ > (0.3 · (rtan − ds) + ds),

(5.22)

where υi denotes the angle between the vector (pd − pi) and the normal vector to the
obstacle. The first part of Eq. (5.22) ensures that the agent initially moves away from
the obstacle and the second part represents an ignorance zone. If condition (5.22) is
satisfied, the agent ignores the obstacle for the motion planning and applies the modified
input uα,ti .
Due to previous information received from the communication network, an agent might
be inconveniently oriented once it senses an obstacle. In this case, it changes its goal
orientation based on the obstacle detected . This can take some time and the orientation
phase is described by status 4 (Algorithm A.5). An agent may have status = 4 if it
receives new information or detects an obstacle while the following condition is satisfied:

|ψi − θi| > 45◦, (5.23)

where ψi is the orientation of the agent.5

The communication interface allows agents to calculate a virtual goal position based on
information received from the communication network. This case is defined by status

5ψi is the angle between the vector vi and the x-axis and measured from the positive x-axis.
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Goal manipulation

Figure 5.8: Distance manipulation of an agent toward an obstacle.

5 (Algorithm A.6). Based on the communicated goal orientation θc, the virtual goal
position can be determined by the agent according to the following equation:

pvi = pi +

cos(θc) − sin(θc)
sin(θc) cos(θc)

 · ex · s, (5.24)

where ex is the unit vector in direction of the x-axis. Agents have a constant tracking
acceleration through the positive gain s. In addition, each agent follows an individual
temporary goal. The vertical distances among agents are ensured by uα,ti .
The disadvantage of this approach is that the swarm may perceive the endpoint of
an obstacle belatedly. The problem is illustrated in Fig. 5.8. The red-colored agent
detects the obstacle and shares the information items θc and p̂ck within the network6.
The first agent follows the obstacle just above the sensing radius rs, but cannot detect
the obstacle itself. Thus, the end of the obstacle can only be perceived belatedly by the
red-colored agent. We introduce the following conditions to optimize this behavior.

θi(tk+1) =

θc − 20◦, ‖p̃i,k − pi‖ < 1.5 · d ∧ βi < 0◦

θc + 20◦, ‖p̃i,k − pi‖ < 1.5 · d ∧ βi ≥ 0◦
(5.25)

where p̃i,k is the orthogonally projected position of the agent i onto the obstacle k,
which is described by p̂ck and θc as a virtual line. In this way, the agent can estimate
its distance to the obstacle. The first condition ensures that there is no other agent
between the agent and the obstacle. If it is fulfilled, θi is manipulated depending on βi
in the next time step.

5.2.3.2 Collective Corner Avoidance

The scenario for avoiding corners described in Section 5.1.2 is represented by status 3
in the collective navigation (Algorithm A.4).

6The red-colored parameters in figures are shared among the neighborhood of agents. Thus, they are
known to all agents via communication after some time instants.
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(a) Estimation of a corner via com-
munication.

(b) Waiting for decision-making.

Figure 5.9: Collective corner avoidance.

In status 3, an agent detects two obstacle points at the same time. Another scenario is
the combination of two information items: a self-detected obstacle point with the range
sensor p̂i,k and a point projected onto an obstacle p̃i,k by using shared information items
(p̂ck, θc). With the help of these items, an agent builds two intersecting virtual lines and
estimates a corner’s position (see Fig. 5.9). However, there might be a passage through
which the swarm can proceed. In order to prevent such a misestimation, the following
condition is introduced:

‖p̃i,k − pi‖ < 3 · ds ∧ ‖p̃i,k − p̂ck‖ < 3 · ds. (5.26)

If the above condition is fulfilled, the agent assumes that a corner exists (see the green-
colored agent in Fig. 5.9(a)). Thus, similarly to Section 5.1.2, it determines p̂i,n90 and
p̂i,n by considering p̃i,k and p̂i,k. Then, a new virtual goal position is determined by
applying Eqs. (5.6)-(5.8).
In this case, the agent changes its status to 4 and it additionally sends information about
the corner. If the conditions (5.26) are not satisfied, the agent stores its current location
pi(tk) as pwaiti and waits at this position until it makes a decision for an orientation
by using items from the communication network (Fig. 5.9(b)). The state of waiting is
represented by status 6 (Algorithm A.7). The virtual target is defined in this case as

pvi = pwaiti . (5.27)

At status 6, the agent evaluates the relevance of information in its neighborhood net-
work. If orientation information with status = 3 or status = 4 is declared as relevant,
the agent applies it and leaves the status of waiting. If, however, information with an-
other status is classified as relevant, the agent examines whether an information about
a nearby endpoint is available in the communication network. If it is, the agent applies
the direction of rotation of the circular motion around the endpoint and tracks the
obstacle. If there is information with status = 1 in its network and if the information
corresponds to the same obstacle, the agent uses the orientation information and tracks
the obstacle.
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5.2.3.3 Collective Motion at Obstacle Extremities

If an agent detects the endpoint of an obstacle, it follows the virtual target positions
defined on a circular path as described in Section 5.1.3. This navigation approach is
represented by status 2 in the multi-agent setting (Algorithm A.3). Here, each agent
individually sets virtual goals along a circular path.
Fig. 5.10 illustrates the described scenario with status = 2. The group tracks the
obstacle tangentially. The red-colored agent detects the endpoint of the obstacle and
shares the information items (p̂i,e, ωi,e, θi,e) (red-colored variables) within its network.
Once an agent receives the information about the endpoint of an obstacle via the com-
munication network, it examines its current location to start a circular motion. For
this purpose, firstly, it defines a virtual straight line by using the items received (p̂ce, ωce)
from the communication network, the start line for the circular motion. By means of
orthogonal projection, the front agent, represented in green, can project its current po-
sition pi onto this line and obtains the point p∗i (see Fig. 5.11(a)). The agent evaluates
the following condition before it starts a circular motion:

(p∗i − pi) = −k · (pvi − pi), (5.28)

where k ∈ R≥0 is a constant. The agent uses condition (5.28) to examine whether it
has reached the start line. If the condition is not fulfilled, the agent continues to set
tangential goal positions and adjusts its velocity by replacing uγi with uγi,e as follows:

vi,ref = pvi − pi
‖pvi − pi‖

· ds
rmaxi,e

· vmax, (5.29)

uγi,e = −cγe (vi − vi,ref ), (5.30)

where vmax represents the predefined maximum allowed speed at the endpoint. In
addition, rmaxi,e denotes the maximum distance of an agent to an obstacle communicated
in the neighborhood of agent i. In this way, the speed of the agent is adapted to the
minimum possible speed required for the circular motion.
If condition (5.28) holds, the agent starts to perform a circular motion similar to the
presented schema in Section 5.1.3. During the circular motion, uα,ti , the component of
uαi along the vector (pvi − pi), acts again to ensure that the agent reaches its current
goal position on the circular path. In addition, each agent examines the angle between
the line linking (pvi , p̂i,e) and the line (pi, p̂i,e), defined from the vector (pvi , p̂i,e). If
the angle has a positive sign (Fig. 5.11(b), green-colored agent), it means the agent has
passed its virtual goal and should set a new goal position by applying Eqs. (5.9)-(5.10).
Fig. 5.10 shows that the agents follow an individual circular path with a radius ri,e,
depending on their distance from the obstacle. As a result, the agents on an inner
circular path travel a shorter path than the agents on an outer circular path. The
second term in Eq. (4.8) ensures the velocity consensus for a translational motion. For
the case of a circular motion, the consensus is based on the equality of the angular
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Virtual 
obstacle

Figure 5.10: Collective maneuver at the endpoint of an obstacle.

velocities. Thus, in the state of consensus, the minimum desired angular velocity of
agents is defined as

ωmin = vmax
rmaxi,e

, (5.31)

where rmaxi,e represents the maximum radius for the circular motion. The navigation
input uγi is replaced by uγi,e described in the following steps

vi,ref = pvi − pi
‖pvi − pi‖

· ωmin · ri,e, (5.32)

uγi,e = −cγe (vi − vi,ref ), (5.33)

where vi,ref is the velocity required for the consensus of the angular velocities.
Proposition 5.1. A group of agents G(p(t)) with statusi = 2 applies (4.8) and (5.33).
Assume that G(p(t)) is a connected, undirected graph based on positions A = (aij(p))
and each agent moves tangentially to its circular path so that the angular velocity of
each agent can be described approximately as

ωi = ‖vi‖
ri,e

, (5.34)

then

lim
t→∞

ωi(t) = ωmin, ∀i ∈ G, (5.35)

i.e., consensus of angular velocities is achieved.
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Proof. For the stability analysis of the system, analogous to the proof of [100, Theorem
2] (cf. Section 4.2.3), we use moving reference states defined as:

p̃i = pi − pc and ω̃i = ωi − ωc,

where pc = 1
N

∑N
i=1 pi is the average position and ωc denotes the angular velocity of the

flock center point. The Hamiltonian representing the structural energy of the system
with statusi = 2 can be defined as

H(p̃, ω̃) = U(p̃) +K(ω̃), (5.36)

where K(ω̃) is the kinetic energy and U(p̃) denotes the aggregate potential function
(cf. [100]). Since we consider a rotational motion, we can define the kinetic energy as

K(ω) = (1/2)
∑
i

ω2
i . (5.37)

Assume that vi,ref and vi are tangential to the circular path if the angle δ/2 is small
enough to apply a small-angle approximation. The structural energy of the system
should be monotonically decreasing. The derivation of structural energy of the system
can be defined as

Ḣ = −cγe (ω̃>ω̃)− ω̃>L̂ω̃ < 0, (5.38)

with ω̃ = (ω̃1, ω̃1, ω̃2, ω̃2 . . . ω̃N , ω̃N)> ∈ R2N and L̂ ∈ R(2N×2N) being a positive semidef-
inite Laplacian matrix (see (2.27)).
From LaSalle’s invariance principle, Ḣ = 0 implies that ω̃ = 0. Therefore, the angular
velocity of all agents asymptotically matches ω̃i = 0→ ωi = ωmin. �

Start line

(a) Crossing the virtual start line. (b) Inspection during the circular mo-
tion.

Figure 5.11: Motion planning on a circular path.
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Conditional Braking

Each agent leaves the circular path by satisfying condition (5.11) at different time
instants. The acceleration toward pd after the circular motion with controlled angular
velocity might yield a separation of the system. In order to optimize this behavior, we
integrated a conditional braking mechanism that supports the cohesive motion of the
group. This is illustrated in Fig. 5.12(a).
The agents use ds to calculate the necessary speed that is the lowest possible speed
during the circular motion of the swarm. However, they have to determine the back-
most agent in the group, which is identified by the index b̄. The conditional braking
is only canceled by the backmost agent once it has completed its circular motion. For
this purpose, the communication interface is extended by the variables (b̄, creset). The
variable creset denotes the signal for the end of the reformation phase, (creset = 0:
velocity control for the reformation, creset = 1: end of the reformation). This signal is
communicated by the backmost agent.
In order to identify the backmost agent, first, we define a new coordinate system E with
the origin at p̂i,e = 0E, as shown in Fig. 5.12(b). The orientation of the axis of the new
coordinate system is given by the two communicated angles θi,e and ωi,e. For further
analysis, the current positions of the agents are projected onto the x-axis of the new
coordinate system E. The projected position of the agent onto xE is referred to as pi,E,
and the neighboring agents, referred to as pj,E, j ∈ N α

i (see Fig. 5.12(b)).

Velocity
control

Conditional braking

(a) Illustration of the velocity con-
trol and the conditional braking re-
gions.

(b) Identification of the backmost
agent of a group.

Figure 5.12: Conditional braking mechanism.

During the whole circular navigation, each agent examines its neighborhood. In order
to determine the backmost member, all agents utilize the index-dependent function
given as

d(i) =

‖pi,E − 0E‖, if (pi,E − 0E) = k · exE
−‖pi,E − 0E‖, if (pi,E − 0E) = −k · exE

(5.39)
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where exE denotes the unit vector in the positive direction of xE and k ∈ R>0 is a
positive constant.
Proposition 5.2. Each agent can determine the index of the global backmost member b̄
with respect to the motion of direction in the whole network G(p(t)) if the graph G(p(t))
is connected and undirected.

Proof. Let bi(tk) be the index of the determined backmost agent in the communication
network of agent i at the time instant tk and Bi be the set of all indices in the neigh-
borhood of agent i. For tk = 0 at which the first information about an endpoint is
registered, bi(0) = i. Each agent applies a gossip-like communication:

bi(tk+1) = argmax
bj∈Bi

d(bj(tk)), j ∈ N α
i , (5.40)

so that the index of the determined backmost member with the greatest d in the neigh-
borhood is adopted. By iterating (5.40), each agent determines the index of the global
backmost member in the whole network,

lim
tk→∞

bi(tk + 1) = b̄, ∀i ∈ G.

�

Once the global backmost agent identified completes its circular motion, it sends a reset
signal creset = 1. The rest of the agents break the conditional braking once they receive
the reset signal through the communication.

Watchdog Timer

During the collective navigation, some agents can grind to a halt due to communication
errors. In this case, the agent hardly moves and cannot reach the target. To recover
such malfunctions, each agent is equipped with a self-monitoring mechanism, a so-called
watchdog timer. It is activated if the speed of the agent falls below a threshold, e.g.,
‖vi‖ < 0.3.
When the watchdog timer is activated, the agent saves its current position pi,wd =
pi(ti,wd) with the time instant ti,wd. If the agent moves 1.5 further than the saved
location,

‖pi,wd − pi(tk)‖ ≥ 1.5,

and the watchdog timer is still activated, it is deactivated again because the agent
assumes that a possible deadlock has broken out.
If no deactivation signal is registered after 15 s and the agent has moved very little
compared to its position at the watchdog activation time,

‖pi,wd − pi(tk)‖ < 1.5,
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status 0 is activated and the agent moves toward the desired goal position.
One drawback of this feature is the fragmentation of the swarm. However, the watch-
dog timer ensures that each agent reaches the desired goal in finite time despite an
environment or communication-based deadlock.

5.3 Simulation Studies

In this section, we present the simulation results of the proposed collective navigation
approach. We consider two scenarios for demonstrating the effectiveness of the proposed
method. The simulation parameters for all scenarios are given in Table 5.2 and the step
size is 0.02 s. There is no predefined primary direction of rotation for the tangential
navigation. The navigation task involves N = 12 holonomic agents. They are randomly
placed in the domain [−10, 10]2 and the initial velocity vi(0) ∈ R2 of each agent is
(0, 0)>.

Table 5.2: Parameters for the simulation.

Flocking and Navigation Communication

d 7 δ 16◦ dt 0.6 s

rc 1.2 · d cα1 20 dx 15

ds 0.6 · d cβ1 80 dθ 90◦

rs 5 · ds cγ1 30 ctype 5

rtan 1.2 · ds cα2 2 ·
√
cα1 co 1

ε 0.1 cβ2 2 ·
√
cβ1 cexp 1

a 5 cγ2 2 ·
√
cγ1 cdist 1

b 5 cγe 50 ct 5

hα 0.2 vmax 4 Rrel 30

hβ 0.3 s 100

In the first scenario, a zigzag obstacle is considered, which might cause the problem
of local minimum with potential field-based approaches. The desired goal position is
defined at pd = (150, 0)>. Figure 5.13 shows the consecutive snapshots and trajectories
the robots followed during navigation for important time instants. The blue triangles
represent the position of robots, and the heading of each triangle specifies the direction
of motion of each robot. In addition, the illustrated lines linking robots denote the
proximity of agents. At t = 15.8 s, an obstacle is detected by the front agents and the
group starts the tangential navigation along the border of the obstacle. At t = 25.4 s,
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an agent identifies a corner and through communication, the rest of the group changes
its orientation. Then, an endpoint is perceived and the group performs a circular
motion (Fig. 5.13(c) and Fig. 5.13(d)). At such obstacle extremities, robots reduce
their speeds to achieve a reliable circular motion by preserving cohesion and collision-
avoidance properties. The average speed curve of the swarm is given in Fig. 5.14.
Red curves demonstrate the behavior of the group at obstacle extremities where the
robots slow down. Furthermore, at t = 138 s, it can be observed that the front agents
have approached the obstacle systematically by applying Eq. (5.25) to optimize the
navigation.
Fig. 5.15 shows the second selected scenario, in which the same group of robots navigates
through a corridor with obstacles. The initial state of robots is the same as in the
first scenario. The coordinates of the desired goal position are pd = (210, 5)>. The
capability of robots to rotate to any direction when encountering obstacles enables
agility and flexibility. It is clear that the robots can successfully avoid the obstacles and
find a proper path toward the desired goal position applying the collective navigation
approach.

Guideline for Parameter Choice

There are further remarks on the proposed approach that might be useful for the ap-
plication of our framework. In this approach, the agents share only critical points for
motion planning instead of constructing a full map of the workspace by storing all
utilized sensing points. This releases the memory of agents. One can easily integrate
a memory function to the approach to store all sensed points, or critical points (cor-
ners, endpoints) as proposed in [28]. Storing and utilizing critical points would improve
motion planning in labyrinths. For more detail, the reader is referred to [28].
Our simulation analyses have revealed that the parameters of the relevance function
(dt, dx, dθ) and the weighting factors (ctype, co, cexp, cdist, ct) (see Eq. (5.18)) have a sig-
nificant influence on the collective behavior of the multi-agent system.
The parameters chosen for our simulations are suitable for small-sized multi-agent sys-
tems. In this study, a system with 6-12 agents is defined as small-sized depending on
the space between obstacles. The parameter set in this case can be selected so that the
MAS exhibits a global behavior. This means that all agents perform identical actions
approximately at the same time. If, for example, an agent in the group detects a corner,
all agents make similar navigation maneuvers. This global behavior is suitable if the
distribution of agents in the workspace is small with respect to the space between the
obstacles. In order to have a global system behavior, the evaluation of the temporal
relevance and status of the information are essential for the next action. Hence, the
weighting factors of these relevance values, ct and ctype, should be chosen higher than
the rest. Highly prioritizing the temporal relevance of an information package (age
of information - relt) ensures that an agent will consider mainly current information
packages. Moreover, assigning a high priority to the evaluation of the actions of the
neighboring agents reltype ensures that all agents in the group will consider informa-
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Figure 5.13: Consecutive snapshots of the collective navigation with N = 12 agents
escaping from a zigzag obstacle.
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Figure 5.14: Average speed of the swarm |vc| during the escape from the zigzag obstacle.
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Figure 5.15: Consecutive snapshots of the collective navigation with N = 12 agents
navigating through a corridor.
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tion packages, which impose a reorientation. In this way, a group of agents can avoid
obstacles in a collective manner.
However, agents in large groups, e.g., with 20 agents for our obstacle configuration,
often have many relevant information packages at the same time. This means that
a global decision might yield suboptimal behaviors. Hence, the agents have to make
proper, local decisions. In this case, the evaluation of the information relevance should
be predominantly based on the individual location of an agent. For this purpose, the
relevance of the distance to the obstacle reldist, the relevance of the expected orientation
for the next action relexp and the relevance of the sender relo should be weighted
more than reltype and relt. This yields the example parameter set given in Table 5.3:
cdist = cexp = co > ct > ctype. Taking this into account would allow an agent to give
greater consideration to information packages received from agents close by and yield
only a small deviation from the expected orientation of motion.

Table 5.3: Parameters for large systems.

Communication

dt 0.6 s

dx 15

dθ 90◦

ctype 5

co 1

cexp 1

cdist 1

ct 5

Rrel 30

Using the communication parameters in Table 5.3, we perform tests with N = 20 agents
considering further scenarios, which include a narrow passage, a semi-circular obstacle
and many small obstacles. The initial state of robots are chosen in an identical way as
in the previous simulations and the desired goal position is defined at pd = (150, 0)>.
Figure 5.16 shows an example for a squeezing maneuver. In this configuration, agents
perceive both obstacles via communication and the group can avoid them without split-
ting up. In Figure 5.17, we deal with a semi-circular obstacle. Until the agents arrive
at the endpoint, they apply the regular maneuver of tangential navigation. However,
apparently at t = 58 s, a communication error occurs because of the complex com-
munication structure and the group splits up. This can also be seen in the video at
https://youtu.be/EYEl35pD4H0. By checking action statuses, agents that ignore the
endpoint correct their direction of motion and return to the right direction. In this

https://youtu.be/EYEl35pD4H0
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Figure 5.16: Consecutive snapshots of the collective navigation with N = 20 agents -
two circular obstacles.

way, they can nevertheless complete navigation as a small group. In Figure 5.18, we
are concerned with path planning through small circular obstacles, which are narrowly
spread in the workspace. Hereby, reacting to different obstacles yields fragmentation
of the group. This is a natural behavior because agents are exposed to many different
information pieces about the environment and their priority is to avoid collisions with
these obstacles. Finally, they still manage to reach the desired goal.
For a further qualitative impression, videos of all simulation scenarios are available at
https://youtu.be/EYEl35pD4H0.

https://youtu.be/EYEl35pD4H0
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Figure 5.17: Consecutive snapshots of the collective navigation with N = 20 agents -
semi-circular obstacle.
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Figure 5.18: Consecutive snapshots of the collective navigation with N = 20 agents -
small circular obstacles.
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5.4 Chapter Highlights

In this chapter, we presented our collective navigation strategy for swarming, au-
tonomous robots without a priori knowledge about the environment. The proposed
framework is based on a tangential escape schema and information sharing via com-
munication network. The communication protocol allows multiple robots to efficiently
explore an unknown area by exchanging local information about critical points and
actions of neighboring robots. Moreover, artificial forces generated through potential
fields allow the robots to perform collision-free, cooperative maneuvers and a flock-like
behavior.
The groups with a large dispersion relative to the navigation area can tend toward
fragmentation. In order to optimize this behavior, another parameter set for constants
in relevance function and weighting factors can be chosen. Furthermore, in some cases a
single agent might lose the connection to the swarm or to a fragment thereof. However,
it can still navigate as a single agent and reach the defined goal position on its own. The
proposed navigation approach can also be used for the motion planning of nonholonomic
robots. However, it is important to select a large enough safety distance to obstacles
and to other robots, and the robots should be operated at a low speed to prevent
possible collisions.
The supervised student theses [166] and [162] have contributed to the development of
this chapter’s results.



6 Cooperative Exploration with
a Sensor Network

Parts of the following chapter have been published in [157].

Efficient area coverage poses a great challenge in many fields. Applications range from
environmental monitoring, surveillance systems, floor cleaning and lawn moving in the
consumer sector to the search for survivors in natural disasters. Especially in the
coverage of unknown areas that have obstacles or inaccessible domains, the generation
of maps is of importance [44, 83]. In recent years, mobile sensor networks (MSN)
have received considerable attention due to their flexibility and good scalability for a
relatively low cost. The reasons for this are the progress made in the development of
communication technologies and in energy storage components [6, 149, 151].
The ability of robots to localize themselves in a map and to plan elaborated motions are
the basics of many coverage approaches. Cooperative, multiple robots can be employed
in order to accelerate coverage-oriented missions. Deployment of multi-agent systems
for area exploration increases the efficiency and success in many missions. However,
decentralized coordination of multiple agents requires the communication ability, al-
gorithms for cooperative motion and decision-making through information exchange.
The advantages of a mobile, distributed system compared to a stationary, centralized
one are of universal applicability as well as the high responsiveness to disturbances and
environmental changes [93, 149, 50].
There are several approaches for area coverage with single or multiple agents. Some
of these methods are based on optimal control [94], game theory [119] and reinforce-
ment learning [3]. In dynamic area coverage, mobile agents have limited sensor ranges.
Therefore, efficient motion planning is the key for mission success. The anti-flocking
approach is an option for multiple agents. In anti-flocking algorithms, agents try to
move away from each other to improve coverage and explore new spaces in contrast to
the flocking behavior of multiple agents [91].
Contribution: In this chapter, we consider a group of mobile agents with limited com-
munication bandwidths and sensing performance. As a result of that, they can com-
municate only with the agents within their communication range and detect objects in
their sensing range. The main contribution is cooperative identification and coverage of
an unknown environment with multiple autonomous agents. Our approach builds upon
the anti-flocking algorithm [51] and extends it with improved obstacle avoidance and
recognition of inaccessible areas. In this chapter, we propose a sensor-based framework

97
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to cover a given space simultaneously with multiple mobile agents in a cooperative
fashion without any prior knowledge of the environment. Through local information
exchange and judicious path planning for the recognition of restricted areas inside of
obstacles in the exploration domain, the agents are capable of avoiding collisions with
differently shaped obstacles and autonomously constructing a map of the whole area
by identifying inaccessible domains in the map.
The chapter is organized as follows: Section 6.1 explains the mechanisms of control that
provide the networked agents the desired dynamics for coverage-oriented motion plan-
ning. Particularly, anti-flocking and the map generation are relevant for this chapter.
Section 6.2 describes the investigated problem in sensor-based area coverage. In Section
6.3, the proposed cooperative exploration scheme is presented. This includes collective
motion planning and map creation. In Section 6.4, we reuse the tangential navigation
scheme from Chapter 5 for motion planning around obstacles. Section 6.5 introduces
an algorithm for the identification of inaccessible areas in the workspace by interpreting
the sensor data. This section is partly based on [157], a contribution by the author of
this thesis, which is improved with a new approach. The proposed exploration scheme
is evaluated through simulation scenarios in Section 6.6.

6.1 Mobile Sensor Networks

Mobile Sensor Networks (MSN) are self-organized and dynamic multi-agent systems,
in which mobile agents have resources to perceive their environment and communicate
with each other. In coverage tasks, the objective is often to explore an unknown area
(abbreviated EA for Exploration Area) and additionally, to find targets with unknown
positions in an efficient way [91, 53]. The focus in area coverage approaches can be
on the time efficiency [148], the energy efficiency [149, 3], the avoidance of various
obstacles, or on the ability to track dynamic goals [147, 129].
Motion behavior of MSNs can be implemented in three ways: Flocking, anti-flocking and
semi-flocking. The objective of flocking algorithms for MSNs is to match the positions
and velocities of the agents during the exploration. In contrast to this, anti-flocking
algorithms aim to achieve the highest possible efficiency in exploration by minimizing
overlapping search regions [91]. The advantages of both approaches, high coverage rate
and good tracking behavior, can be combined by semi-flocking algorithms [128].

6.1.1 Anti-Flocking

The anti-flocking concept is inspired by the behavior of solitarily living animal species,
such as tigers and spiders, which spend most of their lives alone. The motivation
behind the widespread distribution of such animals over a large area is to minimize
overlapping of their hunting grounds and thus increase the success in finding food. In
nature, communication and delimitation of the individual territories often takes place
via scents [91]. Anti-flocking can thus be described as cooperative behavior in which
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all individuals benefit from the optimal use of the given resources [50]. With this
motivation, [91] introduced three rules for engineering applications of the anti-flocking
concept:

1. Collision avoidance
2. De-centering
3. Selfishness

Analogously to flocking, Collision Avoidance describes the avoidance of collisions with
other agents. De-centering is the effort to distribute all agents as far as possible over a
given area. If the exploration regions of two individuals overlap, they strive to increase
the distance between them. Selfishness defines the struggle of an agent to increase its
chance for success with respect to a previously defined goal, e.g., area coverage. Thus,
each agent plans its motion to obtain the greatest benefit.
In order to maximize area coverage, so-called anti-flocking algorithms for mobile sensor
networks were proposed [147, 148, 128]. These algorithms distribute agents spatially in
a systematic way. The combination of anti-flocking with the potential field approach
enables agents to detect targets in a large area by means of communication and to
avoid obstacles [51, 52]. Due to battery limitations, energy efficiency is an issue in area
coverage tasks, which was considered in studies [149, 70].
Area coverage can be performed with decomposition-based approaches through parti-
tioning of the exploration domain. These methods include Voronoi diagram [66, 108, 90],
Boustrophedon decomposition [70] and Morse decomposition [1]. Furthermore, there are
ergodicity-based frameworks that consider target probability distribution [126, 14, 64].

6.1.2 Map Generation

In order to implement the property of selfishness, the individual benefit values for the
coverage of the largest possible area in different directions have to be calculated. For this
purpose, it is useful to introduce a so-called information map1 for each agent [50]. This
map stores the information about which parts of the EA have already been explored by
the agent and which parts are still unexplored. In order to do this, the EA is usually
partitioned. In this work, a grid of rectangular or square cells is utilized for this purpose.
In the information map, which is implemented as a matrix, each element represents a
cell of the discretized EA. The elements of the matrix include the information whether
- and if so, when - the corresponding cell of the EA was last visited [53].
Fig. 6.1 shows a decomposed area. All cells whose center is within the blue-colored circle
around the agent are marked as covered. In MSNs, the agents often have the ability to
communicate with each other. In this way, each agent can update its information map
by exchanging missing information with the agents within its communication range
to avoid multiple coverage of identical cells. If local communication is integrated to

1The information map in this chapter differs from the one presented in Chapter 4.
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Figure 6.1: Visual representation of area sensing. The yellow-colored cells are identified
by the agent.

the motion planning, the overlapping of explored areas with multiple agents can be
drastically reduced.

6.1.3 Decomposition-Based Methods

In the literature, different decomposition methods for area coverage and exploration
tasks exist. Decomposition algorithms split an area into subareas to increase the cov-
erage efficiency. One example of this is the Voronoi decomposition approach, which
assigns to each agent a subarea to explore depending on its position [67]. Some further
approaches are the Morse and Boustrophedon decomposition algorithms.

Voronoi Decomposition

A classical partitioning according to Voronoi splits an area into subareas close to given
center points ci. For each center point, there is a corresponding subarea consisting
of all points of this subregion to that center point than to any other [109]. In the
context of MSNs, the center points of the Voronoi cells correspond to the positions of
the individual agents.
For an efficient area coverage, the initial distribution of agents over the area plays an
important role. This problem is shown in Fig. 6.2. In the left half of the area, where the
centroids are more widely distributed, the cells become very large, while the cell size
in the right half is smaller because of the higher cell density. Assuming that all agents
have identical resources due to the heterogeneous initial distribution, the agents on the
right cover their territory faster than the agents on the left. This basic approach was
adapted by [67] to scenarios with inhomogeneously distributed multi-targets in an EA.
Hereby, a so-called density function ϕ(x, y) over the region is introduced to quantify
the relevance of each subarea. The density function describes the probability of finding
a target in a subarea. Applying this, Voronoi cells that are located in areas with high
density values are designed smaller to cover these more efficiently.
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Figure 6.2: Voronoi decomposition adapted from [67].

Moreover, [109] proposed a further approach to optimize the Voronoi decomposition for
MSNs considering varying performance of the individual agents. For this purpose, the
size of a subarea assigned to an agent is determined depending on its resources, such
as battery life or sensor range.

Boustrophedon and Morse Decomposition

Boustrophedon and Morse decomposition approaches aim at the optimal exploration
of areas occupied by obstacles. Critical points of the obstacles, through which the
boundaries of individual partitions are determined, are identified (see Fig. 6.3). In
Morse decomposition, the obstacles can have arbitrary shapes, while Boustrophedon
decomposition only handles polygon-shaped obstacles.

1 2

3

4

Critical 

point

Critical 

point

Figure 6.3: Boustrophedon decomposition around an obstacle [113].

6.1.4 Ergodicity Algorithms

In probability theory, ergodicity describes the property of a system in which the prob-
ability to reach every point in the state space is equal. Ergodicity algorithms in the
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context of MSNs usually employ all-to-all communication so that each agent takes the
motion of every other agent into account for its motion planning. In this way, the
spatial distribution of trajectories of the agents is compared with a desired probability
distribution. The difference between the desired and actual distribution is then min-
imized using optimization methods, which give the optimal trajectory for each agent
[127, 64].

6.2 Problem Description

In this problem set, we consider agents, which can only receive the relative position
of its neighbors and exchange information only with other agents within their limited
communication bandwidth. Moreover, each agent is able to localize itself on the map.
The measurement noise and sensor uncertainties are also neglected in this chapter.
Over the years, various sensor-based approaches have been proposed to cover areas
with multiple agents. Most of them are based on information exchange to plan an
optimal coverage motion without overlapping of the sensing regions. In grid-based
methods, which divide the exploration area into very fine cells such as in [52, 51, 147],
the coverage task is accomplished completely when the agents have sensed or identified
each cell in the exploration area.
In real-life applications, area boundaries are usually given for the search task and ob-
stacle locations are not known. The agents should autonomously identify each cell in
the virtual map. However, some cells in the area are inaccessible because of obstacles
or some other restrictions in the domain (Fig. 6.4). Hence, they cannot be sensed by
the agents and remain unidentified.

Inaccessible 

area

Figure 6.4: Illustration of the identification issue in an exploration task. Green-colored
cells represent identifiable areas of the restricted region.
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6.3 Cooperative Exploration Schema

In order to address the described issue in Section 6.2, we propose an exploration method
which consists of four components: Motion planning, map generation using local com-
munication, circumnavigation and recognition of inaccessible areas.

6.3.1 Motion Planning of Mobile Agents

The system considered in this study has the double-integrator dynamics given by

ṗi = vi,
v̇i = uαi + uβi + uγi ,

(6.1)

where uαi is the control input for the inter-agent collision avoidance, uβi is for the
obstacle avoidance and uγi is for the tracking of a target point. Each agent individually
defines its target point. Moreover, each agent can receive the position of other agents
within the communication range rc and also the relative position of the closest point
on an obstacle within its sensor range rs. In this way, agents can identify the set of
neighboring agents

N α
i = {j ∈ V : ‖pj − pi‖ < rc}, (6.2)

and the set of detected obstacle points

N β
i = {p̂i,k

∣∣∣ ‖p̂i,k − pi‖ < rs}, (6.3)

at a given time. The control inputs uαi and uβi are defined identically to (4.8) and
(4.29), respectively.
In contrast to the previous chapters, the (α, α)-interaction is not the combination of
attractive-repulsive forces but rather of purely repulsive forces, since the lattice-type
cohesive behavior is not necessary for the area coverage task. The repulsive potential
forces for the (α, α)-interaction and for the obstacle avoidance are defined by using the
bump function (4.6) as follows:

ϕα(z) = ρhα(z/dα)(σ1(z − dα)− 1), (6.4)

ϕβ(z) = ρhβ(z/dβ)(σ1(z − dβ)− 1), (6.5)

where dβ < rβ with dβ = ‖ds‖σ, rβ = ‖rs‖σ and dα = ‖d‖σ. Finally, the control term
for the navigation is defined as

uγi = −cγ1(pi − pti(tk))− c
γ
2vi, (6.6)

where pti ∈ Rm represents the individual target position of agent i at a time instant
tk > 0 and corresponds to the γ-agent. Each agent has a different time-varying target
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position, which is determined by using the collective map explained in the next section.
Hereby, cγ1 and cγ2 are positive constant parameters.

6.3.2 Collective Map Creation

In order to maximize the identified domains, we apply the anti-flocking algorithm pre-
sented in study [51]. First, similarly to [147], the exploration area is considered as a
grid consisting of equal-sized cells. The set of all cell center points, which are located
in the row µ ∈ {1, . . . , q} and column ν ∈ {1, . . . , n} of the grid, are referred to as Pµ,ν .
Each agent generates its own information map Mi ∈ Rq×n, which is implemented as a
matrix. The element mi(xµ,ν , tk) in the µ-th row and ν-th column of M i represents the
(µ, ν)-th cell of the discretized EA at the given time tk. The set of all points belonging
to an obstacle within the EA is defined as O. Thus, p̂i,k ∈ O holds. A cell is considered
identified if the coordinates of its center point xµ,ν is within the sensing range rs of an
α-agent. Furthermore, a cell is considered occupied if there is an obstacle point detected
in it. In order to store this information, mi(xµ,ν , tk) is defined as follows

mi(xµ,ν , tk) =


1, if ‖xµ,ν − pi(tn)‖ ≤ rs ∧ (O ∩ Pµ,ν = ∅)
−1, if ‖xµ,ν − pi(tn)‖ ≤ rs ∧ (O ∩ Pµ,ν 6= ∅)
0, otherwise

(6.7)

Remark 6.1. mi(xµ,ν , tk) ∈ {0, 1,−1} is also called the sensing information. mi(xµ,ν , tk) =
0 denotes an unidentified cell. mi(xµ,ν , tk) = 1 represents an identified cell andmi(xµ,ν , tk) =
−1 denotes an occupied cell. M

In the anti-flocking concept, each agent calculates its target position pti by evaluating
the benefit function given by

ξi = (1− |mi(xµ,ν , tk)|)(ργ + (1− ργ)λi(xµ,ν)), (6.8)

where ργ is a constant and the function λi is defined as

λi(xµ,ν) = exp(−κ1‖pi − xµ,ν‖ − κ2‖pti − xµ,ν‖) (6.9)

with the positive constants κ1 and κ2. The benefit function serves as a metric for the
individual benefit of an agent to explore different cells of the EA. As can be seen in
(6.8) and (6.9), the benefit function includes the distance between the center of the cell
and the current position of the agent as well as the current target pti. In this way, a
benefit value is assigned to each cell using (6.8). The target position is then selected
for the next time instant tk + 1 as follows:

pti(tk + 1) = argmax
xµ,ν∈X̃i

ξi(xµ,ν , tk), (6.10)
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where X̃i = {xµ,ν
∣∣∣xµ,ν ∈ X , ‖xµ,ν − pj‖ ≥ ‖xµ,ν − pi‖ > rs, j ∈ N α

i }. Hereby, X is the
set of all cell center points.
For each agent, whose communication range is rc, the information map is updated in
the following way:

• In the beginning of the exploration (tk = 0), all cells in the information map Mi

are unidentified.
• Once an area is sensed, the cells mi(xµ,ν) with ‖xµ,ν − pi‖ ≤ rs are defined as

identified (Fig. 6.1). In addition, if an obstacle is detected, the cell which includes
the sensed obstacle point p̂i is saved as occupied.

• If an agent j is in the communication range of the agent i,

‖pj − pi‖ < rc,

the agents can exchange missing information and complete each others’ maps at
the time instant tk,

Mi(tk) = Mj(tk).

In addition, we have implemented the recalculation criteria described in [51] to reduce
overlaps of sensing ranges and to minimize the traveling effort. In order to avoid
frequent changes in the direction of the α-agents and to generate smooth trajectories,
the γ-agents are not updated in each time step. The target position pγi is updated
based on the following four recalculation criteria. If none of the following criteria is
met, pti(tk + 1) = pti(tk) applies.

Criterion 1
The agent has reached its target position:
‖pti(tk)− pi(tk)‖<rs.

Criterion 2
The agents i and j communicate with each other and in the information map of
the agent j, the cell in which the target position of the agent i is located is marked
as identified:
‖pj(tk)− pi(tk)‖ < rc ∧ |mj(pti(tk), tk)| = 1.

Criterion 3
The agents i and j are adjacent and the distance between the target positions
belonging to i and j is less than the sensing range. The agent i updates its target
position if it has a longer distance to pti(tk) than the agent j has to its target
position ptj(tk):
‖pj(tk)−pi(tk)‖<rc∧‖ptj(tk)−pti(tk)‖ < rs∧‖pti(tk)−pi(tk)‖ > ‖ptj(tn)−pj(tk)‖.
If the distance between pi(tk) and pti(tk) is less than that between pj(tk) and
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ptj(tk), the agent j recalculates its target position and pti(tk) remains the same.

Criterion 4
This criterion requires no recalculation, but an exchange of the target positions.
Two agents i and j exchange their target positions with each other if the distance
between the agent and the target position of the other agent is smaller than that
between it and its own target position. Another prerequisite is that agents i and
j are within communication range of each other:
pti(tk + 1) = ptj(tk) and ptj(tk + 1) = pti(tk), if
‖pj(tk)−pi(tk)‖ < rc ∧ ‖pti(tk)−pi(tk)‖ > ‖ptj(tk)−pi(tk)‖ ∧ ‖ptj(tk)−pj(tk)‖ >
‖pti(tk)− pj(tk)‖.

6.4 Circumnavigation

The presented motion planning approach with map creation allows agents to completely
identify an area without obstacles. However, an obstacle between an agent and its target
position may yield a suboptimal performance in the area coverage due to the problem
of local minima (see Section 4.4).
In addition, to overcome problems in area coverage described in Section 6.2, agents
require circumnavigation skills, which means a complete navigation around an entire
obstacle. Hence, the strategy presented in Section 5.1 is integrated into the motion
planning algorithm.
In this way, once an obstacle is in the range of rtan (rs > rtan > ds), the circumnav-
igation2 is activated. In the first step, the agent determines its rotation angle γ and
calculates the temporary target position ptti in an identical way to that in Section 5.1.13.
The navigation of the agent is performed using a similar equation to (6.6) as follows

uγi = −cγ1
(
cn ·

pi − ptti
‖pi − ptti ‖

)
− cγ2vi,

where cn is a positive constant weighting factor to have a controlled acceleration during
the tangential navigation.
Once the agent simultaneously senses two different points on an obstacle, the corner
avoidance strategy is activated and a new temporary target position ptti is calculated
(see Section 5.1.2).
If the distance between the agent and an obstacle holds ‖p̂i,k − pi‖ > rtan during
tangential following, the agent switches to a new strategy utilizing the last sensed point
p̂i,e = p̂i,k(tk − 1) on the obstacle with ‖p̂i,k(tk − 1)− pi‖ ≤ rtan (see Section 5.1.3).

2In this chapter, circumnavigation is referred to as the navigation strategy proposed in Section 5.1.
3Hereby, pti can be seen as pd and ptti represents pvi to apply the equations from Section 5.1
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Once the first ptti is reached (‖ptti − pi‖ < 0.7), the agent sets a new temporary target
position using (5.10). If a new point p̂i,k with ‖p̂i,k − pi‖ ≤ rtan is sensed, the naviga-
tion is performed identically to that described is Section 5.1.1. In the meantime, the
following condition should be satisfied to leave the obstacle extremity:

|αi| ≤ ω, (6.11)

where ω represents the tolerance angle range (cf. (5.11)). In the absence of a sensed
point, condition (6.11) helps the agent stop setting new temporary target positions
around an obstacle if the deviation between its velocity vi and the vector from its
current position pi to the target position pti is in a certain range.

6.5 Recognition of Restricted Areas and Obstacles

Circumnavigation allows an agent to reach its target position even if there is an obstacle
between the agent and its target position. However, in the case of large two-dimensional
obstacles/restricted areas, the benefit function of a cell inside the obstacle may have the
maximum value and the target position is thus set into the restricted area. Through the
circumnavigation, the agent would continuously circle around the obstacle in this case,
since the condition for leaving the obstacle extremity (6.11) is never satisfied and usually
none of the recalculation criteria from Section 6.3.2 is fulfilled. This problem occurs at
the latest when all cells in the EA are marked as identified, except the cells occupied
by the obstacles. Although the agents can identify the cells at the edge of obstacles as
occupied, they cannot identify the cells behind the edges due to their inaccessibility.
Thus, the inaccessible areas (see Fig. 6.4) permanently have the status of unidentified
in the information map of the agents.
The algorithm we propose here addresses this problem in that the agents reconstruct
the obstacle autonomously and in real time by solely utilizing the sensed obstacle points
(β-agents). In this way, the agents can mark the inaccessible cells within the obstacles
as occupied in their information map. This enables the agents to make the decision for
finalizing the exploration task on their own.
As outlined in Section 2.1.3, the agents do not perceive obstacles as a whole object,
but only artificially interact with the sensed point on an obstacle that has the least
distance to them. Thus, the positions of the β-agents are the only information an agent
has about an obstacle. In order to analyze the shape of an obstacle, each agent is
capable of memorizing the sensed obstacle points p̂i,k(tk) at any time when an obstacle
is detected.
Obstacle recognition can then be easily included in the area exploration framework by
implementing the following scheme:

1) During circumnavigation, the agent stores all cells containing a sensed obstacle
point. These cells are separately marked as occupied in the information map of
the agent.
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2) The set of the stored cells is defined as Ci = {ci,k(tk), ci,k(tk + 1), . . . , ci,k(tk +n)}.
Moreover, the set is considered as a graph G(Ci). After having 6 stored cells4 in
Ci, the algorithm checks the cyclicity of the graph G to detect if the obstacle has
a closed geometry. A cycle graph is a graph in which nodes are connected to each
other in a circular structure and at least one edge has the same start and end
node [20]. In this way, the algorithm examines for each stored cell Ci the following
cyclicity conditions:

• The previously registered cell should be adjacent to the currently detected
cell.

• The first registered cell should be adjacent to the currently detected cell.
This allows agents to identify closed geometries and thus restricted domains in
the exploration area, which are not accessible.

3) If the cyclicity conditions are fulfilled for all cells in the list Ci, the cells inside
the closed geometry are marked as occupied by using the proposed algorithm in
Section 6.5.2.

4) Finally, the list of cells is automatically deleted for a new obstacle recognition
task.

Remark 6.2. The list of cells is also deleted if the agent terminates the circumnavigation
mode or if the agent changes its direction of rotation, which means that the βi (see
Section 5.1) changes its sign. M

6.5.1 Implementation of the Proximity Investigation

For the cyclicity conditions from the item 2), the proximity of each registered cell in
Ci has to be investigated. Using the following algorithm steps, which are visualized in
Fig. 6.5, we can examine if a specific cell is adjacent to another one in the grid.

• The algorithm iteratively goes through each cell in the list Ci. In each iteration,
one cell is closely observed and serves as a reference (x∗, y∗). Starting from this
cell, we assign column and row indexes to the neighboring cells.
• In addition, by subtracting the column and row indices of the reference cell from

the consecutive cells in proximity, we define the difference vector di = (x, y) for
each cell.
• Then, the Euclidean norm of every single difference vector is determined as: si =
‖di‖.
• Using the Euclidean norm of difference vectors, the following conditions to deter-

mine the close proximity of the reference cell are defined:
i. Euclidean norm of the difference vector si = 1 or
ii. Euclidean norm of the difference vector si =

√
2.

4The stored cells denote the nodes of the graph G.
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Figure 6.5: Visual representation of proximity investigation.

If a cell in the proximity of (x∗, y∗) fulfills one of the above conditions, it is adjacent
to the currently observed cell in the iteration (see Fig. 6.5).
• If one of the above conditions is not fulfilled, all cells up to the currently detected

one are deleted from the list Ci.

6.5.2 Determination of the Cells within a Restricted Domain

Estimating restricted areas is a challenging task for the agents. For this purpose,
we developed an iterative procedure to make a statement about the cells behind the
closed obstacles in the information map. During circumnavigation, each agent creates
a list of all sensed obstacle points Pi = {p̂i,k(tk), p̂i,k(tk + 1), . . . , p̂i,k(tk + n)}. The
algorithm puts the section, which is probably occupied by the obstacle, under the
scope by isolating it on the information map. The isolation is based on the extreme
coordinates of the obstacle:

pxmin = argmin
p̂i,z∈Pi

[
(1 , 0) · p̂i,z

]
, (6.12a)

pxmax = argmax
p̂i,z∈Pi

[
(1 , 0) · p̂i,z

]
, (6.12b)

pymin = argmin
p̂i,z∈Pi

[
(0 , 1) · p̂i,z

]
, (6.12c)

pymax = argmax
p̂i,z∈Pi

[
(0 , 1) · p̂i,z

]
. (6.12d)



110 Chapter 6. Cooperative Exploration with a Sensor Network

Figure 6.6: Estimation of the occupied cells.

As an example, we consider a polygon illustrated in Fig. 6.6. In this case, the corner
points would be used as extreme points (see (6.12)) to isolate the section in EA. In Fig.
6.6, the isolated section is indicated with a blue-colored frame.
νmin is the column of the information map, where pxmin is located and νmax is the
column where pxmax is located. Moreover, µmax indicates the row of the cell of the
information map, in which pymax is located, and µmin is the row that includes pymin .
In order to determine whether a cell (µo, νo) of the isolated section is inside a restricted
domain, we check if it is surrounded by occupied cells in all directions: above, below,
left and right. If this is the case, the cell is within the restricted domain and is also
marked as occupied on the information map. An example for such a cell is the cell
with an orange-colored point in Fig. 6.6. However, the green marked cell is outside the
obstacle and cannot be marked as occupied, because although there are occupied cells
below and on the left side of it, there are no occupied cells above and on the right side.
The exact procedure is described as pseudo-code in Algorithm 6.1.

6.6 Simulation Studies

In this section, the effectiveness of the proposed approach is evaluated. For this purpose,
different scenarios for covering an unknown area are simulated and analyzed.
A characteristic measure used to evaluate the approach is the coverage ϑ(t) in %. This
is calculated comparing the ratio of the cells covered by all agents to the total number
of cells in the EA. A cell is considered covered if it is either identified by one of the
agents or marked as occupied by the method presented in Section 6.5. The time in
seconds required to completely cover an area is defined as t100. Thus, ϑ(t100) = 100%.
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Algorithm 6.1 : Identification of cells within a restricted domain
Data : Information map Mi of the agent i, indices of the rows µmin, µmax and

columns νmin, νmax of the isolated domain
Result : Information map Mi of agent i

1 for µo = µmin : µmax do
2 for νo = νmin : νmax do

. (µo, νo) is the currently examined cell.

3 mi(xµo,νo) = M i(µo, νo);
4 above=false, below=false, left=false, right=false;
5 for µ = µmin : µo − 1 do

. All cells in the same column above (µo, νo).

6 if mi(xµ,νo) = −1 then
7 above=true;

8 for µ = µo + 1 : µmax do
. All cells in the same column below (µo, νo).

9 if mi(xµ,νo) = −1 then
10 below=true;

11 for ν = νmin : νo − 1 do
. All cells in the same row left of (µo, νo).

12 if mi(xµo,ν) = −1 then
13 left=true;

14 for ν = νo + 1 : νmax do
. All cells in the same row right of (µo, νo).

15 if mi(xµ0,ν) = −1 then
16 right=true;

17 if above = true and below = true and left = true and right = true then
18 mi(xµo,νo) = −1;

19 M i(µo, νo) = mi(xµo,νo);

20 return M i
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In the figures of this section, unidentified cells are highlighted in blue, identified and un-
occupied cells in yellow. Moreover, cells identified by agents as occupied are illustrated
in gray. Obstacles are indicated by black lines. The positions of the agents are visual-
ized with white-colored triangles and the green-colored crosses denote the positions of
agents’ target points.
The values of the parameters for the anti-flocking, the weighting factors of the applied
control terms and the parameters for the circumnavigation are given in Table 6.1.
Lengths, velocities and accelerations are considered as dimensionless variables. All
simulations were performed with these parameter values and in an EA with identical
dimensions. The coordinate system used has its origin in the center of the EA.
In the simulation, we consider a system of N = 3 agents in the m = 2 dimensional
plane. The agents are randomly placed in the EA and their initial velocities vi(0) ∈ R2

are (0, 0)T . The EA is defined in a domain [−60, 60] × [−60, 60] with a cell size of
[4×4]. In the simulation, the input |uγi | is bounded by |uγ,max| = 100 to avoid too high
accelerations. The priorities of the control objectives are defined: collision avoidance,
obstacle avoidance and tracking, cβ1 > cα1 > cγ1 .

Table 6.1: Parameter setting.

Anti-flocking

rc rs rtan ds

40 14 10 8
hα hβ ε d

0.2 0.9 0.08 12
κ1 κ2 ργ

0.04 0.01 0.2

Weighting of the control terms

cα1 cβ1 cγ1

60 60 30
cα2 cβ2 cγ2

2
√
cα1 2

√
cβ1 2

√
cγ1

Circumnavigation
δ ω cn

20◦ 10◦ 4

6.6.1 Area Coverage without Restricted Domains

First, we evaluate the influence of the exchange of information maps among the agents
on the area coverage. In order to analyze this dependency in an isolated way, we
have a simulation setting without obstacles with N = 3 agents. In the first scenario,
we observe the case without communication between the agents. Then, we perform



6.6. Simulation Studies 113

simulations with agents which can communicate and have a communication range of
rc = 30, rc = 60 and rc = 90. Fig. 6.7 shows the evolution of the coverage ϑ(t) of the
four simulations performed.
As shown in Fig. 6.7, coverage through multiple agents without communication increases
identically to that with a local communication schema in the beginning. This can be
explained with the fact that the initial positions of the agents and the corresponding
γ-agents at tk = 0 are identical in all simulations. If the distance between the agents
are sufficiently large, as in this case, and their initial γ-agents are widely distributed,
there is a very low probability of the sensing ranges overlapping at the beginning.
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3 agents without communication, t100 = 33 s
3 agents with communication, rc = 30, t100 = 20.1 s
3 agents with communication, rc = 60, t100 = 17.8 s
3 agents with communication, rc = 90, t100 = 17.4 s

Figure 6.7: Influence of communication on the area coverage.

After a certain amount of time (at t ≈ 3s), however, multiple identification of some
cells increasingly arises because each agent without communication strives to cover the
entire area by itself and has no information about the maps of the other agents. Fig. 6.8
depicts the snapshots of the simulations with and without communication at t = 12 s.
While the area in Fig. 6.8(b) is mostly covered, the percentage of identified cells in
Fig. 6.8(a) is only 77.56%. The trajectories of the agents in the left figure illustrate
the problem of an anti-flocking algorithm without information exchange. Two of the
three agents are moving on nearly identical paths instead of exploring the area in a
distributed way. Apparently, without communication, the coverage performance of the
agents is limited.

6.6.2 Autonomous Recognition of Restricted Domains

Recognition of restricted areas is a significant part of the concept proposed in this
chapter. Fig. 6.9 depicts the positions and trajectories of agents during an exploration
mission without using the obstacle recognition scheme at time instant t = 68.6 s. The
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(a) Coverege at t = 12 s without communication.
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(b) Coverage at t = 12 s with communication,
rc = 90.

Figure 6.8: Coverage of the EA by 3 agents with and without exchanging the informa-
tion maps.

EA and the area coverage by all agents are also illustrated in this figure. The EA
contains two polygon-shaped and one circular obstacles that are not known to the agents
beforehand. Hereby, it is observed that the agents are in a continuous circumnavigation
mode and try to cover the inner areas of obstacles.
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Figure 6.9: Exploration task without obstacle recognition with 3 agents at t = 68.6 s.
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In order to show the effectiveness of our approach, we perform another simulation with
identical initial conditions as in the previous one. Fig. 6.10 shows the positions and
trajectories of the agents using obstacle recognition and tangential navigation schemes
for important time instants. With this, the exchange of information map enables the
group to make optimal decisions about the next target position for efficient exploration.
Using the proposed scheme, agents start to perform circumnavigation at t = 13 s.
Although the agents complete the circumnavigation and also the recognition process at
60 s, the one agent identifying the circular obstacle apparently does not satisfy condition
(6.11). Hence, it continues with the circumnavigation. However, finally, all agents can
recognize obstacles and identify inaccessible areas on their own.

6.7 Chapter Highlights

In this chapter, a novel, sensor-based exploration framework is introduced, which allows
agents to identify each cell in the exploration area by recognizing inaccessible domains
autonomously. With the proposed scheme, multiple agents can efficiently explore an
unknown area with predefined boundaries as a group through local information ex-
change. However, the main contribution is that the agents are capable of identifying
restricted areas on their own without having prior knowledge. The combination of the
proposed obstacle recognition with the circumnavigation approach makes it possible for
the agents to identify inaccessible areas by evaluating only sensor data.
The supervised student thesis [161] has contributed to the development of this chapter’s
results.
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Figure 6.10: Consecutive snapshots of an exploration task with 3 agents with obstacle
recognition.



7 Optimal Control of Swarming
Agents

Parts of the following chapter have been published in [154].

In this chapter, we are concerned with the control of a multi-agent system including
an external leader-agent, which guides a group of autonomous agents with limited
information to desired objectives. The problem of herding sheep can simply exemplify
the scenario investigated in this chapter. There have been several attempts to influence
the behavior of biological groups, such as fishes, cockroaches and birds, through external
stimuli generated by robots [11, 12, 57, 110]. Furthermore, similar problem settings
have been investigated to control swarming agents with self-designed dynamics through
single or multiple intelligent agents, the so-called external leaders [58, 4, 26].
The basic idea of our leader-agent concept is that only the leader-agent knows the
predetermined group objective and the environment. The leader tries to steer the
entire swarm toward the objectives by using optimal interventions. For this purpose,
we apply an optimal control strategy. Possible objectives for the group include moving
to a target position, tracking a given trajectory, and avoiding collisions with obstacles
in the two-dimensional space.
The rest of this chapter is structured as follows: Section 7.1 presents basic preliminaries
on optimization and optimal control required to understand the following sections.
Section 7.2 gives an overview about solvers for nonlinear programming problems. In
Section 7.3, the global path planning problem we work on in this chapter is briefly
formulated. Section 7.4 describes the system dynamics in detail and the formulation
of the optimal control problem (OCP) through the guidance of a leader-agent. This
section is based on [154], a contribution by the author of this thesis. The starting point
of this section is [26], which employs an MPC scheme to drive a flock with deterministic
dynamics to a desired position through leadership. In Section 7.5, simulation results
are illustrated.

7.1 Preliminaries: Optimal Control

In this section, we briefly introduce the necessary basics about optimal control.
In general, the term optimization denotes the search for an optimal solution regarding a
specific objective under given circumstances. The objective of an optimization may be

117
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the effort optimization, e.g., energy-optimal routes for electric vehicles, the trajectory
that takes the least time to accomplish a task, i.e. a time-optimal trajectory for a race-
car, or determination of the shortest feasible path in path planning. There are static
and dynamic optimization problems.
In static optimization problems, the goal is to minimize or maximize an objective func-
tion by considering given constraints. However, the goal in dynamic optimization prob-
lems is finding variables as functions of time that minimize a cost functional under
consideration of constraints.
Optimal control is thus a function that minimizes or maximizes a given cost functional
subject to differential equations under several state and input constraints. The math-
ematical formulation of such problems leads to the optimization problem. A general
mathematical formulation of dynamic optimization problems is given by

min
x,u

J = V (x(tf )) +
∫ tf

t0
L(x(t),u(t)) dt (7.1)

subject to ẋ(t) = f(u(t),x(t)), x(t0) = x0 (7.2)
h(x(t),u(t)) ≤ 0, (7.3)
g(x(tf )) = 0, ∀t ∈ [t0, tf ] (7.4)

where the variable x ∈ Rn is the state of the system and x0 represents a given initial
state. The term J in (7.1) represents the cost functional. It consists of the so-called
Mayer term or the final state evaluation V (x(tf )) and the integral part, which is also
known as the Lagrangian form (

∫ tf
t0 L(x(t),u(t)) dt). The u ∈ Rm is the control input

of the nonlinear system (7.2). In addition, an optimization problem may be subject to
a set of constraints such as (7.3) and (7.4). The h represents the inequality constraints,
and g denotes the equality constraints. The end conditions g describe a desired state
xf to be reached at a time tf , e.g., (g(x(tf )) = x(tf ) − xf ). The end time tf may
be predetermined or be a part of the solution of the optimization problem. Eq. (7.3)
describes inequality constraints, such as the limitation of a control variable or a state.
Boundaries of the control variable u or the state x of the system can be expressed by

u(t) ∈ U ⊆ Rm , ∀t ∈ [t0, tf ] , (7.5)
x(t) ∈ X ⊆ Rn , ∀t ∈ [t0, tf ] . (7.6)

In practice, such restrictions may be voltage limitation of a motor, maximum force
of an actuator or restrictions in workspace. For the solution of dynamic optimization
problems, numerical methods are usually required. Since solving the Hamilton-Jacobi-
Bellman equation1 is limited to a small number of state variables, indirect and direct
numerical methods are mostly considered for solving optimal control problems.
The indirect methods rely on solving the problem indirectly by formulating the opti-
mal control problem as a boundary value problem [120]. Then, an optimal solution

1The Bellman equation can be solved by backwards induction, either analytically or numerically.
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is found that satisfies boundary values. Further information about indirect methods
can be found in [18, 107]. In the direct approaches, the infinite-dimensional optimal
control problem is approximated with a finite-dimensional problem. By discretizing the
problem in time and defining the states and control variables at those time points, the
control problem can be formulated as a nonlinear programming (NLP) problem. The
NLP problem can be efficiently solved with numerical methods of nonlinear optimiza-
tion. Direct approaches for the solution of constrained OCPs are more widespread than
indirect methods due to their simple applicability and robustness. The best known
direct approaches are: Direct single-shooting, direct multiple-shooting, direct colloca-
tion and pseudospectral collocation [120]. For a detailed introduction of the nonlinear
optimization methods, the reader is referred to the literature [18, 121, 10].
In this study, we implement the problem as direct multiple-shooting. In the direct
multiple-shooting method, the control trajectory is parameterized (e.g., piecewise con-
stants) and common numerical adaptive integration methods (e.g., Runge-Kutta) are
used for the time discretization of the continuous time dynamics. After converting the
problem into an NLP problem, an appropriate solver is required to obtain the optimal
control trajectory.
The constrained NLP problem is defined as

min
x

J(x), x ∈ Rn (7.7)

s. t. :
h(x) ≤ 0, (7.8)
g(x) = 0. (7.9)

Thereby, J represents the cost functional, which is subject to the inequality and the
equality constraints, h and g, respectively. In the present work, the interior-point (IP)
solver is used. For the implementation of a nonlinear IP approach, the reader is referred
to [142].

7.2 NLP Solver

There is a wide range of software packages for solving dynamic optimization problems
using the direct methods (e.g., ACADO [62], Pyomo [60], GEKKO [16], CasADi [8],
GAMS [19], DIDO [124], AMPL [47], PSOPT [17], GPOPS-II [111], ICLOCS2 [95]).
Fundamentally, these differ with respect to the supported problem classes, the interface
(Python, Matlab, Fortran, C++), the calculation method for the required derivatives,
the transcription method for the transformation of the OCP into an NLP and the
available interfaces for the NLP solvers.
In this study, we need a free software framework with an interface to MATLAB, which
calculates the required derivatives using algorithmic differentiation (AD) and provides
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interfaces to efficient NLP solvers like IPOPT (Interior Point OPTimizer). These re-
quirements were fulfilled by the open-source software CasADi.
CasADi is a symbolic toolbox for algorithmic differentiation (AD) and numeric opti-
mization with a syntax taken from computer algebra systems (CAS) [9, 7]. It is pri-
marily a gradient-based numerical optimization tool mainly focused on finding optimal
control inputs. This symbolic framework allows the user to define symbolic expressions
for Eqs. (7.1)-(7.4), and evaluate the derivatives using algorithmic differentiation. In
order to solve the optimization problem, the formulated OCP (7.1)-(7.4) must be con-
verted into an NLP. CasADi does not take over this step, but offers some functionalities
that considerably simplify the transcription.

7.3 Problem Formulation

In this chapter, we once again investigate a flocking system assuming, as in the previous
chapters, that each agent has a mechanism to communicate with its neighboring agents
and receives their relative positions. Most of the leader-follower approaches allow all
agents to track a leader, a target position, and to detect the obstacles within their
sensing ranges. In contrast to the schemes presented in previous chapters, we assume
by now that the agents cannot perceive obstacles and interact with them. In addition,
the agents do not know the group objective. The aim of this study is to develop
a control concept for steering a flocking multi-agent system with limited perceptive
abilities and limited information about the environment to an unknown target position
by ensuring collision avoidance with obstacles.
The interaction between the agents is based on the potential function presented in
Section 2.2. The state of each agent is represented by (pi,vi) ∈ Rm × Rm, which
denote the position and velocity of the i-th agent in m-dimensional space, respectively.
The double-integrator dynamics of a group of N agents are identical to those in [101,
Algorithm 1] and given by

ṗi = vi
v̇i =

∑
j∈Ni

ϕα(‖pj − pi‖σ)nij +
∑
j∈Ni

aij(p)(vj − vi)

for i = 1, . . . , N . The neighborhood of agent i is defined as

Ni = {j ∈ V : ‖pj − pi‖ < rc},

where V is a set of all agents and rc denotes the interaction range. Furthermore, each
agent tries to keep the predefined distance d to its neighbors and the mathematical
boundary condition is given as follows:

‖pj − pi‖ = d, ∀j ∈ Ni(p)
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According to observations in nature, the overall goal is not always known to the entire
group. In this case, the group forms a hierarchical structure to achieve the objective
like a wolf pack with an alpha wolf (leader), which rules the group [86]. With this
motivation, we extended the flocking algorithm proposed in [100] with an external
leader-agent that can interact with all other agents in the group while it is in the
interaction range of them. The leader agent is not followed by other agents. However,
it is perceived as a special agent. In this respect, all agents receive stronger artificial
interaction forces from the leader and thus, the leader can influence the whole group.

7.4 Optimal Control through Guidance of a Leader

In the present setting, the leader-agent is the only one that priorly knows the group
objective and the environment. The uninformed agents2 have weak sensors with limited
sensor bandwidths. As a result, they can only communicate with the agents in their
sensing range and do not detect any obstacle or know the coordinates of the predefined
target point.

7.4.1 Extended Model with a Leader-Agent

In the following, we extend the flocking model considered in [100, Algorithm 1] appro-
priately for our setting by considering the leadership concept proposed in [146]. The
leader agent is identified with the index 1 and the index b refers to the uninformed
agents. The system has N agents including the leader. The extended model with the
action of an externally controlled leader-agent is described by the following system of
differential equations

ṗ1 = v1

v̇1 =
∑
b∈N1

ϕα(‖pb − p1‖σ)n1b︸ ︷︷ ︸
G1

+
∑
b∈N1

a1b(p)(vb − v1)
︸ ︷︷ ︸

C1

+u (7.10)

ṗb = vb
v̇b =

∑
j∈Nb

ϕα(‖pj − pb‖σ)nbj︸ ︷︷ ︸
Gb

+
∑
j∈Nb

abj(p)(vj − vb)︸ ︷︷ ︸
Cb

+Lb

for b = 2, . . . , N

(7.11)

where u is the control input that acts only on the velocity dynamics of the leader-agent.
The interaction between agents (acceleration term) includes two significant terms (cf.

2From now on, we will refer to all agents with no prior information about the environment and the
group objective as uninformed agents.
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Section 4.2.1). The terms G1 and Gb represent the gradient-based term of the leader
and uninformed agents, respectively. The term G1 allows the controlled leader agent to
interact with the uninformed agents by applying repulsive-attractive forces. Moreover,
Gb quantifies the force to maintain the α-lattice form among the followers. The second
terms (C1,Cb) in both leader and follower dynamics represent the consensus term (cf.
Section 4.2.1).
A further interaction between the uninformed agents and the leader is described by
the term Lb in (7.11). Similarly to the refined flocking model in the study [26], the
leader action is defined using the gradient-based term, which controls the attraction
and repulsion between the uninformed agents and the leader. The leader action term
is given by

Lb = λ · ϕα(‖pb − p1‖σ)nb1, (7.12)

where the strength of the interaction between the b-th agent and the leader can be
adjusted by the positive constant λ > 0. In this way, the uninformed agents can be
influenced through the actions of the leader agent, which will be optimally controlled.

7.4.2 Controllability of the Extended Model

Within the scope of the problem considered in this chapter, the question arises whether
the given system can actually be influenced by the control variable u(t) in such a way
that the desired objectives are achieved. In order to answer this, the controllability
analysis of the system introduced in Section 7.4.1 is crucial, since this is an elementary
property for the realization and functionality of the concept. For a detailed introduction
to the controllability of a system, readers are referred to the literature [2, 35, 97].
The extended model is a nonlinear system. A nonlinear system is defined as

ẋ(t) = f(x(t),u(t)), (7.13)

where x(t) ∈ Rn and u(t) ∈ Rm are the state vector and control input of the system,
respectively. f represents a vector function. Alternatively, the system (7.13) can also
be written as

ẋ(t) = f(x(t)) + Bu(t), (7.14)

where the B ∈ Rn×m denotes the input matrix. The controllability is a global system
property for linear systems. However, the statement does not always hold for nonlinear
systems. There are nonlinear systems that are only controllable on a subset of their
reachable sets. This system property is called local controllability (see [2, p. 183]).
In order to prove the local controllability of a nonlinear system, the system is linearized
at an equilibrium point.
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Definition 7.1 (Linearized system). The linearized system of the nonlinear system
ẋ(t) = f(x(t),u(t)) at an equilibrium state (xe,ue) is given by

ẋ = ∂f
∂x

∣∣∣∣∣
xe,ue

x + ∂f
∂u

∣∣∣∣∣
xe,ue

u

= A x + B u (7.15)

For the equilibrium point (xe,ue), it holds ẋ(t) = f(xe,ue) = 0.
N

The next step in the controllability analysis of a system is the definition of a suit-
able controllability criterion (see [81]). The well-known controllability criteria are e.g.,
Kalman’s criterion, Gilbert’s controllability criterion and Hautus lemma. In this study,
Kalman’s criterion is used. This criterion refers to the controllability matrix given as

C(A,B) = [B AB . . . An−1B] ∈ Rn×nm (7.16)

Theorem 7.1 (Kalman rank condition). According to Kalman, a linear system is fully
controllable if the controllability matrix C has full rank:

rankC = n.

Remark 7.1. The system (7.14) is locally controllable if the linearized system (7.15) is
controllable according to Theorem 7.1. M

7.4.2.1 Equilibrium Point of the Multi-Agent System

With the above theorem, the local controllability of the extended model can be analyzed.
However, before doing this, the possible equilibrium point of the system has to be
defined. The asymptotic behavior of the system over time is of particular importance
for the definition of the equilibrium point. The asymptotic behavior of a multi-agent
system can be analyzed, for example, by means of dispersion and dissent (see Section
3.1.2). For a system with i = 1, . . . , N agents, e.g., the dissent V (t) = 0 (see 3.11)
means that the velocities of all agents are matched, which is desired for the flocking
behavior t→ T .
A flocking system is basically in a quasi-static state if velocity consensus emerges
through local interactions among the agents.
Definition 7.2 (Velocity consensus). Within a multi-agent system with i = 1, . . . , N
agents, the consensus state is reached if the following holds:

1. lim
t→∞

vi(t) = v̄ or equivalent

2. lim
t→∞

Λ(t) = 0.
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with v̄(t) = 1
N

∑N
i=1 vi(t). N

In addition to the velocity consensus, cohesion (lattice-type structure) is another re-
quirement for flocking behavior.
Definition 7.3 (State of the lattice-type configuration). If a multi-agent system has
an α-lattice configuration, the following holds

∇piV (‖pj − pi‖) = ρh

(
||pj − pi||σ

rα

)
ϕ(||pj − pi||σ − dα) = 0, for j ∈ Ni (7.17)

where rα = ‖rc‖σ and dα = ‖d‖σ. V denotes the smooth artificial potential (see (2.21))
and ∇piV = 0 denotes its global minimum. N

The state in which the agents fulfill both conditions from Definition 7.2 and Defini-
tion 7.3, is interpreted as the equilibrium point of a flocking multi-agent system.

7.4.2.2 Controllability Analysis

In this section, we analyze the local controllability of the extended multi-agent system
(7.10)-(7.11). For the extended model, the vector function f(x) and the input matrix
B are defined as

f(x) =



v1

v2
...

vN
G1 + C1

G2 + C2 + L2
...

GN + CN + LN



, B =



0m,m
0m,m
...

0m,m
Im

0m,m
...

0m,m



, (7.18)

where 0m,m ∈ Rm×m is the null matrix and Im is an m-dimensional unit matrix. With
the state vector x defined as

x =

pq
vq

 , (7.19)
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where the vector pq := (p>1 ,p>1 , . . . ,p>N)> ∈ Rm·N includes the positions of the agents
and vq := (v>1 ,v>1 , . . . ,v>N)> ∈ Rm·N are the velocities of the agents. The vector
function is rewritten as

f(x) =

fp
fv

 , (7.20)

with

fp =



v1

v2
...

vN

 , fv =



G1 + C1

G2 + C2 + L2
...

GN + CN + LN

 . (7.21)

where fp ∈ Rm·N and fv ∈ Rm·N represent the parts of system dynamics with respect
to position and velocity. The linearized multi-agent system can thus be written as
ẋ = A x + B u, where A denotes the Jacobian matrix of f(x) at the equilibrium point
x∗ = ( p∗q, v∗q )>. The Jacobian matrix is given by

A = ∇f(x∗) =

∇p fp ∇v fp
∇p fv ∇v fv

 (7.22)

with

∇p fp = 0m·N,m·N ,
∇v fp = Im·N ,
∇p fv = ∇p Gi +∇p Ci +∇p Lb,

∇v fv = ∇v Ci.

(7.23)

The individual derivative terms from (7.23) are as follows:

∇p Gi = [∂Gij], ∂Gij :=
(
∂Gi

∂pj

)
,

∇p Ci = [∂Cij], ∂Cij :=
(
∂Ci

∂pj

)
,

∇p Lb = [∂Lij], ∂Lij :=
(
∂Li

∂pj

)
,

∇v Ci = [∂Cij], ∂Cij :=
(
∂Ci

∂vj

)
,

(7.24)
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with the partial derivatives

∂Gi

∂pi
=

N∑
j 6=i,j∈Ni

∂nij
∂pi

ρh(||pj − pi||σ/rα)ϕ(||pj − pi||σ − dα)

− nij
∂ρh(||pj − pi||σ/rα)

∂pi
ϕ(||pj − pi||σ − dα)

+ nij ρh(||pj − pi||σ/rα) ∂ϕ(||pj − pi||σ − dα)
∂pi

,

(7.25)

∂Gi

∂pj
= ∂nij
∂pj

ρh(||pj − pi||σ/rα)ϕ(||pj − pi||σ − dα)

+ nij
∂ρh(||pj − pi||σ/rα)

∂pj
ϕ(||pj − pi||σ − dα)

+ nij ρh(||pj − pi||σ/rα) ∂ϕ(||pj − pi||σ − dα)
∂pj

,

(7.26)

∂Ci

∂pi
=

N∑
j 6=i,j∈Ni

(vj − vi)
∂ρh(||pj − pi||σ/rα)

∂pi
, (7.27)

∂Ci

∂pj
= (vj − vi)

∂ρh(||pj − pi||σ/rα)
∂pj

, (7.28)

∂Ci

∂vi
= −

N∑
j 6=i,j∈Ni

Im ρh
(
||pj − pi||σ

rα

)
, (7.29)

∂Ci

∂vj
= Im ρh

(
||pj − pi||σ

rα

)
, (7.30)

∂Lb

∂p1
= λ

(
∂nb1
∂p1

ρh(||p1 − pb||σ/rα)ϕ(||p1 − pb||σ − dα)

+ nb1
∂ρh(||p1 − pb||σ/rα)

∂p1
ϕ(||p1 − pb||σ − dα)

+ nb1 ρh(||p1 − pb||σ/rα) ∂ϕ(||p1 − pb||σ − dα)
∂p1

)
,

(7.31)
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∂Lb

∂pb
= λ

(
∂nb1
∂pb

ρh(||p1 − pb||σ/rα)ϕ(||p1 − pb||σ − dα)

+ nb1
∂ρh(||p1 − pb||σ/rα)

∂pb
ϕ(||p1 − pb||σ − dα)

+ nb1 ρh(||p1 − pb||σ/rα) ∂ϕ(||p1 − pb||σ − dα)
∂pb

)
.

(7.32)

The partial derivatives of the σ-norm for the i-th and j-th agent are given as

∂||pj − pi||σ
∂pj

=
√

1
1 + ε ||pj − pi||2

(pj − pi)>, (7.33)

∂||pj − pi||σ
∂pi

= −
√

1
1 + ψ ||pj − pi||2

(pj − pi)>

= −∂||pj − pi||σ
∂pj

.

(7.34)

Analogously, the partial derivatives of the vector nij, the functions ρh(z) and ϕ(p) of
the action function ϕα can be written as follows:

∂nij
∂pj

= Id√
1 + ε ||pj − pi||2

− ε
(
1 + ε ||pj − pi||2

)− 3
2 (pj − pi)(pj − pi)>,

(7.35)

∂ρh(z)
∂pj

=


0, z ∈ [0, h)
− π

2 (1−h)rα
∂||pj−pi||σ

∂pj sin
(
π(z−h)

1−h

)
, z ∈ [h, 1]

0, otherwise
(7.36)

with z = ||pj−pi||σ
rα

,

∂ϕ(k)
∂pj

= 1
2(a+b) ∂||pj − pi||σ

∂pj

(
1 + (k + c)2

)− 1
2
(

1− (k + c)2
(
1 + (k + c)2

)3
)
, (7.37)
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with k = ||pj − pi||σ − dα.

∂nji
∂pi

= −∂nji
∂pj

, (7.38)

∂ρh(z)
∂pi

= −∂ρh(z)
∂pj

, (7.39)

∂ϕ(k)
∂pi

= −∂ϕ(k)
∂pj

. (7.40)

All partial derivatives not listed are zero. According to Definition 7.1 and Definition 7.2,
the following should hold at the equilibrium point of the extended model:

ρh

(
||p∗j − p∗i ||σ

rα

)
ϕ(||p∗j − p∗i ||σ − dα) = 0 (7.41)

and

v∗1 = v∗2 = · · · = v∗N . (7.42)

Thus, the matrix A = ∇f(x∗) at an equilibrium point can be formulated using the
following derivative terms:

∂Gi

∂pi

∣∣∣∣∣
x∗

= −
N∑

j 6=i,j∈Ni
nij

∂ρh(||p∗j − p∗i i||σ/rα)
∂pi

ϕ(||p∗j − p∗i ||σ − dα)

+ nij ρh(||p∗j − p∗i ||σ/rα)
∂ϕ(||p∗j − p∗i ||σ − dα)

∂pi
,

(7.43)

∂Gi

∂pj

∣∣∣∣∣
x∗

= nij
∂ρh(||p∗j − p∗i ||σ/rα)

∂pj
ϕ(||p∗j − p∗i ||σ − dα)

+ nij ρh(||p∗j − p∗i ||σ/rα)
∂ϕ(||p∗j − p∗i ||σ − dα)

∂pj
,

(7.44)

∂Ci

∂pi

∣∣∣∣∣
x∗

= 0, (7.45)

∂Ci

∂pj

∣∣∣∣∣
x∗

= 0, (7.46)
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∂Lb

∂p1

∣∣∣∣∣
x∗

=λ

(
nb1

∂ρh(||p∗1 − p∗b ||σ/rα)
∂p1

ϕ(||p∗1 − p∗b ||σ − dα)

+ nb1 ρh(||p∗1 − p∗b ||σ/rα) ∂ϕ(||p∗1 − p∗b ||σ − dα)
∂p1

)
,

(7.47)
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(
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∂ρh(||p∗1 − p∗b ||σ/rα)
∂pb
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∂pb

)
,

(7.48)
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Id ρh

(
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)
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∂Ci
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x∗

= Id ρh
(
||p∗j − p∗i ||σ

rα

)
. (7.50)

The linearized system ẋ = A x + B u with A = ∇f(x∗) is controllable if the controlla-
bility matrix

C(A,B) = [B AB A2B . . . A2mN−1B] (7.51)

has full rank.

7.4.3 Formulation of the Optimal Control Problem

Now we can write the optimal control problem subject to the previously introduced
dynamics (7.10) and (7.11) for t ∈ [0, T ].

min
p,u

J(p,u) = 1
2 ||p1(t)−pd(T )||2+µ

2

N∑
b=1

∫ T

0
||p1(t)−pb(t)||4 dt+

ν

2

∫ T

0
||u(t)||2 dt (7.52)

subject to ṗ1 = v1,

v̇1 = G1 + C1 + u,
ṗb = vb,
v̇b = Gb + Cb + Lb, b = 2, . . . , N

(7.53)



130 Chapter 7. Optimal Control of Swarming Agents

with the given initial states

p(t0) = p(t = 0) = p0,

v(t0) = v(t = 0) = v0.

The parameters µ and ν are positive constants. pd denotes the desired target position.
The first term of the cost functional (7.52) aims at minimizing the distance between the
leader and the desired position. The second term is for the minimization of the distance
between the leader and the uninformed agents considering the additional parameter T
that scales the final time. The power of this term is heuristically determined. The third
term is responsible for the minimum effort. For the objective of trajectory tracking,
pd(T ) is replaced by pd(t), which represents the desired trajectory.
In order to plan a collision-free trajectory, we consider static obstacles, which are located
between the agents and the desired target position. For this purpose, we include the
following inequality constraint:

h(p(t),u) : ||pi(t)−Ok|| − rk > ds, ds > 0, (7.54)

with k ∈ O and O denotes the set of all obstacles. Moreover, ds is the safe distance.
We consider only circular obstacles with radius rk and center position Ok.
The state variables are not constraint. However, we have an additional final condition:

g(p(t),u) : ||p1(t)− pd(T )|| = 0. (7.55)

7.5 Simulation Studies

In this section, we present the results of numerical studies with the proposed optimal
control scheme. The OCP is implemented using MATLAB and the CasADi frame-
work. In order to solve the OCP, we used the interior point solver (IPOPT) which
has an internal maximum iteration number of 3000 iterations. For the discretization,
we applied a simple fixed-step fourth-order Runge-Kutta (RK4), which is implemented
using CasADi symbolics. The optimization problem is solved using the software pack-
age IPOPT for large-scale nonlinear optimization [141]. The implementation is done
in MATLAB 2018b using CasADi 3.2.2 on a computer with Intel i7-4770 CPU @ 3.4
GHz.
In order to evaluate the effectiveness of the proposed optimal control scheme, we con-
sider two tasks. The first task is steering the group to a target point by avoiding
obstacles and the second task is tracking a given trajectory. Corresponding to tasks,
the values of the parameters of the system for the simulations are given in Table 7.1.
In addition, the parameters for discretization of the OCP are shown in Table 7.2.
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Table 7.1: Parameters of the system.
Task
1 2

Model parameters

d 2 1.5
rc 10 7.5
ε 0.1 0.1
a 5 5
b 10 10
h 0.2 0.2
λ 1.4 1.4

Cost functional
µ 1 1
ν 1 1

Obstacle avoidance ds 0.5 -

Table 7.2: Parameters of discretization for the OCP.

Notation Parameters
Value

Task 1 Task 2
Time horizon T 10 20

Number of control intervals I 300 600
Runge–Kutta order M 4 4
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7.5.1 Task 1: Moving to a Target Point with Obstacle Avoidance

In this task, the target position is defined at pd = (15, 20)>. The leader’s starting
position is p1 = (4, 5)> and its initial velocity is v1 = (1, 1)>. The uninformed agents
b = 2, . . . , N are randomly placed in a rectangular area [3.5, 6]× [4, 6.5] and their initial
velocities vb(0) ∈ R2 are randomly selected from [−0.8,−0.8]. The initial guess for
solving the optimal control problem is a straight line linking the leader-agent’s initial
position and the target position. We use a similar initial guess for the rest of the group.
However, the lines are shifted by the value of their starting positions and they have
identical slopes. We do not assume any initial guess for the control input u(t), which is
a piece-wise continuous function with constant values on intervals. In simulations, we
consider three circular obstacles.
Fig. 7.1 shows the positions of the agents for the intervals I = [0, 75, 150, 225, 300] and
the optimal trajectory of the leader guiding 6 agents. The blue triangles represent the
positions and the directions of motion of the agents and the red triangle corresponds
to the leader-agent.
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Figure 7.1: Interval snapshots of a group of N = 7 agents performing Task 1.

Fig. 7.2 illustrates the trajectories of the agents. Note that the initial values of the
agents heavily influence the optimal solution and also the trajectories of the agents.
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Furthermore, Fig. 7.3 represents the evolution of the dissent3 between the uninformed
agents. It can be seen that the dissent oscillates within a certain range. The reason
for this is the agile maneuvers of the leader-agent. For example, the leader-agent hides
itself quickly from the group at I = 70 in order to reduce its influence on the group.
We can observe this rapid change in dissent (Fig. 7.3) as well.
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Figure 7.2: Trajectories of a group of
N = 7 agents performing
Task 1.
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Figure 7.3: Dissent of a group of N = 7
agents during Task 1.

7.5.2 Task 2: Trajectory Tracking

The difference between the cost functionals of the first and second task is that the
desired target position is time-variant pd = pd(t). For each time step, the target
position pd travels along the desired trajectory. The initial guess for the solution of the
trajectories consists of two parts: A line linking the leader-agent’s position and a given
point on the circular trajectory and the desired circular trajectory itself. The defined
line in the first part of the initial guess touches the circle tangentially. Moreover, for
the rest of agents, we have the same initial trajectory guesses, but they are shifted by

3Dissent was defined in Eq. (3.11).
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the value of their starting positions relatively to the position of the leader-agent. In
the simulation, the reference trajectory is a circle with the radius 4.5 and the center at
(5.5, 8)>. The group objective is moving along the circular path twice. The leader is
placed at p1 = (12.5, 10.5)> with the initial velocity v1 = (−0.5,−0.5)>.
Fig. 7.4 illustrates the positions of the agents for the intervals I = [0, 130, 200, 250,
350, 400, 550, 600] and the optimal trajectory of the leader for a system with N = 7
agents. The trajectories of the agents are represented in Fig. 7.5. In addition, Fig. 7.6
shows the distance between the leader and the trajectory d1t and the distance between
the flock center and the trajectory dct. According to Fig. 7.6, it is clear that the agents
are far away from the trajectory at the beginning because of the initial positions. The
evolution of dct shows that the group can track the trajectory well despite the agents’
lack of information concerning the trajectory. However, the tracking behavior can be
improved with a different parameter set. Moreover, it would be better for another
trajectory with a greater radius. In addition, minimizing the step size in the simulation
by reducing the number of control intervals might also provide a better tracking.
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Figure 7.4: Interval snapshots of a group of N = 7 agents performing Task 2.
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Figure 7.5: Trajectories of a group of
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Figure 7.6: Distance d1t and dct of a
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ing Task 2.

7.5.3 Remarks on the Proposed Approach

The results of this work have shown that a multi-agent system applying the flocking
algorithm in [100] can fulfill a task without information about the objective and the
environment if guidance is provided by a single optimally controlled leader-agent. It has
been observed that the distances between the leader-agent and the rest of the group can
be very small during trajectory tracking. The reason for this may be the influence of the
leader’s agile movements. This can be solved with an additional inequality constraint
which should guarantee a minimal allowed distance between the leader-agent and the
other agents. However, this would restrict the solution space of the OCP.
The direct multiple-shooting approach is prone to extreme nonlinearities in the cost
function and in constraints. Hence, another direct approach such as direct collocation
can be considered to obtain better results. In addition, the quality of the solution in
this approach heavily depends on the initial guess. Trajectories, which are inside the
solution set, obtained from previous optimizations with a fewer number of agents can
serve as the initial guess instead of simple straight lines toward target position. As an
alternative, using the A* algorithm [59] can also provide better initial guesses that are
close enough to the solution set.
In order to analyze the optimization quality with respect to the size of the group,
simulations with 3, 4, 5, 6 and 7 agents were performed for the Task 1. Fig. 7.7
shows the values of the cost functional at the end of the optimization obtained from
20 simulations for each group by randomly placing the agents in the above-mentioned
rectangular area. Apparently, the values of the cost functional tend to increase as the
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number of the agents increases. This is an expected result because the higher number of
states increases the number of inequality and equality constraints. This narrows down
the solution space that satisfies all problem constraints and the optimization problem
becomes more complex.
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Figure 7.7: Box-plot for Task 14.

7.6 Chapter Highlights

In this chapter, we introduced an optimally controlled leader-agent concept and its
theoretical application by extending the flocking algorithm from [100] in the form of
a hierarchical structure according to [146]. We simulated and evaluated the presented
concept. This includes a leader-agent that knows the predetermined group objective
beforehand and interacts with other agents in the group. Through optimal guidance of
the leader, we can steer a group of agents with limited information toward an objective.
Optimal control inputs for the leader were determined by using the IPOPT solver
provided by the open-source tool CasADi. In this study, we defined two tasks for the
group: Moving to a target position with obstacle avoidance and tracking a predefined
trajectory.
With the presented concept, it is possible to find a high number of optimal solutions for
both tasks. However, the optimal solution might fail depending on the initial states and
system parameters because of the fact that the IPOPT may find a local optimum. Lim-
ited sensing capabilities are also a factor that can restrict the achievable performance.
Moreover, for larger multi-agent systems, it has been observed that the agents move too
close to each other. Nonetheless, the group reaches the target position without colliding

4The median of the data is indicated by a horizontal bar. Each box includes data values ranging
from the first to the third quartile. The whiskers indicate the farthest data points that are within
1.5 times of the interquartile range. The outliers are shown with a plus symbol.
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with obstacles. The theoretical concept proposed in this chapter can be extended to
the coordination and navigation of multi-vehicle systems or warehouse logistics.
The supervised student thesis [163] has contributed to the development of this chapter’s
results.





8 Summary and Outlook
This thesis presents several approaches for distributed coordination, navigation and
control for multi-agent systems. We have mainly addressed three different types of
problems with respect to cooperative navigation: Collective local motion planning,
coverage-oriented motion planning and global motion planning for a group of agents
through an external leader. In this chapter, we now summarize the main contents,
provide final remarks and motivations for future research.

8.1 Summary

This thesis is devoted to develop motion planning strategies for different problem sets.
The focus is set on the theoretical development of motion planners that assist a group
of interacting agents. Chapters 3, 4, 5 and 6 deal with online motion planning using
distributed control methods. Moreover, Chapter 7 employs an offline motion planning
strategy, where the motion planner computes the path before the start of motion. In
addition, except for the particle system presented in Chapter 3, all approaches require
only neighbor-to-neighbor information exchange. Since the thematic center point of the
thesis is the motion planner, we consider only holonomic agents to preserve simplicity
of the concepts. Furthermore, in all chapters, we deal with static obstacles.
In Chapter 3, we investigate the application potential of a Newton-type particle system,
the CD model, which assumes all-to-all communication ability among particles. This
means that each agent can exchange information with all other agents regardless of their
locations. After analyses of inter-agent collision property of the CD model, we conclude
that the system preserves its collision-free behavior despite an additional control input
for navigation. In addition, inspired by the concept in [100], we propose an extended
CD model with the aim to navigate it through a virtual leader without collision with
different shaped convex obstacles.
In Chapter 4, we are concerned with another rendezvous problem combining a map-
based schema with the flocking dynamics from [100]. The focus of this chapter is to
recognize and eliminate local minima in the existence of concave obstacles. The pro-
posed approach requires virtual map construction and neighbor-to-neighbor exchange
of aggregated information about the unknown workspace. In this problem set, each
agent has a communication mechanism with a limited communication range. In ad-
dition, each agent can localize itself and detect obstacle locations within its limited
sensing range. The presented work in this chapter builds upon the flocking algorithm
presented in [100]. In addition to potential field forces, we introduce an auxiliary input
to generate tangential forces, which result in a rotational motion of the agent. However,
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this does not solely allow the agent to escape from many concave obstacles. In order
to eliminate local minima, each agent sets a virtual temporary target point by sharing
and processing local information. In this way, it is possible to increase the success rate
in avoiding local minima.
Chapter 5 also deals with the same problem as the previous chapter. In the strategy
proposed in this chapter, the group’s cohesive behavior and collective decision-making
have a special priority. The difference between this chapter and Chapter 4 is that in this
chapter, the agents share only critical points for motion planning instead of constructing
a full map of the workspace by storing all utilized sensing points. This releases the
memory of agents. However, in addition to the critical points, each agent shares and
memorizes relevant information about its orientation and motion status, which gives
hints about its current and sometimes past actions during navigation. Although the
agents do not store all of this information during the whole operation, one drawback is
the increased communication effort because of intense information exchange. Despite
it, the sophisticated communication architecture raises the awareness of the agents for
the unknown environment and enables them to find an appropriate path to a desired,
joint target position in complex areas.
Chapter 6 is devoted to area coverage with multiple mobile agents. The abilities of
agents regarding the way of communication and obstacle detection are identical to
those in Chapter 4 and 5. However, for an efficient, coverage-oriented motion planning,
agents have to preferably move away from each other instead of building flocks. Thus,
the anti-flocking strategy is considered to accelerate the coverage. For this purpose,
similar to the map creation in Chapter 4, the workspace is described by a finite set of
cells. Using the virtual map of the workspace, communicated information and sensor
data, each agent plans elaborated motions and identifies its environment at the same
time. For the proposed algorithm for the complete coverage of an unknown workspace,
the mobile agents do not require any information about the obstacles. Furthermore,
they are able to virtually reconstruct the obstacles, identify inaccessible regions inside
of them and finalize exploration task on their own.
Chapter 7 deals with the navigation of a group through a single intelligent agent. In
contrast to the previous methods presented in this thesis, we employ an offline motion
planning approach for rendezvous problem and for trajectory tracking. This requires a
static environment formerly known to the intelligent agent, the so-called leader-agent.
Through optimally planned motion, which is calculated in advance, the leader influences
the behavior of the group of agents. Hereby, the challenging part of the problem set
is that the regular agents do not know the group objective. Furthermore, they cannot
detect obstacles and do not have information about the environment. For this task, we
first formulate a constrained optimal control problem. The controller is implemented
within the dynamics of the leader-agent. Then, the optimal control problem is con-
verted into a nonlinear programming problem using a direct single shooting approach
and solved by the interior-point method. For the calculation of derivations, we used
algorithmic differentiation provided by the software framework CasADi.
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8.2 Final Remarks

The results of the approaches presented in this thesis provide interesting insights into
the cooperative motion planning of mobile multi-agent systems, especially in unknown
or partially known operation areas. The theoretical investigation of self-driven active
particles in Chapter 3 is significant to replicate some naturally observed flocking phe-
nomena. However, the presented concept is not very suitable for technical applications
because of two reasons. Firstly, the all-to-all communication assumed in this approach
is a limiting factor due to the limited communication bandwidths of agents in real-world
applications. Secondly, the distance between the agents is not easy to influence. Intu-
itive adjustability of distances between agents plays a crucial role to be able to scale
the problem.
All navigation schemes after Chapter 3 require neighbor-to-neighbor information ex-
change, which allows their application using agents with relative short communication
ranges. In addition, local communication makes the system easily adaptable to the
change of agent number and also helps to minimize power consumption because the
agents do not have to be necessarily connected to all other agents during the whole
operation.
The dynamics of mobile agents are described using the point-mass model, which is the
simplest model that is frequently used for motion planning. The proposed methods
in this thesis are particularly designed to coordinate holonomic agents. Hence, point-
mass models are legitimate to represent the robots’ dynamics. In addition, through
point-mass models, motion planning complexity is considerably reduced for holonomic
agents.
The presented algorithms are also suitable to plan trajectories for nonholonomic agents.
However, these agents should be operated at low speed to have a relative small tra-
jectory tracking error. The results of the application of a flocking algorithm to a non-
holonomic MAS can be found in the student thesis [164]. For mobile agents subject
to nonholonomic constraints in practice, an example workflow with the presented ap-
proaches would be as follows:

1. Transformation of nonholonomic agent state vector (xi, yi, vi, θi) to the states of
point-mass model (pi,vi). Note that xi and yi describe the position of the agent, vi
is the speed and θi denotes the heading angle with respect to the global coordinate
system.

2. Each agent applies the point-mass-model-based navigation approach and plans
its motion in discrete time for the next time step k+ 1 → (pi(k+ 1),vi(k+ 1)).

3. The desired agent state calculated by the navigation algorithm
(pi(k+1),vi(k+1)) is transformed back to the agent coordinates (xi(k+1), yi(k+
1), vi(k + 1), θi(k + 1)).

4. This is inserted as a reference signal into the position and velocity controller (e.g.,
a closed-loop linear–quadratic regulator) of the agent and the agent is operated.
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In Chapter 7, we solve an optimal control problem. Thereby, initial guess plays a sig-
nificant role not only in the convergence rate, but also influences whether the algorithm
convergences to an optimal solution at all. Hence, providing a good initial guess, which
is close enough to the solution, is of great importance for future investigation.
Although motion planning approaches proposed in this thesis neglect measurement
noise, they can be extended by DKF to obtain a good performance in the existence of
measurement noise. Using DKF for a flocking system, the student thesis [167] shows
an acceptable compensation of the noisy measurement of the target position.

8.3 Future Research Directions

Based on the experience gained through this thesis and considering the results and
remarks provided above, we can make several suggestions for future research. There
are still challenges to be dealt with in the coordination and control of multi-agent
systems.
In this thesis, we address only problems on the Euclidean space. However, there are
problems in which agents are operated in some nonlinear spaces, e.g., on a sphere sur-
face. By extending the methods in the present work, some cooperative navigation tasks
with multiple agents in earth and space science can be performed in an optimal way.
Moreover, generalizing the algorithms for motion planning inside three-dimensional
spaces is also of interest to broaden the application fields of the control schemes.
The control strategies developed in this thesis are restricted to environments with static
obstacles. However, there are many operation areas with moving obstacles. Although
many studies on the avoidance of dynamic obstacles have been conducted using po-
tential fields, they usually address dot-like obstacles, which are easy to integrate into
our motion planning approaches. Since the obstacles are not so simple and have their
own dynamics in the real world, agents require more intelligence and better equipment
to estimate the dynamics of unknown obstacles. Furthermore, moving obstacles inside
narrow passages may lead to very complex problems in motion planning with multiple
agents, which deserve further and deep research that can be an independent study.
The proposed approaches can be implemented on holonomic robots equipped with laser
scanner and wireless communication devices. A similar experimental setup to that in
[28] can be used for demonstrations in future work. In this way, communication-related
practical issues, such as package loss and time delays in communication can be observed
and investigated separately in a future work.
It has recently been shown that the topology of the interaction network is important
for controlling mobile multi-agent systems, especially for the tracking of dynamic tar-
gets. Study [85] demonstrated that the agents are better at following a dynamic target
that slowly changes its direction of motion if they are in connection with more agents.
However, agents with a fewer number of neighbors can respond better to fast direc-
tional changes of the target. We can also confirm that it is difficult for a group to
reach consensus in the tracking of a sinusoidal trajectory with a high frequency. Thus,
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alternative network topologies for the communication can be investigated for collective
tracking tasks.
Regarding the optimal control scheme proposed in Chapter 7, an analysis of different
optimization methods and solvers concerning their real-time applicability for the con-
sidered problem can be a part of future work. Moreover, it is also of interest to adapt
the parameters of the OCP and the system parameters in order to find optimal solu-
tions for larger multi-agent systems in an easier way. Integrating a proper start value
generator into the OCP will increase the chances to find the optimum in optimization
and allow the handling of different shaped obstacles other than circular ones. In addi-
tion, extending the proposed concept to MPC in combination with machine learning to
learn some model parameters online is also an interesting direction for future work to
deal with dynamic environments including moving obstacles.





Appendix A

Algorithms: Collective
Navigation Framework

Algorithm A.1 : Status 0: Motion toward the desired goal position
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 0 do
2 if Nβ

i == 0 and Orientation information is available then
3 statusi(tk+1) = 5;
4 else if Nβ

i == 1 and Eq. (5.22)== 0 then
5 if Eq. (5.23)== 1 then
6 statusi(tk+1) = 4;
7 else if Eq. (5.23)== 0 then
8 statusi(tk+1) = 1;
9 else if Nβ

i == 2 then
10 statusi(tk+1) = 3;
11 else
12 statusi(tk+1) = 0;

145



146 Appendix A. Algorithms: Collective Navigation Framework

Algorithm A.2 : Status 1: Obstacle detection and tangential navigation
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 1 do
2 if Nβ

i == 0 then
3 if Eq. (5.11)== 1 then
4 statusi(tk+1) = 0;
5 else if Eq. (5.11)== 0 then
6 statusi(tk+1) = 2;
7 else if Nβ

i == 1 and Eq. (5.22)== 0 and Eq. (5.23)== 1 then
8 statusi(tk+1) = 4;
9 else if Nβ

i == 2 then
10 statusi(tk+1) = 3;
11 else if Relevant information about a corner is available (see Eq. (5.21)) then
12 statusi(tk+1) = 3;
13 else
14 statusi(tk+1) = 1;

Algorithm A.3 : Status 2: Motion at the endpoint of an obstacle
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 2 do
2 if Nβ

i == 0 and Eq. (5.11)== 0 then
3 statusi(tk+1) = 0;
4 else if Nβ

i == 1 and Eq. (5.22)== 0 then
5 if Eq. (5.23)== 1 then
6 statusi(tk+1) = 4;
7 else if Eq. (5.23)== 0 then
8 statusi(tk+1) = 1;
9 else if Nβ

i == 2 then
10 statusi(tk+1) = 3;
11 else if creset == 1 then
12 statusi(tk+1) = 0;
13 else
14 statusi(tk+1) = 2;
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Algorithm A.4 : Status 3: Corner avoidance maneuver
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 3 do
2 if Nβ

i == 0 then
3 statusi(tk+1) = 0;
4 else if Nβ

i == 1 and Eq. (5.22)== 0 then
5 if Eq. (5.23)== 1 then
6 statusi(tk+1) = 4;
7 else if Eq. (5.23)== 0 then
8 statusi(tk+1) = 1;
9 else if Nβ

i == 2 then
10 statusi(tk+1) = 3;
11 else
12 statusi(tk+1) = 3;

Algorithm A.5 : Status 4: Orientation phase
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 4 do
2 if Nβ

i == 0 then
3 if Relevant orientation information is available then
4 statusi(tk+1) = 5;
5 else if No relevant orientation information is available then
6 statusi(tk+1) = 0;
7 else if Nβ

i == 1 and Eq. (5.23)== 0 then
8 statusi(tk+1) = 1;
9 else

10 statusi(tk+1) = 4;
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Algorithm A.6 : Status 5: Tangential navigation based on received information
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 5 do
2 if Nβ

i == 0 then
3 if Eq. (5.11)== 1 then
4 statusi(tk+1) = 0;
5 else if No relevant information is available then
6 statusi(tk+1) = 0;
7 else if Relevant information about an endpoint is available and Eq.

(5.11)== 0 and Eq. (5.28)== 1 then
8 statusi(tk+1) = 2;
9 Apply Eq. (5.33);

10 else if Relevant information about an endpoint is available (Eq. 5.21) and

Eq. (5.28)== 0 then
11 statusi(tk+1) = 5;
12 Apply Eq. (5.30);
13 else if Nβ

i == 1 then
14 if Eq. (5.22)== 0 and Eq. (5.23)== 1 then
15 statusi(tk+1) = 4;
16 else if A virtual corner is determined (see Fig. 5.9) and Eq. (5.26== 1)

then
17 statusi(tk+1) = 3;
18 else if A virtual corner is determined (Fig. 5.9) and Eq. (5.26)== 0 then
19 statusi(tk+1) = 6;
20 else
21 statusi(tk+1) = 1;

22 else if Nβ
i == 2 then

23 statusi(tk+1) = 3;
24 else
25 statusi(tk+1) = 5;
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Algorithm A.7 : Status 6: Waiting mode
Data : statusi, Memory buffer
Result : statusi(tk+1)

1 while statusi(tk) == 6 do
2 if Reorientation information (status = 3 or status = 4) is available then
3 statusi(tk+1) = 4;
4 Apply the corresponding θc;
5 else if Relevant information about an endpoint is available (Eq. (5.21)) then
6 statusi(tk+1) = 4;
7 Adopt the direction of rotation of the circular motion for the next time step;
8 else if Information with status = 1 is available then
9 statusi(tk+1) = 4;

10 Apply the corresponding θc;
11 else
12 statusi(tk+1) = 6;
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