
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Adaptive Quadrature with the Combination
Technique for UQ Applications

Anastasiya Liatsetskaya

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Adaptive Quadrature with the Combination
Technique for UQ Applications

Adaptive Quadratur mit der
Kombinationstechnik für UQ Anwendungen

Author: Anastasiya Liatsetskaya
Supervisor: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Advisor: M.Sc. Michael Obersteiner
Submission Date: 15.06.2020

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.06.2020 Anastasiya Liatsetskaya

Abstract

The core of this bachelor thesis is comparison of results produced by given adaptive quadra-
ture rule with the Combination Technique and the results computed by non adaptive quadra-
ture rules. The function f(x) for which the weighted integral is approximated represents the
values of numerical simulation containing uncertain parameters. According to the results
the Quasi Monte Carlo quadrature rule has shown the best results and the the adaptive
quadrature rule has shown similar values with Gaussian quadrature rule in estimated error
decay rate and estimated error values.

Der Hauptziel des Bachelorthesises war der Vergleich von Ergebnissen des gegebenen adap-
tiven Quadraturregel mit der Combination Technique und von Ergebnisses der nicht adaptiven
Verfahren. Die Funktion f(x), von der man das gewichtete Integral approximiert, represen-
tiert die Werte von der numerischen Simulation mit unsicheren Parameter. Anhand der
Ergebnissen die Quasi Monte Carlo quadratur Regel hat die beste Ergebnisse gezeigt,der
adaptive quadratur Regel mit der Combinations Technique hat ähniches Verhalten zum
Gaussquadratur in geschätzen Werten und die Fehlerverkleinerungs Rate.

iii

Contents

Abstract iii

1 Introduction 1

2 Quadrature rules 3
2.0.1 Gaussian quadrature . 3
2.0.2 Monte Carlo . 5
2.0.3 Low-discrepancy sequences . 6
2.0.4 Sparse Grids . 7
2.0.5 Combination technique . 10
2.0.6 Dimension-wise Spatial Refinement with the Sparse Grid Combination

Technique . 11

3 Error estimator 13
3.1 Error estimator . 13

4 Simulation Scenario 15

5 Sparse-SpACE framework 17

6 Python implementation 19
6.0.1 VadereSimulation class . 19
6.0.2 Parallelisation . 20
6.0.3 Reading a file . 21

7 Tests 23
7.1 Convergence of quadrature rules and error estimations 23

7.1.1 Norms . 25
7.2 Test results . 27

7.2.1 Values of error estimators . 27
7.2.2 Refinement graph . 29

8 Conclusion 38

List of Figures 39

Bibliography 40

iv

1 Introduction

Some parameters of a numerical simulation can be random variables; this might be a
property of a modelled system or a consequence of,for example, measurement errors which
occured by the computation of the uncertain parameters. One might be interested in the
influence of random parameters on the outcome of the simulation. According to [1] one
approach could be to approximate the simulation result u(x,~y) with the vector ~y with the
uncertain parameters by using the Generalized polynomial chaos expansion:

uP
N(x,~y) =

M

∑
m=1

ûm(x)Φm(~y), M =

(
N + P

N

)
as the gPC approximation of the Pth order with Φm(~y) be the orthogonal polynomial with
respect to the scalar product

∫
g(~y) f (~y)ρ(~y)d~y induced by the joint probability density ρ(~y)

of the uncertain parameters yi. The coefficients ûm(x) are defined as

ûm(x) =
∫

u(x, y)Φm(~y)ρ(~y)d~y for 1 ≤ m ≤ M

The pseudo spectral approach computes an approximation of the coefficients ûm(x) with

ŵm(x) =
Q

∑
j=1

u(x, y(j))Φm(y(j))α(j)

by choosing the evaluation points y(j) and weights α(j) so,that the sum

Q

∑
j

f (y(j))α(j)

is an approximation for
∫

f (~y)ρ(~y)d~y. As a result, one obtains an approximation of gen-
eralized polynomial chaos expansion of u(x,~y) the quality of which might depend on the
quality of the approximation of weighted integral

∫
f (~y)ρ(~y) by using function evaluations

and weights.
In this work several different quadrature rules the description of which can be found

in the chapter 2 have been applied for computing the integral approximations of
∫

f (~y)ρ(~y)
where f (~x) stands for a value of numerical simulation applied to a vector with values of
non-zero probability of the uncertain parameters. Two methods to compute error estimations
are described in the chapter 3. The simulation is described in the chapter 4. The obtained
results are compared for the used quadrature rules in the chapter 7. In order to compute

1

1 Introduction

the integral approximations with some of the used quadrature rules the sparse-SpACE
framework was used. Some of its classes were modified in order to allow methods from
the framework obtaining the values of the simulation for a given vector with values of the
uncertain parameters. The brief description of a part of the functionality the framework
provides is given in the chapter 5 and added modifications in the chapter 6.

2

2 Quadrature rules

2.0.1 Gaussian quadrature

One possibility to approximate a definite Riemann-integral
∫ b

a f (x)dx is to build an inter-
polating polynomial of the function f and integrate exactly the polynomial.For a polynomial
p which interpolates the function f on n points ti holds:

p(tj) = f (tj) ∀i : 1 ≤ i ≤ n

The quadrature rules used in this work can be written as a quadrature formula Î, which has
the structure

Î = (b− a)
n

∑
0

λi f (ti)

The set t0...tn is the set of support points on which the function f is evaluated. λ0...λn is the
set of weights, these weights do not depend on the function f but on the choice of support
points if the quadrature formula with n+1 distinct support points integrates exactly every
polynomial in Pn. For the support point tj the Lagrange polynomial Lj is defined as

Lj(x) =
n

∏
i=0,i 6=j

(x− ti)/(tj − ti)

If the quadrature formula integrates exactly every polynomial in Pn, then Î(Lj(x)) =∫ b
a Lj(x)dx is fulfilled,and the quadrature weights can be obtained by:

λj = (1/(b− a))
∫ b

a
Lj(x)dx

because Lj(ti) = δij. For n+1 pairwise different support points there exists only one poly-
nomial p ∈ Pn that fulfills given n+1 interpolation conditions. A quadrature formula has
order n if for every polynomial p ∈ Pn holds I(p) = Î(p). Gaussian quadrature rule has
order 2n+1 and only needs n+1 function evaluations in order to calculate exact integral of
a polynomial with a degree less or equal to 2n. A quadrature formula which integrates
interpolating polynomial of a function f cannot have order greater,than 2n+1 according to [2].

According to [2] one can view an integral∫ b

a
f (x) ∗ g(x) ∗ω(x)dx

as a scalar product (f,g). For each scalar product which has the structure
∫ b

a f (x) ∗ g(x) ∗
ω(x)dx there exists a uniquely determined family of normalized orthogonal polynomials

3

2 Quadrature rules

pk ∈ Pk. pk has k real distinct roots and each root is ∈]a, b[as proven in [2]. One chooses
t0, .., tn as the roots of p(n + 1), where p(n+1) is orthogonal to the space Pn. A polynomial
p ∈ P2n+1 can be represented as

p = p(n+1) ∗ q + r

with p, q ∈ Pn. Then∫ b

a
p(x)w(x)dx =

∫ b

a
p(n+1)(x) ∗ q(x) ∗ w(x)dx +

∫ b

a
r(x)w(x)dx

since p(n+1) is orthogonal to Pn with respect to scalar product (f,g) and q ∈ Pn then∫ b

a
p(n+1)(x) ∗ q(x) ∗ w(x)dx = 0

Hence, one obtains the following equality:∫ b

a
p(x)w(x)dx =

∫ b

a
r(x)w(x)dx

Orthogonal polynomials pk for k ≤ n + 1 can be generated with the Gram-Schmidt orthogo-
nalisation method given the monomial basis of Pn+1.

Gaussian quadrature is a non adaptive quadrature rule. The algorithm needs to know
the integration domain and function values on n+1 evaluation points the position of which
does not depend on behaviour of the function on the integration domain. The accuracy
of Gaussian quadrature can be calculated by I(f)− Î(p) = I(f)− I(p) = I(f − p), where
(f − p)(x) is a local interpolation error on the point x. According to [2] for every function
f ∈ C2n+2 the quadrature error ε[f] fulfills:

ε[f] = f 2n+2(τ)(pn+1, pn+1)/(2n + 2)!

for some τ ∈ [a, b]. The small local errors of the interpolant do not guarantee, that the
integral error is small. If the errors have the same sign and the integration domain is large
enough, then the local errors can sum up. Respectively, there can occur the situation, where
the interpolant has large local errors with different sign, but the computed integral of the
interpolant is equal to the integral of the approximated function.

Let Gn be the set of grid points produced by Gaussian quadrature with n points. For
two numbers n, k ∈ N with n 6= k and n > k with sets of grid points Gn and Gk it can be,
that Gk ∩ Gn = ∅. Thus, the grid generated by Gaussian Quadrature might not reuse points
that were computed in previous integral approximations. If the evaluation of the function is
expensive and multiple experiments with different amounts of points per dimension need
to be performed, then the reuse of already computed points can reduce computational time.
If an integral approximation of a multivariate function is to be computed, then one can
following the principle of Fubini’s theorem along each dimension construct interpolant by
using one dimensional quadrature rules. For vector valued functions the grid is constructed
via tensor product of 1D grids. If the same number of points k is used in every 1D grid,
then the total number of used points is kd and it has exponential growth depending on the
dimension d. As a result, for high-dimensional problems Gaussian quadrature might become
inapplicable due to its computational time.

4

2 Quadrature rules

2.0.2 Monte Carlo

Monte Carlo method can be used to compute an approximation of expectation E[X], where
X is a random variable with existing expectation. According to [3] a definite integral

∫ b
a f (x)dx

of an integrable function f is equal to the∫ b

a
f (x)dx = E[F(X)] ∗ (b− a)

,where E[F(X)] is the expectation of a uniformly distributed on the interval [a,b] random
variable F(X) with F(x)=f(x). As a result integration of a function can be transformed into
computation of the expected value of uniformly distributed random variable. For the chapter
the integral

∫ 1
0 f (x)dx is considered. The Monte Carlo approximation with N function

evaluations is defined as

Î[f] = (1/N) ∗
N

∑
n=1

f (xn)

The Strong Law of Large Numbers proves, that a sequence of Monte Carlo approximations
will converge to the expectation E[X] with probability 1 under assumption that X is integrable
and the expectation E[X] is finite, that is

lim
N→∞

ÎN [f]almost sure−−−−−−−→I[f]

Let εN be defined as εN = Î[f]− I[f]. The Central Limit Theorem gives according to [3]
the probability with which the error εN of a Monte Carlo approximation with N samples
is bounded from above by the function c(1/

√
N) with constant c under assumption that N

is large enough. More precise: Let YN be defined as YN = X1 + ... + XN ; Xi have the same
distribution, are independent and have defined expectation E[X] and variance Var[X]; Φ(x) is
the cumulative distribution function of N (0, 1), then

Pr(a < (
√

N/
√

Var[X]) · (YN − N · E[X])/N < b) ≈ Φ(b)−Φ(a)

which is equivalent to

Pr(a < (
√

N/
√

Var[X]) · εN < b) ≈ Φ(b)−Φ(a)

Exact formulations and proofs of the Central Limit Theorem and the Strong Law of Large
Numbers can be found in [4].

In order to compute an approximation ÎN a sequence of samples xi need to be generated
according to the distribution of the random variable X. If the inverse of the cumulative distri-
bution function F−1

X (x) of random variable X can be computed or numerically approximated,
then the inverse Rosenblatt transformation can be used in order to obtain from a uniformly
distributed random variable on the unit interval [0,1] the required random variable X.

In the upper bound for the Monte Carlo Quadrature error derived by the Central Limit
Theorem the dimension of a problem does not appear as an explicit argument, this allows

5

2 Quadrature rules

to use Monte Carlo algorithm for high-dimensional problems. However, if one chooses a
sequence of functions (fi) with growing dimension di and growing variance in dependence
from the dimension.Then the constant b

√
Var[X] in the upper bound of the quadrature error

can also grow with i and can cause slower convergence of the method applied to the functions
fi with growing i.

2.0.3 Low-discrepancy sequences

In a sequence of points sampled from a uniformly distributed random variable there can
occur clumping of points. This effect is also present in pseudo-random sequences and is
illustrated for a 2D sequence with 1000 samples in Figure 1. Such grouping of points can
reduce speed of convergence of Monte Carlo method. Discrepancy measures how uniform
the points of a given sequence are distributed in the unit cube. For a finite sequence (xi) with
N elements defined on the unit interval [0,1) the discrepancy DN is defined as

DN = sup
0≤α<β≤1

|#xi ∈ [α, β)/N − (β− α)|

The star discrepancy D∗N considers only intervals with the left border α = 0:

D∗N = sup
0<β≤1

|#xi ∈ [0, β)/N − β|

For d-dimensional sequences defined on the unit cube [0, 1)d these definitions are generalized
by using instead of the 1D intervals [α, β) rectangular sets

J = {(a1...ad): ∀k : 1 ≤ k ≤ d : 0 ≤ αk ≤ ak < βk ≤ 1}

and by subtracting instead of the length of the interval (β− α) the volume V(J) of a set J,
where V(J) = ∏d

k=1(βk − αk)

According to ([5]) the following inequalities hold for d-dimensional sequences:

D∗N ≤ DN ≤ 2dD∗N

The Koksma-Hlawka theorem shows, that there exist an upper bound for the error

|ε[f]| = |
∫

Id
f (x)dx− (1/N) ·

N

∑
n=1

f (xn)|

which depends on the star discrepancy of the used for approximation sequence of points

|ε[f]| ≤ V[f]D∗N

for a function f with bounded variation V[f]. The value of variation V[f] does not depend on
the sequence (xi)i≤N used for the f-integral approximation of the form (1/N) ·∑N

n=1 f (xn). As
a result a sequence (x̂i)i≤N with smaller star discrepancy can lead to a better approximation
of I[f]. If a d-dimensional integral is to be approximated, then one can use a Halton sequence.

6

2 Quadrature rules

In a dimension k if ∑M
n=0 αnbn is the base-b representation of a natural number i, where b is

the k-th prime number, then the i-th member of a Halton sequence is defined as

xi =
M

∑
n=0

αnb−n−1

in the base-b representation. This approach generalizes the generation procedure of 1D Van
der Corput sequence which uses prime base b=2. A 2D Halton sequence with 1000 samples
is illustrated on Figure 2. As shown in ([3]) an upper bound for the discrepancy of a Halton
sequence is

DN(Halton) ≤ cd(logN)dN−1

with a constant cd depending on the dimension d. The upper bound of DN(Halton) depends
on the dimension of a problem, consequently, for high dimensional integral approximations
a Halton sequence can show slower convergence. The algorithm for generation of a Halton
sequence is a deterministic algorithm: for a given N it will produce the same sequence of
points (xn). If Hn and Hk denote the sets of points in the Halton sequences with n respectively
k elements and n<k, then Hn ⊂ Hk.

2.0.4 Sparse Grids

The application of 1D quadrature grid based methods for computing of the integral
approximation for multivariate functions might result in full grids with high amount of
points:for example, in Gaussian quadrature if one uses k points in each dimension, then
the total number of points in the grid will be kd. For a given function the accuracy of
such quadrature rules might depend on the used number of points per 1D grid. If a high-
dimensional function is expensive to evaluate and given error tolerance is small, this might
lead to the lack of the storage for function values and long computational time.

The sparse grids technique has different applications, but in this chapter it will only
be described in the context of interpolation and integration. The detailed information about
sparse grids can be found in ([6]). The sparse grids technique can use hierarchical basis
functions to build an interpolant on a grid with according to ([7]) O(N · log(N)d−1) points, if
optimized for L2 or Lmax norm, compared to the number of points on the full grid O(Nd) . In
this chapter only hierarchical linear hat basis functions will be described, however it is not
the only type of hierarchical basis functions which can be used for a sparse grid construction;
for example, B-spline basis functions or piecewise d-polynomial basis functions can be used
depending on the problem, more detailed information about these basis functions can be
found in ([8])

A hat function is defined as

φ(x) = max(1− |x|, 0)

dilation and translation applied on φ(x) allow to center the hat function around a particular
point and to change the size of non-zero valued area of the function. The nodal basis Vi to a
space V̂l - a space of piecewise linear functions, which are zero on boundary points and each

7

2 Quadrature rules

(a) Fig.2: Points generated by the Halton sequence

(b) Fig. 1: Points generated by pseudo-random sequence

8

2 Quadrature rules

function in this space can be defined with 2i − 1 values- can be obtained with transformations
of hat function

φi,n = φ(2i · x− n)

As a result, one can represent a piecewise linear function f from the space V̂l as

f (x) =
2l−1

∑
i=1

f (xi)φl,i(x)

If a set Wl is defined as

Wl = {φl,i : φl,i ∈ Vl , 1 ≤ i ≤ 2l − 1, i is odd}

then the set
∪l

i=1Wi

is also a basis to the space V̂l . A function f ∈ V̂l can be obtained via linear combination of
hierarchical basis functions:

f (x) =
L

∑
l=1

2l−1

∑
i=1,i odd

αi,lφl,i

with coefficients αi,l called hierarchical surpluses, that depend on the function values on
the point xl,i and on the quality, with which the interpolant build from hierarchical basis
functions from levels 1 ≤ i < l approximates the function f on the point xl,i. The number
of functions in Wl is 2l−1 and their support reduces by factor 2 from one level l to the next.
From 1D hierarchical hat basis one can obtain by tensor product hierarchical basis functions

φ~l,~i(~x) =
d

∏
k=1

φlk ,ik(xk)

which can be used to build d-dimensional piecewise linear functions. If a d-dimensional
piecewise linear function is used to interpolate a function with bounded second mixed
derivative, then according to ([6]) for the absolute value of the coefficients α~l,~i holds:

|αl,i| ≤ 2−d · 2−2|l|1 · |u|2,∞

This result allows to estimate as shown in ([6]), how much the functions from the set Wl
contribute to the interpolant; the estimation depends on the level l, on dimension of the
problem d, on the used norm and on the value, which is an upper bound to the second mixed
derivative of the function. If one interprets the contribution to the interpolant as benefit and
the number of points, used to define functions from the set Wl as cost, then according to ([8])
a solution to the obtained optimization problem for norms L2 and L∞ is the set

W~l : |~l|1 ≤ n + d− 1

The error of the sparse grids interpolant for functions with bounded second mixed derivative
measured with L2 or L∞ is in O(N−2 · log(N)(d−1)), compared to the error of full grid
interpolant in O(N−2), as shown in [6].

9

2 Quadrature rules

Hierarchical hat basis functions allow to build a piecewise linear interpolant with the
value zero on the boundary. If one would like to approximate more accurately integral of a
function on areas near the boundary, then one possible method would be to add a level zero
with two linear basis functions φ0,0 and φ0,1 such, that

φ0,i(x0,|i−1|) = 0

φ0,i(x0,i) = 1

for i ∈ {0, 1}. An advantage of such approach is, that for the same fixed n a sparse grid with
added level 0 will contain the same interior points as the sparse grid without added points
on boundaries. However, as shown in [8] dependent on the dimension d of the problem the
majority of used points in the grid might be located at the boundary. An alternative approach
would be to modify the one dimensional hat basis functions a support boundary of which
corresponds to the domain boundary so that the functions extrapolate towards the boundary.

One could also construct a sparse grid by using non nested one dimensional grids. If the
one dimensional Grids with placement of points corresponding to the Gaussian quadrature
rule are applied, then one becomes Sparse Gauss grid. As shown in [9] for the same n the
Sparse Gauss quadrature might significantly outperform the sparse grid constructed with
linear hat basis functions, however, it also might require more evaluation points.

2.0.5 Combination technique

If one denotes a solution obtained from a sparse grids space as us and the set of points
used to build the grid as Gs, then the Combination technique [10] allows to obtain a function
uc from a linear combination of solutions constructed on full grids with sets of points Gc,i for
i-th element in the linear combination,such that uc(xi) = us(xi) ∀xi ∈ Gs and Gc,i ⊆ Gs ∀Gc,i i
element of the index set I of the combination. In case of d- dimensional hat basis functions
one can represent exactly the interpolant us though a combination of solutions on full grids
using linear functions to approximate the integrated function on each subarea of the domain:
uc(x) = us(x) due to fulfillment of the interpolation condition by uc. According to [7] one
possible combination to obtain a function from the sparse grids space

⊕
|~l|1≤n+d−1 Wl is

uc
l =

d−1

∑
q=0

(−1)q
(

d− 1
q

)
∑

~l∈Il,q

ul

with the index set
Il,q = {~l ∈Nd

0||~l|1 = l + d− 1− q}

One point xi can occur in several full grids, but no full grid in the combination uses points
other, than that contained in the sparse grid. The truncated Combination Technique allows to
use a truncation parameter τi ∈ N0 ∪−1 for a dimension i for selection of level vectors~l in
the index set:

Il,q = {~l ∈ Nd
0 ||~l|1 = l + d− 1 + (

d

∑
i=1

τi)− q, li > τi}

10

2 Quadrature rules

High positive values of τi exclude grids with sparse one dimensional grids from the scheme
leaving grids with high amount of points across every dimension depending on the values of
τi.

The choice of subspaces in
⊕
|~l|1≤n+d−1 Wl is optimal with respect to the norms L2 and

L∞ for functions with bounded second mixed derivative. Depending on the problem one
might chose different subspaces to build a sparse grid. If the level vectors of chosen grids
form a downward closed index set with

~l ∈ I ∧ lj > 0 =⇒ ~l −~ej ∈ I for 1 ≤ j ≤ d

then one possible choice of the coefficients c~l for the combination would be according to [7]

c~l = ∑
~l≤~i≤~l+~e,~i∈I

(−1)|~i−~l|1

The sparse grids technique allows to compute solutions in parallel on different full grids
using the quadrature rules developed for full grids and then to combine appropriately the
obtained functions. The data structures used to represent the combined result might be
simpler compared to the data structures which preserve the hierarchical structure of the basis
functions used to construct a function from a sparse grids space.

2.0.6 Dimension-wise Spatial Refinement with the Sparse Grid Combination
Technique

Some functions have different behaviour depending on the considered area of the domain,
for example, a spike impulse f (t) = 1/(10−4 + t2) defined on the interval [-1,1]. If on the
most parts of the integration domain the integral of a function is approximated well by the
integral of an interpolant and only on some small areas the approximation produces large
errors, then in non adaptive grid-based methods raising the number of points in the whole
grid might result in significant increase of computational load by achieving only small benefit.
In fact, many new points might be located in the areas which already were approximated
so that the integration error in those areas is small. One possible solution is to chose the
position of the new points in the domain according to the behaviour of the function. In case of
multivariate functions the local errors along different dimensions might significantly differ.

A Dimension-wise Spatial Refinement with the Sparse Grid Combination Technique
[11], described in this chapter is implemented in the SparseSpACE framework, refines along
single dimensions according to values of an error estimator and then represents with help of
Combination Technique a sparse grid as a linear combination of full grids. The algorithm
starts with a sparse grid of level l; 1 dimensional vector of points ~Pk for a dimension k and a
vector with levels of this points Lk are used for each dimension, based on the vectors ~Pk and
Lk one can construct a tree representing a hierarchical structure of basis functions centered
around the points in ~Pk. For each child node an error estimation is calculated. Based on
this value, the algorithm might add hierarchical children to the leafs of the refinement trees.
The stopping criterion for the refinement in the algorithm can be a user defined tolerance

11

2 Quadrature rules

value for the integration-error or a number of points p such that, when more points than p
are already contained in the grid then further refinement is not applied. A Tensor product
applied directly to the grids from one-dimensional refinement trees would result in a full
grid. In order to reduce the amount of points in the grid a combination scheme is constructed.
The index set I of a combination scheme contains the following level vectors l:

I = {~l ∈ Nd||~l|1 ≤ max(~lmax) + d− 1, li < lmax
i ∨ (li = lmax

i , lk = 1, k ∈ [d]/i}

with lmax
k = max(~Lk). For each level vector ~l in the index set I a one dimensional set of

coordinates is constructed ~Pk,~l for each k ∈ [d], by applying Tensor product construction to
the grids ~Pk,~l one obtains a component grid of the combination scheme. In order to construct
a valid combination scheme the following two relations must hold for the sets Pk,~i and Pk,~j

with~i,~j ∈ I, k ∈ [d] :
Pk,~i ⊂ Pk,~j if~j ≥~i

~Pk,~i = ~Pk,~j if ik = jk
According to the first property the increase of the level vector~l adds new points to the existing
sets of points without removing elements of this sets. There are multiple possibilities, how to
chose points from the vectors ~Pk, k ∈ [d] to obtain sets ~Pk,~lk ∈ [d],~l ∈ I which produce a valid
combination scheme. The selection method of points used by the algorithm is

~Pk,~l = {Pk
j |j ∈ [|~Pk|], Lk

j − ĉk
j ≤ lk ∨ Lk

j ≤ 1, (Lk
j < max(Dlv(j)) ∨ lk = lmax

k)}

where

ĉk
j = max({m ∈ N|

m

∑
i=1

χk,l(i, d) ≤ ck
j + χk,l(m, k)}

χk,l(i, j) =
j

∑
n=1

h(ck
l − i, n)

h(x, k) =

{
1 if max(~ck) ≥ x

0 otherwise

with Dlv(j) is a set of levels of every point contained in a subtree of hierarchical refinement
tree with root at j-th point of the vector Pk.

Depending on a function f there might be areas in domain on which an error estimator
will estimate a large error and a large number of points is needed to compute sufficiently
good integral approximation of the area, as a result, the algorithm might start refining a
specific area of the domain. One dimensional refinement trees can become in such case
unbalanced. By rebalancing of the trees, one can reassign the levels of nodes in the tree;
as a result the root with level 1 of a tree can move from point corresponding to the center
of the integration domain towards the area, which is intensively refined by the algorithm.
This procedure does not change leafs of the refinement trees, the algorithm will consider
for the refinement the same points as without tree rebalancing. However, the set of grids
selected for the combination scheme might change and the error estimations for the leafs of
the refinement trees.

12

3 Error estimator

3.1 Error estimator

The exact value of an integral might not available and some quadrature rules need informa-
tion, how much the integral of an interpolant differs in value from the approximated solution
for example, the Dimension-wise Spatial Refinement with the Sparse Grid Combination
Technique needs that information to make a decision whether to refine or not in a certain
subarea of the integration domain. One possible solution would be to use an error estimator
ε̄ for the error ε = |I[f]− Î[f]. According to the definition of an error estimator in [2] there
exist constants k1 ≤ 1 ≤ k2 such,that the following relation holds:

k1ε ≤ ε̄ ≤ k2ε

One possibility to construct an error estimator for the value ε2 -an error that is produced by
the approximation Î2[f]- is to compute Î1[f] and Î2[f] by using two methods with different
approximation quality such, that ε1 << ε2, and then to compare the obtained values:

ε̄ = | Î2[f]− Î1[f]| = | Î2[f]− I[f]− Î1[f] + I[f]| = |ε2 − ε1| (1)

As shown in [2] one obtains the following upper and lower bounds for the value ε̄:

(1− ε1/ε2)ε2 ≤ ε̄ ≤ (1 + ε1/ε2)ε2

An error estimator ε̄ constructed according to this principle relies on smaller error εi of
one method compared to the error produced by the second method; the information which
data structures are used by the algorithm and which steps are performed to compute an
approximation Î[f] is not used to build ε̄.

The Dimension-wise Spatial Refinement with the Sparse Grid Combination Technique
computes error estimations for leafs of one-dimensional refinement trees ~Pk. For each grid in
the combination scheme an error estimation for each leaf in the ~Pk,~l is computed by using
surplus values associated with points ~xi of a grid. A leaf node in the refinement tree ~Pk,~l

might not be a leaf node in the tree ~Pk but an ancestor of a leaf node. In case of such node p
the algorithm divides equally the obtained error estimation among all descendant leaf nodes
of p, whereas the factor m in

εk,~l
lea f+ = volume ∗ |αik |/|leaves(Pk,~l

ik
, k)|m

allows to decrease contribution to the error of leaf nodes from hierarchical ancestors with
many descendent leaf nodes. A hierarchical surplus value in case of used hierarchical hat

13

3 Error estimator

basis functions corresponds to a local interpolation error on the point xl,i of the interpolant
constructed with grid with levels l̃ < l. By multiplying a surplus value with volume of
the respective pagoda function one obtains the volume of added function α~l,iφ~l,i. The error

estimate of point p ∈ ~Pk is combined from the error estimates εk,~l
p of this points in grids with

coefficients c~l contained in the combination scheme:

εk
p = |∑

~l∈I

c~l · ε
k,~l
p |

From local error estimates one can obtain the global error estimate ε by:

ε =
d

∑
k=1

|~Pk |

∑
j=1
|εk

j |

14

4 Simulation Scenario

The simulation describes the spatial location of persons in campus in a defined time
interval. The finish time was set to 1000 and the time step length is 0.9. At each time step
the number of persons at each of 9 measure points is computed. The campus layout used in
the simulation is shown on Figure 4.1; the picture was generated with help of Vadere GUI.
The Vadere framework 1 was used in a given scenario to simulate the movement of a crowd.
A detailed information about the framework can be found in [12]. The framework contains
implementations of several locomotion models, which allow to simulate the movement of
an agent from starting point to the destination point while avoiding obstacles and collisions
with other agents which might be present in the simulation scenario. For the simulation
scenario the Optimal Steps Model was used to represent the movement of persons in campus,
in which the algorithm tries to choose optimally the next step of a person in the circle around
the pedestrian with radius depending on the free-flow velocity of the agent. The maximal
amount of agents used in the simulation is 200, overall number of pedestrians at given
timepoint in campus might be less than 200. The simulation has 4 uncertain parameters: ir
with distribution U (0.1, 0.3) representing IPP Mensa ratio, irtime with distribution N (50, 1)
representing residence time in IPP Mensa, trtime with distribution N (60, 1) representing
residence time in TUM Mensa, and v with distribution U (1.3, 1.8) representing the mean
speed of pedestrians.

The given distributions define weight functions which appear in the computation of ex-
pected value of the vector random variable representing numbers of persons on measurement
points for every time step. In case of a uniform distribution one the interval [a,b] one obtains
the following weight function:

w1(x) = 1/(b− a)

in case of normal distribution N (µ, σ2) the weight function equals to:

w2(x) = (1/(
√

2πσ)) · exp(−(x− µ)2/(2σ2))

If the uncertain parameters are pairwise independent, then one can obtain the weight function
for calculation of expected value as:

w(~x) =
4

∏
i=1

wi(xi)

Orthogonal polynomial systems for the scalar products induced by the obtained weight func-
tions would be Hermite-Polynomials for w2 as a weight function and Legendre-Polynomials

1http://www.vadere.org/

15

4 Simulation Scenario

Figure 4.1: Layout of the campus. Measurement points are marked with the respective
numbers

for w1.
Vadere console is given in form of a JAR file, it takes as input a file with ".scenario" extension
containing the necessary parameters to perform the simulation including the values of the
uncertain parameters. Vadere console can generate multiple output files which can be used
to analyze different aspects of the simulation, however in the integral approximation only
the file with the number of pedestrians at measure points at each time step was used. In
order to decrease memory usage the other output files were removed from the scenario
configuration. The Vadere framework allows to include randomized elements in the scenario
of the simulation, as a result, if one fixes values of uncertain parameters (ir, irtime, trtime, v)T,
in such scenario, then the algorithm might compute for equal settings different number of
pedestrians to a given time step and measurement point. Since the Vadere framework may
use randomized algorithms to compute for a given values of the uncertain parameters the
numbers of pedestrians on measuring points, one might obtain a random variable with a
probability distribution for the numbers of pedestrians at measurement points. Then one
can interpret the simulation results as a function f̂ with disturbance in its argument x + δx
causing the deviation of the value f̂ (x + δx) from the value f̂ (x). If the integral of a function f
is the desired value to obtain, then one can measure the influence of the argument disturbance
with help of absolute and relative condition of the quadrature task (I,f). According to [2]
the absolute kabs and relative krel condition of the quadrature task (I,f) with I(f) =

∫ b
a f with

respect to L1 norm fulfill the following equalities:

kabs = 1

krel = I(| f |)/|I(f)|

16

5 Sparse-SpACE framework

The Sparse-SpACE framework 1 contains implementations of several quadrature rules
including the Standard Combination technique and The Dimension-wise Spatial Refinement
with the Sparse Grid Combination Technique. Grid class contains implementations of
one dimensional GaussLegendreGrid representing the grid constructed by Gauss-Legendre
quadrature rule and one dimensional GaussHermiteGrid for Gauss-Hermite quadrature rule.
An instance of MixedGrid class can consist of different one dimensional grids and has points
coordinates which would correspond to grid generated by tensor product applied to the
attribute 1D grids. The class GlobalTrapeziodalGridWeighted contains implementations of
trapezoidal grid which can be applied for weighted integration by choosing the splitting
point in the subinterval [a,b] so,that the obtained halves are equally weighted with respect
to a given weight function w(x); the class also contains method of computing quadrature
weights. The implementation does not allow to use arbitrary distributions, Uniform and
Normal distributions are accepted by the framework. More detailed information about
implementation of the class can be found in [13]. This class allows to apply modified
basis functions for weighted integration with piecewise linear basis functions, if uncertain
parameters are uniformly distributed.

The class GridOperation allows to choose an operation to be performed on grid, one of
the possible choices are Integration and UncertaintyQuantification, a class which contains
among others a method for computing moments of a random variable X. From the first and
second moment one can obtain the expectation and variance of X.

A Function class defines a common structure and methods of a function in framework,
which can be extended by subclasses. One of the attributes of a function object is f dict, a
dictionary containing previously evaluated points. The call method of the function class uses
f dict to check, whether the function was previously evaluated at the given coordinates. If the
value is abscent in the dictionary, then the function is evaluated and its value is stored in the
dictionary. The class spatiallyAdaptiveSingleDimension2 implements methods necessary
for the spatially adaptive algorithm described in chapter 2.0.6, among which are method for
rebalancing of a refinement tree and multiple strategies for obtaining a subtraction value c̃k

j
which might have an influence on the choice of points in component grids of the combination
scheme. One of the parameters which an instance of the spatiallyAdaptiveSingleDimension2
class can take are a parameter norm, according to which a vector with error estimations is
transformed into a scalar value and an integer number for version of the strategy for obtaining
a subtraction value.

The framework also implements The Standard Combination Technique which allows to

1https://github.com/obersteiner/sparseSpACE.git

17

5 Sparse-SpACE framework

apply the chosen grid operation to the grids in the scheme with given lmin, lmax and type of
used grids. The parameters lmin and lmax can be used to regulate amount of grids in the
scheme and the number of used points. If one sets lmin=lmax, then the combination scheme
will consist of one grid with level vector~l such, that every entry in~l equals to lmin. Such full
grids can be used for computing integral approximation of Gaussian quadrature, if the same
number of points should be applied in every one dimensional grid tensor product of which
forms the desired grid. However, the number of points for one dimensional Gauss-Hermite
and Gauss-Legendre grid would be computed by 2level − 1 which restricts the possible choice
of number of nodes per dimension. An instance of the class SpatiallyAdaptiveBase can
become as initialization parameters lmax and lmax, these parameters would define from
which grid the algorithm from the chapter 2.0.6 will start adaptive refinement. One can
also give error tolerance and maximal number of points such that, after determining that
current number of points in the grid greater, than given number, the algorithm stops further
refinements.

18

6 Python implementation

6.0.1 VadereSimulation class

The simulation of campus utilisation was added to the sparse-SpACE framework in form
of a subclass VadereSimulation which inherits from the Function class. By initialization an
object of the class VadereSimulation can take two parameters: path to java, giving the location
of the Java Virtual Machine, and path to executable, giving path to the Vadere console file.
The scenario files is assumed to be stored in the scenarious master directory and outputs are
written to the output directory. By initialization is checked whether the respective directories
exist, if the directories do not exist then they are created. The Scenario class is responsible for
creating an input file containing simulation parameters for the Vadere-console including the
values of uncertain parameters. An instance of the Scenario class can take by initialization
4 arguments: a list with values for the uncertain parameters, number of persons in the
simulation, finish time and the the time step length. The simulation parameters are stored
in a dictionary; the class has a function writeScenario which allows to store the data in the
dictionary to the hard disk drive by creating with help of the dump function from the json
library a file with scenario parameters that can be used as an input by the Vadere-console.
A Scenario-class is restricted by the implementation to the Campus Utilisation scenario and
cannot generate for an arbitrary simulation which can be computed by the Vadere-framework
a dictionary with the necessary parameters. The eval function of the "VadereSimulation"
subclass overrides the respective function from the Function class. The function uses a tuple
of coordinates which is an argument of the function to create an object of a class Scenario
with scenario parameters.

With help of the Popen -constructor from the subprocess library a new child process is
created to execute the java program corresponding to the Vadere-framework. The size of a
heap which can be used by the JVM is restricted to 4096 mbytes in order to reduce memory
usage. The arguments passed to the Popen -constructor include paths to the Vadere-console
and to the java library. The parent process waits until the child process is terminated by using
the wait method from the Popen class. The Vadere-console creates a directory with simulation
results, it contains file "timesteps.txt" in which for each time step the amount of pedestrians
at each of the 9 measurement points is written. The call method of the Function class was
modified: if the function values are not found in the dictionary f dict, then it is checked if the
file "timesteps.txt" corresponding to the given values of the four uncertain parameters exists.
If the searched file is present, then the algorithm will try to obtain values which are supposed
to be written in "timesteps.txt". The function is responsible for converting the data contained
in the file "timesteps.txt" into a one dimensional numpy array which can be returned by the
eval function via get calculated eval. The function can take as an argument a boolean variable

19

6 Python implementation

use counter which indicates whether the function was called from the call function or not.
The function contains a variable counter and a loop; after entering the loop’s body the value
of the argument use counter is checked. In the body of the loop the function "genfromtxt"
from the numpy library is used to obtain a numpy ndarray with shape (1113,10) from the
"timesteps.txt"-file should the file be fully written. If there occur ValueError or IndexError
exceptions, then the process waits one second, increases the value of the counter-variable by
one and attempts to execute the genfromtxt-function one more time by reentering the body of
the loop. If the function was called from the call function and the process have waited at least
five seconds, then it is interpreted as a previously not evaluated point by the call function
and the get calculated eval function will return an empty list. In the obtained matrix 1113x10
the data indicating time steps to which the values were computed is excluded by applying
slicing to the numpy array and then the filtered matrix is transformed into one-dimensional
array which is returned as a result by the eval function.

6.0.2 Parallelisation

The time needed for termination of one Campus Utilisation-simulation was measured on
the CoolMUC2 cluster for multiple test-runs, for the sequence of performed experiments the
time values in seconds in the most cases were an element of [55, 75] interval. The results of
integral approximation for the four-dimensional function for several quadrature rules were
required and for each quadrature rule several integral-approximations were computed with
different numbers of evaluation points, including Gaussian quadrature rule with exponential
dependency between the number of points per one-dimensional grid and the dimension of
the function. In order to compute integral approximations with high amount of evaluated
points the integral approximations were computed on CoolMUC2 cluster by using a group of
processes which allows to run the simulation on a cluster with distributed memory. Functions
from the mpi4py library were utilized to distribute a list of points to evaluate among the
processes in form of messages, thus allowing to significantly reduce the computational time
by parallelising points evaluation which in case of the Campus Utilisation-simulation is one
of the most computationally expensive part in the computation of the integral-approximation.
Evaluated points are stored on the hard disc drive, if the program, which computes the
integral-approximation, was interrupted before the approximation value was computed, then
by restarting of the program reuse of already computed points can reduce time and memory
requirements needed for termination of the program. From a group of processes every
process except the one with the rank zero was used only to evaluate every point in a given
list. Only the process with rank zero builds during its execution the data structures and
performs machine instructions other,than needed for evaluation of points, but corresponding
to the steps of an algorithm used to compute the integral approximations. The goal of such
implementation was to reduce memory usage of processes with rank > 0 in order to increase
the number of processes which run on the same cluster-node. The processes with rank > 0
wait in a while loop for the messages from the process with rank 0 and depending on the
type of the received data either terminate or evaluate the obtained points. The function
start parallel evaluation implemented in the GridOperation class becomes as argument a list of

20

6 Python implementation

coordinates of points. It calls the function get new points which checks for each point whether
the directory identified by the coordinates of the point exists allowing to avoid recomputation
of already evaluated points in previous program runs. If the required directory does not
exist then the point is added to a set consisting of points which will be evaluated, a set does
not contain duplicates of points. The function returns the set with coordinates converted to
a list. If the list contains at least on element, then the process with rank 0 divides the list
in blocks, the length of which differs at most by one, and sends the obtained lists of points
with help of send function from the MPI.COMM WORLD class to the processes in the group.
If the number of processes is greater,than the number of blocks, then an empty list will be
sent to the remaining processes. Points are evaluated by using the function eval in order to
avoid modification of f dict. The process with rank > 0 checks the type the received data from
the process 0, if the data is of type integer, then it serves as an indication that the integral
approximation is computed and stored by applying the function save from the numpy library
to the array with computed result, in that case all remaining processes will leave the loop
and terminate. If the received data is of type list, then in case of non-empty list points will
be evaluated with the eval function and processes will send boolean value-indication that
received data is processed- to the process with rank 0. The process with rank zero will wait
until the messages from every remaining process arrives and only then continues computation
of the integral approximation. After the necessary values are computed the zero process
sends an integer value to every process with rank > 0.

In case of the Monte Carlo algorithm for a given N as the number points to evaluate
coordinates of points were generated by the sample- method of distribution class from the
chaospy library and stored as numpy array; implemented method montecarloParallel by
computing the integral approximation with N points according to the Monte Carlo algorithm
accessed the stored array and evaluated points on the coordinates of the array using the
implemented function start parallel evaluation after filtering the duplicates of points. Stored
coordinates allow to avoid resampling of N points for a fixed number N should the program
exit with an exception before storing the computed result and should a restart of the program
be necessary. However, for a number N′ > N the coordinates of the points are newly
generated which can lead to disjoint sets of points for N and N’. Coordinates of points and
weights for Gaussian quadrature were generated by the function generate quadrature from the
chaospy library. For the obtained coordinates filtering of point duplicates can be spared since
the roots of the used orthogonal polynomials are distinct. The points are evaluated by using
the same function as in case of the Monte Carlo algorithm start parallel evaluation.

6.0.3 Reading a file

Both scenario and "timesteps" files are written to the hard disc drive and are accessed
during function evaluation by the program. The situations were observed, when, for ex-
ample, the child process have terminated and the parent process tries to read from the file
"timesteps.txt",but the information is not yet contained on the hard disk drive. The parent
process waits for termination of the child process and only loads the computed values after
receiving a confirmation, that every maschine instruction of the child process have been pro-

21

6 Python implementation

cessed including those responsible for storing the data on the disc. If the data is not present
on the disc and the program tries to access it, then there can occur an exception resulting
in program termination. In order to reduce the probability of such outcome the method
check file written was implemented in the VadereSimulation class. During the function evalua-
tion check file written is applied before the child process is created to check if the scenario is
fully written and before the function get calculated eval tries to access the "timesteps.txt"-file.
The function check file written contains two different approaches each of which is based on the
known the structure of the file the algorithm. Therefore one of the arguments the function
receives is the mode -argument with two possible values "timesteps" and "scenario" indicating
on which type of file the function must be applied.

In case of scenario the dictionary with data which should be written to the file is known
for the algorithm. The dictionary with simulation parameters can be obtained from the
Scenario object created in the eval function and passed as an argument to the get calculated eval-
function. The function contains a loop with the exit condition, that the given relative path
exists, in the body of the loop the sleep-command is executed from the time library with
argument 1 second. After it is confirmed, that the file exists the algorithm enters the second
loop where in case of scenario the data from the scenario-file are obtained by using the
json.loads function. It is expected that the function json.loads will return a Python dictionary;
two possible exceptions ValueError and json.JSONDecodeError are handled by forcing the
process to wait for 1 second and then the process reenters the loop. If the loads-function
returns a dictionary object, then the obtained and the expected dictionaries are compared. In
case of inequality of the dictionaries the process sleeps for one second and reenters the loop.

If the value of the mode argument was "timesteps",then a different strategy is deployed:
the values which should be written to the "timesteps.txt"-file are computed by the Vadere
framework and the parent process does not become this values from the stdout of the child
process. For a given scenario it is known, how many measured values must be in the file, in
which interval their values must be contained and of what type the obtained data must be.
As a result, if the function get calculated eval returns a numpy array, then the algorithm checks
the length of the array and for each value contained in it is checked its type and whether
its value is contained in the correct interval. If one of the checks fails the loop is reentered
and the function get calculated eval is called. This approach does not give a guarantee, that the
obtained data is the same as was written by the child process; it increases the probability, that
the false data will be recognized.

22

7 Tests

7.1 Convergence of quadrature rules and error estimations

If a deterministic algorithm is given, which operates on discrete set of machine numbers
and one can use this algorithm to define a function from the non discrete set of its arguments
into the value computed by the algorithm, then the obtained function might not be Riemann
integrable. A trapezoidal sum builds a piecewise linear interpolant. If one denotes with h the
maximal distance between grid points in the trapezoidal sum, then according to [2] should
the upper and lower Riemann sums converge to the integral of a given function f ∈ C0[a, b],
then the trapezoidal sum will converge as well under condition that h→ 0 forn→ ∞, because
the following equality holds:

Rn
lower ≤ Tn ≤ Rn

upper

with Tn is a trapezoidal sum consisting of n linear functions. However, this is an asymptotical
statement, if the performed sequence of experiments is finite,then the possibly observed
approaching of computed results to some value might not indicate, that the value is the
integral and that, the integral exists.

For some of the described in the previous chapters quadrature rules the guarantee that
the method will converge and how fast in dependency from the used number of evaluation
points it will happen is given under assumption the integrated function f belongs to a certain
class, for example, a function with bounded second mixed derivative or for f ∈ C2n+2 in case
of one dimensional function f for Gauss-Christoffel-Quadrature. In case of the function f̂
it is not known,whether it belongs to the required classes, as a result the convergence rates
given for some quadrature rules in previous chapters might not hold for the f̂ function. If for
the error εN with N as the number of used points N an upper bound c · g(x) with constant
c,which might depend on the integrated function, is given, as it is the case with sparse grids,
the for a finite sequence (εi)N≤i≤N+k of the errors of performed experiments the ratio of error
decrease between i and i+1 will be bounded from above by g(i+1)/g(i), but if the constant
c is large, then despite observing the error decay defined by the function g(x) one might
become large errors for a finite sequence of performed experiments. In case of Monte Carlo
one has an asymptotic statement about probability of the error being bounded from above
by the function ĝ(x) = c1/

√
N. It states, that there exists point N0 starting from which the

probability of the error is bounded from above by ĝ(x) can be estimated with an arbitrary
precision by using the values of probability density function of normal distribution, but it
does not give the point N0. Therefore a longer sequence (εi) might have a higher probability,
that its subsequence (εi′) is in the convergence area.

Large number of evaluation points of a vector-valued function ~f might lead to the lack

23

7 Tests

of memory during the computation of the integral approximation. One possible solution
might be, to split the vector, compute in multiple program runs the approximations for the
obtained vectors of smaller dimension, and then to unite the obtained vectors into one which
then will be used as the integral- approximation for the function ~f . This approach bases on
the following property according to [14] of Riemann-integral for vector-valued functions: if

f (~x) = (f1(x), ..., fn(x))T

then ∫
Ω

f (~x)d~x = (
∫

Ω
f1(~x)d~x, ...,

∫
Ω

fn(~x)d~x)T

The Dimension-wise spatial refinement with the Sparse Grid Combination Technique chooses
points to refine according to the values of the error estimator. For a vector-valued function a
vector containing the error estimations is transformed with help of the user defined norm
into a scalar value and with help of this value the choice of refinement points is made, such
approach does not guarantee,that the refinement points are chosen optimally for each fi

in the vector ~f but it reduces the amount of points needed to compute the integrals
∫ b

a fi
for 1 ≤ i ≤ n. Thus splitting vector might result in another choice of evaluation points
by computing the integral-approximation for the subvectors which in turn might cause the
difference between the values of the combined vector and the vector which was computed
without splitting into subvectors.

If the reference solution for the integral of f̂ is not given, then one could use an error
estimator to approximate the errors εi. An error estimator constructed as shown in (1) gives
good approximations if the condition ε1 << ε2 is met, otherwise it might give estimation
which greatly differ from the value of ε2. It is assumed, that an integral approximation which
uses more points, as a result having more information about the behaviour of the integrated
function, has higher accuracy compared to the approximation with less evaluation points
computed by the same quadrature rule. However, that might not be the case for an arbitrary
function f and the used numbers of evaluation points N1 and N2. In that case the term ε1

might become dominant in the error estimation or the estimated value might become very
small if both errors are of the same order.

For an arbitrary integrable function a finite sequence of integral approximations com-
puted by a given quadrature rule might approach some value k, but it is not guaranteed, that
the value equals to the value of I [f], if the reference solution is not given. In order to increase
the probability,that the value k to which the integral approximations get closer with the
increasing number of N can be interpreted as I[f] one could use several different quadrature
rules to compute the approximations. If most of them approaching to the same value k, then
the probability is higher, that k is the searched value of I[f]. For an error estimator of the form
(1) one could also use the solutions of the methods approaching k with the highest numbers
of points as a comparison value for the computed results of a method of interest. Depending
on the obtained results for different methods one might compare the approaching rates to the
value k for different methods with each other.

24

7 Tests

7.1.1 Norms

A vector-valued function
f (x) = (f1(x), ..., fn(x))T

consists of scalar valued functions fi(x) which can differ significantly from each other. As a
result, by non-adaptive quadrature rules one might observe, that by using the same number
and position of points for functions fi(x) for1 ≤ i ≤ n the integration error can be might be
of different order depending on the function fi(x) and on the quadrature rule. The spatially
adaptive algorithm described in chapter 2.0.6 applies a user defined norm on a vector with
estimated errors for functions fi(x). In case of Campus Utilisation scenario on Fig 7.1 one
might observe different behaviour of the error estimators for f4(x) and f3198(x) with the
first function corresponding to number of people in IPP Mensa at the first time step and
the second the number of persons in TUM Mensa at the time step 355. Since at the first
time step pedestrians are spawned at the underground, f4(x) is a constant function with
value zero and is integrated exactly by the used quadrature rules. The second function
f3198(x) is influenced by the values of uncertain parameters and for the comparison value
was taken the integral computed by applying Quasi Monte Carlo method with Halton
sequence with 28561 evaluation points. One can observe oscillations with different amplitude
for different quadrature rules and slow decay of estimated error in case of Monte Carlo,
Gaussian quadrature and spatially adaptive algorithm with lmax=4. For spatially adaptive
algorithm with lmax=2 one can observe oscillations around approximately the same value.
Slow decrease might be the sign of very slow convergence of the selected methods or the sign,
that the used comparison value has larger error, than the integral approximations computed
by other quadrature rules, and becomes dominant in the error estimation. In case of different
integral-approximation quality for different fi(x) one possible solution would be to optimize
selection and amount of points for each fi(x) for1 ≤ i ≤ n, however, if the dimension of the
vector f(x) is large, then such approach might result in a high amount of evaluation points.

If the dimension of the output vector is large one might be interested in scalar values
describing the combined quality of the obtained integral approximations. For that purpose
one might use different norms depending on what the scalar value should describe. The L1

norm applied to the vector x is defined as:

|x|1 =
n

∑
i=1
|xi|

The mean error estimation can be calculated as: |x|1/n. The L2 norm is defined as

|x|2 =

√
n

∑
i=1
|xi|2

and can be interpreted as length of vector x.

25

7 Tests

(a) f3198(x)

(b) f4(x) where each method has integrated exactly the constant zero

Figure 7.1

26

7 Tests

7.2 Test results

For the computed tests the weighted trapezoidal grids were used for the spatially adaptive
algorithm. Boundaries represented with the additional basis functions with level zero were not
applied in order to reduce the computational effort and spend more points in the inner part of
the domain. For Gauss quadrature the same number of points was used for every dimension.
Number of points used for Monte Carlo and Quasi Monte Carlo methods corresponds to
the overall number of points used in the grids for Gaussian quadrature. On Fig.7.2 there are
presented the computed values of integral approximations with applied L1 and L2 norms
on the computed vectors. Several quadrature rules were used in order to compare results.
As seen on the graph most methods approach the same value in L1 and L2 norms. Sparse
Gauss quadrature applied with grid constructed with lmin=1 shows oscillation with high
amplitude over a longer interval compared to other methods. The Gaussian quadrature shows
oscillations for low polynomial orders. The oscillations of Sparse Gauss quadrature might be
caused by using the low order polynomials for interpolation along some dimensions in the
grids, which might result in a large quadrature error. Sparse Gauss Quadrature with lmin
set to 2 can exclude depending on the parameter lmin grids from the scheme which have
low resolution across at least one dimension. As a result one might obtain denser grids in
the scheme the higher the parameter lmin is set. The Sparse Gauss quadrature with lmin=2
shows oscillations with lower amplitude compared to the graph constructed with lmin=1 and
might approximate the same value as Quasi Monte Carlo method. However, for both lmin=1
and lmin=2 low number of experiments with different numbers of evaluated points compared
to other methods were performed due to fast growth of number of needed points to compute
a solution with increasing lmax parameter of the combination scheme. The discrete function
constructed with results of Quasi Monte Carlo method with Halton sequence shows almost
no oscillations in both norms, this might be an indication, that the method converges fast to
the value, which most of the quadrature rules approach. If two functions optically approach
the same value on a graph, they might have different rate of error decay, therefore the quality
of the computed solution by these methods might be different depending on tolerated error.
The graph constructed by the spatially adaptive algorithm, which used lmax set to 4 as the
start grid deviates in L1 and L2 norms from the value to which Quasi Monte Carlo method
approaches. It might indicate, that the method converges, but slower in comparison to Quasi
Monte Carlo method.

7.2.1 Values of error estimators

In this chapter the values of error estimators are presented. The spatially adaptive
algorithm has its error estimator described in the chapter 3 implemented in the sparse-SpACE
framework. The framework can return a dictionary containing vectors with estimated errors
for each refinement step. For other methods an error estimator is constructed according
to (1) with comparison values chosen as the solution which was calculated by method
with the highest number of evaluation points. The results of Sparse Gauss quadrature are
excluded from the comparison values due to low number of experiments and possible slower

27

7 Tests

(a) Computed integral approximations in L1 norm

(b) Computed integral approximations in L2 norm

Figure 7.2

convergence based on the observations from the previous chapter. To the values of error
estimators the L1 and L2 norms are applied. The graphs are plotted in the log-log scale in
order to highlight the order of decrease of the estimated errors, should that decrease occur.
Additionally an error estimator built as in (1) was applied to the results of the spatially
adaptive algorithm. As comparison values were chosen the values computed with the highest
amount of points by Quasi Monte Carlo, Monte Carlo, Gauss quadrature and spatially
adaptive algorithm with lmax=2, as this values might converge to the same value and show
oscillations with small amplitude. The obtained graphs are shown on Figures 7.3, 7.4 and
7.5.

On each of the three graphs, excluding 7.4 c) and d), Quasi Monte Carlo shows the
smallest estimated error. If the value computed by Gauss quadrature rule or by spatially
Adaptive method with lmin=2 is used as a value to compare, then the decrease of estimated
error for Quasi Monte Carlo becomes slower compared to the other error estimators. This
might be an indication, that Quasi Monte Carlo outperforms Gauss quadrature and spatially
adaptive method and produces much smaller error. The solutions computed by Monte Carlo
method show oscillations and slow decrease of value in error estimation computed with Gauss
quadrature solution. Such behaviour of the graph might be caused by approximately the
same order of errors which the quadrature rules or by oscillations of Monte Carlo quadrature.
Based on the results of error estimator with Quasi Monte Carlo comparison value with Monte
Carlo having faster decrease in values and smaller values compared to Gauss quadrature. As

28

7 Tests

a result, Monte Carlo method might have computed a better approximation, than Gaussian
quadrature. Both versions of the spatially adaptive algorithm with lmax=2 and lmax=4
show higher estimated error values, than the other methods and oscillations are present.
Oscillations do not exclude the convergence of a method,however their amplitude must
decrease if a sequence of experiments converges for N → ∞ to the integral of the function.
The observed amplitudes in case of Quasi Monte Carlo comparison value are shown lower
compared to the results of Gauss comparison value. This might also indicate, since the
value of Quasi Monte Carlo is assumed to be the closest to the integral value, that the used
error estimator, developed for the spatially adaptive algorithm, shows more accurate results,
than the error estimator with Gauss comparison value applied to the results of the adaptive
algorithm. The error estimator of the spatially adaptive algorithm shows slower decay of
the error, but low oscillations amplitude, which is more similar to the values obtained with
Quasi Monte Carlo comparison value. The behaviour and values of a graph corresponding to
spatially adaptive algorithm with lmax=4 does not significantly differ from the graph of the
algorithm with lmax=2. The change of level of a start grid leads to different child nodes in
refinement trees, higher level lmax might cause better initial approximation of the integration
domain for the adaptive algorithm and increases the probability to refine small regions with
highly localized behaviour of the function. Similarity in the estimated errors might be a result
of both versions of the algorithm placing the points across the entire domain and not in some
selected subareas with highly localized behaviour of the integrated function. This might
indicate,that such subareas are small, if they exist, and their number is not high.

7.2.2 Refinement graph

The sparse-SpACE framework allows to plot the one dimensional refinement trees of
spatially adaptive algorithm. In Fig 7.6 are depicted the refinement trees which the algorithm
have made on the last refinement step before computing and returning the integral approxi-
mation. The trees were built by the algorithm with lmax=2 and lmax=4. According to the
graphs the algorithm does not refine intensively along dimensions which correspond to the
uncertain parameters with Normal distribution. It might indicate, that the estimated error
along these dimensions is small compared to the dimensions with uniformly distributed
parameters. In the x1 and x4 dimensions there are grouping of points near the boundary of
the domain.

In the performed tests the boundary was set to zero. The inner part of the integration
domain was according to the graphs also intensively refined. In order to investigate how
much impact on placement of points the zero boundary has, there were performed tests
with modified basis functions with lmax=2. On Fig 7.7 and 7.8 are shown error estimations
for the computed results and on Fig 7.9 the refinement graph for a step of the algorithm
with 16275 evaluated points. For error estimators with comparison values computed with
Quasi Monte Carlo and Monte Carlo error estimations show deviations from the values
computed for adaptive algorithm with lmax=2. On the refinement graph one might observe,
that the points are still added to the graph on the areas which are close to the boundaries. In
the dimension x4 the interval [1.3,1.4] is intensively refined by the algorithm independently

29

7 Tests

(a) Error estimator values for Gauss comparison value in
L1 norm

(b) Error estimator values for Gauss comparison value in
in L2 norm

(c) Error estimator values for Monte Carlo comparison
value in L1 norm

(d) Error estimator values for Monte Carlo comparison
value in in L2 norm

Figure 7.3

30

7 Tests

(a) Error estimator values for Quasi Monte Carlo compar-
ison value in L1 norm

(b) Error estimator values for Quasi Monte Carlo compar-
ison value in in L2 norm

(c) Error estimator values for the adaptive algorithm with
lmax=2 comparison value in L1 norm

(d) Error estimator values for the adaptive algorithm with
lmax=2 comparison value in L2 norm

Figure 7.4

31

7 Tests

(a) Error estimator values with each quadrature rule us-
ing its value computed with the highest number of
evaluation points as comparison value in L1 norm

(b) Error estimator values with each quadrature rule us-
ing its value computed with the highest number of
evaluation points as comparison value in L2 norm

Figure 7.5

of using modified base to approximate the values of a function on the boundaries. This
might have been caused by highly local behaviour of the function in that area so that using
extrapolation to approximate the function values on borders and in the areas near the borders
might result in large integration errors in the areas near the boundary which might come from
strongly differing values of a function in that part of the domain. As a result, by spending
more points near the boundaries one might obtain a more accurate approximation of the
integral.

32

7 Tests

(a) Refinement graph for the adaptive algorithm with
lmax=2

(b) Refinement graph for the adaptive algorithm with
lmax=4

Figure 7.6

33

7 Tests

(a) Error estimator values for Gauss comparison value in L1 norm for modified
base

(b) Error estimator values for Gauss comparison value in in L2 norm for modi-
fied base

(c) Error estimator values for Monte Carlo comparison value in L1 norm for
modified base

Figure 7.7

34

7 Tests

(a) Error estimator values for Monte Carlo comparison value in in L2 norm for
modified base

(b) Error estimator values for Quasi Monte Carlo comparison value in L1 norm
for modified base

(c) Error estimator values for Quasi Monte Carlo comparison value in in L2

norm for modified base

Figure 7.8

35

7 Tests

(a) Refinement graph for the adaptive algorithm with modified base and lmax=2

Figure 7.9

36

7 Tests

(a) Error estimator values for the adaptive algorithm with lmax=2 comparison value in L1

norm for modified base

(b) Error estimator values for the adaptive algorithm with lmax=2 comparison value in L2

norm for modified base

Figure 7.10

37

8 Conclusion

Based on the results of the performed tests, used quadrature rules and requirements for
the rules to provide a good approximation of the integral one might make assumptions about
properties of the integrated function, if the function is integrable. Monte Carlo and Quasi
Monte Carlo have shown the best convergence rate among the used rules. Better results
by using piecewise low order polynomials, such as constant function, for computing the
integral-approximation compared to the results of Gauss quadrature might indicate, that
the function is not sufficiently differentiable for Gauss quadrature. The results from the
refinement graphs can be interpreted as a better approximation by hierarchical hat basis
function across the dimensions x2 and x3 compared to the x1 and x4. Placement of points
across the whole interval without choosing one particular subarea with the most of the used
points might be a consequence of a smooth behaviour of the function in the integration
domain with possible exception near the boundaries of the integration domain.
The adaptive algorithm has shown the decay of estimated errors for every considered error
estimator with different comparison values including the values of Quasi Monte Carlo, which
presumably has the lowest errors among the used methods. Its error decrease rate is more
similar to the rate of Gauss quadrature rule, the estimated error values are bigger, than the
values for Gauss, Monte Carlo and Quasi Monte Carlo methods. According to the error
estimations with Monte Carlo and Quasi Monte Carlo the estimated errors of the adaptive
algorithm are more similar to the estimated errors of Gauss quadrature, than to the values
of Monte Carlo and Quasi Monte Carlo. This might indicate, that Gauss Quadrature and
the adaptive algorithm achieve approximately the same quality in the approximation of
the integral. The Sparse Gauss quadrature has similar or worse values of error estimations
compared to the adaptive algorithm. Since the effectiveness of sparse grids with respect
to L2 and Lmax norms might depend on the smallest upper bound for the second mixed
derivative of a function and refinement graphs show the refinement near the boundary for
some dimensions, it might be a sign, that the function does not have second mixed derivative
defined on the integration domain or its maximal value is large. Oscillations in the values of
error estimations might be caused by the used error estimator for selection of new points to
refine.

38

List of Figures

4.1 Layout of the campus. Measurement points are marked with the respective
numbers . 16

7.1 . 26
7.2 . 28
7.3 . 30
7.4 . 31
7.5 . 32
7.6 . 33
7.7 . 34
7.8 . 35
7.9 . 36
7.10 . 37

39

Bibliography

[1] D. Xiu. “Fast numerical methods for stochastic computations: a review”. In: Communica-
tions in computational physics 5.2-4 (2009), pp. 242–272.

[2] P. Deuflhard and A. Hohmann. Numerische Mathematik 1: eine algorithmisch orientierte
Einführung. Walter de Gruyter GmbH & Co KG, 2018.

[3] R. E. Caflisch. “Monte carlo and quasi-monte carlo methods”. In: Acta numerica 7 (1998),
pp. 1–49.

[4] A. Sokol and A. Rønn-Nielsen. Advanced probability. http://web.math.ku.dk/noter/
filer/vidsand12.pdf. 2013.

[5] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Courier Corporation,
2012.

[6] H.-J. Bungartz and M. Griebel. “Sparse grids”. In: Acta numerica 13 (2004), pp. 147–269.

[7] M. Obersteiner and H.-J. Bungartz. “A spatially adaptive sparse grid combination
technique for numerical quadrature”. In: Sparse Grids and Applications-Munich 2018.
2019.

[8] D. M. Pflüger. “Spatially adaptive sparse grids for high-dimensional problems”. PhD
thesis. Technische Universität München, 2010.

[9] T. Gerstner and M. Griebel. “Numerical integration using sparse grids”. In: Numerical
algorithms 18.3-4 (1998), p. 209.

[10] M. Griebel, M. Schneider, and C. Zenger. “A combination technique for the solution of
sparse grid problems”. In: (1990).

[11] M. Obersteiner and H.-J. Bungartz. “A generalized spatially adaptive sparse grid
combination technique with dimension-wise refinement”. Unpublished Manuscript.
2020.

[12] B. Kleinmeier, B. Zönnchen, M. Gödel, and G. Köster. “Vadere: An open-source sim-
ulation framework to promote interdisciplinary understanding”. In: arXiv preprint
arXiv:1907.09520 (2019).

[13] F. Hofmeier. “Applying the Spatially Adaptive Combination Technique to Uncertainty
Quantification”. In: (2019).

[14] J. A. Gubner. “Introduction to random vectors”. In: Probability and Random Processes for
Electrical and Computer Engineers. Cambridge University Press, 2006, pp. 330–361. doi:
10.1017/CBO9780511813610.010.

40

http://web.math.ku.dk/noter/filer/vidsand12.pdf
http://web.math.ku.dk/noter/filer/vidsand12.pdf
https://doi.org/10.1017/CBO9780511813610.010

	Abstract
	Contents
	Introduction
	Quadrature rules
	Gaussian quadrature
	Monte Carlo
	Low-discrepancy sequences
	Sparse Grids
	Combination technique
	Dimension-wise Spatial Refinement with the Sparse Grid Combination Technique

	Error estimator
	Error estimator

	Simulation Scenario
	Sparse-SpACE framework
	Python implementation
	VadereSimulation class
	Parallelisation
	Reading a file

	Tests
	Convergence of quadrature rules and error estimations
	Norms

	Test results
	Values of error estimators
	Refinement graph

	Conclusion
	List of Figures
	Bibliography

