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Abstract

Metal-organic frameworks (MOFs) are (poly-)crystalline compounds which consist of metal
centers or nodes coordinated by organic ligands called linkers. They often show permanent
porosity. As these network-like compounds tend to self-assemble, the molecular building
blocks can be chosen to downright design certain features of the MOF. Considering the vast
design space offered by the possible metal centers organic molecules, it seems peculiar that
only a minority of MOFs shows electrical conductivity. To begin to understand, why this is
the case, the physical quantities underlying the conductivity are studied exemplarily for
the family of metal triazolates, M(ta)2. Considering the large band gaps of many pristine
MOFs and in particular of the M(ta)2 crystals, one assumes that one of the quantities
necessary for a non-zero conductivity, namely a non-zero mobile charge carrier density, is
ascribed to defects in the real crystal. As the conductivity is given as the product of this
density and the charge carrier mobility, through this hypothesis it is possible to focus on
the latter, where the Bardeen–Shockley deformation potential theory is used to give an
upper limit expression for the mobility. The in-depth study thus focusses on the three
material parameters which appear in the Bardeen–Shockley mobility. First, the effective
mass of the charge carriers in the crystal which measures their delocalization. Second,
the bulk modulus, measuring the stiffness of the crystal and the group velocity of the
acoustic phonons therein. Third, the deformation potential which measures an effective
coupling between the charge carriers and the (acoustic) phonons in the crystal. In a first
theoretical study, the effect of metal center substitution is studied under the premise that
the differing Lewis acidity and thus polarizability of the metal atoms changes the electronic
coupling elements influencing the band dispersion and thus the effective mass. The metal
triazolates used therefore, are iron, zinc, and ruthenium triazolate. The former two are
known to exhibit a finite electrical conductivity or being an electrical isolator respectively.
The ruthenium triazolate crystal, which so far has not been synthesized, is predicted to
have an even better conductivity compared to Fe(ta)2. A second study then looks at the
influence of different weakly interacting gases (argon and carbon dioxide) on the mobility
descriptors in a Fe(ta)2 crystal. It could be shown that the main effect of such an absorption
is a change of the deformation potential. This may suggest a negative effect which weakly
bound absorbates, also commonly found in air, could have on the electrical conductivity. In
a short third study, it is realized that the arguments brought forward so far for the explicit
crystalline framework may be taken to a much simpler metal-linker surrogate model which
emphasizes the importance of different aspects of the metal-linker bond in the description
of the three Bardeen–Shockley mobility descriptors.
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Zusammenfassung

Metallorganische Gerüstverbindungen (metal-organic frameworks, MOFs) sind (poly-)kris-
talline, oft permanent poröse Verbindungen, die sich aus Metallzentren, welche durch
organische Liganden (Linker) koordiniert werden. Die Synthese erfolgt meist aus einer die
Metallspezies enthaltenden Vorstufe und den Linkerverbindungen durch Selbstassemblie-
rung. Dieses Zusammensetzen molekularer Bausteine lässt sich zum gezielten Entwerfen
bestimmter MOF-Eigenschaften nutzen. Bei der zur Verfügung stehenden Vielfalt an Metall-
Linker-Kombinationen, ist es erstaunlich, dass aus dieser Masse an Gerüstverbindungen
bisher nur einige wenige elektrische Leitfähigkeit zeigen. Um zu verstehen, warum dies so
ist, werden im Folgenden die der elektrischen Leitfähigkeit zugrundeliegenden physikali-
schen Größen untersucht. Dies geschieht am Beispiel der kubischen Metall(II)-triazolate,
M(ta)2, insbesondere dem Eisen(II)-triazolat. Die elektrische Leitfähigkeit hängt direkt von
zwei Größen ab: der mobilen Ladungsträgerdichte und ihrer Beweglichkeit oder Mobilität.
Erstere ist durch eine Bandlücke von mehreren Elektronvolt für die idealen M(ta)2-Kristalle
bei Raumtemperatur null. Daher wird auf die Hypothese zurückgegriffen, dass im realen
Material die mobilen Ladungsträger durch unterschiedliche Defekte in der Kristallstruktur
eingeführt werden. Dies erlaubt es weiters nurmehr Argumente bezüglich der Mobilität
vorzubringen. Hierfür wird der Ausdruck verwendet, welcher sich aus der Deformations-
potentialtheorie von Bardeen und Shockley ergibt. Daraus folgt eine Abhängigkeit der
Mobilität von drei Größen: Erstens von der effektiven Masse der mobilen Ladungsträ-
ger, welche ein Maß für die Delokalisation der mobilen Ladungsträger ist. Zweitens vom
Kompressionsmodul des Kristalls, welche die mechische Belastbarkeit und eine effektive
Gruppengeschwindigkeit der akustischen Phononen angibt. Drittens vom Deformationspo-
tential, welches eine effektive Kopplung zwischen den Ladungsträgern und den (akustischen)
Phononen misst. Untersucht werden die Einflüsse auf diese drei Deskriptoren durch den
Austausch der Metallzentren einerseits und durch Absorption schwach wechselwirkender
Gase in die MOF-Poren andererseits. Für die Mobilität können so experimentelle Befunde
für die Leitfähigkeit von Fe(ta)2 (leitet bei Raumtemperatur) und Zn(ta)2 (elektrischer
Isolator) reproduziert werden. Für Ru(ta)2, wird eine noch größere Mobilität vorhergesagt
als für Fe(ta)2. Diese Effekte sind hauptsächlich bedingt durch eine Änderung der effektiven
Masse. Unter Gasabsorption zeigt sich für Fe(ta)2 ein negativer Effekt von physisorbiertem
Gas auf die Mobilität durch eine Erhöhung des Deformationspotentials. Dies könnte auf
einen starken Einfluss jeglicher Atmosphäre auf Leitfähigkeitsmessungen bei MOFs hin-
deuten. Abschließend werden die Überlegungen, die für die einzelnen Netzwerke angestellt
wurden, auf ein Komplex-Ersatzmodell übertragen und die besondere Rolle verschiedener
Eigenschaften der Metall-Linker-Bindung im Hinblick auf die drei Deskriptoren diskutiert.
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1 Introduction

The coordinative bonding between metal centers and certain organic ligands with multiple
coordination sites, can lead to the formation of self-assembled, net-like or framework
compounds with permanent porosity[2–4], which are then called MOFs.[5] Utilizing this
molecular building block principle, it has been possible to synthesize many thousands of
different framework materials, most often designed for a specific purpose.[6, 7] The initial
interest lying in gas sorption,[2–4, 8] has long since been expanded to many other fields of
application, e. g. fuel cell membranes[9, 10] and catalyst materials[11, 12].

Another interesting application for MOFs, in particular with regards to their porosity, are
chemical sensors.[13] Those can function in different ways, by exploiting different features
of the sensor material and the analyte.[14] For example, a color change, or more generally
the change of the absorption or emission spectrum, upon absorption of a compound into
the MOF could indicate its presence in a substrate. Another possibility, is to exploit the
change of electrical resistance or conductivity of a sensor material[15] under adsorption of
an analyte onto the (inner) surface.

The latter approach requires at least some inherent conductivity in the sensor material,
for the whole device to function. Unfortunately, within the vast design space of possible
metal-linker combinations, only few intrinsically electrically conducting MOFs have been
found so far.[16–18] One reason for this may also be that the active research interest in this
area is only approximately ten years[19] old. Still, the number of publications in the field
of electrically conducting MOFs is only in the order of magnitudes of hundreds.
One way to go is thus to find out the reasons, why MOFs so often are bad electrical

conductors. At this point, this means semi-conductivity, so that a good intrinsic electrical
conductor must have a high density of mobile charge carriers, which in turn have to show a
high mobility.[20–22] For the latter to be analyzed more deeply, one has to assume some
model for the charge transport mechanism. Oberhofer et al. have reviewed[23] theoretical
models to describe the mobility of charge carriers in organic semiconductor crystals. They
discuss that, concerning the localization of the charge carriers, there are two extremal
regimes: one in which so-called hopping models are valid, where the charge carriers are
localized on some site, and one governed by the band transport model, in which the
charge carriers are assumed as delocalized. Furthermore, they state that the gross of such
compounds will have to be treated within models using a partial delocalization of charge.
However, they disclose that, irrespective of the choice of mechanism, the order of magnitude
of the resulting mobility is comparable.
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By means of this, one can argue that although mobile charge carriers in an average MOF
would be expected to be rather localized, one can estimate their mobility by using a band
transport model. Note, that this choice is not made deliberately. It gives the freedom to
not choose localization sites for the mobile charge carriers, which is, given the potentially
three-dimensional network of a MOF, not as straightforward as for e. g. a molecular crystal
bound by van der Waals (vdW) forces, where each molecule can be easily used as a center.

Within a continuum model of a three-dimensional solid, the mobility in the band-transport
regime is given by an expression[23, 24] first derived by Bardeen and Shockley for classic
semiconductors like silicon or germanium. This was done in the course of developing a simple
theory of electron-phonon coupling, commonly called deformation potential theory.[24, 25]
In this model, the charge carrier mobility is governed by an effective electron-phonon
coupling, the eponymous deformation potential, the effective mass of the carrier particle,
and the bulk modulus of the semiconductor crystal. A high mobility semiconductor has a
high bulk modulus, its charge carriers have a low effective mass, and their effective coupling
to the phonons of the crystal should be weak.

The compound-wise focus of this work lies on the family of transition metal(II) (1,2,3)-
triazolate crystals, M(ta)2, of which the iron compound has been shown experimentally by
others[26] to exhibit a finite electrical conductivity. That is, for Fe(ta)2, a conductivity of
1× 10−6 S cm−1 at 300 K under nitrogen atmosphere and in the dark is found.[26] This has
to be put in relation to the conductivities of 1× 10−14 S cm−1 to 1× 10−6 S cm−1 found for
the other compounds which were synthesized and measured in their study (various metal
centers were paired with different linkers, Fe(ta)2 giving the best result) and to a range[27]
of 1× 10−9 S cm−1 to 1× 10−3 S cm−1 covered by MOFs which one might call conductive.

The basic outline of this thesis is as follows: in the first part, the theoretical foundation
for the studies presented in the second part is layed. The first part comprises a short
introduction to density-functional theory (DFT) which is used to calculate any of the
material properties of interest, the description of periodic structures using Bravais lattices
and Bloch’s theorem on the more elementary side.

Ensuing this are the introductions to the three main aspects found again in the Bardeen–
Shockley mobility formula: the vibrational properties of a harmonic crystal and the theory
of elasticity, the electronic structure of a crystal and the effective mass, and finally the
coupling of the charge carriers and phonons using Bardeen’s and Shockley’s deformation
potential theory of this interaction. In another chapter on charge transport those aspects
are then brought into a common context and the expression for the relaxation time and
the mobility in the Bardeen–Shockley theory is derived as well as a generalized expression
giving expression for the relaxation time which depends on the reciprocal spatial direction.

In the second part of this thesis, the different studies on various influences on the charge
carrier mobility and in particular on the three underlying material properties are presented.
The first focus lies on the effects exerted by exchanging the metal centers of a cubic metal(II)
triazolate crystal. This changes mainly the polarizability of the metal nodes and should

2



keep the effect on the phonon-related properties low, so that predominantly the electronic
ones are influenced.
Next to the charge carrier mobility of triazolate crystals with different metal centers,

the influence of gas absorption is discussed for the example of physisorption into Fe(ta)2.
The limitation to weakly interacting gases was done, so that the influence on the transport
properties of the network could be studied independently from those which might be inflicted
by a strongly interacting absorbate (cf. guest-mediated transport in ref. [19]).
Finally, building on the collected results, the effect of the meta-structure, i. e. the

coordinative metal-linker bonding which gives rise to the net-like structure of a MOF,
on the parameters which enter the Bardeen–Shockley mobility—putting a focus on the
deformation potential—is discussed.
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2 Theoretical Background

This chapter serves as an introduction to the most important pieces of solid state physics
with regard to the mobility of charge carriers in an ideal crystalline solid. Therefore, this
has to encompass the dynamic properties of both matter constituents: electrons and nuclei,
where the latter will be sometimes called ions in the following discussion. Both labels
shall be used interchangably. The presentation is kept rather succinct as most information
contained in this chapter can be found in one or another textbook[20–22, 28–47].

2.1 The many-body problem of the solid

The general Hamiltonian operator∗ H of any system consisting of electrons and nuclei can
be written as a sum of three principal parts: the Hamiltonian of the ions, the Hamiltonian
of the electrons, and the Hamiltonian of the interaction between ions and electrons,

H = H ion +Hel +Hel−ion . (2.1)

These three terms can be broken down into functions of the corresponding canonical degrees
of freedom (DoFs). For each ion A there are positions and momenta, denoted as RA and PA,
as well as for each electron, for which they are labelled by ri and pi†. In the following, the
individual terms are introduced, starting with the ionic one:

H ion =
N∑
A=1

1

2MA
PA · PA +

1

2

N∑
A,B=1
A 6=B

ZAZB
|RA −RB|

, (2.2)

∗In the following, the explicit mentioning that the Hamiltonian is an operator will be dropped. Also,
every equation will be assumed to be written in atomic units (AU), that is: distances are measured in
multiples of the Bohr radius a0, masses are measured in electron masses me, charges are measured in
elementary charges e, energy is measured in multiples of the Hartree energy Eh, and action is measured
in multiples of the reduced Planck constant ~. All other units are written as combinations of these basic
units, if possible. For a further explanation and explicit conversion factors to the units of the international
system of units (SI), refer to the book by Szabo and Ostlund.[28]

†Here, each canonical DoF is to be understood as a vector operator, e. g. RA = (R1
A, R

2
A, R

3
A), with

components RiA.

5



where MA is the mass of ion A and ZA its charge. A similar expression is written down for
the Hamiltonian of the electrons:

Hel =

n∑
i=1

1

2
pi · pi +

1

2

n∑
i,j=1
i 6=j

1

|ri − rj |
. (2.3)

Finally, the electron-ion interaction is given by the term

Hel−ion =
n∑
i=1

N∑
A=1

ZA
|ri −RA|

. (2.4)

The clamped nuclei and the adiabatic approximation[44, 48, 49] are used to separate the
electronic and the ionic DoFs. This leads to the electronic Hamiltonian

Helec = Hel +Hel−ion , (2.5)

=
∑
i

{
1

2
pi · pi +

1

2

∑
i 6=j

1

|ri − rj |
+
∑
A

ZA
|ri −RA|︸ ︷︷ ︸
v(ri)

}
. (2.6)

Eigenstates of this Hamiltonian see the ions as a static configuration which only paramet-
rically enters through the electron-ion interaction. For the potential energy of a single
electron in the field of all ions, v(ri), one often reads the term external potential.
One might at this point already guess that the general many-body (MB) problem of

quantum mechanics is not exactly solvable and tackling it numerically is also not easily
feasible. Even for the electronic problem, one is still restricted to more or less small
systems depending on more or less sophisticated methods. One possibility to perform
calculations on larger systems is to change from a wavefunction theory (WFT) to a DFT
(cf. section 2.2). This means a change from a theory, where the central object—the MB
wavefunction Ψ(x1, . . . , xn)—depends on 4n variables∗ to a theory, where the central object—
the (electron) density ρ(x) is an observable which only depends on three or four variables,
depending on the treatment of the electron spin. Clearly this change involves a trade-off in
accuracy, as state of the art DFT is not an exact theory†.

A problem arises for systems with particle numbers in the order of the Avogadro constant.
Especially for the cases considered in condensed matter physics, i. e. in liquids and solids,
this can limit a simulation to more or less sophisticated methods. In case of the solid
matter, one finds the large class of crystalline solids which show translational symmetry of
the atomic positions to a large extent. This periodicity allows for a huge simplification by
which one can afford to carry out calculations on these systems as described in the next
section. Note, however, that also here there is a trade-off in the sense that real materials

∗Three spatial and one spin DoF for each electron.
†Even though in principle it could be one (cf. section 2.2).
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cannot be described in the picture of an ideal crystal. The real crystal will show several
sorts of defects, the most severe one being probably its truncation at a surface. Nevertheless,
the possibility to grasp the physical properties of large systems has lead and continues to
lead to interesting and insightful results.

2.2 Density-functional theory

2.2.1 Reformulating the electronic many-body problem

There exists a different approach to the electronic MB problem which does express quantum
mechanical expectation values not in terms of a state vector or wavefunction functional,
but in terms of one of the (groundstate) electron density ρ, where

ρ(r) = N

∫
· · ·
∫
|Φ(x)|2 ds1 d4x2 d4x3 · · · d4xN . (2.7)

Here, xi subsumes the spatial DoFs ri and the electron spin si. A spin-resolved density can
be obtained, if the integral

∫
· · · ds1 is omitted.

Such a reformulation is possible and is exact as shown by Hohenberg and Kohn (HK) in
their first theorem.[50] Furthermore, they could show in their second theorem[50] that for
any correctly normalized, positive-valued trial density a variational principle holds for the
total energy of the system. The proofs of the HK theorems are well-presented and discussed
throughout literature[29, 32, 51] and will not be repeated here. Instead, the expression for
the total energy E as a functional of the electron density ρ is given:

E[ρ] =

∫
ρ(x) v(x) d3r+ (〈T 〉[ρ] + 〈V ee〉[ρ]) =

∫
ρ v d3r+F [ρ] . (2.8)

where, F = 〈T 〉+ 〈V ee〉 is the universal functional. It is universal in the sense that it is
independent of the configuration of nuclei of any given system. The term in (2.8) which is
written as an integral comes from the remaining term in the Hamiltonian, the interaction
between electrons and nuclei. Its average can be represented as an integral over space of
the electron density and a potential v,

〈V eN〉 = 〈Ψ|
∑
i

∑
α

Zα
|ri −Rα|

|Ψ〉 =

∫
ρ v d3r . (2.9)

The two Hohenberg–Kohn theorems provide the basis of DFT as they enable one to find
the groundstate electron density of any system. However, this is only true in theory, as
an explicit expression for F in (2.8) is unknown. Kohn and Sham (KS)[52] tackled this
problem by two means. At first, they rewrote the universal functional using the classical
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electrostatic energy J [ρ] contained therein, where

J [ρ] =
1

2

∫∫
ρ(r1)r−1

12 ρ(r2) d3r1 d3r2 . (2.10)

Second, they introduced a system of non-interacting electrons which is assumed to have
the same groundstate density as the real system. This allows for a rewriting of the kinetic
term T [ρ] as the kinetic energy Ts of the non-interacting system and a rest which contains
the electron correlation. Overall, one writes

F [ρ] = T s[ρ] + J [ρ] + Exc[ρ] , (2.11)

where Exc is the exchange-correlation (XC) energy which is defined as the sum of the
exchange and correlation energy,

Exc[ρ] = Ex[ρ] + Ec[ρ] , (2.12)

such that (2.11) is fulfilled. It is furthermore possible to rewrite the exchange energy Ex

using the adiabatic connection formula[31, 32] (cf. appendix I) as

〈ΨKS
0 |V̂ ee|ΨKS

0 〉 = J [ρ] +

∫
ρ

[∫ 1

0
vx
λ dλ

]
d3r , (2.13)

= J [ρ] + Ex[ρ] , (2.14)

where 0 ≤ λ ≤ 1 is the adiabatic switching parameter which regulates the strength of the
electron-electron interaction∗ By approximating the λ-integral in (2.14), one finds that it is
possible to get a part of the exchange energy from the Hartree–Fock (HF)-exchange term,

Ex,HF =
1

2

∑
b>a

∫∫
ψ∗a(r1)ψ∗b (r2)r−1

12 ψb(r1)ψa(r2) d3r1 d3r2 . (2.15)

At least up to (2.11), Kohn-Sham density-functional theory (KS-DFT) is still an exact
mean field theory. However, the somewhat coy definition of Exc already suggests that its
exact form remains unknown to this day. Over the years, numerous approximations of Exc

have appeared. A few of these density-functional approximations (DFAs) are introduced in
the next section. Considering this discussion, there are two quantities, the XC potential vxc

and the XC kernel fxc which should be introduced. They are formally defined by

Exc =

∫
ρ vxc d3r =

∫
fxc d3r . (2.16)

∗One uses the modified electronic MB Hamiltonian Ĥelec
λ = T̂ el + V̂ eN

λ + λV̂ ee. The dependency of V̂ eN
λ

on λ compensates the changes in the density, so that the switching takes place for a fixed density.
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2.2.2 Approximating the exchange-correlation functional

One of the standard approaches to sort the different DFAs is by setting up a loose hierarchy
or “heuristic characterization”[31] based on the content of physical information used to
define one of them. J. P. Perdew termed the picture of “Jacob’s ladder” for this hierarchy.
At its first rung, there is the local density approximation (LDA), the XC energy of which is
locally modeled as a homogeneous electron gas (HEG),

Exc,LDA[ρ] =

∫
ρ(r)Exc,HEG(ρ(r)) d3r . (2.17)

The HEG is a well-studied system and the XC energy can be almost solved exactly.
Therefore, also LDA is a good approximation for extended systems in which the electrons
are more delocalized, thus showing a spatially slowly varying electron density. Such systems
are e. g. prototypic metals, such as the alkali metals, and the classical semiconductors like
silicon or germanium. There exists a spin-polarized form of the LDA functional which is
called local spin density approximation (LSDA).

A straightforward idea to improve the LDA is by using a Taylor expansion with respect
to the local density,

Exc =

∫ {
ρ(r)vxc,(0)(ρ(r)) +∇ρ(r)vxc,(1)(ρ(r)) + . . .

}
d3r . (2.18)

This is the gradient expansion approximation (GEA). Unfortunately, by such an ad-hoc
introduction of the gradient terms, much of the two-electron physics included in the LDA
is lost∗, so that e. g. a order-1 GEA can perform even worse than LDA. However, by
enforcing the correct restrictions, it is possible to restore these aspects.[32] This leads to the
functionals of the second rung, the generalized gradient approximation (GGA) functionals,
for which the XC kernel depends on the local density and the local density gradient,[32]

Exc,GGA[ρ] =

∫
fxc,GGA(ρ(r),∇ρ(r)) d3r . (2.19)

A popular example for a GGA functional which is free of semi-empirical parameters is the
Perdew–Burke–Ernzerhof (PBE) functional.[53] Further improvement can sometimes be
achieved by including the Laplacian† of the density or any other orbital information.[31]
Such functionals are then called meta-GGA.

On the next rung of Jacob’s ladder there are hybrid functionals which contain a por-
tion of exact exchange energy Ex,HF, which has the formal expression of the mean HF
exchange energy. This is motivated by the adiabatic connection formula (cf. appendix I

∗This centers around the notion of the XC hole, i. e. a depletion of the probability density to find two
electrons in direct vicinity, which is not discussed here. The reader is referred to the book by Koch and
Holthausen[32] or the book by Jensen[31].

†That is the divergence of the gradient, div grad ρ ∼ ∇ · ∇ρ.
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and section 2.2.1). Consequently, one writes for the XC energy

Exc[ρ] = αEx,HF + (1− α)

∫
ρ vx

1 d3r+Ec[ρ] . (2.20)

The integral term in (2.20) is the exchange energy, which is not exactly known and often
approximated by the exchange energy of LSDA.[31] Frequently, this inclusion of a part
of Ex,HF improves the results for non-metallic systems. This can be attributed either to a
reduction of the so-called SI error (cf. section 2.2.3) or to what is commonly called error
cancelation, i. e. the systematic errors introduced by the LSDA XC energy and the HF
exact exchange energy compensate each other numerically.

2.2.3 Self-interaction error in Kohn–Sham density-functional theory

The use of the classical electron-electron interaction in KS-DFT without the knowledge
of the exact exchange functional, leads to an artificial contribution to the ground state
energy. This error is called the self-interaction error as, in a one-electron system, it means
that the electron-electron interaction (2.10) does not disappear despite no other electron
being present.[54] Thus, it formally describes the interaction, i. e. a repulsion, of this single
electron with itself, leading to an over-delocalization of the KS states and thus the charge
density.

This error is preeminent in particular for the states of the angular momentum shells higher
than the d-shell and thus commonly encountered when dealing with transition metals.[55]

To overcome this error, no exact way is known except for model systems. Commonly, as
highlighted in section 2.2.2, a portion of exact HF-exchange energy, is included into the
exchange functional. Depending on the amount of HF-exchange energy, this compensates
the self-interaction error or leads to an over-localization of the states as new errors are
introduced. Therefore, the amount of HF-exchange energy included is fitted, so that the
total energies of the KS-DFT model reproduce sophisticated theoretical or experimental
results.[31]

There are, of course, a number of other methods aimed at compensating the self-interaction
error (SIE). The interested reader is pointed to the review by Cohen et al.[56].

2.3 Lattices and the Bloch theorem

This section is a very compact introduction into the terminology of Bravais lattices and the
associated reciprocal lattice, the Bloch theorem, and periodic boundary conditions. More
extensive presentations of the matter can be found in almost any book on solid state or
condensed matter physics, like e. g. the one by Ashcroft and Mermin[22]. The accounts
given by Kittel[20] and Marino[41] were also found to be concise and appealing.
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2.3.1 Bravais lattices

A Bravais lattice is a set of points

BL = {Lm|Lm = m1a1 +m2a2 +m3a3, m = (m1,m2,m3) ∈ Z3} . (2.21)

The vectors ai are called the primitive basis vectors of the lattice and clearly, the points in
the set are repeated periodically. Any translation of a lattice point by an integer linear
combination of basis vectors maps this point onto another lattice point, that is the lattice
is invariant under the operation

Lm → Lm + T, T = la1 +ma2 + na3 . (2.22)

The volume spanned by the ai which contains exactly one unique lattice point is called the
primitive unit cell of the Bravais lattice. It is defined as

UC = {r| r = x1a1 + x2a2 + x3a3, xi ∈ [0, 1)} (2.23)

and has the value

VUC = |(a1 × a2) · a3| . (2.24)

In general, a crystal will not only have a lattice basis {a1, a2, a3} but also a basis of
atoms A ∈ UC. The positions RA are per convention either given in cartesian coordinates
relative to the origin of UC or in terms of fractional coordinates in the basis of the primitive
lattice basis ai. Technically, a crystal is described by several Bravais lattices which are
shifted according to the atomic positions in one unit cell which is taken as reference. Thus,
to account for this, the atomic basis and the Bravais lattice together are said to constitute
the crystal lattice (in contrast to a single Bravais lattice).

2.3.2 The reciprocal lattice

In the following, the so-called reciprocal basis vectors bi which span the reciprocal lattice BL
are introduced. The need for those quantities suggests itself when studying the Fourier
components of a quantity f(x) which has the translational symmetry of an underlying BL
(BL-symmetry), that is

f(x+ Lm) = f(x) . (2.25)
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One introduces the reciprocal basis vectors∗ bi, so that their relation to the lattice basis
of BL is given by

ai · bj = 2πδij . (2.26)

They may be expressed in terms of the lattice basis vectors ai as

b1 =
2π

VUC
a2 × a3, b2 and b3 through cyclic permutation. (2.27)

Clearly, the reciprocal basis constitutes a Bravais lattice

BL = {Gn|Gn = n1b1 + n2b2 + n3b3, n = (n1, n2, n3) ∈ Z3} , (2.28)

Analogous to UC, BL has the reciprocal cell UC. In general, the space spanned by the bi is
called reciprocal space.

Note, that any point x in the crystal can be specified by a position r ∈ UC and a lattice
vector L ∈ BL, x = r + L. Then, the Fourier component f(G) of the BL-symmetric
function f(x) can be written not as an integral over the complete domain of x, but only as
an integral over UC,

f(G) = N
∫
UC
f(r)e−iq·r d3r . (2.29)

N is the number of Bravais lattice points. Furthermore, take notice that in the Fourier
expansion of a BL-symmetric function only reciprocal lattice vectors appear.

2.3.3 Bloch’s theorem

Bloch’s theorem defines the correct quantum numbers for and the overall form of the
eigenfunctions of a BL-symmetric Hamiltonian. The two propositions of the Bloch theorem
are:

1. Good quantum numbers for an eigenstate of the Hamiltonian are

ki =
2π

|ai|
ni, −Ni

2
≤ ni <

Ni
2
, (2.30)

where Ni is the number of lattice points in the spatial dimension i.

2. The eigenfunction ψk(r) factorizes into a BL-symmetric function u(r) and a plane
wave,

ψk(r) = eik·ru(r) . (2.31)
∗They are called reciprocal as their physical dimension is a reciprocal length.
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According to this, the wavevector k can take on only discrete values. However, as the
number of lattice points N = N1N2N3 increases, k can as well be assumed to take on
continuous values.[48]

2.4 Introduction to the theory of the harmonic solid

2.4.1 Classical theory of lattice vibrations

Conventionally, what is understood as the Born–Oppenheimer approximation (BOA) is
actually the Born–Huang or adiabatic approximation. As Maurer[48] points out, it is an
instruction on how to propagate the nuclear and electronic states based on an updated
energy functional of the other group. For the ionic problem, this means that the dynamics
is subject to the potential

U(R) = Eelec(R) +
1

2

∑
A,B
A 6=B

∑
m,n

ZAZB
|RmA −RnB|

, (2.32)

where Eelec(R) is the potential energy surface, i. e. the hypersurface of the electronic energy
in configuration space. The position RA of an ion is now assumed to lie within UC. The
overall position, including the unit cell in which the ion lies, is specified by a lattice
vector Lm. Notationally, this is expressed by the additional index m, so that

RA → RmA = RA + Lm . (2.33)

Considering the masses of nuclei, it is possible to take this as a potential of a Lagrangean
function

L(R, Ṙ) = T (Ṙ)− U(R) , (2.34)

where T (P ), the kinetic energy of the system, is given by

T (Ṙ) =
∑
m,A

1

2
MAṘmA · ṘmA . (2.35)

Conveniently, one expands U(R) in terms of displacement vectors UmA,

UnA = RnA −R◦nA , (2.36)
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where R◦mA is the equilibrium position of the ion, which then yields∗†

U(R) = U(R◦) +
1

2

∑
m,A

∑
n,B

GmnABijU
i
mAU

j
nB +O(U4) . (2.37)

Here, G is the force constant matrix which is defined by

GmnABij =

[
∂2U

∂U imA∂U
j
nB

]
R◦

. (2.38)

The expression for the kinetic energy is unchanged by the transformation to displacement
vectors as

U̇mA =
d

dt
[RmA(t)−R◦mA] = ṘmA . (2.39)

In this so-called harmonic approximation—hence one speaks of the harmonic solid—of the
potential, the Lagrangean function reads

L =
1

2

∑
m,A

MAU̇
i
mAU̇

i
mA −

1

2

∑
m,A

∑
n,B

GmnABijU
i
mAU

j
nB , (2.40)

where the constant shift of U(R◦) is used as reference energy. Typically, mass-weighted
coordinates are introduced,

UmA −→M
−1/2
A UmA , (2.41)

U̇mA −→M
−1/2
A U̇mA , (2.42)

leading to the expression

L =
1

2

∑
m,A

U̇ imAU̇
i
mA −

1

2

∑
m,A

∑
n,B

1√
MAMB

GmnABijU
i
mAU

j
nB , (2.43)

∗Summation over pairs of vector (or tensor) indices will be always be implied in the following. Other
labels or indices will in general not be automatically included in this convention, e. g. the indices of the
atomic basis of the unit cell or the lattice vector labels. Indices will be grouped type-wise, i. e. if the
object G has two indices i and j, two atomic basis indices A and B, and two lattice indices m and n, will
be labeled GmnABij . The order of the individual groups will always be: lattice indices, basis indices, tensor
indices. Note, that the position (co- or contravariant) of the repeated indices is not really important here,
as the underlying space is just the Euclidean one and the metric is just δij . That means, indices may switch
position arbitrarily.

†All odd terms vanish as the configuration R◦ = {R◦Am} is assumed to be in a minimum of the potential
surface U .
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where the same notation for the mass-weighted coordinates is used as for the non-mass-
weighted ones. From this form of L, one obtains the Euler–Lagrange equations

Ü imA = −
∑
n,B

1√
MAMB

GmnABijU
j
nB . (2.44)

As Ziman remarks[21], the force terms on the right-hand side of (2.44) cannot depend on
the absolute values for m and n, but only on their difference m− n. This means,

GmnABij = Gm−n,0ABij =: GABij(m− n) . (2.45)

With this notation, the equations of motion (EoMs) become

Ü imA = −
∑
n,B

1√
MAMB

G i
AB j(n) U jm+n,B . (2.46)

Any solution U imA to this system of equations must obey the Bloch theorem, that is

U imA(t) = U i0A(t)eiq·Lm = U iA(t, q)eiq·Lm , (2.47)

where q is a wave vector and the notation U iA(q) means that this is a solution for a
particular q. Inserting this into (2.46), one finds

Ü iA(q) = −
∑
B

∑
n

1√
MAMB

G i
AB j(n)eiq·Ln

U jB(q) . (2.48)

The term in braces is the dynamical matrix, that is the Fourier transform of the (mass-
weighted) force constant matrix. In the following, its elements are denoted by DABij(q),
giving

Ü iA(q) = −
∑
B

D i
AB j(q)U

j
B(q) . (2.49)

Note, that by imposing the validity of the Bloch theorem through (2.47), the displacement
vector U iA(t, q) is the same in each cell, that means that in each cell of the crystal, the
atom A moves in the same direction with the same amplitude, but with varying phase.[21,
33] Assuming, that the time dependence of U iA(t, q) is the classical one, that is

U iA(t, q) = εiA(q) e−iωt , (2.50)
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where εiA(q) subsumes amplitude and polarization vector of the vibrational displacement
pattern or mode, the EoMs (2.49) then become

εiA(q)
d2

dt2
e−iωt = −

∑
B

D i
AB j(q)ε

j
B(q) eiωt , (2.51)

−ω2εiA(q) = −
∑
B

D i
AB j(q)ε

j
B(q) . (2.52)

Now, this is just the eigenproblem of the dynamic matrix,∑
B

{
D i
AB j(q)− ω2δABδ

i
j

}
εjB(q) = 0 , (2.53)

yielding the eigenpairs (ωs(q), ε
i
As(q)), where s labels the individual 3N modes. This

means that by expressing the displacement vectors UAm(t) through εAs(q) (using expansion
coefficients as(q)),

U iAm(t) =
1√
N

∑
qs

as(q)ε
i
As(q) ei[q·Lm−ωs(q)t] , (2.54)

together with the corresponding generalized velocities one can bring the Lagrangean into a
form, where it yields a set of decoupled EoMs. Introducing the normal mode Qs,

Qs(t, q) = as(q)e
−iωs(q)t , (2.55)

so that

U iAm(t) =
1√
N

∑
qs

Qs(t, q) eiq·Lm , (2.56)

one finds for the Lagrangean

L =
1

2

∑
qs

{
Q̇s(t,−q)Q̇s(t, q)− ω2

s(q)Qs(t,−q)Qs(t, q)
}
. (2.57)

In this form, still, the two momenta q and −q couple. However, as the UAm must be real
per definition, one finds the following identities for the new—complex—DoFs:

Qs(t,−q) = Q∗s(t, q) (2.58)

and

εiAs(−q) = [εiAs]
∗(q) . (2.59)
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Therefore, the Lagrangean becomes

L =
1

2

∑
qs

{
Q̇∗s(t, q)Q̇s(t, q)− ω2

s(q)Q
∗
s(t, q)Qs(t, q)

}
. (2.60)

2.4.2 Classical theory of elasticity

To derive the classical theory of elasticity from the model of the harmonic solid as discussed
in section 2.4.1, one starts with the potential energy for a distorted configuration in the
harmonic approximation,

U =
1

2

∑
m,A

∑
n,B

GmnABijU
i
mAU

j
nB . (2.61)

In the following, the form of the displacements is now restricted to homogeneous defor-
mations, i. e. those deformation which do not break the BL-symmetry.[44] The reason
for this can be easily understood, if one realizes that the goal of this derivation are the
equations which describe the deformation of a volume element in a macroscopic solid. The
deformations have to be such that the microscopic deformation can lead to the macroscopic
deformation. This is the case if every point in the volume element undergoes the same
deformation, i. e. a shift and some kind of stretching of the position vector.
Thus, homogeneous deformations can be decomposed into two terms,

U imA = U iA + uikR
◦k
mA (2.62)

The first term shifts the whole sublattice of A ions and the second term changes the relative
positions of the ions within one sublattice. Inserting (2.62), into the potential energy
expression and dividing by the unit cell volume, one finds the expression for the potential
energy density due to the homogeneous deformation to be

U =
1

2VUC

∑
m,A

∑
n,B

GmnABijU
i
AU

j
B (2.63a)

+
1

2VUC

∑
m,A

∑
n,B

GmnABij

{
U iAu

i
kR
◦k
mA + U jBu

j
lR
◦l
nB

}
(2.63b)

+
1

2VUC

∑
m,A

∑
n,B

GmnABijR
◦k
mAR

◦l
nBu

i
ku

j
l . (2.63c)

The term in (2.63a) is the contribution to the potential energy due to shifts of the ion
sublattices against each other.[44] These shifts do not change the macroscopic shape of the
crystal and are thus called internal strains.[44] The tensor u is then for the corresponding
reason called the external strain tensor. The second term describes how the internal strains
couple to the external ones.

17



As Born and Huang remark[44], the internal strains are fixed by the conditions

∂U
∂U iA

=
∑
m,n,B

GmnABij

{
U iB +R◦lnBu

i
l

}
= 0 . (2.64)

The tensor elements apearing in the purely external term (2.63c),

cijkl =
1

VUC

∑
mA

∑
nB

GmnABijR
◦k
mAR

◦l
nB , (2.65)

are the elastic constants of the crystal. The tensor c is totally symmetric and together with
the (external) strain tensor lies at the heart of the theory of elasticity. The term (2.63c) is
thus called the elastic energy density,

Uelast =
1

2
cijklu

ijukl . (2.66)

The contraction cijklu
kl can be interpreted as a linear response relation,

sij = cijklu
kl . (2.67)

This is Hooke’s law which links the strains uij on the crystal to the stresses sij , the
divergence of which is the force density acting on the crystal.

Similarly, the internal strains will lead to internal stresses which give rise to another force
density. Within elasticity theory, one assumes[43] that these forces are in equilibrium, so
that the elastic energy is the only term to be considered. This assumption is justified given
that the internal strains are small and the crystal structure should adapt fast, compared to
the time scale of macroscopic deformations.

2.4.3 Hydrostatic deformation

A subclass of the homogeneous deformation is the hydrostatic deformation which is named
for the fact that this is the only deformation one typically can consider for a simple
continuum model of a liquid. The strain tensor can always be formally divided into a pure
shear and the hydrostatic part,

uij =

(
uij −

1

3
δiju

l
l

)
︸ ︷︷ ︸

pure shear

+
1

3
δiju

l
l︸ ︷︷ ︸

hydrostatic

. (2.68)
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Considering a pure hydrostatic deformation, i. e. a strain tensor without a shear strain.
Then, the elastic energy density becomes

Uelast =
1

2
cijkluijukl , (2.69)

=
1

2

(
1

9
cijklδijδkl

)
(ull)

2 , (2.70)

=
1

2
ci ki k(u

l
l)

2 , (2.71)

=
1

2
C◦g

2 . (2.72)

The elastic energy thus depends quadratically on a parameter g, which can be termed the
magnitude of the deformation. The remaining elastic constant is the bulk modulus

C◦ =
1

9
ci ki k . (2.73)

2.4.4 Quantization of the collective excitations

Having discussed the microscopic, classical theory of lattice vibrations and how the physics
behind this leads the long range behaviour as seen in the theory of elasticity, what is
left to discuss is the quantum physics of the ion vibrations. This serves to introduce the
creation and annihilation operator formalism which will simplify the understanding of the
electron-phonon interaction in section 2.6.2.
Within the formalism of canonical quantization, one takes the classical Hamiltonian

which is obtained through the usual Legendre transformation from the Lagrangian function,

H =
1

2

∑
s q

{P ∗s (t, q)Ps(t, q) +Q∗s(t, q)Qs(t, q)} , (2.74)

where Ps = Q̇s in mass-weighted coordinates, and imposes the canonical commutation
relations of the Schrödinger picture∗

[Qs(q), Qs′(q
′)] = [Ps(q), Ps′(q

′)] = 0 , (2.75)

[Qs(q), Ps′(q
′)] = i δss′δ(q − q′) . (2.76)

Thereby, the canonical degress of freedom are represented by their respective operators.
Now, writing these operators in terms of phonon creation operators, a†s(q), and annihilation
operators, as(q), one finds similar to the simple harmonic oscillator[30, 37]

Qs(q) =
1√

2ωs(q)

(
a†s(−q) + as(q)

)
(2.77)

∗Briefly: operators do not have time dependence, only the wavefunction has.
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and

Ps(q) = i

√
ωs(q)

2

(
a†s(q)− as(−q)

)
. (2.78)

together with

H =
∑
sq

ωs(q)

[
a†s(q)as(q) +

1

2

]
=
∑
sq

Hsq . (2.79)

a†s(q) creates a phonon in state sq and as(q) destroys one. The corresponding states are
symmetric under particle exchange as phonons are bosonic pseudoparticles. One denotes
them using the occupation number formalism as |. . . , Ns(qi), . . .〉 = |{Ns(q)}〉, where Ns(q)

is the number of sq-phonons in the state. The following rules[30, 37] apply:

a†s(q) |. . . , Ns(q), . . .〉 =
√
Ns(q) + 1 |. . . , Ns(q) + 1, . . .〉 , (2.80)

as(q) |. . . , Ns(q), . . .〉 =
√
Ns(q) |. . . , Ns(q)− 1, . . .〉 , (2.81)

and specifically

as(q) |. . . , 0, . . .〉 = 0 . (2.82)

2.5 Semiclassical electron motion and the effective mass

2.5.1 Quasiclassical equations of motion

In appendix II it is shown, that, using Wannier functions, one can write down an equation
which formally resembles a Schrödinger equation (SE) for the dynamics of the Wannier
envelopes fn:[21][

εn(−i∇)− i
∂

∂t

]
fn(t, r) +

∑
n′,m′

Unn′(Lm, L
′
m)f ′n(t, Lm) = 0 . (2.83)

In this expression, fn takes the place of the wavefunction and the one-electron Hamiltonian
is replaced by the so-called equivalent Hamiltonian εn(−i∇), that is the expression of
the one-electron energies in terms of the electron wavevector k, where k is substituted
by an effective momentum operator −i∇.[21] Assuming that the potential term is a
rather weak perturbation, such that only the diagonal elements of the potential term,
Unn′(Lm, Lm′) = Un(r = Lm), enter the Hamiltonian, the effective SE becomes[

εn(−i∇) + Un(r)− i
∂

∂t

]
fn(t, r) = 0 . (2.84)
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One makes use of the correspondence principle and describes a moving electron in a
crystal as a wavepacket which moves with a group velocity v(k) which is localized at some
point k in reciprocal space.[21, 35] Descending to classical mechanics, one substitutes the
momentum operator by a classical momentum function k:

−i∇ → k . (2.85)

Then, the Hamiltonian function is formally given by

H = εn(k) + U(r) . (2.86)

The Hamiltonian EoMs are then given through

ṙ =
∂H
∂k

, (2.87a)

k̇ = −∂H
∂r

. (2.87b)

From (2.87a) follows an equation for the group velocity of the wavepacket:

v(k) = ∇kεn(k) . (2.88)

The second equation (2.87b) is just Newton’s equation for the potential Un,

k̇ = −∇Un(r) . (2.89)

Now, let the crystal be subject to an external electric field E. Then, (2.89) becomes

k̇ = −E . (2.90)

From a classical point of view, the acceleration of the electron wavepacket, v̇(k), is of
interest. It is given, using another differential expansion, i. e. v̇(k) = [∇k ⊗ v(k)] · k̇, as well
as (2.88):

v̇(k) = [∇k ⊗∇kε(k)] · k̇ . (2.91)

The object ∇k⊗∇kε(k) is the Hessian matrix of ε(k) and has elements ∂2ε(k)/∂ki∂kj . One
inverts (2.91) and inserts the inverted equation into (2.90) to find

[∇k ⊗∇kε(k)]−1 · v̇(k) = −E . (2.92)

2.5.2 Effective mass tensor

By analogy to the equation of motion for the classical electron in an electric field which
reads mev̇ = −E—using the same symbols and explicitly writing the electron mass—one
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Figure 2.1: Illustration of warped bands. Shown is the interpolated (δ = 8× 10−4 a0) energy
isosurface 0.85 meV above the conduction band minimum of iron 1,2,3-triazolate and ruthenium
1,2,3-triazolate. Reproduced with permission from ref. [1], c© 2019 AIP Publishing.

terms the inverse of the Hessian matrix of ε(k) the effective mass tensor m∗(k),

m∗(k) := [∇k ⊗∇kε(k)]−1. (2.93)

Note that this effective mass depends on the point in k space. Around a band extremum at
k◦, one can write the second-order∗ expansion, using ∆k = k−k◦, ε(k) (regard ∇kε(k◦) = 0,
so all odd-power terms vanish) as

ε(k) = ε(k◦) +
1

2
∆kᵀ [m∗(k◦)]

−1 ∆k +O(∆k4) . (2.94)

That means the effective mass which was previously derived from a case where an external
electric field was assumed to be present, appears within the expansion of the eigenstates,
even without the presence of an external field.

2.5.3 Angular effective mass

Note, that (2.94) cannot be applied to so-called warped bands (Figure 2.1), where ε is not
necessarily differentiable twice for each direction in k space.[46, 57] Mecholsky et al . [57]
try to circumvent this problem by using spherical coordinates (κ, ϑ, ϕ) in k space, taking a
band extremum as the origin. κ is the distance to the coordinate origin, ϑ the azimuthal

∗That is second order in the crystal momentum ~k. Thus, in unit systems not measuring action in
multiples of the Planck constant ~, a factor of ~2 has to be added in the quadratic term of (2.94). Note
that this applies for the same reason to the ansatz of Mecholsky et al . in (2.95).
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angle, and ϕ the polar angle. Then, they expand the state energy in powers of κ,

ε(κ, ϑ, ϕ) = ε(k◦)− κf1(ϑ, ϕ) +
1

2
κ2f2(ϑ, ϕ) +O(κ3) . (2.95)

At high-symmetry points of the Brillouin zone (BZ), the linear term vanishes[57] and the
function f2(ϑ, ϕ) can be interpreted as the inverse effective mass in the direction (ϑ, ϕ),

m∗(ϑ, ϕ) =
1

f2(ϑ, ϕ)
. (2.96)

This gives the expression for the band energy

∆ε(κ, ϑ, ϕ) = ε(κ, ϑ, ϕ)− ε(k◦) , (2.97)

=
1

2
f2(ϑ, ϕ)κ2 , (2.98)

=
1

2

κ2

m∗(ϑ, ϕ)
, (2.99)

provided, that f2(ϑ, ϕ) does not become zero for any direction.

2.6 Electron-phonon coupling

In section 2.5, the movement of an electron wavepacket through a crystal was described
using a set of semiclassical EoMs. This is an overly simplified picture as a displaced charge
in a crystal implicates a polarization of the surrounding lattice, thus generating displacement
patterns which move with the charge, i. e. the naked charge carrier is shielded by a phonon
cloud.[34] This composite particle is called a polaron. In the following it is assumed that the
average number of phonons surrounding the charge carrier is much smaller than unity, so
that the approximation as a naked carrier makes sense. Nevertheless, the electron interacts
with the phonons states and the interaction potential energy is

V (R◦) = 〈Ψ|Hel−ion|Ψ〉 . (2.100)

2.6.1 Deformation potential coupling

Taylor expanding the potential energy (2.100) up to first order in terms of the ion displace-
ments leads to

V (R) = V (R◦)−
∑
mA

[
∂V

∂U imA

]
R◦

U imA +O(U2) . (2.101)
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The change in the potential energy under deformation of the crystal conformation is thus

V = −
∑
mA

[
∂V

∂U imA

]
R◦

U imA . (2.102)

Similar to the classical theory of elasticity, one now assumes that the displacements are
given by a homogeneous deformation (2.62) of the crystal, i. e. for convenience

U imA = U iA + uikR
◦k
mA = U iA + uikR

◦k
A + uikL

k
m . (2.103)

Plugging this into (2.102) yields

V = −
∑
mA

[
∂V

∂U imA

]
R◦

U iA −
∑
mA

[
∂V

∂U imA

]
R◦

R◦kmA︸ ︷︷ ︸
Dij

uij . (2.104)

The first term is again the change in the potential energy due to internal strain, VI. The
second term the potential energy change due to external strain on the crystal, VE. The
tensor D is the deformation potential tensor. Conceptually the deformation potential was
introduced as a scalar by Bardeen and Shockley[24] and extended to a tensor by Herring
and Vogt[58].
Note that this potential energy change is the change in the first order perturbation

correction term due to external strain. That is, if the internal term is small up to first order
to an external strain, the electronic eigenvalues are given as

ε(u, k′) = ε(0, k)−Dij(k)uij . (2.105)

It is obvious that due to the dependence of the eigenenergies on the electron wavevector k,
where k′ is the wavevector under strain, D has to depend on k as well. In the following, it
is shown that this is not nitpicking but an important subtlety.[59]

To see this, one writes down the expression for the state energy with respect to a strain-
dependent reference energy, δε(u, k′) = ε(k′, u)− εref(u)∗ and considers the differential of
the state energy δε(u, k′),

dε(u, k′) =

[
∂ε

∂uij

]
u=0

duij +

[
∂ε

∂k′i

]
u=0

dk′i . (2.106)

∗In the following derivation, the δ in front of δε is omitted to improve readability.
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The wavevector under strain is roughly k′i = (δij − uij)kj , so that for the differentials dk′i
one finds

dk′i = −kj duij + (δij − uij) dkj . (2.107)

Plugging this into (2.106) yields

dε(u, k′) =

[
∂ε

∂uij

]
u=0

duij +

[
∂ε

∂k′i

]
u=0

kj duij +

[
∂ε

∂k′i

]
u=0

(δij − uij) dkj . (2.108)

Using an expansion up to first order in u one writes[34]

ε(u, k′) = ε(0, k)−

[
dε(u, k′)

duij

]
u=0

uij , (2.109)

= ε(0, k)−


[
∂ε

∂uij

]
u=0

+

[
∂ε

∂k′i

]
u=0

kj

uij . (2.110)

The third term from (2.108) becomes zero upon differentiation with respect to a strain
tensor component, as dkj/duij ; k is independent of u. The sum inside the braces in (2.110)
is called the deformation potential,

Dij(k) =

[
∂ε

∂uij

]
u=0

+

[
∂ε

∂k′i

]
u=0

kj . (2.111)

Note, that the second term in Dij vanishes if k is a band extremum k◦. Only then, is

[
∂ε

∂k′i

]
u=0,k=k◦

=

[
∂ε

∂ki

]
u=0,k=k◦

= 0 =⇒ Dij(k◦) =

[
dε

duij

]
u=0

=

[
∂ε

∂uij

]
u=0

.

(2.112)

The values of Dij (k◦) measure how much the band energy δε shifts at the band extremum k◦

under a certain strain of the unit cell. In the isotropic case of uij = δij/3u
l
l, i. e. under

hydrostatic deformation (cf. section 2.4.3), one gets

δε(u, k′◦) = δε(0, k◦)−
1

3
Dij(k◦) δiju

l
l , (2.113)

= δε(0, k◦)−
1

3
Di

i(k◦)u
l
l , (2.114)

which was first recognized by Bardeen and Shockley.[24]
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The shift scales with the volume dilation ull. For later convenience, one defines

DBS(k◦) :=
1

3
Di

i(k◦) , (2.115)

the Bardeen–Shockley deformation potential. The shift of the band energies upon dilation
of the unit cell volume can be compared to the effect on the eigenenergies for a particle in
a box∗ when the box size varies.[1]

2.6.2 Coupling matrix elements and transition rates

In an ideal crystal, devoid of impurities and defects, the only interaction of the charge
carriers leading to a finite electric resistance is with the phonons. The latter are quantized
collective excitations of the crystal normal modes. Within this section, the electronic
eigenstates ε(k) shall be denoted as E(k), to clearly distinguish them from the phonon
polarization vectors εs(q).

The deformation potential interaction is given by the term Diju
ij , where u is the strain

tensor operator in this case. It is given by the symmetrized derivative of the displacement
vector operator U(x),

U i(x) =
∑
sq

1√
2Nωs(q)

{
as(q) + a†s(−q)

}
eiq·xεis(q) . (2.116)

Note, that this operator is obtained from the classical displacements by changing the normal
mode to the operator (2.77). Then, the strain tensor operator can be written down as

uij =
∑
sq

i

2
√

2Nωs(q)
[
εis(q)q

j + εjs(−q)qi
] {
as(q)e

iq·x + a†s(q)e
−iq·x

}
. (2.117)

Note, that the sign of the crystal momentum in the phonon creation operator was switched
compared to (2.116) by relabeling the summation index. The deformation potential
interaction then reads

Diju
ij =

∑
sq

igs(q)√
2Nωs(q)

{
as(q)e

iq·x + a†s(q)e
−iq·x

}
, (2.118)

where the coupling constants are given by

gs(q) =
1

2
Dij

[
εis(q)q

j + εjs(−q)qi
]
. (2.119)

∗They are repeated here for convenience: En = 1
2m

(
nπ
L

)2. This means, the spacing between two
neighboring states decreases with rising L and vice versa.
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Using the identity from (2.59) this becomes

gs(q) =
1

2
Dij

{
εis(q)q

j + [εjs(q)]
∗qi
}
. (2.120)

When calculating the transition rate Wk′k from a state |k; {Ns(q)}〉 into |k′; {N ′s′(q′)}〉,
given by Fermi’s golden rule,

Wk′k = 2π| 〈k′; {N ′s(q)}|Diju
ij |k; {Ns(q)}〉 |2δ(E(k′)− E(k) + ω(k′ − k)) , (2.121)

one needs the corresponding matrix elements, M(k′{N ′s(q)}, k{Ns(q)}). With ∆k = k′ − k,
their evaluation yields

M(k′{N ′s(q)}, k{Ns(q)}) = 〈k′; {N ′s′(q′)}|Diju
ij |k; {Ns(q)}〉 ,

=
∑
s

igs(∆k)√
2Nωs(∆k)

{√
Ns(∆k) δ(Ns(∆k)−N ′s(∆k)− 1)

+
√
Ns(∆k) + 1 δ(Ns(∆k)−N ′s(∆k) + 1)

}
ei∆k·x . (2.122)

Realize that, under the assumption of this type of interaction, the number of phonons can
change only by one. That is, either through absorption or by emission.
Consider, now, the coupling constants gs(q) for a cubic crystal, that is Dij = Dδij ,

gs(q) = D<εis(q)qi , (2.123)

where <εs(q) is the real part of the phonon polarization vector. For the longitudinal acoustic
(LA) branch, the polarization vector is just the unit wavevector q̂ and for the transversal
acoustic (TA) branches the polarization vectors are either perpendicular to it or almost
perpendicular.[22] This means, that the coupling between charge carriers and acoustic
phonons has to be written as

gs(q) =

D|q| s = LA ,

0 s = TA1,TA2 .
(2.124)

With this, the matrix element becomes

M(k′{N ′s(∆k)}, k{Ns(∆k)}) =

iD|∆k|√
2NωLA(∆k)

{√
NLA(∆k) δ(NLA(∆k)−N ′LA(∆k)− 1)

+
√
NLA(∆k) + 1 δ(NLA(∆k)−N ′LA(∆k) + 1)

}
ei∆k·x . (2.125)
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One can write this as the sum of a matrix element associated with the absorption of a
longitudinal acoustic phonon and a matrix element associated with the emmision of one,
according to the delta functions. That is,

Ma
k′k =

iD|∆k|√
2NωLA(∆k)

√
NLA(∆k) (2.126)

and

M e
k′k =

iD|∆k|√
2NωLA(∆k)

√
NLA(∆k) + 1 . (2.127)

For the total transition rate Wk′k this means it can be written as the sum of an absorption
and an emission transition rate,

Wk′k = 2π
(
|Ma

k′k|2 + |M e
k′k|2

)
δ(E(k′)− E(k) + ωLA(∆k)) , (2.128)

=
πD2|∆k|2

NωLA(∆k)
(2NLA(∆k) + 1)δ(E(k′)− E(k) + ωLA(∆k)) . (2.129)

Further assumptions are made: first, the phonons are assumed to provide a heat bath, so
that one can write the Bose–Einstein occupation number for NLA(∆k) and second, one
assumes that the temperature is high enough that one can make the high temperature
approximation[46] for this occupation number:

NLA(∆k) =
1

eβωLA(∆k) − 1
, (2.130)

≈ 1

1 + βωLA + 1
2β

2ω2
LA − 1

, (2.131)

≈ 1

βωLA
(1− 1

2
βω) , (2.132)

=
1

βωLA(∆k)
− 1

2
. (2.133)

With this, and assuming that the scattering is elastic and thus the phonon energy in the
argument of the δ-distribution vanishes, the transition rate Wk′k in (2.129) becomes

Wk′k =
2πD2|∆k|2

βNω2
LA(∆k)

δ(E(k′)− E(k)) . (2.134)

Typically, one substitutes the number of points in the reciprocal cell N by the volume of
the unit cell VUC . This yields a quite general expression for the transition rate:

Wk′k =
2πD2|∆k|2

βVUCω2
LA(∆k)

δ(E(k′)− E(k)) . (2.135)
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This expression will be further simplified using the approximations made by Bardeen and
Shockley in section 2.7.3. However, before this is done, the Boltzmann transport equation
and the relaxation time approximation shall be discussed first in section 2.7.1 and 2.7.2.

2.7 Charge transport

2.7.1 Transition probabilities and Boltzmann equation

Transport is always a non-equilibrium N -particle phenomenon. In terms of classical
mechanics, the state of such a system can be formulated as a point X ∈ R2Nd in a 2Nd-
dimensional phase space.[39] According to Boltzmann, alternatively, one can imagine a
swarm of N particles moving in a 2d-dimensional phase space. Let X be the coordinate
vector in this phase space and introduce[39]

f(X, t) ddX . (2.136)

This measure contains the number density f(X, t) in the volume ddX around the phase
space coordinate X, with the normalization∫

f(X, t) ddX = N . (2.137)

Averages of some function H over the ensemble of particles are calculated according to

〈H〉 =

∫
f(X, t)H(X) ddX∫
f(X, t) ddX

. (2.138)

For charge transport in the semi-classical picture, the N -particle phase space becomes
six-dimensional, with the volume element d3r d3k.[21, 42] The averages for a homogeneous
system in this case become

〈H〉 =

∫
f(k)H(k) d3k∫
f(k) d3k

, (2.139)

=
2

(2π)3n

∫
f(k)H(k) d3k . (2.140)

Here, n = N/VUC and the normalization was chosen such[46], that

2VUC
(2π)3

∫
f(k, t) d3k = N ⇐⇒

∫
f(k, t) d3k =

(2π)3n

2
. (2.141)
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One can derive the so-called Boltzmann equation (BE), the core statement of which is,
that f(r, k, t) will assume a stationary state under external influence. External influences
can either be fields (labeled by field), (un-)directed diffusion (diff) or collisions with other
(pseudo-)particles (coll). The equation reads[21, 36]

df(r, k, t)

dt

)
tot

=
∂f

∂t

)
coll

+
∂f

∂t

)
field

+
∂f

∂t

)
diff

= 0 . (2.142)

For the collision or scattering term, one can in the case of elastic scattering write

∂f

∂t

)
coll

=
∑
k′

[
f(k′)(1− f(k))Wkk′︸ ︷︷ ︸

rate in

− f(k)(1− f(k′))Wk′k︸ ︷︷ ︸
rate out

]
. (2.143)

This is just a balance of processes which scatter into state k and those which scatter out
of k. The transition probabilities are given here through (2.135). In the regime, where
there are only few charge carriers (fk � 1), e. g. in semi-conductors, the collision term can
be approximately written as[36]

∂f

∂t

)
coll

=
∑
k′

[
f(k′)Wkk′ − f(k)Wk′k

]
. (2.144)

Next, for the field term, one uses a variant of Liouville’s theorem on phase space volume
invariance and the semi-classical EoM (2.90) to write[21]

f(r, k, t) = f(r, k − k̇t, 0) , (2.145)

so that

∂f

∂t

)
field

= −q∇kf · k̇ = −q∇kf · E . (2.146)

Here, q is the charge of the carrier particle and ∇k means the gradient with respect to the
semiclassical momentum coordinates. A similar argument can be used for the diffusion
term, by which it becomes

∂f

∂t

)
diff

= −〈v〉(k) · ∇f . (2.147)

For small field strengths and if the number of charge carriers is small, the distribution func-
tion f will not differ much from the equilibrium quantity, i. e. the Fermi–Dirac distribution,
so that one can write

f = f◦ + g , (2.148)
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where f◦ is the Fermi–Dirac distribution,

f◦(k) =
1

eβε(k)−µ + 1
, (2.149)

and g contains all non-equilibrium information on the swarm of charge carriers.
Using all these approximations, the BE becomes

v(k) ·
(
∇g + qE

df◦

dε

)
+ qE · ∇kg =

∑
k′

(f(k′)− f(k))Wk′k . (2.150)

Instead of a direct solution of this equation, in the following the so-called relaxation
time approximation (RTA) will be discussed. A direct solution using Monte Carlo (MC)
techniques can be found in ref. [60] by Jacoboni and Reggiani. A further discussion of the
BE is given in refs. [47] by Jüngel and [46] by Jacoboni.

2.7.2 The relaxation time approximation

The relaxation time approximation states, that one can write for the collision term of
the BE in the manner of a difference quotient like[21, 36]

∂f

∂t

)
coll

= − g
T
. (2.151)

This means, one makes the approximation that if all other sources for changing f are
switched off and only scattering remains, the distribution f will return to the equilibrium
distribution f◦ during the eponymous relaxation time T . For the form of the collision term
this implies[36]

∂f

∂t

)
coll

=
∑
k′

g(k′)Wkk′ − g(k)
∑
k

Wk′k =
−g(k)

T
=⇒ 1

T
=
∑
k′

Wk′k . (2.152)

This is equivalent to the assumption that there is no back scattering into the state k.
Moreover, if the transition rates Wk′k are known, the relaxation time can be calculated.

2.7.3 The Bardeen–Shockley relaxation time

To calculate a relaxation time for the deformation potential interaction, one returns to the
transition rate expression (2.135),

Wk′k =
2πD2|∆k|2

βVUCω2
LA(∆k)

δ(E(k′)− E(k)) .

This goes back to the seminal work of Bardeen and Shockley.[24] There, they made simple
assumptions on the dispersion relation of the longitudinal acoustic phonon and the form
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of the band energies, which are introduced in the following. The whole derivation follows
closely the one given by Jacoboni[46].

First, one requires that |∆k| is small. Then, using a linear approximation, one can express
the phonon dispersion relation as ωLA(∆k) ≈ cs|∆k|, where cs is the sound velocity in the
crystal, i. e. the group velocity of the phonon:

Wk′k =
2πD2

βVUCc2
s

δ(E(k′)− E(k)) , (2.153)

Next, one can use the expression for the bulk modulus in an isotropic medium,

C◦ = ρc2
s =⇒ c2

s =
C◦
ρ
. (2.154)

However, here, the mass-weighted expression for the displacement operator U i(x) was used,
so the substitution is even simpler: one factor of ρ−1/2 is then already absorbed in the
sound velocity cs, so that one arrives at

Wk′k =
2πD2

βVUCC◦
δ(E(k′)− E(k)) . (2.155)

Turning to the charge carriers: the band energies are assumed to have the simple form

E(k) =
(k − k◦)2

2m∗
=

κ2

2m∗
, (2.156)

giving the transition rate expression

Wk′k =
2πD2

βVUCC◦
δ

(
(k′ − k◦)2

2m∗
− (k − k◦)2

2m∗

)
, (2.157)

=
4π|m∗|D2

βVUCC◦
δ((κ

′)2 − κ2) . (2.158)

Here, an identity for the δ-distribution was used:

δ(ax) =
1

|a|
δ(x) . (2.159)

In (2.158), κ and κ′ are the distances to the band extremum in reciprocal space.

Finally, one uses another identity for the δ-distribution:

δ(f(x)) =
∑
i

δ(x− xn)

|f ′(xn)|
, (2.160)

where the xn are the roots of f , i. e. where f(xn) = 0, and f ′ denotes the first derivate of f .
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This yields the expression

δ((κ′)2 − (κ)2) =
1

2κ
δ(κ′ − κ) . (2.161)

Using this, gives the following transition rate:

Wk′k =
2π|m∗|D2

βVUCC◦κ
δ(κ
′ − κ) . (2.162)

This expression (it is only meaningful within an integral) can be used to calculate the
relaxation time, where the sum over k′ is replaced by an integral over spherical coordinates∗:

1

T (κ)
=

VUC
(2π)3

∫∫∫
2π|m∗|D2

βVUCC◦κ
δ(κ
′ − κ)(κ′)2 sinϑ dκ′ dϑ dϕ , (2.163)

=
|m∗|D2κ

πβC◦
. (2.164)

After eliminating the integral over κ′ using the attribute of the δ-distribution, what remains
is a trivial integral over the angular coordinates which yields 4π.

The expression for the relaxation time is thus

T (κ) =
πβC◦
|m∗|D2

1

κ
. (2.165)

Solving (2.156) for κ and inserting this into (2.165), gives

T (E) =
πβC◦√

2|m∗|3/2D2

1

E1/2
. (2.166)

The expression in (2.166) is used in section 2.7.6 to give the expression for the mobility of
charge carriers scattering with LA phonons. Before this, a generalization of the Bardeen–
Shockley deformation potential model for a direction dependent relaxation time will be
introduced.

2.7.4 A generalization of the Bardeen–Shockley relaxation time

Consider the case, in which the deformation potential tensor has up to three non-degenerate
eigenvalues as done e. g. by Herring and Vogt[58]. In this case, the analog to (2.124) is

gs(q) =

Dij q̂
iq̂j |q| s = LA ,

0 s = TA1,TA2 .
(2.167)

∗The radius is measured as the distance from k◦, ϑ is the angle between k′ − k◦ and k − k◦ measured
from k − k◦ and ϕ is a polar angle defined accordingly.
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For the expression Dij q̂
iq̂j the following short notation is introduced:

D(q̂) = Dij q̂
iq̂j . (2.168)

The total transition rate(2.135) becomes in this case, writing q = ∆k,

Wk′k =
2πD2(q̂)|q|2

βVUCω2(q)
δ(E(k′)− E(k)) . (2.169)

Instead of the bulk modulus, now, Young’s modulus Y (q̂) is introduced,

ω2(q) ≈ c2
s (q̂)|q|2 , (2.170)

= cijrsq̂
iq̂j q̂r q̂s|q|2 , (2.171)

= Y (q̂)|q|2 , (2.172)

yielding the transition rate

Wk′k =
2πD2(q̂)

βVUCY (q̂)
δ(E(k′)− E(k)) . (2.173)

For the band energies in the argument of the δ-distribution, write

E(k) =
(k − k◦)2

2m∗(ϑ, ϕ)
=

κ2

m∗(ϑ, ϕ)
. (2.174)

The root of the δ-distribution argument is

(κ′)2

2m∗(ϑ, ϕ)
− κ2

2m∗(0, ϕ)
= 0 =⇒ κ′ =

m∗(ϑ, ϕ)

m∗(0, ϕ)
κ . (2.175)

Then, using the two identities for the δ-distribution from section 2.7.3, one finds

Wk′k =
2πD2(q̂)m∗(0, ϕ)

βVUCY (q̂)

1

κ
δ

(
κ′ − m∗(ϑ, ϕ)

0, ϕ
κ

)
. (2.176)

With this, one calculates the reciprocal relaxation time:

1

T
=

1

(2π)2β

∫∫∫
D(q̂)m∗(0, ϕ)

Y (q̂)

(κ′)2

κ
sin(ϑ) δ

(
κ′ − m∗(ϑ, ϕ)

m∗(0, ϕ)
κ

)
dκ′ dϑ dϕ .

(2.177)

Calculating the κ′-integral yields

1

T
=

κ

(2π)2β

∫∫
D(q̂)[m∗(ϑ, ϕ)]2

Y (q̂)m∗(0, ϕ)
sinϑ dϑ dϕ . (2.178)
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Writing unit vectors, k̂k◦ = k−k◦
|k−k◦| and k̂

′k◦, instead of spherical angles and introducing the
area element d2Ω′ = sin(ϑ) dϑ dϕ, one has the reciprocal relaxation time

1

T
=

κ

(2π)2β

∫∫
D(k̂′k◦ − k̂k◦)[m∗(k̂′k◦)]2

Y (k̂′k◦)m∗(k̂k◦)
d2Ω′ . (2.179)

For convenience, the a shorthand notation for the integral is introduced:

I(k̂k◦) =
1

4π

∫∫
D(k̂′k◦ − k̂k◦)[m∗(k̂′k◦)]2

Y (k̂′k◦)m∗(k̂k◦)
d2Ω′ . (2.180)

So, finally, the expression for the (reciprocal) relaxation time is given by

1

T (κ, k̂k◦)
=
κI(k̂k◦)

πβ
⇐⇒ T (κ, k̂k◦) =

πβ

κI(k̂k◦)
. (2.181)

Inserting isotropic values for Young’s modulus, the deformation potential, and the effective
mass gives the expression of (2.165).
Note, that the value of having this expression may not be as great as it may initially

seem. That is, because of the breakdown of Matthiesen’s rule,

1

T
=
∑
s

1

T
, s : scattering sources , (2.182)

in the case of a dependence of the relaxation time on the carrier wave vector k. Without
the dependence on k, the Bardeen–Shockley relaxation time for scattering with LA phonons
would give an upper limit for the relaxation time if all other scattering sources are neglected.
This feature is lost if the relaxation time depends on k. However, if one assumes that the
scattering of LA phonons is predominant, the regions of high T and low T should still have
a meaning insofar favoured directions of charge carrier mobility are concerned. For the
connection between mobility and relaxation time refer to section 2.7.6.

Another case shall be discussed here: the case of isotropic Young modulus and deformation
potential, i. e. Y (q̂) = C◦ and D(q̂) = D, when the effective mass is still described by the
anisotropic model for a warped band. Then, the integral I becomes

I =
1

4π

D2

C◦

∫∫
[m∗(ϑ, ϕ)]2

m∗(0, ϕ)
sinϑ dϑ dϕ . (2.183)

The integral

m̄∗ =
1

4π

∫∫
[m∗(ϑ, ϕ)]2

m∗(0, ϕ)
sinϑ dϑ dϕ , (2.184)

defines a mean effective mass.
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If the changes of m∗(ϑ, ϕ) are not too large in the direction of ϑ, the expression

m̄∗ =
1

4π

∫∫
m∗(ϑ, ϕ) sinϑ dϑ dϕ , (2.185)

which one intuitively assigns for a mean effective mass, is a good approximation.

Note that this formulation of a generalized, k direction dependent relaxation time was
specifically derived for this thesis to be able to account for the situation in complex solids
such as MOFs.

2.7.5 Conductivity and mobility

In the case of an external electric field E in which the charge carriers of the crystal move,
one has the general BE:

∂f

∂t

)
field

+
∂f

∂t

)
coll

= 0 . (2.186)

Using the approximations introduced in section 2.7.1 and 2.7.2, one finds[36]

−qE · ∇kf◦ −
g(k)

T
= 0 , (2.187)

which can be reformulated to

g(k) = −qT E · ∇kE(k)︸ ︷︷ ︸
v(k)

df◦

dE
= −qT E · v(k)

df◦

dE
. (2.188)

This is used in the expression for the current density j, which describes the charge carrier
density qn moving with an average velocity 〈v〉:

jn = qn〈vn〉 , (2.189)

=
q

(2π)3

∫
vn(k)f(k) d3k , (2.190)

=
q

(2π)3

∫
vn(k)g(k) d3k . (2.191)

In the linear response regime, the tensor with the elements

σmn =
∂jn
∂Em

= − q2

(2π)3

∫
T (k)vn(k)vm(k)

df◦

dE
d3k , (2.192)
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is the conductivity tensor∗. Conversely, this means the conductivity links the electric field E
to the current density j, so that[35]

ji = σilEl . (2.193)

The source of the mean velocity in (2.189) is the electric field and one defines[23] the
quantity moderating between the two as the charge carrier mobility†,

µij =
〈vi〉
Ej

. (2.194)

Note, that the mobility may depend on the electric field itself as the drift velocity is a linear
function of the latter only at small field strengths.[23] For this regime, one may expand the
drift velocity in terms of the electric field as

〈vi〉(E) = 〈vi〉(0) +

[
∂〈vi〉
∂Ej

]
E=0

Ej +O(E2) (2.195)

which, together with 〈vi〉(0) = 0, leads to the linearized expression

µij =

[
∂〈vi〉
∂Ej

]
E=0

(2.196)

or equivalently to the tensor equation

〈vi〉 = µijEj . (2.197)

With this, it is possible to derive an equation which relates the conductivity and the
mobility:

σil =
∂j

∂El
=

∂ji
∂〈vk〉

∂〈vk〉
∂El

=
∂ji
∂〈vk〉

µkl. (2.198)

In a last step, one uses (2.189) and relabels the indices to yield

σij = qnµij . (2.199)

This means, that although the conductivity is also determined by the charge carrier density,
the important bit to consider, if one assumes that the carrier density is constant, is the
mobility. Through this it is possible to make qualitative comparisons between a measured
conductivity and a calculated mobility.

∗Its elements are given in units of Ω−1 cm−1 or in atomic units of e2~−1a0
−1.

†In cm2 V−1 s−1 or in atomic units ea02/~.
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2.7.6 Mobility and relaxation time

In the following, the connection between mobility and relaxation time shall be highlighted.
To arrive there, one considers at first an expression for the drift velocity.

〈v〉 = − 2q

(2π)3n
Em

∫
T (k)vn(k)vm(k)

df◦

dE
d3k . (2.200)

The mobility tensor elements are then

µnl =
∂〈vn〉
∂El

, (2.201)

= − 2q

(2π)3n
δml

∫
vn(k)vm(k)T (k)

df◦

dE
d3k , (2.202)

= − 2q

(2π)3n

∫
vn(k)vl(k)T (k)

df◦

dE
d3k , (2.203)

and the scalar mobility is hence given by

µ =
1

3
µ i
i = − 2q

3(2π)3n

∫
T (k)v2(k)

df◦

dE
d3k . (2.204)

For the squared semiclassical velocity v2(k) in the case of a parabolic band E(κ) = κ2/(2m∗),
one can write

v2(k) =
2

m∗

(
κ2

2m∗

)
=

2

m∗
E . (2.205)

Substituting this into (2.204) yields

µ = − 4q

3(2π)3nm∗

∫
T E df◦

dE
d3k . (2.206)

In section 2.7.1 the requirement was used that f(k) � 1. In this case, the Fermi–Dirac
equilibrium distribution may be approximated by a Maxwell-distribution. Thus,

µ =
4qβ

3(2π)3nm∗

∫
T E f◦(E) d3k . (2.207)

Next use the well-known expression 〈E〉 = 3/(2β) to write

µ =
2q

(2π)3nm∗〈E〉

∫
T E f◦(E) d3k . (2.208)

Then, writing the remaining integral as an average, the mobility is given by

µ =
q

m∗
〈T E〉
〈E〉

=
qτ

m∗
. (2.209)
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It is convenient, to consider 〈T E〉/〈E〉 as a mean relaxation time τ .
For the Bardeen–Shockley expression of the relaxation time, 〈T E〉 can be calculated as

〈T E〉 =
2

(2π)3n

∫
T EKe−βE d3k , (2.210)

=
2C◦K

πnD2

∫ ∞
0

ξ3e−βξ
2

dξ , (2.211)

=
C◦K

πβnD2
. (2.212)

The constant K can be calculated from

n =
N

VUC
=

1

VUC

VUC
(2π)3

∫
Ke−βE d3k , (2.213)

=

√
8|m∗|3/2K

π2

∫ ∞
0

ξ2e−βξ
2

dξ , (2.214)

=
|m∗|3/2K√

2πβ3/2
. (2.215)

This yields

n =
|m∗|3/2√
8π3/2β3/2

K ⇐⇒ K =

√
8π3/2β3/2

|m∗|3/2
n . (2.216)

Putting everything together one finds the relaxation time given by Bardeen and Shockley[24]:

τ =
〈T E〉
E

=

√
8πβ3/2C◦

3D2|m∗|3/2
. (2.217)

Substitution into (2.209) yields

µ =

√
8πqβ3/2C◦

3D2|m∗|5/2
. (2.218)

The scalar mobility of the charge carriers which is restricted through the scattering of
carrier particles and LA phonons is thus mainly determined by three quantities: the bulk
modulus C◦, the deformation potential D, and the effective mass m∗. One wants the latter
two to be small and the first one to be large.
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3 Metal-organic frameworks

3.1 A versatile family of compounds

MOFs[61–63] are a class of network materials built from metal centers and organic ligands.
As an example, a part of the well-known HKUST-1 MOF is shown in figure 3.1a. There is
some MOF jargon: the ligands are commonly called linkers in the field. Furthermore, the
metal centers, which can be metal ions, small metal clusters or even specifically designed
metal-organic precursors, are called secondary building units (SBUs)[62].

The general term for the various synthetic approaches yielding net-like materials is called
reticular∗ chemistry or synthesis.[61, 64] It often relies on the self assembly of the metal
species with the linker molecules under solvothermal† conditions.[62] However, various
specialized approaches can be taken, like a layer-by-layer approach atop a self-assembled
monolayer (SAM)[65] or a post-synthetic exchange of the metal species[66, 67], to name
only two explicitly.
The building-block principle underlying MOF design manifests itself in the isoreticular

principle, which states that one may change the linkers and SBUs—and thus the chemical
nature of the MOF—but the net topology will stay the same if the connectivity properties
of those components does not change.[6] A simple example for this behavior is studied in
chapter 4 for a series of MOFs with a common linker and different (atomic) metal centers.

A striking feature of many MOFs are their large pores (figure 3.1a). This is included as
a possible but not necessary feature into the 2013 definition of the International Union of
Pure and Applied Chemistry (IUPAC).[5] Typically, the porosity is greater than 50 %, with
internal surface areas in the order of magnitude of about 1× 103 m2 g−1 to 1× 104 m2 g−1.[6]
This illustrates the original interest in MOF research as an organometallic equivalent to
zeolites.[8] For the last two decades, the interest here, lies in particular in fuel storage and
filtering applications.[6]

However, the field of MOF research is not limited to this, due to the structural diversity
of these hybrid materials: further applications include catalyst materials[11, 12], proton
conducting membranes for fuel cells[9, 10] and last but not least: various sorts of sensing
applications[14, 68]. The usages and limitations of MOFs in these cases shall be shortly
discussed in the following section.

∗From the latin word reticulum, meaning net. Thus, reticular synthesis can be understood as the
synthesis of netlike materials. A net, in this case, can also be a three-dimensional interconnected structure.

†Within a solvent at elevated temperature.
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(a) Constitution of a metal-organic framework.
Metal centers are marked in dark blue, linker atoms
in light blue. In this example, copper ions are linked
via trimesic acid (1,3,5 benzene tricarboxylic acid,
BTA) anions to the form one of the well-known
HKUST-1, Cu3(BTA)2, framework.
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(b) Conductivities of various metal organic frame-
works. Data taken from the supplement of ref. [26].

Figure 3.1: Some general features of metal-organic frameworks.

3.2 Electrical conductivity in metal-organic framework
crystals

Considering sensors in general, one of the features one can exploit is the electrical conduc-
tivity and specifically, how it changes under influence of some analyte.[15] One speaks of a
chemiresistor.[15] Without any problem one can accept, that the state of the sensor prior
to usage should be well-defined. However, establishing such a state should also become
increasingly difficult with increasing complexity of the sensor material.

This requirement calls for an elaborate purification procedure post synthesis. Nevertheless,
there will be many defects, i. e. deviations from the pristine crystal. Among those, there
could be different absorbed species in the pores of the network, linkers or SBUs may be
missing or other impurities may be present. Furthermore, the material could be difficult to
crystallize. Due to all of these difficulties with the real material, one has to define a point
of reference for the theoretical models. In the case of three-dimensionally interconnected
framework materials, which are the chemical basis for the studies in this thesis, this is
provided by a bulk unit cell. Note, that the surface will likely play an important part for a
MOF, however it was omitted for the studies presented in this thesis.
The majority of MOFs does not show electrical conductivity, which is illustrated for

a small group of compounds in Figure 3.1b. Even though, the number of electrically
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conductive MOFs which are found has been increasing for the last few years, the are still a
sparse subset of MOF design space. In particular iron MOFs seemed to be ideal candidates
for conductive framework materials at that time.[26, 69] In the meanwhile, also other
materials have been found which look promising.[19]
In the following, the focus lies on metal triazolate crystals and in particular on iron

triazolate and absorbate structures thereof. This class of compounds was chosen for
these studies as notably iron triazolate showed high electrical conductivity[26] for a MOF
(Figure 3.1b).
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4 Aspects of semiconductivity in soft,
porous, metal-organic framework
crystals

Large parts of this chapter are already published in ref. [1]. Text, figures, and tables are
reproduced or reproduced in parts from ref. [1] with permission. Copyright 2019 AIP
Publishing.

In the first part of this thesis, Bardeen–Shockley deformation potential theory for the
interaction of charge carriers with LA phonons of low crystal momentum (sections 2.6.1
and 2.6.2) has been established. Furthermore, a formula for the charge carrier mobility
from this theory based on an expression for the relaxation time (sections 2.7.3 and 2.7.6)
has been derived, which yields the mobility given by 2.218. The following chapter deals
with the application of this theory to a specific set of MOF crystals, namely cubic transition
metal(II) 1,2,3-triazolates, M(ta)2, of space group Fd3̄m, no. 227, where the elemental
species of the metal center is either iron, ruthenium or zinc. For the linker anion the
abbreviation ta– , following the convention of Sun et al.[26], is used.

4.1 Methodology

4.1.1 Computational details

DFT calculations were performed using the all-electron numeric atom-centered orbital
(NAO) basis DFT code FHI-aims∗.[70] We use the NAO “light” basis sets implemented
therein.[70] Electronic XC is treated using the GGA functional PBE[53] for structural
optimizations. For all other electronic structure calculations, the revised Heyd–Scuseria–
Ernzerhof (HSE)[71, 72] hybrid functional (HSE06) is employed with standard parameters.

All data evaluation is performed using homemade Python codes. This small package
is mainly based on the Numpy,[73] Scipy,[74] Matplotlib,[75], and ASE[76] packages. Fur-
thermore, the Quadpy[77] package is used to generate spherical Lebedev integration grids.
Parts of the Pymatgen package[78] are used for structural analysis.

∗Fritz-Haber-Institute ab initio molecular simulations.
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(a) Conventional cell for Cu(ta)2. (b) Primitive cell for Fe(ta)2

Figure 4.1: Crystal structures of cubic Cu(ta)2 and cubic Fe(ta)2.

4.1.2 Generation of the crystal structures

To obtain the different metal triazolate crystals, the metal centres in the corresponding
cubic Cu(ta)2 structure are substituted. This base structure[79] is taken from the Cambridge
Crystallographic Database (CSD) which has a well-defined subset of MOF structures.[80]
All three crystals show face-centered cubic (FCC) space symmetry, so that the conventional
cube-shaped unit cell is not the primitive cell. The conventional and the primitive cells
are used in different contexts throughout the procedure, so both kinds of cells have to be
optimized. For this purpose, the BFGS algorithm implemented in FHI-aims is used,[81]
taking a trust radius of 0.01 eVÅ−1 for the conventional and one of 0.001 eVÅ−1 in case
of the primitive cells.

4.1.3 Band structure calculations and the mean effective mass

Band structures are calculated using the reciprocal space paths connecting high symmetry
points of the Brillouin zone. These paths are chosen following Setyawan and Curtarolo.[82]
From the conventional band structures, the band extrema can be identified.
Next, consider the effective mass. Depending on the material, a description by a scalar

(spherical band), a tensor (ellipsoidal band) or by an angular dependent function (warped
band) has to be used.[46] The first case is just a special form of the second case, both of
which are henceforth called a “well-behaved” band extremum in contrast to a warped one.

To evaluate the validity of the parabolic expansion around the band extremum and to
find out which case—well-behaved or warped—applies, the state energies on an equally
spaced grid centered on a band extremum are calculated, where the shape of the iso-energy
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curves slightly above or below the respective extrema can thereby serve as a very rough
criterion for the warping of the bands.

The increments of that grid are always chosen as 4.0× 10−3 a0
−1, reciprocal Bohr radii.

This value was obtained due to its yielding numerically stable second finite difference
quotients corresponding to the curvature at the band extremum. Diagonalization and
inversion of the Hessian matrix at the extremum can be used to get the effective mass
tensor in the case of a well-behaved extremum.
In the case of warped bands, one also needs to determine the angular dependencies of

the effective masses m∗(ϑ, ϕ). To obtain these, one first interpolates the discrete calculated
band energies, using the radial basis function interpolator of Scipy[74] and r5 as radial basis
functions. Next, using cubic splines, one interpolates in the directions k̂(ΩI) specified by a
Lebedev grid ΩI = (ϑI , ϕI).[83] I enumerates the Lebedev grid points. Finally, calculating
the second directional derivative at the band extremum, the values for m∗(ΩI) are obtained.

In the simple Bardeen–Shockley model, only a scalar effective mass appears. Thus, it is
necessary to calculate a mean value from either the effective mass tensor or the angular data.
To achieve this, two different schemes are used: in case of a well-behaved band extremum,
a harmonic mean

m̄∗ν(k◦) = 3

(
3∑
i=1

1

m∗(i)(k◦)

)−1

=
3

tr ε′′ν(k◦)
. (4.1)

can be calculated. Here, ε′′ν(k◦) denotes the Hessian matrix of the band energy surface at
the extremum. The m∗(i)(k◦) are the principal values of the effective mass tensor.

In contrast to this, for a warped band, a Lebedev mean is calculated. This is defined by
the Lebedev approximation[83] of the angular integral (2.185),

m̄∗ν(k◦) =
1

4π

∫∫
m∗ν(k◦,Ω) sinϑ dϑ dϕ , (4.2)

≈
∑
I

wIm
∗
ν(ΩI) , (4.3)

where ΩI specifies a grid point and the constant coefficient cancels with the surface measure
of the unit sphere. The wI are the Lebedev integration weights. Note that the same
notation for the harmonic mean average of the effective mass and for the Lebedev mean.
This should be no problem as the former is only used in the case of well-behaved bands
and the latter in the case of warped ones.

4.1.4 Elasticity and deformation potential tensors

Next to the effective mass, a solid’s elastic properties are among the most important factors
determining its electronic or hole conductivity. In section 2.4.2, the main quantities, i. e.
the elasticity tensor, the strain tensor, and the stress tensor, were introduced.
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Based thereupon, in the following section the focus lies on the question how one can
determine the elasticity tensor and the bulk modulus in practice, when given some crystal
structure. For the mobility, following Bardeen’s and Shockley’s motivation of a hydrostati-
cally deformed solid, nevertheless only the bulk modulus is used.[24] However, rather than
simply calculating the latter, the full elastic tensor is determined, enabling future studies
using a generalization of the Bardeen–Shockley model which then uses the full tensorial or
angular information for each descriptor (section 2.7.4).

As a notational peculiarity which is often used in elasticity theory, one introduces Voigt
notation for symmetric, even-ranked tensors. The difference to common tensor notation
expresses itself in several points. At first, the notational ones: the indices in Voigt notation,
henceforth called Voigt indices, run from 1 to 6 and are defined by the mapping[22]

α : (i, j) ∈ {1, 2, 3}2 7→ {1, 2, 3, 4, 5, 6},

11 7→ 1 22 7→ 2 33 7→ 3

23 7→ 4 13 7→ 5 12 7→ 6 .
(4.4)

Second, applied to symmetric even-ranked tensors Voigt indices denote a representation
with half the number of indices. For example, symmetric rank-2 tensors Aij have Voigt
representations Aα which are denoted as a (6× 1)-array,A11 A12 A13

A22 A23

sym A33

 ∼ (A1 A2 A3 A4 A5 A6

)T
⇐⇒ Aij ∼ Aα . (4.5)

In the following, Voigt indices are distinguished from normal tensor indices by using
lowercase Greek letters. Equivalently, a symmetric rank-4 tensor such as the elasticity
tensor cijrs is representable by a 6× 6 (symmetric) array cαβ . Note, that a contraction of
Voigt indices, AαBα, is equivalent to a two-index contraction, so that

AαBα := AijBij = (A11B11 +A22B22 +A33B33)

+ [2A23B23 + 2A13B13 + 2A12B12] .

This is the main difference to conventional tensor notation and means that for a single
Voigt index contraction products containing the off-diagonal elements need to be counted
doubly. Here, the standard convention of elasticity theory is used, where e. g. for the strain
tensor u elements α ≥ 3 are defined as uα := 2uij , where ij 7→ α, to account for this
double counting. Thus tensor contractions formally reduce to a single index contraction.
For example, using Voigt notation, Hooke’s law becomes

sα = cαβuβ . (4.6)
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One wants to calculate the elements cαβ and by performing a DFT calculation, one can
obtain the stress tensor. It follows that to determine the elasticity tensor, one has to choose
a given form for the strain tensor and to find a way to invert Hooke’s law. In the following,
the method established by de Jong et al. to calculate the elastic properties is applied.[84]
Therefore, the form chosen is the Green–Lagrange strain tensor

u(γg) =
1

2

[
F γ(g)TF γ(g)− I

]
, (4.7)

where the matrix F γ(g) is called a deformation gradient,[84] defined as

F γ(g) = I + g(êa ⊗ êb + êb ⊗ êa), (4.8)

= I + gΛγS . (4.9)

Here, γ 7→ (a, b) is a Voigt index. g is a number denoting the magnitude of this deformation.
In the following, a double index notation notation G := γg is used, with G running from
e. g. 1 to 6Ng, where Ng is the number of different values of g that are considered. The
unit vectors êa denote the Euclidean basis vectors. It has to be stressed that in contrast
to de Jong et al., here, a symmetrized deformation gradient is used. In their original
formulation the term êb ⊗ êa is not present.[84] For equal values of g this effectively leads
to larger deformations. Briefly∗, this can be seen by realizing that the relation between the
de Jong Λ-matrices, ΛγJ , and the symmetrized ones, ΛγS, is

ΛγS = 2(ΛγJ)sym , (4.10)

where sym denotes symmetrization. The Green–Lagrange strain tensor may, using the Λ-
matrices, be written in the form

uX(γg) = g(ΛγX)sym +
1

2
g2(ΛγX)TΛγX . (4.11)

Then, using (4.10), and neglecting O(g2) terms in the strain tensor, one finds an effective
strain magnitude 2g in the symmetrized deformation gradient case, compared to the
formulation of de Jong et al.
Through this procedure one has a strain tensor u(G) for each value of G. Thus, one

obtains a set of strain tensors which can be expressed in form of a (6× 6Ng)-matrix u using
Voigt notation for each strain tensor,

u =


u1(1, g1) u1(1, g2) · · · u1(1, gN ) u1(2, g1) · · · u1(6, gN )

u2(2, g1) u2(1, g2) · · · u2(1, gN ) u2(2, g1) · · · u2(6, gN )
...

...
...

...
...

...
...

u6(1, g1) u6(1, g2) · · · u6(1, gN ) u6(2, g1) · · · u6(6, gN )

 . (4.12)

∗A more thorough derivation is given in appendix III.
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Subjecting the relaxed crystal unit cell to a deformation through F γ(g) and subsequently
to a relaxation of the atomic positions under the constraint of a fixed unit cell, one further
obtains a set of stress tensors s(G) which are expressed similarly as s. The Moore–Penrose
pseudo-inverse

u+ := (uTu)−1uT (4.13)

of the strain tensor matrix then serves to solve the linear stress-strain relation, which is
Hooke’s law, for the elastic tensor:

sα(G) = cαβuβ(G) =⇒ cαβ =
∑
G

sα(G)u+
β (G) . (4.14)

At this point one can calculate basically any elastic property of the solid. However, for
the Bardeen–Shockley model one is only interested in the scalar bulk modulus of the crystal.
It is calculated from the elastic constants through the relation (2.73) given in section 2.4.3,
which is also known as the Voigt average CV

◦ ,

CV
◦ :=

1

9
ciirr =

c11 + c22 + c33 + 2(c23 + c13 + c12)

9
. (4.15)

Note that this is not the only way to calculate the average bulk modulus,[84, 85] but rather
the most straightforward one. Here, however little difference in the mobilities between the
different averages has been found.
Having established the main parameters describing the prevalence of acoustic phonons,

the next important step is to determine the coupling of these phonons to the charge carrier
dynamics. Yet, instead of calculating the coupling for each phonon separately, within
Bardeen–Shockley theory only the coupling to the LA phonon is considered originally
(sections 2.6.1 and 2.6.2). However, by using the macroscopically strained structures from
which the elastic constants are determined, one expects that the deformation potential
calculated represents more of an average influence of the all phonons onto the carriers in the
form of the acoustic deformation potential Dac, with a prevalence of the LA phonons.[25]
Specifically, Dac represents the influence of strain on the crystal’s electronic states.[45, 46]
Of particular interest is the shift of the band edge extremum energies as remarked in

section 2.6.1, as only at the extremal points, the deformation potential only results from the
effect of the macroscopic strain. Otherwise, there would be an intermixture with the group
velocity of the charge carrier resulting from the band edge dispersion as stated by (2.111).
It has to be repeated, that the band edge extremum energy is given with reference to some
other energy changing with strain. Within a bulk crystal modeled by periodic boundary
conditions this reference is the Fermi energy under strain, εF(u).
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By neglecting terms O(u2), one finds (2.105) which is written as a linear shift-strain
relation

∆δεν(u, k◦) = −Dac
νij(k◦)uij , (4.16)

where ∆δεν(u, k◦) := δεν(u, k′◦)− δεν(0, k◦) is the band shift at k◦ under strain with respect
to the unstrained band extremum.

From a technical point of view, this approach has the advantage that the determination of
the deformation potential does not demand any further calculations beyond those necessary
for the elasticity tensor, where one already gets a (γg)-set of band extremum shifts,
∆δεν(G) := ∆δεν(u(G), k◦(G)). Using again the pseudo-inverse u+ one can rewrite (4.16)
as follows:

Dac
να(k◦) = −

∑
G

∆δεν(G)u+
α (G) . (4.17)

However, the method has also a downside as the inversion of the equation relies heavily on
the linearity of the shift-strain relation. If there are non-negligible quadratic terms, one can
still apply this technique but introduces an error in the linear couplings, which depends on
the magnitude of the induced strain and the magnitude of the quadratic couplings. One
can compensate for this error by introducing a smart splitting of the strain matrix u and
the shift vector ∆δε, given that the strain magnitudes one used are symmetric with respect
to g = 0. This is described in section 6.1.
Several common definitions for deformation potential constants, for different positions

and symmetries in the Brillouin zone, exist in the literature.[24, 45, 58] The Bardeen–
Shockley deformation potential used here, is due to a hydrostatic compression of the
crystal. Thus, we again use the decomposition of the strain tensor into a pure shear and a
hydrostatic compression part (section 2.4.3 and eqs. 2.114 and 2.115). Concentrating on the
hydrostatic compression part only, one finds the Bardeen–Shockley deformation potential,
DBS
ν (k◦) = Dac

νii(k◦)//33, from a contraction of the underlying tensor elements.
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Figure 4.2: Basic workflow to obtain the quantities underlying the descriptors of the Bardeen–
Shockley mobility. Reproduced with permission from ref. [1], c© 2019 AIP Publishing.

4.2 Results and discussion

To obtain the elastic constants and the deformation potentials, several geometry optimiza-
tions on crystal structures with strained unit cells were performed (Figure 4.2). For each
of these optimizations one has to be careful to use a sufficiently dense k-point grid as one
breaks the symmetry of the unit cell through the straining of the base structure. The
strained unit cells are generated using a deformation gradient as described in section 4.1.4.
During the optimization process, the structures are relaxed within fixed strained cells and
the analytical stress tensor[86] is calculated. Using the pseudo-inverse procedure of de Jong
et al.[84] this, in turn, yields the elasticity tensor.
Comparing the increase in total energy E(γ, g) of the various strained unit cells with

relaxed atomic structure to the analytic behaviour one expects from elasticity theory, one
gets a good agreement for the conventional unit cells (Figure 4.3). It shall be explicitly
remarked here, that these results are not well reproduced using the primitive unit cells even
for the comparably large cells of metal triazolate crystals. This behavior is also observed
by de Jong et al. for many other materials.[84]

Using the relaxed structures in the strained cells, the self-consistent field (SCF) cycle is
reconverged and one obtains the electronic structure of the strained crystal on the hybrid
XC level. During each of these calculations, a band structure is generated as output. By
means of the procedure described in section 4.1.4, the deformation potential tensors are
computed.

The principal band gaps for all three M(ta)2 crystals are given in Table 4.1. For Fe(ta)2
and Zn(ta)2 band gaps of 4.11 eV and 5.96 eV are found, in accordance with the results of
Sun et al.[26] The proposed Ru(ta)2 shows a slightly smaller band gap compared to Fe(ta)2.
Nevertheless, the band gaps in all three pristine M(ta)2 compounds are far too large to
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Figure 4.3: Dependence of the total energies for the various strains (index γ) on the magnitude
of strain. The curvatures of the depicted parabolas are determined by the elastic constants c11
for γ ∈ {xx, yy, zz} and to a good approximation (neglecting a term O(g4)) by c44 for the other
values of γ. For Zn(ta)2 the initial relaxation did not relax completely into its local potential energy
minimum leading to a slight shift of the parabolae which do, however, not influence the calculations
of the curvatures. Reproduced with permission from ref. [1], c© 2019 AIP Publishing.

allow for thermal excitation of charge carriers at reasonable temperature. As also theorized
by Sun and co-workers,[26] non-vanishing carrier density could be achieved e. g. through
doping, which is likely for the cases of Fe(ta)2 and Ru(ta)2 considering the position of their
Fermi levels slightly below the conduction band edge, with 0.22 eV and 0.75 eV. Therefore,
in the following, the conductivity argument is relayed to the mobilities of present charge
carriers and the material properties influencing them.

It follows the discussion of all the different parameters and of the mobilities resulting
from them. In the beginning, there shall be an overview of all results, followed by a descend
to the individual discussions of each descriptor. The parameters and resulting mobilities
which are found for the three MOFs are given in Table 4.2. The mobility in the valence
band maximum (VBM) and in the conduction band minimum (CBM), that is for holes and
electrons, increases from Zn(ta)2 to Fe(ta)2 to Ru(ta)2. While the main reasons for this
are the declining effective masses, it is also found that there are non-negligible differences
in the crystal stiffnesses and the deformation potential couplings.
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(a) Band structures for the various metal(II) 1,2,3-
triazolates. Clearly, the principal band gaps are
large, with an order of magnitude of several 1 eV,
and the width of the edge bands is small, with an
order of magnitude of several 1meV. The trend
Ru > Fe > Zn for the band width can be explained
by the concept of Lewis acidity and the occupation
of the d shell, where a Ru atom is a better electron
donor than an Fe atom and thus the charge in the
Ru-framework is delocalized better, resulting in a
higher band width.

DOS Fe(ta)2 PDOS Fe PDOS ta

25.0 0.0
 up

15

10

5

0

5

10

15

20

F /
 e

V

25.0
down 

25.0 0.0
 up

25.0
down 

25.0 0.0
 up

25.0
down 

DOS Ru(ta)2 PDOS Ru PDOS ta

0 50
DOS

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

F /
 e

V

0 50
DOS

0 50
DOS

DOS Zn(ta)2 PDOS Zn PDOS ta

0 100
DOS

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

F /
 e

V

0 100
DOS

0 100
DOS

(b) Densities of states for the metal(II) 1,2,3-
triazolates. The black lines indicate either the par-
tial density of states of the Fe-d states or of the N-p
states. All of them show symmetric spin channel
data, as is illustrated for Fe(ta)2, indicating the low
spin configuration of the metal centers. Note, that
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Figure 4.4: Band structures and densities of states for the various metal(II) 1,2,3-triazolates.
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Table 4.1: Band gaps Eg and mean effective masses m̄∗
ν(k◦) for the various band extrema.

Fe(ta)2 Ru(ta)2 Zn(ta)2

Eg/eV 4.11 3.71 5.96

m̄∗vbm/me 4.45 2.75 9.96
m̄∗cbm/me 3.00 1.50 6.27

Table 4.2: Bardeen–Shockley parameters and mobilities.

νk◦
C◦

eVÅ−3
DBS
ν (k◦)
eV

m̄∗ν(k◦)
me

µBS
ν (k◦)

cm2 V−1 s−1

Fe(ta)2
vbm 0.18 1.75 4.43 13.77
cbm 4.04 3.00 6.93

Ru(ta)2
vbm 0.17 −1.58 2.75 53.16
cbm 3.08 1.50 63.66

Zn(ta)2
vbm 0.09 1.27 6.27 5.55
cbm 2.02 9.96 0.69

4.2.1 Carrier effective masses in M(ta)2

To understand the properties governing the carrier mobilities, at first, the effective masses
of the different materials are discussed. As illustrated in Figure 4.5, the CBM of Fe(ta)2
and Ru(ta)2 is warped which necessitates a description via an angle-dependent effective
mass (sections 2.5.3 and 4.1.3). The conduction band (CB) of Zn(ta)2 is also warped,
however as can be seen in Figure 4.6, the curvature is negligibly small in one∗ certain
direction. For this reason, a meaningful depiction of an energy iso-surface was not possible.
The data furthermore shows that the VBM of Fe(ta)2 and the one of Ru(ta)2 is almost
spherically symmetric. This can also be seen from the range spanned by the the values
of m∗vbm(Ω) (Figure 4.6). For both CBM and VBM the effective masses are lowered by
substituting Fe by Ru in the MOF crystal structure. This is not surprising: by the concept
of Lewis acidity, Ru atoms should be better electron donors than Fe atoms. This leads
to generally more delocalized charges throughout the metal-organic network and thus to
greater dispersion, i. e. to higher curvature of the bands and lower effective masses.

4.2.2 M(ta)2 crystal stiffness

The other evident difference in the parameters shown in Table 4.2 is the bulk modulus
of Zn(ta)2 which is about half as large than for the Fe- or the Ru-MOF, where the latter two
have very similar elastic behaviour. The reason for this is the different electronic structure

∗The regions of high effective mass correspond to the regions of low curvature per definition. In the
Figure, one can see those regions at (ϕ, ϑ) = (60◦, 30◦) and (−120◦,−30◦). This means that these points
lie opposite to each other on the sphere.
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Figure 4.5: Iso-energy surfaces around the CBM. The value for the increment δ was, after interpo-
lation, δ = 8× 10−4 a−1

0 . The energy values for which the surfaces are depicted are 0.85 meV above
the CBM of Fe(ta)2 or Ru(ta)2. Reproduced with permission from ref. [1], c© 2019 AIP Publishing.

Table 4.3: Independent components cαβ of the elasticity tensors and bulk modulus C◦ of Fe(ta)2
and Ru(ta)2. All values given in GPa.

c11 c12 c44 C◦

Fe(ta)2 57.2 15.3 33.5 29.3
Ru(ta)2 57.7 13.2 30.6 28.0
Zn(ta)2 22.7 12.2 9.9 15.7

of the Fe and Ru, and Zn triazolates as shown by the projected density of states (PDOS)
of the metal and the linker of the three metal(II) triazolate crystals (Figure 4.4b). Clearly,
the valence band (VB) edge of Fe and Ru triazolate is composed mainly of metal-d states,
whereas the CB edge is constituted from N-p states. For Zn(ta)2, the d -block lies lower in
energy and both band edges are mainly due to the N-p states.

To set the elastic constants into context: the order of magnitude of the resulting elastic
constants (Table 4.3) is comparable to the results given by Ortiz et al., who calculate the
elastic constants of several MOFs of the MIL family, and of DMOF-1.[85] This, together
with the correct symmetry of the elastic tensor, having all elements expected to be zero
below a threshold of at best 1× 10−3 GPa and at worst 0.1 GPa, increases the confidence
in the results.
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Figure 4.6: Mollweide projection plots of the angular effective masses of Fe(ta)2, Ru(ta)2,
and Zn(ta)2. The value marked on the upper side of the color bar is the Lebedev mean m̄∗

νk◦
. In

this plot, red shades depict low effective masses and thus high mobilities, while blue shaded areas
show high masses/low mobilities.
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Table 4.4: Components of the deformation potential tensors and the Bardeen–Shockley deformation
potential DBS

ν (k◦). All values given in eV.

νk◦
Dac
να(k◦) DBS

ν (k◦)1 2 3 4 5 6

Fe(ta)2
vbm 1.75 1.74 1.77 — 0.0 — 1.75
cbm 4.04 4.04 4.04 — 0.0 — 4.04

Ru(ta)2
vbm −1.42 −1.79 −1.54 — 0.0 — −1.58
cbm 3.08 3.07 3.07 — 0.0 — 3.08

Zn(ta)2
vbm 1.30 1.24 1.28 0.04 −0.02 0.03 1.27
cbm 2.02 2.02 2.02 — 0.0 — 2.02

4.2.3 Effective carrier-phonon coupling in M(ta)2

Finally, the deformation potential constants of the three triazolates are discussed. Note,
that whereas the elasticity of a solid and the effective mass of a charge carrier therein,
can be interpreted in a rather descriptive way, this is not really true for the deformation
potentials which is why they are just summarized in Table 4.4. They describe the response
of the microscopic electronic structure of the MOF crystals to a macroscopic deformation
or in other words an effective electron-phonon coupling. This may be compared to a simple
particle in a box model for which the box size is altered. In both cases, the spacing between
the eigenenergies becomes smaller the bigger the box becomes. This effect should also hold
true for the band gap, i. e. ∆Eg := Eg(u)− Eg(0) < 0, so that

Eg(u) = Eg(0)−∆Dαuα . (4.18)

Thus, it is required that for a dilatation of the crystal ∆Dα := Dcbmα −Dvbmα > 0 which
is fulfilled for all triazolates investigated.

A summary of all resulting parameters needed to calculate a Bardeen-Shockley mobility
together with the resulting mobilities is included in Table 4.2. Furthermore, recognizing
the importance of graphical representations to identify potential handles for material opti-
mization,[87] all results are prensented graphically in a suitable polar diagram (Figure 4.7).
There, the representation is chosen such that the mobilities of CBM or VBM carriers can
be determined as a simple sum of their contributions. This highlights the importance of
each contribution and e. g. shows that changes in the deformation potential play only a
secondary role for the mobility, while differences in MOF elasticities and even more so in
the effective masses critically determine µBS

ν . The sign on each axis is chosen in such a way
that a semiconductor which is better than another will also occupy an area that appears
visually larger in the plot.

58



ln C◦

− ln
D

BS
vb

m

−
ln

m̄
∗vbm

lnμ BS
vbm lnμ

BS
cbm

− l
n

m̄
∗ cb

m

−
lnD BScbm

−5

0

5

10

Fe(ta)2 Ru(ta)2 Zn(ta)2

Figure 4.7: Representation of the Bardeen–Shockley parameters and mobilities in a certain polar
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circle gives the value ln(

√
8πeβ3/2/3), the argument given in units of eE−3/2

H for a temperature
of 300 K. The values for the mobility are also given at this temperature.

Figure 4.7 therefore demonstrates one handle available to the MOF designer in order
to optimize charge carrier mobility in a material. Simple exchanges of employed metal
ions already lead to large improvements in the carriers effective masses and smaller ones
for the MOF’s elasticity, yet they seem to leave the deformation potential, and thus the
electron-phonon coupling largely unchanged. Thus, it is a first independent control lever
for a more general design paradigm of semi-conductive MOFs.

4.3 Conclusions

Based on (hybrid-) density functional theory, the different properties—such as band gap,
carrier effective masses, elasticity, and (acoustic) electron-phonon coupling—of pristine
metal organic frameworks contributing to their suitability as semiconductors were studied.
Relying on the common Bardeen–Shockley band transport model, at first some of the
peculiarities of the soft and porous MOFs studied here are discussed which necessitate more
sophisticated approaches than generally applied. It is found, for example, that all of the
MOFs studied here, show some form of warped bands, where the band curvature is a more
or less complicated function of the reciprocal space angle. The result of this is a failure of
the common tensorial description of the effective mass, which nevertheless can be remedied
with more sophisticated angle-resolved methods.
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Next, the results for three different metal-substituted triazolate MOFs, iron(II), zinc(II),
and ruthenium(II) triazolate (Table 4.2) are presented, of which only the first two have
been experimentally characterized. All three MOFs show too large band-gaps for non-
negligible intrinsic carrier concentrations, which seems to be remedied in experiment through
impurities and doping. This leaves the mobility as the major quantity for good conductivity,
which is found for the ruthenium compound to be in excess of one of the to date best
semi-conducting MOFs, iron triazolate. Both mobilities, though much smaller than e. g. that
of silicon-based semiconductors, are with around 10 cm2 V−1 s−1 at least comparable to
modern organic semiconducting materials.[88] We thus propose ruthenium(II) triazolate for
future experimental characterization as a potential semi-conducting MOF.

The observed carrier mobilities of ruthenium and iron triazolate place them in a regime,
where the applicability of a band transport model is very plausible.[23] Zinc triazolate, on
the other hand, we find to have much smaller mobilities of . 1 cm2 V−1 s−1, in accordance
with earlier results by Sun and co-workers.[26] There, the accuracy of a band model is
certainly debatable, yet experimental trends, at least, do seem to be well reproduced.

Considering the different contributions to the mobility according to the model of Bardeen
and Shockley, the carrier effective mass, the MOF’s elasticity, and the acoustic deformation
potential (i.e. the electron-phonon coupling), especially the former is found to be most
strongly influenced by metal center substitution. Plotting all contributions in a polar graph
where the sum over all contributions yields the (logarithmized) mobility one sees that
indeed mostly changes in the band dispersion contribute to the observed trends in the
mobilities. While the elasticity, and even less so the deformation potential, also do vary,
these variations are too small to have a large impact on the carrier mobility. This implies
that the choice of metal center, for a fixed MOF topology as a first independent handle for
the quantitative design of semiconducting MOF materials in the future.
Yet, the study also shows, that the other contributing factors—that is, elasticity and

electron-phonon coupling—so far seem to be under-utilized as a descriptor for MOF design.
Given the vast chemical spaces of linkers and metal centers MOF designers can draw from
it should certainly be possible to optimize these two parameters as well.
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5 Influence of Gas Absorption on the
Charge Mobility and its Descriptors in
Iron Triazolate

The following chapter reproduces the theoretical studies from a manuscript∗, resulting from
a collaboration with groups at the University of Augsburg, which is in preparation at the
moment.

In general, the conductivity of a material strongly depends on the mobility of its charge
carriers—i. e. electrons or electron holes—which basically describes their average velocity
on application of an electric field.[23]
One way of describing the mobility is through the Bardeen–Shockley (BS) deformation

potential model[24] which has been introduced in section 2.7.3 and applied to pristine metal
triazolate crystals in chapter 4, where it was possible to reproduce an experimental trend
of conductivity given the premise of a constant charge carrier density.
The detailed discussion of the effects of metal center exchange there, involves three

material dependent parameters: the bulk modulus C◦ of the crystal, the deformation
potential DBS—measuring the electron-phonon coupling, and the mean effective mass m̄∗

at the band edge extremum. In the following, the same exposition is used to break down
the effect on the charge carrier mobility under gas absorbtion into the pores of a MOF
crystal, where Fe(ta)2 is used as an example.
However, through the large principal band gaps of pristine metal triazolate crystals[1]

and of many other MOFs[26], one still cannot simply argue with the conductivity, as
there cannot be any excited and thus mobile charge carriers in this case. Therefore, as in
chapter 4, it is assumed that there are in fact mobile charge carriers in the MOF crystal by
means of some sort of defect, and furthermore, that this density does not change with pore
loading.

This second assumption restricts this study to gases which do not interact strongly with
the MOF crystal, i. e. there must not be charge transfer from the absorbed gas particles
onto the framework. In the following, the case of Fe(ta)2 as host crystal and argon, Ar, and
carbon dioxide, CO2, as guests, i. e. as absorbed species, is studied exemplarily.

∗C. Muschielok, A. Reiner, R. Röss-Ohlenroth, A. Kalytta-Mewas, D. Volkmer, A. Wixforth, and
H. Oberhofer, (in preparation)
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For weakly interacting guests, the ratio of the conductivity of the loaded MOF and the
one of the empty MOF is then given by

σ(x)

σ(0)
=
qn(x)µ(x)

qn(0)µ(0)
≈ µ(x)

µ(0)
, (5.1)

where n is the density of the mobile charge carriers with charge q. As long as this
holds, one can concentrate on mobility arguments, for which again the Bardeen–Shockley
expression 2.218 is used.

5.1 Methodology

In the following, among other things, another kind of method of how the bulk modulus
and the deformation potential constants are calculated is introduced, which differs from
the method used in ref. [1] in that it relies on a simple least squares fit istead of the
pseudo-inverse. To avoid redundancy, the mean effective mass is not discussed here. The
same method as detailed in chapter 4 is used.

5.1.1 Bulk modulus from hydrostatic deformations

Both the elastic properties (bulk modulus) and the deformation potential of a MOF can
be computed from a series of deformations of the material’s unit cell along each of the
principal axes[1], as presented in chapter 4. Yet, with a view on computational simplicity
and focusing only on the trends induced by pore absorbates, one can use a much simpler
procedure relying on hydrostatic expansions of the crystal only. These are expressed through
the deformation gradient matrix

F ◦(g) =
(

1 +
g

3

)
I , (5.2)

with a magnitude g and the 3 × 3 unit matrix I. Neglecting second-order terms, this
deformation gradient leads to the hydrostatic Green–Lagrange strain tensor

u◦(g) =
1

2
[(F ◦)ᵀF ◦ − I] =

g

3
I . (5.3)

To compute the bulk modulus, one expands the total energy E(u◦) of the MOF in terms of
this strain tensor up to second order, arriving at

∆E(g) = E(g)− E(0) =
1

2
C◦V g

2 . (5.4)

This means, C◦ can be obtained by a simple least squares fit. To account for inaccuracies of
the optimization, a general second order polynomial is used instead of the origin parabola
suggested by 5.4.
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5.1.2 First and second order deformation potentials from hydrostatic
deformations

An analogous approach can be used for the deformation potentials DBS
ν (k◦), where ν is

the state label—denoting either the VB or the CB—and k◦ denotes the extremal point of
this state’s energy. In this case, the energy levels εν at the corresponding band extrema k◦,
measured with respect to the Fermi energy of the strained unit cell, are expanded in the
hydrostatic strain tensor, which yields

∆εν(k′◦, g) = εν(k′◦, u)− εν(k◦, 0) ,

= −1

3
Dνiig = −DBS

ν g . (5.5)

Here, k′◦ denotes the reciprocal space point of the band extremum under strain and k◦

the one in the relaxed structure. The reference for ∆εν(k
′
◦, g) is the relaxed structure, so

that ∆εν(k◦, 0) = 0. According to 5.5, the BS deformation potential can thus be obtained
from a linear fit of the band edge extremum energy shifts under hydrostatic strain. For
a cubic unit cell, where the deformation potential tensor has elements Dij = DBSδij , this
means all elements of the full deformation potential tensor are known.
After a preliminary study of the band edge extremum shifts, one realizes, that this

formulation has to be extended for MOFs by including a second order coupling K into the
description of the band edge extremum shift. Retaining the second order g-terms in the
strain tensor, one finds

∆δεν(k′◦, g) = −DBS
ν g +

1

2

(
Kν −

1

3
DBS
ν

)
g2 . (5.6)

In general, the coupling constant Kν(k◦) can be derived from the rank four tensor con-
traction Kν iirr(k◦)/9, similar to the bulk modulus. However, this tensor is not calculated,
Kν merely used as a fitted parameter. Note, that this behaviour can make the use of the
pseudo-inverse method from chapter 4 problematic in terms of a systematic error.

5.1.3 Sampling the geometric pore structure of a MOF

In order to allow an unbiased sampling of the arrangement of absorbates, potentially with
a range of different orientations, one first needs to ascertain the geometric structure of the
MOF’s pores. To this end, a generalization of the geometric method presented e. g. by
Ongari et al.[90] was developed. Note, however, that this generalizes only the criterion by
which a point is classified either as part of the pore volume or not. Effectively based on a
sphere approximation, the original criterion is only applicable to atomic absorptives like Ar
or small two-atomic molecules like N2. The generalization extends the possible absorbates
to linear molecules, e. g. CO2, under the assumption of constant bond lengths and angles
via a simple rotation of the whole molecule. What is used is what Ongari et al. call the
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Guest
structure

Any host
atom

Accepted
(P = 1)

RA
RB

Discarded
(P = 0)

Figure 5.1: Illustration of the Boolean criterion in (5.7). If for any pair of atoms, one from the
guest and one from the host structure, the interactomic distance is larger than the sum of their
radii (solid lines), the position and rotation of the guest is accepted. If any distance is shorter
(broken lines), the position and rotation is discarded.

geometric pore volume[90] as the intereset here lies not not in obtaining the true value of
the void fraction of a MOF crystal. Instead, the points within the pore are good starting
positions for DFT optimizations to study the arrangement of absorbates in the pores,
the main focus of this study. For the same reason a comparison with established codes
specifically designed to calculate the (geometric) pore volume is omitted. One concentrates
on a (periodic) absorbent structure H and an absorptive compound G, frequently also
called host and guest structures. Here, the symbols H,G are to be understood as sets of
the respective nuclear positions of the MOF crystal and the molecule.
In the following, a formal, mathematical introduction of the criterion, by which the

volume of the unit cell into one occupied by the MOF and the one which is attributed to
the pore, is given. This procedure can briefly be summarized as: first, take G and rotate it
by a random rotation. Next, put its center of mass onto a random position within the unit
cell of H and check if there is any (hard sphere) overlap with any atom of H. Accept the
pair of rotation and position if there is no overlap or discard it if there is. By gathering
all possible pairs, one obtains an understanding of the pore in terms of its probabilistic
sampling.
Formally this criterion (illustrated in Figure 5.1) can be expressed as the following

Boolean function

P (ξ = (X, q)|G,H) =

1 if ∀(A,B) ∈ G×H : |qAq̄ +X −B| > RA +RB ,

0 else.
(5.7)

Here, A and B are atomic positions in G and H, respectively. X denotes the shift of the
center of mass of the guest structure within the host cell. In the following, this is referred to
as the shift vector. Thereby, A,B,X ∈ [0; 1)3 are most conveniently handled in fractional
coordinates of the unit cell vectors of H. In order to account for molecular rotations in an
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unbiased fashion, q ∈ H1 is a unit quaternion (appendix IV). Thus, the tuple ξ ∈ [0; 1)3×H1

completely defines position and orientation of an absorbate in space. RA and RB , are radii
of host and guest atoms, here chosen to be their vdW radii[91].

Based on this rule, one can define a set of points ξ for which the vdW radii of host and
guest do not overlap,

M1(G,H) = {ξ : P (ξ|G,H) = 1} . (5.8)

Finally,M1(G,H) can be projected into Euclidean 3-space

V1(G,H) = {X : (X, q) ∈M1(G,H), q ∈ H1} (5.9)

to yield the accessible static geometric pore of H as seen by G.

For mono-atomic guests, all rotational axes are degenerate and thus one may choose the
simpler rule used e. g. by Ongari et al.[90] for P , that is

∀(A,B) ∈ G×H : A+X −B > RA +RB. (5.10)

Note that the meaning ofM1 and V1 is the same in this case.

Without an analytical representation of the MOF’s vdW surfaces, the distribution
M1(G,H) of points in the pore is best sampled in a probabilistic way, where positions
and rotations ξ = (X, q) are generated randomly. Note, that the way the positions X are
drawn is different from the way the rotations q are drawn. The former are triples taken
from a uniform distribution over [0, 1). The latter are quadruples q which are drawn from
a standard normal distribution and normalized with respect to their Euclidean norm as
decribed in appendix IV. By this, it is ensured that the translations and rotations are both
uniformly distributed.

Consider a spherical guest of radius r. The likelyhood of finding a good shift vector is
clearly higher the smaller the value of r. This can be utilized to get a presampling of the
shift vectors for larger guest structures. That is, one generates a set of shift vectors for a
small absorbate which has a high probability of not having an overlap with the MOF and
draws the shift vectors for a larger guest structure from this set instead of using the fully
random approach.

5.1.4 Higher-order samplings of a pore

One considers the case that a pore can contain more than one guest molecule. This suggests
another sampling of the pore volume, now including one representative of the guest species
into the host structure. This forms a setM2(G,G,H),

M2(G,G,H) = {(ξ1, ξ2) : ξ1, ξ2 ∈M1(G,H) ∧ P (ξ2|G,H ∪Gξ1) = 1} , (5.11)
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which is the set of (ξ1, ξ2) which individually yield host-guest pairs without overlap and
which do not have overlap between the two guest structures. In principle this can be
continued iteratively until a maximum number of guests is reached.

5.1.5 Density-Functional Theory

Density-functional theory calculations were performed using the all-electron NAO basis
DFT code FHI-aims.[70] The standard “light” basis set of FHI-aims is used. For struc-
tural optimizations, the electronic exchange and correlation functional is treated within
the GGA choosing the PBE[53] functional. Furthermore, the calculations of the band
structure or density of states (DOS) are done using the revised HSE[71, 72] hybrid func-
tional (HSE06) with standard parameters. Additionally, the Tkatchenko–Scheffler (TS)
dispersion correction[tkatchenko2009vanderwaals] is employed to effectively account
for vdW forces. Structures are relaxed, using the trust-radius method[81] implemented
in FHI-aims, using a trust-radius of 10 meVÅ−1. Bulk moduli are calculated from GGA
data, effective masses and deformation potentials from hybrid functional data. The phonon
calculations were done using the interface between FHI-aims and Phonopy[92].

5.1.6 Generation of the Absorbate Structures

Starting with the optimized structure[1] of Fe(ta)2, the pore structures as seen by monohy-
drogen H, Ar, and CO2 respectively are sampled using the method described in section 5.1.3.
Visualizations ofM1(G,Fe(ta)2) are shown in Figure 5.2 and discussed in more detail in
section 5.2.1, below. Note, that while for an H atom guest the static pore takes on the form
of a continuous channel network, this changes for the larger guest structures. There, the
channels separate into large and small pores, which are sampled as large and small clusters
of points in V1(G,H). Their central positions are given in Table 5.2. They are labelled
according to Figure 5.3.
Selecting these clusters individually, one may easily generate absorbate structures by

randomly drawing position-rotation pairs from them. Here, it is assumed, that one of the
large or small pores is filled if there is one guest species in it. Note, that this pore—especially
if it is a large one—needs not to be completely occupied under this circumstance which
suggests a further sampling (section 5.1.4). The absorbate structures are generated with
the following procedure:

1. Choose a cluster C which is not occupied.

2. Randomly draw a ξ = (X, q) from C.

3. Rotate a guest structure G centered at its center of mass by q =⇒ G′

4. Shift G′ by the vector X.

5. Repeat the previous steps until the desired overall pore loading is reached.
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Table 5.1: Values for the Bardeen–Shockley parameters of the various absorbate structures.

C◦ Eg m̄∗vbm m̄∗cbm DBS
vbm DBS

cbm

GPa eV me eV

Fe(ta)2 34.2 4.11 5.57 2.62 0.63 −0.003

Ar1/6Fe(ta)2 34.5 4.07 4.62 2.91 −3.24 −3.96
Ar1/3Fe(ta)2 34.6 4.04 4.28 2.79 −2.11 −2.86
Ar2/3Fe(ta)2 36.6 4.05 4.03 2.65 −3.65 −4.37
ArFe(ta)2 37.1 4.05 6.30 2.07 −9.55 −10.12

(CO2)1/6Fe(ta)2 32.3 4.11 3.56 3.52 −4.96 −4.79
(CO2)1/3Fe(ta)2 33.6 4.10 4.86 3.39 −3.03 −3.97
(CO2)2/3Fe(ta)2 39.6 4.08 5.21 2.50 0.55 0.002

Ar1/3 (CO2)2/3 Fe(ta)2 41.2 4.03 4.50 2.37 −7.41 −3.96

6. Then, pre-relax the so-obtained structure under the constraint of a fixed host structure
and unit cell. This step may be skipped.

7. Optimize the absorbate structure lifting all constraints.

For the Ar guest, a structure with one atom in a large pore is studied (pore loading
of x = 1/6 per formula unit of Fe(ta)2). In the following, this structure is referred to as the
low loading (LL) one. Furthermore, the following pore loading configurations (PLCs) are
studied: both large pores occupied (x = 1/3), the four small pores occupied (x = 2/3), and
all pores occupied (x = 1). The latter PLC is referred to as the high loading (HL) structure.
Similar PLCs are generated and studied for CO2. Finally, a mixed structure with two Ar
atoms in the large pores and four CO2 molecules in the small pores is also considered.

5.2 Results and discussion

5.2.1 Sampling of M1(G,Fe(ta)2)

From the samplings of the host-guest structure pairs one obtains the point distributions
shown in Figure 5.2. One finds that for a hydrogen atom (Figure 5.2B) iron triazolate
shows a fully connected pore network with nodes at relative positions (0.5, 0.5, 0.5) and
(0.75, 0.75, 0.75). For larger absorbate radii, like for an argon atom (Figures 5.2C, 5.3a), the
picture looks slightly different. There, two large pores are found with their centers at the
node positions found for hydrogen. In between, there are four small pores which already at
this simple level of model complexity suggests that argon atoms may move between the
pores under only slight deformations of the framework.
Considering polyatomic guest structures like CO2 (Figure 5.2D), one realises that at

each accessible point in the pore the molecule has a more or less strongly preferred
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Figure 5.2: Depiction of the Fe(ta)2 unit cell (A) and the samplings of V1(G,Fe(ta)2) for different
host-guest structure pairs. An H atom would probe the continuous pore structure in B. For an Ar
atom, the pore structure looks like the one in C, with two large pores per unit cell and four small
pores. In these cases, only the position of guest atom is shown. For the molecular guest CO2 (D),
the distribution of accessible orientations of the molecular axis is shown additionally for each center
of mass position.

(a) Zoom into the region around cluster 1 for the
sampling ofM1(Ar,Fe(ta)2).

(b) Zoom into the region around cluster 1 for the
sampling ofM1(CO2,Fe(ta)2).

Figure 5.3: Identifying the different clusters. In both cases, cluster 2 is not shown as it looks like
cluster 1 pointing upwards. It can be seen in Figure 5.2.

Figure 5.4: Some of the Fe(ta)2 absorbate structures investigated in this study: Ar1/6Fe(ta)2
(A), ArFe(ta)2 (B), (CO2)1/6Fe(ta)2 (C), (CO2)2/3Fe(ta)2 (D).
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Table 5.2: Positions of the Ar atoms after opti-
mization, starting from the center of mass for
each cluster ofM1(Ar,Fe(ta)2).

Cluster/ Center of Mass X a

Pore X1 X2 X3

1 0.5 0.5 0.5
2 0.75 0.75 0.75
3a 0.625 0.625 0.625
3b 0.125 0.625 0.625
3c 0.625 0.125 0.625
3d 0.625 0.625 0.125

a In fractional coordinates.

Table 5.3: Absorption energies per pore for
Ar and CO2 into the large and small pores of
Fe(ta)2. Values given in meV.

large small

Ar −36 33

CO2 −77 −155

orientation (Figure 5.3b). That is under the assumption of weak interaction with the host
or physisorption.

5.2.2 Absorption energies of CO2 and Ar in Fe(ta)2

To make the assumption of physisorption for CO2 and Ar more plausible, in particular
for CO2, the absorption energies Eabs(G,Fe(ta)2) are calculated through

Eabs(G,Fe(ta)2) = E(GxFe(ta)2)− [E(�x Fe(ta)2) + xNporesE(G)] , (5.12)

where Npores = 6 is the number of pores per unit cell in iron triazolate and �xFe(ta)2

denotes the optimized absorbate structure without the guests.
For Fe(ta)2 one expects two values for the absorption energy as there are two distin-

guishable kinds of pores. The resulting values are gathered in Table 5.3. The absorption
energies into the large pores were calculated from the Ar1/3Fe(ta)2 and the (CO2)1/6Fe(ta)2
absorbates, the values for the small pores from the corresponding x = 2/3 absorbate struc-
tures. The absorption eneriges per pore are calculated by dividing the resulting absorption
energy by the number of occupied large or small pores. Note, that entropic contributions
are neglected here.
To exclude the possibility that the value of the absorption energy for CO2 absorption

into a large pore is underestimated by the positioning of the guest molecule in the pore, a
heavily distorted CO2 molecule, that is a CO2 molecule in the geometry of a water molecule,
was placed at (0.30, 0.30, 0.30) in the vicinity of the iron atom at (0.25, 0.25, 0.25); both
fractional coordinates. The distorted geometry was chosen due to considerations regarding
the behavior of CO2 at transition metal carbide surfaces as discussed by Kunkel et al.[93]
Then, the geometry was optimized (including the TS dispersion correction), constraining the
whole host structure and its unit cell. This resulted in a movement of the distorted molecule
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Figure 5.6: Pore loading effects on the bulk modulus.

towards the center of pore 1, accompanied by a streching of the molecular geometry. The
end result was a linear CO2 molecule in the center of the pore. This behaviour could have
been expected, by realizing that the valence of each iron atom is saturated with strongly
binding triazolate ligands. It is thus justified, to assume physisorption for Ar and CO2

when using iron triazolate as host crystal.

5.2.3 Absorbate influence on the elasticity

As exemplarily depicted for ArFe(ta)2 and (CO2)2/3Fe(ta)2 in Figure 5.7a, the absorption
of some species into the MOF pore severely alters the phononic density of states, thus likely
influencing the mean scattering rates between charge carriers and phonons which is further
discussed in section 5.2.4. The absorption of gas particles into the MOF leads to a change
in the mass density of the crystal and will also influence its sound velocity. This in turn
must influence the elasticity, like a kind of bracing or rigging for the framework. A similar
effect is reported for chemical modifications of the linkers.[94]
From Figure 5.6 and Table 5.1 it is clear, that there is a distinction between the effect

due to absorbtion into the small pores compared to the effect from the large pores. For Ar
absorption, the bulk modulus is always incread, where the effect is stronger when the gas
atoms are absorbed into the small pores. Conversely, for CO2 the absorption into the large
pores first leads to a slight decrease of the bulk modulus. This should be related to the
increase of the lattice constant through absorbtion of CO2 into the large pores (Table 5.4).
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Table 5.4: Calculated cell constant a/Å of the primitive cubic cell for different loadings x and, for
convenience, the corresponding cell constant for a conventional cubic cell (scaled by factor of

√
2).

primitive conventional

Fe(ta)2 11.67 16.50

Ar1/6Fe(ta)2 11.66 16.49
Ar1/3Fe(ta)2 11.66 16.49
Ar2/3Fe(ta)2 11.68 16.52
ArFe(ta)2 11.68 16.52

(CO2)1/6Fe(ta)2 11.75 16.62
(CO2)1/3Fe(ta)2 11.72 16.57
(CO2)2/3Fe(ta)2 11.64 16.46

Table 5.5: First and second order deformation potential couplings.

DBS
vbm DBS

cbm Kcbm Kcbm

eV eV

Fe(ta)2 0.63 −0.003−10.34 0.06

Ar1/6Fe(ta)2 −3.24 −3.96 −3.02 8.31
Ar1/3Fe(ta)2 −2.11 −2.86 −34.88 −23.64
Ar2/3Fe(ta)2 −3.65 −4.37 −75.20 −63.95
ArFe(ta)2 −9.55 −10.12 −54.05 −42.64

(CO2)1/6Fe(ta)2 −4.96 −4.79 242.25 194.28
(CO2)1/3Fe(ta)2 −3.03 −3.97 −7.89 2.48
(CO2)2/3Fe(ta)2 0.55 0.002−12.47 0.16

Ar1/3 (CO2)2/3 Fe(ta)2 −7.41 −3.96 −37.90 −46.81

5.2.4 Densities of states and deformation potential

As discussed in chapter 4, the influence of the deformation potential on the BS mobility in
a MOF is not the most important factor when the metal center is exchanged. Contrary to
this, large changes are induced to the deformation potentials under gas absorption.

Note, that the values for the empty Fe(ta)2 crystal are not directly comparable to the ones
from chapter 4 obtained by using the pseudo-inverse method. This is for two reasons: first,
the crystal structures are not comparable, mostly due to smaller cell constants (Table 5.4)
which are the consequence of using the TS dispersion correction and second because of
the error introduced by the second order deformation potential couplings which is not
compensated in the pseudo-inverse method. The latter will be thoroughly discussed in
section 6.1.
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Figure 5.7: Electronic and phononic DOSs for various iron triazolate absorbate structures.
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Figure 5.9: Deformation potential coupling for the absorbate structures.

From the electronic DOS plots in Figure 5.7b one can see that the PDOS of Ar or CO2

lies far from the band edges. From this point of view alone, one could suppose that their
influence on the deformation potentials is negligible. In constrast, note, that the phononic
DOSs in Figure 5.7a show the significant influence of the Ar guest atoms on the low energy
phonons in ArFe(ta)2. Additionally, the cell constant and thus the volume of the unit cell
changes (Table 5.4). This combination of effects leads to a change in the BS deformation
potentials, DBS, in the absorbate crystal structures. This change is by almost an order
of magnitude with respect to the empty host crystal (Table 5.1) and has thus significant
impact on the resulting mobility. A similar effect is predicted for the absorption of CO2 into
the large pores. For absorption into the small pores, however, the deformation potential
does not change much compared to the empty MOF crystal. This can be explained by the
much sharper onset of state density for CO2 in the phononic DOS (Figure 5.7a).

Furthermore, it is shown that the second order coupling Kν can be much larger than the
first order deformation potential (Table 5.5). It is related to the so-called Debye–Waller self-
energy term, for which at present no ab initio analysis is known.[25] Thus, in the following
the focus will lie only on the first order (Bardeen–Shockley) deformation potentials.
For the Ar absorbate structures, the changes with respect to the empty Fe(ta)2 crystal

are all comparable in size, only for the structure with all pores filled by one Ar atom,
significantly larger deformation potentials result. As a rough trend, the more Ar is absorbed,
the larger the absolute value of the deformation potential.

Conversely, for the CO2 absorbate structures, the trend turns around and one sees smaller
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absolute values of the deformation potentials for larger pore loadings. Most interestingly,
the values for CO2 in the small pores are similar in magnitude as the ones for the empty
cell.
The latter point can be explained by the alignment of the CO2 molecules within the

small pores and their higher stabilization in the small pores compared to Ar. The forces
holding them in position are stronger, so that the scattering of the charge carriers will take
place with the phonons of the iron triazolate lattices and not with the ones of the CO2

sub-lattices.

5.2.5 Effective Masses

After absorption, the mean effective masses of the charge carriers change drastically. The
result is that, irrespective of the guest structure, the mean effective mass of the holes, and
thus their localization, increases. Conversely, the result for the electrons is a delocalization,
that is their effective mass decreases. In both cases, depending on the absorbate, localization
and delocalization seem to occur by approximately the same amount. Overall, the range of
effective masses is smaller in the loaded cells than in the unloaded cell investigated in this
study (Figure 5.10).
Note, that for the unloaded Fe(ta)2 crystal without TS correction a warped CBM

results[1] (Figure 4.5). However, e. g. for any of the absorbate structures and also for the
empty structure when the TS correction is used, the warping of the extremum is lifted
and one finds ellipsoidal energy isosurfaces in k space. Note furthermore, that all changes
reported here should be of purely geometrical origin, as no states of the guest structure
seem to mix into the states of the VB or CB edge, which also retain their species and
angular momentum character (Figure 5.7b).

5.3 Conclusion and outlook

The hole mobilities which result from the the previously discussed parameters (for the
VBM) are always smaller than the mobility which is predicted for the empty MOF crystal.
For the electrons in the CB, the resulting mobilities almost vanish, however, this is due to
the small value for the CBM deformation potential which is discussed further in chapter 6.
At this point, it is elucidating to imagine a typical experiment in which the voltage

between two contacts at the MOF sample is measured for different applied pressures of
gas, which is absorbed into the MOF. The current through the sample shall be a constant
direct current (DC). Furthermore, the gas and the sample shall have a definite and constant
temperature throughout each pressure sweep.
According to (5.1), the change of voltage, which is equivalent to the change in ohmic

resistance under the assumption constant current, is equivalent to the (reciprocal) change
of the charge carrier mobility. Pressure can be translated to pore loading using e. g. a
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Figure 5.10: Mollweide projection plots[1] for the high load crystal structures and the empty Fe(ta)2
structure (including the TS correction). The value marked atop of the colorbar is the mean effective
mass m̄∗, using Lebedew integration weights, for the VBM (right) or the CBM (left).
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Figure 5.11: Radar plots of the Bardeen–Shockley descriptors for the various absorbate structures.
One can clearly see, that the main influence of the guest structures is on the deformation potential.
To obtain the logarithmic value of the mobility in AU at 300 K, add all values needed from the
graph after weighting them with the power by which they appear in the mobility formula and finally
add ln(

√
8πβ3/2/3) ≈ 10.95 (the argument of the logarithm has to be given in eE−3/2

H ).

Langmuir or Brunauer–Emmet–Teller (BET) isotherm, if the interaction between the gas
and the framework is small, i. e. if the gas particles physisorb to the inner surface.

Despite elaborate purification processes after synthesis and again prior to measurement,
one has to be assumed that the MOF sample will not be void of absorbents: solvent
molecules or other agents left over from synthesis, atmospheric gases etc. Furthermore, it is
only possible with great effort to record the voltage change ab vacuo. What this means,
is that the inititial state, taken as reference, which is measured during a pressure sweep,
will not resemble the empty MOF crystal, but one with low gas loading. Therefore, when
comparing the calculated mobilities with a measured signal, it can be advisable to take
a MOF crystal with low gas loading as reference. The lowest loading which is achieved
here, is x = 1/6, where one absorbent is placed into the pore of a primitive Fe(ta)2 unit cell.
Lower values could be achieved already by using a conventional cell or even some supercell.
Also, note that one could have placed the single guest atom or molecule in one of the small
pores, which could yield a slightly different value for the reference mobility.
To make up for this ambiguity, a statistical approach is imaginable: a microstate can

be defined by a PLC, i. e. a host-guest tuple (H,G1, . . . , GN ), which maps to some pore
loading x which in turn can be regarded as the corresponding macrostate. The energy
which goes with the microstate is its total energy.
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Figure 5.12: Hole mobilities under gas absorption into iron triazolate relative to a single loading of
one of the large pores.

The canonical sum over states in this case is given by

Z(x) =
∑

PLC7→x
e−βE(PLC) , (5.13)

which can be used to define a mean mobility 〈µ(x)〉 by

〈µ〉 =
1

Z(x)

∑
PLC7→x

µ(PLC)e−βE(PLC) . (5.14)

This looks simple and elegant, however one must keep in mind, that x entails many PLCs.
To get an accurate value for 〈µ〉, one may not only use the primitive cell PLCs but has to
include supercell PLCs into the description.
Supercell PLCs are not only needed to improve the statistics, but also if one wants to

calculate lower values of x than what is dictated by the number of pores in the primitive
cell. Overall, the process of determining 〈µ〉 is expected to be costly in terms of both, labor
and computation time. Therefore, it is necessary to make use of many different simulation
techniques, allowing to reduce the costs where possible. For instance, the bulk modulus
can be determined using a force field (FF), with the obvious trade-off that one has to fit
the FF first to get accurate results. Second, one can use sophisticated tight-binding (TB)
techniques to get estimates for the effective masses. So far, the more qualitative way of
measuring the charge carrier mobility in units of their mobility in the LL absorbate. This
yields the values shown in Figure 5.12 and Table 5.6.

In the following, only the hole mobilities are discussed further, as Sun et al. were able to
show that Fe3+ defect states lie close to the VB edge and thus holes are suspected to be
the mobile charge carriers in iron triazolate.
For Ar absorption, one sees an increase of the mobility for small pore loadings. After a

certain pore loading between x = 1/3 and x = 2/3, the mobility will then decrease again
for the high loadings. For CO2, no such extremal point seems to exist. There, the mobility
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Table 5.6: Mobilities referenced to the values in the LL structure. Note, that the values for Fe(ta)2
appear twice as the reference is different for Ar and CO2 absorption. The large values for the electron
mobility are due to the small apparent deformation potential for the corresponding (absorbate)
structures.

µh(x)/µh(xref) µh(x)/µe(xref)

Fe(ta)2 28.80 2.24× 106

Ar1/6Fe(ta)2 1.00 1.00
Ar1/3Fe(ta)2 2.86 2.14
Ar2/3Fe(ta)2 1.18 1.10
ArFe(ta)2 0.06 0.39

Fe(ta)2 21.37 5.65× 106

(CO2)1/6Fe(ta)2 1.00 1.00
(CO2)1/3Fe(ta)2 1.28 1.66
(CO2)2/3Fe(ta)2 38.48 16.64× 106

increases with increasing pore loading. As one can see from Figure 5.12, the change in the
mobility seems to be non-linear. The first conclusion of this study is therefore, that the
mobility of the charge carriers in an iron triazolate crystal changes for the different pore
loadings and that different gases may be distinguished by either the change of mobility, for
use in a chemical sensor.
As for the metal center exchange, it is fruitful to study the behavior of the underlying

quantities, i. e. the bulk modulus, the effective mass, and the deformation potential. In-
terestingly, the main influence on the mobility in this case comes from the deformation
potential, whereas for the metal center exchange the main changes were for the effective
mass and the bulk modulus (Figure 5.11). Note, however, that the changes for the latter
two are not small either. The phonon states of the guest atoms and molecules seem to lie
much more convenient for the charge carriers considering scattering. This is the second
conclusion: through gas absorption one will increase the magnitude of the deformation
potential as the guest may open new carrier-phonon scattering channels which are accessible
more easily.
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6 Pseudo-inverse error cancellation and
apparent coupling constants

6.1 Compensating for the quadratic coupling error in the
pseudo-inverse method

In chapter 4, the method of choice to calculate the elastic and the deformation potential
constants involved the usage of the Moore–Penrose pseudo-inverse of the strain tensor
matrix. This gives values for the elastic constants which match the changes in the total
energy, as illustrated in Figure 4.3.

However, in chapter 5, it has been shown, that for the deformation potentials one must
consider the second order electron phonon couplings in the case of absorbate structures. A
cross-check reveals that this behaviour shows also for the empty triazolate crystals. The
band edge extremum shifts should be better described by a second order expansion in the
elements of the strain tensor:

∆δε(k′◦, G) = −Dαuα(G) +
1

2
Kαβuα(G)uβ(G) . (6.1)

In matrix notation this becomes

∆δε(k◦) = −Du+
1

2
uTKu . (6.2)

By multiplying with the pseudo-inverse u+ from the right and solving for the deformation
potential,

D = −∆δε(k◦)u
+ +

1

2
uTK , (6.3)

one realizes what happens. Clearly, as soon as the second order couplings are not negligible,
the usage of the pseudo-inverse inherently introduces an error to the deformation potential
constants. In the following, a new method will be introduced by which this systematic
error can be compensated by skillful distribution of the strain tensor matrix u and the shift
vector ∆δε(k◦).
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The subdivision is done by introducing

uLα(γ, g) =

uα(γ, g) if g < 0 , ,

0 else
(6.4)

and

uRα(γ, g) =

uα(γ, g) if g > 0 , ,

0 else ,
(6.5)

so that

u = uL + uR . (6.6)

By similar means, one subdivides ∆δε. This results in the following two equations, which
are coupled by the deformation potential and second order coupling constant matrices D
and K:

∆δεLu
+
L = −D +

1

2
uTLK , (6.7a)

∆δεRu
+
R = −D +

1

2
uTRK . (6.7b)

Addition of these equations yields

∆δεLu
+
L + ∆δεRu

+
R = −2D +

1

2
(uL + uR)TK . (6.8)

Note, that for the definitions of the strain tensors used here, uR ≈ −uL applies, holds also
for the pseudo-inverses. Using it, one finds

∆δεLu
+
L −∆δεRu

+
L = −2D . (6.9)

Through this, the term containing the second order couplings is cancelled. The expression
can be solved for D immediately:

D = −1

2
(∆δεL −∆δεR)u+

L . (6.10)

To compensate for the small errors introduced by the approximation uL ≈ −uR, one can
write

uL ≈ −uR =⇒ 2uL ≈ uL − uR =⇒ uL ≈
uL − uR

2
=: uLR . (6.11)
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Table 6.1: Deformation potentials from the pseudo-inverse method without second-order correction
(PI) as shown in Table 4.4, with second-order correction (PI+C), and the equivalent values from a
simple least squares fit (LS).

Dvbm/eV Dcbm/eV

PI PI+C LS PI PI+C LS

Fe(ta)2 1.752 −1.511 −1.317 4.044 −0.061 −0.063
Ru(ta)2 −1.582 −1.252 −1.506 3.073 −0.027 −0.035
Zn(ta)2 1.271 0.027 0.000 2.023 0.000 0.000

With this, the expression for D is found to be

D = −1

2
(∆δεL −∆δεR)u+

LR . (6.12)

As shown in Table 6.1, the values obtained with the correction consistently yields values
which lie closer to the ones from a least squares fit (Figure 6.1). However, the deformation
potentials of Zn(ta)2 now seem to vanish. This behavior is puzzling at first and will be
discussed in the following section.

6.2 Why some deformation potentials seem to be small

Looking at the values in Table 6.1 obtained from the least squares fit for the triazolate
structures with different metal centers from chapter 4 or some of the absorbate structures
from chapter 5, one realizes that there the deformation potential mostly in the CBM is
either very small or even zero. Note especially, that this behavior is seen also in the VBM
for a Zn(ta)2 crystal.
What is common to all these structures is, that the CB edge is built from N-p states,

with almost no intermixture of metal states, in particular of metal-d states. This means,
that the CB edge in metal triazolate crystals consists almost purely of linker states. For
Zn(ta)2, this is also true for the VB edge. As the deformation potential measures the rate
of energy change of the band edges under macroscopic strain of the crystal, one must ask
the question what yields this shift microscopically. The answer to this question is a change
of the potential of the electronic MB problem due to changes in the crystal structure. A
large part of this potential change should come from two-body terms, that means through
the changes of bond lengths in the crystal.
Therefore, one analyzes the distances of the nearest neighboring N-atoms around the

metal centers M of the triazolate crystal and the distances of the two pairs of vicinal N
atoms in each linker. One finds, that the M–N distance changes much stronger under
macroscopic strain than the intralinker N–N distance (Figure 6.4).
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Band edge extremum shifts for strained Fe(ta)2 unit cells
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Band edge extremum shifts for strained Zn(ta)2 cells
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Figure 6.1: Band extremum shifts in the iron, ruthenium, and zinc triazolate crystal. Note, that the
quadratic coupling is clearly non-zero, demanding for a correction of the first-order couplings, when
using the pseudo-inverse method. Note furthermore, that the linear part of the band extremum
shift is small or seem to vanish for the CB.
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Figure 6.2: DOSs and PDOSs for the metal
triazolate crystals from chapter 4 and the iron
triazolate absorbates from chapter 5. One can
see, that the CB edge consists almost purely
of N-p states (black line), wheres the VB edge
consists either of metal-d (white line) or also
of N-p states (Zn(ta)2). State density from the
absorbate are shown as a gray line.
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Figure 6.3: Phonon band structures for the iron
triazolate crystal and its HL CO2 absorbate
structure. One can clearly see the low energy op-
tical phonons introduced by the guest molecules.
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Figure 6.4: Distances between the Fe (top) or Zn (bottom) centers and directly neighboring N
atoms, as well as the distances between vicinal N atoms of any linker in the unit cell. One can
see that the N octahedra surrounding the metal centers are not ideal but prolate. The degree of
compression varies with strain, at some point the prolate octahedra become oblate. Note that the
change in the M–N distances is an order of magnitude larger than the one of the N–N distances.
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Through this, one realizes that the small deformation potentials which are found by
straining the crystal cell must be merely apparent values. One can think of this as an
emergent feature of framework materials, which suggests the possibility of coarse-graining
the crystal structure into metal centers and linkers and studying only this interaction.

Note, that this is related to the question of why the deformation potentials change under
absorption of gas into the MOF crystal, which is discussed in chapter 5.2.4. Basically, this
shows the two sides of the coin: one argument aims at the electronic DOS or the electronic
band structure of the crystal, the other at the phononic DOS or the phonon band structure.
There shouldn’t be too large a difference among the different metal triazolates crystals
investigated, considering the phononic attributes. Here the electronic DOS argument is
more important. On the other hand, roughly the same features as for the empty crystal are
observed for the electronic DOS of the Fe(ta)2 absorbates. Here the low energy phononic
DOS and band structure show the differences between the systems. As the deformation
potential is a coupling between the charge carriers and the acoustic phonons it has always
to be discussed from these two points of view.

6.3 Electron-phonon couplings from phonon displacement
patterns—an outlook

Having seen, that the small deformation potentials are only of apparent nature, one must
raise the question if there is a better method to calculate their values. This would either
involve acoustic phonons of higher momentum or optical phonons∗.[23, 46]

By calculating the phonon eigenvectors as described in chapter 2.4.1, for example using
the Phonopy[92] package, one can then generate displacement patterns of varying amplitude.
By calculating the electronic band structure for each of these displacement patterns, one
may then extract an estimate of the coupling of the normal mode to the electronic structure.
This could be the shift of certain bands as for the simple deformation potential. If the
amplitude of the displacement pattern follows a dimensionless parameter g, then the mode
coupling Dν(s, q, k) could in this case be something like

Dν(k; s, q) =

[
∂δεν(k; s, q, g)

∂g

]
g=0

, (6.13)

where εν(k; s, q, g) means the electronic eigenvalue of band ν at point k for the displacement
pattern generated by the mode s at point q with the amplitude according to g.

∗The coupling of optical phonons to the charge carriers is not discussed in detail in this thesis. For
simplicity, one may assume here a coupling mechanism formally equivalent to the one for the acoustic
phonons. The keyword for this is Fröhlich coupling.
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A mean coupling would result from a weighting process like

Dν(k;β) =
∑
sq

fs(q;β)Dν(k; s, q) , (6.14)

where fs(q;β) denotes the Bose–Einstein occupation of the for the phonon state at a
temperature specified by β. The expectation is, that the inclusion of optical phonons will
decrease the overall mobility, that is, however, under the premise that Matthiesen’s rule
holds.

6.4 Conclusion

One realizes, that the macroscopic strain of a MOF crystal involves mostly changes of the
distance between the metal centers and adjacent linker atoms. For triazolates these are N
atoms. This behaviour can lead to small or even vanishing deformation potentials if a band
edge originates from states coming purely from the linker, when strain does only weakly
affect the corresponding atom pairs.
This emergent behaviour coming from the framework metastructure can either be cir-

cumvented by using more elaborate methods as suggested in section 6.3 or it can be used
to better understand the coupling between chage carriers and phonons in MOFs: if to a
large extent only properties of the metal-linker bonds are important for the deformation
potential, then one can coarse grain the framework structure and study such a model or
even descend to a simple model of a mononucleic metal complex.
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7 Overall Conclusions

By using the Bardeen–Shockley expression for the charge carrier mobility in a semiconductor,
the detailed reasons why MOFs often are bad electronic conductors are studied. The
conductivity is thereby determined by two quantities: the mobile charge carrier density
and the charge carrier mobility. The former are the electrons which are excited into the
conduction band and the holes which remain in the valence band due to this process. This
excitation should ideally be by thermal means to overcome a small band gap.

However, for pristine MOF crystals, the electronic band gap is large. Thus, one assumes
that in the real material defect states near (one of) the band edges provide enough mobile
charge carriers to achieve conductivity. The theoretical model can then deal with the
mobility of the charge carriers in a pristine crystal, which nevertheless makes up large
portions of the real MOF.
On the other hand, three material properties determine the charge carrier mobility:

the effective mass, the bulk modulus, and the deformation potential. The effective mass
characterizes the localization of the charge carrier wavepackets, the bulk modulus measures
the stiffness of the crystal lattice through which the carriers move and the deformation
potential how likely the particles will scatter. In general, the better the mobility the smaller
the effective mass and the deformation potential and the larger the bulk modulus.

It has been shown that the substitution of the metal species in a cubic metal(II) triazolate
crystal mainly influences the effective mass and the bulk modulus. The reason for this can
be seen in the polarizability of the metal atom’s electron density and its Lewis acidity which
influences the effective mass through charge (de-)localization, on the one hand. On the
other hand, the strength of the bonds between the metal centers and the linker N atoms,
as well as the connectivity or topology of the network steers the bulk modulus, as indicated
by the metal-nitrogen distance changes shown in chapter 6.
By changing the polarizability of the metal centers, one changes the electronic band

structure. The phonon band structure stays mostly the same. Thus, the deformation
potential does not change much in this case. Its importance is revealed when studying the
influence of gas absorption into the pores of a MOF (chapter 5). By this, the phonon band
structure changes drastically: low energy modes are introduced through the weakly bonded
gas absorbates, leading to a strong increase of the deformation potential. This mechanism
can be seen as a moderator for the charge carrier mobility. Note, that gas absorption can
also influence the effective mass and the bulk modulus through structural changes of the
crystal. However, those are not as dominant as the effects introduced by the deformation
potential.
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As the linker is only weakly deformed under macroscopic deformation of the MOF unit
cell and only the metal-linker distance changes in a discernible way (chapter 6), one way to
step towards a better charge carrier mobility in MOFs is to study the metal-linker bonding.
Such studies can be done for simple proxy complexes of the metal center and the (saturated)
linker. To decrease the effective mass, one would want a strong electronic coupling between
the two. For the bulk modulus one would search for bonds with high stiffness. These are
two handles by which one can develop future design strategies for MOFs with more mobile
charge carriers.

For the deformation potential one can indeed discuss the influence of the electronic and
phononic effects separately (chapters 5 and 6), however this dialectic appears artificial. A
simple design principle as for the other two principal properties cannot be formulated at
present, however it can be assumed that the long wavelength acoustic phonons which at
most distort the metal-linker topology play a large role also in determining the deformation
potential. Furthermore, the presence of weakly bound absorbates, can ecclipse this effect
and increase the deformation potential, thereby decreasing the mobility.
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I Highlights of density-functional theory

Exchange-correlation holes

The following synopsis is a standard way to introduce the concept of the XC hole and
how it describes the electron-electron interaction in DFT. In the rest of this appendix, no
further references are given. The only ones used are the books by Koch and Holthausen[32]
and Jensen[31], and the review article by Hättig et al.[95].

The meaning of the XC hole is that for a pair of electrons, the (conditional) probability
density of electron 2 being in the direct vicinity of electron 1 is diminished, due to the
Coulomb and exchange terms contained in the electron-electron interaction term of the
electronic MB Hamiltonian (cf. section 2.1). That is, the XC hole is an effect of the
correlated movement of the two particles, causes by the electron-electron interaction V̂ ee.

From a statistical point of view, the correlation of the movement of two particles, i. e.
electrons in this case, is governed by the following two equations:

P12(r1, r2) = P1(r1)P2(r2) , (I.1)

where P12 is the pair probility density and the Pi are the probability densities for the
individual particles, as well as

P12(r1|r2) =
P12(r1, r2)

P2(r2)
= P1(r1) , (I.2)

P12(r1|r2) being the conditional probability density of electron 1 being at position r1 if
electron 2 is at r2. The two particles are statiscally uncorrelated, if both equations, (I.1)
and (I.2), hold. Otherwise they are said to be statistically correlated.

Given the electron density ρ, cf. (2.7) on p. 7, and the electron pair density ρ12,

ρ(r) = N

∫
· · ·
∫
|Φ(x)|2 ds1 d4x2 d4x3 · · · d4xN , (I.3)

repeating this definition here, for convenience, and

ρ2(r1, r2) = N(N − 1)

∫
· · ·
∫
|Φ(x)|2 ds1 ds2 d4x3 d4x4 · · · d4xN , (I.4)
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one can write down a relation between those and the corresponding probability densities:

P1(r) = P2(r) =
1

N
ρ(r) , (I.5)

P12(r1, r2) =
1

N(N − 1)
ρ2(r1, r2) . (I.6)

Inserting (I.5) and (I.6) into (I.2) yields the condition that the electrons are statistically
uncorrelated as

ρ2(r1, r2) =
N − 1

N
ρ(r1)ρ(r2) =

[
1 +

(
− 1

N

)]
ρ(r1)ρ(r2) . (I.7)

Going back to the beginning and considering the figurative description of a XC hole,
one can define the associated density ρxc(r1, r2) formally as the deviation of the density of
electron 2 under the condition that electron 1 is at r1, ρ(r2|r1) = (N − 1)P12(r2|r1) and
the density of electron 2,

ρxc(r1, r2) = (N − 1)P12(r2|r1)− ρ(r2) . (I.8)

From this, one can use (I.2) and solve for ρ2(r1, r2),

ρ2(r1, r2) =

(
1 +

ρxc(r1, r2)

ρ(r2)

)
ρ(r1)ρ(r2) = (1 + h(r1, r2)) ρ(r1)ρ(r2) , (I.9)

where h(r1, r2) is a pair correlation density.

As the exchange energy of the electrons is contained entirely within the electron-electron
interaction 〈V ee〉, one rewrites it in terms of the electron pair density ρ2,

〈V ee〉 = 〈Φ0|V̂ ee|Φ0〉 =
1

2

∫∫
ρ2(r1, r2)

r12
d3r1 d3r2 . (I.10)

Using (I.9), one can dissect this in the usual way into a classical interaction of two
uncorrelated electron densities and a non-classical contribution in which the two electron
densities interact via the correlation density h(r1, r2),

〈V ee〉 =
1

2

∫∫
ρ(r1)ρ(r2)

r12
d3r1 d3r2 +

1

2

∫∫
ρ(r1)h(r1, r2)ρ(r2)

r12
d3r1 d3r2 , (I.11)

= J [ρ] +
1

2

∫∫
ρ(r1)h(r1, r2)ρ(r2)

r12
d3r1 d3r2 . (I.12)

Writing the integral over the position of electron 2 (including the coefficient of 1/2) as the
exchange potential vx(r1), one can rewrite this as

〈V ee〉 = J [ρ] +

∫
ρ(r)vx(r) d3r . (I.13)
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The adiabatic connection formula

In the following, it is motivated why one uses the HF exchange energy as an admixture for
the hybrid XC functionals of KS-DFT (cf. section 2.2.2). This account is predominantly
influenced by the one given in the book by Jensen[31]. Therefore, no further references are
given in this section.

One starts by introducing a modified electronic MB Hamiltonian with a continuous
switching parameter λ which turns the electron-electron interaction on (λ = 1) or off (λ = 0),

Ĥelec(λ) = T̂ el + V̂ eN(λ) + λV̂ ee . (I.14)

This switching is done under the constraint of a fixed electron density ρ, which is achieved by
adapting the external potential operator V̂ eN(λ). For λ = 1 this yields the full interaction
between electrons and nuclei.

Taking the total energy of this Hamiltonian in the KS picture (Fλ[ρ] is the corresponding
universal functional),

Eλ[ρ] = Fλ[ρ] + 〈V eN(λ)〉 , (I.15)

one can calculate the XC energy Exc
λ [ρ] from Fλ[ρ] by substracting the kinetic energy of

the KS system and the classical Coulomb energy J ,

Exc
λ [ρ] = Fλ[ρ]− T s[ρ]− λJ [ρ] . (I.16)

Subdividing this into the exchange and the correlation energy, one has

Ex
λ[ρ] = λ

(
〈Φ0|V̂ ee|Φ0〉 − J [ρ]

)
(I.17)

and

Ec
λ[ρ] = Exc

λ [ρ]− Ex
λ[ρ] . (I.18)

Using the fundamental theorem of calculus, one has

Exc
λ [ρ] =

∫ λ

0

[
dEx

λ

dλ

]
λ′

dλ′+Ec
λ[ρ] (I.19)

where the remaining derivative can be obtained using the Hellmann-Feynman theorem.
This gives

Exc
λ [ρ] =

∫ λ

0

{
〈Φ0(λ′)|V̂ ee|Φ0(λ′)〉 − J [ρ]

}
dλ′+Ec

λ[ρ] . (I.20)
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Using (I.13), from the section on the XC hole, one has

Exc
λ [ρ] =

∫
ρ(r)

∫ λ

0
vx
λ′(r) dλ′ d3r+Ec

λ[ρ] . (I.21)

The full XC energy is then obtained by setting λ = 1,

Exc[ρ] =

∫
ρ

∫ 1

0
vx
λ′ dλ

′ d3r+Ec[ρ] . (I.22)

Using the crudest trapezoidal approximation for the λ′-integral gives∫ 1

0
vx
λ′(r) dλ′ ≈ 1

2
(vx

1(r) + vx
0(r)) . (I.23)

Finally, substitution of this into (I.22) yields

Exc[ρ] =
1

2

∫
ρvx

1 d3r+
1

2
〈Φ0|V̂ x|Φ0〉+ Ec[ρ] . (I.24)

It is noteworthy, that in the λ = 0 case, there is no electron correlation as there is no electron-
electron interaction. This is just described by the KS system with a single determinant.
The exchange energy 〈Φ0|V̂ x|Φ0〉 is then just the HF exchange energy,

Exc[ρ] =
1

2

∫
ρvx

1 d3r+
1

2
Ex,HF + Ec[ρ] . (I.25)

Finally, the admixture of HF exchange energy is generalized as

Exc[ρ] = (1− α)

∫
ρvx

1 d3r+αEx,HF + Ec[ρ] . (I.26)
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II Wannier functions and the equivalent
Schrödinger equation

Analogously to the ansatz one makes for the tight-binding approximation, one can define
a function an(r) for each band n, so that the exact Bloch function is reproduced by the
unitary transformation[21]

ψkn =
1√
N

∑
m

eik·Lman(r − Lm) . (II.1)

The functions an are called Wannier functions. If one assumes the Bloch functions ψkn to
be orthogonal, this is also valid for the an. Those are furthermore orthogonal with respect
to different lattice vectors, so that overall∫

a∗n(r − Lm)an′(r − Lm′) d3r = δnn′δmm′ . (II.2)

One can easily express the Wannier states in terms of the Bloch states by inverting (II.1):

an(r − Lm) =
1√
N

∑
k

e−ik·Lmψkn(r) . (II.3)

Wannier representation of the Schrödinger equation

For studies of the electron dynamics, a time-dependent state ψ(t, r) is constructed as

ψ(t, r) =
∑
n,m

fnm(t)an(r − Lm) , (II.4)

where fnm(t) are the envelopes of the Wannier functions in the vicinity of the lattice
point Lm.[21]

Let H◦ be the one-electron Hamiltonian and U some interaction. Then, following Ziman,
one rewrites the integral∫

a∗n′(r − Lm′)(H◦ + U)ψ(t, r) d3r = i

∫
a∗n′(r − Lm′)

∂ψ(t, r)

∂t
d3r (II.5)
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of the SE using (II.4) and (II.3). The first substitution yields

∑
n,m

∫
a∗n′(r − Lm′)H◦an(r − Lm) d3r fn(t, Lm)

+
∑
n,m

〈an′ |t†(Lm′)Ut(Lm)|an〉︸ ︷︷ ︸
Un′n(Lm′ ,Lm)

fn(t, Lm)

=
∑
nm

〈an′ |t†(Lm′)t(Lm)|an〉
∂fn(t, Lm)

∂t
, (II.6)

where the t(x) are translation operators which shift the argument of the Wannier functions
in the position basis by the vector x. Note, that

〈an′ |t†(Lm)t(Lm)|an〉 = δn′nδm′m . (II.7)

Then, expanding the Wannier state an(r − Lm) in (II.6) in terms of Bloch states, gives

∑
n,m

〈an′ |t†(Lm′)
1

N
∑
k

e−ik·Lmεn(k)|ψn,k〉 fn(Lm)

+
∑
nm

Un′n(L′m, Lm)fn(t, Lm)

= i
∂fn′(t, Lm′)

∂t
. (II.8)

Using (II.1) to reexpress the Bloch states again through Wannier states and defining

εn,m =
1

N
∑
k

e−ik·Lmεn(k) (II.9)

yields

∑
n,m,m′′

εn,m−m′′ 〈an′ |t†(Lm′)t(L′′m)|an〉 fn(Lm)

+
∑
nm

Un′n(L′m, Lm)fn(t, Lm)

= i
∂fn′(t, Lm′)

∂t
. (II.10)

Finally, one has the result

∑
m

εn′,m−m′fn′(Lm) +
∑
nm

Un′n(L′m, Lm)fn(t, Lm) = i
∂fn′(t, Lm′)

∂t
. (II.11)

Using, that the operator εn(−i∇), which is obtained by taking the expression for the
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one-electron energy and substituting the crystal momentum by an effective momentum
operator −i∇, acting upon a function f(r) gives

εn(−i∇)f(r) =
∑
m

εn,mf(r + Lm) , (II.12)

and inverting this expression, gives the reformulated SE[
εn(−i∇)− i

∂

∂t

]
fn′(t, r) +

∑
nm

Un′n(L′m, Lm)fn(t, Lm) = 0 . (II.13)

The envelope fn(t, r) acts now as an effective wavefunction defined throughout the crystal
and not only at the lattice points. The operator εn(−i∇) is called the equivalent Hamiltonian,
with respect to H◦.
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III Notes on strain tensors and elasticity

Differences introduced through the deformation gradient

In ref. [84] by de Jong et al., the Green–Lagrange strain tensors u(γ, g) are given by

u(γ, g) =
1

2

[
(F γ(g))TF γ(g)− I

]
, (III.1)

where I is the unit matrix and F γ(g) a deformation gradient matrix,

F γ(g) = I + gΛγ . (III.2)

The matrix Λγ = Λab is defined to be êa ⊗ êb in ref. [84]. When the symmetrized version of
the Λ-matrices is used (section 4.1.4), one has

ΛγJ = êa ⊗ êb , (III.3)

ΛγS = êa ⊗ êb + êb ⊗ êa = 2(ΛγJ)sym , (III.4)

where sym denotes symmetrization. Inserted into the strain tensor yields

uX(γ, g) = g(ΛγX)sym +
1

2
g2(ΛγX)TΛγX . (III.5)

It shall be emphasized, that this form is still independent on the exact form of the Λ matrix
used. Explicitly, for the form used by de Jong et al., one finds

uJ(γ, g) = g(ΛabJ )sym +
1

2
g2ΛbbJ . (III.6)

In contrast, for the symmetrized matrix one finds in the end

uS(γ, g) = 2

(
g +

1

2
g2δab

)
(ΛabJ )sym +

1

2
g2(ΛaaJ + ΛbJb) . (III.7)

For γ < 3, these expressions yield

uJ(aa, g) =

(
g +

1

2
g2

)
ΛaaJ =: geff,JΛaaJ , (III.8)
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and

uS(aa, g) = 2

(
geff,J +

1

2
g2

)
ΛaaJ = geff,SΛaaJ . (III.9)

For the values of g which are used in practice, it is possible to neglect the O(g2) terms.
Then, the expressions simplify to

uJ(γ, g) = gΛabJ , (III.10)

and

uS(γ, g) = 2gΛabJ . (III.11)

The gist of this is, that when using the symmetrized Λ matrices, the magnitude of the
strain is effectively doubly as large as if one uses the original matrices of de Jong et al..

Total energy changes in cubic crystals

For any crystal one can write down Hooke’s law

∆E(u) =
1

2
VUCcαβuαuβ . (III.12)

Explicitly, for a cubic crystal, this gives

∆E(u) =
1

2
VUC

[
c11(u2

1 + u2
2 + u2

3)

+2c12(u1u2 + u2u3 + u1u3) + c44(u2
4 + u2

5 + u2
6)
]
. (III.13)

Together with the explicit expressions (III.10), one has

∆E(aa, g) =
1

2
VUCc11g

2 , (III.14)

∆E(ab, g) =
1

2
VUC

(
1

2
c11g

4 + c44g
2

)
≈ 1

2
VUCc44g

2 . (III.15)

If one uses the symmetrized Λ matrices, one has to substitute the value of g in these
equations by 2g.
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IV Introduction to quaternions

It is very convenient to express rotations of molecular absorbates in terms of unit quaternions.
In the following a brief review of the theoretical background relevant for this work is given.

Consider Euclidean 4-space R4 with elements q = (q0, q1, q2, q3). One introduces three
so-called hypercomplex elements[96] i, j, and k, so one can write

q = q0 + q1i + q2j + q3k . (IV.1)

Using the Hamiltonian rules of multiplication,[96]

i2 = j2 = k2 = −1 , (IV.2)

ij = k = −ji , (IV.3)

jk = i = −kj , (IV.4)

ki = j = −ik , (IV.5)

one can define a non-commutative multiplication a · b of two quaternions which is still
associative.[96] The multiplication dot will be left away if not needed for clarity. For
each quaternion q 6= 0 there exists a multiplicative inverse q−1 = q̄/||q||22, where q̄ =

q0 − q1i− q2j− q3k is the conjugate quaternion to q and ||q||2 is the Euclidean 2-norm of q.
Note, that for unit quaternions this inverse is just the conjugate. Finally, the Euclidean
vector space (R4,+) together with quaternion multiplication constitutes a division ring or
Schiefkörper H.

In the following, the set of unit quaternions is denoted by H1 = {q ∈ H : ||q||2 = 1} and
the set of the so-called pure quaternions by H0 = {q ∈ H : q0 = 0}. For pure quaternions,
the notation q is used. With this, a general quaternion may be written as

q = q0 + q . (IV.6)

Note, that a point and thus any vector X in 3-space can be regarded as a pure quater-
nion X = (0, X1, X2, X3) = (0, X) ∈ H0. With this notation, a rotation X ′ = R(a, θ)X of
a point X around an axis a by an angle θ can then be expressed by the multiplication[96]

X ′ = qa,θXq̄a,θ, (IV.7)
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where the unit quaternion qa,θ is easily defined in terms of the axis and the angle as[96]

qa,θ = cos

(
θ

2

)
+ sin

(
θ

2

)
a . (IV.8)

One can generate a random uniform distribution of points on a d-sphere Sd by drawing
each coordinate from a standard normal distribution which is inherently rotationally
invariant and normalizing the resulting vector.[97] For the unit 4-sphere this means, that
one can generate a set of random points q which can be interpreted as a set of unit
quaternions. As each q can be interpreted as a three-dimensional rotation, this is a way to
uniformly sample rotations.
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