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Provably-Correct and Comfortable

Adaptive Cruise Control
Matthias Althoff, Sebastian Maierhofer, and Christian Pek

Abstract—Adaptive cruise control is one of the most common
comfort features of road vehicles. Despite its large market
penetration, current systems are not safe in all driving conditions
and require supervision by human drivers. While several previous
works have proposed solutions for safe adaptive cruise control,
none of these works considers comfort, especially in the event
of cut-ins. We provide a novel solution that simultaneously
meets our specifications and provides comfort in all driving
conditions, including cut-ins. This is achieved by an exchangeable
nominal controller ensuring comfort, combined with a provably
correct fail-safe controller that gradually engages an emergency
maneuver—this ensures comfort, since most threats are already
cleared before emergency braking is fully activated. As a conse-
quence, one can easily exchange the nominal controller without
having to have the overall system safety re-certified. We also
provide the first user study into a provably-correct adaptive
cruise controller. It shows that even though our approach never
causes an accident, passengers rate the performance as good as
a state-of-the-art solution that does not ensure safety.

Index Terms—Adaptive cruise control, formal verification, fail-
safe control, cut-ins, and user study.

I. INTRODUCTION

Following other vehicles is one of the most frequently-

performed tasks in road traffic situations. To relieve drivers

from what is often perceived as a tedious task, many vehicles

are equipped with adaptive cruise control. Current systems

require drivers to take over in dangerous situations, since a

rigorous solution is expensive to develop and have certified.

However, 14.6 % of accidents were rear-end collisions in

Germany in 2007 [1, Tab. 1], which could be avoided through

the use of provably-safe adaptive cruise control. In a recent

study, we showed that many non-formal techniques claiming

to provide safe solutions are in fact not safe, while only formal

methods could not be falsified [2].

Provably-correct adaptive cruise control is not only benefi-

cial as a driver-assistance system, but also a major building

block for automated vehicles. Since following other vehicles

requires a tight perception-action loop, a bespoke solution

is often designed to circumvent complicated motion plan-

ning algorithms [3], [4]. Safe adaptive cruise control would

not invite other drivers to cut in [5], despite the common

misconception to the contrary. Furthermore, if a provably-

safe adaptive cruise controller can be activated, an automated

vehicle is in an invariably safe state, which ensures safety

beyond finite planning horizons [6].
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Research on adaptive cruise control already started back

in the 1960s [7]. Below, we review the state of the art in

adaptive cruise control in the following categories: influence

on traffic flow, control concepts, full-range adaptive cruise

control, and formal methods. To limit our literature survey,

we intentionally exclude improved fuel economy [8], improved

performance through cooperative adaptive cruise control [9],

vehicle platooning [10], and string stability [11].

a) Influence on Traffic Flow: Several studies have shown

that adaptive cruise control has a positive effect on traffic

flow since its control actions are typically smoother than

those of human drivers, see e.g., [12], [13]. The positive

effect is dominated by the spacing policy, which determines

the reference value for the adaptive cruise controller [14].

Two different policies are compared in [15]—constant spacing

and constant headway; constant spacing can provide better

throughput, but requires communication between vehicles,

while only constant headway ensures string stability if no

communication is used. An improved nonlinear spacing policy

is manually derived in [16]. A similar work uses optimization

procedures with traffic flow and stability constraints to obtain a

nonlinear spacing policy [17]. Well-designed spacing policies

can even eliminate traffic congestion in simulation studies

if only 25% of the vehicles engage adaptive cruise control

[18]. Also, the high market penetration of cooperative adaptive

cruise control (which receives information from the vehicle

in front) improves traffic flow even further [19]. Additional

improvements can be expected when vehicles inform other

vehicles about lane-change intentions ahead of time [20].

b) Control Concepts: Next, we review methods to re-

alize the aforementioned spacing policies. It has been shown,

through simulations and real experiments, that even a standard

PID controller achieves satisfactory performance when no

safety guarantees are required [21]. A more advanced adaptive

control algorithm in [22] also ensures string stability. Model

predictive control further improves control performance, de-

spite constraints originating from actuators, comfort require-

ments, fuel consumption, and string stability. Most approaches

use a hierarchical concept, where the model predictive con-

troller provides the high-level commands (typically acceler-

ation), while low-level commands are effected via classical

feedback loops [23]. To achieve real-time capability of model

predictive control, explicit model predictive control was inves-

tigated in [24] and a scale reduction framework applied in [25].

Several works have also explicitly considered cut-in vehicles

[26], [27]. However, the aforementioned methods are not

rigorously safe, in the sense that they may exclude accidents

for the entire velocity range of the automated vehicle, since

bounds on control errors are not proven regardless of sensor
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noise, disturbances, and the behavior of surrounding vehicles

[28], [29].

c) Full-Range Adaptive Cruise Control: Most available

adaptive cruise control systems do not provide sufficient brak-

ing in emergency situations and/or cannot be engaged in stop-

and-go traffic. This shortcoming is addressed by full-range

adaptive cruise control operating across the entire velocity

range. In [24], [30], model predictive control is used to achieve

adaptive cruise controllers with a full range. A fuzzy-control

concept is presented in [31]; due to the lack of ordinary

differential equations describing the closed-loop dynamics of

such controllers, they are not suitable for proving collision

avoidance. This also applies to approaches achieving full-range

adaptive cruise control through training neural networks [32].

A hybrid control method is achieved in [33] with the control

modes comfort mode, large deceleration mode, and severe

braking mode. Another hybrid approach switches between

adaptive cruise control and collision avoidance, such that jerky

maneuvers are avoided [34].

d) Formal Methods: In contrast to all previous methods,

formal methods provide a mathematical proof that designed

systems rigorously meet formal specifications, despite any

uncertainty originating from various sources, such as sensor

noise, disturbances, and modeling errors [35], [36]. Formal

methods have not only been applied to adaptive cruise control,

but also to intelligent intersections [37]–[39], ground vehicles

in unstructured environments [40], [41], cooperative driving

[42], [43], and automated vehicles [44].

One of the first works to provide a provably-safe adaptive

cruise controller, uses handwritten proofs [45]. This work was

later extended by game-theoretic techniques to better deal with

cooperative controlled vehicles [46]. Handwritten proofs are

also provided in [47], [48] to ensure the safety of vehicle

platoons. To avoid mistakes in handwritten proofs, a theorem

prover is used in [49], [50]; this, however, requires all vehicles

to be automated.

Another method for avoiding mistakes in handwritten proofs

is to use reachability analysis, which computes the set of

reachable states. If no reachable state of the adaptive cruise

controller is unsafe, the correct behavior is ensured given the

assumptions on the modeled behavior of the own vehicle and

other vehicles [10], [51]. To avoid computing the reachable set

of the entire state space, a counterexample-guided verification

procedure is presented for a cruise control system in [52]. A

special case of reachable sets are invariant sets, in which a

system stays indefinitely. If the invariant set of the adaptive

cruise controller does not contain any unsafe states, correctness

can be argued as for reachable sets [53]–[55], where [56] can

also be applied to path-following.

Barrier certificates are another concept to prove that one

cannot transition from a safe set of states to an unsafe one; an

extension of barrier certificates by control Lyapunov functions

is presented in [57] for adaptive cruise control, and has been

experimentally validated [58]. The work of [57] has been

extended in [59] to the case where the velocity of the leading

vehicle is variable and compared to a controller synthesized

by the tool PESSOA [60]. This work is further extended in

[61] by adding provably-correct lane-keeping.

Another line of research safeguards exchangeable nominal

controllers, by embedding them in an emergency controller

that only engages if the nominal controller would perform an

unsafe action [62]. However, switching between controllers

can result in discomfort for the passengers, so we developed a

safe and smooth switching strategy in our previous work [63].

This work was later also applied to vehicle platooning [64].

e) Summary: While formal methods ensure provably-

safe adaptive cruise controllers, they are not tuned for comfort.

Especially when vehicles cut in, their behavior is either

extreme in the sense that full braking is applied or their be-

havior is unspecified for that use case. Cut-ins are particularly

challenging since the automated vehicle is temporarily in an

unsafe situation. No previous publication even specifies the

desired behavior in the event of a cut-in—this would be the

minimum requirement for a provably-correct solution. There

also exists no user study of adaptive cruise controllers designed

using formal methods measuring comfort and perceived safety.

f) Contributions: We present a provably-correct, full-

range adaptive cruise controller. Our approach is based on

the emergency controller concept of our previous work [63].

In contrast to previous work, our work is the only one that

simultaneously achieves the following properties:

• We specify and ensure the intended behavior in the event

of a cut-in.

• Our approach considers measurement uncertainties, dis-

turbances, and model uncertainties.

• We automatically identify safety-relevant vehicles to en-

sure the soundness of our approach.

• Our approach has limited hardware-requirements com-

pared to correct-by-construction methods, which often

require multiple gigabytes of memory [65, Tab. 1].

• The nominal controller of our approach can be replaced

without having to have the system re-certified. Thus,

methods from machine learning can be easily integrated

in our approach, in contrast to most reviewed formal

approaches.

• The jerk profile in emergency situations can be fully

specified to ensure comfort without jeopardizing safety.

• We have conducted the only user study on a provably-

correct adaptive cruise controller.

g) Organization: After presenting the required prelimi-

naries in Sec. II, we introduce our system specification and

our solution concept in Sec. III. Our safety controller for the

case without cut-ins is presented in Sec. IV, and with cut-ins

in Sec. V; both controllers are evaluated in Sec. VI. We draw

final conclusions in Sec. VII.

II. PRELIMINARIES

Longitudinal vehicle control typically consists of two con-

trol loops: an inner control loop compensating the nonlinear

vehicle dynamics, and an outer control loop commanding the

desired acceleration. In this work, we will focus on the outer

loop—this does not impede the verifiability of the results

since established methods exist to verify the inner control

loop as, e.g., demonstrated in [66]. The errors from the inner

control loop can be added to our proposed approach as an
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additional model uncertainty (see Sec. IV-C2). We also assume

that we receive the positions and velocities of all surrounding

vehicles from the perception module of the vehicle, including

measurement uncertainties.

The lane of the controlled vehicle—referred to as the ego

vehicle from now on—is referred to as the ego lane, and we

denote the set of points of that lane as Lego. We use Vi, i ∈
{1, 2, · · · , N} to denote vehicles partially occupying the ego

lane and preceding the ego vehicle, where a larger index means

that the vehicle is further ahead. All variables associated to a

preceding vehicle are denoted by the subscript �p.

We consider scenarios where the ego vehicle drives on

multi-lane roads with motorized traffic driving in the same

direction and where the lateral dynamics can be neglected; it

thus suffices to use the distance s along the considered lane

in the driving direction. The state of a vehicle is denoted by

x ∈ R
n and its initial state by x0 ∈ R

n. In this work, the state

of the ego vehicle x =
[
s v a

]T
consists of position s,

velocity v, and acceleration a; the state of preceding vehicles

only consists of position and velocity: xp =
[
s v

]T
. We

also introduce the relative position ∆s = sp − s and the

relative velocity ∆v = vp − v. For a given initial state,

an input trajectory u(·), and a disturbance trajectory w(·),
we introduce the solution of the model ẋ = f(x, u, w)
of the ego vehicle over time t as ξ(t;x0, u(·), w(·)). Since

disturbances are later considered in Sec. IV-C2, we simply

write ξ(t;x0, u(·)) for ease of notation. The time at which

a safe state is reached for u(·), given the system dynamics

and x0, is denoted by ts(u(·)); we consider a state to be safe

when one can stay in it indefinitely without causing a collision

[6]. We also require the set of possible input trajectories Ũ
that reach a safe state for a given set of possible inputs U :

Ũ = {u(·)|∀t : u(t) ∈ U , ∃ts(u(·)) ∈ [0,∞[}. We denote a

braking input by ubrake(·).
The occupancy of a vehicle for a given state x is denoted

by O(x(t)) and the time-varying occupancy of all surrounding

traffic participants as Otp(t). The operator proj() projects

a state to a position s. Please note that the position of the

preceding vehicle sp = proj(xp) is measured from the rear

bumper, while the position of the ego vehicle s = proj(x)
is measured from the front bumper; this makes it possible to

demand that sp−s > 0 for collision avoidance, without having

to specify the vehicle dimensions.

Definition II.1 (Safe distance) The distance dsafe(x, vp) is

the minimum distance the ego vehicle has to keep to a pre-

ceding vehicle to be able to stop without a collision occurring

if the preceding vehicle fully brakes:

dsafe(x, vp) = min{d|∀t ∈ [0, ts(ubrake(·))] :

proj(ξp(t; [d+ proj(x), vp]
T , up,brake(·)))−

proj(ξ(t;x, ubrake(·))) > 0}

The braking trajectory ubrake(·) of the ego vehicle is user-

defined (see Sec. IV), while up,brake(·) represents immediate

full braking.

Definition II.2 (Inevitable collision state [40, eq. 3]) The

ego vehicle is in an inevitable collision state if a collision

with an obstacle is inevitable regardless of the control action

of the ego vehicle. The set of inevitable collision states is

ICS ={x|∀u(·) ∈ Ũ ∃t ∈ [0, ts(u(·))] :

O(ξ(t;x, u(·))) ∩ Otp(t) 6= ∅}.

Definition II.3 (Cut-in) A cut-in occurs when another vehi-

cle enters the ego lane without respecting the safe distance to

the ego vehicle. The following predicate is true in the event of

the cut-in:

cut− in(x(t), xp(t))⇔ O(xp(t)) ∩ Lego 6= ∅∧

lim
δ→0
O(xp(t− δ)) ∩ Lego = ∅∧

proj(xp(t)) − proj(x(t)) ≤ dsafe(x(t), vp(t)).

Definition II.4 (Clearing time) The time tc(x(t), xp(t)) de-

fines how much time remains for the ego-vehicle to establish

a safe distance after a cut-in. This time is user-defined and

depends on the ego vehicle state and the state of the cut-in

vehicle at the time of the cut-in. For a concise notation, the

dependency of x(t) and xp(t) is often omitted and we simply

write tc.

A. Ego Vehicle Model

As previously mentioned, we assume that we can command

acceleration to low-level controllers that effect the commanded

acceleration with some margin of error. Our model considers

maximum tire forces, limited engine power, aerodynamic drag,

and forces acting on the vehicle due to an incline. Minor

effects, such as roll resistance of tires are considered by

ensuring conformance as described in Sec. IV-C2.

In order to ensure comfortable motions, we use jerk j as

the input to our vehicle model [67], [68]. Furthermore, we

require several vehicle parameters: mass m, drag coefficient

cd, the frontal area A, and the velocity vS above which the

engine power is not great enough to cause wheel slip. We also

require the air density ρ, the road incline angle α, the gravity

constant g, and the headwind velocity vwind. We denote by �

the minimum possible value and by � the maximum possible

value of a variable. Due to speed limits for forward and

backwards driving, we obtain the constraint

v ∈ [v, v].

One can obviously restrict backwards driving by setting v =
0. Acceleration due to engine power and braking power is

constrained by [a, a(v)] in [69, Sec. III.B], where

a(v) =

{

amax
vS
v

for v > vS ,

amax otherwise.

The negative acceleration caused by drag is adr =
− 1

2mρ cd A (v + vwind)
2 and that due to an incline is ai =

−g sin(α) [70, Ch. 4]. To ensure that a vehicle does not

accelerate beyond v and decelerate beyond v, we introduce

the condition C for zero acceleration:

C ≡ (v ≤ v ∧ a ≤ 0) ∨ (v ≥ v ∧ a ≥ 0).
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Based on the previous formulas, we can now present the

vehicle dynamics ẋ = f(x, u, w) for the state x =
[
s v a

]
,

the input u = j, and the disturbance w = [α, vwind]:

ẋ1 = x2

ẋ2 =







0 for C,

a+ adr + ai for ¬C ∧ x3 ≤ a+ adr + ai,

a(v) + adr + ai for ¬C ∧ x3 ≥ a(v) + adr + ai,

x3 otherwise.

ẋ3 = u.
(1)

Please note that while the ego vehicle input is jerk to ensure

comfort, the input of preceding vehicles up refers to their

acceleration. Also, we forward the acceleration x2 as the input

to the underlying acceleration controller of the ego vehicle.

B. Nominal Controller

While our concept safeguards any nominal controller—even

neural networks—we chose model predictive control, as it

already takes into consideration the constraints based on the

assumed behavior of preceding vehicles. If the assumption as

to the behavior is incorrect, our emergency controller takes

over and ensures collision avoidance.

Our model predictive controller assumes constant velocity

for preceding vehicles beginning from the time t0 of the last

measurement update: sp(t + t0) = vp(t0) t + sp(t0). Since

the nominal controller does not ensure safety requirements,

we use a simple point-mass model for the model predictive

controller, in order to save computational resources. The

point mass model for the state of the nominal controller

xn =
[
∆s ∆v a

]
and the input u = j is

ẋn =





0 1 0
0 0 −1
0 0 0



xn +





0
0
1



u.

Our model predictive controller optimizes the inputs for dis-

crete, equidistant points in time tk = k∆t, where k ∈ N is the

time step and ∆t ∈ R
+ is the time increment. For a concise

notation, we define x̃n(tk) = xn(tk) − [dsafe(tk), 0, 0]
T and

x̃n,k := x̃n(tk), which is also used for other variables, e.g.,

uk. Please note that the computation of dsafe as defined in

Def. II.1 is detailed later in Prop. IV.5. Using the weighting

matrix Q for state errors and the weight r for input efforts,

we choose the cost function for the time horizon h to be a

standard quadratic function:

uopt(·) = argminu(·)

h∑

k=1

x̃T
n,kQx̃n,k + r u2

k (2)

subject to the constraints ∀t ∈ [0, th]

dsafe(x0, vp,0) ≤ xn,1(t) (safety) (3)

v ≤ vp(t)− xn,2(t) ≤ v (velocity limits) (4)

a ≤ xn,3(t) ≤ a(v) (acceleration limits) (5)

j ≤ u(t) ≤ j (comfort) (6)

where the computation of constraint (3) is detailed in

Prop. IV.5. Also, the time is reset to zero for each new

optimization, and we do not recompute dsafe(x0, vp,0) for dif-

ferent times, for the sake of computational efficiency—safety

is later ensured by the emergency controller. The quadratic

cost function subject to linear dynamics and constraints forms

a quadratic programming problem. For each time step, the

model predictive controller solves the quadratic program and

only performs the first part of the optimal input trajectory in

each time step. To save computation time, we follow the batch

approach in [71, Ch. 8.2].

When several automated vehicles should follow each other,

one also requires string stability [72]. While this is not the

focus of this work, we briefly introduce a possible additional

constraint for string stability [73, eq. 26]:

∀k ∈ {0, . . . , h} : x3,k ≤ γ max
k̃∈{−h̃,...,0}

|ap,k̃|,

where γ ∈]0, 1[ and h̃ can be chosen by the user such that

it is large enough to account for delays arising in the vehicle

stream. Negative time steps refer to values before the current

measurement.

C. Lane-Change Prediction

Our nominal controller uses lane-change prediction to fur-

ther increase comfort by adjusting the velocity in a foresighted

manner. Any lane-change prediction method can be used, e.g.,

those described in [74]–[76]. To focus on the novel aspects

of this paper, we have used a simple lane-change prediction

method which demonstrated a good level of performance in

our experiments. Let us introduce some variables with respect

to the current lane of a preceding vehicle: the lateral deviation

from the lane center slat, the orientation deviation from the

lane center θ, the user-defined thresholds sc and θc, and the

time horizon λ. We predict a cut-in if

∀t ∈ [t0 − λ, t0] : |slat(t)| > sc ∧ |θ(t)| > θc.

As soon as the above formula is true, we assume that the

vehicle is already in the ego lane, so that the nominal controller

can adjust the velocity, even though the vehicle has not yet

completed the lane change. We use the same cut-in prediction

not only for the nominal controller, but also for the emergency

controllers presented later. In the following section, we provide

the specifications and build a safety layer around the nominal

system to ensure that the specifications are always met.

III. SYSTEM SPECIFICATION AND SOLUTION CONCEPT

As already discussed in the introduction, there is no holistic

concept that guarantees safety across the entire velocity range

whilst ensuring comfort and working as specified in the event

of cut-ins. We formalize these specifications and later present

our solution concept.

A. System Specification

Based on the previously introduced variables and defini-

tions, we list—using first-order logic—the specifications that
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our approach provably ensures. Specifying the behavior of

adaptive cruise controllers is part of a larger effort to formalize

traffic rules, so that the intended behavior of automated

vehicles can be formally specified [77].

Specification III.1 (Clearing time for cut-ins) When a ve-

hicle cuts in (see Def. II.3) and the ego vehicle is not in an

inevitable collision state, the ego vehicle has to establish a safe

distance within a user-specified clearing time tc(x(t), xp(t))
(see Def. II.4) under the assumption that the cut-in vehicle

does not brake more sharply than acut−in:

∀t : x(t) /∈ ICS ∧ cut− in(x(t), xp(t))∧

∀t̃ ∈ [t, t+ tc] : up(t̃) ≥ acut−in =⇒ proj(xp(t+ tc))

− proj(x(t + tc)) ≥ dsafe(x(t+ tc)), vp(t+ tc)).

This specification is ensured by Prop. V.1.

We additionally try to obtain a comfortable acceleration

through obtaining uopt(·) from (2), but this is not a formal con-

straint. To ensure that tc(x(t), xp(t)) is feasible with respect

to Spec. III.1, one can compute offline for uniformly sampled

combinations of the state variables whether tc(x(t), xp(t))
is feasible. If a sample is infeasible, we conservatively also

declare the region of states infeasible that is spanned by

neighboring samples whose relative distance is larger and

whose relative velocity is smaller.

Please note that in a very small number of cases, tc cannot

be met when the cutting-in vehicle decelerates more sharply

than acut−in. We denote the earliest possible time that safety

is re-established as t̃c ≥ tc.

Specification III.2 (No collision caused by ego vehicle)

We only require that the ego vehicle respects the safe distance

dsafe(x(t), vp(t)) (see Def. II.1) if no vehicle cuts in. Let

us denote the jth time interval in which the ego vehicle is

potentially unsafe due to a cut-in as

τj = [tcut,j, tcut,j + t̃c],

cut− in(x(tcut,j), xp(tcut,j)) = true.

We further introduce the union of all potentially unsafe times

τ∪ =
⋃

j τj so that we can formulate the specification

∀t ∈ R \ τ∪ : proj(xp(t))− proj(x(t)) ≥ dsafe(x(t), vp(t)).

This specification is ensured by Prop. IV.5.

Specification III.3 (Full braking in ICS) When the state of

the ego vehicle is within the set of inevitable collision states

ICS (see Def. II.2), the ego vehicle fully brakes to mitigate

the potential collision impact:

∀t : x(t) ∈ ICS =⇒ a(t) = a.

This specification is ensured by the inevitable-collision-state

controller in Sec. V-B.

Specification III.4 (Stopping within the sensor range)

The ego vehicle must stay below a velocity vsr to be able to

stop within the sensor range:

∀t : v(t) ≤ vsr .

This specification is ensured by Prop. IV.3.

Specification III.5 (Minimum deceleration) All

specifications must be met even if preceding vehicles

can brake more sharply than the ego vehicle: ap ≤ a. The

value of ap must be chosen based on the best commercially

available tire compound. This specification is ensured by

considering it as an assumption in all subsequent propositions.

Since the relative performance of tires is rather uniform,

choosing the best tire compound is not very conservative [78,

Tab. 4], [79, Fig. 3.2].

B. Solution Concept

Our solution concept is driven by ensuring all formal system

specifications, while still realizing all soft constraints, such as

comfort. An overview of our solution concept is shown in

Fig. 1. When there is no preceding vehicle within the sensor

range, we engage a standard cruise controller [12]. The only

constraint is that the user cannot set a velocity beyond the

safe velocity vsr , to ensure that the vehicle can stop within its

sensor range (see Prop. IV.3). Otherwise, the ego vehicle first

selects all relevant surrounding vehicles (see Sec. III-C) and

computes a safe acceleration value with respect to (w.r.t.) each

one of them (see Sec. IV). The individual accelerations ai are

collected in the selector, and the smallest acceleration value

a(t) = min(a1(t), a2(t), . . . , aN (t)) is selected to ensure

safety.

Cruise Controller (maximum velocity: vsr)

no preceding

vehicle

preceding

vehicle(s)

Safe Adaptive Cruise Controller

Safe Control
w.r.t. Vehicle V1

Safe Control
w.r.t. Vehicle V2

. . . Safe Control
w.r.t. Vehicle VN

Selector: a(t) = min(a1(t), a2(t), . . . , aN (t))

acceleration
a1

acceleration
a2

acceleration
aN

Fig. 1: Overall solution concept.

The safe acceleration with respect to each vehicle is effected

via a safety-keeping controller consisting of an unverified

nominal controller and a verified emergency controller, as

shown in Fig. 2. This combination ensures a safe distance

if no vehicle cuts in, because an emergency controller ensures

the safe distance if it is about to be violated by the nominal

controller. When a vehicle cuts into the lane in which the

ego vehicle is located, the safety-recapturing controller of the

ego vehicle is activated. Since cut-in vehicles cause unsafe

situations that are not caused by the ego vehicle, the ego

vehicle is not obliged to establish a safe distance at all costs.

While our control concept must be safe for any future behavior

of preceding vehicles, it is only required to clear the dangerous

situation within the clearing time tc(x(t), xp(t)) given that the

other vehicle does not brake more sharply than acut−in as

stated in Spec. III.1.
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Next, we provide methods to identify safety-relevant vehi-

cles. We present our safe adaptive cruise controller considering

the remaining vehicles in Sec. IV, followed by the safety-

recapturing controller in Sec. V.

Safe Control w.r.t. Vehicle Vi
Safety-Recapturing Controller

Nominal Controller

Safety-Keeping Controller

Emergency Controller

Nominal Controller

Acceleration-Bounded
Controller

Emergency Controller

Inevitable-Collision-
State Controller

jerk optimi-

zation feasible

jerk optimi-

zation infeasible

safety of no-

minal controller
restored

safe distance
about to be

violated

vehicle not
in inevitable

collision state

vehicle in
inevitable

collision state

unsafe cut-in

safe distance restored

Fig. 2: Solution concept for a single preceding vehicle.

C. Selection of Safety-Relevant Vehicles

In order to ensure safety, it is not sufficient to merely

consider the vehicle directly in front of the ego vehicle. This

first preceding vehicle might perform a lane change due to

a stationary vehicle ahead, in which case the latter is the

relevant one for the safety controller; see Fig. 12(b). However,

considering all vehicles is computationally expensive, so we

exclude vehicles that are provably irrelevant. As previously

mentioned, the vehicles Vi, i ∈ {1, 2, · · · , N} preceding the

ego vehicle are ordered, where a larger index means that the

vehicle is further ahead.

In this work, we consider a vehicle to be part of the ego

lane as soon as the occupancy of the vehicle intersects with

it: O(xp(t)) ∩ Lego 6= ∅ (see Def. II.3). For vehicles leaving

the ego lane, we introduce a time lag δleave during which we

still assume that they are in the ego lane, in order to prevent

uncomfortable accelerations if they immediately re-enter the

ego lane. The reduction in the number of vehicles considered

is performed in two steps.

a) Exclusion of Faster Preceding Vehicles: We ignore

preceding vehicles Vi at time t if

∃j ∈ {1, . . . , i− 1} : v(j)p (t) ≤ v(i)p (t).

Due to the assumption that the maximum deceleration po-

tential among other vehicles is identical (Spec. III.5), it is

obvious that faster preceding vehicles of Vi stay ahead of Vi

if maximum deceleration is applied.

b) Remove Vehicles behind the Stopping Distance: Given

the maximum possible input trajectory u(·) of the ego vehicle

and its stopping distance sstop(t) in emergency mode, vehicles

Vi are ignored at time t if

s(i)p (t) ≥ proj(ξ(∆t;x0, u(·))) + sstop(t+∆t).

Let us justify the above condition using a hypothetical worst-

case scenario where a preceding vehicle instantaneously stops

at its initial position s
(i)
p (t): If the ego vehicle in emergency

mode can still stop before hitting the preceding vehicle in

the next planning cycle after moving by proj(ξ(∆t;x0, u(·))),
then the preceding vehicle can be ignored by the safety-

keeping controller.

D. Overall Algorithm

Alg. 1 summarizes the different computation steps of the

safe adaptive cruise controller for a single time interval.

The algorithm receives as input the current state of the ego

vehicle and of all preceding vehicles. First, vehicles for the

safety-recapturing controller X re
p and vehicles for the safety-

keeping controller X ke
p are selected (line 1-2). If the calculated

acceleration of the safety-keeping nominal controller would

violate the safe distance, the emergency controller is activated

(line 5-8). In the case of an inevitable-collision state caused

by a cut-in vehicle, the ego vehicle fully brakes (line 12-14).

If the safety-recapturing nominal controller finds no solution,

the acceleration-bounded controller is used (line 15-18). If no

relevant vehicle exists, the cruise controller is executed (line

22).

Algorithm 1 Safe control outputs for one time interval.

Input: Ego vehicle state x, set of preceding vehicle

states Xp = {x(i) | i ∈ 1...N}
Output: Acceleration for underlying controller

1: X re
p ← CUTINVEHICLES(Xp) ⊲ Def. II.3

2: X ke
p ← RELEVANTVEHICLES(Xp \ X re

p ) ⊲ Sec. III-C

3: AccList ← []

4: for all xp ∈ X ke
p do

5: a ← safetyKeeping.NOMINAL(x, xp) ⊲ Sec. II-B

6: if safetyKeeping.UNSAFE(a, x, xp) then ⊲ Sec. IV-A

7: a ← safetyKeeping.EMERGENCY(x) ⊲ Sec. IV-B

8: end if

9: AccList.APPEND(a)

10: end for

11: for all xp ∈ X re
p do

12: if safetyRecap.ICS(x, xp) then ⊲ Sec. V-B1

13: return a ⊲ Spec. III.3

14: end if

15: a ← safetyRecap.NOMINAL(x, xp) ⊲ Sec. V-A

16: if a = ∅ then

17: a ← safetyRecap.BOUNDED(x, xp) ⊲ Sec. V-B2

18: end if

19: AccList.APPEND(a)

20: end for

21: if X ke
p ∪ X

re
p = ∅ then

22: a ← CRUISECONTROL(x)

23: return a

24: end if

25: return min(AccList)

IV. EMERGENCY CONTROLLER

The purpose of the emergency controller is to take over

control if the nominal controller does not provide a safe
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solution, regardless of sensor noise, disturbances, and the

future behavior of surrounding vehicles. We first present the

interaction of the emergency controller with the nominal

controller in Sec. IV-A. Next, we show in Sec. IV-B how to

simultaneously ensure safety and comfort.

A. Interaction with Nominal Controller

To explain the interaction between the nominal controller

and the emergency controller, we first introduce a few different

types of trajectories:

• Long-term nominal trajectory: A trajectory planned by

the nominal controller under certain assumptions on the

behavior of surrounding vehicles for a time horizon of

typically several seconds.

• Intended trajectory: First part of a long-term nominal

trajectory subject to formal verification.

• Fail-safe trajectory: A trajectory attached to the intended

trajectory that brings the vehicle to a safe state [6], [80].

• Potential trajectory: Concatenation of an intended trajec-

tory and a fail-safe trajectory, which has not yet been

verified.

• Safe trajectory: Potential trajectory, which is verified as

safe. A safe trajectory is verified for all times, since the

ego vehicle is not accountable if it is hit after reaching a

safe state at the end of the fail-safe trajectory.

The safety of the nominal controller in combination with

the emergency controller is proven by induction. The safe

adaptive cruise controller can only be engaged if the potential

trajectory (intended trajectory plus fail-safe trajectory) has

been verified. The potential trajectory is verified if there is no

collision with the preceding vehicle performing full braking

as shown in Fig. 3(a). Once the system is safely engaged

(base case), we show that the next step is also safe (induction

step) as shown in Fig. 3(b). While time progresses within

[tk−1, tk[ (open brackets denote the exclusion of endpoints),

the ego vehicle verifies whether the new intended trajectory

for [tk, tk+1[ together with its fail-safe trajectory is safe, i.e.,

whether the ego vehicle avoids a crash if the preceding vehicle

fully brakes. If it is safe, the intended trajectory is executed

for [tk, tk+1[. Otherwise, the fail-safe maneuver is started at

tk (see point P1 in Fig. 3(b)). In the event that a fail-safe

trajectory is engaged, we try to find a new safe trajectory

branching off the fail-safe trajectory (see point P1 in Fig. 3(c))

so that the fail-safe trajectory is executed as shortly as possible

if a new safe intended trajectory can be found. Indeed, the new

intended trajectory between point P1 and P2 in Fig. 3(c) for

[tk, tk+1[ together with the new fail-safe trajectory branching

off at P2 can be verified as safe; thus, the fail-safe trajectory

no longer has to be executed.

B. Emergency Controller for a Single Preceding Vehicle

We provide methods to efficiently determine whether the

proposed fail-safe trajectory indeed avoids a crash if the

preceding vehicle immediately brakes. As a result, we obtain

the acceleration profile for [tk, tk+1[ with respect to each

preceding vehicle. As mentioned in our solution concept in
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(a) The adaptive cruise controller can only be engaged if the intended and
fail-safe trajectory can be verified as shown in this illustration.
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(b) If the next intended trajectory together with its fail-safe trajectory can be
verified before approaching P1, the new intended trajectory can be followed
up to P2.
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(c) If the ego vehicle follows a fail-safe trajectory, an attempt is made to find
a new safe intended trajectory. The figure shows that the fail-safe trajectory
only has to be executed up to P1 and the new intended trajectory can be
executed up to P2.

Fig. 3: Interaction between the nominal controller and the

emergency controller. If the nominal trajectory plus the fail-

safe trajectory can be verified on time, the nominal trajectory

is executed, otherwise the fail-safe trajectory is executed.

Sec. III-B, we select the minimum acceleration for each point

in time within [tk, tk+1[. In our implementation, we hold the

acceleration value within [tk, tk+1[ so that all that remains

is to compare one value per vehicle for the considered time

interval. To ensure safety for each vehicle, we make use of

the concept of monotone dynamics.

Definition IV.1 (Monotone dynamics; see [81, Def. II.1])

The system dynamics is monotone with respect to the initial

state x0 and input trajectories u(·) when the following
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property holds for the solution ξ(t, x0, u(·)):

∀i, j, t ≥ 0 : xi(0) ≤ xi(0), uj(t) ≤ uj(t)

=⇒ ξi(t;x(0), u(·)) ≤ ξi(t;x(0), u(·)).

Next, we show that our vehicle model ẋ = f(x, u, w) in (1)

is monotonic. A constructive method to prove monotonicity is

presented in [81, Prop. III.2], which returns monotonicity with

respect to x and u.

Proposition IV.1 (Monotonic vehicle dynamics) The vehi-

cle model ẋ = f(x, u, w) in (1) is monotonic.

Proof: We first require the non-zero and non-diagonal

derivatives of the vehicle model:

∂f1
∂x2

= 1

∂f2
∂x3

=

{

1 for ¬C ∧ (a+ adr + ai ≤ x3 ≤ a(v) + adr + ai),

0 otherwise

∂f3
∂u

= 1.

Since all non-zero and non-diagonal derivatives are 1, irre-

spective of the state and input, the system is monotone; see,

e.g., [81, Prop. III.2].

Please note that most systems are not monotonic—including

vehicles whereby one jointly considers the longitudinal and the

lateral dynamics, as shown in [82, Sec. IV.B].

Subsequently, we exploit monotonicity by only using stop-

ping distances for two aspects: 1) the safe velocity based on

the sensor range and 2) whether a crash can occur. As a

preliminary result, we determine the upper bound of reachable

positions using zero-order hold.

Proposition IV.2 (Upper bound of reachable position)

If ∀t > 0 : u̇(t) ≤ 0, one obtains an upper bound of the

reachable position when using zero-order hold for u(t).

Proof: Let us denote the zero-order hold function as ũ(t).
Since u̇(t) ≤ 0 we have that

∀k ∀t ∈ [tk, tk+1[: ũ(t) = u(tk) ≥ u(t).

Thus, due to monotonicity of (1) according to Prop. IV.1, we

have that

ξi(t;x(0), ũ(·)) ≥ ξi(t;x(0), u(·))

=⇒ proj(ξi(t;x(0), ũ(·))) ≥ proj(ξi(t;x(0), u(·))).

The previous proposition motivates the use of stan-

dard solvers of ordinary differential equations for comput-

ing upper bounds on reachable positions. Let us denote

the stopping distance obtained by Prop. IV.2 as s̃stop =
ξ(ts(ũbrake(·));x0, ũbrake(·)), where ũbrake(·) is the zero-

order hold trajectory of ubrake(·). The ego vehicle can only

drive at a maximum speed that allows it to come to a stop

within the sensor range. This ensures that if another vehicle

stands at the border of the sensor range, the ego vehicle can

avoid a collision. Given the sensor range ssr, the maximum

allowed velocity can be determined offline as shown below.

Proposition IV.3 (Safe velocity for sensor range) Given

ubrake(·) (see Def. II.1) and the sensor range ssr, the ego

vehicle is always able to stop within the sensor range if

v ≤ vsr, where the maximum vsr is chosen such that

proj(ξ(ts(ũbrake(·)); [0, vsr, a]
T , ũbrake(·))) ≤ ssr.

Proof: Due to the monotonicity of the vehicle model

according to Prop. IV.1, it is sufficient to find the worst-case

initial state to determine the maximum braking distance. Since

the vehicle dynamics is position-invariant, we can choose

x1 = 0 without a loss of generality. The velocity is given

as x2 = vsr so that it remains to choose the worst-case initial

acceleration x3(t0) = a.

Besides the maximum velocity regarding the sensor range, we

also have to respect the speed limit vlimit(t) so that

v(t) = min(vsr , vlimit(t)).

Since the speed limit can be violated within small bounds,

we do not enforce it with formal methods, and just rely on

the nominal controller. However, we enforce vsr for safety

reasons. Since the acceleration potential of a vehicle at vsr
is small for a decent sensor range, the nominal controller

will gradually approach vsr if vlimit(t) > vsr, so that we

immediately limit the acceleration to zero as soon as this speed

is reached without causing discomfort.

Subsequently, we make use of the braking distance in order

to safely follow preceding vehicles. Before we can do that,

we present the relationship between collision avoidance and

braking distance for two different cases. In the first case, the

preceding vehicle cannot brake as sharply as the ego vehicle.

As a consequence, it is not sufficient in that case to consider

braking distances to determine whether a crash can occur or

not, as illustrated by the following counterexample.

Example IV.1 (Ego vehicle with large deceleration) Let us

consider the situation with the following initial states and

inputs: sp,0 = 20 [m], vp,0 = 20 [m/s], ∀t ∈ [0, ts(ap(·))] :
ap(t) = −3 [m/s2], s0 = 0 [m], v0 = 40 [m/s], and

∀t ∈ [0, ts(a(·))] : a = −10 [m/s2]. Since we chose the

deceleration of the ego vehicle (at a = −10 [m/s2]) to be

larger than that of the preceding vehicle (ap = −3 [m/s2]), the

ego vehicle would stop behind the preceding vehicle, although

they collide at an earlier point in time, as shown in Fig. 4.

Thus, it is not sufficient to only check whether the ego vehicle

comes to a standstill behind the preceding vehicle.

However, in the second case, where the preceding vehicle

can brake more sharply than the ego vehicle (Spec. III.5), it is

sufficient to merely consider the braking distance as presented

next. To simplify the notation, we introduce the stopping time

tstop = ts(u(·)).

Proposition IV.4 (Collision detection by stopping distance)

When a preceding vehicle brakes at ap and the ego vehicle

decelerates less, such that ∀t : a(t) > ap, it is sufficient to

check whether sp(tp,stop) ≥ s(tstop) to conclude that no

collision can happen.

Proof: There are two possibilities as to how a crash

can occur: the preceding vehicle is stationary when the crash
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Fig. 4: Counterexample showing that a collision can occur

although the ego vehicle would stop behind the preceding

vehicle.

happens, or it is still moving. Let us consider the corner

case, where tstop = tp,stop and sp(tp,stop) = s(tstop). When

simulating the system backwards in time, this condition can

only be reached when

s(t) = sp(t) +

∫ tp,stop

t

∫ τ̃

t

a(τ) − ap dτdτ̃

︸ ︷︷ ︸

>0

,

so that it is impossible to achieve s(t) = sp(t) for any t <
tp,stop. Thus, to avoid a crash, we only have to check whether

the ego vehicle can crash into the preceding vehicle when

it has already stopped. Since the position of the preceding

vehicle does not change after tp,stop and the position of the ego

vehicle might still increase after tp,stop (s(tp,stop) ≤ s(tstop)),
no crash can occur if sp(tp,stop) ≥ s(tstop).

This result can be used to formulate a condition under

which the next intended behavior ξ(t;x0, uint(·)) can be

verified as safe. To this end, we introduce the state x̂ at the

beginning of the fail-safe trajectory at time tk+1 and the state

x̂p at the beginning of the full-braking trajectory at time tk.

Subsequently, we slightly abuse notation and write ap instead

of up,brake(·) to denote an input trajectory with the constant

value ap.

Proposition IV.5 (Safe use of nominal controller) If

proj(ξp(tp,stop; x̂p, ap) ≥ proj(ξ(tstop; x̂, ũbrake(·)), (7)

we can continue using the nominal controller during t ∈
[tk, tk+1[ ensuring the safe distance

dsafe(x(tk), vp(tk)) =

proj

(

x̂− x(tk) + ξ(tstop; x̂, ũbrake(·))

)

− proj

(

ξ(tp,stop; [proj(x(tk)), vp(tk)]
T , ap)

)

when no vehicle cuts in, otherwise the emergency controller

must be activated at time tk.

Proof: We prove the safety by induction. The base case is

that the adaptive cruise controller can only be engaged if the

vehicle is in a safe state, i.e., (7) is fulfilled. The induction

step is that we stay safe at time tk+1 if we are in a safe

state at time tk: We only follow the intended trajectory if the

subsequent fail-safe maneuver (see Fig. 3(b)) is safe according

to Prop. IV.4, which is formalized by (7). Otherwise, the

provably-safe emergency controller is activated at time tk+1.

As a by-product, we maintain a safe distance, i.e.,

the distance at time tk such that (7) is barely fulfilled:

proj(ξp(tp,stop; x̂p, ap) = proj(ξ(tstop; x̂, ũbrake(·)). This re-

sults in the safe distance from the proposition.

C. Measurement Uncertainties and Conformance Checking

We further make use of monotonicity to easily integrate

measurement uncertainties and model uncertainties.

1) Measurement Uncertainties: We assume that the per-

ception module of the vehicle does not only provide the

state of each surrounding vehicle (position and velocity),

but also an uncertain interval in which the true state lies.

To obtain these intervals, one can use set-based observers

[83], [84]. These observers ensure that the propagation of

the set of uncertain states is physically possible, so that a

safe solution can always be found if no vehicle cuts in. An

alternative is to use standard stochastic observers, such as

Kalman filters, and using confidence intervals, such as 4σ (σ is

the standard deviation) in which 99.994% of all measurements

would lie, assuming Gaussian distribution. Given the position

interval [sp, sp] and the velocity interval [vp, vp] of an arbitrary

preceding vehicle, the worst-case position for triggering the

emergency controller in (7) is sp and the worst-case velocity

is vp due to monotonicity.

Perception modules try to track as many vehicles as possi-

ble, e.g., by a diverse set of sensors [85], [86], by reflections of

signals [87], [88], and by Vehicle2X communication [89], [90].

However, in some cases, one cannot infer whether a vehicle is

in front of another vehicle. In such an event, we assume that

a standing vehicle is present at the border of the undetectable

region of the ego lane.

2) Conformance Checking: Since the demanded accelera-

tion of the vehicle is not exactly achieved by a real vehicle, we

increase the acceleration by acorr when computing solutions of

the ego vehicle, such as ξ(tstop; x̂(tk+1), ũbrake(·)). Due to the

monotonicity of the dynamics, this results in strictly larger dis-

tances. Otherwise, an uncertain interval of values would have

to be added, as this is typically done as part of conformance

checking; see, e.g., [66], [91], [92]. The value of acorr has

to be determined in driving experiments, and represents the

maximum deviation from the commanded acceleration across

all driving experiments. In particular, we have conducted more

than 50 experiments with a high-fidelity simulation of the

braking system, where an exemplary deviation between the

commanded and executed acceleration is shown in Fig. 5.

For the simulator study with a high-fidelity simulation of the

braking system, we have determined acorr = 0.75 [m/s2]. An

appropriate way to limit acorr is too select |j| not too large.

Due to conformance checking, we also consider the dynamics

of inner control loops as discussed in Sec. II.

V. SAFETY-RECAPTURING CONTROLLER

While a cut-in brings the ego vehicle to a temporarily

unsafe situation, it cannot be demanded that the ego vehicle

immediately performs emergency braking—not only since this
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Fig. 5: The executed acceleration by the simulator (blue)

deviates from the commanded acceleration of the safe ACC

(orange).

jeopardizes the safety of following vehicles, but also because

the passengers should not suffer from the fault of another

driver. Although in most cases no collision occurs if one does

not immediately regain a safe distance, one should still react

swiftly.

The user-defined clearance time tc(x(t), xp(t)) from

Spec. III.1 specifies the point by which the safe distance has to

be regained. As for the safety-keeping controller, we provide

a nominal controller and an emergency controller, where the

nominal controller can be replaced by any other controller. To

simplify the notation, we assume that time is reset to zero as

soon as the vehicle for which we run this controller cuts in.

A. Nominal Controller

We propose regaining safety in the nominal case by solving

the optimization problem in (2).

Proposition V.1 (Ensuring the clearing time tc) Without

loss of generality, we reset the initial time to zero. We ensure

the clearing time tc as specified in Spec. III.1 under the

assumption that the preceding vehicle accelerates more

rapidly than acut−in, i.e., ∀t ≤ tc : ap(t) > acut−in(t), by

adjusting the constraint in (3) to

dsafe(x(tc), vp(tc)) ≤ xn,1(tc), vp(tc) = vp,0 + acut−in tc.

Proof: When the modified quadratic programming prob-

lem in (3) is feasible, there are solvers that are guaranteed

to meet the constraints (here: satisfy the clearance time) while

converging to the optimal solution [93]. Obviously, an increase

in the velocity of the preceding vehicle would not make the

optimization infeasible.

To save computation time, all optimizations for Prop. V.1 are

only performed up to the clearing time tc. In the event that

the preceding vehicle decelerates more sharply than acut−in,

we switch to the emergency controller (see Fig. 2), which

is described subsequently. Also, the safe distance might be

regained faster than tc if the preceding vehicle decelerates at

less than acut−in; in this event, we switch to the safety-keeping

controller before tc, as illustrated in Fig 2.

B. Emergency Controller

Unlike the emergency controller for safety-keeping, the

emergency controller for safety-recapturing has two modes:

the ego vehicle is in an inevitable collision state (x ∈ ICS)

or not.

1) Inevitable-Collision-State Controller: The definition of

inevitable collision states does not specify how the occupancy

of surrounding obstacles is predicted (see Def. II.2). According

to the specification regarding cut-ins, we assume that the

preceding vehicle does not brake more sharply than acut−in

(Spec. III.1) so that the worst-case prediction for the preceding

vehicle is braking with acut−in. If the ego vehicle is in an

inevitable collision state, assuming the deceleration acut−in

of the preceding vehicle, full braking is immediately applied

to mitigate the likely collision—we refer to this controller as

the inevitable-collision-state controller; the collision can still

be avoided if the preceding vehicle accelerates.

2) Acceleration-Bounded Controller: Otherwise, if the ego

vehicle is not in an inevitable collision state, a safe solution

within the acceleration bounds is still feasible. Since the nom-

inal controller could not find a solution, we remove the jerk

constraints in (6)—we refer to this controller as acceleration-

bounded controller. Again, as for the nominal controller, we

assume that the preceding vehicle does not brake more sharply

than acut−in.

VI. EVALUATION

One of our main goals is to not only ensure provably

correct behavior, but also to provide the sensation of safety

and comfort, even when other vehicles cut in. To evaluate

whether passengers feel safe and comfortable, we conducted

a user study in a driving simulator. Before we present the

results of the user study, we list the parameterization of the

controllers, the achieved computation times, and demonstrate

the behavior of the vehicle for selected traffic situations.

A. Parameterization of the Controllers

We briefly list the parameters used in the safe adaptive

cruise controller for the subsequent evaluation in Tab. I, where

the subscripts k and r denote weights for the safety-keeping

and safety-recapturing nominal controller, respectively. The

jerk profile can be freely chosen by the system designer to

determine the vehicle acceleration up to the point when the

maximum possible deceleration a is reached. From that point

on, the vehicle decelerates at a until the emergency mode is

left or the vehicle is at a standstill. We chose the monotonically

decreasing jerk profile shown in Fig. 6 since most situations

are quickly resolved, and so that we could apply Prop. IV.2.

TABLE I: Parameterization of the nominal and emergency

controllers.

Parameter Value Parameter Value

j 10 m
s3

j −10 m
s3

a 3 m
s2

a −10 m
s2

v 51 m
s

v 0 m
s

ssr 200 m ∆t 0.1 s
ap −10.5 m

s2
λ 0.5 s

sc 0.4 m θc 0.035 rad
Qk [5 10 50] rk 100
Qr [15 30 50] rr 100
hk 6.0 s acut−in −2 m

s2

δleave 1.0 s
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Fig. 6: Predefined jerk profile.

B. Selected Scenarios

The subsequent evaluations are based on scenarios of the

CommonRoad benchmark suite1 [94]. All simulations were

executed on a machine with an Intel Core i7-8650U 1.90

GHz processor and 24 GB of DDR4 2400 MHz memory.

Our Python implementation of the safe adaptive cruise con-

trol is available at gitlab.lrz.de/tum-cps/safe-acc. In the first

evaluated scenario, the recapturing controller is activated to

restore the safe distance after a cut-in (CommonRoad ID:

S=USA US101-13 5 T-1:2018b). In the second scenario, the

safety-keeping nominal controller is not able to maintain the

safe distance to a leading vehicle, and therefore the emergency

controller is executed (CommonRoad ID: S=USA US101-

3 5 T-1:2018b). In both scenarios, the adaptive cruise con-

troller continues with the safety-keeping nominal controller,

after the critical situations have been successfully resolved.

The computation time for the cut-in scenario when excluding

non-safety relevant vehicles is always less than 0.01 [s],

although there are up to eight vehicles within the sensor

range (see Fig. 7). This confirms the real-time capability of

our approach. The exclusion of non-safety-relevant vehicles

decreases the computation time roughly by a factor of four in

the considered scenario.
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0.000

0.005

0.010
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m

p
.

ti
m
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[s
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Fig. 7: Computation time for the cut-in scenario (Common-

Road ID: S=USA US101-13 5 T-1:2018b).

The jerk, acceleration, velocity, and distance trajectories for

the cut-in and emergency maneuver scenario are shown in

Fig. 8 and Fig. 9, respectively. Both scenarios show the high

comfort level of our approach, since only when the cut-in

vehicle violates the safe distance does the ego vehicle apply

j for three time steps.

1commonroad.in.tum.de

C. User Study

The user study was conducted at the BMW Group in a

static driving simulator. Fig. 10 shows the simulator consisting

of an actual cockpit from a serial vehicle and three monitors

visualizing the environment; a snapshot of the central monitor

is shown Fig. 11.

The driver can control the automatic gearbox, the gas

pedal, the brake pedal, and the steering wheel. The software

for controlling the simulator and creating the scenarios is

a proprietary BMW tool called SPIDER. During the user

study, the driver only needed to control the steering wheel.

Additionally, the participants saw the current velocity on the

monitor. All users tested two systems: our novel system and

the built-in state-of-the-art adaptive cruise controller, which

we briefly describe below.

The goal of the user study was to evaluate the following

hypotheses:

1) The feeling of safety provided by the safe adaptive cruise

controller is at least as high as that of a state-of-the-art

adaptive cruise controller.

2) The comfort of the safe adaptive cruise controller is at

least as good as that of a state-of-the-art adaptive cruise

controller.

To evaluate these hypotheses, the user was asked six different

questions after each scenario and, additionally, the braking

force applied to the pedal was evaluated. In the following, the

six questions are listed with the possible answer options in

parentheses:

1) How do you rate the distance to the leading vehicle?

(very short, short, appropriate, large, very large)

2) How do you rate the feeling of safety provided by the

algorithm? (very low, low, middle, high, very high)

3) Did you want to intervene, but refrained from doing so

in the end? (no, yes)

4) Did the algorithm slow down unnecessarily or slow

down too rapidly? (no, yes)

5) How do you rate the comfort of this algorithm? (very

low, low, appropriate, high, very high)

6) How do you assess the timing of the braking maneuver?

(very early, early, appropriate, late, very late)

The answers for the questions with five options have been

encoded with numerical values ranging from 1 to 5 and

the answers for questions with yes or no options have been

encoded with 0 and 1. Questions 2 and 5 ask directly for an

evaluation of the corresponding hypothesis. Question 1 has the

goal of showing that the safe adaptive cruise controller is not

too conservative. Question 3 is related to the feeling of safety,

and questions 4 and 6 are related to comfort. In addition to the

questions previously mentioned, the user could give general

feedback on the performance of the adaptive cruise controllers.

1) State-of-the-Art Adaptive Cruise Controller: Instead of

trying to keep a safe distance dsafe, the state-of-the-art adaptive

cruise controller tries to keep the distance drec, which is half

of the ego vehicle’s velocity in km
h

, which is the recommended

minimum distance according to German traffic rules:

drec = 1.8 v.

https://gitlab.lrz.de/tum-cps/safe-acc
https://commonroad.in.tum.de
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Fig. 8: The safety-recapturing controller restores the safe distance comfortably (CommonRoad ID: S=USA US101-13 5 T-

1:2018b).
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(b) Acceleration of the ego vehicle
(gray) and a cut-in vehicle (blue).
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(c) Velocity of the ego vehicle (gray)
and a cut-in vehicle (blue).
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Fig. 9: The emergency controller is activated since the safe distance is about to be violated (CommonRoad ID: S=USA US101-

3 5 T-1:2018b).

Fig. 10: The BMW driving simulator consisting of a cockpit

and three monitors visualizing the environment.

Fig. 11: Snapshot of a scene in the driving simulator displayed

at the central screen.

The state-of-the-art adaptive cruise controller considers only a

single leading vehicle and no cut-in vehicles. If the state-of-

the-art adaptive cruise controller does not find a valid input to

the lower-level vehicle controller because constraints cannot be

fulfilled, a linear deceleration occurs until the model predictive

controller finds a valid input once again. Next, we describe the

scenarios considered in the user study.

2) Test Scenarios: For the evaluation of the safe adaptive

cruise controller, five different test scenarios were created. In

all scenarios, the ego vehicle starts with a velocity of zero and

in a safe state. Fig. 12 illustrates the scenarios from a top view

and the following list describes the settings and goals of the

scenarios:

1) Full braking of the first leading vehicle: The ego

vehicle drives behind a leading vehicle that, after a

while, suddenly fully brakes to a standstill. The goal

of this scenario is to evaluate vehicle-following and the

ability to react to a sudden full braking maneuver.

2) Full braking of the second leading vehicle: The ego

vehicle follows a small transporter approaching a stand-

ing vehicle. The participant cannot see the standing ve-

hicle because the transporter is blocking the view. After

the transporter performs an unexpected lane change to

prevent colliding with the standing vehicle, the standing

vehicle suddenly appears in front of the ego vehicle.

This scenario tests the behavior while following another

vehicle, the ability of the safe adaptive cruise controller

to consider more than one leading vehicle, and the

reaction when a standing vehicle enters the field of view.

3) Aggressive cut-in: A vehicle from an adjacent lane

performs an aggressive cut-in. The merging vehicle has

a lower velocity than the ego vehicle and brakes during

the cut-in. The goal of the scenario is to demonstrate



JOURNAL OF XX, VOL. X, NO. X, MONTH YEAR 13

the ability to react to cut-in vehicles and to evaluate the

behavior of the ego vehicle in this situation.

4) Smooth cut-in: A vehicle from an adjacent lane per-

forms a smooth cut-in. The cut-in vehicle has a higher

velocity than the ego vehicle and accelerates during the

cut-in. This scenario has the same goals as those of the

aggressive cut-in.

5) Approaching tail of traffic jam: The ego vehicle

reaches the tail of a traffic jam and drives at v. This

scenario demonstrates the ability to come to a standstill

if the ego vehicle drives fast and a standing vehicle

enters the field of view.

Please note that we additionally inserted further random

vehicles in the scenarios to create realistic scenarios with

sufficient traffic. For each scenario, we changed the number

of vehicles driving in the background, the vehicle types, and

the motion of the surrounding vehicles. The order of the

scenarios was different for each user to prevent bias in the user

evaluations. For the same reason, we also slightly modified the

scenarios for our adaptive cruise controller and the state-of-

the-art version.

dsafe

(a) Vehicle directly in front performs an emergency maneuver.

dsafe

dsafe

(b) Standing vehicle that is seen very late.

(c) Cut-in directly in front of the ego vehicle.

(d) Cut-in far away from the ego-vehicle.

dsafe

(e) Ego-vehicle drives toward the tail-end of a traffic jam.

Fig. 12: Test scenarios for the evaluation of the safe adaptive

cruise controller. The ego vehicle is marked in blue, surround-

ing vehicles are gray and stationary vehicles are red.

3) Results: Overall, 31 participants took part in the user

study. For the evaluation of the two hypotheses, the Wilcoxon

signed-rank t-test [95, Ch. 26] is used, because the data has an

ordinal scale of measurement and the data distribution for both

adaptive cruise controllers is nearly identical. The Z-value and

p-value for the two hypotheses based on the Wilcoxon signed-

rank t-test are listed in Tab. II. A p-value of less than or equal

to 0.05 indicates significant results.

TABLE II: Results of the Wilcoxon signed-rank t-test for the

two hypotheses.

Scenario Question Z-value p-value

1 Safety feeling 110.00 0.431
1 Comfort 170.50 0.159
2 Safety feeling 205.00 0.019
2 Comfort 383.00 0.001
3 Safety feeling 225.50 0.014
3 Comfort 201.00 0.026
4 Safety feeling 136.00 0.001
4 Comfort 403.50 0.001
5 Safety feeling 165.00 0.034
5 Comfort 124.50 0.107

The Wilcoxon signed-rank t-test indicates significant results

for the hypothesis regarding the feeling of safety in Scenarios

2, 3, 4, and 5 and for the comfort hypothesis in Scenarios 2,

3, and 4. For the other scenarios, no significant results were

generated; therefore, they are not discussed here in further

detail. However, this does not mean that the safe adaptive

cruise controller is worse than the state-of-the-art adaptive

cruise controller in these scenarios. For the hypothesis-related

questions regarding safety feeling and comfort, the mean of

the safe adaptive cruise controller is at least as good as for

the state-of-the-art adaptive cruise controller in all scenarios

(see Tab. III). In Scenarios 1 and 5, no significant results

were achieved, because the behavior of the safe adaptive

cruise controller was not different enough from the state-of-

the-art approach. In both scenarios, the main part consists of

a full braking maneuver; therefore, the users were not able

to detect significant differences. In all scenarios, the mean of

the distance evaluated is always close to the optimal value

(see Tab. III), which indicates that the safe adaptive cruise

controller was not too conservative while achieving these

significant results. Fig. 13 illustrates two example boxplots

for the feeling of safety in Scenario 2, and for comfort in

Scenario 4. The medians of the safety feelings in Scenario 2
are almost the same, but the interquartile ranges of the state-

of-the-art adaptive cruise controller are larger. The median of

the comfort in Scenario 4 is much higher than that of the

state-of-the-art adaptive cruise controller, and the interquartile

range is also very low for the safe adaptive cruise controller

compared to the state-of-the-art approach.

This study reveals that provably-correct controllers cannot

only ensure safety, but also provide a comfortable ride, and

increase the perceived safety, while not increasing the distance

to preceding vehicles.
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TABLE III: Mean and standard deviation of all scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Question x̄a x̄b sa sb x̄a x̄b sa sb x̄a x̄b sa sb x̄a x̄b sa sb x̄a x̄b sa sb

Distance 3.10 3.10 0.79 0.70 3.10 3.32 0.65 0.83 3.13 2.90 0.81 0.91 3.29 3.90 0.78 1.04 2.32 2.35 0.83 0.71
Safety feeling 4.16 4.13 0.90 0.99 4.19 3.58 0.91 1.18 3.68 3.06 1.05 1.03 4.94 3.97 0.25 1.14 2.32 1.97 1.05 0.98
Intervene 0.29 0.29 0.46 0.46 0.29 0.32 0.46 0.54 0.45 0.52 0.96 0.57 0.00 0.00 0.00 0.00 0.74 0.77 0.44 0.43
Unnec. braking 0.03 0.35 0.18 0.55 0.03 0.84 0.18 0.73 0.35 0.61 0.66 1.12 0.03 0.81 0.18 0.40 0.10 0.06 0.30 0.25
Comfort 3.87 3.58 0.96 1.15 4.16 2.52 0.90 1.06 3.35 2.81 1.05 1.11 4.68 2.19 0.70 1.11 2.10 1.87 1.11 0.85
Braking time 3.35 3.52 0.49 0.81 3.23 3.32 0.62 0.94 3.35 3.55 0.75 0.93 2.94 3.16 0.51 1.32 4.58 4.61 0.81 0.67
Braking force 0.11 0.10 0.29 0.26 0.07 0.06 0.25 0.25 0.03 0.12 0.18 0.31 0.00 0.00 0.00 0.00 0.30 0.36 0.45 0.47

1.0

2.0

3.0

4.0

5.0

safe
ACC

state-of-the-art
ACC

(a) Boxplot of safety feeling in Sce-
nario 2.

1.0

2.0

3.0

4.0

5.0

safe
ACC

state-of-the-art
ACC

(b) Boxplot of comfort in Scenario
4.

Fig. 13: Example boxplots of significant hypotheses.

VII. CONCLUSIONS

We have presented the first approach for a provably-correct

adaptive cruise controller that ensures comfort, even in the

event of cut-ins. Our concept of using a nominal controller

that is safeguarded by a provably-correct fail-safe controller

makes it possible to exchange the nominal controller without

having to have the vehicle’s safety re-certified. This makes

our approach particularly attractive for over-the-air updates

concerning nominal behavior. Compared to previous work on

provably-correct adaptive cruise control, we ensure safety by

gradually engaging fail-safe maneuvers and providing a strat-

egy for cut-ins—previous provably-correct approaches would

apply full braking if a cut-in occurs. Our user study shows

that our approach does not impede user satisfaction, despite

ensuring that the vehicle does not cause a collision, and that

a safe gap is swiftly regained following a cut-in.
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