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Abstract

Automated construction-progress monitoring enables the required transparency

for improved process control, and is thus being increasingly adopted by the

construction industry. Many recent approaches use Scan-to/vs-BIM methods

for capturing the as-built status of large construction sites. However, they of-

ten lack accuracy or are incomplete due to occluded elements and reconstruc-

tion inaccuracies. To overcome these limitations and exploit the rich project

knowledge from the design phase, the authors propose taking advantage of

the extensive geometric-semantic information provided by Building Infor-

mation Models. In particular, valuable knowledge on the construction pro-

cesses is inferred from BIM objects and their precedence relationships. SfM

methods enable 3D building elements to be located and projected into the

picture’s 2D coordinate system. On this basis, the paper presents a machine-

learning-based object-detection approach that supports progress monitoring

by verifying element categories compared to the expected data from the dig-

ital model. The results show that, depending on the type of construction

and the type of occlusions, the detection of built elements can rise by up
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to 50% compared to an SfM-based, purely geometric as-planned vs. as-built

comparison.

Keywords: Construction progress monitoring, BIM, point clouds, semantic

and temporal knowledge, deep learning
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1. Introduction1

1.1. Automated progress monitoring2

Construction progress monitoring is currently still performed mostly man-3

ually, in a laborious and error-prone non-automated process. To prove that4

all works have been completed as agreed contractually, all completed tasks5

must be documented and monitored. Complete and detailed monitoring tech-6

niques are required for large construction sites where the entire construction7

area and the number of subcontractors become too large for manual tracking8

to be efficient. Detecting possible deviations from the schedule provides a9

benchmark for the performance of the construction site. Regulatory matters10

add to the requirement of keeping track of the current status on the site. The11

ongoing establishment of building information modeling (BIM) technologies12

in the planning of construction projects facilitate the application of digital13

methods also in the execution phase. In an ideal implementation of BIM, all14

relevant information on materials, construction methods, and even the pro-15

cess schedule are interlinked. On this basis, it is possible to estimate project16

costs and project duration more precisely than with conventional methods17

[1].18

On top of the digitized construction design process, recent advancements19

for capturing the as-built geometry by laser scanning [2] or photogrammetry20

[3] allow using the resulting point cloud data to be compared against the as-21

planned model. Photogrammetry, in particular, has gained more attention22

with the broader availability of Unmanned Aerial Vehicles (UAVs), making23

this method more flexible in terms of camera positions [4]. The main idea is24

not to use laser scanners but conventional camera equipment on construction25
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sites to capture the current construction state (”as-built”). Since the acqui-26

sition from different perspectives is significantly faster than laser scanners,27

the building can be captured in a comprehensive manner with comparatively28

low effort. As soon as a sufficient number of images from different points of29

view are available, a 3D point cloud can be produced using Structure from30

Motion (SfM) methods [5]. Finally, the point cloud, representing one par-31

ticular observation time-point, can be compared against the geometry of the32

Building Information Model.33

1.2. Problem statement34

Currently, the detection of built elements using SfM methods and other35

point-cloud-based approaches faces several challenges:36

1.2.1. As-planned modeling vs. as-built construction37

As introduced in Braun et al. [6], the as-planned model is represented38

by a 4D building information model (see Figure 1 a)). All 4D construction39

processes are linked to their associated elements, allowing for statements re-40

garding the expected construction state at any given observation time. As41

the relevant model and point cloud are co-registered, an initial detection al-42

gorithm can compare the model’s geometry with the 3D information from43

the point cloud. During the construction phase, the actual as-built process44

can deviate from the original as-planned process. To clarify this deviation,45

Figure 1 depicts the digital model from one of the test sites, a corresponding46

UAV-aerial image, and the generated point cloud ( a), c) and d) ). Ac-47

cordingly, the as-planned 4D model does not represent the real construction48

sequencing. This problem is also described in Huhnt et al. [7], Tulke [8].49
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Figure 1: Process modeling problems depicted by a) as-planned modeling, b) as-built

modeling, c) as-built image, d) as-built point cloud on sample construction site.
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In comparison, Figure 1 b) shows the correct corresponding as-planned50

model for the given timestamp, with all subsequent elements being removed51

from the as-scheduled model.52

1.2.2. Reconstruction53

The monitoring of construction sites by applying photogrammetric meth-54

ods has become common practice. Currently, several companies (for exam-55

ple, Pix4D or DroneDeploy) provide commercial solutions for end users that56

permit the generation of 3D meshes and point clouds from UAV or other57

image-based site observations. All these methods provide proper solutions58

for finished construction sites or visible elements of interest.59

However, UAV-based monitoring of construction sites exhibits several60

problems. On the one hand, photogrammetric methods are sensitive to low-61

structured surfaces like monochrome painted walls, or windows. Because of62

the used method, each element needs to be visible from multiple (at least63

two) different points of view. Thus, elements inside of a building cannot be64

reconstructed as they are not visible from a UAV flying outside of the build-65

ing. Monitoring inside of a building is currently still the subject of much66

research [9] and not available via an automated method, as localization in67

such mutable areas like construction sites is hard to tackle. These problems68

lead to holes or misaligned points in the final point cloud, which hinders the69

accurate and precise detection of building elements. On the other hand, laser70

scanning requires many acquisition points and takes significantly more time71

and manual effort in acquisition.72
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1.2.3. Occlusions73

Finally, both techniques are challenged by occlusions for regions that74

are not visible during construction. The as-built 3D point cloud with n75

points holds all respective coordinates but also color information based on76

the feature’s pixel color value in the initial image. The value n depends on77

many factors such as78

• lighting conditions79

• feature detection from different points of view80

• surface textures81

• amount and resolution of the images taken82

A point cloud from one timestamp on one of our test construction sites83

can be seen in Figure 1 d). Besides scaffolding and formwork, various holes84

are visible in the point cloud that exist due to insufficient image quality for85

reconstruction or occlusions. The depicted point cloud matches the expected86

quality for an as-built acquisition and is incomplete due to changing visibility87

conditions from working equipment and similar items. However, it is not88

sufficient for reliable results in a purely geometric as-planned vs. as-built89

comparison as significant parts of the actual building are occluded. As seen90

in figure 2, another problem lies in elements that are occluded by temporary91

construction elements. In particular, scaffolding and formwork occlude the92

direct view on walls or slabs, making it harder for algorithms to detect the93

current state of construction progress.94
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Figure 2: Occluded construction elements in generated point cloud caused by scaffolding,

formworks, existing elements and missing information during the reconstruction process

Currently available methods do not take these problems into account and95

make only limited use of BIM-related information such as type of construction96

and the general structure of a building.97

1.3. Contributions98

In this paper, the authors propose a number of inter-related methods99

to tackle the aforementioned problems. Specifically, this paper presents the100

following contributions:101

• Known technological dependencies of construction sequences are used102

to enrich the model by precedence relationships, by applying formal103

graph theory. This allows the inference of the existence of elements, if104

they have not been directly detected.105

• A method is presented that makes use of the knowledge of construction106
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methods and 4D data to adjust the detection thresholds (as-planned vs.107

as-built deviations allowed) according to their expected construction108

stage. This permits the detection of elements that are currently under109

construction and are, for example, covered by formwork.110

• We introduce a method based on visibility analysis to identify elements111

that are detectable from the identified camera positions. Deep learning112

on projected element positions in the 2D plane of the gathered images113

for the initial SfM process allows the detection rates of built elements114

to be further enhanced.115

The combined application of these methods helps to significantly improve116

the accuracy of construction progress monitoring, as documented by the case117

studies presented in this paper.118

The details of the individual methods are described in Section 3.119

2. Related Work120

2.1. Scan vs. BIM121

Progress monitoring has become a heavily researched topic in recent years.122

Omar and Nehdi [10] provide an overview of these developments and compare123

the individual approaches:124

The as-built status of a construction site is usually captured by laser125

scanners or cameras using SfM methods. Laser scanning has the advantage126

that 3D point measuring is fast and very accurate (within the range of mil-127

limeters). However, the equipment is heavy and requires trained personnel.128

Additionally, the setup at the point of observation is time-consuming and,129
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depending on the size of the construction site, many observation points are re-130

quired to scan the whole construction site. Photogrammetric approaches pro-131

duce less accurate point clouds in comparison to laser scanning and require132

significant computing power for the reconstruction. However, this method is133

more flexible and easier in its application, as camera equipment is standard,134

low-cost, and widely used on UAVs. Other devices, such as Microsoft Kinect,135

combine multiple sensors and can also be used for progress monitoring [11].136

The registration of the acquired point cloud and corresponding as-planned137

geometry is either performed manually or semi-automatically, e.g. by point-138

to-point matching through Iterative Closest Point (ICP) algorithms. Here,139

the algorithm minimizes the distance between the points of the laser scan140

and the BIM geometry [12].141

Currently, three methods are deemed to be established in the comparison142

with the as-planned status:143

1. comparison of points from the as-planned geometry with as-built point144

clouds. These methods compare point clouds that are acquired by laser145

scanners [13, 14] or SfM methods and derived point clouds from as-146

planned surfaces [15]. Point proximity metrics mainly do this following147

a data-alignment process.148

2. Feature detection in the acquired images from the as-built state. Us-149

ing feature detection algorithms to assess the progress of as-planned150

elements (as the construction site evolves in time) by comparing mea-151

surements with dynamic thresholds learned through a Support Vector152

Machine (SVM) classifier, construction elements are directly identified153

from the acquired images [16].154
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3. Matching the as-planned geometry surfaces directly with the as-built155

points. Here, relevant points from the point cloud are directly matched156

onto triangulated surfaces of the as-planned model after using octree-157

based checks for occupied regions [17].158

The first approaches involving object detection in laser-scanned point159

clouds were published by Bosché and Haas [2]. Turkan et al. [14] extend this160

system and uses it for progress estimation. Kim et al. [18] detect specific161

component types using a supervised classification based on Lalonde features162

derived from the as-built point cloud. An object is regarded as detected if the163

type matches the type present in the model. As above, this method requires164

that the model is sampled into a point representation. Zhang and Arditi165

[19] introduce a measure for deciding four cases (object not in place, point166

cloud represents a full object or a partially completed object or a different167

object) based on the relationship of points within the boundaries of the object168

and the boundaries of the shrunk objects. However, the authors test their169

approach in a very simplified artificial environment, which is significantly less170

challenging than the processing of data acquired on real construction sites. In171

Mahami et al. [20], SfM and Multi-View Stereo (MVS) algorithms are coupled172

with coded targets to improve the photogrammetric process itself. Ibrahim173

et al. [21] use a single camera approach and compare images taken during174

a specified period, and rasterize them. Individual elements are identified175

for each use case. Most publications focus on identifying one particular176

type of element like, for example, columns or walls. Indoor monitoring has177

been researched by several groups. Asadi et al. [22] propose a new method178

to localize and align the camera position and building model in a real-time179
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scenario. Kropp et al. [23] tried to detect in-door construction elements based180

on similarities. Turkan et al. [24] present an approach for detecting elements181

under construction that uses threshold extensions for those elements. Han182

and Golparvar-Fard [25] published another attempt to solve the problem of183

elements under construction. The focus lies on visibility issues, e.g., assuming184

that an anchor bolt for a column must be present, despite being invisible,185

as the column on top of it requires the anchor bolt for structural reasons.186

Further research has been conducted in regard to multi-layered elements and187

the introduction of construction sequencing [26].188

Another critical aspect of the as-planned vs. as-built comparison is de-189

pendencies. Technological dependencies determine which element is depend-190

ing on another element, meaning that it cannot be built after the first ele-191

ment is finished. Precedence relationships [27] can define these dependencies.192

Szczesny et al. [28] discuss a storage solution for these dependencies. The ap-193

proach with regard to progress monitoring is presented in Braun et al. [29].194

Hamledari et al. [30] introduce an IFC-based schedule updating workflow195

that relies on detected construction elements.196

In their outlook, Turkan et al. [24] state that further improvements to197

their work should include color analysis or even image-based methods. Thus,198

the authors propose incorporating these techniques, as well as the use of se-199

mantic data like construction methods, model analysis using technological200

dependencies, and image-based deep learning, to further enhance the detec-201

tion of elements in an as-planned vs. as-built comparison.202
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2.2. Computer vision and deep learning203

Rising computational power has enabled significant advances in machine204

learning in recent years. Deep learning [31] and especially Convolutional Neu-205

ronal Networks (CNN) provide solutions for training computers to learn pat-206

terns and apply them to previously unseen data. In this context, computer207

vision is a heavily researched topic that has received even more attention208

through recent advances driven by, for example, the needs of autonomous209

vehicles. Image analysis in the construction sector, on the other hand, is210

a rather new topic. Up to now, the main focus has been on defect detec-211

tion (for example, cracks) in construction images [32]. Crack detection for212

asphalt roads has also been the subject of research [33]. Since one of the213

critical aspects of machine learning is the collection of large datasets, cur-214

rent approaches focus on data gathering. In the scope of automated progress215

monitoring, Han and Golparvar-Fard [34] published an approach for labeling216

image datasets based on the commercial service Amazon Turk. Braun and217

Borrmann [35] introduce a method for automated image labeling by fusing218

semantic and photogrammetric data.219

Regarding the application of deep learning for construction progress track-220

ing, Chi and Caldas [36] used initial versions of neural networks to detect221

construction machinery on images, and Kim et al. [15] used ML-based tech-222

niques for construction progress monitoring. They analyzed images by fil-223

tering them to remove noise and uninteresting elements, so as to focus the224

comparison on relevant construction processes. Hamledari et al. [37] applied225

CV approaches to indoor appliances like electrical outlets and insulation.226

These approaches are currently mostly independent from the actual build-227
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ing model, as orientation and scale with respect to the digital twin are ne-228

glected or assumed to be given for the application of CV methods. The229

application of these methods, in combination with SfM-based orientation230

data, has not been the subject of research to date.231

3. Concept232

3.1. Objective233

The main goal of this research is to improve the results of element detec-234

tion from a point-cloud-based as-planned vs. as-built comparison by using235

additional information provided through the Structure-from-Motion process236

(images and camera positions), as well as the as-designed building informa-237

tion model (semantic data, geometric representation of elements, and position238

and dependencies of elements). The following concept presents the proposed239

solutions to tackle the mentioned challenges with several approaches, such240

as incorporating additional information on construction methods into the241

comparison algorithms.242

3.2. Point of departure243

The concept builds upon the body of knowledge of the research com-244

munity as well as the previous research conducted by the authors. Thus,245

several steps in the process of automated progress monitoring are assumed246

to be given. Firstly, image acquisition for the generation of point clouds and247

camera position estimation is required. The authors provided several studies248

on image acquisition and proposed a UAV-based method as it is more flex-249

ible in comparison to fixed cameras [38]. Secondly, the point cloud and the250
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as-designed building information model must be aligned to one another (also251

known as registration). According to the well-documented state of the art,252

this is either performed via geodetic reference points that align the as-planned253

digital model with the point cloud on the measured geodetic position, via au-254

tomated ICP methods (as mentioned earlier), or manually via point-to-point255

picking. The authors provide a detailed description of these approaches in [6]256

and [35]. In this paper, we significantly extend the state-of-the-art approach257

by using computer vision (CV) methods.258

3.3. Concept overview259

The concept presented in this paper relies on the exploitation of as-design260

building information models to improve the progress-detection process. We261

assume them to be available as IFC instance models. These models provide262

a geometric representation of all relevant building components, as well as263

the related semantic information (such as component type, material or the264

attribute ”load-bearing”) as well as 4D process data. The general idea is265

to enhance the purely geometric as-planned vs. as-built comparison from266

point-cloud to geometry level, with additional layers of information. Fig. 3267

depicts the conceived processing chain. The highlighted process components268

provide new elements that are introduced in this paper. After defining the269

different sets of building elements required for the process in Sec. 3.4, these270

new elements are explained in detail in dedicated subsections.271

The creation of the precedence relationship graph is discussed in Sec. 3.5.272

The following sections focus on schedule analysis (Sec. 3.6), and color detec-273

tion (Sec. 3.7). The latter process step helps to identify whether an element274

is present or occluded by other structures. Finally, we introduce a method275
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that projects the 3D as-designed geometry provided by the building informa-276

tion model into the 2D plane, so as to apply image analysis techniques for277

element detection. Sec. 3.8 describes the projection process. Subsequently,278

Sec. 3.9 discusses the application of computer vision methods to detect the279

type of the element that is visible in the projected region of interest.280

The combination of these individual processing steps results in a signifi-281

cant improvement in the accuracy of the overall automated progress detection282

method, as demonstrated through the case studies presented in Section 4.6.283

3.4. Sets of elements and detection status284

In the context of the research presented, the following sets of construction285

elements are defined in regard to as-built vs. as-planned comparison:286

• E represents all elements of the current building287

• EP (t) defines the amount of elements that should be present at the288

time t of observation according to the as-planned schedule289

• EGT (t) defines the ground truth as all elements that are built at obser-290

vation t291

• ED(t) defines all elements that were detected during an observation at292

timestamp t293

• END(t) defines all elements that were not detected during an observa-294

tion at timestamp t295

• EV (t) defines all elements that are visible from the corresponding points296

of view during observation at timestamp t297
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Figure 3: Concept for the enhancement of element detection. The highlighted process

steps are introduced in this paper.

17



t defines the observation timestamp, at which the construction site has298

been monitored.299

The following definitions hold true for all given sets at any timestamp t:

E = ED(t) ∪ END(t) (1)

ED(t) 6 EV (t) 6 EGT (t) 6 E (2)

According to these definitions, the set of TruePositives is defined as

ETP (t) = ED(t) ∩ EGT (t) (3)

while FalsePositives are the counterpart:

EFP (t) = ED(t) \ EGT (t) (4)

The goal of this research is to verify as many existing construction ele-

ments as possible, so as to minimize the differences between these sets while

keeping EFP (t) minimized. Mathematically speaking:

ED(t) −→ EGT (t) (5)

It is not possible to define a relation between the planned elements EP (t)300

and the ground truth EGT (t) as the progress of the construction site depends301

on many external factors that cannot be formalized with the given data.302

The set of EP (t) can contain more elements than EGT (t) in the event of a303

delay on the construction site but also fewer elements in the event of faster304

construction times.305
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In addition to the mentioned sets, every construction element is classified306

individually for each of the following states: built (Ground Truth), detected,307

planned, encased in formwork, under construction.308

These definitions are used in the described concepts.309

3.5. Process sequencing and precedence relationships310

As-built monitoring with SfM methods or laser scanning always captures311

one particular timestamp.312

For automated handling of dependencies, a precedence relationship graph313

(PRG) is introduced [29]. The PRG formalizes technological dependencies314

between construction elements and is defined as a directed, acyclic graph315

(DAG) with each node representing one construction element [39]. Techno-316

logical dependencies for load-bearing structures between two elements can317

be automatically detected when they have a particular spatial constellation318

that, in combination with the construction method applied, unambiguously319

defines their sequential order. For example, when conventional in-situ con-320

creting methods are applied, a slab on top of a column can only be built321

after the column is finished. To generate this graph, the semantic as well322

as the geometric data from the digital model is used in combination with a323

knowledge base representing the construction methods. The geometric data324

is used to identify elements that are touching each other, and for sequencing325

them in their respective vertical order. Additionally, the semantic data is326

used to determine the construction method for an individual element, and to327

filter load-bearing elements. The generation of the initial precedence graph328

is performed as depicted in Algorithm 1. This method relies on a spatial329

query language, as introduced in Daum and Borrmann [40].330
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Algorithm 1 Pseudo code for the generation of an initial Precedence Rela-

tionship Graph

1: procedure GeneratePrecedenceRelationshipGraph

2: E← set of all construction elements

3: for all E(LoadBearing) do

4: for all ET do

5: if Above(E(LoadBearing),ET ) then

AddDirectedEdge(E(LoadBearing),ET );

The initial precedence graph is completed manually in order to take331

project-specific boundary conditions and non-spatial precedence relation-332

ships into account.333

The PRG is used to identify objects that are possibly under construction334

at the time of observation.335

Using the introduced PRG, it is possible to identify elements that might336

be under construction and thus are considered for further investigation. The337

basic flowchart depicted in Figure 3 shows the implemented workflow for338

enhanced detection.339

Based on the construction type and the erection method, different steps340

follow. As detailed above, walls and other vertically erected elements are341

considered for an extended threshold in order to identify possible formwork.342

Additionally, color matching helps to differentiate the material properties.343

Moreover, the PRG allows for assumptions with regard to elements that344

are invisible due to occlusions, and thus not directly detectable. For example,345

load-bearing columns underneath a detected slab are expected to be built346

even if it is not possible to verify them via the point cloud.347
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3.6. Identified tasks during construction348

Several tasks are required to construct in-situ concrete elements or similar349

elements. In concrete construction, formwork for in-situ concrete is the most350

common construction method. Several different methods are depicted in351

Figure 1 b) and d). All possible elements under construction are considered352

in order to detect formwork. In general, elements are counted as detected as353

soon as a certain amount of points per area [Pts/m2] with a distance of less354

than 2 cm are matched on the surface of the element [41]. If the expected355

elements are not detected, the threshold for the maximum distance can be356

adjusted to take into account the fact that the formwork with a thickness of357

around 0.20m might be currently in place. If this iteration brings positive358

results, the element can be marked as ”under construction”.359

3.7. Color detection360

In general, formwork for walls and columns consists of a wooden, smooth361

plate on the concrete side, and a steel structure for stability on the backside.362

This steel structure is often painted red, yellow or orange, and is distinct from363

the gray concrete. Formwork for slabs usually consists of elevated wooden364

plates that have the same color range as the steel structure mentioned. This365

color difference can be measured and may help to further improve the de-366

tection quality of formwork. The HSV (Hue-Saturation-Value) color space367

provided useful data for the color detection [42]. In contrast to the RBG368

color space, the HSV color space can describe color as perceived by humans369

but also saturation and brightness (value). Each value has a range from 0 to370

1.371
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Comparing the color distribution of identified subsections of the point372

cloud can consequently help to achieve further verification of the existence373

of an element. The material color, as well as the type of construction, is374

retrieved from the building information model in order to gather color infor-375

mation. After identifying a gray color distribution for an expected concrete376

element, this data further confirms the existence of said element. In compar-377

ison, a mainly red or orange color distribution leads to the assumption that378

a formwork element is present, if the initial element has not been verified but379

is meant to be constructed with in-situ concrete.380

3.8. Visibility analysis and projection of elements381

Photogrammetry is based on estimating the position of all cameras that382

are used for the point cloud generation. Since the digital model of the con-383

struction sites is aligned to the point cloud during the comparison process,384

it is possible to project the 3D geometry of all elements into the respective385

2D plane of a corresponding image [35]. Knowing the expected position of386

an element in image space enables highly accurate object-detection to be387

performed, using CV approaches.388

More specifically, it is possible to perform a visibility detection by using389

the camera parameters to compute the projection of the model elements onto390

image space and of the process information, to define the set of construction391

elements that are supposed to be built. The building model coordinate sys-392

tem needs to be transformed into the camera coordinate system or vice versa393

in order to align both models. By applying this method, rendered images394

from all points of acquisition are generated that allow the determination of395

which elements are actually visible and can potentially be found in a gener-396
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ated point cloud. The resulting set of visible elements EV (t) enables greater397

detection accuracy.398

The general approach for this method is explained in Braun and Bor-399

rmann [35], though for a slightly different application scenario. For further400

clarification, the key steps are explained in this section.401

In order to calculate the projection, the intrinsic camera matrix for the402

distorted images that projects 3D points in the camera coordinate frame to403

2D pixel coordinates using the focal lengths (Fx, Fy) and the principal point404

(x0, y0) is required. Additionally, the skew coefficient sk for the camera is405

required. It is zero if the image axes are perpendicular. The matrix K can406

be described as defined in equation 6.407

K =


Fx sk x0

0 Fy y0

0 0 1

 (6)

The translation of the camera is defined as:408

T =


t1

t2

t3

 (7)

Additionally, the rotation matrix for each image, as defined in equation409

8 is needed.410

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (8)

23



Both, translation and rotation can be described in one 3 x 4 matrix:411

RT =


r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3

 (9)

Using the model coordinates of all triangulated construction elements,412

it is possible to calculate the projection of each element into the camera413

coordinate system and therefore overlay the model projection and the corre-414

sponding image taken from the point of observation with equation 10.415

t = K ∗RT ∗ p; (10)

The resulting 2D coordinates that are rendered into the image are calcu-

lated by using the vector t and calculating the x and y coordinates by

x = t[0]/t[2] (11)

and

y = t[1]/t[2] (12)

With this projection, the model can be rendered from the camera’s per-416

spective for all images acquired during observation. After including the 4D417

temporal information from the as-planned model, this information can be418

fused, to render the model with the expected set of elements EP (t) from all419

estimated camera positions. The term ”rendering” here refers to the cre-420

ation of the 2D projection of the model according to the rendering pipeline421

established in computer graphics [43], but without applying advanced fea-422

tures such as reflections, light sources or shading. These rendered images are423
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analyzed for all visible elements EV (t) by applying the Painter’s algorithm424

[44]. With knowledge of this set of elements, the set ED(t) can be checked425

for false positives, but also measured for accuracy regarding its true positive426

rate. This is done by excluding elements from set EP (t) or EGT (t) that are427

invisible from any camera position during acquisition.428

3.9. Image-based object detection429

To further enhance the detection of construction elements, we propose430

making use of the images taken in the course of the initial acquisition for431

the photogrammetric point cloud generation. By applying the previously432

described projection technique, all construction elements can be localized on433

any image taken during the acquisition. A sample is shown in Fig. 4: A col-434

umn of interest is selected in the 3D view (marked red); detailed information435

about this element is shown in the lower right. Accordingly, a corresponding436

image that validated the existence of the selected element - and additionally437

the 3D to 2D projection described in Section 3.8 - is used to display the438

expected position of the element in this image.439

As machine-learning methods have made significant advancements in re-440

cent years, tasks like image classification or even region detection on images441

are mow being used in various scenarios. For the task of progress monitor-442

ing, the authors propose the use of a Convolutional Neural Network (CNN)443

trained on construction elements and thus able to detect the type and in-444

stances of construction elements on the given images. In the case that an445

element is not detected and validated by the point cloud, the implemented446

workflow is followed as described in Fig. 5.447

If the element is expected according to the up-to-date schedule and re-448
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Figure 4: Projection of a selected 3D geometry into the 2D plane of a corresponding image

quires in-situ work, in a first step, the thresholds are increased as defined in449

Sec. 3.6. If this helps to validate the elements’ existence, it is added to the450

set of detected elements ED(t). If not, the 2D projection, as mentioned in451

Sec. 3.8, is used to identify the region of interest in a suitable image.452

Subsequently, the trained CNN [45] classifies the region according to the453

predefined states and thus contributes to a refined state detection. If, e.g.,454

formwork is detected here, the element can be marked as ”under construc-455

tion”.456

In order to use a CNN for object-based region detection, the training of457

said network is required. For this purpose, 5,000 images were labeled with458

the categories formwork, scaffolding, columns, and walls. This resulted in459

9,700 labeled formwork elements. The labeling procedure is depicted in Fig.460

6. The data is converted into the COCO data format [46] and prepared for461
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Figure 5: Occluded construction elements in generated point cloud caused by scaffolding,

formworks, existing elements and missing information during the reconstruction process
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training by augmenting the images to enlarge the training set even further.462

Figure 6: Sample image of the labeling process. Displayed are the labeled formwork (blue)

and column (green) elements. During this research, Labelbox [47] is used for labeling.

To sum up, all introduced methods make the overall process much more463

robust compared to a purely geometry-based approach, and lead to a higher464

detection accuracy.465

4. Case Study466

Several construction sites were monitored with different observation meth-467

ods to validate the introduced concepts. The construction sites are all468

German-based and cover a number of structural engineering buildings as well469

as infrastructure (one bridge, one wastewater treatment plant). The main470
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construction method is in-situ concreting, this being the most common con-471

struction technique in Germany. Listed in Table 1 are the three construction472

sites that are used as case studies in this section.473

Site Elements Observations Pictures taken Duration

Test Site A 671 6 1,805 5 months

Test Site B 943 9 2,350 10 months

Test Site C 2,229 23 3,144 5 months

Table 1: Test sites monitored during this case study

In this context, the authors published several papers presenting their ap-474

proach and developed a software framework, which was introduced in Braun475

et al. [29] and shown in Figure 7. To visualize the comparison results and476

the detected elements, and to verify the used algorithms, all gathered data is477

stored in a database that is accessible via this software. The tool displays all478

geometric and semantic building element information as well as scheduling479

data that has been parsed from IFC instance models. The detected elements480

are highlighted for easy identification. Figure 7 shows the software interface481

with the example of one of the construction-site case studies used in this482

research. The building mainly consists of in-situ concrete elements that were483

cast using formwork on site. In the figure, one individual capturing event484

is selected, and all detected elements are highlighted. Green coloring repre-485

sents elements that have been built and are correctly detected and confirmed486

through the point cloud. All yellow elements are built but were not confirmed487

through the point cloud.488

There are several reasons why some of those elements may not be de-489
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Figure 7: Screenshot of a developed tool for as-planned vs. as-built comparison. A specific

observation is selected to visualize the detected construction elements at that time. Details

of selected elements are shown in a separate viewer.
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tected. The most prominent reason is the occlusions that occur on site. Dur-490

ing construction, large amounts of temporary structures like scaffolds, con-491

struction tools, and construction machinery obstruct the view of the element492

surfaces. Limited acquisition positions further reduce the visible surfaces493

and hence the overall quality of the generated point clouds. Additionally,494

elements inside of the building are also occluded by other building elements495

for acquisitions outside of the building.496

Another reason for weak detection rates is building elements that are497

currently under construction. As those elements count towards the overall498

progress, they must not be missed, and play a crucial role in defining the499

exact state in the current process. In general challenges exist for all con-500

struction methods, whose geometry under construction differs largely from501

the final element geometry which requires the use of temporary construction502

objects. This applies, e.g., to reinforced concrete and multi-layered walls.503

On the one hand, formwork which is used for concrete pouring, may ob-504

struct the view of the element, making it impossible to be detected. On the505

other hand, the plane surface of formwork for a slab might be detected as506

the surface of the slab itself and thus would lead to a false positive. Due507

to these challenges, further enhancements to the comparison and detection508

algorithms are needed. Since the digital model contains information on con-509

struction methods, the authors propose using this knowledge in the overall510

detection process. By deducing the precedence relationships with a query511

language, assumptions regarding occluded elements can be made. Construc-512

tion methods and derivation of expected elements lead to new as-planned513

vs. as-built comparison capabilities, such as extended thresholds and com-514
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puter vision methods to detect objects like formwork on the raw observation515

images, taken for the point cloud generation.516

4.1. Precedence Relationship Graph517

The PRG for all construction sites is generated by using a query language518

for Building Information Models (QL4BIM, Daum and Borrmann [40]). With519

the algorithm introduced in Sec. 3.5, any building information model that520

has sufficient semantic information can be analyzed, and technological de-521

pendencies are formalized by the introduced graph. Fig. 8 shows the PRG522

for one of the mentioned case studies. Each node represents one construction523

element; the directed edges show the corresponding dependency.524

Based on the detected elements (marked in green and yellow), all depen-525

dent elements can be identified via this graph. Specifically, this graphs allows526

one to make assumptions regarding the construction elements that were ei-527

ther invisible during observation, or were not detected due to occlusions or528

other issues (as mentioned before). The elements marked in blue in Fig. 8529

are identified as depending elements with this method.530

Table 2 shows detailed enhancements for the introduced PRG. In particu-531

lar, a significant amount of construction elements were identified as depend-532

ing upon the detected elements. In this respect, these elements are logically533

required to be built despite the fact that they were not confirmed visually534

by the point cloud.535

This information helps to obtain additional information for the as-planned536

vs. as-built comparison: if a slab is built, all load-bearing elements under-537

neath it must have been built, even though they cannot be verified by any538

visual method.539
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Figure 8: Generated precedence relationship graph for Test Site A. Elements marked blue

were derived from the PRG in combination with the detected elements marked in green

and yellow.

Date EGT (t) ED(t) δEPRG(t)

15.05. 89 37 20

12.06. 152 32 57

27.06. 184 59 54

17.07. 233 53 85

06.08. 277 95 102

04.09. 342 98 159

Table 2: Enhancing results by applying the introduced PRG for Case Study site A
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4.2. Varying dimensions540

Figure 9 depicts a part of a snippet of a point cloud, generated at one541

individual time-step during observation. It is overlaid with the corresponding542

3D geometry and visualized in green, to symbolize the as-planned as well as543

the as-built status. Based on this example, the general workflow for elements544

under construction is shown. As depicted, the front wall is already finished,545

and the concrete surface is visible. The wall in the second row is currently546

under construction, and the formwork is present and registered in the point547

cloud.548

Figure 9: Point cloud of a finished, plain wall and formwork overlaid with the corresponding

3D geometry on Test Site B

During detection, it is expected that the first row of walls will be detected.549

Due to the threshold of max. 1 cm, the second row should not be detected due550
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to the formwork. Figure 10 a) shows the expected result, with an additional551

set threshold of 1000 points/m2 (in green). Triangles marked in yellow have552

matching points but do not qualify for the set thresholds, while elements553

marked red have no qualifying points at all. The walls in the second row554

are expected to be in progress. As presented in the concept in Section 3,555

the detection is therefore carried out with a larger threshold. Based on this556

result, the accepted point-to-surface distance is increased to 10 cm, which557

leads to the results depicted in Figure 10 b).558

Figure 10: Triangles detected during the time-step shown in Figure 9. a) with 1cm gaps

and ρ > 1000pts/m2, b) with 10cm gaps and ρ > 1000pts/m2

The increased threshold leads to the expected higher point density on the559

wall under construction, as the formwork is considered, too. According to560

the introduced workflow, the wall is now marked as ”under construction”,561

leading to a further detailed automated progress monitoring.562

4.3. Color detection for formwork and reinforcement563

As detailed in Section 3, taking colors into account can improve the detec-564

tion of formwork or reinforcements due to their significantly varying colors,565

in comparison to the grey colors of the concrete. The color values of the566

different elements were compared to prove this statement. Figure 11 shows567
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(a) HSV color distribution for concrete (b) HSV color distribution for formwork

Figure 11: Distribution of frequency in the HSV color space shows clear deviations be-

tween concrete and formwork elements with the Hue value represented by blue bars and

Saturation value represented by orange bars.

the calculated mean values for different elements under different lighting con-568

ditions.569

In calculating the mean HSV values, all points relevant to an element are570

considered, along with the relevant color information. The results show that571

the brightness (value) varies largely, which is due to the lighting conditions572

itself. Therefore, this value has no further significance for this study. How-573

ever, the hue values for formwork fall into the correct range for warm, red574

colors, whereas the concrete walls are based on ”colder” colors. Additionally,575

the saturation differs by at least a factor 2.3. This color distribution analysis576

at a point-cloud level allows automated color interpretation to be carried out,577

and helps to identify differences between expected and actual color ranges578

based on material properties. The described process is used during the whole579

comparison to obtain a higher accuracy of information.580
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4.4. Visible elements581

The visibility analysis is tested on several construction sites. Fig. 12582

shows four samples from different observation times and construction sites.583

Each element has a unique color for identification purposes.584

Figure 12: Visibility analysis with rendered geometry of set EP (t) for several construction

sites and observations. All elements are rendered in different colors to distinguish them

from each other.

Based on these results, all visible elements are identified and added to a585

corresponding set EV (t). This additional step does not detect any additional586

elements during the as-planned vs. as-built process, however it helps to set587

the detection results in a more accurate context. In detail, false positives588
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can be reduced by removing invisible elements. Additionally, the thresholds589

used for the comparison process can be validated in a more precise manner,590

as the invisible elements are not added to the set of not detected elements.591

Table 3 shows this data for one of our case studies during the whole592

observation period.593

Date EGT (t) ED(t) EV (t) %V is

15.05. 89 37 73 82.0 %

12.06. 152 32 122 80.3 %

27.06. 184 59 155 84.2 %

17.07. 233 53 214 91.8 %

06.08. 277 95 275 99.3 %

04.09. 342 98 325 95.0 %

Table 3: Visible elements based on the introduced algorithm for Test Site A.

4.5. Image-based object detection594

For the image-based object detection described in Sec. 3.9 we trained a595

Mask R-CNN-based [45] neural network using a training set consisting of over596

5,000 images from five different construction sites and 40 observations with597

9,700 labeled formwork elements and around 5,000 labeled column elements.598

Depicted in Figure 14, the results for formwork and column elements are599

shown in an image that was not part of the training set. A common method600

to quantify the estimated result is the mean average precision that calculates601

as602
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Precision =
TruePositives

TruePositives+ FalsePositives
(13)

In combination with the recall603

Recall =
TruePositives

TruePositives+ FalseNegatives
(14)

the harmonized F1 score can be calculated as:604

F1score = 2 ∗ Precision ∗Recall
Precision+Recall

(15)

An ideal network with perfect precision and recall values would achieve605

a F1 score of 1. The trained network has a mean average precision (mAP)606

of 90.7% with an IoU (Intersection over Union) of 0.5 over all categories.607

With TP = 11731, FP = 1099 and FN = 928, the precision is at 0.914,608

the recall at 0.927, resulting in an F1Score = 0.920 proving the suitability of609

the implemented methods. Fig. 13 shows the corresponding precision-recall610

curve for the trained network.611

It has been tested against previously unknown images from the internet612

and other construction sites.613

The results of this image-based region detection are subsequently used614

for the as-planned vs. as-built comparison. As introduced in Figure 5, con-615

struction elements that have not been verified by the point cloud, are run616

through an additional workflow, in order to check for formwork elements.617

If the CNN verifies the existence of a formwork element, the corresponding618

concrete structure is labeled as ”under construction”, making the process619

estimation more accurate. After testing this approach on a real-world con-620

struction site, this additional step proved to be suitable for construction sites621
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Figure 13: Precision-recall Curve for the trained network

Figure 14: Formwork and column elements detected by a trained CNN using Mask R-CNN

on Test Site C
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that use in-situ concreting as a manufacturing method. Table 4 shows the622

amount of detected formwork elements with the help of the trained network.623

Date 15.05. 12.06. 27.06. 17.07. 06.08. 04.09.

Detected 9 11 8 2 0 8

Table 4: Detected formwork elements during the observations for Test Site A.

4.6. Results624

After the evaluation of all steps, the methods are incorporated into the625

presented software framework. Table 5 shows the results for one of our case626

studies during the complete construction process. During the initial, point-627

cloud-based comparison, the following data was gathered:628

Date EP (t) EGT (t) ED(t) EFP (t) AD(t)[m2] AGT (t)[m2] %A

15.05. 60 89 37 2 1,162.76 1916.95 60.66 %

12.06. 133 152 32 11 1,326.95 3,557.74 37.3 %

27.06. 240 184 59 0 2,244.51 4,808.6 46.68 %

17.07. 348 233 53 5 4,147.65 6,261.07 66.25 %

06.08. 456 277 95 1 4,480.78 6,773.9 66.15 %

04.09. 569 342 98 1 4,763.63 9,197.7 51.79 %

Table 5: Resulting element sets for Test Site A

According to this data, the detection rates differ over a range of 37 % to629

66 % correctly detected elements, based on the area surfaces. As mentioned630

above, these results largely depend on the point-cloud density and recon-631
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struction quality from the SfM process. For any construction planner, these632

results would be insufficient as a comprehensive progress-monitoring tool.633

After applying the newly introduced methods to this initial as-planned634

vs. as-built comparison, these additional results were gathered as shown in635

Table 6 with detected, cast elements defined as EFW (t) and elements inferred636

by the PRG, in addition to the previously detected elements, as δEPRG(t).637

This table summarizes the results of the previous sections.638

Date EV (t) EFW (t) δEPRG(t) EDnew(t) AD(t)[m2] AV (t)[m2] %A

15.05. 73 9 20 66 1509.42 1681.04 83.8 %

12.06. 122 11 57 100 2792.95 3284.76 85.0 %

27.06. 155 8 54 121 3975.51 4579.60 86.8 %

17.07. 214 2 85 140 4975.65 6059.13 82.1 %

06.08. 275 0 102 197 5780.78 6644.94 87.0 %

04.09. 325 8 159 265 7675.58 9021.86 85.1 %

Table 6: Enhanced results for the detection with the newly introduced methods for Test

Site A.

As shown, the number of detected true positives is raised significantly by639

applying the introduced steps. The newly detected rates all lie in the range640

between 80% to 90% of the actually built elements. An improvement of641

more than 100% in detected elements in comparison to the pure point-cloud642

vs. geometry-based detection methods was achieved. To draw conclusions643

from the results, there is still potential for further improvements. However,644

the introduced methods were tested on real-world construction sites over the645

complete construction cycle, and not only on a limited test area which usually646
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constitutes a more controlled environment. Real-world data from construc-647

tion sites always introduces many occlusions, and non-modeled elements that648

make it nearly impossible to detect all elements on a construction site.649

5. Discussion and Outlook650

5.1. Conclusion651

Detailed progress monitoring is of utmost importance for efficient con-652

struction site management as it allows delays to be identified early, and for653

respective counter-measures to be taken. Matching the as-designed 4D build-654

ing information model to point clouds provides a suitable basis for automat-655

ing this process. The general approach of Scan-vs-BIM has been proposed656

and investigated by a number of researchers in recent years. In this paper, a657

number of methods are introduced that further improve the accuracy of the658

detection process of the as-planned vs. as-built comparisons. The common659

approach lies in fusing information generated by different techniques and660

from different sources, namely the images, the point cloud and the building661

information model. The formal description of the technological dependencies662

in the construction process in the form of a precedence relationship graph al-663

lows the inference of status information on components that are not directly664

detectable. Image-based color detection and a higher threshold for elements665

with possible formwork in place enable the correct identification of elements666

that are under construction at the time of capturing the site. As a core667

contribution, the paper presents how CNN-based object-detection methods668

are applied to the captured images to correctly detect elements that tend to669

be otherwise falsely classified. Significant synergies are created by training670
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the network with images that are automatically labeled, by applying Scan-671

vs-BIM techniques. The use of image-based object detection extends the672

reliability of the status-detection process significantly, due to the larger den-673

sity of pixel-based information, in comparison with a pure point-cloud-based674

approach.675

5.2. Limitations676

It is crucial to note that the image data can only be used thanks to the677

photogrammetric process and the underlying camera pose estimation. Laser678

scanners usually do not provide this data and are therefore not suitable for679

this approach. Another limitation is the requirement for a well-aligned BIM.680

In our approach, this is achieved by markers on site. However, a minor681

manual step is required in order to find the exact orientation and scaling.682

Only after combining this data with the aligned building information model683

is it possible to gather additional information from the images in relation to684

the building model.685

The described ML approach is limited to the provided training data. This686

data currently only includes construction sites in Germany, which might make687

the network biased and unsuitable for different regions that use different688

construction methods. The observed construction sites so far mainly used689

in-situ concreting and a small number of prefabricated elements.690

5.3. Outlook691

All introduced methods enhance the automated construction progress692

monitoring workflow. However, it is still the case that not all elements can693
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be detected. Better acquisition methods will play an essential role in solv-694

ing these issues. Several research groups have proposed different acquisition695

methods to detect indoor elements, too. A combination of all these methods696

could help to improve element detection even further.697

More comprehensive data sets for image-based ML are required to cover698

different construction methods and materials from other regions.699
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