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People under pressure don’t work better; they just work faster.
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1. Introduction

The fourth industrial revolution, called Industrie 4.0 (I 4.0), is pushing the limits of industrial au-
tomation and production. Intelligent, autonomous production systems [GB12; LCK16], cloud
manufacturing [Zha*12], as well as the Industrial Internet of Things, and big data methods [Bil7;
BXW14; XD18] rapidly transform the industry. These new concepts and approaches allow greater
production flexibility (lot size one) [Spal3], self-diagnosis, -configuration, and -healing [Bar*15;
GB12], as well as closer human-machine interaction [Gor*14].

1.1. Motivation

A significant prerequisite for the realization of these approaches and concepts is better integration
of systems and data, as well as improved connectivity of all relevant systems to leverage the ever-
increasing amount of generated data [KWH13; VH16]. Before data can be used for the analysis of
processes and their optimization, the data needs to be collected and integrated. However, produc-
tion systems in industrial automation are organized in a hierarchical architecture, called the auto-
mation pyramid, only providing limited communication capabilities. This architecture follows the
ISA-95 layout [ISA95] and is a result of divergent requirements on the field level and superordi-
nate business levels. This rigid structure of the automation pyramid limits the connectivity of sys-
tems [CPC17]. Furthermore, due to the long life cycles of production plants in industrial automa-
tion of up to 40 years, a large number of existing legacy systems need to be interfaced and inte-
grated before their data can be used [Bir'10; Vog*15; WSJ17]. Therefore, improved integration
and connectivity are not just major prerequisites, but also significant obstacles for industrial adop-

tion of 1 4.0 principles.

The identified problems can be manifested based on a questionnaire conducted with industrial
experts in the course of the NAMUR Annual General Meeting 2016. The NAMUR is an industrial
association representing German operators of chemical plants, as well as equipment suppliers for
the process industry. A total of 23 industrial experts working for large German plant operators and
component manufacturers were questioned about their assessment of data mining and big data
principles in the process industry. One of the questions was related to the main difficulties with
data integration (cf. Figure 1). The experts confirmed that the large number of heterogeneous data
sources and the variety of interfaces that need to be addressed are significant obstacles for indus-
trial data integration. Furthermore, the experts assessed the high implementation efforts due to a

large number of existing and heterogeneous systems as problematic.



2 1. Introduction

Difficulties with data integration (selection) (n = 23)

Inadequate existing infrastructure

Existing, incompatible legacy systems

Lack of a common information model

Variety of interfaces

High implementation efforts|

Number of heterogeneous data sources|
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Number of answers

Figure 1:  Difficulties with data integration (selection of answers) as given during a questionnaire in the
course of a workshop on the NAMUR Annual General Meeting 2016. Total number of partici-
pants n = 23.

According to Jardim-Goncalves et al. [JPG12] there is a lack of accepted system architectures for
interoperability and data analysis in industry. Therefore, data buses and system architectures for
collection of the data were identified as the most critical enabler of novel | 4.0 paradigms by Raptis
et al. [RPC19]. Further, Dotoli et al. [Dot*18] state that reliable communication in heterogeneous

systems for data collection and integration is a fundamental challenge in factory automation.

On the other hand, Dotoli et al. [Dot"18] conclude that suitable technologies for integration of
systems are already available, but in industrial practice, the significant implementation efforts to
interface systems and to collect the data renders the data unused. One additional aspect is the
substantial complexity in the development, configuration, and deployment of data collection ar-
chitectures [JPG12]. Also, Strasser et al. [Str*18] argue that current digitalization trends cause
increasing engineering complexity and related implementation costs due to the vast number of

systems and interfaces.

Therefore, the reduction of engineering and implementation efforts is one of the foremost priorities
for the successful realization of | 4.0 principles in the industry [Dot"18]. Model-driven develop-
ment of data collection architectures has the potential to significantly decrease manual implemen-
tation efforts for their realization [JPG12]. However, the missing formalism for the modeling of
networks and the lack of approaches for model-driven architectures are challenges that need to be
overcome [PJIM12]. This is especially valid as industrial data integration and analysis are charac-

terized by their multi-disciplinary nature [ITK19]. In industrial data analysis, knowledge and re-
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quirements from several involved disciplines need to be considered, including engineering infor-
mation, expert knowledge on the production process, as well as the methods of data analytics
[ITK19; Vog*14b]. Despite the multi-disciplinary character, He and Xu [HX14], as well as Penas
et al. [Pen*17], identified a lack of interdisciplinary modeling techniques.

In this thesis, a model-driven approach for the development of data collection architectures, which
addresses the identified industrial problems, is developed. Therefore, a generic proposal for data
collection architectures is presented, serving as a basis for future implementations. Furthermore,
a domain-specific language with a graphical modeling notation and supporting metamodel for in-
terdisciplinary modeling of these architectures is conceptualized and evaluated in several use-
cases. Based on the formalized models, a model-driven toolchain that allows the automatic gener-

ation of data collection architectures to minimize manual implementation efforts is developed.

Throughout the thesis, the term architecture is defined as the connection of systems that enables
the sharing of data and services. Every system that is part of the architecture is referred to as a
participant [Tru"19¢c]. Furthermore, the author of this dissertation defines the term data collection
architecture as an architecture for the collection and integration of data from multiple participants.
A data collection architecture generally consists of the communication architecture, related to the
communication functions that allow the transfer of data between participants, and the application-
specific logic in each participant that generates, forwards, manipulates, or actively uses the data.

1.2. Hypotheses

Based on the identified challenges concerning data collection in industrial automation, this thesis
aims to provide a solution for model-driven generation of data collection architectures. Therefore,

the following hypotheses (H1) to (H3) will be investigated:

(H1) A technology-neutral concept for a data collection architecture can bridge operational
technology (OT) and information technology (IT) and allow data collection from pro-

duction systems.

(H2) A special domain-specific language with a graphical notation for data collection archi-
tectures supports the understanding and structuring of information during the engineer-
ing phase of these architectures by multi-disciplinary teams composed of engineers, IT

architects, programmers, process experts, and data analysis.

(H3) A model-based approach for automatic generation of data collection architectures re-

duces the effort for implementation and migration of these architectures.
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The contents and contributions of this dissertation are based on previous publications by the au-
thor, namely [Fol*17; TLV18; Tru*17; Tru*19a; Tru*19b; Tru*19¢; Tru*20a; Tru20b; TWV20;

Vog*20]. A short summary of the contributions and contents of the respective publications is given

in the following:

[Fol*17]

[Tru*19a]

[Tru*20b]

[Tru17]

[Tru*19¢]

[TLV18]

[Tru20a]

[Tru*19b]

Motivation of the relevance of data analytics and data collection/integration for pro-
cess industries based on industrial problems and possible solutions.

Proposal of an industrial data analytics process model for the process industry. Em-
phasize on the relevance of interdisciplinary teams during the analysis process, as
well as the crucial role of proper data collection and preparation in industrial use-
cases.

Overview and summary of system architectures for data integration in the scope of
1 4.0. Derivations of requirements and practical implications based on industrial
boundary conditions.

First publication on the architecture concept for data integration. Conceptual appli-
cation of the architecture with multi-disciplinary experts and expert evaluation.
Comparison of the architecture proposal with other relevant approaches in the scope
of 1 4.0 with co-authors from the BaSys4.0 and PERFORM projects. Mapping of the
respective system architectures based on divergent requirements in the respective
projects, and derivation of a generic architecture proposal applicable to a wide variety
of use-cases.

Follow up of architecture proposal with a more detailed overview of the concept.
Furthermore, prototypical implementation and feasibility study using a lab-scale use-
case, including the xPPU demonstrator [Vog*14c]. Support for the MQTT and OPC
UA protocols.

Comparison of various protocol-specific architecture approaches for data collection
in literature. Moreover, filling the gap between specific implementations and abstract
reference architecture by deriving first architecture patterns. Prototypical implemen-
tation using a lab-scale setup with the myJoghurt demonstrator (see Section 7.3)
based on a Data Distribution Service.

Characterization and comparison of relevant protocols for the Industrial Internet of
Things characterization. Proposal and prototypical implementation of a technology-
neutral software framework with unified interfaces. Evaluation in a lab-scale use-
case with support for AMQP and Kafka and comparison of implementation effort

compared to P2P architecture for initial deployment and a migration scenario.
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[TWV20] Graphical modeling notation for data collection architectures with system and data
flow viewpoints, as well as a data mapping table. Application of the graphical lan-
guage to three industrial use-cases and evaluation with industrial experts.

[Vog*t20] Introduction of the underlying metamodel structure to yield a domain-specific lan-
guage. In this publication, tailored to another version of the graphical modeling no-
tation that describes the combination of real-time aspects and data analytics for in-

dustrial automation, so-called hybrid distributed networked control systems.

1.3. Structure of this Dissertation

This thesis follows a design science approach [Hevt04] and is structured as follows: Chapter 2
(p. 7) introduces and specifies the field of investigation. In Chapter 3 (p. 27), the requirements for
an industrial data collection architecture are derived from industrial practice and current research.
Based on these requirements, the state-of-the-art in system architectures, modeling notations, and
model-driven system architectures are reviewed in Chapter 4 (p. 35), and a research gap is identi-
fied. Chapter 5 (p. 57) presents the developed approach that aims to fill the research gap. The
implementation of the approach is described in Chapter 6 (p. 97). It is followed by Chapter 7
(p. 103), which captures the evaluations that were performed to assess the suitability of the ap-
proach. The chapter is split into six Sections: the first two describe the results of industrial case-
studies with industrial experts that evaluate the feasibility and quality of the developed architecture
concept and the graphical notation. Afterward, a prototypical implementation on a lab-scale is
performed to assess the model-driven generation of the communication architecture and to com-
pare it to manual software development. The next Section demonstrates the scalability of the de-
veloped model-driven approach by applying it for an industrial use-case. Section 7.5 examines the
implementation efforts of classical software development and the model-driven approach based
on an extrapolation case-study. Chapter 7 closes with an expert questionnaire on a comparison
between the developed approach and current industrial practice. Chapter 8 (p. 143) assesses if the
developed approach is capable of adequately addressing the derived requirements. A summary and
an outlook on future research directions are presented in Chapter 9 (p. 145). Figure 2 reflects the

structure of this thesis graphically.
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Figure 2:  Overview of the structure of this dissertation.



2. Field of Investigation

The presented approach was developed for the area of data collection for data analysis applications
in automated industrial production and Industrie 4.0. In this Chapter, the specifics of the domain
and related aspects are introduced to provide a better understanding of the definitions and the
particular requirements from the field of application.

First, an introduction to the domain of industrial automation and related terms is given. Afterward,
the concepts of | 4.0 and the Industrial Internet of Things, which disrupt the classical organization
and challenges of industrial automation, are introduced. Furthermore, an introduction to a new
class of production systems, called Cyber-physical Production Systems, and reference architec-
tures for | 4.0 are given. As communication is a central aspect of interfacing systems and collecting
their data, an overview of communication technologies on the field level and the superordinate
levels is presented. On both levels, a multitude of different technologies evolved and complicate
the interfacing. As data collection is a challenging pre-step for subsequent data analysis, the basics
of big data and data mining in automation are introduced. An introduction to the concepts of
model-driven development follows, which employs modeled information and model transfor-
mations to decrease manual effort during software development. At last, the basics of virtualiza-

tion and containerization as recent trends in IT are presented.

2.1. Industrial Automation

The aim of automating technical processes characterizes the field of industrial automation. A tech-
nical process, in general, is a process that manipulates the state of a material, energy, or infor-
mation. Technical processes are executed in technical systems and can be automated with process
automation systems. If the automated technical process is a production process, one can speak of
an automated production system (aPS). The composition of a process automation system is de-
picted in Figure 3. Process automation systems contain three subsystems with close interaction
between them. On the lowest level, the technical system that executes the technical process can be
found. The technical system receives actuator signals for the control of the process from a super-
visory computing and communication system. The technical system forwards sensor signals from
the technical process to the computing and communication system. Humans interact with the com-
puting and communication systems over human-machine interfaces (HMIs) for process control

and get feedback on the process result [LG99b].
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For supervision and operation of process and interventions

Humans
(operating personnel)

Process control

A

A

/

Process result

Computing and communication system
(e.g., programmable logic controller (PLC),
industrial PC (IPC), micro controller, bus system)

Signals for control of
the technical process

A

Signals from the
technical process

Technical system (technical product or technical plant) executing a technical process

Figure 3:

Structure of process automation systems (adapted from Lauber and G6hner [LG99b]).

Sensors and actuators are used for interaction with the technical process. While sensors can meas-

ure physical quantities and convert them to electrical or optical signals, actuators influence the

physical quantities of the technical process. Different ways to realize the coupling between these

sensors/actuators and the computer and communication system are depicted in Figure 4.

Process bus

Automation controller
(e.g.,IPCor PLC)

Interface to
superordinate layers

Controller in-/output

———————————————————————— interface (controller

Process peripherals

Process signal
in- and output

Bus coupler (BC) | Bus coupler (BC) |

system bus)

interface (electrical —- —|

or optical signals)

Sensor/actuator

interface (electrical —- —| 1

ﬁ_'_‘_ Field bus
110 110
node node

————— Field bus interface

Sensor/actuator bus

or optical signals)

Sensors and
actuators

Process variable

-—-—interface (physical

Technical process
in a technical system

guantities)

Figure 4:

Installations for coupling an automation controller with a technical process, including rele-

vant interfaces (adapted from Lauber and Géhner [LG99b] and VDI/VDE guideline 3687
[VDI13687]). A direct connection between sensors/actuators and automation controller (left),
field bus connection using a bus coupler and decentralized 1/0 nodes (middle), and decentral-
ized intelligent sensors with direct bus access (right).
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In Figure 4, the computer and communication system consists of several parts: a central automa-
tion controller that controls the technical process, a communication system connecting the auto-
mation controller and the sensors/actuators, and a process bus that enables the communication
between the automation controller and other systems. In aPS, the automation controller is typically
realized either as a programmable logic controller (PLC) or as an industrial PC (IPC).

The simplest form of coupling the automation controller and the sensors/actuators is a direct con-
nection using multiple cables. This type of interfacing is often found in small-scale aPS, where the
automation controller is located close to the sensors and actuators, only requiring short cables
[SHW99].

In larger aPS, a direct connection between the automation controller and sensors/actuators is often
not feasible due to lengthy and expensive wires and increased risks of interferences. Here, a field
bus with decentralized in- and output (I/O) nodes can be a solution [SHW99]. These 1/0 nodes
have a direct connection to the respective sensors/actuators and communicate with the automation
controller over a field bus. Various field buses with different feature sets and characteristics exist,

which will be introduced in Section 2.3.1.

Intelligent sensors and actuators often include a bus interface. They allow a completely decentral-
ized structure of the coupling between sensors/actuators and automation controllers. This type of
coupling is often found in very large-scale aPS with the need for decentralized processing of sig-

nals, e.g., the process industry.

The process bus interface from Figure 4 allows the aPS to be embedded into larger automation
systems. These include besides the aPS for controlling a technical process also enterprise functions
needed for coordination and supervision of complex production processes. As the requirements in
the application domains differ significantly (real-time control in aPS, large amounts of data in
enterprise functions), a layered architecture, called the automation pyramid, is prevalent in indus-
trial practice [SHW99]. The hierarchical automation pyramid structure is standardized in
ANSI/ISA-95 [ISA95] / IEC 62264 [IEC62264]. A graphical representation of the automation

pyramid with its levels and the related, divergent requirements is given in Figure 5.

On the field level, aPS with automation controllers (level 1 of the ISA-95 structure) automate and
control a technical production process (level 0). Several aPS or large-scale aPS are often coordi-
nated by a SCADA (supervisory control and data acquisition) system on level 2. The process level
consists of manufacturing execution systems (MES, level 3) that monitor the production process,
store historic data on the quality of manufactured products, and manage the distribution of open

manufacturing orders to suitable aPS. On the highest level, the so-called operational level (level 4),
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an enterprise resource planning (ERP) system coordinates the production across multiple produc-
tion sites and calculates key performance indicators (KPIs) to assess the overall production per-
formance. Furthermore, ERP systems include the long-term planning of inventories, as well as

production schedules.

Amount Processing
Operational level of data power

(Level 4)
Process level
(Levels 2 + 3)
Field level

(Level 1) Reaction ~ Number of

time systems

Production process (Level 0)

Figure 5:  Automation pyramid structure and requirements for the communication and processing sys-
tem (adapted and extended from Scherff et al. [SHW99]and Lauber and Géhner [LG99b]).

On the lowest levels of the automation pyramid, a technical production process is supervised and
controlled. This requires a concise reaction in real-time. Furthermore, the number of systems is
vast as multiple aPS can be part of a production site. The number of systems decreases on the
higher levels as multiple subsystems are supervised and controlled from an upper level. However,
this causes an increase in the amount of data processed by superordinate systems compared to the

lower levels.

The field level is characterized by sensors/actuators and PLCs with a low computational perfor-
mance that are connected via real-time field buses. The hardware and software systems on the
lower levels are referred to as OT. This includes a large number of existing legacy systems with
long life cycles, heterogeneous interfaces, and limited communication capabilities. In contrast, the
upper levels are part of the IT and often consist of high-performance servers and office computers
connected with Ethernet networks. The clear separation between the defined layers allows hard-
ware and software providers to focus on the respective set of requirements. However, this separa-
tion also causes, by definition, that data is only allowed to be exchanged across two adjacent levels

of the automation pyramid.

The rigid structure of the automation pyramid is increasingly questioned and extended due to new
demands related to flexibility and decentralized intelligence. New trends, such as industrial Ether-
net, middleware, or the concept of 1 4.0, stimulate the evolution of the underlying system archi-

tecture towards higher flexibility and data availability [Rie*14b; Sau07; Saul0]. One example of
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the evolution process already found in industry is the so-called automation diabolo introduced by
Vogel-Heuser et al. [Vog 09] (cf. VDI guideline 5600 [VDI5600] and Section 2.3.2). Therefore,
to include data collection from existing legacy systems that are still part of the classical automation
pyramid is a challenge for the data collection process in industrial automation.

2.2. Industrie 4.0 and Industrial Internet of Things

The concept of I 4.0 was first introduced in 2011 by the German Industrie 4.0 working group as
part of the strategic initiative Industrie 4.0 of the German government [Boy*18; KWH13; VH16].
It describes the idea of a fourth industrial revolution, after the initial mechanization (first revolu-
tion), the introduction of assembly lines (second revolution), and the digital automation by PLCs
in the 1970s (third revolution). Industrie 4.0 incorporates the global leveraging of data and the full
connectivity of systems for individualized production, optimized decision making, and increased
resource efficiency. The following prerequisites were identified for the realization of I 4.0 con-
cepts [KWH13]:

e horizontal integration of systems and data through value networks,
e end-to-end digital integration of engineering across the entire value chain, and
o vertical integration and networked manufacturing systems.

While the last point relates to improved integration across the levels of the automation pyramid,
the two others include the closer cooperation of parties along whole value networks and an en-
hanced digital and integrated engineering of systems. This overall integration causes a conver-
gence of IT and OT through new technologies. Two main enablers for the realization of | 4.0 are
the Industrial Internet of Things (11oT) and Cyber-physical Systems (CPS) [Ban"16; Mon*16].

The 10T describes the industrial application of Internet of Things (1oT) technology found in con-
sumer electronics. The term 10T encompasses an information network of physical objects that
closely interact and cooperate to reach a common goal [Jes"17; Worl5]. The lloT adapts these
principles considering industrial requirements. It describes the seamless connectivity of all sys-
tems involved in the manufacturing process to create a digital or virtual factory. This increased

connectivity offers new chances for data collection using 1loT technology.

2.2.1. Cyber-physical Systems
A CPS, in general, is a physical system that includes enhanced computing and communication
capabilities to monitor, coordinate, control, and integrate operations [GB12; Raj*10; VBF12]. Lee

et al. [LBK15] introduced the so-called 5C architecture that describes the system architecture of



12 2. Field of Investigation

Cyber-physical Production Systems (CPPS). The architecture defines the internal composition of
CPPS and separates the distinct aspects into five layers:

e the smart connection layer that includes communication with sensors/actuators, as well as

other systems;

o the data-to-information conversion level that includes monitoring of machine health and

guality using data analytics;

o the cyber level that represents a digital twin including relevant data describing the system;

o the cognition level with enhanced functionalities related to visualization, decision making,

or integrated simulations; and

the configuration level that provides self-X (configuration, adjustment, optimization).

The integration of multiple CPS into a larger system is called a cyber-physical system of systems
(CPS0S) [Fer*18]. Figure 6 gives a typical CPSoS network structure with technologies spanning
from OT to IT and including a multitude of different communication links and systems, all coop-
erating to fulfill a given manufacturing task. While these new principles question the classical
automation pyramid, the heterogeneous mix of technologies and systems is still characteristic for
CPSosS.
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Figure 6:  Simplified network layout of a typical CPSoS consisting of IT and OT domains with various
types of connected devices and networks (Trunzer et al. [TWV20]).



2. Field of Investigation 13

Interoperability and connectivity of CPSoS, as well as system architectures that allow the integra-
tion of CPSoS, were identified as grand challenges for enterprises in the future [Pan*19].

2.2.2. Reference Architectures

Reference architectures describe an abstract view of a real system and give recommendations for
a successful realization of system architectures. Furthermore, they include a common vocabulary
as well as technology- and implementation-neutral basic guidelines for the design of architectures.
In the course of 1 4.0 and the ()IoT, serval international and national standardization bodies and

industrial consortia actively work on the definition of reference architectures.

For instance, the Reference Architecture Model Industrie 4.0 (RAMI 4.0) defined in DIN SPEC
91345 [DIN91345] describes a layered architecture along three axes. A visual depiction of
RAMI 4.0 is given in Figure 7 with the three axes life cycle and value stream, the hierarchical
levels of the system aligned with ISA-95/IEC 62264, as well as the architecture layers. RAMI 4.0

targets the industrial manufacturing and production domain.
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Figure 7:  Graphical representation of the Reference Architecture Model Industrie 4.0 (RAMI4.0) (DIN
SPEC 91345 [DIN91345]) (Trunzer et al. [Tru*20b]).

Other reference architectures exist with the American Industrial Internet Reference Architecture
(IRA) [Ind17b], the IEEE Architectural Framework for the Internet of Things [IEEE2413], as
well as the Internet of Things Reference Architecture (loT RA) standardized in 1SO 30141
[1ISO30141]. In contrast to RAMI 4.0, both reference architectures follow a general approach for

multiple domains and are not limited to manufacturing and industrial automation [Ind17a].

The integration of existing systems is possible with all three reference architectures. However, the

focus of all three lies in the abstract definition of architectures for | 4.0 and (1)1oT, and therefore
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guidelines for the integration of legacy systems are lacking. While initial developments and de-
ployments are characterized as greenfield scenarios, the consideration and need for the integration
of existing systems are typical for so-called brownfield scenarios [Kagl5]. With the NAMUR
Open Architecture (NOA) (see Figure 8) [Cai*19; Cail8; Kle*17; NE175], a reference architecture
proposal for brownfield scenarios in the field of chemical process industry exists. This domain is
especially characterized by very long lifetimes of plants of up to 40 years and constant retrofitting
and updating of the installed base [Bir*10; Vog*"15].

Existing control systems for deterministic control from the automation pyramid are part of the
core process control. In brownfield systems, this part is often already existing and controls a mis-
sion- and safety-critical production process. Additional functionalities for monitoring and optimi-
zation (M+0) of plants, e.g., by enhanced data analytics or dashboards, reside outside and sepa-
rated from this core part. Furthermore, NOA foresees the retrofitting of plants with additional
sensors to increase the monitoring capabilities. As these sensors are often not needed for the main
control of the plant, they also reside outside of the core process control to prevent interference.
The connection between M+0O systems and the deterministic control systems is realized as a sec-
ondary communication channel that only allows the flow of data from the core process control to
M+0O systems. This retrofitted communication channel, therefore, completely separates the two
domains and allows data exchange across multiple levels of the automation pyramid. Information
can be sent back into the core process control via a distinct channel that includes a so-called veri-

fication of request to ensure the secure origin and intent of the input.
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Figure 8:  Concept of the NAMUR Open Architecture (NOA) as a supplement to the existing ISA-95 au-
tomation structure (NAMUR NE175 [NE175]).
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2.3. Industrial Communication

A considerable heterogeneity characterizes the communication in the domain of industrial auto-
mation and lloT [SHW99; VDI3687; WSJ17]. While on the field level, multiple, incompatible
field buses and sensor/actuator networks for real-time communication evolved over the last dec-
ades and are still in operation [Neu07], the IT technology is mainly based on Ethernet networks
[PNO9; Sau07]. Still, heterogeneity on the IT level does not arise from the lower levels of the OSI
model [ISO7498] as for the different field buses, but on the upper layers in the form of various
communication protocols. Therefore, in the following Sections, an overview of communication

on the field and superordinate levels is given.

Discrete-evet network simulators, such as OMNeT++ [Ope20; VH08] and Riverbed Modeler (for-
mer OPNET) [Riv19], allow the modeling of networked systems and their communication. Based
on typical network components in libraries, the low-level network interaction can be modeled.
Furthermore, the simulators allow the creation of individual models and the specification of be-
havior. The simulators can be used to investigate the performance of different protocols and to-

pologies.

2.3.1. Field Level

On the field level, two types of wired communication networks can be differentiated: sensor/actu-
ator networks and field buses. A typical example of a sensor/actuator network is the HART pro-
tocol. HART superimposes digital communication on existing analog 4...20 mA signals com-
monly found in the process industry [PNO9]. Another example is 10-Link standardized in the
IEC 61131-9 draft [IEC61131].

A large number of field buses are standardized in the IEC 61158 [IEC61158] and IEC 61784
[IEC61784] series. The field bus history is characterized by evolution over decades, as well as by
incompatible physical layers and connectors. Some examples are Profibus DP or CAN. As these
field buses are incompatible with the Ethernet-based superordinate levels of the automation pyra-
mid, Ethernet-based field buses were developed for the field of industrial automation. Using the
same physical layer simplifies the integration and convergence of OT and IT. However, as stand-
ard Ethernet is not capable of supporting real-time communication, significant modifications and
adaptions on the protocol stack were necessary [Jas*09]. Consequently, several incompatible In-
dustrial Ethernet networks evolved. Examples include Profinet, Modbus/TCP, or EtherCAT
[Neu07; SauQ7].

In recent years, the standardization efforts concerning a real-time capable standard Ethernet profile

in the form of Time-Sensitive Networking (TSN) [IEC60802] and the introduction of wireless or
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even cellular communication networks further diversified the landscape of industrial communica-
tion on the field level. Figure 9 reflects this diverse landscape of industrial communication on the
field level in the form of market shares of field buses in the year 2019 [HMS19]. TSN and wireless
5G technology, however, provide the potential to unify industrial communication on a mid-term
perspective and to simplify the integration with superordinate IT systems [Neu‘18; SaulO;
WSJ17].
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Figure 9: Industrial field bus and network market shares in 2019 (data from HMS Industrial Networks
[HMS19]).

2.3.2. Superordinate Levels

On the superordinate IT levels, Ethernet is the predominant Physical Layer (cf. [ISO7498]), but a
wide range of different network structures and protocols can be found. Furthermore, also, the IT
levels are characterized by a large number of existing and mission-critical legacy systems [Bis*99].

Parts of this Section have been published as a German version in [Tru*20b].

With the need for better integration of systems (horizontal, vertical, and end-to-end) as a prereg-
uisite for 1 4.0, the number of interconnections between these systems is rising enormously. These
connections are often engineered individually for each peer-to-peer (P2P) connection, causing a
huge partially connected mesh network. As all P2P connections rely on a mutual understanding of
the data in both systems, they are highly specific and cannot be reused for other P2P connections.
Vogel-Heuser et al. [Vog™09] identified these challenges already before the introduction of the
I 4.0 concept and proposed a common information model mediating between the systems as part
of the automation diabolo (cf. Figure 10).
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However, a common information model can only achieve a mutual, semantic understanding of
data between all systems. The second aspect of heterogeneity, the multitude of legacy interfaces
and protocols, is not solved by the introduction of an information model. Here, middleware con-
cepts are the corresponding solution to unify protocols and communication.

Enterprise Resource Planning (ERP) Enterprise Resource Planning (ERP)

Production Process Production Process

Figure 10: Information diabolo with individually engineered, direct P2P connections (left) and with a
common information model (right) (Vogel-Heuser et al. /[Vog*09]).

A middleware is a software solution that abstracts specific aspects of the underlying software and
hardware systems with uniform interfaces. It is used as a link between heterogeneous systems and
information representations [1zz09; VDI2657]. Middleware is a central aspect of 10T research, as
can be seen in the surveys by Razzaque et al. [Raz"16] and Perera et al. [Per*14]. If all relevant
systems are connected to the middleware (Figure 11 right), full connectivity as within a fully con-
nected mesh network (Figure 11 left) can be achieved, but at a much lower number of necessary

connections. A summary and comparison between the network types can be found in Figure 11.
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Figure 11: Comparison of different network structures with the number of connections depending on the
number of systems N and connectivity [Haa97; Ind17c].
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Uniform interfaces make the integration of systems and data much more manageable. Therefore,
the specific interfaces, protocols, and information representations of legacy systems must be trans-
lated between the system-specific view and the common view at the middleware level. New sys-
tems can be created directly compatible with the middleware to reduce the additional integration
effort. With middleware, two systems connected to the middleware no longer need to know the
system-specific details of the other system.

However, a multitude of protocols and associated middleware is available for the realization of
I1oT use-cases, all with their specific strengths and weaknesses [Al-*15; Strt18]. These include the
underlying communication pattern, the used OSI layer 4 protocol (TCP or UDP), or support of

quality of service (QoS) features such as message lifetimes or delivery guarantees [MKBO07].

One group of protocols stems from the field of business integration. These protocols often follow
the Enterprise Service Bus (ESB) concept presented by Chappel [Cha04]. ESB describes a central
bus that acts as a message broker. All information is sent to this central broker and is then for-
warded to the respective clients. The broker, therefore, completely decouples the communication
between two connected systems. ESBs commonly provide additional functionalities for translation
of information models, service orchestration, and message routing. Typical protocols encompass
the Advanced Message Queuing Protocol (AMQP) [ISO19464] or the Representational State
Transfer (REST) architecture style with the Hypertext Transfer Protocol (HTTP) [Fie00].

Additional protocols stem from the field of 10T. These protocols are characterized by their low
computational complexity and relatively sparse support for QoS, which makes them feasible for
distributed, low-cost 10T devices. Typical examples of this class are the Message Queuing Telem-
etry Transport protocol (MQTT) [1SO20922] or the Constrained Application Protocol (CoAP)
[RFC7252].

Apache Kafka [Apal9] is a high-performance stream processing platform originating from the
field of log file analysis. It is a common platform in scenarios where vast amounts of streamed

data from a large number of data sources or systems have to be processed [Wan*15].

In the field of industrial communication, OPC Data Access (OPC DA) [OPC03] was the prevailing
protocol. However, it is tied to the Windows platform as it is based on Microsoft COM technology.
Its successor, the OPC Unified Architecture (OPC UA) [IEC62541], provides an operating sys-
tem-independent communication platform with integrated capabilities for information modeling.
However, as OPC UA is based in a server-client pattern, its scalability is limited. Therefore, with
Part 14 of the OPC UA specification [OPC18], the publish/subscribe pattern was defined for

OPC UA, and is supported in two ways: either decentralized using UDP broadcast messages
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(UADRP) or tunneling through AMQP or MQTT brokers. Other approaches exist with the MTCon-
nect standard [MTC18] or with the Object Management Group’s (OMG) Data Distribution Service
(DDS) [OMG15]. Furthermore, OMG published the specification of an OPC UA/DDS gateway
[OMG18] for the transparent interconnection of both protocols, and Pfrommer et al. [PGP16] pro-
pose a hybrid system.

A summary of relevant protocols can be found in Table 1, including their characteristics.

Table 1:  Characteristics of relevant protocols (adapted from Trunzer et al. [Tru*19b, Tru*20b]).

MT
Criterion AMQP CoAP  DDS  Kafka MQTT OPC UA REST
Connect
Standard PS
UADP Broker

N —"
essaging PS RR PS PS PS PS&RR RR PS & RR RR
pattern
OSI Layer 4

aver TCP  UDP  UDP  TCP TCP TCP TCP  UDP  TCP TCP
protocol
Architecture C DC DC D C DC DC DC C DC
QoS + + ++ - + - + - -
Encryption v v v v v v v v v v
Authentication v v v v v v v v v v
Ope"'source. v v v v v v v v v v
implementation
N f
umber o >10 >10 5-10 1 >10 >10 >10 1 0 /
suppliers
Standard owner  ISO/IEC IETF OMG Open  ISO/IEC  MTC IEC OPC Foundation Open
Reference [ISO19464] [RFC7252] [OMGIS] [Apal9] [1SO20922] [MTCI8] [IEC62541] [OPCI8] [Fie00]

PS: publish-subscribe; RR: request-response; DC: decentralized; C: centralized; D: distributed
Overall, the multitude of different field buses and protocols with their specific characteristics com-
plicates the task of data collection from CPSoS for big data applications in industrial automation.
Furthermore, the heterogeneity and closeness of systems cause massive implementation efforts

that make a wide-scale data collection often not feasible in industry.

2.4. Big Data in Automation

With the implementation of CPPS and 110T in production, the rising number of connected systems,
and the higher processing power in the field, more and more data (big data) become available
[Che*18; KK 19]. Big data is characterized by the so-called 4 V’s [Has*15]:

e volume is the amount of data that is generated,
e variety corresponds to the heterogeneity of data that is collected,

o velocity refers to the speed of data generation, and
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o value to hidden information and knowledge that is locked inside these vast amounts of

heterogeneous, high-velocity data.

Other definitions with 3V’s [Berl3] up to 7V’s [KUG20147] exist, but all describe the idea that
these characteristics render existing systems not capable of handling the data. Another description
is given as the HACE theorem by Wu et al. [Wu*14] as “large-volume, heterogeneous, autono-
mous sources with distributed and decentralized controls” and the aim to “explore complex and

evolving relationships among data.”

To reveal and extract hidden information or knowledge from these massive amounts of data is the
aim of data analytics and data mining [VH16; Wu*14]. Here, data-driven algorithms are often used
to analyze the data. Significant interdisciplinarity and many involved disciplines characterize data
mining projects in industrial automation [ITK19; YK15], as well as a large number of heteroge-
neous types of data that must be considered [RPC19].

Besides the main analysis of data, data staging was identified as one of the open research issues
that have to be considered in the future [Has*15]. Data staging includes the collection and integra-
tion of data and is a crucial and challenging pre-step before being able to analyze the data.

2.5. Model-driven Development

Model-driven development (MDD) relates to a development paradigm that employs models not
only for documentation purposes but as essential components during the development and engi-
neering phase. Model transformations are used to leverage the modeled information to automate
parts of the development process. Models and MDD play an essential role in industrial automation
[Alv*18; BFS13; CFV20; Fay*15; Lie*18; Sch*02; Vog14b; Vyal3; WDF18]. In this Section, the
fundamentals of modeling and MDD will be introduced. MDD can be used to decrease manual
implementation effort and is, therefore, a candidate for a data collection architecture approach with

manageable efforts.

Models are abstract representations of real-world objects. Modeling aims to capture and reflect
relevant aspects of a system in an abstracted way. Models consist of model elements that describe
distinct aspects of the real-world object. The higher the number of available model elements is,
the more precise the real-world object can be described by the model. At the same time, models
should be well-arranged and comprehensible. Balancing the level of detail that can be captured by

models and their comprehensibility is, therefore, always a trade-off [LG99a; MJG11; Sta73].
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Models have to conform to a metamodel that abstractly describes and defines the usable model
elements. The OMG defines a metamodel as a “model that defines a modeling language and is
also expressed using a modeling language” [OMG14]. As can be seen from the definition, recur-
sion can occur when defining metamodels. Related to the given definition, a model that describes
and defines the elements of the metamodel is called meta-metamodel. This recursion happens
every time a model is defined. To solve the problem of a possible endless recursion, the OMG
defined with its Meta Object Facility (MOF) [ISO19508; OMG16] a meta-metamodel that is ca-
pable of describing itself. Therefore, this model can serve as a root to define other metamodels
and models. MOF introduced the concept of a so-called four-layered metamodel architecture, with
MOF residing on the highest, called M3, layer. On the M2 layer, metamodels defined with MOF
can be found. Therefore, models describing real-world systems are on the M1 layer. The lowest

level, MO, corresponds to real-world systems and instances of the models.

The definition of a modeling language and its components is given in Figure 12 [BCW17; Rod15].
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Figure 12: Definition of a modeling language according to Harel and Rumpe [HRO0] (adapted and mod-
ified from Rodrigues [Rod15]).

The metamodel or abstract syntax of a modeling language describes the modeling elements, their
names, and relations. It is an abstraction of the concepts of the modeling domain. The abstract
syntax includes structural semantics that defines how model elements can be related under a set of
constraints. These can either be formulated through specific languages, e.g., the Object Constraint
Language (OCL) [OMG14], or informal, natural language. [HROO; Rod15]

The notation or concrete syntax refers to the usage of the modeling language by users. A modeling
language can contain various notations, including textual or graphical ones [Rod15]. Notations
should be designed to be understandable and, at the same time, provide enough expressiveness.
Moody [M0009] introduces with his “Physics of Notations” design principles for graphical (vis-
ual) notations. These include, for instance, the so-called perceptual discriminability, which de-
scribes how well symbols of the notation can be differentiated among each other, or semantic

transparency, which suggests using symbols that directly reflect their meaning.
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The semantics of a modeling language relates to the meaning of model elements and their relations.
The semantics can be expressed as formalized models or in natural language describing their
meaning [Rod15].

Modeling languages can be differentiated in General-Purpose Modeling Languages (GPMLSs) and
Domain-Specific Languages (DSLs). GPMLs can be applied to any domain for modeling, while
DSLs are tailored for modeling specific applications or domains [BCW17]. A typical example of
a GPML is the Unified Modeling Language (UML) [OMG17] on the MOF M2 level. UML defines
a set of diagrams that can be used to specify distinct aspects of software systems. These include
the structure of software systems (e.g., class diagram or component diagram) and their behavior
(e.g., activity diagram or sequence diagram). An example that reflects aspects of a GPML, as well
as characteristics of a DSL, is the Systems Modeling Language (SysML) [Bas*11; OMG19].
SysML is a UML-based modeling language for systems engineering applications. Therefore, it
can be applied to a wide variety of different use-cases but provides more expressiveness and tai-
lored model elements for specific aspects compared to UML. A further step towards a DSL is
SysML4Mechatronics [Kerl9] that extends SysML by additional features for modeling of non-
software-related characteristics of mechatronic systems. An example of a DSL is the Palladio
Component Model (PCM) [Reu*11; Reu*16] for the modeling of business software architectures.

MDD aims to leverage models that are modeled using a GPML or DSL for the software develop-
ment process. A concrete proposal for the application of MDD is defined with the Model-Driven
Architecture (MDA) [OMG14]. One central aspect of MDA is the usage of modeled information
via model transformations. Model transformations generate one or more target models based on
the information from one or more source models [MCV05]. Transformations can be used to trans-
form models between different levels of abstraction or to a model based on another modeling
language [OMG14]. Three general types of model transformations exist: model-to-model (M2M),
model-to-text (M2T) and text-to-model (T2M) transformations. Model transformation can be im-
plemented using general-purpose programming languages, for example, C# or Java, or based on

specific model transformation languages [SKO03].

A generic definition of a MOF-compatible M2M transformation language can be found with MOF
Query View Transformation (QVT) [OMG16]. An example of a specific language for M2M trans-
formations is the ATLAS Transformation Language (ATL) [ATLO5]. Figure 13 gives an example
of an M2M transformation using a QVT-compliant transformation language. The source (A) and
target (B) metamodels both must be MOF-compliant. The M2M definition describes the mapping
of model elements from metamodel A to model elements of metamodel B. Hence, it describes the

transformation rules that can be executed by an M2M transformation engine. This engine reads an
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instance of metamodel A (model A), executes the respective transformation rules, and outputs a

model that is compliant to metamodel B (model B).

Source Target
M3 S - Meta-Object Facility P
| <<instance of>> (MOF) | <<instance of>>
| A |
i } <<instance of>> i
| 1 |
- 3 MOF |
o ! QVT (M2M) !
3 M2 Metamodel A A;<<instance of>> Metamodel B
'6 ) M2M Transformation )
= | Language |
| iy |
| | |
| | |
} <<instance of>> <<uses> } <<instance of>> <<uses> } <<instance of>>
| | |
M1 Model A M2M Definition Model B

N
I <<executes>>

M2M writes

Transformation Engine

Figure 13: Principle of a model to model (M2M) transformation using a MOF QVT-compliant transfor-
mation language (following the conventions from Brambilla et al. [BCW17]).

reads

-

With the specification of the MOF Model to Text Transformation Language (MOFM2T)
[OMGO08], a generic definition of an M2T language exists. A concrete realization can be found
with the Acceleo transformation language [Ecl19g]. The working principle of an M2T transfor-
mation is depicted in Figure 14. Here, the target of the transformation does not conform to MOF.
Hence, the M2T definition describes mappings between model elements from metamodel A and
textual templates. These templates can be based on any textual representation, e.g., code written

in any programming language, configuration files, or documentation.
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Figure 14: Principle of a model to text (M2T) transformation for text/code generation using a MOF
M2T-compliant transformation language (adapted from Aicher [Aic18], as well as Schiitz
[Sch15] and extended, following the conventions from Brambilla et al. [BCW17]).

reads writes

2.6. Virtualization and Containerization

Virtualization abstracts available hardware resources and can cover different aspects, e.g., the net-
work or the computing resources. It offers the possibility to use available resources more effi-
ciently and enables greater flexibility.

A common approach for virtualization is the virtualization of complete computers as so-called
virtual machines, including storage, network, computing resources, and other in- and outputs. This
is classically done using so-called hypervisors. Hypervisors allow multiple virtual machines to use
the same hardware platform parallelly. Therefore, virtual machines contain complete installations
of operating systems (OS) and run their own kernels. Access to the hardware is then managed
through the hypervisor. A more recent approach is the so-called containerization or container-
based virtualization. Instead of virtualizing the complete hardware and running multiple OS in
parallel, containers are self-contained units that include only applications but share the same un-
derlying operating system and hardware. Multiple containers then share the same host operating
systems but are isolated from each other. Containers, therefore, do not contain complete OS in-
stallations and are more lightweight. Figure 15 summarizes the layers of both virtualization ap-

proaches and their differences visually. [Ber14; Pah15]
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Figure 15: Comparison of virtualization architectures. Layers of hypervisor (left) and container (right)
virtualization (adapted from Pahl [Pah15]).

A widely accepted container-software solution, and the current de-facto standard, is the open-
source software Docker [Doc20d]. Docker provides a container engine for the execution of con-
tainers, as well as their management over a command-line interface. Additionally, Docker features

the concept of repositories, where containers can be distributed and their dependencies managed.

While hypervisor-based virtualization suffers from measurable performance overhead due to the
virtualization of resources and the scheduling of their concurrent usage, the overhead of container-
based approaches is relatively small. Studies showed that their performance impact on computing,
memory, and network performance is neglectable [Fel*15; Mor17; SLV19]. Recently, containeri-
zation has also found its way into real-time applications, which is still an active research field
[SLV19; Strt20].

Multiple containers and their dependencies between each other can be managed by so-called or-
chestration engines. Orchestration engines allow the dynamic deployment of containers to so-
called computing nodes (computers) and their monitoring. In the case of malfunctions or unex-
pected load peaks, the orchestration engines can react accordingly by restarting or redeploying
distinct containers in the network. Multiple accepted orchestration engines for containers exist. A
widely accepted, but complex solution, is Kubernetes [Clo20]. Among the alternatives is Docker
swarm [Doc20b] that ships with Docker.

In summary, the concept of containers provides a lightweight and portable tool for sharing and
deployment of software in distributed IT systems. Via orchestration engines, also large numbers

of containers can be easily deployed, managed, and monitored.






3. Requirements on a Model-driven Approach for Data
Collection System Architectures for Cyber-physical

Systems of Systems

The concept of a model-driven approach for the automatic generation of data collection architec-
tures must fulfill different requirements. The requirements are presented in the following. They
can be derived from the state-of-the-art and/or industrial practice and represent the boundary con-
ditions the concept must adhere to. Based on the field of investigation, these can be grouped into
four categories, namely the requirements for the architecture concept itself (Reg-A), the underlying
software framework for industrial communication (Req-SF), the domain-specific language to
model the data collection characteristics of CPSoS (Req-M) and the model-driven generation of
the data collection architecture (Reg-G).

3.1. Data Collection System Architecture (Reg-A)

The approach should allow the collection of data from different levels of the existing automation
pyramid [Dot*18]. Therefore, data from a multitude of distributed hard- and software systems must
be collected and forwarded to other systems that analyze or store the data. These systems range
from systems on the field level (e.g., smart sensors and PLCs) up to high-level IT applications
(e.g., systems in a cloud environment) [Kle*17]. The approach, therefore, must bridge the OT and

IT domains and allow data collection across all layers of the automation pyramid.

Reg-Aate — Data collection from different levels of the automation pyramid

The approach should support data collection from different levels of the automation pyramid.

Both, the field level, as well as the superordinate IT systems, are characterized by a substantial
heterogeneity when it comes to communication protocols and interfaces [BS15]. Numerous tech-
nologies and protocols exist with their related strengths and weaknesses that can be used to inter-
connect these distributed systems. The approach should take available technologies into account
and include a technology-agnostic concept. This technology-agnostic concept must be realizable
using distinct sets of technologies to account for the requirements of a specific application. As a
result, the approach allows a simplified migration in the future if the constraints or the set of avail-

able technologies change over time.

Req-Arac — Technology-agnostic concept

Support different sets of technologies for concrete realizations of the architecture.
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Systems in industrial automation are characterized by their long lifetime of often up to 40 years
[BS15]. The organization of these systems often still strictly follows the layout of the hierarchical
ISA-95 automation pyramid, which ensures timeliness and reliability of the systems control. Re-
placing this structure with a flexible communication mesh is a current trend in research [Del*17a;
Vog*"09], but costly and often infeasible for existing installations due to enormous implementation
efforts. Therefore, the approach should also allow operation in parallel to the existing brownfield
structures and the automation pyramid, not requiring a replacement of existing structures [ITK19;

Kle*17]. This ensures broad applicability of the developed concepts.

Reg-Arop — Allow parallel operation to the automation pyramid
The approach should be capable of being implemented as a coexisting extension of the automa-

tion pyramid. It should not require the replacement of existing structures.

An ever-increasing complexity and effort characterize the design and implementation phases of
data collection system architectures for CPSo0S. The reasons are the growing number of connected
devices, the heterogeneity in protocols and technologies, as well as the multitude of involved ex-
perts from different fields [Str*18]. The approach should reduce complexity and the amount of
manually programmed code to simplify initial implementations and configurations of the data col-

lection system architecture.

Req-Apep — Simplified implementation and configuration (Deployment)
A decreased effort for the implementation and configuration of the system architecture in terms

of complexity and manually programmed code in comparison to manual programming.

Besides initial deployment, redeployments (migrations) are of significant interest for industrial
applicability [Dot*18]. Currently, due to the excessive costs related to the migration from one
technology to another, a vendor lock-in effect can be observed. Enterprises hesitate to migrate to
newer, better-suited communication technology as the communication logic of all participants
must be reimplemented. The approach should, therefore, support and simplify future migrations

of architectures that are implemented under the developed approach.

Req-Arenep — Simplified migration between technologies (Redeployment)
A decreased effort for the migration and reconfiguration of the system architecture from one

communication technology to another in terms of complexity and manually programmed code.
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3.2. Interoperability of Systems and Architecture Software

Framework (Req-SF)

A practical realization of a data collection system architecture requires a software back end that
allows the architecture concept to be implemented. The concept, therefore, must fulfill several

additional requirements.

The considerable number of heterogeneous systems leads to massive efforts when interfacing these
systems in order to collect data from them. Without a set of standardized interfaces that unify the
communication and data collection from all involved systems, connections must be set up on a
P2P basis. Additionally, installing a new participant requires the setup of multiple, independent
interfaces depending on the number of needed connections and the available interfacing options
of the communication peers. This practice increases the complexity of implementing and main-
taining data collection architectures. The definition of standardized interfaces can decrease these
integration efforts as one can rely on the interface definition and is not required to support a mul-
titude of different interfaces and protocols [VDI2657].

Req-SFap — Standardized interfaces to minimize effort

Definition of standardized interfaces for the integration of participants into the architecture.

A multitude of different technologies and protocols can be used for the realization of the system
architecture. Often, the concrete technologies for implementation must be chosen in the early en-
gineering phase. The implementation is then tailored to this specific set of technologies. This
workflow drastically increases the costs for migration when a change of technology is needed, for
instance, because new and better-suited technology is available or old technology not any longer
available on the market. Encapsulating and abstracting the specifics of different technologies
through the standardized interface (see Req-SFapi) can decrease the dependence on a specific set
of technologies, prevent vendor lock-in, and simplify the migration to other technologies in the
future [VDI2657].

Req-SFace — Abstraction of technology-specific properties of communication
An abstraction of the specifics of distinct communication technologies and protocols behind the

standardized interface.

The implementation of data collection system architectures in the automation domain always has
to take legacy brownfield systems into account [Ind17¢c; Jha*14; Kle*17]. Currently, most of the

relevant data is available from brownfield systems, and concepts for the interfacing of these
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sources are needed. Therefore, when implementing the architecture in parallel to the automation
pyramid, existing legacy systems must be interfaced. Concepts are needed which support the in-
tegration of these legacy systems for a co-existence with greenfield systems [AIM10; Ban*16;
Che*18; KBDO09].

Reqg-SFLeg — Support of legacy systems

Concepts for supporting data collection from legacy systems in brownfield environments.

3.3. Requirements on the Domain-specific Language for
Architecture Modeling (Reg-M)

Data collection architectures deal with various heterogeneous hardware devices and related soft-
ware in the IT and OT domains that are connected through diverse types of networks and
fieldbuses. Collecting and analyzing data from such distributed and networked systems of systems
is challenging because of the considerable number of connected systems (up to several hundred)
with often more than 1,000 in- and outputs per system. Moreover, the complexity of the underlying
constraints (e.g., acceptable latency, transmission rates of networks, constrained computing
power) needs to be considered. The design and operation of data collection architectures involve
stakeholders from different domains. For instance, a data analyst may have requirements on the
amount of historical data needed for training a new analysis model, while a control engineer is
concerned about the maximum acceptable latency between data generation in a machine and a
calculated decision in the cloud. A domain-specific language with a visual notation can support
experts during early design phases to capture requirements as well as during the operation of the
architecture. Besides enhancing the communication between the involved experts, such models

can serve as a documentation of the running system [Pan*19; Pen*17; Strr09].

A domain-specific language must provide the means to model a multitude of devices, networks,
and software functionalities from the IT and OT domains. This encompasses the field layer with
sensors, actuators, field buses, and PLCs, as well as superordinate IT systems, Ethernet-based
networks, and sophisticated software functionalities (e.g., data analysis, storage, visualization).
This so-called system viewpoint of the modeling language should describe the available hard- and

software, as well as the available network connections between and within the systems of systems.

Reg-Msys — System viewpoint
Viewpoint for modeling of hardware, software, and networks from the field level up to super-

ordinate IT systems.
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For systems with a substantial number of connected devices and analyses, the data flow becomes
extraordinarily complex. Describing and capturing the flow of data is crucial for various stake-
holders [Ran*18]. Additionally, relevant information about the type of data (e.g., integer or float),
the state of data (batch or streamed data), as well as the type of system’s interaction with the data
(forwarding, modification) must be represented. For instance, without proper modeling of the data
flow through the systems, it is almost impossible for an IT architect to correctly size hardware

nodes. Additionally, a data analyst may not be able to determine influences on the quality of data.

Reg-Mpr — Data flow viewpoint
Viewpoint for the modeling of flows of data through distributed hardware and software systems,

including representation of additional information such as type and state of data.

To enable the DSL’s usage during the engineering and operation of a system, the requirements for
the system and its properties need to be represented. Experts from different domains (e.g., control
engineers, automation specialists, IT architects, or data analysts) have distinct types of require-
ments, which the data collection architecture should fulfill. For instance, while a data analyst can
define the required sampling rate fs of a variable, an IT architect is concerned about the security
of data transmission. Furthermore, to evaluate the performance of a system in operation, its actual
properties must be compared to the defined requirements. Hence, the means of stating require-
ments and properties should be part of the modeling notation.

Reg-Meropreq — Annotations for properties and requirements

Additional elements for adding annotations to the system and data flow viewpoints that capture

requirements and properties of the system.

Visual notations or modeling languages are widely applied in software engineering and can com-
municate complex information often more intuitively than textual representations [M0009]. As
experts from different domains, who lack a mutual understanding of each other’s domain-specific
terminology, participate in the process of developing a data collection architecture for CPSoS, a
graphical modeling notation can improve the exchange of ideas between these disciplines and

experts.

Req-Megraph — Graphical modeling notation
The domain-specific language includes a graphical notation for describing CPSoS using the

system and data flow viewpoints with additional annotations.
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3.4. Requirements on the Model-driven Generation of Data

Collection Architectures (Reg-G)

One significant complexity when implementing a data collection architecture is the development
of the software communication interfaces and their usage in every connected participant. A model-
driven approach for the generation of a data collection architecture can decrease this manual en-
gineering and programming efforts. Therefore, a model-driven approach should automate the gen-
eration of the communication interfaces per participant to configure the communication architec-
ture automatically. An evaluation with adequate metrics is needed to prove the improved effi-
ciency of the approach, as only a minor fraction of published approaches capture this aspect in the
field of modeling languages in Industrie 4.0 [Wor*20].

Req-Gcom — Model-driven generation of communication interfaces

Automatic, model-driven generation of the communication interfaces for the participants.

3.5. Focus of the Thesis

The approach of this thesis covers the modeling of data collection from CPSoS and the model-
driven generation of the underlying communication architecture itself. However, specific prob-
lems within this domain are out of the scope of this work. These problems are considered as pre-

requisites for this thesis and are summarized as follows:

firstly, the data collection architecture should function as a bidirectional but passive system.
CPSoS should not conduct any control interactions over the communication channels of the data
collection architecture. The data collection architecture, therefore, does not have the additional
requirement of meeting hard real-time communication for the collection and communication of
data. Instead, control interaction is carried out over existing, real-time-capable communication
links, possibly using OT technology. Furthermore, this explains the positioning as an extension of
the existing control structure in the form of the automation pyramid. Still, a parallel operation to

modern CPS with an internal mesh structure is also possible.

Secondly, no gquantitative evaluation of the visual quality of the graphical notation (e.g., according
to the principles of Moody [Mo009]) is carried out. For this thesis, the DSL with the graphical
modeling notation should function as a tool to summarize and structure the knowledge and expec-
tations of the involved experts. Therefore, it has to provide the relevant viewpoints and means for
expressing the specific problems of the automation domain. The graphical quality of the notation

is, therefore, not in the scope of this thesis.
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At last, no system behavior nor the mechanical hardware components of the system should be
modeled. The approach is tailored to data collection in complex CPSoS but neglects the internal
composition of these networked systems and their dynamic behavior. Participating CPS should be
treated as black boxes that produce and consume data.






4. State-of-the-Art

The following Chapter surveys and evaluates state-of-the-art approaches that address a similar
field of investigation concerning the requirements from Chapter 3. The survey is divided into three
parts: The first part (Section 4.1) covers concepts and realizations of generic system architectures
for interoperability in CPSoS as well as specialized data collection system architectures. The sec-
ond part (Section 4.2) investigates textual and graphical modeling languages for system architec-
tures. The last part (Section 4.3) considers approaches for the model-driven generation of commu-
nication system architectures in general and industrial automation. This Chapter closes with a der-
ivation of an identified research gap (Section 4.4). Table 2 presents the rating scheme per require-
ment for the state-of-the-art comparison that will be used to assess the existing approaches.

Table 2:  Summary of the rating scheme per requirement for the state-of-the-art comparison. Most cri-

teria are graded with + (fully fulfilled), o (partially fulfilled), and - (not fulfilled), with addi-
tional criteria where applicable.

Reg-Aatp— Data collection from different levels of the automation pyramid

+ Consideration of data collection from different levels of the automation pyramid.

o Data collection without proper consideration of the automation pyramid levels.

- No data collection.

Reg-Atac — Technology-agnostic concept

+ Focus on a technology-agnostic concept for the architecture.

No consideration of technology-neutrality,
but the concept can be applied using different technologies.

- Concept is not technology-agnostic.

Reg-Arop — Parallel operation to pyramid architecture

+ Concept is designed to be operated in parallel to the existing infrastructure.

< o Concept can be implemented in parallel but lack of special considerations.

o
(3] .. .
& - Concept replaces existing infrastructure.

Reg-Apep — Simplified implementation and configuration (Deployment)

Manual implementation effort for the initial implementation and deployment of
the system architecture is decreased.

Data Collection System Architectures

Manual implementation effort for the initial implementation and deployment
of the system architecture is increased.

? Not evaluated.

Reg-Arepep — Simplified migration between technologies (Redeployment)

+ Manual implementation effort for the migration and redeployment of
an existingsystem architecture is decreased.

Manual implementation effort for the migration and redeployment of
an existing system architecture is increased.

? Not evaluated.




36

4, State-of-the-Art

Software Framework

Reqg-SFapr1 — Standardized interfaces to minimize effort

+ Definition of standardized interfaces for communication.

- Peer-to-peer architecture without standardized interfaces.

Reg-SFacp — Abstraction of technology-specific properties of communication

+ Abstraction of technology-specific properties of communication.

- No abstraction of technology-specific properties of communication.

/ Not relevant, e.g., no standardized interface defined.

(Reg-SF)

Req-SFLeg — Support for legacy systems

Integration of legacy systems is considered, and concepts are presented
(brownfield deployment).

Integration of legacy systems is only considered
(conceptual brownfield deployment).

_ No integration of legacy systems
(greenfield application).

Architecture Modeling Language

Reg-Msys — System viewpoint

+ Full support for the system viewpoint.

o Partial support for the system viewpoint with relevant elements missing.

- No system viewpoint.

Reg-Mpr — Data flow viewpoint

Flow of data through the system and additional information
(type of data, state of data) is fully captured.

o Partial coverage of the data flow and its characteristics.

= - No data flow viewpoint.
o
& Reg-Mpropreq — Annotations for properties and requirements

Modeling framework includes annotations for both viewpoints
allowing the statement of requirements and properties.

o Annotations only include requirements or properties but lack consideration of both.

- No possibility of stating properties nor requirements.

Reqg-Moaraph — Graphical modeling notation

+ Graphical modeling notation for both viewpoints and annotations.

o Partial graphical modeling notation for either viewpoint.

- Lack of a graphical modeling notation.

Model-driven

Reqg-Gcom — Model-driven generation of communication interfaces

+ Automatic generation of communication interfaces.

o Partial generation of the communication interfaces.

A Concept for the generation of communication interfaces presented.

Gen. (Reg-G)

- No automatic generation of communication interfaces.
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4.1. System Architectures

The following section summarizes and reviews state-of-the-art system architectures from the lit-
erature. The overview differentiates between generic architectures for interoperability and con-
nectivity and dedicated data collection system architectures. Every section starts with a presenta-
tion of isolated approaches. Afterward, it is followed by a summary of research projects in the
field. Concerning system architectures, only Reg-A- and Req-SF categories are evaluated. Catego-
ries Reg-M and Reg-G do not apply as the approaches do not include any modeling notation or
model-driven approach for their generation. The presented approaches all fulfill the Reg-Aap re-

guirement as this provides the basis for a configurable data collection architecture.

With the Apache PLC4X project [Apa20], a software framework for unified access to heteroge-
neous protocols is actively developed. The framework offers a shared programming interface that
abstracts the specifics of the underlying protocols (Regq-SFace). Currently, several protocols, in-
cluding low-level PLC protocols, such as Beckhoff ADS [Bec19c] or Siemens S7 ISO-on-1SO
[RFC1006], are supported. The integration of existing legacy devices is the focus of the project

(Reqg-SFieg). However, the project does not include an architecture concept.

4.1.1. Generic System Architectures

Kim and Youm [KY13] present a machine-to-machine platform for integrating data and services.
Their approach targets generic 10T devices like smart sensors for consumer use. Therefore, aspects
like data collection from various levels of the automation pyramid (Reg-Aatp) are not considered
but could be fulfilled with adaptions. A standardized interface for communication is provided but
does not abstract different communication protocols as only a single proprietary protocol is used
for communication (Reg-SFace). Legacy devices are not considered (Reg-SFieg). The concept is
theoretically technology-neutral, but detailed considerations of this aspect are not in the scope of

the approach (Reg-Arac). A parallel operation is not foreseen (Reg-Arop).

Fiaschetti et al. [Fia"18] describe an implementation of a monitoring and control architecture for
energy distribution systems. They combine a DDS for the field level and the AMQP message
broker ActiveMQ for communication. As the application domain differs from industrial automa-
tion, a parallel operation is not foreseen, and direct control of systems is executed over the archi-
tecture (Reg-Aror). Moreover, the integration of existing legacy devices is not considered
(Req-SFLeg). The presented approach is tailored to the specific set of technologies used for its im-

plementation and not applicable to other technologies (Req-Arac, Req-SFace).

Longo et al. [LNP19] developed a concept with a central ESB and participants that communicate

using REST web services. They aim to create a platform for digital twin applications. Multiple
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distributed ESB instances communicate with each other over CoAP. The approach considers the
complete range of systems in industrial automation (Reg-Aate) and is implemented for a parallel
operation to existing systems (Reg-Aror). Due to their focus on REST web services, the approach
is not technology-neutral and does not abstract specific properties of communication (Req-Arac,
Reqg-SFacp). The integration of legacy systems is mentioned, but the actual interfacing of these
systems is not conducted and demonstrated (Req-SFeg).

A hybrid peer-to-peer/middleware architecture for retrofitting existing automation systems is de-
scribed by Ismail and Kastner [IK16; IK17; Ism18]. The approach is used for vertical integration
of data (Reg-Aatp) and is based on a combination of OPC UA and approaches for service discovery
and orchestration. Gateways are proposed for interfacing legacy systems (Req-SFreg); however,
the technology-specific properties are not abstracted as only OPC UA is considered as the transport
protocol (Reg-SFacp). Their concept allows a parallel operation to the automation pyramid
(Reg-Aror) and can be interpreted as theoretically technology agnostic (Req-Arac). However, spe-

cial consideration and demonstration of this aspect are not included.

The architecture by Sola et al. [SGL15] (projects ComVantage and FITMAN) aims at enhancing
the interoperability between field level and superordinate systems by data collection and exchange
(Reg-Aate). The architecture concept is formulated with technology-neutrality in mind (Reg-Arac);
however, it is not clear if a parallel operation to the automation pyramid is allowed (Req-Arop).
Standard interfaces abstract the specifics of communication protocols (Reg-SFace). Additionally,
the integration of legacy systems is considered (Req-SFeg).

The Line Information System Architecture (LISA) by Theorin et al. [The*16] proposes an ESB for
flexible data integration and control in factories. Data adapters allow the integration of existing
legacy systems (Req-SFieg), ranging from the field level up to ERP systems (Reg-Aare). A parallel
operation to the existing control structure is demonstrated in an industrial application of the archi-
tecture (Reg-Aropr). While the concept itself is technology-neutral with no particular focus on this
aspect (Reg-Arac), the communication and programming interfaces are not, as only AMQP over
ActiveMQ is supported (Reg-SFacp).

The MAYA project [Cia*17] conceptualizes a microservice architecture for digital twins in pro-
duction. Participants communicate with each other using web services. The concept includes bi-
directional communication between systems on the field level and a simulation framework. Su-
perordinate systems are not mentioned, but the architecture could also be applied for data collec-
tion from these (Reg-Aare). While the concept itself is not based on a specific technology, special

considerations of this aspect are not part of MAYA (Reg-Arac). Due to the nature of a distributed
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control logic and bidirectional interaction for control of connected systems, a parallel operation to
the existing automation pyramid is not possible (Req-Arop). The standardized interface does not
abstract communication with different communication technologies as it is focused on web ser-
vices (Reg-SFacp). Also, the integration of legacy systems is not part of the MAYA approach
(Req-SFieg).

The Manufacturing Service Bus (MSB) [Gro*16; Kas*17; Min12] is an ESB-realization for data
integration over the product lifecycle. It aggregates data from engineering as well as from different
automation levels during the operation of production plants (Reg-Aate). Legacy applications can
be retrofitted to support the standardized interface using adapters (Req-SF.eg). The programming
interface abstracts specific properties of communication, and the concept itself is technology ag-
nostic (Req-SFacp, Reg-Atac). A practical realization is demonstrated by Schel et al. [Sch*18],
where REST web services, OPC UA, and MQTT are used for communication with participants.
Parallel operation to existing infrastructure is not considered but could be implemented (Reg-
Aprop). An approach that builds on top of the MSB is Virtual Fort Knox [Hol*13]. Virtual Fort
Knox encompasses a cloud platform, where an MSB and additional applications are hosted in a
cloud environment, to enable small and medium-sized enterprises (SMESs) to benefit from the MSB
concept.

BaSys 4.0 [EGW18; Kuh*18; Tru*19c¢] is a German project that is dedicated to the vision of a
generic Industrie 4.0 middleware that follows the RAMI 4.0 principles, including administration
shells. The conceptualized middleware is called Virtual Automation Bus and offers two distinct
communication channels: one for real-time communication and one for non-real-time communi-
cation. Different technologies for communication are considered and can be used for the imple-
mentation (Reg-Arac). Their specifics are abstracted with a standardized interface (Req-SFacp).
Legacy systems can be integrated using special adapters that translate between Virtual Automation
Bus and the legacy systems (Reg-SFieg). BaSys 4.0 replaces the existing control structure of plants
with a flexible, new architecture (Reg-Arop) and cannot be operated in parallel. The implementa-
tion results of BaSys 4.0 are collected in the Eclipse BaSyx project [Ecl19d] that provides a frame-

work for future applications of the platform.

Lastra et al. [FL17a; FL17b; Moc*12] focus on web services-based architectures for data integra-
tion in industrial automation systems. Their approaches include concepts for retrofitting and inter-
facing existing legacy systems (Req-SF.eg). However, their aim is always to replace the existing
hierarchical structure of automation systems (Reg-Arop). Additionally, as only web services are
considered as means of communication, their concepts are not technology agnostic, nor are their

standard interfaces abstracting the specifics of different protocols (Req-Arac, Req-SFacp).
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Lastra et al. [Fer*17; Ift*18; Qur*17] are also involved in the C2ZNET project, which implements a
real-time data collection architecture to optimize the supply networks of SMEs. An architecture
for the collection of data from an ERP system and related data sources (relational databases,
spreadsheets) is implemented by Qureshi et al. [Qur*17]. The approach employs an ActiveMQ
broker, which is operated in coexistence to the control infrastructure (Reg-Arop). In parallel, cloud-
based architectures that replace existing infrastructure with a web service-based approach are pre-
sented. These concepts also consider data collection from field devices (Req-Aare) [Fert17; Ift"18].
Gateways allow the integration of existing legacy systems into the architecture (Reg-SFieg). The
presented approach comprises the idea of a standard and abstracted interface that encapsulates the
technology-specific properties of communication protocols (Req-SFacp). However, the architec-
ture concept is not fully technology-agnostic due to the focus on web services for communication
(Reg-Arac).

In the scope of his dissertation, Leitdo presented ADACOR (ADAptive holonic COntrol aRchi-
tecture) [Lei04; LRO6]. ADACOR is a multi-agent system for agile and adaptive control of man-
ufacturing. Every system is represented by an agent that communicates with the other agents in a
distributed architecture. These agents encapsulate the legacy interfaces of systems (Reg-SFeg) and
replace the existing control infrastructure (Req-Aror). Leitdo also considers superordinate systems,
but the focus of ADACOR is on the field level (Reg-Aarp). The concept itself is technology agnos-
tic (Reg-Arac). Leitdo et al. [LCRO5] also present an implementation of the architecture using
JADE, a software framework for agent development in Java. A refined version, called

ADACOR?2 [Bar*15], incorporates the idea of agent evolution to support self-adaptivity over time.

The IMC-AESORP project [Del*11; Kar*14; LCK16] realized a cloud-based and service-oriented
architecture for plant control applications that aims at replacing existing control systems
(Reg-Aate, Reg-Arop). Local clouds enable the communication of systems over standardized web
services. Additionally, migration approaches to retrofit and integrate legacy systems are discussed
(Reg-SFieg). While the concept itself is technology agnostic (Req-Arac), the API is tailored to web

services and does not abstract between different technologies (Req-SFace).

The SOCRADES project [KBD09; LCK16] developed an architecture for a so-called next-gener-
ation industrial automation architecture meant to replace the existing automation pyramid
(Reg-Aate, Reg-Arop). Webservices are used for communication of the systems, including mecha-
nisms for service discovery and orchestration. Gateways and mediators interface legacy systems
and enable their incorporation into the new automation architecture (Req-SFieg). Due to the strong
focus on web services and related technologies for service discovery, neither the concept nor the

implementation are technology-neutral (Reg-SFace, Req-Arac).
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The Arrowhead project [Car17; Del*17a; Del*17b; Der*15; Var*17] provides a framework for dis-
tributed, cloud-based interaction of systems. Arrowhead is built on top of
IMC-AESOP and SOCRADES. Additionally, it enables realtime capable communication if nec-
essary, but replaces the existing control architecture with the new paradigm of cloud-based, fed-
erated CPSoS (Reg-Aror). Protocol translators allow the integration of legacy devices into the
cloud environment [DED17] (Req-SFvieg). Furthermore, the Arrowhead framework allows the us-

age of different protocols for communication and abstracts their specific properties (Regq-SFacp).

The ARUM project [LCK16; Lei™13; Lei*15] proposes an agent-based architecture with an ESB
acting as middleware between the different systems. The developed service-oriented architecture
aims at minimizing the response time to unexpected events during the ramp-up phase of plants.
Legacy devices are incorporated using gateways (Req-SFieg), but the existing control infrastruc-
ture is replaced by ARUM (Req-Aate, Reg-Aror). Additionally, ARUM describes an ecosystem
consisting of architecture and many advanced tools for simulation, scheduling, and planning.
Agent communication follows the FIPA specifications; see, for instance, the FIPA specification
for HTTP as transport medium [FIPAO02], which limits the technology-neutrality of the concept
and its implementation (Reg-Arac, Req-SFace).

An architecture for flexible reconfiguration of CPS is developed within the PERFORM project
[Gos™17; Lei*16]. PERFORM includes a middleware component for communication across multi-
ple layers of the automation hierarchy (Reg-Aarp) and can be operated in parallel to the existing
control infrastructure (Reg-Arop) [PER16a]. The PERFORM middleware supports various middle-
wares (for instance, Apache Camel [Gos*18] and Apache Service Mix [Cha"17; Gos*17]). Fur-
thermore, it abstracts the specifics of protocols and systems with a standardized interface
(Reg-Arac, Req-SFace) and a supplementary information model called PML [PER17]. Detailed
concepts are derived for the integration of legacy systems into the architecture and the application
of the PERFoRM concept to different use-cases (Req-SFieg) [Lei*17; PER17].

4.1.2. Data Collection System Architectures

A dedicated data collection architecture is presented by Gama et al. [GTD12]. The architecture is
conceptualized to collect data from distributed RFID readers. Due to the different application do-
main, the architecture does not consider different hierarchical levels in industrial automation, but
could also be applied in this domain (Reg-Aatp). Webservices are employed for the communication
of the distributed systems and a central, mediating ESB-component. Hence, the architecture is
neither technology agnostic (Reg-Arac), nor does the interface abstract the specific communication
logic of web services (Reg-SFacp). Additionally, the integration of existing legacy systems is not

considered (Reg-SFLeg).
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Liu and Jiang [LJ16] present an architecture for data collection from various levels of the automa-
tion pyramid (Reg-Aartp). It is based on big data components, such as Apache Hadoop, a software
framework for the processing of big data. Technology-neutrality of the concept is not discussed,
but could theoretically be achieved (Reg-Arac). Nevertheless, the standard interface does not ab-
stract the specific properties of different technologies (Reg-SFacp). Due to the nature of a data
collection architecture, a parallel operation to the existing infrastructure is possible (Reg-Arop).

However, it remains unclear how to interface legacy systems (Req-SFeg).

Kirmse et al. [Kir"18] propose an architecture for data collection and integration from CPSoS.
They also consider data that is distributed over multiple companies and data collection from mul-
tiple levels of the automation hierarchy (Reg-Aare). The implementation of their architecture uses
OPC UA for communication, while their concept could be applied using different technologies
(Reg-Arac). As OPC UA is used as the standard communication protocol, the defined interface
does not abstract the specifics of communication but is based on the functionalities of OPC UA

directly (Req-SFace). Legacy system integration is considered but not demonstrated (Req-SFieg).

Liuetal. [Liu*16] use a commercial OSlsoft PI [OS119] system for data collection and integration
in the domain of power systems. They use a model-driven approach to automate the generation of
information models based on the Common Information Model defined in EN 61968 [Eurl3]. A
parallel operation is not discussed but typical for OSlsoft Pl systems (Req-Aror). Data is collected
from the field levels as well as higher-level systems (Reg-Aare). Additionally, the concept consid-
ers the integration of legacy systems over data adapters (Req-SFeg). Still, due to the limitation on
OSlsoft PI, neither the concept nor its implementation is technology agnostic (Reg-Arac,
Reqg-SFacp).

The big data cloud platform AMCoT [Lin*17; Liu*18] is developed for the domain of semicon-
ductor manufacturing. Individual systems are interfaced using so-called cyber-physical agents,
which can also integrate legacy systems into the architecture (Req-SFeg). Communication is con-
ducted using REST or SOAP web services. MATLAB is used for executing analysis in a connected
cloud environment. Parallel operation to the existing infrastructure is not explicitly mentioned but
possible (Reg-Aror). Neither the concept nor its specific implementation of communication is tech-
nology-neutral due to restriction of only supporting web services for communication (Reg-Arac,
Reqg-SFacp).

Fleischmann et al. [FKF16a; FKF16b; Fle*16] present an architecture for aggregating data from

different levels of the automation pyramid for condition monitoring applications (Reg-Aarp). Their



4. State-of-the-Art 43

concept is realized using web services, but could theoretically be applied using other sets of tech-
nologies (Reg-Arac). However, technology-specific aspects of communication are not abstracted
in the standardized API (Req-SFace). Albeit the integration of legacy systems is mentioned, it is
not demonstrated (Req-SFieg).

Peres et al. [Per*18] propose the IDARTS framework, a hybrid multi-agent/Apache Kafka-based
architecture for data collection and analysis in industrial automation. Component Monitoring
Agents collect the data from field level systems but could theoretically also be used to acquire the
data of higher-level systems (Reg-Aate). The collected data is forwarded to a central Apache Kafka
instance, which mediates between the field level agents and the analysis part of the architecture.
The concept is developed without a specific technology in mind, however special considerations
on technology-neutrality are missing (Req-Arac). Parallel operation to the existing control infra-
structure is foreseen (Reg-Arop). The definition of so-called Generic Data Collection Interfaces
and Generic Data Output Interfaces unify the in- and outputs of the system. Nevertheless, the
implementation of IDARTS is tailored for the JADE agent framework and Apache Kafka. There-
fore, it does not abstract further (Reg-SFacr). The integration of legacy systems is mentioned, but

specific concepts are lacking (Reg-SFLeg).

In the scope of the COCOP project [COC18a; COC18b; HKV18], an architecture for plant-wide
monitoring applications is developed. Data is collected from different hierarchical levels of the
automation systems (Reg-Aarp), including legacy systems that are interfaced using adapters
(Reg-SF.eg). Different broker technologies are compared, and an actual implementation using Rab-
bitMQ is presented. Therefore, the concept can be seen technology-neutral, but this is not in the
scope of the COCOP project (Reg-Arac). A parallel operation is foreseen for the monitoring of
existing plants (Reg-Arop). Additionally, the standardized interfaces take communication over
AMOQP, REST, and OPC UA into account. Nevertheless, it remains questionable if the actual im-
plementation of the COCOP architecture encompasses this feature of a protocol-agnostic interface
(Req-SFace).

Table 3 summarizes the requirement fulfillment of all presented generic and data collection system
architectures. As can be seen from Table 3, none of the approaches evaluated if decreased imple-
mentation or redeployment efforts can be observed with the architecture. Only the PERFORM
architecture fulfills all other requirements of categories Reg-A and Reg-SF. The PLC4X plays a

special role as it does not include an architecture concept but is limited to a software framework.
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Table 3:  Evaluation of relevant approaches in the field of system architectures and data collection sys-
tem architectures. See Table 2 for the rating scheme.

Approach Requirements

a o o g z S 2

g & & & & & & &
ADACOR o + - ? ? + - +
AMCoT + - o ? ? + - +
Arrowhead + + ? ? + + +
ARUM + o - ? ? + / +
BaSys 4.0 + + - ? ? + + +
C2NET + o + ? ? + + +
COCOP + o + ? ? + + +
Fiaschetti et al. o - - vl ? + - -
Fleischmann et al. + o + ? ? + - o
Gama et al. o - o ? ? + / -
IMC-AESOP + o - ? ? + - +
Ismail and Kastner + o + ? ? + - +
Kim and Youm o o - ? ? + - -
Kirmse et al. + o + ? ? + / o
Lastra et al. + - - ? ? + - +
Liu and Jiang + o + ? ? + - -
Liu etal. + - o ? ? + / +
Longo et al. + - + ? ? + - o
MAYA o o - ? ? + - -
MSB + + o ? 2 + + +
Peres et al. o) o + ? ? + - o
PERFoRM + + + ? ? + + +
PLC4X + + +
SOCRADES + - - 2 2 + / +
Solaetal. + + o ? ? + + +
Theorin et al. + o + ? ? + - +
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4.2. Modeling Languages

In the following Section, relevant modeling languages are summarized and reviewed. At first,
AutomationML, as a universal data exchange format is considered. Afterward, UML profiles are
presented, followed by a review of graphical modeling notations. As none of the approaches in-
cludes an architecture concept nor the model-driven generation of system architectures, only re-
quirements of category Reg-M are considered in the following review.

The Automation Markup Language (AutomationML or AML) [Dra*08; IEC62714] is a data ex-
change format for the domain of industrial automation. AutomationML aims to provide a vendor-
neutral, XML-based data format that can be used to exchange data between heterogeneous engi-
neering systems and tools. AutomationML combines existing standards and accepted exchange
formats to describe topology, geometry, and kinematics, as well as control software of automation
systems. Furthermore, AutomationML provides the possibility of enhancing the modeling capa-
bilities with so-called role class libraries. A role class library for communication is described in
several publications [Aut14; DLH13; RD18; Rie*14a]. The basic AutomationML libraries, in con-
junction with the communication library, can be used to model communication networks in control
systems. They include elements to describe the hardware and networks of the system, as well as
simple software functionalities related to control of the system. The library separates between a
logical data processing view and a physical hardware view. The views are mapped to reflect which
software functionality is executed on which hardware. Besides, a simple mechanism for the de-
scription of data exchange exists. However, it is mostly limited to the field level. Therefore,
Req-Msys and Req-Mpr are both partially fulfilled, as only a description of complex software func-
tionalities and a more complete data flow viewpoint are not considered. Nevertheless, a possibility
to annotate the models with properties and requirements (Req-Meropreq) @nd a graphical represen-

tation of the model (Req-Mgraph) are not part of AutomationML.

4.2.1. UML-profiles

The OMG specified MARTE [OMG11], a UML profile for the Modeling and Analysis of Real-
Time Embedded Systems. MARTE differentiates between a design model for the design of sys-
tems and an analysis model for the analysis of schedulability and performance of designed sys-
tems. As MARTE is a UML 2 profile, its graphical modeling capabilities are limited and restricted
to additional icons and simple symbols in combination with the graphical elements of UML
(Reg-Marapn). The system can be described in terms of available hardware and resources, 1/O sig-
nals, and communication interfaces, including networks. Therefore, Reg-Msys can be considered
as entirely fulfilled. MARTE does not include an explicit data flow viewpoint. Instead, the flow

of data is directly modeled within the hardware elements. Therefore, following the flow of data
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and its manipulations through the systems is only implicitly possible (Reg-Mpr). An annotation of
modeling elements with additional properties and requirements is possible. The specification of
MARTE foresees many relevant items for timing and scheduling, but additional items, e.g., for
the specification of protocols or encryption requirements, are missing (Req-Mpropreq)-

UML-RT [Gro*99; Sel98] is a UML profile for event-driven, distributed real-time software based
on the ROOM (Real-Time Object-Oriented Modeling) language [SGW94]. UML-RT relies on the
graphical elements of UML but does not provide a graphical notation, including any symbols itself
(Reg-Marapn). The modeling language features elements for the definition of so-called capsules,
which can communicate with other capsules over ports. These ports implement a specified proto-
col behavior and can be connected with connectors. UML-RT does not include elements for the
explicit modeling of hardware systems (Req-Msys). The flow of data is modeled implicitly with the
description capsules and ports/connectors and provides only basic information (Req-Mpg). For
instance, the type of data handling cannot be seen directly, but the internal behavior of a capsule
needs to be investigated. UML-RT provides no way of stating any properties or requirements
(Red-Meropreq).

Katzke and Vogel-Heuser defined the so-called UML-PA (process automation) profile [Kat08;
KV05a; KVV05b]. UML-PA is a tailored profile for the modeling of software in industrial automa-
tion systems. UML-PA introduces additional graphical symbols but relies mainly on the graphical
notation provided by UML (Reg-Marapn). The modeling language differentiates between hardware
and software of a system. Signals that are connected to a hardware unit are mapped to software
signals. Additionally, networks can be defined. Regq-Msys is, therefore, entirely fulfilled. On the
other hand, data flows can only be modeled implicitly without special consideration of types of
data flow and data manipulations (Reg-Mpr). UML-PA provides a basic set of properties and re-
guirements that can be used to annotate models. These are mainly related to bus capacities and

time constraints but fail to capture additional characteristics (Reg-Mpropreq).

The Service-oriented architecture Modeling Language (SoaML), which is specified by the
OMG [OMG12], contains a metamodel and a UML profile for modeling and design of service-
oriented architectures. Therefore, SoaML includes stereotypes for the interaction of services. For
instance, data flows can be captured in UML Sequence Diagrams and describe the interactions
and roles of services. A possibility to describe the type of flow (batch/stream) is missing
(Reg-Mpr). Moreover, SoaML includes basic stereotypes for the description of data types and sig-
nals. Besides, the software functions of the systems can be modeled as services. As SoaML is

designed to describe service-oriented architectures, elements for the hardware and network de-
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scription are not included (Reg-Msys). SoaML does not include elements that characterize the prop-
erties and requirements of system architectures (Req-Meropreq). Finally, as SoaML is designed as a
UML profile, a separate graphical modeling notation is not part of the specification (Reg-Mgraph).

Another UML profile exists with the OMG’s SysML [1ISO19514; OMG19], a modeling language
for system engineering. Compared to UML, SysML introduces additional diagrams and extends
the available UML model elements. The structure of the system can only be modeled using abstract
block-elements. More detailed symbols and differentiation of components of industrial automation
systems are not available (Reg-Msys). Communication between systems can only be modeled im-
plicitly using ports without additional information concerning the type of data handling (Reg-Mopg).
SysML foresees requirements specifications but lacks separate mechanisms for property specifi-
cation in relation to the requirements (Req-Meropreq). The graphical model elements are limited to

the elements available in UML (Req-Mgrapn).

With the SysML-vAT (SysML for distributed automation systems) [Fral4], Frank adapted and
extended the SysML for the modeling of distributed automation systems. Therefore, new stereo-
types to further specify hardware components of the systems are introduced. However, detailed
modeling of networks and variables is missing (Reg-Msys). SysML-VAT extends the modeling of
ports with directed ports for in- and outputs, but as with SysML, data flows can only be captured
implicitly (Reg-Mpg). With the introduction of colors and additional symbols, the graphical capa-
bilities of SysML are extended slightly but still very limited (Reg-Maraph). VOgel-Heuser et al.
[Vogt14a] demonstrate the model-driven generation of IEC 61131-3-compliant code from

SysML-VAT models but do not cover non-automation software layers.

4.2.2. Graphical Notations

The AADL (Architecture Analysis and Design Language) [Fei*05; FG13; FLV06] is a modeling
language for real-time applications and embedded systems standardized by SAE International (So-
ciety of Automotive Engineers) in SAE standard AS5506C [SAEAS5506C]. AADL puts signifi-
cant effort into an exhaustive and formal specification of embedded systems in performance-crit-
ical applications. The language features constructs for a detailed description of software and hard-
ware systems, as well as in- and output signals (Reg-Msys). The data flow through the system is
modeled together with the system aspects and is included implicitly (Reg-Mpg). A basic set of
properties can be stated, but additional aspects, such as protocols, encryption, and semantics are
not considered due to the intense focus on embedded systems. Also, mechanisms for stating re-
guirements are not taken into account (Req-Meropreq)- AADL provides a textual and graphical syn-

tax for system modeling (Req-Megraph)-
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The Open Group, an industry consortium to develop and foster open, vendor-neutral standards,
specifies the ArchiMate modeling language [LPJ10; Opel9]. The scope of ArchiMate is the mod-
eling of enterprise architectures and their evolution over time, but without a particular focus on
the automation domain or Cyber-physical Systems. ArchiMate features a simple, but powerful
graphical modeling notation with support for various symbols and different icons (Reg-Mgraph).
Besides, ArchiMate supports the definition of individual viewpoints. Considering the description
of the system, the notation allows the modeling of host systems, software applications, and net-
works. However, the aspect of signals and master/slave networks is not considered (Reg-Msys).
The flow of data (Reg-Mpg) can only be described implicitly, without a separate viewpoint, with-
out the possibility to model distinct types of data and data manipulations. ArchiMate provides a
set of basic annotations that can be used for the definition of requirements and properties. Never-
theless, only high-level annotations are defined in ArchiMate, which could be extended and cus-

tomized if necessary (Reg-Mpropreq).

Greifenender and Frey [GFO7; Gre07] developed a graphical notation called DesLaNAS for the
description of networked systems (Reg-Marapn). The focus of the approach lies in the modeling of
communication-based delay between connected systems. Therefore, the flow of information and
its delay through systems and networks can be modeled, but a possibility to describe the type of
flow (stream/batch) is missing (Req-Mbor). Besides, the notation does not differentiate how a sys-
tem influences the data. A system viewpoint, as well as the possibility to annotate models with

properties and requirements, are not considered (Reg-Msys, Req-Meropreq)-

Lewin et al. [LVF17] developed an adapted value stream analysis for information flows in Indus-
trie 4.0 scenarios. Their approach does not capture the structure of the system (Reg-Msys) but con-
siders the flow of data and information between connected systems. The value stream analysis is
focused on superordinate systems. Furthermore, it includes the direction of flows and a basic de-
scription of actions that are conducted with the data, e.g., data processing or data analysis. Still, a
differentiation of data flows (stream/batch), mapping on the system viewpoint, and the description
of the transmitted variables and values are missing (Regq-Mpe). A possibility to annotate the models
with properties and requirements is not considered (Req-Meropreq). The concept encompasses a
graphical notation for the description of data and information flows but no symbols for the system

viewpoint (Reg-Mgrapn).

The group of Vogel-Heuser et al. developed a graphical modeling notation for decentralized con-
trol systems (DCS). The first version of this notation, which is inspired by UML-PA, was pre-
sented by Witsch and Vogel-Heuser [WV08] and provides graphical elements for modeling of

control hardware, related networks, and in-/outputs (Regq-Megraph, ReQ-Msys). Additionally, models
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can be annotated with relevant properties and requirements (Req-Meropreq). The approach by
Witsch and Vogel-Heuser includes an underlying metamodel to structure the modeled information.
An extended version of the notation was later presented by Vogel-Heuser et al. [Had*12; Has*13;
Vog*11; Vog*12] and encompassed an extended set of properties and requirements. The focus of
all four contributions is dedicated to the network architecture of DCS and the related time behav-
ior. Therefore, a consideration of superordinate systems is not included (Reg-Msys). Vogel-Heuser
and Ribeiro [VR18] introduce an adapted version of the notation for fog computing on the field
level. The approach introduces additional elements to the notation, such as elements for data
frames. Another work by Sollfrank et al. [STV19; SVF17] reflects the adaption of the notation for
safety applications. Supplementary elements for safety-related hardware, properties, and require-
ments are presented and used. With the DSL4hDNCS [Vog*20], the group of VVogel-Heuser further
unified the separate versions of the graphical modeling notation and extended the graphical mod-
eling notation with a metamodel to yield a DSL. Nevertheless, none of the works by VVogel-Heuser
et al. can be used to capture related software functions executed on the hardware (Req-Msys). Ad-
ditionally, an explicit viewpoint for the flow of data through the system is not considered
(Reg-Mpr).

Table 4 summarizes the reviewed modeling approaches. As can be seen, only AADL, MARTE,
and UML-PA can model the relevant aspects of the system architecture. None of the presented
approaches captures the characteristics of the data flow entirely (Reg-Mpe), which is especially
important for data collection and analysis in CPSo0S. The only approaches that allow a free defini-
tion of properties and requirements (Reg-Meropreq) are the works by Vogel-Heuser et al. Some of
the reviewed approaches provide basic sets of annotations that are limited to specific aspects of
the systems. Others are only capable of describing either properties or requirements, but not both.
Additionally, the requirement of a graphical modeling notation (Reg-Mgrapn) is only thoroughly
addressed by AADL, ArchiMate, Greifeneder and Frey, as well as VVogel-Heuser et al. All lan-
guages can describe specific aspects of the systems (Reg-Msys) but at various levels of detail, rang-
ing from detailed to not captured at all. In summary, none of the approaches can fulfill all require-

ments of the Reg-M category.
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Table 4:  Evaluation of relevant approaches in the field of modeling languages for system architec-
tures. See Table 2 for the rating scheme.

Approach Requirements
& 5 £ 5
P = = P
o o o o
(] (] (] (3]
@ 04 04 @
AADL + o o +
ArchiMate o o o +
AutomationML o o - -
DesLaNAS - o - +
Lewin et al. - o - o
MARTE + o) o o
UML-PA + o) o o
UML-RT o o - -
SoaML o o - -
SysML o o o -
SysML-vAT o o o -
Vogel-Heuser et al. o - + +

4.3. Model-driven System Architectures

In the following section, model-driven approaches for the generation of system architectures are
surveyed and evaluated. The overview is divided into two parts: the first part summarizes generic
approaches for the generation of system architectures. In contrast, the second one is focused on
system architectures for industrial automation. Concerning the generic approaches, only require-
ments of categories Reg-M and Reg-G are evaluated as no specific architecture for industrial au-
tomation is part of the approaches. Contributions in the second part of this section are evaluated

concerning the requirements of all categories.

4.3.1. Generic Architectures

Benaben et al. [Ben*17] present an approach for model-driven engineering of middleware systems.
Their approach focuses on the domain of enterprise integration between different companies. The
system viewpoint of the underlying metamodel includes some elements that can be applied to
industrial automation. However, the focus on enterprise integration leads to strong attention on the
modeling of services but not hardware, software, and networks (Req-Msys). Moreover, the ap-
proach does not comprise a data flow viewpoint (Req-Mpg). Data flows are only implicitly mod-

eled using the activities invoke, receive, and reply. Properties and requirements of the systems are
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not captured at all (Req-Meropreq). FUrthermore, the modeling approach is only based on a UML
representation but does not consider any graphical modeling constructs (Reg-Megraph). Benaben
et al. use the model and transform it to configure an ESB and related web services for communi-
cation (Reg-Gcom).

The groups around Broy and Schatz et al. developed AutoFOCUS [Ara’15; Bau'05; Bro*08;
Hub*96], a modeling concept for distributed embedded systems. AutoFOCUS is based on
FOCUS [Bro*93] and extends it with a graphical modeling notation (Req-Mgrapn). While the graph-
ical modeling notation only offers a minimal set of shapes, in the system viewpoint (system struc-
ture diagram), these can be used to model networks of hardware components. The system view-
point is limited to data exchange among these hardware components and does not capture network
structure or other the type of hardware systems. A second viewpoint for the modeling of data flows
can be used to model and characterize modifications and usage of data (Reg-Mpr). However, fol-
lowing the flow of data through systems is challenging due to the very detailed modeling on an
embedded hardware level and the implicit formulation of data flows. The modeling notation allows
the modeling of timing requirements, such as cyclic execution, but does not differentiate between
requirements and properties (Reg-Mpropreq). Based on the models, the software code for various
hardware platforms can be generated that includes the interactions between the modeled compo-
nents (Reg-Geom).

Dorn et al. [DWD14] developed an approach for the automatic generation of message-oriented
communication systems. Therefore, they adapt the extensible Architecture Description Language
(xADL) by Dashofy et al. [DvTO01] with additional elements. These elements describe message-
oriented communication in general and their respective implementations for the ESBs ActiveMQ
and Mule. Their description of the system architecture is only focused on communication inter-
faces and the abstract description of components (Req-Msys). The data flow is modeled with more
detail in comparison to other approaches (Req-Mpg). However, only endpoints, communication
channels, and the direction of information flows can be modeled. Neither the description of prop-
erties/requirements nor a graphical modeling notation is considered (Reg-Mpropreq, R€Q-Maraph).
For the development process of the communication systems, tool support is provided. A model
transformation can then automatically generate runtime configurations for the middleware but no

client code (Reg-Gcom).

Ebeid et al. [Ebe*15; EFQ15] extend the UML MARTE profile with network-related aspects and
introduce a model-driven generation of runnable configurations for distributed embedded systems.
Their extension to UML MARTE captures aspects of QoS and defines abstract data channels that

are used to transport data from one system to another. Concerning the Req-M requirements, the
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approach shares the same characteristics as the UML MARTE profile itself. Ebeid et al. consider
an automatic generation of communication interfaces but restrict the approach to the model-driven

generation of configurations for a simulation environment (Reg-Gcom).

With the so-called ThingML, Harrand et al. [Har"16] present a textual, domain-specific modeling
language for embedded IoT devices (Reg-Marapn). ThingML encompasses basic system and data
flow viewpoints but focuses on embedded devices and low-level interactions between them
(Reg-Msys, Reg-Mpr). ThingML does not provide language constructs for adding properties or re-
quirements to the model (Reg-Mpropreq). Based on the models, basic communication interfaces are

automatically generated by model transformations (Req-Gceom).

Issarny et al. conceptualized different model-driven communication architectures, for instance, the
extensible service bus (XSB) [Geo*13] and the eVolution Service Bus (VSB) [Bou19; Boul7;
Iss*16]. The focus of both approaches lies in the domain of the Internet of Things. Therefore, the
service buses use web services. The necessary communication interfaces are automatically gener-
ated based on the model (Reg-Gcom). The underlying models do not encompass a system viewpoint
that can describe hardware, software, and networks (Reg-Msys). Data flows are implicitly modeled
with so-called mash-up graphs (Reg-Mor, Req-Marapn). These graphs show the path of data through
the system and the dependencies between components. Nevertheless, no differentiation of the spe-
cific roles of components is made. Bouloukakis et al. [Bou*19] extend the approach by introducing
a uniform software framework that abstracts the functional properties of specific 0T protocols.

Petrasch [Petl7; Pet18] presents a model-based approach for the development of microservice
architectures. The system viewpoint is limited to a basic description of the system related to en-
terprise integration (Req-Msys). A data flow viewpoint (Reg-Mpr) does not exist. Furthermore, it
is not possible to annotate the models with properties and requirements (Reg-Mpropreq). The ap-
proach does not include a graphical modeling notation and is based on UML (Req-Mgraph). The
work by Petrasch includes the concept of a model-driven generation of communication interfaces,

but implementation and demonstration of this functionality are missing (Reg-Gcom).

Pusztai et al. [PTD19] propose a model-based approach for the development of IoT applications.
Based on a new UML profile, the modeling of heterogeneous 10T devices is possible. The intro-
duced stereotypes are tailored for embedded IoT hardware and include basic components such as
CPUs. However, the modeling of networks and specific devices relevant for industrial automation
is not in the scope of the approach (Reg-Msys). Data flows can be modeled implicitly using activity
diagrams (Reg-Mpr). The modeling approach does not include model elements for the capturing

of properties and requirements (Reg-Mpropregq), NOr does it include a graphical notation
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(Reg-Marapn). Based on the models, the code for communication between the systems over REST
is generated (Req-Gcom).

Tekinerdogan et al. [TCK18] present an approach to simulate and find optimized deployment sce-
narios for DDS systems. Various deployment scenarios are automatically generated and tested for
the fulfillment of specific requirements using simulation. Therefore, they developed an approach
that allows the modeling of applications and physical resources, for instance, available memory
and processing power, but no actual hardware devices (Reg-Msys). Furthermore, the approach in-
cludes the possibility to annotate the models with requirements (Req-Mperopreq) that a deployed
architecture must fulfill. Nevertheless, no actual properties are considered. Also, a data flow view-
point (Reg-Mpr), a graphical notation (Req-Merapn), and a model-driven generation of communi-

cation interfaces (Req-Gceom) are not part of the approach.

Terzi¢ et al. [Ter*18] developed the model-driven tool MicroBuilder. MicroBuilder includes a
framework for the automatic generation of REST microservices for e-commerce applications.
Therefore, they automatically set up communication interfaces based on a specified model
(Req-Geom). The underlying modeling language is a mixture of graphical notation and textual,
domain-specific language (Reg-Marapn). Due to the different domain, no system viewpoint, includ-
ing elements for industrial automation, is considered (Req-Msys). Simple data flows can be mod-
eled using the graphical notation (Reg-Mpr). However, no annotation with properties or require-
ments is considered (Req-Meropreq)-

4.3.2. System Architectures for Industrial Automation

The only implemented model-driven system architecture for data collection is presented by Mazak
et al. [Maz*18]. Their approach is based on an extended version of AutomationML. Therefore,
they add the description of data dependencies between systems. The extended model is then used
to automatically set up OPC UA servers as data providers and a data collection architecture. The
collected data is finally stored in a time-series database. While their approach is focused on data
collection from the field level, it can be used to collect data from various levels (Req-Aate). As the
architecture is a data collection architecture, a parallel operation to the existing control infrastruc-
ture is foreseen (Reg-Aprop). Due to the focus on OPC UA, neither the concept is technology-ag-
nostic (Reg-Arac), nor a standardized interface that abstracts between different communication
technologies is defined (Req-SFacp). The integration of legacy systems is not considered
(Reg-SFLeg). While Mazak et al. claim decreased costs for re-engineering during the evolution of
CPPS, the contribution does not evaluate or measure a decreased effort during initial deployment
(Req-Arepep) Nor re-deployment (Req-Arepep). As the approach is based on AutomationML, the

same limitations concerning the systems viewpoint (Reg-Msys), properties/requirements
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(Req-Mpropreq), and the non-graphical representation (Reg-Mgrapn) apply. The flow of data
(Reg-Mpr) is implicitly modeled over the introduced dependencies, but it cannot be followed
through the system or over a multi-stage process. The approach automatically generates all neces-
sary communication interfaces (Req-Gceom), including the OPC UA server, the respective client
components, and the database connection.

Hufnagel et al. [HFV13; HV15] present a concept facilitating the collection of distributed and
heterogeneous data based on ESB-principles. The proposed, technology-agnostic architecture
(Reg-Arac) uses data mapping and adapters to integrate near real-time and batch data from different
systems, including legacy systems (Req-SFeg). Data collection from various levels of the automa-
tion pyramid (Reg-Aate) and parallel operation (Reg-Apop) are not considered but could be applied
in theory. The modeling approach includes elements for modeling the system architecture but only
related to the communication with the common data backbone, not the individual systems them-
selves (Reg-Msys). The approach does not foresee the modeling of any other aspects (Reg-Mor,
Req-Meropreq) NOr provide a graphical modeling notation (Reg-Maraph). The underlying model-
based development of the data exchange does encompass a concept for the model-driven genera-
tion of the architecture itself (Reg-Gceom). However, no publication of the concept’s practical im-

plementation is available.

Based on the UML410oT metamodel [TC16], Thramboulidis and Christoulakis [TVS18] conceptu-
alized a model-driven generation of microservice architectures for CPPS. Their developed archi-
tecture aims at replacing the existing infrastructure (Req-Aror) and focuses on the field level but
could be applied to interface superordinate systems as well (Reg-Aare). The Lightweight Machine
to Machine protocol (LwM2M) [Opel8] is used, which makes the concept tailored to this specific
communication technology (Reg-Arac) and prevents a further abstraction by the standardized in-
terface (Reg-SFacp). The concept does not consider the integration of existing legacy systems into
the architecture (Reg-SFieg). Concerning the included metamodel, the system viewpoint focuses
on resources and their information exchange but lacks consideration of hardware, software, and
networks (Req-Msys). The metamodel does not comprise a data flow viewpoint (Reg-Mog) nor the
possibility of annotations with properties and requirements (Req-Meropreq). All modeling is non-
graphical (Reg-Merapn). The actual model transformation into a deployable architecture is only

developed conceptually but not demonstrated (Req-Geom).

Table 5 summarizes the evaluation of model-based system architectures. Only the approaches by
Mazak et al. [Maz*18] Hufnagel et al. [HFV13; HV15], and Thramboulidis et al. [TC16; TVS18]
were evaluated concerning the requirements of categories Reg-A and Reg-SF, as they are the only

approaches that generate a system architecture in the field of industrial automation. Furthermore,
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none of the approaches that encompass a model-driven generation of the architecture features a
complete domain-specific language, including a graphical modeling notation for data collection

architectures.

Table 5:  Evaluation of relevant approaches in the field of model-driven system architectures. Non-rele-
vant criteria are grayed out. See Table 2 for the rating scheme.

Approach Requirements
g
g z 5 = € £

Benaben et al. o - - - +
Broy and Schatz o o o + +
Dorn et al. o o - - o
Ebeid et al. + o o o A
Harrand et al. o o - - +
Hufnagel et al. o + o ? ? + - o o - - - A
Issarny et al. - o - o +
Mazak et al. o - + ? ? + / - o o - - +
Petrasch o - - - A
Pusztai et al. o o - - +
Tekinerdogan et al. o - o - -
Terzié et al. - o - o +
Thramboulidisetal. o - - ? ? + - - o - - - o

4.4. Research Gap in Model-driven Development of Data Collection

System Architectures

The reviewed approaches and their respective fields of contribution are summarized in Figure 16.
As can be seen, a large number of approaches that consider system architectures exist. On the other
hand, several distinct modeling notations for distributed systems were identified. Nevertheless,
only five approaches exist that encompass a modeling approach (Reg-M) for industrial automation
systems, namely AutomationML, as well as the approaches by Mazak et al., Hufnagel et al.,

Thramboulidis et al., and VVogel-Heuser et al. (light gray and dark gray areas in Figure 16).

Based on the Reg-G requirements, the model-driven generation of system architectures was con-
sidered. The majority of identified approaches are either dedicated to REST web services or the

field of system architectures for consumer 10T devices. Only Mazak et al., Hufnagel et al., and
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Thramboulidis et al. (dark gray area in Figure 16) present approaches that apply to the model-
driven generation of system architectures for the industrial automation domain (Reg-G). However,
the three approaches only consider parts of a data collection architecture and lack an explicit data
flow description and a domain-specific language with a visual notation. Additionally, Mazak et al.,

as well as Thramboulidis et al., support only the usage of a single communication protocol.

Moreover, the evaluation of model-driven approaches should include suitable metrics and at least
semi-industrial use-cases, as identified by Wortmann et al. [Wor20]. However, none of the sur-

veyed approaches proofed a reduction of implementation efforts using suitable metrics.
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Figure 16: Overview of relevant state-of-the-art contributions, their field of contribution, and identified
research gap. The research gap is highlighted in gray.

Therefore, the research gap that is addressed within this thesis is identified as:

Research gap

A model-driven approach for data collection based on a domain-specific language with a visual
notation for the formal description of systems and associated data flows does not exist in the
domain of industrial automation. None of the surveyed approaches provides the means to gen-

erate necessary communication interfaces for data collection automatically. Furthermore, sup-
port for multiple communication protocols is lacking.




5. Approach for Model-driven Development of Data

Collection Architectures

This Section describes the concepts for modeling and model-driven generation of data collection
architectures. First, an overview of the entire approach and its building blocks is given. Subse-

guently, a detailed description of each sub-concept is presented in the following subsections.

To address the research gap identified in the previous Chapter, the approach is constituted of four
sub-concepts, which address the different requirement categories from Chapter 3. These sub-con-
cepts are the generic architecture concept for interoperability and connectivity (1, Reg-A), the
graphical modeling notation and the underlying metamodel that constitute the domain-specific
language (2, Reg-M), the software framework to abstract the specific properties of different com-
munication technologies (3, Reg-SF), and the model-driven generation of the data collection ar-
chitecture (4, Reg-G). Figure 17 illustrates how the separate building blocks depend on each other.

Domain-specific
Language For Data
Collection Architectures

.> —
1 Graphical Meta- 4
Notation model
Geneneric, Model-driven
Technolc_)gy-neutral ~ Generation _of Data
Architecture @ Collection
Concept Software Framework Architectures
Standard Interface
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Figure 17: Building blocks of the concept. Generic, technology-neutral architecture concept (left,1 ), the
domain-specific language for data collection architectures including the graphical notation
and the metamodel (top, 2), the software framework for different communication technologies
(bottom, 3), and the model-driven generation of the data collection architecture (right, 4).

The architecture concept (see Section 5.1) describes the overall, technology-neutral concept of the
data collection architecture for industrial automation. Therefore, it is designed with a focus on the

domain of industrial automation to ensure the fulfillment of the requirements Reg-A category.

The domain-specific language (see Section 5.2) that addresses requirements from the Reg-M cat-
egory includes a graphical modeling notation (concrete syntax) for the description of data collec-
tion architectures in industrial automation. It is based on an underlying metamodel (abstract syn-
tax) which describes the basic concepts and rules. Furthermore, it formalizes and structures the

modeled information.
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A supplementary software framework (see Section 5.3) is conceptualized to support various com-
munication technologies for industrial data collection architectures. The specifics of the technol-
ogies are abstracted and unified by a standard communication interface. It is focused on the re-
quirements from category Reg-SF.

As the last building block, the model-driven generation of the data collection architecture is in-
cluded (see Section 5.4). It uses formalized information from architecture descriptions that are
based on the DSL. Furthermore, it employs the functionality of the software framework to unify
and abstract the communication code for data collection and manipulation. The requirements from

the Reg-A and Req-G category are particularly crucial for this sub-concept.

Figure 18 reflects the proposed integrated, model-driven workflow. Based on an existing CPSoS
(brownfield) or a conceptualized system (greenfield), a suitable data collection architecture is de-
signed by an interdisciplinary expert team. This team is made up of automation engineers, process
experts, IT architects, data analysts, and programmers. Following the guidelines of the architecture
concept, the architecture is described. For this purpose, the vocabulary, rules, and graphical ele-
ments of the DSL are used. After incremental refinement of the conceptualized data collection
architecture by the experts, a final architecture description is established. This description serves
as the basis for the model-based generation of the data collection architecture. In an M2T trans-
formation step, a preconfigured architecture is generated, which is based on code templates from
the software framework. The preconfigured architecture encompasses the configured communica-
tion part of the architecture and placeholders for custom code (OSI layer 7). This preconfigured
architecture is, in the next step, extended with custom code fragments to add the specific function-

alities of the architecture before it is deployed to the CPSoS.
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Figure 18: Workflow for model-driven development of data collection system architectures.
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5.1. Technology-neutral Architecture Concept

The concept of the data collection architecture is based on previous work by the author and extends
the published concepts [TLV18; Tru*17; Tru"19b; Tru*19c¢].

Industrial automation systems are characterized by a multitude of heterogeneous systems situated
on different levels of the automation pyramid. The architecture needs to support the data collection
process from these distributed systems (Req-Aate). To minimize the impact of the data collection
process on the control of the system, parallel operation of the data collection architecture to the
existing automation pyramid is desirable (Reg-Arop).

One of the major obstacles for the implementation of data analysis projects in industrial processes
is the significant effort for interfacing the multitude of heterogeneous systems [Bist99; Peil9].
Existing legacy systems with proprietary interfaces further complicate the task. The results are
often ad-hoc implementations for specific data analysis projects that result in hard to maintain
meshed P2P communication networks. Modifications or updates concerning information models,
communication interfaces, and available communication protocols on one of the connected sys-
tems result in the need to update all related communication interfaces. The architecture concept
should, therefore, decrease the necessary implementation efforts for the initial deployment of a
data collection and analysis infrastructure (Reg-Aoep), as well as for redeployment or migration

scenarios (Req-Arepep).

As the implementation effort for data collection architectures is strongly related to the number of
necessary communication channels, the application of middleware concepts can be beneficial. The
middleware mediates between all connected systems and allows transparent data access (see Fig-
ure 19). The definition of a standardized interface for the connection of systems unifies the data
collection process. Legacy systems that are not compatible with the newly introduced standard
interface must be interfaced using data adapters. These data adapters translate between the legacy
systems and the standardized interface. Greenfield applications that are implemented following
the standard interface do not need any further mediating step. They are compatible with the mid-
dleware out-of-the-box. Figure 19 reflects the data collected from different levels of the automa-
tion pyramid, as well as a parallel operation not interfering with the existing infrastructure for
control. Legacy systems, especially the existing automation systems (e.g., legacy PLCs) residing
in the automation pyramid, are interfaced using data adapters. The middleware acts as a mediating
bus that allows transparent data access from all connected systems, called participants. The par-
ticipants that are connected to the architecture are systems that include hardware as well as soft-

ware functionalities.



60 5. Approach for Model-driven Development of Data Collection Architectures

i W
Middleware
gl
& g —Of«»
Standardized Q3o 2
-O)— < <> @)
Interface —\
@ Legacy sg
Interface 8s —(Of<«»> Plant Simulation
<<
. A
gl ) o
g 3O« =
<
Data Analysis
ol
5 5 HOle> o8
[a) =
2 OTOr © i
,_ < 5
Sensors / ol %’_ Ol Legacy HMI
Actuators Sw —C
<

Figure 19: High-level concept of the data collection architecture.

Therefore, for n participants N communication channels have to be implemented for transparent
N-(N-1)
2

data access in comparison to interfaces for a completely connected P2P mesh (see

Section 2.3.2). A comparison between the necessary communication channels for transparent data
access across all systems is depicted in Figure 20 as a function of the connected systems n. As can
be seen, the number of communication channels for the middleware approach is significantly de-

creased if more than three systems are connected.
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Figure 20: Number of necessary communication channels for transparent data access as a function of the
number of connected systems n for a fully connected mesh (P2P) and a middleware network.

The middleware acts as a secondary communication channel following the NOA concept [Kle*17;
NE175]. It allows the vertical and horizontal integration of data from the automation pyramid:
systems on different levels of the hierarchy can be interfaced and their data made accessible; be-

sides, transparent data exchange is possible for participants on the same hierarchical layer.
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The detailed middleware concept is depicted in Figure 21. Distinct functional layers are introduced
to increase the modularity of the concept, namely Data, Integration, Analysis, and Dashboard.
The architecture’s heart is the Data Management and Integration Broker in the Integration layer.
It acts as the middleware component of the architecture and mediates between the participants.
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Figure 21: Detailed concept of the data collection architecture (adapted from [Tru*19¢]).

Data is received by the broker and distributed to all participants, which are interested in this spe-
cific piece of data. The Data Management and Integration Broker features central rights manage-
ment (Access Control and Anonymization). Access rights to datasets are managed and controlled
by the middleware itself, ensuring that no sensitive information is leaked to non-authorized par-
ticipants. The anonymization component can anonymize data before it is distributed to clients. For
instance, data could be normalized, artificial noise could be introduced, or the sampling rate of the

data could be decreased. This lowers the information content of the data and prevents the leaking
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of sensitive information. Centralizing these functionalities on the Integration layer minimizes re-
dundancies in the architecture as the participants can rely on the middleware. Furthermore, as data
processing by the participants is out of the limits of the central Integration layer, it could be com-
promised and hence not trustworthy. The trust in the system can be increased by keeping this
functionality at a central instance. An External Data Adapter allows the connection of multiple
instances of the broker for a separation of concerns, for instance, across different production sites

or even companies (inter-enterprise data exchange).

The Data layer includes systems that function as data sources and may receive processed infor-

mation. Participants that are part of the automation pyramid always reside in the Data layer.

The third layer, the Analysis layer, includes systems that provide advanced functionalities executed

on the data. Typically, any data analysis, simulation, and optimization belong to this layer.

The last layer is the Dashboard layer, which is used to communicate with humans. Operators,

experts, or data analysts can visualize data from the Data layer and results from the Analysis layer.

All participants communicate over the central Data Management and Integration Broker without
direct P2P connections (see solid lines in Figure 21). Therefore, a standard interface is used that
allows all participants to communicate in a unified way. The standardized interface defines how
data can be accessed and forwarded. The principles of the standardized interface and data adapters

are illustrated in Figure 22.

The standardized interface provides the necessary functionalities for communication with other
systems and can be realized with different technologies (Req-Arac). Existing connections between
legacy systems can be left in place if access to the transported data is not necessary for other
systems outside the legacy connection (the dotted connection between Legacy Analyzer and Leg-
acy Data Access / Analysis HMI in Figure 21). Keeping these existing connections helps to mini-

mize the development effort, as existing connections can be retained.

While newly developed participants can make direct use of the standardized interface and imple-
ment it for communication (see Figure 22 (left), 1), existing legacy participants are interfaced using
data adapters that translate the protocol (syntax, OSI layers 4 to 7 ) and understanding (semantic,
information model) between legacy and standard representation. Different concepts for data adapt-
ers exist, depending on the location where the translating logic (Translator) is executed. These

are, from left to right in Figure 22:
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Figure 22: Principle of the technology-neutral, standardized interface to integrate greenfield and brown-

field participants. Greenfield participants (left, I) need no adapter. Legacy participants need
adapters: independent data mediator (second from left, 1), integrated data wrapper (third
from left, 111), and data translator in Data Management and Integration Broker (right, IV).

Il: data mediators that constitute independent systems. These systems receive the legacy
data over an interface that is provided by the legacy component. The Translator subsystem
translates syntax and semantic between the incompatible legacy and standard representa-

tions. Communication with the broker uses the standard communication library;

I1I: data wrappers that form integrated systems with the legacy systems they wrap. From
the outside, only the standard interface-compliant wrapper is visible to the architecture.
The legacy system is entirely wrapped inside the wrapper. Translation and communication
with the middleware follow the same principle as in the data mediators. Communication
between Translator and the legacy system’s System Logic can either be handled through
the legacy communication library (I11, a) or direct access (11, b);

IV: data translators on the broker-level as an integral part of the Data Management and
Integration Broker. For this kind of data adapter, the middleware must also provide the

legacy interface for communication.

Throughout this thesis, all three kinds of adapter concepts are summarized under the term data

adapter. The distinct concepts have their strengths and weaknesses. Depending on the specific use-

case, one may choose a suitable data adapter concept. As the retrofitting of existing legacy systems
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with data adapters is a very time-consuming task, a step-wise deployment and refinement of the
architecture are proposed. The initial deployment should focus on systems that heavily depend on
each other to benefit from the decreased number of interfaces. Over time, more and more systems
can be migrated in small, manageable steps. This step-wise approach minimizes the effort for
initial deployment at the tradeoff of incomplete data access. [Bis*99; Cal*17]

While Figures 19 to 22 all illustrate a central Data Management and Integration Broker, they only
refer to the function of the component, not its physical location. The broker can be implemented
using different sets of technologies, centralized or distributed. The presented concept can be
adapted and implemented for a wide variety of use-cases (Req-Arac) regardless of actual middle-
ware technology and communication protocol used (see Section 2.3.2), the mix of programming
languages for implementation, or the actual realization of the adapters. The architecture concept

serves as a basis for practical implementations and their description using the DSL.

5.2. Domain-specific Language for Data Collection Architectures

The DSL for data collection architectures developed in this thesis, as the definition of the term
modeling language requires [Rod15], consists of a metamodel (abstract syntax) and a graphical
notation (concrete syntax). Both are introduced in the following two subsections. Experts can
model information using the graphical modeling notation (Reg-Maraph). The modeled information
is then structured as instances of the metamodel, which can be used for the subsequent model-
driven generation of the data collection architecture. Class and interface names that are part of the

metamodel are highlighted in italic in the text.

Throughout the following parts of this Chapter, a simple application example indicated by grey
boxes and the caption “AE.Part” will be used to introduce the application of the DSL. After each
explanation of a subpart, the presented concepts are applied to the application example to reflect
their specific usage. However, due to the simplicity of the example, not every introduced concept
can be found, or the depth of modeling is limited. The introduction of the example can be found
in AE.Part 1. A list of all references to the application example can be found in Chapter 13.
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AE.Part 1: Introduction of the physical application example.

The application example contains a conveyor belt driven by a servo drive. Light barriers are
located on both ends of the conveyor belt and can detect workpieces entering or exiting the
conveyor belt. A level sensor is located over the center of the belt and measures the filling level
of water inside the workpieces. See AE.Figure | for a schematic drawing:

Level Sensor
Light Barrier 1 D Light Barrier 2
2 Yz
O
-|:|- Servo Drive

AE.Figure I: Schematic drawing of the physical setup.

The conveyor belt is subject to constant wear, which leads to unexpected downtimes. A new
monitoring application is to be set up to monitor the condition of the belt. The monitoring is
based on an anomaly detection algorithm that indicates the probability of an abnormal situation
as a so-called anomaly score. A dashboard is to be installed that displays the calculated anomaly
score to the operating personnel. Therefore, a PC executing the analysis function is added to the
system. This PC is connected to the PLC of the conveyor belt via Ethernet.

The belt is controlled by a central Beckhoff CX2040 PLC that executes the control logic. Inside
this PLC program, the set speed (variable SpeedSet) of the conveyor belt is calculated. A four-
channel digital input terminal is directly attached to the PLC and connected to the two light
barrier sensors (channel 1 is connected to LightBarrierl sensor on the left of the belt and chan-
nel 2 to LightBarrier2 sensor on the right of the belt, the other two channels are not connected).
Additional signals are interfaced over an EtherCAT bus connected to the PLC. The first bus
coupler in the bus has a two-channel analog input terminal attached, which is connected on
channel 1 to the level sensor (WaterLevel). The bus is finally terminated in the servo drive that
is directly connected to the EtherCAT bus. The servo drive includes internal control logic and
provides signals for the actual speed of the drive (SpeedActual) as well as the measured torque
(TorgueActual). A schematic view of the network, the connected devices, as well as the sensor

and actuator signals, are depicted in AE.Figure II:

Data =
Analysis +
Dashboard
[FEERS
Ethernet

é 0 EtherCAT

O
Beckhoff oo EtherCAT EtherCAT ﬁ:
CX2040 oo Bus Coupler Servo Drive
SpeedSet

4x Digital Input 2x Analog Input SpeedActual

Channell: LightBarrierl Channell: WaterLevel TorqueActual
Channel2: LightBarrier2

AE.Figure II: Schematic drawing of the hardware components and input/outputs.
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5.2.1. Communication Architecture Metamodel

The metamodel describes basic concepts of data collection architectures in the domain of industrial
automation (abstract syntax). It structures the modeled information and makes it accessible for a
subsequent model-driven generation of the data collection architecture. An overview of the base
elements of the metamodel is given in Figure 23. These base elements and the associated classes
are separately explained in the following. The base element of the metamodel is a concrete Archi-
tecture that is described by an ArchitectureDescription (compare 1SO 42010 [1SO42010]). This
ArchitectureDescription comprises a ConfigurationContainer, which in turn includes the modeled
SystemConfiguration of the described architecture. The configuration of the system is divided into

distinct categories:

e SoftwareContainer which describes the software functionalities that are part of the system

and the flow of data/information between them;
e PhysicalContainer which describes the hardware components of the system;

e RelationContainer which maps software functionalities, networks connections, and data

elements from the SoftwareContainer to hardware elements in the PhysicalContainer; and

¢ AnnotationContainer which includes and structures properties, requirements, and addi-

tional annotations.

The introduction of these sub-containers facilitates a strong separation of concerns when modeling
and annotating complex, and intercorrelated systems constituted of hard- and software. A reduced
version of the metamodel’s general structure was published by the author as part of the

DSL4hDNCS [Vog*20].

Architecture

1?1

ArchitectureDescription

1?1

ConfigurationContainer

1
0“*

SystemConfiguration

¢
1 |1 |1 1
SoftwareContainer ||PhysicalContainer RelationContainer AnnotationContainer

Figure 23: Overview of the general structure of the metamodel.
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SoftwareContainer

Software functionalities are an essential part of data collection architectures. They describe the
logic that generates, manages, modifies, processes, and transmits the collected data. The execution
of a software functionality always requires a hardware processing unit associated with it (see Sub-
sections PhysicalContainer and RelationContainer). Software functionalities in connected systems
communicate with each other and exchange data and information. This data exchange between
software functionalities can either be local between software functionalities on the same physical
system or via a network. The structure and interaction of software functionalities are formalized
and described in the SoftwareContainer, which is depicted in Figure 24. The SoftwareContainer

bridges the system viewpoint (Req-Msys), and the data flow viewpoint (Regq-Mor).

All configuration elements that are aggregated by the SoftwareContainer derive from the base
interface I1SoftwareConfigurationElement. The metamodel differentiates between a platform-inde-
pendent configuration (IPlatformindependentElement) and a platform-specific configuration
(IPlatformSpecificElement) (compare OMG MDA [OMG14]). While the platform-independent
branch describes the abstract roles of software functionalities, data flows between them, and the
exchanged data, the platform-specific branch describes the concrete technologies and configura-
tions. This separation allows the definition of the software part of the architecture on two levels
and increases the reusability of the information in the platform-independent branch. Furthermore,
it reflects the workflow during the engineering of software systems with abstract descriptions in
the beginning and their mapping to technologies during the workflow.

Every connected software system is a so-called SoftwareFunctionality and can process and com-
municate data. SoftwareFunctionalities include custom code for actions carried out on data (Ap-
plicationSpecificLogic),e.g., data manipulations and calculations, and communication services
(IService) for communication with other SoftwareFunctionalities. A service can either produce
(IProducer), consume (IConsumer), or consume and produce data (IConsumerProducer, derived
from IProducer and IConsumer) [OMG12]. Producers and consumers are connected over a Data-
Flow that describes data exchange between two SoftwareFunctionalities. As SoftwareFunctional-
ities can aggregate multiple services, complex interactions are possible; for instance, consumption
of several data flows and offering of the processed data over two different DataFlows. This kind
of complex interactions is often found in industrial automation, for instance, SCADA system that
aggregate data from various PLCs and forward part of the data to a dashboard while another part

of the data is provided for a superordinate MES system.
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SoftwareContainer
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Figure 24: Detail of the metamodel’s SoftwareContainer for the description of the software. Platform-
independent part (left) and platform-specific part (right) allow the description at distinct lev-
els of abstraction.

As introduced in Reg-Mpr, the flows and manipulations of data are highly relevant in industrial
data analysis. Thus, the metamodel needs to encompass elements to describe these aspects, and
the concrete classes Source, SinkSource, DataTransducer, and Sink are introduced. These describe

the roles of SoftwareFunctionalities related to the flow and manipulation of data (see Table 6).

Table 6:  Types of data manipulation considered in the metamodel.

Class Derived from  Description

Origin of a DataFlow. Sources cannot consume any data but, instead,

Source IProducer provide data to other SoftwareFunctionalities.

SinkSources consume and produce data at the same time. Data that
flows in can be processed or altered but is not automatically available
. IProducer and SE . -
SinkSource |Consumer on the producing side of the SoftwareFunctionality. In other words,
onsume inflowing DataFlows are terminated by a SinkSource, and only ex-
plicitly defined data is offered to other SoftwareFunctionalities.

DataTransducers consume and produce data at the same time. Data
IProducer and  that flows in can be processed and is transparently and unaltered

DataTransducer IConsumer available on the producing side of the SoftwareFunctionality. Addi-

tionally, calculated or measured data can be made available as well.

. The end of a DataFlow. Sinks only consume data but cannot produce
Sink IConsumer

or forward any data.
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AE.Part 2 demonstrates the modeling of the software functionalities and the data flows for the
application example.

AE.Part 2: Modeling SoftwareFunctionalities and DataFlow.

The application example contains different software functionalities and data flows that should
be described and formalized using the metamodel. Therefore, the classes of the metamodel are
instantiated as concrete objects representing the information to be modeled. Every software
component of the system can be modeled as a SoftwareFunctionality (see Figure 24), which is
composed of the internal programming logic of the functionality (ApplicationSpecificLogic) and
a description of the function inside the data flow (IService). AE.Figure 11 reflects the mapping
of the SoftwareFunctionalties to the respective hardware systems, as well as the definition and

role of IService instances.

Analysis_CM -

CM_Service : =

SinkSource

Analysis_HMI

HMI_Service : WEEETS NN

Sink

Ehernet
EtherCAT
O 0 {]

PLC1_MC O (=

Internal_Service : o o Servol_Internal

DataTransducer o o Internal_Service :

Source

AE.Figure IlI: Mapping of the SoftwareFunctionalities to the components and IServices.

Starting from the field level, the internal control logic of the servo drive is instantiated as an
instance of SoftwareFunctionality with the name Servol_Internal. This software functionality
aggregates the internal logic of the servo drive (Internal_Logic) and the communication part
(Internal_Service). From an analysis point of view, the servo drive only sends data (the actual
speed, SpeedActual, and torque, TorqueActual, values) but does not receive data. Hence, the
IService instance Internal_Service is of type Source.

This data is sent to the communication part (IService) of the SoftwareFunctionality running on
the PLC (PLC1 _MC). Therefore, an instance of DataFlow (F1) is associated with both
IServices. The software component PLC1_MC needs to forward the data from the servo drive
and add the other signals from the bus (WaterLevel, LightBarrierl, and LightBarrier2) as well
as the internal variable from the PLC logic (SpeedSet). As data is flowing into and out of the
software functionality, its 1Service must be of type IConsumerProducer. Moreover, the original
data from the servo drive is entirely forwarded, which specifies the 1Service as a DataTrans-

ducer.
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In contrast, the analysis function for condition monitoring (Analysis_CM) inside the connected
computer should consume the raw data from the PLC but not forward it any longer to the dash-
board. Instead, only the calculated anomaly score is sent. Consequently, while the IService of
the analysis software is still an IConsumerProducer, the concrete realization is a SinkSource
that does not forward the original data any longer.

Finally, the anomaly score must be received by the dashboard software functionality (Analy-
sis_HMI). The ApplicationSpecificLogic of the functionality (HMI_Logic) has to display the
data to the user, while the communication part (HMI_Service) is a Sink for the data flow as no
data is sent from here.

AE.Figure 1V reflects the modeled instance. It captures the SoftwareFunctionalities and the

DataFlows as part of the SoftwareContainer (not shown in the Figure).

lAnaIysis_HMI : SoftwareFunctionality ]
[ J

*r
1
[HMI_Logic : ApplicationSpecificLogic ] lHMI_Service : Sink ]
[ J | b—‘
[Analysis_CM : SoftwareFunctionality ‘ [FS : DataFlow ‘
[ J [ J
[ 2
1
[CMfLogic : ApplicationSpecificLogic ] [CMfService : SinkSource ‘7
[ J | b—‘
[PLClﬁMC : SoftwareFunctionality ] [FZ : DataFlow ]
[ J [ J
[ 2
1
[MC_Logic : ApplicationSpecificLogic ‘ [MC_Service : DataTransducer}i
[ J 1 —
[Servol_lntemal : SoftwareFunctionaIity] “:1 - DataFlow ‘
[ J | ]
*r

[InternaI_Logic : ApplicationSpecificLogic ‘ [InternaI_Service : Source
[
AE.Figure IV: Example of SoftwareFunctionality and DataFlow modeling.

L

Across the connected systems, several types of data need to be processed and communicated by a
SoftwareFunctionality. The abstract class DataElement describes these (see Figure 25). DataEle-
ments are differentiated by their type of information (PrimitiveDataElement or ComplexDataEle-

ment):

e HardwareDataElement, derived from PrimitiveDataElement, describes measured values
that can be referred to as a measured hardware signal from a sensor or actuator (see Sub-
sections HardwareContainer and RelationContainer). Examples are digital values from

light barriers;
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e SoftwareDataElement, derived from PrimitiveDataElement and DerivedDataElement,
represents data that is calculated by a software functionality (pure software information).
It may be based on other DataElements (e.g., Hardware) but does not correspond to the
measured variable directly: instead, it can refer to original DataElements over the refer-
ence inherited by DerivedDataElement. Typical examples are values calculated ina PLC
based on sensor values (HardwareDataElement) such as temperatures that are measured

over resistance or operating modes;

o ModelDataElement, derived from ComplexDataElement and DerivedDataElement, de-
scribes complex trained or parametrized models for analysis and computation. The inher-
itance from DerivedDataElement allows to refer DataElements that were used to train the
model; and

o CompositeDataElement, derived from ComplexDataElement, describes tuples of other

DataElements, for instance, multi-dimensional data or structures.

DataElement PrimitiveDataElement <)|: HardwareDataElement

SoftwareDataElement
ComplexDataElement ModelDataElement
DerivedDataElement CompositeDataEIementO—‘

Figure 25: Detail of the metamodel for the description of DataElements.

DataElements and their way through the system need to be traced. Therefore, DataElements are
aggregated by their original producers and referenced by the DataFlows that transport the specific
DataElement (cf. Figure 24). As data is used to calculate and derive other data or information from
it, the abstract class DerivedDataElement reflects this direct dependency of calculated data inside
the architecture through a reference back to the original DataElements. Only SoftwareDataEle-
ments and ModelDataElements can include this reference (inheritance from DerivedDataEle-
ment). Therefore HardwareDataElements must always reflect raw and unaltered data from the
field level. DataElements can change their name throughout their way through the systems. There-
fore, the DataTransportRelation relates the unique DataElements to the transported DataElements

and their system-specific names. AE.Part 3 gives a usage example of DataElements for modeling.
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AE.Part 3: Modeling of DataElements.

In addition to the software functionalities, the data elements should be modeled as part of the
SoftwareContainer. DataElements are aggregated by the respective IServices where they are
first transmitted. As an example, the model of DataElements of the servo drive and the PLC is
given in AE.Figure V. The sensor values LightBarrierl, LightBarrier2, and WaterLevel are of
type HardwareDataElement as they are directly measured. In contrast, the SpeedSet variable is
a SoftwareDataElement as it reflects an internal variable from the PLC logic without a direct
correspondence to an output. The same applies to the servo drive’s variables, which reflect in-
formation calculated from other data inside the servo drive control logic. The mapping of the
DataElements to the respective DataFlows F1 to F3 from AE.Part 2 will be shown as part of
the RelationContainer in AE.Part 6.

PLC1_MC X O ol |[MC_Service : DataTransducer
Internal_Service : O

DataTransducer
oo

SpeedSet o LightBarrierl _DE : HardwareDataElement
4x Digital Input @ CX2040
Channell: LightBarrierl
Channel2: LightBarrier2 LightBarrier2_DE : HardwareDataElement
2x Analog Input @ Bus coupler
Channell: WaterLevel

SpeedSet : SoftwareDataElement

WaterLevel DE : HardwareDataElement

Servol_Internal g Internal_Service : Source
Internal_Service :
Source
SpeedActual SpeedActual : SoftwareDataElement
TorqueActual
TorqueActual : SoftwareDataElement

AE.Figure V: Example of DataElement modeling.

The platform-specific part of the SoftwareContainer (cf. Figure 24) describes and adds the con-
crete technologies and roles for a realization of the configuration. The elements IProduceService
and IConsumeServices, derived from IConnectionService, refer to their abstract representations in
the platform-interdependent part and enhance the modeled level of detail. The same applies to
ServiceDataFlow, which details a DataFlow and connects the IProduceServices and ICon-
sumeServices. ApplicationSpecificlmplementation corresponds to the concrete realization of the
logic defined in ApplicationSpecificLogic. IConnectionServices and the Usermplementation form

so-called SoftwarePackages, the platform-specific counterpart to SoftwareFunctionalities.

In conjunction with the RelationContainer, the SoftwareContainer aims at addressing the data

flow viewpoint of the modeling language (Reg-Mpk).
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Physical Container

The PhysicalContainer of the metamodel collects the descriptions of the hardware and network
elements of the system architecture. In conjunction with the software functionalities mentioned
above and a mapping between the two containers (see Subsection RelationContainer), it addresses
the system viewpoint (Reg-Msys). The PhysicalContainer was published by the author as part of
the DSL4hDNCS [Vog™20].

Figure 26 reflects the elements of the PhysicalContainer with the base elements IPhysicalConfig-
urationElement, IHardwareCapability, and IHardwareComponent, which are characterized in the

following:

e |HardwareCapability addresses the capabilities that specific hardware elements offer,
such as converting electrical signals to data (IConvertable), being connectable to a net-
work (IConnectable), and allowing the execution of higher software functionalities with
application-specific code (IProcessable). Basic signal conversion and networking logic
does not require an IProcessable (e.g., bus couplers with internal firmware, but no possi-
bility of execution of custom logic);

o |HardwareComponent describes the elementary building blocks of hardware systems, in

this case, CPUs, NetworklInterfaces, and IOTerminals; and

¢ |PhysicalConfigurationElement groups the separate hardware elements to physical sys-
tems. Furthermore, it defines the rules of their compositions. This includes (bus-)Cou-
plers, PLCs, Computers, and Clouds, which are constituted of the elementary hardware

components.

NetworklInterfaces aggregate elements of type INetworkConfiguration (not shown in Figure 26),
which describe the actual configuration of an interface, including types of networks (e.g., Profibus,

EtherCAT, or Ethernet) and the role in the network (master, slave, and regular participant).

IOTerminals aggregate 10Signals (in- and outputs, 1/0s) from the field level. These signals are
differentiated by their type of signal, namely digital information (10SignalDigital) or analog in-
formation (I0SignalAnalogue). Additionally, sensors that serve as inputs (I0TypeSensor) are dis-
tinguished from the outputs of a control system, the actuators (I0TypeActuator). The particular
types of 10Signals derive from these abstract superclasses, for instance, a DigitalSensor as an
10SignalDigital and 10TypeSensor. AE.Part 4 reflects the usage of the introduced elements to
model the physical structure of the application example. The 10Signals can be mapped to Hard-

wareDataElement as part of the RelationContainer (cf. Section RelationContainer).
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Figure 26: Detail of the metamodel’s PhysicalContainer for a description of the system. Physical systems
(left) are composed of distinct components (right). IOTerminals may encompass signals (bot-

tom).

AE.Part 4: Modeling the physical configuration of the system (PhysicalContainer).

The physical configuration of an architecture is modeled as part of the PhysicalContainer. This
container aggregates the separate hardware systems that form the architecture. For the applica-
tion example, these are the servo drive with its internal logic, the EtherCAT bus coupler, the
PLC, and the PC that hosts the analysis and dashboard functionalities. Each of these systems
belongs to a specific category of IPhysicalConfigurationElement and is constituted of one or
several IHardwareComponents (see AE.Figure VI).

For instance, the analysis computer (named Analysis in this example) is a PC and aggregates a
NetworklInterface (Analysis ETH1) for network connectivity and a central processing unit
(CPU) for the execution of SoftwareFunctionalities. The Beckhoff CX2040 PLC is composed
of a CPU for the execution of the control program, two Networklnterfaces, and an IOTerminal.
While the first NetworklInterface is connected to the local Ethernet, the second NetworklInterface
is the bus master interface of the EtherCAT bus of the conveyor. The I0Terminal corresponds
to the four-channel digital input terminal directly attached to the PLC. It aggregates the two
connected light barriers, which are both DigitalSensors (base type 10Signal).

In contrast to the PLC, the bus coupler BC1 of type Coupler lacks an own CPU and is therefore
not able to execute any SoftwareFunctionality. It can be regarded as a passive component. Its
data has to be read from another active system with a CPU. Still, it contains an I0Terminal with
the analog WaterLevel sensor attached and a NetworkInterface for EtherCAT connectivity.
Servol, which is directly connected to the EtherCAT network, is represented as a PLC with a
NetworklInterface and a CPU for the execution of the internal control logic.

The model instance to describe the physical system is shown in AE.Figure VI. The mapping of

I0Signals to the DataElements is shown as part of the RelationContainer in AE.Part 6.
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AE.Figure VI: Example of modeling the physical configuration.

AnnotationContainer

The AnnotationContainer holds information on annotations of the model elements with particular
properties and requirements (Reg-Meropreq). The general structure of the AnnotationContainer was
published by the author as part of the DSL4hDNCS [Vog*20] but in contrast to this thesis, includ-
ing annotations for safety-related properties and requirements. Annotations can be assigned to
distinct elements of the metamodel. The structure inside the AnnotationContainer is depicted in
Figure 27. Annotations are grouped into so-called AnnotationGroups, which can describe several

aspects of another element. Annotations can have the types (AnnotationType)
e Requirement to describe requirements a distinct system must fulfill; and

e Property that describes the actual value inside a deployed or simulated architecture.

AnnotationContainer
AnnotationGroup
? <<Enumeration>>
AnnotationType
Annotation Requirement
Property
A
| I |
ArchitectureAnnotation DataAnnotation TimeAnnotation

Figure 27: Detail of the metamodel’s AnnotationContainer for description and categorization of annota-
tions.
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After deployment, Requirements and Properties can be compared to judge on the fulfillment of
formulated requirements. Alternatively, if simulation models are available, feasible deployment
scenarios can be simulated and assessed for requirement fulfillment. Annotations can be grouped
into distinct categories. Following the original approach by Vogel-Heuser et al. [Vog*11], the fol-

lowing categories are used:
o architecture: annotations related to software or hardware systems;
e (data: annotations related to the data that is communicated between participants; and

e time: annotations related to the time-behavior of systems. Directly based on the original
approach [Vog*11], but extended by additional possible annotations.

A list of annotations included in the metamodel and the mappings to the respective categories are

given in Table 7. Users may declare additional annotations and add them to the metamodel if

needed for a use-case.

Table 7:  List of annotations contained in the metamodel. Categorization (A) Architecture, (D) Data,
(T) Time.

Type Name Description

A ADDRESS Address_ of a sys:tem. For instance, the IP address of an Ethernet interface or
the Profibus station address of a bus coupler.

A FLOW TYPE Specification on the type of a specific software functionality, e.g., stream,

- batch, or hybrid analysis/database.

A HW_MANUF Manufacturer specification of a hardware component, e.g., Siemens.

A HW_TYPE Type specification of a hardware component, e.g., S7-1513-1 PN.

A HW_VER Version specification of a hardware component.

A N_SAMPLES The ability of a system to buffer or store n samples.

A REDUNDANCY :)ri];‘ic:)r/matlon on redundancy/duplication of systems in order to improve relia-

A SCALABILITY Represents the numper of similar configurations connected to the same net-
work, while only giving one example.

A SW_NAME Product name of a specific software representing a SoftwareFunctionality.

A SW_PROVIDER  Provider of a specific software representing a SoftwareFunctionality.

A SW_VER Product version of a specific software representing a SoftwareFunctionality.

A VLAN VLAN identifier giving the VLAN (Virtual Local Area Network, IEEE
802.1Q [IEEE802]) an Ethernet network interface belongs to.
The authentication mechanism for establishing communication or data trans-

D AUTH o
fer, e.g., password-based or certificate-based.

D ENCRYPT The encryption used for securing a data transfer, e.g., AES (Advanced Encryp-

tion Standard).
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Type Name Description

D PORT Port used for communication as a combination of transport protocol and port,
for instance, TCP:1883 as the standard port for MQTT.

D PREPROCESS Dlstrlbu.ted preprocessing actions on involved systems, e.g., averaging or
resampling.
Privacy level of the transmitted data. This includes, for instance, normaliza-

D PRIVACY . . . : . ;
tion, resampling, or the introduction of arbitrary noise.

D PROTOCOL The underlying communication protocol used for communication.

D SEMANTIC Description of the underlying data semantic during transmission.

T CYCLETIME Cycle tlme ofa s_ystem. Often used for Machine Control (MC) functionalities
for cyclic execution of the control code.

T JITTER Information on jitter o for data transmission from source to destination.

T LATENCY Latency t, Qegcrlptlon for data transmission from source to destination or data
processing inside a system.

T PROCESS Time for Processing tpyoc inside a system, for instance, analysis or translation
of semantics.

T SAMPLE_RATE  Sample rate f; of a component to scan data.

SAMPLE_TIME

Sample time tg of a component to scan data.

The mapping between annotations and other model elements is realized using mappers and inher-

itance of the mappers to the respective model elements. The mapper concept allows easy extension

of additional dependencies and decreases the number of individual relations in the metamodel. An

excerpt from the association logic is illustrated in Figure 28 for the Annotations VLAN, Address,

FlowType, Jitter, and Latency. For instance, Jitter is the only Annotation that can refer to Annota-

tions, in this case, other TimeAnnotations. The reason is that all other TimeAnnotations (e.g., Cy-

cletime or Latency) can carry jitter information with them.

ArchitectureAnnotation

VIAN|————— 1 |<<Interface>>

INetworkConfiguration
Address S

DataAnnotation

L FlowType

DataFlow

TimeAnnotation

[EJitter J
Latency

Figure 28: Excerpt of the metamodel for annotations.

An example of the usage of the annotations from Figure 28 is depicted in AE.Part 5.
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AE.Part 5: Modeling of Annotations (AnnotationContainer).

As an example, the introduced types of annotations are used for adding additional information
to the model (see the instance of the model in AE.Figure VII). For instance, the addresses of
network interfaces can be specified. For the example, the IP addresses of the analysis computer,
as well as the PLC, shall be specified as properties. Also, DataFlow F2 (between PLC and
analysis PC) has an associated latency requirement of 1500 ms, and its flow type is specified as
continuous.
Analysis_ETH1 : Networkinterface Analysis_ ETH1_Address : Address
AnnotationType : AnnotationType = Property
Address : String = "192.168.1.100"
PLC1_ETH1 : Networkinterface PLC1_ETH1_Address : Address
AnnotationType : AnnotationType = Property
Address : String = "192.168.1.200"
F2 : DataFlow F2_Jitter : Latency
AnnotationType : AnnotationType = Requirement
Milliseconds : Double = 1500
F2_Type : FlowType
AnnotationType : AnnotationType = Property
DataFlowType : DataFlowType = Continuous
AE.Figure VII: Example of Annotations modeling.

RelationContainer

The RelationContainer includes the description of the mapping between software information and
hardware platforms. It links the elements from the other containers and relates the modeled infor-
mation. For instance, it states which software is running on which hardware device and what tim-
ing requirements have to be fulfilled. Every element which is aggregated by the RelationContainer

is derived from the interface IRelationContainer (see Figure 29):

NetworkRelation references NetworkInterfaces that are part of the same physical network

and can communicate directly;

o NetworkBindingRelation maps a DataFlow to a concrete NetworklInterface and therefore

describes the actual network that is used for communication;

o HardwareSoftwareRelation describes which processing unit (CPU) is associated with spe-

cific software (SoftwareFunctionality) and serves as an execution environment;

o |0SignalRelation which relates an 10Signal measured by an 10Terminal to its represen-

tation as a transferable data element (HardwareDataElement);

e DataFlow (shown in Figure 24) as a relation between IProducer and IConsumer; and
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o DataTransportRelation from Figure 24, which maps the unique DataElements to the re-

spective DataFlows.

RelationContainer

<<|ntenface>>
Q IRelationElement

[ |NetworkRelation — 1,
I Networkinterface
'+ [
IConnectionService ———{NetworkBindingRelation
|
|
|
SoftwareFunctionality —p—HardwareSoftwareRelation CPU
|
|
!
HardwareDataElement -p—10SignalDataRelation IOSignal
|
|
|
<<Interface>> - DataFlow
IProducer I
|
. |
L
<<Interface>> DataTransportRelation
IConsumer
DataElement

Figure 29: Detail of the metamodel for mapping software (left) and system (right) description with IRe-
lationElements.

AE.Part 6 reflects the usage of IRelationElements to model relations between the elements of the

metamodel.
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AE.Part 6: Modeling relations between the elements and containers.

This part of the application example captures samples of the usage of IRelationElements and
reflects the intended usage of these elements. However, full modeling of relations is beyond the
scope of this application example and too exhaustive.

Networks are described as NetworkRelations that connect the related Networkinterfaces. As an
example (see AE.Figure VIII), the model of the Ethernet network (called ETH1_Local in this
example) connecting the Networkinterfaces of the PLC (PLC1_ETH1) and the analysis com-
puter (Analysis_ETH1) is given below.

[PLCL_ETH1 : Networkinterface
I ] HETH1_Local : NetworkRelation ]

[Analysis_ETHl : Networklnterface N ]
[ ]

AE.Figure VIII:  Example of modeling a network.

Via HardwareSoftwareRelations (see AE.Figure 1X), the execution platform of a Software-
Functionality can be specified. As part of the example, the dashboard functionality (Analy-

sis_HMI) is hosted on the analysis computer, more specifically, its CPU (Analysis CPU1):

[Analysis_HMI : SoftwareFunctionality ‘ [AnalysisMap : HardwareSoftwareRelation ‘ [Ana]ysis_CPUl :CPU ‘
l — — ]

AE.Figure IX: Example of mapping SoftwareFunctionalities to CPUs.

The metamodel differentiates between the digitized information from in-/outputs (Hard-
wareDataElement) and the sensor/actuators (1I0Signal). Therefore, they need to be mapped to
their software representations using 10SignalRelations (see AE.Figure X). For instance, the
LightBarrierl as a DigitalSensor is mapped to the corresponding HardwareDataElement
(LightBarrierl_DE):

[LightBarrierl_DE : HardwareDataEIement] [LightBarrierl_SigReI : IOSignaIDataReIation] [LightBarrierl : DigitalSensor ]
[ — — J

AE.Figure X: Example of mapping HardwareDataElements to corresponding 10Signals.
Transport of a specific DataElement as part of a DataFlow is modeled with a DataTransport-
Relation (see AE.Figure XI). The corresponding DataFlows aggregate these. The example be-
low contains an excerpt, where the DataElements of Internal_Service are transported as part of
DataFlow F1. Additionally, F2 transports the same data and includes data from MC_Service.
[MC_Service : DataTransducer]|

[ ] L 1
LightBarrierl_DE : HardwareDataEIement‘ [LightBarrierlMap : DataTransportRelation }7
— J

[
LightBarrier2_DE : HardwareDataEIement] lLightBarrierZMap : DataTransportRelation }—
[ H ]

SpeedSet : SoftwareDataElement ] lSpeedSetMap:DataTransportReIation }—
[ H ]

WaterLevel_DE : HardwareDataElement ] lWaterLeveIMap:DataTransponReIation }—
H ]

F1: DataFlow

[Imernal_Service : Source ‘

[ ]
ESpeedActual : SoftwareDataElement ] lSpeedActuaIMap : DataTransportRelation }—‘
[ H

]
TorqueActual : SoftwareDataElement ] [TorqueActualMap : DataTransponReIation}—
H ]

l
AE.Figure XI: Example of associating DataElements to DataFlows.
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5.2.2. Graphical Modeling Notation

This section describes the graphical notation that builds on top of the metamodel and visualizes
the modeled information. As stated by requirements Req-Msys and Reg-Mpr, it distinguishes be-
tween the viewpoints system and data flow. Annotations that describe properties and requirements
(Reg-Mpropreq) Can be used in both viewpoints and will be introduced after a presentation of the
system and data flow viewpoints. Parts of this chapter have been published as [TWV20].

The system viewpoint is based on the graphical notation presented by Vogel-Heuser et al.

[Vog*11]. The original approach and its modeling capabilities are extended by

software functionalities,

additional types of signals,

a unique labeling system for identification of systems and other elements, and

supplementary symbols.

The unique labeling system is a necessity for mapping the additional viewpoints of the notation
and is therefore not part of the original approach. Throughout the following Section, the following
letters indicate the relation of graphical model elements and concept to the original source of Vo-
gel-Heuser et al. [Vog*11]:

e () included in the original source and used as is,
o (A adapted and extended from the original source (modifications are mentioned).

If not mentioned differently, the graphical model elements are newly introduced as part of this

contribution.

Table 8 summarizes generic graphical symbols that are consistent over both viewpoints. It includes
the elements for the definition of DataElements and 10Signals, the graphical symbols used for the
indication of 10Type and 10Signal, as well as the drawing frame, which limits the drawing area

of the graphical models.
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Table 8:  Generic notation elements for both viewpoints of the graphical modeling notation.

Symbol(s) Description

Signal or information element (DataElement and 10Signal) that is related to a sys-
tem or data flow. The left field indicates the type and form of data (see below); the
right side gives the UID of the variable or signal for identification across all sys-
tems. It reflects the available signals/information in a system or data flow. Map-
ping tables (see Table 13) give the mapping of the UID to the system-specific
naming of this signal/information.

(s[uD

(A) with a UID label.

Indicator for the type of related signal/information.
Shape indicates the form of information (10Signal, (1)):
e circle analog signal, and

e square digital signal.

[ (@)
ES

Tag indicates type of information (I0Type and DataElement),
e S sensor (I0TypeSensor, HardwareDataElement, (1)),
e A actuator (I0TypeActuator, HardwareDataElement, (1)),
e V  variable (calculated, SoftwareDataElement),
e C  composite (CompositeDataElement), and
e M  model (parameterized or trained, ModelDataElement).

Reference arrow (I) that connects the DataElements/IOSignals to the related
software (then a DataElement) and hardware (then an 10Signal) system.

Drawing frame of a drawing sheet, as well as name and number of the sheet. Dia-
grams can span multiple sheets. Every sheet needs a unique combination of Sheet-
SheetName.SheetNumber | Name and SheetNumber.

System Viewpoint

The system viewpoint includes graphical items for elements from the PhysicalContainer as well
as DataElements and SoftwareFunctionalities from the SoftwareContainer. Table 9 lists and de-
scribes these symbols. The convention for the system viewpoint is, if graphically possible, a hier-
archical layout with superordinate systems at the top of the drawing sheet and the field level at the
bottom. Network lines run horizontally from left to right with vertical connection lines to the as-
sociated NetworklInterfaces.
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Table 9:

Notation elements for the system viewpoint of the graphical modeling notation.

Symbol(s)

Description

p
C

uID
uID

Or o

uID

R

A processing unit (left part of each symbol, IProcessable) and a unique identifier
(UID, (A)) of a system (right side, rotated). Processing units enable the execution of
software functionalities.

Differentiation of Computers (PC, left, (1)), cloud environments (Cloud, middle),
PLCs/industrial PCs (PLC, right, (1)). PLC enables the combination with field termi-
nals (IConvertable). If present, the first element of a system on the left.

UID

Bus coupler unit (Coupler) visualized by UID label. It does not contain a processing
unit and can, therefore, not host any software functionality. The addition of a Net-
worklnterface to the right of the element is mandatory. Field terminals can be con-
nected to the right of the bus coupler (IConvertable).

(A), as the original approach implicitly models bus couplers as network interfaces
without a processing unit.

uiD

Communication interfaces of a system with UID of the interface. Differentiation of
master interfaces for master/slave field buses (left) and slave/non-master
fieldbuses/networks (right). Label inside rhombus indicates the type of communica-
tion interface, for instance, ETH (Ethernet), ECAT (EtherCAT), DP (Profibus DP),
PA (Profibus PA), PN (Profinet), or CAN.

(A) UID labels.

Field terminals (I0OTerminals, (1)) for in-/output of signals (10Signals). The number
below specifies the number of 1/0 channels that can be connected via the terminal.
Field terminals follow a processing unit or a communication interface. Typically con-
nected with signal elements (I0Signal).

8x 8x

8x 8x
oo [N o [
I3
i SOFT | | SOFT
|| WARE | | WARE i
W FUNC | | FUNC

SoftwareFunctionality that is executed on a hardware system with UID of the specific
functionality. SoftwareFunctionalities can only be executed if the related hardware
system contains a processing unit (IProcessable). The first software functionality of
a system is connected to the hardware with two triangles (left, NetworkBindingRela-
tion and HardwareSoftwareRelation), additional functionalities are added on the right
side of existing functionality (right). A concrete SoftwareFunctionality replaces the
placeholder SOFTWAREFUNC (see Table 10 for a list of defined labels and their
associated description).

Network (bold, NetworkRelation) and connection lines to Networklnterfaces (thin)
with identifying UID label on the network. Connected interfaces determine the type
of network.

(A) UID label.

Sheet
Number

Off-page connector for networks spanning multiple drawing sheets. The direction is
always outwards from the connected network. Networks spanning multiple sheets
need a consistent UID label on every sheet. Label SheetNumber gives the number of
the sheet, where the continuation of the network is found.

As mentioned in Table 9, SoftwareFunctionalities are graphically depicted by a special symbol

and an associated label. This label describes the function that is executed. Labels and their expla-

nations are summarized in Table 10. Finally, AE.Part 7 reflects the application of the graphical

elements from the system viewpoint to the application example.
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Table 10:  Non-exhaustive list of possible software functionalities.

Functionality Description

Transparent aggregation of data from various sources without changes in protocol, format,

AGGR .
and semantic.

DA Data analysis functionality for extracting information and knowledge from data. May cal-
culate variables and models.

FORW Software functionality to transparently forward data to another system without modifica-
tions in format and semantic.
Existing legacy software components with an internal logic that may generate, consume,
or manipulate data. Examples are MES and ERP systems, as well as other proprietary

LEG . e
systems. If a legacy component can be decomposed into other software functionalities,
these may be used instead of the LEG label.

MC Machine control, typically a control application, running on a PLC or PC. May calculate
variables from measurement signals.

ROUT Message routing functionality to enable communication between heterogeneous systems.
Typically, a middleware component.

STOR Storage functionality to buffer or store, as well as providing data, information, and models.
Translation between different data protocols, formats, and semantics. Used to adapt in-

TRANS .
compatible and legacy systems.

VISU Visualization of data for users (human-machine interface, dashboards).

AE.Part 7: Graphical model in system viewpoint.

The system viewpoint follows the schematic view given in AE.Part 1 (see AE.Figure XII).

Data
Analysis + D
Dashboard

[FEESR

Ethernet

EtherCAT
E o : l EtherCAT
Beckhoff - EtherCAT - EtherCAT
CX2040 - Bus Coupler| [ Servo Drive

SpeedSet

4x Digital Input 2x Analog Input SpeedActual
Channell: LightBarrierl Channell: WaterLevel TorqueActual
Channel2: LightBarrier2

AE.Figure XII: Schematic drawing of the physical setup.

Starting from the field level, the servo drive (see lower right part of AE.Figure XIII) is modeled
as a PLC with the name Servol, one EtherCAT slave interface (name ECAT1), and a Software-
Functionality that reflects the internal control code (MC, name Internal). The two correspond-
ing internal variables (SoftwareDataElements) are associated with the MC SoftwareFunction-
ality where they are calculated.

This servo drive is connected to the EtherCAT field bus ECAT. The master interface of this bus
is part of the central Beckhoff PLC (name PLC1). The PLC furthermore has a second network
interface for Ethernet connectivity (ETH1), the four-channel digital input module with the two
light barriers connected, and the machine control SoftwareFunctionality (name MC) with the
software variable SpeedSet. The bus coupler BC1 is part of the ECAT EtherCAT field bus as

well and has a two-channel analog input signal connected with the WaterLevel sensor.
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As already mentioned, PLC1 is part of a second network (ETH_Local) that connects it to the
analysis PC (name Analysis). This computer hosts the two SoftwareFunctionalities for data
analysis (DA, name CM), where it calculates the AnomalyScore as a software variable, and the
dashboard (VISU, name HMI).

The graphical model is completed by a drawing frame and the unique ID of this drawing sheet
(ApplicationExample.System). Please refer back to AE.Parts 2, 3, and 4 for the corresponding

instances of the metamodel.

) AnomalyScore

/F7 ) 7‘
[ mc
\! !
I
_ L L)
[S]ightBarriers | I SpeedSet | [ElwaterLevel | M SpeedActual |
S|LightBarrier2 v
ApplicationExample.System
AE.Figure XIIl:  Example of the application example in the system viewpoint.

Data Flow Viewpoint

The data flow viewpoint is inspired by data flow diagrams (DFDs) introduced by DeMarco
[DeM79] in his specification of the structured analysis (SA) and also used by Hatley and Pirbhai
in their SA/RT for real-time systems [HP88]. The graphical notation adapts the method and ter-
minology of modeling data flow diagrams and extends it with additional symbols for the specific
application. The nodes of the DFD are mapped to SoftwareFunctionalities. Their shape can dis-
tinguish the influence on the DataFlow. Table 11 summarizes the notation elements for the data
flow viewpoint and describes their meanings. The concrete function of the SoftwareFunctionality
replaces the labels inside the elements (see Table 10). The convention for drawing data flow dia-
grams is a vertical flow from the bottom of a drawing sheet to the top. This layout reflects the
hierarchical flow of data from field levels systems to superordinate IT systems, as well as the

orientation of the system viewpoint.
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Table 11:  Notation elements for the data flow viewpoint of the graphical modeling notation.
Symbol(s) Description
- Component serves as the Source of a new DataFlow. A Source can receive no data, data is
only flowing out. The element refers to a concrete SoftwareFunctionality from the system
SOURCE

viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID is
IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

uiD
SINK

Component serves as the end (Sink) of a DataFlow. No data can be forwarded from a Sink.
Data is only flowing in. The element refers to a concrete SoftwareFunctionality from the sys-
tem viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID
is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Component serves as a transparent DataTransducer. All data flowing into the transducer is
also available on the output side of the component but can be buffered by the software func-
tionality. Transducer blocks may also calculate additional DataElements, which have to be
specified individually. The element refers to a concrete SoftwareFunctionality from the sys-
tem viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID
is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

uib

SINK
SOURCE

Component serves as a non-transparent data SinkSource. Data that flows into the component
is not automatically available on the output side of the component. The DataElements that
should be available on the output side need to be specified explicitly. SinkSources may alter
or buffer data. SinkSource blocks may also calculate additional DataElements which have to
be specified individually. The element refers to a concrete SoftwareFunctionality from the
system viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for
UID is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Specification of a DataFlow from one component to another (I1Service) in the form of a con-
tinuous stream of data. Continuous streams are characterized by a cyclic exchange of often
small data packages. UID refers to a NetworkRelation if data flows over a network, or to an
IPhysicalConfigurationContainer if data flows between two SoftwareFunctionalities on the
same hardware system (inter-process communication, IPC).

Specification of a DataFlow from one component to another (IService) in the form of discrete
batches of data. Batches of data are often generated by buffering a continuous stream of data
in a database or buffer. Batched data often flows only sporadically and in large packages. UID
refers to a NetworkRelation if data flows over a network, or to an IPhysicalConfiguration-
Container if data flows between two SoftwareFunctionalities on the same hardware system.

heet
imber

§
@2

UnigueName

Indicates that the DataFlow is distributed over multiple drawing sheets. A DataFlow from a
SoftwareFunctionality ends at this symbol and references to another sheet (SheetNumber).
On the other sheet, the DataFlow starts again at the top of the symbol and ends at a Software-
Functionality to form a SoftwareFunctionality-to-SoftwareFunctionality connection. Every
sheet break needs a unique name (label UniqueName) for identification.

The application of the data flow viewpoint to the application example is given in AE.Part 8.
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AE.Part 8: Graphical model in data flow viewpoint.

As mentioned in AE.Part 2, the servo drive is a Source of data from a data analysis point of
view. Therefore, at the bottom of the graphical model (see AE.Figure XIV), the MC function-
ality of the servo drive (unique name Servol.Internal) is depicted. The two software variables
SpeedActual and TorqueActual are assigned to the Source. From here, data flows continuously
over the ECAT EtherCAT bus to the MC functionality of PLC1. This component acts as a Data-
Transducer, transparently forwarding the ingoing data and adding more variables (the light bar-
riers, the set speed, and the WaterLevel). All data is then sent over ETH_Local to the analysis
computer and its data analysis (Analysis.CM), where the continuous flow is ending
(SinkSource), and a new variable (AnomalyScore) is calculated. Finally, this information is in-
ternally sent to the dashboard (Analysis.HMI) and displayed, where the overall flow of data
ends.

The graphical model is completed by a drawing frame and a unique label (ApplicationExam-
ple.Data). Please also refer back to AE.Parts 2, 3, and 4 for the corresponding instances of the
metamodel, as well as AE.Part 7 for the corresponding graphical model as part of the system

viewpoint.

4 AnomalyScore

LightBarrierl
LightBarrier2
)Y SpeedSet

(Sw.

PLCLMC

aterLevel

W SpeedActual MC
) TorqueActual

ApplicationExample.Data

AE.Figure XIV:  Example of the application example in the data flow viewpoint.

Annotations

Annotations allow the user to specify additional information to characterize the system. This in-
formation may be, for instance, a requirement that has to be fulfilled for the system to function
correctly, e.g., a maximum acceptable latency of data transmission. The annotation elements for
adding properties, requirements, and additional information to the graphical models are summa-
rized in Table 12. Properties are depicted as single-bordered and requirements as double-bordered

shapes. The notation differentiates between three types of properties/requirements based on the
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shape of the annotations: time-related information, for instance, communication latency or sample

rates, architectural information that defines types of data storage or scalability of components, and

data flow-related information on protocols, semantics, or encryption. Different shapes can differ-

entiate these. The graphical differentiation between requirements and properties, as well as the

idea of categorization, follows the original approach [Vog'11]. A list of properties and require-

ments and their categorization was given in Table 7 in Subsection 5.2.1.

Table 12:  Annotation elements for both viewpoints of the graphical modeling notation.

Symbol(s)

Description

TIME
Actual

A time-related property (1) of a system or data flow. A property from Table 7 replaces
TIME placeholder. Actual gives the actual value of the property.

TIME
Required

A time-related requirement (1) of a system or data flow. A requirement from
Table 7 replaces TIME placeholder. Required gives the specified value of the re-
quirement.

ARCHITECTURAL

Actual

An architecture-related property of a system or data flow. A property from Table 7
replaces ARCHITECTURAL placeholder. Actual gives the actual value of the prop-
erty.

ARCHITECTURAL
Required

An architecture-related requirement of a system or data flow. A requirement from
Table 7 replaces ARCHITECTURAL placeholder. Required gives the specified
value of the requirement.

DATA

A data-related property of a system or data flow. A property from Table 7 replaces
DATA placeholder. Actual gives the actual value of the property.

DATA

A data-related requirement of a system or data flow. A requirement from Table 7
replaces DATA placeholder. Required gives the specified value of the requirement.

Annotation line (1) for a system. It connects the annotation element with the related
software functionality, network, or signal in the system viewpoint.

-

Annotation line (1) for a data flow. It connects the annotation element with the related
software functionality, network, or signal in the data flow viewpoint.

Annotation line (1) for a property or requirement with a reference. It connects the
referenced element to the property or requirement. The annotation element already
needs to be connected to another element of the diagram with one of the annotation
lines for systems or data flows. For instance, Latency requirements always are asso-
ciated with an IConsumer and refer to an IProducer to reflect latency in communica-
tion between the two elements.

PLC TYPE

Type

Cores

Clock Rate

cvo

Instruction Set

Flash

Specification of the type of a PLC or Computer (PLCTYPE) and its important char-
acteristics, including the characteristics of the central processing unit (CPU) (type,
number of cores, clock rate, and supported instruction set), as well as available Ran-
dom-Access-Memory (RAM) and flash memory. If characteristics are unknown or
not specified, only PLCTYPE element without further information may be used. Dou-
ble outer line indicates a requirement for a specific platform.

Adapted from [Has*13].

Com mentml

Non-formal comments to add information to a diagram.
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The application of annotations for amending the graphical models with properties, requirements,
and additional information is given in AE.Part 9.

AE.Part 9: Annotated graphical models.

This part of the application example graphically amends the models (AE.Parts 7 and 8) with the
information from AE.Part 5 (see AE.Figure XV below for the annotated graphical models, left
system viewpoint, right data flow viewpoint).

The addresses of Analysis.ETH1 and PLC1.ETH1 can be modeled in the system viewpoint as
architecture-related properties. Additionally, the hardware details of the CX2040 PLC, as well
as the analysis computer (DELL T7910), are specified as supplementary information.

The data flow viewpoint already includes the information that DataFlow F2 (between
PLC1.MC and Analysis.CM) over ETH_Local is a continuous data stream (solid arrow, not dot-
ted). Finally, the maximum allowed latency between PLC1 and Analysis computer can be added
as a time-related requirement (double-edged).

The Figures below reflect annotated graphical models and, therefore, still have the same labels.

yyyyyy

MSpeedset

S[LightBarrierl
L

ApplicationExample.System ApplicationExample.Data

AE.Figure XV: Annotated graphical models of the application example in both viewpoints.
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Data Mapping Table

DataElements often have system-specific variable names. These change over their way through

the system as part of a DataFlow. Therefore, the concept of data dictionaries [DeM79; HP88] is

adapted for this approach as so-called data mapping tables. While the content of the data dictionary

is altered in comparison to DeMarco’s concept, its function remains: ensuring traceability of data

throughout the system. The data mapping table correlates the system-specific UIDs of DataEle-

ments to generic UIDs that uniquely identify the element.

In contrast to the graphical elements presented previously, the data mapping table includes no

graphical representation but serves as a dictionary to collect and structure additional information

on DataElements. The columns, and therefore the contained information is summarized in

Table 13. Additional columns may be added for specific use-cases if appropriate. [TWV20]

AE.Part 10 depicts the application of the mapping table to the application example.

Table 13:  Columns of the mapping table and description of their meaning. Adapted from Trunzer et al.

[TWV20].

Column Name

Description

VariableUID

Unique identifier of a DataElement across all systems. It corresponds to the
Name-attribute of the SA/RT [HP88].

SystemUID

Unique identifier of the system the SystemSpecificVariableUID is valid for.
Adapted Member of-attribute of the SA/RT [HP88].

SystemSpecificVariableUID

Unique identifier of a DataElement used in a specific system.

DerivedFromVariableUID

If data is based on other data (calculated, derived, composite, or used in the
model), the original unique identifier of these DataElements (Varia-
bleUIDs) can be given here. Otherwise empty. It can be multiple separated
by commas for composite DataElements.

Optional description of a variable. It corresponds to the Comments-attribute

Description of the SA/RT [HP88].
Optional address inside the specific system, for instance, register numbers
Address ; i
or addresses of associated bus couplers and terminal channels.
Tvpe Type of the variable, signal, or model, for instance, float, integer, boolean,
yp or model.
Resolution Measurement resolution, if available. Otherwise empty. It corresponds to
the Resolution-attribute of the SA/RT [HP88].
Simplification for stating that a DataElement is always a tuple of actual time
Timeseries (timestamp) and value. No separate declaration of the CompositeDataEle-

ment using the DerivedFromVariableUID column is needed.
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AE.Part 10: Data mapping table.

AE.Figure XVI reflects the usage of the data mapping table for the case of the application ex-
ample. All variables are associated with a unique VariableUID. Variables can be referenced in
multiple systems (e.g., SpeedActual in Servol.Internal and PLC1.MC) and have individual
names inside the systems (SystemSpecificVariableUID). Additionally, the mapping tables pro-
vide the possibility to amend data types (FLOAT for SpeedActual) and the measurement reso-
lution (12 bit in this case). The last column states if the variable is always transmitted with an
associated timestamp (if it is a time series) or if it resembles a value without time information.
The column DerivedFromVariableUID refers to other variables that are used for calculating the
regarded variable. In this example, all variables from the field level are used for the calculation
of the AnomalyScore inside Analysis.CM.

SpeedActual  Servol.Internal FLOAT 12 bit yes
TorqueActual  Servol.Internal FLOAT 12 bit yes
LightBarrierl PLC1.MC LB1 BOOL yes
LightBarrier2 PLC1.MC LB2 BOOL yes
WaterLevel PLC1.MC Level UINT32 8 bit yes
SpeedSet PLC1.MC V_Set FLOAT yes
SpeedActual PLC1.MC V_Act FLOAT yes
TorqueActual PLC1.MC M_Act FLOAT yes
AnomalyScore Analysis.CM  AnomalyScore SpeedActual, TorqueActual, LightBarrierl, DOUBLE yes

LightBarrier2, WaterLevel, SpeedSet

AE.Figure XVI:  Excerpt of the data mapping table for the application example.

Mapping of the Viewpoints and the Mapping Table

With the help of the unique labeling system, the information from the different viewpoints and the
mapping table can be related to each other. The principle is illustrated in Figure 30 for a basic
scenario of the measurement of one variable (PressureActual, measured in Machinel), the deriva-
tion of an alarm message if the pressure is too high (PresureExceeded), and the transport of this

information to an analyzer on another system (Analyzerl).

-PressureActual Machinel .. PressureActual

MappingTabIe i PressureExceeded Machinel PressureExceeded PressureActual
PressureActual Analyzerl Machinel_PA { \‘ PressureActual
PressureExceeded Analyzerl Machine_P_Afarm ™, PressureExceeded

POl Analyzerl.DA

DA

I [ PressureExceeded

...............

gl Viachinel.nC

Y.

_.'{ |lPressureExceeded | |
PressureActual

Sample.System Sample.Flow

Figure 30: Basic example of the graphical notation illustrating the mapping between the different view-
points (system viewpoint (left) and data flow viewpoint (right)) and the mapping table (top).
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5.3. Architecture Software Framework

Communication architectures for data collection in industrial automation are commonly realized
in an ad-hoc fashion to allow access to data quickly. This, however, may lead to a suboptimal
selection of technologies. Also, high implementation efforts lead to vendor lock-in and prevent
migration of deployed communication architectures to more suitable technologies.

A software framework with a unified programming interface (Req-SFapi) could potentially de-
crease implementation efforts through reusability and simplify the migration from one technology
to another. As the available technologies and their programming interfaces are very heterogene-
ous, the technology-specific aspects of the distinct technologies must be abstracted to provide a
common platform for the implementation of data collection architectures (Req-SFace). Such ab-
straction allows application programmers to develop their software and rely on the functionality
of the developed API without special considerations of the actual communication technology. If a
change of communication technology becomes necessary at some point in time, only minimal
changes to the code are necessary, which has the potential to simplify migrations in the future
considerably. Furthermore, the definition of interfaces facilitates a modular software design and

simplifies future extensions of the software framework’s functionalities.

The software framework serves as a basis for practical realizations of data collection architectures
in industrial automation. It can be used independently of the other described concepts but, at the
same time, serves as a basis for the model-driven generation of the communication architecture,
which is explained later. The presented software framework is a rewritten version for increased

reusability and modularity based on previously published work ([Tru"19b]).

The definition of the standard interfaces and the core of the software framework are depicted in
Figure 31. The software framework differentiates communication services as IReceiveServices to
receive data and ITransmitServies to send data. Both interfaces inherit from the base interface
IMessagingService, which contains generic definitions that every communication service must
implement. IReceiveService serves as the superclass for the derived interfaces IRequestService
(Receive-Response messaging pattern) and ISubscribeService (Publish-Subscribe messaging pat-
tern). On the transmitting side, IPublishService inherits from ITransmitService. Figure 31 contains
the two example technologies TechAService and TechBService, as placeholders for concrete real-
izations. Inheritance from ISubscribeService, IReceiveService, and IRequestService reflects the
functionality that is implemented using specific communication technology. The services, there-

fore, implement the corresponding method signatures and map the generic functionalities to the
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technology-specific functionality. For instance, the service for technology A (TechAService) im-
plements Publish-Subscribe as well as Request-Response functionality. On the other hand, the
service for technology B only provides Publish-Subscribe functionality.

The framework is designed to be applicable to a wide range of use-cases. Therefore, accepted
software design patterns are employed to increase the reusability of code and to abstract imple-
mentation details. For instance, every communication service is created by an associated service
factory that implements a standard interface (IServiceFactory). This so-called abstract factory de-
sign pattern [Gam11] reduces the dependency of application code on the concrete technologies
and implementations. Clients depend on the functionality defined in the standard interfaces IRe-
ceiveService, ITransmitService, and IServiceFactory without consideration of the concrete imple-
mentations of technologies. This decoupling allows a simple exchange of communication technol-
ogies with minimal adjustments to the code by requesting the creation of a different communica-
tion service from the service factory. Consequently, the application-specific logic of clients is sep-

arated from the internals of communication and can remain almost unchanged.

<<Interface>> <<Interface>>
IMessagingService IServiceFactory
+CreateService

[

<<Interface>>

IReceiveService

<<Interface>>
ITransmitService

|

|

|

|

|

|

+StartReceivingData - !
+StopReceivingData +TransmitData :
|

|

|

|

|

|

|

[ ¢ 1 Zr

<<Interface>> <<Interface>> <<Interface>>

> IRequestService
!
|
|

| ISubscribeService <, ~{ IPublishService K,
I
|

+ReadData

,,,,,,,,,,,,,,

TechAService | | TechBService TechAServiceFactory | | TechBServiceFactory

A A T T

r e <<create>>— — — — — — — — — L e J

Figure 31: UML class diagram of the interface definitions for the core software framework. The left part
reflects the definition of communication services, right part the service factory definition for
dynamic creation of services. Usage of the interfaces shown for two example communication
technologies TechA and TechB.

5.4. Automatic Generation of the Communication Architecture

The last building block of the concept is the automatic generation of the communication architec-
ture, which is depicted in Figure 32. The starting point is a model of the data collection architecture
on the MOF M1 layer. This model is an instance of the metamodel presented in Subsection 5.2.1

(MOF M2 layer). A code generation engine queries the modeled elements and executes model to
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text transformation (M2T). These transformations rely on code templates from the software frame-
work (Section 5.3). The code templates are combined in the transformation step to construct

o the communication parts of each modeled participant, including the receiving and pub-
lishing of data and

e configuration files for middlewares.

Therefore, the code templates contain placeholders that are filled by the code generation engine
with the related information from the model, for instance, the concrete technology for communi-
cation or IP addresses. The code generation engine has a minimum set of rules to check the con-
sistency of the modeled information that guarantees a deployable data collection architecture. In-
complete models, e.g., lacking a description of addresses or communication protocols or with no
network connection between sender and receiver, lead to an error. These need to be resolved by
the experts before repeating the step of code generation.

The result of the code generation step is preconfigured code for a communication architecture that
reflects the modeled flow of information. It handles the sending and receiving of data over the
configured data flows (OSI layer 7). Still, application-specific code that glues together the data
flows inside the SoftwareFunctionalities is not automatically generated (also OSI layer 7). This
includes, for instance, the translation from one information model to another, or the calculation of
derived variables. Therefore, the automatic generation is no complete generation of the data col-
lection architecture, but a partial generation for the communication parts of the overall architecture
on OSlI layer 7 [BCW17]. Experts insert the application-specific code into specially marked place-
holders inside the generated code fragments. The application-specific code is embedded into so-
called protected areas that are preserved when regenerating the architecture. After the addition of
the application-specific logic, a ready-to-deploy data collection architecture prototype is the result.
This prototype can now be compiled and deployed to the individual systems by the experts. The
modeled information serves as a specification. In the end, the deployed data collection architecture

is an instance of the architecture model on the MOF MO layer.

AE.Part 11 demonstrates the code generation for the application example. Please note that all code
is expressed as pseudo-code and greatly simplified to remain technology-neutral and to give an
impression of the concept, not its real implementation using specific programming languages or
communication protocols. Furthermore, it is assumed that the code generation can be used for all

systems irrespective of the underlying platform and supported programming languages.
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Figure 32: Overview over the process of transforming the model of the data collection architecture to a
deployed instance via code generation and addition of application-specific code (adapted
from Brambilla et al. [BCW17]). The left side reflects the different models and the related
MOF layers. The right side illustrates the process of automatic generation of the communica-
tion architecture on OSlI layer 7, as well as the addition of application-specific code and the
deployment by experts.

AE.Part 11: Example of code generation for the application example.

The aim of the code generation is to generate the communication code for OSI layer 7 based on
the modeled information. Therefore, the modeled data flow is taken as a basis to set up the
direction of data transfer. Furthermore, the additional information in the form of IP addresses
or hostnames is used to address specific systems. The code generation is focused on the com-
munication part of the data collection architecture while generating protected sections where
programmers can insert their application-specific logic that uses or modifies the data.
AE.Figure XVII reflects the code generation with simplified pseudo-code for each system.
The generated code encompasses the functionality to automatically set up a connection between
two related systems in a data flow and to handle this connection. In the application example,
only direct communication without a distinct broker is modeled. Additionally, the code portions
for receiving and sending data are generated. Experts can then insert their application-specific
code into the protected code section (mimicked by // PROTECTED_START/END) here.
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Analysis_CM Analysis_HMI
CM_Service : SinkSource HMI_Service : Sink
C1 = Connect(PLC1_MC, Protocol2); C1 = Connect(Analysis_CM, Protocol3);

C2 = Connect(Analysis_HMI, Protocol3);
// Receive from Analysis_CM
// Receive from PLC1_MC X = Receive(Cl, ...);

X = Receive(Cl1, ...);
// PROTECTED_START

// PROTECTED_START // ApplicationSpecificlogic
// ApplicationSpecificlogic // Visualize condition to operators
// Analyze data and send results // PROTECTED_END

// PROTECTED_END

Close(C1);
// Send to Analysis_HMI
Send(C2, ..., ...);
Close(C1);
Close(C2);
Ethernet
|
é EtherCAT
0 a o|_|EthercaT
oo [mlm]
oo oo
PLC1_MC Servol_Internal
Internal_Service : DataTransducer Internal_Service : Source
Cl = Connect(Servol_Internal, Protocoll); Cl = Connect(PLC1_MC,
C2 = Connect(Analysis_CM, Protocol2); Protocoll);
SpeedActual = Receive(Cl1, "SpeedActual"); // PROTECTED_START
TorqueActual = Receive(C1l, "TorqueActual"); // ApplicationSpecificLogic
// Internal Logic to calculate output
// PROTECTED_START // PROTECTED_END
// ApplicationSpecificlogic
// Process input and calculate output Send(C1, "SpeedActual", SpeedActual);
// PROTECTED_END Send(C1, "SpeedActual", TorqueActual);
Close(Cl);
Send(C2, ..., ...);
// Other variables
Close(C1);
Close(C2);

AE.Figure XVII:  Simplified sample of generated pseudo-code for the application example.




6. Implementation

In this Chapter, a brief overview of the concept implementation is given. It includes the DSL, the

software framework, and the model-driven generation of the communication architecture.

6.1. Domain-specific Language

The DSL consists, following the definition of a modeling language [Rod15], of a metamodel and
a graphical notation. The data collection architecture metamodel is implemented within the Eclipse
Modeling Framework (EMF), as the defacto standard framework for model-driven development
[BCW17], in version 2.18 [Ecl19b]. As an editor for the metamodel, the Eclipse IDE with installed
Eclipse Modeling Tools in version 4.13 / release 2019-09 is used [Ecl19c]. A graphical represen-

tation of the PhysicalContainer in the Eclipse Modeling Tools is given in Figure 33.
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Figure 33: Excerpt of the metamodel modeled with the Eclipse Modeling Tools showing the PhysicalCon-
tainer (cf. Figure 26).

The graphical notation is provided as stencils for Microsoft Visio (see Figure 34) [Mic19a]. End
users can graphically edit the model representation with the provided stencils. An automatic link
between graphical representation and model instance of the metamodel is currently not part of the
implementation. Existing tooling, such as Graphiti [Ecl19f] or Sirius [Ecl19a], could be used in

the future to provide an integrated graphical editor in Eclipse.
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Figure 34: Screenshot of the Microsoft Visio stencils provided for the graphical modeling of data collec-

tion architectures.

6.2. Architecture Software Framework

The software framework is implemented with C# 8.0 [.NE19] and the .NET Core 3.1 framework
[.NE20] in Visual Studio 2019 [Mic19b]. .NET Core is characterized by active development, an

open-source MIT license, and a large ecosystem with broad availability of third-party libraries. C#

is a state-of-the-art programming language for object-oriented programming and widely accepted

for the realization of industry-scale software projects. The following communication technologies

are implemented natively as implementations of IReceiveService and ITransmitService. They rep-
resent typical protocols for industrial communication (see Section 2.3.2).

e Apache Kafka [Apal9], with the library Confluent.Kafka [Con19] for .NET Core support;

e MQTT [1S020922], tested for the Eclipse Mosquitto broker [Ecl19¢], using the Open-
NETCF MQTT library for .NET Core support [Tac19];

e OPC UA [IEC62541], using the OPC foundation’s reference stack [OPC19]; and

o  AMQP [ISO19464], tested for the RabbitMQ broker [Piv19a] and using the RabbitMQ
.Net Client library [Piv19b].
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The .NET Core framework offers cross-platform support, including Windows, macOS, as well as
Linux on x86/x64 and ARM platforms. This cross-platform support provides great flexibility in
heterogeneous environments, as can be found in industrial automation. In essence, the same code
can be executed on servers that are operated under Linux, retrofitted gateways on cheap ARM
platforms, and client computers for data analysis on Windows. Therefore, multiple protocols can
be supported on various platforms using the lightweight and accepted .NET Core platform.

As not all communication technologies are supported by libraries for .NET Core, a flexible exten-
sion mechanism is foreseen. Therefore, Google gRPC [G0019a] is implemented as an additional
communication service. gRPC is based on Google Protocol Buffers [Gool9b] and is an open-
source, high-performance remote procedure call (RPC) framework with cross-language support.
The Protocol Buffer framework defines an interface description language (IDL) for the definition
of data types and functionalities. These are platform and language independent. Via integrated
code generators, language-specific code reflecting the definitions stated with the IDL can be au-
tomatically generated as part of gRPC. The architecture software framework provides a language-
independent definition of a communication service and offers a gRPC endpoint that can be used
by other applications. This gRPC endpoint allows the implementation of communication services
in other programming languages and with libraries incompatible to .NET Core 3.1. Furthermore,
the actual provider of the functionality (QRPC client in a different language) is decoupled from the
gRPC endpoint of the framework. Both services can run on different machines and communicate

over networks, allowing a decoupled microservice architecture.

For instance, the support for Beckhoff ADS [Bec19c] is implemented using the gRPC endpoint of
the software framework (see Figure 35). Beckhoff to date only provides ADS client libraries for
NET framework 4.6, as well as other programming languages, which are all incompatible with
the .NET Core 3.1 framework. Therefore, a decoupled microservice wrapping the functionality of
ADS communication is part of the software framework and communicates with the core of the

framework over gRPC for interoperability.
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Figure 35: Working principle of the flexible extension mechanism via gRPC. Example of Beckhoff ADS
support as an external communication service.

6.3. Automatic Code and Configuration Generation

Acceleo is an implementation of the OMG MOF Model to Text Transformation language specifi-
cation [OMGO8] by the Eclipse Foundation. The model transformation for the automatic genera-
tion of the communication architecture and configuration of brokers is implemented with the Ac-
celeo transformation language in version 3.7.8 [Ecl19g]. Modular code templates distribute the

transformation logic into smaller files and simplify maintenance of the transformation.

The templates are based on the C# implementation of the software framework and rely on the
.NET Core 3.1 framework and the libraries described in Section 6.2. Middleware configurations
are text files and individually created during the model transformation, depending on the config-
uration characteristics of each middleware. The code generation includes templates for the brokers
mentioned in Section 6.2. All model transformations are initially set up for the creation of the

model-driven approach and can be reused for all subsequent applications.

Figure 36 shows an example of an M2T transformation in the Acceleo transformation language
for the instantiation of communication services. The first template (serviceInstantiations,
lines 1 to 8) generates the code for the instantiation of communication functionalities. It, therefore,
iterates through every applicable model instance (line 2), uses the provided code template to gen-
erate the corresponding code, and replaces the blanks (gray background) with the information from
the model. In the last line of the first template (line 6), the instantiation of the communication
service takes place. The second template (simpleServiceConfig, lines 10 to 18) is called from
the first template and is used for extracting and generating the service configuration, including IP
addresses, ports, and credentials from the model. Figure 37 depicts a possible output from the

shown transformation snippet for an MQTT service (here called MosquittoService).
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1 [template public servicelnstantiations(swPackage : SoftwarePackage)]
2 [for(service : IConnectionService | swPackage.iconnectionservice)]
3 var [getServiceId(service)/]Factory =

4 new [factoryFor(service)/]([simpleServiceConfig(service)/]);

5 [getServiceId(service)/] = ([serviceInterfaceFor(service)/])

6 [getServiceId(service)/]Factory.CreateService();

7 [/for]

8 [/template]

10 [template private simpleServiceConfig(service : IConnectionService)]
11 new ServiceConfig

12 {

13 Server = "[getTargetIp(service)/]",

14 Port = [getTargetPort(service)/],

15 UserName = [usernameFromService(service)/],
16 Password = [passwordFromService(service)/]
17 }

18 [/template]

Figure 36: Example of Acceleo M2T transformations for instantiation of communication services. Blanks
with gray background.

1 var SomePublisherFactory = new MosquittoServiceFactory(new ServiceConfig
2 {

3 Server = "127.0.0.1",

4 Port = 1884,

5 UserName = "foo",

6 Password = "bar"

7 1);

8 SomePublisher = (ITransmitService)SomePublisherFactory.CreateService();

Figure 37: Example for generated C# code from the M2T transformation in Figure 36. Filled blanks with
gray background.

The templates contain protected sections to ensure that user-added code (application-specific im-
plementation) is not overwritten when the model transformation process is executed repeatedly to
update the generated software code. Furthermore, the model to text transformation generates log
files that can be used to trace the transformation process and verify its correctness. Additionally,
Visual Studio 2019 project files for .NET Core 3.1 are set up, which allow a comfortable building
of the respective projects. These project files include the necessary references to the underlying
communication libraries, as well as the compiler configuration, and the respective shared libraries
as DLLs (dynamic-link libraries). Furthermore, to allow the creation of portable and lightweight
containerized applications, the projects include descriptions to create Docker containers (so-called
dockerfiles) automatically. The created containers include the compiled executables as well as the
required communication libraries and all additional dependencies (e.g., the .NET Core 3.1 runtime
itself).

The model transformation and the deployment of the compiled docker containers are automated
with a build pipeline. Therefore, after the model transformation step, users can create or update
their application-specific implementation manually. Afterward, the code is pushed to a Git [Git20]

repository used for version management, as well as continuous integration (Cl) and deployment
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[Fow15; FS17]. The build pipeline for CI is configured to generate the executables of the respec-
tive projects on every update in the repository and subsequent cross-compilation of the corre-
sponding Docker containers for multiple platforms, including Linux x86, Linux x64, as well as
ARMV7, via the buildx system [Doc20c]. After a successful compilation, the Docker images are
published to a local Docker repository [Doc20a] that manages all Docker images.

All non-legacy systems of the use-cases execute their own Docker runtime and are connected to a
central, so-called node manager. This manager orchestrates all connected clients using the Docker
swarm mode [Doc20b]. If the corresponding image that is associated with a client is updated on
the registry server, the local copy of the image can be automatically replaced by the newer version.
Furthermore, the node manager allows monitoring of all connected clients, as well as enhanced
configurations for fail-over operation and distribution of images across multiple clients for scala-
bility. This Cl-pipeline simplifies the deployment of updated configurations into operations and

allows a flexible and agile software development.



7. Evaluation

The developed concepts for model-driven data collection architectures will be evaluated using the

requirements formulated in Chapter 3. For this purpose, various evaluation scenarios and methods

are employed, each addressing distinct aspects of the requirements. Table 14 summarizes the re-

quirements and maps them to the evaluation scenarios and the corresponding Sections.

The evaluation is split into six major parts; these are:

1.

interviews with industry experts and mapping to other state-of-the-art architectures to as-

sess the technology-neutral architecture concept (Section 7.1);

expert evaluation of the graphical modeling notation with semi-structured interviews in
four industrial case-studies conducted with industrial experts from the domain
(Section 7.2);

a lab-scale feasibility study including the graphical modeling of the overall systems and a
subsequent automatic code generation with deployment to the lab environment
(Section 7.3);

a code generation for one of the industrial case-studies modeled in Section 7.2 to evaluate

the scalability of the approach (Section 7.4);

an estimation of the implementation effort using the developed approach in comparison
to classical, non-model-driven programming using minimal clients and extrapolation of

the corresponding efforts (Section 7.5); and

a questionnaire with industrial experts concerning the overall approach in comparison to

the current industrial practice (Section 7.6).

The results of this chapter are used to assess the fulfillment of requirements in the subsequent
Chapter 8.
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Table 14:  Evaluation scenarios per requirement and reference to the relevant Sections.
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A mapping of the evaluation scenarios to the building blocks of the concept is illustrated in
Figure 38. While the expert interviews and the mapping to other state-of-the-art architectures eval-
uate the generic, technology-neutral architecture concept, the industrial case-studies are used for
the assessment of the graphical modeling notation as part of the DSL. The following case-studies
(lab-scale, industrial, and effort extrapolation) are dedicated to the interplay of the DSL, the soft-
ware framework in the form of code templates, and the model-driven generation of the data col-
lection architecture. The last Section, the expert questionnaire, covers aspects that characterize the

concept as a whole.

Industrial case- Domain-specific ®
st_udles_wnh expert Language For Data
interviews (7'2)\\Collection Architectures
.> —
1 Graphical Meta- 4
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Geneneric, Model-driven
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Expert questionnaire (7.6)

Figure 38: Graphical mapping of case-studies to the parts of the concept’s building blocks.
7.1. Evaluation of Architecture Concept

This Section captures the evaluation of the developed architecture concept. The first part describes
the results of semi-structured interviews with industrial experts. The second part presents a map-
ping of the concept to other system architectures proposed in state-of-the-art projects to show the

technology-neutrality of the concept and its generalizability.

7.1.1. Interviews with Industry Experts

The developed architecture concept was evaluated via the conceptual application of the architec-
ture to two distinct scenarios and subsequent, semi-structured interviews with a total of five in-
dustry experts. All involved experts have profound knowledge of the required data sources, the
integration of the relevant data, and the existing system architectures currently in operation. The

results of these interviews were initially published in [Tru*17].
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The first use-case is related to live monitoring and predictive maintenance of valves in the chem-
ical process industry via data analysis and stems from the SIDAP project [SID19]. SIDAP involves
the data exchange across the life cycle of valves to increase the value of data analysis as data is
dispersed into different data silos. For instance, while plant operators have data about the operation
of a valve, the original equipment manufacturer has extended knowledge of the physics and spec-
ification of valves. Hence, the analysis requires data from several existing distributed systems.
These include the measurements from the valves themselves (e.g., valve stroke), historical meas-
urements from a superordinate historian (in this case, an OSlsoft Pl system [OSI19]), as well as
valve specifications from the engineering and maintenance documentation from an ERP. All men-
tioned systems are existing legacy systems and have their specific interfaces and protocols for
communication. Moreover, live monitoring would require the implementation of at least one data
analysis component that collects and analyses the data streams, as well as a visualization dash-
board for the operators. Additional existing legacy applications must be considered, as well. In
collaboration with the industrial experts and within an offline data analysis based on historical
data, the relevant data sources were identified. Afterward, the architecture was conceptually ap-
plied for the use-case of a valve monitoring and predictive maintenance platform across multiple

involved partners. A representation of the developed architecture can be seen in Figure 39.
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Figure 39: Representation of the conceptualized architecture for the SIDAP use-case (graphically
adapted from Trunzer et al. /Tru*17]).
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The second use-case stems from the project IMPROVE [IMP19]. The aim of IMPROVE is the
creation of a virtual factory as a virtual representation of a real production facility that can, for
instance, serve as a basis for off-line optimization of production parameters. This use-case requires
transparent and fast access to data from various sources from within and outside of the automation
pyramid, with numerous legacy systems. The systems include data from the PLCs of the produc-
tion plants, superordinate information from SCADA and MES systems, as well as off-line quality
measurements from a lab database. Furthermore, the concept of a virtual factory requires the im-
plementation of various analyzers to monitor plant operation, a simulation, and an optimization
engine that allows off-line optimization of the production processes, as well as dashboards that
visualize the data and information for human operators. A visual representation of the conceptu-

ally-applied architecture is given in Figure 40.
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Figure 40: Representation of the conceptualized architecture for the IMPROVE use-case (graphically
adapted from Trunzer et al. /Tru*17]).

A large number of legacy systems characterize both use-cases as part of an existing IT/OT land-
scape. According to the experts, the introduction of the architecture would replace and automate
data collection and integration tasks that are currently carried out by hand. Furthermore, the con-
ceptualized architecture for the IMPROVE use-case shows parallels to an ongoing internal effort
in one of the involved companies. The two architectures feature a central data warehouse compo-
nent that can be used to store data, models, and results. In both cases, it is conceptualized as a
MongoDB [Mon19] database accessible by all systems connected to the Data Management and

Integration Broker. This data warehouse is optional and allows persistent storage of data across a
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system landscape, reliefs the individual systems from storing separate copies of relevant data, and
can be used as a building block for the so-called Lambda architecture proposed by Marz and War-
ren [MW15]. The Lambda architecture is a paradigm for data analysis architectures in a big data
environment that must handle large batches of historical data as well as streamed real-time data
during the analysis. By a separate analysis of the two data types in different layers and subsequent
combination of the results, a Lambda architecture can provide accurate results with low latency.

The expert interviews aimed to evaluate the feasibility of the conceptual architectures and their
suitability for the use-cases compared to the existing infrastructure. Therefore, two semi-structured
interviews were conducted, one with the experts from the SIDAP project, and another with the
IMPROVE experts. In the interviews, the experts were sure that the installation and operation of
the conceptualized architecture in parallel to the existing control and automation infrastructures is
viable (Reg-Aropr). In their eyes, such a decoupled design separates the control and operations
domain from the data collection and analysis process. This decoupling is especially beneficial for
mission-critical production systems. In the use-cases, data from different levels of the automation
pyramid (PLCs, SCADA, MES, and ERP systems) is collected and forwarded to the respective
client systems (Reg-Aarp).

Another aspect is the integration of legacy systems over data adapters in heterogeneous environ-
ments. Existing interfaces and connections between legacy systems stay untouched and functional
(cf. the connection between the legacy simulator and its HMI in Figure 39). The efficient integra-
tion of existing legacy systems and newly developed systems is perceived very positively by the
experts. The flexibility of integrating legacy systems with different data adapter principles, rang-
ing from translators embedded into the Data Management and Integration Bus to Data Wrappers
(cf. Section 5.1), was highlighted by the experts (Req-SFie). Nevertheless, the experts considered
the implementation effort for initial deployment as relatively high and complex. Besides, the im-
plementation effort to program all necessary data adapters is a significant obstacle. Therefore, a
step-wise introduction and migration are proposed. This migration scenario minimizes the initial

effort for deployment and makes more and more data transparently available over time.

Both conceptualized architectures are not bound to a specific implementation technology and can
be implemented using various available technologies. Depending on the specific requirements of
a realization, a suitable technology can be selected. Even combinations of technologies are possi-
ble. For instance, the system could be implemented using a commercially-supported ESB, such as
IBM Integration Bus, an open-source alternative (e.g., RabbitMQ), or a high-throughput system
such as Apache Kafka. Therefore, the experts stated that the architecture concept and its applica-

tion to the use-cases are technology-agnostic (Req-Arac).
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7.1.2. Mapping to State-of-the-Art Architectures

In the second part, a mapping of the developed system architecture to the system architectures of
the PERFORM and BaSys 4.0 projects (see Figure 41) is presented. Both projects developed state-
of-the-art system architectures for Industrie 4.0 applications and address various aspects of system
integration in industrial automation. The results were initially published with coauthors from the
two other projects in [Tru*19¢].

Figure 41: PERFoRM (left) /Lei*16] and BaSys 4.0 (right) /Tru*19¢] architecture concepts.

The three system architecture concepts (BaSys 4.0, PERFoRM, and this work) originate from dif-
ferent use-cases, are subject to distinct boundary conditions, and are tailored for their specific field
of application. While the architecture conceptualized in this work aims to simplify data collection
and analysis, the PERFORM architecture concept aims to provide the possibility of a reconfigura-
ble production, and BaSys 4.0 a real-time communication between systems. The PERFoRM ar-
chitecture concept was demonstrated to be implementable using various technologies [Cha*17;
Gos*18; PER16b]. In contrast to this work and PERFoRM, BaSys 4.0 relies on a replacement of
the existing automation architecture and is bound to an implementation framework that includes a
so-called Virtual Automation Bus (VAB) as the middleware component for real-time communi-
cation [Kuh*18]. Still, all three approaches share a substantial number of similarities. In essence,
all three foresee a common communication bus, usage of a single protocol to interface systems,
the integration of legacy systems via data adapters (or administration shells in BaSys 4.0), and

consider a layered architecture.

A generic architecture applicable to the respective application fields and their use-cases, which
was derived in [Tru*19c], is very similar to the one conceptualized in this work. The main differ-
ences between the derived architecture and the concept of this thesis are the introduction of a real-
time communication channel and the added support for service detection and orchestration. How-

ever, on the one hand, as this approach is not aiming at replacing the existing control structure, no
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real-time communication is needed inside the architecture. If no real-time communication is re-
quired, the BaSys 4.0 architecture concept would not be bound to the VAB and hence implementa-
ble with a wide variety of available technologies. On the other hand, service detection and orches-
tration are additional functionalities that the connected systems must support, not the system ar-
chitecture itself. As the core of the three system architecture concepts is remarkably similar, and
their realization is not bound to a specific technology, the presented concept for a data collection
architecture can be seen as technology-agnostic (Reg-Arac). Therefore, the abstract, technology-
neutral architecture concept of this thesis can directly be applied to all considered use-cases and

implemented using various available technologies.

7.2. Expert Evaluation of Graphical Modeling Notation

The graphical modeling notation of the developed DSL was evaluated by applying the notation to
four industrial use-cases (subsequently called Case-Studies A to D) and successive, semi-struc-
tured interviews with industrial experts. The evaluation procedure is shown in Figure 42 and will

be explained throughout this Section.

1 2 3 4

Modeling of Design and Design and Discussion with
existing modeling of modeling of experts and

brownfield data analysis system semi-structured
systems applications architecture interviews

Figure 42: Procedure for the expert evaluation of the graphical modeling notation.

The four use-cases reflect typical and representative applications of data collection architectures
that interact with CPSoS and bridge IT and operational technology. They include data collection
from a multitude of heterogeneous systems, including legacy systems, and the involvement of
experts from various domains. All four are modeled with the help of experts from different do-
mains. In total, eight experts (2 per case-study), which have profound and long-term expertise in
their respective fields of application, were questioned. The selected experts are all employed by
the respective OEMSs. They are particularly qualified to evaluate the notations as they have great
industrial experience in the realization of data collection and analysis projects. Additionally, all
have an interdisciplinary background from at least two domains relevant to the use-cases (technical
experts, data analyst, IT architect, control engineer). The experts are, for instance, heads of infor-
mation technology or senior engineers for digitization in their respective companies. Due to con-
fidentiality, the boundary conditions and the conceptualized architectures are modified slightly for
this thesis (for instance, different protocols, single systems connected to other networks, or ab-
straction of company-specific information related to security configurations). Evaluation results

were partly published in [TWV20], but cover only the three case-studies B to D.
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Based on the documentation provided as well as input from technical experts and IT architects,
the brownfield production systems, without any additional data analysis, were modeled using the
graphical modeling notation (step 1 in Figure 42). These diagrams were then adapted and extended
with the help of data analysts. They stated which data is needed for the analysis and where the
analysis models should be deployed (edge, cloud). Furthermore, they expressed additional require-
ments, e.g., allowed latency and sample rates (step 2 in Figure 42). [TWV20]

In the next step (step 3 in Figure 42), IT architects drafted the adapted system architecture with
additional data analysis components. Supplemental requirements, such as data security (encryp-
tion, authentication), communication (protocols, semantics), and system sizing (scalability, the

capacity of storage), were specified and added to the models. [TWV20]

The extended models were then discussed with the experts in joint sessions (step 4 in Figure 42).
This first part of the qualitative evaluation was to verify the correctness of the models. Afterward,
a structured questionnaire with a total of 20 qualitative questions about the clarity of the graphical
notation, its syntactic constructs, and its completeness was conducted in the joint session. The
guestionnaire was divided into four parts: syntax and completeness of the system viewpoint, syn-
tax and completeness of the data flow viewpoint, mapping between the two views and annotation
elements, and clarity of the graphical notation. [TWV20]

Table 15 summarizes the main characteristics of the use-cases. In the following Section, the de-
tailed model of the data collection architecture for Use-Case A is discussed. Afterward, an over-
view of Use-Cases B to C is given (the corresponding models can be found in 14). Subsequently,

the results of the expert interviews are presented.

Table 15:  Summary of use-cases for expert evaluation of graphical modeling notation.

Use- Analysis Type of architec- Ne experts Ne employees / Section with
Case application ture company size  graphical models
A Condition Private / public 2 ~ 1,500 791
monitoring cloud
B Anomaly detection Clouq  edge 2 ~ 400 Appendix A.1
architecture
C Alarm Public cloud 2 ~ 7,000 Appendix A.2
management system
D Alarm Hybrid cloud 2 ~ 500 Appendix A.3

management system
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7.2.1. Use-Case A: Retrofitting and Condition Monitoring

Use-Case A captures a CNC machine retrofitted with additional sensors and control hardware for
condition monitoring. The full system diagram is shown in Figure 43 and is explained and derived
in the following. The CNC machine (Machinell) is provided by an OEM and includes a closed
legacy system for control. A Siemens Sinumerik 840D control unit is installed inside the machine,
but no modifications to the original control code are possible. The control unit provides various
continuous variables (S7_Varl to S7_Varl3), as well as additional, event-based data points
(S7_Eventl to S7_Event37). Still, the machine condition is not fully characterized by these avail-
able data points. Therefore, an additional Beckhoff PLC (GW11) is installed and connected to
various additional bus couplers (ST1 to ST10) with sensors over EtherCAT (ECAT1). The addi-
tional sensors capture further data (Varl to Var33) relevant to characterize the machine’s condi-

tion.

Additionally, the Beckhoff PLC is also used as a gateway between the CNC machine and super-
ordinate systems, as it acts as a central data collector. To further decouple the machine’s main
PLC from the Beckhoff PLC, an additional gateway (P111) is installed as a Raspberry Pi-based
KUNBUS RevPi device. This gateway collects the data from the machine PLC over Profinet,
translates the format, and forwards it to the Beckhoff-based data collector on GW11 via Profibus.
GW11 collects all data (machine PLC and additional data) and forwards it to the distributed control
system (DCS).

Additionally, two cloud environments are part of the use-case: a local, on-premise cloud for inter-
nal analysis (IBMPMQ) and a public cloud (AZURE) that facilitates the monitoring of multiple
machines across production sites. As the AZURE cloud environment is hosted on the internet, the
connection between factory network (ETH1) and AZURE is a bottleneck for data transmissions.
Besides, a production site can contain several machines that are all subject to this limited connec-

tivity. All local systems connected to ETH1 are configured to be part of the VLAN with ID 3.

At the current stage, the aim of the architecture is the collection of data for the generation of a
historic database reflecting the operating conditions of the plant. This database can be used to train
data analysis models. In the future, the data from the machine should be leveraged as a continuous
data stream to monitor the condition of all connected machines using a fleet management approach

and trained analysis models.
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Two distinct data flows can be distinguished in the use-case: the flow of event (alarm) data (see
Figure 44) and the flow of continuously measured time series (see Figure 45). Both will be ex-
plained in more detail in the following.

The event data from the machine’s PLC (S7_Eventl to S7_Event36) is forwarded to the PI111, its
data format modified, and then sent to GW11. Event data is not generated continuously, hence its
frequency is comparatively low. Therefore, it can be directly forwarded also to the cloud environ-
ment. The collection of data from multiple machines in a single production facility should not
overload the connection between the factory and the public cloud (AZURE). Hence, data is for-
warded from GW11 directly to AZURE, the local cloud (IBMPMQ), the storage system of the DCS
(DCS.DB), and the data analyzer embedded into the DCS (DCS.DA) for the calculation of produc-
tion KPIs. Both cloud environments consist of a routing component, storage, and a dashboard for
visualizing the raw data. The resulting data flow is modeled in Figure 44. All flows are marked as

batch data as they do not transmit data continuously but on a sporadic, event-triggered basis.
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Figure 44: Data flow diagram of Use-Case A with the description of event-based data.
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In contrast to the flow of event data, the other variables (S7_Varl to S7_Varl13 and Varl to Var33)
are continuously measured time series. Interfacing several machines at the same time can overload
the internet connection to the public cloud (AZURE). Therefore, the variables are downsampled in
the private cloud to a lower sample frequency before forwarding them to the public cloud. The
respective data flow can be seen in Figure 45. While the Beckhoff PLC works with a cycle time
of 500 ms, the sample time of the directly connected system (DCS.DB, DCS.DA, and
IBMPMQ.DA) is 1 s. The analysis functionality of IBMPMQ.DA resamples the incoming data to
the sample time of 10 s and, therefore, further reduces the amount of data by a factor of ten. The

resampled data is then forwarded to the public cloud.
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Figure 45: Data flow diagram of Use-Case A with the description of continuous data.
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Table 16 gives an excerpt of the full data mapping table for Use-Case A. All variables are marked
as time series as they contain the primary data element and an associated timestamp. Nevertheless,
only the non-event data is flowing continuously with the cyclic update frequencies shown in the

data flows.

Table 16:  Excerpt of the data mapping table for Use-Case A.

2

[&]
g > af 8% & g £ & F
Varl GW11 Varl Variable from gateway GW11.1.1 FLOAT 16 bit yes
S7_Eventl PI11 S7_Eventl Event message from Sinumerik BOOL yes
Varl_res IBMPMQ Varl_res Varl Variable from gateway, resampled FLOAT 16 bit yes
Var2_res IBMPMQ Var2_res Var2 Variable from gateway, resampled FLOAT 16 bit yes
S7_Varl_res IBMPMQ S7_Varl res S7_Varl Variable from Sinumerik, resampled INT32 yes
S7_Var2_res IBMPMQ S7_Var2_res S7_Var2 Variable from Sinumerik, resampled STRING yes

7.2.2. Use-Cases B to D: Anomaly Detection and Alarm Analysis
The detailed models (system and data flow viewpoints) of Use-Cases B to D can be found in 14.

In the following, only a brief overview of the use-cases is given.

The second use-case (B, see Figures 55 and 56 in Appendix A.1) foresees a combined cloud and
edge architecture for anomaly detection. Four to five production plants with one PLC each and
several hundred in- and outputs per PLC are connected to a shared cloud environment. Therefore,
a Siemens IPC communicates with various bus couplers on the field level and executes the ma-
chine control program. This program calculates additional variables in the control logic. Addition-
ally, a local computer is connected to the IPC over the field bus and hosts a human-machine inter-
face to visualize process values and to interact with the production process. Based on the data that
is available on the IPC, an anomaly detection system is implemented. Therefore, the raw data is
forwarded to a public cloud hosted by the OEM of the production machine. As the amount of data
to be transmitted to the public cloud environment is subject to internet connectivity, data compres-
sion is executed. Hence, the Siemens IPC compresses the data (DA_CP) and forwards it to the
cloud environment, where it is decompressed by a second system (DA_RC) and forwarded to the
database. In the cloud environment, data from multiple machines is processed to train an anomaly
detection model. The trained models are then sent back to the field level and executed on the edge

(DA_RA) to detect anomalies during the production process.
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The two other use-cases (C, see Figures 57 and 58 in Appendix A.2; and D, see Figures 59 and 60
in Appendix A.3) describe alarm management systems for two kinds of production machines,
which support operators by preventing alarm floods and finding their root-causes. In use-case C,
approximately 500,000 alarms are generated per year of operation with 200 distinct types of alarms
for each production machine. The alarm management system of use-case C is hosted in a public
cloud by the OEM of the machine, which offers additional diagnostic services. Therefore, the
alarm messages of several hundreds of these machines, scattered over multiple customers and
production sites, have to be transferred to the public cloud. In use-case D, the hosting of the alarm
management systems follows a hybrid approach with both private and public clouds. Customers
can analyze data in their private cloud to ensure privacy. As an additional service, the OEM offers
to combine data with datasets from similar machines to improve the quality of the analysis. One
machine generates between 3,600,000 and 6,000,000 alarm messages per year, with there being
approximately 40 machines per customer and production site. A total of 500 distinct alarms exist.
Several customers connect their own private clouds with the public cloud offered by the OEM.
[TwV20]

7.2.3. Results of the Expert Evaluation

First, the completeness of the graphical notation and its elements was evaluated for both view-
points. The experts pointed out that all relevant information could be captured and structured using
the notation. Both the system architecture, with its hardware and software elements (Reg-Msys), as
well as the data flow through the system (Reg-Mpe), could be expressed and structured. The dif-
ferentiation between hardware devices and software functionality that is executed on this hardware
in the system viewpoint was considered as extremely helpful to structure the system. The same is
valid for the data flow view, where the distinction between the types of data handling (Source,
Sink, Transducer, and SinkSource) is useful to follow the flow of data. The data can easily be
traced through the associated hardware and software systems via the combination of the two views.
This separation of concerns greatly reduces the complexity when designing and sizing data col-
lection architectures for all involved parties. Furthermore, the number of different constructs and
symbols is relatively low and makes the notation manageable for different expert groups
(Reg-Marapn). [TWV20]

Concerning the annotations as an essential part of the graphical notation during the specification
and design of system architectures, the expert opinion was positive as well (Req-Mepropreq). ESpe-
cially for complex connected production cells and robots, latency requirements or protocol con-
straints can easily be structured and exchanged. The experts considered the categorizing of anno-

tations (time, architecture, and data) as helpful to separate concerns. Minor concerns were related
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to the absolute number of symbols, especially in large data flow views. Here, the number of anno-
tations can be huge in a confined space. Grouping of annotations and references to multiple data
streams or nodes in the data flow could be considered for future versions of the notation. Further-
more, an interactive graphical editor may overcome this limitation as visibility of elements could
be adjusted on-the-fly to provide experts only with the needed information. This would, for in-
stance, include separate modeling views with only relevant model elements selectable and auto-
completing of unique names, properties, and requirements. Furthermore, the connectable model
elements could be highlighted if a network or an annotation is selected inside the editor. The editor,

therefore, would support experts with an improved and simplified workflow. [TWV20]

Especially the distribution of information across separate viewpoints and multiple sheets was
highly appreciated. The information is efficiently distributed and grouped to manage the density
and amount of information per sheet. Capturing all flows of data in large systems proved to be
challenging in one diagram. Grouping of these flows in sub-views on separate sheets limited the
overall complexity. The means provided for integrating the two viewpoints and different sheets
were considered sufficient and intuitive by the experts. Still, an integrated editor for the DSL, as
well as an automatic synchronization between the model instance and its graphical representation,
is currently lacking (Req-Mgrapn). [TWV20]

Experts had no problem differentiating between the distinct types of elements and annotations.
Additionally, utilization of the same family of shapes for the specification of properties and re-
quirements was pointed out as helpful without compromising the perceptual discriminability
(Reg-Mgrapn). [TWV20]

In summary, the graphical notation is a powerful approach to structure information during the
engineering and operational phases of CPS0S. In contrast to existing approaches, the notation can
capture information from the operational technology as well as the IT domains. It contains con-
structs for combined hardware and software architecture as well as the stream of data through all

connected systems on different levels of the system hierarchy. [TWV20]

7.3. Lab-scale Feasibility Study

Based on the architecture concept and the developed DSL, a model-driven generation of the com-
munication architecture of data collection architectures can be carried out. In the following Sec-
tion, the results of a reasonably complex, lab-scale feasibility study will be presented and dis-
cussed. The case-study will be implemented twice: once using a classical, manual programming
approach and once with the model-driven approach developed in this work. After an introduction

to the experimental setup, the graphical models of the case-study will be presented. Afterward, the
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model-driven generation step and the deployment of the components is discussed. The Section
closes with a comparison of the implementation efforts for initial deployment and redeployment
between the model-driven and the classical approaches.

7.3.1. Experimental Setup

The experimental system consists of several lab-scale production plants and connected systems
for data analysis and visualization. The UML deployment diagram in Figure 46 gives an overview
of all relevant systems. It should be noted that the diagram includes all systems that must be inter-
faced, but not the architecture’s technical realization, including infrastructure components and data
adapters needed for the implementation. The experimental setup aims to describe a sufficiently
complex and representative scenario for the evaluation of the developed, model-driven approach.
Therefore, it includes automated production systems, further legacy systems, as well as newly
implemented greenfield systems (Reg-Apop). Furthermore, the systems are part of different net-

works, all connected to each other. The systems will be introduced in the following.
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<<device>> <<executionEnvironment>>
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Figure 46: Systems in the lab-scale feasibility study without gateways and infrastructure components.
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Modular Production System (legacy system)

Modular Production Systems (MPS) [Fes20] are a series of production modules for research and
teaching manufactured by the German company Festo. The systems represent typical applications
of automation components. In this work, a distribution station with a stack magazine and a pick
and place unit is interfaced. The station features a total of 32 binary 1/Os all connected to a so-
called EasyPort [Fes08]. The EasyPort allows access to these 1/0s via a serial RS232 connection
with a proprietary protocol. An additional computer (MPSController) hosts an application that
communicates with the EasyPort using this proprietary protocol and executes the corresponding
logic to control the MPS plant. The application was developed for lecture purposes and not to
allow access to the plant, yet it allows to read/write all 1/0s over a direct TCP connection. The
protocol of the TCP connection is another proprietary protocol tailor-made for the specific appli-
cation. Therefore, the system represents a legacy system, with closed interfaces that can only be

interfaced via a retrofitted, external data adapter.

myJoghurt (evolving, retrofitted plant)

The myJoghurt production plant [Ins13; Ins20; May*13; Vog*14d] is one of the key research de-
monstrators of the Institute of Automation and Information System at the Technical University of
Munich. The plant serves as an Industrie 4.0 demonstration platform and simulates the manufac-
turing of individualized yogurt with a lot size one. It consists of three plant sections: a storage
system with a 5-axis Mitsubishi handling robot mounted on an additional, linear axis; a process
technology part for batch manufacturing and the two associated filling stations, each with one tank
for liquid and two silos for solid material; and a material handling system with multiple switches
and conveyors that transports products between storage system and filling stations. Through the
combination of discrete and batch production processes, the plant resembles an overall hybrid
production process with an interface between batch and discrete processes at the filling stations.
The plant is controlled by a central Beckhoff CX2040 PLC running on TwinCAT3 [Bec19d]. All
ten switches and 22 conveyor drives are directly connected to the PLC over an EtherCAT bus.
Besides, the process technology part, several barcode scanners mounted next to the conveyors,
and the robot are interfaced over Profibus. The Profibus master terminal is not mounted directly
on the PLC but on the first bus coupler inside the EtherCAT bus. In total, around 250 I/Os, as well
as 250 internal variables, are part of the control system and can be accessed using ADS or
OPC UA. The plant represents a typical, evolving plant that is retrofitted and updated over time:
new devices are introduced into the system, and control hardware is replaced, while existing de-

vices remain part of the plant.
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Self-X Material Flow Demonstrator

The Self-X material flow demonstrator [Aic18] is a research testbed related to modular software
development and self-x functionalities in the domain of intralogistics. It features two roller-driven
tracks as well as a bend and T-junctions to enable material flow. A Siemens S7-1516-3 PN/DP
PLC is the central control unit of the plant and connected to the distributed I/Os over Profinet (167
in- and outputs in total). For data access, the system is retrofitted with an external gateway. A
Raspberry Pi 3 Model B hosts Node-RED [JS 19], a visual, browser-based programming environ-
ment for 10T applications. Node-RED includes basic functionalities to get, process, and forward
data, but also provides a flexible extension mechanism for loading additional functionalities from
user packages. One of these functionalities is the support for the S7 1SO-on-TCP protocol
[RFC1006]. Data is transferred from the PLC to the gateway, processed, and then forwarded via
MQTT. The Self-X plant is not connected to a larger network, but instead directly attached to the
gateway over Ethernet. Therefore, the gateway decouples the plant from the superordinate Ether-

net network, to which the gateway is connected.

Other Systems

Furthermore, the case-study includes several additional systems that are introduced briefly in the
following:

e asample MES functionality is part of the system. It provides recipes, order data, and pro-
gress reports associated with the manufacturing process in the myJoghurt plant over a
REST interface;

e agreenfield dashboard that is developed in the course of the architecture implementation.

It should be used to monitor the operation of the myJoghurt plant;

e an additional legacy dashboard based on Grafana [Gra20], a browser-based dashboard for
visualization of data. Grafana is an open-source, widely adopted, easy-to-use graphical
dashboard used in various industrial applications. The Grafana instance is configured to
use a PostgreSQL database [Pos19] hosted on the same machine for data storage. Data
can be visualized in the dashboard by storing it in the database;

e adata analysis workstation based on MATLAB 2019b, as MATLAB is an accepted ap-

plication in the engineering domain [Mat19]; and

e an additional data analysis workstation based on Python 3 representing a typical environ-

ment for industrial data analysis [Pyt19].
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These additional systems, as well as the system that will be implemented as infrastructure or data
adapter systems, are hosted on Raspberry Pis with Debian Buster [Deb19] or computers / virtual
machines with Windows 10 / Ubuntu Linux 18.04.3 LTS [Can18].

7.3.2. Graphical Model of the Lab-scale Architecture

Based on the experimental setup discussed above, a suitable data collection is conceptualized and
modeled using the developed DSL. The AMQP protocol was chosen as a suitable protocol for the
initial realization of the data collection architecture. With an installed RabbitMQ broker, it pro-
vides good scalability as well as support for advanced QoS features that may be necessary for the
future. The respective graphical models can be found in Appendix B. Here, Figures 61 to 63 con-

tain the system diagrams, while Figures 64 to 67 display the corresponding data flow diagrams.

All infrastructure systems can be found in the system diagram in Figure 63. One of the systems
(rabbitmq) hosts an instance of the mentioned RabbitMQ broker as a central communication back-
bone of the data collection architecture. Furthermore, an additional Mosquitto broker is part of the
system (mosquitto) that can accept and forward the data from the gateway of the Self-X plant over
MQTT. The systems Worker0 to Worker3 provide data translation functionalities used to translate
the data formats between the connected heterogeneous systems. All four systems are based on a
cheap Raspberry Pi, Debian Linux, and Docker. Due to the missing support of the Beckhoff ADS
library for the .NET Core 3.1 framework, the data adapter for the myJoghurt plant is hosted on a
separate Windows machine (myJoghurtAdap). Here, the data translator uses the gRPC interface to
connect the ADS functionality to the architecture.

The data from the myJoghurt production plant, as well as the order data from the MES, is sent to
the Python-based DA2 analyzer. Here, the first analysis functionality (MESDA) calculates KPIs
based on the production and MES data. While the greenfield dashboard (Viewer.HMI) receives all
data, including the KPIs, only the KPIs are forwarded to the Grafana dashboard and the MES
database. Therefore, the data flow is split at DA2.MESDA, which acts as a Transducer for the data
flow with destination greenfield dashboard, and as a SinkSource for the other flow. In parallel, the
second analyzer functionality (DA2.DriveCM) calculates the probability of an anomaly for the two
monitored servo drives of the myJoghurt plant. The results are only sent to the data translator

related to the greenfield dashboard (Worker3.FDA) and are not available to any other system.

A second anomaly monitoring functionality is available in DA1.DA as a MATLAB program. The
analyzer monitors the condition of the MPS plant. It calculates timings of typical actions, counts
them, and provides an additional anomaly score. All data, including this, is collected by the data

collection architecture and sent to the Grafana dashboard for visualization and the MES database
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for long-term storage. The only exceptions are the results of the drive condition monitoring men-
tioned above that are only available in the greenfield dashboard.

The modeling of all involved systems and data flows was carried out by three persons. The time
efforts for the modeling are summarized in Table 17 with a description of the profiles of the par-
ticipants. Therefore, as a baseline, the modeling effort is assumed as the maximum measured effort
of 4 h 40 min (4.66 h) in the following. This value includes time for adjusting the layout of the

diagrams as well as checking the consistency of the models.

Table 17:  Modeling efforts for modeling the lab-scale case-study of three persons and their experience
with the notation and background in industrial automation.

Person Experience level Total effort for modeling
of the lab-scale setup

Well-experienced user, strong industrial automation back-

! ground, applied the graphical notation several times. 2 h 30 min
Semi-experienced user, medium industrial automation .

2 . . . 4 h 20 min
background, applied the notation occasionally.

3 Inexperienced user, strong industrial automation back- 41 40 min

ground, recently introduced to the notation.

7.3.3. Model-driven Generation of the Communication Architecture

After the creation of the model instance, the model-driven generation of the communication archi-
tecture using AMQP as the standard communication protocol is executed. The model-to-text trans-
formation step included the generation of the pre-configured communication architecture as C#
code (Reg-Geom), the setup of Visual Studio 2019 project files, related Docker configuration files
for the generation of individual containers per software functionality, and the configuration for the
RabbitMQ broker. In total, 4284 lines of C# code were generated, with an additional 616 lines of

configuration and project files.

Subsequently, the application-specific logic was manually implemented to yield the prototype of
the data collection architecture (cf. Figure 32). This code included the internal analyzer and dash-
board functionalities which process the communicated data. Furthermore, credentials were up-
dated by hand, as they should not be part of the models due to security reasons. In the next step,
the individual software functionalities were compiled and deployed. While all worker functional-
ities (Worker0O to Worker3, cp. Section 7.3.2 and Figure 63) were deployed as Docker containers
to the respective Raspberry Pis using the CI pipeline (cf. Section 6.3), the other functionalities

were manually copied to the respective systems and started.
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The data flows in the deployed data collection architecture were examined for all modeled sys-
tems. As expected, the modeled data flows were correctly set up and working. With the dashboard,
it was possible to monitor the operation of the connected plants and the flow of data. This includes,
besides the newly implemented systems, data from the existing legacy systems. These systems
were successfully interfaced and integrated into the data collection architecture (Req-SFieg). In
addition, the existing control hierarchy was unaffected as the data collection architecture was im-
plemented in parallel to the existing systems. All plants were correctly working, and the control

interaction was not conducted over the architecture (Req-Arop).

In the next step, the created models were modified. Instead of AMQP, the usage of the MQTT
protocol was specified as MQTT is a lightweight protocol especially suitable for 10T applications.
The update of the respective annotations took a total of 20 minutes. The model transformation step
for the creation of the preconfigured data collection architecture was executed again for the mod-
ified models (Req-Gceom). This resulted in a total of 4284 newly generated lines of C# code, with
an additional 288 lines of configuration and project files. As the code sections with the manually
programmed application-specific code are marked as protected, they were not overwritten in the
code generation step. Furthermore, due to the defined programming interfaces and the abstraction
of the protocol-specific aspects in the underlying software framework, no additional modifications
besides the updating of the credentials were necessary. Therefore, this application-specific code
can remain unchanged while still being functional (Req-SFapi, Req-SFace).

After a new compilation step and a redeployment, the data collection architecture was again cor-

rectly running and working. This time based on the MQTT protocol instead of the AMQP.

7.3.4. Effort Metrics for Deployment and Redeployment

Based on the results of the model-driven generation of the data collection architecture in the pre-
vious Section, a comparison of implementation efforts between model-driven and classical, man-
ual programming approach is performed. This comparison should answer the question if a model-
driven generation decreases the implementation efforts for initial deployment (Reg-Apep) and mi-

gration of such architectures (Reg-Arepep).

Therefore, the data collection architecture was additionally implemented manually. The imple-
mentation considered all systems and data flows as previously modeled. The aim was to replicate
the model-driven architecture using the AMQP protocol for communication as far as possible. In
total, 989 lines of C# code were manually implemented (LoCr,t4;)- This excludes the implemen-

tation effort for the application-specific logic as these are also not part of the model-driven gener-
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ation. All code was programmed following the same programming style and in avoidance of writ-
ing unnecessary code (e.g., for future extensions, increased modularity, or better exception han-
dling).

For a comparison of the programming effort, measured in lines of code (LoC), and the effort using
the model-driven approach, a common effort metric has to be found. The first possibility is a direct
comparison of the lines of code between the output of the model-driven and the manually imple-
mented approaches. Yet, this is not a suitable comparison, as the timely efforts per line of code
differ greatly. Furthermore, the automatically generated code does not follow the same coding
conventions as the manually implemented code and includes additional code portions targeted to

increase the modularization of the code.

Another possibility would be a conversion factor for every hour of modeling to lines of code.
However, as this is highly dependent on the DSL, the underlying use-case, and the model-trans-
formation step, no representative figures can be found in the literature. As an alternative, figures
related to the productivity of an experienced programmer can be used. Several studies can be found
in the literature that investigate different aspects of programming productivity during the last dec-
ades. While many studies focus on outdated programming languages, some recent publications
can be found. For instance, Cusumano et al. [Cus*03] give an average productivity of 436 LoC per
month and programmer in Europe. They investigated a total of 104 large-scale software projects
worldwide from leading software companies written with different programming languages. This
productivity corresponds to approximately 2.5 LoC/h (4.33 weeks per month, five working days
per week, and eight hours work per day), but includes related tasks, such as code testing and code
reviews. Alternative figures can be found in a study from Prechelt [Pre00]. The study compares
the implementation of a small-scale program by individual programmers in different programming
languages, including Java, which is quite similar to C#. Prechelt gives a median productivity of
22 LoC/h for Java, and a productivity of 36 LoC/h for the upper quartile (75" percentile, including
75% of the observations). These figures are significantly higher than the productivities measured
by Cusumano et al. [Cus*03]. Possible reasons are the smaller scale of the project and the imple-
mentation by just single programmers, which limits the productivity loss caused by increased doc-
umentation and communication efforts. They represent very high productivities which are not
commonly found in industry, but on the other hand, the absolute maximum productivity of a pro-
grammer. Therefore, productivity measured at the upper quartile p,,. = 36 LoC/h will serve as
a basis for a conservative comparison of the implementation efforts between a manual implemen-
tation and the model-driven approach. With p; ., the implementation effort E;,ssicq; fOr @ manual

programming can be calculated to
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LoCrorar 989 LoC

Eciassicat = Proc = ” ﬁ = 27.47 h. (D

h

In comparison, the implementation effort for the model-driven approach Eyodei—driven COrre-

sponds to the time for modeling of the system, therefore

Emodel—driven = 4.66 h. 2)

The relative effort between both implementations without the initial creation of the model-driven
toolchain, can, consequently, be accounted to

E e
“Model-driven _ 1 ¢ 960, ®

EClassical
The effort is accordingly significantly reduced by the model-driven approach, which simplifies
the implementation of data collection architectures (Req-Apep). The effort for the initial creation
of the toolchain will be considered in one of the extrapolation case-studies in Section 7.5.

In case of a migration from one communication protocol to another (in this example from AMQP
to MQTT), the manual implementation must undergo a partial reimplementation. This includes an
adaption of all communication functionalities and also possibly modifications to the application-
specific logic due to interface incompatibilities. The respective number of modified lines of codes

will be in the magnitude of the AMQP-based implementation.

On the other hand, using the model-driven approach, the models have to be updated. Furthermore,
some single lines of the newly generated code that contain the credentials of the respective systems
have to be modified after the execution of the code generation step (approximately 15 in total for
the use-case). This results in a total effort of approximately 45 minutes. The application-specific

code can remain unchanged as the same interfaces are supported as before the migration.

Therefore, a model-driven data collection architecture can also reduce the implementation effort
for migration in comparison to manual migration (Reg-Arepep). Under the assumption that a partial
reimplementation of the architecture for MQTT accounts for 60% of the initial effort (593 LoC in

total), the relative effort is significantly reduced to 4.55%.
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7.4. Industrial Case-Study

The model-driven generation of the communication architecture is applied to an industrial case-
study to evaluate its scalability. Therefore, Case-Study A from Section 7.2.1 is used as a basis for
the model-driven approach.

Based on the models, a total of 2906 lines of C# code were generated. Additionally, the model
transformation process produced another 110 lines of configuration, project, and docker files.
Manual checking of the code verified the correct generation of the preconfigured data collection
architecture (Req-Geom). NO suitable hardware, as defined in the models, was available for the
scalability tests. Therefore, simple direct forwarding functionalities substituted the missing appli-
cation-specific implementation of the internal logic of all systems. The data collection architecture
was then deployed and executed in docker containers to verify its proper functioning. All modeled

data flows were correctly working as specified, and data was flowing through the system.

It can be concluded that the model-driven approach for the development of data collection archi-
tectures is also applicable to the industrial use-case. Moreover, the industrial case-study mani-
fested the representativeness of the lab-scale feasibility study as the number of considered systems,

as well as the generated lines of code, are significantly greater for this scenario.

7.5. Effort Extrapolation Case-Study

The case-studies in Sections 7.3 (lab-scale feasibility study) and 7.4 (industrial case-study) pro-
vided insights into the model-driven generation of the communication architecture. They included
an analysis of the feasibility and scalability of the approach, as well as a basic implementation
effort comparison for a specific use-case. Nevertheless, an answer to the question of whether the
model-driven approach can decrease implementation efforts for a broader range of use-cases could

not be given. Therefore, an extrapolation case-study will be presented in the following.

The case-study is based on minimal publisher/subscriber pairs with an adjustable number of trans-
ported variables between both systems. Figure 47 gives the models of the smallest possible system
with one pair and one communicated variable. The publisher is a PC with a legacy software func-
tionality that generates one variable named TestByte. This data is routed over a middleware func-
tionality on an additional computer and forwarded to the subscriber. The protocol specification in

Figure 47 is a placeholder as various protocols will be considered.
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Figure 47: System and data flow of the minimal extrapolation use-case modeled with the graphical mod-
eling notation. The protocol specification (requirement) as a placeholder labeled with XY is to
be replaced by the specific protocol.

As a baseline, the described minimal system was implemented manually in C# using the technol-
ogy-specific programming libraries for AMQP, Apache Kafka, Beckhoff ADS, MQTT, and
OPC UA. The code was developed with a focus on decoupling the communication functionalities
from the main functionality of the legacy program (sending/receiving of data). This decoupling
was done to improve reusability in case of migrations between communication technologies. All
code samples for the minimal producers and subscribers can be found in Listings 1 to 10 in Ap-
pendix C. Lines of code metrics for all clients were collected to calculate the average effort for
implementing a minimal producer and subscriber pair. For the case-study, it was assumed that the
line of code, where the communication functionality is instantiated and configured with address,
port, and credentials (var client = ..), must be changed by hand in both manual coding and
model-driven generation. Hence, this line of code is not accounted for, and all raw lines of code
results are decremented by one. Afterward, all Listings were analyzed concerning the migration
between communication technologies. Due to the decoupling mentioned above, some parts of the
programs can remain unchanged during migration. Therefore, only modified lines were counted.
Table 18 summarizes the programmed, corrected lines of code per protocol for initial deployment,
and migration between communication technologies. Furthermore, it includes the respective mean

lines of code across all considered protocols.
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Table 18:  Manually programmed lines of code (LoC) for minimal producer and subscriber functionali-
ties. The corresponding Listings can be found in Appendix C.

Protocol Total lines of Code (LoC) Total lines of Code (LoC)
without user name and password | without user name and password
for an initial deployment for a migration
E

5 3 %3 5 3 53

[} — (SN [} — [

= 2 3 3 3 2 25

< = S & < 5 SS-3

o D a a3 a D oz a
AMQP 27 42 69 19 29 48
Beckhoff ADS 29 54 83 21 41 62
Apache Kafka 26 50 76 18 37 55
MQTT 20 33 53 12 20 32
OPC UA 52 64 116 44 51 95
MEAN 30.8 48.6 79.4 22.8 35.6 58.4

The total, average lines of code can be divided into lines of code for the programming of a repre-
sentative producer/consumer pair i (LoCpg;r;) and the additional lines of code per communicated
variable j between the two systems (LOCVari_]-a 2 for an initial deployment, O for a migration).
Therefore, the total lines of code of a project LoCy,:4; can be calculated with the number of pairs

Npqir and the number of variables Ny, per pair i to

Npair

NVari
LoCrowa = ) (LoCrair+ ). " (LoCvar,)) ). ©
]=

i=1

Both, Npgir and Ny, , must be integers larger than 0. With the programming productivity of
Proc = 36 LoC/h [Pre00] from Section 7.3.4, the implementation effort E¢;4ssicq; fOr @ manual

programming can be calculated as

LOCTotal

(5)

Eciassical =
PLoc

In Table 19, the average efforts in lines of code per producer/subscriber pair based on the results
across all considered protocols from Table 18, as well as the programming efforts based on the
productivity, are summarized. These will be used in the extrapolation case-study as representative

implementation efforts for manual programming
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Table 19:  Effort in lines of codes and programming time for manual implementation of minimal pro-
ducer/subscriber pairs.
Symbol Description Initial Migration
deployment
Average lines of code per
LoCpgir. . .
O%Ppair; producer/subscriber pair i 74 58.4
Average lines of code per
LoCygy. . : . . .
O%vari; \ariable j in producer/subscriber pair i 2 0
Average programming effort per . .
Ep pgir: . .
P.Pairi  hroducer/subscriber pair i 2h8min20s 1h37min20s
Epyar, Average programming effort per 3min 15 s 0s

variable j in producer/subscriber pair i

On the other hand, the effort Eypqei—ariven USiNg the model-driven approach is influenced by

two fact

ors:

first, an initial effort E7o;cnain for the creation of the DSL, the model-driven generation
of the communication architecture, and the underlying software framework. This initial
effort includes the implementation of all protocols from Table 18; and

second, a variable modeling effort Eyge1ing SUMMing up the modeling efforts for every
element to be modeled. For the effort extrapolation case-study, Epogering Can be ex-

pressed as

Npair

NVari
Emodeting = z Empair; + Z 1 (EM'VaTiJ) ’ ©)
J=

i=1

with Ey pa;r,the modeling effort per producer/subscriber pair i and Emyar, the modeling

effort for each variable j per pair i. The figures listed in Table 20 were measured for an
experienced engineer assuming an automatic synchronization of the graphical model and
the metamodel instance. All measurements were rounded up to full minutes. Here, the

efforts are independent of the underlying communication protocol.

Table 20:  Effort in time for modeling minimal producer/subscriber pairs.

Symbol Description Initial Migration
deployment

Ey,pair, Modeling effort per producer/subscriber pair i 10 min 1 min

Erivar, Modeling effort per variable j 1 min 0 min

Jin producer/subscriber pair i
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Therefore, Eyodei—driven 1S €Xpressed as

EModel—driven = EToolchain + EModeling

Npair

NVarl-
= Eroolchain T Z <EM,Pai7’i + Z (EM'VaTiJ)>' 7
i=1 =t

Under the assumption that E;,1cnain iS ONly relevant for the first implementation of the approach,
the total effort of the model-driven approach Ey,ge1—ariven fOr all subsequent realizations equals

the modeling effort Eyoqeiing-
In the following, three scenarios are discussed:

e acomparison of the implementation efforts for a classical, manual programming and the
model-driven approach for an initial deployment of a data collection architecture under

the assumption that the toolchain already exists;

e afterward, a migration of an existing architecture realization from one communication
technology to another using both approaches under the assumption that the toolchain al-
ready exists; and

e an estimation of the necessary number of producer/subscriber pairs and variables for a

realization of the architecture taking the effort for the toolchain creation into account.

7.5.1. Initial Deployment
The implementation efforts for an initial implementation of an average data collection architecture
based on a classical, manual programming approach and the model-driven approach are given in

Figure 48. For this and all following figures of this section, the number of variables Ny, per

publisher/subscriber pair i is expressed as the average number of variables Ny, per pair i. As

can be seen from the figure, the implementation effort for the classical approach is significantly
higher than for the model-driven approach. Both surfaces show the influence of an increasing

number of pairs as well as variables per pair, with a higher sensitivity towards the number of pairs.

The relative effort between model-driven and classical approach can be expressed as

Evodet-driven _ 0-1667 + 0.0167 - Nygy,
Eciassical 2.1500 + 0.0556 - Nygr,

(8

Therefore, the relative effort is independent of the number of pairs Np,;;-. The relative effort as a
function of the average number of variables per pair is plotted in Figure 49. For large systems, the

relative effort tends to converge to a value of about 30%.
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Figure 48: Comparison of implementation efforts for initial deployment as a function of the number of
publisher/subscriber pairs and the average number of variables per pair. Classical, manual

programming (left), and model-driven approach (right).
On the other hand, the smaller the number of variables per system is, the more advantageous it is
to use the proposed approach. This observation can be explained by the significant overhead of on
average 77.4 lines of code for the creation and instantiation of the relevant communication libraries
in manual programming. Adding additional variables to an already instantiated communication
channel between publisher and subscriber adds only two additional lines to this existing codebase.
In comparison, the modeling of small systems tends to be significantly faster than programming
them. Furthermore, also the modeling of additional variables causes less effort compared to man-

ual programming, but higher relative effort compared to the instantiation of the communication.

Therefore, under the assumption that the toolchain exists and can be used out of the box, the model-
driven approach for the initial generation of the communication architecture significantly outper-
forms the classical, manual programming approach in terms of implementation effort (Reg-Apep).
Relative implementation efforts are in the range of 8% to 30% depending on the size of the system.
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Figure 49: Relative effort between model-driven approach and classical, manual programming for initial
deployment as a function of the average number of variables per pair.
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7.5.2. Migration

In the case of migration between two communication protocols (redeployment), only several lines
of code have to be modified. Due to the modular structure of the code templates, it is not necessary
to change any variable-related code. On the other hand, the change of the communication protocol
requires only the modification of a single annotation label in the DSL per pair of producer/sub-
scriber (Reg-SFacp). Additionally, no further actions are needed for the variables. Therefore, only
the number of pairs to be migrated are relevant for the implementation efforts in case of a migra-
tion. Figure 50 gives the implementation efforts for both cases. In comparison to the initial de-
ployment, the effort ratio between model-driven and classical approach is further decreased to

EModel—driven

= 0.01, 9

EClassical

independent from the number of pairs Np;;,- and the average number of variables per pair Ny o,

Therefore, also implementation efforts for redeployment are significantly decreased through the
model-driven approach (Reg-Arepep)-

Classical Model-driven

ical IN T
N w S () (o2} ~
o o o o o
h
(2] ~
o o

)
Effort E; in h

Effort Eciass

o o

N
o

0
Number of publisher 0 Number of publisher 0
Average variables /subscriber pairs Np, Average variables /subscriber pairs Npg;-
per pair Ny, per pair Ny,
Figure 50: Comparison of implementation efforts for a migration scenario as a function of the number of
publisher/subscriber pairs and the average number of variables per pair. Classical, manual

programming (left), and model-driven approach (right).

7.5.3. Estimation of Necessary System Sizes for Break-even

The last part of this section is dedicated to the estimation of the minimal system sizes that make
the development of the toolchain for a model-driven generation of data collection architectures
feasible. Therefore, Table 21 lists the relevant code sizes and efforts that influence the effort for
the first creation of the toolchain E;,p1cnain- The effort for the development of the DSL, including
the metamodel and the graphical notation, was estimated to a full person-year (twelve months per
year, 4.33 weeks per month, with five working days per weeks, and eight hours working time per
day). The total lines of code in the software framework sum up to 4000 lines. The transformation

logic contains a total of 1350 lines of code, mainly written in the Acceleo transformation language,
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but also containing small snippets of Java and C# code. Taking into account the programming

productivity P; .., the total effort for the creation of the toolchain was estimated to 2227 h.

The discussed figures do not include the continuous maintenance of the developed code basis, nor
a sophisticated test-driven development. Both efforts would also have to be taken for classical,
manual implementations of the communication architecture. Therefore, in the following, it is as-

sumed that they do not influence the estimation of the break-even.

Table 21:  Efforts and lines of code for the creation of the toolchain for model-driven generation of com-
munication architectures. Effort for the development of the DSL was estimated. Programming
efforts for the software framework and the transformation logic based on the productivity
PLoc [Pre00] and the assumption that p, .. is also valid for Acceleo code.

Symbol Description Lines of code /
Effort
E The effort for the development of the graphical notation and 2078 h
bstL the underlying metamodel for the DSL (one person-year)
LoCsp Lines of code in the software framework (C#) 4000
The effort for the development of the software framework h
Esr based on p 111
LoC
LoCy Lines of code in the transformation logic (Acceleo/Java/C#) 1350
E The effort for the development of the code generation logic 38 h
M based on p; ¢
Total effort for the creation of the toolchain for model-driven 2997 h

E i . . .
Toolchain generation of communication architectures

Taking the initial effort for the creation of the model-driven approach into account, the efforts for
the model-driven implementation of data collection architectures are severely impacted (see
Figure 51). Especially for small systems, the classical approach is superior and should be pre-
ferred. Nevertheless, gradients in both dimensions are significantly smaller for the model-driven
approach than the classical. Based on these observations, the questions where the break-even be-
tween the efforts can be found should be answered in the following. In other words, what minimal

system size (as a function of producer/subscriber pairs Np,;,- and the average number of variables
per pair Nyg;,) is needed until the model-driven approach can outperform classical software de-

velopment.
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Comparison of implementation efforts for an initial deployment, including the effort for the
creation of the model-driven toolchain as a function of the number of publisher/subscriber
pairs and the average number of variables per pair. Classical, manual programming (left),
and model-driven approach (right).

Therefore, the relative efforts over a wide range of pairs and the average number of variables are

plotted in Figure 52. The Figure includes two scenarios: the first captures only the initial deploy-

ment, while the second includes one protocol migration for all systems. At first, the results for an

initial deployment without any migrations are discussed.

For small systems in the size of the scenarios considered earlier in this Section, the model-driven

approach requires about a hundred, up to a thousand times higher efforts compared to the classical

implementation. Nevertheless, the more systems are modeled, and the more variables they com-

municate, the better the effort ratio gets. It must be noted here that these systems can also be part

of multiple, independent projects for which the toolchain is applied.

Average variables
per pair Ny,

Figure 52:

Initial + one migration

Initial

10000

1000

250 100

per pair Ny,
N N
o o
o o

Average variables

100

Relative Effort
E]WudeIAdTiven/EClu.ss’ical

50

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of publisher/ Number of publisher/

subscriber pairs Npg;, subscriber pairs Npg;,
Relative effort between model-driven approach and classical, manual programming, includ-
ing the effort for the creation of the toolchain as a function of the average number of varia-
bles per pair. Only initial deployment (left), including one migration (right). Logarithmic
scale of the colormap.
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At an average number of variables per publisher/subscriber pair of

57266 — 51 - Npair)

Nygr, = ceil ( N
Pair

(10)
the model-driven approach can outperform classical software development for the case of only
initial deployment. For instance, this includes systems with 300 pairs and 140 variables each or
systems with 150 pairs and 330 variables each. These systems are in the range of sophisticated
data collection architectures where data from a multitude of systems must be gathered. On the
other hand, these systems do not have to be part of a single project but can be part of several
independent projects.

When one protocol migration for all systems is additionally considered, the relative effort is re-
duced to

57266 — 220 N, .,

Nyar, = ceil 7 . (11)
NPair

Therefore, the break-even is reached for smaller systems. This includes, for instance systems with
300 pairs and 99 variables per pair or systems with 150 pairs and 290 variables per pair. As indi-
cated due to the results of the migration scenario, the break-even is earlier reached for systems
containing a large number of pairs. The reason is that an effort reduction during migration is only

related to the number of pairs in the system.

Therefore, given the typical sizes of data collection projects in industrial automation, and the re-
usability of the DSL and the toolchain, the model-driven generation of the communication part of
data collection architectures can decrease implementation efforts (Reg-Aopep). Furthermore, the ap-

proach can scale up for industrial applications.

7.6. Expert Workshop and Questionnaire

A workshop with industry experts was conducted to evaluate the approach and to support the
findings related to the individual case-studies presented earlier. The expert group consisted of
n = 14 industrial experts from the field of industrial automation ranging from OEMs to produc-
tion plant manufacturers and operators of large chemical plants. The positions of the respective
experts range from project engineers tasked with digitization projects, data analysts in the field of
predictive maintenance and control, to head of their respective departments, for instance, research

and development.
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At the beginning of the workshop, an introduction of 20 minutes was given to the experts. The
introduction included a wrap-up of industrial problems and challenges related to data collection
and integration. Moreover, industrial protocols and state-of-the-art approaches to overcome these
problems were presented. Subsequently, the developed approach was introduced in more detail
using the application example from Section 5.2 (see Chapter 13 for a list of all occurrences of the
application example). The presentation closed with a comparison of the implementation efforts
between classical programming of a P2P architecture and the model-driven approach using a mid-

dleware based on a preliminary version of the effort extrapolation case-study (cf. Section 7.5).

Afterward, the contents of the presentation and the preliminary results were discussed for about
20 minutes with all experts. During the discussion, the experts pointed out the benefits of the
approach, but also raised concerns. Especially the limitation of the code generation to C# code
was criticized. This limitation restricts the applicability of the approach for greenfield PLCs where
code manipulations are possible. Here, the generation of IEC 61131-3 [IEC61131] compliant code
would be beneficial to include the communication functionality into the PLCs directly. One pos-
sibility can be the generation of code in the PLCopen XML exchange format [IEC61131] for direct

import into the respective programming environments.

Nevertheless, it must be considered that despite the IEC 61131-3 being a standard, some PLC
manufacturers rely on modified versions of the programming languages defined in IEC 61131-3
or only support programming in C. Furthermore, the generation of IEC 61131-3 compliant code
would require specific support libraries on the PLCs. For instance, while Beckhoff supports ADS
[Becl9c], OPC UA [Becl9a], and MQTT [Bec19b], there is currently no support for Apache
Kafka nor AMQP. Therefore, concerning the PLC-level, the code generation can only be used for
external gateways or alternatively an execution in the non-real-time part of soft-PLCs that support
the .NET Core framework.

At last, a questionnaire with two pages and 16 questions was filled out individually by the experts
answering questions and giving estimations related to the comparison of the classical, manual
programming, and the developed model-driven approach. The original German version of the

guestionnaire can be found in Appendix D.

One aspect of the questionnaire was the assessment of the approaches related to the dimensions
feasibility of a realization, total effort, and expected benefit. The averaged results of this assess-
ment are plotted in Figure 53 as a spider diagram, with values ranging from 1 (very low) to 10

(very high). The detailed results can be found in Table 23 in Appendix D.
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Figure 53: Comparison of the expert assessment of the dimensions feasibility, total effort, and benefit for
classical, manually implemented P2P network and model-driven, middleware-based approach
(n =14). Scale from 1 (very low) to 10 (very high).

While the expected benefits of both approaches only deviate to a small extent, the differences in
the two other dimensions are more significant. Experts assessed the feasibility of the classical
approach at an average value of around 5 and the necessary total effort at a value of 8. Therefore,
it seems that the classical realization of data collection architectures can be feasible, yet, not with-
out obstacles. The result could indicate an awareness of the importance of the topic and the possi-
bility of a P2P implementation if the specific use-case justifies the significant implementation
efforts. Different assessments were given for the developed model-driven approach: While the
experts rated the feasibility of a model-driven implementation at a value of 7, the total effort is
estimated to an average value of around 5. These results indicate that compared to the classical
approach, the experts evaluated the feasibility of a model-driven data collection architecture sub-
stantially higher at decreased implementation efforts. It must be noted here, that the effort includes
the effort for the modeling of the system, the subsequent model-driven generation of the system
architecture, and the manual completion of the generated code basis with the user-specific code.
Based on the assessment, it can be concluded that the industry experts expect significantly de-
creased efforts for the realization of a data collection architecture (Reg-Aoep). The different under-
lying concepts may explain the difference in the benefit assessment: while the classical implemen-
tation is based on direct connections between the systems, the model-based relies on a common
Data Management and Integration Broker. This central broker makes data not only available be-
tween directly connected systems, but to all systems of the architecture if required. Furthermore,
the addition of further participants is greatly simplified as only a single connection to the broker

needs to be programmed.
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The second aspect of the questionnaire was a detailed assessment of multiple statements related to
both approaches. Therefore, the experts rated their subjective approval of each statement for both
approaches. The answer scale included the possible answer options “disagree”, “rather disagree”,
“partly/partly”, “rather agree”, and “agree”. During the analysis of the questionnaire, the expert
answers were normalized to a scale ranging from -1 (disagree) to 1 (agree). The translated state-
ments and results are summarized in Figure 54, while Table 24 in Appendix D contains the exact

mean values and standard deviations per answer.

T T
o [ ] Classical Approach
) Q1: Accessibility of data fr_om - Model-driven Approach
different levels of the automation
pyramid is given. (n = 14)
Q2: Large-scale data access is
realistic. (n = 14)

Q3: A migration between
communication protocols is feasible
if needed. (n = 14)

Q4: Application development is
uncoupled from the actual
communication protocol. (n = 14)

Q5: Accepted interfaces simplify
incorporation of relevant protocols
into applications. (n = 12)
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Figure 54: Normalized results of the expert evaluation per question (-1 Disagreeing, 1 Agreeing). De-
tailed results in Table 24.

Question Q1 is dedicated to the accessibility of data from different levels of the automation pyra-
mid. The experts stated that better accessibility of the data for the model-driven approach (-0.18
versus 0.14 normalized agreement). However, the standard deviations of both mean answers are
relatively large. This result indicates that individual agreements are not as ambiguous and deviate
significantly. Therefore, the answers are in the range of the measurement uncertainty, but with a

trend towards improved accessibility using the model-driven approach (Reg-Aate).

The second question (Q2) is centered around the feasibility of large-scale data access. Here, sig-
nificant differences in the expert agreement can be observed. The normalized agreement concern-
ing this question is significantly higher for the model-driven approach (0.50) than for the classical
approach (-0.32). Therefore, the experts see a practical implementation of an industrial data col-
lection architecture based on the model-driven approach considerably more realistic. This large-

scale data access includes access to data from various levels of the automation pyramid (Reg-Aare).
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Moreover, the proposed parallel operation to the existing control infrastructure is seen as feasible
(Req-Apop).

The feasibility of a migration scenario is the subject of Q3. The experts stated that a migration of
the communication protocol is not very feasible when using the classical approach (-0.36 normal-
ized agreement). This result can be explained by the significant portions of code that have to be
rewritten as the extrapolation case-study in Section 7.5 showed. In contrast, a migration scenario
was seen more positively with the model-driven approach (0.21 normalized agreement,
Req-Arepep). Nevertheless, the experts were not entirely convinced of the feasibility. One possible
explanation could be the missing support for IEC 61131-3 code in the model-driven approach.
This lack of code generation makes manual changes to the PLC code necessary in case of a mi-
gration. Additionally, experts may fear the transition phase when migrating an existing system
architecture to another protocol while in operation. Further investigations related to these aspects

are needed in the future to identify these concerns accurately.

Question Q4 captures the expert opinion on the possibility of a decoupled development of the
applications from the underlying communication protocol for data collection. Here, the experts
tend to prefer the model-driven approach with its standardized interface (Reg-SFar1) and an ab-
straction of the specifics of the protocols (Reg-SFace) over the classical approach (0.54 normalized
agreement compared to 0.14). Using the developed software framework, the developed software
can be efficiently decoupled from the communication technology. However, concerns could be
raised around the high abstraction level of the developed programming interfaces. A possible so-
lution to overcome this would be a multi-layered software framework with specific interfaces for
complete abstraction of protocol-specific properties and a semi-abstracting layer that allows access

to the specific features of the protocols, e.g., special QoS features.

Interestingly, the standard deviation for the classical approach is relatively high (0.52). This value
may indicate different programming practices inside the respective companies for which the ex-
perts work. While some companies develop their software without a particular focus on reusabil-
ity, others may define a standardized interface to decouple the distinct parts of the developed ap-

plications.

The same explanation could apply to the results of Q5: while the importance of standardized in-
terfaces was highlighted for both approaches (0.54 for classical versus 0.67 for the model-driven
approach), the standard deviation of the classical approach is around 0.54 (0.24 for the model-

driven approach). This result once again means that experts tend to agree that the standardized
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interface of the model-driven approach simplifies the support of multiple communication proto-
cols (Req-SFapi). On the other hand, the expert opinion is not so uniform for the classical approach,
indicating different software development practices inside the respective companies. If the soft-
ware is developed with a strong focus on reusability and with defined interfaces, the support of
additional protocols is relatively simple. In contrast, if the developed software is of a more mono-
lithic structure, support for various protocols is more costly and difficult.

Therefore, according to the experts, a model-driven and middleware-based approach for the im-
plementation of data collection architectures has the potential to mitigate the existing industrial
challenges. Expert feedback was positive but also indicated that a code generation of IEC 61131-

3-compliant code for PLCs should be focused in the future.






8. Assessment of the Fulfillment of the Requirements

The previous Chapter presented and discussed the findings of the evaluation case-studies and the
fulfillment of the stated requirements (see Chapter 3). These are summarized with a detailed as-
sessment in Table 22 with a reference back to the respective Sections in Chapter 7. The majority
of requirements were evaluated positively in separate case-studies. Experimental results and ex-
pert assessments proved the suitability of the currently prototypical approach for model-driven
data collection architectures.

However, significant concerns arise around the current lack of an integrated modeling platform
that synchronizes model instance and visual representation of the DSL, as well as around the miss-
ing support for the generation of IEC 61131-3-compliant code for PLCs. Furthermore, the high
level of abstraction in the programming interface can be problematic if specific characteristics of
a communication protocol are of major importance for the realization of a specific use-case.

Table 22:  Summary of the fulfillment of requirements and reference to the relevant Section in the evalu-
ation Chapter (+ fulfilled, o partly fulfilled, - not fulfilled).

Requirement Rating Details and reference
to evaluation Section

Experts verified the applicability of the concept for

Data collection data collection from different levels (7.1.1). The lab-
Reg- from different + scale feasibility study demonstrated data collection
Aatp levels of the from different levels (7.3). The expert questionnaire
automation pyramid approved the feasibility of large-scale data access

and suitability of the approach (7.6).
Experts verified the technology-agnosticism of the

Reg- Iggggt?éogy' + concept (7.1.1). Mapping to other architectures
Atac concept demonstrated the applicability of the concept using
» different technologies and use-cases (7.1.2).

c q“;, Experts verified that a second data channel for paral-
S § lel operation to the pyramid architecture is included
é = 2::‘ Reg- Parallel operation to + (7.1.1). The lab-scale feasibility study demonstrated
3 2 S Arop pyramid architecture the parallel operation (7.3). The expert questionnaire
S o approved the possibility of parallel operation and

Se data access over the second data channel (7.6).
(% Req- Simplified The lab-scale feasibility study attested reduced im-
A implementation @) plementation and migration efforts and a simplified
Dep and configuration implementation (7.3). The effort extrapolation case-
study generalized the results and proved simplified
implementation and migration between protocols.
Simplified Yet, the initial effort for the creation of the model-
Reg- migration driven toolchain is a major one-time effort (7.5). The
Arepep  between © experts assessed significantly simplified implemen-
technologies tation and migration when using the model-driven

approach but criticized the missing support for IEC
61131-3-compliant code generation (7.6).
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Requirement Rating Details and reference
to evaluation Section
Req- _Standardized The Igb-scale feasibility stud'y'demonstrated the ab-
SFam mtterfages to o) st'ract.lon of technology-specific aspe_cts of commu-
minimize effort nication protocols and the standardized interfaces
that prevented additional modifications to existing
application-specific code in case of migrations (7.3).
. The extrapolation case-study confirms and intensi-
o ~ Req. g?ﬁgﬁfé'onf’f fiies these findings (7.5). The expert questionnaire af-
= g % SFq specific g?/o erties + firmed the benefits of abstraction and the introduc-
E 2= ACP oE: cc:rrl1mp P t'l tion of standardized interfaces for software develop-
S s unication ment. The high level of abstraction was criticized for
e not giving access to enhanced protocol functionali-
ties (7.6).
Experts verified the feasibility of the architecture
Req- Support for concept for the intgg_ra}tion of legacy systems (7.1. _1).
SFieq legacy systems + The Igb-scale _fea5|bll!ty study demonstrated_ the in-
terfacing and integration of legacy systems into the
data collection architecture (7.3).
. Reg- System viewpoint + The industrial case-study with expert interviews
£ Msys evaluated the aspects of the modeling language pos-
3 Reg- . . itively (7.2). The system and data flow viewpoints
s :.j, S Mor Data flow viewpoint  +  were able to represent all relevant aspects. Annota-
L3 Annotations for tlon_for_ properties anq rqulrements aI_Ic_st thg for-
2cg Reg- oroperties and + mal!zatlon and co_r15|derat|on. of addl_tlonal infor-
& — =~ Mpropreq : mation. The graphical modeling notation was per-
= requirements - . .
< - : ceived positively by the experts, but an integrated ed-
z Reg-  Graphical modeling o itor for the DSL, including an automatic synchroni-
Meraph  NOtation zation with the model instance, is currently missing.
c
_g 5 — Model-driven The communication architecture was automatically
-E § g Reg- generation of + generated and included all communication interfaces
g 2 £ Geom communication for non-legacy systems in the lab-scale feasibility
§ 8 ~ interfaces case-study (7.3) and the industrial case-study (7.4).




9. Summary and Outlook

Data analytics and big data principles are one of the central aspects of the 1 4.0 concept. Through
digitization and better connectivity, an ever-increasing amount of data from CPSoS and related
systems is available for analysis. However, the distributed data has to be collected and integrated
first before it can be analyzed. System architectures for data collection can automate and opera-
tionalize this task. Yet, the significant implementation efforts to realize such architectures induced
by a large number of heterogeneous legacy systems prevalent in industrial automation impedes
industrial uptake of 1 4.0 concepts and prevents leveraging of data. Several researchers identified
the concept of model-driven development as a possible solution to overcome these challenges
[WMW18].

Nevertheless, no model-driven data collection architecture with support for multiple protocols and
automatic generation of the communication architecture exists in the literature. Furthermore, DSLs
with a visual notation and a formal description of CPSoS and associated data flows in the domain

of industrial automation are a research gap.

Therefore, a model-driven approach for the realization of data collection architectures was devel-
oped in this thesis. It is based on a technology-neutral architecture concept that describes the ele-
ments and principles of data collection architectures. A DSL with visual notation was introduced
that serves as a universal language during the interdisciplinary design of data collection architec-
tures. A supporting metamodel structures the modeled information and makes it available for the
model-driven generation of the data collection architecture. Here, M2T transformations are em-
ployed to generate the communication architecture based on predefined templates automatically.
These templates stem from a developed software framework that supports an API for technology-

abstracted communication based on multiple relevant 1loT protocols.

Distinct aspects of the approach were evaluated in multiple case-studies against requirements de-
rived from industrial practice and the state-of-the-art. Expert interviews confirmed the suitability
of the architecture concept for interfacing of existing legacy systems and parallel operation to the
automation pyramid. The technology-neutral concept serves as a basis for practical realizations

and guides the development process.

Furthermore, the expert evaluation of the DSL proved that relevant features of the systems, as well
as the flow of data between them, could be successfully modeled and understood by experts from
different disciplines. Additionally, the possibility to annotate the models with properties and re-

guirements of the systems was evaluated positively.
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The model-driven generation of data collection architectures was evaluated in three distinct case-
studies. A lab-scale feasibility study was used to compare implementation efforts of manual pro-
gramming versus the model-driven approach for a sufficiently complex use-case. The results
showed significantly reduced implementation efforts for the model-driven generation of the data-
collection architecture, even under the very conservative figures used for the comparison. An ad-
ditional industrial case-study was used to verify the scalability of the model-driven generation for
industrial-scale applications. The last case-study, an extrapolation study, was used to generalize
the previous findings and to estimate scalability and implementation effort reduction of the ap-

proach sophisticatedly.

The evaluation proved the fulfililment of most requirements. Nonetheless, several weaknesses of
the approach were uncovered. These include the missing synchronization between the graphical
model and the instance of the metamodel, as well as the lack of code generation for PLCs due to
the restriction on C#. Additionally, the high level of abstraction in the software framework was

identified as problematic. Nevertheless, the hypothesis (H1) to (H3) can be seen as confirmed:

(H1) A technology-neutral concept for a data collection architecture can bridge operational
technology (OT) and information technology (IT) and allow data collection from pro-
duction systems.

(H2) A special domain-specific language with a graphical notation for data collection archi-
tectures supports the understanding and structuring of information during the engineer-
ing phase of these architectures by multi-disciplinary teams composed of engineers, IT

architects, programmers, process experts, and data analysis.

(H3) A model-based approach for automatic generation of data collection architectures re-

duces the effort for implementation and migration of these architectures.

Therefore, the proposed approach is successfully addressing the research gap.

Further research is dedicated to tackling the weaknesses of the approach and to extend it for addi-
tional applications. As a first step, an integrated modeling environment with full synchronization
between the graphical editor and the underlying model is necessary for industrial applications. The
automatic synchronization integrates both views and would allow the approach to be practically
applicable. Currently, due to the manual synchronization between the two views, inconsistencies
might occur. A realization of the modeling environment based on Graphiti [Ecl19f] or Sirius
[Ecl19a] could replace Visio and benefit from an active integration into Eclipse, where the meta-

model is implemented with EMF.
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Furthermore, the effort comparisons, especially the extrapolation case-study, could be extended
and improved by utilizing a different, more sophisticated approach for the effort estimation of the
manually implemented code. While the approach in this works assumes a linear model based on
LoC, which is sufficient for the intended conservative comparison, a non-linear model such as
COCOMO Il [Boe*00; Boe*95] could increase the validity and insights of such case-studies. How-
ever, the utilization of the model comes with the complexity of determining the additional model
parameters, e.g., the capability of personnel or the complexity of the software product, which may
be challenging to define for new technology such as the model-driven development of data col-

lection architectures.

An additional point is better integration into the engineering process. While currently, all infor-
mation is modeled manually by experts, existing information could be reused. For instance, engi-
neering tools for the field level, such as TwinCAT 3 [Bec19d] or TIA Portal [Siel9], contain
detailed information about the bus configuration, all hardware signals, as well as software infor-
mation. File-based exchange of information or direct access over interfaces between these tools
and the modeling environment could significantly decrease modeling efforts, reduce redundancies,
and increase consistency. Furthermore, feeding back information to these systems, e.g., parts of
the communication architecture as IEC 61131-3-compliant code, would close the loop between
the different environments and greatly simplify industrial applications.

Besides IEC 61131-3-compliant code, also support for additional programming languages and en-
vironments, such as C+ or Java, would be beneficial. Furthermore, direct support for languages
commonly used for data analysis, such as Matlab, Python, or R could further bridge the gap be-
tween industrial automation and data analysis. Also, support for a greater variety of protocols, e.g.,
DDS or REST, would improve the applicability of the developed approach. Nevertheless, not only
the number of supported protocols is relevant, but also the flexibility of the software framework.
Therefore, a multi-layer software framework that provides not only highly-abstracted program-
ming interfaces but also intermediate layers with enhanced support for QoS features at the cost of
decreased reusability could be beneficial. This would allow programmers, on the one hand, to
migrate between protocols with equivalent support of QoS features without additional modifica-
tions. On the other hand, if migration to a protocol with incompatible support for QoS features
would be needed, the high-level communication code could still be reused, while only the QoS-

specific parts would require reimplementation.

An extension of the DSL is an additional point for further research. Inside the author’s group,
several approaches based on the same basic graphical notation can be found to capture timing
characteristics [Vog™11] or safety aspects [STV19; SVF17]. Therefore, an extension of the DSL
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would allow a universal usage of the developed language and an integration of approaches. Fur-
thermore, more sophisticated modeling of data analysis functions (cf. [Ard*18]) would increase
the information content of the models and improve the understanding of interactions between data
collection and analysis. Also, inclusion or adaption of modeling elements to capture the dynamics
of systems, such as UML state or sequence diagrams [OMG17], would increase the modeling
depth significantly. To manage the complexity of the integrated DSL, the introduction of addi-
tional modeling viewpoints and textual representations, for instance, to define mappings between

communication channels of the broker or security aspects as demonstrated by [Ber*18], is possible.

Following the proposal of Vogel-Heuser et al. [VWT17], design space exploration could be con-
ducted based on the modeled information in order to determine suitable deployment alternatives.
For instance, as Vogel-Heuser et al. [Vog*20] elaborated for distributed control systems, the proper
characterization of timing behavior is of major importance. Therefore, the integration of network
and system simulations would allow an offline derivation of optimized design and deployment
alternatives. Such an integrated development tool would support the engineering of data collection
architectures also during the earlier stages of the systems engineering. A similar approach has
already been published for DDS-based communication systems [TCK18]. Based on the simulation
of the systems and networks, such as presented by Jha et al. [Jha™20], multi-objective optimization
[BTT98] could be used to distribute data collection and manipulation tasks inside a network auto-
matically.

As the last point, the integration of DevOps and model@run.time principles for the model-driven
development [BBF09; CW20; Wor20] could increase information usage and minimize develop-
ment times. For instance, monitoring of the runtime behavior of deployed architectures would
provide insights and ensure proper operation. Based on the modeled information, the monitoring
functionalities could be generated, configured, and deployed using the same model-driven tool-
chain. Monitoring of data flows and QoS fulfillment was identified as one of the major challenges
for the integration of 1l0T and data analytics by Ranjan et al. [Ran*18]. Both could be tackled
based on the developed approach. Also, the consideration of the temporal factor in the models
could allow tracing the evolution of the architecture and QoS fulfillment over time [Bil*18]. Also,
the stronger coupling and integration of design-time models about CPS with runtime aspects, such
as data analysis, as proposed by Wolny et al. [Wol*18; Wol*20], could enhance the information
content of models. This would allow, for instance, the generation of application-specific logic and
automatic reasoning of the actual physical meaning of transported data. Furthermore, with a full
description of all involved processes during design time (cp. modeling of dynamics and depend-
encies between systems), specific parts of the data collection could be set up automatically without

manual modeling.
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Figure 55: Combined edge and cloud architecture (Use-Case B) in the system viewpoint (adapted from

[TWV20]). Production machine with anomaly detection on edge level, cloud environment for

model training, and data adapter in between to translate protocol and semantics.
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Figure 56: Data flow of Use-Case B modeled in the data flow viewpoint (adapted from [TWV20]). The
diagram is distributed over two sheets for better overview, arrows link the two sheets.
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Use-Case C Alarm Management

Appendix A.2
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Figure 57: Public cloud architecture for alarm analysis and management (Use-Case C) modeled in the

system viewpoint (adapted from [TWV20]). Two production machines connected to an online

dashboard and analysis solution hosted in a public cloud.
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training (center) and the collection of streamed data for live root-cause analysis (left and
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Use-Case D Alarm Management
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Figure 59: Alarm management system hosted private and public clouds of Use-Case D modeled in the

system viewpoint (adapted from [TWV20]). Hybrid cloud setup to guarantee confidentiality to
customers and increase performance of the analysis, while allowing a fleet-management

across multiple clients.
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Appendix B. Graphical Models of Lab-scale Study

All graphical models related to the lab-scale feasibility study from Section 7.3 are given in this
Chapter. Figures 61 to 63 contain the system diagrams, while Figures 64 to 67 the corresponding
data flow diagrams.
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Figure 61: First sheet of the system diagram of the internal feasibility study.
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The following Chapter lists the source codes for the minimal publishers and subscriber function-
alities for the extrapolation case-study (cf. Section 7.5). The lines of code (LoC) metrics were
evaluated in Visual Studio 2019 using the Microsoft.CodeAnalysis.Metrics package in
version 2.9.8 [Mic19c]. The analysis counts all lines of code for the implementation of the respec-
tive classes including comments and empty lines. The using directives at the top of each listing,
the namespace declaration, as well as the surrounding brackets of the namespace are not counted.
Due to width limitations of this printed document, some additional line breaks were introduced
but do not influence the LoC metric. The line numbers on the left of each listing reflect this intro-
duction of arbitrary line breaks by not counting these additional lines. Lines of codes in the cap-

tions reflect raw, uncorrected numbers directly from the code metric analysis.

Listing 1:  Minimal publisher for AMQP protocol (LoC = 28).

1 using System;

2 using RabbitMQ.Client;

3 using System.Text;

4 namespace MinimalExample

51

6 public class PublisherManualAmgpMinClient

7 {

8 public static void Main()

9 {

10 var client = new PublisherManualAmgpMin("192.168.80.214", 5672,

"SimplPub", "SimplePass");

11 client.TransmitData("TestByte", 127);

12 }

13 }

14 public class PublisherManualAmqpMin

15 {

16 private IModel _Channel;
17 public PublisherManualAmgpMin(string host, uint port, string user, string password)
18 {
19 var factory = new ConnectionFactory
20 {
21 HostName = host,
22 Port = (int)port,
23 UserName = user,
24 Password = password
25 s
26 _Channel = factory.CreateConnection().CreateModel();
27 }
28 public void TransmitData(string channel, object data)
29 {
30 _Channel.QueueDeclare(channel, false, false, false, null);
31 _Channel.BasicPublish("", channel, null,

Encoding.UTF8.GetBytes(data.ToString()));
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32
33
34}

Listing 2:  Minimal publisher for Beckhoff ADS protocol (LoC = 30).

59
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 }

1 using System;

2 using TwinCAT.Ads;

3 using System.Collections.Generic;
4 namespace MinimalExampleAds

public class PublisherManualAdsClient

{
public static void Main()
{
var client = new PublisherManualAdsMin("5.46.63.220.1.1", 851);
client.TransmitData( "TestByte"”, 127);
¥
}
public class PublisherManualAdsMin
{
private readonly TcAdsClient _client;
private Dictionary<string, int> _knownHandles;
public PublisherManualAdsMin(string amsNetId, uint port)
{
_client = new TcAdsClient();
_client.Connect(new AmsAddress(amsNetId + ":" + port));
_knownHandles = new Dictionary<string, int>();
¥
public void TransmitData<T>(string channel, T data)
{
int handle;
if(_knownHandles.TryGetValue(channel, out var h)) handle = h;
else
{
handle = _client.CreateVariableHandle(channel);
_knownHandles.Add(channel, handle);
}
_client.WriteAny(handle, data);
¥
}

Listing 3:  Minimal publisher for Kafka protocol (LoC = 27).

44
5

O 00 N O

1 using System;
2 using Confluent.Kafka;
3 namespace MinimalExample

public class PublisherManualKafkaMinClient

{

public static void Main()

{

var client = new PublisherManualKafkaMin("192.168.80.214", 1883,
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32}

"SimplPub", "SimplePass");
client.TransmitData( "TestByte", 127);

}
}
public class PublisherManualKafkaMin
{
private IProducer<Ignore, string> _client;
public PublisherManualKafkaMin(string host, uint port, string user, string password)
{
var conf = new ProducerConfig
{
BootstrapServers = host + ":" + port,
SaslUsername = user,
SaslPassword = password,
SecurityProtocol = SecurityProtocol.SaslPlaintext
s
_client = new ProducerBuilder<Ignore, string>(conf).Build();
}
public void TransmitData(string channel, object data)
{
_client.Produce(channel, new Message<Ignore, string> {Value = data.ToString()});
}
}

Listing 4:  Minimal publisher for MQTT protocol (LoC = 21).

41
5

O 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 }

1 using System;
2 using OpenNETCF.MQTT;
3 namespace MinimalExample

public class PublisherManualMqttMinClient

{
public static void Main()
{
var client = new PublisherManualMqttMin("”192.168.80.214", 1883,
"SimplPub", "SimplePass");
client.TransmitData("TestByte", 127);
}
}
public class PublisherManualMqttMin
{
private MQTTClient _client;
public PublisherManualMgttMin(string host, uint port, string user, string password)
{
_client = new MQTTClient(host, (int)port);
_client.Connect("SimplePub”, user, password);
¥
public void TransmitData(string channel, object data)
{
_client.Publish(channel, data.ToString(), QoS.FireAndForget, false);
}
}
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Listing 5: Minimal publisher for OPC UA protocol (LoC =53).

1 using System;

2 using Opc.Ua.Client;

3 using Opc.Ua;

4 namespace MinimalExample

54
6 public class PublisherManualOpcUaMinClient
7 {
8 public static void Main()
9 {
10 var client = new PublisherManualOpcUaMin("192.168.860.215", 5672);
11 client.TransmitData( "ns=2;s=TestByte", 127);
12 }
13 }
14 class PublisherManualOpcUaMin
15 {
16 private Session m_session;
17 public PublisherManualOpcUaMin(string host, uint port)
18 {
19 var opcClientConfig = new ApplicationConfiguration()
20 {
21 ApplicationName = "OPC UA Data Adapter Pub",
22 ApplicationType = ApplicationType.Client,
23 ApplicationUri = "urn:" + Utils.GetHostName() + ":AIS:DataAdapterPub”,
24 SecurityConfiguration = new SecurityConfiguration()
25 {
26 ApplicationCertificate = new CertificateIdentifier()
27 {
28 StoreType = CertificateStoreType.Directory,
29 StorePath = "OPC_UA_DataAdapter_Pub\\UA_MachineDefault",
30 SubjectName = "OPA UA Data Adapter”,
31 b
32 TrustedPeerCertificates = new CertificateTrustList()
33 {
34 StoreType = CertificateStoreType.Directory,
35 StorePath = "OPC_UA_DataAdapter_Pub\\UA_Applications"
36 }
37 1
38 ClientConfiguration = new ClientConfiguration()
39 1
40 opcClientConfig.Validate(ApplicationType.Client).Wait();
41 var serverEndpoint = CoreClientUtils.SelectEndpoint
("opc.tcp://" + host + ":" + port, false);
42 var server = new ConfiguredEndpoint
(serverkEndpoint.Server, EndpointConfiguration.Create(opcClientConfig));
43 server.Update(serverEndpoint);
44 m_session = Session.Create
(opcClientConfig, server, true, opcClientConfig.ApplicationName,
3600, new UserIdentity(new AnonymousIdentityToken()), null).Result;
45 }
46 public void TransmitData(string channel, object data)
47 {
48 WriteValue valueToWrite = new WriteValue

49 {
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50 NodeId = channel,

51 AttributeId = Attributes.Value

52 1

53 valueToWrite.Value.Value = data;

54 valueToWrite.Value.SourceTimestamp = DateTime.Now;
55 var valuesToWrite = new WriteValueCollection { valueToWrite };
56 m_session.Write(null, valuesToWrite, out _, out _);
57 }

58 }

59 }

Listing 6:  Minimal subscriber for protocol AMQP (LoC = 43).

1 using System;

2 using System.Text;

3 using RabbitMQ.Client;

4 using RabbitMQ.Client.Events;
5 namespace MinimalExample

6 {

7

8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

public class SubscriberManualAmgpMinClient

{

}

public static void Main()

{

var client = new SubscriberManualAmgpMin("192.168.86.215", 5672,
"SimplePub", "SimplePass");

client.Subscribe("TestByte", ReceivedHandler);
Console.ReadLine();

}

public static void ReceivedHandler(string message)

{

}

public class SubscriberManualAmqpMin

{

private readonly IModel _Channel;

public delegate void ReceivedHandler(string message);

public event ReceivedHandler TestByteReceived;

public SubscriberManualAmgpMin(string host, uint port, string user, string password)

{

var factory = new ConnectionFactory

{
HostName = host,
Port = (int)port,
UserName = user,
Password = password
s
_Channel = factory.CreateConnection().CreateModel();
}
public void Subscribe(string channel, ReceivedHandler handler)
{

_Channel.QueueDeclare(channel, false, false, false, null);

wn

_Channel.QueueBind(channel, , channel);
var consumer = new EventingBasicConsumer(_Channel);

consumer.Received += (model, ea) =>
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41 {

42 if (ea.RoutingKey != channel) return;

43 var body = ea.Body;

a4 var message = Encoding.UTF8.GetString(body);
45 handler(message);

46 I

47 _Channel.BasicConsume(channel, true, consumer);
48 }

49 }

50 }

Listing 7:  Minimal subscriber for Beckhoff ADS protocol (LoC = 55).

1 using System;

2 using System.Collections.Generic;
3 using System.Text;

4 using TwinCAT.Ads;

5 namespace MinimalExampleAds

6 {
7 public class SubscriberManualAdsClient
8 {
9 public static void Main()
10 {
11 var client = new SubscriberManualAdsMin("5.46.63.220.1.1", 851);
12 client.Subscribe<byte>("TestByte", ReceivedHandler);
13 Console.ReadlLine();
14 }
15 public static void ReceivedHandler(string message)
16 {
17 }
18 }
19 public class SubscriberManualAdsMin
20 {
21 public delegate void ReceivedHandler(string message);
22 private readonly TcAdsClient _client;
23 private readonly Dictionary<uint, AdsNotificationEventHandler> _subscriptions;
24 private readonly Dictionary<string, int> _knownVariableHandles;
25 public event ReceivedHandler TestByteReceived;
26 public SubscriberManualAdsMin(string amsNetId, uint port)
27 {
28 _subscriptions = new Dictionary<uint, AdsNotificationEventHandler>();
29 _knownVariableHandles = new Dictionary<string, int>();
30 _client = new TcAdsClient();
31 _client.Connect(new AmsAddress(amsNetId + “:" + port));
32 _client.AdsNotification += (s, e) =>
33 {
34 if (_subscriptions.TryGetValue((uint)e.NotificationHandle, out var handler))
35 handler.Invoke(s, e);
36 }s
37 }
38 private int GetVariableHandle(string varName)
39 {
40 if (_knownVariableHandles.TryGetValue(varName, out var handle)) return handle;

41 else
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42 {

43 var newHandle = _client.CreateVariableHandle(varName);

44 _knownVariableHandles.Add(varName, newHandle);

45 return newHandle;

46 }

47 }

48 public void Subscribe<T>(string channel, ReceivedHandler handler)

49 {

50 var settings = new NotificationSettings(AdsTransMode.OnChange, 10, 20);

51 var errorCode = _client.TryAddDeviceNotification(channel, new AdsStream(),

0, 40, settings, null, out uint handle);

52 if (errorCode != AdsErrorCode.NoError)
throw new Exception("”subscription failed with error code"” + errorCode);

53 _subscriptions.Add(handle, (s, e) =>

54 {

55 object value;

56 if (typeof(T) == typeof(string)) value =
_client.ReadAnyString(GetVariableHandle(channel), 80, Encoding.Default);

57 else value = _client.ReadAny(GetVariableHandle(channel), typeof(T));

58 handler.Invoke(value.ToString());

59 s

60 }

61 }

62 }

Listing 8:  Minimal subscriber for Kafka protocol (LoC = 51).

1 using Confluent.Kafka;

2 using System;

3 using System.Collections.Generic;
4 using System.Threading;

5 namespace MinimalExample

6 {

7 public class SubscriberManualKafkaMinClient

8 {

9 public static void Main()

10 {

11 var client = new SubscriberManualKafkaMin("“192.168.80.216", 9092,

"SimplePub", "SimplePass");

12 client.Subscribe("TestByte"”, ReceivedHandler);

13 Console.ReadlLine();

14 }

15 public static void ReceivedHandler(string message)

16 {

17 }

18 }
19 public class SubscriberManualKafkaMin
20 {
21 public delegate void ReceivedHandler(string message);
22 private IConsumer<Ignore, string> _client;
23 private Dictionary<string, ReceivedHandler> _channels;
24 public event ReceivedHandler TestByteReceived;
25 public SubscriberManualKafkaMin(string host, uint port, string user, string password)

26 {
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27 var conf = new ConsumerConfig

28 {

29 GroupId = "AIS",

30 BootstrapServers = host + ":" + port,

31 SaslUsername = user,

32 SaslPassword = password,

33 SecurityProtocol = SecurityProtocol.SaslPlaintext,

34 }s

35 _client = new ConsumerBuilder<Ignore, string>(conf).Build();

36 _channels = new Dictionary<string, ReceivedHandler>();

37 new Thread(Receive).Start();

38 }

39 public void Subscribe(string channel, ReceivedHandler handler)

40 {

41 _client.Subscribe(channel);

42 _channels.Add(channel, handler);

43 }

44 private void Receive()

45 {

46 while (true)

47 {

48 try

49 {

50 var res = _client.Consume(TimeSpan.FromMilliseconds(100));

51 if (!_channels.TryGetValue(res.Topic, out ReceivedHandler handler))
return;

52 handler.Invoke(res.Message.Value);

53 }

54 catch(Exception e) { }

55 }

56 }

57 }

58 }

Listing 9:  Minimal subscriber for MQTT protocol (LoC = 34).

61

7

8

9
10
11

12
13
14
15
16
17

1 using System;

2 using OpenNETCF.MQTT;

3 using System.Collections.Generic;
4 using System.Text;

5 namespace MinimalExample

public class SubscriberManualMqttMinClient
{
public static void Main()
{
var client = new SubscriberManualMqttMin("192.168.80.214", 1883,
"SimplPub"”, "SimplePass");
client.Subscribe("TestByte"”, ReceivedHandler);
Console.ReadlLine();
¥
public static void ReceivedHandler(string message)
{
}
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18 }

19 public class SubscriberManualMqttMin

20 {

21 private readonly MQTTClient _client;

22 public delegate void ReceivedHandler(string message);

23 private Dictionary<string, ReceivedHandler> _channels;

24 public event ReceivedHandler TestByteReceived;

25 public SubscriberManualMgttMin(string host, uint port, string user, string password)
26 {

27 _client = new MQTTClient(host, (int)port);

28 _client.Connect("SimplePub", user, password);

29 _client.MessageReceived += (channel, qos, payload) =>

30 {

31 if (!_channels.TryGetValue(channel, out ReceivedHandler handler)) return;
32 handler.Invoke(Encoding.UTF8.GetString(payload));

33 }s

34 _channels = new Dictionary<string, ReceivedHandler>();

35 }

36 public void Subscribe(string channel, ReceivedHandler handler)

37 {

38 if (!_channels.ContainsKey(channel)) _channels.Add(channel, handler);
39 }

40 }

41 }

Listing 10: Minimal subscriber for OPC UA protocol (LoC = 65).

1 using System;

2 using Opc.Ua;

3 using Opc.Ua.Client;

4 namespace MinimalExample

51

6 public class SubscriberManualOpcUaMinClient

7 {

8 public static void Main()

9 {

10 var client = new SubscriberManualOpcUaMin( "desktop-o6ueut2"”, 50000);
11 client.Subscribe("ns=2;s=TestByte", ReceivedHandler);
12 Console.ReadlLine();

13 }

14 public static void ReceivedHandler(string message)

15 {

16 }

17 }

18 public class SubscriberManualOpcUaMin

19 {
20 public delegate void ReceivedHandler(string message);
21 private readonly Session m_session;
22 public SubscriberManualOpcUaMin(string host, uint port)
23 {
24 var opcClientConfig = new ApplicationConfiguration()
25 {
26 ApplicationName = "OPC UA Data Adapter",

27 ApplicationType

ApplicationType.Client,
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28 ApplicationUri = "urn:" + Utils.GetHostName() + ":AIS:DataAdapter”,
29 SecurityConfiguration = new SecurityConfiguration()
30 {
31 ApplicationCertificate = new Certificateldentifier()
32 {
33 StoreType = CertificateStoreType.Directory,
34 StorePath = "OPC_UA_DataAdapter\\UA_MachineDefault",
35 SubjectName = "OPA UA Data Adapter",
36 }s
37 TrustedPeerCertificates = new CertificateTrustList()
38 {
39 StoreType = CertificateStoreType.Directory,
40 StorePath = "OPC_UA_DataAdapter\\UA_Applications”
41 }
42 ¥,
43 ClientConfiguration = new ClientConfiguration()
44 I
45 opcClientConfig.Validate(ApplicationType.Client).Wait();
46 var serverkEndpoint = CoreClientUtils.SelectEndpoint
("opc.tcp://" + host + ":" + port, false);
a7 var serverConfiguration = EndpointConfiguration.Create(opcClientConfig);
48 var server = new ConfiguredEndpoint(serverEndpoint.Server, serverConfiguration);
49 server.Update(serverEndpoint);
50 m_session = Session.Create
(opcClientConfig, server, true, opcClientConfig.ApplicationName,
3600, new UserIdentity(new AnonymousIdentityToken()), null).Result;
51 }
52 public void Subscribe(string channel, ReceivedHandler handler)
53 {
54 var item = new MonitoredItem()
55 {
56 DisplayName = channel,
57 StartNodeId = channel
58 s
59 item.Notification += (itm, args) =>
60 {
61 if (itm.DisplayName == channel)
62 foreach (var val in itm.DequeueValues())
63 handler.Invoke(val?.Value?.ToString());
64 s
65 var subscription = new Subscription(m_session.DefaultSubscription);
66 subscription.AddItem(item);
67 m_session.AddSubscription(subscription);
68 subscription.Create();
69 }
70

71}
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Results

The two pages of the expert questionnaire and detailed results for Section 7.6 can be found below.

modellgetriebenen Ansatzes.

Im nachfolgenden Fragebogen bitten wir um Ihre Mithilfe zum Vergleich klassischer;
Ansiitze zur Datensammlung in der Automatisierungstechnik und eines neuen,

Teil A: Vergleich zwischen Stand der Technik und neuem Ansatz
Im nachfolgenden Abschnitt sollen Sie bewerten, in wie weit Sie bestimmten Aussagen zustimmen. Je Aussage findet jeweils
ein Vergleich zwischen dem aktuell etablierten Vorgehen (Stand der Technik) und dem prisentierten, modellgetriebenen

Ansatz statt.
Al. Die Zugiinglichkeit zu Daten aus verschiedenen Ebenen der
Automatisierungspyramide ist gegeben.

Stimme
Stimme  eher nicht
nicht zu zu Teils'teils

Klassischer Ansatz D """""" D """"" D """""
Modellgetriebener Ansatz D --------- D ---------- D -------

Simme
Stimme  voilkomme
eher zu nz

A2, Eine grofiflichige Anbindung von Datenquellen ist durch den Ansatz

realistisch.
Stimme
Stimme  eher nicht
nicht zu zu Teils'teils

Klassischer Ansatz D """""" D """"" D """""
Modellgetriebener Ansatz D --------- D ---------- D -------

A3. Eine Migration von einem Kommunikationsprotokoll hin zu einem
anderen ist bei Bedarf realistisch.

Stimme
Stimme  eher nicht
nicht zu m Teils/teils

Klassischer Ansatz D """"" D """"" D """"
Modellgetriebener Ansatz D """""" D """"" D """""

A4, Anwendungssoftware kann unabhiingig vom zugrundeliegenden
Kommunikationsprotokoll realisiert werden.

Stimme
Stimme  eher nicht
nicht zu m Teils/teils

Klassischer Ansatz D """"" D """"" D """"
Modellgetriebener Ansatz D --------- D ---------- D -------

Figure 68: First page of the expert questionnaire in German.

Simme
Stimme  voilkomme
eher zu nz

Stimme
Stimme  yollkomme
cher zu nzm

Simme
Stimme  voilkomme
cher zu nzm
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AS. Akzeptierte Schnittstellen vereinfachen die Anbindung relevanter
Protokolle in Applikationen.

Stimme

. - . Simme
Stimme  cher nicht Stimme  ygllkomme
nicht zu m Teils'teils  eher zu nz

Klassischer Ansatz |:| --------- D ---------- D --------- D ---------- D
Modellgetriebener Ansatz l:‘ """"" D """"" D """""" D """""" D

Teil B: Aufwand, Nutzen und Machbarkeit der Ansiitze

Bitte bewerten Sie nachfolgend den Aufwand bzw. den Nutzen der verschiedenen Ansitze zur Datensammbung.

Bewerten Sie jeweils von 1 (sehr gering) bis 10 (sehr groB).

B1. Bewerten Sie den klassischen Lisungsweg (Stand der Technik) zur
Erstellung einer Datensammelarchitektur mittels direkter
Verbindungen.

1 2 3 4 5 6 7 8 9 10

it OO O 000
klassiscﬁ:ﬁ;iz I e e

Machbarkeit der

I I S S B I S S I

Umsetzung

B2. Bewerten Sie den prisentierten modellgetriebenen Ansatz zur
Erstellung einer Datensammelarchitektur.

Aufwand der

modellgetriebenen D --------- D ---------- D ---------- D ---------- D ---------- D --------- D ---------- D --------- D ---------- D

Losung

Nutzen der

modellgetriebenen D --------- D ---------- D ---------- D ---------- D ---------- D --------- D ---------- D --------- D ---------- D

Losung

Machbarkeit der

modellgetriebenen D --------- D ---------- D ---------- D ---------- D ---------- D --------- D ---------- D --------- D ---------- D

Umsetzung

Vielen Dank fiir Thre Unterstiitzung!

Figure 69: Second page of the expert questionnaire in German.



Appendix D. Expert Questionnaire and Results 215

Table 23:  Detailed results of the expert assessment of the dimensions feasibility, total effort, and benefit
for classical, manually implemented P2P network and model-driven, middleware-based ap-
proach. Scale from 1 (very low) to 10 (very high).

Aspect Classical Proposed Number of
Approach Model-driven Approach answers n
Mean Standard Mean Standard
X deviation oy X deviation oy
Feasibility 51 2.4 7.0 1.3 14
Effort 8.0 1.8 5.1 1.7 14
Benefit 7.5 1.8 8.6 0.9 14

Table 24: Detailed, normalized results of the expert evaluation per question (-1 = Disagreeing,
1 = Agreeing). Question texts in Figure 54.

Question Classical Proposed Number of
Approach Model-driven Approach answers n
Mean Standard Mean Standard
X deviation oy X deviation oy
Q1 -0.18 0.45 0.14 0.55 14
Q2 -0.32 0.45 0.50 0.19 14
Q3 -0.36 0.35 0.21 0.45 14
Q4 0.14 0.52 0.54 0.23 14

Q5 0.54 0.54 0.67 0.24 12
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