

Technische Universität München – Fakultät für Maschinenwesen

Model-driven System Architectures for Data Collection
in Automated Production Systems

Emanuel Trunzer

Vollständiger Abdruck der von der Fakultät für Maschinenwesen

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende: Prof. Dr. rer. nat. Sonja Berensmeier

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing. Birgit Vogel-Heuser

2. Prof. Dr.-Ing. Florian Holzapfel

3. Prof. Mag. Dr. Manuel Wimmer

Die Dissertation wurde am 28.05.2020 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen am 16.09.2020 angenommen.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

Model-driven System Architectures for Data Collection in Automated Production Systems

Autor:
Emanuel Trunzer

ISBN 13: 978-3-96548-087-2

1. Auflage 2021

Copyright © 2021 sierke VERLAG
sierke WWS GmbH
Sternstraße 7
37083 Göttingen
Tel.: +49 (0)551 5036645

Coverdesign: sierke MEDIA

Alle Rechte vorbehalten. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt.
Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung
des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

People under pressure don’t work better; they just work faster.

Tom DeMarco, “Peopleware: Productive Projects and Teams,” 1987.

Acknowledgments

First of all, I am deeply grateful to Prof. Birgit Vogel-Heuser, who gave me the chance to follow

a Ph.D. under her supervision. Her constant encouragement and the possibilities that were given

to me contributed significantly to my research. Moreover, I want to thank her for the freedom I

was given to develop my topic and to evaluate concepts on the hardware and demonstrators of our

institute. During the time of my Ph.D. I was able to learn a lot from her.

Furthermore, I want to especially thank Prof. Florian Holzapfel and Prof. Manuel Wimmer for

their agreement to examine my work. Moreover, I want to thank Prof. Sonja Berensmeier for

chairing the examination committee.

Many students were involved in my research and contributed significantly, either through fruitful

discussions or by active collaboration with me. I always enjoyed and greatly benefited from work-

ing with them. I want to thank all of them for their inspiring ideas, efforts, and also the support

that I experienced. Among the many students that I supervised, I want to highlight and especially

thank Moritz Kohnle, Jan-Kristof Chen, Anne Wullenweber, Pedro Prata, Mathis Pundel, Micha

Müller, Thomas Schilling, Bernhard Rupprecht, Simon Lötzerich, Simon Felderer, and Oskar

Landenberger.

Throughout my time at the institute, I always enjoyed working with my colleagues. Many discus-

sions, not necessarily on research, constantly motivated me and helped me through all challenges.

I would like to take the opportunity to especially thank my office colleague Iris Weiß, as well as

Juliane Fischer, on whom I could always genuinely rely.

I am very grateful to Thorsten Pötter, who, after the end of the SIDAP project, offered his men-

torship and, in recurrent web conferences, made sure that I ran out of excuses. He always pushed

me forward and provided me with the additional motivation that I needed. Furthermore, I want to

thank Gary Combes, who played no active part during this thesis, but greatly influenced me in my

initial motivation for challenging myself with this thesis. He taught me how to handle challenges

and how to overcome them.

Moreover, I want to thank my family for always supporting me and always being considerate,

even if I was stressed, occupied or distracted with other things, or hard to reach. They were always

a great aid and always motivated me.

Last, I want to thank all involved industrial experts and project partners that enabled me to evaluate

this work under industrial requirements and with real-world use-cases.

Table of Contents

1. Introduction ... 1

1.1. Motivation ... 1

1.2. Hypotheses .. 3

1.3. Structure of this Dissertation .. 5

2. Field of Investigation .. 7

2.1. Industrial Automation ... 7

2.2. Industrie 4.0 and Industrial Internet of Things ... 11

2.2.1. Cyber-physical Systems .. 11

2.2.2. Reference Architectures .. 13

2.3. Industrial Communication .. 15

2.3.1. Field Level .. 15

2.3.2. Superordinate Levels .. 16

2.4. Big Data in Automation .. 19

2.5. Model-driven Development .. 20

2.6. Virtualization and Containerization .. 24

3. Requirements on a Model-driven Approach for Data Collection System

Architectures for Cyber-physical Systems of Systems .. 27

3.1. Data Collection System Architecture (Req-A) .. 27

3.2. Interoperability of Systems and Architecture Software Framework (Req-SF) 29

3.3. Requirements on the Domain-specific Language for Architecture Modeling (Req-M) ... 30

3.4. Requirements on the Model-driven Generation of Data Collection Architectures (Req-G)

 .. 32

3.5. Focus of the Thesis ... 32

4. State-of-the-Art ... 35

4.1. System Architectures .. 37

4.1.1. Generic System Architectures... 37

4.1.2. Data Collection System Architectures .. 41

4.2. Modeling Languages ... 45

4.2.1. UML-profiles .. 45

4.2.2. Graphical Notations .. 47

4.3. Model-driven System Architectures ... 50

4.3.1. Generic Architectures ... 50

4.3.2. System Architectures for Industrial Automation .. 53

4.4. Research Gap in Model-driven Development of Data Collection System Architectures . 55

5. Approach for Model-driven Development of Data Collection Architectures 57

5.1. Technology-neutral Architecture Concept .. 59

5.2. Domain-specific Language for Data Collection Architectures ... 64

5.2.1. Communication Architecture Metamodel... 66

5.2.2. Graphical Modeling Notation ... 81

5.3. Architecture Software Framework .. 92

II Table of Contents

5.4. Automatic Generation of the Communication Architecture .. 93

6. Implementation .. 97

6.1. Domain-specific Language .. 97

6.2. Architecture Software Framework ... 98

6.3. Automatic Code and Configuration Generation .. 100

7. Evaluation ... 103

7.1. Evaluation of Architecture Concept ... 105

7.1.1. Interviews with Industry Experts ... 105

7.1.2. Mapping to State-of-the-Art Architectures .. 109

7.2. Expert Evaluation of Graphical Modeling Notation .. 110

7.2.1. Use-Case A: Retrofitting and Condition Monitoring ... 112

7.2.2. Use-Cases B to D: Anomaly Detection and Alarm Analysis ... 116

7.2.3. Results of the Expert Evaluation .. 117

7.3. Lab-scale Feasibility Study .. 118

7.3.1. Experimental Setup .. 119

7.3.2. Graphical Model of the Lab-scale Architecture ... 122

7.3.3. Model-driven Generation of the Communication Architecture 123

7.3.4. Effort Metrics for Deployment and Redeployment ... 124

7.4. Industrial Case-Study ... 127

7.5. Effort Extrapolation Case-Study .. 127

7.5.1. Initial Deployment ... 131

7.5.2. Migration .. 133

7.5.3. Estimation of Necessary System Sizes for Break-even ... 133

7.6. Expert Workshop and Questionnaire ... 136

8. Assessment of the Fulfillment of the Requirements .. 143

9. Summary and Outlook .. 145

10. Literature .. 149

11. List of Figures ... 177

12. List of Tables .. 183

13. List of References to the Application Example ... 185

14. List of Abbreviations ... 187

Appendix A. Graphical Models of Use-Cases B to D ... 191

Appendix A.1 Use-Case B Anomaly Detection ... 191

Appendix A.2 Use-Case C Alarm Management .. 193

Appendix A.3 Use-Case D Alarm Management .. 195

Appendix B. Graphical Models of Lab-scale Study ... 197

Appendix C. Code Snippets Extrapolation Case-Study .. 203

Appendix D. Expert Questionnaire and Results .. 213

1. Introduction

The fourth industrial revolution, called Industrie 4.0 (I 4.0), is pushing the limits of industrial au-

tomation and production. Intelligent, autonomous production systems [GB12; LCK16], cloud

manufacturing [Zha⁺12], as well as the Industrial Internet of Things, and big data methods [Bi17;

BXW14; XD18] rapidly transform the industry. These new concepts and approaches allow greater

production flexibility (lot size one) [Spa13], self-diagnosis, -configuration, and -healing [Bar⁺15;

GB12], as well as closer human-machine interaction [Gor⁺14].

1.1. Motivation

A significant prerequisite for the realization of these approaches and concepts is better integration

of systems and data, as well as improved connectivity of all relevant systems to leverage the ever-

increasing amount of generated data [KWH13; VH16]. Before data can be used for the analysis of

processes and their optimization, the data needs to be collected and integrated. However, produc-

tion systems in industrial automation are organized in a hierarchical architecture, called the auto-

mation pyramid, only providing limited communication capabilities. This architecture follows the

ISA-95 layout [ISA95] and is a result of divergent requirements on the field level and superordi-

nate business levels. This rigid structure of the automation pyramid limits the connectivity of sys-

tems [CPC17]. Furthermore, due to the long life cycles of production plants in industrial automa-

tion of up to 40 years, a large number of existing legacy systems need to be interfaced and inte-

grated before their data can be used [Bir⁺10; Vog⁺15; WSJ17]. Therefore, improved integration

and connectivity are not just major prerequisites, but also significant obstacles for industrial adop-

tion of I 4.0 principles.

The identified problems can be manifested based on a questionnaire conducted with industrial

experts in the course of the NAMUR Annual General Meeting 2016. The NAMUR is an industrial

association representing German operators of chemical plants, as well as equipment suppliers for

the process industry. A total of 23 industrial experts working for large German plant operators and

component manufacturers were questioned about their assessment of data mining and big data

principles in the process industry. One of the questions was related to the main difficulties with

data integration (cf. Figure 1). The experts confirmed that the large number of heterogeneous data

sources and the variety of interfaces that need to be addressed are significant obstacles for indus-

trial data integration. Furthermore, the experts assessed the high implementation efforts due to a

large number of existing and heterogeneous systems as problematic.

2 1. Introduction

Figure 1: Difficulties with data integration (selection of answers) as given during a questionnaire in the

course of a workshop on the NAMUR Annual General Meeting 2016. Total number of partici-

pants n = 23.

According to Jardim-Gonçalves et al. [JPG12] there is a lack of accepted system architectures for

interoperability and data analysis in industry. Therefore, data buses and system architectures for

collection of the data were identified as the most critical enabler of novel I 4.0 paradigms by Raptis

et al. [RPC19]. Further, Dotoli et al. [Dot⁺18] state that reliable communication in heterogeneous

systems for data collection and integration is a fundamental challenge in factory automation.

On the other hand, Dotoli et al. [Dot⁺18] conclude that suitable technologies for integration of

systems are already available, but in industrial practice, the significant implementation efforts to

interface systems and to collect the data renders the data unused. One additional aspect is the

substantial complexity in the development, configuration, and deployment of data collection ar-

chitectures [JPG12]. Also, Strasser et al. [Str⁺18] argue that current digitalization trends cause

increasing engineering complexity and related implementation costs due to the vast number of

systems and interfaces.

Therefore, the reduction of engineering and implementation efforts is one of the foremost priorities

for the successful realization of I 4.0 principles in the industry [Dot⁺18]. Model-driven develop-

ment of data collection architectures has the potential to significantly decrease manual implemen-

tation efforts for their realization [JPG12]. However, the missing formalism for the modeling of

networks and the lack of approaches for model-driven architectures are challenges that need to be

overcome [PJM12]. This is especially valid as industrial data integration and analysis are charac-

terized by their multi-disciplinary nature [ITK19]. In industrial data analysis, knowledge and re-

Number of heterogeneous data sources

High implementation efforts

Variety of interfaces

Lack of a common information model

Existing, incompatible legacy systems

Inadequate existing infrastructure

0 2 4 6 8 10 12 14 16 18 20
Number of answers

Difficulties with data integration (selection) (n = 23)

1. Introduction 3

quirements from several involved disciplines need to be considered, including engineering infor-

mation, expert knowledge on the production process, as well as the methods of data analytics

[ITK19; Vog⁺14b]. Despite the multi-disciplinary character, He and Xu [HX14], as well as Penas

et al. [Pen⁺17], identified a lack of interdisciplinary modeling techniques.

In this thesis, a model-driven approach for the development of data collection architectures, which

addresses the identified industrial problems, is developed. Therefore, a generic proposal for data

collection architectures is presented, serving as a basis for future implementations. Furthermore,

a domain-specific language with a graphical modeling notation and supporting metamodel for in-

terdisciplinary modeling of these architectures is conceptualized and evaluated in several use-

cases. Based on the formalized models, a model-driven toolchain that allows the automatic gener-

ation of data collection architectures to minimize manual implementation efforts is developed.

Throughout the thesis, the term architecture is defined as the connection of systems that enables

the sharing of data and services. Every system that is part of the architecture is referred to as a

participant [Tru⁺19c]. Furthermore, the author of this dissertation defines the term data collection

architecture as an architecture for the collection and integration of data from multiple participants.

A data collection architecture generally consists of the communication architecture, related to the

communication functions that allow the transfer of data between participants, and the application-

specific logic in each participant that generates, forwards, manipulates, or actively uses the data.

1.2. Hypotheses

Based on the identified challenges concerning data collection in industrial automation, this thesis

aims to provide a solution for model-driven generation of data collection architectures. Therefore,

the following hypotheses (H1) to (H3) will be investigated:

(H1) A technology-neutral concept for a data collection architecture can bridge operational

technology (OT) and information technology (IT) and allow data collection from pro-

duction systems.

(H2) A special domain-specific language with a graphical notation for data collection archi-

tectures supports the understanding and structuring of information during the engineer-

ing phase of these architectures by multi-disciplinary teams composed of engineers, IT

architects, programmers, process experts, and data analysis.

(H3) A model-based approach for automatic generation of data collection architectures re-

duces the effort for implementation and migration of these architectures.

4 1. Introduction

The contents and contributions of this dissertation are based on previous publications by the au-

thor, namely [Fol⁺17; TLV18; Tru⁺17; Tru⁺19a; Tru⁺19b; Tru⁺19c; Tru⁺20a; Tru⁺20b; TWV20;

Vog⁺20]. A short summary of the contributions and contents of the respective publications is given

in the following:

[Fol⁺17] Motivation of the relevance of data analytics and data collection/integration for pro-

cess industries based on industrial problems and possible solutions.

[Tru⁺19a] Proposal of an industrial data analytics process model for the process industry. Em-

phasize on the relevance of interdisciplinary teams during the analysis process, as

well as the crucial role of proper data collection and preparation in industrial use-

cases.

[Tru⁺20b] Overview and summary of system architectures for data integration in the scope of

I 4.0. Derivations of requirements and practical implications based on industrial

boundary conditions.

[Tru⁺17] First publication on the architecture concept for data integration. Conceptual appli-

cation of the architecture with multi-disciplinary experts and expert evaluation.

[Tru⁺19c] Comparison of the architecture proposal with other relevant approaches in the scope

of I 4.0 with co-authors from the BaSys4.0 and PERFoRM projects. Mapping of the

respective system architectures based on divergent requirements in the respective

projects, and derivation of a generic architecture proposal applicable to a wide variety

of use-cases.

[TLV18] Follow up of architecture proposal with a more detailed overview of the concept.

Furthermore, prototypical implementation and feasibility study using a lab-scale use-

case, including the xPPU demonstrator [Vog⁺14c]. Support for the MQTT and OPC

UA protocols.

[Tru⁺20a] Comparison of various protocol-specific architecture approaches for data collection

in literature. Moreover, filling the gap between specific implementations and abstract

reference architecture by deriving first architecture patterns. Prototypical implemen-

tation using a lab-scale setup with the myJoghurt demonstrator (see Section 7.3)

based on a Data Distribution Service.

[Tru⁺19b] Characterization and comparison of relevant protocols for the Industrial Internet of

Things characterization. Proposal and prototypical implementation of a technology-

neutral software framework with unified interfaces. Evaluation in a lab-scale use-

case with support for AMQP and Kafka and comparison of implementation effort

compared to P2P architecture for initial deployment and a migration scenario.

1. Introduction 5

[TWV20] Graphical modeling notation for data collection architectures with system and data

flow viewpoints, as well as a data mapping table. Application of the graphical lan-

guage to three industrial use-cases and evaluation with industrial experts.

[Vog⁺20] Introduction of the underlying metamodel structure to yield a domain-specific lan-

guage. In this publication, tailored to another version of the graphical modeling no-

tation that describes the combination of real-time aspects and data analytics for in-

dustrial automation, so-called hybrid distributed networked control systems.

1.3. Structure of this Dissertation

This thesis follows a design science approach [Hev⁺04] and is structured as follows: Chapter 2

(p. 7) introduces and specifies the field of investigation. In Chapter 3 (p. 27), the requirements for

an industrial data collection architecture are derived from industrial practice and current research.

Based on these requirements, the state-of-the-art in system architectures, modeling notations, and

model-driven system architectures are reviewed in Chapter 4 (p. 35), and a research gap is identi-

fied. Chapter 5 (p. 57) presents the developed approach that aims to fill the research gap. The

implementation of the approach is described in Chapter 6 (p. 97). It is followed by Chapter 7

(p. 103), which captures the evaluations that were performed to assess the suitability of the ap-

proach. The chapter is split into six Sections: the first two describe the results of industrial case-

studies with industrial experts that evaluate the feasibility and quality of the developed architecture

concept and the graphical notation. Afterward, a prototypical implementation on a lab-scale is

performed to assess the model-driven generation of the communication architecture and to com-

pare it to manual software development. The next Section demonstrates the scalability of the de-

veloped model-driven approach by applying it for an industrial use-case. Section 7.5 examines the

implementation efforts of classical software development and the model-driven approach based

on an extrapolation case-study. Chapter 7 closes with an expert questionnaire on a comparison

between the developed approach and current industrial practice. Chapter 8 (p. 143) assesses if the

developed approach is capable of adequately addressing the derived requirements. A summary and

an outlook on future research directions are presented in Chapter 9 (p. 145). Figure 2 reflects the

structure of this thesis graphically.

6 1. Introduction

Figure 2: Overview of the structure of this dissertation.

Chapter 3: Requirements

• Derivation of requirements

• Limitation of scope

Chapter 4: State-of-the-Art

• Evaluation of existing approaches

against requirements

• Identification of research gap

Chapter 1: Introduction

• Hypotheses

• Structure of the thesis

Chapter 2: Field of Investigation

• Industrial automation, Industrie 4.0 and cyber-physical systems

• Industrial communication

• Big data in automation

• Model-driven development

• Virtualization and Containerization

Chapter 6: Implementation

Chapter 7: Evaluation

• Expert evaluation of architecture concept

• Mapping of architecture concept to state-of-the-art architectures

• Expert evaluation of the graphical modeling notation

• Lab-scale feasibility study

• Industrial scalability case-study

• Effort extrapolation case-study

• Expert workshop and questionnaire

Chapter 9: Summary and Outlook

• Conclusions

• Evaluation of the hypotheses

• Future work

Chapter 8: Assessment of the

Fulfillment of the Requirements

• Overview of the results

• Evaluation of the fulfillment of the

requirements

Chapter 5: Approach for Model-driven Development of

Data Collection and Analysis Architectures

Technology-neutral

architecture

concept

Domain-specific

language for data

collection and

analysis

architectures

Architecture

software

framework

Automatic

generation of the

communication

architecture

2. Field of Investigation

The presented approach was developed for the area of data collection for data analysis applications

in automated industrial production and Industrie 4.0. In this Chapter, the specifics of the domain

and related aspects are introduced to provide a better understanding of the definitions and the

particular requirements from the field of application.

First, an introduction to the domain of industrial automation and related terms is given. Afterward,

the concepts of I 4.0 and the Industrial Internet of Things, which disrupt the classical organization

and challenges of industrial automation, are introduced. Furthermore, an introduction to a new

class of production systems, called Cyber-physical Production Systems, and reference architec-

tures for I 4.0 are given. As communication is a central aspect of interfacing systems and collecting

their data, an overview of communication technologies on the field level and the superordinate

levels is presented. On both levels, a multitude of different technologies evolved and complicate

the interfacing. As data collection is a challenging pre-step for subsequent data analysis, the basics

of big data and data mining in automation are introduced. An introduction to the concepts of

model-driven development follows, which employs modeled information and model transfor-

mations to decrease manual effort during software development. At last, the basics of virtualiza-

tion and containerization as recent trends in IT are presented.

2.1. Industrial Automation

The aim of automating technical processes characterizes the field of industrial automation. A tech-

nical process, in general, is a process that manipulates the state of a material, energy, or infor-

mation. Technical processes are executed in technical systems and can be automated with process

automation systems. If the automated technical process is a production process, one can speak of

an automated production system (aPS). The composition of a process automation system is de-

picted in Figure 3. Process automation systems contain three subsystems with close interaction

between them. On the lowest level, the technical system that executes the technical process can be

found. The technical system receives actuator signals for the control of the process from a super-

visory computing and communication system. The technical system forwards sensor signals from

the technical process to the computing and communication system. Humans interact with the com-

puting and communication systems over human-machine interfaces (HMIs) for process control

and get feedback on the process result [LG99b].

8 2. Field of Investigation

Figure 3: Structure of process automation systems (adapted from Lauber and Göhner [LG99b]).

Sensors and actuators are used for interaction with the technical process. While sensors can meas-

ure physical quantities and convert them to electrical or optical signals, actuators influence the

physical quantities of the technical process. Different ways to realize the coupling between these

sensors/actuators and the computer and communication system are depicted in Figure 4.

Figure 4: Installations for coupling an automation controller with a technical process, including rele-

vant interfaces (adapted from Lauber and Göhner [LG99b] and VDI/VDE guideline 3687

[VDI3687]). A direct connection between sensors/actuators and automation controller (left),

field bus connection using a bus coupler and decentralized I/O nodes (middle), and decentral-

ized intelligent sensors with direct bus access (right).

Process automation system

Humans

(operating personnel)

For supervision and operation of process and interventions

Computing and communication system

(e.g., programmable logic controller (PLC),

industrial PC (IPC), micro controller, bus system)

Technical system (technical product or technical plant) executing a technical process

Signals from the

technical process

Signals for control of

the technical process

Process resultProcess control

Technical process

in a technical system

Sensors and

 actuators Process variable

interface (physical

quantities)

Sensor/actuator bus

Field bus

Process signal

in- and output

Field bus interface

Sensor/actuator

interface (electrical

or optical signals)

Bus coupler (BC) Bus coupler (BC)

BC BC BC

I/O

node

I/O

node

Process peripherals

interface (electrical

or optical signals)

Automation controller

(e.g., IPC or PLC)
Controller in-/output

interface (controller

system bus)

Interface to

superordinate layers

Process bus

2. Field of Investigation 9

In Figure 4, the computer and communication system consists of several parts: a central automa-

tion controller that controls the technical process, a communication system connecting the auto-

mation controller and the sensors/actuators, and a process bus that enables the communication

between the automation controller and other systems. In aPS, the automation controller is typically

realized either as a programmable logic controller (PLC) or as an industrial PC (IPC).

The simplest form of coupling the automation controller and the sensors/actuators is a direct con-

nection using multiple cables. This type of interfacing is often found in small-scale aPS, where the

automation controller is located close to the sensors and actuators, only requiring short cables

[SHW99].

In larger aPS, a direct connection between the automation controller and sensors/actuators is often

not feasible due to lengthy and expensive wires and increased risks of interferences. Here, a field

bus with decentralized in- and output (I/O) nodes can be a solution [SHW99]. These I/O nodes

have a direct connection to the respective sensors/actuators and communicate with the automation

controller over a field bus. Various field buses with different feature sets and characteristics exist,

which will be introduced in Section 2.3.1.

Intelligent sensors and actuators often include a bus interface. They allow a completely decentral-

ized structure of the coupling between sensors/actuators and automation controllers. This type of

coupling is often found in very large-scale aPS with the need for decentralized processing of sig-

nals, e.g., the process industry.

The process bus interface from Figure 4 allows the aPS to be embedded into larger automation

systems. These include besides the aPS for controlling a technical process also enterprise functions

needed for coordination and supervision of complex production processes. As the requirements in

the application domains differ significantly (real-time control in aPS, large amounts of data in

enterprise functions), a layered architecture, called the automation pyramid, is prevalent in indus-

trial practice [SHW99]. The hierarchical automation pyramid structure is standardized in

ANSI/ISA-95 [ISA95] / IEC 62264 [IEC62264]. A graphical representation of the automation

pyramid with its levels and the related, divergent requirements is given in Figure 5.

On the field level, aPS with automation controllers (level 1 of the ISA-95 structure) automate and

control a technical production process (level 0). Several aPS or large-scale aPS are often coordi-

nated by a SCADA (supervisory control and data acquisition) system on level 2. The process level

consists of manufacturing execution systems (MES, level 3) that monitor the production process,

store historic data on the quality of manufactured products, and manage the distribution of open

manufacturing orders to suitable aPS. On the highest level, the so-called operational level (level 4),

10 2. Field of Investigation

an enterprise resource planning (ERP) system coordinates the production across multiple produc-

tion sites and calculates key performance indicators (KPIs) to assess the overall production per-

formance. Furthermore, ERP systems include the long-term planning of inventories, as well as

production schedules.

Figure 5: Automation pyramid structure and requirements for the communication and processing sys-

tem (adapted and extended from Scherff et al. [SHW99]and Lauber and Göhner [LG99b]).

On the lowest levels of the automation pyramid, a technical production process is supervised and

controlled. This requires a concise reaction in real-time. Furthermore, the number of systems is

vast as multiple aPS can be part of a production site. The number of systems decreases on the

higher levels as multiple subsystems are supervised and controlled from an upper level. However,

this causes an increase in the amount of data processed by superordinate systems compared to the

lower levels.

The field level is characterized by sensors/actuators and PLCs with a low computational perfor-

mance that are connected via real-time field buses. The hardware and software systems on the

lower levels are referred to as OT. This includes a large number of existing legacy systems with

long life cycles, heterogeneous interfaces, and limited communication capabilities. In contrast, the

upper levels are part of the IT and often consist of high-performance servers and office computers

connected with Ethernet networks. The clear separation between the defined layers allows hard-

ware and software providers to focus on the respective set of requirements. However, this separa-

tion also causes, by definition, that data is only allowed to be exchanged across two adjacent levels

of the automation pyramid.

The rigid structure of the automation pyramid is increasingly questioned and extended due to new

demands related to flexibility and decentralized intelligence. New trends, such as industrial Ether-

net, middleware, or the concept of I 4.0, stimulate the evolution of the underlying system archi-

tecture towards higher flexibility and data availability [Rie⁺14b; Sau07; Sau10]. One example of

Field level

(Level 1)

Process level

(Levels 2 + 3)

Operational level

(Level 4)

Processing

power

Amount

of data

Reaction

time

Number of

systems

Production process (Level 0)

2. Field of Investigation 11

the evolution process already found in industry is the so-called automation diabolo introduced by

Vogel-Heuser et al. [Vog⁺09] (cf. VDI guideline 5600 [VDI5600] and Section 2.3.2). Therefore,

to include data collection from existing legacy systems that are still part of the classical automation

pyramid is a challenge for the data collection process in industrial automation.

2.2. Industrie 4.0 and Industrial Internet of Things

The concept of I 4.0 was first introduced in 2011 by the German Industrie 4.0 working group as

part of the strategic initiative Industrie 4.0 of the German government [Boy⁺18; KWH13; VH16].

It describes the idea of a fourth industrial revolution, after the initial mechanization (first revolu-

tion), the introduction of assembly lines (second revolution), and the digital automation by PLCs

in the 1970s (third revolution). Industrie 4.0 incorporates the global leveraging of data and the full

connectivity of systems for individualized production, optimized decision making, and increased

resource efficiency. The following prerequisites were identified for the realization of I 4.0 con-

cepts [KWH13]:

• horizontal integration of systems and data through value networks,

• end-to-end digital integration of engineering across the entire value chain, and

• vertical integration and networked manufacturing systems.

While the last point relates to improved integration across the levels of the automation pyramid,

the two others include the closer cooperation of parties along whole value networks and an en-

hanced digital and integrated engineering of systems. This overall integration causes a conver-

gence of IT and OT through new technologies. Two main enablers for the realization of I 4.0 are

the Industrial Internet of Things (IIoT) and Cyber-physical Systems (CPS) [Ban⁺16; Mon⁺16].

The IIoT describes the industrial application of Internet of Things (IoT) technology found in con-

sumer electronics. The term IoT encompasses an information network of physical objects that

closely interact and cooperate to reach a common goal [Jes⁺17; Wor15]. The IIoT adapts these

principles considering industrial requirements. It describes the seamless connectivity of all sys-

tems involved in the manufacturing process to create a digital or virtual factory. This increased

connectivity offers new chances for data collection using IIoT technology.

2.2.1. Cyber-physical Systems

A CPS, in general, is a physical system that includes enhanced computing and communication

capabilities to monitor, coordinate, control, and integrate operations [GB12; Raj⁺10; VBF12]. Lee

et al. [LBK15] introduced the so-called 5C architecture that describes the system architecture of

12 2. Field of Investigation

Cyber-physical Production Systems (CPPS). The architecture defines the internal composition of

CPPS and separates the distinct aspects into five layers:

• the smart connection layer that includes communication with sensors/actuators, as well as

other systems;

• the data-to-information conversion level that includes monitoring of machine health and

quality using data analytics;

• the cyber level that represents a digital twin including relevant data describing the system;

• the cognition level with enhanced functionalities related to visualization, decision making,

or integrated simulations; and

• the configuration level that provides self-X (configuration, adjustment, optimization).

The integration of multiple CPS into a larger system is called a cyber-physical system of systems

(CPSoS) [Fer⁺18]. Figure 6 gives a typical CPSoS network structure with technologies spanning

from OT to IT and including a multitude of different communication links and systems, all coop-

erating to fulfill a given manufacturing task. While these new principles question the classical

automation pyramid, the heterogeneous mix of technologies and systems is still characteristic for

CPSoS.

Figure 6: Simplified network layout of a typical CPSoS consisting of IT and OT domains with various

types of connected devices and networks (Trunzer et al. [TWV20]).

Ethernet

EtherCAT

EtherCAT

PROFIBUS DP

EtherCAT

EtherCAT

Information

Technology

Operational

Technology

2. Field of Investigation 13

Interoperability and connectivity of CPSoS, as well as system architectures that allow the integra-

tion of CPSoS, were identified as grand challenges for enterprises in the future [Pan⁺19].

2.2.2. Reference Architectures

Reference architectures describe an abstract view of a real system and give recommendations for

a successful realization of system architectures. Furthermore, they include a common vocabulary

as well as technology- and implementation-neutral basic guidelines for the design of architectures.

In the course of I 4.0 and the (I)IoT, serval international and national standardization bodies and

industrial consortia actively work on the definition of reference architectures.

For instance, the Reference Architecture Model Industrie 4.0 (RAMI 4.0) defined in DIN SPEC

91345 [DIN91345] describes a layered architecture along three axes. A visual depiction of

RAMI 4.0 is given in Figure 7 with the three axes life cycle and value stream, the hierarchical

levels of the system aligned with ISA-95/IEC 62264, as well as the architecture layers. RAMI 4.0

targets the industrial manufacturing and production domain.

Figure 7: Graphical representation of the Reference Architecture Model Industrie 4.0 (RAMI4.0) (DIN

SPEC 91345 [DIN91345]) (Trunzer et al. [Tru⁺20b]).

Other reference architectures exist with the American Industrial Internet Reference Architecture

(IIRA) [Ind17b], the IEEE Architectural Framework for the Internet of Things [IEEE2413], as

well as the Internet of Things Reference Architecture (IoT RA) standardized in ISO 30141

[ISO30141]. In contrast to RAMI 4.0, both reference architectures follow a general approach for

multiple domains and are not limited to manufacturing and industrial automation [Ind17a].

The integration of existing systems is possible with all three reference architectures. However, the

focus of all three lies in the abstract definition of architectures for I 4.0 and (I)IoT, and therefore

Life Cycle and Value Stream

IEC 62890

Layers

Business

Functional

Information

Communication

Integration

Asset

Connected World

Product

Field Device

Control Device

Station

Work Centers

Enterprise

Maintenance/

Usage

Maintenance/

Usage
ProductionDevelopment

Type Instance

14 2. Field of Investigation

guidelines for the integration of legacy systems are lacking. While initial developments and de-

ployments are characterized as greenfield scenarios, the consideration and need for the integration

of existing systems are typical for so-called brownfield scenarios [Kag15]. With the NAMUR

Open Architecture (NOA) (see Figure 8) [Cai⁺19; Cai18; Kle⁺17; NE175], a reference architecture

proposal for brownfield scenarios in the field of chemical process industry exists. This domain is

especially characterized by very long lifetimes of plants of up to 40 years and constant retrofitting

and updating of the installed base [Bir⁺10; Vog⁺15].

Existing control systems for deterministic control from the automation pyramid are part of the

core process control. In brownfield systems, this part is often already existing and controls a mis-

sion- and safety-critical production process. Additional functionalities for monitoring and optimi-

zation (M+O) of plants, e.g., by enhanced data analytics or dashboards, reside outside and sepa-

rated from this core part. Furthermore, NOA foresees the retrofitting of plants with additional

sensors to increase the monitoring capabilities. As these sensors are often not needed for the main

control of the plant, they also reside outside of the core process control to prevent interference.

The connection between M+O systems and the deterministic control systems is realized as a sec-

ondary communication channel that only allows the flow of data from the core process control to

M+O systems. This retrofitted communication channel, therefore, completely separates the two

domains and allows data exchange across multiple levels of the automation pyramid. Information

can be sent back into the core process control via a distinct channel that includes a so-called veri-

fication of request to ensure the secure origin and intent of the input.

Figure 8: Concept of the NAMUR Open Architecture (NOA) as a supplement to the existing ISA-95 au-

tomation structure (NAMUR NE175 [NE175]).

2. Field of Investigation 15

2.3. Industrial Communication

A considerable heterogeneity characterizes the communication in the domain of industrial auto-

mation and IIoT [SHW99; VDI3687; WSJ17]. While on the field level, multiple, incompatible

field buses and sensor/actuator networks for real-time communication evolved over the last dec-

ades and are still in operation [Neu07], the IT technology is mainly based on Ethernet networks

[PN09; Sau07]. Still, heterogeneity on the IT level does not arise from the lower levels of the OSI

model [ISO7498] as for the different field buses, but on the upper layers in the form of various

communication protocols. Therefore, in the following Sections, an overview of communication

on the field and superordinate levels is given.

Discrete-evet network simulators, such as OMNeT++ [Ope20; VH08] and Riverbed Modeler (for-

mer OPNET) [Riv19], allow the modeling of networked systems and their communication. Based

on typical network components in libraries, the low-level network interaction can be modeled.

Furthermore, the simulators allow the creation of individual models and the specification of be-

havior. The simulators can be used to investigate the performance of different protocols and to-

pologies.

2.3.1. Field Level

On the field level, two types of wired communication networks can be differentiated: sensor/actu-

ator networks and field buses. A typical example of a sensor/actuator network is the HART pro-

tocol. HART superimposes digital communication on existing analog 4…20 mA signals com-

monly found in the process industry [PN09]. Another example is IO-Link standardized in the

IEC 61131-9 draft [IEC61131].

A large number of field buses are standardized in the IEC 61158 [IEC61158] and IEC 61784

[IEC61784] series. The field bus history is characterized by evolution over decades, as well as by

incompatible physical layers and connectors. Some examples are Profibus DP or CAN. As these

field buses are incompatible with the Ethernet-based superordinate levels of the automation pyra-

mid, Ethernet-based field buses were developed for the field of industrial automation. Using the

same physical layer simplifies the integration and convergence of OT and IT. However, as stand-

ard Ethernet is not capable of supporting real-time communication, significant modifications and

adaptions on the protocol stack were necessary [Jas⁺09]. Consequently, several incompatible In-

dustrial Ethernet networks evolved. Examples include Profinet, Modbus/TCP, or EtherCAT

[Neu07; Sau07].

In recent years, the standardization efforts concerning a real-time capable standard Ethernet profile

in the form of Time-Sensitive Networking (TSN) [IEC60802] and the introduction of wireless or

16 2. Field of Investigation

even cellular communication networks further diversified the landscape of industrial communica-

tion on the field level. Figure 9 reflects this diverse landscape of industrial communication on the

field level in the form of market shares of field buses in the year 2019 [HMS19]. TSN and wireless

5G technology, however, provide the potential to unify industrial communication on a mid-term

perspective and to simplify the integration with superordinate IT systems [Neu⁺18; Sau10;

WSJ17].

Figure 9: Industrial field bus and network market shares in 2019 (data from HMS Industrial Networks

[HMS19]).

2.3.2. Superordinate Levels

On the superordinate IT levels, Ethernet is the predominant Physical Layer (cf. [ISO7498]), but a

wide range of different network structures and protocols can be found. Furthermore, also, the IT

levels are characterized by a large number of existing and mission-critical legacy systems [Bis⁺99].

Parts of this Section have been published as a German version in [Tru⁺20b].

With the need for better integration of systems (horizontal, vertical, and end-to-end) as a prereq-

uisite for I 4.0, the number of interconnections between these systems is rising enormously. These

connections are often engineered individually for each peer-to-peer (P2P) connection, causing a

huge partially connected mesh network. As all P2P connections rely on a mutual understanding of

the data in both systems, they are highly specific and cannot be reused for other P2P connections.

Vogel-Heuser et al. [Vog⁺09] identified these challenges already before the introduction of the

I 4.0 concept and proposed a common information model mediating between the systems as part

of the automation diabolo (cf. Figure 10).

2. Field of Investigation 17

However, a common information model can only achieve a mutual, semantic understanding of

data between all systems. The second aspect of heterogeneity, the multitude of legacy interfaces

and protocols, is not solved by the introduction of an information model. Here, middleware con-

cepts are the corresponding solution to unify protocols and communication.

Figure 10: Information diabolo with individually engineered, direct P2P connections (left) and with a

common information model (right) (Vogel-Heuser et al. [Vog⁺09]).

A middleware is a software solution that abstracts specific aspects of the underlying software and

hardware systems with uniform interfaces. It is used as a link between heterogeneous systems and

information representations [Izz09; VDI2657]. Middleware is a central aspect of IoT research, as

can be seen in the surveys by Razzaque et al. [Raz⁺16] and Perera et al. [Per⁺14]. If all relevant

systems are connected to the middleware (Figure 11 right), full connectivity as within a fully con-

nected mesh network (Figure 11 left) can be achieved, but at a much lower number of necessary

connections. A summary and comparison between the network types can be found in Figure 11.

 Fully connected
mesh network

Partially connected
mesh network

Middleware
network

№

connections
𝑁 ⋅ (𝑁 − 1)

2
 Depends 𝑁

Connect-
itivty Full Partial Full

Figure 11: Comparison of different network structures with the number of connections depending on the

number of systems 𝑁 and connectivity [Haa97; Ind17c].

Production Process

Enterprise Resource Planning (ERP)

Production Process

Enterprise Resource Planning (ERP)

Information ModelInformation Model

Middleware

18 2. Field of Investigation

Uniform interfaces make the integration of systems and data much more manageable. Therefore,

the specific interfaces, protocols, and information representations of legacy systems must be trans-

lated between the system-specific view and the common view at the middleware level. New sys-

tems can be created directly compatible with the middleware to reduce the additional integration

effort. With middleware, two systems connected to the middleware no longer need to know the

system-specific details of the other system.

However, a multitude of protocols and associated middleware is available for the realization of

IIoT use-cases, all with their specific strengths and weaknesses [Al-⁺15; Str⁺18]. These include the

underlying communication pattern, the used OSI layer 4 protocol (TCP or UDP), or support of

quality of service (QoS) features such as message lifetimes or delivery guarantees [MKB07].

One group of protocols stems from the field of business integration. These protocols often follow

the Enterprise Service Bus (ESB) concept presented by Chappel [Cha04]. ESB describes a central

bus that acts as a message broker. All information is sent to this central broker and is then for-

warded to the respective clients. The broker, therefore, completely decouples the communication

between two connected systems. ESBs commonly provide additional functionalities for translation

of information models, service orchestration, and message routing. Typical protocols encompass

the Advanced Message Queuing Protocol (AMQP) [ISO19464] or the Representational State

Transfer (REST) architecture style with the Hypertext Transfer Protocol (HTTP) [Fie00].

Additional protocols stem from the field of IoT. These protocols are characterized by their low

computational complexity and relatively sparse support for QoS, which makes them feasible for

distributed, low-cost IoT devices. Typical examples of this class are the Message Queuing Telem-

etry Transport protocol (MQTT) [ISO20922] or the Constrained Application Protocol (CoAP)

[RFC7252].

Apache Kafka [Apa19] is a high-performance stream processing platform originating from the

field of log file analysis. It is a common platform in scenarios where vast amounts of streamed

data from a large number of data sources or systems have to be processed [Wan⁺15].

In the field of industrial communication, OPC Data Access (OPC DA) [OPC03] was the prevailing

protocol. However, it is tied to the Windows platform as it is based on Microsoft COM technology.

Its successor, the OPC Unified Architecture (OPC UA) [IEC62541], provides an operating sys-

tem-independent communication platform with integrated capabilities for information modeling.

However, as OPC UA is based in a server-client pattern, its scalability is limited. Therefore, with

Part 14 of the OPC UA specification [OPC18], the publish/subscribe pattern was defined for

OPC UA, and is supported in two ways: either decentralized using UDP broadcast messages

2. Field of Investigation 19

(UADP) or tunneling through AMQP or MQTT brokers. Other approaches exist with the MTCon-

nect standard [MTC18] or with the Object Management Group’s (OMG) Data Distribution Service

(DDS) [OMG15]. Furthermore, OMG published the specification of an OPC UA/DDS gateway

[OMG18] for the transparent interconnection of both protocols, and Pfrommer et al. [PGP16] pro-

pose a hybrid system.

A summary of relevant protocols can be found in Table 1, including their characteristics.

Table 1: Characteristics of relevant protocols (adapted from Trunzer et al. [Tru⁺19b; Tru⁺20b]).

Criterion AMQP CoAP DDS Kafka MQTT
MT

Connect
OPC UA REST

 Standard PS

 UADP Broker

Messaging

pattern
PS RR PS PS PS PS & RR RR PS & RR RR

OSI Layer 4

protocol
TCP UDP UDP TCP TCP TCP TCP UDP TCP TCP

Architecture C DC DC D C DC DC DC C DC

QoS + + ++ - + - - + - -

Encryption ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Authentication ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Open-source

implementation
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Number of

suppliers
>10 >10 5-10 1 >10 >10 >10 1 0 /

Standard owner ISO/IEC IETF OMG Open ISO/IEC MTC IEC OPC Foundation Open

Reference [ISO19464] [RFC7252] [OMG15] [Apa19] [ISO20922] [MTC18] [IEC62541] [OPC18] [Fie00]

PS: publish-subscribe; RR: request-response; DC: decentralized; C: centralized; D: distributed

Overall, the multitude of different field buses and protocols with their specific characteristics com-

plicates the task of data collection from CPSoS for big data applications in industrial automation.

Furthermore, the heterogeneity and closeness of systems cause massive implementation efforts

that make a wide-scale data collection often not feasible in industry.

2.4. Big Data in Automation

With the implementation of CPPS and IIoT in production, the rising number of connected systems,

and the higher processing power in the field, more and more data (big data) become available

[Che⁺18; KK19]. Big data is characterized by the so-called 4 V’s [Has⁺15]:

• volume is the amount of data that is generated,

• variety corresponds to the heterogeneity of data that is collected,

• velocity refers to the speed of data generation, and

20 2. Field of Investigation

• value to hidden information and knowledge that is locked inside these vast amounts of

heterogeneous, high-velocity data.

Other definitions with 3V’s [Ber13] up to 7V’s [KUG20147] exist, but all describe the idea that

these characteristics render existing systems not capable of handling the data. Another description

is given as the HACE theorem by Wu et al. [Wu⁺14] as “large-volume, heterogeneous, autono-

mous sources with distributed and decentralized controls” and the aim to “explore complex and

evolving relationships among data.”

To reveal and extract hidden information or knowledge from these massive amounts of data is the

aim of data analytics and data mining [VH16; Wu⁺14]. Here, data-driven algorithms are often used

to analyze the data. Significant interdisciplinarity and many involved disciplines characterize data

mining projects in industrial automation [ITK19; YK15], as well as a large number of heteroge-

neous types of data that must be considered [RPC19].

Besides the main analysis of data, data staging was identified as one of the open research issues

that have to be considered in the future [Has⁺15]. Data staging includes the collection and integra-

tion of data and is a crucial and challenging pre-step before being able to analyze the data.

2.5. Model-driven Development

Model-driven development (MDD) relates to a development paradigm that employs models not

only for documentation purposes but as essential components during the development and engi-

neering phase. Model transformations are used to leverage the modeled information to automate

parts of the development process. Models and MDD play an essential role in industrial automation

[Alv⁺18; BFS13; CFV20; Fay⁺15; Lie⁺18; Sch⁺02; Vog⁺14b; Vya13; WDF18]. In this Section, the

fundamentals of modeling and MDD will be introduced. MDD can be used to decrease manual

implementation effort and is, therefore, a candidate for a data collection architecture approach with

manageable efforts.

Models are abstract representations of real-world objects. Modeling aims to capture and reflect

relevant aspects of a system in an abstracted way. Models consist of model elements that describe

distinct aspects of the real-world object. The higher the number of available model elements is,

the more precise the real-world object can be described by the model. At the same time, models

should be well-arranged and comprehensible. Balancing the level of detail that can be captured by

models and their comprehensibility is, therefore, always a trade-off [LG99a; MJG11; Sta73].

2. Field of Investigation 21

Models have to conform to a metamodel that abstractly describes and defines the usable model

elements. The OMG defines a metamodel as a “model that defines a modeling language and is

also expressed using a modeling language” [OMG14]. As can be seen from the definition, recur-

sion can occur when defining metamodels. Related to the given definition, a model that describes

and defines the elements of the metamodel is called meta-metamodel. This recursion happens

every time a model is defined. To solve the problem of a possible endless recursion, the OMG

defined with its Meta Object Facility (MOF) [ISO19508; OMG16] a meta-metamodel that is ca-

pable of describing itself. Therefore, this model can serve as a root to define other metamodels

and models. MOF introduced the concept of a so-called four-layered metamodel architecture, with

MOF residing on the highest, called M3, layer. On the M2 layer, metamodels defined with MOF

can be found. Therefore, models describing real-world systems are on the M1 layer. The lowest

level, M0, corresponds to real-world systems and instances of the models.

The definition of a modeling language and its components is given in Figure 12 [BCW17; Rod15].

Figure 12: Definition of a modeling language according to Harel and Rumpe [HR00] (adapted and mod-

ified from Rodrigues [Rod15]).

The metamodel or abstract syntax of a modeling language describes the modeling elements, their

names, and relations. It is an abstraction of the concepts of the modeling domain. The abstract

syntax includes structural semantics that defines how model elements can be related under a set of

constraints. These can either be formulated through specific languages, e.g., the Object Constraint

Language (OCL) [OMG14], or informal, natural language. [HR00; Rod15]

The notation or concrete syntax refers to the usage of the modeling language by users. A modeling

language can contain various notations, including textual or graphical ones [Rod15]. Notations

should be designed to be understandable and, at the same time, provide enough expressiveness.

Moody [Moo09] introduces with his “Physics of Notations” design principles for graphical (vis-

ual) notations. These include, for instance, the so-called perceptual discriminability, which de-

scribes how well symbols of the notation can be differentiated among each other, or semantic

transparency, which suggests using symbols that directly reflect their meaning.

Modeling

Language

Abstract

Syntax /

Metamodel

Concrete

Syntax /

Notation

Semantics

Well-formedness

rules

1 1..* 1

1

1

0..*

Is Defined By

22 2. Field of Investigation

The semantics of a modeling language relates to the meaning of model elements and their relations.

The semantics can be expressed as formalized models or in natural language describing their

meaning [Rod15].

Modeling languages can be differentiated in General-Purpose Modeling Languages (GPMLs) and

Domain-Specific Languages (DSLs). GPMLs can be applied to any domain for modeling, while

DSLs are tailored for modeling specific applications or domains [BCW17]. A typical example of

a GPML is the Unified Modeling Language (UML) [OMG17] on the MOF M2 level. UML defines

a set of diagrams that can be used to specify distinct aspects of software systems. These include

the structure of software systems (e.g., class diagram or component diagram) and their behavior

(e.g., activity diagram or sequence diagram). An example that reflects aspects of a GPML, as well

as characteristics of a DSL, is the Systems Modeling Language (SysML) [Bas⁺11; OMG19].

SysML is a UML-based modeling language for systems engineering applications. Therefore, it

can be applied to a wide variety of different use-cases but provides more expressiveness and tai-

lored model elements for specific aspects compared to UML. A further step towards a DSL is

SysML4Mechatronics [Ker19] that extends SysML by additional features for modeling of non-

software-related characteristics of mechatronic systems. An example of a DSL is the Palladio

Component Model (PCM) [Reu⁺11; Reu⁺16] for the modeling of business software architectures.

MDD aims to leverage models that are modeled using a GPML or DSL for the software develop-

ment process. A concrete proposal for the application of MDD is defined with the Model-Driven

Architecture (MDA) [OMG14]. One central aspect of MDA is the usage of modeled information

via model transformations. Model transformations generate one or more target models based on

the information from one or more source models [MCV05]. Transformations can be used to trans-

form models between different levels of abstraction or to a model based on another modeling

language [OMG14]. Three general types of model transformations exist: model-to-model (M2M),

model-to-text (M2T) and text-to-model (T2M) transformations. Model transformation can be im-

plemented using general-purpose programming languages, for example, C# or Java, or based on

specific model transformation languages [SK03].

A generic definition of a MOF-compatible M2M transformation language can be found with MOF

Query View Transformation (QVT) [OMG16]. An example of a specific language for M2M trans-

formations is the ATLAS Transformation Language (ATL) [ATL05]. Figure 13 gives an example

of an M2M transformation using a QVT-compliant transformation language. The source (A) and

target (B) metamodels both must be MOF-compliant. The M2M definition describes the mapping

of model elements from metamodel A to model elements of metamodel B. Hence, it describes the

transformation rules that can be executed by an M2M transformation engine. This engine reads an

2. Field of Investigation 23

instance of metamodel A (model A), executes the respective transformation rules, and outputs a

model that is compliant to metamodel B (model B).

Figure 13: Principle of a model to model (M2M) transformation using a MOF QVT-compliant transfor-

mation language (following the conventions from Brambilla et al. [BCW17]).

With the specification of the MOF Model to Text Transformation Language (MOFM2T)

[OMG08], a generic definition of an M2T language exists. A concrete realization can be found

with the Acceleo transformation language [Ecl19g]. The working principle of an M2T transfor-

mation is depicted in Figure 14. Here, the target of the transformation does not conform to MOF.

Hence, the M2T definition describes mappings between model elements from metamodel A and

textual templates. These templates can be based on any textual representation, e.g., code written

in any programming language, configuration files, or documentation.

<<instance of>>

<<instance of>>

M1 Model A

<<instance of>>

Meta-Object Facility

(MOF)
M3

M
O

F
 L

a
y
e
r

Metamodel AM2

MOF

QVT (M2M)

M2M Definition

<<instance of>>

M2M Transformation

Language

<<instance of>>

<<uses>

M2M

Transformation Engine
reads writes

<<executes>>

Model B

Metamodel B

<<instance of>><<uses>

<<instance of>>

Source Target

24 2. Field of Investigation

Figure 14: Principle of a model to text (M2T) transformation for text/code generation using a MOF

M2T-compliant transformation language (adapted from Aicher [Aic18], as well as Schütz

[Sch15] and extended, following the conventions from Brambilla et al. [BCW17]).

2.6. Virtualization and Containerization

Virtualization abstracts available hardware resources and can cover different aspects, e.g., the net-

work or the computing resources. It offers the possibility to use available resources more effi-

ciently and enables greater flexibility.

A common approach for virtualization is the virtualization of complete computers as so-called

virtual machines, including storage, network, computing resources, and other in- and outputs. This

is classically done using so-called hypervisors. Hypervisors allow multiple virtual machines to use

the same hardware platform parallelly. Therefore, virtual machines contain complete installations

of operating systems (OS) and run their own kernels. Access to the hardware is then managed

through the hypervisor. A more recent approach is the so-called containerization or container-

based virtualization. Instead of virtualizing the complete hardware and running multiple OS in

parallel, containers are self-contained units that include only applications but share the same un-

derlying operating system and hardware. Multiple containers then share the same host operating

systems but are isolated from each other. Containers, therefore, do not contain complete OS in-

stallations and are more lightweight. Figure 15 summarizes the layers of both virtualization ap-

proaches and their differences visually. [Ber14; Pah15]

<<instance of>>

<<instance of>>

M1 Model A

<<instance of>>

Meta-Object Facility

(MOF)
M3

M
O

F
 L

a
y
e
r

Metamodel AM2

MOF

Model to Text (M2T)

M2T Definition

<<instance of>>

M2T Transformation

Language

<<instance of>>

<<uses>
<<uses>

M2T

Transformation Engine
reads writes

<<executes>>

Text

Templates

C++
Java
C#

Text / Code
C++
Java
C#

Source Target

Models Text

2. Field of Investigation 25

Figure 15: Comparison of virtualization architectures. Layers of hypervisor (left) and container (right)

virtualization (adapted from Pahl [Pah15]).

A widely accepted container-software solution, and the current de-facto standard, is the open-

source software Docker [Doc20d]. Docker provides a container engine for the execution of con-

tainers, as well as their management over a command-line interface. Additionally, Docker features

the concept of repositories, where containers can be distributed and their dependencies managed.

While hypervisor-based virtualization suffers from measurable performance overhead due to the

virtualization of resources and the scheduling of their concurrent usage, the overhead of container-

based approaches is relatively small. Studies showed that their performance impact on computing,

memory, and network performance is neglectable [Fel⁺15; Mor17; SLV19]. Recently, containeri-

zation has also found its way into real-time applications, which is still an active research field

[SLV19; Str⁺20].

Multiple containers and their dependencies between each other can be managed by so-called or-

chestration engines. Orchestration engines allow the dynamic deployment of containers to so-

called computing nodes (computers) and their monitoring. In the case of malfunctions or unex-

pected load peaks, the orchestration engines can react accordingly by restarting or redeploying

distinct containers in the network. Multiple accepted orchestration engines for containers exist. A

widely accepted, but complex solution, is Kubernetes [Clo20]. Among the alternatives is Docker

swarm [Doc20b] that ships with Docker.

In summary, the concept of containers provides a lightweight and portable tool for sharing and

deployment of software in distributed IT systems. Via orchestration engines, also large numbers

of containers can be easily deployed, managed, and monitored.

Hardware Hardware

Hypervisor Host OS

Container engineVM VM

Container

Container Bins/libs

App

Bins/libs

App AppApp AppApp App

Bins/libsBins/libs

Guest OS Guest OS

3. Requirements on a Model-driven Approach for Data

Collection System Architectures for Cyber-physical

Systems of Systems

The concept of a model-driven approach for the automatic generation of data collection architec-

tures must fulfill different requirements. The requirements are presented in the following. They

can be derived from the state-of-the-art and/or industrial practice and represent the boundary con-

ditions the concept must adhere to. Based on the field of investigation, these can be grouped into

four categories, namely the requirements for the architecture concept itself (Req-A), the underlying

software framework for industrial communication (Req-SF), the domain-specific language to

model the data collection characteristics of CPSoS (Req-M) and the model-driven generation of

the data collection architecture (Req-G).

3.1. Data Collection System Architecture (Req-A)

The approach should allow the collection of data from different levels of the existing automation

pyramid [Dot⁺18]. Therefore, data from a multitude of distributed hard- and software systems must

be collected and forwarded to other systems that analyze or store the data. These systems range

from systems on the field level (e.g., smart sensors and PLCs) up to high-level IT applications

(e.g., systems in a cloud environment) [Kle⁺17]. The approach, therefore, must bridge the OT and

IT domains and allow data collection across all layers of the automation pyramid.

Req-AATP – Data collection from different levels of the automation pyramid

The approach should support data collection from different levels of the automation pyramid.

Both, the field level, as well as the superordinate IT systems, are characterized by a substantial

heterogeneity when it comes to communication protocols and interfaces [BS15]. Numerous tech-

nologies and protocols exist with their related strengths and weaknesses that can be used to inter-

connect these distributed systems. The approach should take available technologies into account

and include a technology-agnostic concept. This technology-agnostic concept must be realizable

using distinct sets of technologies to account for the requirements of a specific application. As a

result, the approach allows a simplified migration in the future if the constraints or the set of avail-

able technologies change over time.

Req-ATAC – Technology-agnostic concept

Support different sets of technologies for concrete realizations of the architecture.

28 3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

Systems in industrial automation are characterized by their long lifetime of often up to 40 years

[BS15]. The organization of these systems often still strictly follows the layout of the hierarchical

ISA-95 automation pyramid, which ensures timeliness and reliability of the systems control. Re-

placing this structure with a flexible communication mesh is a current trend in research [Del⁺17a;

Vog⁺09], but costly and often infeasible for existing installations due to enormous implementation

efforts. Therefore, the approach should also allow operation in parallel to the existing brownfield

structures and the automation pyramid, not requiring a replacement of existing structures [ITK19;

Kle⁺17]. This ensures broad applicability of the developed concepts.

Req-APOP – Allow parallel operation to the automation pyramid

The approach should be capable of being implemented as a coexisting extension of the automa-

tion pyramid. It should not require the replacement of existing structures.

An ever-increasing complexity and effort characterize the design and implementation phases of

data collection system architectures for CPSoS. The reasons are the growing number of connected

devices, the heterogeneity in protocols and technologies, as well as the multitude of involved ex-

perts from different fields [Str⁺18]. The approach should reduce complexity and the amount of

manually programmed code to simplify initial implementations and configurations of the data col-

lection system architecture.

Req-ADep – Simplified implementation and configuration (Deployment)

A decreased effort for the implementation and configuration of the system architecture in terms

of complexity and manually programmed code in comparison to manual programming.

Besides initial deployment, redeployments (migrations) are of significant interest for industrial

applicability [Dot⁺18]. Currently, due to the excessive costs related to the migration from one

technology to another, a vendor lock-in effect can be observed. Enterprises hesitate to migrate to

newer, better-suited communication technology as the communication logic of all participants

must be reimplemented. The approach should, therefore, support and simplify future migrations

of architectures that are implemented under the developed approach.

Req-AReDep – Simplified migration between technologies (Redeployment)

A decreased effort for the migration and reconfiguration of the system architecture from one

communication technology to another in terms of complexity and manually programmed code.

3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

29

3.2. Interoperability of Systems and Architecture Software

Framework (Req-SF)

A practical realization of a data collection system architecture requires a software back end that

allows the architecture concept to be implemented. The concept, therefore, must fulfill several

additional requirements.

The considerable number of heterogeneous systems leads to massive efforts when interfacing these

systems in order to collect data from them. Without a set of standardized interfaces that unify the

communication and data collection from all involved systems, connections must be set up on a

P2P basis. Additionally, installing a new participant requires the setup of multiple, independent

interfaces depending on the number of needed connections and the available interfacing options

of the communication peers. This practice increases the complexity of implementing and main-

taining data collection architectures. The definition of standardized interfaces can decrease these

integration efforts as one can rely on the interface definition and is not required to support a mul-

titude of different interfaces and protocols [VDI2657].

Req-SFAPI – Standardized interfaces to minimize effort

Definition of standardized interfaces for the integration of participants into the architecture.

A multitude of different technologies and protocols can be used for the realization of the system

architecture. Often, the concrete technologies for implementation must be chosen in the early en-

gineering phase. The implementation is then tailored to this specific set of technologies. This

workflow drastically increases the costs for migration when a change of technology is needed, for

instance, because new and better-suited technology is available or old technology not any longer

available on the market. Encapsulating and abstracting the specifics of different technologies

through the standardized interface (see Req-SFAPI) can decrease the dependence on a specific set

of technologies, prevent vendor lock-in, and simplify the migration to other technologies in the

future [VDI2657].

Req-SFACP – Abstraction of technology-specific properties of communication

An abstraction of the specifics of distinct communication technologies and protocols behind the

standardized interface.

The implementation of data collection system architectures in the automation domain always has

to take legacy brownfield systems into account [Ind17c; Jha⁺14; Kle⁺17]. Currently, most of the

relevant data is available from brownfield systems, and concepts for the interfacing of these

30 3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

sources are needed. Therefore, when implementing the architecture in parallel to the automation

pyramid, existing legacy systems must be interfaced. Concepts are needed which support the in-

tegration of these legacy systems for a co-existence with greenfield systems [AIM10; Ban⁺16;

Che⁺18; KBD09].

Req-SFLeg – Support of legacy systems

Concepts for supporting data collection from legacy systems in brownfield environments.

3.3. Requirements on the Domain-specific Language for

Architecture Modeling (Req-M)

Data collection architectures deal with various heterogeneous hardware devices and related soft-

ware in the IT and OT domains that are connected through diverse types of networks and

fieldbuses. Collecting and analyzing data from such distributed and networked systems of systems

is challenging because of the considerable number of connected systems (up to several hundred)

with often more than 1,000 in- and outputs per system. Moreover, the complexity of the underlying

constraints (e.g., acceptable latency, transmission rates of networks, constrained computing

power) needs to be considered. The design and operation of data collection architectures involve

stakeholders from different domains. For instance, a data analyst may have requirements on the

amount of historical data needed for training a new analysis model, while a control engineer is

concerned about the maximum acceptable latency between data generation in a machine and a

calculated decision in the cloud. A domain-specific language with a visual notation can support

experts during early design phases to capture requirements as well as during the operation of the

architecture. Besides enhancing the communication between the involved experts, such models

can serve as a documentation of the running system [Pan⁺19; Pen⁺17; Str⁺09].

A domain-specific language must provide the means to model a multitude of devices, networks,

and software functionalities from the IT and OT domains. This encompasses the field layer with

sensors, actuators, field buses, and PLCs, as well as superordinate IT systems, Ethernet-based

networks, and sophisticated software functionalities (e.g., data analysis, storage, visualization).

This so-called system viewpoint of the modeling language should describe the available hard- and

software, as well as the available network connections between and within the systems of systems.

Req-MSys – System viewpoint

Viewpoint for modeling of hardware, software, and networks from the field level up to super-

ordinate IT systems.

3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

31

For systems with a substantial number of connected devices and analyses, the data flow becomes

extraordinarily complex. Describing and capturing the flow of data is crucial for various stake-

holders [Ran⁺18]. Additionally, relevant information about the type of data (e.g., integer or float),

the state of data (batch or streamed data), as well as the type of system’s interaction with the data

(forwarding, modification) must be represented. For instance, without proper modeling of the data

flow through the systems, it is almost impossible for an IT architect to correctly size hardware

nodes. Additionally, a data analyst may not be able to determine influences on the quality of data.

Req-MDF – Data flow viewpoint

Viewpoint for the modeling of flows of data through distributed hardware and software systems,

including representation of additional information such as type and state of data.

To enable the DSL’s usage during the engineering and operation of a system, the requirements for

the system and its properties need to be represented. Experts from different domains (e.g., control

engineers, automation specialists, IT architects, or data analysts) have distinct types of require-

ments, which the data collection architecture should fulfill. For instance, while a data analyst can

define the required sampling rate 𝑓𝑆 of a variable, an IT architect is concerned about the security

of data transmission. Furthermore, to evaluate the performance of a system in operation, its actual

properties must be compared to the defined requirements. Hence, the means of stating require-

ments and properties should be part of the modeling notation.

Req-MPropReq – Annotations for properties and requirements

Additional elements for adding annotations to the system and data flow viewpoints that capture

requirements and properties of the system.

Visual notations or modeling languages are widely applied in software engineering and can com-

municate complex information often more intuitively than textual representations [Moo09]. As

experts from different domains, who lack a mutual understanding of each other’s domain-specific

terminology, participate in the process of developing a data collection architecture for CPSoS, a

graphical modeling notation can improve the exchange of ideas between these disciplines and

experts.

Req-MGraph – Graphical modeling notation

The domain-specific language includes a graphical notation for describing CPSoS using the

system and data flow viewpoints with additional annotations.

32 3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

3.4. Requirements on the Model-driven Generation of Data

Collection Architectures (Req-G)

One significant complexity when implementing a data collection architecture is the development

of the software communication interfaces and their usage in every connected participant. A model-

driven approach for the generation of a data collection architecture can decrease this manual en-

gineering and programming efforts. Therefore, a model-driven approach should automate the gen-

eration of the communication interfaces per participant to configure the communication architec-

ture automatically. An evaluation with adequate metrics is needed to prove the improved effi-

ciency of the approach, as only a minor fraction of published approaches capture this aspect in the

field of modeling languages in Industrie 4.0 [Wor⁺20].

Req-GCom – Model-driven generation of communication interfaces

Automatic, model-driven generation of the communication interfaces for the participants.

3.5. Focus of the Thesis

The approach of this thesis covers the modeling of data collection from CPSoS and the model-

driven generation of the underlying communication architecture itself. However, specific prob-

lems within this domain are out of the scope of this work. These problems are considered as pre-

requisites for this thesis and are summarized as follows:

firstly, the data collection architecture should function as a bidirectional but passive system.

CPSoS should not conduct any control interactions over the communication channels of the data

collection architecture. The data collection architecture, therefore, does not have the additional

requirement of meeting hard real-time communication for the collection and communication of

data. Instead, control interaction is carried out over existing, real-time-capable communication

links, possibly using OT technology. Furthermore, this explains the positioning as an extension of

the existing control structure in the form of the automation pyramid. Still, a parallel operation to

modern CPS with an internal mesh structure is also possible.

Secondly, no quantitative evaluation of the visual quality of the graphical notation (e.g., according

to the principles of Moody [Moo09]) is carried out. For this thesis, the DSL with the graphical

modeling notation should function as a tool to summarize and structure the knowledge and expec-

tations of the involved experts. Therefore, it has to provide the relevant viewpoints and means for

expressing the specific problems of the automation domain. The graphical quality of the notation

is, therefore, not in the scope of this thesis.

3. Requirements on a Model-driven Approach for Data Collection System Architectures for
Cyber-physical Systems of Systems

33

At last, no system behavior nor the mechanical hardware components of the system should be

modeled. The approach is tailored to data collection in complex CPSoS but neglects the internal

composition of these networked systems and their dynamic behavior. Participating CPS should be

treated as black boxes that produce and consume data.

4. State-of-the-Art

The following Chapter surveys and evaluates state-of-the-art approaches that address a similar

field of investigation concerning the requirements from Chapter 3. The survey is divided into three

parts: The first part (Section 4.1) covers concepts and realizations of generic system architectures

for interoperability in CPSoS as well as specialized data collection system architectures. The sec-

ond part (Section 4.2) investigates textual and graphical modeling languages for system architec-

tures. The last part (Section 4.3) considers approaches for the model-driven generation of commu-

nication system architectures in general and industrial automation. This Chapter closes with a der-

ivation of an identified research gap (Section 4.4). Table 2 presents the rating scheme per require-

ment for the state-of-the-art comparison that will be used to assess the existing approaches.

Table 2: Summary of the rating scheme per requirement for the state-of-the-art comparison. Most cri-

teria are graded with + (fully fulfilled), ○ (partially fulfilled), and - (not fulfilled), with addi-

tional criteria where applicable.

D
a

ta
 C

o
ll

ec
ti

o
n

 S
y

st
em

 A
rc

h
it

ec
tu

re
s

 (
R

eq
-A

)

Req-AATP – Data collection from different levels of the automation pyramid

+ Consideration of data collection from different levels of the automation pyramid.

○ Data collection without proper consideration of the automation pyramid levels.

- No data collection.

Req-ATAC – Technology-agnostic concept

+ Focus on a technology-agnostic concept for the architecture.

○
No consideration of technology-neutrality,

but the concept can be applied using different technologies.

- Concept is not technology-agnostic.

Req-APOP – Parallel operation to pyramid architecture

+ Concept is designed to be operated in parallel to the existing infrastructure.

○ Concept can be implemented in parallel but lack of special considerations.

- Concept replaces existing infrastructure.

Req-ADep – Simplified implementation and configuration (Deployment)

+
Manual implementation effort for the initial implementation and deployment of

the system architecture is decreased.

-
Manual implementation effort for the initial implementation and deployment

of the system architecture is increased.

? Not evaluated.

Req-AReDep – Simplified migration between technologies (Redeployment)

+
Manual implementation effort for the migration and redeployment of

an existingsystem architecture is decreased.

-
Manual implementation effort for the migration and redeployment of

an existing system architecture is increased.

? Not evaluated.

36 4. State-of-the-Art

S
o

ft
w

a
re

 F
ra

m
ew

o
rk

(R
eq

-S
F

)
Req-SFAPI – Standardized interfaces to minimize effort

+ Definition of standardized interfaces for communication.

- Peer-to-peer architecture without standardized interfaces.

Req-SFACP – Abstraction of technology-specific properties of communication

+ Abstraction of technology-specific properties of communication.

- No abstraction of technology-specific properties of communication.

∕ Not relevant, e.g., no standardized interface defined.

Req-SFLeg – Support for legacy systems

+
Integration of legacy systems is considered, and concepts are presented

(brownfield deployment).

○
Integration of legacy systems is only considered

(conceptual brownfield deployment).

-
No integration of legacy systems

(greenfield application).

A
rc

h
it

ec
tu

re
 M

o
d

el
in

g
 L

a
n

g
u

a
g

e

(R
eq

-M
)

Req-MSys – System viewpoint

+ Full support for the system viewpoint.

○ Partial support for the system viewpoint with relevant elements missing.

- No system viewpoint.

Req-MDF – Data flow viewpoint

+
Flow of data through the system and additional information

(type of data, state of data) is fully captured.

○ Partial coverage of the data flow and its characteristics.

- No data flow viewpoint.

Req-MPropReq – Annotations for properties and requirements

+
Modeling framework includes annotations for both viewpoints

allowing the statement of requirements and properties.

○ Annotations only include requirements or properties but lack consideration of both.

- No possibility of stating properties nor requirements.

Req-MGraph – Graphical modeling notation

+ Graphical modeling notation for both viewpoints and annotations.

○ Partial graphical modeling notation for either viewpoint.

- Lack of a graphical modeling notation.

M
o

d
el

-d
ri

v
en

G
en

.
(R

eq
-G

)

Req-GCom – Model-driven generation of communication interfaces

+ Automatic generation of communication interfaces.

○ Partial generation of the communication interfaces.

˄ Concept for the generation of communication interfaces presented.

- No automatic generation of communication interfaces.

4. State-of-the-Art 37

4.1. System Architectures

The following section summarizes and reviews state-of-the-art system architectures from the lit-

erature. The overview differentiates between generic architectures for interoperability and con-

nectivity and dedicated data collection system architectures. Every section starts with a presenta-

tion of isolated approaches. Afterward, it is followed by a summary of research projects in the

field. Concerning system architectures, only Req-A- and Req-SF categories are evaluated. Catego-

ries Req-M and Req-G do not apply as the approaches do not include any modeling notation or

model-driven approach for their generation. The presented approaches all fulfill the Req-AAPI re-

quirement as this provides the basis for a configurable data collection architecture.

With the Apache PLC4X project [Apa20], a software framework for unified access to heteroge-

neous protocols is actively developed. The framework offers a shared programming interface that

abstracts the specifics of the underlying protocols (Req-SFACP). Currently, several protocols, in-

cluding low-level PLC protocols, such as Beckhoff ADS [Bec19c] or Siemens S7 ISO-on-ISO

[RFC1006], are supported. The integration of existing legacy devices is the focus of the project

(Req-SFLeg). However, the project does not include an architecture concept.

4.1.1. Generic System Architectures

Kim and Youm [KY13] present a machine-to-machine platform for integrating data and services.

Their approach targets generic IoT devices like smart sensors for consumer use. Therefore, aspects

like data collection from various levels of the automation pyramid (Req-AATP) are not considered

but could be fulfilled with adaptions. A standardized interface for communication is provided but

does not abstract different communication protocols as only a single proprietary protocol is used

for communication (Req-SFACP). Legacy devices are not considered (Req-SFLeg). The concept is

theoretically technology-neutral, but detailed considerations of this aspect are not in the scope of

the approach (Req-ATAC). A parallel operation is not foreseen (Req-APOP).

Fiaschetti et al. [Fia⁺18] describe an implementation of a monitoring and control architecture for

energy distribution systems. They combine a DDS for the field level and the AMQP message

broker ActiveMQ for communication. As the application domain differs from industrial automa-

tion, a parallel operation is not foreseen, and direct control of systems is executed over the archi-

tecture (Req-APOP). Moreover, the integration of existing legacy devices is not considered

(Req-SFLeg). The presented approach is tailored to the specific set of technologies used for its im-

plementation and not applicable to other technologies (Req-ATAC, Req-SFACP).

Longo et al. [LNP19] developed a concept with a central ESB and participants that communicate

using REST web services. They aim to create a platform for digital twin applications. Multiple

38 4. State-of-the-Art

distributed ESB instances communicate with each other over CoAP. The approach considers the

complete range of systems in industrial automation (Req-AATP) and is implemented for a parallel

operation to existing systems (Req-APOP). Due to their focus on REST web services, the approach

is not technology-neutral and does not abstract specific properties of communication (Req-ATAC,

Req-SFACP). The integration of legacy systems is mentioned, but the actual interfacing of these

systems is not conducted and demonstrated (Req-SFLeg).

A hybrid peer-to-peer/middleware architecture for retrofitting existing automation systems is de-

scribed by Ismail and Kastner [IK16; IK17; Ism18]. The approach is used for vertical integration

of data (Req-AATP) and is based on a combination of OPC UA and approaches for service discovery

and orchestration. Gateways are proposed for interfacing legacy systems (Req-SFLeg); however,

the technology-specific properties are not abstracted as only OPC UA is considered as the transport

protocol (Req-SFACP). Their concept allows a parallel operation to the automation pyramid

(Req-APOP) and can be interpreted as theoretically technology agnostic (Req-ATAC). However, spe-

cial consideration and demonstration of this aspect are not included.

The architecture by Sola et al. [SGL15] (projects ComVantage and FITMAN) aims at enhancing

the interoperability between field level and superordinate systems by data collection and exchange

(Req-AATP). The architecture concept is formulated with technology-neutrality in mind (Req-ATAC);

however, it is not clear if a parallel operation to the automation pyramid is allowed (Req-APOP).

Standard interfaces abstract the specifics of communication protocols (Req-SFACP). Additionally,

the integration of legacy systems is considered (Req-SFLeg).

The Line Information System Architecture (LISA) by Theorin et al. [The⁺16] proposes an ESB for

flexible data integration and control in factories. Data adapters allow the integration of existing

legacy systems (Req-SFLeg), ranging from the field level up to ERP systems (Req-AATP). A parallel

operation to the existing control structure is demonstrated in an industrial application of the archi-

tecture (Req-APOP). While the concept itself is technology-neutral with no particular focus on this

aspect (Req-ATAC), the communication and programming interfaces are not, as only AMQP over

ActiveMQ is supported (Req-SFACP).

The MAYA project [Cia⁺17] conceptualizes a microservice architecture for digital twins in pro-

duction. Participants communicate with each other using web services. The concept includes bi-

directional communication between systems on the field level and a simulation framework. Su-

perordinate systems are not mentioned, but the architecture could also be applied for data collec-

tion from these (Req-AATP). While the concept itself is not based on a specific technology, special

considerations of this aspect are not part of MAYA (Req-ATAC). Due to the nature of a distributed

4. State-of-the-Art 39

control logic and bidirectional interaction for control of connected systems, a parallel operation to

the existing automation pyramid is not possible (Req-APOP). The standardized interface does not

abstract communication with different communication technologies as it is focused on web ser-

vices (Req-SFACP). Also, the integration of legacy systems is not part of the MAYA approach

(Req-SFLeg).

The Manufacturing Service Bus (MSB) [Grö⁺16; Kas⁺17; Mín12] is an ESB-realization for data

integration over the product lifecycle. It aggregates data from engineering as well as from different

automation levels during the operation of production plants (Req-AATP). Legacy applications can

be retrofitted to support the standardized interface using adapters (Req-SFLeg). The programming

interface abstracts specific properties of communication, and the concept itself is technology ag-

nostic (Req-SFACP, Req-ATAC). A practical realization is demonstrated by Schel et al. [Sch⁺18],

where REST web services, OPC UA, and MQTT are used for communication with participants.

Parallel operation to existing infrastructure is not considered but could be implemented (Req-

APOP). An approach that builds on top of the MSB is Virtual Fort Knox [Hol⁺13]. Virtual Fort

Knox encompasses a cloud platform, where an MSB and additional applications are hosted in a

cloud environment, to enable small and medium-sized enterprises (SMEs) to benefit from the MSB

concept.

BaSys 4.0 [EGW18; Kuh⁺18; Tru⁺19c] is a German project that is dedicated to the vision of a

generic Industrie 4.0 middleware that follows the RAMI 4.0 principles, including administration

shells. The conceptualized middleware is called Virtual Automation Bus and offers two distinct

communication channels: one for real-time communication and one for non-real-time communi-

cation. Different technologies for communication are considered and can be used for the imple-

mentation (Req-ATAC). Their specifics are abstracted with a standardized interface (Req-SFACP).

Legacy systems can be integrated using special adapters that translate between Virtual Automation

Bus and the legacy systems (Req-SFLeg). BaSys 4.0 replaces the existing control structure of plants

with a flexible, new architecture (Req-APOP) and cannot be operated in parallel. The implementa-

tion results of BaSys 4.0 are collected in the Eclipse BaSyx project [Ecl19d] that provides a frame-

work for future applications of the platform.

Lastra et al. [FL17a; FL17b; Moc⁺12] focus on web services-based architectures for data integra-

tion in industrial automation systems. Their approaches include concepts for retrofitting and inter-

facing existing legacy systems (Req-SFLeg). However, their aim is always to replace the existing

hierarchical structure of automation systems (Req-APOP). Additionally, as only web services are

considered as means of communication, their concepts are not technology agnostic, nor are their

standard interfaces abstracting the specifics of different protocols (Req-ATAC, Req-SFACP).

40 4. State-of-the-Art

Lastra et al. [Fer⁺17; Ift⁺18; Qur⁺17] are also involved in the C2NET project, which implements a

real-time data collection architecture to optimize the supply networks of SMEs. An architecture

for the collection of data from an ERP system and related data sources (relational databases,

spreadsheets) is implemented by Qureshi et al. [Qur⁺17]. The approach employs an ActiveMQ

broker, which is operated in coexistence to the control infrastructure (Req-APOP). In parallel, cloud-

based architectures that replace existing infrastructure with a web service-based approach are pre-

sented. These concepts also consider data collection from field devices (Req-AATP) [Fer⁺17; Ift⁺18].

Gateways allow the integration of existing legacy systems into the architecture (Req-SFLeg). The

presented approach comprises the idea of a standard and abstracted interface that encapsulates the

technology-specific properties of communication protocols (Req-SFACP). However, the architec-

ture concept is not fully technology-agnostic due to the focus on web services for communication

(Req-ATAC).

In the scope of his dissertation, Leitão presented ADACOR (ADAptive holonic COntrol aRchi-

tecture) [Lei04; LR06]. ADACOR is a multi-agent system for agile and adaptive control of man-

ufacturing. Every system is represented by an agent that communicates with the other agents in a

distributed architecture. These agents encapsulate the legacy interfaces of systems (Req-SFLeg) and

replace the existing control infrastructure (Req-APOP). Leitão also considers superordinate systems,

but the focus of ADACOR is on the field level (Req-AATP). The concept itself is technology agnos-

tic (Req-ATAC). Leitão et al. [LCR05] also present an implementation of the architecture using

JADE, a software framework for agent development in Java. A refined version, called

ADACOR2 [Bar⁺15], incorporates the idea of agent evolution to support self-adaptivity over time.

The IMC-AESOP project [Del⁺11; Kar⁺14; LCK16] realized a cloud-based and service-oriented

architecture for plant control applications that aims at replacing existing control systems

(Req-AATP, Req-APOP). Local clouds enable the communication of systems over standardized web

services. Additionally, migration approaches to retrofit and integrate legacy systems are discussed

(Req-SFLeg). While the concept itself is technology agnostic (Req-ATAC), the API is tailored to web

services and does not abstract between different technologies (Req-SFACP).

The SOCRADES project [KBD09; LCK16] developed an architecture for a so-called next-gener-

ation industrial automation architecture meant to replace the existing automation pyramid

(Req-AATP, Req-APOP). Webservices are used for communication of the systems, including mecha-

nisms for service discovery and orchestration. Gateways and mediators interface legacy systems

and enable their incorporation into the new automation architecture (Req-SFLeg). Due to the strong

focus on web services and related technologies for service discovery, neither the concept nor the

implementation are technology-neutral (Req-SFACP, Req-ATAC).

4. State-of-the-Art 41

The Arrowhead project [Car17; Del⁺17a; Del⁺17b; Der⁺15; Var⁺17] provides a framework for dis-

tributed, cloud-based interaction of systems. Arrowhead is built on top of

IMC-AESOP and SOCRADES. Additionally, it enables realtime capable communication if nec-

essary, but replaces the existing control architecture with the new paradigm of cloud-based, fed-

erated CPSoS (Req-APOP). Protocol translators allow the integration of legacy devices into the

cloud environment [DED17] (Req-SFLeg). Furthermore, the Arrowhead framework allows the us-

age of different protocols for communication and abstracts their specific properties (Req-SFACP).

The ARUM project [LCK16; Lei⁺13; Lei⁺15] proposes an agent-based architecture with an ESB

acting as middleware between the different systems. The developed service-oriented architecture

aims at minimizing the response time to unexpected events during the ramp-up phase of plants.

Legacy devices are incorporated using gateways (Req-SFLeg), but the existing control infrastruc-

ture is replaced by ARUM (Req-AATP, Req-APOP). Additionally, ARUM describes an ecosystem

consisting of architecture and many advanced tools for simulation, scheduling, and planning.

Agent communication follows the FIPA specifications; see, for instance, the FIPA specification

for HTTP as transport medium [FIPA02], which limits the technology-neutrality of the concept

and its implementation (Req-ATAC, Req-SFACP).

An architecture for flexible reconfiguration of CPS is developed within the PERFoRM project

[Gos⁺17; Lei⁺16]. PERFoRM includes a middleware component for communication across multi-

ple layers of the automation hierarchy (Req-AATP) and can be operated in parallel to the existing

control infrastructure (Req-APOP) [PER16a]. The PERFoRM middleware supports various middle-

wares (for instance, Apache Camel [Gos⁺18] and Apache Service Mix [Cha⁺17; Gos⁺17]). Fur-

thermore, it abstracts the specifics of protocols and systems with a standardized interface

(Req-ATAC, Req-SFACP) and a supplementary information model called PML [PER17]. Detailed

concepts are derived for the integration of legacy systems into the architecture and the application

of the PERFoRM concept to different use-cases (Req-SFLeg) [Lei⁺17; PER17].

4.1.2. Data Collection System Architectures

A dedicated data collection architecture is presented by Gama et al. [GTD12]. The architecture is

conceptualized to collect data from distributed RFID readers. Due to the different application do-

main, the architecture does not consider different hierarchical levels in industrial automation, but

could also be applied in this domain (Req-AATP). Webservices are employed for the communication

of the distributed systems and a central, mediating ESB-component. Hence, the architecture is

neither technology agnostic (Req-ATAC), nor does the interface abstract the specific communication

logic of web services (Req-SFACP). Additionally, the integration of existing legacy systems is not

considered (Req-SFLeg).

42 4. State-of-the-Art

Liu and Jiang [LJ16] present an architecture for data collection from various levels of the automa-

tion pyramid (Req-AATP). It is based on big data components, such as Apache Hadoop, a software

framework for the processing of big data. Technology-neutrality of the concept is not discussed,

but could theoretically be achieved (Req-ATAC). Nevertheless, the standard interface does not ab-

stract the specific properties of different technologies (Req-SFACP). Due to the nature of a data

collection architecture, a parallel operation to the existing infrastructure is possible (Req-APOP).

However, it remains unclear how to interface legacy systems (Req-SFLeg).

Kirmse et al. [Kir⁺18] propose an architecture for data collection and integration from CPSoS.

They also consider data that is distributed over multiple companies and data collection from mul-

tiple levels of the automation hierarchy (Req-AATP). The implementation of their architecture uses

OPC UA for communication, while their concept could be applied using different technologies

(Req-ATAC). As OPC UA is used as the standard communication protocol, the defined interface

does not abstract the specifics of communication but is based on the functionalities of OPC UA

directly (Req-SFACP). Legacy system integration is considered but not demonstrated (Req-SFLeg).

Liu et al. [Liu⁺16] use a commercial OSIsoft PI [OSI19] system for data collection and integration

in the domain of power systems. They use a model-driven approach to automate the generation of

information models based on the Common Information Model defined in EN 61968 [Eur13]. A

parallel operation is not discussed but typical for OSIsoft PI systems (Req-APOP). Data is collected

from the field levels as well as higher-level systems (Req-AATP). Additionally, the concept consid-

ers the integration of legacy systems over data adapters (Req-SFLeg). Still, due to the limitation on

OSIsoft PI, neither the concept nor its implementation is technology agnostic (Req-ATAC,

Req-SFACP).

The big data cloud platform AMCoT [Lin⁺17; Liu⁺18] is developed for the domain of semicon-

ductor manufacturing. Individual systems are interfaced using so-called cyber-physical agents,

which can also integrate legacy systems into the architecture (Req-SFLeg). Communication is con-

ducted using REST or SOAP web services. MATLAB is used for executing analysis in a connected

cloud environment. Parallel operation to the existing infrastructure is not explicitly mentioned but

possible (Req-APOP). Neither the concept nor its specific implementation of communication is tech-

nology-neutral due to restriction of only supporting web services for communication (Req-ATAC,

Req-SFACP).

Fleischmann et al. [FKF16a; FKF16b; Fle⁺16] present an architecture for aggregating data from

different levels of the automation pyramid for condition monitoring applications (Req-AATP). Their

4. State-of-the-Art 43

concept is realized using web services, but could theoretically be applied using other sets of tech-

nologies (Req-ATAC). However, technology-specific aspects of communication are not abstracted

in the standardized API (Req-SFACP). Albeit the integration of legacy systems is mentioned, it is

not demonstrated (Req-SFLeg).

Peres et al. [Per⁺18] propose the IDARTS framework, a hybrid multi-agent/Apache Kafka-based

architecture for data collection and analysis in industrial automation. Component Monitoring

Agents collect the data from field level systems but could theoretically also be used to acquire the

data of higher-level systems (Req-AATP). The collected data is forwarded to a central Apache Kafka

instance, which mediates between the field level agents and the analysis part of the architecture.

The concept is developed without a specific technology in mind, however special considerations

on technology-neutrality are missing (Req-ATAC). Parallel operation to the existing control infra-

structure is foreseen (Req-APOP). The definition of so-called Generic Data Collection Interfaces

and Generic Data Output Interfaces unify the in- and outputs of the system. Nevertheless, the

implementation of IDARTS is tailored for the JADE agent framework and Apache Kafka. There-

fore, it does not abstract further (Req-SFACP). The integration of legacy systems is mentioned, but

specific concepts are lacking (Req-SFLeg).

In the scope of the COCOP project [COC18a; COC18b; HKV18], an architecture for plant-wide

monitoring applications is developed. Data is collected from different hierarchical levels of the

automation systems (Req-AATP), including legacy systems that are interfaced using adapters

(Req-SFLeg). Different broker technologies are compared, and an actual implementation using Rab-

bitMQ is presented. Therefore, the concept can be seen technology-neutral, but this is not in the

scope of the COCOP project (Req-ATAC). A parallel operation is foreseen for the monitoring of

existing plants (Req-APOP). Additionally, the standardized interfaces take communication over

AMQP, REST, and OPC UA into account. Nevertheless, it remains questionable if the actual im-

plementation of the COCOP architecture encompasses this feature of a protocol-agnostic interface

(Req-SFACP).

Table 3 summarizes the requirement fulfillment of all presented generic and data collection system

architectures. As can be seen from Table 3, none of the approaches evaluated if decreased imple-

mentation or redeployment efforts can be observed with the architecture. Only the PERFoRM

architecture fulfills all other requirements of categories Req-A and Req-SF. The PLC4X plays a

special role as it does not include an architecture concept but is limited to a software framework.

44 4. State-of-the-Art

Table 3: Evaluation of relevant approaches in the field of system architectures and data collection sys-

tem architectures. See Table 2 for the rating scheme.

Approach Requirements

R
eq

-A
A

T
P

R
eq

-A
T

A
C

R
eq

-A
P

O
P

R
eq

-A
D

ep

R
eq

-A
R

eD
ep

R
eq

-S
F

A
P

I

R
eq

-S
F

A
C

P

R
eq

-S
F

L
eg

ADACOR ○ + - ? ? + - +

AMCoT + - ○ ? ? + - +

Arrowhead + + - ? ? + + +

ARUM + ○ - ? ? + / +

BaSys 4.0 + + - ? ? + + +

C2NET + ○ + ? ? + + +

COCOP + ○ + ? ? + + +

Fiaschetti et al. ○ - - ? ? + - -

Fleischmann et al. + ○ + ? ? + - ○

Gama et al. ○ - ○ ? ? + / -

IMC-AESOP + ○ - ? ? + - +

Ismail and Kastner + ○ + ? ? + - +

Kim and Youm ○ ○ - ? ? + - -

Kirmse et al. + ○ + ? ? + / ○

Lastra et al. + - - ? ? + - +

Liu and Jiang + ○ + ? ? + - -

Liu et al. + - ○ ? ? + / +

Longo et al. + - + ? ? + - ○

MAYA ○ ○ - ? ? + - -

MSB + + ○ ? ? + + +

Peres et al. ○ ○ + ? ? + - ○

PERFoRM + + + ? ? + + +

PLC4X + + +

SOCRADES + - - ? ? + / +

Sola et al. + + ○ ? ? + + +

Theorin et al. + ○ + ? ? + - +

4. State-of-the-Art 45

4.2. Modeling Languages

In the following Section, relevant modeling languages are summarized and reviewed. At first,

AutomationML, as a universal data exchange format is considered. Afterward, UML profiles are

presented, followed by a review of graphical modeling notations. As none of the approaches in-

cludes an architecture concept nor the model-driven generation of system architectures, only re-

quirements of category Req-M are considered in the following review.

The Automation Markup Language (AutomationML or AML) [Dra⁺08; IEC62714] is a data ex-

change format for the domain of industrial automation. AutomationML aims to provide a vendor-

neutral, XML-based data format that can be used to exchange data between heterogeneous engi-

neering systems and tools. AutomationML combines existing standards and accepted exchange

formats to describe topology, geometry, and kinematics, as well as control software of automation

systems. Furthermore, AutomationML provides the possibility of enhancing the modeling capa-

bilities with so-called role class libraries. A role class library for communication is described in

several publications [Aut14; DLH13; RD18; Rie⁺14a]. The basic AutomationML libraries, in con-

junction with the communication library, can be used to model communication networks in control

systems. They include elements to describe the hardware and networks of the system, as well as

simple software functionalities related to control of the system. The library separates between a

logical data processing view and a physical hardware view. The views are mapped to reflect which

software functionality is executed on which hardware. Besides, a simple mechanism for the de-

scription of data exchange exists. However, it is mostly limited to the field level. Therefore,

Req-MSys and Req-MDF are both partially fulfilled, as only a description of complex software func-

tionalities and a more complete data flow viewpoint are not considered. Nevertheless, a possibility

to annotate the models with properties and requirements (Req-MPropReq) and a graphical represen-

tation of the model (Req-MGraph) are not part of AutomationML.

4.2.1. UML-profiles

The OMG specified MARTE [OMG11], a UML profile for the Modeling and Analysis of Real-

Time Embedded Systems. MARTE differentiates between a design model for the design of sys-

tems and an analysis model for the analysis of schedulability and performance of designed sys-

tems. As MARTE is a UML 2 profile, its graphical modeling capabilities are limited and restricted

to additional icons and simple symbols in combination with the graphical elements of UML

(Req-MGraph). The system can be described in terms of available hardware and resources, I/O sig-

nals, and communication interfaces, including networks. Therefore, Req-MSys can be considered

as entirely fulfilled. MARTE does not include an explicit data flow viewpoint. Instead, the flow

of data is directly modeled within the hardware elements. Therefore, following the flow of data

46 4. State-of-the-Art

and its manipulations through the systems is only implicitly possible (Req-MDF). An annotation of

modeling elements with additional properties and requirements is possible. The specification of

MARTE foresees many relevant items for timing and scheduling, but additional items, e.g., for

the specification of protocols or encryption requirements, are missing (Req-MPropReq).

UML-RT [Gro⁺99; Sel98] is a UML profile for event-driven, distributed real-time software based

on the ROOM (Real-Time Object-Oriented Modeling) language [SGW94]. UML-RT relies on the

graphical elements of UML but does not provide a graphical notation, including any symbols itself

(Req-MGraph). The modeling language features elements for the definition of so-called capsules,

which can communicate with other capsules over ports. These ports implement a specified proto-

col behavior and can be connected with connectors. UML-RT does not include elements for the

explicit modeling of hardware systems (Req-MSys). The flow of data is modeled implicitly with the

description capsules and ports/connectors and provides only basic information (Req-MDF). For

instance, the type of data handling cannot be seen directly, but the internal behavior of a capsule

needs to be investigated. UML-RT provides no way of stating any properties or requirements

(Req-MPropReq).

Katzke and Vogel-Heuser defined the so-called UML-PA (process automation) profile [Kat08;

KV05a; KV05b]. UML-PA is a tailored profile for the modeling of software in industrial automa-

tion systems. UML-PA introduces additional graphical symbols but relies mainly on the graphical

notation provided by UML (Req-MGraph). The modeling language differentiates between hardware

and software of a system. Signals that are connected to a hardware unit are mapped to software

signals. Additionally, networks can be defined. Req-MSys is, therefore, entirely fulfilled. On the

other hand, data flows can only be modeled implicitly without special consideration of types of

data flow and data manipulations (Req-MDF). UML-PA provides a basic set of properties and re-

quirements that can be used to annotate models. These are mainly related to bus capacities and

time constraints but fail to capture additional characteristics (Req-MPropReq).

The Service-oriented architecture Modeling Language (SoaML), which is specified by the

OMG [OMG12], contains a metamodel and a UML profile for modeling and design of service-

oriented architectures. Therefore, SoaML includes stereotypes for the interaction of services. For

instance, data flows can be captured in UML Sequence Diagrams and describe the interactions

and roles of services. A possibility to describe the type of flow (batch/stream) is missing

(Req-MDF). Moreover, SoaML includes basic stereotypes for the description of data types and sig-

nals. Besides, the software functions of the systems can be modeled as services. As SoaML is

designed to describe service-oriented architectures, elements for the hardware and network de-

4. State-of-the-Art 47

scription are not included (Req-MSys). SoaML does not include elements that characterize the prop-

erties and requirements of system architectures (Req-MPropReq). Finally, as SoaML is designed as a

UML profile, a separate graphical modeling notation is not part of the specification (Req-MGraph).

Another UML profile exists with the OMG’s SysML [ISO19514; OMG19], a modeling language

for system engineering. Compared to UML, SysML introduces additional diagrams and extends

the available UML model elements. The structure of the system can only be modeled using abstract

block-elements. More detailed symbols and differentiation of components of industrial automation

systems are not available (Req-MSys). Communication between systems can only be modeled im-

plicitly using ports without additional information concerning the type of data handling (Req-MDF).

SysML foresees requirements specifications but lacks separate mechanisms for property specifi-

cation in relation to the requirements (Req-MPropReq). The graphical model elements are limited to

the elements available in UML (Req-MGraph).

With the SysML-vAT (SysML for distributed automation systems) [Fra14], Frank adapted and

extended the SysML for the modeling of distributed automation systems. Therefore, new stereo-

types to further specify hardware components of the systems are introduced. However, detailed

modeling of networks and variables is missing (Req-MSys). SysML-vAT extends the modeling of

ports with directed ports for in- and outputs, but as with SysML, data flows can only be captured

implicitly (Req-MDF). With the introduction of colors and additional symbols, the graphical capa-

bilities of SysML are extended slightly but still very limited (Req-MGraph). Vogel-Heuser et al.

[Vog⁺14a] demonstrate the model-driven generation of IEC 61131-3-compliant code from

SysML-vAT models but do not cover non-automation software layers.

4.2.2. Graphical Notations

The AADL (Architecture Analysis and Design Language) [Fei⁺05; FG13; FLV06] is a modeling

language for real-time applications and embedded systems standardized by SAE International (So-

ciety of Automotive Engineers) in SAE standard AS5506C [SAEAS5506C]. AADL puts signifi-

cant effort into an exhaustive and formal specification of embedded systems in performance-crit-

ical applications. The language features constructs for a detailed description of software and hard-

ware systems, as well as in- and output signals (Req-MSys). The data flow through the system is

modeled together with the system aspects and is included implicitly (Req-MDF). A basic set of

properties can be stated, but additional aspects, such as protocols, encryption, and semantics are

not considered due to the intense focus on embedded systems. Also, mechanisms for stating re-

quirements are not taken into account (Req-MPropReq). AADL provides a textual and graphical syn-

tax for system modeling (Req-MGraph).

48 4. State-of-the-Art

The Open Group, an industry consortium to develop and foster open, vendor-neutral standards,

specifies the ArchiMate modeling language [LPJ10; Ope19]. The scope of ArchiMate is the mod-

eling of enterprise architectures and their evolution over time, but without a particular focus on

the automation domain or Cyber-physical Systems. ArchiMate features a simple, but powerful

graphical modeling notation with support for various symbols and different icons (Req-MGraph).

Besides, ArchiMate supports the definition of individual viewpoints. Considering the description

of the system, the notation allows the modeling of host systems, software applications, and net-

works. However, the aspect of signals and master/slave networks is not considered (Req-MSys).

The flow of data (Req-MDF) can only be described implicitly, without a separate viewpoint, with-

out the possibility to model distinct types of data and data manipulations. ArchiMate provides a

set of basic annotations that can be used for the definition of requirements and properties. Never-

theless, only high-level annotations are defined in ArchiMate, which could be extended and cus-

tomized if necessary (Req-MPropReq).

Greifenender and Frey [GF07; Gre07] developed a graphical notation called DesLaNAS for the

description of networked systems (Req-MGraph). The focus of the approach lies in the modeling of

communication-based delay between connected systems. Therefore, the flow of information and

its delay through systems and networks can be modeled, but a possibility to describe the type of

flow (stream/batch) is missing (Req-MDF). Besides, the notation does not differentiate how a sys-

tem influences the data. A system viewpoint, as well as the possibility to annotate models with

properties and requirements, are not considered (Req-MSys, Req-MPropReq).

Lewin et al. [LVF17] developed an adapted value stream analysis for information flows in Indus-

trie 4.0 scenarios. Their approach does not capture the structure of the system (Req-MSys) but con-

siders the flow of data and information between connected systems. The value stream analysis is

focused on superordinate systems. Furthermore, it includes the direction of flows and a basic de-

scription of actions that are conducted with the data, e.g., data processing or data analysis. Still, a

differentiation of data flows (stream/batch), mapping on the system viewpoint, and the description

of the transmitted variables and values are missing (Req-MDF). A possibility to annotate the models

with properties and requirements is not considered (Req-MPropReq). The concept encompasses a

graphical notation for the description of data and information flows but no symbols for the system

viewpoint (Req-MGraph).

The group of Vogel-Heuser et al. developed a graphical modeling notation for decentralized con-

trol systems (DCS). The first version of this notation, which is inspired by UML-PA, was pre-

sented by Witsch and Vogel-Heuser [WV08] and provides graphical elements for modeling of

control hardware, related networks, and in-/outputs (Req-MGraph, Req-MSys). Additionally, models

4. State-of-the-Art 49

can be annotated with relevant properties and requirements (Req-MPropReq). The approach by

Witsch and Vogel-Heuser includes an underlying metamodel to structure the modeled information.

An extended version of the notation was later presented by Vogel-Heuser et al. [Had⁺12; Has⁺13;

Vog⁺11; Vog⁺12] and encompassed an extended set of properties and requirements. The focus of

all four contributions is dedicated to the network architecture of DCS and the related time behav-

ior. Therefore, a consideration of superordinate systems is not included (Req-MSys). Vogel-Heuser

and Ribeiro [VR18] introduce an adapted version of the notation for fog computing on the field

level. The approach introduces additional elements to the notation, such as elements for data

frames. Another work by Sollfrank et al. [STV19; SVF17] reflects the adaption of the notation for

safety applications. Supplementary elements for safety-related hardware, properties, and require-

ments are presented and used. With the DSL4hDNCS [Vog⁺20], the group of Vogel-Heuser further

unified the separate versions of the graphical modeling notation and extended the graphical mod-

eling notation with a metamodel to yield a DSL. Nevertheless, none of the works by Vogel-Heuser

et al. can be used to capture related software functions executed on the hardware (Req-MSys). Ad-

ditionally, an explicit viewpoint for the flow of data through the system is not considered

(Req-MDF).

Table 4 summarizes the reviewed modeling approaches. As can be seen, only AADL, MARTE,

and UML-PA can model the relevant aspects of the system architecture. None of the presented

approaches captures the characteristics of the data flow entirely (Req-MDF), which is especially

important for data collection and analysis in CPSoS. The only approaches that allow a free defini-

tion of properties and requirements (Req-MPropReq) are the works by Vogel-Heuser et al. Some of

the reviewed approaches provide basic sets of annotations that are limited to specific aspects of

the systems. Others are only capable of describing either properties or requirements, but not both.

Additionally, the requirement of a graphical modeling notation (Req-MGraph) is only thoroughly

addressed by AADL, ArchiMate, Greifeneder and Frey, as well as Vogel-Heuser et al. All lan-

guages can describe specific aspects of the systems (Req-MSys) but at various levels of detail, rang-

ing from detailed to not captured at all. In summary, none of the approaches can fulfill all require-

ments of the Req-M category.

50 4. State-of-the-Art

Table 4: Evaluation of relevant approaches in the field of modeling languages for system architec-

tures. See Table 2 for the rating scheme.

Approach Requirements

R
eq

-M
S

ys

R
eq

-M
D

F

R
eq

-M
P

ro
p
R

eq

R
eq

-M
G

ra
p

h

AADL + ○ ○ +

ArchiMate ○ ○ ○ +

AutomationML ○ ○ - -

DesLaNAS - ○ - +

Lewin et al. - ○ - ○

MARTE + ○ ○ ○

UML-PA + ○ ○ ○

UML-RT ○ ○ - -

SoaML ○ ○ - -

SysML ○ ○ ○ -

SysML-vAT ○ ○ ○ -

Vogel-Heuser et al. ○ - + +

4.3. Model-driven System Architectures

In the following section, model-driven approaches for the generation of system architectures are

surveyed and evaluated. The overview is divided into two parts: the first part summarizes generic

approaches for the generation of system architectures. In contrast, the second one is focused on

system architectures for industrial automation. Concerning the generic approaches, only require-

ments of categories Req-M and Req-G are evaluated as no specific architecture for industrial au-

tomation is part of the approaches. Contributions in the second part of this section are evaluated

concerning the requirements of all categories.

4.3.1. Generic Architectures

Benaben et al. [Ben⁺17] present an approach for model-driven engineering of middleware systems.

Their approach focuses on the domain of enterprise integration between different companies. The

system viewpoint of the underlying metamodel includes some elements that can be applied to

industrial automation. However, the focus on enterprise integration leads to strong attention on the

modeling of services but not hardware, software, and networks (Req-MSys). Moreover, the ap-

proach does not comprise a data flow viewpoint (Req-MDF). Data flows are only implicitly mod-

eled using the activities invoke, receive, and reply. Properties and requirements of the systems are

4. State-of-the-Art 51

not captured at all (Req-MPropReq). Furthermore, the modeling approach is only based on a UML

representation but does not consider any graphical modeling constructs (Req-MGraph). Benaben

et al. use the model and transform it to configure an ESB and related web services for communi-

cation (Req-GCom).

The groups around Broy and Schätz et al. developed AutoFOCUS [Ara⁺15; Bau⁺05; Bro⁺08;

Hub⁺96], a modeling concept for distributed embedded systems. AutoFOCUS is based on

FOCUS [Bro⁺93] and extends it with a graphical modeling notation (Req-MGraph). While the graph-

ical modeling notation only offers a minimal set of shapes, in the system viewpoint (system struc-

ture diagram), these can be used to model networks of hardware components. The system view-

point is limited to data exchange among these hardware components and does not capture network

structure or other the type of hardware systems. A second viewpoint for the modeling of data flows

can be used to model and characterize modifications and usage of data (Req-MDF). However, fol-

lowing the flow of data through systems is challenging due to the very detailed modeling on an

embedded hardware level and the implicit formulation of data flows. The modeling notation allows

the modeling of timing requirements, such as cyclic execution, but does not differentiate between

requirements and properties (Req-MPropReq). Based on the models, the software code for various

hardware platforms can be generated that includes the interactions between the modeled compo-

nents (Req-GCom).

Dorn et al. [DWD14] developed an approach for the automatic generation of message-oriented

communication systems. Therefore, they adapt the extensible Architecture Description Language

(xADL) by Dashofy et al. [DvT01] with additional elements. These elements describe message-

oriented communication in general and their respective implementations for the ESBs ActiveMQ

and Mule. Their description of the system architecture is only focused on communication inter-

faces and the abstract description of components (Req-MSys). The data flow is modeled with more

detail in comparison to other approaches (Req-MDF). However, only endpoints, communication

channels, and the direction of information flows can be modeled. Neither the description of prop-

erties/requirements nor a graphical modeling notation is considered (Req-MPropReq, Req-MGraph).

For the development process of the communication systems, tool support is provided. A model

transformation can then automatically generate runtime configurations for the middleware but no

client code (Req-GCom).

Ebeid et al. [Ebe⁺15; EFQ15] extend the UML MARTE profile with network-related aspects and

introduce a model-driven generation of runnable configurations for distributed embedded systems.

Their extension to UML MARTE captures aspects of QoS and defines abstract data channels that

are used to transport data from one system to another. Concerning the Req-M requirements, the

52 4. State-of-the-Art

approach shares the same characteristics as the UML MARTE profile itself. Ebeid et al. consider

an automatic generation of communication interfaces but restrict the approach to the model-driven

generation of configurations for a simulation environment (Req-GCom).

With the so-called ThingML, Harrand et al. [Har⁺16] present a textual, domain-specific modeling

language for embedded IoT devices (Req-MGraph). ThingML encompasses basic system and data

flow viewpoints but focuses on embedded devices and low-level interactions between them

(Req-MSys, Req-MDF). ThingML does not provide language constructs for adding properties or re-

quirements to the model (Req-MPropReq). Based on the models, basic communication interfaces are

automatically generated by model transformations (Req-GCom).

Issarny et al. conceptualized different model-driven communication architectures, for instance, the

extensible service bus (XSB) [Geo⁺13] and the eVolution Service Bus (VSB) [Bou⁺19; Bou17;

Iss⁺16]. The focus of both approaches lies in the domain of the Internet of Things. Therefore, the

service buses use web services. The necessary communication interfaces are automatically gener-

ated based on the model (Req-GCom). The underlying models do not encompass a system viewpoint

that can describe hardware, software, and networks (Req-MSys). Data flows are implicitly modeled

with so-called mash-up graphs (Req-MDF, Req-MGraph). These graphs show the path of data through

the system and the dependencies between components. Nevertheless, no differentiation of the spe-

cific roles of components is made. Bouloukakis et al. [Bou⁺19] extend the approach by introducing

a uniform software framework that abstracts the functional properties of specific IoT protocols.

Petrasch [Pet17; Pet18] presents a model-based approach for the development of microservice

architectures. The system viewpoint is limited to a basic description of the system related to en-

terprise integration (Req-MSys). A data flow viewpoint (Req-MDF) does not exist. Furthermore, it

is not possible to annotate the models with properties and requirements (Req-MPropReq). The ap-

proach does not include a graphical modeling notation and is based on UML (Req-MGraph). The

work by Petrasch includes the concept of a model-driven generation of communication interfaces,

but implementation and demonstration of this functionality are missing (Req-GCom).

Pusztai et al. [PTD19] propose a model-based approach for the development of IoT applications.

Based on a new UML profile, the modeling of heterogeneous IoT devices is possible. The intro-

duced stereotypes are tailored for embedded IoT hardware and include basic components such as

CPUs. However, the modeling of networks and specific devices relevant for industrial automation

is not in the scope of the approach (Req-MSys). Data flows can be modeled implicitly using activity

diagrams (Req-MDF). The modeling approach does not include model elements for the capturing

of properties and requirements (Req-MPropReq), nor does it include a graphical notation

4. State-of-the-Art 53

(Req-MGraph). Based on the models, the code for communication between the systems over REST

is generated (Req-GCom).

Tekinerdogan et al. [TÇK18] present an approach to simulate and find optimized deployment sce-

narios for DDS systems. Various deployment scenarios are automatically generated and tested for

the fulfillment of specific requirements using simulation. Therefore, they developed an approach

that allows the modeling of applications and physical resources, for instance, available memory

and processing power, but no actual hardware devices (Req-MSys). Furthermore, the approach in-

cludes the possibility to annotate the models with requirements (Req-MPropReq) that a deployed

architecture must fulfill. Nevertheless, no actual properties are considered. Also, a data flow view-

point (Req-MDF), a graphical notation (Req-MGraph), and a model-driven generation of communi-

cation interfaces (Req-GCom) are not part of the approach.

Terzić et al. [Ter⁺18] developed the model-driven tool MicroBuilder. MicroBuilder includes a

framework for the automatic generation of REST microservices for e-commerce applications.

Therefore, they automatically set up communication interfaces based on a specified model

(Req-GCom). The underlying modeling language is a mixture of graphical notation and textual,

domain-specific language (Req-MGraph). Due to the different domain, no system viewpoint, includ-

ing elements for industrial automation, is considered (Req-MSys). Simple data flows can be mod-

eled using the graphical notation (Req-MDF). However, no annotation with properties or require-

ments is considered (Req-MPropReq).

4.3.2. System Architectures for Industrial Automation

The only implemented model-driven system architecture for data collection is presented by Mazak

et al. [Maz⁺18]. Their approach is based on an extended version of AutomationML. Therefore,

they add the description of data dependencies between systems. The extended model is then used

to automatically set up OPC UA servers as data providers and a data collection architecture. The

collected data is finally stored in a time-series database. While their approach is focused on data

collection from the field level, it can be used to collect data from various levels (Req-AATP). As the

architecture is a data collection architecture, a parallel operation to the existing control infrastruc-

ture is foreseen (Req-APOP). Due to the focus on OPC UA, neither the concept is technology-ag-

nostic (Req-ATAC), nor a standardized interface that abstracts between different communication

technologies is defined (Req-SFACP). The integration of legacy systems is not considered

(Req-SFLeg). While Mazak et al. claim decreased costs for re-engineering during the evolution of

CPPS, the contribution does not evaluate or measure a decreased effort during initial deployment

(Req-AReDep) nor re-deployment (Req-AReDep). As the approach is based on AutomationML, the

same limitations concerning the systems viewpoint (Req-MSys), properties/requirements

54 4. State-of-the-Art

(Req-MPropReq), and the non-graphical representation (Req-MGraph) apply. The flow of data

(Req-MDF) is implicitly modeled over the introduced dependencies, but it cannot be followed

through the system or over a multi-stage process. The approach automatically generates all neces-

sary communication interfaces (Req-GCom), including the OPC UA server, the respective client

components, and the database connection.

Hufnagel et al. [HFV13; HV15] present a concept facilitating the collection of distributed and

heterogeneous data based on ESB-principles. The proposed, technology-agnostic architecture

(Req-ATAC) uses data mapping and adapters to integrate near real-time and batch data from different

systems, including legacy systems (Req-SFLeg). Data collection from various levels of the automa-

tion pyramid (Req-AATP) and parallel operation (Req-APOP) are not considered but could be applied

in theory. The modeling approach includes elements for modeling the system architecture but only

related to the communication with the common data backbone, not the individual systems them-

selves (Req-MSys). The approach does not foresee the modeling of any other aspects (Req-MDF,

Req-MPropReq) nor provide a graphical modeling notation (Req-MGraph). The underlying model-

based development of the data exchange does encompass a concept for the model-driven genera-

tion of the architecture itself (Req-GCom). However, no publication of the concept’s practical im-

plementation is available.

Based on the UML4IoT metamodel [TC16], Thramboulidis and Christoulakis [TVS18] conceptu-

alized a model-driven generation of microservice architectures for CPPS. Their developed archi-

tecture aims at replacing the existing infrastructure (Req-APOP) and focuses on the field level but

could be applied to interface superordinate systems as well (Req-AATP). The Lightweight Machine

to Machine protocol (LwM2M) [Ope18] is used, which makes the concept tailored to this specific

communication technology (Req-ATAC) and prevents a further abstraction by the standardized in-

terface (Req-SFACP). The concept does not consider the integration of existing legacy systems into

the architecture (Req-SFLeg). Concerning the included metamodel, the system viewpoint focuses

on resources and their information exchange but lacks consideration of hardware, software, and

networks (Req-MSys). The metamodel does not comprise a data flow viewpoint (Req-MDF) nor the

possibility of annotations with properties and requirements (Req-MPropReq). All modeling is non-

graphical (Req-MGraph). The actual model transformation into a deployable architecture is only

developed conceptually but not demonstrated (Req-GCom).

Table 5 summarizes the evaluation of model-based system architectures. Only the approaches by

Mazak et al. [Maz⁺18] Hufnagel et al. [HFV13; HV15], and Thramboulidis et al. [TC16; TVS18]

were evaluated concerning the requirements of categories Req-A and Req-SF, as they are the only

approaches that generate a system architecture in the field of industrial automation. Furthermore,

4. State-of-the-Art 55

none of the approaches that encompass a model-driven generation of the architecture features a

complete domain-specific language, including a graphical modeling notation for data collection

architectures.

Table 5: Evaluation of relevant approaches in the field of model-driven system architectures. Non-rele-

vant criteria are grayed out. See Table 2 for the rating scheme.

Approach Requirements

R
eq

-A
A

T
P

R
eq

-A
T

A
C

R
eq

-A
P

O
P

R
eq

-A
D

ep

R
eq

-A
R

eD
ep

R
eq

-S
F

A
P

I

R
eq

-S
F

A
C

P

R
eq

-S
F

L
eg

R
eq

-M
S

ys

R
eq

-M
D

F

R
eq

-M
P

ro
p

R
eq

R
eq

-M
G

ra
p

h

R
eq

-G
C

o
m

Benaben et al. ○ - - - +

Broy and Schätz ○ ○ ○ + +

Dorn et al. ○ ○ - - ○

Ebeid et al. + ○ ○ ○ ˄

Harrand et al. ○ ○ - - +

Hufnagel et al. ○ + ○ ? ? + - ○ ○ - - - ˄

Issarny et al. - ○ - ○ +

Mazak et al. ○ - + ? ? + / - ○ ○ - - +

Petrasch ○ - - - ˄

Pusztai et al. ○ ○ - - +

Tekinerdogan et al. ○ - ○ - -

Terzić et al. - ○ - ○ +

Thramboulidis et al. ○ - - ? ? + - - ○ - - - ○

4.4. Research Gap in Model-driven Development of Data Collection

System Architectures

The reviewed approaches and their respective fields of contribution are summarized in Figure 16.

As can be seen, a large number of approaches that consider system architectures exist. On the other

hand, several distinct modeling notations for distributed systems were identified. Nevertheless,

only five approaches exist that encompass a modeling approach (Req-M) for industrial automation

systems, namely AutomationML, as well as the approaches by Mazak et al., Hufnagel et al.,

Thramboulidis et al., and Vogel-Heuser et al. (light gray and dark gray areas in Figure 16).

Based on the Req-G requirements, the model-driven generation of system architectures was con-

sidered. The majority of identified approaches are either dedicated to REST web services or the

field of system architectures for consumer IoT devices. Only Mazak et al., Hufnagel et al., and

56 4. State-of-the-Art

Thramboulidis et al. (dark gray area in Figure 16) present approaches that apply to the model-

driven generation of system architectures for the industrial automation domain (Req-G). However,

the three approaches only consider parts of a data collection architecture and lack an explicit data

flow description and a domain-specific language with a visual notation. Additionally, Mazak et al.,

as well as Thramboulidis et al., support only the usage of a single communication protocol.

Moreover, the evaluation of model-driven approaches should include suitable metrics and at least

semi-industrial use-cases, as identified by Wortmann et al. [Wor⁺20]. However, none of the sur-

veyed approaches proofed a reduction of implementation efforts using suitable metrics.

Figure 16: Overview of relevant state-of-the-art contributions, their field of contribution, and identified

research gap. The research gap is highlighted in gray.

Therefore, the research gap that is addressed within this thesis is identified as:

Research gap

A model-driven approach for data collection based on a domain-specific language with a visual

notation for the formal description of systems and associated data flows does not exist in the

domain of industrial automation. None of the surveyed approaches provides the means to gen-

erate necessary communication interfaces for data collection automatically. Furthermore, sup-

port for multiple communication protocols is lacking.

Model-driven

System Architectures

Modeling NotationSystem Architectures

Mazak et al.

[Maz 18]

Thramboulidis et al.

[TC16; TVS18]

Benaben et al.

[Ben 17]

Vogel-Heuser et al.

[WV08; Vog

AutomationML

[Auto14; DLH13; COCOP

[COC18a; COC18b;

Theorin et al.

[The 16]

ADACOR

[Leit04; LR06;

AMCoT

[Lin 17; Liu 18]

ARUM

[LCK16; Lei
Arrowhead

[Car17; Del 17a;

BaSys 4.0

[EGW18; Kuh
C2NET

[Fer 17; Ift

Fleischmann et al.

[FKF16a; FKF16b;

Gama et al.

[GTD12]

Fiaschetti et al.

[Fia 18]

IMC-AESOP

[Del 11; Kar
Ismail and Kastner

[IK16; IK17;

Kim and Youm

[KY13]

Kirmse et al.

[Kir 18]

Lastra et al.

[FL17a; FL17b;

Liu et al.

[Liu 16]

Liu and Jiang

[LJ16]

Longo et al.

[LNP19]

MSB

[Grö 16; Kas
MAYA

[Cia 17]

Peres et al.

[Per 18]

PERFoRM

[Gos 17; Lei

SOCRADES

[KBD09; LCK16]

Sola et al.

[SGL15]

AADL

[SAEAS5506C]

ArchiMate

[LPJ10; Ope17]

Lewin et al.

[LVF17]

Greifeneder and Frey

[GF07; Gre07]

MARTE

[OMG11]

Dorn et al.

[DWD14]

Ebeid et al.

[Ebe 15;EFQ15]

Petrasch

[Pet17; Pet18]

Issarny et al.

[Geo 13; Bou
Harrand et al.

[Har 16]

Hufnagel et al.

[HFV13, HV15]
Broy and Schätz

[Ara 15; Bau 05;...]

Tekinderdogan et al.

[TÇK18]

Terić et al.

[Ter 18]

Pusztai et al.

[PTD19]

SysML

[ISO19514, OMG19]

SysML-vAT

[Fra14]

UML-RT

[Gro 99; Sel98]

SoaML

[OMG12]

UMP-PA

[Kat08; KV05a,

PLC4X

[Apa20]

5. Approach for Model-driven Development of Data

Collection Architectures

This Section describes the concepts for modeling and model-driven generation of data collection

architectures. First, an overview of the entire approach and its building blocks is given. Subse-

quently, a detailed description of each sub-concept is presented in the following subsections.

To address the research gap identified in the previous Chapter, the approach is constituted of four

sub-concepts, which address the different requirement categories from Chapter 3. These sub-con-

cepts are the generic architecture concept for interoperability and connectivity (1, Req-A), the

graphical modeling notation and the underlying metamodel that constitute the domain-specific

language (2, Req-M), the software framework to abstract the specific properties of different com-

munication technologies (3, Req-SF), and the model-driven generation of the data collection ar-

chitecture (4, Req-G). Figure 17 illustrates how the separate building blocks depend on each other.

Figure 17: Building blocks of the concept. Generic, technology-neutral architecture concept (left,1), the

domain-specific language for data collection architectures including the graphical notation

and the metamodel (top, 2), the software framework for different communication technologies

(bottom, 3), and the model-driven generation of the data collection architecture (right, 4).

The architecture concept (see Section 5.1) describes the overall, technology-neutral concept of the

data collection architecture for industrial automation. Therefore, it is designed with a focus on the

domain of industrial automation to ensure the fulfillment of the requirements Req-A category.

The domain-specific language (see Section 5.2) that addresses requirements from the Req-M cat-

egory includes a graphical modeling notation (concrete syntax) for the description of data collec-

tion architectures in industrial automation. It is based on an underlying metamodel (abstract syn-

tax) which describes the basic concepts and rules. Furthermore, it formalizes and structures the

modeled information.

Geneneric,

Technology-neutral

Architecture

Concept

Model-driven

Generation of Data

Collection

Architectures

Domain-specific

Language For Data

Collection Architectures

Graphical

Notation

Meta-

model

Software Framework

Tech

1

Tech

n

Standard Interface

Tech

2

1

2

3

4

58 5. Approach for Model-driven Development of Data Collection Architectures

A supplementary software framework (see Section 5.3) is conceptualized to support various com-

munication technologies for industrial data collection architectures. The specifics of the technol-

ogies are abstracted and unified by a standard communication interface. It is focused on the re-

quirements from category Req-SF.

As the last building block, the model-driven generation of the data collection architecture is in-

cluded (see Section 5.4). It uses formalized information from architecture descriptions that are

based on the DSL. Furthermore, it employs the functionality of the software framework to unify

and abstract the communication code for data collection and manipulation. The requirements from

the Req-A and Req-G category are particularly crucial for this sub-concept.

Figure 18 reflects the proposed integrated, model-driven workflow. Based on an existing CPSoS

(brownfield) or a conceptualized system (greenfield), a suitable data collection architecture is de-

signed by an interdisciplinary expert team. This team is made up of automation engineers, process

experts, IT architects, data analysts, and programmers. Following the guidelines of the architecture

concept, the architecture is described. For this purpose, the vocabulary, rules, and graphical ele-

ments of the DSL are used. After incremental refinement of the conceptualized data collection

architecture by the experts, a final architecture description is established. This description serves

as the basis for the model-based generation of the data collection architecture. In an M2T trans-

formation step, a preconfigured architecture is generated, which is based on code templates from

the software framework. The preconfigured architecture encompasses the configured communica-

tion part of the architecture and placeholders for custom code (OSI layer 7). This preconfigured

architecture is, in the next step, extended with custom code fragments to add the specific function-

alities of the architecture before it is deployed to the CPSoS.

Figure 18: Workflow for model-driven development of data collection system architectures.

Preconfigured
Architecture

CPSoS

Architecture

Concept

Domain-specific Language

P

L

C

U
ID

ARCH

ETH

UID

SW

UID

4x

S

S

MetamodelGraphical

Architecture Description

Interdisciplinary Expert Team

VocabularyGuidelines

P

L

C

G
W

TRANS

TRANS

DP1

ETH

ETH1

ADDRESS

8.8.8.8

DP

DP1

4x

S

1

DP

DP1

4x

S

2

DP

DP1

4x

S

S

S

SW

UID

UID

SW

UID

SW

UID

UID

Graphical

Model

Software Framework

Apache

Kafka

OPC

UA

MQTT

AMQP

...

Model-driven

Generation of

Communication

Architecture

M2T Transformation

T
e

m
p
la

te
s

Custom code

fragements for

functionality

D
e
p
lo

y
m

e
n
t

Incremental

Refinement

5. Approach for Model-driven Development of Data Collection Architectures 59

5.1. Technology-neutral Architecture Concept

The concept of the data collection architecture is based on previous work by the author and extends

the published concepts [TLV18; Tru⁺17; Tru⁺19b; Tru⁺19c].

Industrial automation systems are characterized by a multitude of heterogeneous systems situated

on different levels of the automation pyramid. The architecture needs to support the data collection

process from these distributed systems (Req-AATP). To minimize the impact of the data collection

process on the control of the system, parallel operation of the data collection architecture to the

existing automation pyramid is desirable (Req-APOP).

One of the major obstacles for the implementation of data analysis projects in industrial processes

is the significant effort for interfacing the multitude of heterogeneous systems [Bis⁺99; Pei19].

Existing legacy systems with proprietary interfaces further complicate the task. The results are

often ad-hoc implementations for specific data analysis projects that result in hard to maintain

meshed P2P communication networks. Modifications or updates concerning information models,

communication interfaces, and available communication protocols on one of the connected sys-

tems result in the need to update all related communication interfaces. The architecture concept

should, therefore, decrease the necessary implementation efforts for the initial deployment of a

data collection and analysis infrastructure (Req-ADep), as well as for redeployment or migration

scenarios (Req-AReDep).

As the implementation effort for data collection architectures is strongly related to the number of

necessary communication channels, the application of middleware concepts can be beneficial. The

middleware mediates between all connected systems and allows transparent data access (see Fig-

ure 19). The definition of a standardized interface for the connection of systems unifies the data

collection process. Legacy systems that are not compatible with the newly introduced standard

interface must be interfaced using data adapters. These data adapters translate between the legacy

systems and the standardized interface. Greenfield applications that are implemented following

the standard interface do not need any further mediating step. They are compatible with the mid-

dleware out-of-the-box. Figure 19 reflects the data collected from different levels of the automa-

tion pyramid, as well as a parallel operation not interfering with the existing infrastructure for

control. Legacy systems, especially the existing automation systems (e.g., legacy PLCs) residing

in the automation pyramid, are interfaced using data adapters. The middleware acts as a mediating

bus that allows transparent data access from all connected systems, called participants. The par-

ticipants that are connected to the architecture are systems that include hardware as well as soft-

ware functionalities.

60 5. Approach for Model-driven Development of Data Collection Architectures

Figure 19: High-level concept of the data collection architecture.

Therefore, for n participants N communication channels have to be implemented for transparent

data access in comparison to
𝑁⋅(𝑁−1)

2
 interfaces for a completely connected P2P mesh (see

Section 2.3.2). A comparison between the necessary communication channels for transparent data

access across all systems is depicted in Figure 20 as a function of the connected systems n. As can

be seen, the number of communication channels for the middleware approach is significantly de-

creased if more than three systems are connected.

Figure 20: Number of necessary communication channels for transparent data access as a function of the

number of connected systems n for a fully connected mesh (P2P) and a middleware network.

The middleware acts as a secondary communication channel following the NOA concept [Kle⁺17;

NE175]. It allows the vertical and horizontal integration of data from the automation pyramid:

systems on different levels of the hierarchy can be interfaced and their data made accessible; be-

sides, transparent data exchange is possible for participants on the same hierarchical layer.

D
a
ta

A

d
a

p
te

r
D

a
ta

A

d
a

p
te

r
D

a
ta

A

d
a

p
te

r
D

a
ta

A

d
a

p
te

r
D

a
ta

A

d
a

p
te

r

Middleware

MES

ERP

Legacy HMI

Data Analysis

Plant Simulation

 Sensors /

Actuators

PLC

SCADA

Standardized

Interface

Legacy

Interface

D
a
ta

A

d
a

p
te

r

5. Approach for Model-driven Development of Data Collection Architectures 61

The detailed middleware concept is depicted in Figure 21. Distinct functional layers are introduced

to increase the modularity of the concept, namely Data, Integration, Analysis, and Dashboard.

The architecture’s heart is the Data Management and Integration Broker in the Integration layer.

It acts as the middleware component of the architecture and mediates between the participants.

Figure 21: Detailed concept of the data collection architecture (adapted from [Tru⁺19c]).

Data is received by the broker and distributed to all participants, which are interested in this spe-

cific piece of data. The Data Management and Integration Broker features central rights manage-

ment (Access Control and Anonymization). Access rights to datasets are managed and controlled

by the middleware itself, ensuring that no sensitive information is leaked to non-authorized par-

ticipants. The anonymization component can anonymize data before it is distributed to clients. For

instance, data could be normalized, artificial noise could be introduced, or the sampling rate of the

data could be decreased. This lowers the information content of the data and prevents the leaking

Data Management and Integration Broker (Middleware)

Operator / Process Expert / Data Analyst

Access Control and AnonymizationSpec. 1 Spec. 2 Spec. n...

D
a

s
h
b
o
a
rd

A
n
a

ly
s
is

In
te

g
ra

ti
o
n

D
a

ta

Data Translator

E
x
te

rn
a

l

D
a
ta

A
d
a

p
te

r

Data Analyzer

A
n
a

ly
z
e
r

1

...

A
n
a

ly
ze

r
2

Legacy Data Access / Analysis

HMI

Wrapper

Legacy Data Access /

Analysis HMI

F
u

n
c.

 1

F
u

n
c.

 2

F
u

n
c.

 3

...

Data Access HMI

F
u

n
c.

 1

F
u

n
c.

 2 ...

F
u

n
c.

 3

Additional Metadata

ERP

MES

CAx

Maintenance Data

Plant / Machine Data A

Legacy Analyzer

Wrapper

Legacy Analyzer

A
n
a

ly
z
e
r

1

A
n
a

ly
ze

r
2

...

Data Wrapper

Plant / Machine Data B

Data Mediator

Legacy Communication

Standard Communication

Participant

Data Adapter

Legacy Participant

Legend

Middleware

IIIIII

62 5. Approach for Model-driven Development of Data Collection Architectures

of sensitive information. Centralizing these functionalities on the Integration layer minimizes re-

dundancies in the architecture as the participants can rely on the middleware. Furthermore, as data

processing by the participants is out of the limits of the central Integration layer, it could be com-

promised and hence not trustworthy. The trust in the system can be increased by keeping this

functionality at a central instance. An External Data Adapter allows the connection of multiple

instances of the broker for a separation of concerns, for instance, across different production sites

or even companies (inter-enterprise data exchange).

The Data layer includes systems that function as data sources and may receive processed infor-

mation. Participants that are part of the automation pyramid always reside in the Data layer.

The third layer, the Analysis layer, includes systems that provide advanced functionalities executed

on the data. Typically, any data analysis, simulation, and optimization belong to this layer.

The last layer is the Dashboard layer, which is used to communicate with humans. Operators,

experts, or data analysts can visualize data from the Data layer and results from the Analysis layer.

All participants communicate over the central Data Management and Integration Broker without

direct P2P connections (see solid lines in Figure 21). Therefore, a standard interface is used that

allows all participants to communicate in a unified way. The standardized interface defines how

data can be accessed and forwarded. The principles of the standardized interface and data adapters

are illustrated in Figure 22.

The standardized interface provides the necessary functionalities for communication with other

systems and can be realized with different technologies (Req-ATAC). Existing connections between

legacy systems can be left in place if access to the transported data is not necessary for other

systems outside the legacy connection (the dotted connection between Legacy Analyzer and Leg-

acy Data Access / Analysis HMI in Figure 21). Keeping these existing connections helps to mini-

mize the development effort, as existing connections can be retained.

While newly developed participants can make direct use of the standardized interface and imple-

ment it for communication (see Figure 22 (left), I), existing legacy participants are interfaced using

data adapters that translate the protocol (syntax, OSI layers 4 to 7) and understanding (semantic,

information model) between legacy and standard representation. Different concepts for data adapt-

ers exist, depending on the location where the translating logic (Translator) is executed. These

are, from left to right in Figure 22:

5. Approach for Model-driven Development of Data Collection Architectures 63

Figure 22: Principle of the technology-neutral, standardized interface to integrate greenfield and brown-

field participants. Greenfield participants (left, I) need no adapter. Legacy participants need

adapters: independent data mediator (second from left, II), integrated data wrapper (third

from left, III), and data translator in Data Management and Integration Broker (right, IV).

• II: data mediators that constitute independent systems. These systems receive the legacy

data over an interface that is provided by the legacy component. The Translator subsystem

translates syntax and semantic between the incompatible legacy and standard representa-

tions. Communication with the broker uses the standard communication library;

• III: data wrappers that form integrated systems with the legacy systems they wrap. From

the outside, only the standard interface-compliant wrapper is visible to the architecture.

The legacy system is entirely wrapped inside the wrapper. Translation and communication

with the middleware follow the same principle as in the data mediators. Communication

between Translator and the legacy system’s System Logic can either be handled through

the legacy communication library (III, a) or direct access (III, b);

• IV: data translators on the broker-level as an integral part of the Data Management and

Integration Broker. For this kind of data adapter, the middleware must also provide the

legacy interface for communication.

Throughout this thesis, all three kinds of adapter concepts are summarized under the term data

adapter. The distinct concepts have their strengths and weaknesses. Depending on the specific use-

case, one may choose a suitable data adapter concept. As the retrofitting of existing legacy systems

IV

Data Wrapper

Data Management and Integration Broker

Legacy Participant

Legacy

Communication Library

Legacy

Interface

System Logic

Legacy

Communication

Data Mediator

Communication Library

Middleware

Communication

Translator

Participant

Communication Library

Standard

Interface

System Logic

Middleware

Communication

Legacy Participant

Legacy

Communication Library

System Logic

Legacy

Interface

Legacy

Communication

Communication Library

Middleware

Communication

Translator

Legacy Participant

Legacy

Communication Library

Legacy

Interface

System Logic

Legacy

Communication

TranslatorData Distribution

Middleware

Communication

III

I b

a

II

64 5. Approach for Model-driven Development of Data Collection Architectures

with data adapters is a very time-consuming task, a step-wise deployment and refinement of the

architecture are proposed. The initial deployment should focus on systems that heavily depend on

each other to benefit from the decreased number of interfaces. Over time, more and more systems

can be migrated in small, manageable steps. This step-wise approach minimizes the effort for

initial deployment at the tradeoff of incomplete data access. [Bis⁺99; Cal⁺17]

While Figures 19 to 22 all illustrate a central Data Management and Integration Broker, they only

refer to the function of the component, not its physical location. The broker can be implemented

using different sets of technologies, centralized or distributed. The presented concept can be

adapted and implemented for a wide variety of use-cases (Req-ATAC) regardless of actual middle-

ware technology and communication protocol used (see Section 2.3.2), the mix of programming

languages for implementation, or the actual realization of the adapters. The architecture concept

serves as a basis for practical implementations and their description using the DSL.

5.2. Domain-specific Language for Data Collection Architectures

The DSL for data collection architectures developed in this thesis, as the definition of the term

modeling language requires [Rod15], consists of a metamodel (abstract syntax) and a graphical

notation (concrete syntax). Both are introduced in the following two subsections. Experts can

model information using the graphical modeling notation (Req-MGraph). The modeled information

is then structured as instances of the metamodel, which can be used for the subsequent model-

driven generation of the data collection architecture. Class and interface names that are part of the

metamodel are highlighted in italic in the text.

Throughout the following parts of this Chapter, a simple application example indicated by grey

boxes and the caption “AE.Part” will be used to introduce the application of the DSL. After each

explanation of a subpart, the presented concepts are applied to the application example to reflect

their specific usage. However, due to the simplicity of the example, not every introduced concept

can be found, or the depth of modeling is limited. The introduction of the example can be found

in AE.Part 1. A list of all references to the application example can be found in Chapter 13.

5. Approach for Model-driven Development of Data Collection Architectures 65

AE.Part 1: Introduction of the physical application example.

The application example contains a conveyor belt driven by a servo drive. Light barriers are

located on both ends of the conveyor belt and can detect workpieces entering or exiting the

conveyor belt. A level sensor is located over the center of the belt and measures the filling level

of water inside the workpieces. See AE.Figure I for a schematic drawing:

AE.Figure I: Schematic drawing of the physical setup.

The conveyor belt is subject to constant wear, which leads to unexpected downtimes. A new

monitoring application is to be set up to monitor the condition of the belt. The monitoring is

based on an anomaly detection algorithm that indicates the probability of an abnormal situation

as a so-called anomaly score. A dashboard is to be installed that displays the calculated anomaly

score to the operating personnel. Therefore, a PC executing the analysis function is added to the

system. This PC is connected to the PLC of the conveyor belt via Ethernet.

The belt is controlled by a central Beckhoff CX2040 PLC that executes the control logic. Inside

this PLC program, the set speed (variable SpeedSet) of the conveyor belt is calculated. A four-

channel digital input terminal is directly attached to the PLC and connected to the two light

barrier sensors (channel 1 is connected to LightBarrier1 sensor on the left of the belt and chan-

nel 2 to LightBarrier2 sensor on the right of the belt, the other two channels are not connected).

Additional signals are interfaced over an EtherCAT bus connected to the PLC. The first bus

coupler in the bus has a two-channel analog input terminal attached, which is connected on

channel 1 to the level sensor (WaterLevel). The bus is finally terminated in the servo drive that

is directly connected to the EtherCAT bus. The servo drive includes internal control logic and

provides signals for the actual speed of the drive (SpeedActual) as well as the measured torque

(TorqueActual). A schematic view of the network, the connected devices, as well as the sensor

and actuator signals, are depicted in AE.Figure II:

AE.Figure II: Schematic drawing of the hardware components and input/outputs.

Light Barrier 1 Light Barrier 2

Servo Drive

Level Sensor

Beckhoff

CX2040

SpeedSet

4x Digital Input

Channel1: LightBarrier1

Channel2: LightBarrier2

Data

Analysis +

Dashboard

2x Analog Input

Channel1: WaterLevel

EtherCAT

Bus Coupler

EtherCAT

Servo Drive

SpeedActual

TorqueActual

EtherCAT

EtherCAT

Ethernet

66 5. Approach for Model-driven Development of Data Collection Architectures

5.2.1. Communication Architecture Metamodel

The metamodel describes basic concepts of data collection architectures in the domain of industrial

automation (abstract syntax). It structures the modeled information and makes it accessible for a

subsequent model-driven generation of the data collection architecture. An overview of the base

elements of the metamodel is given in Figure 23. These base elements and the associated classes

are separately explained in the following. The base element of the metamodel is a concrete Archi-

tecture that is described by an ArchitectureDescription (compare ISO 42010 [ISO42010]). This

ArchitectureDescription comprises a ConfigurationContainer, which in turn includes the modeled

SystemConfiguration of the described architecture. The configuration of the system is divided into

distinct categories:

• SoftwareContainer which describes the software functionalities that are part of the system

and the flow of data/information between them;

• PhysicalContainer which describes the hardware components of the system;

• RelationContainer which maps software functionalities, networks connections, and data

elements from the SoftwareContainer to hardware elements in the PhysicalContainer; and

• AnnotationContainer which includes and structures properties, requirements, and addi-

tional annotations.

The introduction of these sub-containers facilitates a strong separation of concerns when modeling

and annotating complex, and intercorrelated systems constituted of hard- and software. A reduced

version of the metamodel’s general structure was published by the author as part of the

DSL4hDNCS [Vog⁺20].

Figure 23: Overview of the general structure of the metamodel.

SystemConfiguration

1

ConfigurationContainer

ArchitectureDescription

PhysicalContainer

1

AnnotationContainer

1

RelationContainer

1

SoftwareContainer

1

0..*

1

1
1

Architecture

1
1

5. Approach for Model-driven Development of Data Collection Architectures 67

SoftwareContainer

Software functionalities are an essential part of data collection architectures. They describe the

logic that generates, manages, modifies, processes, and transmits the collected data. The execution

of a software functionality always requires a hardware processing unit associated with it (see Sub-

sections PhysicalContainer and RelationContainer). Software functionalities in connected systems

communicate with each other and exchange data and information. This data exchange between

software functionalities can either be local between software functionalities on the same physical

system or via a network. The structure and interaction of software functionalities are formalized

and described in the SoftwareContainer, which is depicted in Figure 24. The SoftwareContainer

bridges the system viewpoint (Req-MSys), and the data flow viewpoint (Req-MDF).

All configuration elements that are aggregated by the SoftwareContainer derive from the base

interface ISoftwareConfigurationElement. The metamodel differentiates between a platform-inde-

pendent configuration (IPlatformIndependentElement) and a platform-specific configuration

(IPlatformSpecificElement) (compare OMG MDA [OMG14]). While the platform-independent

branch describes the abstract roles of software functionalities, data flows between them, and the

exchanged data, the platform-specific branch describes the concrete technologies and configura-

tions. This separation allows the definition of the software part of the architecture on two levels

and increases the reusability of the information in the platform-independent branch. Furthermore,

it reflects the workflow during the engineering of software systems with abstract descriptions in

the beginning and their mapping to technologies during the workflow.

Every connected software system is a so-called SoftwareFunctionality and can process and com-

municate data. SoftwareFunctionalities include custom code for actions carried out on data (Ap-

plicationSpecificLogic),e.g., data manipulations and calculations, and communication services

(IService) for communication with other SoftwareFunctionalities. A service can either produce

(IProducer), consume (IConsumer), or consume and produce data (IConsumerProducer, derived

from IProducer and IConsumer) [OMG12]. Producers and consumers are connected over a Data-

Flow that describes data exchange between two SoftwareFunctionalities. As SoftwareFunctional-

ities can aggregate multiple services, complex interactions are possible; for instance, consumption

of several data flows and offering of the processed data over two different DataFlows. This kind

of complex interactions is often found in industrial automation, for instance, SCADA system that

aggregate data from various PLCs and forward part of the data to a dashboard while another part

of the data is provided for a superordinate MES system.

68 5. Approach for Model-driven Development of Data Collection Architectures

Figure 24: Detail of the metamodel’s SoftwareContainer for the description of the software. Platform-

independent part (left) and platform-specific part (right) allow the description at distinct lev-

els of abstraction.

As introduced in Req-MDF, the flows and manipulations of data are highly relevant in industrial

data analysis. Thus, the metamodel needs to encompass elements to describe these aspects, and

the concrete classes Source, SinkSource, DataTransducer, and Sink are introduced. These describe

the roles of SoftwareFunctionalities related to the flow and manipulation of data (see Table 6).

Table 6: Types of data manipulation considered in the metamodel.

Class Derived from Description

Source IProducer
Origin of a DataFlow. Sources cannot consume any data but, instead,

provide data to other SoftwareFunctionalities.

SinkSource
IProducer and

IConsumer

SinkSources consume and produce data at the same time. Data that

flows in can be processed or altered but is not automatically available

on the producing side of the SoftwareFunctionality. In other words,

inflowing DataFlows are terminated by a SinkSource, and only ex-

plicitly defined data is offered to other SoftwareFunctionalities.

DataTransducer
IProducer and

IConsumer

DataTransducers consume and produce data at the same time. Data

that flows in can be processed and is transparently and unaltered

available on the producing side of the SoftwareFunctionality. Addi-

tionally, calculated or measured data can be made available as well.

Sink IConsumer
The end of a DataFlow. Sinks only consume data but cannot produce

or forward any data.

<<Interface>>

IProducer
<<Interface>>

IConsumer

<<Interface>>

IConsumerProducer

DataElement

SoftwareContainer

<<Interface>>

ISoftwareConfigurationElement

<<Interface>>

IProduceService
<<Interface>>

IConsumeService

DataTransportRelation

DataFlow

<<Interface>>

IPlatformSpecificElement
<<Interface>>

IPlatformIndependentElement

SoftwareFunctionality SoftwarePackage

<<Interface>>

IService
ApplicationSpecificLogic <<Interface>>

IConnectionService
ApplicationSpecificImplementation

SinkSource DataTransducerSource Sink

5. Approach for Model-driven Development of Data Collection Architectures 69

AE.Part 2 demonstrates the modeling of the software functionalities and the data flows for the

application example.

AE.Part 2: Modeling SoftwareFunctionalities and DataFlow.

The application example contains different software functionalities and data flows that should

be described and formalized using the metamodel. Therefore, the classes of the metamodel are

instantiated as concrete objects representing the information to be modeled. Every software

component of the system can be modeled as a SoftwareFunctionality (see Figure 24), which is

composed of the internal programming logic of the functionality (ApplicationSpecificLogic) and

a description of the function inside the data flow (IService). AE.Figure III reflects the mapping

of the SoftwareFunctionalties to the respective hardware systems, as well as the definition and

role of IService instances.

AE.Figure III: Mapping of the SoftwareFunctionalities to the components and IServices.

Starting from the field level, the internal control logic of the servo drive is instantiated as an

instance of SoftwareFunctionality with the name Servo1_Internal. This software functionality

aggregates the internal logic of the servo drive (Internal_Logic) and the communication part

(Internal_Service). From an analysis point of view, the servo drive only sends data (the actual

speed, SpeedActual, and torque, TorqueActual, values) but does not receive data. Hence, the

IService instance Internal_Service is of type Source.

This data is sent to the communication part (IService) of the SoftwareFunctionality running on

the PLC (PLC1_MC). Therefore, an instance of DataFlow (F1) is associated with both

IServices. The software component PLC1_MC needs to forward the data from the servo drive

and add the other signals from the bus (WaterLevel, LightBarrier1, and LightBarrier2) as well

as the internal variable from the PLC logic (SpeedSet). As data is flowing into and out of the

software functionality, its IService must be of type IConsumerProducer. Moreover, the original

data from the servo drive is entirely forwarded, which specifies the IService as a DataTrans-

ducer.

PLC1_MC

Analysis_CM

EtherCAT
EtherCAT

Ethernet

Internal_Service :
Source

Internal_Service :
DataTransducer

CM_Service :
SinkSource

HMI_Service :
Sink

Servo1_Internal

Analysis_HMI

70 5. Approach for Model-driven Development of Data Collection Architectures

In contrast, the analysis function for condition monitoring (Analysis_CM) inside the connected

computer should consume the raw data from the PLC but not forward it any longer to the dash-

board. Instead, only the calculated anomaly score is sent. Consequently, while the IService of

the analysis software is still an IConsumerProducer, the concrete realization is a SinkSource

that does not forward the original data any longer.

Finally, the anomaly score must be received by the dashboard software functionality (Analy-

sis_HMI). The ApplicationSpecificLogic of the functionality (HMI_Logic) has to display the

data to the user, while the communication part (HMI_Service) is a Sink for the data flow as no

data is sent from here.

AE.Figure IV reflects the modeled instance. It captures the SoftwareFunctionalities and the

DataFlows as part of the SoftwareContainer (not shown in the Figure).

AE.Figure IV: Example of SoftwareFunctionality and DataFlow modeling.

Across the connected systems, several types of data need to be processed and communicated by a

SoftwareFunctionality. The abstract class DataElement describes these (see Figure 25). DataEle-

ments are differentiated by their type of information (PrimitiveDataElement or ComplexDataEle-

ment):

• HardwareDataElement, derived from PrimitiveDataElement, describes measured values

that can be referred to as a measured hardware signal from a sensor or actuator (see Sub-

sections HardwareContainer and RelationContainer). Examples are digital values from

light barriers;

F1 : DataFlow

F2 : DataFlow

F3 : DataFlowAnalysis_CM : SoftwareFunctionality

Analysis_HMI : SoftwareFunctionality

PLC1_MC : SoftwareFunctionality

Servo1_Internal : SoftwareFunctionality

HMI_Service : SinkHMI_Logic : ApplicationSpecificLogic

CM_Service : SinkSourceCM_Logic : ApplicationSpecificLogic

MC_Logic : ApplicationSpecificLogic

Internal_Service : SourceInternal_Logic : ApplicationSpecificLogic

MC_Service : DataTransducer

5. Approach for Model-driven Development of Data Collection Architectures 71

• SoftwareDataElement, derived from PrimitiveDataElement and DerivedDataElement,

represents data that is calculated by a software functionality (pure software information).

It may be based on other DataElements (e.g., Hardware) but does not correspond to the

measured variable directly: instead, it can refer to original DataElements over the refer-

ence inherited by DerivedDataElement. Typical examples are values calculated in a PLC

based on sensor values (HardwareDataElement) such as temperatures that are measured

over resistance or operating modes;

• ModelDataElement, derived from ComplexDataElement and DerivedDataElement, de-

scribes complex trained or parametrized models for analysis and computation. The inher-

itance from DerivedDataElement allows to refer DataElements that were used to train the

model; and

• CompositeDataElement, derived from ComplexDataElement, describes tuples of other

DataElements, for instance, multi-dimensional data or structures.

Figure 25: Detail of the metamodel for the description of DataElements.

DataElements and their way through the system need to be traced. Therefore, DataElements are

aggregated by their original producers and referenced by the DataFlows that transport the specific

DataElement (cf. Figure 24). As data is used to calculate and derive other data or information from

it, the abstract class DerivedDataElement reflects this direct dependency of calculated data inside

the architecture through a reference back to the original DataElements. Only SoftwareDataEle-

ments and ModelDataElements can include this reference (inheritance from DerivedDataEle-

ment). Therefore HardwareDataElements must always reflect raw and unaltered data from the

field level. DataElements can change their name throughout their way through the systems. There-

fore, the DataTransportRelation relates the unique DataElements to the transported DataElements

and their system-specific names. AE.Part 3 gives a usage example of DataElements for modeling.

DataElement

ComplexDataElement

PrimitiveDataElement

ModelDataElement

SoftwareDataElement

HardwareDataElement

DerivedDataElement CompositeDataElement

72 5. Approach for Model-driven Development of Data Collection Architectures

AE.Part 3: Modeling of DataElements.

In addition to the software functionalities, the data elements should be modeled as part of the

SoftwareContainer. DataElements are aggregated by the respective IServices where they are

first transmitted. As an example, the model of DataElements of the servo drive and the PLC is

given in AE.Figure V. The sensor values LightBarrier1, LightBarrier2, and WaterLevel are of

type HardwareDataElement as they are directly measured. In contrast, the SpeedSet variable is

a SoftwareDataElement as it reflects an internal variable from the PLC logic without a direct

correspondence to an output. The same applies to the servo drive’s variables, which reflect in-

formation calculated from other data inside the servo drive control logic. The mapping of the

DataElements to the respective DataFlows F1 to F3 from AE.Part 2 will be shown as part of

the RelationContainer in AE.Part 6.

AE.Figure V: Example of DataElement modeling.

The platform-specific part of the SoftwareContainer (cf. Figure 24) describes and adds the con-

crete technologies and roles for a realization of the configuration. The elements IProduceService

and IConsumeServices, derived from IConnectionService, refer to their abstract representations in

the platform-interdependent part and enhance the modeled level of detail. The same applies to

ServiceDataFlow, which details a DataFlow and connects the IProduceServices and ICon-

sumeServices. ApplicationSpecificImplementation corresponds to the concrete realization of the

logic defined in ApplicationSpecificLogic. IConnectionServices and the UserImplementation form

so-called SoftwarePackages, the platform-specific counterpart to SoftwareFunctionalities.

In conjunction with the RelationContainer, the SoftwareContainer aims at addressing the data

flow viewpoint of the modeling language (Req-MDF).

LightBarrier2_DE : HardwareDataElement

SpeedSet : SoftwareDataElement

WaterLevel_DE : HardwareDataElement

SpeedActual : SoftwareDataElement

TorqueActual : SoftwareDataElement

MC_Service : DataTransducer

Internal_Service : Source

LightBarrier1_DE : HardwareDataElement

PLC1_MC
Internal_Service :
DataTransducer

SpeedSet

4x Digital Input @ CX2040

Channel1: LightBarrier1

Channel2: LightBarrier2

2x Analog Input @ Bus coupler

Channel1: WaterLevel

Internal_Service :
Source

Servo1_Internal

SpeedActual

TorqueActual

5. Approach for Model-driven Development of Data Collection Architectures 73

Physical Container

The PhysicalContainer of the metamodel collects the descriptions of the hardware and network

elements of the system architecture. In conjunction with the software functionalities mentioned

above and a mapping between the two containers (see Subsection RelationContainer), it addresses

the system viewpoint (Req-MSys). The PhysicalContainer was published by the author as part of

the DSL4hDNCS [Vog⁺20].

Figure 26 reflects the elements of the PhysicalContainer with the base elements IPhysicalConfig-

urationElement, IHardwareCapability, and IHardwareComponent, which are characterized in the

following:

• IHardwareCapability addresses the capabilities that specific hardware elements offer,

such as converting electrical signals to data (IConvertable), being connectable to a net-

work (IConnectable), and allowing the execution of higher software functionalities with

application-specific code (IProcessable). Basic signal conversion and networking logic

does not require an IProcessable (e.g., bus couplers with internal firmware, but no possi-

bility of execution of custom logic);

• IHardwareComponent describes the elementary building blocks of hardware systems, in

this case, CPUs, NetworkInterfaces, and IOTerminals; and

• IPhysicalConfigurationElement groups the separate hardware elements to physical sys-

tems. Furthermore, it defines the rules of their compositions. This includes (bus-)Cou-

plers, PLCs, Computers, and Clouds, which are constituted of the elementary hardware

components.

NetworkInterfaces aggregate elements of type INetworkConfiguration (not shown in Figure 26),

which describe the actual configuration of an interface, including types of networks (e.g., Profibus,

EtherCAT, or Ethernet) and the role in the network (master, slave, and regular participant).

IOTerminals aggregate IOSignals (in- and outputs, I/Os) from the field level. These signals are

differentiated by their type of signal, namely digital information (IOSignalDigital) or analog in-

formation (IOSignalAnalogue). Additionally, sensors that serve as inputs (IOTypeSensor) are dis-

tinguished from the outputs of a control system, the actuators (IOTypeActuator). The particular

types of IOSignals derive from these abstract superclasses, for instance, a DigitalSensor as an

IOSignalDigital and IOTypeSensor. AE.Part 4 reflects the usage of the introduced elements to

model the physical structure of the application example. The IOSignals can be mapped to Hard-

wareDataElement as part of the RelationContainer (cf. Section RelationContainer).

74 5. Approach for Model-driven Development of Data Collection Architectures

Figure 26: Detail of the metamodel’s PhysicalContainer for a description of the system. Physical systems

(left) are composed of distinct components (right). IOTerminals may encompass signals (bot-

tom).

AE.Part 4: Modeling the physical configuration of the system (PhysicalContainer).

The physical configuration of an architecture is modeled as part of the PhysicalContainer. This

container aggregates the separate hardware systems that form the architecture. For the applica-

tion example, these are the servo drive with its internal logic, the EtherCAT bus coupler, the

PLC, and the PC that hosts the analysis and dashboard functionalities. Each of these systems

belongs to a specific category of IPhysicalConfigurationElement and is constituted of one or

several IHardwareComponents (see AE.Figure VI).

For instance, the analysis computer (named Analysis in this example) is a PC and aggregates a

NetworkInterface (Analysis_ETH1) for network connectivity and a central processing unit

(CPU) for the execution of SoftwareFunctionalities. The Beckhoff CX2040 PLC is composed

of a CPU for the execution of the control program, two NetworkInterfaces, and an IOTerminal.

While the first NetworkInterface is connected to the local Ethernet, the second NetworkInterface

is the bus master interface of the EtherCAT bus of the conveyor. The IOTerminal corresponds

to the four-channel digital input terminal directly attached to the PLC. It aggregates the two

connected light barriers, which are both DigitalSensors (base type IOSignal).

In contrast to the PLC, the bus coupler BC1 of type Coupler lacks an own CPU and is therefore

not able to execute any SoftwareFunctionality. It can be regarded as a passive component. Its

data has to be read from another active system with a CPU. Still, it contains an IOTerminal with

the analog WaterLevel sensor attached and a NetworkInterface for EtherCAT connectivity.

Servo1, which is directly connected to the EtherCAT network, is represented as a PLC with a

NetworkInterface and a CPU for the execution of the internal control logic.

The model instance to describe the physical system is shown in AE.Figure VI. The mapping of

IOSignals to the DataElements is shown as part of the RelationContainer in AE.Part 6.

PhysicalContainer

<<Interface>>

IPhysicalConfigurationElement

Coupler PLC Computer Cloud

<<Interface>>

IHardwareCapability

<<Interface>>

IConvertable
<<Interface>>

IConnectable
<<Interface>>

IProcessable

IOTerminal NetworkInterface CPU

IOSignal

IOSignalAnalogue

IOSignalDigital

DigitalSensor

AnalogueSensor

DigitalActuator

AnalogueActuator

IOType

IOTypeSensor

IOTypeActuator

<<Interface>>

IHardwareComponent

5. Approach for Model-driven Development of Data Collection Architectures 75

AE.Figure VI: Example of modeling the physical configuration.

AnnotationContainer

The AnnotationContainer holds information on annotations of the model elements with particular

properties and requirements (Req-MPropReq). The general structure of the AnnotationContainer was

published by the author as part of the DSL4hDNCS [Vog⁺20] but in contrast to this thesis, includ-

ing annotations for safety-related properties and requirements. Annotations can be assigned to

distinct elements of the metamodel. The structure inside the AnnotationContainer is depicted in

Figure 27. Annotations are grouped into so-called AnnotationGroups, which can describe several

aspects of another element. Annotations can have the types (AnnotationType)

• Requirement to describe requirements a distinct system must fulfill; and

• Property that describes the actual value inside a deployed or simulated architecture.

Figure 27: Detail of the metamodel’s AnnotationContainer for description and categorization of annota-

tions.

Servo1: PLC

Servo1_ECAT1 : NetworkInterface Servo1_CPU1 : CPU

BC1 : Coupler

BC1_ECAT1 : NetworkInterfaceBC1_IO1 : IOTerminal

WaterLevel : AnalogueSensor

PLC1 : PLC

PLC1_ECAT1 : NetworkInterfacePLC1_ETH1 : NetworkInterfacePLC1_IO1 : IOTerminal PLC1_CPU1 : CPU

LightBarrier1 : DigitalSensor

LightBarrier2 : DigitalSensor

Analysis : PC

Analysis_ETH1 : NetworkInterface Analysis_CPU1 : CPU
Ethernet

EtherCAT

EtherCAT

AnnotationContainer

AnnotationGroup

Annotation

<<Enumeration>>

AnnotationType

Requirement
Property

ArchitectureAnnotation DataAnnotation TimeAnnotation

76 5. Approach for Model-driven Development of Data Collection Architectures

After deployment, Requirements and Properties can be compared to judge on the fulfillment of

formulated requirements. Alternatively, if simulation models are available, feasible deployment

scenarios can be simulated and assessed for requirement fulfillment. Annotations can be grouped

into distinct categories. Following the original approach by Vogel-Heuser et al. [Vog⁺11], the fol-

lowing categories are used:

• architecture: annotations related to software or hardware systems;

• data: annotations related to the data that is communicated between participants; and

• time: annotations related to the time-behavior of systems. Directly based on the original

approach [Vog⁺11], but extended by additional possible annotations.

A list of annotations included in the metamodel and the mappings to the respective categories are

given in Table 7. Users may declare additional annotations and add them to the metamodel if

needed for a use-case.

Table 7: List of annotations contained in the metamodel. Categorization (A) Architecture, (D) Data,

(T) Time.

Type Name Description

A ADDRESS
Address of a system. For instance, the IP address of an Ethernet interface or

the Profibus station address of a bus coupler.

A FLOW_TYPE
Specification on the type of a specific software functionality, e.g., stream,

batch, or hybrid analysis/database.

A HW_MANUF Manufacturer specification of a hardware component, e.g., Siemens.

A HW_TYPE Type specification of a hardware component, e.g., S7-1513-1 PN.

A HW_VER Version specification of a hardware component.

A N_SAMPLES The ability of a system to buffer or store 𝑛 samples.

A REDUNDANCY
Information on redundancy/duplication of systems in order to improve relia-

bility.

A SCALABILITY
Represents the number of similar configurations connected to the same net-

work, while only giving one example.

A SW_NAME Product name of a specific software representing a SoftwareFunctionality.

A SW_PROVIDER Provider of a specific software representing a SoftwareFunctionality.

A SW_VER Product version of a specific software representing a SoftwareFunctionality.

A VLAN
VLAN identifier giving the VLAN (Virtual Local Area Network, IEEE

802.1Q [IEEE802]) an Ethernet network interface belongs to.

D AUTH
The authentication mechanism for establishing communication or data trans-

fer, e.g., password-based or certificate-based.

D ENCRYPT
The encryption used for securing a data transfer, e.g., AES (Advanced Encryp-

tion Standard).

5. Approach for Model-driven Development of Data Collection Architectures 77

Type Name Description

D PORT
Port used for communication as a combination of transport protocol and port,

for instance, TCP:1883 as the standard port for MQTT.

D PREPROCESS
Distributed preprocessing actions on involved systems, e.g., averaging or

resampling.

D PRIVACY
Privacy level of the transmitted data. This includes, for instance, normaliza-

tion, resampling, or the introduction of arbitrary noise.

D PROTOCOL The underlying communication protocol used for communication.

D SEMANTIC Description of the underlying data semantic during transmission.

T CYCLETIME
Cycle time of a system. Often used for Machine Control (MC) functionalities

for cyclic execution of the control code.

T JITTER Information on jitter 𝜎𝐽
2 for data transmission from source to destination.

T LATENCY
Latency 𝑡𝐿 description for data transmission from source to destination or data

processing inside a system.

T PROCESS
Time for processing 𝑡𝑃𝑟𝑜𝑐 inside a system, for instance, analysis or translation

of semantics.

T SAMPLE_RATE Sample rate 𝑓𝑆 of a component to scan data.

T SAMPLE_TIME Sample time 𝑡𝑆 of a component to scan data.

The mapping between annotations and other model elements is realized using mappers and inher-

itance of the mappers to the respective model elements. The mapper concept allows easy extension

of additional dependencies and decreases the number of individual relations in the metamodel. An

excerpt from the association logic is illustrated in Figure 28 for the Annotations VLAN, Address,

FlowType, Jitter, and Latency. For instance, Jitter is the only Annotation that can refer to Annota-

tions, in this case, other TimeAnnotations. The reason is that all other TimeAnnotations (e.g., Cy-

cletime or Latency) can carry jitter information with them.

Figure 28: Excerpt of the metamodel for annotations.

An example of the usage of the annotations from Figure 28 is depicted in AE.Part 5.

ArchitectureAnnotation

DataAnnotation

TimeAnnotation

VLAN

Address

<<Interface>>

INetworkConfiguration

Latency

Jitter

FlowType

DataFlow

78 5. Approach for Model-driven Development of Data Collection Architectures

AE.Part 5: Modeling of Annotations (AnnotationContainer).

As an example, the introduced types of annotations are used for adding additional information

to the model (see the instance of the model in AE.Figure VII). For instance, the addresses of

network interfaces can be specified. For the example, the IP addresses of the analysis computer,

as well as the PLC, shall be specified as properties. Also, DataFlow F2 (between PLC and

analysis PC) has an associated latency requirement of 1500 ms, and its flow type is specified as

continuous.

AE.Figure VII: Example of Annotations modeling.

RelationContainer

The RelationContainer includes the description of the mapping between software information and

hardware platforms. It links the elements from the other containers and relates the modeled infor-

mation. For instance, it states which software is running on which hardware device and what tim-

ing requirements have to be fulfilled. Every element which is aggregated by the RelationContainer

is derived from the interface IRelationContainer (see Figure 29):

• NetworkRelation references NetworkInterfaces that are part of the same physical network

and can communicate directly;

• NetworkBindingRelation maps a DataFlow to a concrete NetworkInterface and therefore

describes the actual network that is used for communication;

• HardwareSoftwareRelation describes which processing unit (CPU) is associated with spe-

cific software (SoftwareFunctionality) and serves as an execution environment;

• IOSignalRelation which relates an IOSignal measured by an IOTerminal to its represen-

tation as a transferable data element (HardwareDataElement);

• DataFlow (shown in Figure 24) as a relation between IProducer and IConsumer; and

F2 : DataFlow F2_Jitter : Latency

F2_Type : FlowType

AnnotationType : AnnotationType = Requirement
Milliseconds : Double = 1500

AnnotationType : AnnotationType = Property
DataFlowType : DataFlowType = Continuous

PLC1_ETH1 : NetworkInterface PLC1_ETH1_Address : Address

AnnotationType : AnnotationType = Property
Address : String = "192.168.1.200"

Analysis_ETH1 : NetworkInterface Analysis_ETH1_Address : Address

AnnotationType : AnnotationType = Property
Address : String = "192.168.1.100"

5. Approach for Model-driven Development of Data Collection Architectures 79

• DataTransportRelation from Figure 24, which maps the unique DataElements to the re-

spective DataFlows.

Figure 29: Detail of the metamodel for mapping software (left) and system (right) description with IRe-

lationElements.

AE.Part 6 reflects the usage of IRelationElements to model relations between the elements of the

metamodel.

CPU

NetworkInterface

IOSignalHardwareDataElement

SoftwareFunctionality HardwareSoftwareRelation

NetworkBindingRelation

<<Interface>>

IRelationElement

RelationContainer

IOSignalDataRelation

NetworkRelation

IConnectionService

DataFlow<<Interface>>

IProducer

<<Interface>>

IConsumer
DataTransportRelation

DataElement

80 5. Approach for Model-driven Development of Data Collection Architectures

AE.Part 6: Modeling relations between the elements and containers.

This part of the application example captures samples of the usage of IRelationElements and

reflects the intended usage of these elements. However, full modeling of relations is beyond the

scope of this application example and too exhaustive.

Networks are described as NetworkRelations that connect the related NetworkInterfaces. As an

example (see AE.Figure VIII), the model of the Ethernet network (called ETH1_Local in this

example) connecting the NetworkInterfaces of the PLC (PLC1_ETH1) and the analysis com-

puter (Analysis_ETH1) is given below.

AE.Figure VIII: Example of modeling a network.

Via HardwareSoftwareRelations (see AE.Figure IX), the execution platform of a Software-

Functionality can be specified. As part of the example, the dashboard functionality (Analy-

sis_HMI) is hosted on the analysis computer, more specifically, its CPU (Analysis_CPU1):

AE.Figure IX: Example of mapping SoftwareFunctionalities to CPUs.

The metamodel differentiates between the digitized information from in-/outputs (Hard-

wareDataElement) and the sensor/actuators (IOSignal). Therefore, they need to be mapped to

their software representations using IOSignalRelations (see AE.Figure X). For instance, the

LightBarrier1 as a DigitalSensor is mapped to the corresponding HardwareDataElement

(LightBarrier1_DE):

AE.Figure X: Example of mapping HardwareDataElements to corresponding IOSignals.

Transport of a specific DataElement as part of a DataFlow is modeled with a DataTransport-

Relation (see AE.Figure XI). The corresponding DataFlows aggregate these. The example be-

low contains an excerpt, where the DataElements of Internal_Service are transported as part of

DataFlow F1. Additionally, F2 transports the same data and includes data from MC_Service.

AE.Figure XI: Example of associating DataElements to DataFlows.

Analysis_ETH1 : NetworkInterface

PLC1_ETH1 : NetworkInterface

ETH1_Local : NetworkRelation

Analysis_HMI : SoftwareFunctionality Analysis_CPU1 : CPUAnalysisMap : HardwareSoftwareRelation

LightBarrier1_SigRel : IOSignalDataRelation LightBarrier1 : DigitalSensorLightBarrier1_DE : HardwareDataElement

LightBarrier2Map : DataTransportRelationLightBarrier2_DE : HardwareDataElement

SpeedSetMap : DataTransportRelationSpeedSet : SoftwareDataElement

WaterLevelMap : DataTransportRelationWaterLevel_DE : HardwareDataElement

SpeedActualMap : DataTransportRelationSpeedActual : SoftwareDataElement

TorqueActualMap : DataTransportRelationTorqueActual : SoftwareDataElement

F2 : DataFlowMC_Service : DataTransducer

F1 : DataFlowInternal_Service : Source

LightBarrier1Map : DataTransportRelationLightBarrier1_DE : HardwareDataElement

5. Approach for Model-driven Development of Data Collection Architectures 81

5.2.2. Graphical Modeling Notation

This section describes the graphical notation that builds on top of the metamodel and visualizes

the modeled information. As stated by requirements Req-MSys and Req-MDF, it distinguishes be-

tween the viewpoints system and data flow. Annotations that describe properties and requirements

(Req-MPropReq) can be used in both viewpoints and will be introduced after a presentation of the

system and data flow viewpoints. Parts of this chapter have been published as [TWV20].

The system viewpoint is based on the graphical notation presented by Vogel-Heuser et al.

[Vog⁺11]. The original approach and its modeling capabilities are extended by

• software functionalities,

• additional types of signals,

• a unique labeling system for identification of systems and other elements, and

• supplementary symbols.

The unique labeling system is a necessity for mapping the additional viewpoints of the notation

and is therefore not part of the original approach. Throughout the following Section, the following

letters indicate the relation of graphical model elements and concept to the original source of Vo-

gel-Heuser et al. [Vog⁺11]:

• (I) included in the original source and used as is,

• (A) adapted and extended from the original source (modifications are mentioned).

If not mentioned differently, the graphical model elements are newly introduced as part of this

contribution.

Table 8 summarizes generic graphical symbols that are consistent over both viewpoints. It includes

the elements for the definition of DataElements and IOSignals, the graphical symbols used for the

indication of IOType and IOSignal, as well as the drawing frame, which limits the drawing area

of the graphical models.

82 5. Approach for Model-driven Development of Data Collection Architectures

Table 8: Generic notation elements for both viewpoints of the graphical modeling notation.

Symbol(s) Description

Signal or information element (DataElement and IOSignal) that is related to a sys-

tem or data flow. The left field indicates the type and form of data (see below); the

right side gives the UID of the variable or signal for identification across all sys-

tems. It reflects the available signals/information in a system or data flow. Map-

ping tables (see Table 13) give the mapping of the UID to the system-specific

naming of this signal/information.

(A) with a UID label.

S

Indicator for the type of related signal/information.

Shape indicates the form of information (IOSignal, (I)):

• circle analog signal, and

• square digital signal.

Tag indicates type of information (IOType and DataElement),

• S sensor (IOTypeSensor, HardwareDataElement, (I)),

• A actuator (IOTypeActuator, HardwareDataElement, (I)),

• V variable (calculated, SoftwareDataElement),

• C composite (CompositeDataElement), and

• M model (parameterized or trained, ModelDataElement).

Reference arrow (I) that connects the DataElements/IOSignals to the related

software (then a DataElement) and hardware (then an IOSignal) system.

Drawing frame of a drawing sheet, as well as name and number of the sheet. Dia-

grams can span multiple sheets. Every sheet needs a unique combination of Sheet-

Name and SheetNumber.

System Viewpoint

The system viewpoint includes graphical items for elements from the PhysicalContainer as well

as DataElements and SoftwareFunctionalities from the SoftwareContainer. Table 9 lists and de-

scribes these symbols. The convention for the system viewpoint is, if graphically possible, a hier-

archical layout with superordinate systems at the top of the drawing sheet and the field level at the

bottom. Network lines run horizontally from left to right with vertical connection lines to the as-

sociated NetworkInterfaces.

S UID

S A

A

V C M

SheetName.SheetNumber

5. Approach for Model-driven Development of Data Collection Architectures 83

Table 9: Notation elements for the system viewpoint of the graphical modeling notation.

Symbol(s) Description

A processing unit (left part of each symbol, IProcessable) and a unique identifier

(UID, (A)) of a system (right side, rotated). Processing units enable the execution of

software functionalities.

Differentiation of Computers (PC, left, (I)), cloud environments (Cloud, middle),

PLCs/industrial PCs (PLC, right, (I)). PLC enables the combination with field termi-

nals (IConvertable). If present, the first element of a system on the left.

Bus coupler unit (Coupler) visualized by UID label. It does not contain a processing

unit and can, therefore, not host any software functionality. The addition of a Net-

workInterface to the right of the element is mandatory. Field terminals can be con-

nected to the right of the bus coupler (IConvertable).

(A), as the original approach implicitly models bus couplers as network interfaces

without a processing unit.

Communication interfaces of a system with UID of the interface. Differentiation of

master interfaces for master/slave field buses (left) and slave/non-master

fieldbuses/networks (right). Label inside rhombus indicates the type of communica-

tion interface, for instance, ETH (Ethernet), ECAT (EtherCAT), DP (Profibus DP),

PA (Profibus PA), PN (Profinet), or CAN.

(A) UID labels.

Field terminals (IOTerminals, (I)) for in-/output of signals (IOSignals). The number

below specifies the number of I/O channels that can be connected via the terminal.

Field terminals follow a processing unit or a communication interface. Typically con-

nected with signal elements (IOSignal).

SoftwareFunctionality that is executed on a hardware system with UID of the specific

functionality. SoftwareFunctionalities can only be executed if the related hardware

system contains a processing unit (IProcessable). The first software functionality of

a system is connected to the hardware with two triangles (left, NetworkBindingRela-

tion and HardwareSoftwareRelation), additional functionalities are added on the right

side of existing functionality (right). A concrete SoftwareFunctionality replaces the

placeholder SOFTWAREFUNC (see Table 10 for a list of defined labels and their

associated description).

Network (bold, NetworkRelation) and connection lines to NetworkInterfaces (thin)

with identifying UID label on the network. Connected interfaces determine the type

of network.

(A) UID label.

Off-page connector for networks spanning multiple drawing sheets. The direction is

always outwards from the connected network. Networks spanning multiple sheets

need a consistent UID label on every sheet. Label SheetNumber gives the number of

the sheet, where the continuation of the network is found.

As mentioned in Table 9, SoftwareFunctionalities are graphically depicted by a special symbol

and an associated label. This label describes the function that is executed. Labels and their expla-

nations are summarized in Table 10. Finally, AE.Part 7 reflects the application of the graphical

elements from the system viewpoint to the application example.

P

C

U
ID

C
lo

u
d

U
ID

P

L

C

U
ID

U
ID

DP

UID

ETH

UID

8x

S

8x

A

S

8x

A

8x

SOFT

WARE

FUNC

UID

SOFT

WARE

FUNC

UID

UID

Sheet

Number

84 5. Approach for Model-driven Development of Data Collection Architectures

Table 10: Non-exhaustive list of possible software functionalities.

Functionality Description

AGGR
Transparent aggregation of data from various sources without changes in protocol, format,

and semantic.

DA
Data analysis functionality for extracting information and knowledge from data. May cal-

culate variables and models.

FORW
Software functionality to transparently forward data to another system without modifica-

tions in format and semantic.

LEG

Existing legacy software components with an internal logic that may generate, consume,

or manipulate data. Examples are MES and ERP systems, as well as other proprietary

systems. If a legacy component can be decomposed into other software functionalities,

these may be used instead of the LEG label.

MC
Machine control, typically a control application, running on a PLC or PC. May calculate

variables from measurement signals.

ROUT
Message routing functionality to enable communication between heterogeneous systems.

Typically, a middleware component.

STOR Storage functionality to buffer or store, as well as providing data, information, and models.

TRANS
Translation between different data protocols, formats, and semantics. Used to adapt in-

compatible and legacy systems.

VISU Visualization of data for users (human-machine interface, dashboards).

AE.Part 7: Graphical model in system viewpoint.

The system viewpoint follows the schematic view given in AE.Part 1 (see AE.Figure XII).

AE.Figure XII: Schematic drawing of the physical setup.

Starting from the field level, the servo drive (see lower right part ofAE.Figure XIII) is modeled

as a PLC with the name Servo1, one EtherCAT slave interface (name ECAT1), and a Software-

Functionality that reflects the internal control code (MC, name Internal). The two correspond-

ing internal variables (SoftwareDataElements) are associated with the MC SoftwareFunction-

ality where they are calculated.

This servo drive is connected to the EtherCAT field bus ECAT. The master interface of this bus

is part of the central Beckhoff PLC (name PLC1). The PLC furthermore has a second network

interface for Ethernet connectivity (ETH1), the four-channel digital input module with the two

light barriers connected, and the machine control SoftwareFunctionality (name MC) with the

software variable SpeedSet. The bus coupler BC1 is part of the ECAT EtherCAT field bus as

well and has a two-channel analog input signal connected with the WaterLevel sensor.

Beckhoff

CX2040

SpeedSet

4x Digital Input

Channel1: LightBarrier1

Channel2: LightBarrier2

Data

Analysis +

Dashboard

2x Analog Input

Channel1: WaterLevel

EtherCAT

Bus Coupler

EtherCAT

Servo Drive

SpeedActual

TorqueActual

EtherCAT

EtherCAT

Ethernet

5. Approach for Model-driven Development of Data Collection Architectures 85

As already mentioned, PLC1 is part of a second network (ETH_Local) that connects it to the

analysis PC (name Analysis). This computer hosts the two SoftwareFunctionalities for data

analysis (DA, name CM), where it calculates the AnomalyScore as a software variable, and the

dashboard (VISU, name HMI).

The graphical model is completed by a drawing frame and the unique ID of this drawing sheet

(ApplicationExample.System). Please refer back to AE.Parts 2, 3, and 4 for the corresponding

instances of the metamodel.

AE.Figure XIII: Example of the application example in the system viewpoint.

Data Flow Viewpoint

The data flow viewpoint is inspired by data flow diagrams (DFDs) introduced by DeMarco

[DeM79] in his specification of the structured analysis (SA) and also used by Hatley and Pirbhai

in their SA/RT for real-time systems [HP88]. The graphical notation adapts the method and ter-

minology of modeling data flow diagrams and extends it with additional symbols for the specific

application. The nodes of the DFD are mapped to SoftwareFunctionalities. Their shape can dis-

tinguish the influence on the DataFlow. Table 11 summarizes the notation elements for the data

flow viewpoint and describes their meanings. The concrete function of the SoftwareFunctionality

replaces the labels inside the elements (see Table 10). The convention for drawing data flow dia-

grams is a vertical flow from the bottom of a drawing sheet to the top. This layout reflects the

hierarchical flow of data from field levels systems to superordinate IT systems, as well as the

orientation of the system viewpoint.

ApplicationExample.System

B
C

1

ECAT

ECAT1

2x

S

ETH

ETH1

ECAT

ECAT1

S

4x

P

C

A
n
a
ly

s
is ETH

ETH1

P

L

C

P
L

C
1

ETH_Local

ECAT

MC

MC

DA

CM

ECAT

ECAT1

P

L

C

S
e
rv

o
1

MC

Internal

S LightBarrier2
S LightBarrier1 WaterLevelSV SpeedSet

V TorqueActual

V SpeedActual

VISU

HMI

V AnomalyScore

86 5. Approach for Model-driven Development of Data Collection Architectures

Table 11: Notation elements for the data flow viewpoint of the graphical modeling notation.

Symbol(s) Description

Component serves as the Source of a new DataFlow. A Source can receive no data, data is

only flowing out. The element refers to a concrete SoftwareFunctionality from the system

viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID is

IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Component serves as the end (Sink) of a DataFlow. No data can be forwarded from a Sink.

Data is only flowing in. The element refers to a concrete SoftwareFunctionality from the sys-

tem viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID

is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Component serves as a transparent DataTransducer. All data flowing into the transducer is

also available on the output side of the component but can be buffered by the software func-

tionality. Transducer blocks may also calculate additional DataElements, which have to be

specified individually. The element refers to a concrete SoftwareFunctionality from the sys-

tem viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for UID

is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Component serves as a non-transparent data SinkSource. Data that flows into the component

is not automatically available on the output side of the component. The DataElements that

should be available on the output side need to be specified explicitly. SinkSources may alter

or buffer data. SinkSource blocks may also calculate additional DataElements which have to

be specified individually. The element refers to a concrete SoftwareFunctionality from the

system viewpoint hosted on an IPhysicalConfigurationContainer. The naming scheme for

UID is IPhysicalConfigurationContainer.UID of SoftwareFunctionality.

Specification of a DataFlow from one component to another (IService) in the form of a con-

tinuous stream of data. Continuous streams are characterized by a cyclic exchange of often

small data packages. UID refers to a NetworkRelation if data flows over a network, or to an

IPhysicalConfigurationContainer if data flows between two SoftwareFunctionalities on the

same hardware system (inter-process communication, IPC).

Specification of a DataFlow from one component to another (IService) in the form of discrete

batches of data. Batches of data are often generated by buffering a continuous stream of data

in a database or buffer. Batched data often flows only sporadically and in large packages. UID

refers to a NetworkRelation if data flows over a network, or to an IPhysicalConfiguration-

Container if data flows between two SoftwareFunctionalities on the same hardware system.

Indicates that the DataFlow is distributed over multiple drawing sheets. A DataFlow from a

SoftwareFunctionality ends at this symbol and references to another sheet (SheetNumber).

On the other sheet, the DataFlow starts again at the top of the symbol and ends at a Software-

Functionality to form a SoftwareFunctionality-to-SoftwareFunctionality connection. Every

sheet break needs a unique name (label UniqueName) for identification.

The application of the data flow viewpoint to the application example is given in AE.Part 8.

SOURCE

UID

SINK

UID

TRANS
DUCER

UID

SINK

SOURCE

UID

UID

UID

UniqueName

5. Approach for Model-driven Development of Data Collection Architectures 87

AE.Part 8: Graphical model in data flow viewpoint.

As mentioned in AE.Part 2, the servo drive is a Source of data from a data analysis point of

view. Therefore, at the bottom of the graphical model (see AE.Figure XIV), the MC function-

ality of the servo drive (unique name Servo1.Internal) is depicted. The two software variables

SpeedActual and TorqueActual are assigned to the Source. From here, data flows continuously

over the ECAT EtherCAT bus to the MC functionality of PLC1. This component acts as a Data-

Transducer, transparently forwarding the ingoing data and adding more variables (the light bar-

riers, the set speed, and the WaterLevel). All data is then sent over ETH_Local to the analysis

computer and its data analysis (Analysis.CM), where the continuous flow is ending

(SinkSource), and a new variable (AnomalyScore) is calculated. Finally, this information is in-

ternally sent to the dashboard (Analysis.HMI) and displayed, where the overall flow of data

ends.

The graphical model is completed by a drawing frame and a unique label (ApplicationExam-

ple.Data). Please also refer back to AE.Parts 2, 3, and 4 for the corresponding instances of the

metamodel, as well as AE.Part 7 for the corresponding graphical model as part of the system

viewpoint.

AE.Figure XIV: Example of the application example in the data flow viewpoint.

Annotations

Annotations allow the user to specify additional information to characterize the system. This in-

formation may be, for instance, a requirement that has to be fulfilled for the system to function

correctly, e.g., a maximum acceptable latency of data transmission. The annotation elements for

adding properties, requirements, and additional information to the graphical models are summa-

rized in Table 12. Properties are depicted as single-bordered and requirements as double-bordered

shapes. The notation differentiates between three types of properties/requirements based on the

ApplicationExample.Data

MC

Servo1.Internal

ETH_Local

ECAT

S LightBarrier2
S LightBarrier1

WaterLevelS

V SpeedSet

V TorqueActual

V SpeedActual

DA

Analysis.CM

VISU

Analysis

V AnomalyScore

MC

PLC1.MC

88 5. Approach for Model-driven Development of Data Collection Architectures

shape of the annotations: time-related information, for instance, communication latency or sample

rates, architectural information that defines types of data storage or scalability of components, and

data flow-related information on protocols, semantics, or encryption. Different shapes can differ-

entiate these. The graphical differentiation between requirements and properties, as well as the

idea of categorization, follows the original approach [Vog⁺11]. A list of properties and require-

ments and their categorization was given in Table 7 in Subsection 5.2.1.

Table 12: Annotation elements for both viewpoints of the graphical modeling notation.

Symbol(s) Description

A time-related property (I) of a system or data flow. A property from Table 7 replaces

TIME placeholder. Actual gives the actual value of the property.

A time-related requirement (I) of a system or data flow. A requirement from

Table 7 replaces TIME placeholder. Required gives the specified value of the re-

quirement.

An architecture-related property of a system or data flow. A property from Table 7

replaces ARCHITECTURAL placeholder. Actual gives the actual value of the prop-

erty.

An architecture-related requirement of a system or data flow. A requirement from

Table 7 replaces ARCHITECTURAL placeholder. Required gives the specified

value of the requirement.

A data-related property of a system or data flow. A property from Table 7 replaces

DATA placeholder. Actual gives the actual value of the property.

A data-related requirement of a system or data flow. A requirement from Table 7

replaces DATA placeholder. Required gives the specified value of the requirement.

Annotation line (I) for a system. It connects the annotation element with the related

software functionality, network, or signal in the system viewpoint.

Annotation line (I) for a data flow. It connects the annotation element with the related

software functionality, network, or signal in the data flow viewpoint.

Annotation line (I) for a property or requirement with a reference. It connects the

referenced element to the property or requirement. The annotation element already

needs to be connected to another element of the diagram with one of the annotation

lines for systems or data flows. For instance, Latency requirements always are asso-

ciated with an IConsumer and refer to an IProducer to reflect latency in communica-

tion between the two elements.

Specification of the type of a PLC or Computer (PLCTYPE) and its important char-

acteristics, including the characteristics of the central processing unit (CPU) (type,

number of cores, clock rate, and supported instruction set), as well as available Ran-

dom-Access-Memory (RAM) and flash memory. If characteristics are unknown or

not specified, only PLCTYPE element without further information may be used. Dou-

ble outer line indicates a requirement for a specific platform.

Adapted from [Has⁺13].

Non-formal comments to add information to a diagram.

TIME

Actual

TIME

Required

ARCHITECTURAL

Actual

ARCHITECTURAL

Required

DATA

Actual

DATA

Required

PLC TYPE

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

Comment

5. Approach for Model-driven Development of Data Collection Architectures 89

The application of annotations for amending the graphical models with properties, requirements,

and additional information is given in AE.Part 9.

AE.Part 9: Annotated graphical models.

This part of the application example graphically amends the models (AE.Parts 7 and 8) with the

information from AE.Part 5 (see AE.Figure XV below for the annotated graphical models, left

system viewpoint, right data flow viewpoint).

The addresses of Analysis.ETH1 and PLC1.ETH1 can be modeled in the system viewpoint as

architecture-related properties. Additionally, the hardware details of the CX2040 PLC, as well

as the analysis computer (DELL T7910), are specified as supplementary information.

The data flow viewpoint already includes the information that DataFlow F2 (between

PLC1.MC and Analysis.CM) over ETH_Local is a continuous data stream (solid arrow, not dot-

ted). Finally, the maximum allowed latency between PLC1 and Analysis computer can be added

as a time-related requirement (double-edged).

The Figures below reflect annotated graphical models and, therefore, still have the same labels.

AE.Figure XV: Annotated graphical models of the application example in both viewpoints.

ApplicationExample.System

B
C

1

ECAT

ECAT1

2x

S

ETH

ETH1

ECAT

ECAT1

S

4x

P

C

A
n
a
ly

s
is ETH

ETH1

P

L

C

P
L

C
1

ETH_Local

ECAT

MC

MC

DA

CM

ECAT

ECAT1

P

L

C

S
e
rv

o
1

MC

Internal

S LightBarrier2
S LightBarrier1 WaterLevelSV SpeedSet

V TorqueActual

V SpeedActual

Beckhoff CX2040

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

Intel i7 2715WQ

4

2,1 GHz

x64

4 GB

8 GB

Dell T7910

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

Intel Xeon E5-2630v4

10

2,2 GHz

x64

32 GB

2 TB

Address

192.168.1.200

VISU

HMI

V AnomalyScore

Address

192.168.1.100

ApplicationExample.Data

MC

Servo1.Internal

ETH_Local

ECAT

S LightBarrier2
S LightBarrier1

WaterLevelS

V SpeedSet

V TorqueActual

V SpeedActual

DA

Analysis.CM

VISU

Analysis.HMI

Analysis

V AnomalyScore

MC

PLC1.MC

LATENCY

1500

90 5. Approach for Model-driven Development of Data Collection Architectures

Data Mapping Table

DataElements often have system-specific variable names. These change over their way through

the system as part of a DataFlow. Therefore, the concept of data dictionaries [DeM79; HP88] is

adapted for this approach as so-called data mapping tables. While the content of the data dictionary

is altered in comparison to DeMarco’s concept, its function remains: ensuring traceability of data

throughout the system. The data mapping table correlates the system-specific UIDs of DataEle-

ments to generic UIDs that uniquely identify the element.

In contrast to the graphical elements presented previously, the data mapping table includes no

graphical representation but serves as a dictionary to collect and structure additional information

on DataElements. The columns, and therefore the contained information is summarized in

Table 13. Additional columns may be added for specific use-cases if appropriate. [TWV20]

AE.Part 10 depicts the application of the mapping table to the application example.

Table 13: Columns of the mapping table and description of their meaning. Adapted from Trunzer et al.

[TWV20].

Column Name Description

VariableUID
Unique identifier of a DataElement across all systems. It corresponds to the

Name-attribute of the SA/RT [HP88].

SystemUID
Unique identifier of the system the SystemSpecificVariableUID is valid for.

Adapted Member of-attribute of the SA/RT [HP88].

SystemSpecificVariableUID Unique identifier of a DataElement used in a specific system.

DerivedFromVariableUID

If data is based on other data (calculated, derived, composite, or used in the

model), the original unique identifier of these DataElements (Varia-

bleUIDs) can be given here. Otherwise empty. It can be multiple separated

by commas for composite DataElements.

Description
Optional description of a variable. It corresponds to the Comments-attribute

of the SA/RT [HP88].

Address
Optional address inside the specific system, for instance, register numbers

or addresses of associated bus couplers and terminal channels.

Type
Type of the variable, signal, or model, for instance, float, integer, boolean,

or model.

Resolution
Measurement resolution, if available. Otherwise empty. It corresponds to

the Resolution-attribute of the SA/RT [HP88].

Timeseries

Simplification for stating that a DataElement is always a tuple of actual time

(timestamp) and value. No separate declaration of the CompositeDataEle-

ment using the DerivedFromVariableUID column is needed.

5. Approach for Model-driven Development of Data Collection Architectures 91

AE.Part 10: Data mapping table.

AE.Figure XVI reflects the usage of the data mapping table for the case of the application ex-

ample. All variables are associated with a unique VariableUID. Variables can be referenced in

multiple systems (e.g., SpeedActual in Servo1.Internal and PLC1.MC) and have individual

names inside the systems (SystemSpecificVariableUID). Additionally, the mapping tables pro-

vide the possibility to amend data types (FLOAT for SpeedActual) and the measurement reso-

lution (12 bit in this case). The last column states if the variable is always transmitted with an

associated timestamp (if it is a time series) or if it resembles a value without time information.

The column DerivedFromVariableUID refers to other variables that are used for calculating the

regarded variable. In this example, all variables from the field level are used for the calculation

of the AnomalyScore inside Analysis.CM.

AE.Figure XVI: Excerpt of the data mapping table for the application example.

Mapping of the Viewpoints and the Mapping Table

With the help of the unique labeling system, the information from the different viewpoints and the

mapping table can be related to each other. The principle is illustrated in Figure 30 for a basic

scenario of the measurement of one variable (PressureActual, measured in Machine1), the deriva-

tion of an alarm message if the pressure is too high (PresureExceeded), and the transport of this

information to an analyzer on another system (Analyzer1).

Figure 30: Basic example of the graphical notation illustrating the mapping between the different view-

points (system viewpoint (left) and data flow viewpoint (right)) and the mapping table (top).

VariableUID SystemUID SystemSpecificVariableUID DerivedFromVariableUID Type Resolution Timeseries

SpeedActual Servo1.Internal FLOAT 12 bit yes

TorqueActual Servo1.Internal FLOAT 12 bit yes

LightBarrier1 PLC1.MC LB1 BOOL yes

LightBarrier2 PLC1.MC LB2 BOOL yes

WaterLevel PLC1.MC Level UINT32 8 bit yes

SpeedSet PLC1.MC V_Set FLOAT yes

SpeedActual PLC1.MC V_Act FLOAT yes

TorqueActual PLC1.MC M_Act FLOAT yes

AnomalyScore Analysis.CM AnomalyScore SpeedActual, TorqueActual, LightBarrier1,

LightBarrier2, WaterLevel, SpeedSet

DOUBLE yes

Sample.FlowSample.System

P

L

C

M
a
c
h
in

e
1 ETH

Eth1

ETH1

MC

MC

P

C

A
n
a
ly

ze
r1 DA

DA

ETH

Eth1

ETH

Eth2

S PressureActual

8x

S

V PressureExceeded

MC

Machine1.MC

S PressureActual

DA

Analyzer1.DA

ETH1

VariableUID SystemUID SystemspecificVariableUID DerivedFromVariableUID

PressureActual Machine1 PressureActual

PressureExceeded Machine1 PressureExceeded PressureActual

PressureActual Analyzer1 Machine1_PA PressureActual

PressureExceeded Analyzer1 Machine_P_Alarm PressureExceeded

MappingTable

V PressureExceeded

92 5. Approach for Model-driven Development of Data Collection Architectures

5.3. Architecture Software Framework

Communication architectures for data collection in industrial automation are commonly realized

in an ad-hoc fashion to allow access to data quickly. This, however, may lead to a suboptimal

selection of technologies. Also, high implementation efforts lead to vendor lock-in and prevent

migration of deployed communication architectures to more suitable technologies.

A software framework with a unified programming interface (Req-SFAPI) could potentially de-

crease implementation efforts through reusability and simplify the migration from one technology

to another. As the available technologies and their programming interfaces are very heterogene-

ous, the technology-specific aspects of the distinct technologies must be abstracted to provide a

common platform for the implementation of data collection architectures (Req-SFACP). Such ab-

straction allows application programmers to develop their software and rely on the functionality

of the developed API without special considerations of the actual communication technology. If a

change of communication technology becomes necessary at some point in time, only minimal

changes to the code are necessary, which has the potential to simplify migrations in the future

considerably. Furthermore, the definition of interfaces facilitates a modular software design and

simplifies future extensions of the software framework’s functionalities.

The software framework serves as a basis for practical realizations of data collection architectures

in industrial automation. It can be used independently of the other described concepts but, at the

same time, serves as a basis for the model-driven generation of the communication architecture,

which is explained later. The presented software framework is a rewritten version for increased

reusability and modularity based on previously published work ([Tru⁺19b]).

The definition of the standard interfaces and the core of the software framework are depicted in

Figure 31. The software framework differentiates communication services as IReceiveServices to

receive data and ITransmitServies to send data. Both interfaces inherit from the base interface

IMessagingService, which contains generic definitions that every communication service must

implement. IReceiveService serves as the superclass for the derived interfaces IRequestService

(Receive-Response messaging pattern) and ISubscribeService (Publish-Subscribe messaging pat-

tern). On the transmitting side, IPublishService inherits from ITransmitService. Figure 31 contains

the two example technologies TechAService and TechBService, as placeholders for concrete real-

izations. Inheritance from ISubscribeService, IReceiveService, and IRequestService reflects the

functionality that is implemented using specific communication technology. The services, there-

fore, implement the corresponding method signatures and map the generic functionalities to the

5. Approach for Model-driven Development of Data Collection Architectures 93

technology-specific functionality. For instance, the service for technology A (TechAService) im-

plements Publish-Subscribe as well as Request-Response functionality. On the other hand, the

service for technology B only provides Publish-Subscribe functionality.

The framework is designed to be applicable to a wide range of use-cases. Therefore, accepted

software design patterns are employed to increase the reusability of code and to abstract imple-

mentation details. For instance, every communication service is created by an associated service

factory that implements a standard interface (IServiceFactory). This so-called abstract factory de-

sign pattern [Gam11] reduces the dependency of application code on the concrete technologies

and implementations. Clients depend on the functionality defined in the standard interfaces IRe-

ceiveService, ITransmitService, and IServiceFactory without consideration of the concrete imple-

mentations of technologies. This decoupling allows a simple exchange of communication technol-

ogies with minimal adjustments to the code by requesting the creation of a different communica-

tion service from the service factory. Consequently, the application-specific logic of clients is sep-

arated from the internals of communication and can remain almost unchanged.

Figure 31: UML class diagram of the interface definitions for the core software framework. The left part

reflects the definition of communication services, right part the service factory definition for

dynamic creation of services. Usage of the interfaces shown for two example communication

technologies TechA and TechB.

5.4. Automatic Generation of the Communication Architecture

The last building block of the concept is the automatic generation of the communication architec-

ture, which is depicted in Figure 32. The starting point is a model of the data collection architecture

on the MOF M1 layer. This model is an instance of the metamodel presented in Subsection 5.2.1

(MOF M2 layer). A code generation engine queries the modeled elements and executes model to

<<Interface>>

IMessagingService

<<Interface>>

IReceiveService
<<Interface>>

ITransmitService

<<Interface>>

IPublishService

<<Interface>>

IServiceFactory

<<Interface>>

IRequestService

<<Interface>>

ISubscribeService

+StartReceivingData
+TransmitData

+ReadData

+StopReceivingData

+CreateService

TechAService TechAServiceFactory

<<create>>

TechBServiceFactoryTechBService

<<create>>

94 5. Approach for Model-driven Development of Data Collection Architectures

text transformation (M2T). These transformations rely on code templates from the software frame-

work (Section 5.3). The code templates are combined in the transformation step to construct

• the communication parts of each modeled participant, including the receiving and pub-

lishing of data and

• configuration files for middlewares.

Therefore, the code templates contain placeholders that are filled by the code generation engine

with the related information from the model, for instance, the concrete technology for communi-

cation or IP addresses. The code generation engine has a minimum set of rules to check the con-

sistency of the modeled information that guarantees a deployable data collection architecture. In-

complete models, e.g., lacking a description of addresses or communication protocols or with no

network connection between sender and receiver, lead to an error. These need to be resolved by

the experts before repeating the step of code generation.

The result of the code generation step is preconfigured code for a communication architecture that

reflects the modeled flow of information. It handles the sending and receiving of data over the

configured data flows (OSI layer 7). Still, application-specific code that glues together the data

flows inside the SoftwareFunctionalities is not automatically generated (also OSI layer 7). This

includes, for instance, the translation from one information model to another, or the calculation of

derived variables. Therefore, the automatic generation is no complete generation of the data col-

lection architecture, but a partial generation for the communication parts of the overall architecture

on OSI layer 7 [BCW17]. Experts insert the application-specific code into specially marked place-

holders inside the generated code fragments. The application-specific code is embedded into so-

called protected areas that are preserved when regenerating the architecture. After the addition of

the application-specific logic, a ready-to-deploy data collection architecture prototype is the result.

This prototype can now be compiled and deployed to the individual systems by the experts. The

modeled information serves as a specification. In the end, the deployed data collection architecture

is an instance of the architecture model on the MOF M0 layer.

AE.Part 11 demonstrates the code generation for the application example. Please note that all code

is expressed as pseudo-code and greatly simplified to remain technology-neutral and to give an

impression of the concept, not its real implementation using specific programming languages or

communication protocols. Furthermore, it is assumed that the code generation can be used for all

systems irrespective of the underlying platform and supported programming languages.

5. Approach for Model-driven Development of Data Collection Architectures 95

Figure 32: Overview over the process of transforming the model of the data collection architecture to a

deployed instance via code generation and addition of application-specific code (adapted

from Brambilla et al. [BCW17]). The left side reflects the different models and the related

MOF layers. The right side illustrates the process of automatic generation of the communica-

tion architecture on OSI layer 7, as well as the addition of application-specific code and the

deployment by experts.

AE.Part 11: Example of code generation for the application example.

The aim of the code generation is to generate the communication code for OSI layer 7 based on

the modeled information. Therefore, the modeled data flow is taken as a basis to set up the

direction of data transfer. Furthermore, the additional information in the form of IP addresses

or hostnames is used to address specific systems. The code generation is focused on the com-

munication part of the data collection architecture while generating protected sections where

programmers can insert their application-specific logic that uses or modifies the data.

AE.Figure XVII reflects the code generation with simplified pseudo-code for each system.

The generated code encompasses the functionality to automatically set up a connection between

two related systems in a data flow and to handle this connection. In the application example,

only direct communication without a distinct broker is modeled. Additionally, the code portions

for receiving and sending data are generated. Experts can then insert their application-specific

code into the protected code section (mimicked by // PROTECTED_START/END) here.

Addition of
Application-

specific
 Code

Preconfigured

Communication

Architecture

Model of

Data Collection Architecture

<<instance of>>

Data Collection Architecture

Metamodel

M2

M1

M0

Deployed

Data Collection Architecture

<<instance of>>

Code Generation Engine

M
O

F
 L

a
y
e
r

Query

Result

Input

Generation

Data Collection

Architecture

Prototype

Compilation
& Deploy-

ment
Code

with

place-

holders

Code

with

application-

specific

logic

M2T

Transformation

Code Templates
x = Get(source, com.MQTT);

// PLACEHOLDER
// Insert your code here

Send(destination, x, com.MQTT);

96 5. Approach for Model-driven Development of Data Collection Architectures

AE.Figure XVII: Simplified sample of generated pseudo-code for the application example.

PLC1_MC

Analysis_CM

EtherCAT
EtherCAT

Ethernet

Internal_Service : SourceInternal_Service : DataTransducer

CM_Service : SinkSource HMI_Service : Sink

Servo1_Internal

Analysis_HMI

C1 = Connect(PLC1_MC,
 Protocol1);

// PROTECTED_START
// ApplicationSpecificLogic
// Internal Logic to calculate output
// PROTECTED_END

Send(C1, "SpeedActual", SpeedActual);
Send(C1, "SpeedActual", TorqueActual);
Close(C1);

C1 = Connect(Servo1_Internal, Protocol1);
C2 = Connect(Analysis_CM, Protocol2);

SpeedActual = Receive(C1, "SpeedActual");
TorqueActual = Receive(C1, "TorqueActual");

// PROTECTED_START
// ApplicationSpecificLogic
// Process input and calculate output
// PROTECTED_END

Send(C2, ..., ...);
// Other variables
Close(C1);
Close(C2);

C1 = Connect(PLC1_MC, Protocol2);
C2 = Connect(Analysis_HMI, Protocol3);

// Receive from PLC1_MC
X = Receive(C1, ...);

// PROTECTED_START
// ApplicationSpecificLogic
// Analyze data and send results
// PROTECTED_END

// Send to Analysis_HMI
Send(C2, ..., ...);

Close(C1);
Close(C2);

C1 = Connect(Analysis_CM, Protocol3);

// Receive from Analysis_CM
X = Receive(C1, ...);

// PROTECTED_START
// ApplicationSpecificLogic
// Visualize condition to operators
// PROTECTED_END

Close(C1);

6. Implementation

In this Chapter, a brief overview of the concept implementation is given. It includes the DSL, the

software framework, and the model-driven generation of the communication architecture.

6.1. Domain-specific Language

The DSL consists, following the definition of a modeling language [Rod15], of a metamodel and

a graphical notation. The data collection architecture metamodel is implemented within the Eclipse

Modeling Framework (EMF), as the defacto standard framework for model-driven development

[BCW17], in version 2.18 [Ecl19b]. As an editor for the metamodel, the Eclipse IDE with installed

Eclipse Modeling Tools in version 4.13 / release 2019-09 is used [Ecl19c]. A graphical represen-

tation of the PhysicalContainer in the Eclipse Modeling Tools is given in Figure 33.

Figure 33: Excerpt of the metamodel modeled with the Eclipse Modeling Tools showing the PhysicalCon-

tainer (cf. Figure 26).

The graphical notation is provided as stencils for Microsoft Visio (see Figure 34) [Mic19a]. End

users can graphically edit the model representation with the provided stencils. An automatic link

between graphical representation and model instance of the metamodel is currently not part of the

implementation. Existing tooling, such as Graphiti [Ecl19f] or Sirius [Ecl19a], could be used in

the future to provide an integrated graphical editor in Eclipse.

98 6. Implementation

Figure 34: Screenshot of the Microsoft Visio stencils provided for the graphical modeling of data collec-

tion architectures.

6.2. Architecture Software Framework

The software framework is implemented with C# 8.0 [.NE19] and the .NET Core 3.1 framework

[.NE20] in Visual Studio 2019 [Mic19b]. .NET Core is characterized by active development, an

open-source MIT license, and a large ecosystem with broad availability of third-party libraries. C#

is a state-of-the-art programming language for object-oriented programming and widely accepted

for the realization of industry-scale software projects. The following communication technologies

are implemented natively as implementations of IReceiveService and ITransmitService. They rep-

resent typical protocols for industrial communication (see Section 2.3.2).

• Apache Kafka [Apa19], with the library Confluent.Kafka [Con19] for .NET Core support;

• MQTT [ISO20922], tested for the Eclipse Mosquitto broker [Ecl19e], using the Open-

NETCF MQTT library for .NET Core support [Tac19];

• OPC UA [IEC62541], using the OPC foundation’s reference stack [OPC19]; and

• AMQP [ISO19464], tested for the RabbitMQ broker [Piv19a] and using the RabbitMQ

.Net Client library [Piv19b].

6. Implementation 99

The .NET Core framework offers cross-platform support, including Windows, macOS, as well as

Linux on x86/x64 and ARM platforms. This cross-platform support provides great flexibility in

heterogeneous environments, as can be found in industrial automation. In essence, the same code

can be executed on servers that are operated under Linux, retrofitted gateways on cheap ARM

platforms, and client computers for data analysis on Windows. Therefore, multiple protocols can

be supported on various platforms using the lightweight and accepted .NET Core platform.

As not all communication technologies are supported by libraries for .NET Core, a flexible exten-

sion mechanism is foreseen. Therefore, Google gRPC [Goo19a] is implemented as an additional

communication service. gRPC is based on Google Protocol Buffers [Goo19b] and is an open-

source, high-performance remote procedure call (RPC) framework with cross-language support.

The Protocol Buffer framework defines an interface description language (IDL) for the definition

of data types and functionalities. These are platform and language independent. Via integrated

code generators, language-specific code reflecting the definitions stated with the IDL can be au-

tomatically generated as part of gRPC. The architecture software framework provides a language-

independent definition of a communication service and offers a gRPC endpoint that can be used

by other applications. This gRPC endpoint allows the implementation of communication services

in other programming languages and with libraries incompatible to .NET Core 3.1. Furthermore,

the actual provider of the functionality (gRPC client in a different language) is decoupled from the

gRPC endpoint of the framework. Both services can run on different machines and communicate

over networks, allowing a decoupled microservice architecture.

For instance, the support for Beckhoff ADS [Bec19c] is implemented using the gRPC endpoint of

the software framework (see Figure 35). Beckhoff to date only provides ADS client libraries for

.NET framework 4.6, as well as other programming languages, which are all incompatible with

the .NET Core 3.1 framework. Therefore, a decoupled microservice wrapping the functionality of

ADS communication is part of the software framework and communicates with the core of the

framework over gRPC for interoperability.

100 6. Implementation

Figure 35: Working principle of the flexible extension mechanism via gRPC. Example of Beckhoff ADS

support as an external communication service.

6.3. Automatic Code and Configuration Generation

Acceleo is an implementation of the OMG MOF Model to Text Transformation language specifi-

cation [OMG08] by the Eclipse Foundation. The model transformation for the automatic genera-

tion of the communication architecture and configuration of brokers is implemented with the Ac-

celeo transformation language in version 3.7.8 [Ecl19g]. Modular code templates distribute the

transformation logic into smaller files and simplify maintenance of the transformation.

The templates are based on the C# implementation of the software framework and rely on the

.NET Core 3.1 framework and the libraries described in Section 6.2. Middleware configurations

are text files and individually created during the model transformation, depending on the config-

uration characteristics of each middleware. The code generation includes templates for the brokers

mentioned in Section 6.2. All model transformations are initially set up for the creation of the

model-driven approach and can be reused for all subsequent applications.

Figure 36 shows an example of an M2T transformation in the Acceleo transformation language

for the instantiation of communication services. The first template (serviceInstantiations,

lines 1 to 8) generates the code for the instantiation of communication functionalities. It, therefore,

iterates through every applicable model instance (line 2), uses the provided code template to gen-

erate the corresponding code, and replaces the blanks (gray background) with the information from

the model. In the last line of the first template (line 6), the instantiation of the communication

service takes place. The second template (simpleServiceConfig, lines 10 to 18) is called from

the first template and is used for extracting and generating the service configuration, including IP

addresses, ports, and credentials from the model. Figure 37 depicts a possible output from the

shown transformation snippet for an MQTT service (here called MosquittoService).

Native Services

(AMQP, ...)

gRPC Service

Beckhoff ADS

Service
ISubscribeService

IPublishService

ISubscribeService

IPublishService

gRPC Adapter

gRPC Plugin

gRPC

.NET Core 3.1
Any other language with gRPC support,

here .NET Framework 4.6

Automatically generated from IDL

6. Implementation 101

 1 [template public serviceInstantiations(swPackage : SoftwarePackage)]
 2 [for(service : IConnectionService | swPackage.iconnectionservice)]
 3 var [getServiceId(service)/]Factory =
 4 new [factoryFor(service)/]([simpleServiceConfig(service)/]);
 5 [getServiceId(service)/] = ([serviceInterfaceFor(service)/])
 6 [getServiceId(service)/]Factory.CreateService();
 7 [/for]
 8 [/template]
 9
10 [template private simpleServiceConfig(service : IConnectionService)]
11 new ServiceConfig
12 {
13 Server = "[getTargetIp(service)/]",
14 Port = [getTargetPort(service)/],
15 UserName = [usernameFromService(service)/],
16 Password = [passwordFromService(service)/]
17 }
18 [/template]

Figure 36: Example of Acceleo M2T transformations for instantiation of communication services. Blanks

with gray background.

 1 var SomePublisherFactory = new MosquittoServiceFactory(new ServiceConfig
 2 {
 3 Server = "127.0.0.1",
 4 Port = 1884,
 5 UserName = "foo",
 6 Password = "bar"
 7 });
 8 SomePublisher = (ITransmitService)SomePublisherFactory.CreateService();

Figure 37: Example for generated C# code from the M2T transformation in Figure 36. Filled blanks with

gray background.

The templates contain protected sections to ensure that user-added code (application-specific im-

plementation) is not overwritten when the model transformation process is executed repeatedly to

update the generated software code. Furthermore, the model to text transformation generates log

files that can be used to trace the transformation process and verify its correctness. Additionally,

Visual Studio 2019 project files for .NET Core 3.1 are set up, which allow a comfortable building

of the respective projects. These project files include the necessary references to the underlying

communication libraries, as well as the compiler configuration, and the respective shared libraries

as DLLs (dynamic-link libraries). Furthermore, to allow the creation of portable and lightweight

containerized applications, the projects include descriptions to create Docker containers (so-called

dockerfiles) automatically. The created containers include the compiled executables as well as the

required communication libraries and all additional dependencies (e.g., the .NET Core 3.1 runtime

itself).

The model transformation and the deployment of the compiled docker containers are automated

with a build pipeline. Therefore, after the model transformation step, users can create or update

their application-specific implementation manually. Afterward, the code is pushed to a Git [Git20]

repository used for version management, as well as continuous integration (CI) and deployment

102 6. Implementation

[Fow15; FS17]. The build pipeline for CI is configured to generate the executables of the respec-

tive projects on every update in the repository and subsequent cross-compilation of the corre-

sponding Docker containers for multiple platforms, including Linux x86, Linux x64, as well as

ARMv7, via the buildx system [Doc20c]. After a successful compilation, the Docker images are

published to a local Docker repository [Doc20a] that manages all Docker images.

All non-legacy systems of the use-cases execute their own Docker runtime and are connected to a

central, so-called node manager. This manager orchestrates all connected clients using the Docker

swarm mode [Doc20b]. If the corresponding image that is associated with a client is updated on

the registry server, the local copy of the image can be automatically replaced by the newer version.

Furthermore, the node manager allows monitoring of all connected clients, as well as enhanced

configurations for fail-over operation and distribution of images across multiple clients for scala-

bility. This CI-pipeline simplifies the deployment of updated configurations into operations and

allows a flexible and agile software development.

7. Evaluation

The developed concepts for model-driven data collection architectures will be evaluated using the

requirements formulated in Chapter 3. For this purpose, various evaluation scenarios and methods

are employed, each addressing distinct aspects of the requirements. Table 14 summarizes the re-

quirements and maps them to the evaluation scenarios and the corresponding Sections.

The evaluation is split into six major parts; these are:

1. interviews with industry experts and mapping to other state-of-the-art architectures to as-

sess the technology-neutral architecture concept (Section 7.1);

2. expert evaluation of the graphical modeling notation with semi-structured interviews in

four industrial case-studies conducted with industrial experts from the domain

(Section 7.2);

3. a lab-scale feasibility study including the graphical modeling of the overall systems and a

subsequent automatic code generation with deployment to the lab environment

(Section 7.3);

4. a code generation for one of the industrial case-studies modeled in Section 7.2 to evaluate

the scalability of the approach (Section 7.4);

5. an estimation of the implementation effort using the developed approach in comparison

to classical, non-model-driven programming using minimal clients and extrapolation of

the corresponding efforts (Section 7.5); and

6. a questionnaire with industrial experts concerning the overall approach in comparison to

the current industrial practice (Section 7.6).

The results of this chapter are used to assess the fulfillment of requirements in the subsequent

Chapter 8.

104 7. Evaluation

Table 14: Evaluation scenarios per requirement and reference to the relevant Sections.

 R
eq

u
ir

em
e
n

t

E
x

p
er

t
in

te
rv

ie
w

s
o

n
 a

rc
h

it
ec

tu
re

 c
o

n
ce

p
t

M
a

p
p

in
g

 t
o

 o
th

er
 p

ro
p

o
se

d
 a

rc
h

it
ec

tu
re

s

In
d

u
st

ri
a

l
c
a

se
-s

tu
d

ie
s

w
it

h
 e

x
p

er
t

in
te

rv
ie

w
s

L
a

b
-s

ca
le

 c
a

se
-s

tu
d

y

In
d

u
st

ri
a

l
c
a

se
-s

tu
d

y

E
ff

o
rt

 e
x

tr
a

p
o

la
ti

o
n

 c
a

se
-s

tu
d

y

E
x

p
er

t
q

u
es

ti
o

n
n

a
ir

e

Section

7
.1

.1

7
.1

.2

7
.2

7
.3

7
.4

7
.5

7
.6

D
a

ta
 C

o
ll

ec
ti

o
n

S
y

st
em

 A
rc

h
it

ec
tu

re
s

(R
eq

-A
)

Req-

AATP

Data collection from different levels

of the automation pyramid
● ● ●

Req-

ATAC
Technology-agnostic concept ● ●

Req-

APOP

Parallel operation to

pyramid architecture
● ● ●

Req-

ADep

Simplified implementation and

configuration
 ● ● ●

Req-

AReDep

Simplified migration

between technologies
 ● ● ●

S
o

ft
w

a
re

F
ra

m
ew

o
rk

(R
eq

-S
F

)

Req-

SFAPI

Standardized interfaces to

minimize effort
 ● ●

Req-

SFACP

Abstraction of technology-specific

properties of communication
 ● ● ●

Req-

SFLeg
Support for legacy systems ● ●

A
rc

h
it

ec
tu

re
 M

o
d

el
in

g

L
a

n
g

u
a

g
e

(R
eq

-M
)

Req-

MSys
System viewpoint ●

Req-

MDF
Data flow viewpoint ●

Req-

MPropReq

Annotations for

properties and requirements
 ●

Req-

MGraph
Graphical modeling notation ●

M
o

d
el

-d
ri

v
en

G
en

er
a

ti
o

n

(R
eq

-G
)

Req-

GCom

Model-driven generation of

communication interfaces
 ● ●

7. Evaluation 105

A mapping of the evaluation scenarios to the building blocks of the concept is illustrated in

Figure 38. While the expert interviews and the mapping to other state-of-the-art architectures eval-

uate the generic, technology-neutral architecture concept, the industrial case-studies are used for

the assessment of the graphical modeling notation as part of the DSL. The following case-studies

(lab-scale, industrial, and effort extrapolation) are dedicated to the interplay of the DSL, the soft-

ware framework in the form of code templates, and the model-driven generation of the data col-

lection architecture. The last Section, the expert questionnaire, covers aspects that characterize the

concept as a whole.

Figure 38: Graphical mapping of case-studies to the parts of the concept’s building blocks.

7.1. Evaluation of Architecture Concept

This Section captures the evaluation of the developed architecture concept. The first part describes

the results of semi-structured interviews with industrial experts. The second part presents a map-

ping of the concept to other system architectures proposed in state-of-the-art projects to show the

technology-neutrality of the concept and its generalizability.

7.1.1. Interviews with Industry Experts

The developed architecture concept was evaluated via the conceptual application of the architec-

ture to two distinct scenarios and subsequent, semi-structured interviews with a total of five in-

dustry experts. All involved experts have profound knowledge of the required data sources, the

integration of the relevant data, and the existing system architectures currently in operation. The

results of these interviews were initially published in [Tru⁺17].

Geneneric,

Technology-neutral

Architecture

Concept

Model-driven

Generation of Data

Collection

Architectures

Domain-specific

Language For Data

Collection Architectures

Graphical

Notation

Meta-

model

Software Framework

Tech

1

Tech

n

Standard Interface

Tech

2

1

2

3

4

Expert interviews

and mapping to other

architectures (7.1)

Industrial case-

studies with expert

interviews (7.2)

Expert questionnaire (7.6)

Lab-scale case-study (7.3)

Industrial case-study (7.4)

Effort extrapolation case-study (7.5)

106 7. Evaluation

The first use-case is related to live monitoring and predictive maintenance of valves in the chem-

ical process industry via data analysis and stems from the SIDAP project [SID19]. SIDAP involves

the data exchange across the life cycle of valves to increase the value of data analysis as data is

dispersed into different data silos. For instance, while plant operators have data about the operation

of a valve, the original equipment manufacturer has extended knowledge of the physics and spec-

ification of valves. Hence, the analysis requires data from several existing distributed systems.

These include the measurements from the valves themselves (e.g., valve stroke), historical meas-

urements from a superordinate historian (in this case, an OSIsoft PI system [OSI19]), as well as

valve specifications from the engineering and maintenance documentation from an ERP. All men-

tioned systems are existing legacy systems and have their specific interfaces and protocols for

communication. Moreover, live monitoring would require the implementation of at least one data

analysis component that collects and analyses the data streams, as well as a visualization dash-

board for the operators. Additional existing legacy applications must be considered, as well. In

collaboration with the industrial experts and within an offline data analysis based on historical

data, the relevant data sources were identified. Afterward, the architecture was conceptually ap-

plied for the use-case of a valve monitoring and predictive maintenance platform across multiple

involved partners. A representation of the developed architecture can be seen in Figure 39.

Figure 39: Representation of the conceptualized architecture for the SIDAP use-case (graphically

adapted from Trunzer et al. [Tru⁺17]).

A
n

a
ly

s
is

D
a
ta

Data Management and Integration Broker

Operator / Process Expert / Data Analyst

In
te

g
ra

ti
o

n
D

a
s
h

b
o

a
rd

ERP

Data Translator

ERP

Maintenance Reports

Specification

Data Translator

Engineering System

Valve Specification

Sheets

OSIsoft

Data Translator

OSIsoft PI

Historic Measurments

Legacy Simulator HMI

Wrapper

Legacy Sim./Monitoring HMI

P
la

n
t

V
is

u
a

liz
a

ti
o

n

S
im

u
la

to
r/

O
p

ti
m

iz
e
r

C
o
n

d
it
io

n

M
o

n
it
o

r

...

Predictive Maintenance HMI

P
la

n
t

V
is

u
a

liz
a

ti
o

n

C
o
n

d
it
io

n

M
o

n
it
o

r

P
D

M

R
e
s
u

lt
s

M
a

in
te

n
a
n

c
e

P
la

n
n

e
r

Legacy Simulator

Wrapper

Legacy Simulator

P
la

n
t

S
im

u
la

ti
o
n

P
la

n
t

O
p

ti
m

z
e

r

F
a

u
lt

In
je

c
to

r

C
o
n

d
it
io

n

M
o

n
it
o

ri
n
g

PDM Analyzer

M
o

d
e

l

L
e
a

rn
e
r

C
o
n

d
it
io

n

M
o

n
it
o

ri
n
g

Diagnosis Suite

Wrapper

Diagnosis Suite

M
e

s
s
a
g

e

A
n

a
ly

s
is

R
o
o

t

C
a
u

s
e

C
a
u

s
a

lit
y

E
s
ti
m

a
to

r

Access Control and Anonymization Layer Data Analyst 1Shift Supervisor

O
p

e
ra

to
r

In
te

rv
e

n
ti
o

n

Monitoring

M
e

s
s
a
g

e

A
n

a
ly

s
is

R
o
o

t
C

a
u

s
e

E
s
ti
m

a
ti
o
n

s

P
re

d
ic

te
d

C
a
u

s
a

lit
ie

s

D
a
ta

 V
ie

w

E
x

te
rn

a
l

D
a
ta

A
d

a
p

te
r

D
a
ta

W
a

re
h

o
u

s
e MongoDB

Data/Models

/Results

Curation

Legacy Communication

Standard Communication

Participant

Data Adapter

Legacy Participant

Legend

Middleware

7. Evaluation 107

The second use-case stems from the project IMPROVE [IMP19]. The aim of IMPROVE is the

creation of a virtual factory as a virtual representation of a real production facility that can, for

instance, serve as a basis for off-line optimization of production parameters. This use-case requires

transparent and fast access to data from various sources from within and outside of the automation

pyramid, with numerous legacy systems. The systems include data from the PLCs of the produc-

tion plants, superordinate information from SCADA and MES systems, as well as off-line quality

measurements from a lab database. Furthermore, the concept of a virtual factory requires the im-

plementation of various analyzers to monitor plant operation, a simulation, and an optimization

engine that allows off-line optimization of the production processes, as well as dashboards that

visualize the data and information for human operators. A visual representation of the conceptu-

ally-applied architecture is given in Figure 40.

Figure 40: Representation of the conceptualized architecture for the IMPROVE use-case (graphically

adapted from Trunzer et al. [Tru⁺17]).

A large number of legacy systems characterize both use-cases as part of an existing IT/OT land-

scape. According to the experts, the introduction of the architecture would replace and automate

data collection and integration tasks that are currently carried out by hand. Furthermore, the con-

ceptualized architecture for the IMPROVE use-case shows parallels to an ongoing internal effort

in one of the involved companies. The two architectures feature a central data warehouse compo-

nent that can be used to store data, models, and results. In both cases, it is conceptualized as a

MongoDB [Mon19] database accessible by all systems connected to the Data Management and

Integration Broker. This data warehouse is optional and allows persistent storage of data across a

SCADA

A
n

a
ly

s
is

D
a
ta

Data Management and Integration Broker

In
te

g
ra

ti
o

n
D

a
s
h

b
o

a
rd

MES

Data Translator

PLC

Data Translator

Access Control and Anonymization Layer Data Analyst 1Shift Supervisor

SCADA

Data Translator

Message/Alarm Logs

Historic Sensor Data

MES

Quality Data

Energy Data

Plant / Machine Data

PLCs

(Siemens S7, Beckhoff)

Drives

Data Analyzer

P
re

d
ic

ti
o

n

M
o

d
e

l

L
e
a

rn
e
r

N
o
rm

a
l

B
e

h
a

v
io

r

M
o

d
e

l

R
o
o
t

C
a
u
s
e

A
n
a

ly
z
e
r

C
a
u
s
a

lit
y

M
o

d
e
l

L
e

a
rn

e
r

Simulator

P
la

n
t

S
im

u
la

ti
o
n

M
o

d
u

le

S
im

u
la

ti
o
n

Data Access HMI

D
a
ta

 V
ie

w

V
is

u
a

liz
a

ti
o

n

S
u

it
e

M
a

n
ip

u
la

ti
o
n

C
o
n

s
is

te
n
c
y

C
h
e

c
k

D
a
ta

W
a

re
h

o
u

s
e

Legacy Simulator HMI

Wrapper

Legacy Simulator HMI

P
la

n
t

V
ie

w

M
o

d
u

le

V
ie

w

F
a

u
lt

In
je

c
to

r

MongoDB

Data/Models

/Results

Curation

Diagnosis HMI

M
e

s
s
a
g

e

A
n

a
ly

s
is

F
a

u
lt

C
o
rr

e
la

ti
o

n

G
ra

p
h

F
a

u
lt

D
e
c
is

io
n

T
re

e

A
n

o
m

a
ly

V
is

u
a

liz
a

ti
o

n

Operator / Process Expert / Data Analyst

Optimizer

L
a
y
o

u
t

O
p

ti
m

iz
e
r

P
a

ra
m

e
te

r

O
p

ti
m

iz
e
r

L
o
a

d

B
a

la
n

c
e
r

Optimizer HMI

O
p

ti
m

iz
a
ti
o

n

D
a
s
h

b
o
a

rd

R
e
s
u

lt
 V

ie
w

Legacy Communication

Standard Communication

Participant

Data Adapter

Legacy Participant

Legend

Middleware

108 7. Evaluation

system landscape, reliefs the individual systems from storing separate copies of relevant data, and

can be used as a building block for the so-called Lambda architecture proposed by Marz and War-

ren [MW15]. The Lambda architecture is a paradigm for data analysis architectures in a big data

environment that must handle large batches of historical data as well as streamed real-time data

during the analysis. By a separate analysis of the two data types in different layers and subsequent

combination of the results, a Lambda architecture can provide accurate results with low latency.

The expert interviews aimed to evaluate the feasibility of the conceptual architectures and their

suitability for the use-cases compared to the existing infrastructure. Therefore, two semi-structured

interviews were conducted, one with the experts from the SIDAP project, and another with the

IMPROVE experts. In the interviews, the experts were sure that the installation and operation of

the conceptualized architecture in parallel to the existing control and automation infrastructures is

viable (Req-APOP). In their eyes, such a decoupled design separates the control and operations

domain from the data collection and analysis process. This decoupling is especially beneficial for

mission-critical production systems. In the use-cases, data from different levels of the automation

pyramid (PLCs, SCADA, MES, and ERP systems) is collected and forwarded to the respective

client systems (Req-AATP).

Another aspect is the integration of legacy systems over data adapters in heterogeneous environ-

ments. Existing interfaces and connections between legacy systems stay untouched and functional

(cf. the connection between the legacy simulator and its HMI in Figure 39). The efficient integra-

tion of existing legacy systems and newly developed systems is perceived very positively by the

experts. The flexibility of integrating legacy systems with different data adapter principles, rang-

ing from translators embedded into the Data Management and Integration Bus to Data Wrappers

(cf. Section 5.1), was highlighted by the experts (Req-SFLeg). Nevertheless, the experts considered

the implementation effort for initial deployment as relatively high and complex. Besides, the im-

plementation effort to program all necessary data adapters is a significant obstacle. Therefore, a

step-wise introduction and migration are proposed. This migration scenario minimizes the initial

effort for deployment and makes more and more data transparently available over time.

Both conceptualized architectures are not bound to a specific implementation technology and can

be implemented using various available technologies. Depending on the specific requirements of

a realization, a suitable technology can be selected. Even combinations of technologies are possi-

ble. For instance, the system could be implemented using a commercially-supported ESB, such as

IBM Integration Bus, an open-source alternative (e.g., RabbitMQ), or a high-throughput system

such as Apache Kafka. Therefore, the experts stated that the architecture concept and its applica-

tion to the use-cases are technology-agnostic (Req-ATAC).

7. Evaluation 109

7.1.2. Mapping to State-of-the-Art Architectures

In the second part, a mapping of the developed system architecture to the system architectures of

the PERFoRM and BaSys 4.0 projects (see Figure 41) is presented. Both projects developed state-

of-the-art system architectures for Industrie 4.0 applications and address various aspects of system

integration in industrial automation. The results were initially published with coauthors from the

two other projects in [Tru⁺19c].

Figure 41: PERFoRM (left) [Lei⁺16] and BaSys 4.0 (right) [Tru⁺19c] architecture concepts.

The three system architecture concepts (BaSys 4.0, PERFoRM, and this work) originate from dif-

ferent use-cases, are subject to distinct boundary conditions, and are tailored for their specific field

of application. While the architecture conceptualized in this work aims to simplify data collection

and analysis, the PERFoRM architecture concept aims to provide the possibility of a reconfigura-

ble production, and BaSys 4.0 a real-time communication between systems. The PERFoRM ar-

chitecture concept was demonstrated to be implementable using various technologies [Cha⁺17;

Gos⁺18; PER16b]. In contrast to this work and PERFoRM, BaSys 4.0 relies on a replacement of

the existing automation architecture and is bound to an implementation framework that includes a

so-called Virtual Automation Bus (VAB) as the middleware component for real-time communi-

cation [Kuh⁺18]. Still, all three approaches share a substantial number of similarities. In essence,

all three foresee a common communication bus, usage of a single protocol to interface systems,

the integration of legacy systems via data adapters (or administration shells in BaSys 4.0), and

consider a layered architecture.

A generic architecture applicable to the respective application fields and their use-cases, which

was derived in [Tru⁺19c], is very similar to the one conceptualized in this work. The main differ-

ences between the derived architecture and the concept of this thesis are the introduction of a real-

time communication channel and the added support for service detection and orchestration. How-

ever, on the one hand, as this approach is not aiming at replacing the existing control structure, no

110 7. Evaluation

real-time communication is needed inside the architecture. If no real-time communication is re-

quired, the BaSys 4.0 architecture concept would not be bound to the VAB and hence implementa-

ble with a wide variety of available technologies. On the other hand, service detection and orches-

tration are additional functionalities that the connected systems must support, not the system ar-

chitecture itself. As the core of the three system architecture concepts is remarkably similar, and

their realization is not bound to a specific technology, the presented concept for a data collection

architecture can be seen as technology-agnostic (Req-ATAC). Therefore, the abstract, technology-

neutral architecture concept of this thesis can directly be applied to all considered use-cases and

implemented using various available technologies.

7.2. Expert Evaluation of Graphical Modeling Notation

The graphical modeling notation of the developed DSL was evaluated by applying the notation to

four industrial use-cases (subsequently called Case-Studies A to D) and successive, semi-struc-

tured interviews with industrial experts. The evaluation procedure is shown in Figure 42 and will

be explained throughout this Section.

Figure 42: Procedure for the expert evaluation of the graphical modeling notation.

The four use-cases reflect typical and representative applications of data collection architectures

that interact with CPSoS and bridge IT and operational technology. They include data collection

from a multitude of heterogeneous systems, including legacy systems, and the involvement of

experts from various domains. All four are modeled with the help of experts from different do-

mains. In total, eight experts (2 per case-study), which have profound and long-term expertise in

their respective fields of application, were questioned. The selected experts are all employed by

the respective OEMs. They are particularly qualified to evaluate the notations as they have great

industrial experience in the realization of data collection and analysis projects. Additionally, all

have an interdisciplinary background from at least two domains relevant to the use-cases (technical

experts, data analyst, IT architect, control engineer). The experts are, for instance, heads of infor-

mation technology or senior engineers for digitization in their respective companies. Due to con-

fidentiality, the boundary conditions and the conceptualized architectures are modified slightly for

this thesis (for instance, different protocols, single systems connected to other networks, or ab-

straction of company-specific information related to security configurations). Evaluation results

were partly published in [TWV20], but cover only the three case-studies B to D.

Design and

modeling of

data analysis

applications

Design and

modeling of

system

architecture

Discussion with

experts and

semi-structured

interviews

4
Modeling of

existing

brownfield

systems

1 32

7. Evaluation 111

Based on the documentation provided as well as input from technical experts and IT architects,

the brownfield production systems, without any additional data analysis, were modeled using the

graphical modeling notation (step 1 in Figure 42). These diagrams were then adapted and extended

with the help of data analysts. They stated which data is needed for the analysis and where the

analysis models should be deployed (edge, cloud). Furthermore, they expressed additional require-

ments, e.g., allowed latency and sample rates (step 2 in Figure 42). [TWV20]

In the next step (step 3 in Figure 42), IT architects drafted the adapted system architecture with

additional data analysis components. Supplemental requirements, such as data security (encryp-

tion, authentication), communication (protocols, semantics), and system sizing (scalability, the

capacity of storage), were specified and added to the models. [TWV20]

The extended models were then discussed with the experts in joint sessions (step 4 in Figure 42).

This first part of the qualitative evaluation was to verify the correctness of the models. Afterward,

a structured questionnaire with a total of 20 qualitative questions about the clarity of the graphical

notation, its syntactic constructs, and its completeness was conducted in the joint session. The

questionnaire was divided into four parts: syntax and completeness of the system viewpoint, syn-

tax and completeness of the data flow viewpoint, mapping between the two views and annotation

elements, and clarity of the graphical notation. [TWV20]

Table 15 summarizes the main characteristics of the use-cases. In the following Section, the de-

tailed model of the data collection architecture for Use-Case A is discussed. Afterward, an over-

view of Use-Cases B to C is given (the corresponding models can be found in 14). Subsequently,

the results of the expert interviews are presented.

Table 15: Summary of use-cases for expert evaluation of graphical modeling notation.

Use-

Case

Analysis

application

Type of architec-

ture

№ experts № employees /

company size

Section with

graphical models

A
Condition

monitoring

Private / public

cloud
2 ~ 1,500 7.2.1

B Anomaly detection
Cloud / edge

architecture
2 ~ 400 Appendix A.1

C
Alarm

management system
Public cloud 2 ~ 7,000 Appendix A.2

D
Alarm

management system
Hybrid cloud 2 ~ 500 Appendix A.3

112 7. Evaluation

7.2.1. Use-Case A: Retrofitting and Condition Monitoring

Use-Case A captures a CNC machine retrofitted with additional sensors and control hardware for

condition monitoring. The full system diagram is shown in Figure 43 and is explained and derived

in the following. The CNC machine (Machine11) is provided by an OEM and includes a closed

legacy system for control. A Siemens Sinumerik 840D control unit is installed inside the machine,

but no modifications to the original control code are possible. The control unit provides various

continuous variables (S7_Var1 to S7_Var13), as well as additional, event-based data points

(S7_Event1 to S7_Event37). Still, the machine condition is not fully characterized by these avail-

able data points. Therefore, an additional Beckhoff PLC (GW11) is installed and connected to

various additional bus couplers (ST1 to ST10) with sensors over EtherCAT (ECAT1). The addi-

tional sensors capture further data (Var1 to Var33) relevant to characterize the machine’s condi-

tion.

Additionally, the Beckhoff PLC is also used as a gateway between the CNC machine and super-

ordinate systems, as it acts as a central data collector. To further decouple the machine’s main

PLC from the Beckhoff PLC, an additional gateway (PI11) is installed as a Raspberry Pi-based

KUNBUS RevPi device. This gateway collects the data from the machine PLC over Profinet,

translates the format, and forwards it to the Beckhoff-based data collector on GW11 via Profibus.

GW11 collects all data (machine PLC and additional data) and forwards it to the distributed control

system (DCS).

Additionally, two cloud environments are part of the use-case: a local, on-premise cloud for inter-

nal analysis (IBMPMQ) and a public cloud (AZURE) that facilitates the monitoring of multiple

machines across production sites. As the AZURE cloud environment is hosted on the internet, the

connection between factory network (ETH1) and AZURE is a bottleneck for data transmissions.

Besides, a production site can contain several machines that are all subject to this limited connec-

tivity. All local systems connected to ETH1 are configured to be part of the VLAN with ID 3.

At the current stage, the aim of the architecture is the collection of data for the generation of a

historic database reflecting the operating conditions of the plant. This database can be used to train

data analysis models. In the future, the data from the machine should be leveraged as a continuous

data stream to monitor the condition of all connected machines using a fleet management approach

and trained analysis models.

7. Evaluation 113

Figure 43: Retrofitted condition monitoring system of Use-Case A modeled in the system viewpoint.

U
s
e

C
a
s
e

_
A

_
S

y
s
te

m

P L C

GW11

B
e
c
k

h
o

ff
 C

X
5

1
2

0
-0

1
5
5

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

In
te

l
A

to
m

 E
3

8
1
5

1 1
.4

6
 G

H
z

x
6

4

2
 G

B

1
6
 G

B

M
C

M
C

P
N

1
1

E
T

H
1

T
R

A
N

S

T
R

A
N

S

D
A

D
A

F
O

R
W

F
O

R
W

S
T

O
R

D
B

R
O

U
T

R
O

U
T

V
IS

U

D
A

S
H

T
R

A
N

S

T
R

A
N

S

F
O

R
W

F
O

R
W

S
T

O
R

D
B

R
O

U
T

R
O

U
T

D
A

D
A

C
Y

C
L

E
T

IM
E

5
0

 m
s

D
P

1
1

T
R

A
N

S

T
R

A
N

S

E
C

A
T
1

E
T

H

E
T

H
1

A
D

D
R

E
S

S

1
9

2
.1

6
8

.1
6

.5

E
C

A
T

E
C

A
T
1

D
P

D
P

1

P C

PI11

D
P

D
P

1

E
T

H

E
T

H
1

P L C

Machine11

M
P

I

M
P

I1

D
P

D
P

1

P
N

E
T

H
1

E
T

H

E
T

H
2

E
T

H

E
T

H
3

E
T

H

E
T

H
4

P C

DCS

E
T

H

E
T

H
1

A
D

D
R

E
S

S

1
9

2
.1

6
8

.1
6

.7

Cloud

AZURE

E
T

H

E
T

H
1

Cloud

IBMPMQ

E
T

H

E
T

H
1

4
xS

S
ie

m
e
n

s
 S

in
u

m
e

ri
k
 8

4
0
D

 N
C

U
7

1
0
.2

 P
N

C P U

F
la

s
h

T
y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

1
 M

B
 S

R
A

M
,

1
G

B
 D

R
A

M

u
n
k
n

o
w

n

ST3

E
C

A
T

E
C

A
T
1

4
xS

ST4

E
C

A
T

E
C

A
T
1

4
xS

ST5

E
C

A
T

E
C

A
T
1

4
xS

ST6

E
C

A
T

E
C

A
T
1

4
xS

ST7
E

C
A

T

E
C

A
T
1

4
xS

ST8

E
C

A
T

E
C

A
T
1

4
xS

ST9

E
C

A
T

E
C

A
T
1

4
xS

ST10

E
C

A
T

E
C

A
T
1

4
xS

ST1

E
C

A
T

E
C

A
T
1

4
xS

ST2

E
C

A
T

E
C

A
T
1

4
xS

H
W

_
T

Y
P

E

E
P

3
1

7
4

-0
0

0
2

H
W

_
M

A
N

U
F

B
e
c
k
h
o
ff

V
a

r5
S

V
a

r6
S

V
a

r7
S

V
a

r1
S

V
a

r2
S

V
a

r3
S

H
W

_
T

Y
P

E

E
L
3

0
6

4

H
W

_
M

A
N

U
F

B
e
c
k
h
o
ff

V
a

r4
S

V
a

r1
2

S
V

a
r1

3
S

V
a

r1
4

S
V

a
r1

5
S

V
a

r9
S

V
a

r1
0

S

V
a

r8
S

V
a

r2
1

S
V

a
r2

2
S

V
a

r2
3

S V
a

r1
6

S
V

a
r1

7
S

V
a

r2
4

S

V
a

r2
6

S

V
a

r3
1

S
V

a
r3

2
S

V
a

r3
3

S V
a

r2
9

S

V
a

r3
0

S

A
D

D
R

E
S

S

1
9

2
.1

6
8

.1
6

.3

V
S

7
_
V

a
r2

V
S

7
_
V

a
r3

V
S

7
_
V

a
r4

V
S

7
_
V

a
r5

V
S

7
_
V

a
r6

V
S

7
_
V

a
r7

V
S

7
_
V

a
r8

V
S

7
_
V

a
r9

V
S

7
_
V

a
r1

0

V
S

7
_
V

a
r1

1

V
S

7
_
V

a
r1

2

V
S

7
_
V

a
r1

3

V
S

7
_
E

v
e

n
t1

V
S

7
_
E

v
e

n
t2

V
S

7
_
E

v
e

n
t3

V
S

7
_
E

v
e

n
t4

V
S

7
_
E

v
e

n
t5

V
S

7
_
E

v
e

n
t6

V
S

7
_
E

v
e

n
t7

V
S

7
_
E

v
e

n
t8

V
S

7
_
E

v
e

n
t9

V
S

7
_
E

v
e

n
t1

0

V
S

7
_
E

v
e

n
t1

1

V
S

7
_
E

v
e

n
t1

2

V
S

7
_
E

v
e

n
t1

3

V
S

7
_
E

v
e

n
t1

4

V
s
7

_
E

v
e

n
t1

5

V
S

7
_
E

v
e

n
t1

6

V
S

7
_
E

v
e

n
t1

7

V
S

7
_
E

v
e

n
t1

8

V
S

7
_
E

v
e

n
t1

9

V
S

7
_
E

v
e

n
t2

0

V
S

7
_
E

v
e

n
t2

1

V
S

7
_
E

v
e

n
t2

2

V
S

7
_
E

v
e

n
t2

3

V
S

7
_
E

v
e

n
t2

4

V
S

7
_
E

v
e

n
t2

5

V
S

7
_
E

v
e

n
t2

6

V
S

7
_
E

v
e

n
t2

7

V
S

7
_
E

v
e

n
t2

8

V
S

7
_
E

v
e

n
t2

9

V
S

7
_
E

v
e

n
t3

0

V
S

7
_
E

v
e

n
t3

1

V
S

7
_
E

v
e

n
t3

2

V
S

7
_
E

v
e

n
t3

3

V
S

7
_
E

v
e

n
t3

4

V
S

7
_
E

v
e

n
t3

5

V
S

7
_
E

v
e

n
t3

6

V
S

7
_
V

a
r1

V
L
A

N

3

V
L
A

N

3

V
L
A

N

3

V
a

r1
1

S
V

a
r1

8
S

V
a

r1
9

S

V
a

r2
0

S

V
a

r2
5

S

V
a

r2
7

S
V

a
r2

8
S

H
W

_
M

A
N

U
F

B
e
c
k
h
o
ff

H
W

_
T

Y
P

E

E
L
6

7
3

1

K
U

N
B

U
S

 R
e

v
P

i
C

o
re

 3
+

C P U

F
la

s
h

T
y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

B
ro

a
d

c
o

m
 B

C
M

2
8

3
7
B

0

4 1
.2

 G
H

z

A
R

M
v
8

1
 G

B

1
6
 G

B P
N

P
N

1

H
W

_
T

Y
P

E

G
A

T
E

 P
R

O
F

IN
E

T

H
W

_
M

A
N

U
F

K
U

N
B

U
SH

W
_

T
Y

P
E

G
a

te
 P

R
O

F
IB

U
S

H
W

_
M

A
N

U
F

K
U

N
B

U
S

A
D

D
R

E
S

S

Jf
9

2
3

5
kq

.a
zu

re
-a

p
i.

ne
t

A
D

D
R

E
S

S

19
2.

16
8.

16
.9

9

V
L
A

N

3

V
V

a
r2

_
re

s

V
V

a
r3

_
re

s

V
V

a
r4

_
re

s

V
V

a
r5

_
re

s

V
V

a
r6

_
re

s

V
V

a
r7

_
re

s

V
V

a
r8

_
re

s

V
V

a
r9

_
re

s

V
V

a
r1

0
_

re
s

V
V

a
r1

1
_

re
s

V
V

a
r1

2
_

re
s

V
V

a
r1

3
_

re
s

V
V

a
r1

4
_

re
s

V
V

a
r1

5
_

re
s

V
V

a
r1

6
_

re
s

V
V

a
r1

7
_

re
s

V
V

a
r1

8
_

re
s

V
V

a
r1

9
_

re
s

V
V

a
r2

0
_

re
s

V
V

a
r2

1
_

re
s

V
V

a
r2

2
_

re
s

V
V

a
r2

3
_

re
s

V
V

a
r2

4
_

re
s

V
V

a
r2

5
_

re
s

V
V

a
r2

6
_

re
s

V
V

a
r2

7
_

re
s

V
V

a
r2

8
_

re
s

V
V

a
r2

9
_

re
s

V
V

a
r3

0
_

re
s

V
V

a
r3

1
_

re
s

V
V

a
r3

2
_

re
s

V
V

a
r3

3
_

re
s

V
S

7
_
V

a
r1

_
re

s

V
S

7
_
V

a
r2

_
re

s

V
S

7
_
V

a
r3

_
re

s

V
S

7
_
V

a
r4

_
re

s

V
S

7
_
V

a
r5

_
re

s

V
S

7
_
V

a
r6

_
re

s

V
S

7
_
V

a
r7

_
re

s

V
S

7
_
V

a
r8

_
re

s

V
S

7
_
V

a
r9

_
re

s

V
S

7
_
V

a
r1

0
_

re
s

V
S

7
_
V

a
r1

1
_

re
s

V
S

7
_
V

a
r1

2
_

re
s

V
S

7
_
V

a
r1

3
_

re
s

V
IS

U

D
A

S
H

B
e
c
k
h

o
ff
 P

L
C

 w
it
h
 r

e
tr

o
fi
tt
e

d

s
e
n

s
o
rs

 a
tt
a

c
h
e
d

 t
o
 C

N
C

 m
a
c
h
in

e

R
e

tr
o

fi
tt
e
d

 g
a
te

w
a

y
 t
o

tr
a
n
s
la

te
 a

n
d

 f
o
rw

a
rd

 d
a

ta

fr
o
m

 t
h

e
 C

N
C

 m
a

c
h
in

e

L
o

c
a
l
c
lo

u
d
 f

o
r

c
o
n
d

it
io

n

m
o
n

it
o
ri
n

g
 a

n
d

 r
e

s
a
m

p
lin

g

P
u
b

lic
 c

lo
u
d
 f

o
r

e
x
te

rn
a
l
m

o
n

it
o
ri
n

g

E
x
is

ti
n

g
 S

ie
m

e
n
s
 c

o
n
tr

o
l

u
n

it
 o

f
C

N
C

 m
a
c
h
in

e

V
V

a
r1

_
re

s

S
T

O
R

D
B

P
u

b
li
c

O
n

-p
re

m
is

e

B
u

ilt
-i

n
 /

O
E

M

R
e
tr

o
fi
tt

e
d

c
o

m
p

o
n

e
n

t

D
is

tr
ib

u
te

d

C
o
n

tr
o

l

S
y
s
te

m

114 7. Evaluation

Two distinct data flows can be distinguished in the use-case: the flow of event (alarm) data (see

Figure 44) and the flow of continuously measured time series (see Figure 45). Both will be ex-

plained in more detail in the following.

The event data from the machine’s PLC (S7_Event1 to S7_Event36) is forwarded to the PI11, its

data format modified, and then sent to GW11. Event data is not generated continuously, hence its

frequency is comparatively low. Therefore, it can be directly forwarded also to the cloud environ-

ment. The collection of data from multiple machines in a single production facility should not

overload the connection between the factory and the public cloud (AZURE). Hence, data is for-

warded from GW11 directly to AZURE, the local cloud (IBMPMQ), the storage system of the DCS

(DCS.DB), and the data analyzer embedded into the DCS (DCS.DA) for the calculation of produc-

tion KPIs. Both cloud environments consist of a routing component, storage, and a dashboard for

visualizing the raw data. The resulting data flow is modeled in Figure 44. All flows are marked as

batch data as they do not transmit data continuously but on a sporadic, event-triggered basis.

Figure 44: Data flow diagram of Use-Case A with the description of event-based data.

UseCase_A_Data_1

MC

Machine11.MC

FORW

Machine11.FORW

TRANS

DCS.TRANS

STOR

DCS.DB

Machine11

PN11

DP11

ETH1 ETH1
ETH1

ROUT

AZURE.ROUT

STOR

AZURE.DB

VISU

AZURE.DASH

ETH1

AZURE

AZURE

PROTOCOL

MQTT

PORT

TCP:1883

TRANS

DCS.TRANS

STOR

IBMPMQ.DB

VISU

IBMPMQ.DASH

ETH1

IBMPMQ

ETH1

ENCRYPT

TLS

TRANS

PI11.TRANS

TRANS

GW11.TRANS

ROUT

IBMPMQ.ROUT

IBMPMQ

DA

DCS.DA

CYCLE_TIME

500ms

V S7_Event1

V S7_Event2

V S7_Event3

V S7_Event4

V S7_Event5

V S7_Event6

V S7_Event7

V S7_Event8

V S7_Event9

V S7_Event10

V S7_Event11

V S7_Event12

V S7_Event13

V S7_Event14

V s7_Event15

V S7_Event16

V S7_Event17

V S7_Event18

V S7_Event19

V S7_Event20

V S7_Event21

V S7_Event22

V S7_Event23

V S7_Event24

V S7_Event25

V S7_Event26

V S7_Event27

V S7_Event28

V S7_Event29

V S7_Event30

V S7_Event31

V S7_Event32

V S7_Event33

V S7_Event34

V S7_Event35

V S7_Event36

Direct forwarding of

event data to both

cloud environments

Parallel routing, storing and

display of the event data in the

cloud environments

Collection of raw event

data and forwarding by

gateway and Beckhoff PLC

ENCRYPT

none

FORW

DCS.FORW

FORW

DCS.FORW

DCS DCS

7. Evaluation 115

In contrast to the flow of event data, the other variables (S7_Var1 to S7_Var13 and Var1 to Var33)

are continuously measured time series. Interfacing several machines at the same time can overload

the internet connection to the public cloud (AZURE). Therefore, the variables are downsampled in

the private cloud to a lower sample frequency before forwarding them to the public cloud. The

respective data flow can be seen in Figure 45. While the Beckhoff PLC works with a cycle time

of 500 ms, the sample time of the directly connected system (DCS.DB, DCS.DA, and

IBMPMQ.DA) is 1 s. The analysis functionality of IBMPMQ.DA resamples the incoming data to

the sample time of 10 s and, therefore, further reduces the amount of data by a factor of ten. The

resampled data is then forwarded to the public cloud.

Figure 45: Data flow diagram of Use-Case A with the description of continuous data.

SAMPLE_TIME

10s

SAMPLE_TIME

1s

MC

Machine11.MC

FORW

Machine11.FORW

Machine11

PN11

DP11

TRANS

PI11.TRANS

TRANS

GW11.TRANS

ROUT

IBMPMQ.ROUT

DA

IBMPMQ.DA

ETH1

IBMPMQ

ROUT

IBMPMQ.ROUT

IBMPMQ

ROUT

AZURE.ROUT

STOR

AZURE.DB

VISU

AZURE.DASH

AZURE

AZURE

ETH1

STOR

DCS.DB

DA

DCS.DA

ETH1 ETH1

PROTOCOL

MQTT

PORT

TCP:1883

ENCRYPT

none

ENCRYPT

TLS

CYCLE_TIME

500ms

SAMPLE_TIME

1s

Var9S
Var10S

Var8S

Var7S

Var6S
Var12S
Var13S
Var14S
Var15S

Var11S Var16S
Var17S
Var18S
Var19S
Var20S

Var21S
Var22S
Var23S
Var24S
Var25S

Var26S

Var29S
Var30S

Var27S
Var28S

Var31S
Var32S
Var33S

Var1S
Var2S
Var3S

Var5S

Var4S

V S7_Var2

V S7_Var3

V S7_Var4

V S7_Var5

V S7_Var6

V S7_Var7

V S7_Var8

V S7_Var9

V S7_Var10

V S7_Var11

V S7_Var12

V S7_Var13

V S7_Var1

V Var2_res

V Var3_res

V Var4_res

V Var5_res

V Var6_res

V Var7_res

V Var8_res

V Var9_res

V Var10_res

V Var11_res

V Var12_res

V Var13_res

V Var14_res

V Var15_res

V Var16_res

V Var17_res

V Var18_res

V Var19_res

V Var20_res

V Var21_res

V Var22_res

V Var23_res

V Var24_res

V Var25_res

V Var26_res

V Var27_res

V Var28_res

V Var29_res

V Var30_res

V Var31_res

V Var32_res

V Var33_res

V S7_Var2_res

V S7_Var3_res

V S7_Var4_res

V S7_Var5_res

V S7_Var6_res

V S7_Var7_res

V S7_Var8_res

V S7_Var9_res

V S7_Var10_res

V S7_Var11_res

V S7_Var12_res

V S7_Var13_res

UseCase_A_Data_2

Resampling of

continuous data to a

sample time of 10s

in private cloud and

forwarding to public

cloud

Resampled points

introduced as new

variables and decoupled

from original data flow

(SinkSource)

Combination of original data

from Siemens control unit

(right) and retrofitted sensors

(bottom) in GW11 as central

data collector

V Var1_res

ETH1

V S7_Var1_res

TRANS

DCS.TRANS

DCS

FORW

DCS.FORW

116 7. Evaluation

Table 16 gives an excerpt of the full data mapping table for Use-Case A. All variables are marked

as time series as they contain the primary data element and an associated timestamp. Nevertheless,

only the non-event data is flowing continuously with the cyclic update frequencies shown in the

data flows.

Table 16: Excerpt of the data mapping table for Use-Case A.

V
a
ri

a
b

le
U

ID

S
y
s
te

m
U

ID

S
y
s
te

m
S

p
e

c
if

ic

V
a
ri

a
b

le
U

ID

D
e
ri

v
e
d

fr
o

m

V
a
ri

a
b

le
U

ID

D
e
s
c
ri

p
ti

o
n

A
d

d
re

s
s

T
y

p
e

R
e
s
o

lu
ti

o
n

T
im

e
s
e
ri

e
s

Var1 GW11 Var1 Variable from gateway GW11.1.1 FLOAT 16 bit yes

S7_Event1 PI11 S7_Event1 Event message from Sinumerik BOOL yes

Var1_res IBMPMQ Var1_res Var1 Variable from gateway, resampled FLOAT 16 bit yes

Var2_res IBMPMQ Var2_res Var2 Variable from gateway, resampled FLOAT 16 bit yes

S7_Var1_res IBMPMQ S7_Var1_res S7_Var1 Variable from Sinumerik, resampled INT32 yes

S7_Var2_res IBMPMQ S7_Var2_res S7_Var2 Variable from Sinumerik, resampled STRING yes

7.2.2. Use-Cases B to D: Anomaly Detection and Alarm Analysis

The detailed models (system and data flow viewpoints) of Use-Cases B to D can be found in 14.

In the following, only a brief overview of the use-cases is given.

The second use-case (B, see Figures 55 and 56 in Appendix A.1) foresees a combined cloud and

edge architecture for anomaly detection. Four to five production plants with one PLC each and

several hundred in- and outputs per PLC are connected to a shared cloud environment. Therefore,

a Siemens IPC communicates with various bus couplers on the field level and executes the ma-

chine control program. This program calculates additional variables in the control logic. Addition-

ally, a local computer is connected to the IPC over the field bus and hosts a human-machine inter-

face to visualize process values and to interact with the production process. Based on the data that

is available on the IPC, an anomaly detection system is implemented. Therefore, the raw data is

forwarded to a public cloud hosted by the OEM of the production machine. As the amount of data

to be transmitted to the public cloud environment is subject to internet connectivity, data compres-

sion is executed. Hence, the Siemens IPC compresses the data (DA_CP) and forwards it to the

cloud environment, where it is decompressed by a second system (DA_RC) and forwarded to the

database. In the cloud environment, data from multiple machines is processed to train an anomaly

detection model. The trained models are then sent back to the field level and executed on the edge

(DA_RA) to detect anomalies during the production process.

7. Evaluation 117

The two other use-cases (C, see Figures 57 and 58 in Appendix A.2; and D, see Figures 59 and 60

in Appendix A.3) describe alarm management systems for two kinds of production machines,

which support operators by preventing alarm floods and finding their root-causes. In use-case C,

approximately 500,000 alarms are generated per year of operation with 200 distinct types of alarms

for each production machine. The alarm management system of use-case C is hosted in a public

cloud by the OEM of the machine, which offers additional diagnostic services. Therefore, the

alarm messages of several hundreds of these machines, scattered over multiple customers and

production sites, have to be transferred to the public cloud. In use-case D, the hosting of the alarm

management systems follows a hybrid approach with both private and public clouds. Customers

can analyze data in their private cloud to ensure privacy. As an additional service, the OEM offers

to combine data with datasets from similar machines to improve the quality of the analysis. One

machine generates between 3,600,000 and 6,000,000 alarm messages per year, with there being

approximately 40 machines per customer and production site. A total of 500 distinct alarms exist.

Several customers connect their own private clouds with the public cloud offered by the OEM.

[TWV20]

7.2.3. Results of the Expert Evaluation

First, the completeness of the graphical notation and its elements was evaluated for both view-

points. The experts pointed out that all relevant information could be captured and structured using

the notation. Both the system architecture, with its hardware and software elements (Req-MSys), as

well as the data flow through the system (Req-MDF), could be expressed and structured. The dif-

ferentiation between hardware devices and software functionality that is executed on this hardware

in the system viewpoint was considered as extremely helpful to structure the system. The same is

valid for the data flow view, where the distinction between the types of data handling (Source,

Sink, Transducer, and SinkSource) is useful to follow the flow of data. The data can easily be

traced through the associated hardware and software systems via the combination of the two views.

This separation of concerns greatly reduces the complexity when designing and sizing data col-

lection architectures for all involved parties. Furthermore, the number of different constructs and

symbols is relatively low and makes the notation manageable for different expert groups

(Req-MGraph). [TWV20]

Concerning the annotations as an essential part of the graphical notation during the specification

and design of system architectures, the expert opinion was positive as well (Req-MPropReq). Espe-

cially for complex connected production cells and robots, latency requirements or protocol con-

straints can easily be structured and exchanged. The experts considered the categorizing of anno-

tations (time, architecture, and data) as helpful to separate concerns. Minor concerns were related

118 7. Evaluation

to the absolute number of symbols, especially in large data flow views. Here, the number of anno-

tations can be huge in a confined space. Grouping of annotations and references to multiple data

streams or nodes in the data flow could be considered for future versions of the notation. Further-

more, an interactive graphical editor may overcome this limitation as visibility of elements could

be adjusted on-the-fly to provide experts only with the needed information. This would, for in-

stance, include separate modeling views with only relevant model elements selectable and auto-

completing of unique names, properties, and requirements. Furthermore, the connectable model

elements could be highlighted if a network or an annotation is selected inside the editor. The editor,

therefore, would support experts with an improved and simplified workflow. [TWV20]

Especially the distribution of information across separate viewpoints and multiple sheets was

highly appreciated. The information is efficiently distributed and grouped to manage the density

and amount of information per sheet. Capturing all flows of data in large systems proved to be

challenging in one diagram. Grouping of these flows in sub-views on separate sheets limited the

overall complexity. The means provided for integrating the two viewpoints and different sheets

were considered sufficient and intuitive by the experts. Still, an integrated editor for the DSL, as

well as an automatic synchronization between the model instance and its graphical representation,

is currently lacking (Req-MGraph). [TWV20]

Experts had no problem differentiating between the distinct types of elements and annotations.

Additionally, utilization of the same family of shapes for the specification of properties and re-

quirements was pointed out as helpful without compromising the perceptual discriminability

(Req-MGraph). [TWV20]

In summary, the graphical notation is a powerful approach to structure information during the

engineering and operational phases of CPSoS. In contrast to existing approaches, the notation can

capture information from the operational technology as well as the IT domains. It contains con-

structs for combined hardware and software architecture as well as the stream of data through all

connected systems on different levels of the system hierarchy. [TWV20]

7.3. Lab-scale Feasibility Study

Based on the architecture concept and the developed DSL, a model-driven generation of the com-

munication architecture of data collection architectures can be carried out. In the following Sec-

tion, the results of a reasonably complex, lab-scale feasibility study will be presented and dis-

cussed. The case-study will be implemented twice: once using a classical, manual programming

approach and once with the model-driven approach developed in this work. After an introduction

to the experimental setup, the graphical models of the case-study will be presented. Afterward, the

7. Evaluation 119

model-driven generation step and the deployment of the components is discussed. The Section

closes with a comparison of the implementation efforts for initial deployment and redeployment

between the model-driven and the classical approaches.

7.3.1. Experimental Setup

The experimental system consists of several lab-scale production plants and connected systems

for data analysis and visualization. The UML deployment diagram in Figure 46 gives an overview

of all relevant systems. It should be noted that the diagram includes all systems that must be inter-

faced, but not the architecture’s technical realization, including infrastructure components and data

adapters needed for the implementation. The experimental setup aims to describe a sufficiently

complex and representative scenario for the evaluation of the developed, model-driven approach.

Therefore, it includes automated production systems, further legacy systems, as well as newly

implemented greenfield systems (Req-APOP). Furthermore, the systems are part of different net-

works, all connected to each other. The systems will be introduced in the following.

Figure 46: Systems in the lab-scale feasibility study without gateways and infrastructure components.

<<RS232>> <<EtherCAT>>

<<ethernet>> <<ethernet>>

<<network>>

Enterprise Network
<<ethernet>>

<<device>>

Dashboard Server

<<artifcat>>

Visualization

<<device>>

Legacy Dashboard Server

<<artifcat>>

Grafana SQL

SQL

Endpoint

<<artifcat>>

PostgreSQL

<<ethernet>> <<ethernet>>

<<device>>

Analysis Workstation 1

<<executionEnvironment>>

MATLAB 2019b

<<artifcat>>

Data Analysis

<<device>>

Analysis Workstation 2

<<executionEnvironment>>

Python 3

<<artifcat>>

Data Quality

Analysis

<<ethernet>> <<ethernet>>

<<device>>

MES Server

REST

<<artifcat>>

MES

<<ethernet>>

<<device>>

Siemens S7-1516-3 PN/DP

<<executionEnvironment>>

SIMATIC STEP 7

ISO-on-TCP

<<artifcat>>

PLCProgram

<<PROFINET>>

<
<
e
th

e
rn

e
t>

>

<<ethernet>>

<<ethernet>>

<<network>>

Local Network

<<plant>>

MPS

<<plant>>

myJoghurt

<<plant>>

Self-X

<<device>>

Beckhoff CX2040

<<executionEnvironment>>

Beckhoff TwinCAT3
OPC UA

Server

<<device>>

MPSController

ADS Server

<<artifcat>>

PLCProgram

TCP

Server

<<artifcat>>

Communicator

<<network>>

Local Network

<<device>>

Raspberry Pi 3 Model B

ISO-on-TCP

MQTT
<<artifcat>>

Node-RED

120 7. Evaluation

Modular Production System (legacy system)

Modular Production Systems (MPS) [Fes20] are a series of production modules for research and

teaching manufactured by the German company Festo. The systems represent typical applications

of automation components. In this work, a distribution station with a stack magazine and a pick

and place unit is interfaced. The station features a total of 32 binary I/Os all connected to a so-

called EasyPort [Fes08]. The EasyPort allows access to these I/Os via a serial RS232 connection

with a proprietary protocol. An additional computer (MPSController) hosts an application that

communicates with the EasyPort using this proprietary protocol and executes the corresponding

logic to control the MPS plant. The application was developed for lecture purposes and not to

allow access to the plant, yet it allows to read/write all I/Os over a direct TCP connection. The

protocol of the TCP connection is another proprietary protocol tailor-made for the specific appli-

cation. Therefore, the system represents a legacy system, with closed interfaces that can only be

interfaced via a retrofitted, external data adapter.

myJoghurt (evolving, retrofitted plant)

The myJoghurt production plant [Ins13; Ins20; May⁺13; Vog⁺14d] is one of the key research de-

monstrators of the Institute of Automation and Information System at the Technical University of

Munich. The plant serves as an Industrie 4.0 demonstration platform and simulates the manufac-

turing of individualized yogurt with a lot size one. It consists of three plant sections: a storage

system with a 5-axis Mitsubishi handling robot mounted on an additional, linear axis; a process

technology part for batch manufacturing and the two associated filling stations, each with one tank

for liquid and two silos for solid material; and a material handling system with multiple switches

and conveyors that transports products between storage system and filling stations. Through the

combination of discrete and batch production processes, the plant resembles an overall hybrid

production process with an interface between batch and discrete processes at the filling stations.

The plant is controlled by a central Beckhoff CX2040 PLC running on TwinCAT3 [Bec19d]. All

ten switches and 22 conveyor drives are directly connected to the PLC over an EtherCAT bus.

Besides, the process technology part, several barcode scanners mounted next to the conveyors,

and the robot are interfaced over Profibus. The Profibus master terminal is not mounted directly

on the PLC but on the first bus coupler inside the EtherCAT bus. In total, around 250 I/Os, as well

as 250 internal variables, are part of the control system and can be accessed using ADS or

OPC UA. The plant represents a typical, evolving plant that is retrofitted and updated over time:

new devices are introduced into the system, and control hardware is replaced, while existing de-

vices remain part of the plant.

7. Evaluation 121

Self-X Material Flow Demonstrator

The Self-X material flow demonstrator [Aic18] is a research testbed related to modular software

development and self-x functionalities in the domain of intralogistics. It features two roller-driven

tracks as well as a bend and T-junctions to enable material flow. A Siemens S7-1516-3 PN/DP

PLC is the central control unit of the plant and connected to the distributed I/Os over Profinet (167

in- and outputs in total). For data access, the system is retrofitted with an external gateway. A

Raspberry Pi 3 Model B hosts Node-RED [JS 19], a visual, browser-based programming environ-

ment for IoT applications. Node-RED includes basic functionalities to get, process, and forward

data, but also provides a flexible extension mechanism for loading additional functionalities from

user packages. One of these functionalities is the support for the S7 ISO-on-TCP protocol

[RFC1006]. Data is transferred from the PLC to the gateway, processed, and then forwarded via

MQTT. The Self-X plant is not connected to a larger network, but instead directly attached to the

gateway over Ethernet. Therefore, the gateway decouples the plant from the superordinate Ether-

net network, to which the gateway is connected.

Other Systems

Furthermore, the case-study includes several additional systems that are introduced briefly in the

following:

• a sample MES functionality is part of the system. It provides recipes, order data, and pro-

gress reports associated with the manufacturing process in the myJoghurt plant over a

REST interface;

• a greenfield dashboard that is developed in the course of the architecture implementation.

It should be used to monitor the operation of the myJoghurt plant;

• an additional legacy dashboard based on Grafana [Gra20], a browser-based dashboard for

visualization of data. Grafana is an open-source, widely adopted, easy-to-use graphical

dashboard used in various industrial applications. The Grafana instance is configured to

use a PostgreSQL database [Pos19] hosted on the same machine for data storage. Data

can be visualized in the dashboard by storing it in the database;

• a data analysis workstation based on MATLAB 2019b, as MATLAB is an accepted ap-

plication in the engineering domain [Mat19]; and

• an additional data analysis workstation based on Python 3 representing a typical environ-

ment for industrial data analysis [Pyt19].

122 7. Evaluation

These additional systems, as well as the system that will be implemented as infrastructure or data

adapter systems, are hosted on Raspberry Pis with Debian Buster [Deb19] or computers / virtual

machines with Windows 10 / Ubuntu Linux 18.04.3 LTS [Can18].

7.3.2. Graphical Model of the Lab-scale Architecture

Based on the experimental setup discussed above, a suitable data collection is conceptualized and

modeled using the developed DSL. The AMQP protocol was chosen as a suitable protocol for the

initial realization of the data collection architecture. With an installed RabbitMQ broker, it pro-

vides good scalability as well as support for advanced QoS features that may be necessary for the

future. The respective graphical models can be found in Appendix B. Here, Figures 61 to 63 con-

tain the system diagrams, while Figures 64 to 67 display the corresponding data flow diagrams.

All infrastructure systems can be found in the system diagram in Figure 63. One of the systems

(rabbitmq) hosts an instance of the mentioned RabbitMQ broker as a central communication back-

bone of the data collection architecture. Furthermore, an additional Mosquitto broker is part of the

system (mosquitto) that can accept and forward the data from the gateway of the Self-X plant over

MQTT. The systems Worker0 to Worker3 provide data translation functionalities used to translate

the data formats between the connected heterogeneous systems. All four systems are based on a

cheap Raspberry Pi, Debian Linux, and Docker. Due to the missing support of the Beckhoff ADS

library for the .NET Core 3.1 framework, the data adapter for the myJoghurt plant is hosted on a

separate Windows machine (myJoghurtAdap). Here, the data translator uses the gRPC interface to

connect the ADS functionality to the architecture.

The data from the myJoghurt production plant, as well as the order data from the MES, is sent to

the Python-based DA2 analyzer. Here, the first analysis functionality (MESDA) calculates KPIs

based on the production and MES data. While the greenfield dashboard (Viewer.HMI) receives all

data, including the KPIs, only the KPIs are forwarded to the Grafana dashboard and the MES

database. Therefore, the data flow is split at DA2.MESDA, which acts as a Transducer for the data

flow with destination greenfield dashboard, and as a SinkSource for the other flow. In parallel, the

second analyzer functionality (DA2.DriveCM) calculates the probability of an anomaly for the two

monitored servo drives of the myJoghurt plant. The results are only sent to the data translator

related to the greenfield dashboard (Worker3.FDA) and are not available to any other system.

A second anomaly monitoring functionality is available in DA1.DA as a MATLAB program. The

analyzer monitors the condition of the MPS plant. It calculates timings of typical actions, counts

them, and provides an additional anomaly score. All data, including this, is collected by the data

collection architecture and sent to the Grafana dashboard for visualization and the MES database

7. Evaluation 123

for long-term storage. The only exceptions are the results of the drive condition monitoring men-

tioned above that are only available in the greenfield dashboard.

The modeling of all involved systems and data flows was carried out by three persons. The time

efforts for the modeling are summarized in Table 17 with a description of the profiles of the par-

ticipants. Therefore, as a baseline, the modeling effort is assumed as the maximum measured effort

of 4 h 40 min (4.66 h) in the following. This value includes time for adjusting the layout of the

diagrams as well as checking the consistency of the models.

Table 17: Modeling efforts for modeling the lab-scale case-study of three persons and their experience

with the notation and background in industrial automation.

Person Experience level Total effort for modeling

of the lab-scale setup

1
Well-experienced user, strong industrial automation back-

ground, applied the graphical notation several times.
2 h 30 min

2
Semi-experienced user, medium industrial automation

background, applied the notation occasionally.
4 h 20 min

3
Inexperienced user, strong industrial automation back-

ground, recently introduced to the notation.
4 h 40 min

7.3.3. Model-driven Generation of the Communication Architecture

After the creation of the model instance, the model-driven generation of the communication archi-

tecture using AMQP as the standard communication protocol is executed. The model-to-text trans-

formation step included the generation of the pre-configured communication architecture as C#

code (Req-GCom), the setup of Visual Studio 2019 project files, related Docker configuration files

for the generation of individual containers per software functionality, and the configuration for the

RabbitMQ broker. In total, 4284 lines of C# code were generated, with an additional 616 lines of

configuration and project files.

Subsequently, the application-specific logic was manually implemented to yield the prototype of

the data collection architecture (cf. Figure 32). This code included the internal analyzer and dash-

board functionalities which process the communicated data. Furthermore, credentials were up-

dated by hand, as they should not be part of the models due to security reasons. In the next step,

the individual software functionalities were compiled and deployed. While all worker functional-

ities (Worker0 to Worker3, cp. Section 7.3.2 and Figure 63) were deployed as Docker containers

to the respective Raspberry Pis using the CI pipeline (cf. Section 6.3), the other functionalities

were manually copied to the respective systems and started.

124 7. Evaluation

The data flows in the deployed data collection architecture were examined for all modeled sys-

tems. As expected, the modeled data flows were correctly set up and working. With the dashboard,

it was possible to monitor the operation of the connected plants and the flow of data. This includes,

besides the newly implemented systems, data from the existing legacy systems. These systems

were successfully interfaced and integrated into the data collection architecture (Req-SFLeg). In

addition, the existing control hierarchy was unaffected as the data collection architecture was im-

plemented in parallel to the existing systems. All plants were correctly working, and the control

interaction was not conducted over the architecture (Req-APOP).

In the next step, the created models were modified. Instead of AMQP, the usage of the MQTT

protocol was specified as MQTT is a lightweight protocol especially suitable for IoT applications.

The update of the respective annotations took a total of 20 minutes. The model transformation step

for the creation of the preconfigured data collection architecture was executed again for the mod-

ified models (Req-GCom). This resulted in a total of 4284 newly generated lines of C# code, with

an additional 288 lines of configuration and project files. As the code sections with the manually

programmed application-specific code are marked as protected, they were not overwritten in the

code generation step. Furthermore, due to the defined programming interfaces and the abstraction

of the protocol-specific aspects in the underlying software framework, no additional modifications

besides the updating of the credentials were necessary. Therefore, this application-specific code

can remain unchanged while still being functional (Req-SFAPI, Req-SFACP).

After a new compilation step and a redeployment, the data collection architecture was again cor-

rectly running and working. This time based on the MQTT protocol instead of the AMQP.

7.3.4. Effort Metrics for Deployment and Redeployment

Based on the results of the model-driven generation of the data collection architecture in the pre-

vious Section, a comparison of implementation efforts between model-driven and classical, man-

ual programming approach is performed. This comparison should answer the question if a model-

driven generation decreases the implementation efforts for initial deployment (Req-ADep) and mi-

gration of such architectures (Req-AReDep).

Therefore, the data collection architecture was additionally implemented manually. The imple-

mentation considered all systems and data flows as previously modeled. The aim was to replicate

the model-driven architecture using the AMQP protocol for communication as far as possible. In

total, 989 lines of C# code were manually implemented (𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙). This excludes the implemen-

tation effort for the application-specific logic as these are also not part of the model-driven gener-

7. Evaluation 125

ation. All code was programmed following the same programming style and in avoidance of writ-

ing unnecessary code (e.g., for future extensions, increased modularity, or better exception han-

dling).

For a comparison of the programming effort, measured in lines of code (LoC), and the effort using

the model-driven approach, a common effort metric has to be found. The first possibility is a direct

comparison of the lines of code between the output of the model-driven and the manually imple-

mented approaches. Yet, this is not a suitable comparison, as the timely efforts per line of code

differ greatly. Furthermore, the automatically generated code does not follow the same coding

conventions as the manually implemented code and includes additional code portions targeted to

increase the modularization of the code.

Another possibility would be a conversion factor for every hour of modeling to lines of code.

However, as this is highly dependent on the DSL, the underlying use-case, and the model-trans-

formation step, no representative figures can be found in the literature. As an alternative, figures

related to the productivity of an experienced programmer can be used. Several studies can be found

in the literature that investigate different aspects of programming productivity during the last dec-

ades. While many studies focus on outdated programming languages, some recent publications

can be found. For instance, Cusumano et al. [Cus⁺03] give an average productivity of 436 LoC per

month and programmer in Europe. They investigated a total of 104 large-scale software projects

worldwide from leading software companies written with different programming languages. This

productivity corresponds to approximately 2.5 LoC/h (4.33 weeks per month, five working days

per week, and eight hours work per day), but includes related tasks, such as code testing and code

reviews. Alternative figures can be found in a study from Prechelt [Pre00]. The study compares

the implementation of a small-scale program by individual programmers in different programming

languages, including Java, which is quite similar to C#. Prechelt gives a median productivity of

22 LoC/h for Java, and a productivity of 36 LoC/h for the upper quartile (75th percentile, including

75% of the observations). These figures are significantly higher than the productivities measured

by Cusumano et al. [Cus⁺03]. Possible reasons are the smaller scale of the project and the imple-

mentation by just single programmers, which limits the productivity loss caused by increased doc-

umentation and communication efforts. They represent very high productivities which are not

commonly found in industry, but on the other hand, the absolute maximum productivity of a pro-

grammer. Therefore, productivity measured at the upper quartile 𝑝𝐿𝑜𝐶 = 36 LoC h⁄ will serve as

a basis for a conservative comparison of the implementation efforts between a manual implemen-

tation and the model-driven approach. With 𝑝𝐿𝑜𝐶, the implementation effort 𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 for a manual

programming can be calculated to

126 7. Evaluation

𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 =
𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙

𝑝𝐿𝑜𝐶
 =

989 LoC

36
LoC

h

 = 27.47 h. (1)

In comparison, the implementation effort for the model-driven approach 𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 corre-

sponds to the time for modeling of the system, therefore

𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 = 4.66 h. (2)

The relative effort between both implementations without the initial creation of the model-driven

toolchain, can, consequently, be accounted to

𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛

𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
= 16.96%. (3)

The effort is accordingly significantly reduced by the model-driven approach, which simplifies

the implementation of data collection architectures (Req-ADep). The effort for the initial creation

of the toolchain will be considered in one of the extrapolation case-studies in Section 7.5.

In case of a migration from one communication protocol to another (in this example from AMQP

to MQTT), the manual implementation must undergo a partial reimplementation. This includes an

adaption of all communication functionalities and also possibly modifications to the application-

specific logic due to interface incompatibilities. The respective number of modified lines of codes

will be in the magnitude of the AMQP-based implementation.

On the other hand, using the model-driven approach, the models have to be updated. Furthermore,

some single lines of the newly generated code that contain the credentials of the respective systems

have to be modified after the execution of the code generation step (approximately 15 in total for

the use-case). This results in a total effort of approximately 45 minutes. The application-specific

code can remain unchanged as the same interfaces are supported as before the migration.

Therefore, a model-driven data collection architecture can also reduce the implementation effort

for migration in comparison to manual migration (Req-AReDep). Under the assumption that a partial

reimplementation of the architecture for MQTT accounts for 60% of the initial effort (593 LoC in

total), the relative effort is significantly reduced to 4.55%.

7. Evaluation 127

7.4. Industrial Case-Study

The model-driven generation of the communication architecture is applied to an industrial case-

study to evaluate its scalability. Therefore, Case-Study A from Section 7.2.1 is used as a basis for

the model-driven approach.

Based on the models, a total of 2906 lines of C# code were generated. Additionally, the model

transformation process produced another 110 lines of configuration, project, and docker files.

Manual checking of the code verified the correct generation of the preconfigured data collection

architecture (Req-GCom). No suitable hardware, as defined in the models, was available for the

scalability tests. Therefore, simple direct forwarding functionalities substituted the missing appli-

cation-specific implementation of the internal logic of all systems. The data collection architecture

was then deployed and executed in docker containers to verify its proper functioning. All modeled

data flows were correctly working as specified, and data was flowing through the system.

It can be concluded that the model-driven approach for the development of data collection archi-

tectures is also applicable to the industrial use-case. Moreover, the industrial case-study mani-

fested the representativeness of the lab-scale feasibility study as the number of considered systems,

as well as the generated lines of code, are significantly greater for this scenario.

7.5. Effort Extrapolation Case-Study

The case-studies in Sections 7.3 (lab-scale feasibility study) and 7.4 (industrial case-study) pro-

vided insights into the model-driven generation of the communication architecture. They included

an analysis of the feasibility and scalability of the approach, as well as a basic implementation

effort comparison for a specific use-case. Nevertheless, an answer to the question of whether the

model-driven approach can decrease implementation efforts for a broader range of use-cases could

not be given. Therefore, an extrapolation case-study will be presented in the following.

The case-study is based on minimal publisher/subscriber pairs with an adjustable number of trans-

ported variables between both systems. Figure 47 gives the models of the smallest possible system

with one pair and one communicated variable. The publisher is a PC with a legacy software func-

tionality that generates one variable named TestByte. This data is routed over a middleware func-

tionality on an additional computer and forwarded to the subscriber. The protocol specification in

Figure 47 is a placeholder as various protocols will be considered.

128 7. Evaluation

Figure 47: System and data flow of the minimal extrapolation use-case modeled with the graphical mod-

eling notation. The protocol specification (requirement) as a placeholder labeled with XY is to

be replaced by the specific protocol.

As a baseline, the described minimal system was implemented manually in C# using the technol-

ogy-specific programming libraries for AMQP, Apache Kafka, Beckhoff ADS, MQTT, and

OPC UA. The code was developed with a focus on decoupling the communication functionalities

from the main functionality of the legacy program (sending/receiving of data). This decoupling

was done to improve reusability in case of migrations between communication technologies. All

code samples for the minimal producers and subscribers can be found in Listings 1 to 10 in Ap-

pendix C. Lines of code metrics for all clients were collected to calculate the average effort for

implementing a minimal producer and subscriber pair. For the case-study, it was assumed that the

line of code, where the communication functionality is instantiated and configured with address,

port, and credentials (var client = …), must be changed by hand in both manual coding and

model-driven generation. Hence, this line of code is not accounted for, and all raw lines of code

results are decremented by one. Afterward, all Listings were analyzed concerning the migration

between communication technologies. Due to the decoupling mentioned above, some parts of the

programs can remain unchanged during migration. Therefore, only modified lines were counted.

Table 18 summarizes the programmed, corrected lines of code per protocol for initial deployment,

and migration between communication technologies. Furthermore, it includes the respective mean

lines of code across all considered protocols.

Extrapolation_Sys

P

C

P
ro

d
u

c
e
r ETH

ETH1

LEG

SW

P

C

S
u

b
s
c
ri

b
e
r

ETH

ETH1

LEG

SW

V TestByte

LEG

Producer.SW

LEG

Subscriber.SW

P

C

B
ro

k
e
r

ETH

ETH1

ROUT

MW

ETH

ROUT

Broker.MW

ETH

ETH

V TestByte

PROTOCOL

XY

Extrapolation_DF

7. Evaluation 129

Table 18: Manually programmed lines of code (LoC) for minimal producer and subscriber functionali-

ties. The corresponding Listings can be found in Appendix C.

Protocol Total lines of Code (LoC)

without user name and password

for an initial deployment

Total lines of Code (LoC)

without user name and password

for a migration

P
ro

d
u

ce
r

S
u

b
sc

ri
b

er

P
ro

d
u

ce
r/

su
b

sc
ri

b
er

 p
ai

r

P
ro

d
u

ce
r

S
u

b
sc

ri
b

er

P
ro

d
u

ce
r/

su
b

sc
ri

b
er

p
ai

r

AMQP 27 42 69 19 29 48

Beckhoff ADS 29 54 83 21 41 62

Apache Kafka 26 50 76 18 37 55

MQTT 20 33 53 12 20 32

OPC UA 52 64 116 44 51 95

MEAN 30.8 48.6 79.4 22.8 35.6 58.4

The total, average lines of code can be divided into lines of code for the programming of a repre-

sentative producer/consumer pair 𝑖 (𝐿𝑜𝐶𝑃𝑎𝑖𝑟𝑖
) and the additional lines of code per communicated

variable 𝑗 between the two systems (𝐿𝑜𝐶𝑉𝑎𝑟𝑖,𝑗
, 2 for an initial deployment, 0 for a migration).

Therefore, the total lines of code of a project 𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙 can be calculated with the number of pairs

𝑁𝑃𝑎𝑖𝑟 and the number of variables 𝑁𝑉𝑎𝑟𝑖 per pair 𝑖 to

𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙 = ∑ (𝐿𝑜𝐶𝑃𝑎𝑖𝑟𝑖
+ ∑ (𝐿𝑜𝐶𝑉𝑎𝑟𝑖,𝑗

)
𝑁𝑉𝑎𝑟𝑖

𝑗=1
)

𝑁𝑃𝑎𝑖𝑟

𝑖=1

. (4)

Both, 𝑁𝑃𝑎𝑖𝑟 and 𝑁𝑉𝑎𝑟𝑖 , must be integers larger than 0. With the programming productivity of

𝑝𝐿𝑜𝐶 = 36 LoC/h [Pre00] from Section 7.3.4, the implementation effort 𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 for a manual

programming can be calculated as

𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 =
𝐿𝑜𝐶𝑇𝑜𝑡𝑎𝑙

𝑝𝐿𝑜𝐶
. (5)

In Table 19, the average efforts in lines of code per producer/subscriber pair based on the results

across all considered protocols from Table 18, as well as the programming efforts based on the

productivity, are summarized. These will be used in the extrapolation case-study as representative

implementation efforts for manual programming

130 7. Evaluation

Table 19: Effort in lines of codes and programming time for manual implementation of minimal pro-

ducer/subscriber pairs.

Symbol Description Initial

deployment

Migration

𝐿𝑜𝐶𝑃𝑎𝑖𝑟𝑖

Average lines of code per

producer/subscriber pair 𝑖
77.4 58.4

𝐿𝑜𝐶𝑉𝑎𝑟𝑖,𝑗
 Average lines of code per

variable 𝑗 in producer/subscriber pair 𝑖
2 0

𝐸𝑃,𝑃𝑎𝑖𝑟𝑖

Average programming effort per

producer/subscriber pair 𝑖
2 h 8 min 20 s 1 h 37 min 20 s

𝐸𝑃,𝑉𝑎𝑟𝑖,𝑗
 Average programming effort per

variable 𝑗 in producer/subscriber pair 𝑖
3 min 15 s 0 s

On the other hand, the effort 𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 using the model-driven approach is influenced by

two factors:

• first, an initial effort 𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛 for the creation of the DSL, the model-driven generation

of the communication architecture, and the underlying software framework. This initial

effort includes the implementation of all protocols from Table 18; and

• second, a variable modeling effort 𝐸𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 summing up the modeling efforts for every

element to be modeled. For the effort extrapolation case-study, 𝐸𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 can be ex-

pressed as

𝐸𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 = ∑ (𝐸𝑀,𝑃𝑎𝑖𝑟𝑖
+ ∑ (𝐸𝑀,𝑉𝑎𝑟𝑖,𝑗

)
𝑁𝑉𝑎𝑟𝑖

𝑗=1
)

𝑁𝑃𝑎𝑖𝑟

𝑖=1

, (6)

with 𝐸𝑀,𝑃𝑎𝑖𝑟𝑖
the modeling effort per producer/subscriber pair 𝑖 and 𝐸𝑀,𝑉𝑎𝑟𝑖,𝑗

 the modeling

effort for each variable 𝑗 per pair 𝑖. The figures listed in Table 20 were measured for an

experienced engineer assuming an automatic synchronization of the graphical model and

the metamodel instance. All measurements were rounded up to full minutes. Here, the

efforts are independent of the underlying communication protocol.

Table 20: Effort in time for modeling minimal producer/subscriber pairs.

Symbol Description Initial

deployment

Migration

𝐸𝑀,𝑃𝑎𝑖𝑟𝑖
 Modeling effort per producer/subscriber pair 𝑖 10 min 1 min

𝐸𝑀,𝑉𝑎𝑟𝑖,𝑗
 Modeling effort per variable 𝑗

in producer/subscriber pair 𝑖
 1 min 0 min

7. Evaluation 131

Therefore, 𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 is expressed as

𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 = 𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛 + 𝐸𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔

= 𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛 + ∑ (𝐸𝑀,𝑃𝑎𝑖𝑟𝑖
+ ∑ (𝐸𝑀,𝑉𝑎𝑟𝑖,𝑗

)
𝑁𝑉𝑎𝑟𝑖

𝑗=1
)

𝑁𝑃𝑎𝑖𝑟

𝑖=1

. (7)

Under the assumption that 𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛 is only relevant for the first implementation of the approach,

the total effort of the model-driven approach 𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛 for all subsequent realizations equals

the modeling effort 𝐸𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔.

In the following, three scenarios are discussed:

• a comparison of the implementation efforts for a classical, manual programming and the

model-driven approach for an initial deployment of a data collection architecture under

the assumption that the toolchain already exists;

• afterward, a migration of an existing architecture realization from one communication

technology to another using both approaches under the assumption that the toolchain al-

ready exists; and

• an estimation of the necessary number of producer/subscriber pairs and variables for a

realization of the architecture taking the effort for the toolchain creation into account.

7.5.1. Initial Deployment

The implementation efforts for an initial implementation of an average data collection architecture

based on a classical, manual programming approach and the model-driven approach are given in

Figure 48. For this and all following figures of this section, the number of variables 𝑁𝑉𝑎𝑟𝑖
 per

publisher/subscriber pair 𝑖 is expressed as the average number of variables 𝑁𝑉𝑎𝑟𝑖
 per pair 𝑖. As

can be seen from the figure, the implementation effort for the classical approach is significantly

higher than for the model-driven approach. Both surfaces show the influence of an increasing

number of pairs as well as variables per pair, with a higher sensitivity towards the number of pairs.

The relative effort between model-driven and classical approach can be expressed as

𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛

𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
=

0.1667 + 0.0167 ⋅ 𝑁𝑉𝑎𝑟𝑖

2.1500 + 0.0556 ⋅ 𝑁𝑉𝑎𝑟𝑖

. (8)

Therefore, the relative effort is independent of the number of pairs 𝑁𝑃𝑎𝑖𝑟. The relative effort as a

function of the average number of variables per pair is plotted in Figure 49. For large systems, the

relative effort tends to converge to a value of about 30%.

132 7. Evaluation

Figure 48: Comparison of implementation efforts for initial deployment as a function of the number of

publisher/subscriber pairs and the average number of variables per pair. Classical, manual

programming (left), and model-driven approach (right).

On the other hand, the smaller the number of variables per system is, the more advantageous it is

to use the proposed approach. This observation can be explained by the significant overhead of on

average 77.4 lines of code for the creation and instantiation of the relevant communication libraries

in manual programming. Adding additional variables to an already instantiated communication

channel between publisher and subscriber adds only two additional lines to this existing codebase.

In comparison, the modeling of small systems tends to be significantly faster than programming

them. Furthermore, also the modeling of additional variables causes less effort compared to man-

ual programming, but higher relative effort compared to the instantiation of the communication.

Therefore, under the assumption that the toolchain exists and can be used out of the box, the model-

driven approach for the initial generation of the communication architecture significantly outper-

forms the classical, manual programming approach in terms of implementation effort (Req-ADep).

Relative implementation efforts are in the range of 8% to 30% depending on the size of the system.

Figure 49: Relative effort between model-driven approach and classical, manual programming for initial

deployment as a function of the average number of variables per pair.

7. Evaluation 133

7.5.2. Migration

In the case of migration between two communication protocols (redeployment), only several lines

of code have to be modified. Due to the modular structure of the code templates, it is not necessary

to change any variable-related code. On the other hand, the change of the communication protocol

requires only the modification of a single annotation label in the DSL per pair of producer/sub-

scriber (Req-SFACP). Additionally, no further actions are needed for the variables. Therefore, only

the number of pairs to be migrated are relevant for the implementation efforts in case of a migra-

tion. Figure 50 gives the implementation efforts for both cases. In comparison to the initial de-

ployment, the effort ratio between model-driven and classical approach is further decreased to

𝐸𝑀𝑜𝑑𝑒𝑙−𝑑𝑟𝑖𝑣𝑒𝑛

𝐸𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
= 0.01, (9)

independent from the number of pairs 𝑁𝑃𝑎𝑖𝑟 and the average number of variables per pair 𝑁𝑉𝑎𝑟𝑖
.

Therefore, also implementation efforts for redeployment are significantly decreased through the

model-driven approach (Req-AReDep).

Figure 50: Comparison of implementation efforts for a migration scenario as a function of the number of

publisher/subscriber pairs and the average number of variables per pair. Classical, manual

programming (left), and model-driven approach (right).

7.5.3. Estimation of Necessary System Sizes for Break-even

The last part of this section is dedicated to the estimation of the minimal system sizes that make

the development of the toolchain for a model-driven generation of data collection architectures

feasible. Therefore, Table 21 lists the relevant code sizes and efforts that influence the effort for

the first creation of the toolchain 𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛. The effort for the development of the DSL, including

the metamodel and the graphical notation, was estimated to a full person-year (twelve months per

year, 4.33 weeks per month, with five working days per weeks, and eight hours working time per

day). The total lines of code in the software framework sum up to 4000 lines. The transformation

logic contains a total of 1350 lines of code, mainly written in the Acceleo transformation language,

134 7. Evaluation

but also containing small snippets of Java and C# code. Taking into account the programming

productivity 𝑃𝐿𝑜𝐶, the total effort for the creation of the toolchain was estimated to 2227 h.

The discussed figures do not include the continuous maintenance of the developed code basis, nor

a sophisticated test-driven development. Both efforts would also have to be taken for classical,

manual implementations of the communication architecture. Therefore, in the following, it is as-

sumed that they do not influence the estimation of the break-even.

Table 21: Efforts and lines of code for the creation of the toolchain for model-driven generation of com-

munication architectures. Effort for the development of the DSL was estimated. Programming

efforts for the software framework and the transformation logic based on the productivity

𝑝𝐿𝑜𝐶 [Pre00] and the assumption that 𝑝𝐿𝑜𝐶 is also valid for Acceleo code.

Symbol Description Lines of code /

 Effort

𝐸𝐷𝑆𝐿
The effort for the development of the graphical notation and

the underlying metamodel for the DSL

2078 h

(one person-year)

𝐿𝑜𝐶𝑆𝐹 Lines of code in the software framework (C#) 4000

𝐸𝑆𝐹
The effort for the development of the software framework

based on 𝑝𝐿𝑜𝐶
111 h

𝐿𝑜𝐶𝑀 Lines of code in the transformation logic (Acceleo/Java/C#) 1350

𝐸𝑀
The effort for the development of the code generation logic

based on 𝑝𝐿𝑜𝐶
38 h

𝐸𝑇𝑜𝑜𝑙𝑐ℎ𝑎𝑖𝑛
Total effort for the creation of the toolchain for model-driven

generation of communication architectures
2227 h

Taking the initial effort for the creation of the model-driven approach into account, the efforts for

the model-driven implementation of data collection architectures are severely impacted (see

Figure 51). Especially for small systems, the classical approach is superior and should be pre-

ferred. Nevertheless, gradients in both dimensions are significantly smaller for the model-driven

approach than the classical. Based on these observations, the questions where the break-even be-

tween the efforts can be found should be answered in the following. In other words, what minimal

system size (as a function of producer/subscriber pairs 𝑁𝑃𝑎𝑖𝑟 and the average number of variables

per pair 𝑁𝑉𝑎𝑟𝑖
) is needed until the model-driven approach can outperform classical software de-

velopment.

7. Evaluation 135

Figure 51: Comparison of implementation efforts for an initial deployment, including the effort for the

creation of the model-driven toolchain as a function of the number of publisher/subscriber

pairs and the average number of variables per pair. Classical, manual programming (left),

and model-driven approach (right).

Therefore, the relative efforts over a wide range of pairs and the average number of variables are

plotted in Figure 52. The Figure includes two scenarios: the first captures only the initial deploy-

ment, while the second includes one protocol migration for all systems. At first, the results for an

initial deployment without any migrations are discussed.

For small systems in the size of the scenarios considered earlier in this Section, the model-driven

approach requires about a hundred, up to a thousand times higher efforts compared to the classical

implementation. Nevertheless, the more systems are modeled, and the more variables they com-

municate, the better the effort ratio gets. It must be noted here that these systems can also be part

of multiple, independent projects for which the toolchain is applied.

Figure 52: Relative effort between model-driven approach and classical, manual programming, includ-

ing the effort for the creation of the toolchain as a function of the average number of varia-

bles per pair. Only initial deployment (left), including one migration (right). Logarithmic

scale of the colormap.

136 7. Evaluation

At an average number of variables per publisher/subscriber pair of

𝑁𝑉𝑎𝑟𝑖
≥ ceil (

57266 − 51 ⋅ 𝑁𝑃𝑎𝑖𝑟

𝑁𝑃𝑎𝑖𝑟
) , (10)

the model-driven approach can outperform classical software development for the case of only

initial deployment. For instance, this includes systems with 300 pairs and 140 variables each or

systems with 150 pairs and 330 variables each. These systems are in the range of sophisticated

data collection architectures where data from a multitude of systems must be gathered. On the

other hand, these systems do not have to be part of a single project but can be part of several

independent projects.

When one protocol migration for all systems is additionally considered, the relative effort is re-

duced to

𝑁𝑉𝑎𝑟𝑖
≥ ceil (

57266 −
646

7 ⋅ 𝑁𝑃𝑎𝑖𝑟

𝑁𝑃𝑎𝑖𝑟
) . (11)

Therefore, the break-even is reached for smaller systems. This includes, for instance systems with

300 pairs and 99 variables per pair or systems with 150 pairs and 290 variables per pair. As indi-

cated due to the results of the migration scenario, the break-even is earlier reached for systems

containing a large number of pairs. The reason is that an effort reduction during migration is only

related to the number of pairs in the system.

Therefore, given the typical sizes of data collection projects in industrial automation, and the re-

usability of the DSL and the toolchain, the model-driven generation of the communication part of

data collection architectures can decrease implementation efforts (Req-ADep). Furthermore, the ap-

proach can scale up for industrial applications.

7.6. Expert Workshop and Questionnaire

A workshop with industry experts was conducted to evaluate the approach and to support the

findings related to the individual case-studies presented earlier. The expert group consisted of

𝑛 = 14 industrial experts from the field of industrial automation ranging from OEMs to produc-

tion plant manufacturers and operators of large chemical plants. The positions of the respective

experts range from project engineers tasked with digitization projects, data analysts in the field of

predictive maintenance and control, to head of their respective departments, for instance, research

and development.

7. Evaluation 137

At the beginning of the workshop, an introduction of 20 minutes was given to the experts. The

introduction included a wrap-up of industrial problems and challenges related to data collection

and integration. Moreover, industrial protocols and state-of-the-art approaches to overcome these

problems were presented. Subsequently, the developed approach was introduced in more detail

using the application example from Section 5.2 (see Chapter 13 for a list of all occurrences of the

application example). The presentation closed with a comparison of the implementation efforts

between classical programming of a P2P architecture and the model-driven approach using a mid-

dleware based on a preliminary version of the effort extrapolation case-study (cf. Section 7.5).

Afterward, the contents of the presentation and the preliminary results were discussed for about

20 minutes with all experts. During the discussion, the experts pointed out the benefits of the

approach, but also raised concerns. Especially the limitation of the code generation to C# code

was criticized. This limitation restricts the applicability of the approach for greenfield PLCs where

code manipulations are possible. Here, the generation of IEC 61131-3 [IEC61131] compliant code

would be beneficial to include the communication functionality into the PLCs directly. One pos-

sibility can be the generation of code in the PLCopen XML exchange format [IEC61131] for direct

import into the respective programming environments.

Nevertheless, it must be considered that despite the IEC 61131-3 being a standard, some PLC

manufacturers rely on modified versions of the programming languages defined in IEC 61131-3

or only support programming in C. Furthermore, the generation of IEC 61131-3 compliant code

would require specific support libraries on the PLCs. For instance, while Beckhoff supports ADS

[Bec19c], OPC UA [Bec19a], and MQTT [Bec19b], there is currently no support for Apache

Kafka nor AMQP. Therefore, concerning the PLC-level, the code generation can only be used for

external gateways or alternatively an execution in the non-real-time part of soft-PLCs that support

the .NET Core framework.

At last, a questionnaire with two pages and 16 questions was filled out individually by the experts

answering questions and giving estimations related to the comparison of the classical, manual

programming, and the developed model-driven approach. The original German version of the

questionnaire can be found in Appendix D.

One aspect of the questionnaire was the assessment of the approaches related to the dimensions

feasibility of a realization, total effort, and expected benefit. The averaged results of this assess-

ment are plotted in Figure 53 as a spider diagram, with values ranging from 1 (very low) to 10

(very high). The detailed results can be found in Table 23 in Appendix D.

138 7. Evaluation

Figure 53: Comparison of the expert assessment of the dimensions feasibility, total effort, and benefit for

classical, manually implemented P2P network and model-driven, middleware-based approach

(n =14). Scale from 1 (very low) to 10 (very high).

While the expected benefits of both approaches only deviate to a small extent, the differences in

the two other dimensions are more significant. Experts assessed the feasibility of the classical

approach at an average value of around 5 and the necessary total effort at a value of 8. Therefore,

it seems that the classical realization of data collection architectures can be feasible, yet, not with-

out obstacles. The result could indicate an awareness of the importance of the topic and the possi-

bility of a P2P implementation if the specific use-case justifies the significant implementation

efforts. Different assessments were given for the developed model-driven approach: While the

experts rated the feasibility of a model-driven implementation at a value of 7, the total effort is

estimated to an average value of around 5. These results indicate that compared to the classical

approach, the experts evaluated the feasibility of a model-driven data collection architecture sub-

stantially higher at decreased implementation efforts. It must be noted here, that the effort includes

the effort for the modeling of the system, the subsequent model-driven generation of the system

architecture, and the manual completion of the generated code basis with the user-specific code.

Based on the assessment, it can be concluded that the industry experts expect significantly de-

creased efforts for the realization of a data collection architecture (Req-ADep). The different under-

lying concepts may explain the difference in the benefit assessment: while the classical implemen-

tation is based on direct connections between the systems, the model-based relies on a common

Data Management and Integration Broker. This central broker makes data not only available be-

tween directly connected systems, but to all systems of the architecture if required. Furthermore,

the addition of further participants is greatly simplified as only a single connection to the broker

needs to be programmed.

EffortBenefit

Feasibility

7. Evaluation 139

The second aspect of the questionnaire was a detailed assessment of multiple statements related to

both approaches. Therefore, the experts rated their subjective approval of each statement for both

approaches. The answer scale included the possible answer options “disagree”, “rather disagree”,

“partly/partly”, “rather agree”, and “agree”. During the analysis of the questionnaire, the expert

answers were normalized to a scale ranging from -1 (disagree) to 1 (agree). The translated state-

ments and results are summarized in Figure 54, while Table 24 in Appendix D contains the exact

mean values and standard deviations per answer.

Figure 54: Normalized results of the expert evaluation per question (-1 Disagreeing, 1 Agreeing). De-

tailed results in Table 24.

Question Q1 is dedicated to the accessibility of data from different levels of the automation pyra-

mid. The experts stated that better accessibility of the data for the model-driven approach (-0.18

versus 0.14 normalized agreement). However, the standard deviations of both mean answers are

relatively large. This result indicates that individual agreements are not as ambiguous and deviate

significantly. Therefore, the answers are in the range of the measurement uncertainty, but with a

trend towards improved accessibility using the model-driven approach (Req-AATP).

The second question (Q2) is centered around the feasibility of large-scale data access. Here, sig-

nificant differences in the expert agreement can be observed. The normalized agreement concern-

ing this question is significantly higher for the model-driven approach (0.50) than for the classical

approach (-0.32). Therefore, the experts see a practical implementation of an industrial data col-

lection architecture based on the model-driven approach considerably more realistic. This large-

scale data access includes access to data from various levels of the automation pyramid (Req-AATP).

Q5: Accepted interfaces simplify

incorporation of relevant protocols

into applications. (n = 12)

Q4: Application development is

uncoupled from the actual

communication protocol. (n = 14)

Q3: A migration between

communication protocols is feasible

if needed. (n = 14)

Q2: Large-scale data access is

realistic. (n = 14)

Q1: Accessibility of data from

different levels of the automation

pyramid is given. (n = 14)

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Agreement

 Classical Approach

 Model-driven Approach

140 7. Evaluation

Moreover, the proposed parallel operation to the existing control infrastructure is seen as feasible

(Req-APOP).

The feasibility of a migration scenario is the subject of Q3. The experts stated that a migration of

the communication protocol is not very feasible when using the classical approach (-0.36 normal-

ized agreement). This result can be explained by the significant portions of code that have to be

rewritten as the extrapolation case-study in Section 7.5 showed. In contrast, a migration scenario

was seen more positively with the model-driven approach (0.21 normalized agreement,

Req-AReDep). Nevertheless, the experts were not entirely convinced of the feasibility. One possible

explanation could be the missing support for IEC 61131-3 code in the model-driven approach.

This lack of code generation makes manual changes to the PLC code necessary in case of a mi-

gration. Additionally, experts may fear the transition phase when migrating an existing system

architecture to another protocol while in operation. Further investigations related to these aspects

are needed in the future to identify these concerns accurately.

Question Q4 captures the expert opinion on the possibility of a decoupled development of the

applications from the underlying communication protocol for data collection. Here, the experts

tend to prefer the model-driven approach with its standardized interface (Req-SFAPI) and an ab-

straction of the specifics of the protocols (Req-SFACP) over the classical approach (0.54 normalized

agreement compared to 0.14). Using the developed software framework, the developed software

can be efficiently decoupled from the communication technology. However, concerns could be

raised around the high abstraction level of the developed programming interfaces. A possible so-

lution to overcome this would be a multi-layered software framework with specific interfaces for

complete abstraction of protocol-specific properties and a semi-abstracting layer that allows access

to the specific features of the protocols, e.g., special QoS features.

Interestingly, the standard deviation for the classical approach is relatively high (0.52). This value

may indicate different programming practices inside the respective companies for which the ex-

perts work. While some companies develop their software without a particular focus on reusabil-

ity, others may define a standardized interface to decouple the distinct parts of the developed ap-

plications.

The same explanation could apply to the results of Q5: while the importance of standardized in-

terfaces was highlighted for both approaches (0.54 for classical versus 0.67 for the model-driven

approach), the standard deviation of the classical approach is around 0.54 (0.24 for the model-

driven approach). This result once again means that experts tend to agree that the standardized

7. Evaluation 141

interface of the model-driven approach simplifies the support of multiple communication proto-

cols (Req-SFAPI). On the other hand, the expert opinion is not so uniform for the classical approach,

indicating different software development practices inside the respective companies. If the soft-

ware is developed with a strong focus on reusability and with defined interfaces, the support of

additional protocols is relatively simple. In contrast, if the developed software is of a more mono-

lithic structure, support for various protocols is more costly and difficult.

Therefore, according to the experts, a model-driven and middleware-based approach for the im-

plementation of data collection architectures has the potential to mitigate the existing industrial

challenges. Expert feedback was positive but also indicated that a code generation of IEC 61131-

3-compliant code for PLCs should be focused in the future.

8. Assessment of the Fulfillment of the Requirements

The previous Chapter presented and discussed the findings of the evaluation case-studies and the

fulfillment of the stated requirements (see Chapter 3). These are summarized with a detailed as-

sessment in Table 22 with a reference back to the respective Sections in Chapter 7. The majority

of requirements were evaluated positively in separate case-studies. Experimental results and ex-

pert assessments proved the suitability of the currently prototypical approach for model-driven

data collection architectures.

However, significant concerns arise around the current lack of an integrated modeling platform

that synchronizes model instance and visual representation of the DSL, as well as around the miss-

ing support for the generation of IEC 61131-3-compliant code for PLCs. Furthermore, the high

level of abstraction in the programming interface can be problematic if specific characteristics of

a communication protocol are of major importance for the realization of a specific use-case.

Table 22: Summary of the fulfillment of requirements and reference to the relevant Section in the evalu-

ation Chapter (+ fulfilled, ○ partly fulfilled, - not fulfilled).

 Requirement Rating Details and reference

 to evaluation Section

D
a

ta
 C

o
ll

ec
ti

o
n

S
y

st
em

 A
rc

h
it

ec
tu

re
s

(R
eq

-A
)

Req-

AATP

Data collection

from different

levels of the

automation pyramid

+

Experts verified the applicability of the concept for

data collection from different levels (7.1.1). The lab-

scale feasibility study demonstrated data collection

from different levels (7.3). The expert questionnaire

approved the feasibility of large-scale data access

and suitability of the approach (7.6).

Req-

ATAC

Technology-

agnostic

concept
+

Experts verified the technology-agnosticism of the

concept (7.1.1). Mapping to other architectures

demonstrated the applicability of the concept using

different technologies and use-cases (7.1.2).

Req-

APOP

Parallel operation to

pyramid architecture +

Experts verified that a second data channel for paral-

lel operation to the pyramid architecture is included

(7.1.1). The lab-scale feasibility study demonstrated

the parallel operation (7.3). The expert questionnaire

approved the possibility of parallel operation and

data access over the second data channel (7.6).

Req-

ADep

Simplified

implementation

and configuration
○

The lab-scale feasibility study attested reduced im-

plementation and migration efforts and a simplified

implementation (7.3). The effort extrapolation case-

study generalized the results and proved simplified

implementation and migration between protocols.

Yet, the initial effort for the creation of the model-

driven toolchain is a major one-time effort (7.5). The

experts assessed significantly simplified implemen-

tation and migration when using the model-driven

approach but criticized the missing support for IEC

61131-3-compliant code generation (7.6).

Req-

AReDep

Simplified

migration

between

technologies

○

144 8. Assessment of the Fulfillment of the Requirements

 Requirement Rating Details and reference

 to evaluation Section

S
o

ft
w

a
re

 F
ra

m
ew

o
rk

 (
R

eq
-S

F
)

Req-

SFAPI

Standardized

interfaces to

minimize effort
○

The lab-scale feasibility study demonstrated the ab-

straction of technology-specific aspects of commu-

nication protocols and the standardized interfaces

that prevented additional modifications to existing

application-specific code in case of migrations (7.3).

The extrapolation case-study confirms and intensi-

fies these findings (7.5). The expert questionnaire af-

firmed the benefits of abstraction and the introduc-

tion of standardized interfaces for software develop-

ment. The high level of abstraction was criticized for

not giving access to enhanced protocol functionali-

ties (7.6).

Req-

SFACP

Abstraction of

technology-

specific properties

of communication

+

Req-

SFLeg

Support for

legacy systems +

Experts verified the feasibility of the architecture

concept for the integration of legacy systems (7.1.1).

The lab-scale feasibility study demonstrated the in-

terfacing and integration of legacy systems into the

data collection architecture (7.3).

A
rc

h
it

ec
tu

re
 M

o
d

el
in

g

L
a

n
g

u
a

g
e

(R
eq

-M
)

Req-

MSys
System viewpoint +

The industrial case-study with expert interviews

evaluated the aspects of the modeling language pos-

itively (7.2). The system and data flow viewpoints

were able to represent all relevant aspects. Annota-

tion for properties and requirements allows the for-

malization and consideration of additional infor-

mation. The graphical modeling notation was per-

ceived positively by the experts, but an integrated ed-

itor for the DSL, including an automatic synchroni-

zation with the model instance, is currently missing.

Req-

MDF
Data flow viewpoint +

Req-

MPropReq

Annotations for

properties and

requirements
+

Req-

MGraph

Graphical modeling

notation ○

M
o

d
el

-d
ri

v
en

G
en

er
a

ti
o

n

(R
eq

-G
)

Req-

GCom

Model-driven

generation of

communication

interfaces

+

The communication architecture was automatically

generated and included all communication interfaces

for non-legacy systems in the lab-scale feasibility

case-study (7.3) and the industrial case-study (7.4).

9. Summary and Outlook

Data analytics and big data principles are one of the central aspects of the I 4.0 concept. Through

digitization and better connectivity, an ever-increasing amount of data from CPSoS and related

systems is available for analysis. However, the distributed data has to be collected and integrated

first before it can be analyzed. System architectures for data collection can automate and opera-

tionalize this task. Yet, the significant implementation efforts to realize such architectures induced

by a large number of heterogeneous legacy systems prevalent in industrial automation impedes

industrial uptake of I 4.0 concepts and prevents leveraging of data. Several researchers identified

the concept of model-driven development as a possible solution to overcome these challenges

[WMW18].

Nevertheless, no model-driven data collection architecture with support for multiple protocols and

automatic generation of the communication architecture exists in the literature. Furthermore, DSLs

with a visual notation and a formal description of CPSoS and associated data flows in the domain

of industrial automation are a research gap.

Therefore, a model-driven approach for the realization of data collection architectures was devel-

oped in this thesis. It is based on a technology-neutral architecture concept that describes the ele-

ments and principles of data collection architectures. A DSL with visual notation was introduced

that serves as a universal language during the interdisciplinary design of data collection architec-

tures. A supporting metamodel structures the modeled information and makes it available for the

model-driven generation of the data collection architecture. Here, M2T transformations are em-

ployed to generate the communication architecture based on predefined templates automatically.

These templates stem from a developed software framework that supports an API for technology-

abstracted communication based on multiple relevant IIoT protocols.

Distinct aspects of the approach were evaluated in multiple case-studies against requirements de-

rived from industrial practice and the state-of-the-art. Expert interviews confirmed the suitability

of the architecture concept for interfacing of existing legacy systems and parallel operation to the

automation pyramid. The technology-neutral concept serves as a basis for practical realizations

and guides the development process.

Furthermore, the expert evaluation of the DSL proved that relevant features of the systems, as well

as the flow of data between them, could be successfully modeled and understood by experts from

different disciplines. Additionally, the possibility to annotate the models with properties and re-

quirements of the systems was evaluated positively.

146 9. Summary and Outlook

The model-driven generation of data collection architectures was evaluated in three distinct case-

studies. A lab-scale feasibility study was used to compare implementation efforts of manual pro-

gramming versus the model-driven approach for a sufficiently complex use-case. The results

showed significantly reduced implementation efforts for the model-driven generation of the data-

collection architecture, even under the very conservative figures used for the comparison. An ad-

ditional industrial case-study was used to verify the scalability of the model-driven generation for

industrial-scale applications. The last case-study, an extrapolation study, was used to generalize

the previous findings and to estimate scalability and implementation effort reduction of the ap-

proach sophisticatedly.

The evaluation proved the fulfillment of most requirements. Nonetheless, several weaknesses of

the approach were uncovered. These include the missing synchronization between the graphical

model and the instance of the metamodel, as well as the lack of code generation for PLCs due to

the restriction on C#. Additionally, the high level of abstraction in the software framework was

identified as problematic. Nevertheless, the hypothesis (H1) to (H3) can be seen as confirmed:

(H1) A technology-neutral concept for a data collection architecture can bridge operational

technology (OT) and information technology (IT) and allow data collection from pro-

duction systems.

(H2) A special domain-specific language with a graphical notation for data collection archi-

tectures supports the understanding and structuring of information during the engineer-

ing phase of these architectures by multi-disciplinary teams composed of engineers, IT

architects, programmers, process experts, and data analysis.

(H3) A model-based approach for automatic generation of data collection architectures re-

duces the effort for implementation and migration of these architectures.

Therefore, the proposed approach is successfully addressing the research gap.

Further research is dedicated to tackling the weaknesses of the approach and to extend it for addi-

tional applications. As a first step, an integrated modeling environment with full synchronization

between the graphical editor and the underlying model is necessary for industrial applications. The

automatic synchronization integrates both views and would allow the approach to be practically

applicable. Currently, due to the manual synchronization between the two views, inconsistencies

might occur. A realization of the modeling environment based on Graphiti [Ecl19f] or Sirius

[Ecl19a] could replace Visio and benefit from an active integration into Eclipse, where the meta-

model is implemented with EMF.

9. Summary and Outlook 147

Furthermore, the effort comparisons, especially the extrapolation case-study, could be extended

and improved by utilizing a different, more sophisticated approach for the effort estimation of the

manually implemented code. While the approach in this works assumes a linear model based on

LoC, which is sufficient for the intended conservative comparison, a non-linear model such as

COCOMO II [Boe⁺00; Boe⁺95] could increase the validity and insights of such case-studies. How-

ever, the utilization of the model comes with the complexity of determining the additional model

parameters, e.g., the capability of personnel or the complexity of the software product, which may

be challenging to define for new technology such as the model-driven development of data col-

lection architectures.

An additional point is better integration into the engineering process. While currently, all infor-

mation is modeled manually by experts, existing information could be reused. For instance, engi-

neering tools for the field level, such as TwinCAT 3 [Bec19d] or TIA Portal [Sie19], contain

detailed information about the bus configuration, all hardware signals, as well as software infor-

mation. File-based exchange of information or direct access over interfaces between these tools

and the modeling environment could significantly decrease modeling efforts, reduce redundancies,

and increase consistency. Furthermore, feeding back information to these systems, e.g., parts of

the communication architecture as IEC 61131-3-compliant code, would close the loop between

the different environments and greatly simplify industrial applications.

Besides IEC 61131-3-compliant code, also support for additional programming languages and en-

vironments, such as C+ or Java, would be beneficial. Furthermore, direct support for languages

commonly used for data analysis, such as Matlab, Python, or R could further bridge the gap be-

tween industrial automation and data analysis. Also, support for a greater variety of protocols, e.g.,

DDS or REST, would improve the applicability of the developed approach. Nevertheless, not only

the number of supported protocols is relevant, but also the flexibility of the software framework.

Therefore, a multi-layer software framework that provides not only highly-abstracted program-

ming interfaces but also intermediate layers with enhanced support for QoS features at the cost of

decreased reusability could be beneficial. This would allow programmers, on the one hand, to

migrate between protocols with equivalent support of QoS features without additional modifica-

tions. On the other hand, if migration to a protocol with incompatible support for QoS features

would be needed, the high-level communication code could still be reused, while only the QoS-

specific parts would require reimplementation.

An extension of the DSL is an additional point for further research. Inside the author’s group,

several approaches based on the same basic graphical notation can be found to capture timing

characteristics [Vog⁺11] or safety aspects [STV19; SVF17]. Therefore, an extension of the DSL

148 9. Summary and Outlook

would allow a universal usage of the developed language and an integration of approaches. Fur-

thermore, more sophisticated modeling of data analysis functions (cf. [Ard⁺18]) would increase

the information content of the models and improve the understanding of interactions between data

collection and analysis. Also, inclusion or adaption of modeling elements to capture the dynamics

of systems, such as UML state or sequence diagrams [OMG17], would increase the modeling

depth significantly. To manage the complexity of the integrated DSL, the introduction of addi-

tional modeling viewpoints and textual representations, for instance, to define mappings between

communication channels of the broker or security aspects as demonstrated by [Ber⁺18], is possible.

Following the proposal of Vogel-Heuser et al. [VWT17], design space exploration could be con-

ducted based on the modeled information in order to determine suitable deployment alternatives.

For instance, as Vogel-Heuser et al. [Vog⁺20] elaborated for distributed control systems, the proper

characterization of timing behavior is of major importance. Therefore, the integration of network

and system simulations would allow an offline derivation of optimized design and deployment

alternatives. Such an integrated development tool would support the engineering of data collection

architectures also during the earlier stages of the systems engineering. A similar approach has

already been published for DDS-based communication systems [TÇK18]. Based on the simulation

of the systems and networks, such as presented by Jha et al. [Jha⁺20], multi-objective optimization

[BTT98] could be used to distribute data collection and manipulation tasks inside a network auto-

matically.

As the last point, the integration of DevOps and 48Tmodel@run.time48T principles for the model-driven

development [BBF09; CW20; Wor⁺20] could increase information usage and minimize develop-

ment times. For instance, monitoring of the runtime behavior of deployed architectures would

provide insights and ensure proper operation. Based on the modeled information, the monitoring

functionalities could be generated, configured, and deployed using the same model-driven tool-

chain. Monitoring of data flows and QoS fulfillment was identified as one of the major challenges

for the integration of IIoT and data analytics by Ranjan et al. [Ran⁺18]. Both could be tackled

based on the developed approach. Also, the consideration of the temporal factor in the models

could allow tracing the evolution of the architecture and QoS fulfillment over time [Bil⁺18]. Also,

the stronger coupling and integration of design-time models about CPS with runtime aspects, such

as data analysis, as proposed by Wolny et al. [Wol⁺18; Wol⁺20], could enhance the information

content of models. This would allow, for instance, the generation of application-specific logic and

automatic reasoning of the actual physical meaning of transported data. Furthermore, with a full

description of all involved processes during design time (cp. modeling of dynamics and depend-

encies between systems), specific parts of the data collection could be set up automatically without

manual modeling.

mailto:model@run.time
mailto:model@run.time

10. Literature

[.NE19] .NET Foundation, 2019, „C#. Version 8.0“ [Online] Available:

https://github.com/dotnet/csharplang/tree/master/spec, [Accessed: 05-04-20].

[.NE20] .NET Foundation, 2020, „.NET Core. Version 3.1“ [Online] Available:

https://github.com/dotnet/core, [Accessed: 05-04-20].

[Aic18] Aicher, T., „Automatic Backwards Compatibility of Automated Material Flow Soft-

ware,“ Dissertation, Technical University of Munich, Munich, Germany. Institute

of Automation and Information Systems, 2018.

[AIM10] Atzori, L., Iera, A. and Morabito, G., „The Internet of Things. A Survey,“ In: Com-

puter Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[Al-⁺15] Al-Fuqaha, A., Khreishah, A., Guizani, M., Rayes, A. and Mohammadi, M., „To-

ward Better Horizontal Integration among IoT Services,“ In: IEEE Commun. Mag.,

vol. 53, no. 9, pp. 72–79, 2015.

[Alv⁺18] Alvarez, M. L., Sarachaga, I., Burgos, A., Estevez, E. and Marcos, M., „A Method-

ological Approach to Model-Driven Design and Development of Automation Sys-

tems,“ In: IEEE Trans. Automat. Sci. Eng., vol. 15, no. 1, pp. 67–79, 2018.

[Apa19] Apache Software Foundation, 2019, „Apache Kafka. Version 2.3.1“ [Online] Avail-

able: https://kafka.apache.org/, [Accessed: 03-12-19].

[Apa20] Apache Software Foundation, 2020, „Apache PLC4X. Version 0.6.0“ [Online]

Available: https://github.com/apache/plc4x, [Accessed: 16-04-20].

[Ara⁺15] Aravantinos, V., Voss, S., Teufl, S., Hölzl, F. and Schätz, B., „AutoFOCUS 3: Tool-

ing Concepts for Seamless, Model-based Development of Embedded Systems,“ In:

ACES-MB&WUCOR@ MoDELS, vol. 1508, pp. 19–26, 2015.

[Ard⁺18] Ardagna, C. A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E. and Hebert, C.,

„Model-based Big Data Analytics-as-a-Service. Take Big Data to the Next Level,“

In: IEEE Trans. Serv. Comput., pp. 1, 2018.

[ATL05] ATLAS group, „ATL: Atlas Transformation Language. Specification of the ATL

Virtual Machine,“ 2005.

[Aut14] AutomationML Consortium, „AutomationML Whitepaper. Communication,“ 2014.

[Ban⁺16] Bangemann, T., Riedl, M., Thron, M. and Diedrich, C., „Integration of Classical

Components Into Industrial Cyber–Physical Systems,“ In: Proc. IEEE, vol. 104, no.

5, pp. 947–959, 2016.

[Bar⁺15] Barbosa, J., Leitão, P., Adam, E. and Trentesaux, D., „Dynamic Self-organization

in Holonic Multi-agent Manufacturing Systems: The ADACOR evolution,“ In:

Comput. in Ind., vol. 66, pp. 99–111, 2015.

https://github.com/dotnet/csharplang/tree/master/spec
https://github.com/dotnet/core
https://kafka.apache.org/
https://github.com/apache/plc4x

150 10. Literature

[Bas⁺11] Bassi, L., Secchi, C., Bonfe, M. and Fantuzzi, C., „A SysML-Based Methodology

for Manufacturing Machinery Modeling and Design,“ In: IEEE/ASME Trans. Mech-

atron., vol. 16, no. 6, pp. 1049–1062, 2011.

[Bau⁺05] Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N., Sand-

ner, R. and Ziegenbein, D., „AutoMoDe - Notations, Methods, and Tools for Model-

Based Development of Automotive Software,“ In: SAE Technical Paper Series:

SAE International400, Warrendale, PA, United States, 2005.

[BBF09] Blair, G., Bencomo, N. and France, R. B., „Models@ run.time,“ In: Computer, vol.

42, no. 10, pp. 22–27, 2009.

[BCW17] Brambilla, M.; Cabot, J.; Wimmer, M., „Model-driven Software Engineering in

Practice.“ San Rafael, C..: Morgan & Claypool Publishers (Synthesis lectures on

software engineering, 4), 2017.

[Bec19a] Beckhoff Automation GmbH & Co. KG, 2019, „TF6100. TC3 OPC UA“ [Online]

Available: https://www.beckhoff.de/TF6100/, [Accessed: 27-01-20].

[Bec19b] Beckhoff Automation GmbH & Co. KG, 2019, „TF6701. TC3 IoT Communication

(MQTT). Version 3.1.4024.4“ [Online] Available: https://www.beck-

hoff.de/TF6701/, [Accessed: 27-01-20].

[Bec19c] Beckhoff Automation GmbH & Co. KG, 2019, „TwinCAT ADS“ [Online] Availa-

ble: https://infosys.beckhoff.com/content/1033/tcadscommon/html/tcadscom-

mon_intro.htm?id=898081192215463875, [Accessed: 23-08-19].

[Bec19d] Beckhoff Automation GmbH & Co. KG, 2019, „TwinCAT3. Version 3.1.4024.4“

[Online] Available: https://www.beckhoff.de/twincat3/, [Accessed: 17-01-20].

[Ben⁺17] Benaben, F., Truptil, S., Mu, W., Pingaud, H., Touzi, J., Rajsiri, V. and Lorre, J.-P.,

„Model-driven Engineering of Mediation Information System for Enterprise In-

teroperability,“ In: Int. J. Comput. Integ. M., vol. 79, pp. 1–22, 2017.

[Ber⁺18] Berrouyne, I., Adda, M., Mottu, J.-M., Royer, J.-C. and Tisi, M., „Towards Model-

Based Communication Control for the Internet of Things,“ In: Mazzara, M., Ober,

I. and Salaün, G. (Eds.): Software Technologies: Applications and Foundations,

Bd. 11176. Cham: Springer International Publishing (Lecture notes in computer sci-

ence), pp. 644–655, 2018.

[Ber13] Berman, J. J., „Introduction,“ In: Principles of Big Data: Elsevier, pp. xix–xxvi,

2013.

[Ber14] Bernstein, D., „Containers and Cloud: From LXC to Docker to Kubernetes,“ In:

IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, 2014.

[BFS13] Bonfè, M., Fantuzzi, C. and Secchi, C., „Design Patterns for Model-based Automa-

tion Software Design and Implementation,“ In: Control Eng. Pract., vol. 21, no. 11,

pp. 1608–1619, 2013.

https://www.beckhoff.de/TF6100/
https://www.beckhoff.de/TF6701/
https://www.beckhoff.de/TF6701/
https://infosys.beckhoff.com/content/1033/tcadscommon/html/tcadscommon_intro.htm?id=898081192215463875
https://infosys.beckhoff.com/content/1033/tcadscommon/html/tcadscommon_intro.htm?id=898081192215463875
https://www.beckhoff.de/twincat3/

10. Literature 151

[Bi17] Bi, Z., „Embracing Internet of Things (IoT) and Big Data for Industrial Informat-

ics,“ In: Enterp. Inf. Sys., vol. 11, no. 7, pp. 949–951, 2017.

[Bil⁺18] Bill, R., Mazak, A., Wimmer, M. and Vogel-Heuser, B., „On the Need for Temporal

Model Repositories,“ In: Seidl, M. and Zschaler, S. (Eds.): Software Technologies:

Applications and Foundations, Bd. 10748. Cham: Springer International Publishing

(Lecture notes in computer science), pp. 136–145, 2018.

[Bir⁺10] Birkhofer, R.; Wollschläger, M.; Schrieber, R.; Winzenick, M.; Kalhoff, J.;

Kleedörfer, C. et al., „Life-Cycle-Management für Produkte und Systeme der Au-

tomation: Ein Leitfaden des Arbeitskreises Systemaspekte im ZVEI Fachverband

Automation.“: Zentralverb. Elektrotechnik- und Elektronikindustrie, Fachverb. Au-

tomation, 2010.

[Bis⁺99] Bisbal, J., Lawless, D., Wu, B. and Grimson, J., „Legacy Information Systems. Is-

sues and Directions,“ In: IEEE Softw., vol. 16, no. 5, pp. 103–111, 1999.

[Boe⁺00] Boehm, B. William; Abts, C.; Brown, A. W.; Chulani, S.; Clark, B. K.; Horowitz,

E. et al., „Software Cost Estimation with Cocomo II.“ Upper Saddle River, NJ:

Prentice Hall, 2000.

[Boe⁺95] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. and Selby, R., „Cost

models for Future Software Life Cycle Processes: COCOMO 2.0,“ In: Ann Software

Eng, vol. 1, no. 1, pp. 57–94, 1995.

[Bou⁺19] Bouloukakis, G., Georgantas, N., Ntumba, P. and Issarny, V., „Automated Synthesis

of Mediators for Middleware-layer Protocol Interoperability in the IoT,“ In: Future

Gener. Comp. Sy., vol. 101, pp. 1271–1294, 2019.

[Bou17] Bouloukakis, G., „Enabling Emergent Mobile Systems in the IoT : from Middle-

ware-layer Communication Interoperability to Associated QoS Analysis,“ Doctoral

Thesis, Université Pierre et Marie Curie - Paris VI. École Doctorale Informatique,

Télécommunications et Électronique, 2017.

[Boy⁺18] Boyes, H., Hallaq, B., Cunningham, J. and Watson, T., „The Industrial Internet of

Things (IIoT): An analysis framework,“ In: Comput. Ind., vol. 101, pp. 1–12, 2018.

[Bro⁺08] Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann, M., Meisinger, M., Penzenstadler,

B., Rittmann, S., Schätz, B., Spichkova, M. and Wild, D., „Service-Oriented Mod-

eling of CoCoME with Focus and AutoFocus,“ In: Rausch, A., Reussner, R., Mi-

randola, R. and Plášil, F. (Eds.): The Common Component Modeling Example,

Bd. 5153. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture notes in compu-

ter science), pp. 177–206, 2008.

[Bro⁺93] Broy, M., Dedrichs, F., Dendorfer, C., Fuchs, M., Gritzner, T. F. and Weber, R.,

„The Design of Distributed Systems – An Introduction to FOCUS,“ Technical Uni-

versity of Munich, 1993.

152 10. Literature

[BS15] Breivold, H. P. and Sandstrom, K., „Internet of Things for Industrial Automation—

Challenges and Technical Solutions,“ In: 2015 IEEE International Conference on

Data Science and Data Intensive Systems: IEEE, pp. 532–539, 2015.

[BTT98] Blickle, T., Teich, J. and Thiele, L., „System-Level Synthesis Using Evolutionary

Algorithms,“ In: Des. Autom. for Embed. Syst., vol. 3, no. 1, pp. 23–58, 1998.

[BXW14] Bi, Z., Xu, L. D. and Wang, C., „Internet of Things for Enterprise Systems of Mod-

ern Manufacturing,“ In: IEEE Trans. Ind. Inf., vol. 10, no. 2, pp. 1537–1546, 2014.

[Cai⁺19] Caigny, J. de, Tauchnitz, T., Becker, R., Diedrich, C., Schröder, T., Großmann, D.,

Banerjee, S., Graube, M. and Urbas, L., „NOA – Von Demonstratoren zu Pilotan-

wendungen,“ In: atp, vol. 61, no. 1–2, pp. 44–55, 2019.

[Cai18] Caigny, J. de, 2018, „Namur Open Architecture. Ready for Products,“ NAMUR-

Hauptsitzung (Organizer: Interessengemeinschaft Automatisierungstechnik der

Prozessindustrie e.V (NAMUR) Bad Neuenahr, 11/8/2018.

[Cal⁺17] Cala, A., Lüder, A., Cachada, A., Pires, F., Barbosa, J., Leitão, P. and Gepp, M.,

„Migration from Traditional Towards Cyber-physical Production Systems,“ In:

2017 IEEE 15th International Conference on Industrial Informatics (INDIN): IEEE,

pp. 1147–1152, 2017.

[Can18] Canonical Ltd., 2018, „Ubuntu. Version 18.04.3 LTS“ [Online] Available: http://re-

leases.ubuntu.com/18.04/, [Accessed: 17-01-20].

[Car17] Carlsson, O., „Engineering of IoT Automation Systems,“ Doctoral Thesis, Luleå

University of Technology, Luleå. EISLAB, 2017.

[CFV20] Cha, S., Fischer, J. and Vogel-Heuser, B., „Analysis Of Metamodels For Model-

Based Production Automation System Engineering,“ In: IET Collaborative Intelli-

gent Manufacturing, pp. 13, 2020.

[Cha⁺17] Chakravorti, N., Dimanidou, E., Angione, G., Wermann, J. and Gosewehr, F., „Val-

idation of PERFoRM Reference Architecture Demonstrating an Automatic Robot

Reconfiguration Application,“ In: 2017 IEEE 15th International Conference on In-

dustrial Informatics (INDIN): IEEE, pp. 1167–1172, 2017.

[Cha04] Chappell, D. A., „Enterprise Service Bus.“ Sebastopol: O‘Reilly Media (Theory in

practice), 2004.

[Che⁺18] Cheng, B., Zhang, J., Hancke, G. P., Karnouskos, S. and Colombo, A. W., „Indus-

trial Cyberphysical Systems. Realizing Cloud-Based Big Data Infrastructures,“ In:

IEEE Ind. Electron. M., vol. 12, no. 1, pp. 25–35, 2018.

[Cia⁺17] Ciavotta, M., Alge, M., Menato, S., Rovere, D. and Pedrazzoli, P., „A Microservice-

based Middleware for the Digital Factory,“ In: Procedia Manuf., vol. 11, pp. 931–

938, 2017.

http://releases.ubuntu.com/18.04/
http://releases.ubuntu.com/18.04/

10. Literature 153

[Clo20] Cloud Native Computing Foundation, 2020, „Kubernetes. Version v1.18.0“

[Online] Available: https://github.com/kubernetes/kubernetes, [Accessed: 06-04-

20].

[COC18a] COCOP Project, „Deliverable 3.7 - Software Architecture Description for the

Runtime System (Update),“ 2018.

[COC18b] COCOP Project, „Deliverable 3.5 - Interface and Protocol Definitions,“ 2018.

[Con19] Confluent Inc., 2019, „Confluent.Kafka. Version 1.0.0-RC2“ [Online] Available:

https://github.com/confluentinc/confluent-kafka-dotnet, [Accessed: 23-08-19].

[CPC17] Cimini, C., Pinto, R. and Cavalieri, S., „The Business Transformation Towards

Smart Manufacturing: A Literature Overview About Reference Models and Re-

search Agenda,“ In: 20th World Congress of the International Federation of Auto-

matic Control, pp. 15517–15522, 2017.

[Cus⁺03] Cusumano, M., MacCormack, A., Kemerer, C. F. and Crandall, B., „Software De-

velopment Worldwide: The State of the Practice,“ In: IEEE Softw., vol. 20, no. 6,

pp. 28–34, 2003.

[CW20] Combemale, B. and Wimmer, M., „Towards a Model-Based DevOps for Cyber-

Physical Systems,“ In: Bruel, J.-M., Mazzara, M. and Meyer, B. (Eds.): Software

Engineering Aspects of Continuous Development and New Paradigms of Software

Production and Deployment, Bd. 12055. Cham: Springer International Publishing

(Lecture notes in computer science), pp. 84–94, 2020.

[Deb19] Debian Project, 2019, „Debian. Version 10“ [Online] Available:

https://www.debian.org/releases/stable/index.en.html, [Accessed: 17-01-20].

[DED17] Derhamy, H., Eliasson, J. and Delsing, J., „IoT Interoperability - On-demand and

Low Latency Transparent Multi-protocol Translator,“ In: IEEE Internet Things J.,

pp. 1754–1763, 2017.

[Del⁺11] Delsing, J., Eliasson, J., Kyusakov, R., Colombo, A. W., Jammes, F., Nessaether,

J., Karnouskos, S. and Diedrich, C., „A Migration Approach Towards a SOA-based

Next Generation Process Control and Monitoring,“ In: IECON 2011 - 37th Annual

Conference of the IEEE Industrial Electronics Society: IEEE, pp. 4472–4477, 2011.

[Del⁺17a] Delsing, J., Varga, P., Ferreira, L., Albano, M., Perreira, P. P., Eliasson, J., Carlsson,

O. and Derhamy, H., „The Arrowhead Framework Architecture,“ In: Delsing, J.

(Ed.): IoT automation. Arrowhead Framework. Boca Raton, FL: CRC Press, Taylor

& Francis Group, pp. 43–88, 2017.

[Del⁺17b] Delsing, J., Eliasson, J., Albano, M., Varga, P., Ferreira, L., Derhamy, H., Hegedűs,

C., Perreira, P. P. and Carlsson, O., „Arrowhead Framework Core Systems and Ser-

vices,“ In: Delsing. J. (Ed.): IoT automation. Arrowhead Framework. Boca Raton,

FL: CRC Press, Taylor & Francis Group, pp. 89–138, 2017.

https://github.com/kubernetes/kubernetes
https://github.com/confluentinc/confluent-kafka-dotnet
https://www.debian.org/releases/stable/index.en.html

154 10. Literature

[DeM79] DeMarco, T., „Structured Analysis and System Specification.“ Englewood Cliffs,

NJ: Yourdon Press (Yourdon computing series), 1979.

[Der⁺15] Derhamy, H., Eliasson, J., Delsing, J. and Priller, P., „A Survey of Commercial

Frameworks for the Internet of Things,“ In: 2015 IEEE 20th Conference on Emerg-

ing Technologies & Factory Automation (ETFA): IEEE, pp. 1–8, 2015.

[DIN91345] DIN SPEC 91345, 2016, „Reference Architecture Model Industrie 4.0 (RAMI4.0).“

[DLH13] Dehof, M., Lüder, A. and Heinze, M., „An approach for modelling communication

networks in industrial control systems,“ In: IECON 2013 – 39th Annual Conference

of the IEEE Industrial Electronics Society: IEEE, pp. 7702–7707, 2013.

[Doc20a] Docker Inc., „docker docs,“ [Online] Available: https://docs.docker.com/registry/,

[Accessed: 14-01-20], 2020.

[Doc20b] Docker Inc., „docker docs,“ [Online] Available: https://docs.docker.com/en-

gine/swarm/, [Accessed: 14-01-20], 2020.

[Doc20c] Docker Inc., „docker docs,“ [Online] Available:

https://docs.docker.com/buildx/working-with-buildx/, [Accessed: 14-01-20], 2020.

[Doc20d] Docker Inc., „Enterprise Container Platform,“ [Online] Available:

https://www.docker.com/, [Accessed: 23-12-19], 2020.

[Dot⁺18] Dotoli, M., Fay, A., Miśkowicz, M. and Seatzu, C., „An Overview of Current Tech-

nologies and Emerging Trends in Factory Automation,“ In: Int. J. Prod., pp. 1–21,

2018.

[Dra⁺08] Drath, R., Luder, A., Peschke, J. and Hundt, L., „AutomationML – the Glue for

Seamless Automation Engineering,“ In: 2008 IEEE International Conference on

Emerging Technologies and Factory Automation: IEEE, pp. 616–623, 2008 - 2008.

[DvT01] Dashofy, E. M., van der Hoek, A. and Taylor, R. N., „A Highly-extensible, XML-

based Architecture Description Language,“ In: Proceedings Working IEEE/IFIP

Conference on Software Architecture: IEEE Comput. Soc, pp. 103–112, 2001.

[DWD14] Dorn, C., Waibel, P. and Dustdar, S., „Architecture-Centric Design of Complex

Message-Based Service Systems,“ In: Franch, X., Ghose, A. K., Lewis, G. A. and

Bhiri, S. (Eds.): Service-Oriented Computing, Bd. 8831. Berlin, Heidelberg:

Springer (Lecture notes in computer science), pp. 184–198, 2014.

[Ebe⁺15] Ebeid, E., Medina, J., Quaglia, D. and Fummi, F., „Extensions to the UML Profile

for MARTE for Distributed Embedded Systems,“ In: 2015 Forum on Specification

and Design Languages (FDL): IEEE, pp. 1–8, 2015.

[Ecl19a] Eclipse Foundation, 2019, „Sirius. Version 6.3.0“ [Online] Available:

https://www.eclipse.org/sirius/overview.html, [Accessed: 10-02-20].

[Ecl19b] Eclipse Foundation, 2019, „Eclipse Modeling Framework (EMF). Version 2.18“

[Online] Available: https://www.eclipse.org/modeling/emf/, [Accessed: 23-08-19].

https://docs.docker.com/registry/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/buildx/working-with-buildx/
https://www.docker.com/
https://www.eclipse.org/sirius/overview.html
https://www.eclipse.org/modeling/emf/

10. Literature 155

[Ecl19c] Eclipse Foundation, 2019, „Eclipse Modeling Tools. Version 2019-09“ [Online]

Available: https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-

modeling-tools, [Accessed: 10-01-20].

[Ecl19d] Eclipse Foundation, „Eclipse BaSyx,“ [Online] Available:

https://www.eclipse.org/basyx/, [Accessed: 01-04-19], 2019.

[Ecl19e] Eclipse Foundation, 2019, „Eclipse Mosquitto. Version 1.6.7“ [Online] Available:

https://github.com/eclipse/mosquitto, [Accessed: 03-12-19].

[Ecl19f] Eclipse Foundation, 2019, „Graphiti. Version 0.16.1“ [Online] Available:

https://www.eclipse.org/graphiti/, [Accessed: 10-02-20].

[Ecl19g] Eclipse Foundation, 2019, „Eclipse Acceleo. Version 3.7.8“ [Online] Available:

https://projects.eclipse.org/projects/modeling.m2t.acceleo, [Accessed: 23-08-19].

[EFQ15] Ebeid, E., Fummi, F. and Quaglia, D., „Model-Driven Design of Network Aspects

of Distributed Embedded Systems,“ In: IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 34, no. 4, pp. 603–614, 2015.

[EGW18] Epple, U., Grothoff, J. A. and Wagner, C., „BaSys 4.0: Metamodell der Komponen-

ten und ihres Aufbaus,“ 2018.

[Eur13] EN 61968-11, 2013, „Application Integration at Electric Utilities – System Inter-

faces for Distribution Management – Part 11: Common Information Model (CIM)

Extensions for Distribution.

[Fay⁺15] Fay, A., Vogel-Heuser, B., Frank, T., Eckert, K., Hadlich, T. and Diedrich, C., „En-

hancing a Model-based Engineering Approach for Distributed Manufacturing Au-

tomation Systems with Characteristics and Design Patterns,“ In: J. Syst. Softw., vol.

101, pp. 221–235, 2015.

[Fei⁺05] Feiler, P. H., Lewis, B., Vestal, S. and Colbert, E., „An Overview of the SAE Ar-

chitecture Analysis & Design Language (AADL) Standard: A Basis for Model-

Based Architecture-Driven Embedded Systems Engineering,“ In: Dissaux, P., Fi-

lali-Amine, M., Michel, P. and Vernadat, F. (Eds.): Architecture Description Lan-

guages, Bd. 176. New York: Springer-Verlag (IFIP The International Federation for

Information Processing), pp. 3–15, 2005.

[Fel⁺15] Felter, W., Ferreira, A., Rajamony, R. and Rubio, J., „An Updated Performance

Comparison of Virtual Machines and Linux Containers,“ In: 2015 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS):

IEEE, pp. 171–172, 2015 - 2015.

[Fer⁺17] Ferrer, B. R., Mohammed, W. M., Chen, E. and Lastra, J. L. M., „Connecting Web-

based IoT Devices to a Cloud-based Manufacturing Platform,“ In: IECON 2017 –

43rd Annual Conference of the IEEE Industrial Electronics Society: IEEE, pp.

8628–8633, 2017.

https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2019-09/r/eclipse-modeling-tools
https://www.eclipse.org/basyx/
https://github.com/eclipse/mosquitto
https://www.eclipse.org/graphiti/
https://projects.eclipse.org/projects/modeling.m2t.acceleo

156 10. Literature

[Fer⁺18] Ferrer, B. R., Wael, M. M., Martínez Lastra, J. L., Villalonga, A., Beruvides, G.,

Castaño, F. and Haber, R. E., „Towards the Adoption of Cyber-Physical Systems of

Systems Paradigm in Smart Manufacturing Environments,“ In: IEEE 16th Interna-

tional Conference of Indistrual Informationcs (INDIN) 2018, pp. 792–799, 2018.

[Fes08] Festo Didactic GmbH & Co. KG, „EasyPort USB. Manual,“ 2008.

[Fes20] Festo Corporation, „Automation Technology with MPS®,“ [Online] Available:

https://www.festo.com/us/en/e/technical-education/learning-systems/factory-auto-

mation-and-industry-4-0/automation-technology-with-mps-r-id_31963/,

[Accessed: 17-01-20], 2020.

[FG13] Feiler, P. H.; Gluch, D. P., „Model-based Engineering with AADL. An Introduction

to the SAE Architecture Analysis & Design Language.“ Upper Saddle River, N.J:

Addison-Wesley (The SEI series in software engineering), 2013.

[Fia⁺18] Fiaschetti, L., Antunez, M., Trapani, E., Valenzuela, L., Rubiales, A., Risso, M. and

Boroni, G., „Monitoring and Controlling Energy Distribution. Implementation of a

Distribution Management System based on Common Information Model,“ In: Int.

J. Elec. Power, vol. 94, pp. 67–76, 2018.

[Fie00] Fielding, R. T., „Architectural Styles and the Design of Network-based Software

Architectures,“ Dissertation, University of California, Irvine, U.S.A., 2000.

[FIPA02] Specification SC00084F, 2002, „FIPA Agent Message Transport Protocol for

HTTP.“

[FKF16a] Fleischmann, H., Kohl, J. and Franke, J., „A Modular Web Framework for Socio-

CPS-based Condition Monitoring,“ In: 2016 IEEE World Conference on Factory

Communication Systems (WFCS): IEEE, pp. 1–8, 2016.

[FKF16b] Fleischmann, H., Kohl, J. and Franke, J., „A Reference Architecture for the Devel-

opment of Socio-cyber-physical Condition Monitoring Systems,“ In: 2016 11th Sys-

tem of Systems Engineering Conference (SoSE): IEEE, pp. 1–6, 2016.

[FL17a] Ferrer, B. R. and Lastra, J. L. M., „Private Local Automation Clouds Built by CPS.

Potential and Challenges for Distributed Reasoning,“ In: Adv. Eng. Inform., vol. 32,

pp. 113–125, 2017.

[FL17b] Ferrer, B. R. and Lastra, J. L. M., „An Architecture for Implementing Private Local

Automation Clouds Built by CPS,“ In: IECON 2017 – 43rd Annual Conference of

the IEEE Industrial Electronics Society: IEEE, pp. 5406–5413, 2017.

[Fle⁺16] Fleischmann, H., Kohl, J., Franke, J., Reidt, A., Duchon, M. and Krcmar, H., „Im-

proving Maintenance Processes with Distributed Monitoring Systems,“ In: 2016

IEEE 14th International Conference on Industrial Informatics (INDIN): IEEE, pp.

377–382, 2016.

[FLV06] Feiler, P. H., Lewis, B. A. and Vestal, S., „The SAE Architecture Analysis & Design

Language (AADL) a Standard for Engineering Performance Critical Systems,“ In:

https://www.festo.com/us/en/e/technical-education/learning-systems/factory-automation-and-industry-4-0/automation-technology-with-mps-r-id_31963/
https://www.festo.com/us/en/e/technical-education/learning-systems/factory-automation-and-industry-4-0/automation-technology-with-mps-r-id_31963/

10. Literature 157

2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE In-

ternational Conference on Control Applications, 2006 IEEE International Sympo-

sium on Intelligent Control: IEEE, pp. 1206–1211, 2006.

[Fol⁺17] Folmer, J., Kirchen, I., Trunzer, E., Vogel-Heuser, B., Pötter, T., Graube, M.,

Heinze, S., Urbas, L., Atzmüller, M. and Arnu, D., „Big und Smart Data - Heraus-

forderungen in der Prozessindustrie,“ In: atp, vol. 59, pp. 58–69, 2017.

[Fow15] Fowler, M., „Continuous Integration,“ [Online] Available: https://martin-

fowler.com/articles/continuousIntegration.html, [Accessed: 14-01-20], 2015.

[Fra14] Frank, T., „Entwicklung und Evaluation einer Modellierungssprache für den Archi-

tekturentwurf von verteilten Automatisierungsanlagen auf Basis der Systems Mo-

deling Language (SysML),“ Dissertation, Technical University of Munich, Munich,

Germany. Institute of Automation and Information Systems, 2014.

[FS17] Fitzgerald, B. and Stol, K.-J., „Continuous software engineering: A roadmap and

agenda,“ In: J. Syst. Softw., vol. 123, pp. 176–189, 2017.

[Gam11] Gamma, E., „Design Patterns. Elements of Reusable Object-oriented Software.“

Boston: Addison-Wesley (Addison-Wesley professional computing series), 2011.

[GB12] Geisberger, E.; Broy, M., „agendaCPS. Integrierte Forschungsagenda Cyber-Physi-

cal Systems.“ Berlin, Heidelberg: Springer, 2012.

[Geo⁺13] Georgantas, N., Bouloukakis, G., Beauche, S. and Issarny, V., „Service-Oriented

Distributed Applications in the Future Internet. The Case for Interaction Paradigm

Interoperability,“ In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mat-

tern, F., Mitchell, J. C. et al. (Eds.): Service-Oriented and Cloud Computing,

Bd. 8135. Berlin, Heidelberg: Springer (Lecture notes in computer science), pp.

134–148, 2013.

[GF07] Greifeneder, J. and Frey, G., „DesLaNAS - a Language for Describing Networked

Automation Systems,“ In: 2007 IEEE Conference on Emerging Technologies &

Factory Automation (EFTA 2007): IEEE, pp. 1053–1060, 2007.

[Git20] Git project, 2020, „Git. Version 2.25.0“ [Online] Available:

https://github.com/git/git, [Accessed: 14-01-20].

[Goo19a] Google Inc., 2019, „gRPC. Version 1.23.0“ [Online] Available:

https://github.com/grpc/grpc, [Accessed: 06-09-19].

[Goo19b] Google Inc., 2019, „ProtoBuf. Version 3.9.1“ [Online] Available:

https://github.com/protocolbuffers/protobuf, [Accessed: 06-09-19].

[Gor⁺14] Gorecky, D., Schmitt, M., Loskyll, M. and Zühlke, D., „Human-machine-interac-

tion in the Industry 4.0 Era,“ In: 2014 12th IEEE International Conference on In-

dustrial Informatics (INDIN): IEEE, pp. 289–294, 2014.

[Gos⁺17] Gosewehr, F., Wernann, J., Borysch, W. and Colombo, A. W., „Specification and

Design of an Industrial Manufacturing Middleware,“ In: Proc. IEEE International

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://github.com/git/git
https://github.com/grpc/grpc
https://github.com/protocolbuffers/protobuf

158 10. Literature

Conference on Industrial Informatics (INDIN). Emden: IEEE Press, pp. 1160–1166,

2017.

[Gos⁺18] Gosewehr, F., Wermann, J., Borysch, W. and Colombo, A. W., „Apache Camel

based Implementation of an Industrial Middleware Solution,“ In: 2018 IEEE Indus-

trial Cyber-Physical Systems (ICPS), pp. 523–528, 2018.

[Gra20] Grafana Labs, 2020, „Grafana. Version 6.5.3“ [Online] Available:

https://github.com/grafana/grafana, [Accessed: 17-01-20].

[Gre07] Greifeneder, J., „Formale Analyse des Zeitverhaltens netzbasierter Automatisie-

rungssysteme,“ Dissertation, Technische Universität Kaiserslautern, Kaiserslautern.

Fachbereich Elektrotechnik und Informationstechnik, 2007.

[Grö⁺16] Gröger, C., Kassner, L., Hoos, E., Königsberger, J., Kiefer, C., Silcher, S. and

Mitschang, B., „The Data-driven Factory - Leveraging Big Industrial Data for Agile,

Learning and Human-centric Manufacturing,“ In: Proceedings of the 18th Interna-

tional Conference on Enterprise Information Systems: SCITEPRESS - Science and

and Technology Publications, pp. 40–52, 2016.

[Gro⁺99] Grosu, R., Broy, M., Selic, B. and Stefănescu, G., „What is Behind UML-RT?,“ In:

Kilov, H., Rumpe, B. and Simmonds, I. (Eds.): Behavioral Specifications of Busi-

nesses and Systems. Boston, MA: Springer US, pp. 75–90, 1999.

[GTD12] Gama, K., Touseau, L. and Donsez, D., „Combining Heterogeneous Service Tech-

nologies for Building an Internet of Things Middleware,“ In: Comput. Commun.,

vol. 35, no. 4, pp. 405–417, 2012.

[Haa97] Haaß, W.-D., „Handbuch der Kommunikationsnetze.“ Berlin, Heidelberg: Springer,

1997.

[Had⁺12] Hadlich, T., Home, S., Diedrich, C., Eckert, K., Frank, T., Fay, A. and Vogel-Heu-

ser, B., „Time as Non-functional Requirement in Distributed Control Systems,“ In:

Proceedings of 2012 IEEE 17th International Conference on Emerging Technolo-

gies & Factory Automation (ETFA 2012): IEEE, pp. 1–6, 2012.

[Har⁺16] Harrand, N., Fleurey, F., Morin, B. and Husa, K. E., „ThingML,“ In: Baudry, B. and

Combemale, B. (Eds.): Proceedings of the ACM/IEEE 19th International Confer-

ence on Model Driven Engineering Languages and Systems – MODELS ‚16. New

York, New York, USA: ACM Press, pp. 125–135, 2016.

[Has⁺13] Hashemi Farzaneh, M., Feldmann, S., Legat, C., Folmer, J. and Vogel-Heuser, B.,

„Modeling Multicore Programmable Logic Controllers in Networked Automation

Systems,“ In: IECON 2013 – 39th Annual Conference of the IEEE Industrial Elec-

tronics Society: IEEE, pp. 4398–4403, 2013.

[Has⁺15] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A. and Ullah Khan,

S., „The Rise of “Big Data” on Cloud Computing. Review and Open Research Is-

sues,“ In: Inf. Syst., vol. 47, pp. 98–115, 2015.

https://github.com/grafana/grafana

10. Literature 159

[Hev⁺04] Hevner, A., March, S. T., Park, J. and Ram, S., „Design Science in Information

Systems Research,“ In: MIS Q, vol. 28, no. 1, pp. 75, 2004.

[HFV13] Hufnagel, J., Frank, T. and Vogel-Heuser, B., „Framework for a Model-based,

Cross-domain System Interconnection in Automation Technology,“ In: 2013 IEEE

18th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–

9, 2013.

[HKV18] Hästbacka, D., Kannisto, P. and Vilkko, M., „Data-driven and Event-driven Inte-

gration Architecture for Plant-wide Industrial Process Monitoring and Control,“ In:

IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society:

IEEE, pp. 2979–2985, 2018.

[HMS19] HMS Industrial Networks, „Industrial Network Market Shares 2019 According to

HMS,“ [Online] Available: https://www.hms-networks.com/news-and-in-

sights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-accord-

ing-to-hms, [Accessed: 04-02-20], 2019.

[Hol⁺13] Holtewert, P., Wutzke, R., Seidelmann, J. and Bauernhansl, T., „Virtual Fort Knox

Federative, Secure and Cloud-based Platform for Manufacturing,“ In: Procedia

CIRP, vol. 7, pp. 527–532, 2013.

[HP88] Hatley, D. J.; Pirbhai, I. A., „Strategies for Real-time System Specification.“ New

York, NY: Dorset House Publ, 1988.

[HR00] Harel, D. and Rumpe, B., „Modeling Languages: Syntax, Semantics and All That

Stuff, Part I: The Basic Stuff,“ 2000.

[Hub⁺96] Huber, F., Schätz, B., Schmidt, A. and Spies, K., „AutoFocus — A Tool for Dis-

tributed Systems Specification,“ In: Goos, G., Hartmanis, J., Leeuwen, J., Jonsson,

B. and Parrow, J. (Eds.): Formal Techniques in Real-Time and Fault-Tolerant Sys-

tems, Bd. 1135. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture notes in

computer science), pp. 467–470, 1996.

[HV15] Hufnagel, J. and Vogel-Heuser, B., „Data Integration in Manufacturing Industry:

Model-based Integration of Data Distributed from ERP to PLC,“ In: 2015 IEEE 13th

International Conference on Industrial Informatics, pp. 275–281, 2015.

[HX14] He, W. and Xu, L. D., „Integration of Distributed Enterprise Applications. A Sur-

vey,“ In: IEEE Trans. Ind. Inf., vol. 10, no. 1, pp. 35–42, 2014.

[IEC60802] IEC/IEEE CD 60802 D1.1, 2019, „TSN Profile for Industrial Automation.“

[IEC61131] IEC 61131-3, 2013a, „Programmable Controllers – Part 3: Programming Lan-

guages.“

[IEC61131] IEC 61131-10, 2019b, „Programmable Controllers – Part 10: PLC Open XML Ex-

change Format.“

[IEC61131] IEC 61131-9, 2013c, „Programmable Controllers – Part 9: Single-drop Digital

Communication Interface for Small Sensors and Actuators (SDCI).“

https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms
https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms
https://www.hms-networks.com/news-and-insights/news-from-hms/2019/05/07/industrial-network-market-shares-2019-according-to-hms

160 10. Literature

[IEC61158] IEC 61158-1, 2019, „Industrial Communication Networks – Fieldbus Specifications

– Part 1: Overview and Guidance for the IEC 61158 and IEC 61784 Series.“

[IEC61784] IEC 61784, 2019, „Industrial Communication Networks – Profiles Part 1: Fieldbus

Profiles.“

[IEC62264] IEC 62264-1, 2013, „Enterprise-control System Integration – Part 1: Models and

Terminology.“

[IEC62541] IEC TR 62541-1, 2016, „OPC Unified Architecture – Part 1: Overview and Con-

cepts.“

[IEC62714] IEC 62714-1, 2018, „Engineering data exchange format for use in industrial auto-

mation systems engineering – Automation Markup Language – Part 1: Architecture

and general requirements.“

[IEEE2413] IEEE 2413, 2019, „IEEE Standard for an Architectural Framework for the Internet

of Things (IOT).“

[IEEE802] IEEE 802.1Q-2018, 2018, „IEEE Standard for Local and Metropolitan Area Net-

works – Bridges and Bridged Networks.“

[Ift⁺18] Iftikhar, U., Wael, M. M., Ferrer, B. R. and Martínez Lastra, J. L., „A Framework

for Data Collection, Transformation and Processing in Industrial Systems,“ In:

IEEE 16th International Conference of Indistrual Informationcs (INDIN) 2018, pp.

707–712, 2018.

[IK16] Ismail, A. and Kastner, W., „A Middleware Architecture for Vertical Integration,“

In: 2016 1st International Workshop on Cyber-Physical Production Systems

(CPPS): IEEE, pp. 1–4, 2016.

[IK17] Ismail, A. and Kastner, W., „Surveying the Features of Industrial SOAs,“ In: 2017

IEEE International Conference on Industrial Technology (ICIT): IEEE, pp. 1199–

1204, 2017.

[IMP19] IMPROVE Project, „IMPROVE,“ [Online] Available: http://improve-vfof.eu/, [Ac-

cessed: 16-12-19], 2019.

[Ind17a] Industrial Internet Consortium, „Architecture Alignment and Interoperability. An

Industrial Internet Consortium and Plattform Industrie 4.0 Joint Whitepaper,“ In-

dustrial Internet Consortium, 2017.

[Ind17b] Industrial Internet Consortium, „The Industrial Internet of Things. Volume G1: Ref-

erence Architecture,“ Industrial Internet Consortium, 2017.

[Ind17c] Industrial Internet Consortium, „The Industrial Internet of Things. Volume G5:

Connectivity Framework,“ Industrial Internet Consortium, 2017.

[Ins13] Institute of Automation and Information Systems, Technical University of Munich,

„Industrie 4.0,“ [Online] Available: http://i40d.ais.mw.tum.de/, [Accessed: 17-01-

20], 2013.

http://improve-vfof.eu/
http://i40d.ais.mw.tum.de/

10. Literature 161

[Ins20] Institute of Automation and Information Systems, Technical University of Munich,

„Hybrid Process Model,“ [Online] Available: http://www.ais.mw.tum.de/en/re-

search/equipment/hybrid-process-model/, [Accessed: 17-01-20], 2020.

[ISA95] ANSI/ISA 95.00.01–2000, 2000, „Enterprise-Control System Integration – Part I:

Models and Terminology.“

[Ism18] Ismail, A., „Service Oriented Manufacturing Infrastructure,“ Dissertation, TU

Wien, Vienna, Austria. Faculty of Informatics, 2018.

[ISO19464] ISO/IEC 19464, 2014, „Information Technology – Advanced Message Queuing

Protocol (AMQP) v1.0 specification.“

[ISO19508] ISO/IEC 19508, 2014, „Information Technology – Object Management Group Meta

Object Facility (MOF) Core.“

[ISO19514] ISO/IEC 19514, 2017, „Information Technology – Object Management Group Sys-

tems Modeling Language (OMG SysML).“

[ISO20922] ISO/IEC 20922, 2016, „Information Technology – Message Queuing Telemetry

Transport (MQTT) v3.1.1.“

[ISO30141] ISO/IEC 30141, 2018, „Information technology – Internet of Things Reference Ar-

chitecture (IoT RA).“

[ISO42010] ISO/IEC/IEEE 42010, 2011, „Systems and Software Engineering – Architecture

Description.“

[ISO7498] ISO/IEC 7498-1, 1994, „Information Technology – Open Systems Interconnection

- Basic Reference Model: The Basic Model.“

[Iss⁺16] Issarny, V., Bouloukakis, G., Georgantas, N. and Billet, B., „Revisiting Service-

Oriented Architecture for the IoT: A Middleware Perspective,“ In: Sheng, Q. Z.,

Stroulia, E., Tata, S. and Bhiri, S. (Eds.): Service-Oriented Computing: 14th Inter-

national Conference, ICSOC 2016, Banff, AB, Canada, October 10-13, 2016, Pro-

ceedings. Cham: Springer International Publishing, pp. 3–17, 2016.

[ITK19] Ismail, A., Truong, H.-L. and Kastner, W., „Manufacturing process data analysis

pipelines: a requirements analysis and survey,“ In: J. Big Data, vol. 6, no. 1, pp. 1–

26, 2019.

[Izz09] Izza, S., „Integration of industrial information systems. From Syntactic to Semantic

Integration Approaches,“ In: Enterp. Inf. Syst., vol. 3, no. 1, pp. 1–57, 2009.

[Jas⁺09] Jasperneite, J., Imtiaz, J., Schumacher, M. and Weber, K., „A Proposal for a Generic

Real-Time Ethernet System,“ In: IEEE Trans. Ind. Inf., vol. 5, no. 2, pp. 75–85,

2009.

[Jes⁺17] Jeschke, S., Brecher, C., Meisen, T., Özdemir, D. and Eschert, T., „Industrial Inter-

net of Things and Cyber Manufacturing Systems,“ In: Jeschke, S., Brecher, C.,

Song, H. and Rawat, D. B. (Eds.): Industrial Internet of Things, Bd. 54. Cham:

http://www.ais.mw.tum.de/en/research/equipment/hybrid-process-model/
http://www.ais.mw.tum.de/en/research/equipment/hybrid-process-model/

162 10. Literature

Springer International Publishing (Springer Series in Wireless Technology), pp. 3–

19, 2017.

[Jha⁺14] Jha, S., Jha, M., O‘Brien, L. and Wells, M., „Integrating Legacy System into Big

Data Solutions. Time to make the change,“ In: Asia-Pacific World Congress on

Computer Science and Engineering: IEEE, pp. 1–10, 2014.

[Jha⁺20] Jha, D. N., Alwasel, K., Alshoshan, A., Huang, X., Naha, R. K., Battula, S. K., Garg,

S., Puthal, D., James, P., Zomaya, A., Dustdar, S. and Ranjan, R., „IoTSim‐Edge:

A Simulation Framework for Modeling the Behavior of Internet of Things and Edge

Computing Environments,“ In: Softw: Pract. Exper., vol. 3, no. 1, pp. 11, 2020.

[JPG12] Jardim-Goncalves, R., Popplewell, K. and Grilo, A., „Sustainable Interoperability.

The Future of Internet based Industrial Enterprises,“ In: Comput. Ind., vol. 63, no.

8, pp. 731–738, 2012.

[JS 19] JS Foundation, 2019, „Node-RED. Version 1.0.3“ [Online] Available:

https://github.com/node-red/node-red, [Accessed: 17-01-20].

[Kag15] Kagermann, H., „Change Through Digitization. Value Creation in the Age of In-

dustry 4.0,“ In: Albach, H., Meffert, H., Pinkwart, A. and Reichwald, R. (Eds.):

Management of permanent change. Wiesbaden: Springer Fachmedien Wiesbaden,

pp. 23–45, 2015.

[Kar⁺14] Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly,

M., Sikora, M., Jammes, F., Delsing, J., Eliasson, J., Nappey, P., Hu, J. and Graf,

M., „The IMC-AESOP Architecture for Cloud-Based Industrial Cyber-Physical

Systems,“ In: Colombo, A. W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka,

P., Harrison, R. et al. (Eds.): Industrial Cloud-Based Cyber-Physical Systems, Bd. 7.

Cham: Springer International Publishing, pp. 49–88, 2014.

[Kas⁺17] Kassner, L., Gröger, C., Königsberger, J., Hoos, E., Kiefer, C., Weber, C., Silcher,

S. and Mitschang, B., „The Stuttgart IT Architecture for Manufacturing,“ In: Ham-

moudi, S., Maciaszek, L. A., Missikoff, M. M., Camp, O. and Cordeiro, J. (Eds.):

Enterprise Information Systems, Bd. 291. Cham: Springer International Publishing

(Lecture Notes in Business Information Processing), pp. 53–80, 2017.

[Kat08] Katzke, U., „Spezifikation und Anwendung einer Modellierungssprache für die Au-

tomatisierungstechnik auf Basis der Unified Modeling Language (UML),“ Disser-

tation, Universität Kassel, Kassel. Fachbereich Elektrotechnik / Informatik, 2008.

[KBD09] Karnouskos, S., Bangemann, T. and Diedrich, C., „Integration of Legacy Devices

in the Future SOA-based Factory,“ In: IFAC Proceedings Volumes, vol. 42, no. 4,

pp. 2113–2118, 2009.

[Ker19] Kernschmidt, K., „Interdisciplinary Structural Modeling of Mechatronic Production

Systems using SysML4Mechatronics,“ Dissertation, Technical University of Mu-

nich, Munich, Germany. Institute of Automation and Information Systems, 2019.

https://github.com/node-red/node-red

10. Literature 163

[Kir⁺18] Kirmse, A., Kraus, V., Hoffmann, M. and Meisen, T., „An Architecture for Efficient

Integration and Harmonization of Heterogeneous, Distributed Data Sources Ena-

bling Big Data Analytics,“ In: Proceedings of the 20th International Conference on

Enterprise Information Systems, pp. 175–182, 2018.

[KK19] Kuo, Y.-H. and Kusiak, A., „From Data to Big Data in Production Research: the

Past and Future Trends,“ In: Int. J. Prod. Res., vol. 57, no. 15-16, pp. 4828–4853,

2019.

[Kle⁺17] Klettner, C., Tauchnitz, T., Epple, U., Nothdurft, L., Diedrich, C., Schröder, T.,

Goßmann, D., Banerjee, S., Krauß, M., Latrou, C. and Urbas, L., „Namur Open

Architecture,“ In: atp, vol. 59, no. 01–02, pp. 17, 2017.

[KUG20147] Khan, M. A.-u.-d., Uddin, M. F. and Gupta, N., „Seven V‘s of Big Data Understand-

ing Big Data to Extract Value,“ In: Proceedings of the 2014 Zone 1 Conference of

the American Society for Engineering Education: IEEE, pp. 1–5, 20147.

[Kuh⁺18] Kuhn, T., Antonino, P. O., Damm, M., Morgenstern, A., Schulz, D., Ziesche, C. and

Müller, T., „Industrie 4.0 Virtual Automation Bus,“ In: Crnkovic, I., Chaudron, M.,

Chechik, M. and Harman, M. (Eds.): Proceedings of the 40th International Confer-

ence on Software Engineering Companion Proceeedings - ICSE ‚18. New York,

New York, USA: ACM Press, pp. 121–122, 2018.

[KV05a] Katzke, U. and Vogel-Heuser, B., „UML-PA as an Engineering Model for Distrib-

uted Process Automation,“ In: IFAC Proceedings Volumes, vol. 38, no. 1, pp. 129–

134, 2005.

[KV05b] Katzke, U. and Vogel-Heuser, B., „Design and Application of an Engineering

Model for Distributed Process Automation,“ In: Proceedings of the 2005, American

Control Conference, 2005: IEEE, pp. 2960–2965, 2005.

[KWH13] Kagermann, Henning; Wahlster, Wolfgang; Helbig, Johannes (Hg.), „Recommen-

dations for Implementing the Strategic Initiative INDUSTRIE 4.0. Final Report of

the Industrie 4.0 Working Group,“ acatech, 2013.

[KY13] Kim, E.-J. and Youm, S., „Machine-to-machine Platform Architecture for Horizon-

tal Service Integration,“ In: J. Wireless Com. Network., vol. 2013, no. 1, pp. 9, 2013.

[LBK15] Lee, J., Bagheri, B. and Kao, H.-A., „A Cyber-Physical Systems Architecture for

Industry 4.0-based Manufacturing Systems,“ In: Manufacturing Letters, vol. 3, pp.

18–23, 2015.

[LCK16] Leitão, P., Colombo, A. W. and Karnouskos, S., „Industrial Automation based on

Cyber-physical Systems Technologies. Prototype Implementations and Chal-

lenges,“ In: Comput. Ind., vol. 81, pp. 11–25, 2016.

[LCR05] Leitão, P., Casais, F. and Restivo, F., „Holonic Manufacturing Control: A Practical

Implementation,“ In: Camarinha-Matos, L.-M. (Ed.): Emerging Solutions for Fu-

ture Manufacturing Systems, Bd. 159. Boston: Kluwer Academic Publishers (IFIP

International Federation for Information Processing), pp. 33–44, 2005.

164 10. Literature

[Lei⁺13] Leitão, P., Barbosa, J., Vrba, P., Skobelev, P., Tsarev, A. and Kazanskaia, D.,

„Multi-agent System Approach for the Strategic Planning in Ramp-Up Production

of Small Lots,“ In: 2013 IEEE International Conference on Systems, Man, and Cy-

bernetics: IEEE, pp. 4743–4748, 2013.

[Lei⁺15] Leitão, P., Barbosa, J., Papadopoulou, M.-E. C. and Venieris, I. S., „Standardization

in Cyber-physical Systems. The ARUM Case,“ In: 2015 IEEE International Con-

ference on Industrial Technology (ICIT): IEEE, pp. 2988–2993, 2015.

[Lei⁺16] Leitão, P., Barbosa, J., Pereira, A., Barata, J. and Colombo, A. W., „Specification

of the PERFoRM Architecture for the Seamless Production System Reconfigura-

tion,“ In: IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electron-

ics Society: IEEE, pp. 5729–5734, 2016.

[Lei⁺17] Leitão, P., Barbosa, J., Foehr, M., Calà, A., Perlo, P., Iuzzolino, G., Petrali, P.,

Vallhagen, J. and Colombo, A. W., „Instantiating the PERFoRM System Architec-

ture for Industrial Case Studies,“ In: Borangiu, T., Trentesaux, D., Thomas, A.,

Leitão, P. and Oliveira, J. B. (Eds.): Service Orientation in Holonic and Multi-Agent

Manufacturing, Bd. 694. Cham: Springer International Publishing (Studies in Com-

putational Intelligence), pp. 359–372, 2017.

[Lei04] Leitão, P., „An Agile and Adaptive Holonic Architecture for Manufacturing Con-

trol,“ Dissertation, University of Porto, Porto, Portugal. Faculty of Engineering,

2004.

[LG99a] Lauber, R.; Göhner, P., „Prozessautomatisierung 2.“ Berlin, Heidelberg: Springer,

1999.

[LG99b] Lauber, R.; Göhner, P., „Prozessautomatisierung 1.“ Berlin, Heidelberg: Springer,

1999.

[Lie⁺18] Liebel, G., Marko, N., Tichy, M., Leitner, A. and Hansson, J., „Model-based Engi-

neering in the Embedded Systems Domain: an Industrial Survey on the State-of-

practice,“ In: Softw. Syst. Model., vol. 17, no. 1, pp. 91–113, 2018.

[Lin⁺17] Lin, Y.-C., Hung, M.-H., Huang, H.-C., Chen, C.-C., Yang, H.-C., Hsieh, Y.-S. and

Cheng, F.-T., „Development of Advanced Manufacturing Cloud of Things

(AMCoT) - A Smart Manufacturing Platform,“ In: 2017 13 th IEEE Conference on

Automation Science and Engineering (CASE), pp. 255–262, 2017.

[Liu⁺16] Liu, H., Guo, J., Yu, W., Zhu, L., Liu, Y., Xia, T., Sun, R. and Gardner, R. M., „The

Design and Implementation of the Enterprise Level Data Platform and Big Data

Driven Applications and Analytics,“ In: 2016 IEEE/PES Transmission and Distri-

bution Conference and Exposition (T&D): IEEE, pp. 1–5, 2016.

[Liu⁺18] Liu, Y.-Y., Hung, M.-H., Lin, Y.-C., Chen, C.-C., Gao, W.-L. and Cheng, F.-T., „A

Cloud-based Pluggable Manufacturing Service Scheme for Smart Factory,“ In:

2018 IEEE 14th International Conference on Automation Science and Engineering

(CASE): IEEE, pp. 1040–1045, 2018.

10. Literature 165

[LJ16] Liu, C. and Jiang, P., „A Cyber-physical System Architecture in Shop Floor for

Intelligent Manufacturing,“ In: Procedia CIRP, vol. 56, pp. 372–377, 2016.

[LNP19] Longo, F., Nicoletti, L. and Padovano, A., „Ubiquitous Knowledge Empowers the

Smart Factory: the Impacts of a Service-oriented Digital Twin on Enterprises‘ Per-

formance,“ In: Annu. Rev. Control, pp. 221–236, 2019.

[LPJ10] Lankhorst, M. M., Proper, H. A. and Jonkers, H., „The Anatomy of the ArchiMate

Language,“ In: Int. J. Inf. Sys. Model. Des., vol. 1, no. 1, pp. 1–32, 2010.

[LR06] Leitão, P. and Restivo, F., „ADACOR: A holonic Architecture for Agile and Adap-

tive Manufacturing Control,“ In: Comput. Ind., vol. 57, no. 2, pp. 121–130, 2006.

[LVF17] Lewin, M., Voigtländer, S. and Fay, A., „Method for Process Modelling and Anal-

ysis with Regard to the Requirements of Industry 4.0,“ In: 43rd Annual Conference

of the IEEE Industrial Electronics Society, pp. 3957–3962, 2017.

[Mat19] MathWorks, I., 2019, „MATLAB. Version 2019b Update 3“ [Online] Available:

https://de.mathworks.com/, [Accessed: 17-01-20].

[May⁺13] Mayer, F., Pantförder, D., Diedrich, C. and Vogel-Heuser, B., „Deutschlandweiter

I4.0-Demonstrator,“ Lehrstuhl für Automatisierung und Informationssysteme,

2013.

[Maz⁺18] Mazak, A., Lüder, A., Wolny, S., Wimmer, M., Winkler, D., Kirchheim, K., Rosen-

dahl, R., Bayanifar, H. and Biffl, S., „Model-based Generation of Run-time Data

Collection Systems Exploiting AutomationML,“ In: Automatisierungstechnik, vol.

66, no. 10, pp. 819–833, 2018.

[MCV05] Mens, T., Czarnecki, K. and Van Gorp, P., „A Taxonomy of Model Transfor-

mations,“ In: Bezivin, J. and Heckel, R. (Eds.): Language Engineering for Model-

Driven Software Development. Dagstuhl, Germany: Internationales Begegnungs-

und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

[Mic19a] Microsoft Corporation, 2019, „Visio. Version 2019“ [Online] Available:

https://products.office.com/de-de/visio/flowchart-software, [Accessed: 09-09-19].

[Mic19b] Microsoft Corporation, 2019, „Visual Studio. Version 2019“ [Online] Available:

https://visualstudio.microsoft.com/de/vs/, [Accessed: 10-01-20].

[Mic19c] Microsoft Corporation, 2019, „Microsoft.CodeAnalysis.Metrics. Version 2.9.8“

[Online] Available: https://www.nuget.org/packages/Microsoft.CodeAnalysis.Met-

rics/, [Accessed: 20-01-20].

[Mín12] Mínguez, J., „A Service-oriented Integration Platform for Flexible Information Pro-

visioning in the Real-time Factory,“ Dissertation, Universität Stuttgart, Stuttgart,

Germany. Institut für Parallele und Verteilte Systeme, 2012.

[MJG11] Maga, C., Jazdi, N. and Göhner, P., „Reusable Models in Industrial Automation:

Experiences in Defining Appropriate Levels of Granularity,“ In: IFAC Proceedings

Volumes, vol. 44, no. 1, pp. 9145–9150, 2011.

https://de.mathworks.com/
https://products.office.com/de-de/visio/flowchart-software
https://visualstudio.microsoft.com/de/vs/
https://www.nuget.org/packages/Microsoft.CodeAnalysis.Metrics/
https://www.nuget.org/packages/Microsoft.CodeAnalysis.Metrics/

166 10. Literature

[MKB07] Mahambre, S. P., Kumar S.D., M. and Bellur, U., „A Taxonomy of QoS-Aware,

Adaptive Event-Dissemination Middleware,“ In: IEEE Internet Comput., vol. 11,

no. 4, pp. 35–44, 2007.

[Moc⁺12] Moctezuma, L. E. G., Jokinen, J., Postelnicu, C. and Lastra, J. L. M., „Retrofitting

a Factory Automation System to Address Market Needs and Societal Changes,“ In:

IEEE 10th International Conference on Industrial Informatics: IEEE, pp. 413–418,

2012.

[Mon⁺16] Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G.,

Sauer, O., Schuh, G., Sihn, W. and Ueda, K., „Cyber-physical Systems in Manufac-

turing,“ In: CIRP Annals, vol. 65, no. 2, pp. 621–641, 2016.

[Mon19] MongoDB Inc., 2019, „MongoDB. Version 4.2.2“ [Online] Available:

https://github.com/mongodb/mongo/releases, [Accessed: 24-01-20].

[Moo09] Moody, D., „The “Physics” of Notations. Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering,“ In: IIEEE Trans. Software Eng., vol.

35, no. 6, pp. 756–779, 2009.

[Mor17] Morabito, R., „Virtualization on Internet of Things Edge Devices With Container

Technologies: A Performance Evaluation,“ In: IEEE Access, vol. 5, pp. 8835–8850,

2017.

[MTC18] MTConnect® Standard, 2018, „Part 1.0 – Overview and Fundamentals.“

[MW15] Marz, N.; Warren, J., „Big data. Principles and best practices of scalable real-time

data systems.“ Shelter Island, NY: Manning, 2015.

[NE175] NAMUR recommendation NE 175 (draft), 2020, „NAMUR Open Architecture -

NOA Concept.“

[Neu⁺18] Neumann, A., Wisniewski, L., Ganesan, R. S., Rost, P. and Jasperneite, J., „Towards

Integration of Industrial Ethernet with 5G Mobile Networks,“ In: 2018 14th IEEE

International Workshop on Factory Communication Systems (WFCS): IEEE, pp. 1–

4, 2018 - 2018.

[Neu07] Neumann, P., „Communication in Industrial Automation—What is Going on?,“ In:

Control. Eng. Pract., vol. 15, no. 11, pp. 1332–1347, 2007.

[OMG08] Object Management Group (OMG), „MOF Model to Text Transformation Lan-

guage,“ Object Management Group (OMG), 2008.

[OMG11] Object Management Group (OMG), „UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems,“ Object Management Group (OMG),

2011.

[OMG12] Object Management Group (OMG), „Service Oriented Architecture Modeling Lan-

guage (SoaML) Specification,“ Object Management Group (OMG), 2012.

https://github.com/mongodb/mongo/releases

10. Literature 167

[OMG14] Object Management Group (OMG), „Object Constraint Language,“ Object Man-

agement Group (OMG), 2014a.

[OMG14] Object Management Group (OMG), „Model Driven Architecture (MDA) MDA

Guide rev. 2.0,“ Object Management Group (OMG), 2014b.

[OMG15] Object Management Group (OMG), „Data Distribution Service (DDS),“ Object

Management Group (OMG), 2015.

[OMG16] Object Management Group (OMG), „Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification,“ Object Management Group (OMG),

2016a.

[OMG16] Object Management Group (OMG), „OMG Meta Object Facility (MOF) Core Spec-

ification,“ Object Management Group (OMG), 2016b.

[OMG17] Object Management Group (OMG), „OMG Unified Modeling Language (OMG

UML),“ Object Management Group (OMG), 2017.

[OMG18] Object Management Group (OMG), „OPC UA/DDS Gateway,“ Object Manage-

ment Group (OMG), 2018.

[OMG19] Object Management Group (OMG), „OMG Systems Modeling Language (OMG

SysML),“ Object Management Group (OMG), 2019.

[OPC03] OPC Specification, 2003, „OPC Data Access Custom Interface Specification.“

[OPC18] OPC Unified Architecture Specification Part 14, 2018, „PubSub.“

[OPC19] OPC Foundation, 2019, „UA-.NetStandard. Version 1.4.355.26“ [Online] Availa-

ble: https://github.com/OPCFoundation/UA-.NETStandard, [Accessed: 23-08-19].

[Ope18] Open Mobile Alliance, „Lightweight Machine to Machine Technical Specification.

Core,“ 2018.

[Ope19] Open Group, „ArchiMate 3.1 Specification,“ 2019.

[Ope20] OpenSim Ltd., 2020, „OMNeT++. Version 5.6.1“ [Online] Available:

https://github.com/omnetpp/omnetpp, [Accessed: 27-04-20].

[OSI19] OSIsoft, „PI System, [Online] Available: https://www.osisoft.com/pi-system/, [Ac-

cessed: 26-09-19], 2019.

[Pah15] Pahl, C., „Containerization and the PaaS Cloud,“ In: IEEE Cloud Comput., vol. 2,

no. 3, pp. 24–31, 2015.

[Pan⁺19] Panetto, H., Iung, B., Ivanov, D., Weichhart, G. and Wang, X., „Challenges for the

Cyber-physical Manufacturing Enterprises of the Future,“ In: Annu. Rev. Control,

2019.

[Pei19] Pei Breivold, H., „Towards Factories of the Future: Migration of Industrial Legacy

Automation Systems in the Cloud Computing and Internet-of-things Context,“ In:

Enterp. Inf. Syst., pp. 1–21, 2019.

https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/omnetpp/omnetpp
https://www.osisoft.com/pi-system/

168 10. Literature

[Pen⁺17] Penas, O., Plateaux, R., Patalano, S. and Hammadi, M., „Multi-scale Approach from

Mechatronic to Cyber-Physical Systems for the Design of Manufacturing Systems,“

In: Comput. Ind., vol. 86, pp. 52–69, 2017.

[Per⁺14] Perera, C., Zaslavsky, A., Christen, P. and Georgakopoulos, D., „Context Aware

Computing for The Internet of Things. A Survey,“ In: IEEE Commun. Surv. Tuto-

rials, vol. 16, no. 1, pp. 414–454, 2014.

[Per⁺18] Peres, R. S., Dionisio Rocha, A., Leitao, P. and Barata, J., „IDARTS – Towards

Intelligent Data Analysis and Real-time Supervision for Industry 4.0,“ In: Comput.

Ind., vol. 101, pp. 138–146, 2018.

[PER16a] PERFoRM Project, „Deliverable 2.2 – Definition of the System Architecture,“

2016.

[PER16b] PERFoRM Project, „Deliverable 3.2 – Real-time Process Information Exploita-

tion,“ 2016.

[PER17] PERFoRM Project, „Deliverable 5.1 – The PERFoRM Integration Approach,“

2017.

[Pet17] Petrasch, R., „Model-based Engineering for Microservice Architectures using En-

terprise Integration Patterns for Inter-service Communication,“ In: 2017 14th Inter-

national Joint Conference on Computer Science and Software Engineering

(JCSSE): IEEE, pp. 1–4, 2017.

[Pet18] Petrasch, R., „Message-Oriented Middleware for System Communication. A

Model-Based Approach,“ In: Meesad, P., Sodsee, S. and Unger, H. (Eds.): Recent

Advances in Information and Communication Technology 2017, Bd. 566. Cham:

Springer International Publishing (Advances in Intelligent Systems and Compu-

ting), pp. 253–263, 2018.

[PGP16] Pfrommer, J., Gruner, S. and Palm, F., „Hybrid OPC UA and DDS. Combining Ar-

chitectural Styles for the Industrial Internet,“ In: 2016 IEEE World Conference on

Factory Communication Systems (WFCS): IEEE, pp. 1–7, 2016.

[Piv19a] Pivotal Software Inc., 2019, „RabbitMQ. Version 3.8.2“ [Online] Available:

https://github.com/rabbitmq/rabbitmq-server, [Accessed: 03-12-19].

[Piv19b] Pivotal Software Inc., 2019, „RabbitMQ.Net client. Version 6.0.0-pre3“ [Online]

Available: https://github.com/rabbitmq/rabbitmq-dotnet-client, [Accessed: 23-08-

19].

[PJM12] Panetto, H., Jardim-Goncalves, R. and Molina, A., „Enterprise Integration and Net-

working. Theory and Practice,“ In: Annu. Rev. Control, vol. 36, no. 2, pp. 284–290,

2012.

[PN09] Pereira, C. E. and Neumann, P., „Industrial Communication Protocols,“ In: Nof, S.

Y. (Ed.): Springer Handbook of Automation. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 981–999, 2009.

https://github.com/rabbitmq/rabbitmq-server
https://github.com/rabbitmq/rabbitmq-dotnet-client

10. Literature 169

[Pos19] PostgreSQL Global Development Group, 2019, „PostgreSQL. Version 11.6“

[Online] Available: https://www.postgresql.org/, [Accessed: 17-01-20].

[Pre00] Prechelt, L., „Empirical Comparison of Seven Programming Languages,“ In: Com-

puter, vol. 33, no. 10, pp. 23–29, 2000.

[PTD19] Pusztai, T. W., Tsigkanos, C. and Dustdar, S., „Engineering Heterogeneous Internet

of Things Applications: From Models to Code,“ In: 2019 IEEE 5th International

Conference on Collaboration and Internet Computing (CIC): IEEE, pp. 222–231,

2019 - 2019.

[Pyt19] Python Software Foundation, 2019, „Python. Version 3.7.3“ [Online] Available:

https://www.python.org/, [Accessed: 17-01-20].

[Qur⁺17] Qureshi, K. A., Mohammed, W. M., Ferrer, B. R., Lastra, J. L. M. and Agostinho,

C., „Legacy Systems Interactions with the Supply Chain Through the C2NET

Cloud-based Platform,“ In: 2017 IEEE 15th International Conference on Industrial

Informatics (INDIN): IEEE, pp. 725–731, 2017.

[Raj⁺10] Rajkumar, R., Lee, I., Sha, L. and Stankovic, J., „Cyber-physical Systems,“ In:

Sapatnekar, S. (Ed.): Proceedings of the 47th Design Automation Conference on -

DAC ‚10. New York, New York, USA: ACM Press, pp. 731–736, 2010.

[Ran⁺18] Ranjan, R., Rana, O., Nepal, S., Yousif, M., James, P., Wen, Z., Barr, S., Watson,

P., Jayaraman, P. P., Georgakopoulos, D., Villari, M., Fazio, M., Garg, S., Buyya,

R., Wang, L., Zomaya, A. Y. and Dustdar, S., „The Next Grand Challenges: Inte-

grating the Internet of Things and Data Science,“ In: IEEE Cloud Comput., vol. 5,

no. 3, pp. 12–26, 2018.

[Raz⁺16] Razzaque, M. A., Milojevic-Jevric, M., Palade, A. and Clarke, S., „Middleware for

Internet of Things. A Survey,“ In: IEEE Internet Things J., vol. 3, no. 1, pp. 70–95,

2016.

[RD18] Rentschler, M. and Drath, R., „Vendor-independent Modeling and Exchange of

Fieldbus Topologies with AutomationML,“ In: 2018 IEEE 23rd International Con-

ference on Emerging Technologies and Factory Automation (ETFA): IEEE, pp.

956–963, 2018.

[Reu⁺11] Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A., Koziolek,

H., Krogmann, K. and Kuperberg, M., „The Palladio Component Model,“ 2011.

[Reu⁺16] Reussner, R., Becker,S., Happe, J., Heinrich,R., Koziolek, A. and Koziolek, H.

(Eds.), „Modeling and Simulating Software Architectures. The Palladio Approach,“

Cambridge, Massachusetts, London, England: The MIT Press, 2016.

[RFC1006] RFC 1006, 1987, „ISO Transport Service on top of the TCP.“

[RFC7252] RFC 7252, 2014, „The Constrained Application Protocol (CoAP).“

[Rie⁺14a] Riedl, M., Lüder, A., Heines, B. and Drath, R., „Kommunikation mit Automa-

tionML beschreiben,“ In: atp, vol. 56, no. 11, pp. 44–51, 2014.

https://www.postgresql.org/
https://www.python.org/

170 10. Literature

[Rie⁺14b] Riedl, M., Zipper, H., Meier, M. and Diedrich, C., „Cyber-physical Systems Alter

Automation Architectures,“ In: Annu. Rev. Control, vol. 38, no. 1, pp. 123–133,

2014.

[Riv19] Riverbed Technology, 2019, „Riverbed Modeler. Version 18.8.0“ [Online] Availa-

ble: https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-mod-

eler.html, [Accessed: 27-04-20].

[Rod15] Rodrigues da Silva, A., „Model-driven Engineering: A Survey Supported by the

Unified Conceptual Model,“ In: Comput. Lang. Syst. Str., vol. 43, pp. 139–155,

2015.

[RPC19] Raptis, T. P., Passarella, A. and Conti, M., „Data Management in Industry 4.0: State

of the Art and Open Challenges,“ In: IEEE Access, vol. 7, pp. 97052–97093, 2019.

[SAEAS5506C] AS5506C, 2017, „Architecture Analysis & Design Language (AADL).“

[Sau07] Sauter, T., „The Continuing Evolution of Integration in Manufacturing Automa-

tion,“ In: IEEE Ind. Electron. Mag., vol. 1, no. 1, pp. 10–19, 2007.

[Sau10] Sauter, T., „The Three Generations of Field-Level Networks—Evolution and Com-

patibility Issues,“ In: IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3585–3595,

2010.

[Sch⁺02] Schätz, B., Pretschner, A., Huber, F. and Philipps, J., „Model-Based Development

of Embedded Systems,“ In: Goos, G., Hartmanis, J., van Leeuwen, J., Bruel, J.-M.

and Bellahsene, Z. (Eds.): Advances in Object-Oriented Information Systems,

Bd. 2426. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture notes in compu-

ter science), pp. 298–311, 2002.

[Sch⁺18] Schel, D., Henkel, C., Stock, D., Meyer, O., Rauhöft, G., Einberger, P., Stöhr, M.,

Daxer, M. A. and Seidelmann, J., „Manufacturing Service Bus: An Implementa-

tion,“ In: Procedia CIRP, vol. 67, pp. 179–184, 2018.

[Sch15] Schütz, D., „Automatische Generierung von Softwareagenten für die industrielle

Automatisierungstechnik der Steuerungsebene des Maschinen- und Anlagenbaus

auf Basis der Systems Modeling Language,“ Dissertation, Technical University of

Munich, Munich, Germany. Institute of Automation and Information Systems,

2015.

[Sel98] Selic, B., „Using UML for Modeling Complex Real-time Systems,“ In: Goos, G.,

Hartmanis, J., van Leeuwen, J., Mueller, F. and Bestavros, A. (Eds.): Languages,

Compilers, and Tools for Embedded Systems, Bd. 1474. Berlin, Heidelberg: Sprin-

ger Berlin Heidelberg (Lecture notes in computer science), pp. 250–260, 1998.

[SGL15] Sola, J., Gonzalez, A. and Lazaro, O., „Leveraging IoT Interoperability for En-

hanced Business Process in Smart, Digital and Virtual Factories,“ In: Lauras, M.

(Ed.): Enterprise interoperability. Interoperability for Agility, Resilience and Plas-

https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html
https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html

10. Literature 171

ticity of Collaborations ; I-EASA’14 Proceedings. London: ISTE Ltd (Interopera-

bility research for networked enterprises applications and software), pp. 43–48,

2015.

[SGW94] Selic, B.; Gullekson, G.; Ward, P. T., „Real-time Object-oriented Modeling.“ New

York: Wiley (Wiley professional computing), 1994.

[SHW99] Scherff, B.; Haese, E.; Wenzek, H. R., „Feldbussysteme in der Praxis.“ Berlin, Hei-

delberg: Springer Berlin Heidelberg, 1999.

[SID19] SIDAP Project, „SIDAP,“ [Online] Available: www.sidap.de, [Accessed: 04-02-

20], 2019.

[Sie19] Siemens AG, 2019, „Totally Integrated Automation Portal (TIA Portal). Version

V16“ [Online] Available: https://new.siemens.com/global/de/produkte/automatis-

ierung/industrie-software/automatisierungs-software/tia-portal.html, [Accessed:

24-02-20].

[SK03] Sendall, S. and Kozaczynski, W., „Model Transformation: the Heart and Soul of

Model-driven Software Development,“ In: IEEE Softw., vol. 20, no. 5, pp. 42–45,

2003.

[SLV19] Sollfrank, M., Loch, F. and Vogel-Heuser, B., „Exploring Docker Containers for

Time-sensitive Applications in Networked Control Systems,“ In: 2019 IEEE 17th

International Conference on Industrial Informatics (INDIN): IEEE, pp. 1760–1765,

2019 - 2019.

[Spa13] Spath, Dieter (Hg.), „Produktionsarbeit der Zukunft - Industrie 4.0, Stuttgart: Fraun-

hofer-Verl.“, 2013.

[Sta73] Stachowiak, H., „Allgemeine Modelltheorie.“ Wien: Springer, 1973.

[Str⁺09] Strasser, T., Rooker, M., Hegny, I., Wenger, M., Zoitl, A., Ferrarini, L., Dede, A.

and Colla, M., „A Research Roadmap for Model-driven Design of Embedded Sys-

tems for Automation Components,“ In: 2009 7th IEEE International Conference on

Industrial Informatics: IEEE, pp. 564–569, 2009.

[Str⁺18] Strasser, T. I., Andren, F. P., Vrba, P., Suhada, R., Moulis, V., Farid, A. M. and

Rohjans, S., „An Overview of Trends and Developments of Internet of Things Ap-

plied to Industrial Systems,“ In: IECON 2018 – 44th Annual Conference of the IEEE

Industrial Electronics Society: IEEE, pp. 2853–2860, 2018.

[Str⁺20] Struhár, V., Behnam, M., Ashjaei, M. and Papadopoulos, A. V., „Real-Time Con-

tainers: A Survey,“ 2020.

[STV19] Sollfrank, M., Trunzer, E. and Vogel-Heuser, B., „Graphical Modeling of Commu-

nication Architectures in Network Control Systems with Traceability to Require-

ments,“ In: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electron-

ics Society: IEEE, pp. 6267–6273, 2019.

http://www.sidap.de/
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html

172 10. Literature

[SVF17] Sollfrank, M., Vogel-Heuser, B. and Fahimipirehgalin, M., „Integration of Safety

Aspects in Modeling of Networked Control Systems,“ In: Proc. IEEE International

Conference on Industrial Informatics (INDIN). Emden: IEEE Press, pp. 405–412,

2017.

[Tac19] Tacke, C., 2019, „OpenNETCF MQTT. Version 1.0.17253“ [Online] Available:

https://github.com/ctacke/mqtt, [Accessed: 23-08-19].

[TC16] Thramboulidis, K. and Christoulakis, F., „UML4IoT—A UML-based Approach to

Exploit IoT in Cyber-physical Manufacturing Systems,“ In: Comput. Ind., vol. 82,

pp. 259–272, 2016.

[TÇK18] Tekinerdogan, B., Çelik, T. and Köksal, Ö., „Generation of Feasible Deployment

Configuration Alternatives for Data Distribution Service based Systems,“ In: Com-

put. Stand. Interfaces, vol. 58, pp. 126–145, 2018.

[Ter⁺18] Terzić, B., Dimitrieski, V., Kordić, S., Milosavljević, G. and Luković, I., „Develop-

ment and evaluation of MicroBuilder. A Model-Driven Tool for the Specification

of REST Microservice Software Architectures,“ In: Enterp. Inf. Syst., vol. 3, no. 5,

pp. 1–24, 2018.

[The⁺16] Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T. and

Lennartson, B., „An Event-driven Manufacturing Information System Architecture

for Industry 4.0,“ In: Int. J. Prod. Res., vol. 55, no. 5, pp. 1297–1311, 2016.

[TLV18] Trunzer, E., Lötzerich, S. and Vogel-Heuser, B., „Concept and Implementation of a

Software Architecture for Unifying Data Transfer in Automated Production Sys-

tems,“ In: Niggemann, O. and Schüller, P. (Eds.): IMPROVE - Innovative Modelling

Approaches for Production Systems to Raise Validatable Efficiency, Bd. 8. Berlin,

Heidelberg: Springer Berlin Heidelberg (Technologien für die intelligente Automa-

tion), pp. 1–17, 2018.

[Tru⁺17] Trunzer, E., Kirchen, I., Folmer, J., Koltun, G. and Vogel-Heuser, B., „A Flexible

Architecture for Data Mining from Heterogeneous Data Sources in Automated Pro-

duction Systems,“ In: 2017 IEEE International Conference on Industrial Technol-

ogy (ICIT): IEEE, pp. 1106–1111, 2017.

[Tru⁺19a] Trunzer, E., Weiß, I., Pötter, T., Vermum, C., Odenweller, M., Unland, S., Schütz,

D. and Vogel-Heuser, B., „Big Data trifft Produktion. Neun Pfeiler der industriellen

Smart-Data-Analyse,“ In: Automatisierungstechnische Praxis (atp), vol. 61, no. 1–

2, pp. 90–98, 2019.

[Tru⁺19b] Trunzer, E., Prata, P., Vieira, S. and Vogel-Heuser, B., „Concept and Evaluation of

a Technology-independent Data Collection Architecture for Industrial Automa-

tion,“ In: IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics

Society: IEEE, 2830-2836, 2019.

https://github.com/ctacke/mqtt

10. Literature 173

[Tru⁺19c] Trunzer, E., Calà, A., Leitão, P., Gepp, M., Kinghorst, J., Lüder, A., Schauerte, H.,

Reifferscheid, M. and Vogel-Heuser, B., „System Architectures for Industrie 4.0

Applications,“ In: Prod. Eng. Res. Devel., vol. 13, no. 2, pp. 247–257, 2019.

[Tru⁺20a] Trunzer, E., Schilling, T., Müller, M. and Vogel-Heuser, B., „Comparison of Com-

munication Technologies for Industrial Middlewares and DDS-based Realization,“

In: 21st IFAC World Congress, 8 (in Press), 2020.

[Tru⁺20b] Trunzer, E., Vogel-Heuser, B., Folmer, J. and Pötter, T., „Smart Data Architekturen.

Vertikale und horizontale Integration,“ In: Vogel-Heuser, B. (Ed.): Handbuch In-

dustrie 4.0 Bd.5. Berlin, Heidelberg: Springer, 2020.

[TVS18] Thramboulidis, K., Vachtsevanou, D. C. and Solanos, A., „Cyber-Physical Micro-

services,“ In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 232–239,

2018.

[TWV20] Trunzer, E., Wullenweber, A. and Vogel-Heuser, B., „ Graphical Modeling Nota-

tion for Data Collection and Analysis Architectures in Cyber-physical Systems of

Systems,“ In: J. Ind. Inf. Integration, vol. 19, pp. 100155, 2020.

[Var⁺17] Varga, P., Blomstedt, F., Ferreira, L. L., Eliasson, J., Johansson, M., Delsing, J. and

Martínez de Soria, I., „Making System of Systems Interoperable – The Core Com-

ponents of the Arrowhead Framework,“ In: J. Netw. Comput. Appl., vol. 81, pp. 85–

95, 2017.

[VBF12] Vogel-Heuser, B., Bayrak, G. and Frank, U., „Forschungsfragen in „Produktions-

automatisierung der Zukunft,“ acatech, 2012.

[VDI2657] VDI/VDE Guideline 2657 Part 1, 2013, „Middleware in Industrial Automation -

Fundamentals.“

[VDI3687] VDI/VDE Guideline 3687, 19999, „Selection of Field Bus-systems by Evaluating

their Performance Characteristics for Industrial Applications.“

[VDI5600] VDI-Richtlinie 5600 Blatt 3, 2013, „Fertigungsmanagementsysteme (Manufactur-

ing Execution Systems – MES).“

[VH08] Varga, A. and Hornig, R., „An Overview of the OMNeT++ Simulation Environ-

ment,“ In: Molnár, S. and Heath, J. (Eds.): Proceedings of the First International

ICST Conference on Simulation Tools and Techniques for Communications Net-

works and Systems: ICST, 2008 - 2007.

[VH16] Vogel-Heuser, B. and Hess, D., „Guest Editorial Industry 4.0–Prerequisites and Vi-

sions,“ In: IEEE Trans. Automat. Sci. Eng., vol. 13, no. 2, pp. 411–413, 2016.

[Vog⁺09] Vogel-Heuser, B., Kegel, G., Bender, K. and Wucherer, K., „Global Information

Architecture for Industrial Automation,“ In: Automatisierungstechnische Praxis

(atp), vol. 51, no. 1-2, pp. 108–115, 2009.

[Vog⁺11] Vogel-Heuser, B., Feldmann, S., Werner, T. and Diedrich, C., „Modeling Network

Architecture and Time Behavior of Distributed Control Systems in Industrial Plant

174 10. Literature

Automation,“ In: IECON 2011 – 37th Annual Conference of the IEEE Industrial

Electronics Society: IEEE, pp. 2232–2237, 2011.

[Vog⁺12] Vogel-Heuser, B., Folmer, J., Frey, G., Liu, L., Hermanns, H. and Hartmanns, A.,

„Modeling of Networked Automation Systems for simulation and model checking

of time behavior,“ In: International Multi-Conference on Systems, Sygnals & De-

vices: IEEE, pp. 1–5, 2012.

[Vog⁺14a] Vogel-Heuser, B., Schütz, D., Frank, T. and Legat, C., „Model-driven Engineering

of Manufacturing Automation Software Projects – A SysML-based Approach,“ In:

Mechatronics, vol. 24, no. 7, pp. 883–897, 2014.

[Vog⁺14b] Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., Wollschlae-

ger, M. and Göhner, P., „Challenges for Software Engineering in Automation,“ In:

JSEA, vol. 07, no. 05, pp. 440–451, 2014.

[Vog⁺14c] Vogel-Heuser, B., Legat, C., Folmer, J. and Feldmann, S., „Researching Evolution

in Industrial Plant Automation. Scenarios and Documentation of the Pick and Place

Unit,“ Institute of Automation and Information Systems, Technical University of

Munich, 2014.

[Vog⁺14d] Vogel-Heuser, B., Diedrich, C., Pantforder, D. and Göhner, P., „Coupling Hetero-

geneous Production Systems by a Multi-agent based Cyber-physical Production

System,“ In: 2014 12th IEEE International Conference on Industrial Informatics

(INDIN): IEEE, pp. 713–719, 2014.

[Vog⁺15] Vogel-Heuser, B., Fay, A., Schaefer, I. and Tichy, M., „Evolution of Software in

Automated Production Systems: Challenges and research directions,“ In: J. Syst.

Softw., vol. 110, pp. 54–84, 2015.

[Vog⁺20] Vogel-Heuser, B., Trunzer, E., Sollfrank, M. and Hujo, D., „(Re-)Deployment of

Smart Algorithms in Cyber-Physical Production Systems using DSL4hDNCS,“ In:

Proc. IEEE, 12 (submitted), 2020.

[VR18] Vogel-Heuser, B. and Ribeiro, L., „Bringing Automated Intelligence to Cyber-

Physical Production Systems in Factory Automation,“ In: 14th IEEE International

Conference on Automation Science and Engineering (CASE). Munich, Germany,

pp. 347–352, 2018.

[VWT17] Vogel-Heuser, B., Wildermann, S. and Teich, J., „Towards the Co-evolution of In-

dustrial Products and its Production Systems by Combining Models from Develop-

ment and Hardware/software Deployment in Cyber-physical Systems,“ In: Prod.

Eng. Res. Devel., vol. 11, no. 6, pp. 687–694, 2017.

[Vya13] Vyatkin, V., „Software Engineering in Industrial Automation: State-of-the-Art Re-

view,“ In: IEEE Trans. Ind. Inf., vol. 9, no. 3, pp. 1234–1249, 2013.

[Wan⁺15] Wang, Z., Dai, W., Wang, F., Deng, H., Wei, S., Zhang, X. and Liang, B., „Kafka

and Its Using in High-throughput and Reliable Message Distribution,“ In: 2015 8th

10. Literature 175

International Conference on Intelligent Networks and Intelligent Systems (ICINIS):

IEEE, pp. 117–120, 2015.

[WDF18] Witte, M. E., Diedrich, C. and Figalist, H., „Model-based Development in Automa-

tion,“ In: at - Automatisierungstechnik, vol. 66, no. 5, pp. 360–371, 2018.

[WMW18] Wolny, S., Mazak, A. and Wally, B., „An Initial Mapping Study on MDE4IoT,“ In:

Proceedings of MODELS 2018 Workshops: ModComp, MRT, OCL, FlexMDE,

EXE, COMMitMDE, MDETools, GEMOC, MORSE, MDE4IoT, MDEbug,

MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE

21st International Conference on Model Driven Engineering Languages and Sys-

tems (MODELS 2018), Copenhagen, Denmark, October, 14, 2018, pp. 524–529,

2018.

[Wol⁺18] Wolny, S., Mazak, A., Wimmer, M., Konlechner, R. and Kappel, G., „Model-

Driven Time-Series Analytics,“ In: International Journal of Conceptual Modeling,

vol. 13, pp. 252–261, 2018.

[Wol⁺20] Wolny, S., Mazak, A., Wimmer, M. and Huemer, C., „Model-driven Runtime State

Identification,“ In: Mayr, H., Rinderle-Ma, S. and Strecker, S. (Eds.): 40 Years

EMISA 2019. Bonn: Gesellschaft für Informatik e.V, pp. 29–44, 2020.

[Wor⁺20] Wortmann, A., Barais, O., Combemale, B. and Wimmer, M., „Modeling Languages

in Industry 4.0: an Extended Systematic Mapping Study,“ In: Softw Syst Model, vol.

19, no. 1, pp. 67–94, 2020.

[Wor15] World Economic Forum, „Industrial Internet of Things. Unleashing the Potential of

Connected Products and Services,“ 2015.

[WSJ17] Wollschlaeger, M., Sauter, T. and Jasperneite, J., „The Future of Industrial Com-

munication. Automation Networks in the Era of the Internet of Things and Industry

4.0,“ In: IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, 2017.

[Wu⁺14] Wu, X., Zhu, X., Wu, G.-Q. and Ding, W., „Data Mining with Big Data,“ In: IEEE

Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, 2014.

[WV08] Witsch, D. and Vogel-Heuser, B., „Modellierungsansatz für Zeitanforderungen und

Kommunikationsnetze,“ In: atp edition, no. 6, pp. 44–52, 2008.

[XD18] Xu, L. D. and Duan, L., „Big Data for Cyber Physical Systems in Industry 4.0. A

Survey,“ In: Enterp. Inf. Syst., vol. 35, no. 1, pp. 1–22, 2018.

[YK15] Yin, S. and Kaynak, O., „Big Data for Modern Industry: Challenges and Trends

[Point of View],“ In: Proc. IEEE, vol. 103, no. 2, pp. 143–146, 2015.

[Zha⁺12] Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., Guo, H., Cheng, Y., Hu,

A. and Liu, Y., „Cloud Manufacturing. A New Manufacturing Paradigm,“ In: En-

terp. Inf. Syst., vol. 8, no. 2, pp. 167–187, 2012.

11. List of Figures

Figure 1: Difficulties with data integration (selection of answers) as given during a

questionnaire in the course of a workshop on the NAMUR Annual General

Meeting 2016... 2

Figure 2: Overview of the structure of this dissertation.. 6

Figure 3: Structure of process automation systems (adapted from Lauber and

Göhner [LG99b]). .. 8

Figure 4: Installations for coupling an automation controller with a technical

process, including relevant interfaces (adapted from Lauber and Göhner

[LG99b] and VDI/VDE guideline 3687 [VDI3687]). 8

Figure 5: Automation pyramid structure and requirements for the communication

and processing system (adapted and extended from Scherff et al.

[SHW99]and Lauber and Göhner [LG99b]). .. 10

Figure 6: Simplified network layout of a typical CPSoS consisting of IT and OT

domains with various types of connected devices and networks (Trunzer

et al. [TWV20]). .. 12

Figure 7: Graphical representation of the Reference Architecture Model Industrie

4.0 (RAMI4.0) (DIN SPEC 91345 [DIN91345]). ... 13

Figure 8: Concept of the NAMUR Open Architecture (NOA) as a supplement to the

existing ISA-95 automation structure (NAMUR NE175 [NE175]). 14

Figure 9: Industrial field bus and network market shares in 2019 (data from HMS

Industrial Networks [HMS19]). .. 16

Figure 10: Information diabolo with individually engineered, direct P2P connections

(left) and with a common information model (right) (Vogel-Heuser et al.

[Vog⁺09]). .. 17

Figure 11: Comparison of different network structures with the number of

connections depending on the number of systems 𝑁 and connectivity

[Haa97; Ind17c]. .. 17

Figure 12: Definition of a modeling language according to Harel and Rumpe [HR00]

(adapted and modified from Rodrigues [Rod15]). .. 21

178 11. List of Figures

Figure 13: Principle of a model to model (M2M) transformation using a MOF QVT-

compliant transformation language (following the conventions from

Brambilla et al. [BCW17]). ... 23

Figure 14: Principle of a model to text (M2T) transformation for text/code generation

using a MOF M2T-compliant transformation language (adapted from

Aicher [Aic18], as well as Schütz [Sch15] and extended, following the

conventions from Brambilla et al. [BCW17]). .. 24

Figure 15: Comparison of virtualization architectures. Layers of hypervisor (left) and

container (right) virtualization (adapted from Pahl [Pah15]). 25

Figure 16: Overview of relevant state-of-the-art contributions, their field of

contribution, and identified research gap. ... 56

Figure 17: Building blocks of the concept. ... 57

Figure 18: Workflow for model-driven development of data collection system

architectures. .. 58

Figure 19: High-level concept of the data collection architecture. 60

Figure 20: Number of necessary communication channels for transparent data access

as a function of the number of connected systems n for a fully connected

mesh (P2P) and a middleware network. .. 60

Figure 21: Detailed concept of the data collection architecture (adapted from

[Tru⁺19c]). ... 61

Figure 22: Principle of the technology-neutral, standardized interface to integrate

greenfield and brownfield participants. ... 63

Figure 23: Overview of the general structure of the metamodel. 66

Figure 24: Detail of the metamodel’s SoftwareContainer for the description of the

software. Platform-independent part (left) and platform-specific part

(right) allow the description at distinct levels of abstraction. 68

Figure 25: Detail of the metamodel for the description of DataElements. 71

Figure 26: Detail of the metamodel’s PhysicalContainer for a description of the

system. Physical systems (left) are composed of distinct components

(right). IOTerminals may encompass signals (bottom). 74

11. List of Figures 179

Figure 27: Detail of the metamodel’s AnnotationContainer for description and

categorization of annotations... 75

Figure 28: Excerpt of the metamodel for annotations. ... 77

Figure 29: Detail of the metamodel for mapping software (left) and system (right)

description with IRelationElements. ... 79

Figure 30: Basic example of the graphical notation illustrating the mapping between

the different viewpoints (system viewpoint (left) and data flow viewpoint

(right)) and the mapping table (top). ... 91

Figure 31: UML class diagram of the interface definitions for the core software

framework. .. 93

Figure 32: Overview over the process of transforming the model of the data

collection architecture to a deployed instance via code generation and

addition of application-specific code (adapted from Brambilla et al.

[BCW17]). ... 95

Figure 33: Excerpt of the metamodel modeled with the Eclipse Modeling Tools

showing the PhysicalContainer (cf. Figure 26). .. 97

Figure 34: Screenshot of the Microsoft Visio stencils provided for the graphical

modeling of data collection architectures. ... 98

Figure 35: Working principle of the flexible extension mechanism via gRPC.

Example of Beckhoff ADS support as an external communication service.

 ... 100

Figure 36: Example of Acceleo M2T transformations for instantiation of

communication services. ... 101

Figure 37: Example for generated C# code from the M2T transformation in Figure

36. .. 101

Figure 38: Graphical mapping of case-studies to the parts of the concept’s building

blocks. ... 105

Figure 39: Representation of the conceptualized architecture for the SIDAP use-case

(graphically adapted from Trunzer et al. [Tru⁺17]). 106

Figure 40: Representation of the conceptualized architecture for the IMPROVE use-

case (graphically adapted from Trunzer et al. [Tru⁺17]). 107

180 11. List of Figures

Figure 41: PERFoRM (left) [Lei⁺16] and BaSys 4.0 (right) [Tru⁺19c] architecture

concepts. .. 109

Figure 42: Procedure for the expert evaluation of the graphical modeling notation. 110

Figure 43: Retrofitted condition monitoring system of Use-Case A modeled in the

system viewpoint. .. 113

Figure 44: Data flow diagram of Use-Case A with the description of event-based

data. ... 114

Figure 45: Data flow diagram of Use-Case A with the description of continuous data.

 ... 115

Figure 46: Systems in the lab-scale feasibility study without gateways and

infrastructure components. .. 119

Figure 47: System and data flow of the minimal extrapolation use-case modeled with

the graphical modeling notation. ... 128

Figure 48: Comparison of implementation efforts for initial deployment as a function

of the number of publisher/subscriber pairs and the average number of

variables per pair. .. 132

Figure 49: Relative effort between model-driven approach and classical, manual

programming for initial deployment as a function of the average number

of variables per pair. .. 132

Figure 50: Comparison of implementation efforts for a migration scenario as a

function of the number of publisher/subscriber pairs and the average

number of variables per pair. ... 133

Figure 51: Comparison of implementation efforts for an initial deployment, including

the effort for the creation of the model-driven toolchain as a function of

the number of publisher/subscriber pairs and the average number of

variables per pair. .. 135

Figure 52: Relative effort between model-driven approach and classical, manual

programming, including the effort for the creation of the toolchain as a

function of the average number of variables per pair. Only initial

deployment (left), including one migration (right). 135

Figure 53: Comparison of the expert assessment of the dimensions feasibility, total

effort, and benefit for classical, manually implemented P2P network and

11. List of Figures 181

model-driven, middleware-based approach (n =14). Scale from 1 (very

low) to 10 (very high). ... 138

Figure 54: Normalized results of the expert evaluation per question (-1 Disagreeing,

1 Agreeing). ... 139

Figure 55: Combined edge and cloud architecture (Use-Case B) in the system

viewpoint (adapted from [TWV20]). .. 191

Figure 56: Data flow of Use-Case B modeled in the data flow viewpoint (adapted

from [TWV20]). .. 192

Figure 57: Public cloud architecture for alarm analysis and management (Use-Case

C) modeled in the system viewpoint (adapted from [TWV20]). 193

Figure 58: Data flow of Use-Case C covering the alarm analysis and management in

a public cloud (adapted from [TWV20]). .. 194

Figure 59: Alarm management system hosted private and public clouds of Use-Case

D modeled in the system viewpoint (adapted from [TWV20]). 195

Figure 60: Alarm management system of Use-Case D modeled in the data flow

viewpoint (adapted from [TWV20]). .. 196

Figure 61: First sheet of the system diagram of the internal feasibility study. 197

Figure 62: Second sheet of the system diagram of the internal feasibility study. 198

Figure 63: Third sheet of the system diagram of the internal feasibility study............. 199

Figure 64: First sheet of the data flow diagram of the internal feasibility study. 199

Figure 65: Second sheet of the data flow diagram of the internal feasibility study. 200

Figure 66: Third sheet of the data flow diagram of the internal feasibility study. 201

Figure 67: Fourth and fifth sheets of the data flow diagram of the internal feasibility

study. ... 202

Figure 68: First page of the expert questionnaire in German. 213

Figure 69: Second page of the expert questionnaire in German. 214

12. List of Tables

Table 1: Characteristics of relevant protocols (adapted from Trunzer et al.

[Tru⁺19b; Tru⁺20b])... 19

Table 2: Summary of the rating scheme per requirement for the state-of-the-art

comparison. ... 35

Table 3: Evaluation of relevant approaches in the field of system architectures and

data collection system architectures. ... 44

Table 4: Evaluation of relevant approaches in the field of modeling languages for

system architectures. ... 50

Table 5: Evaluation of relevant approaches in the field of model-driven system

architectures. ... 55

Table 6: Types of data manipulation considered in the metamodel. 68

Table 7: List of annotations contained in the metamodel. ... 76

Table 8: Generic notation elements for both viewpoints of the graphical modeling

notation. ... 82

Table 9: Notation elements for the system viewpoint of the graphical modeling

notation. ... 83

Table 10: Non-exhaustive list of possible software functionalities. 84

Table 11: Notation elements for the data flow viewpoint of the graphical modeling

notation. ... 86

Table 12: Annotation elements for both viewpoints of the graphical modeling

notation. ... 88

Table 13: Columns of the mapping table and description of their meaning. Adapted

from Trunzer et al. [TWV20]. ... 90

Table 14: Evaluation scenarios per requirement and reference to the relevant

Sections. .. 104

Table 15: Summary of use-cases for expert evaluation of graphical modeling

notation. ... 111

Table 16: Excerpt of the data mapping table for Use-Case A. 116

184 12. List of Tables

Table 17: Modeling efforts for modeling the lab-scale case-study of three persons

and their experience with the notation and background in industrial

automation. .. 123

Table 18: Manually programmed lines of code (LoC) for minimal producer and

subscriber functionalities. The corresponding Listings can be found in

Appendix C. ... 129

Table 19: Effort in lines of codes and programming time for manual implementation

of minimal producer/subscriber pairs. ... 130

Table 20: Effort in time for modeling minimal producer/subscriber pairs. 130

Table 21: Efforts and lines of code for the creation of the toolchain for model-driven

generation of communication architectures. .. 134

Table 22: Summary of the fulfillment of requirements and reference to the relevant

Section in the evaluation Chapter (+ fulfilled, ○ partly fulfilled, - not

fulfilled). .. 143

Table 23: Detailed results of the expert assessment of the dimensions feasibility,

total effort, and benefit for classical, manually implemented P2P network

and model-driven, middleware-based approach. Scale from 1 (very low)

to 10 (very high). ... 215

Table 24: Detailed, normalized results of the expert evaluation per question (-1 =

Disagreeing, 1 = Agreeing). .. 215

13. List of References to the Application Example

Parts

AE.Part 1: Introduction of the physical application example. .. 65

AE.Part 2: Modeling SoftwareFunctionalities and DataFlow. .. 69

AE.Part 3: Modeling of DataElements. ... 72

AE.Part 4: Modeling the physical configuration of the system (PhysicalContainer)...... 74

AE.Part 5: Modeling of Annotations (AnnotationContainer). .. 78

AE.Part 6: Modeling relations between the elements and containers. 80

AE.Part 7: Graphical model in system viewpoint. .. 84

AE.Part 8: Graphical model in data flow viewpoint. .. 87

AE.Part 9: Annotated graphical models. ... 89

AE.Part 10: Data mapping table. ... 91

AE.Part 11: Example of code generation for the application example. 95

Figures

AE.Figure I: Schematic drawing of the physical setup. ... 65

AE.Figure II: Schematic drawing of the hardware components and input/outputs. 65

AE.Figure III: Mapping of the SoftwareFunctionalities to the components and IServices.

 ... 69

AE.Figure IV: Example of SoftwareFunctionality and DataFlow modeling. 70

AE.Figure V: Example of DataElement modeling. ... 72

AE.Figure VI: Example of modeling the physical configuration. ... 75

AE.Figure VII: Example of Annotations modeling. ... 78

AE.Figure VIII: Example of modeling a network. .. 80

AE.Figure IX: Example of mapping SoftwareFunctionalities to CPUs. 80

AE.Figure X: Example of mapping HardwareDataElements to corresponding IOSignals.

 ... 80

186 13. List of References to the Application Example

AE.Figure XI: Example of associating DataElements to DataFlows. 80

AE.Figure XII: Schematic drawing of the physical setup. ... 84

AE.Figure XIII: Example of the application example in the system viewpoint....................... 85

AE.Figure XIV: Example of the application example in the data flow viewpoint. 87

AE.Figure XV: Annotated graphical models of the application example in both

viewpoints.. 89

AE.Figure XVI: Excerpt of the data mapping table for the application example. 91

AE.Figure XVII: Simplified sample of generated pseudo-code for the application example. .. 96

14. List of Abbreviations

Abbreviation Description

AADL Architecture Analysis and Design Language

ADS Automation Device Specification

AE Application example

AES Advanced Encryption Standard

AML Automation Markup Language

AMQP Advanced Message Queuing Protocol

ANSI American National Standards Institute

API Application programming interface

App Application

aPS automated Production System

ATL ATLAS Transformation Language

AutomationML Automation Markup Language

BaSys4.0 Project “Basissystem Industrie 4.0”

BC Bus coupler

Bins Binaries

CAN Controller Area Network

CAx Computer-aided x

CI Continuous integration

CoAP Constrained Application Protocol

CNC Computerized numerical control

COCOMO Constructive Cost Model

COM Component Object Model

CPPS Cyber-physical Production Systems

CPS Cyber-physical Systems

CPSoS Cyber-physical Systems of Systems

CPU Central processing unit

DCS Decentralized control system

DDS Data Distribution Service

DFD Data flow diagram

DIN Deutsches Institut für Normung

DLL Dynamic-link libraries

DSL Domain-specific language

DSL4hDNCS Domain-specific language for heterogeneous distributed networked control systems

EMF Eclipse Modeling Framework

ERP Enterprise resource planning

ESB Enterprise Service Bus

188 14. List of Abbreviations

Abbreviation Description

EtherCAT Ethernet for Control Automation Technology

FIPA Foundation for Intelligent Physical Agents

GPML General-purpose modeling language

gRPC gRPC Remote Procedure Calls

H Hypothesis

HART Highway Addressable Remote Transducer

HMI Human-machine interface

HTTP Hypertext Transfer Protocol

I 4.0 Industrie 4.0

I/O In-/output

IDE Integrated development environment

IDL Interface description language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETC Internet Engineering Task Force

IIoT Industrial Internet of Things

IIRA Industrial Internet Reference Architecture

IMPROVE
Project “Innovative modeling approaches for production systems to raise validatable

efficiency”

IoT Internet of Things

IoT RA Internet of Things Reference Architecture

IP Internet Protocol

IPC Industrial PC

ISA International Society of Automation

ISO International Organization for Standardization

IT Information technology

KPI Key performance indicator

Libs Libraries

LoC Lines of code

LwM2M Lightweight Machine to Machine

M+O Monitoring and optimization (from NOA)

M2M Model-to-model

M2T Model-to-text

MARTE Modeling and Analysis of Real Time and Embedded Systems

MDA Model-driven Architecture

MDD Model-driven development

MES Manufacturing execution system

Modbus/RTU Modbus Remote Terminal Unit

Modbus/TCP Modbus Transmission Control Protocol

14. List of Abbreviations 189

Abbreviation Description

MOF Meta Object Facility

MOFM2T MOF Model to Text Transformation Language

MPS Modular production system

MQTT Message Queuing Telemetry Transport

MSB Manufacturing Service Bus

MTC MTConnect Institute

NAMUR Interessengemeinschaft Automatisierungstechnik der Prozessindustrie

NOA NAMUR Open Architecture

OCL Object Constraint Language

OEM Original equipment manufacturer

OMG Object Management Group

OPC Open Platform Communications

OPC DA OPC Data Access

OPC UA OPC Unified Architecture

OS Operating system

OSI Open Systems Interconnection

OT Operational technology

P2P Peer-to-peer

PC Personal computer

PCM Palladio Component Model

PERFoRM Project “Production harmonized reconfiguration of flexible robots and machinery”

PLC Programmable logic controller

PROFIBUS Process Field Bus

PROFIBUS DP Process Field Bus Decentralized Automation

PROFIBUS PA Process Field Bus Process Automation

PROFINET Process Field Net

PS Publish-subscribe

QoS Quality of Service

QVT Query View Transformation

RAM Random-access memory

RAMI Reference Architecture Model Industrie 4.0

Req Requirement

Req-A Requirements of category “data collection system architecture”

Req-G Requirements of category “model-driven generation of data collection architectures”

Req-M Requirements of category “domain-specific language for architecture modeling”

Req-SF
Requirements of category “interoperability of systems and architecture software frame-

work”

REST Representational State Transfer

RFC Request for Comments (from IETF)

190 14. List of Abbreviations

Abbreviation Description

RFID Radio-frequency identification

ROOM Real-Time Object-Oriented Modeling

RPC Remote procedure calls

RR Request-response

SA Structured analysis

SA/RT SA for real-time systems

SAE Society of Automotive Engineers

SCADA Supervisory control and data acquisition

SIDAP
Project “Scalable integration concept for data aggregation, analysis and preparation of

big data volumes in process industry”

SME Small and medium-sized enterprises

SoaML Service-oriented architecture Modeling Language

SOAP Simple Object Access Protocol

SysML Systems Modeling Language

SysML-vAT SysML for distributed automation systems

T2M Text-to-model

TCP Transmission Control Protocol

TSN Time-Sensitive Networking

UADP UA Datagram Protocol (from OPC UA)

UDP User Datagram Protocol

UID Unique identifier

UML Unified Modeling Language

UML-PA UML Process Automation

UML-RT UML for Real Time

VAB Virtual Automation Bus

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik e.V.

VDI Verein Deutscher Ingenieure e.V.

VLAN Virtual Local Area Network

VM Virtual machine

VSB eVolution Service Bus

WLAN Wireless Local Area Network

xADL extensible Architecture Description Language

XML Extensible Markup Language

xPPU Extended Pick and Place Unit

XSB Extensible service bus

Appendix A. Graphical Models of Use-Cases B to D

In the following Appendix the graphical models related to the industrial Use-Cases B to C from

Section 7.2 can be found.

Appendix A.1 Use-Case B Anomaly Detection

Figure 55: Combined edge and cloud architecture (Use-Case B) in the system viewpoint (adapted from

[TWV20]). Production machine with anomaly detection on edge level, cloud environment for

model training, and data adapter in between to translate protocol and semantics.

R
O

U
T D
P

4
xS

D
P

5
xS

D
A

D
P

1

E
T

H
1

T
R

A
N

S

D
A

_
A

D
R

T

M
P

C
4

.A
n

o
m

a
ly

D
e

te
c
ti
o

n

U
s
e

C
a
s
e

_
B

_

S
y
s
te

m

M
C

M
C

F
O

R
W

F
W

1

F
O

R
W

D
A

D
A

D
A

_
C

P
D

A
_

R
A

F
W

2

E
T

H
2

T
R

1

T
R

A
N

S

T
R

2

D
A

V
IS

U

V
IS

R
E

D
U

N
D

A
N

C
Y

3

R
E

D
U

N
D

A
N

C
Y

3

D
A

_
R

C

S
T

O
R

T
Y

P
E

R
e

la
ti
o
n
a

l

S
A

M
P

L
E

 T
IM

E

5
 m

s

S
T

M
id

d
le

w
a
re

 f
o
r

u
n

if
ie

d

d
a

ta
 a

c
c
e
s
s
 a

n
d

 d
a
ta

b
a
s
e

D
e

c
o
m

p
re

s
s
e
d
,

c
a
lc

u
la

te
d

v
a
ri

a
b
le

s
 b

a
s
e

d
 o

n
 r

a
w

 d
a
ta

Edge

C
lo

u
d

Data adapter

P L C

PLC1

E
T

H

E
T

H
1

E
T

H

E
T

H
2

D
P

D
P

1

P
L

C
1

.V
a

r1

P
L

C
1

.V
a

r2

P
L

C
1

.V
a

r3

P
L

C
1

.V
a

r4

P
L

C
1

.V
a

r5

S S S S S

P
L

C
1

.V
a

r7

P
L

C
1

.V
a

r8

P
L

C
1

.V
a

r9

P
L

C
1

.V
a

r6
S S S S

S
P

C
5

.T
ri

g
g

e
rM

o
d

e
l

P C

PC5

D
P

E
T

H
1

P
L

C
1

.A
n

o
m

a
ly

R
a

ti
n

g
V

P
L

C
1

.o
ff

s
e

t

P
L

C
1

.m
o

d
e
lS

e
le

c
ti
o

n

V V

P
C

3
.c

a
lc

_
V

a
r1

1

P
C

3
.c

a
lc

_
V

a
r3

P
C

3
.c

a
lc

_
V

a
r4

P
C

3
.c

a
lc

_
V

a
r5

P
C

3
.c

a
lc

_
V

a
r6

P
C

3
.c

a
lc

_
V

a
r7

P
C

3
.c

a
lc

_
V

a
r8

P
C

3
.c

a
lc

_
V

a
r9

P
C

3
.c

a
lc

_
V

a
r1

0
V

P
C

3
.c

a
lc

_
V

a
r2

P
C

3
.c

a
lc

_
V

a
r1

V V V VV V V V VV

P
C

3
.c

a
lc

_
V

a
r1

2

P
C

3
.c

a
lc

_
V

a
r1

3

P
C

3
.c

a
lc

_
V

a
r1

4

V V V

P
L

C
1

.V
a

r1
1

P
L

C
1

.V
a

r1
2

P
L

C
1

.V
a

r1
3

P
L

C
1

.V
a

r1
4

P
L

C
1

.V
a

r1
0

VV V V V

P C

PC4

E
T

H

E
T

H
1

P C

PC2

E
T

H

E
T

H
1

P C

PC3

E
T

H

E
T

H
1

P C

PC1

E
T

H

E
T

H
1

E
T

H

E
T

H
2

S
ie

m
e
n

s
 I
P

C
6
2

7
D

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

C
e
le

ro
n

 G
1
8

2
0
T

E

2 2
.2

 G
H

z

x
6

4

2
 G

B

2
4
0

 G
B

BC2

BC1

Production machine with

PLC and real-time fieldbus.

Data compression (left) and

edge anomaly detection (right)

192 Appendix A. Graphical Models of Use-Cases B to D

Figure 56: Data flow of Use-Case B modeled in the data flow viewpoint (adapted from [TWV20]). The

diagram is distributed over two sheets for better overview, arrows link the two sheets.

Calculation of anomaly

detection rating

Trigger from UI

for model

retraining
DP1

PC3.DA_RC

PLC1.DA_CP

ETH2

ETH2

PC2.ST

STOR

PC2.RT

ROUT

DA

DA
JITTER

10 ms

PLC1

ETH2

UseCase_B_

Data_1

ETH1

ETH2

PLC1.FW1 PLC1.FW1

PROTOCOL

MQTT

FORWFORW

PLC1

PLC1

PROTOCOL

MQTT

PROTOCOL

MQTT

PC2.RT

ROUT

ETH1

FORWMC

TRANS

PC1.TR1

PROTOCOL

OPC UA

ETH2

PROTOCOL

MQTT

PROTOCOL

MQTT

PC2.RT

ROUT

ETH2

PROTOCOL

MQTT

PLC1.MC

RecalcData

PROTOCOL

OPC UA

PC1.TR1

PC7.DA_AD

ETH2

ETH2

PLC1

M PC8.AnomalyDetectionDA

VISU

PC5.VIS

PC2.RT

ROUT

ETH2

ETH1

JITTER

5 ms

PLC1

PLC1.FW1

FORW

DP1

PROTOCOL

OPC UA

PROTOCOL

MQTT

S PC5.TriggerModel

PLC1.AnomalyRatingV

PROTOCOL

OPC UA

TRANS

ETH2

PROTOCOL

MQTT

Req.2

Req.2

RawData

RecalcDataRawData

PROTOCOL

MQTT

PC2.RT

ROUT

PLC1.FW2

FORW

PC1.TR2

TRANS

PROTOCOL

OPC UA

PROTOCOL

MQTT

ETH2

ETH2

UseCase_B_

Data_2

ETH1

PLC1.FW2

FORW

PLC1.DA_RA

DA

DP1

PC3.VIS

VISU
LATENCY

 min

LATENCY

 s

Edge anomaly detection with

requirements for latency and jitter

M
o
d
e

l
tr

a
in

in
g
 i
n
 t
h

e
 c

lo
u

d
 a

n
d

tr
a

n
s
fe

r
o

f
m

o
d

e
l
to

 t
h

e
 f
ie

ld
 l
e
v
e

l

Raw data for model training

(right) and for online anomaly

detection (left)

Compression on edge level and

decompression in the cloud

environment (calculated values)

Live visualization of results with

a maximum delay of 5 minutes

for model training

SAMPLE TIME

20 ms

Measured values from the field

(right) and values calculated by

the machine control (left)

PLC1.Var11

PLC1.Var12

PLC1.Var13

PLC1.Var14

PLC1.Var10

V

V

V

V

V

PLC1.Var7

PLC1.Var8

PLC1.Var9

PLC1.Var6S

S

S

S

PLC1.Var1

PLC1.Var2

PLC1.Var3

PLC1.Var4

PLC1.Var5

S

S

S

S

S

PC3.calc_Var11

PC3.calc_Var3

PC3.calc_Var4

PC3.calc_Var5

PC3.calc_Var6

PC3.calc_Var7

PC3.calc_Var8

PC3.calc_Var9

PC3.calc_Var10
V

PC3.calc_Var2

PC3.calc_Var1V
V

V
V

V

V

V
V
V

V

PC3.calc_Var12

PC3.calc_Var13

PC3.calc_Var14

V
V
V

PLC1.offset

PLC1.modelSelection

V

V

Data

Compression

Data

Decompression

Training of anomaly

detection model

Appendix A. Graphical Models of Use-Cases B to D 193

Appendix A.2 Use-Case C Alarm Management

Figure 57: Public cloud architecture for alarm analysis and management (Use-Case C) modeled in the

system viewpoint (adapted from [TWV20]). Two production machines connected to an online

dashboard and analysis solution hosted in a public cloud.

M
C

F
O

R
W

E
T

H
1

M
C

F
W

M
C

F
O

R
W

M
C

F
W

U
s
e

C
a
s
e

_
C

_

S
y
s
te

m

E
T

H
2

V
IS

V
IS

U

R
O

U
T

R
T

P
N

1

S
ie

m
e
n

s
 S

7
-1

5
0
0

 C
P

U
 1

5
1
7

-3

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

1
0
 M

B

8
 G

B

S
ie

m
e
n

s
 S

7
-1

5
0
0

 C
P

U
 1

5
1
7

-3

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

u
n
k
n

o
w

n

1
0
 M

B

8
 G

B

P
N

2

P
ro

d
u
c
ti
o
n

 m
a

c
h
in

e
 2

 w
it
h

P
L
C

 a
n
d
 P

ro
fi
n

e
t
fi
e

ld
b

u
s
,

fi
e
ld

 l
a
y
e

r
n

o
t
m

o
d
e
le

d

M
o
d

e
l
tr

a
in

in
g

 a
n
d
 r

o
o

t-

c
a
u

s
e
 a

n
a

ly
s
is

 i
n

 p
u
b
lic

c
lo

u
d
 h

o
s
te

d
 b

y
 t
h

e
 O

E
M

D
A

D
A

_
R

C

P
C

3
.R

o
o

tC
a

u
s
e

V

D
A

D
A

_
A

C

P
C

3
.A

la
rm

C
lu

s
te

r
M

S
T

O
R

O
n
lin

e
 d

a
s
h
b
o

a
rd

fo
r

v
is

u
a

liz
a

ti
o
n
 o

f
re

s
u
lt
s

P L C

PLC1

E
T

H

E
T

H
1

P
N

P
N

1

P L C

PLC2

E
T

H

E
T

H
1

P
N

P
N

1

P
L

C
2

.A
la

rm
T

im
e

P
L

C
2

.V
a

r1

P
L

C
2

.V
a

r2

P
L

C
2

.V
a

r3

P
L

C
2

.E
rr

o
rI

D
V V V V V

P
L

C
1

.A
la

rm
T

im
e

P
L

C
1

.V
a

r1

P
L

C
1

.V
a

r2

P
L

C
1

.V
a

r3

P
L

C
1

.A
la

rm
ID

V V V V V

P C

PC1

E
T

H

E
T

H
1

E
T

H

E
T

H
2

P C

PC2

E
T

H

E
T

H
1

P C

PC3

E
T

H

E
T

H
1

P
ro

d
u
c
ti
o
n

 m
a

c
h
in

e
 1

 w
it
h

P
L
C

 a
n
d
 P

ro
fi
n

e
t
fi
e

ld
b

u
s
,

fi
e
ld

 l
a
y
e

r
n

o
t
m

o
d
e
le

d

194 Appendix A. Graphical Models of Use-Cases B to D

Figure 58: Data flow of Use-Case C covering the alarm analysis and management in a public cloud

(adapted from [TWV20]). Differentiation between the collection of historic data for model

training (center) and the collection of streamed data for live root-cause analysis (left and

right).

PC3.DA_RC

PLC1.MC

ETH2

MC

DA

DA

PC3.DA_AC

PLC1 PLC1

PC2.VIS

VISU

PC3.AlarmClusterM

PC3.RootCauseV

PC3RT

ROUT

ETH2

PC3.DA_RC

PLC2.MC

MC

DA

DA

PLC2 PLC2

PC3.AlarmClusterM

PC3.RootCauseV

PC3.RT

ROUT

ETH2

ETH2

UseCase_C_Data

PLC1.FW

FORW

ETH2

PLC2.FW

FORW

PLC2.FW

ETH2

LATENCY

 s

PC1.RT

ROUT

ETH1

PC1.RT

ROUT

ETH1

PC3 PC3

ETH2

PC1.RT

ROUT

ETH1

PLC2.AlarmTime

PLC2.Var1

PLC2.Var2

PLC2.Var3

PLC2.ErrorIDV
V
V
V
V

PLC1.FW

FORW

ETH2

PC1.RT

ROUT

ETH1

PC3.ST

STOR

PC3

PC3.ST

STOR

PC3

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PROTOCOL

HTTPS

SEMANTIC

MachDat_v4

AUTH

SSL

ENCRYPT

TLS

PC3.DA_AC

LATENCY

 s

FORW

Parallel forwarding of raw data

from production machines and

training of alarm analysis model

Forwarding of streamed data

from production machine 1 for

live root-cause analysis

Visualization of results in

central online dashboard for

all connected machines

Description of data semantics

and procotol, specification of

authentification and encryption

Maximum latency between

straming data from machine and

visualization of results

PLC1.AlarmTime

PLC1.Var1

PLC1.Var2

PLC1.Var3

PLC1.ErrorIDV
V
V
V
V

Root

Cause

Analysis

Root

Cause

Analysis

Alarm Cluster

Determination

Alarm Cluster

Determination

Appendix A. Graphical Models of Use-Cases B to D 195

Appendix A.3 Use-Case D Alarm Management

Figure 59: Alarm management system hosted private and public clouds of Use-Case D modeled in the

system viewpoint (adapted from [TWV20]). Hybrid cloud setup to guarantee confidentiality to

customers and increase performance of the analysis, while allowing a fleet-management

across multiple clients.

R
O

U
T

S
T

O
R

D
A

E
T

H
1

E
T

H
3

S
T

O
R

D
A

R
T

S
T

U
s
e

C
a
s
e

_
D

_
S

y
s
te

m

M
C

M
C

F
O

R
W

F
W

D
A

D
A

D
A

D
A

T
Y

P
E

R
e

la
ti
o
n
a

l

S
T

R
O

U
T

R
T

R
O

U
T

E
T

H
2

S
T

O
R

R
T

S
T

M
C

M
C

F
O

R
W

F
W

D
A

D
A

D
A

D
A

P
L

C
1

.A
la

rm
T

im
e

P
L

C
1

.N
C

P
ro

c

P
L

C
1

.T
o

o
l

P
L

C
1

.S
o

u
rc

e

P
L

C
1

.A
la

rm
ID

V V V V V

P
L

C
2

.A
la

rm
T

im
e

P
L

C
2

.N
C

P
ro

c

P
L

C
2

.T
o

o
l

P
L

C
2

.S
o

u
rc

e

P
L

C
2

.A
la

rm
ID

V V V V V

S
C

A
L

A
B

IL
IT

Y

5
0

S
C

A
L

A
B

IL
IT

Y

5
0

E
C

A
T

2

S
C

A
L

A
B

IL
IT

Y

2
0

S
C

A
L

A
B

IL
IT

Y

2
0

E
C

A
T

1

P
ri
v
a

te
 c

lo
u
d

 o
n
-s

it
e
 f

o
r

ro
o
t-

c
a
u

s
e
 a

n
a

ly
s
is

 (
e
it
h

e
r

w
it
h

s
u
p

p
lie

d
 a

la
rm

 c
lu

s
te

r
m

o
d

e
l
o
r

re
fi
n

e
d
 m

o
d

e
l
fr

o
m

 p
u
b

lic
 c

lo
u
d

)

P
u
b

lic
 c

lo
u
d
 o

ff
e
re

d
 b

y
 t
h
e

O
E

M
 f
o
r

c
o
m

b
in

e
d
 a

n
a

ly
s
is

a
n

d
 m

o
d
e

l
re

fi
n
e

m
e
n
t

M
id

d
le

w
a
re

 f
o
r

ro
u

ti
n
g
 o

n

p
u

b
lic

 c
lo

u
d

 l
e
v
e
l

P
L
C

 w
it
h
 a

la
rm

s
 t
ri
g

g
e
re

d
 i
n
 t

h
e
 m

a
c
h

in
e

c
o
n

tr
o

l
p
ro

g
ra

m
 a

n
d

 a
n
o
m

a
ly

 d
e

te
c
ti
o
n
 a

n
a
ly

s
is

.M
id

d
le

w
a
re

 f
o
r

ro
u

ti
n
g
 o

n

p
ri

v
a
te

 c
lo

u
d
 l
e
v
e

l
a
n
d

 f
o

r

c
o
n

n
e
c
ti
v
it
y
 t

o
 p

u
b

lic
 c

lo
u
d

P L C

PLC1

E
T

H

E
T

H
1

E
C

A
T

E
C

A
T
1

B
e
c
k

h
o

ff
 C

6
9
2

0
-0

0
6
0

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

C
o
re

 i
3

-6
1
0

0
T

E

2 2
.7

 G
H

z

x
6

4

4
 G

B

3
2
0

 G
B

P L C

PLC2

E
T

H

E
T

H
1

E
C

A
T

E
C

A
T
1

B
e
c
k

h
o

ff
 C

6
9
2

0
-0

0
6
0

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

C
o
re

 i
3

-6
1
0

0
T

E

2 2
.7

 G
H

z

x
6

4

4
 G

B

3
2
0

 G
B

P C

PC17

E
T

H

E
T

H
1

P C

PC9

E
T

H

E
T

H
1

P C

PC12

E
T

H

E
T

H
1

E
T

H

E
T

H
2

P C

PC8

E
T

H

E
T

H
1

P C

PC4

E
T

H

E
T

H
1

P C

PC7

E
T

H

E
T

H
1

P C

PC2

E
T

H

E
T

H
1

E
T

H

E
T

H
2

M
P

C
7

.R
o

o
tC

a
u

s
e

M
P

C
8

.R
o

o
tC

a
u

s
e

V
P

L
C

1
.A

n
o

m
a

ly
D

e
te

c
ti
o
n

R
a

ti
n

g
V

P
L

C
2

.A
n

o
m

a
ly

D
e

te
c
ti
o
n

R
a

ti
n

g

M
P

C
1

7
.R

o
o

tC
a

u
s
e

196 Appendix A. Graphical Models of Use-Cases B to D

Figure 60: Alarm management system of Use-Case D modeled in the data flow viewpoint (adapted from

[TWV20]). Model refinement based on data from multiple sources (center) and subsequent

execution of pre-trained models to diagnose machines.

DA

PLC1.DA

PC2.RT

ROUT

PC7.DA

DA

ETH1

ETH1

PC2.RT

ROUT

ETH1

PC9.RT

ROUT

PC8.DA

DA

PC9.RT

ROUT

PC4.ST

STOR

PC9.RT

ROUT

PC2.ST

STOR

ETH3

ETH3

ETH3

ETH3

ETH3

ETH3

ETH1

PC12.ST

STOR

PLC2.FW

FORW

PLC2.MC

MC

ETH3

ETH2PLC2

DA

PLC2.DA

PC12.RT

ROUT

DA

ETH1

ETH1

PC12.RT

ROUT

ETH1

ETH3

PLC1.FW

FORW

PLC1.MC

PLC1

PLC2 PLC1

PC8.AlarmClusterM

PC17.RootCauseM

PC17.DA

PC7.RootCauseM

ETH2 ETH1

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

PROTOCOL

OPC UA

1

LATENCY

 s

LATENCY

 s

UseCase_D_Data

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

ENCRYPT

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

AUTH

RSA

MC

PROTOCOL

OPC UA

PROTOCOL

OPC UA

M
o
d

e
l
re

fi
n

e
m

e
n

t
in

 p
u
b
lic

c
lo

u
d
 c

o
n

s
id

e
ri
n
g

 m
u

lt
ip

le

p
la

n
ts

 a
n
d

 s
it
e

s

Transfer of refined model to

private cloud level

Anomaly detection of

PLCs (Edge level)

PLC1.AlarmTime

PLC1.NCProc

PLC1.Tool

PLC1.Source

PLC1.AlarmIDV
V
V
V
V

PLC2.AlarmTime

PLC2.NCProc

PLC2.Tool

PLC2.Source

PLC2.AlarmIDV
V
V
V
V

Root Cause

Determination

Root Cause

Determination

Alarm Cluster

Determination

Appendix B. Graphical Models of Lab-scale Study

All graphical models related to the lab-scale feasibility study from Section 7.3 are given in this

Chapter. Figures 61 to 63 contain the system diagrams, while Figures 64 to 67 the corresponding

data flow diagrams.

Figure 61: First sheet of the system diagram of the internal feasibility study.

System_Internal.1

P

L

C

S
E

L
F

-X

ETH

X2P1

PN

X1P1R

PN

X1P2R

ETH_SELFX

ETH_AIS

Siemens S7-1516-3 PN/DP

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

unknown

unknown

unknown

unknown

6.5 MB

24 MB

P

C

S
E

L
F

-X
G

w

ETH

eth0

ETH

eth1

FORW

NODERED

MC

MC

ADDRESS

192.168.7.61

ADDRESS

192.168.16.1

Raspberry Pi 3 Model B

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

ARM BCM2837

4

1.2 GHz

ARMv8

1 GB

32 GB

SW_NAME

NODE-RED

SW_VER

v1.0.2

A MotorB_Rechtslauf
A MotorB_Versorgung
A MotorB_An
A MotorA_Rechtslauf
A MotorA_Versorgung
A MotorA_An

A LampeNotAus
A LampeQuit
A LampeTroete

S Not-Aus

V Betriebszustand

V Typ_Verteilen

S LSU_A03.1

S

32x

A

32x

S
E

L
F

-X
_
B

C
1

PN

X1P1

A

32x

ADDRESS

192.168.16.153

PN_SELFX

System_Internal.2

S

32x

S

32x

A

32x

HW_TYPE

IM 155-5 PN HF

HW_MANUF

Siemens

198 Appendix B. Graphical Models of Lab-scale Study

Figure 62: Second sheet of the system diagram of the internal feasibility study.

S
y
s
te

m
_
In

te
rn

a
l.
2

M
C

M
C

E
T

H
_
A

IS

P L C

CX-2E3FDC

B
e
c
k

h
o

ff
 C

X
2

0
4

0

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

In
te

l
i7

 2
7

1
5
Q

E

4 2
.1

 G
H

z

x
6

4

4
 G

B

8
0
 G

B

E
T

H

E
T

H
1

E
T

H

E
T

H
2

E
C

A
T

E
C

A
T
1 mJ_ECAT_BC1

E
C

A
T

E
C

A
T
1

D
P

D
P

1

mJ_DP_BC1

D
P

D
P

1

m
J
_
E

C
A

T

m
J
_
D

P

M
C

M
C

S
ys

te
m

_I
n
te

rn
a
l.1

S
ys

te
m

_I
n
te

rn
a
l.3

mJ_ECAT_C31

E
C

A
T

E
C

A
T
1

6
xS

V
C

2
2

.A
c
tP

o
s

V
C

2
2

.A
c
tT

o
rq

u
e

V
C

2
2

.A
c
tV

e
lo

V
C

2
2

.S
e

tT
o
rq

u
e

V
C

2
2

.S
e

tV
e

lo

V
C

2
2

.E
rr

o
rC

o
d

e

6
xA

C
3
1

.i
O

p
S

C
3
1

.o
A

c
c

A
C

3
1

.o
P

o
s

A
C

3
1

.o
V

e
l

A

P L C

C1_Robot

D
P

D
P

1

A
D

D
R

E
S

S

P
B

1
1

V
R

o
b

o
t.

S
e

rv
o

O
n

V
R

o
b

o
t.

O
p
e

ra
ti
n

g

V
R

o
b

o
t.

E
rr

o
r

V
R

o
b

o
t.

R
e

a
d

y

V
R

o
b

o
t.

S
e

tO
p

e
ra

ti
o

n

V
R

o
b

o
t.

S
e

tS
e

rv
o

O
n

V
R

o
b

o
t.

D
e

s
t

V
R

o
b

o
t.

S
o

u
rc

e

H
W

_
T

Y
P

E

M
A

C
0
5
0

-1
4

1

H
W

_
T

Y
P

E

C
1

A
D

D
R

E
S

S

P
B

6
6

H
W

_
T

Y
P

E

E
T

2
0

0
S

S 4
x

S
P

T
.B

o
il
e
r.

H
e

a
te

rI
n

W
a

te
r

S
P

T
.B

o
il
e
r.

L
e

v
e

lL
o

w

A 4
x

A
P

T
.B

o
il
e
r.

H
e

a
te

rO
n

S
P

T
.B

o
il
e
r.

L
e

v
e

lH
ig

h

H
W

_
M

A
N

U
F

S
IE

M
E

N
S

H
W

_
M

A
N

U
F

M
IT

S
U

B
IS

H
I

V
C

1
_

R
o

b
o

t.
S

e
rv

o
O

n

V
C

1
_

R
o

b
o

t.
O

p
e

ra
ti
n

g

C
1
_

R
o

b
o

t.
E

rr
o

r

V
C

1
_

R
o

b
o

t.
R

e
a

d
y

V
C

1
_

R
o

b
o

t.
S

o
u

rc
e

V
C

1
_

R
o

b
o

t.
S

e
tO

p
e

ra
ti
o

n

V
C

1
_

R
o

b
o

t.
S

e
tS

e
rv

o
O

n

V
C

1
_

R
o

b
o

t.
D

e
s
t

V
C

1
_

R
o

b
o

t.
S

o
u

rc
e

V

C
3
1

.o
O

p
A

C
3
1

.i
P

o
s

S

H
W

_
M

A
N

U
F

J
V

L

V
C

2
2

.S
e

tP
o

s

P C

MES

E
T

H

E
T

H
1

L
E

G

M
E

S

C
O

rd
e

r

V
C

u
s
to

m
e

r

V
O

rd
e

rN
u

m
b

e
r

V
A

m
o

u
n

t

V
R

e
c
e

iv
e

d

V
D

u
e

D
a

te

V
B

a
rc

o
d

e

C
R

e
c
ip

e

V
ID

V
N

a
m

e

V
L

iq
u

id
1

V
L

iq
u

id
2

V
P

e
lle

ts
G

re
e

n

V
P

e
lle

ts
R

e
d

V
P

e
lle

ts
B

lu
e

V
P

e
lle

ts
B

la
c
k

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

2
4

P C

DASHBOARD

E
T

H

E
T

H
1

V
IS

U

V
IS

S
T

O
R

D
B

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

0
4

S
W

_
N

A
M

E

G
ra

fa
n

a

S
W

_
V

E
R

1
1

S
W

_
V

E
R

v
6
.4

.3

S
W

_
N

A
M

E

P
o
s
tg

re
S

Q
L

P L C

MPSController

E
T

H

E
T

H
1

C
O

M

C
O

M
1

EasyPort

C
O

M

C
O

M

A 8
x

S 8
x

M
C

M
C

H
W

_
T

Y
P

E

E
a
s
y
P

o
rt

 U
S

B

H
W

_
M

A
N

U
F

F
E

S
T

O

S 8
x

A 8
x

S
M

P
S

.C
y
lR

e
tr

a
c
te

d

S
M

P
S

.C
y
lE

x
te

n
d

e
d

S
M

P
S

.P
ic

k
e

rV
a

c
u

u
m

S
M

P
S

.P
ic

k
e

rL
e

ft

S
M

P
S

.P
ic

k
e

rR
ig

h
t

S
M

P
S

.S
to

c
k
E

m
p

ty

S
M

P
S

.N
e

x
tB

u
s
yA

M
P

S
.S

e
tC

y
lP

u
s
h

A
M

P
S

.S
e

tP
ic

k
e

rV
a

c
u

u
m

A
M

P
S

.S
e

tP
ic

k
e

rB
lo

w

A
M

P
S

.S
e

tP
ic

k
e

rL
e

ft

A
M

P
S

.S
e

tP
ic

k
e

rR
ig

h
t

S
M

P
S

.S
to

p

S
M

P
S

.R
e

le
a

s
e

S
M

P
S

.S
ta

rt

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

0
5

D
F

I
E

C
8
0

0
-C

D
2

0
4

0

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

In
te

l
A

to
m

 N
2

8
0

0

4 1
.8

6
 G

H
z

x
8

6

2
 G

B

3
2
 G

B

E
T

H

E
T

H
2

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.2

P C

DA1

E
T

H

E
T

H
1

D
A

D
A

P C

DA2

E
T

H

E
T

H
1

D
A

M
E

S
D

A

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

2
0

R
a
s
p

b
e
rr

y
 P

i
3
 M

o
d

e
l
B

C P U F
la

s
hT

y
p

e

C
o
re

s

C
lo

c
k

R
a
te

In
s
tr

u
c
ti
o

n
 S

e
t

R
A

M

A
R

M
 B

C
M

2
8

3
7

4 1
.2

 G
H

z

A
R

M
v
8

1
 G

B

3
2
 G

B

P C

Viewer

E
T

H

E
T

H
1

V
IS

U

H
M

I

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

2
2

T
R

A
N

S

T
R

A
N

S

A
D

D
R

E
S

S

1
9

2
.1

6
8
.8

0
.1

2
1

D
A

D
ri

v
e
C

M

S
W

_
N

A
M

E

M
A

T
L

A
B

S
W

_
V

E
R

2
0

1
9

b

S
W

_
N

A
M

E

P
y
th

o
n

M
P

S
_
C

O
M

V
C

2
2

A
n

o
m

a
ly

S
c
o

re
V

C
3
1

A
n

o
m

a
ly

S
c
o

re

S
W

_
V

E
R

3
.7

.3

V
B

o
tt
le

s
P

e
rH

o
u

r
V

P
e

lle
ts

P
e

rH
o

u
r

V
O

rd
e

rs
P

e
rH

o
u

r
V

C
y
lI
n
te

rv
a

lR
e

tr
a

c
t

V
C

y
lI
n
te

rv
a

lE
x
te

n
d

V
C

y
lC

o
u
n

te
r

V
P

a
rt

s
P

ro
c
e

s
s
e

d

V
A

n
o
m

a
ly

S
c
o

re

Appendix B. Graphical Models of Lab-scale Study 199

Figure 63: Third sheet of the system diagram of the internal feasibility study.

Figure 64: First sheet of the data flow diagram of the internal feasibility study.

System_Internal.3

System_Internal.2

P

C
ra

b
b
it

m
q ETH

ETH1

ROUT

ROUT

P

C

W
o

rk
e
r1 ETH

ETH1

TRANS

FSELFX

P

C

W
o

rk
e
r3 ETH

ETH1

TRANS

FDA

P

C

W
o

rk
e
r0 ETH

ETH1

TRANS

2VIS

P

C

W
o

rk
e
r2 ETH

ETH1

TRANS

FMES

Raspberry Pi 3 Model B

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

ARM BCM2837

4

1.2 GHz

ARMv8

1 GB

32 GB

ADDRESS

192.168.80.130

ADDRESS

192.168.80.132

ADDRESS

192.168.80.133

ADDRESS

192.168.80.131

P

C

m
y
J
o

g
h

u
rt

A
d
a
p

ETH

ETH1

TRANS

TRANS

ADDRESS

192.168.80.123

DFI EC800-CD2040

C

P

U

Flash

Type

Cores

Clock Rate

Instruction Set

RAM

Intel Atom N2800

4

1.86 GHz

x86

2 GB

32 GB

P

C

m
o

s
q
u

it
to ETH

ETH1

ROUT

ROUT

ADDRESS

192.168.80.107

SW_NAME

Mosquitto

SW_VER

1.6.8

SW_NAME

RabbitMQ

SW_VER

3.8.0

ADDRESS

192.168.80.106

ETH_AIS

PORT

1234

PORT

1884

PORT

5672

FORW

FORW

Flow_Internal.1

V C22.ActPos

V C22.ActTorque

V C22.ActVelo

V C22.SetTorque

V C22.SetVelo

V C22.ErrorCode

V Robot.ServoOn

V Robot.Operating

V Robot.Error

V Robot.Ready

V Robot.SetOperation

V Robot.SetServoOn

V Robot.Dest

V Robot.Source

V C22.SetPos

C31.oAccA
C31.oPosA
C31.oVelA

C31.oOpA

S PT.Boiler.HeaterInWater

S PT.Boiler.LevelLow

A PT.Boiler.HeaterOn

S PT.Boiler.LevelHigh

MC

C1_Robot.MC

V C1_Robot.ServoOn

V C1_Robot.Operating

C1_Robot.Error

V C1_Robot.Ready

V C1_Robot.Source

V C1_Robot.SetOperation

V C1_Robot.SetServoOn

V C1_Robot.Dest

V C1_Robot.Source

VmJ_DP,
mJ_ECAT

LEG

MES.MES

C Order

V Customer

V OrderNumber

V Amount

V Received

V DueDate

V Barcode

C Recipe

V ID

V Name

V Liquid1

V Liquid2

V PelletsGreen

V PelletsRed

V PelletsBlue
V PelletsBlack

ETH_AIS

MC

CX-2E3FDC.MC ETH_AIS

TRANS

myJoghurt
Adap.TRANS

TRANS

Worker2.FMES

ETH_AIS

ETH_AIS

ROUT

rabbitmq.ROUT

ETH_AIS ETH_AIS

Monitoring MESDB

MESDATA MPS MPSCM SELFX

FORW

myJoghurt
Adap.FORW

myJoghurt
Adap

PROTOCOL

ADS

PROTOCOL

AMQP

PROTOCOL

AMQP

PROTOCOL

AMQP

PROTOCOL

REST

200 Appendix B. Graphical Models of Lab-scale Study

Figure 65: Second sheet of the data flow diagram of the internal feasibility study.

Flow_Internal.2

DASHBOARD

TRANS

Worker0.2VIS

LEG

MES.MES

ETH_AIS

TRANS

Worker2.FMES

VISU

DASHBOARD.
VIS

STOR

DASHBOARD.
DB

ETH_AIS

MESDBMonitoring

PROTOCOL

REST

PROTOCOL

ODBC

PROTOCOL

AMQP

PROTOCOL

AMQP

Appendix B. Graphical Models of Lab-scale Study 201

Figure 66: Third sheet of the data flow diagram of the internal feasibility study.

Broker

Flow_Internal.3

VISU

Viewer.HMI

DA

DA2.MESDA

DA

DA2.MESDA

TRANS

Worker3.FDA

TRANS

Worker3.FDA

TRANS

Worker3.FDA

ETH_AIS

ETH_AIS

ETH_AIS

ETH_AIS

ETH_AIS

ROUT

rabbitmq.ROUT

ETH_AIS

ROUT

rabbitmq.ROUT

ETH_AIS

ETH_AIS

ETH_AIS

DA

DA2.DriveCM

ETH_AIS

ETH_AIS

V BottlesPerHour

V PelletsPerHour

V OrdersPerHour

ETH_AIS

LEG

MES.MES

C Order

V Customer

V OrderNumber

V Amount

V Received

V DueDate

V Barcode

C Recipe

V ID

V Name

V Liquid1

V Liquid2

V PelletsGreen

V PelletsRed

V PelletsBlue
V PelletsBlack

ETH_AIS

TRANS

Worker2.FMES

V C22.ActPos

V C22.ActTorque

V C22.ActVelo

V C22.SetTorque

V C22.SetVelo

V C22.ErrorCode

V Robot.ServoOn

V Robot.Operating

V Robot.Error

V Robot.Ready

V Robot.SetOperation

V Robot.SetServoOn

V Robot.Dest

V Robot.Source

V C22.SetPos

C31.oAccA
C31.oPosA
C31.oVelA

C31.oOpA

S PT.Boiler.HeaterInWater

S PT.Boiler.LevelLow

A PT.Boiler.HeaterOn

S PT.Boiler.LevelHigh

MC

C1_Robot.MC

V C1_Robot.ServoOn

V C1_Robot.Operating

C1_Robot.Error

V C1_Robot.Ready

V C1_Robot.Source

V C1_Robot.SetOperation

V C1_Robot.SetServoOn

V C1_Robot.Dest

V C1_Robot.Source

V

mJ_DP,
mJ_ECAT

ETH_AIS

MC

CX-2E3FDC.MC

TRANS

myJoghurt
Adap.FORW

PROTOCOL

ADS

V C22AnomalyScore
V C31AnomalyScore

MESDATA

PROTOCOL

REST

PROTOCOL

AMQP

PROTOCOL

AMQP

ETH_AIS

FORW

myJoghurt
Adap.FORW

PROTOCOL

Proprietary

PROTOCOL

Proprietary

202 Appendix B. Graphical Models of Lab-scale Study

Figure 67: Fourth and fifth sheets of the data flow diagram of the internal feasibility study.

MC

SELF-X.MC

A MotorB_Rechtslauf
A MotorB_Versorgung
A MotorB_An
A MotorB_Rechtslauf
A MotorB_Versorgung
A MotorA_An
A LampeNotAus
A LampeQuit
A LampeTroete

S Not-Aus

V Betriebszustand

V Typ_Verteilen

S LSU_A03.1

ETH_SELFX

FORW

SELF-XGW.FORW

ETH_AIS

PROTOCOL

MQTT

PROTOCOL

ISO-on-TCP

ETH_AIS

PROTOCOL

MQTT

ETH_AIS

ROUT

mosquitto.
ROUT

TRANS

Worker1.
FSELFX

Flow_Internal.4

SELFX

PROTOCOL

AMQP

Flow_Internal.5

S

S

S

S

S

S

S

S

S

S MPS.Start

A MPS.SetCylPush

A MPS.SetPickerVacuum

A MPS.SetPickerBlow

A MPS.SetPickerLeft

A MPS.SetPickerRight

MPS.CylRetracted

MPS.CylExtended

MPS.PickerVacuum

MPS.PickerLeft

MPS.PickerRight

MPS.StockEmpty

MPS.NextBusy

MPS.Stop

MPS.Release

MC

MPSController.
MC

MPSController

TRANS

MPSController.
TRANS

DA

DA1.DA

ETH_AIS

ROUT

rabbitmq.ROUT

ETH_AIS

V CylIntervalRetract
V CylIntervalExtend

V CylCounter
V PartsProcessed

V AnomalyScore

ETH_AISETH_AIS

MPS MPSCM

PROTOCOL

AMQP

PROTOCOL

Proprietary

Appendix C. Code Snippets Extrapolation Case-Study

The following Chapter lists the source codes for the minimal publishers and subscriber function-

alities for the extrapolation case-study (cf. Section 7.5). The lines of code (LoC) metrics were

evaluated in Visual Studio 2019 using the Microsoft.CodeAnalysis.Metrics package in

version 2.9.8 [Mic19c]. The analysis counts all lines of code for the implementation of the respec-

tive classes including comments and empty lines. The using directives at the top of each listing,

the namespace declaration, as well as the surrounding brackets of the namespace are not counted.

Due to width limitations of this printed document, some additional line breaks were introduced

but do not influence the LoC metric. The line numbers on the left of each listing reflect this intro-

duction of arbitrary line breaks by not counting these additional lines. Lines of codes in the cap-

tions reflect raw, uncorrected numbers directly from the code metric analysis.

Listing 1: Minimal publisher for AMQP protocol (LoC = 28).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

using System;

using RabbitMQ.Client;

using System.Text;

namespace MinimalExample

{

 public class PublisherManualAmqpMinClient

 {

 public static void Main()

 {

 var client = new PublisherManualAmqpMin("192.168.80.214", 5672,

 "SimplPub", "SimplePass");

 client.TransmitData("TestByte", 127);

 }

 }

 public class PublisherManualAmqpMin

 {

 private IModel _Channel;

 public PublisherManualAmqpMin(string host, uint port, string user, string password)

 {

 var factory = new ConnectionFactory

 {

 HostName = host,

 Port = (int)port,

 UserName = user,

 Password = password

 };

 _Channel = factory.CreateConnection().CreateModel();

 }

 public void TransmitData(string channel, object data)

 {

 _Channel.QueueDeclare(channel, false, false, false, null);

 _Channel.BasicPublish("", channel, null,

 Encoding.UTF8.GetBytes(data.ToString()));

204 Appendix C. Code Snippets Extrapolation Case-Study

32

33

34

 }

 }

}

Listing 2: Minimal publisher for Beckhoff ADS protocol (LoC = 30).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

using System;

using TwinCAT.Ads;

using System.Collections.Generic;

namespace MinimalExampleAds

{

 public class PublisherManualAdsClient

 {

 public static void Main()

 {

 var client = new PublisherManualAdsMin("5.46.63.220.1.1", 851);

 client.TransmitData("TestByte", 127);

 }

 }

 public class PublisherManualAdsMin

 {

 private readonly TcAdsClient _client;

 private Dictionary<string, int> _knownHandles;

 public PublisherManualAdsMin(string amsNetId, uint port)

 {

 _client = new TcAdsClient();

 _client.Connect(new AmsAddress(amsNetId + ":" + port));

 _knownHandles = new Dictionary<string, int>();

 }

 public void TransmitData<T>(string channel, T data)

 {

 int handle;

 if(_knownHandles.TryGetValue(channel, out var h)) handle = h;

 else

 {

 handle = _client.CreateVariableHandle(channel);

 _knownHandles.Add(channel, handle);

 }

 _client.WriteAny(handle, data);

 }

 }

}

Listing 3: Minimal publisher for Kafka protocol (LoC = 27).

1

 2

 3

 4

 5

 6

 7

 8

 9

using System;

using Confluent.Kafka;

namespace MinimalExample

{

 public class PublisherManualKafkaMinClient

 {

 public static void Main()

 {

 var client = new PublisherManualKafkaMin("192.168.80.214", 1883,

Appendix C. Code Snippets Extrapolation Case-Study 205

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 "SimplPub", "SimplePass");

 client.TransmitData("TestByte", 127);

 }

 }

 public class PublisherManualKafkaMin

 {

 private IProducer<Ignore, string> _client;

 public PublisherManualKafkaMin(string host, uint port, string user, string password)

 {

 var conf = new ProducerConfig

 {

 BootstrapServers = host + ":" + port,

 SaslUsername = user,

 SaslPassword = password,

 SecurityProtocol = SecurityProtocol.SaslPlaintext

 };

 _client = new ProducerBuilder<Ignore, string>(conf).Build();

 }

 public void TransmitData(string channel, object data)

 {

 _client.Produce(channel, new Message<Ignore, string> {Value = data.ToString()});

 }

 }

}

Listing 4: Minimal publisher for MQTT protocol (LoC = 21).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

using System;

using OpenNETCF.MQTT;

namespace MinimalExample

{

 public class PublisherManualMqttMinClient

 {

 public static void Main()

 {

 var client = new PublisherManualMqttMin("192.168.80.214", 1883,

 "SimplPub", "SimplePass");

 client.TransmitData("TestByte", 127);

 }

 }

 public class PublisherManualMqttMin

 {

 private MQTTClient _client;

 public PublisherManualMqttMin(string host, uint port, string user, string password)

 {

 _client = new MQTTClient(host, (int)port);

 _client.Connect("SimplePub", user, password);

 }

 public void TransmitData(string channel, object data)

 {

 _client.Publish(channel, data.ToString(), QoS.FireAndForget, false);

 }

 }

}

206 Appendix C. Code Snippets Extrapolation Case-Study

Listing 5: Minimal publisher for OPC UA protocol (LoC =53).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

using System;

using Opc.Ua.Client;

using Opc.Ua;

namespace MinimalExample

{

 public class PublisherManualOpcUaMinClient

 {

 public static void Main()

 {

 var client = new PublisherManualOpcUaMin("192.168.80.215", 5672);

 client.TransmitData("ns=2;s=TestByte", 127);

 }

 }

 class PublisherManualOpcUaMin

 {

 private Session m_session;

 public PublisherManualOpcUaMin(string host, uint port)

 {

 var opcClientConfig = new ApplicationConfiguration()

 {

 ApplicationName = "OPC UA Data Adapter Pub",

 ApplicationType = ApplicationType.Client,

 ApplicationUri = "urn:" + Utils.GetHostName() + ":AIS:DataAdapterPub",

 SecurityConfiguration = new SecurityConfiguration()

 {

 ApplicationCertificate = new CertificateIdentifier()

 {

 StoreType = CertificateStoreType.Directory,

 StorePath = "OPC_UA_DataAdapter_Pub\\UA_MachineDefault",

 SubjectName = "OPA UA Data Adapter",

 },

 TrustedPeerCertificates = new CertificateTrustList()

 {

 StoreType = CertificateStoreType.Directory,

 StorePath = "OPC_UA_DataAdapter_Pub\\UA_Applications"

 }

 },

 ClientConfiguration = new ClientConfiguration()

 };

 opcClientConfig.Validate(ApplicationType.Client).Wait();

 var serverEndpoint = CoreClientUtils.SelectEndpoint

 ("opc.tcp://" + host + ":" + port, false);

 var server = new ConfiguredEndpoint

 (serverEndpoint.Server, EndpointConfiguration.Create(opcClientConfig));

 server.Update(serverEndpoint);

 m_session = Session.Create

 (opcClientConfig, server, true, opcClientConfig.ApplicationName,

 3600, new UserIdentity(new AnonymousIdentityToken()), null).Result;

 }

 public void TransmitData(string channel, object data)

 {

 WriteValue valueToWrite = new WriteValue

 {

Appendix C. Code Snippets Extrapolation Case-Study 207

50

51

52

53

54

55

56

57

58

59

 NodeId = channel,

 AttributeId = Attributes.Value

 };

 valueToWrite.Value.Value = data;

 valueToWrite.Value.SourceTimestamp = DateTime.Now;

 var valuesToWrite = new WriteValueCollection { valueToWrite };

 m_session.Write(null, valuesToWrite, out _, out _);

 }

 }

}

Listing 6: Minimal subscriber for protocol AMQP (LoC = 43).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

using System;

using System.Text;

using RabbitMQ.Client;

using RabbitMQ.Client.Events;

namespace MinimalExample

{

 public class SubscriberManualAmqpMinClient

 {

 public static void Main()

 {

 var client = new SubscriberManualAmqpMin("192.168.80.215", 5672,

 "SimplePub", "SimplePass");

 client.Subscribe("TestByte", ReceivedHandler);

 Console.ReadLine();

 }

 public static void ReceivedHandler(string message)

 {

 }

 }

 public class SubscriberManualAmqpMin

 {

 private readonly IModel _Channel;

 public delegate void ReceivedHandler(string message);

 public event ReceivedHandler TestByteReceived;

 public SubscriberManualAmqpMin(string host, uint port, string user, string password)

 {

 var factory = new ConnectionFactory

 {

 HostName = host,

 Port = (int)port,

 UserName = user,

 Password = password

 };

 _Channel = factory.CreateConnection().CreateModel();

 }

 public void Subscribe(string channel, ReceivedHandler handler)

 {

 _Channel.QueueDeclare(channel, false, false, false, null);

 _Channel.QueueBind(channel, "", channel);

 var consumer = new EventingBasicConsumer(_Channel);

 consumer.Received += (model, ea) =>

208 Appendix C. Code Snippets Extrapolation Case-Study

41

42

43

44

45

46

47

48

49

50

 {

 if (ea.RoutingKey != channel) return;

 var body = ea.Body;

 var message = Encoding.UTF8.GetString(body);

 handler(message);

 };

 _Channel.BasicConsume(channel, true, consumer);

 }

 }

}

Listing 7: Minimal subscriber for Beckhoff ADS protocol (LoC = 55).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

using System;

using System.Collections.Generic;

using System.Text;

using TwinCAT.Ads;

namespace MinimalExampleAds

{

 public class SubscriberManualAdsClient

 {

 public static void Main()

 {

 var client = new SubscriberManualAdsMin("5.46.63.220.1.1", 851);

 client.Subscribe<byte>("TestByte", ReceivedHandler);

 Console.ReadLine();

 }

 public static void ReceivedHandler(string message)

 {

 }

 }

 public class SubscriberManualAdsMin

 {

 public delegate void ReceivedHandler(string message);

 private readonly TcAdsClient _client;

 private readonly Dictionary<uint, AdsNotificationEventHandler> _subscriptions;

 private readonly Dictionary<string, int> _knownVariableHandles;

 public event ReceivedHandler TestByteReceived;

 public SubscriberManualAdsMin(string amsNetId, uint port)

 {

 _subscriptions = new Dictionary<uint, AdsNotificationEventHandler>();

 _knownVariableHandles = new Dictionary<string, int>();

 _client = new TcAdsClient();

 _client.Connect(new AmsAddress(amsNetId + ":" + port));

 _client.AdsNotification += (s, e) =>

 {

 if (_subscriptions.TryGetValue((uint)e.NotificationHandle, out var handler))

 handler.Invoke(s, e);

 };

 }

 private int GetVariableHandle(string varName)

 {

 if (_knownVariableHandles.TryGetValue(varName, out var handle)) return handle;

 else

Appendix C. Code Snippets Extrapolation Case-Study 209

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

 {

 var newHandle = _client.CreateVariableHandle(varName);

 _knownVariableHandles.Add(varName, newHandle);

 return newHandle;

 }

 }

 public void Subscribe<T>(string channel, ReceivedHandler handler)

 {

 var settings = new NotificationSettings(AdsTransMode.OnChange, 10, 20);

 var errorCode = _client.TryAddDeviceNotification(channel, new AdsStream(),

 0, 40, settings, null, out uint handle);

 if (errorCode != AdsErrorCode.NoError)

 throw new Exception("subscription failed with error code" + errorCode);

 _subscriptions.Add(handle, (s, e) =>

 {

 object value;

 if (typeof(T) == typeof(string)) value =

 _client.ReadAnyString(GetVariableHandle(channel), 80, Encoding.Default);

 else value = _client.ReadAny(GetVariableHandle(channel), typeof(T));

 handler.Invoke(value.ToString());

 });

 }

 }

}

Listing 8: Minimal subscriber for Kafka protocol (LoC = 51).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

using Confluent.Kafka;

using System;

using System.Collections.Generic;

using System.Threading;

namespace MinimalExample

{

 public class SubscriberManualKafkaMinClient

 {

 public static void Main()

 {

 var client = new SubscriberManualKafkaMin("192.168.80.216", 9092,

 "SimplePub", "SimplePass");

 client.Subscribe("TestByte", ReceivedHandler);

 Console.ReadLine();

 }

 public static void ReceivedHandler(string message)

 {

 }

 }

 public class SubscriberManualKafkaMin

 {

 public delegate void ReceivedHandler(string message);

 private IConsumer<Ignore, string> _client;

 private Dictionary<string, ReceivedHandler> _channels;

 public event ReceivedHandler TestByteReceived;

 public SubscriberManualKafkaMin(string host, uint port, string user, string password)

 {

210 Appendix C. Code Snippets Extrapolation Case-Study

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 var conf = new ConsumerConfig

 {

 GroupId = "AIS",

 BootstrapServers = host + ":" + port,

 SaslUsername = user,

 SaslPassword = password,

 SecurityProtocol = SecurityProtocol.SaslPlaintext,

 };

 _client = new ConsumerBuilder<Ignore, string>(conf).Build();

 _channels = new Dictionary<string, ReceivedHandler>();

 new Thread(Receive).Start();

 }

 public void Subscribe(string channel, ReceivedHandler handler)

 {

 _client.Subscribe(channel);

 _channels.Add(channel, handler);

 }

 private void Receive()

 {

 while (true)

 {

 try

 {

 var res = _client.Consume(TimeSpan.FromMilliseconds(100));

 if (!_channels.TryGetValue(res.Topic, out ReceivedHandler handler))

 return;

 handler.Invoke(res.Message.Value);

 }

 catch(Exception e) { }

 }

 }

 }

}

Listing 9: Minimal subscriber for MQTT protocol (LoC = 34).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

using System;

using OpenNETCF.MQTT;

using System.Collections.Generic;

using System.Text;

namespace MinimalExample

{

 public class SubscriberManualMqttMinClient

 {

 public static void Main()

 {

 var client = new SubscriberManualMqttMin("192.168.80.214", 1883,

 "SimplPub", "SimplePass");

 client.Subscribe("TestByte", ReceivedHandler);

 Console.ReadLine();

 }

 public static void ReceivedHandler(string message)

 {

 }

Appendix C. Code Snippets Extrapolation Case-Study 211

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 }

 public class SubscriberManualMqttMin

 {

 private readonly MQTTClient _client;

 public delegate void ReceivedHandler(string message);

 private Dictionary<string, ReceivedHandler> _channels;

 public event ReceivedHandler TestByteReceived;

 public SubscriberManualMqttMin(string host, uint port, string user, string password)

 {

 _client = new MQTTClient(host, (int)port);

 _client.Connect("SimplePub", user, password);

 _client.MessageReceived += (channel, qos, payload) =>

 {

 if (!_channels.TryGetValue(channel, out ReceivedHandler handler)) return;

 handler.Invoke(Encoding.UTF8.GetString(payload));

 };

 _channels = new Dictionary<string, ReceivedHandler>();

 }

 public void Subscribe(string channel, ReceivedHandler handler)

 {

 if (!_channels.ContainsKey(channel)) _channels.Add(channel, handler);

 }

 }

}

Listing 10: Minimal subscriber for OPC UA protocol (LoC = 65).

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

using System;

using Opc.Ua;

using Opc.Ua.Client;

namespace MinimalExample

{

 public class SubscriberManualOpcUaMinClient

 {

 public static void Main()

 {

 var client = new SubscriberManualOpcUaMin("desktop-o6ueut2", 50000);

 client.Subscribe("ns=2;s=TestByte", ReceivedHandler);

 Console.ReadLine();

 }

 public static void ReceivedHandler(string message)

 {

 }

 }

 public class SubscriberManualOpcUaMin

 {

 public delegate void ReceivedHandler(string message);

 private readonly Session m_session;

 public SubscriberManualOpcUaMin(string host, uint port)

 {

 var opcClientConfig = new ApplicationConfiguration()

 {

 ApplicationName = "OPC UA Data Adapter",

 ApplicationType = ApplicationType.Client,

212 Appendix C. Code Snippets Extrapolation Case-Study

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

 ApplicationUri = "urn:" + Utils.GetHostName() + ":AIS:DataAdapter",

 SecurityConfiguration = new SecurityConfiguration()

 {

 ApplicationCertificate = new CertificateIdentifier()

 {

 StoreType = CertificateStoreType.Directory,

 StorePath = "OPC_UA_DataAdapter\\UA_MachineDefault",

 SubjectName = "OPA UA Data Adapter",

 },

 TrustedPeerCertificates = new CertificateTrustList()

 {

 StoreType = CertificateStoreType.Directory,

 StorePath = "OPC_UA_DataAdapter\\UA_Applications"

 }

 },

 ClientConfiguration = new ClientConfiguration()

 };

 opcClientConfig.Validate(ApplicationType.Client).Wait();

 var serverEndpoint = CoreClientUtils.SelectEndpoint

 ("opc.tcp://" + host + ":" + port, false);

 var serverConfiguration = EndpointConfiguration.Create(opcClientConfig);

 var server = new ConfiguredEndpoint(serverEndpoint.Server, serverConfiguration);

 server.Update(serverEndpoint);

 m_session = Session.Create

 (opcClientConfig, server, true, opcClientConfig.ApplicationName,

 3600, new UserIdentity(new AnonymousIdentityToken()), null).Result;

 }

 public void Subscribe(string channel, ReceivedHandler handler)

 {

 var item = new MonitoredItem()

 {

 DisplayName = channel,

 StartNodeId = channel

 };

 item.Notification += (itm, args) =>

 {

 if (itm.DisplayName == channel)

 foreach (var val in itm.DequeueValues())

 handler.Invoke(val?.Value?.ToString());

 };

 var subscription = new Subscription(m_session.DefaultSubscription);

 subscription.AddItem(item);

 m_session.AddSubscription(subscription);

 subscription.Create();

 }

 }

}

Appendix D. Expert Questionnaire and Results

The two pages of the expert questionnaire and detailed results for Section 7.6 can be found below.

Figure 68: First page of the expert questionnaire in German.

214 Appendix D. Expert Questionnaire and Results

Figure 69: Second page of the expert questionnaire in German.

Appendix D. Expert Questionnaire and Results 215

Table 23: Detailed results of the expert assessment of the dimensions feasibility, total effort, and benefit

for classical, manually implemented P2P network and model-driven, middleware-based ap-

proach. Scale from 1 (very low) to 10 (very high).

Aspect Classical

Approach

Proposed

Model-driven Approach

Number of

answers 𝒏

Mean
𝑿̅

Standard

deviation 𝝈𝑿

Mean

𝑿̅

Standard

deviation 𝝈𝑿

Feasibility 5.1 2.4 7.0 1.3 14

Effort 8.0 1.8 5.1 1.7 14

Benefit 7.5 1.8 8.6 0.9 14

Table 24: Detailed, normalized results of the expert evaluation per question (-1 = Disagreeing,

1 = Agreeing). Question texts in Figure 54.

Question Classical

Approach

Proposed

Model-driven Approach

Number of

answers 𝒏

Mean
𝑿̅

Standard

deviation 𝝈𝑿

Mean

𝑿̅

Standard

deviation 𝝈𝑿

Q1 -0.18 0.45 0.14 0.55 14

Q2 -0.32 0.45 0.50 0.19 14

Q3 -0.36 0.35 0.21 0.45 14

Q4 0.14 0.52 0.54 0.23 14

Q5 0.54 0.54 0.67 0.24 12

	Acknowledgments
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Hypotheses
	1.3. Structure of this Dissertation

	2. Field of Investigation
	2.1. Industrial Automation
	2.2. Industrie 4.0 and Industrial Internet of Things
	2.2.1. Cyber-physical Systems
	2.2.2. Reference Architectures

	2.3. Industrial Communication
	2.3.1. Field Level
	2.3.2. Superordinate Levels

	2.4. Big Data in Automation
	2.5. Model-driven Development
	2.6. Virtualization and Containerization

	3. Requirements on a Model-driven Approach for Data Collection System Architectures for Cyber-physical Systems of Systems
	3.1. Data Collection System Architecture (Req-A)
	3.2. Interoperability of Systems and Architecture Software Framework (Req-SF)
	3.3. Requirements on the Domain-specific Language for Architecture Modeling (Req-M)
	3.4. Requirements on the Model-driven Generation of Data Collection Architectures (Req-G)
	3.5. Focus of the Thesis

	4. State-of-the-Art
	4.1. System Architectures
	4.1.1. Generic System Architectures
	4.1.2. Data Collection System Architectures

	4.2. Modeling Languages
	4.2.1. UML-profiles
	4.2.2. Graphical Notations

	4.3. Model-driven System Architectures
	4.3.1. Generic Architectures
	4.3.2. System Architectures for Industrial Automation

	4.4. Research Gap in Model-driven Development of Data Collection System Architectures

	5. Approach for Model-driven Development of Data Collection Architectures
	5.1. Technology-neutral Architecture Concept
	5.2. Domain-specific Language for Data Collection Architectures
	5.2.1. Communication Architecture Metamodel
	SoftwareContainer
	Physical Container
	AnnotationContainer
	RelationContainer

	5.2.2. Graphical Modeling Notation
	System Viewpoint
	Data Flow Viewpoint
	Annotations
	Data Mapping Table
	Mapping of the Viewpoints and the Mapping Table

	5.3. Architecture Software Framework
	5.4. Automatic Generation of the Communication Architecture

	6. Implementation
	6.1. Domain-specific Language
	6.2. Architecture Software Framework
	6.3. Automatic Code and Configuration Generation

	7. Evaluation
	7.1. Evaluation of Architecture Concept
	7.1.1. Interviews with Industry Experts
	7.1.2. Mapping to State-of-the-Art Architectures

	7.2. Expert Evaluation of Graphical Modeling Notation
	7.2.1. Use-Case A: Retrofitting and Condition Monitoring
	7.2.2. Use-Cases B to D: Anomaly Detection and Alarm Analysis
	7.2.3. Results of the Expert Evaluation

	7.3. Lab-scale Feasibility Study
	7.3.1. Experimental Setup
	Modular Production System (legacy system)
	myJoghurt (evolving, retrofitted plant)
	Self-X Material Flow Demonstrator
	Other Systems

	7.3.2. Graphical Model of the Lab-scale Architecture
	7.3.3. Model-driven Generation of the Communication Architecture
	7.3.4. Effort Metrics for Deployment and Redeployment

	7.4. Industrial Case-Study
	7.5. Effort Extrapolation Case-Study
	7.5.1. Initial Deployment
	7.5.2. Migration
	7.5.3. Estimation of Necessary System Sizes for Break-even

	7.6. Expert Workshop and Questionnaire

	8. Assessment of the Fulfillment of the Requirements
	9. Summary and Outlook
	10. Literature
	11. List of Figures
	12. List of Tables
	13. List of References to the Application Example
	Parts
	Figures

	14. List of Abbreviations
	Appendix A. Graphical Models of Use-Cases B to D
	Appendix A.1 Use-Case B Anomaly Detection
	Appendix A.2 Use-Case C Alarm Management
	Appendix A.3 Use-Case D Alarm Management

	Appendix B. Graphical Models of Lab-scale Study
	Appendix C. Code Snippets Extrapolation Case-Study
	Appendix D. Expert Questionnaire and Results
	Leere Seite
	Leere Seite

