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Zusammenfassung

In Anbetracht der bemerkenswerten Möglichkeiten hinsichtlich der Produktion komplexer Formen ist
die Einbindung von additiver Fertigung (3D-Druck) in den Herstellungsprozess von Industriegütern
und Prototypen von zunehmender Bedeutung. In der chemischen Industrie werden für den Einsatz
in Festbettreaktoren katalytisch aktive Formkörper traditionell durch Extrusion, Tablettenpressen oder
Granulation erzeugt, die jedoch nur geringe Spielräume der Formvariation zulassen. Für den Einsatz
in Festbettreaktoren sind die Durchströmungseigenschaften, der Wärme- und der Stofftransport von
entscheidender Bedeutung, die jedoch massgeblich von den eingesetzten Formkörpergeometrien abhängig
sind.

Im Rahmen des vorliegenden Dissertationsprojektes wurde ein 3D-Drucker nach dem Pulver-Binder-
Prinzip für labormaßstäbliches Materialscreening konzipiert, konstruiert und in Betrieb genommen. Die
für additive Fertigung problematische Herstellung von mesoporösen Katalysatorträgern aus Keramik bei
gleichzeitiger Gewährleistung ausreichender Festigkeit wurde erforscht und entsprechende Formkörper
wurden produziert.

Zum Vermessen des Druckverlusts bei Durchströmung von zufälligen Füllkörperschüttungen wurde
ein Teststand konzipiert und konstruiert. Mithilfe von 3D-gedruckten Modell-Formkörpern wurden die
bekannten Korrelationen überprüft und erweitert.

Für ein abschließendes Formkörpergeometrie-Screening wurde ein numerisches Prozedere entwickelt, be-
stehend aus dem Design völlig neuartiger und komplexer Formkörper (Autodesk® Inventor®), dem Erstel-
len von zufälligen Füllkörperschüttungen mittels Diskreter Element Methode (DigiDEMTM, BlenderTM),
der Strömungssimulation in OpenFOAM® und der Datenanalyse in PythonTM. Die Validierung erfolgte
anhand von realen, an zuvor genanntem Teststand experimentell charakterisierten Kugelschüttungen,
die mittels Computertomography in ein virtuelles 3D-Modell überführt werden konnten. Untersucht
wurden Formkörpergeometrien basierend auf einer kugeligen Grundform kombiniert mit verschiedenen
Teil-Geometrien wie Löcher, umlaufende Kanäle, Vertiefungen, Reifen und Buckel. Grundsätzlich muss
zwischen einem bevorzugten Strömungsfeld und einem vorteilhaften Druckverlust entschieden werden,
da diese gegenläufig von Geometrieänderungen beeinflusst werden. Als Entscheidungshilfe wurde eine
dimensionslose Kennzahl entwickelt, die die relevanten Parameter Druckverlust, geometrische Oberfläche,
Streuung des Geschwindigkeitsfeldes - stellvertretend für die Verweilzeitverteilung -, und die Strömung in
radialer Richtung - stellvertretend für die radiale Dispersion - in ein Verhältnis setzt. Je nach anwendungs-
spezifischer Gewichtung dieses Parameters sind unterschiedliche Formkörpergeometrien von Vorteil.
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Abstract

Considering the remarkable possibilities of producing complex shapes, the incorporation of additive
manufacturing (3D printing) into the manufacturing process of industrial goods and prototypes is becoming
increasingly important. In the chemical industry, catalytically active moldings are traditionally produced
by extrusion, tablet presses or granulation for use in fixed-bed reactors, which, however, allow only slight
freedom of form variation. Within these catalyst packings, the flow characteristics, the heat and the mass
transfer are of crucial importance, but these are significantly dependent on the shaped body’s geometries
used.

As part of the dissertation project, a 3D printer based on the powder-binder principle for laboratory-scale
material screening was designed, constructed and put into operation. The production of mesoporous
catalyst carriers of ceramic, which is problematic for additive manufacturing while at the same time
ensuring sufficient strength, has been investigated and corresponding moldings have been produced.

A testing set-up was designed and constructed to measure the pressure loss during flow through random
packing. 3D-printed model moldings were used to verify and extend the known correlations.

For a final mold geometry screening, a numerical procedure was developed consisting of the design of
completely new and complex moldings (Autodesk® Inventor®), the creation of random packed beds using
the Discrete Element Method (DigiDEMTM, BlenderTM), the flow simulation in OpenFOAM® and the
data analysis in PythonTM and Matlab®. The validation was carried out on the basis of sphere packings
which were experimentally characterized at the previously mentioned testing set-up and which could be
transferred into a virtual 3D model using also the experimental results of x-ray computer tomography.
Shapes based on a sphere combined with different features such as holes, circumferential ducts, cavities,
bellies, and drops were investigated. In general, a decision between preferred flow field characteristics
and beneficial pressure drop values is required, as these are affected opposingly by geometry variations.
As a decision-making tool, a dimensionless number was developed, proportioning the relevant parameters
pressure drop, geometric surface area, flow field distribution - representing the width of residence time
distribution -, and the flow in radial direction - representing radial dispersion. Depending on an application
specific weighting of this parameter, different shapes become beneficial.
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Introduction

In chemical engineering, one of the major workhorses in heterogeneous catalysis is the packed bed reactor.
The solid catalyst material is packed into the reactor tubes and flown through by the reaction substrates
and products, in either single- or multiphase . While heterogeneously catalyzed single phase reactions
are somewhat easy the describe, multi-phase reactions, especially those with gas-liquid phase transitions
during the reaction, as for instance the Liquid Organic Hydrogen Carrier System, are significantly more
demanding. Energy consumption, hot spot formation, catalyst deactivation, selectivity, and yield are
only some parameters characterizing the efficiency of a reactor. These strongly depend on the selected
operating point and the incorporated catalyst features. More precisely, fluid dynamics, heat and mass
transfer conditions need to be optimized which for instance can be achieved by varying the incorporated
catalyst packing type and shape.

Packing Types

Utilized packing types comprise random bulks of powders or small shaped packing elements, structured
monoliths, unstructured foams, and structured cellular arrays. These packing types vary in their
wall contact, pressure drop, radial dispersion, heat transfer, mass transfer, residence time distribution,
occurrence of dead zones and channeling, required amount of active material, need for subsequent coating
procedures, ease of handling and replacement, mechanical stability, reliability and consistency, production
costs and lifetime. While random packed shaped elements come with a significantly larger pressure drop,
novel cellular structures offer pronounced handling and replacement issues at a much higher production
price. Thus, the selection of the appropriate packing type is very case sensitive and needs to be geared to
the particular reaction system.

Despite some novel developments regarding structured packings, the random shaped element packing
remains the industrial standard for packed-bed reactor fillings. The incorporated shaped catalysts can be
produced easily, cheaply and with high rates by tablet pressing and extrusion processes. The catalysts are
either produced directly or shaped carrier particles are subsequently coated, infiltrated, vapor deposited
or impregnated with the respective active material. Almost any material can be processed with these
tools. The drawbacks include a limited shape selection as typically only the geometry of the cross-section
can be adjusted, inhomogeneities of the shapes due to the production technique (especially extrusion,
where all particles come with different lengths and may be bent to certain degrees), a reduced mechanical
strength leading to breakage issues, and the significantly larger pressure drop due to the higher solid
content in the reactor. This pressure drop, however, may be reduced drastically by packing particles of
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more complex shapes, for instance having holes in different directions. In order to produce these complex
shapes, novel manufacturing techniques need to be implemented, especially additive manufacturing
techniques, also known as 3d printing, have recently gained much attention and caused certain ambitions
in the community.

Novel Issues

With the evaluation of 3d printing as a potential novel manufacturing technique for catalytic shapes
questions arise including the material compatibility and which shapes to actually produce. Early optimism
was overrun by reality, that not any stock material powder can be used in 3d printing right away. Only
powders with certain properties were able to be processed at all. Researchers and industry realized that
the introduction of additive manufacturing tools into the catalyst production scheme would require decent
material optimization and variation.

Moreover, as with the classic manufacturing techniques, only a small shape selection is at all possible, the
research regarding packed beds is limited to these easy shapes. So even, if 3d printing would be available
as manufacturing technique right away, hardly any knowledge is on hand regarding the shapes to print.

Objectives of this thesis

The objectives of this thesis can thus be summarized by evaluating the potentials and limitations to
print inert alumina catalyst carriers having a high BET surface area and sufficient mechanical strength
using a powder-binder 3d printer, also known as binder jetting technique; and to simultaneously develop
an optimized shape for random packing elements that can be produced with the very same printing
technique.

In terms of the first objective, the actual printing of catalyst carriers, the major issue to be solved was the
unavailability of an affordable laboratory scale printer, that is customizable in regard to the used powders
and binder liquids. Most commercially available 3d printing systems are closed systems, not allowing
material variation, except for the officially vendored products. Consequently, a major time fraction was
spent on designing and constructing an own laboratory-scale multi-purpose and multi-material printer.
The remaining time was used to perform proof-of-concept studies whose results are discussed in part I of
this thesis (see Chapter 1). In this context, previous results of pre-material studies were published with
shared authorship but are herein not further included:

T. Ludwig, J. von Seckendorff, C. Troll, R. Fischer, M. Tonigold, B. Rieger, O. Hinrichsen, Additive
Manufacturing of Al2O3-based carriers for heterogeneous catalysis, Chemie Ingenieur Technik,
2018, 90, 703-707.
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Figure: Schematic overview of objectives addressed in this thesis.

In terms of the second objective, the shape optimization, a holistic multi-step approach was implemented,
comprising the two major subtasks of understanding packed beds of simple shapes and validate numerical
tools based on these, and the actual shape optimization. These subtopics are addressed in Part II: The
Structure of Randomness - Experimental Investigation of Random Packed Beds and Part III: Shape Matters
- Numerical Study on Shape Optimization of this thesis, respectively. Herein, in part II, a literature review
is conducted in regard to structural parameters of packed beds (see Chapter 2), followed by an experimental
study comprising average packing conditions for a packed bed of spheres (see Chapter 3), an experimental
study regarding the influence of simple shapes including cylinders and hollow cylinders (see Chapter 4),
and an experimental study investigating local packing properties in packed beds of spheres using x-ray
tomography including the numerical packing generation validation using this data (see Chapter 5). In this
context, a paper was published with shared authorship comparing different numerical packing generation
tools, but is not further included in this thesis:

J. Fernengel, J. von Seckendorff, O. Hinrichsen, Influence of cylinder-to-particle diameter ratio and
filling speed on bed porosity of random packed beds of spheres, Proceedings of the 28th European
Symposium on Computer Aided Process Engineering, 2018, 97-102.

Part III of this thesis comprises a literature review of patented catalyst shapes combined with a systematical
shape study incorporating the novel Yo-Yo shape (see Chapter 6), a Design of Experiment study regarding
the very same Yo-Yo shape (see Chapter 7), and the final much broader shape study comprising all kinds
of sphere-based shape variations (see Chapter 8). With this last chapter summarizing and concluding
the knowledge gained throughout the thesis and arising future research questions it shall be seen as the
outlook of this dissertation.
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It is to be pointed out, that the knowledge gained in terms of random packed beds could be related back to
the first major topic of this thesis, the 3d printing, as the most important part of a powder-binder printer is
a powder-bed where the same rules apply to, except in a smaller size scale. Or easier put, besides catalytic
packed bed reactors, powder-beds used in various additive manufacturing techniques constitute another
perfect application example of random packings.
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Additive Manufacturing of Catalyst
Support Structures
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1 Review on Customization of Binder Jetting
(3D Printing) for the Manufacturing of Alumina
Catalyst Carriers

Abstract
The integration of 3d printing into the actual manufacturing process of catalyst shaped bodies is of
increasing concern, due to its conspicuous capability regarding to geometric freedom and flexibility. Binder
Jetting was selected as 3d printing technique primarily due to easy scale-up options. A comprehensive
literature review on the customization of binder jetting 3d printers has been performed. Based on
this, a lab-scale printer was constructed in which powder and binder formulations were tested on a
proof-of-principle basis. As example, spray dried γ-alumina powder having a high sphericity and a broad
size distribution combined with a boehmite-sol as binding agent utilized in a pre-printing setup lead to
cylindrical parts having specific surface areas (BET) of up to 190 m2 g−1 while withstanding side crush
loads of 19 N.
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1.1 Introduction

The impressive opportunities 3d printing technologies seem to provide attract the attention throughout
the whole palette of industrial sectors. Originally been used as mere prototyping tool, the integration
of 3d printing into the actual manufacturing process is of increasing interest [1]. The production of
heterogeneous catalysts among the chemical industry is only one example where the promising attempt is
risked to evaluate the potentialities and limitations for the extension or replacement of existing production
processes by Additive Manufacturing (AM) [2–4].

Within the manufacturing process, catalytic materials are shaped to structured or random packing elements
that allow the reaction gases to pass low-drag through the reaction vessel while the reaction takes
place at the catalyst’s surface. Fluid dynamics, heat and mass transfer strongly depend on the shaped
catalyst’s geometry [4]. However, traditional shaping technologies, most predominantly tablet pressing
and extrusion, are very limited regarding their contrivable geometric flexibility. Compared to this, additive
manufacturing is theoretically capable to produce almost all imaginable, highly complex structures, giving
rise to the question, if and to what extent catalyst material of comparable quality can be manufactured by
3d printing.

1.1.1 Printing of (supported) Catalysts

For a small selection of reactions, catalyst systems have been investigated concerning their printability.
Among additive manufacturing of (micro) reactors and mixers [3, 5], these comprise catalysts for
electrochemical reactions [6, 7], biological activity [8], organic synthesis [9–11], inorganic reactions
[12–20], and adsorption processes [21].

Concerning chemical reactions, besides shape and size of the manufactured body, few reactions are fairly
unpretentious regarding their catalyst requirements, however, most demand high specific surface areas,
finely tuned pore systems (size, volume, distribution) and a tailored selection of involved chemical species
(active catalyst, promotors, support) [22]. Frequently, supported catalysts are used, where small amounts
of commonly valuable active components are affixed on primarily ceramic, for example alumina, silica
and zirconia, or charcoaled carrier powders or shapes [23]. Preparation methods comprising precipitation,
deposition and impregnation techniques (see [22–24] for more) add the catalyst species either before or
after the shaping process, leading to active components evenly distributed throughout the whole shape, in
confined layers or merely on the outer surface.

In general, the additive manufacturing of (supported) catalysts can be categorized into the following
scenarios:

• Printing of a negative template (mold) followed by filling it with catalytic and/or support material
(casting) and subsequent template removal;
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• Printing of a solid core structure of any material with subsequent separate application of support
and/or catalyst species by known methods such as coating;

• Printing of catalyst support with subsequent separate application of catalyst species by known
methods such as impregnation;

• Direct printing of the (supported) catalyst.

For the first two scenarios, commercial printers and materials can be used right away. However, the casting
approach, as described by Michorczyk et al. [25] and Hammel et al. [26] is laborious while wasting
significant amounts of template materials and is thus of minor interest. On contrary, it was repeatedly
shown, that the coating approach is feasible on a lab scale basis [13–15, 18–20, 27, 28]. Hereby, the
challenge lies rather in the wash-coat application process and the adhesion between core structure and
coating, then in the actual printing procedure.

The other two scenarios require extensive research concerning the material and printer interplay. Among
the typically used additive manufacturing techniques, Direct Ink Writing (DIW), also called Robocasting
or 3d Fiber Deposition, is the most obvious approach as it resembles a small scale paste extrusion
process, similar to the traditional catalyst shaping techniques. Furthermore, it is easy to handle, cheap to
acquire and allows an incredible material variety with comparably low material requirements. Thus, some
pioneering work concerning catalyst and/or carrier printing was already performed and presented [9–12,
16, 20, 29]. On the downside, surface accuracy, geometric level of detail and scaling up options constitute
ambitious challenges yet not solved.

Other theoretically feasible 3d printing techniques for the manufacturing of catalysts and supports comprise
Direct Ink-Jet Printing (DIP), Fused Deposition Modelling (FDM), Fused Deposition of Ceramics (FDC),
Stereolithography (SLA), powder-binder-based systems and powder-laser-based techniques. An overview
of the respective operating principles can be found elsewhere [2–4]. However, due to complex technical
and material requirements, only occasional attempts regarding catalyst and/or support printing were
described yet [29–33]. Recently, Ludwig et al. [29] compared DIW, SLA, FDC and powder-based Binder
Jetting (BJ) technique, also referred to as Powder-Binder 3d Printing, regarding their suitability of printing
alumina catalyst support structures with increased surface area, whereby only DIW gave results with good
prospects.

1.1.2 Printing of Alumina Ceramics

The printing of alumina, as schematically depicted in Fig. 1.1, while targeting dense parts is widely
described in literature. Techniques such as SLA [34–37], DIW [9, 11, 20, 38–40], FDC [41], powder-
laser-based techniques [42], slurry-binder-based techniques [43], DIP [44–46] and Binder Jetting [33,
47–52] were successfully utilised. Hereby, densification is achieved due to sintering, either directly within
the printing process or by subsequent post-processing of the green body. Green body strength is generally
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obtained by commercial solvent-based and/or thermosetting binding agents that undergo gasification
within the subsequent thermal treatment (debinding). However, the green part ceramic content is often not
more than 60 vol-% - either due to low powder bed densities or due to high amounts of organics [42, 53,
54]. Thus, fully dense parts are hardly achieved and a significant amount of residual macroporosity is
often found in literature [34, 52, 55].

printing
25 ◦C

drying
25 ◦C to 120 ◦C
green part

debinding
∼ 500 ◦C

calcination
∼ 650 ◦C

other material
sintering
500 ◦C to 1000 ◦C

alumina
sintering
>1200 ◦C

solvent
evaporation

binder
degassing

phase change
to γ−Al2O3

phase change
to α−Al2O3

(1) standard Binder Jetting,
SLA, FDM, DIW, DIP

(2) Binder Jetting with
nano-particle inks
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alternatives

prone to shape instability
path descriptions

shrinkage
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Figure 1.1: Schematic drawing of the standard alumina printing procedure (1) applying solvent
and/or polymeric binders comprising the steps of solvent evaporation (a12) (if present, else
(a11)), binder degassing (b1) and subsequent sintering (c1), most predominantly subjected to
significant shrinkage and retaining residual macroporosity. Binder Jetting, incorporating
alumina nano-particles directly (2) or by infiltrating green parts (f), the general path is scarcely
varied (a2)− (b2)− (c2) but resulting in higher final part densities, reduced shrinkage and
increased mechanical stability. Alternative routes comprise debinding in inert atmosphere
leading to carbonization of the organic binders (d), nano-particle inks with non-alumina species
sintering at lower temperatures (g) and printing with alumina sols gelating upon solvent
removal (h). Green and debindered parts are prone to mechanical instability due to the absence
of particle cohesion leading to disintegration of the printed shape (e).

Compared to additive manufacturing, traditional catalyst shaping techniques result in only small amounts
of macroporosity due to pressure application [29]. Unfortunately, the targeted mesoporosity (2 nm to
50 nm pore size) [56] which is typically present in the alumina precursor powders and which is responsible
for the desired high specific surface areas of the final parts, is several magnitudes smaller than the pore
size naturally obtained by 3d printing and known to degrade during sintering. As this is typically required
to allow mechanical stability the following alternative approaches to combine both, mesoporosity and
stability are conceivable:

• the pore structure is created during or after sintering/thermal treatment;
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• the sintering species is different from the porous alumina species having a lower sintering
temperature (multi-component systems);

• the green body made of porous alumina species is not sintered, thus strength must be gained by
binder solely.

The first approach, has not been addressed yet, but if possible may allow gradual microporosity within
parts, having a dense core and a porous outer interface, allowing both, high specific surface areas and
sufficient strength. A starting point may be the reaction-bonded aluminum oxidation [57, 58], where pure
aluminum is printed and in a subsequent step oxidised. According to Yao et al. [58] this leads to porous
alumina parts with high strength, although being vague what kind of porosity is meant (micro, meso or
macro). In general, engineering of pore structures in alumina parts is addressed by Hammel et al. [26],
however implementing pore design into the printing process appears to be still a long way off.

Concerning the second approach some noteworthy works have been presented [59, 60], though not
for ceramic materials nor targeting mesoporosity. They incorporate nano-particle inks or infiltration
techniques pursuing higher final part densities (cf. Fig. 1.1(g)). However, single material systems are
preferably sought as the introduction of other chemical species may interfere with any a posteriori added
catalytic activity, which shelves this approach for the moment.

Last but not least, the third approach is the most promising and thus selected in this work. Concerning
the additive manufacturing of porous structures having high specific surface areas, Couck et al. [21]
presented a Direct Ink Writing formulation for zeolites including a silica sol binder (cf. Fig. 1.1(h)).
Without sintering, stable parts allowing BET surface areas of about 300 m2 g−1 after calcination at 550 ◦C
could be obtained. BET surface areas of about 600 m2 g−1 were obtained by Konarova et al. [16] after
pyrolysis of printed starch (DIW) in oxygen-free conditions (cf. Fig. 1.1(d)) and subsequent KOH etching.
Incorporating Ni and Mo into the starch formulation, resulting parts can be used as catalysts for the
reaction of syngas to higher alcohols. Moreover, Fan et al. [41] describes a FDM formulation comprising
θ -alumina having a BET surface area of 10 m2 g−1 after sintering. Finally, Ludwig et al. [29] presented
DIW alumina parts with BET surface areas of about 100 m2 g−1 and noteworthy side crush strengths.

In the following, Binder Jetting is chosen as easy scale-up options, a comparably high surface accuracy
and impressive geometric flexibility make this technique manufacturer’s choice [3, 31–33, 53, 54]. Binder
Jetting comprises the steps of spreading out a powder layer of desired layer thickness, the subsequent
local application of binder liquid, and the alternating repetition until completion of the printed part.

For a proof-of-principle, it shall be investigated, if and to what extent Binder Jetting is capable to
manufacture micro- or mesoporous alumina parts having both, high specific surface areas and sufficient
mechanical strength for the use as catalyst carriers in heterogeneous catalysis. Findings concerning
characteristics of the powder feedstock, binder formulations and printer setup are presented.
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1.2 Development of Custom Material Combinations

Referring to Utela et al. [61, 62], the procedure for the development of new material combinations in
Binder Jetting comprises the steps of:

1.) specification of printer setup parameters;

2.) formulation of the powder feedstock;

3.) formulation of liquid binder;

4.) testing of powder-binder interaction;

5.) specification of post-processing procedures.

Although, powder and binder properties need to be studied to ensure reliability and reproducibility, all
parameters strongly depend not only on the process parameters and measurement techniques used but
also on the printing machine itself [63]. Thus, powder and binder materials are frequently tailored to
one specific printer. The transferability to other printing machines is not guaranteed. Nevertheless, some
general trends and basic requirements are repeatedly found.

1.2.1 Printer Setup

Most frequently, the material development is tailored to a commercial printer not vice versa. Thereby,
the printer may be selected due to availability, prize, speed, printer resolution or material flexibility. In
contrary, custom printer setups are significantly more flexible, although it may take years of optimization
until reaching the accuracy, reliability and stability commercial printers nowadays have. Customizing a
printer setup for Binder Jetting, there are some options regarding powder application techniques, powder
bed characteristics and binder ejection methods to choose from that will affect the final product’s properties.
However, the decision has frequently to be made weighing effort and benefit.

Concerning the powder application, possible selections include blades [64], coaters [65], rollers of various
specifications including forward-rotating [64], backward-rotating [64], traverse-counter-rotating [66]
or press rolling [67], besides rotating sieve drums [68], spray deposition [69] and some others [70].
Moreover, the applicator unit may be vibrated in order to enhance the powder flow [71, 72]. Whatever
technique is chosen, a homogeneously powder spread allowing high bed densities is sought for. Numerical
studies have been performed to investigate the powder application process by using the Discrete Element
Method (DEM) [73–76]. Most pertinent, Haeri et al. [77] compared the two most frequently used powder
spreading techniques: blade and roller. It was found that in general in terms of bed density a roller is
preferred, however, for highly spherical particles, the difference in both methods is marginal. Concerning
bed homogeneity and its dependence on bed location known results are opposing (cf. [75, 78] and [79]).
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The powder bed may be created using dry or wet powder feedstocks. Slurries or wet powders may be
advantageous as they allow smaller powder particles to be printed and thus yielding higher bed densities
and surface finishes [50, 53, 61, 80]. However, dry powders are much easier to be processed. Moreover,
for a further increase in the bed density, means of bed compaction can be utilized [68, 81, 82].

Various print head techniques exist, most predominantly classified into Drop-on-Demand (DOD) and
Continuous-Jet Printing, depending whether single droplets of ink are formed or not. Most frequently
DOD is used [64], whereby they may be further classified having either piezo-electric or thermal actuators.
Exact working principles, advantages and limitations of each technique can be found elsewhere [43, 46,
51, 61, 83–85]. Besides, print heads delivering adjustable droplet sizes can be utilized, allowing scalable
binder saturation values [64]. Typically (piezo-electric) print head orifices have a diameter of 20 µm to
75 µm [85, 86], most predominantly around 60 µm [45].

The regulation of the interplay of powder applicator, powder bed and print head in custom printers requires
extensive coding. Frequently G-codes are used [87], a coding language developed for CNC milling
machines.

1.2.2 Powder Feedstock

Important feedstock factors influencing the print process are the powder chemistry, morphology and
microstructure [63].

Chemistry

The chemistry of incorporated powders strongly depends on the targeted purpose. Focussing on alumina
catalyst supports, boehmite (aluminum oxide hydroxide, AlO(OH)) is a frequently used precursor or
binding agent [88–91]. During heating boehmite dehydrates and dehydroxylates before undergoing
various transitional phase changes until reaching the thermodynamically stable α-phase by following the
generally accepted route [90, 92, 93]:

AlO(OH)
500◦C

γ−Al2O3
700 ◦C to 900 ◦C

δ−Al2O3
900 ◦C to 1000 ◦C

θ−Al2O3
1200◦C

α−Al2O3.

The identification and characterization of these phases are reasonably well understood [90, 92]. As
catalyst support, γ−Al2O3 is predominantly used when high specific surface areas are requested, whereas
α−Al2O3 is chosen especially for high–temperature applications as the specific surface area decreases
to insignificant values due to sintering effects [90, 92]. The structure, acid–base properties and other
aspects giving rise to γ−Al2O3 particular suitability as catalyst support are well known [93, 94]. The
consecutive catalyst application by impregnation, coating or other methods [22] is state of the art and not
further addressed here.

14



1.2 Development of Custom Material Combinations

Morphology

The powder morphology, in particular particle size, particle size distribution (PSD), shape, and surface
roughness strongly influence the packing efficiency of the powder bed. The quality is characterised by a
high relative bed density ωbed resulting in a high green part density and strength, and the uniformity of
powder layers facilitating homogeneous final parts.

The ideal particle size is often discussed and frequently ranges from 15 µm [63] or 20 µm [53, 61, 95] to
90 µm [96], 100 µm [53] or 150 µm [63]. More precisely, Spierings and Levy [97] defined an ideal particle
size range with the 10th percentile (D10) of the PSD being above 5 µm and the powder layer thickness n
should be 50 % higher than the 90th percentile (D10) as an upper limit. The lower limit of particle size
is substantiated with powder agglomeration as Van-der-Waals forces become dominant to gravitational
forces at particle sizes around 1 µm to 5 µm [61, 98] leading to a decrease of powder flowability and
bed density [53, 61, 96]. In Binder Jetting, the applied particle sizes determine the final parts surface
roughness, so that particles in the small micron range or even sub-micron particles may be preferred [53].
This however, requires an artificial increase of particle size by spray or freeze drying [48, 52, 54], or a
decrease of Van-der-Waals forces by using a plasma treatment [95].

Typical bed densities ωbed, defined as the ratio of total solid volume Vsolid per bed volume Vbed of somewhat
spherical powder particles with monomodal size distributions are repeatedly reported to be about 60 %
[65, 78, 99–101].

ωbed =
Vsolid

Vbed
(1.1)

The influence of powder shape is described by German [102] finding bed densities of 64 % for powder beds
of monomodal spheres down to 40 % for particles having coarse shapes. The minimal bed density is at
25 % [53]. Moreover, DEM simulations were performed to study powder beds comprising various shaped
particles [74, 77]. In summary, particles having a high sphericity are preferred, as they possess lower
inter-particle friction leading to better powder flowabilities and thus higher bed densities [61, 103].

Concerning the influence of the particle size distribution it is generally accepted, that a wide or bimodal
particle size distributions can increase the bed density as the smaller particles can fill the gaps in-between
bigger particles [61, 78, 96, 99–101, 104]. Liu et al. [99] could increase the overall bed density from 63 %
to 68 % by simply using a wider size distribution. Karapatis et al. [101] predict an increase of powder
bed density of up to 15 %, when using multimodal powders with more than 30 wt-% of fines compared
to powders similar in size. Zhu et al. [105] describe an increase in density to up to 77 %. According to
McGeary [106] powder bed densities of 84 % can be reached under optimal conditions, meaning spherical
particles with multimodal size distributions when a significant part is of fines. These trends have been
confirmed by numerical results [76, 107, 108]. The size ratio D90/D10 of a PSD can be used as a measure of
PSD width. Hereby, Spierings and Levy [97] specify a desired value of at least 5, whereas Jacob et al. [79]
present results with a ratio of 2 and 3. Lee et al. [76] investigate the influence of D90/D10 ratio on packing
density comparing experimental and numerical (DEM) results where both eventuate in a density increase
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when using higher ratios. Additionally, a segregation of particles along the bed length can occur, with
small particles being preferably deposited at the front end and larger particles at the rear end [79].

Researchers opinions differ concerning the influence of PSD on powder flowability, as a wider distribution
may decrease [104] or increase [109] the powder flowability. Moreover, a difference in flowability does
not necessarily result in an appropriate variation of bed density [110]. Thereby, the powder flowability
can be characterised in three manners: a) the Hausner ratio is defined as the ratio of tapped bed density
and apparent bed density (obtained by simple pouring) measured by weight according to ASTM [111] in
a Hall funnel meter [78, 95, 96, 110], whereby values of 1.13 to 1.4 are used [95, 110]; b) the angle of
repose α can be measured in a rotating cylinder, an angle around 25° indicates a good powder flowability
[62, 112]; and c) the drag shear test resulting in a direct flowability measure f fc, ideally in the range of
5 to 7 [95]. Whereas most researches prefer high flowabilities, Butscher et al. [95] spotlight a possible
decrease in bed stability in case of too high flowabilities.

The influence of surface roughness of the powder particles is rather obvious with rough particles increasing
inter-particle friction and thus decreasing both, bed density and layer homogeneity. Additionally, some
researches indicate improvements in layer homogeneity when the ratio of mean particle size to layer
thickness is in an appropriate range in order to reduce so called wall effect problems [78, 79, 101]. The
wall effect of layers of spherical particles describes a bed density reduction due to void space formation at
the layer borders and is more pronounced when the particle size to layer thickness ratio is small. This
phenomenon was intensely described for spherical packings in cylindrical confining walls and depends on
many parameters including particle size (distribution), material, packing method and shape [113]. For 3d
powder bed printers this effect was investigated by Karapatis et al. [101], revealing a bed density reduction
of up to 20 % for layer thicknesses below 200 µm. For a better understanding of the wall effect, Fig. 1.2
describes three possible layer scenarios in powder based 3d printing: the application of a new powder
layer onto (a) a solidified previous layer having a smooth solid surface as may be obtained by particle
melting; (b) a previous not-solidified powder layer; and (c) a solidified previous layer having a coarse
surface as may be obtained in Binder Jetting. To our opinion only the first scenario not applying to Binder

Figure 1.2: Wall effect considerations concerning the application of a new powder layer onto
(a) a smooth surface, (b) the non-solidified powder, and (c) a coarse surface. The inset (d)
represents the microstructure of the porous particles.

Jetting may be subjected to significant void formation as in the other two cases the powder particles can
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embed nicely into the coarse surrounding. Thus, considerations concerning wall effect and reduced layer
density will not be addressed here any further.

Microstructure

Porosity in parts intendedly or unintendedly resulting from low green part densities or intendedly generated
as part of the printed geometry is often addressed and quantified. However, only very little research was
preformed concerning porosity that arises from pores within powder particles [63]. These intra-particulate
pores are several magnitudes of order smaller than the often-addressed inter-particulate pores, generally in
the small nano-meter range. In order to calculate the relative bed density excluding any inner pores, the
general equation (1.1) [107] has to be extended to equation (1.2) based on Fig. 1.2(d):

ωbed =

(
Vsolid +Vpore

)
Vbed

=
mbed

Vbed
·
(

1
ρsolid

+νpore

)
. (1.2)

Herein, Vsolid and ρsolid refer to the true volume and the true density of the solids, Vbed and mbed refer to
the overall bed volume and mass, Vpore and νpore refer to the true and specific pore volume respectively.
Pore size, volume and resulting surface area according to Brunauer, Emmett and Teller (BET) can be
determined by means of gas adsorption. The determination of pore shape, size distribution and further
microstructural characteristics in general [114] and for catalysts in particular [115] are well established.

1.2.3 Formulation of Liquid Binder

The liquid added during Binder Jetting may either be the binder itself or a solvent capable to solvate
a solidified binder being present as distinct particles or enclosing the actual powder particles as an
surrounding outer layer in the powder bed. These so called in-bed binders [61] are for example applied
by Stumpf et al. [52] or Polzin et al. [49]. Independently, developing a binder system for Binder Jetting
additive manufacturing is often described as the key element [51, 83] and comprises two major tasks: the
selection of binding method and the facilitation of reliable binder deposition by the selected print head
(ejectability).

Binding Method

Binding of powders to green bodies can occur by organic liquids such as thermosetting and/or crosslinking
polymers, hydration processes, acid-base systems, inorganic binders, metal salts, solvents or phase
changing systems [33, 51, 61, 62]. The binding can be provoked by heat or light exposure, solvent
evaporation or by undergoing chemical reactions.

Although being frequently used, organic binders are not favoured for the present sinter-free application,
as for catalyst supports a calcination step at temperatures around 600 ◦C is required that simultaneously
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1 Additive Manufacturing of Alumina Catalyst Carriers

forces the degassing (debinding) of any present organic phase eliminating the particle-particle cohesion
and significantly decreasing the green parts strength [29].

Little research was done concerning Binder Jetting with inorganic binders. This predominantly is the
case in bone tissue engineering [83, 96]. More precisely, nano-suspension binders may be applied in
order to improve the green part density and/or strength or to reduce shape distortion and/or shrinkage of
sintered parts [60, 116–119]. Most frequently, nano-suspensions act as a permanent binder utilizing a size-
dependant melting behaviour with nano-particles sintering at smaller temperatures than the micro-sized
particles of the powder bed due to a comparatively high surface-to-volume ratio [59, 120]. Moreover,
nano-particles concentrate at high curvature areas such as the powder particles contact points as the
solvent dries last from these areas [121–123]. During heating, nano-particle sintering increases the neck
size and thus reduces the particle bond stress. Thereby, the nano-particles may be added to the existing
commercial binder systems, functioning as sintering aid [87, 116–118, 123], or the solvent-based nano-
particle suspension acts as the binder itself facilitating green part strength alone [122, 123]. Targeting
a single-material system of pure alumina, it was shown that significant pore sintering occurs before
reaching the actual sintering temperature, indicated by a significant drop in specific surface area without
any increase in parts strength [29, 92]. It is thus assumed that nano-pore and nano-particle sintering occur
at about the same temperature and the above described size-dependent sintering behaviour can not be used
as binding functionality in the present application. In contrary, Sachs et al. [51] described the usage of a
30 wt-% sol-gel binding systems based on silica colloids sacrificing any post-sintering.

Similarly, an inorganic binding system is selected, being composed of a boehmite-based sol. Herein,
boehmite powders are secondary micro-sized particles consisting of numerous agglomerated nano-sized
primary particles [124]. Disaggregation and dispersion of secondary particles may occur to a certain
degree by mechanical attack but is highly favoured when adding aqueous acids forming a stable sol [124].
The mechanism of this peptization process was intensely studied and the interstitial formation of basic
aluminum aquoxide salts is generally accepted [88, 91, 125, 126]. The reversible gelation of the sol,
describing the coagulation of colloidal particles forming a 3d network occurs when the acid content is
increased above a specific level [126]. The decomposition of the basic alumina salts and the evaporation
of water leading to gelation upon calcination and phase change to γ-alumina form the new, if week binder
phase utilized in this work. Hereby, nitric acid is frequently used as peptization agent due to its residual
free degassing at calcination temperature [92, 126], however, other acids are similarly studied [88]. The
peptization process, especially the resulting size of colloidal particles affecting parameters such as fluidity
depend on a variety of investigated parameters [89, 126] and shall not be addressed here any further.

Print Head Ejectability

Common to all print head specifications is the overall goal to ensure a reliable and consistent drop
formation [46, 61]. More precisely, this comprises the ejection of droplets having the same size, speed
and composition such as homogeneous particle loadings when using nano-suspensions. Thus, preferred
binder liquids should be appropriate regarding rheology, stability and print head interaction.

18



1.2 Development of Custom Material Combinations

Viscosity and surface tension are the most important rheological factors in regard to ejectability. Moreover,
binder liquids should possess shear thinning behaviour [45, 46]. Thereby, the viscosity is preferably in
the range of 5 mPas to 20 mPas [46, 83], but may be as high as 100 mPas [127]. Using nano-particle
suspensions as binders, the viscosity is strongly dependent on the particle loading of the fluid and increases
rapidly when increasing the solid content. An empirical relation between viscosity and particle loading is
given by the modified Krieger-Dougherty equation [46, 128, 129]:

η = η0 ·
(

1− φ

φmax

)−n

, (1.3)

where η and η0 are the viscosity of the suspensions and the particle-free base liquid respectively, φ and
φmax represent the actual and maximal volume fraction of solids, and n is an empirical constant, such as 2
[130]. Employing sol-gel binders, the viscosity of the nano-suspension can be fine-tuned by changing
the pH value [126] or in general by adding dispersants. Concerning surface tension, values higher than
35 mJN−1 [127] or in the range of 35 mJN−1 to 40 mJN−1 [83] are preferred and may be altered by
adding surfactants such as alcohols [61]. For an optimal interplay of viscosity and surface tension γ the
dimensionless inverse of the Ohnesorge number Oh:

Oh−1 =
Re√
We

=

√
γ ·ρ ·d

η
(1.4)

should be between 1 and 10 [46, 83], with density ρ and the characteristic dimension d (taken as the print
head orifice radius [46] or droplet radius [83]).

The change of fluid parameters (viscosity, surface tension, pH-value) over time characterizes the binder
liquids stability [131]. Using nano-suspensions, the stability of the dispersion is of further interest. In
general, Brownian forces FB characterize the dispersion behaviour being dependent on electrostatic particle
conditions, the zeta potential ζ . These conditions for Brownian motion can be varied for example by
altering the pH value [132]. Unfavourable conditions, however, may lead to nano-particle agglomeration
characterized by the occurrence of particle sedimentation as Gravitational forces FG become dominant
when nano-particle size dnp is increased [132]:

FG

FB
=

d4
np ·∆ρ ·g
kB ·T

, (1.5)

where ∆ρ represents the density difference between particles and fluid, T is the temperature, g the
acceleration due to gravity and kB the Boltzmann constant. By way of example, assuming a density
difference of about 3 gcm−3, the critical particle size for sedimentation is 0.6 µm.

The binder-print head interaction involves the functional characteristics of the print head such as orifice
diameter and ejection frequency defining droplet volume and speed [85]. Thereby, optimal conditions
for each binder liquid have to be found as for example bigger droplets may decrease accuracy but small
droplets may be more sensitive for disturbances [133]. A high printing speed is generally favoured,
but may affect the binder spreading and droplet trajectory. Incorporating nano-suspensions, a minimal
ratio of orifice to particle diameter of 20 [46] or even 100 [87] should be guaranteed in order to reduce
clogging problems. In general, clogging of print head orifices is an often-encountered problem [64], which
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is technically solved by using binder liquids capable to self-rehydrate solidified clogs [61]. Moreover,
the print head may be subjected to chemical attack when using oxidizing compounds such as acids or
residual carbon when organic binders are heated above pyrolysis temperature in thermal ink-jet print
heads. Additionally, the drop formation process of ink-jet print heads was thoroughly investigated in
simulation studies [45, 134].

Regarding dispersion concentration, some notworthy examples can be given. Hereby, very low concen-
trated nano-suspensions of about 0.5 % as used for example by Elliott et al. [117] are readily applicable
but will have only minor effects on final parts characteristics. Therefore, Crane et al. [121] suggest the
repetition of binder application of at least three times in order to increase the nano-particle content. Bai
and Williams [122, 123] was able to print a nano-particle suspension with 20 wt-% solid content but
observed significant clogging of the print head at concentrations beyond this limit. Finally, investigations
with Direct Ink-Jet Printing (DIP) were performed concerning the ejectability of 5 % [45] to up to 40 wt-%
[44, 46, 85] ceramic nano-suspensions.

1.2.4 Powder-Binder Interplay

The interaction of powder and binder is evaluated by the binding capability itself correlating with the
permeability of binder through the powder bed (wettability) and the amount of binder added (binder
saturation). For preliminary studies, pre-testing means such as post-infiltration of printed parts with a new
binder [117, 121], filling of molds with powder-binder mixtures [62, 118] or adding of single droplets to
a powder surface [61] can be used before transferring the optimized powder-binder combination to the
actual 3d printer. Here, printing of primitives obtained by printing a single drop onto the powder bed and
line printing, obtained by overlapping primitives can be a good starting [43, 61, 62], before heading on
towards more complex (test) geometries.

Binder Saturation

The binder saturation S is defined as the volume of binder Vb added per available void space Vε [135]:

S =
Vb

Vε

. (1.6)

Others use the so-called binder dose D, defined as the volume of binder per printed line length l° [43]:

D =
Vb

l° . (1.7)

Using print heads capable to print various volumes, the binder saturation is easily adjustable, if not,
overlaying droplets or print repetitions have to be performed to modify saturation levels [64]. Concerning
binder saturation, higher values are generally favoured however at the price of possible loss of accuracy
[133].

20



1.2 Development of Custom Material Combinations

Wetting Behaviour

The binder permeability through the powder bed, the so-called wetting, is driven by capillary forces and
depends on surface tension and viscosity of the liquid, the surface energy of the droplet’s impact and the
surface roughness and void size of the powder particles [43, 64]. Generally, the wettability is measured as
the contact angle θ of the binder liquid on the powder surface [64, 114, 136, 137]. A low wettability/high
contact angle will inhibit the binder drops to sufficiently permeate into the powder bed and thus may be
moved away by the application of the next powder layer, leaving grooves within the bed surface or leading
to an unsatisfactory layer connection. Using binders having a too high wettability/low contact angle might
permeate further into the bed or spreading wider than desired, leading to inaccurate geometries [96].
However, it is well known, that the determination of the contact angle between liquids and powder beds is
rather difficult [137]. While Galet et al. [136] recommend the Washburn Capillary Rise method, Nowak
et al. [137] compare this method with the Thin Layer Wicking method and the Sessile Drop method and
recommend the latter. Moreover, Moon et al. [43] investigated binder infiltration kinetics by determination
of infiltration time t∗ based on the Carman-Kozeny equation:

t∗ =
15 ·
(
h°
)2

γ · cosθ
· (1− ε)

ε3 · η

ρ2 ·dp
, (1.8)

where ε represents the bed porosity, γ is the liquid/vapour interfacial energy, herein used as surface tension
and h° is the height of liquid column, herein used as printed line width assuming a circular cap-shaped
line. The printed line width l∗ can be calculated as a function of contact angle [43]:

l∗ = 2 ·

√
D · (sinθ)2

θ − sin(θ · cosθ)
. (1.9)

Obviously, permeation depth h∗ determined by evaluating primitives should not be smaller than the
adjusted layer thickness to avoid layer disconnection effects.

1.2.5 Post-Processing

Binder Jetting requires at least one post-processing step [53, 54, 61], in order to increase parts strength
and/or surface finish [61, 83]. Most commonly a precisely adjusted heat treatment comprising a debinding
and a subsequent sintering step is implemented [53, 83]. Additionally or instead of, hot or cold isostatic
pressing [42, 67, 138], as well as pressure, vacuum or each and any other infiltration technique [42, 48,
52, 139] may be utilized. Besides, coatings comprising small particles may be applied in order to improve
the surface finish [52, 61].

Targeting catalyst supports with high specific surface area, a calcination step at around 600 ◦C to 650 ◦C is
required, ensuring the phase change to γ-alumina. Simultaneously, any present organic compounds will
undergo debinding at these temperatures. However, this temperature is too low to evoke any sintering
including pore sintering. The latter is believed to occur at temperatures around 1000 ◦C [29].
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1 Additive Manufacturing of Alumina Catalyst Carriers

Finally, the quality of the final parts has to be investigated, comprising the evaluation of surface roughness,
dimensional accuracy and shrinkage, reproducibility, density, abrasion characteristics and mechanical
strength. In general, strength of parts is measured with specific test bars as compressive, tensile or flexural
strength. For fully dense, non-printed alumina, typical flexural strengths reach values up to 500 MPa and
compressive strength may be more than 4000 MPa [140]. Using Additive Manufacturing, parts having
a flexural strength of 512 MPa could be produced by stereolithogrphy [36]. Concerning Binder Jetting,
flexural strength is per se significantly smaller [96], frequently around 5 MPa [48, 49]. Compared to that,
noteworthy compressive strengths around 120 MPa to 130 MPa were reported [47, 52]. Using infiltration
techniques additional to the standard sintering, compressive and flexural strength can be significantly
increased by around 60 MPa [48, 52].

In particular, the strength σ of catalyst bodies is measured as single pallet crush strength (compressive)
[141–143], single pallet bending strength (flexural) [143–145], bulk crush strength [146–148] or by the
impulsive drop test [145, 149]. Performing the impulsive drop test, test particles were dumped down
onto a solid surface; the difference in particle size is evaluated [149]. For the bulk crush strength, beds of
test particles are created and an external pressure is applied. The development of fines (fragments) with
increasing pressure is studied [147]. A three-point bending apparatus is applied for measuring bending
strength. The most commonly used test is the side crush strength test, where ideal cylinders tend to break
along the plane passing through the two contact lines of the pressure application [144]. However, for
significant results, high shape accuracy is needed, thus for extruded particles bending strength or drop test
are preferred [149]. The compressive strength of a cylindrical pellet with dimensions l and d, σcomp can
be calculated based on the side crush loading force FSC [150]:

σcomp =
2 ·FSC

π · l ·d
. (1.10)

Thereby, Weibull statistics are utilized in order to describe the variation in fracture strength of brittle
materials. The possibility of failure P at a specific level of stress σ can be calculated according to
Weibull [144, 151, 152]:

P(σ ,V ) = 1− exp
[
−V

V0
·
(

σ

σ0

)m]
, (1.11)

with volume of specimen V , reference volume V0, characteristic strength σ0 and Weibull modulus m, the
measure of scatter of the distribution. If all pellets used have the same dimensions, the above equation
reduces to [148]:

P = 1− exp
[
−
(

F
F0

)m]
, (1.12)

where the unknown parameters m and reference loading F0 can be determined by linear least-square
regression analysis. Concerning the strength of typical extruded or tableted catalysts, Li et al. [143] reveals
loadings of 27 N for extruded and around 130 N to 160 N for tableted catalysts of various dimensions.
Moreover, Staub et al. [144] investigated the side crush and bending strength of γ-alumina extruded
catalyst support with high BET surface areas having either a monomodal or bimodal pore structure.
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Having only mesopores, the tensile strength was around 13 MPa being drastically reduced to 1.7 MPa by
the introduction of additional macropores.

1.2.6 Concluding Remarks

The development of custom powder binder material combinations is a complex task and its optimization
and fine-tuning may take several iterations. A summary of the decisive parameters, their recommended
dimension if known and appropriate measurement techniques and methods are given in Tables 1.A1
to 1.A4 in the appendix. Due to its significant complexity, the following investigation on additive
manufacturing of catalyst supports by Binder Jetting is introduced on a proof-of-concept level and may
lack certain statistical accuracy and scientific profoundness.

1.3 Experimental

1.3.1 Printer Setup

A powder binder printer as depicted in Fig. 1.3 consists of a horizontally (x-axis) moveable powder
application unit with powder storage, a vertically (z-axis) moveable powder bed base plate and a printer
head that can be moved horizontally in x and y direction. Motion is evoked along toothed belts with

Figure 1.3: Schematics of the custom printer setup developed and used for Binder Jetting
material development studies.

cogwheels or round threaded rods, driven by four stepper motors. The powder bed size (l = b = 5.37cm)
was selected to be very small in order to allow material studies with small amounts of material. The
typically used layer thickness is 100 µm or 200 µm. An additional vibrator can be added to increase
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1 Additive Manufacturing of Alumina Catalyst Carriers

flow ability and bed density. The print head is implemented with a commercial twelve-nozzle thermal
ink-jet cartridge (HP C6602A ). The printers control including the shape to be printed is implemented
with G-code, a widely used numerical control programming language.

1.3.2 Powder Characterization

Four alumina powders, Disperal® 80, Pural® SB, Pural® SCC (all by Sasol GmbH, Germany) and spray
dried DMS (by Saint Gobain NorPro) were selected and pre-tested as follows. The crystallite phase was
determined by measuring the water content of the powders in a thermo-gravimetric apparatus (Q5000, TA
Instruments, 10 Kmin−1 to 600 ◦C in air). As a measure of fluidity, the angle of repose was determined
according to Schulze [112] by the cylinder and the funnel method. The mean particle size and the particle
size distribution was analysed in liquid dispersion and as the dry powder by laser diffraction analysis
(Universal Liquid Module and Tornado Dry Powder System, Laser Sizer 13320, Beckman Coulter).
Scanning electron microscopy (TM-1000 Tabletop, Hitachi ) was used to investigate the particles’ shape
and texture. The BET surface area, pore size and pore volume were determined by N2 physisorption
measurements (NOVAtouch LX-4, Quantachrome). Therefore, samples of about 100 mg were weighted,
degassed and dried for 3 h at 120 ◦C prior to analysis. The powder samples may be pre-treated in a muffle
furnace at 650 ◦C, 800 ◦C, 1000 ◦C and 1400 ◦C with a heating rate of 1 Kmin−1 and a holding time of 1 h
to investigate pore sintering. The bulk density of the powder bed was determined by weighing a known
powder bed volume.

1.3.3 Printer Validation

The printer setup and G-code programming were tested with organic binder liquids to print above
listed alumina powders into cylindrical shapes. Hereby, a selection of organic binders were tested
with polyethylene glycol (with molar mass 190 gmol−1 to 210 gmol−1, Merck KGaA) showing best
results. The parts were debindered at 500 ◦C in air and subsequently sintered at 1150 ◦C. Additionally,
carboxymethyl cellulose sodium salt (Sigma-Aldrich) alone and a 50 wt-% mixture with DMS alumina
were used as powder feedstock with water added as binder liquid. Carbonization of the cylinders was
studied in a thermo-gravimetric setup under absence of air with 4 Kmin−1 heating rate to 650 ◦C, held for
1 h in argon.

1.3.4 Binder Preparation

Alumina sols were prepared by mixing boehmite powders called Disperal (Sasol GmbH, Germany)
having various crystallite sizes (e.g. Disperal, Disperal 60, Disperal 80) with aqueous nitric acid. The
mixtures were then stirred vigorously for at least 30 min until stable dispersions are obtained. Boehmite
content and acid concentration are varied, a selection is displayed in Table 1.1, and primitives were
obtained by adding droplets of binder onto the powder bed surface using a syringe with 0.33 mm needle
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diameter. Additionally, layer connectivity is evaluated by adding two droplets at the same position, with
the application of a fresh powder layer in between. In order to vary wettability, one part of ethylene glycol
(EG) per four parts of sol composition may be added.

Table 1.1: Compositions of a selection of binder sols investigated.

no. type boehmite content
[wt-%]

nitric acid concentration
[%]

sol 1 Disperal 30 1
sol 2 Disperal 60 30 0.5
sol 3 Disperal 60 50 0.75
sol 4 Disperal 80 10 0.32

1.3.5 Post-Treatment and Characterization

Cylinders with h = 6.5mm and d = 5.5mm were fabricated using DMS powder and sol 1 mixed 4:1
with ethylene glycol as binder formulation. For proof-of-principle studies, the binder is applied using
a syringe to the layerwise added powder. To allow shaping a mask is used. The produced parts were
air-dried for 24 h and are subsequently calcined in a muffle furnace at 650 ◦C for 2 hour. The dimensions
of the obtained cylinders and the lateral side crush strength were measured (MultiTest 50, SOTAX AG,
Pharmatron). Means of at least four cylinders were calculated. With the fragments, N2 physisorption
measurements were performed after degassing for 3 h at 120 ◦C to determine the final BET surface area.

1.4 Results and Discussion

1.4.1 Powder Characterization

Four typically used catalyst support precursor powders were selected and investigated in view of their
chemical, morphological and microstructural characteristics, regarding their applicability in powder bed
generation.

Chemistry

Thermo-gravimetric analysis revealed a boehmite nature of Disperal 80, Pural SB and Pural SCC due to
the presence of two weight loss steps, which can be allocated to the evaporation of moisture (≈ 1 % to
9 % weight loss) and the subsequent release of crystal water (≈ 14 % to 17 % weight loss). In contrary,
DMS powder can be identified as γ-alumina.
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Morphology

Mean particle size and size distribution are evaluated by light diffraction. In general, size measurements
are performed with aqueous dispersions (-L) of the targeted powders, allowing higher accuracy than
the investigation of the mere powder. But due to the agglomerate nature of many boehmites, reference
measurements with the dry powders (-D) were conducted to exclude particle dissection during dispersion.
Actually, a significant agglomerate dissection could be allocated to the Disperal 80 powder. Table 1.2

Table 1.2: Size distribution characteristics of investigated powders: Disperal 80, Pural SB,
Pural SCC and DMS.

Disperal-L Disperal-D Pural SB-L Pural SCC-L DMS-L

dp [µm] 7.21 18.75 52.99 131.44 74.30
D10 [µm] 0.21 1.50 8.05 42.51 25.99
D50 [µm] 0.52 11.41 48.91 124.63 75.74
D90 [µm] 24.33 34.51 103.30 220.92 119.41
n [µm] 40 50 160 330 180
D90/D10 [-] 115.9 23.0 12.8 5.2 4.6
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Figure 1.4: PSD of Disperal 80, Pural SB, Pural SCC and DMS powders as obtained by wet
(-L) and dry (-D) laser diffraction; the shaded area marks the preferred size range as indicated
by Sutton et al. [63].

and Fig. 1.4 outline typical size distribution characteristics of the investigated powders. While DMS
corresponds best to the given standards of a 15 µm to 150 µm size range [63], Pural SCC comprises
significant amounts of particles beyond the upper limit and Pural SB and Disperal 80 have fines below
15 µm. However, Pural SB’s D10 is above 5 µm which is in accordance with Spierings et al.’s definition of
lower PSD limit [97]. The minimal layer thickness n is calculated to be 50 % higher than D90 [97]. With
an intended layer thickness between 100 µm to 200 µm, the Pural SCC powder clearly outranges this and
is thus considered less suitable for the described application. The width of the distribution, characterised
by the D90/D10 ratio is in all cases close to or above 5 as desired [97], especially the Disperal 80 powder
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features a significantly broad distribution over two to three orders of magnitude. Hence, it is unclear
whether a too broad distribution has any negative effects on bed density or powder fluidity and should be
matter of further research. The same holds true regarding the question if wide mono-modal or mixtures of
distinct fractions forming bi-modal distributions should be preferred. In summary, all powders show a
wide but mono-modal distribution, the particle size of the Pural SCC powder is possibly too large to be
used in 3d printing and the Disperal 80 powder comprises significant amount of fines potentially leading
to flowability issues.

The particle shape is investigated by scanning electron microscopy. Representative scans hereof are
displayed in Fig. 1.5. More precisely, Fig. 1.5a depicts a rather un-spherical boehmite agglomerate
consisting of various sized particles typical for Disperal 80. Pural SB’s wide PSD can be clearly seen
in Fig. 1.5b, however, agglomerate formation is not as pronounced as for Disperal indicated by higher
sphericity, but is still visible. Higher sphericity paired with an observable particle surface roughness and
no apparent agglomerate formation characterizes Pural SCC powder (Fig. 1.5c). An impressive sphericity
and clearly recognisable smooth surface particles qualifies the DMS powder depicted in Fig. 1.5d. With
favouring higher sphericities, especially those close to spherical shapes [61], the DMS powder appears to
be the most appropriate in terms of shape.

50 µm

(a)

50 µm

(b)

50 µm

(c)

50 µm

(d)

Figure 1.5: Representative scanning electron microscopy images of (a) Disperal 80, (b) Pural
SB, (c) Pural SCC and (d) DMS powder; the scale bar represents 50 µm each.

The results for the angle of repose characterizing the fluidity of a powder are displayed in Table 1.3.
Typically, an angle of about 25° qualifies a very good flowability [112]. Hence, the DMS powder is
characterized having a good flowability, whereas Disperal 80 and Pural SB are rather poor. The Pural SCC
powder, not displayed in Table 1.3, exhibits an angle of 30° and thus good flowing behaviour. Flowability
is the manifestation of friction, which depends on particle shape, surface roughness, and the tendency
for agglomerate formation occurring at small particle sizes. Unsurprisingly, Disperal 80 powder having
significant amounts of fines and non-spherical particles exhibits the highest angle of repose, which is
steadily improved by using particles with higher sphericity and decreasing amounts of fines.

Table 1.3: Powder characteristics concerning flowability, microstructure and bed density of
Disperal 80, Pural SB and DMS powders.

angle of re-
pose α

pore volume
νpore

surface area
aBET

bulk density
mbed/Vbed

density
ρsolid

relative bed
density ωbed

[°] [cm3 g−1] [m2 g−1] [gcm−3] [gcm−3] [-]

Disperal 43 0.149 83 0.42 3.02 0.2
Pural SB 37 0.244 183 0.70 3.02 0.4
DMS 28 0.746 223 0.71 3.95 0.7
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Primarily, powder flowability concerns the powder application process. Pre-tests with the final printing
setup reveal the applicability of all powders, but powder beds made of Disperal 80 show obvious bed
inhomogeneities. This could be drastically improved by using a vibrator connected to the applicator.
While being obvious that powders with low flowability are not favoured for applications in which a
constant and reliable powder flow must be guaranteed, it is questionable if a bottom limit exists under
which the powder bed itself becomes instable due to the small amount of particle adhesion caused by
the reduced presence of friction. Due to the lack of an profound powder characteristics study regarding
powder bed printers (which include laser-based printing techniques), any generalization is delicate and
controvertible. This is aggravated by the usage of different powder spreading techniques and a vast
difference in utilized bed sizes.

Microstructure and Bed Density

The microstructure of the powders used in this study is evaluated by gas adsorption means. Herein,
the Pural SCC powder is not considered any further, as the particle size is out of range. The results
for BET surface area and pore volume of the mere powders are depicted in Table 1.3 and displayed in
Fig. 1.6. Additionally, the mean pore size is at 3.7 nm, 2.8 nm and 6.8 nm for Disperal 80, Pural SB
and DMS, respectively (also refer to Fig. 1.6a). Attention may be drawn to the significant difference in
pore volume comparing Pural SB and DMS and the BET surface area considering Disperal 80 and DMS.
Obviously, targeting final parts with high specific surface areas, the DMS powder should be favoured from
a microstructural point of view.

In order to later select an appropriate post-processing treatment, the temperature dependent change
of microstructure was investigated with the results being displayed in Fig. 1.6. It is to be noted, that
Disperal 80 and Pural SB powders are of boehmite nature, undergoing the phase change to γ−Al2O3 at
about 500 ◦C, while DMS consists of γ−Al2O3 from the beginning. Furthermore, the indicated phase
transformation temperatures are not to be understood as hard limits. They shall display typical starting
points and the coexistence of more than one phase at certain temperatures is probable. The shaded area
underlines the uncertainty regarding the δ−Al2O3 and θ−Al2O3 phase transformation limits.

Regarding pore diameter (Fig. 1.6a), the boehmite Disperal 80 and Pural SB powders have smaller values
at the beginning but describing a pore size increase with increasing treatment temperature. This pore size
increase is accompanied by an increase in pore volume (Fig. 1.6b) in case of Pural SB and constant values
regarding Disperal 80 for temperatures up to 800 ◦C before declining to 0 transferring to the α-phase.
In contrary, the DMS powder exhibits higher starting values regarding both, pore diameter and size,
which are approximately constant for temperatures up to 800 ◦C before sharply decreasing upon reaching
temperatures around 1000 ◦C, describing the θ -alumina phase transformation. As depicted in Fig. 1.6c, the
BET surface area does not change significantly with heat treatment temperatures up to 800 ◦C for all three
powders. Hereinafter, it decreases gradually (Disperal 80, Pural SB) or sharply (DMS) to insignificant
values reaching temperatures at and above 1000 ◦C. This surface area reduction is caused by a phase
change to θ -alumina at around 900 ◦C to 1000 ◦C and the final transition to the α-phase around 1200 ◦C
inducing significant pore sintering. Consequently, a calcination treatment at 650 ◦C is thus assumed to
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Figure 1.6: Change of microstructure of Disperal 80, Pural SB and DMS powder with
treatment temperature; the respective phase changes from boehmite and γ−Al2O3 to α−Al2O3
is indicated in (a) but can be transformed likewise to subfigures (b) and (c).
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1 Additive Manufacturing of Alumina Catalyst Carriers

not alter the microstructure of the parts critically. Moreover and as already assumed, final part sintering
requiring temperatures of 1200 ◦C and above will dissect the desired microstructure.

For the final evaluation, the relative bed density is calculated according to equation (1.2) considering
specific pore volume, bulk density and material density as displayed in Table 1.3. Considering Disperal,
unfavourable powder shape and size lead to poor flowability and a very small relative bed density of 20 %,
which is even slightly below the lower limit for powder bed densities as indicated by Zocca et al. [53].
The relative bed density of Pural SB, calculated to be around 40 %, is typical for a coarse particle bed
according to German [102]. Compared to that, the preferred morphology characteristics of DMS lead to
the highest flowability and an impressive relative bed density of 70 %.

1.4.2 Printer Setup Validation

The functionalty of the printer setup was tested by printing cylinders of different dimensions horizontally

(a) (b) (c) (d)

100 µm

(e)

100 µm

(f)

Figure 1.7: Binder Jetting with polyethylene glycol (a-d) and water (e,f) as binding agent;
comprising powder species (a) Disperal 80, (b) Pural SB, (c) Pural SCC and (d) DMS, (e)
carboxymethyl cellulose salt, and (f) a 50 % carboxymethyl cellulose salt - DMS blend.

and vertically into the powder bed. The standard pathway as described in Fig. 1.1(a1) to (c1) was
performed, selecting polyethylene glycol as binding agent. Images of exemplary results for all four
alumina powders are displayed in Figs. 1.7a to 1.7d. Although being sintered, final part’s mechanical
stability did not achieve the qualities reported in literature but successfully validated the printer setup.
Moreover, alternative path (d) as described in Fig. 1.1 comprising the carbonization of organic binders in
absence of air was performed and results are displayed in Figs. 1.7e and 1.7f. Herein, the actual binding
agent, the carboxymethyl cellulose salt, was mixed with the alumina powder, jointly forming the powder
bed. Furthermore, the water added through the print head acts as the solvent of the cellulose salt, forming
the organic binder phase during bed permeation. SEM images taken from the charcoal matrix obtained by
mere cellulose printing are displayed in Fig. 1.7e, the blending with alumina powders results in stable
final parts with alumina particles embedded in the very same charcoal matrix as depicted in Fig. 1.7f. It is
to be noted, that the thermo ink-jet cartridge utilized in this work had no problems printing water, but was
struggeling arbitrary clogging issues when using organic liquids. This was allocated to the formation of
charcoal during the droplet ejection process.
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1.4.3 Binder Formulation and Powder-Binder Interplay

Various Disperal sols were screened concerning the influence of Disperal type, acid and boehmite content
on binding capability in a pre-printing test setup comprising manually addition of sol droplets on the
powder bed surface. Moreover, ethylene glycol may be added to alter wettability as exemplarily depicted
in Fig. 1.8. Herein, Fig. 1.8a and Fig. 1.8b show the result of a two-droplet test using sol 1, without and

Figure 1.8: Droplet tests with 30 wt-% Disperal sol (a) without or (b) with ethylene glycol, and
30 wt-% Disperal 60 sol (c) without and (d) with ethylene glycol. Attention shall be drawn to
the double-primitive in subfigure (b) which is photographed upside down.

with the addition of ethylene glycol, respectively. The pure sol results in two similar shaped primitives
having a small contact area, whereas the addition of ethylene glycol increases this contact area to the
dimensions of the first primitive. In contrary to that, sol 2 does not permeate into the powder bed while
forming stable droplets on its surface as depicted in Fig. 1.8c. An addition of ethylene glycol does not
alter this behaviour significantly, shown in Fig. 1.8d. A further increase of the solid content as in sol
formulation 3 causes spontaneous gelation when stirring is stopped. In contrary, sol 4 can be applied well,
however having obviously less binding strength than sol 1. Thus, the 30 wt-% Disperal sol (sol 1) with
additional ethylene glycol was selected as binding agent for further investigations. The ejectability of all
sols with the given thermo ink-jet print head was studied, however clogging occurred repeatedly. As of
this, a syringe is used for binder addition in the following.

1.4.4 Post-Processing and Analysis of Final Parts

Cylindrical parts of 5.5 mm diameter and 6.5 mm in height were produced by layerwise application of
DMS powder and dropwise addition of 30 wt-% Disperal binder under assistance of a mask to allow
shaping. The powder bed may be compressed ("press.") after each layer addition and calcination ("calc.")
at 650 ◦C may be performed as post-processing. Dimensional change, crush strength and specific surface
area for each treatment pair (compressed-incompressed and calcined-noncalcined) are listed in Table 1.4.
The crush strength is calculated according to equation (1.10) based on the mean measures of dimension
and loading.

As displayed in Table 1.4, expectably no shrinkage occurs during post-processing. The crush strength
increases after calcination and increases slightly with an increased powder bed density. The maximum
crush loading obtained with a compressed bed and after calcination is at 18.2 N, which is only slightly
below the lower limit of side crush strength for catalyst shaped bodies (Fmin = 20 N) as indicated in
literature [29]. However, the overall crush strength is still below literature data (approx. 1 MPa to 2 MPa)
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Table 1.4: Results of dimensional accuracy, crush strength and surface area for produced parts
of DMS powder and 30 wt-% Disperal binder using compressed and uncompressed beds and
calcination for post-processing.

No. press. calc. diameter d height h side crush
loading force
FSC

crush strength
σcomp

specific
surface area
aBET

[mm] [mm] [N] [MPa] [m2 g−1]

1 - - 5.49 ± 0.08 6.27 ± 0.22 4.2 ± 1.2 0.078 224.8
2 - X 5.66 ± 0.11 6.47 ± 0.19 15.6 ± 2.6 0.27 199.1
3 X - 5.49 ± 0.23 6.34 ± 0.23 6.2 ± 1.2 0.11 220.7
4 X X 5.52 ± 0.03 6.55 ± 0.13 18.2 ± 1.9 0.32 191.8

of comparable cylinders produced by traditional techniques [144]. The specific surface area decreases
slightly during calcination and with increased compression. Nonetheless, the obtained specific surface area
is significantly higher compared to literature data of catalyst carriers produced by additive manufacturing
while withstanding similar crush loadings [29].

Furthermore, details of crushing behaviour are depicted in Table 1.5 showing an axial breakage of all
produced cylinders which is a typical breakage pattern for traditionally shaped catalyst supports [144].
In contrary, additively manufactured parts tend to break along contact lines or areas of produced layers,

Table 1.5: Images taken from produced cylinders of green and calcined parts using compressed
or incompressed beds, and their respective fragments after side crush strength testing.

No. 1 2 3 4

before
crush
test

after
crush
test

primitives or strands. Here, the expectably breakage in circumferential direction indicating an often
observed insufficient cohesion of added layers is superimposed by a high binder saturation, where the
high amounts of binder penetrate much further into the bed than necessary to bind one layer to another.

1.5 Summary and Optimization Outlook

Proof-of-principle studies were performed, in order to investigate if and to what extent Binder Jetting
is capable to manufacture micro or mesoporous pure alumina parts having both, high specific surface
areas and sufficient mechanical strength for the use as catalyst carriers in heterogeneous catalysis. With
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1.5 Summary and Optimization Outlook

the disclosed material combination of DMS powder and a 30 wt-% Disperal binder, parts having high
BET surface areas around 190 m2 g−1 and noteworthy mechanical strength could be produced. It is the
first successful attempt to use the principles of Binder Jetting for the manufacturing of catalyst carriers
and higher BET surface areas as disclosed for similar setups but different printing techniques could be
obtained. However, in order to measure up to industrial standards, doubling or tripling of the disclosed
strength values would be beneficial. In order to achieve this, powder bed and binder formulation need to
be optimized.

Concerning the powder bed, this can be achieved predominantly by further increasing bed density.
However, it is to be noted that only a limited selection of usable powders is available and that the herein
disclosed DMS powder is already close to ideal characteristics. Another thinkable if not always available
possibility is a change in printer setup, such as by using a more efficient powder application process
including powder compaction of any means or by using powder slurries.

On the contrary, much more optimization effort can be done concerning the binder formulation. Here,
numerous possibilities exist, that may change binding capability such as optimizing sol characteristics,
evaluating additives and ejection behaviour. Concerning printer setup, the selection of print head itself
and the adaption of the sol to the print head specifications should be considered.

However, as typically the characterization of powders and binders and its implications for the printing
process are based on the specific printer setups used, generalizations may be treacherous. The lack of
standardized powder bed creation and print head ejection methods make it difficult to put the obtained
results into a scientific context. Consequently, powder and binder selection in common with printing
preferences are frequently chosen by experience rather than profound statistics. A first attempt was done
by the ASTM, trying to pool the existing empirical knowledge regarding laser-based powder bed fusion
processes [79]. There is a certain need to enlarge upon this and spread to other additive manufacturing
techniques to form a firm basis for future research.

Finally, post-processing techniques other than heat treatments should be investigated. Infiltration
techniques may be a promising attempt that may lead to a further increase in final parts strength. In
summary, it is assumed, that after serious optimization, printed parts may have comparable characteristics
as parts obtained by traditional shaping techniques (e.g. having equal strength and specific surface area of
a part of equal shape and dimensions). But, thinking of the great benefit of 3d printing – the manufacturing
of hardly any imaginable shape - and especially in terms of catalysis, the production of filligrane structures
with significantly improved fluid dynamic behaviour, higher strengths are needed to comply with industrial
needs. Consequently, rather than imitating what industry is already capable of, the distant but overall
target must be to facilitate the desired filligrane structures to have similar mechanical strengths compared
to solid cylinders when traditionally shaped. Unfortunately, boehmite sols are considered to have weak
binding strength that after all optimization may not be strong enough to allow this. Moreover, complex
post-processing may outrun the benefits of 3d printing. It is thus questionable, if not a different but
stronger binding species or method comprising other metals or metal oxides than alumina, as for instance
silica sols, silicate based binders in common with silver or aluminum nano-particle inks sintering at
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lower temperatures (cf. Fig. 1.1 path (g)) should be considered. However, this gives rise to compatibility
questions with the targeted catalyst reactions.
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Nomenclature

Nomenclature

Latin Symbols

A surface area m2

aBET specific surface area according to BET m2 g−1

b width measure m
d characteristic diameter m
D binder dose m3 m−1

D10 diameter of 10th percentile µm
D90 diameter of 90th percentile µm
F (loading) force N
FB Brownian force N
FG Gravitational force N
FSC side crush loading force N
f fc flowability measure -
g constant of gravity ms−2

h height measure m
h∗ permeation depth m
h° height of liquid column m
hz vertical distance between theoretical layer border and

solid particle
m

kB Boltzmann constant JK−1

l length measure m
l∗ printed line width m
l° printed line length m
m mass kg
m Weibull modulus -
n empirical constant -
n layer thickness µm
P possibility of failure -
S binder saturation -
T temperature K
t∗ infiltration time s
V volume m3

Vε void volume m3

Vb volume of binder m3

Greek Symbols

α angle of repose °
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1 Additive Manufacturing of Alumina Catalyst Carriers

γ surface tension Nm−1

ε (bed) porosity -
εz surface roughness of particles -
ζ zeta potential V
η viscosity Pas
θ contact angle °
ν specific volume m3 kg−1

ρ density kgm−3

σ strength MPa
σcomp compressive strength MPa
φ volume fraction of solids -
Ψ sphericity -
ω relative density -

Indices

0 reference or characteristic value
bed powder bed content
max maximal value
min minimal value
np nano particle
p particle
pore pore content
solid solids content

Dimensionaless Numbers

Oh Ohnesorge number
Re Reynolds number
We Weber number

Abbreviations

ASTM American Society for Testing and Materials
BET Brunauer Emmett Teller
BJ Binder Jetting
CNC Computerized Numerical Control
DEM Discrete Element Method
DIP Direct Ink-jet Printing
DIW Direct Ink Writing

36



Nomenclature

DOD Drop-on-Demand
EDS energy-dispersive x-ray spectroscopy
EG ethylene glycol
FDC Fused Deposition of Ceramics
FDM Fused Deposition Modeling
PSD Particle Size Distribution
SLA Stereolithography
TGA thermogravimetric analysis
XPS x-ray photoelectron spectroscopy
XRD x-ray diffraction
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Appendix

Table 1.A1: Overview of characterization techniques concerning powder and powder bed.

parameter variable recommended
dimension

measurement technique

size dp 15 µm to 150 µm
[63]

light diffraction

particle size dis-
tribution (PSD)

D90/D10 ≥5 [97] light diffraction

shape sphericity Ψ =

π
1
3 ·
(
6 ·Vp

) 2
3

Ap

≈ 1 [61] microscopy & image anal-
ysis

particle surface
roughness

- - microscopy

powder
flowability

Hausner ratio 1.3 to 1.4 [95] Hall funnel meter (ASTM
D 7481)

angle of repose α ≤25° [112] e.g. rotating cylinder
flowability f fc 5 to 7 [95] drag shear test

realtive powder
bed density

ωbed =(
Vsolid +Vpore

)
Vbed

≥50 % to 60 %
[53, 101]

weighing or method by Ja-
cob et al. [78]

powder layer
homogeneity &
roughness

surface rough-
ness[77]: εz =√(
〈(hz−〈hz〉)2〉

)
dp

- microscopy, tomography

chemistry - - x-ray diffraction (XRD),
x-ray photoelectron
spectroscopy (XPS),
energy-dispersive x-ray
spectroscopy (EDS),
thermo-gravimetric
analysis (TGA)

microstructure e.g. aBET, dpore,
Vpore

- gas adsorption, mi-
croscopy

39



1 Additive Manufacturing of Alumina Catalyst Carriers

Table 1.A2: Overview of characterization techniques concerning binding agents.

parameter variable recommended
dimension

measurement technique

chemistry of
binder & binding
method

- - e.g.: spectroscopy,
thermo-gravimetric
analysis (TGA)

rheology
viscosity
[130]: η = η0 ·(

1− φ

φmax

)−n

5 mPas to
20 mPas [46, 83],
shear thinning

rheometer, for φmax

method according to Liu
et al. [153]

suface tension γ 35 mNm−1 to
40 mNm−1

tensio meter

ejectability

Oh−1 =
Re√
We

=√
γ ·ρ ·d

η

1 to 10 [46, 83] -

dispersion
charcaterization

(nano-particle)
particle size dnp

dorifice

dnp
= 20 to

100 [46, 87]

light diffraction

degree of sedi-

mentation
FG

FB
=

d4
np ·∆ρ ·g
kB ·T

< 1 [132] vertical light diffraction,
turbidimeter, UV-VIS

zeta potential ζ - zeta meter
pH-value - pH meter

droplet formation
(as a function
of rheology
and print head
specification)

droplet shape,
size dd, speed ud,
trajectory

high speed video imaging
[43, 45, 85], size: droplet
counting & weighing

aging behaviour change of rheol-
ogy/dispersion
over time

no aging same as for rheology/dis-
persion characteristics
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Table 1.A3: Characterization techniques regarding powder binder interplay.

parameter variable recommended
dimension

measurement technique

binder saturation/-
dose

S =
Vb

Vε

, D =
Vb

l° S>100 % [133] -

binding capabil-
ity

- - e .g. adding drops of
binder to powder bed or
mixing powder and binder
and fill into molds [62],
microscopy

permeability
&
wettability

contact angle θ θAl2O3
= 20° to

40° [43]
Capillary Rise, Sessile
Drop, Thin Layer Wicking
[136, 137]

primitive
dimensions
l∗, h∗ [43] l∗ = 2 ·√

D · (sinθ)2

θ − sin(θ · cosθ)

- adding single droplets by
print head on powder
bed, evaluation with mi-
croscope; repeat for gain-
ing information on re-
peatability [43, 61, 62]

infiltration
kinetics [43]:

t∗ =
15 ·
(
h°
)2

γ · cosθ
·

(1− ε)

ε3 · η

ρ2 ·dp

fast infiltration high speed video imaging
[43]

printing of com-
plex shapes

minimal feature
size

- printing of bridges and in-
terstices with decreasing
dimensions, evaluation of
printing accuracy by mi-
croscopy
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Table 1.A4: Overview of post-processing and final part analysis.

parameter variable recommended
dimension

measurement technique

chemistry/physics
of post-
processing
method

e.g. phase
change, pyrolysis,
residuals

- e.g. spectroscopy, TGA,
elementary analysis, mi-
croscopy

final parts
accuracy

surface roughness - profilometer
shrinkage/dimensional
accuracy

- microscopy

final part density - pycnometer, weighing

final parts
mechanical
stability

abrasion relative abrasion
0.1 to 0.7 accord-
ing to Bonse et
al.[154]

e.g. abrasion test [154]

tensile strength,
compressive
strength [150]:

σcomp =
2 ·FSC

π · l ·d
,

flexural strength,
bulk strength

for technical
ceramics:
σcomp ≥4000 MPa
[140]; binder
jetted ceramics:
σcomp ≈ 180 MPa
[52];
catalyst carrier:
σcomp ≈ 1 MPa
to 2 MPa [144]

side crush test, 3-point
bending test, impulsive
drop test, bulk crush test

Weibull
characteristic
[143]: P = 1 −

exp
[
−
(

F
F0

)m]
- linear least-square regres-

sion
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2 Review on the Structure of Random Packed
Beds

Abstract
Independent from their intended purpose, the understanding of structural characteristics of random
packings of particles having defined shapes is important to understand and optimize fluid dynamic
behaviour, heat, and mass transfer. The packing structure can be described by the coordination number,
local porosity profiles, the average porosity, and pore characteristics, which are influenced by the wall
and thickness effect; the material, shape, and size distribution of the packing particles; the packing and
compaction mode; and the shape and material of the packing’s containing walls. Therefore, existing
knowledge on the structure of randomly packed mono-sized particles is reviewed to provide an updated
selection of relevant parameters and their derived correlations obtained by experimental, numerical, and
analytical means.

This article was published in:
The Canadian Journal of Chemical Engineering, J. von Seckendorff, O. Hinrichsen, Review on the
structure of random packed beds, published online, Copyright Wiley (2020). DOI: 10.1002/cjce.23959.
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2.1 Introduction

2.1 Introduction

Random packings of particles having defined shapes are deployed in all kinds of industrial applications
and come in all orders of magnitude. The most prominent examples comprise micro-sized particle beds as
commonly used in chromatography packed columns [1–3], packed-bed reactors filled with catalytic shaped
bodies having millimetre size [4, 5], packed columns used in separation processes such as distillation
incorporating particles in the lower centimetre range [6, 7], and the pebble-bed reactor, which is a
gas-cooled nuclear reactor, moderated by a packing of graphite spheres [8–10]. In addition to those,
numerous less-known applications of packed-beds exist, ranging from powder-bed 3D printers [11],
solar-energy storage systems [12], earth science [13], civil engineering [14, 15], and pharmaceutical
processing [16], to the pyrolysis of pelletized wood fuels [17], to name but a few.

Irrespective of its intended purpose, the extent of a packed-bed is limited by a confining wall of commonly
cylindrical shape, though flat plates and other container geometries are possible. Despite its generally
random nature, close to this confinement the particles’ placement is naturally forced to align with the
wall’s geometry. This imposed order reaches a couple of particle diameters into the packing and is usually
named the wall effect. Its influence on the overall packed-bed characteristics decreases with increasing
tube-to-particle diameter ratio λ = D/dp. While most applications operate in an only sparsely affected
λ -range, this effect becomes dominant, for instance, in catalytic multitubular reactors, typically performing
at λ = 4 - 7 [18] or a single-pellet-string reactor with a λ < 2 [19]. Moreover, some packed-bed utilizations,
especially chromatography columns, have very delicate requirements regarding bed homogeneity and its
derived characteristics.

In general, random packed-beds are typically investigated in regard to the void distribution [20, 21],
single- and multi-phase flow aspects [22], the extent of pressure loss along the bed height [23], axial
and radial dispersion qualities [24] in common with inter- and intraparticle heat [25], and mass transfer
properties. In this contribution, parameters that describe and influence the structural characteristics are
reviewed, clustered, and compared. Parameters describing the packing structure comprise the coordination
number N̄c, the radial porosity distribution ε(r), the axial porosity distribution ε(z), the average bed
porosity ε̄ , and the pore size characteristics. These parameters are influenced by the wall effect, the
thickness effect, the packing and compaction mode, the particle material, shape and size distribution,
and the container’s shape and material. Results can be obtained by partially elaborate experiments;
however, the sheer number of recently published numerical approaches [26], including the generation
of random packed-beds using, for instance, the discrete element method (DEM) with subsequent flow,
heat and/or mass transfer simulation by known tools such as COMSOL Multiphysics®, Ansys® Fluent,
STAR-CCM+® or OpenFOAM®, speaks for it. Although the developed numerical procedures require
delicate validation, the gain in knowledge from employing the detailed resolution and visualization options
is impressive.

The focus of this contribution is to review the different published methodologies and results to characterize
the structure of random packed-beds using both experimental and numerical approaches.
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2 Review on the structure of random packed beds

2.2 Experimental investigation of packed-bed structures

Random packings of particles having a distinct shape are characterized by the size, distribution and the
mean void fraction of the voids between the solids (porosity ε), the coordination number N̄c describing the
average number of contact points between adjacent particles, and their average contact angle φ̄c. Besides
the tube-to-particle diameter ratio λ , these parameters may be influenced by the particle’s material, shape
and size distribution, the container’s material and shape and the applied deposition and compaction
methods [27, 28].

2.2.1 Regular arrangements of spatially extended mono-sized ideal spheres

Regular arrangements of spheres are characterized by a repeating pattern whose smallest repetition unit,
the unit cell, represents the whole packing. It is the simplest case of a packed-bed and its structural
characteristics can be derived by mathematical considerations [29, 30]. Table 2.1 summarizes typical

Table 2.1: Characteristics of regular sphere packings [14, 29–31]

Arrangement Coordination number Nc Mean bed porosity ε̄ Packing factor αm

[-] [-] [-]

Cubic 6 0.476 1
Orthorhombic 8 0.395

√
3/2

Body-centered cubic 8 0.320
Tetragonal-sphenoidal 10 0.302 0.75
Rhombohedral 12 0.260

√
2/2

arrangements and their quantities. For more details, see some relevant reviews on this topic [13, 21, 31,
32]. Although these packed-beds are usually not utilized directly, they define the maximum porosity range
a sphere packing can adapt to in the absence of a confining wall. Here, Taylor et al. [14] defined the
packing factor αm as the ratio between the volumes of the unit cells of the actual packing and the cubic
packing of which the packing properties are compared. Moreover, regular arrangements can be used as
a starting point to derive models for more realistic sphere packings [33], liquids [34], or other porous
systems [14, 15].

2.2.2 Random packings of smooth mono-sized ideal spheres in cylindrical
confining walls

Random packings of smooth, mono-sized, ideally spherical particles in cylindrical confining walls are
frequently taken as the standard or reference packing arrangement. It is by far the most evaluated and
researched packed-bed configuration, though in many cases not adequately representing the reality in
industry.
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Figure 2.1: Experimental results obtained from the literature for the mean coordination number
N̄c as a function of porosity ε̄ . Full symbols represent data of homogeneous spheres, crosses
those of size mixtures [21, 36–46]

2.2.2.1 Coordination number and angle

The number of contact points between one particle and its neighbours in combination with the angular
distribution of these along the surface of the particles is of special interest for heat transfer investiga-
tions [35] and the general modelling of transport phenomena [36]. While regular packings have one
distinct coordination number for each arrangement, varying from 6 - 12 (Table 2.1), random packings are
characterized by having a distribution of coordination numbers.

Experimental

The traditional experimental evaluation of the coordination number is obtained by filling the voids within
a packed-bed of spheres with a marker liquid. After drainage, the marker liquid will be retained at the
true contact points by capillary forces [37]. Furthermore, near contact points are marked as well, as
capillary forces allow bridging of narrow gaps [38]. True and near contact points can be distinguished,
as a circle of marker substance with a non-marked centre indicates true contact points, whereas near
contact points are marked by a filled circle [38]. The number and the distribution of true and near contacts
can be obtained by counting the marker dots on each sphere. The mean coordination numbers and their
cumulative frequency distribution as obtained by experiments are displayed in Figs. 2.1 and 2.2.

Some of the first researchers to address the experimental evaluation of the coordination number was
Smith et al. [37]. They used a packing of lead shot and acetic acid, forming white lead acetate as marker
liquid. However, it was noted that the data was erroneous [21] and it was eventually re-evaluated by
Wadsworth [39].
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Figure 2.2: Experimental results obtained from the literature for the cumulative frequency
distribution of the mean coordination number N̄c [21, 36, 38–42, 46]

A similar approach was selected by Bernal and Mason [38], except for the fact that they used ball bearings
with black paint as a marker. They were the first to distinguish between true and near contacts and
investigated two packed-bed densities. The same procedure was selected by Oda [42], investigating
mono-sized sphere packings as well as binary and quaternary mixtures. While Arakawa and Nishino [40]
used red ink to mark contact points between spheres, the utilization of shellac in methylated spirit was
preferred by Pinson et al. [41] and Zou et al. [47].

A completely different approach was selected by Goodling and Khader [36]. Here, a packed-bed of
spheres was solidified with epoxy resin, layers were cut, and photographs were taken. It was ensured that
each sphere was cut at least twice so that the centre of each sphere could be determined. The contact
points of each sphere were then obtained by mathematical considerations.

Modern imaging techniques allow the highly resolved determination of packed-bed structures. Aste
et al. [44, 45] used X-ray computed tomography for the evaluation of the contacts between mono-sized
spheres. Here too, uncertainty remained as to the distinction between true and near contacts due to voxel
resolution. Similar studies were performed by Georgalli and Reuter [48], Reimann et al. [49–51], and
Auwerda et al. [46].

The radial distribution function

For further investigations of the contact behaviour, Scott [52] determined the sphere centres in a packed-bed
by filling the voids with molten wax, and after solidification removed each sphere separately from the
matrix while noting each sphere’s position. From this, he computed a radial density distribution using
the distance normalized by the sphere diameter of the centres of the spheres from the wall of the random
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packed-bed. This distribution was averaged for 25 randomly selected spheres. Mason and Clark [53, 54]
added a direct sphere distance measuring technique in order to refine the near contacts portion [38]. The
obtained plot is known as the radial distribution function and is used to model fluids (spheres represent
atoms or molecules) or colloids (see Scott and Mader [55], Finney [56], Urquidi et al. [57], Dohn et al. [58],
and Soper [59].) It is to be noted, that any investigation of radial distribution functions requires the absence
of confinement influence.

Extrapolation and analytical considerations

When it comes to deriving mean contact number-porosity correlations it has to be considered that stable
and realistic sphere packings only come in a small porosity range. It is generally accepted that the simple
cubic arrangement constitutes the lower limit of a stable sphere packing. The range of realistic packings
is even smaller. In order to overcome this barrier, Meissner et al. [60] tried to extrapolate available
coordination number data by investigating sphere arrangements looser than the regular cubic packing.
Similar approaches were performed by Melmore [61] and Heesch and Laves [62]. Further analytical
investigations regarding extra loose sphere packings were performed in the context of sedimentation
processes [63, 64]. Bennett [65] investigated packings artificially packed according to local and global
criteria.

A completely different approach to overcome the problem that stable sphere packings only come in a very
small porosity range is proposed by evaluating micro- and nanosized particles, as the porosity increases
with decreasing particle size [66–69]. However, in this size range, the contact behaviour can only be
determined numerically [66, 70].

In contrast to this, pure analytical approaches were described by Liu and Davies [71], who derived sphere
contact information from the radial distribution function. Beck and Volpert [72] used the gapped gapless
packing model [73–76] in combination with a fixed fraction annular and a self-same contact distribution to
derive the contact behaviour of homogeneous spheres and binary mixtures. A similar approach was used
by Richard et al. [77], incorporating radical and Voronoï tessellation as well as the navigation map. Other
analytical-parametric models were developed by Yu and Standish [78] and Iwata and Homma [79].

Furthermore, investigations of the contact behaviour of numerically generated packed-beds were con-
ducted [70, 80–90]. Among these, Clarke and Jónsson [86] could confirm the results of Bernal and
Mason [38]. Most others focussed on multi-component packings. An et al. [90] tried to determine whether
the packing of uniform spheres under gravity is quasi-universal. Therefore, extensive numerical screening
was done, trying to extrapolate the known results by comparing micro- and normal-sized particles, vibrated
and non-vibrated beds, filling beds in liquid, and air surroundings. Packing porosities between 0.8-0.26
are obtained, relating to a clear trend in regard to the coordination number.

59
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Results collected from literature

A comprehensive selection of derived correlations obtained by the above-described experiments, analytical
models, and extrapolation approaches is summarized in Fig. 2.3 and Table 2.2.[91]
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Figure 2.3: Comparison plot of known correlations regarding the relation of mean coordination
number N̄c and mean packed-bed porosity ε̄ for random packings and abstract arrangements of
mono-sized spheres[25, 30, 37, 42, 60, 63, 64, 70–72, 79, 80, 83, 90–99]

The mean coordination number of sphere packings as obtained by experiments ranges from 6-8. From
regular packings it is obvious that a packed-bed may have different coordination numbers for the very
same porosity (refer to Table 2.1). Incorporating analytical and numerical data, a mean coordination
number of around 6 is generally accepted for a typical packed-bed of mono-sized spheres [41, 44, 45,
47, 56, 70, 85, 87, 88, 101]. For a random close packing, a value of up to 7 is determined [44, 45,
49]. Deviations between experiments are often explained by the poor discrimination of true and near
contacts.

While most researchers exclude the particles close to the confining walls, the wall effect on the mean
coordination number was explicitly investigated by Pinson et al. [41], Goodling and Khader [36], Auwerda
et al. [46], and Reimann et al. [49]. A decrease in the coordination number is observed only for the
outermost and potentially the second ring of spheres adjacent to the wall, whereas Du Toit et al. [25,
91] observed a significant difference in mean coordination number between bulk and near-wall region.
Furthermore, Reimann et al. [49] investigated the influence of the flat container bottom, finding a constant
coordination number of 9 for the very bottom layer of spheres, while a coordination number of just below
12 could be obtained for the following three sphere layers in quasi-close packing conditions.
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2.2 Experimental investigation of packed-bed structures

Table 2.2: Overview of known correlations relating the mean contact number N̄c to the packing
porosity ε̄ of smooth mono-sized sphere packings

Source Formula Scope

Smith et al. [37] N̄c =
15.75−26.49 · ε̄

1− ε̄
0.259 < ε̄ ≤ 0.476

Rumpf [92] & Manegold et al. [30] N̄c =
3.1
ε̄

0.259 < ε̄ ≤ 1

Field [93] cited by Oda [42] N̄c = 12 · (1− ε̄) n.a.
Meissner et al. [60] N̄c = 2 · exp(2.4 · (1− ε̄)) 0.259 < ε̄ ≤ 1
Haughey and Beveridge [94] N̄c = 22.47−39.39 · ε̄ 0.259 < λ ≤ 0.5

Ridgway and Tarbuck [95] cited by Suzuki and Oshima [64] N̄c = 13.84−116 · (0.01724 · ε̄−0.00428)1/2 0 < ε̄ ≤ 0.82
Nakagaki and Sunada [63] N̄c = 1.61 · ε̄−1.48 0 < ε̄ ≤ 0.82

Ridgway and Tingate [96] N̄c = 24− 2
3
·
(

π

1− ε̄

)2

0.26 < ε̄ ≤ 0.47

Gotoh [97] cited by Suzuki and Oshima [64] N̄c = 20.7 · (1− ε̄)−4.35 0.3 < ε̄ ≤ 0.53

N̄c = 36 · 1− ε̄

π
ε̄ > 0.53

Nagao [98] cited by Suzuki and Oshima [64] N̄c = 21.80 · (1− ε̄)2 n.a.

Ouchiyama and Tanaka [99] N̄c =
32
13
· (7−8 · ε̄) n.a.

Suzuki et al. [83] cited by Suzuki and Oshima [64] N̄c = 2.812 · (1− ε̄)−1/3

(b/dp)2 · [1+(b/dp)2]
0.24 < ε̄ ≤ 54

with (1− ε̄)−1/3 =
1+(b/dp)2

1+(b/dp) · exp(dp/b)2 ·Er f c(dp/b)

Suzuki et al. [100] cited by Georgalli and Reuter [48] with
b
dp

= 0.07318+2.193 · ε̄−3.357 · ε̄2 +3.294 · ε̄3

Liu and Davies [71] N̄c = (1− ε̄) ·
(

b
r

)3

−1+ 0.22 < ε̄ ≤ 0.66

+
24 · (1− ε̄) ·a · (a2− c2)

r3 · (a2 + c2)3 +
6 · (1− ε̄) · (3a2− c2)

r2 · (a2 + c2)2 · b
r
+

6 · (1− ε̄) ·a
r · (a2 + c2)

·
(

b
r

)2

with b = 2 · r+ 1
c

(
π

2
+ arctan

c
a

)
, a =

2 ·π
r

[
4 ·π ·

(
ε̄

1− ε̄

)2
]

and c = 2 ·π · 1− ε̄

r

Yang et al. [70] N̄c = 2.02 · 1+87.38 · (1− ε̄)4

1+25.81 · (1− ε̄)4 0.39 < ε̄ ≤ 1

Zhang et al. [80] N̄c =
1

0.183−659.248 · (1− ε̄)20.961 0.37 < ε̄ ≤ 0.45

Du Toit et al. [91] cited by Antwerpen et al.[25] N̄c = 25.952 · ε̄3−62.362 · ε̄2 +39.724 · ε̄−2.02 0.24 < ε̄ ≤ 0.54
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Contact angle

The angular distribution was experimentally determined by Scott and Mader [55], finding certain angular
structures at about 60°, 120° and 180° by using an averaged polar plot of the surface of the spheres.
Reimann et al. [49, 50] divided the contact angle into the poloidal angle φc, describing orientation along
the container axis and the azimuthal angle ψ , describing the orientation in the radial direction. In the bulk
region, the angle distribution is quite homogeneous, but developing a certain structure at 30° and 150° in
the poloidal orientation and 0°, 180° and 360° in the azimuthal orientation close to the confining sidewall
and bottom. Du Toit et al. [25, 91] found a mean bulk contact angle in the poloidal direction of 31.97°
which was detected to relate to the coordination number according to Eq. (2.1) [25].

φ̄c =−6.1248 · N̄c
2
+73.419 · N̄c−186.68 (2.1)

2.2.2.2 Radial porosity distribution

Regarding packings enclosed by a cylindrical wall, the structure of the random packings is typically
characterized by plotting the circumferentially and axially averaged void space (porosity ε) against the
radial position within the cylindrical tube starting at the tube wall and normalized to the particle diameter
(dp), zr = (R−r)/dp. The occurrence of local deviations from the theoretical bulk packing porosity in random
packings is regarded as an indicator of the influence of the confining wall on the near-wall packing
structure.

Experimental

Referring to Schneider and Rippin [102, 103], four kinds of general experimental procedures can be
clustered to determine the local void fraction distribution within packed-beds:

1. The first is solidification and incremental removal. The experimental investigation of axially-
averaged radial porosity profiles was historically conducted by filling the voids between the packing
particles with molten wax or curable resins and the subsequent cutting or machining of the solidified
matrix into thin radial or axial slices. Either the filler material is removed and the weight difference
noted [104–108], or photographs of the slices can be subjected to image analysis resulting in
the filled void content of each slice [103, 109–115]. Due to the small size of many packed-beds
combined with the inaccuracy of cutting tools, these early investigations result in quite coarse
and potentially erroneous curves. Moreover, loss of particles during the cutting procedure due to
insufficient bonding strength between the particles and the filler material are commonly reported
[104, 105, 109]. As an improvement, the resin can be mixed with metal powders [107] or hardening
additives [103, 107].
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2.2 Experimental investigation of packed-bed structures

2. Incremental filling is a completely different approach, comprising a centrifuged packed-bed to
which small amounts of liquid, predominantly water, are added. The liquid forms an annular layer
and the increment in layer thickness for a known amount of added water depends on the available
void space, assuming a homogeneous void distribution for each radial section [116–120]. However,
the precise determination of small variances in liquid level, especially considering the meniscus,
makes this technique challenging. Lerou and Froment [119] improved this setup by accurately
measuring the water level using a pressure transducer.

3. Individual particle measurement is the easiest way, if quite erroneous, involving the use a grid on a
transparent container and counting the particles of which the centres are within a certain grid cell
[121]. For more accurate results, the packed-beds can again be solidified with resin, and each and
every sphere can be scratched out from the resin basis after noting its position [52–54]. Schuster
and Vortmeyer [122] used a piston with sticky tape to remove the spheres of a packed-bed layer
by layer, taking a photograph of each layer and subsequently allocating each sphere to a grid of
position on the piston.

4. Projection of the bed is the last procedure. Initially, the solidified and cut packed-bed slices were
scanned with an X-ray beam in order to improve data acquisition [109]. Later, X-ray tomography
was used for non-destructive analysis of the whole packed-bed [10, 46, 49, 50, 123–128]. A stack
of sliced packed-bed images is obtained where subsequent image analysis has to be performed.
Most frequently, the computer-based image analysis includes the binarization of the obtained
grayscale images in order to specify solid and void area. From these, the void ratio at a certain radial
position can be estimated directly or the centre position of each sphere can be determined, requiring
the subsequent mathematical calculation of radial profiles. The specification of the black-white
threshold is frequently identified as the major source of error. Additionally, Buchlin et al. [129],
whose work was later adopted by Schneider and Rippin [102], used the fluorescence of a slightly
impure organic liquid having the same refractive index as transparent spheres to visualize the
particle locations. Besides X-ray tomography, magnetic resonance imaging may be used as well
to investigate local structures within packed-beds [130–134]. Again, a proper image analyzing
procedure is required [131].

Results collected from literature

Regarding the obtained radial porosity data, some specific properties are generally accepted including
[20]:

• The porosity directly at the tube wall has a value of 1.

• The curve resembles a damped oscillatory function with distinct extrema until reaching 4-5 particle
diameters into the tube.

• The first minimum is at zr = dp/2 and the first maximum is at zr = dp.
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2 Review on the structure of random packed beds

Further properties of the radial porosity distribution under discussion comprise the initial shape of two
consecutive parabolas transitioning to a sinusoidal variation when moving further away from the tube
wall, the non-constant period of oscillation within a specific bed, and the amplitude, which varies when
different experimental results and the derived correlations are compared [20].
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Figure 2.4: Gathered experimental literature data of radial porosity distributions ε(r) oobtained
by using various experimental methods and packing procedures and containing spheres of
different materials enclosed by a cylindrical confining wall [10, 49, 91, 104–107, 109, 116, 119,
122, 126, 127, 133–140]

Gathering the majority of experimental data ranging from λ = 2 to >> 10 as presented in the literature into
a single figure (Fig. 2.4), reveals a surprising consensus even without preference in regard to packing mode
and material specifications. Significant differences can be seen for packed-beds of low tube-to-particle
diameter ratios where the values in the tube centre are significantly larger at zr ≈ 1 (data of Benenati and
Brosilow [105]), zr ≈ 2 (data of Lovreglio et al. [139], Mariani et al. [127], Mueller [135], Wensrich [140]),
zr ≈ 3 (data of Mueller [135]) and zr ≈ 4 (data of Lovreglio et al. [139], and Giese et al. [136]).

In Fig. 2.4, the experimental studies of Schwartz and Smith [141] and Shaffer [117] are not considered as
absurd bulk porosity values for sphere packings of as low as 0.32 and 0.28 were obtained, respectively.
Furthermore, the study of Pillai [121] and Korolev et al. [123] could not be considered, as the data is
incomplete. The study of Al-Falahi and Al-Dahhan [125] is not considered since obvious deviations from
the generally accepted oscillatory behaviour is seen, as well as questionable porosity values close to the
wall. The experimental study of Ismail et al. [112, 113] is not considered because the results for the
radial porosity profile do not fit with all other results in the following points: the extrema positions are
overall slightly shifted to higher numbers and the curve shape of especially the first maximum appears
very smooth.
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2.2 Experimental investigation of packed-bed structures

Schneider and Rippin [102] evaluated the radial locations of the minima and maxima of their own data and
those from [105] and [107] depending on λ . It was found that the locations of the extrema are independent
of λ in the tested range (2.5−15), so that the maxima occur at 1.00, 1.86, 2.75, 3.63 and 4.50 sphere
diameters from the tube wall. Except for the very first maximum, the period of oscillation appears constant
with 0.86 to 0.88 sphere diameters between consecutive minima and maxima. For validation, the detected
maxima positions are marked as dotted lines in Fig. 2.4 showing a great consensus with the gathered
experimental data.

Derived Correlations

The above-described experiments led to a selection of empirical correlations being derived to describe
the tangentially and axially averaged radial porosity profile, complemented by some (semi-)analytical
models. A comprehensive selection of correlations are shown in Table 2.3. These can generally be

Table 2.3: Selection of known wall effect correlations for the radial void distribution ε(r) of
spherical packed-beds in cylindrical confinements

Source Formula ε̄inf Scope

De Klerk [20] ε(r) = 2.14 · z2
r −2.53 · zr +1 - zr ≤ 0.637

ε(r) = ε̄inf +0.29exp(−0.6 · zr) · [cos(2.3 ·π · (zr−0.16))]
+0.15exp(−0.9 · zr)

n.a. 0.637 < zr

Johnson [142] cited by
Roshani [103]

ε(r) = ε̄inf +0.62 · exp[−1.7 · (zr)
0.434] ·

[
cos(6.67 · (zr)

1.13)
]

0.38 zr ≤ 4

ε(r) = ε̄inf 0.38 4 < zr

Moallemi [143] cited by
Roshani [103]

ε(r) = ε̄inf−0.6 ·
(
1− exp[−1.7 · (zr)

0.52] ·
[
cos(5.57 · (zr)

1.25)
])

n.a. n.a.

Chandrasekhara and Vort-
meyer [144]

ε(r) = ε̄inf · (1+b · exp(−c · x))
with b = 1 c = 3

n. a. n. a.

Martin [145] ε(r) = εmin +(1− εmin) · (2 · zr−1)2 - zr ≤ 0.5
ε(r) = ε̄inf +(εmin− ε̄inf) · exp[−0.25 · (2 · zr−1)] · [cos(π/a · (2 · zr−1))] 0.39 0.5 < zr
for λ = 20.3 : εmin = 0.23 a = 0.876

Cohen and Metzner [146] ε(r) = 1− (1− ε̄inf) ·4.5 · (zr− 7
9 · (zr)

2) n. a. zr ≤ 0.25
ε(r) = ε̄inf +(1− ε̄inf) ·0.3463 · exp(−0.4273 · zr) · cos((2.45 · zr−2.2011) ·π) n.a. 0.25 < zr < 8
ε(r) = ε̄inf 8 < zr

Mueller [135]
ε(r) = ε̄inf +(1− ε̄inf) · J0(a · zr) · exp(−b · zr) 0.365 λ ≥ 2.02

with a = 7.45− 3.15
λ

b = 0.315− 0.725
λ

- 2.02≤ λ ≤ 13.0

or a = 7.45− 11.25
λ

b = 0.315− 0.725
λ

- λ ≥ 13.0

Bey and Eigenberger [147] ε(r) = εmin +(1− εmin) · ( zr
zmin
−1)2 - zr

zmin
−1≤ 0

ε(r) = ε̄inf +(εmin− ε̄inf) · exp[−0.1 · ( zr
zmin
−1)] ·

[
cos(π/0.876 · ( zr

zmin
−1))

]
0.375 0 < zr

zmin
−1

for εmin = 0.24 zmin =
λ

2 ·
(

1−
√

1− 2
λ

)
Giese [148] ε(r) = ε̄inf · (1+1.36 · exp(−5.0 · zr)) - -

Vortmeyer and Schuster [149] ε(r) = ε̄inf ·
(

1+ 1−ε̄inf
ε̄inf·exp(1) · exp(1+ zr)

)
- -

Suzuki et al. [138] ε(r) = ε̄inf +a · exp(−b · zr
c) · cos(2 ·π · zr

d) n.a. λ ≥ 4.5
a = 0.018 · ln(λ ) + 0.483; b = 0.312 · ln(λ ) + 0.58; c = 0.2061 · ln(λ ) +
0.128; d =−0.033 · ln(λ )+1.177

classified into the following categories: (a) exponential decay functions [144, 148–152], which completely
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Figure 2.5: Comparison of anonymized experimental radial void distribution data ε(r)
obtained with λ > 5.0 and a selection of empirical and semi-analytical correlations as presented
in the literature [20, 103, 135, 138, 142, 143, 146, 148, 155]

ignore the oscillation close to the wall; (b) damped oscillatory functions, combining a cosine oscillation
with an exponential decay [20, 110, 145–147] or by using a Bessel function of zero order [135, 153,
154]; (c) scaleable approaches, that take λ -specific differences into account [135, 138, 155]; and (d)
statistical sphere centre re-estimations based on experimental radial porosity profiles with subsequent
re-calculation of the radial porosity distribution [33, 156–159]. This last approach was adopted for
λ < 2 where the sphere locations can be expressed analytically assuming a regular packing arrangement
based on λ -dependant unit cell considerations [160]. However, while actually not being a correlation
but an inconvenient mathematical approach, it becomes obsolete when sphere centres are determined as
experimental output.

Herein, Martin [145], Chandrasekhara and Vortmeyer [144], Vortmeyer and Schuster [149], and
Johnson [142] used the data of Benenati and Brosilow [105] to derive their correlations. Cohen and
Metzner [146] averaged the experimental data of Roblee et al. [104] and Ridgway and Tarbuck [137].
De Klerk [20] and Bey and Eigenberger [147] incorporated a larger selection of existing experimental
data. However, the calculation of minima position zmin as proposed by Bey and Eigenberger [147] is
questionable: for a λ < 2 no results can be obtained and for λ = 2, the minima position is at one particle
diameter from the wall. The position value decreases with increasing λ approaching 0.5 for infinite λ .
Replacing zmin with a constant 0.5 is more realistic and in accordance with other results. Doing so, this
equation becomes similar to one by Martin [145].

For comparison, a selection of correlations are plotted for a specific tube-to-particle diameter ratio
λ = D/dp = 5 as displayed in Fig. 2.5 with the anonymized experimental data taken from Fig. 2.4. Here,
only data for packed-beds with λ > 5 are considered, as packings with lower λ behave significantly
different, and seem to be not representable by current correlations [161].
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While a good consensus among experimental data exists in regard to amplitude and period of the radial
void distribution, most empirical correlations struggle to project in particular the correct oscillation period
which becomes evident at higher zr. Only the semi-analytical correlation of [155] trying to describe
the obtained radial void distribution behaviour with a string of parabolas rather than a damped cosine
function can correctly reproduce the oscillation period and amplitude of the used data pool. This may be
explained with the known inconsistent oscillation period, where the first period is 1.00 and the following
periods are around 0.87 [102]. The slight overprediction at zr < 0.5 of the Bessel function proposed
by Mueller [135] and queried by Theuerkauf et al. [161] can be decreased using a recently published
functional improvement [153] .

Some experimental procedures result in the provision of sphere centre points rather than directly in
the void size distribution. From the centre point coordinates and the sphere’s dimensions, axial and
radial porosity profiles can be calculated by cutting imaginary plane and cylindrical slices through the
mathematically reconstructed spheres [155, 162–166]. These slices may have a designated thickness
characterizing the volume-based method or not, resulting in the area-based method.

In summary, a wide selection of experimental methods are known for the determination of the tangentially
and axially averaged radial porosity distribution, a key parameter for the evaluation of packing structure,
though most come with unsatisfactory accuracy for a single measurement. However, when gathering all
available literature data regarding packings of spheres into one plot, an impressive consensus can be seen.
This consensus cannot be reproduced by most available correlations, especially regarding the oscillation
period.

2.2.2.3 Pore size and shape

Characterizing the size and shape of the voids within a packed-bed is rather challenging, as pores are
non-circular and irregularly converge, diverge, and intersect [21].

The void size and distribution characterization were first performed in a 2D analytical setup, packing
mono-sized circles [167] later size-distributed circles [168]. The obtained models were then transformed
into 3D packings of mono-sized spheres, typically investigated in sliced, solidified packings by image
analysis showing circles of different sizes [114, 169]. However, several different definitions of pore size
exist: Alonso et al. [167, 169] define the void size as the probability of finding a circle (2D) or sphere
(3D) having a certain diameter completely fitting into a void (no particle intersection), whereas Gotoh et
al. [170] search for spheres of certain diameter not overlapping with solid sphere centres allowing particle
intersections. Moreover, the diameter of void spheres with centres equidistant from four particle centres
may be searched [171, 172]. Besides spherical void representations, the void size may be calculated by
arbitrarily setting a point into the void of a packed-bed and measuring the distance in the axis directions
to the next solid boundary [173]. This allows a separate void characterization in the radial and axial
directions.
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Du et al. [114] investigated the pore size and pore size distribution. Although using non-uniform natural
packings, the general trends are clear. The larger the particles, the larger the voids while the breadth of
distribution is unaffected. The lower the porosity, the smaller the voids and the higher the sphericity of the
particles, the broader the distribution.

Pore shapes within packed-beds of random spheres are considered to have distorted tetrahedral and
octahedral shape commonly used to describe regular packing arrangements and crystal unit cells [171]. A
detailed classification of pore shapes was for instance done by Frost [172]. The mean packing configuration
and thus the void shape can be related to the radial distribution function. Configurational entropy can be
derived to describe the structural randomness of packings.

In summary, pores have been evaluated rarely; however, no clarity exists in regard to the definition of the
pore size measure and the actual necessity of evaluation.

2.2.2.4 The thickness effect (influence of the tube height-to-particle diameter ratio)

The influencing effect of the confining base (and top) plate analogous to the wall effect was first addressed
by Wadsworth [39] (cited by Haughey and Beveridge [21]) noting that the coordination number decreased
from the second to the eighth layer, expressed as the tube height-to-particle diameter ratio κ = H/dp of
the packing, indicating a decreasing order. Furthermore, Haughey and Beveridge [21] mention that the
first plane layer is found to be perfectly regular. With decreasing distance, however, the distinct layers
disappear due to increasing sphere placement options causing an increased amount of randomness.

The thickness effect was further investigated by several research groups [28, 49, 103, 111, 113, 120, 126,
128, 174] resulting in various recommendations in regard to the minimal packing height that is required to
neglect the thickness effect. It was repeatedly shown that at least the bottom plate has an effect similar to
that of the surrounding confinement, reaching 4-5 particle diameters into the tube [120, 126].

The most comprehensive study so far regarding the influence of packing height was presented by Zou
and Yu [175] investigating the mean porosity with systematically varying κ from 2.5 - 100. A sharp
decrease in porosity is found increasing κ from 2.5 to around 15 (∆ε̄ = 0.06). From there on, a slight
linear decrease can be observed (∆ε̄ = 0.03). The obtained results are displayed in Figs. 2.6 and 2.7. As a
consequence, there are two options in order to study packings independently from the top and bottom
effects: either a κ large enough to ensure that the effects of the top and bottom are negligible needs to
be selected, which is according to their data κ > 20; or the top and bottom fraction need to be cut away
completely.

The thickness effect can also be derived from the axial porosity profiles. Starting from the container’s
bottom, axial porosity profiles show a similar damped oscillating trend as the radial porosity profiles for
the first 3-5 particle diameters. This is then reduced to a noisy constant bulk porosity value throughout the
bulk of the packing, before porosity variations increase again when reaching the top of the packing. Only
rarely do experimental studies discuss the axial porosity profiles, such as Reimann et al. [49] for packings

68



2.2 Experimental investigation of packed-bed structures

0 20 40 60 80 100

0.38

0.4

0.42

0.44

0.46

0.48

Tube height-to-particle diameter ratio κ (-)

M
ea

n
be

d
po

ro
si

ty
ε̄

(-
)

dense
loose

Figure 2.6: Influence of packing hight-to-particle
diameter ratio κ on the overall bed porosity ε̄ as of
Zou and Yu [175] for a dense and a loose random
packing arrangement

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

Tube-to-particle diameter ratio λ (-)

M
ea

n
be

d
po

ro
si

ty
ε̄

(-
)

κ = 100
κ = 10
κ = 5

Figure 2.7: Influence of both λ and κ on the
overall bed porosity ε̄ for a dense packing
arrangement as of Zou and Yu [175]

with large λ and Du Toit [162] prepresenting the recalculated axial porosity profiles of Mueller’s [135].
Only recently, Du Toit [176] presented profiles for packings of λ < 2 showing a very regular arrangement
of particles in the axial direction. However, the axial porosity distribution is a measure of the consistency
of the packed bed along the tube height and should therefore be at least included as an illustration in future
research work.

2.2.2.5 Tube-to-particle diamater ratio

Despite the detailed information local porosity distributions may offer, in some applications and for a
general overview it is frequently sufficient to only know the globally averaged bed porosity ε̄ . The reduced
information is remendied by significantly easier experimentation and thus availability of large data sets.
Especially in applications of large λ and κ , where the influence of the confinement surfaces (eg, wall and
bottom) is neglectable, the averaged bed porosity may be the primary structural parameter.

Experimental

The most commonly used methods to determine the mean bed porosity are the water displacement method
[112, 174, 177–180], determining the volume of water needed to completely fill the voids of a packing,
and the weighing method [181, 182], which simply weighs all packed-bed particles and determines the
void volume via the particle density. The water displacement method is challenging in regard to the
elimination of air pockets, the proper determination of the meniscus level, and the pre-soaking of the
porous particles. It is of further importance which packing mode is selected; it is therefore thoroughly
discussed in Section 2.2.2.6.
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Figure 2.8: Summary of experimental literature results for the average bed porosity ε̄ when
varying the tube-to-particle diameter ratio λ for smooth spheres [20, 112, 118, 174, 175, 177,
179, 181, 183–199]

The known experimental average bed porosity data depending on the tube-to-particle diameter ratio λ has
been summarized in Fig. 2.8. A clear trend and a good consensus of data points can be seen. According to
this, the mean packed-bed porosity increases sharply before reaching a global maximum around λ ≈ 1.7,
followed by a sharp decrease until reaching λ ≈ 2, and hereinafter flattens out until λ ≈ 10. Besides
the clear global maximum, further extrema, especially a minimum at λ = 3.0 and two possible maxima
around λ = 2.7 and λ = 3.7, are at least indicated by the given data. In this low-λ range, the possible
packing arrangements of spheres in very thin containers significantly affect the porosity. While for λ < 2
no two spheres fit next to each other into the container, a very regular packing arrangement is obtained
and may be described using unit cell considerations. The original results by Govindarao et al. [160] have
recently been upgraded by Du Toit. [176] Additionally, Guo et al. [200] thoroughly investigated packings
of 2 < λ < 3 using an analytical approach and experiments. The optimal packing size for integral sphere
layers at low λ was studied by McGeary [192]. These theoretically obtained results are added to Fig. 2.8
and the following structural characteristics were identified for the λ = 2 - 5 region. For a sphere number
up to five per layer, only one ring can be formed inside the container. One inner sphere fits into a complete
ring of 5-7 spheres (making 6-8 spheres in total), three inner spheres can be placed into an inner ring of 6-9
spheres (making 9-12 spheres in total). From there on, an orthorhombic arrangement is assumed where
the innermost ring has four, the next one 10, and if needed the following 17, 24, 31, and so on. Based
on these findings, a sharp porosity minimum at λ = 3.0 and a subsequent maximum at λ = 3.75 can be
identified. A smaller minimum/maximum pair can be found at λ = 2.41 and λ = 2.68 and for λ = 4.04
and λ = 4.41. It must be noted that for λ = 3.0 two configurations exist comprising either 6 or 7 spheres.
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While the seven-sphere arrangement causes the minimum, the six-sphere arrangement fits perfectly into
the generally assumed decreasing function. Furthermore, de Klerk [20] mentions bed voidage values
higher or lower than expected for tube-to-particle diameter ratios 2.4, 3.0, and 4.6. Moreover, for a
diameter ratio of 3.0, two data points were recorded, deviating considerably from the average to higher
values. This last finding is in agreement with the study of McGeary [192].

Derived correlations

Based on the obtained experimental data, a large number of correlations regarding the influence of
tube-to-particle diameter ratio on the average packing porosity were derived. A comprehensive summary
can be found in Table 2.4. For comparison, these correlations were plotted in Fig. 2.9 together with the

Table 2.4: Overview of known wall effect correlations

Source Formula ε̄inf Scope

Carman [201] ε̄ = 1− 2
3
·
(

1
λ

)3

· 1√
2
λ
−1

- 1 < λ ≤ 1.866

Aerov [202] ε̄ = ε̄inf +
0.07

λ
+

0.54
λ 2 0.39 λ ≥ 2

Sonntag [185] ε̄ = ε̄inf +(1− ε̄inf) ·
0.526

λ
0.359 10≤ λ ≤ 30

Jeschar [183] ε̄ = ε̄inf +
0.34

λ
0.375 6.25≤ λ ≤ 100

Ayer and Soppet [182] ε̄ = ε̄inf +0.216 · exp(−0.313 ·λ ) 0.365 3≤ λ ≤ 32

Beavers et al. [179] ε̄ = ε̄inf ·
[

1+
2
λ
·
(

ε̄w

ε̄inf
−1
)]

0.368 4≤ λ < 45 ε̄w = 0.476

Froment and Bischoff [203] ε̄ = ε̄inf +0.073 ·
[

1− (λ −2)2

λ 2

]
0.38 n.a.

Griffiths [118] cited by Roshani [103] ε̄ = ε̄inf +
0.035

(λ −3.5)0.27 0.38 λ > 3.5

Dixon [181] ε̄ = ε̄inf +
0.05

λ
+

0.412
λ 2 0.40 λ ≥ 2

Fand and Thinakaran [191] ε̄ = ε̄inf +
0.151
λ −1

0.36 2.033≤ λ < 40

Fand and Thinakaran [191] ε̄ = 1.8578−0.6649 ·λ - 1.866≤ λ < 2.033

Foumeny et al. [174] ε̄ = ε̄inf +0.254 · λ−0.923
√

0.723 ·λ −1
0.383 1.866≤ λ < 22

Mueller [135] ε̄ = ε̄inf +
0.220

λ
0.365 λ ≥ 2.02

Zou and Yu [175] ε̄ = ε̄inf +0.002 ·
[

exp
(

15.306
λ

)
−1
]

0.372 3.95≤ λ < 35

Zou and Yu [175] ε̄ = 0.681− 1.363
λ

+
2.241

λ 2 - 1.866≤ λ < 3.95

De Klerk [20] ε̄ = ε̄inf +0.35exp(−0.39 ·λ ) n.a. 2≤ λ < 20

Benyahia and O’Neill [177] ε̄ = ε̄inf +
1.74

(λ +1.14)2 0.39 1.5≤ λ < 50

Puschnov [204] ε̄ = 12.6 ·λ 6.1 · exp(−3.6 ·λ ) - 1≤ λ < 2.4

Puschnov [205] ε̄ = ε̄inf +
1

λ 2 - 2≤ λ < 20

Cheng [206] ε̄ =

[
1

(0.8 · (λ −1)0.27)3 +
1

(ε̄inf · (1+(λ −1)−1.9))3

]−1/3

0.38 1≤ λ < 100

Ribeiro et al. [184] ε̄ = ε̄inf +0.917exp(−0.824 ·λ ) 0.373 2≤ λ < 19

anonymized literature data as displayed in Fig. 2.8.
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Figure 2.9: Anonymized experimental literature data as displayed in Fig. 2.8 and known
correlations regarding the influence of tube-to-particle diameter ratio λ on the mean bed
porosity ε̄ of smooth spheres[20, 103, 118, 135, 174, 175, 177, 181–185, 191, 201–206]

While the given correlations fit the overall scope of the experimental data well, they vary in regard to
the infinite bed porosity obtained for λ → ∞, which is strongly dependent on the packing method and
material characteristics. From the considered correlations, the one presented by Foumeny et al. [174]
represents the overall trend best. It must be noted that no further extrema than the obvious global peak are
considered in the known correlations. Only Zou and Yu [175] included a detected maximum at around
λ = 4.0 into their piecewise defined correlation.

In summary, a large data pool is available relating the average bed porosity to the tube-to-particle diameter
ratio of a packing. These data can be well represented by a large selection of known correlations, except
some details such as local extrema.

2.2.2.6 Influence of Packing Mode

Haughey and Beveridge [20, 21] determined four particular methods of bed formation. The associated
porosity ranges are based on a range of literature data and are valid when wall effects are insignificant
(λ → ∞). The modes comprise:

1. Very loose random packing (ε̄ ≈ 0.44) obtained by settling a fluidized bed, by sedimentation, or by
inversion of the bed container.

2. Loose random packing (ε̄ ≈ 0.40−0.41) obtained by letting the spheres roll individually into place,
individual hand packing, or by dropping the spheres as complete loose mass.
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3. Poured random packing (ε̄ ≈ 0.375−0.391), obtained by pouring particles into the container.

4. close random packing (ε̄ ≈ 0.359− 0.375) obtained by vibrating, shaking, or tapping of the
container.

Thus, compared to regular packings where the mean bed porosity varies between 0.26 and 0.48 depending
on their arrangement (see Table 2.1), random packings may take on values between 0.36 (Random Close
Packing (RCP)) and 0.44 (Random Loose Packing (RLP)) [21] when not confined. A comprehensive
overview of experimental data sorted by packing mode based on the above classification was collected by
Roshani [103]. Another packing state, the so-called maximally random jammed state (MRJ), evolved in
physical contexts which are mathematically precise equivalents to the RCP state [207, 208].

The upper limit, so-called RLP, was for example studied by Onoda and Liniger [209] in settling
experiments under zero gravitational force and in shear-cell experiments with glass spheres. A value of up
to 0.445 ± 0.005 was obtained as an upper limit. in settling experiments under zero gravitational force
and in shear-cell experiments with glass spheres. A value of up to 0.445 ± 0.005 was obtained as an upper
limit. Furthermore, it was repeatedly shown that packed-beds generated without significant effort to form
extra loose or dense beds show packing porosities around 0.38 - 0.39 [174, 186, 210]. Consequently, this
small range is generally accepted as the standard packing porosity of a sphere packing.

Regarding the evaluation of the porosity of the densest possible sphere packing in the absence of global
order, Susskind and Becker [211] removed the air from balloons filled with spherical particles. For a
typical packing a value of ε̄inf = 0.362 could be obtained. This value was lowered to ε̄inf = 0.348 by
rigorous vibration. However, Bernal and Finney [212] remarked that even when using a non-rigid balloon,
confinement effects cannot be neglected and recalculated the data to a RCP porosity of around 0.36 [38,
43]. Nonetheless, using appropriate experimental conditions, vibrated packed-beds may adopt a global
order, allowing porosities slightly below the RCP limit [49].

In-detail studies on packing densification were performed using vibration [174, 213–217] or tapping [218,
219]. Typically, packed-bed porosity decreases until the densification is saturated [213, 215, 217, 219].
Optimal vibration frequency and amplitude settings are required to gain the densest packings (cf. [213–215,
220]). Furthermore, interparticle diffusion during vibration was investigated [215]. Besides vibration, the
achieved packing densification by tapping n taps and a certain relaxation time τ can be described as below
[219, 221, 222].

Sequential addition compared to shaking was done by Baker and Kudrolli [220]. Another filling method
called sock filling was performed by Bazmi et al. [223]. Afandizadeh and Foumeny [28] investigated
three different packing methods: fast pouring, slow pouring, and the so-called snow storm filling [224],
where the packing material is passed over wire meshes to interrupt its free fall inside the tube. The mean
bed porosity decreased for longer filling times and a filling speed of 0.5-5 mm bed length per second
is suggested to obtain more reproducible packings. Moreover, Macrae and Gray [225] investigated the
influence of particle drop height, deposition intensity, and filling rate (particle number per filling time). It
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was found that the packing porosity decreases with a higher drop height before reaching a final value,
with a reduced particle filling rate and lower deposition intensity.

Besides the influence of densification on the average bed density, structural studies reveal that an increase
in oscillation amplitude and a decrease in the oscillation period affect the radial porosity distribution
[49, 226] along with the increased bed densification. The more ordered a packing gets, the more distinct
the parabolic shape of the radial void distribution gets. Very ordered packings form tiny intermediate
parabolas so that the radial porosity distribution resembles a chain of large and small parabolas [33, 49].

The influence of packing formation in fluids other than air was also studied. Stanek and Eckert [120]
compared particle damping in air and ethanol during the packed-bed formation, finding a decreased mean
porosity when damped in a liquid. Furthermore, Chu and Ng [190] packed the spheres in water. Feng and
Yu [67] found an increasingly damped packing behaviour (resulting in higher porosities) using wetted
particles with increasing liquid content. Regarding liquid characteristics, surface tension alters the packing
structure but small variations in viscosity had no effect.

In summary, the packing mode is one of the most crucial parameters regarding the packing structure and
average porosity. Some explicit packing modes have been identified and allocated to certain porosity
ranges. Furthermore, packing densification was studied by several research groups leading to lower overall
bed porosities and higher packing order.

2.2.3 Influence of particle shape

Industrially used shapes comprise cubes and hollow cubes, four-hole cylinders, hollow cylinders with a
single bridge or cross web and grooved cylinders, and a selection of saddles and ring shapes [28, 177,
227–229]. In experiment, shapes comprising cylinders [114, 124, 230, 231], Pall rings [124], Raschig
rings [232] and Hama beads [124], prisms [230, 231], ellipsoids [231–233], trilobes [218, 223], cubes
[114, 231], polyhedrons [232, 234], and platonic shapes [220, 235] were investigated.

In order to compare shapes other than spheres, a characteristic diameter is used, typically the Sauter
diameter dp,s or the diameter of a volume-equivalent sphere dp,v:

dp,s = 6 ·
vp

ap
(2.2) dp,v =

(
6 · vp

π

)1/3

(2.3)

Further equivalent diameters (see [236] for a comprehensive list) based on physical properties are the
equivalent sphere diameter having the same sedimentation velocity as the investigated particle dp,w and
the equivalent sphere diameter having the same resistance to flow dp,d.
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The true sphericity ΨW as defined by Wadell [237] is a frequently used shape factor to describe shape
variations in regard to spheres:

ΨW =
π

1/3 · (6 · vp)
2/3

ap
(2.4)

This parameter was occasionally used to correlate shape and packing porosity at infinite λ . Table 2.5 gives
an overview of the obtained correlations and Fig. 2.10 shows a selection of experimental data points and
plotted correlations. In general, there is for an infinite packed bed a tendency towards a larger packing

Table 2.5: Overview of shape-porosity correlations based on the sphericity

Source Formula Scope and parameters Shapes No. of
data-
points

Benyahia and O’Neill
[177]

ε̄inf = 0.1504+
0.2024

ΨW
Sphere, cylinder, hol-
low cylinder, 4-hole
cylinder

9

Brown [227] ε̄inf = ε̄
1.785·ΨW

1.585−0.785·ΨW
4.897

inf,s ε̄inf,s = 0.47 (loose),
0.36 (dense) or 0.42
(mean)

Spheres, cylinders,
hollow cylinders,
saddles

29

Yu and Standish [228] ε̄inf = ε̄
15.521·ΨW

3.853−14.521·ΨW
4.342

inf,s ε̄inf,s = 0.40 (loose),
0.36 (dense) or 0.38
(mean)

Spheres, cylinders,
hollow cylinders,
saddles

Data of
[238–
240]

Zou and Yu
[231, 241]

ε̄inf = exp(ΨW
5.58 · exp(5.89 · (1 − ΨW)) ·

ln(0.40))
Dense packing: 6.74,
8.00, 0.36

cylinders, disks,
balls, beads,

beans, lentils,
cubes, prisms

36

ε̄inf = exp(ΨW
0.6 · exp(0.23 · (1−ΨW)0.45) ·

ln(0.40))
Dense packing: 0.63,
0.64,1.0, 0.36

Warren et al. [242] ΨW = 0.079+0.831 · (1− ε̄inf)+1.53 · (1−
ε̄inf)

3

Lanfrey et al. [229] ΨW =

√
1.23

T
· (1− ε̄inf)

4/3

ε̄inf
Tortuosity T = 2.12 in
mean, between 1 - 3 in
general

Berl, Intalox and
Torus saddles,
Raschig, Pall and
Ralu Rings, different
material and size

> 100

Parkhouse and Kelly
[243]

ε̄inf = 1 − 2 · ln(a1)/a1 with ΨW =

2.621
a1

2/3

1+2 ·a1

a1 > 7 Elongated cylinder 4

Blouwolff and Fraden
[244]

ε̄inf =
5.4
a1

with ΨW = 2.621
a1

2/3

1+2 ·a1
Elongated cylinder,
different material

6

Rahli [245] cited by
Novellani et al. [246]

ε̄inf = 1 − 11
π

2·a1
+6+2 ·a1

with ΨW =

2.621
a1

2/3

1+2 ·a1

- Elongated cylinder

porosity, but no clear trend nor a single all inclusive correlation can be deduced. However, it was not
possible to diversify this plot for different packing modes or packing materials used by the researchers,
which have a strong influence on the packing porosity obtained for infinite packed beds. According to Zou
and Yu [231], three branches can be identified in the sphericity-porosity plot corresponding to elongated
cylinders (upper branch), flat disks (lower branch), and all other shapes, especially hollow cylinders and
saddles in between these two borders. Still, the sphericity alone is obviously not capable of describing or
predicting the packing porosity of an arbitrarily shaped particle.

As a second shape parameter, Lanfrey et al. [229] utilized the tortuosity T together with the sphericity
in order to estimate packed-bed porosities. The tortuosity is typically defined as the ratio of the actual
fluid flow path and the packing height. It reaches values around 1.4 to 1.5 for spheres [251, 252] and
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Figure 2.10: Experimental literature data regarding the sphericity ΨW dependent evaluation of
packed-bed bulk porosity εinf [177, 216, 227–229, 231, 238–240, 242–250]

may be correlated to the packing porosity [253–257]. Unfortunately, a large number of data points of
the elongated cylinders displayed in Fig. 2.10 would be allocated a tortuosity value below unity when
applying Lanfrey et al.’s correlation [229] to Fig. 2.10.

Moreover, Yu and Standish [228] developed a characteristic packing diameter dpack that can be used
together with the sphericity to describe packings of arbitrary shapes or size variations. This packing
diameter is defined as the diameter of a sphere that leads to a maximum packing porosity in a binary
mixture with the investigated shape. This attempt is inconvenient as it requires a large number of
experiments for the determination of a single characteristic diameter and was tested for a small selection
of convex shapes only [228, 231]:

dp,v

dpack
= ΨW

2.785 · exp [2.946 · (1−ΨW)]. (2.5)

Other shape factors are known in the context of characterizing undesignated granular material, as for
instance the empirical Heywood factor [236, 258, 259]. Herein, flatness m and elongation n of a particle
are defined and related to the shape’s sphericity [231]:

ΨW =
2.418

(m ·n−2)1/3 +(m−2 ·n)1/3 +(m ·n)1/3
. (2.6)

Moreover, a correlation of the sphericity and the Hausner ratio known from powder beds and describing
the compressibility of a packing was found [241, 260, 261]. A tendency of a larger Hausner ratio and thus
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packing compressibility was obtained with decreasing shape sphericity but with a large data scatter [231]:

Hr = 1.478 ·10−0.136·ΨW . (2.7)

Despite a large number of available randomly packed shapes, only a small selection is studied in further
detail. With higher complexity in particle shape, the predictability of the packing structure becomes
increasingly elaborate. While a single sphere within a packing can basically be described by two
parameters, the centre location and the (characteristic) diameter, a cylindrical shape needs to be further
characterized by its orientation (eg, rotation matrix) and a shape factor called aspect ratio defining its
height-to-diameter ratio a1. Further improvement of the simple cylindrical shape is done by cutting a
straight axial hole and obtaining a hollow cylinder often called Raschig ring. The list of parameters
required to entirely describe this shape is enlarged by a second aspect ratio giving the inner to outer ring
diameter a2. Similarly, an ellipsoid can be described completely by two aspect ratios. Any more complex
shape requires a whole set of aspect ratios while any variation in these parameters will presumably affect
the packing characteristics (even when keeping other influences like material or packing mode constant).
It is still possible to describe the packing of a specific complex shape by performing the relevant studies,
but it is hard to predict the performance of an arbitrary shape or even geometrically similar shapes from
the obtained results. Thus, experimental studies exist and will be described in the following regarding
packing properties for cylinders and rings, although the database is much smaller compared to spheres. A
comprehensive list of experimental studies involving shapes other than spheres is presented in Table 2.6.

The most notable results from this list are summarized in Fig. 2.11 regarding radial void distribution and
average bed porosity for equilateral cylinders, non-equilateral cylinders, and hollow cylinders, respectively.
It was not possible when comparing the data from the respective plots as was done for spheres, as the data
showed significant differences when comparing the data from different research groups. Clustering was
thus impossible. Consequently, the reproduced data are selected due to their extent, not their claim of
correctness compared to other data sets. However, some general trends may be derived and are discussed
in the following.

Equilateral cylinders

The equilateral cylinder is a cylinder with equal height and diameter. Regarding the available radial void
distributions (cf. Fig. 2.11a) of cylinder packings at various tube-to-particle diameter ratios [103] in
comparison to a packing of spheres (cf. Fig. 2.11a), similarities in the general oscillatory trend can be
seen. However, the amplitude, period and bulk porosity take on slightly different values. Consequently,
very similar correlations can be derived, namelyKüfner and Hofmann [110], based on Vortmeyer and
Schuster [149]:

ε(zr) = ε̄inf · (1−
1− ε̄inf

ε̄inf · exp(1)
· exp(1+ zr) · cos(2 ·π · zr)), (2.8)
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Figure 2.11: Radial porosity distribution ε(r) for A, equilateral cylinders; C, non-equilateral
cylinders; E, hollow cylinders, and average packing porosity ε̄ for B, equilateral cylinders; D,
non-equilateral cylinders; F, hollow cylinders [103, 111, 124, 177, 178, 180, 181, 216, 262]78



2.2 Experimental investigation of packed-bed structures

Table 2.6: Overview of experimental studies relating to the structural analysis of packed-beds
of non-spherical particles

Source Shape Aspect ratio
1/a1

Aspect ratio
ax

λv ε̄(λ ) ε(r) ε(z)

Giese et al. [136] Cylinder 1 - 9.15 1 1 -
Hollow cylinder 1 0.75 9.15 1 1 -
Deformed sphere - - > 10 1 1 -

Benyahia [262] Cylinder 0.25 to 3 - 3.51 - 14.04 10 10 10
Caulkin et al. [111] Cylinder 1 - 7.1 1 1 1

Hollow cylinder 1 0.16 - 0.47 7.2 - 7.7 3 3 3
4-hole cylinder 1 - 7.4 1 1 1

Baker and Kudrolli [220] Platonic 4 - 20 faces - 5 - 7 6 - -
Baker and Kudrolli [220] Cylinder 1 - 4.44/9.33 1 1 -
Benyahia and O’Neill [177] Cylinder 0.76 - 1.78 - 1.7 - 26.3 > 10 - -

Hollow cylinder 0.38 - 1.06 Not specified 1.9 - 14.5 > 10 - -
4-hole cylinder 1.14 - 1.26 Not specified 1.9 - 8.4 > 10 - -

Roblee et al. [104] Cylinder 1 - 11.75 - 1 -
Hollow cylinder 1 0.72 11.75 - 1 -
Berl saddle Regular > 10 - - 1 -

Sonntag [185] Cylinder 1 - 11 - 40 >10 (X) -
Hollow cylinder 1 0.62 - 0.78 5.6 - 25 >10 (X) -

Lerou and Froment [119] Cylinder 1 - 5.35 1 1 -
Hollow cylinder 0.94 0.43 n.a. 1 1 -

Bey and Eigenberger [147] Cylinder 0.833 - 3.333 - 5.35 4 - -
Hollow cylinder 1 0.44 - 0.63 3.33 - 10 4 - -

Blouwolff and Fraden [244] Cylinder 0.4 - 50 - n.a. 6 - -
Chikhi et al. [230] Cylinder, prism 0.88 - 1.4 > 10 - 6 - -
Comiti and Renaud [263] Parallelepiped 0.102 - 0.44 > 10 - 5 - -
Foumeny and Roshani [178] Cylinder 0.5 - 2 - 2 - 32 > 10 - -
Foumeny et al. [180] Cylinder 0.5 - 2 - 2.76 - 16.67 > 10 - -
Xie et al. [214] Cube, cuboid 1 - 4 1 - 2 5.5 - 11.5 12 - -
Xia et al. [264] Ellipsoid 0.51 1 > 10 1 - -
Wang et al. [265] Ring n. a. n. a. > 10 3 3 -
Zhang et al. [226] Cylinder 1 - > 10 1 1 -
Lumay and Vandewalle [219] Cylinder 1.67 - 90 - n.a. > 10 - -
Novellani et al. [246] Cylinder 1.2 - 50.5 - n.a. 10 - -
Man et al. [266] Ellipsoid 1.25:1:0.8 - 6.7 - 11 5 1 -
Jaoshvili et al. [267] Tetrahedra reg. - n.a. 7 - -
Parkhouse and Kelly [243] Cylinder 6.8 - 143 - n.a. - - -
Qian et al. [216] Cylinder 0.5 - 5 - >10 16 - -
Zou and Yu [241] Cylinder 1 - 100 - 4 - 40 > 10 - -
Montillet and Coq [115] Cylinder 5.3 - 16.3 1 1 -

Parallelepiped 0.209 - 17.7 1 1 -
Nguyen et al. [134] Cylinder 1.1 - 15 1 1 -

Trilobe n.a. - 24 1 1 -
Ring 1 0.1 - 0.2 > 10 2 2 -

Wehinger et al. [268] Hexagons 1.1 - 6.3,4.6 2 2 -

Roshani [103]:

ε(zr) = 1−0.695 · (1− exp(−1.83 · (zr)
0.34) · cos(6.65 · (zr)

1.08), (2.9)

and Bey and Eigenberger [147]:

ε(zr) =εmin +(1− εmin) · (z′−1)2 for z′ ≤ 1

ε(zr) =ε̄inf +(εmin− ε̄inf) · exp[−0.5 · (z′−1)] ·
[
cos(π/0.876 · (z′−1))

]
for 1 < z′

with εmin = 0.275 z′ =
(

1.8− 2
λ

)
·
(

R− r
d

)
.

(2.10)

Regarding the average bed porosity as a function of the tube-to-particle diameter ratio in Fig. 2.11b, a
very similar behaviour compared to spheres can be seen: the sharp porosity increase at the beginning, the
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global maximum, the sharp decrease, and the flattening out after reaching λ = 10. There is a difference in
the significantly larger data scattering, especially at large λ and the overall smaller porosity. The densest
cylindrical packing is found to be 0.27 [216]. Further dense packed packings have porosities around
0.3 [244] and between 0.28 - 0.31 [218]. Again, correlations were derived basically by adjusting the
coefficients of the already known correlations for spheres, namely Dixon [181]:

ε̄ = ε̄inf +
0.1
λv

+
0.7
λ 2

v
with 1.67≤ λv ≤ 20 ε̄inf = 0.36 (2.11)

ε̄ = 1− 0.763
λ 2

v
with λv ≤ 1.24, (2.12)

and Foumeny and Roshani [178]:

ε̄ = ε̄inf +0.684 ·λ−0.85
v · 1√

(1.837 ·λv−1)
with λv ≤ 1.44 ε̄inf = 0.293. (2.13)

Additionally, particle orientation effects become relevant. The X-ray study of Caulkin et al. [124] reveals
a particle axis orientation peak for angles of 50 - 60° to the tube axis, decreasing in both directions.
Especially particles orientated at 0 - 30° are rarely found.

Non-equilateral cylinders

Regarding non-equilateral cylinders, the radial porosity distribution shows a completely different and
quite irregular pattern. As displayed in Fig. 2.11c, the peak and minima occurrences do not appear to
follow a specific rule, or at least this rule can not be identified with the small amount of available data.
This accounts for flat disks as well as for elongated cylinders. However, the overall variance (or amplitude)
seems to be smaller compared to equilateral cylinders. Thus, no appropriate correlation could be derived
so far to describe the radial void distribution for non-equilateral cylinders.

The average bed porosity as a function of tube-to-particle diameter ratio for selected available data is
displayed in Fig. 2.11d. Here, the data appears to follow a similar pattern as observed for spheres and
equilateral cylinders. The influence of aspect ratio on the porosity of an infinite bed was already discussed
above, where the densest packing was obtained with equilateral cylinders. Regarding confined packings at
low tube-to-particle diameter ratios and low cylinder aspect ratio variation between 0.5 and 2, a difference
in packing porosity was either too small to differentiate [178, 180, 241, 262] or results indicate a slight
influence similar to the porosity of an infinite bed, where packing porosity increases as the aspect ratios
move away from unity [216, 262]. In Fig. 2.11d, the aspect ratio is displayed as the gray scale of the
markers, with a mean gray representing an aspect ratio of 1. However, the deviations between the data sets
and the limited number of data per set do not allow a definite conclusion. Nonetheless, some correlations
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were derived including or explicitly excluding the influence of the aspect ratio comprising Foumeny and
Roshani [178, 269]:

ε̄ = ε̄inf ·Ψa
W+0.254 ·Ψb

W · (λv)
−0.293·Ψc

W · 1
(0.723 ·Ψd

W ·λv−1)0.5
with ε̄inf = 0.383, (2.14)

and Benyahia and O’Neill [177]:

ε̄ = ε̄inf +
1.703

(λ +0.611)2 with ε̄inf = 0.373. (2.15)

Hollow cylinders and rings

In order to describe hollow cylinders, a second aspect ratio a2 of the inner and outer ring diameters is
included. A selection of radial porosity profiles obtained from hollow cylinders [111, 124] with different
aspect ratios a2 are displayed in Fig. 2.11e. Accordingly, larger values of a2 result in a significantly higher
and smoother porosity distribution. The minima in particular are clearly smoothed compared to solid
cylinders. On the contrary, new intermediate maxima of which the height increases as a2 are developed.
No correlations have been derived so far.

The sparsely available experimental data in the literature of average bed porosity values for different λ

and aspect ratios a2 are summarized in Fig. 2.11f. The general trend is in accordance with solid cylinders
and spheres; however, the porosity of an infinite bed increases significantly with increasing a2. The
most comprehensive study in this context was performed by Dixon [181] investigating equilateral hollow
cylinders with a2 = 0.5, 0.58, 0.65 and 0.75. As correlation, the calculated solid cylinder base ε̄sc Eq.
(2.11), corrected with the inner void is used:

(1− ε̄sc) =
1− ε̄

f ∗ (1− (a2)2)
. (2.16)

Regarding interpenetration of hollow cylinders with large holes, a correction f of this correlation for
a2 > 0.5 is suggested:

f = 1+2∗ (a2−0.5)2 ∗
(

1.145− 1
λv

)
. (2.17)

Similarly, Bey and Eigenberger [147] suggest the use of the correlation for solid cylinders with the inner
void correction by Dixon [181], while Foumeny and Benyahia [269] defined the interpenetration factor f ∗

with f ∗ = f · (1/a2
2−1). This factor may take values ranging from 0.95 - 1.0, especially 0.97, depending

on the aspect ratio a2. In contrast, Benyahia and O’Neill [177] suggested a correlation suitable for all
investigated aspect ratios:

ε̄ = ε̄inf +
2.030

(λ +1.033)2 with 1.9≤ λv ≤ 14.5 ε̄inf = 0.465. (2.18)
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Finally, investigations of the orientation distribution reveal that the majority of rings have their opening
not facing in the main flow direction [124].

In summary, a certain number of shapes, especially cylinders and hollow cylinders, have been investigated
in the manner of packings of spheres. However, the existing data is not complete and differs significantly
between the different sources consulted. While wall effect corrections have been derived for cylinders and
hollow cylinders, the inclusion of the respective aspect ratios is inconsistent. Consequently, much more
research is needed in order to understand the influence of simple shapes, such as cylinders and hollow
cylinders alone, before thinking about more complex geometries.

2.2.4 Influence of particle material

Although most researchers do not take any material effects into consideration, Schuster and Vort-
meyer [122] realized a significant difference in the radial porosity profiles comparing glass and steel
spheres of the same size. Susskind and Becker [211] compared steel and glass packings in random close
packing arrangements, where the steel packing has a slightly higher overall porosity.

Regarding material diversity, packed shapes made of almost any imaginable material have been utilized.
This includes glass [20, 67, 119, 120, 122, 125, 129, 175, 179, 180, 190, 191, 193, 211, 270], ceramic
[119, 124], steel [122, 186, 193, 211], stone [196, 217], metal [182, 192], lead [103, 105, 106, 108,
111–113, 217], wood [121, 231, 240, 241, 247], beans [114, 231], or other edibles [114, 232, 243], and
plastic [107, 109, 116, 123, 180, 232] particles.

A small selection of studies evaluated packing material influences, but with contradictory results. While
Crawford and Plumb [270] revealed a strong increase in packing porosity (from 0.356 to 0.442 and
0.467) with increasing surface roughness alias friction, while the in-depth material study performed by
Macrae and Gray [225] resulted in only a minor influence of the coefficient of friction, if at all, but a
significant impact of the coefficient of restitution where higher values decrease the packing porosity.
Finally, Pottbäcker and Hinrichsen [186] observed both a decrease of porosity with lower friction and
higher restitution values.

In summary, most researchers unjustifiably neglect the existing influence of material on the packing
structure which may be problematic when comparing results with values taken from arbitrarily selected
literature obtained under different conditions. However, the independent evaluation of the effect of material
parameters remains impossible in experiments, as material parameters cannot be varied independently.
Here, numerical tools are required to understand material-related features.

82



2.3 Numerically packed-beds

2.2.5 Influence of tube shape and material

While almost all investigations employ cylindrical confinements, in some studies tubes with square
cross-sections are used [129, 179]. Comparing the average bed porosity data in a square duct [179] with
those in a cylindrical duct [135], very similar values are obtained. A range of studies relate to annular
ring packings where the packing is interrupted in the bulk part by one or more introduced tubes [102,
108, 111]. These annular packings are typically applied in nuclear engineering. Furthermore, non-rigid
containers (eg, balloons) were investigated by Susskind and Becker [211]. Additionally, Man et al. [266]
and Donev et al. [271] used spherical containers in their studies; however, the difference between the
results and those obtained for cylindrical containers was not discussed.

Besides the shape of the tube’s cross-section, tubes having a wall structure comprised of hemispheres
were investigated [272–274]. It was found that this adjustment may significantly flatten the porosity
profile in the packings of spheres, especially close to the wall. Similarly, Foumeny et al. [174, 178] tried
to improve the wall-section of a packing by introducing smaller particles into the wall region, forming
a so-called stratified bed. In summary, the tube’s shape and material are only seldomly discussed and
evaluated probably as if they have only a minor effect on the overall packing conditions.

2.3 Numerically packed-beds

Numerical packing generation can be performed by a large selection of commercial or free software
packages or an even larger selection of in-house produced codes and algorithms presented in the literature
(see Bennett [65], Clarke and Jónsson [86], Jodrey and Tory [88], Tory et al. [89], Visscher and
Bolsterli [275], Nolan and Kavanagh [276], Yang et al. [277], and Zhong et al. [26] and Zhu et al. [278]
for an overview). While the intention of this review is not to discuss advantages and disadvantages of
each packing procedure, the DEM [279] is by now the most established tool for the numerical packing
generation incorporating spheres with a physically accurate description of the particle packing process
(see eg, [80] for details). Unfortunately, in order to pack particles other than spheres this method needs
adaptation. For some distinct non-spherical shape classes, theoretical separate model developments exist
(see Lu et al. [280] for a general review, for more details also Zhao et al. [281], Kodam et al. [282, 283],
Guo et al. [284]). However, for the simulation of arbitrary shapes, it may be required to assemble the
desired shape using a sufficiently large number of overlapping spheres [248, 283, 285–291]. Another
attempt comprises the transfer of the DEM algorithm and the underlying physics to voxels (cubes) and
the subsequent assembly of the desired shape by voxels [112, 292–295]. Or, ignoring certain physical
conditions, shapes can be represented by a surface grid [296, 297]. A good comparison of some methods
with regard to packing generation was presented by Fernengel et al. [298] for spheres, Caulkin et al. [291]
for cylinders, and Flaischlen and Wehinger [299], who investigated packings of cylinders, hollow cylinders,
and some more complex shapes.
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These numerical packing algorithms are frequently used to generate packings for subsequent fluid
dynamics [139, 287, 300–311], heat [288, 296, 312–320], or mass transfer simulations [321–331]. The
numerical procedures are well capable of geometric packing analysis, allowing separate material property
variation, packing procedure evaluation, and shape factor analysis on a large scale and in a fast and
cost-efficient manner. In general, two settings have to be distinguished, one setting incorporating the
confining wall (see Zhao et al. [281], and Mueller [332]) and one setting having periodic boundaries and
thus neglecting of the influence of the confining wall (see Zhao et al. [285], and Delaney and Cleary [333]).
When using confined packings, it is required to use the bulk part of the packing for porosity calculation to
exclude top and bottom effects [232]. Unfortunately, validation is frequently a major problem, as typically
not enough experimental data is available, and the available data frequently has a large error or is obtained
under uncertain or vague packing and material conditions.

2.3.1 Influence of material and packing procedure

Zhang et al. [80] evaluated packing procedure properties and found a decrease in porosity when using
higher particle drop heights and lower deposition intensities (number of particles filled per second).
Additionally, material properties have been evaluated predicting a lower porosity when having a lower
damping coefficient which directly correlates to the coefficient of restitution and a lower coefficient of
friction [80]. Similar results were obtained by other scientists [248]. The decrease in porosity for a smaller
coefficient of friction values was repeatedly obtained [140, 161, 290, 297, 334–337]. Furthermore, the
porosity increases with increasing E-modulus [248, 334], a decrease in the coefficient of restitution [297,
335, 336], and an increase in surface energy [335]. The porosity is not dependent on the particle’s stiffness
[335]. The extent to which it is influenced by certain material parameters can be best evaluated using a
sensitivity analysis [338]. However, the respective material parameters are often not known, they need to
be guessed and adjusted by comparing experimental and numerical outputs [339].

Packing densification using vibration [213, 286, 340], tapping [341, 342], or air impact densification [343]
was studied finding optimal densification parameters to gain the densest packings. Furthermore, a lower
porosity can be obtained with fewer particles added at the same time [80, 298, 336]. Thus, numerical
packing generation tools are very important for the evaluation of material or packing procedure parameters
and thus understanding of these influences, because it is impossible to vary these independently in an
experiment.

2.3.2 Influence of the shape

Numerical studies investigating shape effects on packing structure, most predominantly aspect ratio
variations, are reviewed in Table 2.7 clustered according to the evaluated shapes and respective aspect
ratio ranges, and the evaluated packing parameters including mean coordination number N̄C, bulk porosity
εinf and ε̄(λ ), local porosity distributions ε(r), and the particle orientation angle θ . Additionally, the
data obtained from the literature for the calculated average bed porosity as a function of the respective
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Table 2.7: Literature review on numerical packing generation studies sorted by shape

Source Shape Aspect ratio
1/a1

Aspect ratio
ax

N̄c εinf ε̄(λ ) ε(r) θ

Wu et al. [286] Cube 1 - X X X X -
Zhao et al. [285] Frustrums,

cylinder, cone
0.5 - 1.5 0 - 1 - X - - -

Xie et al. [344] Cube 0.3 - 1.5 - X X - - -
Zhao et al. [345] Spherocylinder 1 - 11 - X X - - X
Wouterse et al. [346] Spherocylinder 1 - 160 - X X - - -
Wouterse et al. [347] Spherocylinder 1 - 6 - X X - - -
Wouterse et al. [347] Ellipsoid 0.1 - 5 - X X - - -
Donev et al. [271] Ellipsoid 0.3 - 3.5 - X X - - -
Donev et al. [271] Aspherical

ellipsoid
1 - 2 - X X - - -

Williams and Philipse [348] Spherocylinder 1 - 161 - X X - - -
Sherwood [349] Ellipsoids 0.07 - 15 - - X - - -
various [46, 90, 108, 112, 139,
161, 276, 297, 298, 300, 304,
309, 320, 332, 350–355]

Sphere - - (X) (X) X (X) -

Qian et al. [356] Cylinder 0.1 - 10 - X X - - -
Zhou et al. [334] Ellipsoid 0.1 - 7 - X X X - -
Zhao et al. [357] Superellipsoid 0.3 - 2.5 0.5 - 1.4 X X - - X
Zhao et al. [281] Tetrahedra 0.4 - 3.0 -0.75 - 1.00 X X X - X
Zhao et al. [358] Sphero-tetrahedra 0.12 - 1.84 -0.75 - 1.00

0.05 - 10
- X X - -

Lathan et al. [359] Tetrahedra 1 - 1.8 - - X - - -
Li et al. [360] Tetrahedra 0.5 - 1.5 - - X - - -
Niegodajew and Marek [361] Hollow cylinder 0.33 - 3.0 const. 0.8 - X X - X
Nan et al. [335] Spherocylinder 5 - 20 - X X - - -
Nan et al. [362] Spherocylinder 5 - 50 - X X - - X
Meng et al. [207] Spherocylinder 1 - 7 - X X - - -
McGrother et al. [363] Spherocylinder 4 - 6 - - (X) - - -
Liu et al. [364] Cube 0.3 - 6.0 - - X - - -
Delaney and Cleary [333] Superellipsoids 0.33 - 3.5 2 - 5 X X - - -
Li et al. [289] Cone 0.5 - 1.5 - - X - - -

Cylinder 0.5 - 1.5 - - X - - -
Ellipsoid 0.5 - 1 1 - 2 - X - - -
Spherocylinder 0.5 - 1.5 - - X - - -
Tetrahedron 0.5 - 1.5 - - X - - -

Kyrylyuk and Philipse [365] Spherocylinders 1 - 11 - - X - - -
Jiao and Torquato [366] Platonic shapes Regular - - X - - -
Jiao et al. [367] Superballs Regular 0 - ∞ X X - - -
Jia et al. [293] Cylinder 0.1 - 30 - - X - - -

Spherocylinder 1 - 4.5 - - X - - -
Gan et al. [368] Ellipsoids 0.25 - 3.5 - X X - - -
Evans and Ferrar [369] Spherocylinder 1 - 25 - - X - - X
Dong et al. [319, 370] Cylinder 0.3 - 2.5 - - X - - -

Ellipsoids 0.3 - 2.5 - - X X - -
Desmond and Franklin [371] Ellipse 5 - 50 - - X - - -
Das et al. [310] Cube 0.33 - 1 - - X X X X
Ferreiro-Córdova and Duijn-
eveldt [372]

Spherocylinder 1 - 11 - - X - - -

Coelho et al. [311] Ellipsoid 0.1 - 10 - - X - - -
Cylinder 0.1 - 10 - - X - - -
Parallelepiped 0.1 - 10 - - X - - -

Chaikin et al. [373] Ellipsoid 1 - 3 0 - 1 X X - - -
Bolhuis and Frenkel [374] Spherocylinder 1 - 4 - - (X) - - -
Blaak et al. [375] Cylinder 0.1 - 10 - - - - - (X)
Baule et al. [376] Lens 0.45 - 1 - X X - - -

Dimer 1 - 2 - X X - - -
Spherocylinder 1 - 2 - X X - - -

Bargiel [377] Spherocylinder 1 - 80 - - X - - -
Kyrylyuk et al. [378] Spherocylinder 1 - 4 - - X - - -
Abreu et al. [379] Spherocylinder 1 - 4.5 - - X - - -
Freeman et al. [380] Spherocylinder 5 - 35 - - X - X -
Lumay and Vandewalle [219] Cylinder 5 - 90 - - X - - -

aspect ratio are summarized in Fig. 2.12, especially regarding (a) ellipsoid shapes, (b) spherocylinders,
(c) cylindrical shapes, and (d) platonic shapes. In some cases, correlations for calculating the porosity
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Figure 2.12: Mean bed porosity under the absence of confinement as a function of the aspect
ratio of packings consisting of: A, ellipsiods, aspherical ellipses (Donev et al. [271]) and lenses
(Baule et al. [376]);B, spherocylinders; C, cylinders (empty marks), hollow cylinders [hc],
frustums and cones; and D, tetrahedra (empty marks), cubes (solid marks) and superellipsoids
(star). The vertical line marks the range of minima occurrence [207, 271, 285, 289, 293, 333,
334, 344, 345, 347, 348, 356–362, 364, 365, 368, 370, 372, 373, 376–379]
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based on the respective aspect ratios are suggested [285]. The influence of curl index when packing
curved spherocylinders was studied [362], along with the influence of particle orientation [361, 362]. For
instance, in a packing of hollow cylinders, the particle orientation is increasingly perpendicular to the
container axis with increasing aspect ratio a1 [361].

Comparing different geometries [289, 381], a shape packing density order was identified. Accordingly,
the lowest porosity values were obtained with cubes followed by ellipsoids, cylinders and spherocylinders,
tetrahedrons, cones, and finally spheres with the highest bulk porosity [289]. As shown in Fig. 2.12,
the aspect ratios with the lowest packing porosity were identified to be around unity, except for the
spherocylinders and ellipsoids, where the minima are around 1.35 and 0.7.

Despite the usage of rather mathematical shapes, Partopour and Dixon [296] compared packings of
actual catalyst shapes such as hollow cylinders and multi-holed/fluted versions. Similarly, Moghaddam
et al. [336] compared sphere, cylinder, and hollow cylinder packings in cylindrical confining walls,
especially regarding the radial porosity distribution and λ -relation. Karthik and Buwa [328] compared
single-pellet-string packings of six different pellet shapes used in catalysis, comprising multi-holed
cylinders, cross-web cylinders, and polylobes, and Caulkin et al. [111, 124] investigated packings of
cylinders with different hole geometries and reactor setups. Finally, trilobes were further studied by
Boccardo et al. [297].

In summary, numerical packing generation tools have been frequently used to evaluate particle aspect
ratio variations affecting the bulk porosity. However, as the range of imaginable shapes and their aspect
ratio variations are infinite, we are far away from understanding a general shape influence on packed beds.
Moreover, comparing the obtained results, large deviations can be seen relating to different material and
packing mode conditions. Consequently, before being able to evaluate a universal shape dependence, the
definition of standard packing conditions is required. Otherwise, results are impossible to compare.

2.3.3 Further noteable results

Besides the often studied shape, material, and packing mode variations, some further notable studies were
performed, for instance comprising confinement shape variations including cylindrical, half-cylindrical,
square, and rectangular cross-sections [307, 319]. Moreover, studies were performed addressing the
porosity increase and packing compression for packing particle sizes <1000 µm where interparticle forces
become relevant [1, 368, 382, 383]. Further studies address the effect of particle size distribution or bi-,
tri-, and multimodal particle mixtures of the same shape or of different shapes (see Caulkin et al. [112],
Kyrylyuk et al. [378], and Dorai et al. [384]), but his is outside the scope of this review.
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2.4 Conclusion

The knowledge of random packings of mono-sized particles gained over the last hundred years of research
was reviewed and clustered. Available studies regarding the influence of shape, size, and material
properties of the particles, the packing and densification mode characterizing the bed formation, and
the influence of the confining tube including tube shape and material, were taken into consideration.
Explicitly excluded is the influence of shape inhomogeneity and multi-modal or multi-shape particle
mixtures. Furthermore, the reviewed data is restricted to a minimum particle size of 1 mm where gravity is
the predominant force. The structural characteristics investigated comprise the mean coordination number,
the radial and axial porosity distributions, and the average bed porosity. While a significant amount of
complementary studies with regard to packed-beds of spheres are known to result in a good understanding
of structural bed characteristics, there is still a significant lack of knowledge with regard to the influence of
particle shape. While this cannot be attributed to a lack of data, as there are numerous studies addressing
shape influences on all levels, the research field is simply too large for these studies to lead to a complete
fundamental understanding. However, numerical tools capable of producing and evaluating huge data sets
in short time frames open up the possibility to take the research on packing characteristics to another level,
and the overall complexity will rise when transferring to the real applications of packed-beds. Structural
impacts on fluid dynamics, heat, and mass transfer are far away from being comprehensively understood
while trial and error remain the standard development method. Consequently, the development of packing
shapes might be an interesting application example where machine learning tools might become relevant
in the future.
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Nomenclature

Latin Symbols

a,b,c,d pre-factor parameters -
a1 height to diameter aspect ratio -
a2 inner to outer diameter aspect ratio -
a3 upper to lower diameter aspect ratio -
ap particle surface area m2

ax any other aspect ratio -
cD(Re) drag coefficient -
d real particle diameter m
di inner particle diameter of hollow cylinder m
dp particle diameter m
dps,dpv,dpw,
dpd,dpack

equivalent particle diameter m

D diameter of tube m
f hollow cylinder interpenetration correction -
FD drag force N
g acceleration of gravity ms−2

h real height of a particle m
H height of tube m
Hr Hausner ratio -
m flatness ratio -
n number of taps per second s−1

n elongation ratio -
N̄c mean contact number -
r radial position m
R tube radius m
u0 superficial velocity ms−1

us sedimentation velocity ms−1

T tortuosity -
vp particle volume m3

z axial position m
zmin radial location of first porosity minimum -
zr non-dimensional radial position -
zz non-dimensional axial position -

Greek Symbols

ε porosity -
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Nomenclature

ε̄ average bed porosity -
εinf average bed porosity with λ → ∞ -
εmin local porosity at the first minimum close to the tube wall -
ε̄sc average reference porosity of a solid cylinder -
ε(r) radial porosity distribution -
ε(z) axial porosity distribution -
ε̄(λ ) average porosity as a function of λ -
λ tube to particle diameter ratio -
λv tube to particle diameter ratio based on volume equiva-

lent particle diameter
-

ρ̄ε packing density, = 1− ε̄ -
ρf fluid density kgm−3

ρp particle density kgm−3

τ relaxation time s−1

κ tube height-to-particle diameter ratio -
ΨW sphericity -
ψ azimuthal contact angle °
θ particle orientation in packing °
φ̄c mean (poloidal) contact angle °

Abbreviations

DEM Discrete Element Method
Erfc Error function
J0 Bessel function of first kind and zero order
MRJ maximally random jammed
RCP random close packing
RLP random loose packing
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3 Experimental Study on the Influence of Filling
Method and Particle Material on the
Packed-Bed Porosity

Abstract
The reliable prediction of the pressure drop of packed beds requires an accurate estimation of the
packed-bed porosity as its error propagation multiplies the occurring errors by a factor of about four.
The commonly used correlations to determine porosity depend only on the tube to particle diameter
ratio. To improve accuracy, the influence of the filling method and of material properties, in particular
surface roughness, density, and restitution coefficient are investigated for random packings of spheres
in cylindrical confining walls. Furthermore, statistical methods are applied to identify interconnecting
effects between these influencing parameters.
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3.1 Introduction

For the dimensioning of fixed-bed reactors it is essential that fluid dynamic characteristics, especially
the pressure drop as well as porosity and the resulting velocity profiles, are predictable and reproducible.
There exists a variety of correlations for the prediction of the pressure drop in a fixed bed. A collection
can be found by Pešić et al. [1], according to which the pressure drop is influenced by the characteristic
diameter, the diameter ratio of the packing elements, the filling height, the superficial velocity, the type
of the fluid used, and the porosity (ε) of the bed. In this context, the porosity is the void fraction of the
packed bed. Except this global porosity all other parameters can generally be measured or determined
in an accuracy sufficient for the prediction of the pressure drop. Unfortunately, the prediction of the
porosity of an arbitrary packed bed is often unsatisfactory. Again, numerous correlations for packings of
spheres in cylindrical confining walls exist [2–8] though most of them are valid only for a specific set
of experimental conditions. The error in pressure drop resulting solely from an error in porosity can be
estimated according to error propagation, which is displayed in Eq. (3.1) [9].∣∣∣ ∂ (∆P)

∂ε

∣∣∣(
∆P
∆ε

) =
3−n · ε

1− ε
· ∆ε

ε
(3.1)

Herein, n is 1 for laminar flow and 2 for turbulent flow. For laminar flow (n = 1) and a mean porosity of
0.4, a 2.5 % error in the porosity yields about a 10 % error in pressure drop. This is a multiplication by
factor four from porosity to pressure drop errors.

The porosity itself is mainly influenced by the tube to particle diameter ratio, the packing mode, the shape
as well as the size distribution of the particles and the roughness of the particles surface [5]. Further
publications indicate an influence of the particle material density [10], the shape of the container [11] and
the filling height to particle diameter ratio, called thickness effect [8, 12].

The aim of the present work is not to develop a new correlation competing already existing ones but to
investigate the whole set of parameters including those which are normally kept constant, namely the
material properties, in order to develop a much broader guidance to a more predictable and reproducible
estimation of the packed-bed porosity.

3.1.1 Wall Effect

It is well known that the local porosity in the packing increases in the near wall region (wall effect). For
large tube to particle diameter ratios λ = D/dp, this effect of the near wall region plays a minor role on
the global porosity, whereas for packed beds of lower λ , this results in an overall increase of the global
porosity. Plotting the global porosity versus λ > 2 gives a decreasing function approaching a constant
infinite value εinf for higher tube to particle diameter ratios [2–8]. For this work, the wall effect correlation
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according to Benyahia and O’Neill [7], which is valid for tube to particle diameter ratios between 1.5 and
50, is chosen.

ε = εinf +
1.74

(λ +1.14)2 (3.2)

It is known that εinf has to be adjusted to the packing mode used. Benyahia and O’Neill [7] give a
correlation for the additional influence of sphericity and de Klerk [5] predicts an influence of surface
roughness, without giving further evidence.

3.1.2 Packing Mode

According to Haughey and Beveridge [2, 5] the following packing modes are distinguished for mono-sized
spheres: very loose packing (εinf ≥ 0.44), loose packing (εinf ≥ 0.40), poured packing (εinf ≥ 0.375) and
densed packing (εinf ≥ 0.36). The random close packing (RCP) represents the smallest porosity that can
be achieved under absence of a global order. In case of spheres this porosity is just below 0.36. The listed
packing modes can be achieved by applying respective packing methods: settling down from a fluidized
bed, dropping the particles as a loose mass, pouring of particles, and densification of the packing via
subsequent vibration, tapping, or shaking. In order to obtain reproducible data it is essential to use certain
packing aids such as funnels of specific diameter, slides, vibratory plates, particle meshes as used for
snowstorm filling, or specific packing machines [10, 13]. It is desired to keep the relative pressure drop
error in terms of reproducibility below 5 % [10] by using such packing aids. This correlates to a relative
porosity error of about 1 %, referring to Eq. (3.1). Unfortunately some packing aids cannot fulfill this
requirement [10].

3.1.3 Particle Material

The effect of the particle material is often addressed theoretically though hardly determined experimentally.
Generally, the influence of the particle material was not fully clarified yet. On the one hand, e.g.,
McGeary [14] states that material and shape have no effect on the resulting porosity. On the other hand,
Theuerkauf et al. [15] show by DEM simulations that changing the friction factor results in a change
of porosity. In this case lowering the friction leads to lower overall porosities with deviations of 0.04,
equaling a relative error of 10 %. Surface properties such as friction and restitution coefficient are listed
by Yang [12] as influencing material parameters without experimental validation.

3.2 Experimental

High precision spheres made of steel with diameter d = 3 to 10 mm, aluminum (ALU) with d = 4 mm,
polyoxymethylene (POM) with d = 4 mm and glass with d = 4 mm were obtained from KGM Kugelfabrik
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GmbH & Co. KG, Germany and VTLG Europe Ltd., Germany. Polyamide (PA) spheres with d = 3, 4, and
5 mm were printed with a Laser Sinter Printer (EOS FORMIGA). The exact particle mass was determined
with a sample of 1000 particles for each material and the deviation was less than 0.1 %. The density and
its deviation, which was about 0.5 %, was determined using a pycnometer with a volume of 50 ml as the
mean of ten measurements of 50 particles each. Circular plexiglass tubes with an inner diameter of D =

15 to 55 mm and a constant height of H = 100 mm were used as container. The exact volumes of the tubes
were determined by filling them up with a known amount of water. The mean of three measurements
was noted. The filling was performed with three different methods using the following packing aids: I)
pouring the particles as fast as possible using a funnel with an outlet diameter of 20 mm; II) applying a
filling machine consisting of a horizontal tube and a vibrating motor to move the particles slowly to an
outlet funnel leading to the plexiglass tubes whereby the filling rate was kept constant at about 500 sm−1

filling height; III) utilization of a vibratory plate at constant amplitude to dense the packing produced
by slow pouring. The porosity was determined gravimetrically as the water displacement technique [6]
was not applicable due to the small density of polyamide. Experiments with the filling machine were
performed three times each, experiments with pouring and densification ten times each.

3.3 Results and Discussion

In a first step, a design of experiment (D.o.E) was set up in order to investigate the influences of different
parameters on the porosity of mono-sized sphere packings in general. These parameters were the material
(factor A), the filling method (factor B) and the size ratio (factor C) of the packing elements. For each
parameter, two levels were chosen: rough polyamide vs smooth steel for factor A, pouring vs densification
for the filling method and λ = 5 vs λ = 7 as diameter ratio. The D.o.E was performed as a fully factorial

Figure 3.1: Effects of material (A), filling method (B) and diameter ratio (C) on the porosity of
a packed bed of spheres.

design, with four runs for each parameter combination, in a randomized form. The results, as displayed in
Fig. 3.1, show a considerably large influence of material, a smaller effect for the filling method, and an
even smaller effect for the diameter ratio λ .
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Furthermore interacting effects between material and filling method (AB), material and diameter ratio
(BC) as well as between all three parameters (ABC) could be found. The compilation and evaluation of
the D.o.E were performed with Minitab® 17 software, the corrected R2 was determined to be 0.956.

In the second step an in depth parameter study of all three parameter pairs (AB, AC, and BC) was
performed.

3.3.1 Diameter Ratio λ and Filling Method

Initially, reproducibility measurements with all three filling methods were performed. Each data point
with a specific tube to particle diameter ratio was performed ten times (three in case of machine filling) to
gain a mean porosity ε̄ . The relative errors (∆ε/ε̄) for each data point were averaged over all data points
measured. Depending on the available particle sizes for each material from 27 (aluminum, machine filling)
to 970 (steel, pouring) measurements were summed up in this value. The mean relative error of pouring
was determined to be about 1.5 %, the filling machine caused an error of about 0.25 % and densification
was found to have a mean error of 2 %. This error was slightly dependent on the material used.

Figure 3.2: Experimental results of the porosity of steel (a) and polyamide (b) spheres varying
filling method and diameter ratio. The correlation of Benyahia and O’Neill [7] is given for
comparison.

Fig.3.2 exhibits the effect of the filling method for a range of diameter ratios and for two materials, namely
for polyamide (Fig. 3.2b) and for steel (Fig. 3.2a). For comparison the correlation of Benyahia and O’Neill
is shown.

It can be observed that the absolute values of porosity change with the filling method, though the decline
appears to be similar. The obtained data was fitted to the correlation of Benyahia and O’Neill with εinf

being the only fitting parameter.
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Table 3.1: Results of fitting data to the correlation of Benyahia and O’Neill [7] for different
filling methods.

Filling method
Fig. 3.2b: polyamide Fig. 3.2a: steel
εinf
[-]

corr. R2

[-]
SSE
[-]

εinf
[-]

corr. R2

[-]
SSE
[-]

Pouring 0.448 0.947 0.0010 0.390 0.898 0.0022
Machine 0.418 0.992 0.0006 0.383 0.997 0.0003
Densification 0.393 0.730 0.0020 0.374 0.900 0.0024

The results are displayed in Tab. 3.1, showing a good fit in case of machine filling for both materials and
notable deviations in case of pouring and densification. Densification shows the highest errors, which is
due to the fact that for certain measurements very ordered packing structures could be gained, resulting in
low porosities. This phenomenon was seen before [5].

3.3.2 Filling Method and Material

Varying material and filling method together, it can be found that the difference between the infinite
values of the different filling methods change with the material. In case of steel, as can be noticed in
Fig. 3.2a and Tab. 3.1, this difference between poured and densed packing is about 0.016. Furthermore, it
can be seen that there is hardly any difference between machine filling and pouring as methods. For the
polyamide sample, this difference is much higher, namely 0.055, and the machine filling definitely shows
an influence on the infinite porosity. This leads to the assumption that the influence of the filling method
on the generated packing has different impacts depending on the material. This correlating effect between
factor A, material, and factor B, filling method, was predicted in the D.o.E, and can thus be confirmed by
experiment.

3.3.3 Material and Diameter Ratio λ

Testing the influence of the particle material, six different materials were tested with machine filling as
filling method. It has to be understood that polyamide spheres were very rough having a mean surface
roughness depth Rz = 50 µm. The sample steelrust is exactly the same material as steel, with the only
difference that due to small rust production on its surface the roughness was increased. All other samples
have smooth surfaces. The material densities are depicted in Tab. 3.2. By comparing the two steel and
plastic samples in Fig. 3.3, it can be deduced that the surface roughness seems to have a distinct effect on
the porosity by increasing its value significantly.

In terms of density, a general trend with low densities having a tendency to result in higher porosities can
be observed. Apparent abnormalities to this trend can be noticed in terms of aluminum, with a porosity
much higher than expected, and glass, with a porosity rather less than expected. It is thus assumed that at
least a third influencing material parameter overlaps with density and surface roughness. This parameter
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Figure 3.3: Correlation between the material and the diameter ratio on the porosity of a packed
bed of spheres using machine filling and the correlation of Benyahia and O’Neill [7] for fitting.

Table 3.2: Properties and results of fitting data to the correlation Benyahia and O’Neill [7] for
different materials.

Material Density
[kgm−3]

Restitution k
[-] [16–18]

εinf
[-]

corr. R2

[-]
SSE
[-]

Polyamide (PA) 975 n.a. 0.418 0.997 0.0006
Polyoxymethylene (POM) 1354 0.9 0.394 0.989 0.0007
Glass 2550 0.94 0.383 0.998 0.0003
Aluminum 2710 0.6 0.401 0.990 0.0007
Steel (rust) 7780 0.8 0.395 0.992 0.0006
Steel 7780 0.8 0.383 0.997 0.0003

114



3.4 Conclusion

is thought to be the restitution coefficient k proposed by Yang [12]. Using the machine as filling device,
single balls fall on top of an already settled packing of balls. In case of high restitution coefficients, the
falling ball will make the already settled balls move again, allowing them to find a new, maybe better
position. Meanwhile, a ball with a small restitution coefficient falling onto already existing balls will not
make them move at all as kinetic energy is transferred to inner energy. Own experiments suppose the
following order of restitution coefficients, which are in accordance with literature values as displayed in
Tab. 3.2.

kALU < kPA < ksteel < kPOM < kglass

It is not known, whether a rusted surface has an impact on the restitution coefficient of steel balls. Own
experiments suggest a rather small impact if any. The extraordinary low value for aluminum and high
value for glass might explain the deviation to the expected values as described above. The interaction
between diameter ratio and material is evaluated by fitting the correlation of Benyahia and O’Neill to
the data of Fig. 3.3. Accordingly, their correlation is able to describe the wall effect adequately, only the
infinite values have to be adopted to the materials used. The obtained results are displayed in Tab. 3.2.

3.4 Conclusion

In terms of porosity of a packed bed, numerous correlations describing the wall effect only as a function
of the tube to particle diameter ratio exist. However, for a general prediction of the packed-bed porosity,
these correlations are not sufficient, as they neglect other influencing parameter such as shape [7]. It
was found that additional to the influence of the shape, the material, in particular, the roughness, the
density, and the restitution coefficient of the packing elements cannot be neglected, nor can the filling
method. Both parameters in combination show a huge interconnecting effect as illustrated in D.o.E and
experimental studies. The wall effect itself can be well described by the decreasing function of the existing
correlation of Benyahia and O’Neill, though the infinite porosity has to be adjusted to the specific cases.
According to error propagation, the deviation of the experimental data of the polyamide sample from the
correlation in case of pouring, which is 0.06, would, in case of turbulent flow, lead to an error of pressure
drop of about 56 %. In case of machine filling, the deviation of 0.026 leads to an error of 24 %. In order to
avoid these large errors in the estimation of pressure drop it is therefore not sufficient to only consider the
diameter ratio in the determination of porosity. Unfortunately, a specific correlation for the influence of
material and filling methods on infinite porosity could not be formulated yet, as material properties overlap
and cannot be varied apart from each other in experiment. Numerical methods for packing generation
and simulation of fluid dynamics, heat and mass transfer as, e.g., described by Boccardo et al. [19] are
therefore needed and currently investigated. Further parameters, not discussed in this paper, that could
influence the porosity of a sphere packing are the tube shape, the tube material especially the surface
properties, and the size distribution of the particles [10, 12]. It is to be understood, that in this study
spheres of nearly ideal sphericity were used and depending on the manufacturing process of the packing
particles, size distributions may occur.
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Nomenklatur

Latin Symbols

d sphere diameter m
dp particle diameter m
D diameter of tube m
H height of tube m
k restitution coefficient -
∆P pressure drop Pa
Rz mean surface roughness depth m

Greek Symbols

ε porosity -
εinf porosity with λ → ∞ -
λ tube to particle diameter ratio -

Abbreviations

ALU aluminum
D.o.E. design of experiment
PA polyamide
POM polyoxymethylene
RCP random close packing
SSE sum of squares due to error
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4 Experimental Characterization of Random
Packed Spheres, Cylinders and Rings, and
their Influence on Pressure Drop

Abstract
The reliable prediction of the pressure drop of packed-beds requires an accurate understanding of the
packing characteristics. Therefore, packings of spheres, cylinders and hollow cylinders are studied: firstly,
developing a reproducible and easily achievable packing generation method by single dropping; secondly,
evaluating and correlating the average bed porosity as a function of the tube-to-particle diameter ratio λ ,
the diameter-to-height aspect ratio and the inner-to-outer diameter aspect ratio. The packed-bed pressure
drop was measured, thoroughly evaluating the influence of particle filling speed, the error propagation
from porosity deviations resulting in a miltiplication factor of 3.1-3.9 for spheres and 2.4-3.0 for cylinders
depending on material characteristics, and the influence of particle surface roughness, with rough particles
increasing the packing friction by 17.5%. A novel Carman-type pressure drop correlation for smooth
equilateral cylinder packings valid for Rep = 10-3000 is described.

This article was published in:
Chemical Engineering Science, 222, J. von Seckendorff, N. Szesni, R. Fischer, O. Hinrichsen, Experimen-
tal characterization of random packed spheres, cylinders and rings, and their influence on pressure drop,
115644, Copyright Elsevier (2020). DOI: 10.1016/j.ces.2020.115644.
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4.1 Introduction

Random packings of predominantly spherical but also cylindrical particles are deployed in a large range
of industrial applications. Thereby, random packed-beds may be investigated in regard to structural
characteristics, for instance, the void distribution [1, 2], single- and multi-phase flow aspects [3], the
extent of pressure loss along the bed height [4], axial and radial dispersion effects [5] in common with
inter- and intra-particle heat [6, 7] and mass transfer properties.

Despite their typically random arrangement, particles in packed beds tend to align with their confining
wall’s geometry. This alignment evokes an underlying particle order usually named Wall Effect reaching
some particle diameters into the packing. This not only affects the local void distribution but influences the
overall packing characteristics such as average bed porosity. Furthermore, structural packing parameters
may be influenced by the particle’s material, shape and size distribution, the container’s material and
shape and the applied deposition and compaction methods [8, 9]. Variations in structural properties are
known to result in a significant change of fluid dynamics, heat and mass transfer. For instance, a deviation
(error) in average packed-bed porosity results in four times this deviation in regard to bed-normalized
pressure drop as predicted by error propagation [10]. While most researchers focus on packed-beds of
spheres, random packings of other shapes are only sparsely investigated. The present study aims to fill at
least parts of this gap, by investigating average bed porosity and pressure drop variations as a consequence
of changed packing particle’s shape and material, confinement shape, packing deposition method and
tube-to-particle diameter ratio. In the following detailed literature summary, the influences on the packing
characteristics are first discussed under theoretical absence of a confining wall, followed by the evaluation
of the confining wall’s influence. Finally, the relevant state of the art regarding packed bed pressure drop
is summarized.

4.1.1 Bulk packing characteristics

At theoretically infinite tube-to-particle diameter ratio λ → ∞, a random packed-bed is characterized by a
constant void distribution and the respective bed porosity εinf = 1−N·vp/VT. This measure depends on the
packing mode and any applied densification processes, the particle’s material and the particle’s shape [8,
9, 11].

Packing mode

In regard to technically used packed-beds, four packing and compaction methods and their respective
porosity values for the well-investigated sphere-shape were identified [1, 2, 12]: very loose random
packing (ε̄ ≈ 0.44) obtained by settling a fluidized bed or by sedimentation; loose random packing
(ε̄ ≈ 0.40−0.41) obtained by letting the spheres roll individually into place, individual hand packing or
by dropping the spheres as complete loose mass; poured random packing (ε̄ ≈ 0.375−0.391) obtained by
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pouring particles into the container; and close random packing (ε̄ ≈ 0.359−0.375) obtained by vibrating,
shaking or tapping of the container. Thus, technical packings may take on values between 0.36 (Random
Close Packing RCP) [13] and 0.44 (Random Loose Packing RLP) [14] in the absence of a confining
wall.

Packing densification was addressed in some experimental and numerical studies including the vibration of
the packing [15–23], tapping [24–29], sequential addition [30], sock filling [31], air impact densification
[32], and snowstorm filling [9, 33]. Optimal vibration conditions have been studied [15–17, 30] others
investigate the densificating effect of the smaller particle filling rates (number of particles added per
time) [9, 34] where a lower porosity can be gained with fewer particles added at the same time [35–37].
Additional effects of the surrounding fluid are reported [38].

Particle material

Particles of all kinds of material have been used including metal [11], glass [38], ceramics [39], plastic
[40] and natural materials [19], however, possible influences of material properties are typically neglected.
On contrary, some researches found relevant but in parts inconsistent influences of the particle material
on packing properties [11, 34, 41–43], though being hard to evaluate as material parameters can not be
independently varied in experiment.

This, however, is easily possible in studying numerically generated packed-beds. A perfect consensus is
obtained among different researchers predicting a denser packing when using materials having a lower
coefficient of friction [36, 37, 44–51] and a higher coefficient of restitution k [36, 47, 50]. Furthermore,
denser packings are gained when the particle material has a lower E-modulus [46, 51] and lower surface
energy [47]. Moreover, the packing density seems to be independent from material density.

Particle shape

The particle shape is known to have a significant influence on the bulk packing porosity. To describe a
shape in regard to an ideal sphere, the shape factor sphericity ΨW as defined by Wadell [52] can be used.

ΨW =
π

1/3 · (6 · vp)
2/3

ap
(4.1)

This parameter may be correlated to the average packing porosity at infinite λ , but up to today no
universally applicable relation was found. Having no universal descriptive factor available, shapes need to
be clustered and separately evaluated. Each cluster has set geometrical parameters, as for instance the
solid cylinder, which is characterized by an aspect ratio a1 = d/h and the equivalent diameters dp and/or
dv; or the hollow cylinder cluster having an additional aspect ratio a2 = di/d.
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Regarding cylinders, some noteworthy experimental studies were performed [27, 40, 53–62]. Accordingly,
the packing of equilateral cylinders a1 = 1 gives the densest packings with increasing porosity when
increasing or decreasing the aspect ratio from unity, with a stronger effect occurring for elongated
cylinders. Numerical studies confirm the general trend [63–67], while absolute values diverge due to
different packing modes. Compared to spheres, denser packings can be gained, especially in RCP mode,
going down to a porosity around 0.27 [18, 24].

Hollow cylinders were similarly investigated in experiment [56, 57, 59, 68–72] and simulation [73]. They
are believed to pack equal to their solid cylinder counterpart, except that the porosity needs to be corrected
to the additional inner void caused by the holes [68, 69].

(1− εsc) =
1− ε

f · (1− (a2)2)
(4.2)

Moreover, an additional correction factor f [68] or f ∗ [70] is suggested accounting for interpenetration
effects occurring for a2 < 0.5.

4.1.2 Confined packed-beds

When packings are confined in a container, the packing is forced to align with the confining walls, resulting
in a variation of local structure [1] and an increase of average bed porosity with increasing wall influence
λ . As a rule of thumb, packings of spheres are affected by the wall effect when λ < 10 [1], this extent of
wall effect may alter to smaller values for other shapes such as cylinders and rings [56].

Many experimental studies were performed to evaluate the behavior of sphere packings in small containers
and many correlations were derived. A summary of correlations can be found elsewhere [74, 75]

Among the displayed wall effect correlations, the ones of Benyahia and O’Neill [56] and Foumeny et al.
[20] were selected due to the best fit with our previously presented experimental data [11].

Benyahia and O’Neill [56]: ε̄ =εinf +
1.74

(λ +1.14)2 for 1.5≤ λ < 50 (4.3)

Foumeny et al. [20]: ε̄ =εinf +0.254 · λ−0.923
√

0.723 ·λ −1
for 1.866≤ λ < 22 (4.4)

The variation in packing mode and particle material can be considered by adopting the bulk porosity εinf

to the specific case while keeping the actual wall effect correlation and its parameters constants [11]. On
the contrary, investigating packings of shapes other than spheres, εinf and all pre-parameters are typically
adjusted [56, 68].

123



4 Bed Density of Spherical Packings

Confinement shape

Typically, cylindrical confinements are used as packing container but some utilizations of tubes with
square ducts are published [76–78]. But when compared, the average bed porosity data of tubes with
square duct [77] and those with a circular cross-section [79] appears very similar. Further studies are
related to annular packings where the packing is interrupted in the bulk part by one or more introduced
tubes [71, 80–82] or spherical containers [83, 84]. A comparison of numerical packings having different
confinement shapes including cylinder, half-cylinder, square and rectangle was performed, but only taking
one container size into account for each shape [85].

4.1.3 Pressure drop

For many applications, the pressure drop along the bed height is one of the most decisive parameters.
Regarding packings of spheres, a large number of correlations have been derived, relating the pressure
drop to the packing porosity and the Reynolds number (see [4] for a review). Herein, the pressure drop is
incorporated in its non-dimensional form called friction f ′:

f ′ =
∆P
H
·

dp

ρ ·u02 ·
ε̄3

1− ε̄
= f (Rep) with Rep =

ρ ·dp ·u0

η · (1− ε̄)
(4.5)

Despite some exceptions, the friction-Reynolds relation f (Rep) is categorized into the Ergun-type [86]
and the Carman-type [87]. Both types have a first term with indirect proportionality to Rep which is
dominant for the laminar flow region, and a second term, which relates to the fully turbulent region,
where the Ergun-type correlations are independent from Rep, whereas the Carman-type correlations still
considers a small Re-effect. In their review, Erdim et al. [4] strongly prefer the Carman-type description
of the turbulent regime. Despite a century of research on pressure drop of packed-beds, Carman’s [87]
correlation have not changed much since then.

Ergun [86] : f ′ =
150
Rep

+1.75 (4.6)

Carman [87] : f ′ =
180
Rep

+
2.871
Rep

0.1 (4.7)

Erdim et al. [4] : f ′ =
160
Rep

+
2.81

Rep
0.096 . (4.8)

The effect of the tube-to-particle diameter ratio λ was thoroughly discussed in Erdim et al.’s review [4].
While a lot of correlations include an additional λ -dependency in the friction-Reynolds relation f (Rep,λ ),
the implemented effects on the friction are contradictory. Moreover, Erdim et al.’s data [4] of which more
than half were gained for 4≤ λ < 10 were best represented with correlations that did not use an additional
λ -relation. It was concluded, that more clarification on this topic is required.
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4.2 Experimental setup

While most research was done using packed-beds of spheres, the effect of particle shape was occasionally
discussed. Some researchers suggest the introduction of a universal shape factor such as sphericity ΨW

[88, 89], others simply adjust the pre-factors for each shape cluster separately [90, 91].

Nemec and Levec [89] : f ′ =
150

ΨW
3/2 ·Rep

+
1.75

ΨW
4/3

(4.9)

For packed-beds of equilateral cylinders, the pre-factors are slightly larger, 190-216 [90–93] for the first
and 1.56 to 2.4 [92, 93] for the second term of the Ergun-type correlation. These factors increase further
with decreasing or increasing aspect ratios away from unity [92]. However, the factor adjustment varies
much between the research groups and the sphericity inclusion was not tested for a large range of shapes.
Consequently, large deviations between data and correlation are seen [94].

Another occasionally discussed parameter is the surface roughness of the particles. While in their review
Eisfeld and Schnitzlein [90] deny any particle surface effects on pressure drop, there are some examples
where an increase in friction is observed for rougher particles [89–91, 93].

4.1.4 Objectives

Although random packings are influenced by a large number of parameters, some are frequently neglected
reducing the comparibility of literature data. This paper aims to be a guidline on the extent of these
influencing factors, especially filling method, material characteristics, shape and size ratios on both,
the average porosity and the pressure drop. There is a significant need for standardization of random
packing generation, no matter if they are used for pressure drop, heat or mass transport evaluations. The
frequently used standard packing procedures random loose and random close packing are experimentally
hard to achieve and do not represent industrial reality. Furthermore, literature correlations regarding the
tube-to-particle diameter ratio are typically limited to packings of spheres, though packings of cylinders
and hollows cylinders are similarly utilized in industry. If correlations are available they neglect the
influence of aspect ratios. Additionally, the effect of tube shape is not understood yet. Finally, the
propagation of porosity deviations on pressure drop needs to be quantified in order to understand the
significance of standardization and delicate parameter selection in terms of packing generation and
experimental setups.

4.2 Experimental setup

4.2.1 Experimental packing generation

High precision steel spheres (VTLG Europe Ltd., Germany) with density ρ = 7780 kgm−3 and restitution
k = 0.8 [11], high precision spheres made of glass (ρ = 2550 kgm−3, k = 0.94 [11]), aluminum (alu,
ρ = 2710 kgm−3, k = 0.6 [11]) and polyoxymethylene (POM, ρ = 2354 kgm−3, k = 0.9 [11]) obtained
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4 Bed Density of Spherical Packings

from KGM Kugelfabrik GmbH & Co. KG, Germany, 3d printed (selective laser sintering, EOS Formiga,
Germany) polyamide spheres, cylinders and hollow cylinders with a rough surface having a mean surface
roughness depth Rz = 50 µm and density ρ = 975 kgm−3, laser cut plexiglass cylinders with a smooth
surface (Rz < 1 µm) and density ρ = 1140 kgm−3, and one type of tablet pressed ceramic cylinder with
rough surface (approx. Rz = 20 µm) and density ρ = 3020 kgm−3 (all dimensions in Table 4.1), were filled
into plexiglass containers. These are of 100 mm height and various diameters, either having a cylindrical
(D = 15-55 mm), square (L = 20-50 mm), rectangular (L, B in Tab. 4.2) or regular polygonal (L in
Tab. 4.2) cross-sectional area. The dimensions of the rectangular and regular polygonal cross-sections

Table 4.1: Shape, material, characteristic diameter dp = 6·vp/ap, cylinder aspect ratio a1 = d/h,
hole aspect ratio a2 = di/d and true sphericity ΨW = dp/dv for all particles used in this study.

Shape Material Manufacturing method dp [mm] a1 [-] a2 [-] ΨW [-]

Sphere Steel VTLG Europe 3 to 10 - - 1
Polyamide 3d printing 3, 4, 5 - - 1
POM, aluminum, glass KGM Kugelfabrik 4 - - 1

Cylinder Polyamide 3d printing 3.20 0.75 - 0.866
3.57 1.33 - 0.865
3.97 1.0 - 0.874
4.28 0.8 - 0.869
4.59 1.25 - 0.869

Ceramics Tablet press 3.5 1.0 - 0.874
Acrylic glass Laser Cutting 2.99 0.5 - 0.832

3.05 1.0 - 0.874
3.35 0.75 - 0.868
3.52 0.6 - 0.852
3.57 1.33 - 0.866
4.05 1.0 - 0.874
4.05 1.66 - 0.849
4.29 0.8 - 0.869
4.47 2.0 - 0.827
4.74 1.25 - 0.867
5.01 1.0 - 0.874
5.25 1.5 - 0.854

Hollow cylinder Polyamide 3d printing 3.55 1.33 0.635 0.496
3.92 1.0 0.5 0.557
3.95 1.0 0.625 0.472
4.01 1.0 0.75 0.388
4.24 0.8 0.625 0.452

are selected to result in an hydraulic tube diameter Dh = 4 · AT/PT of 25 mm. The exact particle mass was
determined with a sample of 1000 particles, each, and the deviation was less than 0.1 %. The densities and
their deviations, which were about 0.5 %, were determined using a pycnometer with a volume of 50 ml as
the mean of ten measurements of 50 particles each. The exact volumes of the tubes were determined by
filling them up with a known amount of water. The mean of three measurements was noted.
Particle filling was performed with three different methods using the following packing aids: I) pouring
the particles as fast as possible using a funnel with an outlet diameter of 20 mm; II) applying a filling
machine consisting of a horizontal tube and a vibrating motor to move the particles slowly to an outlet
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4.2 Experimental setup

Table 4.2: Shape and dimensions of tubes with hydraulic diameter Dh = 25 mm.

Shape of cross section Characteristic length Cross sectional area Circularity
L, B [mm] AT [mm3] ψ =

√
4·π·AT
PT

[-]

Regular triangle L = 42.2 771 0.778
Square L = 25 625 0.886
Rectangle L = 29, B = 22 638 0.878
Rectangle L = 33.9, B = 20 678 0.856
Rectangle L = 40, B = 18.4 736 0.823
Rectangle L = 57, B = 17 969 0.746
Regular pentagon L = 18.4 582 0.930
Regular hexagon L = 14.2 524 0.952
Circle D = 25 491 1

funnel leading to the plexiglass tubes whereby the filling time (inverse filling rate) was kept constant at
about 0.3 scm−3 tube volume by default but was varied for the filling time experiments; III) utilization
of a vibratory plate at constant amplitude to dense the packing as much as possible priorly produced by
slow pouring. The porosity was determined by the weighing method [68]. Experiments were repeated at
least three times each in different orders to exclude systematical errors. The reproducibility of packing
generation was discussed earlier [11].

Figure 4.1: Schematical drawing of experimental setup for pressure drop measurements.

4.2.2 Experimental determination of pressure drop

Investigating the pressure drop of spherical packed-beds, glass tubes as displayed in Fig. 4.1 with height
H = 500 mm and various diameters D = 17 mm, 20 mm, 23 mm, 25 mm, 27 mm, 35 mm, 45 mm and
55 mm were filled with the above described packing particles using the filling machine. Packings are hold
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4 Bed Density of Spherical Packings

into place with a wire mesh at the bottom while a metal lid with seal ring closes the top end pressure-tight.
Additionally, a 10 mm high monolith is placed on top of the packing to allow even flow distribution. Two
differential pressure sensors with different measurement ranges determine the stagnation pressure above
the packing against the ambient pressure below. Volume flow of pressurized air can be adjusted using two
mass flow controllers operating in the range 0.1-4 m3 h−1 and 1-20 m3 h−1, respectively.

4.3 Results and discussion

4.3.1 Mean bed porosity and filling method

Spheres

The overall mean of packed-bed porosity for packings of homo-sized, smooth spheres for different
tube-to-particle diameter ratios and filling methods was already shown in [11]. These data, extended by
some new data for machine filling are again shown in Fig. 4.2.

Due to the reproducibility of single particle dropping (SPD) using the filling machine, an adjustment of
the classification of filling methods [1, 2] is proposed:

i) Random Loose Packing ε̄RLP ≈ 0.44: obtained under diminished gravity, such as by settling a
fluidized bed or sedimentation.

ii) Poured Packing: obtained by pouring the particles as a loose mass into the container under influence
of gravity.

iii) Single Particle Dropping ε̄SPD≈ 0.383: obtained by the single placement of particles under influence
of gravity.

iv) Densed Packing: obtained by densification of a poured or single-placed packed-bed by using means
such as vibration or tapping.

v) Random Close Packing ε̄RCP ≈ 0.359: highest obtainable bed density.

While RCP, RLP, and SPD represent a distinct and reproducible value, the densed and poured packing
comprise all values in between. It is to be noted, that the above-given values vary with material properties
such as restitution, and friction [11] and are given for spheres of low friction and high restitution only.
In order to account for different material properties, as well as for different shapes, a bed-compactibility
parameter is more appropriate than the allocation of distinct values for each case to the above filling
procedure classification. Investigating powder beds, the Hausner Ratio Hε gives the dependence of densed
alias tapped and poured alias apparent bed density. Transferred to packed-beds of spheres, this would
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4.3 Results and discussion

ideally read: Hε = (1−ε̄RCP)/(1−ε̄RLP) = 1.145. Unfortunately, especially the RLP is hardly determined as it
requires a completely different experimetal setup. Consequently, adapting to the industrial reality, the
tapped density should be the highest obtainable density by densification of a packed-bed in appropriate
time (RCPmod), whereas the apparent density is the lowest density obtained when pouring as many
particles in as least time as possible into the respective container (RLPmod). For even more convenience,
RCPmod can be replaced by SPD, as densification experiments have a significantly higher uncertainty than
single-dropped packed-beds. This results in the following re-definition of the Hausner ratio:

Hmod,1 =
(1− ε̄RCP,mod)

(1− ε̄RLP,mod)
and Hmod,2 =

(1− ε̄SPD)

(1− ε̄RLP,mod)
. (4.10)

These two ratios, plotted against λ for smooth and rough homo-sized spheres based on the data of [11] is
displayed in Fig. 4.3. Despite a large scattering, for tube-to-particle diameter ratios > 4, the Hausner ratio
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Figure 4.2: Experimental results of the mean bed
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Figure 4.3: Modified Hausner ratio Hmod for
different materials, plotted against tube-to-particle
diameter ratio λ and evaluated with a moving
average of 4th order.

is independent of λ , shown by the moving average. For smaller values, the Hausner ratio decreases and
reaches 1.00 for λ < 2. Thus, the compactibility of a sphere packing is superimposed by the effect of
the confining wall, however, to a smaller degree compared to the porosity. For containers too small to
allow sphere placing next to each other (λ < 2), the packing is independent of the packing method and
probably from the particle material. This is the region, where an analytical solution for the correlation of
porosity and container size exists [87]. The mean values of modified Hausner ratio for the region λ > 4
are displayed in Tab. 4.3. It is to be noted, that the porosity does not change between loose and machine
filled steel spheres (Hmod,2 ≈ 1) indicating no apparent compaction. Furthermore, The Hausner ratio is
larger for polyamide spheres, indicating a larger spectrum of obtainable porosity values when varying the
packing method.
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4 Bed Density of Spherical Packings

Table 4.3: Mean modified Hausner ratios for λ > 4 and their respective standard errors (SE) for
packings of smooth steel and rough polyamide spheres.

Material Hausner ratio 1 Standard error Hausner ratio 2 Standard error
Hmod,1 [-] SE [-] Hmod,2 [-] SE [-]

Steel 1.048 0.00250 0.992 0.00262
Polyamide (PA) 1.134 0.00350 1.083 0.00285

Cylinders

Cylindrical particles of two similar materials but with different surface structures due to their production
method are compared in regard to their overall packing porosity. Again the three packing modes loose,
single drop and dense are evaluated putting some special attention to the cylinders aspect ratio a1 = d/h.
Figure 4.4 depicts the wall effect for acrylic glass cylinders with an aspect ratio a1 ≤ 1 and Fig. 4.5 depicts
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Figure 4.4: Mean bed porosity ε̄ as function of
tube-to-particle diameter ratio λ for elongated
cylinders with an aspect ratio a1 ≤ 1, for densed
(dark) and machine filled (light) packing modes.
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Figure 4.5: Mean bed porosity ε̄ as function of
tube-to-particle diameter ratio λ for flat cylinders
with an aspect ratio a1 ≥ 1, for densed (dark) and
machine filled (light) packing modes.

the respective wall effect for acrylic glass cylinders with aspect ratios a1 ≥ 1. In contrary to spheres,
when packing cylinders the definition of the tube-to-particle diameter ratio includes the equivalent particle
diameter dp in order to take the particle’s height into account. As can be seen, the porosity is lowest for
the equilateral cylinder, increasing with increasing and decreasing aspect ratios, however, the increase is
more pronounced when using elongated cylinders (a1 < 1). This effect is in accordance with the findings
of [55, 95] for bulk cylinder packings. New is, that this porosity difference caused by different aspect
ratios is at its maximum in the bulk part of the packing, whereas the different branches merge to a single
correlation for lower tube-to-particle diameter ratios. Moreover, this clear behavior is against the findings
of [56] neglecting the effects of aspect ratio in their correlation.

In Figs. 4.4 and 4.5 the results for the densed packings are highlighted as here, the difference can be
seen best. The lighter data represent the machine filled samples, resulting in the very same trend, except
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4.3 Results and discussion

being moved to overall higher values and a smaller actual effect. Consequently, the difference in porosity
between the equilateral cylinder and both, the flat and the elongated cylinder were decreased. Besides
lucidity, it was renounced to draw the data of poured packings as the experimentation uncertainty was in
parts larger than the porosity differences caused by the shape variations and with more repetitions this
uncertainty could not be diminished. Consequently, packings of cylindrical particles show a very distinct
behavior in small containers when varying the aspect ratio, but the distinctness of the effects increase with
a denser packing mode. Furthermore, the equilateral cylinder packs densest among all cylinder variations,
reaching values down to 0.273, which is in accordance with literature values [18, 24]. It is to be noted,
that this value is significantly smaller than porosities obtained with sphere packings (0.36 [13]), and is
just above the densest regular sphere packing with a porosity of 0.26.

The results of the rough polyamide packing are displayed in Fig. 4.6. Here, the experimental results of
the poured and machine filled packing methods are displayed as it was impossible to bring the cylinders
into a reproducible dense state. Theoretically, the densest state should be similar to the densest state of
the smooth acrylic glass cylinders, however, this could not be achieved. For information, the respective
porosity values of a sphere packing are added. The data is directly comparable as being made of the same
material and the same production method. Basically, the same trend as discussed for the smooth acrylic
glass cylinders can be seen, with the exception, that the effects caused by the aspect ratio variation are
much more pronounced.
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Figure 4.7: Parity plot of the derived wall effect
correlation (4.11) together with (4.12) for cylinders
of varying aspect ratios, materials and filling
method. The respective parameters are displayed in
Table 4.4.

In our previous study [11] we showed that porosity variations due to material properties and packing
mode can be considered by simply adjusting εinf to the appropriate value. As a variation of the aspect
ratio primarily varies the bulk porosity value, we suggest to correlate the bulk porosity εinf to the bulk
porosity of the equilateral cylinder εinf,eq and the aspect ratio a1, weighted with an exponent n:

εinf = εinf,eq ·a1
n (4.11)
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wherein n is case sensitive for a1 > 1 and a1 < 1. As wall effect correlation, Benyahia and O’Neill’s [56]
is selected due to an overall good fit with experimental data [11].

Benyahia and O’Neill [56] : ε̄ = εinf +
A

(λ +B)2 = εinf +
1.703

(λ +0.611)2 (4.12)

The resulting fitting parameters εinf,eq and exponent n, and the corrected R2 are listed in Table 4.4. The

Table 4.4: Correlation parameter overview for Eq. (4.11).

Material Filling Infinite porosity Aspect ratio Shape exponent Coefficient of Hausner
Method εinf,eq [-] a1 = d/h [-] n [-] determination R2[%] ratio Hmod [-]

Acrylic glass

Loose 0.363
a1 ≤ 1 -0.040 92 Hmod,2 = 1.087
a1 > 1 0.054 92

Machine 0.314
a1 ≤ 1 -0.098 91
a1 > 1 0.072 99 Hmod,1 = 1.13

Dense 0.276
a1 ≤ 1 -0.18 95
a1 > 1 0.12 93

Polyamide
Loose 0.423

a1 ≤ 1 -0.203 83 Hmod,2 = 1.124
a1 > 1 0.12 94

Machine 0.357
a1 ≤ 1 -0.372 98
a1 > 1 0.212 95

model was developed with the data of the acrylic glass particles alone and then tested with the polyamide
cylinders. The respective parity plot in Fig. 4.7 shows calculated and experimental data points for the
acrylic glass (AG) cylinders for each packing mode separately. Furthermore, the model test data of the
machine filled polyamide (PA) cylinders is added, showing a perfect fit. Exponent n depends on the
packing mode or better on the densification state of the packing and the packing material. As can be seen
in Table 4.4, n increases with increased packing density and rougher surface conditions, indicating that in
these cases, the effect of a1 is much more pronounced. A close to linear trend between shape exponent
n and the infinite porosity describing the filling method can be derived. The respective correlations are
summarized in Eq. (4.13) and Eq. (4.14).

n =−0.7401 · εinf,eq +0.3171 for a1 > 1 (R2 = 0.90) (4.13)

n = 1.5891 · εinf,eq−0.6108 for a1 < 1 (R2 = 0.97) (4.14)

The Hausner ratio Hmod itself describes the effects already discussed for the experimental data, which is a
higher Hausner ratio for particles with rough surfaces and a generally higher Hausner ratio compared to
packings of spherical particles.

Hε =
1− εinf,eq,dense

1− εinf,eq
(4.15)

Consequently, a packing of cylinders can take a wider range of porosity values depending on the packing
mode, which is a potential source of experimental uncertainty when not considered appropriate.
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and 0.75, by calculating the respective solid cylinder
base porosity ε̄sc, here displayed as a function of λ .

Hollow cylinders

The hollow cylinders were evaluated similarly. Figure 4.8 shows the average porosity values obtained
by pouring (dotted line) and after densification (solid line), as a function of the tube-to-particle diameter
ratio. For the calculation of the equivalent particle diameter dp in λ , the volume and surface of the holes
of the cylinders are neglected as otherwise extreme high λ values are obtained. It is obvious that packings
of hollow cylinders have much higher porosities than the solid cylinders, and the average porosities are
further increased with increasing hole size alias aspect ratio a2. Furthermore, a difference in cylinder
aspect ratio a1 does not have any observable influence. The obtained data was again fitted to Benyahia
and O’Neill’s [56] correlation, however, the pre-factors needed to be adjusted to A = 2.167 and B = 2.167.
The obtained bulk porosities εinf, R2 and the Hausner ratio Hmod are summarized in Table 4.5. It is
remarkable, that the Hausner ratio is not affected by the shape variation taking a constant value of 1.16.
This is slightly lower than the respective cylinder and higher than the respective sphere packings.

Furthermore, the interpenetration of the hollow cylinders is evaluated by subtracting the sum of inner hole
volumes from the total void, resulting in the solid cylinder base porosity εsc as proposed in [68]. Shown
in Fig. 4.9, the solid cylinder base porosity decreases with increasing hole aspect ratio a2, indicating
an increased particle interpenetration. As the interpenetration is not observed for a2 < 0.5 [68], the
differences between the shapes having a2 = 0.625 and a2 = 0.75 with a2 = 0.5 quantifies the amount of
overlap.
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Table 4.5: Shape and fitting parameter overview of rough polyamide hollow cylinders packed
using the pouring and densification methods.

a1 = d/h [-] 1 1.33 1 0.8 1 Filling method
a2 = di/d [-] 0.5 0.625 0.625 0.625 0.75

εinf [-] 0.742 0.659 0.660 0.658 0.594
Loose

R2 [%] 96 98 99 98 95
εinf [-] 0.699 0.606 0.605 0.604 0.529

Dense
R2 [%] 93 73 91 71 89
Hmod,1 [-] 1.167 1.155 1.155 1.162 1.158

Filling speed

With the filling machine, any desired filling speed could be set by adjusting the angle of the vibrating
tube to the reactor. The filling speed is herein measured as the time needed to fill one meter of packing.
As the tube dimensions were constant, this can be easily calculated to the actual filling speed which
should be defined as the time needed to fill a cubic centimeter of packing. There are some indications in
literature [9, 35–37] that bed porosity correlates with the filling speed, these data, however, are mostly
unvalidated numerical results. As displayed in Fig. 4.10 there is a clear trend between filling speed and
bed porosity according to which, porosity decreases sharply when increasing the filling time starting at
around 5 sm−1 (pouring) and reaching a plateau at around 150 sm−1 (single particle placement). The
porosity difference ∆ε̄ f between pouring and single particle placement is considered as the maximal
possible porosity deviation that is to taken into account when packing mode is not clearly described or
constant. Normalized to the plateau porosity ε̄SPD (single particle dropping), the relative porosity deviation
is obtained, which is displayed in Fig. 4.11 for all investigated shapes and as a function of tube-to-particle
diameter ratio λ . Accordingly, spheres are less prone to filling speed influences as cylinders, and rougher
shapes are more affected than smooth shapes. Furthermore, packings with higher λ are slightly more
affected.

4.3.2 Influence of tube shape

The significant influence of cylindrical confining walls on packed-bed structures gives rise to the question,
how this influence changes when the shape of confinement ist varied. Therefore, a selection of containers
with square (Fig. 4.12a), rectangular (Fig. 4.12c) and regular polygonal (Fig. 4.12d) cross-sections were
packed with homo-sized, smooth steel spheres and for comparison with homo-sized spheres of other
material (Fig. 4.12b). As can be seen from Fig. 4.12, the container’s cross-section has hardly any influence
on the wall effect correlation. This is yet valid when the particle material is varied. Changing the particle
material results in a shift of mean bed porosity (see herefor [11]). This shift can be perfectly reproduced
using square tubes instead of cylindrical as displayed in Fig. 4.12b.

However, having a closer look at Figs. 4.12c and 4.12d a larger, but un-systematical scattering in the low-λ
region is revealed, at least compared to a relatively small deviation for higher values. This is contradictory
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to the general observation, that the data scattering due to measurement uncertainties increases with λ as
can be seen for instance in Fig. 4.2. Moreover, the data scattering is present for only one direction, in
particular, to lower porosity values.

According to McGeary [96] and later re-addressed by Klerk [1], wall effect correlations of sphere packings
may have additional extrema, indicating tube-to-particle diameter ratios allowing ideal, and thus highly
structured packing arrangements. This is of special interest for 2 < λ < 5 and most pronounced for a
minimum at λ = 3.0, where the tube size is optimal to fit a center sphere surrounded by a ring of six
spheres in each layer. Having a close look at Fig. 4.2 and Fig. 4.12a this minimum can be seen for
densed and machined packings. Changing the tube shape, these discontinuities may persist, but at slightly
different λ values.

Packing equilateral cylinders rather than spheres, a clear difference between the tubes with circular and
square cross-section can be observed as displayed in Fig. 4.13a. For λ < 8, the cylinders pack denser
in square confinement than in a circular. While there is still some increase in porosity for decreasing λ ,
the wall effect is significantly reduced. For λ > 8 similar porosity values are obtained in both types of
confinement.

Additionally varying the aspect ratio of the packed cylinders leads to the already discussed increase in
porosity with decreasing aspect ratio a1 in both, circular and square confinement as shown in Fig. 4.13b.
The porosity difference between confinement shape for λ < 8 appears to be less significant when
decreasing the aspect ratio.

When packing equilateral cylinders into rectangular tubes with different circularities, as shown in
Fig. 4.13c, the obtained porosity values spread much more for λ < 8, however, a clear correlation
to circularity cannot be identified. A mild trend of lower porosities for confinement shapes closer to
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Figure 4.12: Dependence of λ on mean bed porosity for spheres packed into containers of (a)
square and circular cross section using only steel spheres, (b) square and circular cross section
comparing spheres made of different material, (c) rectangular cross section with varying aspect
ratio aT using steel spheres, and (d) regular polygonal cross section with n sides packed with
steel spheres.
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Figure 4.13: Dependence of λ on mean bed porosity ε̄ of acrylic glass cylinders packed into
containers with (a) square and circular cross section using equilateral cylinders, (b) square and
circular cross section packed with cylinders of different asoect ratio a1, (c) rectangular cross
section with varying aspect ratio aT packed with equilateral cylinders, and (d) regular polygonal
cross section with n sides packed with equilateral cylinders.

the square shape can be interpreted. Same appears to the variation of tube shape for regular n-gons (cf.
Fig. 4.13d): there is at least some influence on porosity, however, a clear link to circularity is not possible.
In summary, equilateral cylinders appear to pack best in square confinements. Either variation of the
particle shape by decreasing the aspect ratio or of confinement shape reduces this influence on porosity.
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Figure 4.14: Relation of relative pressure drop and filling time τ , depicted for (a) smooth (AG)
equilateral cylinders with λ = 6.4 and (b) rough (PA) equilateral cylinders for various λ . The
error bars in (a) are obtained from measurements of different flow velocity; the used cylinders
have the dimensions d = h = 4 mm.

4.3.3 Pressure drop of cylinder packings

The pressure drop obtained from polyamide (PA, rough) and acrylic glass (AG, smooth) cylinders of
different aspect ratios and packed into tubes of different diameters using the filling machine and a large
range of filling times, was determined. Additionally, the respective porosity values were noted for each
created packing. As a very large data set is obtained, the following results are restricted to the findings of
equilateral cylinders. The three major goals of this evaluation include constraints to gain reproducible
pressure drop data, the quantification of error propagation of porosity in regard to pressure drop, which
also allows an estimation of pressure drop deviation for a known porosity deviation, and the influence of
particle material on pressure drop correlations.

Data reproducibility

Early measurements came with a huge experimentation uncertainty which could be related back to
inconsistent packing properties, especially the packing porosity. As discussed above, the filling speed of
the particles during the tube packing process has a significant effect on the overall bed porosity, unless
single-particle packing is performed. Based on this finding, the influence of the filling time (inverse
filling rate) on the pressure drop was first evaluated, determining an appropriate filling time allowing
reproducible pressure drop data. In Fig. 4.14a, the obtained results for packings of the smooth acrylic
glass cylinders with dimensions d = h = 4 mm are displayed. Herein, the obtained height normalized
pressure drop is normalized to the pressure drop obtained for very high filling times. Error bars indicate
the data scatter obtained when varying the flow velocity. As can be seen, for small filling times, only a
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tiny increase or decrease in packing speed results in a large change in pressure drop. A couple of seconds
of total filling time may increase or decrease the pressure drop by more than 10 %. On the other hand,
the pressure drop does not alter at all for higher filling times. Consequently, a minimum filling time was
determined, that is required to allow reproducible packing conditions. It was decided to use the filling
time when the curve reaches 95 % of its saturation, denoted as τ95.

φ =
(∆P/H)

(∆P/H)SPD
= f (τ) =

τ +A
τ +B

with τ95 =
A−0.95 ·B

0.05
, φ0.0122 =

0.0122+A
0.0122+B

(4.16)

This value was determined for all available cylinder and sphere packings by fitting the experimental
data to Eq. (4.16) and calculating τ95 from the obtained pre-factors. Furthermore, the sensitivity of the
normalized, relative pressure drop φ in regard to the filling time was determined, denoted as φ0.0122. In
Table 4.6 selected results for a tube diameter D = 25 mm are summarized. Herein, the rows with the
general shape and material specification are the averages obtained from all particles in that class, the rows
with specific dimensions comprise the specific data of this specific shape. Furthermore, this table lists two
values for τ95 having different units as it is easier to imagine a filling time of 136 s for 1 m packing height
as the value based on the filled volume, however, when varying the tube diameter, the volume based filling
time is indispensable.

Figure 4.14b displays the fitted correlations obtained when varying the filling time of the rough polyamide
equilateral cylinders. With increasing tube-to-particle diameter ratio, τ95 decreases while φ0.0122 increases,
except for λ = 4.0. Consequently, less wall-effected packings are less prone to filling rate influence and
thus data inconsistency.

The error propagation of porosity

Table 4.6: Parameter overview of filling time (inverse filling rate) relation and error
propagation evaluation for packings of in the D = 25 mm tube.

Shape/material τ95 τ95 φ0.0122 εerr =
∆ε

εSPD
Perr =

∆(∆P/H)
(∆P/H)SPD

Perr
εerr

R2

[sm−1] [scm−3] [-] [-] [-] [-] [%]

Cylinder AG 136 0.277 0.70 0.124 0.321 2.6 97.7
d = h = 4 mm 121 0.246 0.70 0.136 0.33 2.4 97.1

Cylinder PA 69.9 0.142 0.63 0.137 0.401 2.9 98.0
d = h = 4 mm 77.0 0.157 0.64 0.128 0.387 3.0 98.7

Cylinder ceramic 83.3 0.170 0.61 0.183 0.465 2.5 99.8

Sphere PA 37.8 0.077 0.79 0.052 0.249 3.9 97.6
d = 4 mm 41.0 0.084 0.80 0.053 0.252 3.8 96.1

Sphere steel 22.6 0.046 0.89 0.035 0.109 3.1 89.1
d = 4 mm

The error propagation of porosity on pressure drop using the Ergun equation [86] has been determined and
discussed theoretically in literature [10]. Accordingly, depending on the fluid state (laminar or turbulent),
a deviation in porosity leads to four times this deviation in regard to pressure drop. In order to prove
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Figure 4.15: Friction factor f ′ obtained from packings of various tube-to-particle diameter
ratios λ when varying Reynolds Rep by adjusting fluid velocity. Packings of (a) smooth (AG)
and (b) rough (PA) equilateral cylinders of dimensions d = h = 4 mm were used. The
sphericity-based correlation of Nemec and Levec [89] is added as well as curve fitting results
using the Ergun-type and the Carman-type correlations.

this with experimental data, the maximal deviation in porosity and pressure drop between the fastest
and slowest filling time (inverse filling rate) was determined (see Table 4.6). Regarding rough spheres,
the ratio between pressure drop and porosity deviation is very close to the predicted quadruplication.
However, cylinders are less affected having a ratio between 2.4 and 3.0. Moreover, rough particles are
stronger affected than smooth particles. This is vice versa a proof for an existing influence of particle
surface roughness on pressure drop which is frequently denied [90], but is in accordance with some other
researchers predicting higher pressure drops for rougher particles [43, 89, 91].

The influence of particle roughness

Finally, Fig. 4.15a and Fig. 4.15b display the determined friction factors of packings of equilateral
cylinders with a smooth and rough surface, respectively, obtained for different Reynolds numbers and
when varying λ . For comparison, the sphericity-based pressure drop correlation of Nemec and Levec [89]
is added. Moreover, the data of Fig. 4.15a is fitted to the Ergun equation (dotted line) [86], and the Carman
equation [87], once with set exponent n = 0.1 (dashed line) and once with variable exponent (dash dotted
line).

It is well known that Ergun-type correlations overpredict the friction factor at high Reynolds numbers for
packings of spheres [4], thus it does not surprise, that this is here also the case. The extent of difference
between the data and the correlations is, however, unexpected. Even when using the first Carman-type
correlation (dotted line in Fig. 4.15a), the overprediction at high Reynolds numbers is still present. On the
other hand, due to the very limited selection of flow velocities, the respective data are all obtained from
low-λ tubes, where any sort of wall effect may occur and affect the friction factor. We, however, suggest
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to use Eq. (4.18) corresponding to the dashdotted line in Fig. 4.15a as a novel pressure drop correlation
for equilateral cylinders valid for packing Reynolds numbers 10-3000 and tube-to-particle diameter ratios
4-13.

f ′ =
150
Rep

+
3.5

(Rep)0.1 R2 = 96.3% (4.17)

f ′ =
65.7
Rep

+
16.25

(Rep)0.343 R2 = 99.5% (4.18)

Comparing the packing friction of smooth and rough cylinders, a perfect shift of the whole dataset to
higher values is observable. The obtained friction is constantly around 17.5 % higher compared to the
smooth cylinders of the same dimensions.

In summary, the importance of an appropriate packing method was emphasized in order to allow
reproducible and comparable pressure drop data. Herefor, a minimum filling rate is determined. Coping to
this minimum filling time (maximum filling rate) is more important investigating pressure drop compared
to the sole investigation of packing porosity as the effect is much higher, due to the error propagation.
This error propagation is shown to be shape and material dependent, vice versa proving the importance
of shape and material influences on the pressure drop. Finally, pressure drop data was fitted to existing
correlations originally developed for sphere packings, however concluding, that more data, especially in a
wider Reynolds range is required to allow reliable pressure drop predictions.

4.4 Conclusion

A broad experimental study was performed including the evaluation of packed beds of spheres, cylinders,
and hollow cylinders. In the first step, the average bed porosity of these shapes as a function of the
tube-to-particle diameter ratio was determined. Moreover, the Hausner ratio was utilized as a packing
compressibility parameter, describing the sensitivity to packing densification.

With spheres, known correlations could be reproduced, obtaining higher values for rough particle surfaces.
Investigating cylinders, the known correlations were fitted to the effect of cylinder aspect ratio. With
increasing or decreasing aspect ratio away from unity, higher porosities are obtained, while a stronger
effect is observed for elongated cylinders, rougher particle surfaces, and denser packings. Regarding
hollow cylinders, the average bed porosity but also particle interpenetration is significantly increased
when increasing the hole size. The Hausner ratio is smallest with spheres and considerably larger when
packing cylinders. Moreover, the Hausner ratio increases with increasing particle roughness.

Furthermore, it could be shown that the tube shape has hardly any influence on the packing of spheres,
even when using tubes with cross-sections of low circularity. Especially between circular and square
cross-section a perfect fit of data was obtained. On the contrary, when packing cylinders a considerable
effect of confinement shape can be observed, more predominantly at small tube-to-particle diameter
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ratios. The densest packings are obtained packing equilateral cylinders into confinements with square
cross-sections.

Finally, the packed-bed pressure drop of smooth and rough equilateral cylinders was measured as a
function of particle filling speed and as a function of Reynolds number. Regarding the packing of smooth
cylinders, available correlations were adjusted. Rough cylinder packings resulted in 17 % higher packing
friction compared to the smooth cylinders, proving an influence of particle surface roughness on pressure
drop.

As a conclusion it is strongly suggested to use single particle dropping as preferred filling method when
packing particles into confinements. If this is not possible or desired, it is suggested to at least list the
utilized filling rates and/or densification parameters. It is further suggested to be more precise on material
parameters of particles for both, packing and pressure drop experiments.

Future works may include numerical shape development studies and experimental three-dimensional
packing analysis studies as for example by x-ray computed tomography for different shapes and the
evaluation of the effect of material characteristics and packing methods on the local packing structure.
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Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ces.2020.115644.
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Nomenclature

Latin Symbols

ap particle surface area m2

a1 cylinder aspect ratio a1 = d/h -
a2 hole aspect ratio a2 = di/h -
A, B pre-factors in correlations -
AT cross-sectional area of tube m2

B, L characteristic length of tube cross-section m
d true diameter of sphere, cylinder or hollow cylinder m
di inner diameter of hollow cylinder m
dp sauter diameter of particle dp = 6·vp/ap m
dv particle volume equivalent sphere diameter dv =

3
√

6·vp/π m
D diameter of tube m
Dh hydraulic diameter of tube Dh = 4·AT/PT m
f , f∗ hollow cylinder interpenetration factor -
f ′ friction coefficient f ′ = ∆P

H ·
dp

ρ·u02 · ε̄3

(1−ε̄) -

h height of (hollow) cylindrical particle m
H height of tube m
Hmod, Hε different versions of the Hausner ratio -
k coefficient of restitution -
n exponent -
N number of particles per packing -
∆P pressure drop Pa
PT perimeter of tube’s cross-section m
Perr relative pressure drop deviation -
Rep packing Reynolds number Rep =

ρ·dp·u0
η ·(1−ε̄) -

Rz mean surface roughness depth m
t filling time s
u0 superficial velocity ms−1

VT volume of tube m3

vp volume of particle m3

Greek Symbols

ε local porosity -
ε̄ mean bed porosity -
εinf porosity with λ → ∞ -
εinf,eq porosity of equilateral cylinder with λ → ∞ -
εerr porosity deviation -
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Nomenclature

εsc porosity of solid cylinder base -
∆εf porosity difference between poured and single droped

bed
-

η fluid viscosity Pas
λ tube-to-particle diameter ratio -
ρ material density kgm−3

ΨW sphericity ΨW =
π

1/3·(6·vp)
2/3

ap
-

ψ circularity ψ =
√

4·π·AT
PT

-
τ filling time (inverse filling rate) τ = t/H or τ = t/VT sm−1, scm−3

τ95 filling time at φ = 0.95 -
φ normalized pressure drop -
φ0.0122 normalized pressure drop at τ = 6 sm−1 or τ =

0.0122 scm−3

-

Abbreviations

AG acrylic glass
Alu aluminum
PA polyamide
POM polyoxymethylen
RLP random loose packing
RCP random close packing
SE standard error
SPD single particle dropping
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5 Experimental and Numerical Analysis of Void
Structure in Random Packed Beds of Spheres

Abstract
The prediction of the pressure drop of packed beds requires an accurate estimation of the packed-bed
porosity as its error propagation multiplies the occurring errors by a factor of about four. For a better
understanding of the packed bed’s local porosity characteristics, a comprehensive x-ray tomography
study was performed investigating and correlating the void structure of packed beds made of smooth,
mono-sized spheres in cylindrical confining walls having tube-to-particle diameter ratios λ = 3.0 to 9.0
reinforced by numerically generated packed beds of λ = 1.1 to 9.0. An in-depth analysis of the obtained
oscillating void profiles is performed, discussing the locations and heights of porosity extrema. Most
importantly, a significant and in parts surprising extrema formation in the tube’s center is described,
especially present for λ < 6, which is assumed to have a predominant effect on the packed bed’s pressure
drop.
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5.1 Introduction

5.1 Introduction

Packed beds of homo-sized shapes are studied in a wide range of industrial and scientific applications,
ranging from chromatography packed columns [1, 2], packed-bed reactors in heterogeneous catalysis [3],
packed columns used in separation processes [4] to nuclear pebble bed reactors [5]. The incorporated
shaped bodies are frequently of spherical or cylindrical shape and come in sizes ranging from micrometers
for chromatography columns to several centimeters in nuclear pebble bed reactors. It is evident, that
shaped bodies of sizes smaller than approximately 0.5 mm behave different to those of larger size, as
interparticle forces become dominant with decreasing size, leading to packed beds with increasing void
content [6, 7]. Thus, only the packings of particles beyond this value are investigated.

Although called random, packing elements within a random packed bed tend to order along the confining
wall. Depending on the particle’s shape, this imposed order may reach some particle diameters into the
tube. For example in a packing of spheres, this order can be observed up to 4 or 5 sphere diameters away
from the confining wall [8] resulting in an increase of average bed porosity for tube-to-particle diameter
ratios λ = D/dp < 10. Studying catalytic multitubular reactors where λ = 4 to 7 this typically named Wall
Effect requires a thorough investigation of local packing structure, as it influences fluid dynamics [9, 10],
heat [11] and mass transfer [12, 13].

Besides the Wall Effect, the packing of particles is further influenced by the particle material, shape and size
distribution, the container material and shape and the applied deposition and compaction methods [14–16].
In spite of, this work focusses solely on the influence of Wall Effect keeping all other parameters constant.
Thus, packed-beds of mono-sized, smooth spheres packed into cylindrical containers of tube-to-particle
diameter ratios smaller 10, comparing experimental and numerical approaches are adressed.

5.2 State of the art

5.2.1 Axially- and azimuthally-averaged radial porosity profiles

The local structure of packed beds is typically described using the azimuthally and axially averaged
radial porosity profile, giving the porosity ε(r) at a certain distance from the confining tube wall in
particle diameters zr = (R−r)/dp, with R representing the tube radius and r the radial location. Typical
experimental methods comprise the solidification of the packed bed with subsequent slice-cutting on a
lathe [17–23], the incremental filling of a centrifuged packed bed with small amounts of liquid [24–27]
or the projection of the bed using radiography [28], tomography [29–33], magnetic resonance imaging
[34–36] or fluorescence [37, 38]. While the solidification/cutting method is known to struggle with
particle loss during machining and the inaccuracy of cutting tools, the incremental filling procedure needs
to exclude particle movement during bed centrifugation and a proper determination of very small liquid
level increments while considering meniscus influences. Projection methods are advantageous due to their
non-destructive nature while giving slices of the packed beds in commonly higher resolution compared to
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Figure 5.1: Experimental data for radial profiles taken from literature for (a) λ = 1 to 7 and (b)
λ = 7 to 10. Please consider the maximum wall distance equals λ/2.

manual machining. However, the consecutive image analysis requires the careful selection of a threshold
value for distinguishing between solid and void on typically faded particle edges, leading to general
inaccuracies. While most researchers determine the local porosity directly from the packed bed slices by
calculating void versus solid content, Mueller [28] selected an approach to determine the sphere centers
by radiographic scanning of sphere packings where each sphere has a metal micro-sphere center. Only
recently, Reimann et al. [39] adopted this by determining sphere centers from x-ray tomography images.
Based on the sphere center locations, the radial porosity profile can be mathematically reconstructed
[40–44] and the resulting plots are independent of the selected slicing resolution and threshold values
selected for image anlaysis.

A selection of experimental data is depicted in Figs. 5.1a and 5.1b, sorted into two λ ranges: 1 to 7 and 7
to 10. Data for radial profiles of λ > 10 are not considered, as a good experimental consensus is already
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gained. Some typical properties are generally accepted regarding curve shape: the porosity directly at the
tube wall is one; the curve resembles a damped oscillation function with distinct extrema reaching 4 to
5 particle diameters into the tube; the first minimum εmin is at zr ≈ 0.5 and the first maximum εmax is at
zr ≈ 1.0. This profile can be explained with the formation of rings of spheres starting with a high degree
of order adjacent to the tube wall, reaching 4 to 5 rings into the packing with decreasing distinctness and
order until reaching statistical randomness in the bulk part of the packing, presuming a sufficiently high
λ . A closer look at Figs. 5.1a and 5.1b reveals the agreement of experimental data for λ > 7 and some
disagreement for smaller values. Here, extreme values of porosity may be gained in the center of the
containers. Moreover, higher amplitudes of oscillation can be observed. The phenomena of occurrence
and manifestation of these deviations are still unknown and need in-depth investigation on a much broader
database.

There are some models trying to describe the radial porosity distribution of sphere packings [46]. These
comprise exponential decay functions [47–52], which ignore the oscillation close to the wall, damped
oscillation functions with an exponentially damped cosine oscillation [8, 10, 22, 53, 54] or a Bessel
function of zero order [28, 55, 56], approaches incorporating λ -specific adaptions [28, 43, 45]; and
mathematical sphere center re-estimations derived from experimentally obtained radial porosity profiles
with subsequent re-calculation of the radial porosity distribution [57–61]. In Fig. 5.2, selected correlations
are plotted along with literature data for tube-to-particle diameter ratios around 4. It can be seen, that
a significant deviation between prediction and experiment exists which may need further improvement,
especially regarding the prediction of the packings behaviour in the tube’s center.
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Figure 5.2: Comparison of literature data for 4 ≤ λ ≤ 4.25 and literature correlations plotted
for λ = 4.25.

5.2.2 Mean bed porosities

Mean bed porosities ε̄ are obtained by experiment or weighted integration of radial porosity profiles. For
packings of smooth, mono-sized spheres filled using any measures and intensities of bed densification,
a considerable experimental database regarding the λ -ε̄-interplay is available and depicted in Fig. 5.3.
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Figure 5.3: Review of experimental results for the mean bed porosity ε̄ when varying
tube-to-particle diameter λ for mono-sized, smooth, dense packed spheres. Figure taken from
[46].

Typically, this curve is divided into two regions: I) 1 ≤ λ ≤ 1.866 where the mean bed porosity can
be analytically determined [85] and II) λ >1.866 or 2 where the porosity decreases until reaching a
nearly constant value ε̄inf for λ > 10. A considerable amount of correlations exist, describing this trend
within small deviations [8, 28, 62–69, 74, 79, 86–91]. Among these, only Zou and Yu [67] defined a
third intermediate region between 1.866≤ λ ≤ 4, as an additional maximum at λ = 3.95 was detected,
with a preceding minimum around λ = 3. Further discontinuities were predicted based on theoretical
considerations [75] and were observed in experimental studies [8]. However, most frequently abnormal
values were explained with typically large measurement uncertainties or not reported at all. Table 5.1 gives
an overview of λ locations relating to reported extreme values for mean bed porosity. The existence of

Table 5.1: Review of reported extrema locations.

Source λ of reported maxima λ of reported minima Type

McGeary [75] 2.68, 3.75, 4.41 2.41, 3.00, 4.04 theoretical
Zou and Yu [67] 3.95 ≈ 3.0 experimental
De Klerk [8] - 2.4, 3.0, 4.6 experimental
Figure 5.3 ≈ 2.7, ≈ 4.0 ≈ 3.0 reviewed results

extrema in the λ -ε̄ plot is explained with favourable and unfavourable particle ring multiples. For instance,
at λ = 3.0 a complete ring of six perfectly fitting spheres encompasses a centrally located sphere stack
[75] which in reverse would lead to an extremely low porosity value in the tube center when considering
the respective radial porosity profile.
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Although a considerable amount of data points exists when merged into one plot, every data source
performed measurements under different conditions leading to a certain data scatter that makes it
impossible to reliably detect discontinuities. Even without changing conditions, the uncertainties among
single data series is quite large [16, 62]. It is thus decided to use numerical packing means for a highly
reproducible packing generation untainted by experimental errors in order to study the details of local and
mean porosity of slender packed beds of λ < 10.

5.2.3 Numerical packed bed generation

The numerical packing of spheres into rigid containers itself is well studied since considerable time. Today,
a broad selection of commercial and free software packages are available. Typically, packed beds were
generated in order to study fluid dynamics, heat and mass transport phenomena [92–97]. Moreover, packed
bed studies comprising the influence of particle material properties [98, 99], packed bed compression by
vibration [100], tube wall structure [101] and particle shape [95, 102–107] were performed. However, in
spite of some constiting works [99, 108] no study exists that explicitly studies the wall effect on local and
mean porosity in the herein presented highly resolved manner.

The herein used numerical packing procedure is validated with own results of x-ray tomographically
scanned experimental packed beds of mono-sized spheres of different λ . This alone is the most extensive
experimental study of this kind for wall affected packed beds which is up to date available in the
literature.

5.3 Experimental and numerical setup

5.3.1 Analysis of local packing structure using X-ray CT

Micro x-ray computed tomography scans were performed using 4 mm and 5 mm high precision steel
spheres (VTLG Europe Ltd., Germany) with a density ρ = 7780 kgm−3, filled into 15 mm, 20 mm,
25 mm, 30 mm, 35 mm, 40 mm and 45 mm cylindrical plexiglass containers having a constant height of
100 mm. Thus, the investigated packings have tube-to-particle diameter ratios λ = 3, 4, 6, 6.25, 7, 8 and
9 and a tube height-to-particle diameter ratio of κ = 20 and 25. The whole packing height is scanned with
a resolution of 0.1 mm, thus resulting in 1000 horizontally sliced images per run.

The exact particle mass was determined with a sample of 1000 particles and the deviation was less than
0.1 %. The density and its deviation, which was about 0.5 %, was determined using a pycnometer with a
volume of 50 ml as the mean of ten measurements of 50 particles each. The exact volumes of the tubes
were determined by filling them up with a known amount of water. The mean of three measurements
was noted. Particle filling was performed applying a filling machine consisting of a horizontal tube and a
vibrating motor to move the particles slowly to an outlet funnel leading to the plexiglass tubes whereby the
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filling rate was kept constant at about 500 sm−1 tube height. The reproducibility of packing generation
was discussed earlier [16].

5.3.2 Image analysis

In order to obtain the center position of each sphere, the following procedure was performed: the scans
were stacked in FIJI (FIJI Is Just ImageJ, an open source image processing program) to bundles of 250
each and cropped to the inner tube radius. The particle edges are highlighted applying the Build-In
find-edges-tool. A black-white threshold is set to binarize the image stacks. Finally, the Hough Circle
Transform Plug-In (UCB Vision Science) was used as a circle finding algorithm giving each circles
position (x0 and y0) and its diameter. In regard to data reduction, only circles with diameters larger than
3 mm were considered. An exemple depiction of the procedure is displayed in Fig.5.4. A Matlab® script

Figure 5.4: Exemplariliy depiction of image analysis procedure using FIJI (ImageJ) for
detecting circles and their respective centres and diameters comprising (a) the cropped CT-scan,
(b) the find-edges-tool, (c) the binarization, and (d) the Hough Circle Transform Plug-In.

is created searching for similar circle positions (x0 and y0) in consecutive image counts (0.1 · z). The
obtained values for x0 and y0 are averaged and for the final z0-position, the image count of the circle with
the largest diameter is sought.

5.3.3 Calculation of axial and radial porosity profiles

Knowing the center positions of each sphere, the axial and radial porosity profiles can be determined
by known procedures [40]. Generally, these procedures can be divided into volume and area-based
approaches. Here, the volume based solution is selected for the calculation of the axial porosity profile,
whereas a simplification is supposed, leading to a pseudo-volume based approach for the determination of
the respective radial porosity profiles.

Gaining the axial distribution, horizontal slices are cut forming disk-shaped bins with height ∆z. The
intersected volume Vn,i between a sphere of index i, radius r and axial center position z0,i and a plane at
axial position zn, can be calculated with the formulas known for spherical caps (Eq. (5.1)).

Vn,i =
π ·hi

2

3
· (3 · r−hi) with hi = r−|(z0,i− zn)| (5.1)
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Consequently, regarding disk-shaped bins, each sphere has either no intersection with the upper (zn+1) or
lower (zn) bin limit slice (∆Vn,i =Vn+1,i−Vn,i = 0), intersects one of them, but not the other (∆Vn,i =Vn,i or
∆Vn,i =Vn+1,i ), or intersects both (∆Vn,i =Vn+1,i−Vn,i). For each bin, the portion of all containing sphere
caps and sphere slices per total bin volume results in the axial voidage distribution ε(zn).

ε(zn) = 1− 4 ·∑i ∆Vn,i

π ·D2 ·∆z
(5.2)

The exact determination of the radial porosity distribution is more complex, as cylindrical cuts with
spheres resulting in ring-shaped bins with constant thickness ∆r need to be solved. Here a simplification
is used: with already having sphere fragments of sphere index i sorted into horizontal bins of index n than
for a sufficiently small ∆z, here 1/300 ·dp, a cylindrical shape of these fragments based on an averaged
radius rn,i may be assumed. A convergence analysis on the selection of ∆z has been performed to verify
the sufficiency of this approach.

rn,i =

√
∆Vn,i

π ·∆z
(5.3)

It is now sufficient to simply determine the 2D cross-section of cutting two circles, in particular of
each fragment circle with radius rn,i and each bin circle with radius rm. Herefor, the radial position
r0,i =

√
x0,i

2 + y0,i
2 for each sphere fragment is determined. The cross-section Sm,n,i of two intersecting

circles is calculated as follows:

Sm,n,i =rn,i
2 · arccos

(
a

rn,i

)
−a ·

√
rn,i

2−a2 + rm
2 · arccos

(
b

rm

)
−b ·

√
rm2−b2 (5.4)

with a =
rn,i

2− rm
2 + r0,i

2

2 · r0,i
and b =

rm
2− rn,i

2 + r0,i
2

2 · r0,i
.

Consequently, regarding ring-shaped bins, each obtained sphere fragment has either no intersection with
the outer (rm+1) or inner (rm) bin limitating circle (∆Sm,n,i = Sm+1,n,i−Sm,n,i = 0), intersects one of them,
but not the other (∆Sm,n,i = Sm,n,i or ∆Sm,n,i =Vm+1,n,i ), or intersects both (∆Sm,n,i = Sm+1,n,i−Sm,n,i). For
each bin, the portion of all containing sphere fragments with index i,n per total ring-shaped bin volume
results in the radial voidage distribution ε(rm).

ε(rm) = 1− ∑n ∑i(∆Sm,n,i ·∆z)
π ·H · (rm+1

2− rm2)
(5.5)

5.3.4 Numerical packing generation with DigiDEMTM

Packing generation is performed incorporating the DigiDEMTM code, a voxelated particle simulation
software incorporating a digital packing algorithm based on the Monte Carlo Approach whilst explicitly
considering physical interaction forces similar to the Discrete Element Method and is elsewhere described
in more detail [30, 109]. The packing procedure is identical to the one we already described [108]. In
a nutshell: spheres with diameters of 100 voxel at resolution 10 voxelmm−1 and set material properties
such as density ρ = 3000 kgm−3, coefficient of restitution e = 0.3, coefficient of friction µ = 0.7 and
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5 Analysis of void structure in sphere packings

Poisson’s ratio ν = 0.3 are filled into tubes of constant height H = 3000 voxel and varying diameter
D = 110 voxel to 1000 voxel, thus representing packed beds with tube-to-particle diameter ratios λ = 1.1
to 9. The final packing is again represented by sphere center coordinates. Regarding reproducibility, the
packing of relative tube size λ = 6.25 was packed ten times and the mean relative standard error regarding
the profiles was 1 % and the relative standard error regarding the average bed porosity was 0.5 %.

160



5.4 Results an discussion

5.4 Results an discussion

5.4.1 Experimental results of X-ray study

The packed beds, obtained by x-ray tomography and reconstructed to a 3d packing for all investigated
tube-to-particle diameter ratios are displayed in Fig. 5.5.

Figure 5.5: Reconstructed 3d packed beds of λ = 3.0, 4.0, 6.25, 6.0, 7.0, 8.0 and 9.0 based on
the determined sphere center positions. The third scan with λ = 6.25 was the only scan with a
packing of 4 mm spheres thus having a different scaling.

From these images, an underlying regular structure can be observed for the packed beds of λ = 3.0 and
4.0, based on the fact, that repeating layers of spheres are formed, were the subsequent layer bridges the
gaps of the previous, at least for the spheres adjacent to the wall. All other packed beds are significantly
more random at first appearance. It is to be emphasized, that these packed beds were not subjected to any
means of densification, which is known to significantly increase the packed bed’s regularity [39].

Sphere centers

The underlying sphere centers were plotted irrespective their axial location as depicted in Fig. 5.6 for
the packed beds of λ = 3, 4, 6, 7, 8 and 9. In general, the sphere centers form rings of decreasing order
and distinctness when increasing the distance from the wall before reaching complete randomness in the
tube center for high λ . This behaviour was described earlier [28]. Furthermore, comparing the sphere
center plots obtained with different λ , it appears that the order and distinctness of sphere center rings may
depend on λ , as for instance, the second ring is more pronounced for lower λ .

Besides the sphere centers, the circumferences of spheres of two adjacent sphere layers (of distance
dp) were highlighted, depending on their radial position. For instance, regarding Fig. 5.6a, the spheres
adjacent to the outer wall were highlighted in yellow for the initial and green for the subsequent layer,
and the spheres further away from the wall were highlighted in red and blue, respectively. As already
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Figure 5.6: Plot of sphere center positions for (a) λ = 3.0, (b) λ = 4.0, (c) λ = 6.0.

addressed, a highly regular structure with an outer ring of six spheres bridging the gaps of the previous
layer can be seen, completed with a pile of spheres in the tube center. Consequently, each sphere layer
consists of seven spheres.

A similar structure can be identified for the packed bed of λ = 4 (cf. Fig. 5.6b), with the difference, that
the outer ring comprises nine and the inner ring three spheres, totaling 12. In contrary to the packed bed
of λ = 3, the center of the tube has no sphere center resulting in a central void.

No similar structural characteristics can be identified for packed beds of higher λ . Although the sphere
circumferences are highlighted in Fig. 5.6c as well, spheres of consecutive layers are not bridging the
gaps, and the spheres of the inner rings interfere with the spheres adjacent to the wall, breaking up a strict
ring-like placement.
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Axially- and azimuthally-averaged radial porosity profiles
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Figure 5.7: Axially- and azimuthally-averaged local porosity distribution in radial direction for
λ = 3.0 to 9.0.

The radial porosity profiles calculated from CT data are depicted in Fig. 5.7. The general trend is as
expected, starting at unity directly at the wall and from there describing an oscillation profile, increasingly
damped with increasing distance from the confining wall. However, some special characteristics can be
identified:

i) The first minimum and maximum: The porosity of the first minimum, representing the wall-adjacent
ring of sphere centers increases with increasing λ before reaching an infinite value εmin1 ≈ 0.25.
This feature is explicitly depicted in the enlargement of Fig. 5.7. Similarly, the consecutive
maximum is reduced for larger packed beds. Consequently, the curves representing different λ do
intersect in one specific point. This results in a decreasing distinctness of a parabola shape of the
first ring of spheres to a more sinusoidal shape for larger packed beds. The sum of these described
characteristics proves a decreasing order of the first sphere ring with increasing λ .

ii) The tube center: The local porosity in the tube center may have the extreme value 0 for λ = 3 and 1
for λ = 4. While the existence of packed beds with a central hole, represented by a central value of
1 was already shown in the literature (see Fig. 5.1b and [32, 110]), the existence of a packed bed
with a central value of 0 was not experimentally described yet. For larger packed beds, the central
values are in all investigated cases more extreme than expected, which is in accordance with results
elsewhere published (see Fig. 5.1b). Besides the central value, the locations and values of the one
or two previous extrema are affected as well, indicating that interference effects of particle rings
occur in the tube center.
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5 Analysis of void structure in sphere packings

iii) The period of oscillation: The position of the extrema are generally accepted to be exactly 0.5 for
the first minimum and 1.0 for the corresponding maximum. No information can be found regarding
any consecutive extrema position. While the data presented here can confirm the first maximum
at exactly 1.0, the first minimum is moved to slighly higher values of around 0.565. However,
a close look to the enlargement of Fig. 5.7 reveals, that this may be slightly dependant on λ , as
larger values are obtained for λ = 3 and smaller values for λ = 8 and 9. The subsequent extrema
positions are more or less λ independant at zr = 1.40, 1.875, 2.26 and 2.7, followed by 3.15 and
3.45. However, the innermost extremum of a certain packing may differ from this rule, as in the
tube center the wall effect from the opposite wall influences the packing. The respective extrema
distances starting from the wall are 0.565, 0.435, 0.4, 0.475, 0.385 and 0.44 between minimum and
maximum respectively, and 1.0, 0.835, 0.875, 0.86, 0.825 between extrema of same kind, the period
of oscillation, which is not at all constant.

Data prediction by correlations

With the porosity profiles of λ ≥ 6 being very similar, they are plotted together in Fig. 5.8 along with
selected correlations plotted for λ = 8 including different versions of the exponentially damped cosine
function by de Klerk [8], Suzuki et al. [45] and Bey and Eigenberger [10], the Bessel function by
Mueller [28] and the approach of parabola chains by Mueller [43]. An insufficient representation of
the above described oscillation period characteristics are most prominent in the correlation of Bey and
Eigenberger [10], leading to a positive offset of almost half a period in the tube’s center. This offset is
smaller but still clearly visible when considering the correlation of de Klerk [8] and the Bessel function of
Mueller [28]. The porosity of the first minimum is considerably underestimated using Mueller’s Bessel
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Figure 5.8: Comparison of experimental data with literature correlations and Eq. (5.6b) plotted
for λ = 8.0
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5.4 Results an discussion

function [28] but also Suzuki et al.’s solution [45]. The slightly inconvenient approach of parabola chains
by Mueller [43], however, gives a good representation of oscillation period but overestimates all maxima.
The Sum of Square Errors (SSE) obatined by using the existing correlations with the given parameters
for our data is displayed in Table 5.2. Furthermore, the parameters of the existing correlations are fitted

Table 5.2: Sum of Standard Error (SSE) of selected literature correlations and the correlation of
Eq. (5.6a) in regard to the experimental data, and the SSE of the selected literature correlations
fitted to the data of λ = 9.

SSE λ = 3 λ = 4 λ = 6 λ = 7 λ = 8 λ = 9 λ = 9(fit)

Bessel function by Mueller [28] 14.39 11.23 2.924 3.002 2.318 4.234 3.105
Parabola approach by Mueller [43] 15.47 6.685 1.346 1.440 0.965 2.231 1.496
Damped cosine function by Suzuki et al. [45] 4.992 10.03 2.106 1.054 1.398 1.964 1.755
Damped cosine function by de Klerk [8] 6.208 9.773 1.439 1.541 1.103 2.932 1.344
Damped cosine function by Bey and Eigenberger [10] 16.45 13.72 2.202 4.090 4.166 5.437 1.074
Damped cosine function as of Eq. (5.6a) 6.418 6.644 0.742 0.888 0.699 1.089 -

to our data set of λ = 9 to evaluate the potential of each correlation. From the existing correlations,
the correlations of Mueller [43] and Suzuki et al. [45] perform best in predicting the experimental data.
However, fitting the data to the correlations, the best results are obtained using the correlation of Bey and
Eigenberger [10]. Adapting this correlation leads to the development of Eq. (5.6a). Here, a λ -dependent
representation of εmin,1 is introduced. Furthermore, parameters a, b, and c are fitted to the experimental
data. A slight λ -dependence of parameter b has been found, with ε̄inf = 0.38 and zr,min,1 = 0.56.

ε1(r) = εmin,1 +(1− εmin,1) ·
(

zr

zr,min,1
−1
)2

for zr ≤ zr,min,1 (5.6a)

ε2(r) = ε̄inf +(εmin,1− ε̄inf) · exp
[
−a ·

(zr

b
−1
)]
· cos

[
π

c
·
(zr

b
−1
)]

for zr > zr,min,1

with a = 0.138, b = 0.652 ·λ−0.094, c = 0.806

and εmin,1 =−0.0033 ·λ 2 +0.0596 ·λ −0.0208 for λ ≤ 10

εmin,1 = 0.24 for λ > 10

From Table 5.2 it can be seen that Eq. (5.6a) is capable to give a significantly better representation
of all data sets. A further improvement of correlation (5.6a) is obtained when implementing a linear
interpolation of both correlation parts. This also results in a continuous equation.

ε(r) = d · ε1(r)+(1−d) · ε2(r) with d =


1 for zr ≤ za

zr−ze
za−ze

for za < zr < ze

0 for zr ≥ ze

(5.6b)

Herein, za = 0.8 and ze = 1.14 are used. It is further to be noted that parameter a charcterizes the damping
and is assumed to alter with packing mode and material properties. Thus, a dependence on the infinite
porosity ε̄inf is expected [16]. However, this influence is yet not investigated in detail and should thus be
adressed in future works. In spite of the relatively good fit for the data of λ > 6, all correlations struggle
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5 Analysis of void structure in sphere packings

to adequately predict the profiles of λ = 3 and λ = 4. In order to understand the behaviour of porosity
profiles for λ < 6 a more thorough investigation is needed.

Porosity profile along tube height

Besides the radial porosity profile, the axial porosity profiles along the tube length are displayed in Fig. 5.9.
These profiles are only rarely presented as they do not add much structural information except for one
thing: to prove the independence of structure from axial location and selected tube height and thus proving
a constant packed bed generation procedure. It is generally known, that the tube bottom and top affect the
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Figure 5.9: Radially averaged porosity distribution in axial direction for λ = 3.0 to 9.0 and the
regular close packed equivalent.

local void structure similar to the circumferential wall, however, as typically packing height is significantly
larger than its diameter, these effects are generally neglected. The first and only study regarding this
topic named thickeness effect was performed by Zou and Yu [67] finding an overall increase in mean bed
porosity for too low packing heights. From their data it can be followed, that a tube height-to-particle
diameter ratio of > 20, as used herein, should be enough to avoid tube top and bottom effects on the
porosity.
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As can be seen from Fig. 5.9, the bottom part reaches 3 to 4 particle diameters into the tube, slighlty
increasing for increasing λ . The shape is again a damped oscillation function, however the damping
depends on λ , too. Especially the oscillation for λ = 3 is hardly damped along the tube height, indicating
a highly ordered structure throughout the packing, similar to the one of the first layers adjacent to the
flat tube bottom. For comparison, the porosity profile of regular dense packed spheres on a solid flat
wall as described by Ridgway and Tarbuck [111] is added. The shape of this profile resembles a string
of alternating large and small parabola. The large parabola describe the sphere layers as can be seen in
random arrangements as well. The small parabola, which is enlarged in subfigure (b) of Fig. 5.9 describes
the regular overlapping of sphere layers. This characteristic detail can be found in some of the peaks
for the axial distribution within packed beds of λ = 3, as displayed in the enlargement of subfigure (a).
Furthermore, a significant shift of extrema position can be noted comparing regular and random packed
bed arrangements. For comparison, the extrema locations identified for the radial porosity distribution are
included in Fig. 5.9, coinciding with the extrema evoked by the plane tube bottom for all investigated
random packed beds. Consequently, it appears, that a curved and a flat wall have similiar effects on the
local porosity.

Compared to the bottom and top fraction, the bulk part of the axial porosity is characterized by a constant
mean porosity. Thereby the oscillation is more pronounced, both in terms of amplitude and shape for
smaller λ and decreases with increasing bed size. The top fraction is again characterized by the solid cap
added to allow constant packing heights. The effect reaches up to three particle diameters into the tube
and has a similar, but less pronounced shape as the bottom wall. It is to be noted, that when no cap is used,
the top part would look slightly different.

Regarding top and bottom fraction, both result in higher overall porosities compared to the respective
bulk porosity. Thus, the relevant question is, if the apparent porosity including the full bed height is
significantly different to the bulk porosity, or differently put, if the initial assumption, that a tube height to
particle diameter H

dp
= 20 is sufficient to neglect the thickness effect is correct. Figure 5.10 displayes the

estimated porosity error as the difference of apparent ε̄a and bulk ε̄b porosity based on the bulk porosity,
versus the tube height-to-particle diameter ratio (upper x-axis) and the respective apparent-to-wall packing
height.

It was found, that the two cases λ = 3 and 4 behave similarly and were combined to the darker curve and
all others were combined to the lighter curve. The two points where the two curves cross the vertical
solid line of H

dp
mark the experimental results. The obtained curves extrapolate these values under the

assumption, that when decreasing or increasing the tube height, this solely changes the bulk packing part,
not the top and bottom part. As can be seen from Fig. 5.10, a porosity increase of 2.0 % (λ = 3 and 4) to
3.5 % (λ = 6 to 9) between bulk and apparent porosity can be measured. A value of below 1 % is typically
accepted to be insignificant, higher values should be avoided as they may lead to an erroneous prediction
of pressure drop where the porosity error is known to have the fourfold effect [112]. Consequently, the
herein selected tube height was not sufficient to neglect the tube bottom and top effects. The presented
extrapolation predicts a minimum tube height of 37 and 64 particle diameters, respectively, based on the
1 % error acceptance. Alternatively, the bottom and top part can simply be cut off which is the selected
method in this work.
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Figure 5.10: Obtained and extraploated porosity error between apparent and bulk porosity as a
function of tube height-to-particle diameter ratio κ .

In summary, the local structure of a considerable amount of non-densed packed beds comprising smooth,
mono-sized spheres ranging from λ = 3.0 to 9.0 are investigated. Structural characteristics regarding
sphere center positions, radial and axial porosity profiles could be highlighted and existing knowledge
reviewed and enlarged.

5.4.2 Validation of numerical packing generation

Figure 5.11 displays the radial porosity profiles comparing experiment and numerical packing generation.
Besides, the herein used packing algorithm DigiDEMTM, the results for another packing procedure using
BlenderTM that we published elsewhere [108] is added in terms of completeness. An excellent fit of
the experimental data and the two numerical procedures as displayed in Figs. 5.11a to 5.11d could be
obtained. The already discussed extreme values in the tube center are similarly obtained in artificial
generated packed beds. The attention may be further drawn to the excellent fit of extrema position. The
slight difference between experiment and DigiDEMTM simulation can be explained with a slightly more
regular structure of the numerically generated packings, especially for larger packed beds. It is known,
that a bed densification results in higher amplitudes [39], however, the extent of this amplitude variation
due to bed compression is much larger than the small deviations displayed here.
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Figure 5.11: Comparison of radial porosity plots obtained by experiment (solid line),
DigiDEMTM (dashed line), and BlenderTM [108] (dotted line) for (a) λ = 3.0, (b) λ = 4.0, (c)
λ = 7.0, and (d) λ = 8.0.

5.4.3 Extrapolation of results

With the validated numerical packing procedure, a comprehensive study with packing sizes between λ =

1.1 and 9.0 is performed. λ is varied in steps of 0.05 between λ = 1.95 and 4.0 and in steps of 0.1 and 0.2
below λ = 1.95 and above λ = 4.0. For λ > 6, a step size of 0.5 and 1.0 is selected.

Radial porosity distributions

The resulting radial porosity profiles are plotted in Fig. 5.12 for the data of λ < 6.0. For a more in-depth
characterization, Fig. 5.13 displays the porosity in the tube center, Fig. 5.14a displays the local porosity of
each curves minima (lower part) and maxima (upper part) and Fig. 5.14b displays the position of each
extremum, alternating maxima and minima, each as a function of tube-to-particle diameter ratio λ .
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Figure 5.12: Obtained curve family of radial porosity profiles for a large number of numerically
generated packed beds using DigiDEMTM for packed bed sizes between λ = 1.1 and 6.0

From Figs. 5.12 and 5.13 a distinct pattern regarding the tube center porosity can be identified. For
λ = 1.0 the packed bed is characterized as a strictly regular chain of single spheres stacked over another.
With increasing λ , the spheres stick to the tube wall while starting to increasingly fit into another until
enough space is available to place two spheres next to each other at λ = 2.0, which also represents the
circular link of the first ring of spheres: for more structural details of these packings, refer to [113]. In
this λ -range, the porosity in the tube center is always zero due to the perfect fit of the spheres, in spite
of the sphere centers are always 0.5 particle diameters away from the tube wall. With the completion of
the outermost ring of spheres, the central porosity jumps to unity thus forming a completely empty duct
in the tube’s center. A further increase in λ increases the size of the central duct but does not break up
the complete outer ring of spheres. This behaviour can be seen in Figs. 5.12 and 5.13, as the porosity is
constantly one from zr = 1.0 onwards in the respective λ -region. The increase in tube size only affects
the organisation of the outer ring with increasingly fitting more spheres per layer but keeping the central
duct untouched until the collapse of this system around λ = 2.6 with the introduction of central spheres.
From thereon, the central porosity jumps back down reaching zero for λ ≈ 3.0. Here, a perfect pile of
spheres fits into the tube center surrounded by a complete outer ring of spheres. During a further increase
of λ , the outer completed ring of spheres is un-affected while forming a quite solid border for the inner
spheres, that behave similarly to the single-sphere arrangements of λ < 2.0 before completing the second
ring of spheres around λ = 3.8. The rings of spheres intertwine so that an expected completion of the
second ring at λ = 4.0 theoretically fitting four sphere spheres aside into the tube diameter is reduced
to lower values. From the completion of the second ring onwards, a central empty duct is again formed
which increases while untouching the completed ring structure until a certain point of instability, where
the first central sphere is added. In summary, the packed bed structure for increasing bed sizes starting at
the smallest possible size λ = 1.0 consists of a repeating alternation of central sphere strings and empty
ducts surrounded by complete rings of spheres. However, with each sphere added due to the increased
bed size, the randomness of the system is increased, smoothening the initially strict borders between these
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Figure 5.13: Local bed porosity at the tube’s center of numerical data for λ = 1.1 to 6.0,
compared to experimental data, literature data and typical correlations for radial porosity
profiles.

two states and increasing the respective transition-regions represented by the shaded areas in Fig. 5.13
and all following figures, were intermediate porosity values are obtained.

Besides the numerical data, experimental data points were included in Fig. 5.13 of the above-described
experiments and the data found in literature and displayed in Fig. 5.1. Although the experimental database
is quite sparse while produced under various experimental conditions and packing procedures, a very
good fit of experiment and numerical prediction of the central packing porosity is achieved. Furthermore,
the predicted central porosity values of selected correlations officially valid for λ > 2 is added. Among
these, the correlation of de Klerk [8] shall represent all standard cosine-exponential type correlations
neglecting any influence of λ on the radial bed porosity, the correlation of Suzuki et al. [45] shall represent
all scaled cosine-exponential type correlations including an influence of λ within the fitting constants, the
correlation of Mueller [28] shall represent all the variations of the scaled Bessel-function type correlation
that include an influence of λ within the fitting constants and Mueller [43] represents a scaling approach
of parabola function chains. It is obvious, that none of the known correlations no matter if including
λ -scaled constants or not, are capable to sufficiently represent the radial porosity profiles for packed beds
of λ < 6.0. Among the known, the scaling of parabola function chains [43] might be the most promising
approach for this region, however, finding a correlation that sufficiently represents the described unsteady
behaviour of the curve family depicted in Fig. 5.12 is a challenge. A possible approach might include
the combination of completed rings with a case sensitive selection for the tube center region, where the
porosity is either constant one (duct), decreases rapidly to zero (string) or is in between (transition).

Some more structural details are clustered in Fig. 5.14. Besides the unsteadiness of the porosity in the tube
center, the porosity and location of extrema characterizing the completed rings of spheres are not constant
either, however, their overall effect is probably less important. The upper three curves of Fig. 5.14a

171



5 Analysis of void structure in sphere packings

max

min

tube-to-particle diameter ratio λ =
D
d

[-]

lo
ca

lp
or

os
ity

of
ex

tr
em

a
ε
(r
) e

x
[-

]

2 4 6 8
0

0.2

0.4

0.6

0.8

1

2 4 6 8
0

1

2

3

min1

max1

min2

max2

min3

max3

tube-to-particle diameter ratio λ =
D
d

[-]

po
si

tio
n

of
ex

tr
em

a
z r

,e
x

[-
]

Figure 5.14: (a) Local porosity and (b) position of extrema of the radial porosity distribution
for λ = 1.1 to 9.0, seperately for the first (solid line), the second (dashed line), and the third
(dotted line) minimum (lower curve) and maximum (upper curve), respectively.

describe the porosity of the maxima of the radial porosity distributions respectively for the first, second and
third one starting at the tube wall. For each maximum, the porosity is unity at the beginning (duct-region)
and from that onward is lower in the transition regions as in the consecutive duct/sphere string regions.
The lower curve represents the porosity of the minima, which is initially zero, and from there onwards
is higher in the transition regions. Regarding the extrema locations displayed in Fig. 5.14b, the location
of the minima increases steadily in the sphere string region, decreases sharply with ring completion and
slowly decreases hereinafter to a finally constant value. This decrease is not affected by transition regions
or the occurrence of further extrema. Compared to that, the location of the first maximum is of surprising
unity. In spite of some small deviations in the first transition region, this also accounts for following
maxima locations: at λ = 9.0, the extrema locations are 0.52, 1.0, 1.40, 1.86, 2.25, 2.70 which is in very
well accordance with the values obtained from experiments. The extrema distances are 0.52, 0.48, 0.40,
0.46, 0.39, 0.45 for all extrema and 1.0, 0.88, 0.86, 0.85, 0.84 for the extrema of same kind. Consequently,
the period of oscillation is around 0.87 and slightly decreasing with increasing peak number.

Correlation approach

Based on the above described findings it can be assumed that for small λ < 6 the completed rings are not
affected by any further increase or decrease of λ . Thus, the tube center is packed independently from the
rest of the packing. It is further assumed that this packing order might be similar to the packing order
obtained when tubes of λ < 2 are packed where no ring of spheres is completed yet. For this region,
an analytical solution of the porosity profiles exists [113]. The most predominant difference is, that an
overlap with the completed sphere rings have to be taken into account. This overlap is assumed to be
apporixmately 0.13zr which corresponds to the difference in oscillation amplitude (ring width) between
first and the following oscillations (rings) as earlier discussed. As a hypothesis the porosity profiles
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between the completion of the first ring (analytical solution) and the second ring can be described using
the by 0.87zr shifted analytical porosity profiles. This approach can also be used for all λ < 6 having n
completed rings of spheres:

for zr < 1+(n−1) ·0.87 : ε(r,λ ) as of existing correlations, e.g. Eq. (5.6b)

for zr ≥ 1+(n−1) ·0.87 : ε(rs,λs) as of analytical solution, e.g. [113]

with: rs = zr−n ·0.87, and λs = λ −2 · (1+(n−1) ·0.87)+2 · (1−0.87) (5.7)

It might be necessary to use linear or quadratic interpolation between these two sections. As an example:
when plotting λ = 3 (n = 1), then use existing correlations for zr < 1 and the analytical solution for
λs = 1.26 shifted by ∆zr = 0.87 for zr > 1. The results of selected profiles are displayed in Fig. 5.15. A
very well fit of prediction and numerical data can be seen. It shall be noted, that for λs < 1 the analytical
solution is ε = 1 (empty tube).
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Figure 5.15: Visualization of prediction approach of porosity profiles for packings having
tube-to-particle diameter ratios < 6.

Bulk average porosity

In the last step, the bulk porosity is calculated cutting off three particle diameters from the top and bottom.
The resulting values are displayed in Fig. 5.16 versus tube size. Corresponding experimental results of
[16] were added to show the validity of the values. Moreover, the values predicted by McGeary [75] based
on theoretical considerations regarding complete regular arrangements of ideal packed sphere multiples
are added. Although the absolute values are either too low or too high, the general trend can be reproduced.
For comparison, the analytical and well accepted correlation of Carman [85] for the region λ = 1.0 to
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Figure 5.16: Mean bed porosity for λ = 1.1 to 6.0 of numerical data, compared to
experimental and theoretical data points and known correlations.

1.866 is added and fits well with the numerical data points. From the large selection of available empirical
correlations to predict the mean bed porosity for a given λ > 2.0, two correlations were selected roughly
marking the upper [62] and lower [63] limit of all correlations. Herein, the porosity value at λ → ∞ was
adjusted to the value of 0.383 determined for the added experimental results [16]. While the numerical
(and experimental) data points well fit the region spanned by the two limiting correlations, their general
steadily decreasing trend can not be confirmed for this λ selection. As already mentioned in the theoretical
part of this chapter, the mean bed porosity is rather characterized by attaining extreme values, especially
maxima around λ = 3.5 and 4.4 and minima around λ = 3.0, 4.1 and 4.6. Moreover, the mean porosity is
rather constant in the λ -region 2.2 to 2.7. For λ = 1.0 to 1.866, the data points follow the already known
correlation Eq. (5.8) of Carman [85], for λ = 1.866 to 3.0, the data can be described using Eq. (5.9) and
for λ = 3.0 to 4.1, the data points are more precisely described by Eq. (5.10).

ε̄ = 1− 2
3
·
(

1
λ

)3

· 1√
2
λ
−1

for λ = 1.0 to 1.866

(5.8)

ε̄ = 0.6622 ·λ 3 +4.9493 ·λ 2−12.304 ·λ +10.659 R2 = 0.965

for λ = 1.866 to 3.0
(5.9)

ε̄ = −0.1639 ·λ 2 +1.147 ·λ −1.5431 R2 = 0.853

for λ = 3.0 to 4.1
(5.10)
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5.4 Results an discussion

There is at least one more range to be defined, probably ranging from λ = 4.1 to 4.6 or 5.0, however, the
database is too small to properly define respective fitting curves. Subsequently, the data variations are
small so that for λ > 5.0 the existing correlations can be used to estimate the mean bed porosity. As the
difference between these is small, no recommendation for a specific correlation shall be given.

The obtained curve of mean porosity versus tube size appears to be independent from the shape of the
radial porosity profile and the occurring extrema cannot be allocated to either sphere string arrangements,
the existence of empty central ducts or the intermediate transition regions.

Sphere contact number and distribution

Besides the void structure, the contact number distribution [29, 114, 115] of packed spheres, its average
[29, 114–116] and the orientation of sphere contacts [11, 39] have been evaluated previously. Typically,
this has been done for bulk packings without investigating the influence of the confining wall. Values for
average sphere contacts Nc range from about 6 to 7 and depend on the bulk packing porosity, which is
alterated by particle material and packing method. Recently, an in-depth study evaluated the alteration of
the bulk packing contact statistics when approaching the packing’s confinement [39]. Close to the wall,
especially the orientation of particle contacts showed significant indications for very structured particle
arrangements.

With the available numerical packing data, sphere contact statistics have been performed, especially
evaluating the effect of tube-to-particle diameter ratio on the average contact number and the standard
deviation of its distribution. The obtained results are displayed in Fig. 5.17. Accordingly, the average
particle contact number for tube-to-particle diameter ratios equal or smaller 1.8 equals 2. Thereinafter, a
drastical increase in average contact number can be observed, flattening to an infinite value for λ > 6.0.
The obtained curve can be fitted to Eq. (5.11):

Nc =

{
2 forλ ≤ 1.8
6.2·λ−10.9

λ−1.6 forλ > 1.8
(5.11)

The actual deviation from the fitted curve, however, is quite large for small tube sizes, which is allocated
to the unsteadiness of the packing porosity and the small sample size. Besides the average contact number,
its deviation, here represented by the standard deviation, shows a similar trend from being very narrow for
small λ , rapidly increasing its width before smoothening out to a constant value. Furthermore, bimodal
distributions can be observed for most packings between 2 < λ < 4, indicating a large ratio of spheres
close to the wall which, obviously, have less contact with other spheres, but with the confining wall.
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5.5 Conclusion

5.5 Conclusion

A comprehensive study was conducted to fill the gap of understanding and predicting slender packed beds
of mono-sized, smooth spheres in cylindrical confining walls of λ < 10. The experimental determination
of local porosity profiles using x-ray computed tomography was expanded with the analysis of numerically
generated packed beds in order to enlarge the available database to a substantial resolution. Furthermore,
a general correlation predicting the radial porosity profile has been derived.

Based on this, some remarkable details regarding the shape of the radial and axial porosity profiles as a
function of λ are detected and described. These comprise the variation of location and height of the first
minimum and maximum and the subsequent modulation of amplitude and period of the present damped
oscillation. While the first peak is clearly sharp as obtained by parabola, this can not be seen for the
consecutive peaks that may be well described by a cosine term. Most predominantly, it was found that
for small λ the values in the center of the tube may take extreme values which in this extent was not
described before. This comprises the classifaction of the central tube part into an empty duct center, a
sphere string-ordered center, and the transition between these two states. Depending on which class is
apparent, the local porosity values may take the extreme values one and zero. In order to predict this
behaviour a correlation is derived based on analytical solutions capable to predict this behaviour. It is to be
noted, that these characteristics may be more or less pronounced when using different material properties
or packing modes. However, the herein described configuration is probably the best compromise regarding
packed bed influencing factors.

It was further noted, that the described structural details of packed beds for small λ do not correlate in clear
manner with differences found for the overall mean bed porosity. Again, the generally accepted steadily
decreasing trend for 1.866≤ λ is an oversimplification for λ < 5 as occuring extrema are not considered
although leading to a significant difference in mean bed porosity, e.g. at λ = 3.0 the porosity equals 0.42
and at λ = 3.45 it is 0.47. Depending on the selected correlation, this may lead to an error of >10 %
between correlation and reality, wich is a multiple of the generally accepted 1 % error tolerance regarding
mean bed porosity. This boundary level relates back to the error propagation for pressure drop, where a
deviation in porosity results in approximately the fourfold deviation in pressure drop. Consequently, new
correlations were presented for the the λ -region 1.866 to 4.1 that well fit the obtained data. Additionally,
sphere contact statistics have been evaluated and related to the tube-size.

The proper and validated description of numerically generated packed beds is required for subsequent
simulations of fluid dynamics, heat or mass transport. It is questionable if and to what extend the described
structural characteristics of packed beds transfer to the flow profile and deduced parameters, depending on
λ .
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Nomenclature

Nomenclature

Latin Symbols

a,b variables in Eq. (5.4) m
a,b,c,d variables in Eq. (5.6b) -
dp particle/sphere diameter m or voxel
D diameter of tube m or voxel
e coefficient of restitution -
h height of sphere cap m
H height of tube m or voxel
n number of complete rings -
r radial position from tube center m
r sphere radius m
R radius of the tube m
S (bin) cross section m2

V (bin) volume m3

x x coordinate m
y y coordinate m
z axial position from tube bottom m
za begin of interpolation region -
ze end of interpolation region -
zr non-dimensional distance from tube wall in particle

diameters
-

zr,min,1 non-dimensional distance of the first minimum from
tube wall

-

zz non-dimensional distance from tube bottom in particle
diameters

-

Greek Symbols

ε local porosity -
ε̄ mean bed porosity -
εmin,1 local porosity oft he first minimum adjacent to the wall -
εinf porosity with λ → ∞ -
λ tube-to-particle diameter ratio -
κ tube height-to-particle diameter ratio -
ρ material density kgm−3

µ coefficient of friction -
ν Poisson’s ratio -
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5 Analysis of void structure in sphere packings

Indices

0 sphere center value
a apparent variable
b bulk variable
c tube center variable
ex value or location of extrema
i control variable, sphere index
n control variable, axial bin
m control variable, radial bin
max maximum
min minimum
s shifted value
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6 Numerical Shape Development Study in View
of Random Packed Beds. Part I: The Yo-Yo
Shape

Abstract
A huge variety of shaped bodies geometries to be used in catalytic fixed bed reactors is available in industry.
However, only sparsely shapes other than spheres, cylinders and hollow cylinders are systematically
investigated by scientific institutions. As a starting point, the known geometries typically published
in patents and patent applications are reviewed and classified regarding fabrication methods and shape
characteristics. It is well known that even small variations of these shapes may have a major impact
on fluid dynamics as well as in heat and/or mass transfer of the reaction system. An arbitrary selected
Yo-Yo shape being a sphere with an equatorial duct of variable width, deepness and rounding radius is
evaluated in regard to packing structure, flow field, pressure drop and residence time distribution. This
study marks the first attempt to utilize the steadily increasing possibilities of numerical packing generation
and computational fluid dynamics, for an in-deep understanding of shape impact and its potential for
future automated shape optimization procedures.

This article was published in:
Chemical Engineering Journal, 404, J. von Seckendorff, P. Scheck, M. Tonigold, R. Fischer, O. Hinrichsen,
Numerical Shape development study in view of random packed beds - The Yo-Yo shape, 126468,
Copyright Elsevier (2021). DOI: 10.1016/j.cej.2020.126468.
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6.1 Introduction

6.1 Introduction

Heterogeneously catalyzed reactions require the presence of solid catalyst material, in industrial-scale
application typically shaped to distinct bodies in order to reduce the pressure loss along the reactor.
Nonetheless, the shaped bodies randomly stacked into the reactor need to ensure uniform reactant
distribution and catalyst contact in common with an appropriate heat transport characteristic. The
optimization of these parameters by simply varying the geometry of the catalyst body has an impressive
economic impact proven by the sheer amount of existing patents and patent applications in this field.
Despite, the systematically scientific description of shape effects on fluid dynamics, heat and mass
transport are frequently restricted to the well-investigated random packing of spheres [1–3]. A much
smaller experimental database is available regarding the utilization of random packings of cylinders
and hollow cylinders [4–6], sometimes also called Raschig rings. Despite minor exceptions, hardly
any experimental study goes beyond these three shapes, which is justified with the strongly increasing
complexity of the whole system making a scientific evaluation be a challenge. While the shape of a
sphere is easily described with its radius as the only unambiguous parameter, a cylinder comes in various
diameter-to-height aspect ratios, a certain orientation expressed by a rotation matrix or angle and a large set
of selectable definitions for characteristic diameters, most frequently the Sauter diameter or the diameter
of the sphere with equal volume. Besides its increasing structural complexity, the availability of test
bodies possesses another problem. While spherical shapes can be easily obtained in sufficient accuracy
and number (marbles, ball bearings, beads), accurate cylindrical shapes are less easy to find especially in
varying aspect ratios and researchers tend to machine them from wood [7], metal [8], plastic [8] or even
vegetables [9] and spaghetti [10]. It is obvious that this technique can not be used for manufacturing more
complex test bodies. In industry, methods such as tablet pressing are used to form the catalyst bodies.
This forming procedure requires punch and press die sets that are typically too expensive to obtain for a
designed shaped study. It is thus, that researchers accommodate with nature’s products such as lentils, all
sorts of beans and rice [8, 9] to name but a few if shapes other than spheres and cylinders shall be evaluated.
Unfortunately, these products are not accurately formed and a significant experimental uncertainty needs
to be considered. With upcoming 3d printing capabilities, uniform packing particles can be produced, that
differ significantly from anything known before. Though to the actual catalyst production by 3d printing
is probably still a long way off, this technique is highly appreciated for prototyping packed bed shapes to
be incorporated into systematical, experimental shape evaluation studies.

With developing numerical techniques, the virtuel creation of single, arbitrary shaped elements is not
a problem anymore, however, the numerical generation of random packings of these arbitrary shapes
still is a compromise. While the complete physical description of the randomly packing of particles,
called the Discrete Element Method [11, 12], is basically only valid for spheres, efforts were undertaken,
to create the desired arbitrary shapes using certain workarounds [13, 14]. Besides the limitations of
packing generation, some studies exist, comparing fluid dynamics [15, 16], heat [17, 18] and mass transfer
[19, 20] within packed beds of typically simple shapes, but also more complex ones. But despite the
impressive capability, numerical studies offer the required validation with experimental data remains the
main issue.
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In this study, shape variations of a sphere with a circumferential duct, the Yo-Yo shape, are evaluated
numerically. This shape is simple enough to still be comparable to the frequently evaluated sphere but
with cutting a surrounding channel, a higher geometric surface area and a lower packed bed pressure
drop is expected. While the final shape will be producable by traditional tablet pressing techniques, the
previous numerical evaluation significantly decreases development costs while being capable to find the
optimal geometry.

6.2 Theory

6.2.1 Packing structure

Important geometric parameters are the geometric surface area ageo, the axially averaged radial porosity
distribution ε(r) and the average bed porosity ε̄ . The geometric surface area can be calculated according
to Eq. (6.1).

ageo =
N ·ap

VT
= 6 · 1− ε̄

dp
(6.1)

The average bed porosity can be easily determined experimentally by water displacement [21–23] or
weighing method [4, 24] and numerically by determining the number of void cells in the calculation grid.
The parameter is known to depend on the tube-to-particle diameter ratio λ and on the particle’s material,
shape and size distribution, the container’s material and shape and the applied deposition and compaction
methods [25, 26]. In this study, a standardized packing is used incorporating smooth, homo-sized ideal
particles, a standard packing mode and constant tube characteristics.

For low tube-to-particle diameter ratios λ < 10, an increase in average bed porosity with decrease of λ

can be observed due to the confining influence of the tube’s wall (see [4, 21, 27–30] for experimental
studies and [4, 21, 22, 27, 29, 31–36] for derived correlations). In this study, λ varies between 5 and 5.8,
which is inside the wall effected range. This wall effect causes the particles to align to a wall-induced
ring-like pattern, which eases out 4 to 5 particle diameters away from all surrounding confinements
[27]. The radial porosity distribution expresses this particle order, with a local porosity of one directly
at the tube wall and for spheres describing a damped oscillating trend reaching into the packing’s bulk
region [27]. Experimentation methods to determine radial porosity profiles include bed solidification
and incremental machining techniques [9, 37–42] as well as bed projection methods including x-ray
tomography [43–47] and magnetic resonance imaging [48–52]. A selection of derived correlations were
presented by Antwerpen et al. [1].

While spheres are well studied, only sparsely shapes other than spheres are investigated as complex
geometries require a hand full of aspect ratios and characteristic diameters. Moreover, simple shape
factors as for instance sphericity were proven incapable to universally describe bed characteristics [53].
Consequently, there is no rule and no correlation that can predict the average and local void distribution
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for a packed bed of arbitrary shaped particles. Due to availability problems of shaped particle packings,
studies on geometrical variations are prone to be performed numerically. In this context, computational
packing generation can be performed by the Discrete Element Method (DEM) [11, 12, 54] or similar tools
[55–57]. But as the original DEM was only defined for ideal spheres, compromises have to be accepted
in order to use this technique with arbitrary shapes. These compromises include the time consuming
enlargement of the actual DEM code bit-by-bit to other shapes [58–61], the computational expansive
assembly of the desired shape by a large enough number of overlapping spheres [16, 62–68], the transfer
of the DEM-algorithm and underlying physics to voxels (cubes) and the subsequent assembly of the
desired shape by voxels [69–73], or, by ignoring certain physical conditions, shapes can be represented
by a surface grid [13, 74]. A good comparison of some methods in regard to packing generation was
presented by Fernengel et al. [14] for spheres and Caulkin et al. [68] for cylinders.

6.2.2 Fluid dynamics

The fluid dynamical evaluation of a packed bed comprises the pressure loss of the packing and the flow
field analysis, most predominantly the axially averaged radial profile of the axial velocity component
uz(r), but also the radial profile of the radial velocity component ur(r). The importance of the latter was
only recently emphasized in regard to heat transfer [75]. Many pressure loss experiments have been
performed in regard to sphere packings, and many correlations have been derived (see [3] for a review)
relating the non-dimensional pressure loss called friction f ′ to the fluid state indicated by the packing
Reynolds number Rep. but again, a broad understanding of the effects of any other packed shape is still
virtually absent.

f ′ =
∆P
H
·

dp

ρ ·u02 ·
ε̄3

1− ε̄
= f (Rep) with Rep =

ρ ·dp ·u0

η · (1− ε̄)
(6.2)

Ergun [76] : f ′ =
150
Rep

+1.75 (6.3)

Eisfeld and Schnitzlein [77] : f ′ =
K1 ·

(
1+ 2

3·λ ·(1−ε̄)

)2

Rep
+

1+ 2
3·λ ·(1−ε̄)(

k1
λ 2 + k2

)2 (6.4)

Erdim et al. [3] : f ′ =
160
Rep

+
2.81

Rep
0.096 (6.5)

While the correlation of Ergun [76] is the most known correlation, for instance Eisfeld and Schnitzlein [77]
additionally considered the influence of the wall by introducing λ , and to a certain degree the particle
shape by listing pre-parameters K1, k1, and k2 for a small shape selection. Despite, Erdim et al. [3]
reviewed a large number of correlations finding the least experimentation error for a packed bed of spheres
in their version of the original Carman [34] equation, being valid for all λ .

The experimental validation of flow profiles is still a major area of concern, as obtainable data is typically
not representative or too vague. This predominates the evaluation of flow fields by numerical means such
as computational fluid dynamics (CFD). Despite, scattered experimental studies have been performed,
including the determination of the flow profile underneath a packing by anemometers [78] or specially
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designed collectors [79], by incorporating electrochemical sensors into packing elements [80] or by
using projection methods such as magnetic resonance imaging [52, 81], laser doppler anemometry [82]
or particle image velocimetry [83]. While some details are still unveiled, it is generally accepted, that
the radial flow pattern is somewhat equivalent to the radial porosity distribution. Consequently, large
inhomogeneities in the local porosity distribution results in equivalent flow inhomogeneities and should
thus be avoided. In a packing of spheres, the terms channeling and wall channeling were established
describing the by-passing of flow in the high porosity regions between ordered sphere layers and between
the outermost sphere layer and the confining wall, respectively.

6.3 Methods

The herein performed general simulation procedure consists of the steps of i) shape design, ii) numerical
packing generation, iii) mesh creation, iv) steady-state flow simulation, v) dynamic flow simulation with
tracer, and vi) post-processing of the data (cf. Fig. 6.1). Each step, except the very first one, requires an

computer
aided design

of shapes

numerical
packing

generation

mesh creation
(mesh study)

steady-state
flow

simulation

dynamic flow
simulation
with tracer

post-
processing

Figure 6.1: General simulation procedure.

accurate validation with experimental data or generally accepted correlations. As for this specific shape,
no experimental data nor generally accepted correlations exist, the whole procedure is validated first using
a reference sphere packing.

6.3.1 Shape design

The herein selected shape comprises a spherical base shape of diameter d from which a circumferential
duct is cut. The cross-section of the whole shape and the details of the duct are displayed in Fig. 6.2.
Along a wedge-shape selection of angle-width β , a linear cut is made of deepness a. At the end of this cut
and pointing to the sphere center, a circle fragment is drawn where the radius is automatically adjusted
to allow tangential connection between sphere fragment and linear cut a. The sharp edge of this duct is
rounded-off with radius R. The whole shape is unambigiuously described by these four parameters sphere
diameter d, duct deepness a, duct width β and rounding radius R.

For the following shape variations, the sphere diameter is kept constant at d = 10 mm, duct deepness a
was selected to vary among 0 mm, 0.5 mm, 1.0 mm and 1.5 mm, duct width β was selected to vary among
20°, 30°, 40° and 50°, and rounding radius R was selected to vary between 0 mm, 0.5 mm and 1 mm. A
total of 28 slightly different shapes were thus obtained, for illustration purposes listed in Table 6.1. The
shapes were designed with Autodesk® Inventor® providing the exact volumes and surface areas for each
modification.
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Figure 6.2: Shape details of sphere with circumferential duct.

Table 6.1: Overview of designed shapes incorporated in this study.

Angle rounding radius R = 0.5 mm duct deepness a = 1.0 mm
β a = 0 mm a= 0.5 mm a= 1.0 mm a= 1.5 mm R = 0 mm R= 0.5 mm R= 1.0 mm

50°

40°

30°

20°
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(0,50,0.5) (0.5,40,0.5) (1.0,30,0.5) (1.5,20,0.5) (1.0,30,0) (1.0,40,0.5) (1.0,50,1.0)

Figure 6.3: Selection of packed tubes with shapes of dimension (a,β ,R).

6.3.2 Numerical packing generation

Packing generation is performed utilizing the DigiDEMTM code, a voxelated particle simulation software
incorporating a digital packing algorithm based on the Monte Carlo Approach whilst explicitly considering
physical interaction forces similar to the Discrete Element Method and is elsewhere described in more
detail [44, 69]. The packing procedure is identical to the one we already described [14]. Hereby, the
3d objects were digitized to a resolution of 10 voxelmm−1, thus 100 voxel define the shapes diameter.
The material properties were set as follows: density ρ = 3000 kgm−3, coefficient of restitution e = 0.3,
coefficient of friction µ = 0.7 and Poisson’s ratio ν = 0.3. The objects are filled into tubes of constant
height H = 3000 voxel (300 mm) and diameter D = 500 voxel (50 mm), thus representing packed beds
with a tube-to-particle diameter ratio λ = 5.0 when considering the reference sphere. The packing mode
was selected to be damping and the stop criterion is a pre-set time of 3 s. Figure 6.3 displays extracts of
the packed beds for a selection of shapes.

The herein used packing procedure is identical to the one presented and validated with literature data in
[14], despite that ideal spheres were used instead. It is also identical to the one described and validated
with computer-tomography scans in [84], again for ideal spheres. As no experimental data is available
for the herein used shapes, the validity of packing procedure and the adequacy of voxel resolution are
assumed based on the perfect fit of numerical results and experimental data in regard to spheres. For
spheres, the reproducibility as the mean relative standard error of packing generation was found to be
one percent for the radial porosity profiles and 0.5 percent for the averaged bed porosity, based on ten
identical packing repetitions (see [84]).

6.3.3 Mesh creation and mesh study

The location vector and the rotation matrix of each particle in a packing are obtained from the numerical
packing generation tool. Based on this information, the packing is reconstructed in combination with an
.stl-file of the intended shape having the respective size using a LINUX bash script. The meshing of the
void space of the reconstructed packed bed is performed using snappyHexMesh, a build-in meshing tool
of computational fluid dynamics freeware OpenFOAM® that generates castellated irregular shaped mesh
cells. This allows a mesh refinement where a higher resolution is needed, typically close to the contact
points. Here, The mesh is refined in three steps close to each true and near contact point and additionally,
five layers of layered mesh cells are introduced to smoothly represent the round sphere’s surface.
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(a) Exemplarily cut through meshes of size l = 0.34 mm, 0.23 mm,
0.20 mm and 0.14 mm (left to right).
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(b) Comparison of radial porosity distribution.

Figure 6.4: Comparison of different mesh resolutions of shape (0.5,30,0.5), where l represents
the mean cell size in mm. The fine grid convergence index [85] was just below 1 % for
l = 0.20 mm and 0.15 % for l = 0.14 mm.

No effort was done regarding a specialized treatment of contact points, as for instance the creation of
bridges, cutting of caps, the shrinkage or inflation of all spheres, as at times described in the literature. A
mesh study (cf. Fig. 6.4) with decreasing mesh sizes is performed, and the mesh resulting in a fine grid
convergence index [85] in regard to porosity, velocity and pressure drop of just below 1 % was asserted to
sufficiently fulfill the requirements.

6.3.4 Steady-state and dynamic flow simulation

Computational fluid dynamics using open source code OpenFOAM® is performed on all numerically
generated packed beds including the reference sphere packing. Simulation of the steady-state flow of
air at ambient conditions is performed incorporating the SIMPLE (Semi- Implicit Method for Pressure
Linked Equations [86]) algorithm. The convergence criteria is 0.001 for all parameters. The standard
superficial velocity is selected to be u0 = 1.132 ms−1. The incompressibility of the fluid is assumed and
justified with excess pressure being significantly below 1 bar. Moreover, a broad selection of turbulence
models is tested with the reference sphere packing. These comprise for instance the Wall-Adapting Local
Eddy-viscosity model (WALE) [87], the Spalart-Allmaras Detached-Eddy-Simulation (DES) [88, 89], the
k− kl−ω Reynolds-Averaged Simulation (RANS) [90] and the Launder-Sharma k-ε model [91]. The
differences in resulting pressure drop simulated for Re = 10 to 10000 is negligible small among all tested
models and when compared to the theoretical solutions using the pressure drop correlation of Eisfeld and
Schnitzlein [77] and Erdim et al. [3] as displayed in Fig. 6.5. The Launder-Sharma k-ε model is finally
selected to be utilized as turbulence model.

The dynamic flow simulations using the scalarTransportFoam solver available in OpenFOAM® is based
on the velocity field u created using steady-state conditions, except that at time t = 0 s a tracer (scalar T )
is added just above the packing and distributed over the tube cross-section, performing a step experiment
with its normalized concentration ranging from 0 to 1. Eq. (6.6) shows the incompressible form of the
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Figure 6.6: Residence time distribution curves
obtained at various heights along the packed bed
performing a step experiment with tracer injection
at t = 0 s and h = −0.25 cm.

scalar transport ans is hence devided by the density.

∂

∂ t
(T )+∇ · (u ·T )−∇ · (DT ·∇T ) = ST (6.6)

The numerical time step ∆t is determined so that the Courant number Co = ∆t · τc is below 1. Herein,
the characteristic time scale of a local cell τc =

1
2·Vc
·∑(φi) depends on the cell volume Vc and the face

volumetric fluxes φi. The distribution of the tracer is numerically measured at a certain time interval and
at different height positions along the packing. This is exemplarily depicted in Fig. 6.6. The simulation is
stopped when the average tracer concentration at the measuring point directly below the packing reaches
unity.

6.3.5 Post-processing

A comprehensive PythonTM script incorporating the pandas’ library is developed for the data analysis of
the resulting pressure drop and velocity fields. This script comprises the sorting of cells and their values
to horizontal and ring-shaped bins to calculate the axial and radial distributions, respectively. Moreover,
the velocity field is sorted in sphere shell shaped bins starting from the particle’s center and averaged over
all investigated packing particles. This allows the visualization of flow fields within the circumferential
ducts of the previously described Yo-Yo shape, particle’s overlapping due to these ducts and the separate
evaluation of bulk flow away from the shapes ducts. In order to neglect top (inflow) and bottom (outflow)
effects, both in regard to porosity and flow distribution, a section of three particle diameters is cut off from
the top and the bottom of the packing. Due to the varying cell size, all values are related to the respective
cell volume. An examplary depiction of all three distributions is displayed in Fig. 6.7, whereof the axial
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distribution is shown to prove an evenly packing structure along with the tube height and will not be
evaluated any further.
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Figure 6.7: Distributions of local porosity ε(x) and normalized axial velocity component
uz(x)/u0 as obtained by the post-processing procedure displayed for a packing of the (0.5,30,0.5)
Yo-Yo shape as (a) axial distribution with x = z, (b) radial distribution with x = r, and (c)
spherical distribution with x = R.

6.4 Results and discussion

The obtained results are clustered into geometrical considerations, flow field features, pressure drop
characteristics and residence time properties.

6.4.1 Geometrical considerations

Regarding geometric packing characteristics, the axially averaged local porosity distribution in radial
direction ε(r), hereinafter the radial porosity distribution, as a function of the dimensionless distance from
the wall zr = (RT−r)/d is the typically used parameter. Figure 6.8 displays the radial porosity distribution
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Figure 6.8: Comparison of radial (left) and spherical (right) porosity distributions of selected
shape families (a,b) (1.0,β ,0.5), (c,d) (a,30,0.5), and (e,f) (1.0,30,R), based on reference shape
(1.0,30,0.5) [green cross marks] and compared with a reference sphere packing [black dotted
line].(For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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for a selected reference Yo-Yo shape specification with dimensions (1.0,30,0.5) as a green curve with
cross marks. From this reference, the obtained results for Yo-Yo shapes where only one parameter is
varied are added. This comprises the variation of duct width β in Fig. 6.8a, duct deepness a in Fig. 6.8c
and rounding radius R in Fig. 6.8e. For comparison, the radial porosity distribution of the reference sphere
is added as a dotted line. The oscillatory behavior typically obtained for packed beds of spheres describing
an accumulation of sphere centers in a ring-like structure starting from the tube wall is visible. While
this oscillatory behavior can be generally seen for the new Yo-Yo shapes, too, the distinctness of the ring
formation, however, is significantly reduced, discernible in a smaller oscillation amplitude. It is suspected,
that this may drastically reduce flow channeling effects.

Comparing the various shape parameters, an increase in duct width β reduces the overall oscillation
amplitude, an increase in duct deepness a increases the porosity minima (particle ring centers) but does
only sparsely effect the maxima (inter-particle ring void) and an increase in rounding radius R moves the
whole porosity distribution to lower values.

The overall decrease of amplitude in case of increasing β can be explained with increased particle overlap
and interpenetration. While spheres can’t overlap by any means, the introduction of circumferential ducts
allows particle interpenetration in this region. With increasing duct width, this interpenetration increases,
both in the axial and radial direction. This randomizes the particle placements away from the formation of
clearly distinctive ring structures. Still, the confining wall causes the formation of some order, especially
directly adjacent to it. It is to be noted, that the oscillation period is moving to smaller values as well. This
can be explained again with the particle interpenetration, but may additionally be caused by the slight
decrease of the volume-based particle size.

While the increase of duct width increases the particle interpenetration and thus reduces maxima and
increases minima, the increase in duct deepness only affects the minima porosities with again decreasing
the overall oscillation amplitude. This effect may be explained, that with increasing duct deepness, no
increase in particle interpenetration can be obtained, but the mere solid volume reduction causes the
minima to increase. Additionally, the formation of an intermediate mini-maximum at the original minima
position can be observed with increasing duct deepness. This intermediate maximum is known from
packed beds with packing particles having one or more through-cut holes [92].

The increase in rounding radius evokes a shift of the radial porosity distribution without significantly
changing its appearance. Consequently, particles simply pack slightly denser when edges are smoothed. It
is assumed that the overall packing structure is however not affected.

For a better understanding of particle interpenetration, the shell-volume-averaged porosity distribution
starting at a particle center to the bulk of a packing, averaged over all packing particles and hereinafter
called spherical distribution is plotted and displayed in Figs. 6.8b, 6.8d and 6.8f. For comparison, the
data of the reference sphere packing is added. Regarding spheres, the porosity is zero until reaching
the sphere’s surface at zR = R/(d/2) = 1. Here, a sharp increase in porosity marks the transition between
solid particle and packing void. In contrary, regarding spheres with equatorial ducts a third region, the
duct-region is obtained, after which the sharp transition to the bulk of the packing occurs. Any particle
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Figure 6.9: Contour plot of geometric characteristics: (a,b) average bed porosity ε̄ , (c,d)
normalized standard deviation s(ε)/ε̄, and (e,f) geometric surface area ageo, for the rounding
radius (left) and the duct deepness (right) against duct width, respectively.

202



6.4 Results and discussion

interpenetration should be visible in this intermediate region of the sphericle distribution as a reduction in
porosity especially close to zR = 1.

This phenomenon can be clearly seen in Fig. 6.8b when varying the duct width, as with increasing β ,
the formation of a minimum just below zR = 1 is more pronounced. Moreover, it can be seen, that the
variation of β affects the duct and the bulk packing structure. In contrary, when varying the duct deepness,
all curves merge just below zR = 1, indicating no change in particle penetration. Moreover, the bulk
packing porosity is not affected at all by varying a, thus an increase in duct deepness only increases
inner-particle void without affecting the surrounding packing structure. Last but not least, when changing
the rounding radius, the particle penetration and inner-particle void remain untouched, while the bulk
packing structure is in a more condensed state. In summary, the observations based on radial and spherical
porosity distributions draw the same conclusions regarding the effect of shape properties on packing
structure.

Besides these local packing structure properties, averaged values are typically used for a quick parameter
overview and later processing regarding for instance pressure drop considerations. These comprise the
average bed porosity ε̄ which is calculated as the total cell volume per tube volume after removing inflow
and outflow regions, the geometric surface area ageo and the characteristic diameters dp and dv. The
results for all investigated Yo-Yo shapes are displayed in the contour plots of Fig. 6.9 and Fig. 6.S1. From
these plots, it is observable, that a higher average porosity can be obtained with increasing duct deepness
a and lower rounding radius R while being only sparsely effected by the duct width β . Regarding the
geometric surface area, higher values are obtained with increasing duct width β and duct deepness a,
while being less affected by the rounding radius R. It is to be noted, that all values of the average porosity
and the geometric surface area are significantly larger than those of the reference sphere packing (see
Table 6.2).

In order to have a single parameter for the evaluation of packing structure, especially in terms of oscillation
amplitude, the relative weighted standard deviation of the radial porosity distribution s(ε̄)/ε̄ is introduced,
which describes the mean normalized amplitude height. A smaller value is favored, indicating a smaller
oscillation amplitude. As displayed in Fig. 6.9, a smoother void distribution is obtained with increasing
duct deepness a and duct width β and with decreasing rounding radius R.

In summary, regarding only the geometric packing characteristics, Yo-Yo shapes with large a and β and
small R should be preferred, emphasizing that without exception all shape variations are meliorated in
regard to the reference sphere.

6.4.2 Flow field features

Similar to the porosity profiles, velocity profiles of the axial velocity component uz as defined in Fig. 6.10
normalized to the superficial velocity u0 = 1.132 ms−1 are plotted and displayed in Fig. 6.11. Again, the

203



6 Numerical Shape Study: Part I

uz

|u m
ag
|=

√ u2 x
+

u2 y
+

u2 z

ux
u y

|ur |=
√

u2
x +u2

y
x

z

y

flow
direction

u0

α

cell

Figure 6.10: Schematic drawing of relevant velocity components of the flow vector |umag| with
an angle α to the flow direction of superficial velocity u0 and packing velocity uz = u0/ε̄.

results of the reference sphere packing are added as dotted line and the shape selection is equal to the
porosity profile discussion.

Regarding the radial velocity uz(r) distribution, a general significant reduction of oscillation can be seen
for all Yo-Yo shapes in regard to the reference sphere packing. The alternating occurence of low flow
and high flow regions (channels) are equivalent to the respective porosity profiles. Without going into
great detail, Yo-Yo shapes with large duct width β and large duct deepness a should be selected for less
channeling. The selection of rounding radius R is less significant. For exploratory reasons, the spherical
velocity distributions are added.

Besides the axial velocity distribution, the radial and spherical distribution of the normalized radial
velocity component ur (see Fig. 6.10) is displayed in Fig. 6.S2 in the Supplementary information. Again,
the distribution is much smother compared to packings of spheres. Furthermore, the radial and spherical
distributions of flow vector angle α as defined in Fig. 6.10 are plotted in Fig. 6.S3 in the Supplementary
information. The flow vector angle describes the relationship between axial and radial velocity component.
Small values α < 20° indicate non-distracted channel flow, whereas large values, especially α > 90°
indicate backflow. Both are not favoured in terms of residence time distribution, as backflow regions
increase the residence time and channel flow regions reduce it. A closer look to Fig. 6.S3 reveals averaged
flow vector angles, that attain very large mean values even above 90° at positions of low flow/low porosity
when regarding packed beds of spheres. This describes the occurence of significant dead zones with high
back flow portion at the locations where the spheres form high density rings. This undesired characteristic
is significantly reduced when shapes with circumferential ducts are utilized. Additionally, these ducts are
assumed to allow a better radial dispersion of fluid flow, based on these findings.

The interaction of structural characteristics and resulting flow profiles are displayed in Fig. 6.12 for the
afore mentioned reference Yo-Yo shape with dimensions (1.0,30,0.5). For comparison, the respective
curves of the reference sphere are added as dotted lines. As can be seen, the axial velocity and the flow
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Figure 6.11: Comparison of radial (left) and spherical (right) distributions of the axial velocity
component uz of selected shape families (a,b) (1.0,β ,0.5), (c,d) (a,30,0.5), and (e,f) (1.0,30,R),
based on reference shape (1.0,30,0.5) [green cross marks] and compared with a reference
sphere packing [black dotted line]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

vector angle follow strictly the pattern predetermined by the packing porosity. Consequently, in regions
with high porosity, the axial velocity is high and the flow vector angle is low. This channel formation is
significantly more pronounced when reagarding spheres. In contrary, the radial velocity component does
not follow this pattern, neither for the herein discussed Yo-Yo shape nor for the reference sphere.
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Figure 6.12: Comparison of flow vector angle α , local porosity ε(r) and normalized axial uz(r)
and radial ur(r) velocity component in radial packing direction, exemplarily shown for
reference shape (1.0,30,0.5) with solid and reference sphere with empty symbols.

The mean values for all discussed flow parameters as well as the respective relative weighted standard
deviation of the radial distributions are displayed for all investigated shapes as contour plots in the
Supplementary Figs. 6.S4 and 6.S5. A selection of underlaying values as well as the reference sphere
values are listed in Table 6.2. In all parameters the herein described Yo-Yo shapes are preferred to the
reference sphere.

Table 6.2: Overview of flow field parameters of selected shapes and the reference sphere
packing.

parameter Sphere (0,50,0.5) (0.5,40,0.5) (1.0,30,0.5) (1.5,20,0.5)

ageo [mm−1] 354.7 447.4 433.7 423.0 424.1
ε̄ [-] 0.4089 0.4178 0.4394 0.4612 0.4657
s(ε̄)

ε̄
[-] 0.5687 0.4084 0.3848 0.3725 0.3849

ūz(r)
u0

[-] 2.451 2.4027 2.2850 2.1768 2.1552

s(ūz(r)/u0)
ūz(r)/u0

[-] 0.4972 0.3633 0.3211 0.3054 0.3196

ūr(r)
u0

[-] 1.249 1.340 1.279 1.164 1.214

s(ūr(r)/u0)
ūr(r)/u0

[-] 0.1542 0.04506 0.04803 0.06259 0.08106

ᾱ(r) [°] 48.81 41.65 40.79 39.43 38.54
s(ᾱ(r))

ᾱ(r)
[-] 0.4126 0.2357 0.2245 0.2348 0.2523
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6.4 Results and discussion

In a further step, the superficial velocity was varied to cover Reynolds numbers from Re = 10 to 3000. As
depicted in figure Fig. 6.13 an increase of oscillation amplitude is obtained with decreasing superficial
flow velocity, which is especially predominant in the channel flow region.
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Figure 6.13: Variation of normalized flow velocity uz(r) with the packing Reynolds number
Rep, exemplarily shown for shape (0,20,0.5).

6.4.3 Pressure drop characteristics

The obtained friction factors for all investigated Yo-Yo shape variations using the base case of superficial
velocity u0 = 1.132 ms−1, are summarized in Fig. 6.14. For comparison, the correlations of Erdim
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Figure 6.14: Comparison of friction factors f ′ for all investigated shape variations and the
reference sphere packing for the respective Reynolds numbers obtained with superficial velocity
u0 = 1.132 ms−1 and the case sensitive porosity and size values. The literature correlations of
Erdim et al. [3] and Eisfeld and Schnitzlein [77] obtained for sphere packings are added as
reference.
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et al. [3] and Eisfeld and Schnitzlein [77] are plotted, representing the reference sphere case. The different
Reynolds numbers are obtained as the shape sensitive porosity and Sauter diameter are included in this
number. It can be seen, that the largest influence on the friction factor (non-dimensional pressure drop)
is obtained by varying the duct width β . In contrary to the preferred flow characteristics of large β , the
friction factor is smaller for lower values of β . No linear trend can be observed for the shape variation of
duct deepness a and rounding radius R in regard to friction factor. There are probably overlapping shape
effects that could be investigated in a separate statistical based setup using design of experiment tools.

Besides, the influence of Reynolds number by varying the superficial velocity was investigated and the
obtained friction factors are displayed in Fig. 6.15 for eight selected Yo-Yo shape cases. It is clearly
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Figure 6.15: Comparison of friction factors f ′ for eight selected shapes with constant rounding
radius R = 0.5 mm but varying superficial velocity, resulting in a Reynolds number range of
around 10 to 2000. The literature correlations of Erdim et al. [3] and Eisfeld and Schnitzlein
[77] obtained for sphere packings are added as reference.

visible, that the variation of the Reynolds number does not alter the shape influence, with shapes having a
low β being preferred in regard to friction. Moreover, friction is slightly larger for a larger duct deepness
a. Moreover, the overall friction factor trend is closer to Eisfeld and Schnitzlein’s correlation for low
Rep and closer to Erdim et al.’s correlation at hight Rep values. However, in general, the given trend for
spheres is met quite well using the herein investigated spherical Yo-Yo shapes with equatorial ducts. It is
to be noted, that a lower friction factor does not necessarily result in lower bed pressure drop, as shape
sensitive parameters such as porosity and Sauter diameter are included in this parameter. It is further
noted, that the small shift in Reynolds number comes as well from individual values of porosity and
characteristic diameter for each investigated packing.

In summary, Yo-Yo shapes with small duct widths β are preferred in regard to pressure drop. This is in
contrary to the findings for fluid field and structural characteristics.
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6.4 Results and discussion

6.4.4 Residence time properties

Due to the high processing time and CPU requirements of dynamic flow simulations, only selected cases
were incorporated in the residence time distribution study. The obtained data for average residence
time τ̄ and the square root of its variance

√
σ2 (so called statistical dispersion) are listed in Table 6.3.

Moreover, the theoretical average residence time τ̄theo = VT/V̇ is given which can be calculated from the

Table 6.3: Overview of residence time distribution characteristics for selected investigated
shapes.

(1.0,20,0.5) (1.0,30,0.5) (1.0,40,0.5) (1.0,50,0.5) (0,30,0.5) (0.5,30,0.5) (1.5,30,0.5) (1.0,30,1.0)

τ̄ [s] 0.1267 0.1291 0.1286 0.1279 0.1186 0.1217 0.1309 0.1213√
σ2 0.02346 0.02297 0.02327 0.02348 0.02332 0.02283 0.02223 0.02274

Bo [-] 56.3 61.2 59.1 57.4 49.7 54.9 67.4 54.9
E(θ)max 2.42 2.50 2.40 2.35 2.25 2.35 2.63 2.42
ε̄0 0.4738 0.4819 0.4819 0.4794 0.4412 0.4558 0.49 0.4537
τ̄theo [s] 0.126 0.128 0.128 0.127 0.117 0.121 0.130 0.120

average bed porosity. However, as the residence time is determined for the whole packing length, the
porosity value ε̄0 needs to be taken, which is obtained before cutting off inflow and outflow regions. It was
unfortunately not possible to exclude the inflow region ranging three particle diameters into the packing
when performing tracer step experiments. Theoretically, this can be done by determining the residence
time distribution at the end of the inflow region and mathematically subtract this curve from the overall
residence time distribution. This, however, requires mathematically complex deconvolution algorithms.
As this inflow-uneffected residence time distribution can most probably not be measured in experiment, it
was decided to accept possible minor errors by tracking the residence time distribution along with the full
packing height. Here, theoretically calculated and numerically obtained average residence time show a
perfect fit for all investigated cases.
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Figure 6.16: Residence time distributions obtained with a superficial velocity u0 =
1.132 ms−1.
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The obtained curves are displayed in Fig. 6.16. Herein, the maxima position, as well as the average
residence time, only depend on the porosity of the packing. A lower porosity decreases the residence time
as it increases the average flow velocity. The breadth of distribution is expressed with the square root of
the variance. Regarding the investigated shape selection, a steeper residence time distribution and thus a
larger Bodenstein number is obtained with increasing duct deepness. The channel width, however, does
not result in a clear trend, with a maximal Bodenstein number at 30°. Moreover, a larger rounding radius
resulted in a decrease of the Bodenstein number.

6.5 Conclusion

Regarding the shape development of catalyst shaped bodies, a novel shape called Yo-Yo, based on a sphere
but having one circumferential duct is presented and numerically evaluated regarding its packing structure
and flow characteristics. For an in-depth study, duct parameters duct width, duct deepness and rounding
radius are varied. In regard to DEM-generated packing structure, high average porosities with small
oscillation in the radial direction and a high geometric surface area are favored. These could be obtained
with deep, wide ducts having no rounded edges. All shape variations show significantly improved
parameters in regard to spheres. The numerically obtained flow fields were separately investigated
concerning the distribution and the average of the axial velocity component, the radial velocity component,
and the flow vector angle. Moreover, the deviation from the respective average values in the radial
direction is examined which characterizes the tendency of channel formation. In general, all shape
variations showed a better performance than the reference sphere, and among the investigated duct
parameters, high duct width and deepness show even more preferred behavior, similar to the packing
structure. No clear trend could be detected regarding the rounding radius. Investigating the friction factor
as a non-dimensional number for packed bed pressure drop an opposite trend could be found. Here,
ducts with smaller duct width and deepness and higher rounding radius resulted in lower, more preferred
values. Moreover, only some shapes are preferred compared to the reference sphere shape. Concerning
the residence time distribution, no clear trends could be found, but the broadest distribution was obtained
with low duct width and the thinnest when using a high rounding radius.

In summary, novel shapes are presented, that show highly improved behavior compared to spheres.
However, it was found that packings of shapes having preferred structural characteristics and consequently
flow distributions lead to unfavorable friction parameters. The lower the tendency of flow channel
formation, the higher is the resulting friction of the packing. This can be easily explained as flow channels
are formed at locations where low structural renitency is present. Consequently, it is not surprising when
packings with an evenly distributed void structure posseses a higher renitency to the flow and thus results
in higher bed friction and pressure drop. It is up to the applicant whether a lower pressure drop is the major
optimization parameter or structural considerations shall be taken into account as well, most probably
leading to a compromise of both parameters. Unfortunately, the positive effect of more evenly distributed
packing structures and flow profiles on parameters of interest, such as heat and mass transfer or dispersion
is not yet studied in detail, which makes a quantified assessment of advantages a challenge and a task to
be solved in the future.
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6.5 Conclusion

Regarding the original intention of the Yo-Yo shape, to both, increase the geometric surface area and
simultaneously decrease the pressure drop compared to a packing of spheres, the Yo-Yo shape variations
with a narrow, deep duct offer the best compromise. Further steps include the experimental evaluation of
this Yo-Yo shape incorporating either prototyped shapes obtained by 3d printing or the direct manufacturing
of the shapes by tablet pressing. It, however, remains questionable if this preferred Yo-Yo shape version
may not come with significant disadvantages regarding its mechanical stability.
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Nomenclature

Latin Symbols

a duct deepness, shape parameter m−1

ageo geometric surface area ageo = N·ap/VT m−1

ap particle surface area m2

Bo Bodenstein number Bo≈ 2 ·
(

τ̄2

σ2 −1
)

-

Co Courant number Co = ∆t · τc -
d sphere diameter m
dp Sauter diameter of particle dp = 6·vp/ap m
dv volume equivalent diameter of particle dv =

3
√

6·vp/π m
D diameter of tube m or voxel
DT diffusion coefficient m2 s−1

e coefficient of restitution -
E(θ) non-dimensional residence time distribution -
f ′ friction coefficient f ′ = ∆P

H ·
dp

ρ·u02 · ε̄3

1−ε̄
-

h axial location m
H height of tube m or voxel
K1, k1, k2 pre-factors of Eisfeld and Schnitzlein’s [77] correlation -
l average mesh size m
N number of particles per packing -
∆P pressure drop Pa
r, z, R control variable in radial, axial and spherical direction m
R rounding radius m
RT radius of the tube m
Rep packing Reynolds number Rep =

ρ·dp·u0
η ·(1−ε̄) -

s(x) standard deviation of measure x -
t time s
T tracer scalar -
∆t time step of dynamic flow simulation s
ux, uy, uz velocity component in coodinate directions ms−1

ur velocity component in radial direction ur = |
√

ux2 +uy2| ms−1

umag velocity vector magnitude umag = |
√

ux2 +uy2 +uz2| ms−1

VT volume of tube m3

vp volume of particle m3

V̇ volumetric flow rate m3 s−1

zr non-dimensional distance from tube wall in particle
diameters zr =

RT−r
d

-

zR non-dimensional distance from particle center in particle
diameters zR = 2·R

d

-
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Nomenclature

Greek Symbols

α flow vector angle in regard to main flow direction °
β duct width, shape parameter °
ε local porosity -
ε̄ mean bed porosity -
η fluid viscosity Pas
θ non-dimensional residence time θ = τ

τ̄
-

λ tube-to-particle diameter ratio -
ρ material density kgm−3

µ coefficient of friction -
ν Poisson’s ratio -
σ2 variance -
τ̄ average residence time -
τ local residence time -
τc characteristic local cell time scale τc =

1
2·Vc
·∑(φi) s−1

φ face volumetric flux m3 s−1
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Figure 6.S1: Contour plot of (a,b) volume equivalent diameter dv and (c,d) Sauter diameter dp
for the rounding radius and the duct deepness agains duct width, respectively.
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Figure 6.S2: Comparison of radial (left) and spherical (right) distributions of the radial velocity
component ur of selected shape families (a,b) (1.0,β ,0.5), (c,d) (a,30,0.5), and (e,f) (1.0,30,R)
based on reference shape (1.0,30,0.5) [green cross marks] and compared with a reference
sphere packing [black dotted line].
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Figure 6.S3: Comparison of radial (left) and spherical (right) distributions of the flow vector
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Figure 6.S4: Contour plot of flow field characteristics: (a,b) normalized axial velocity uz(r)/u0,
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7 Numerical Shape Development Study in View
of Random Packed Beds. Part II: The Design
of Experiment

Abstract
Shape variations of random catalyst packings incorporated in heterogeneously catalyst reaction setups
are known to come with significant improvements in regard to pressure drop, dispersion, heat and mass
transfer. But as studies evaluating packed-beds are generally based on simple shapes, especially spheres,
cylinders and hollow cylinders, shape developments in industry remain a matter of trial and error or
long-time experience. In a previous study, an in-depth shape parameter study was presented, combining
numerical packing generation and computational fluid dynamics to evaluate shape impacts on packing
structure, fluid flow and pressure drop characteristics. This study is herein enlarged incorporating the
statistical Design of Experiment tool, to allow a broader and more systematic shape evaluation.
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7.1 Introduction

7.1 Introduction

Packed-bed reactors are frequently used in chemical technology, especially in heterogeneously catalyzed
reactions, where incorporation of the solid catalyst in its powder form results in an undesirably large
pressure drop. A substantial number of models and procedures have been performed simulating the fluid
dynamics [1–5], heat [6–10] and mass transfer [11–15] of catalytic and inert packed-bed reactors. Due to
the availability of large amounts of validation data, spheres are generally selected for these packed bed
simulations. Up to date, numerical tools have only sparsely been used for systematic shape variations and
the study of its influence of fluid dynamics, heat and mass transfer.

In Chapter 6 the numerical investigation of spherical shapes having a circumferential duct was presented.
Compared to a reference packing of spheres, the packings obtained from this novel geometry had
significantly improved structural and flow properties and some improvement regarding the friction
coefficient. However, the presented study neglected some influencing factors such as the particle size,
expressed as the tube-to-particle diameter ratio λ . In regard to a packing of spheres, the influence of
tube-to-particle diameter ratio on packing structure [16–18] and pressure drop [19, 20] have been studied
and significant influences and variations can be observed for λ < 10. These influences are evoked by
the confining cylindrical wall, forcing the particles to form a distinct particle arrangement in ring-like
patterns [21–23]. Moreover, in the previous study, shape parameters were randomly varied, allowing
a first assessment of their influence without allowing statistically profound conclusions. Therefore, a
statistical profound parameter selection based on the knowledge of the Design of Experiment (DoE) is
made and evaluated as an add-on to the previous study.

7.1.1 Target Parameter

In the previous study, a large selection of target parameters were investigated including axially-averaged
radial porosity and velocity distributions, shell-and-particle averaged spherical distributions of porosity
and velocity, average porosity and velocity values, the friction factor as a function of Reynolds number
and the residence time distribution. It was found, that preferred porosity and velocity distributions do
not necessarily lead to a preferred friction factor. Thus it was concluded, that one has to select either the
minimization of the pressure drop as the major goal, which has a direct impact on the reactor performance
or a compromise with improved flow fields needs to be made leading to positive influences on heat transfer
[24]. In this study, the two targeted parameter shall be the pressure drop, that typically needs to be as
small as possible, and the geometric surface area which is preferably high. These two parameters have
a proven impact on the reactor performance, the other parameters including the flow field features, are
hereinafter neglected. More specific, it shall be investigated if it is possible with any parameter selection
of this new shape to form a packing allowing a geometric surface area of smaller spheres (d = 5 mm,
λ = 6.6) and the pressure drop of larger ones (d = 7 mm, λ = 4.7).

In order to evaluate the DoE with ideally a single target parameter, the ratio of geometric surface area and
pressure drop shall be investigated. Both parameters depend linearly on the packing height, consequently,
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this ratio is constant for a specific packing assuming a constantly packing procedure. The non-dimensional
version of this ratio is hereinafter called bed effectivity ηeff and is defined as:

ηeff =
ageo

∆P
·ρ ·u0

2 ·H. (7.1)

However, fluid density ρ , superficial velocity u0 and packing height H are kept constant. The bed
effectivity can be directly related to the friction factor f ′ with:

ηeff =
6 · ε̄3

f ′
. (7.2)

Consequently, in order to solve the given task to find a packing with ageo = ageo(d = 5mm) and
∆P = ∆P(d = 7mm), starting from a packing of 7 mm spheres the desired target (t) and starting (s)
parameter are:

ηeff,t =
ageo(d = 5mm)

∆P(d = 7mm)
·ρ ·u0

2 ·H and ηeff,s =
ageo(d = 7mm)

∆P(d = 7mm)
·ρ ·u0

2 ·H. (7.3)

The task is solved if the degree of achievement φ equals one or larger.

φ =
ηeff−ηeff,s

ηeff,t−ηeff,s
. (7.4)

The hereinafter described Design of Experiment is evaluated in regard to this parameter.

7.2 Numerical Setup

The herein performed general simulation procedure consists of the steps of i) shape design, ii) numerical
packing generation, iii) mesh creation, iv) steady-state flow simulation and vi) post-processing of the data.
The general procedure is identical as in the previous study. The validation of each step, especially the

shape design
numerical packing
generation mesh creation

steady-state
flow simulation

post-processig

Figure 7.1: General simulation procedure.

validity and reproducibility of the numerical packing generation, the mesh size selection based on a mesh
study similar to the validation of flow simulation and the respective selection of an appropriate turbulence
model were discussed in detail in the previous study and will be briefly repeated here by pointing out
some minor differences.
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7.2.1 Shape Design and Design of Experiment

The herein investigated shapes have a spherical base shape, from which cavities of the same cross-
section are cut out. These cavities may be cut all along the circumference of the sphere resulting in a
circumferential duct, so-called orbital cut or these cavities may be cut straight on two opposing positions,
the so-called straight cut. A third type comprises a twice interrupted orbital cut, the so called half orbital
cut. As in the previous study, the cut cross-section has a certain deepness a and a certain width β . The
edges are rounded with a constant 0.5 mm radius. An overview of the obtained shapes is depicted in
Table 7.1.

A fully factorial DoE is selected with four parameters attaining two different states each, and a separate
central point. All simulations were randomized but performed only once. The selected parameters are
the duct width β , attaining a value of 20° and 50°, the duct deepness a attaining the values 0.5 mm and
1.5 mm, the cut shape, being straight and orbital, and the particle size selected so that the tube-to-particle
diameter equals λ = 4.7 and λ = 6.6, whereas the tube diameter is kept constant. The separate central
point has the parameters: β = 35°, a = 1 mm, half orbital cut and λ = 5.65. The parameter selection is
depicted in Table 7.1.

For comparison and the calculation of the target parameter φ , reference sphere packings are generated and
simulated having respective tube-to-particle diameter ratios λ = 4.7, 5.65 and 6.6.

7.2.2 Numerical Packing Generation

Packing generation is performed incorporating the DigiDEMTM code, a voxelated particle simulation
software incorporating a digital packing algorithm based on the Monte Carlo Approach whilst explicitly
considering physical interaction forces similar to the Discrete Element Method and is elsewhere described
in more detail [25, 26]. The packing procedure is identical to the one we already described [27]. Hereby,
the 3d objects were digitized at a resolution of 10 voxelmm−1. The material properties were set as follows:
density ρ = 3000 kgm−3, coefficient of restitution e = 0.3, coefficient of friction µ = 0.7 and Poisson’s
ratio ν = 0.3. The objects are filled into tubes of constant height H = 3000 voxel (300 mm) and diameter
D = 470 voxel (47 mm). The packing mode was selected to be damping and the stop criterion is a pre-set
time of 3 s.

The packing procedure was validated using ideal spheres both with literature data [27] and experimental
CT-scans Chapter 5. In regard to spheres, the reproducibility as the mean relative standard error of packing
generation was found to be one percent for the radial porosity profiles and 0.5 percent for the bed averaged
porosity, based on ten identical packing repetitions (see Chapter 5).
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Table 7.1: Overview of designed shapes and their parameter selections incorporated in this
study.

No. β a cut shape λ straight orbital
[°] [mm] [-]

1 50 0.5 straight 4.7
9 50 0.5 straight 6.6
2 50 0.5 orbital 4.7
10 50 0.5 orbital 6.6

3 20 0.5 straight 4.7
11 20 0.5 straight 6.6
4 20 0.5 orbital 4.7
12 20 0.5 orbital 6.6

5 50 1.5 straight 4.7
13 50 1.5 straight 6.6
6 50 1.5 orbital 4.7
14 50 1.5 orbital 6.6

7 20 1.5 straight 4.7
15 20 1.5 straight 6.6
8 20 1.5 orbital 4.7
16 20 1.5 orbital 6.6

17 35 1.0 half orbital 5.65
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7.2.3 Computational Fluid Dynamics

The numerically generated packings were meshed using OpenFOAM® tool snappyHexMesh creating a
castellated mesh with higher resolution at particle contact points. The mesh size was refined until reaching
a Fine Grid Convergence Index [28] < 1 %. The steady-state flow of an incompressible fluid was simulated
in OpenFOAM incorporating the SIMPLE algorithm in solver simpleFoam. The Launder-Sharma k− ε

model was utilized as the turbulence model. The validation of the simulations and the selection of the
turbulence model were discussed in the previous study in detail. Air was selected as fluid, having a density
ρ = 1.2 kgm−3 and a viscosity η = 0.018 mPas. A superficial velocity u0 = 1.0 ms−1 was selected and
a parabolic tube flow profile defined at the inflow boundary.

Post-processing was performed incorporating a comprehensive PythonTM script, determining the averages
and radial and axial distributions of porosity, fluid field characteristics, and pressure drop. For this, the
inflow and outflow region lasting three particle diameters into the tube were excluded, allowing the sole
investigation of the bulk packing part.

7.3 Results

7.3.1 Packing Structure

The axially averaged radial porosity distributions of selected shapes are displayed in Fig. 7.2 as a function
of the non-dimensional distance from the confining wall zr = R−r/d. For comparison, the respective
reference distributions for an ideal sphere are added as dotted (λ = 4.7) or dashed (λ = 6.6) line. The
reference sphere packing is known to form an underlying structure of ordered particle rings starting from
the confining wall and leading to an oscillating radial porosity profile [16, 21]. Herein, each minimum
represents the center of these ordered particle rings, and each maximum represents the increased void
space between two ring arrangements. It is further known, that the order decreases with increasing distance
to the confining wall and with increasing λ . In Fig. 7.2a shapes of same duct dimensions but a different
cutting method and particle size are compared. The oscillation amplitude is slightly decreased with higher
λ and significantly decreased when having a circumferential cut rather than a straight. All four displayed
shapes show a smoother curve than the reference sphere. As explained in the previous study, the cutting of
cavities allows particle overlap in this region leading to a reduced particle ring formation. The influence
of duct width β and duct deepness a at constant particle size (λ = 6.6) and cut shape is presented in
Fig. 7.2b. A decrease of oscillation amplitude is obtained with increasing a and β . The same effect though
with significantly less distinctness can be seen for the smaller particle size (λ = 4.7) and straight cut as
displayed in Fig. 7.2d. Furthermore, a lower oscillation amplitude is obtained with a high a and orbital
cut shape keeping β and λ constant as displayed in Fig. 7.2c.

In summary, a smoother porosity profile is obtained with higher λ , duct deepness a and duct width β

while generally preferring the orbital cut shape.

229



7 Numerical Shape Study: Part II

0 1 2 3
0

0.2

0.4

0.6

0.8

1

distance from wall zr [-]

lo
ca

lp
or

os
ity

ε
(r
)

[-
]

4.7 6.6 λ

straight
orbital
sphere

(a) β = 50° and a = 0.5 mm.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

distance from wall zr [-]

lo
ca

lp
or

os
ity

ε
(r
)

[-
]

0.5 1.5 a [mm]
β = 20°
β = 50°

(b) orbital cut shape and λ = 6.6.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

distance from wall zr [-]

lo
ca

lp
or

os
ity

ε
(r
)

[-
]

0.5 1.5 a [mm]
straight
orbital

(c) β = 50° and λ = 6.6.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

distance from wall zr [-]

lo
ca

lp
or

os
ity

ε
(r
)

[-
]

0.5 1.5 a [mm]
β = 20°
β = 50°

(d) straight cut shape and λ = 4.7.

Figure 7.2: Comparison of the radial porosity distribution ε(r) for a selction of shapes. In each
figure, two parameters selected from the tube-to-particle diameter ratio λ , the cut shape, the
duct deepness a and duct width β were varied and two kept constant. For comparison, the
respective data for packings of spheres is added.

230



7.3 Results

7.3.2 Design of Experiment

The effects of shape variation obtained when evaluating the design of experiment are displayed in Fig. 7.3.
A positive effect on the degree of achievement representing the ratio of geometric surface area and pressure
drop is obtained for lower duct width β , higher duct deepness a and orbital cut shape.

Figure 7.3: Effects of parameter variations including duct width β , duct deepness a, cut shape
and tube-to-particle diameter ratio λ (from right to left), on the degree of achievement φ .

The effect of particle size represented as the tube-to-particle diameter ratio λ is not significant. Moreover,
effect interaction is only significant for the combination of duct deepness a and cut shape. In this
evaluation, the originally defined center point was not considered, as its results did not fit to all others.
This is explained with the significantly different shape that this center point is based on.

The absolute values of the obtained degree of achievement are displayed in Fig. 7.4. The reference
sphere has a value of zero, negative values indicate a worse geometric surface area to pressure drop ratio
compared to spheres, a value between zero and one indicates an improvement but not enough to fulfill the
target and values larger than one are desired.

In general, all shape variations with a straight cut are worse than the reference sphere, all shape variations
having an orbital cut are better. As already mentioned, a higher duct deepness and a reduced duct width
increase the degree of achievement, whereas the particle size has hardly any influence. In summary, the
best shape has a small, deep, orbital duct. Unfortunately, the targeted value could not be attained.

7.3.3 Extrapolation of Results

Based on the learnings of the Design of Experiment, the results are extrapolated to create a shape that
fulfills the targeted requirements regarding the geometric surface area to pressure drop ratio. It is thought,
that this further increase can be obtained by decreasing duct width β and/or increasing duct deepness
a. As the duct width is already very small, it is decided to increase the duct deepness to a = 2.0 mm
forming the shape depicted in Fig. 7.5, where λ = 4.7 and β = 20° are kept constant. A packing of
this shape is generated similar to the other herein used packings, and the fluid dynamics are simulated
equally to the above-described method. Finally, a packing of this extrapolated shape reaches a degree
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Figure 7.4: Absolute values of the degree of achievement φ for all parameter combinations
tested in this DoE, which the reference sphere marking the horizontal line at φ = 0.

of achievement φ = 1.11 which is significantly above the targeted value. Consequently, the herein

Figure 7.5: One of presumably a range of possible shapes capable to fulfill the requirements in
regard to geometric surface area and pressure drop.

investigated sphere-based shapes having circumferential cavities are capable to replace a sphere packing
having an improved geometric surface area to pressure drop ratio larger than the desired value. It is
however questionable if such a shape having a very narrow deep duct is actually producible using the
known production methods such as tablet pressing. Up-coming knew production methods such as additive
manufacturing (3d printing) might be required to allow the accurate production of this shape. It is
furthermore questionable if such a shape has enough mechanical stability to withstand the reactor filling
procedure as a narrow, deep duct should significantly decease the particles mechanical stability, most
probably evoking breakage along the duct circumference.

7.3.4 Packing Structure and Resulting Pressure Drop

As already in the previous study mentioned, an intuitively preferred packing structure having a smooth
radial porosity distribution and in consequence, a reduced tendency to flow channel formation is not equal
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to the packings preferred regarding pressure drop and geometric surface area. As previously discussed, it
is assumed that a more evenly packing structure leads automatically to a higher pressure drop, due to the
increased renitency this packing opposes to the flow especially compared to high-void channels. It is to be
discussed in future, if the channel formation tendency should be included in the list of targeted parameters
which in industrial applications is up to date frequently solely devoted to a low pressure drop and a high
geometric surface area as the positive effects of improved flow profiles are not sufficiently proven, yet.

7.4 Conclusion

Using the statistically based Design of Experiment approach, a selection of the so-called Yo-yo shape
variations are investigated in regard to improved pressure drop and geometric surface area characteristics. It
was found that spherical based shapes having circumferential cut cavities come with improved properties,
especially when these ducts are of narrow, deep shape. It was further shown, that the particle size,
expressed as the non-dimensional tube-to-particle diameter ratio has only a small, if not at all negligible
influence on the investigated parameters. It is, however, to be noted, that in regard to spheres the influence
of this ratio λ is not linear and increases with decreases λ -values. Consequently, no definite conclusion
can be drawn regarding the influence of small λ -values.

More precisely, it was to be investigated, if any parameter variation of this novel Yo-Yo shape is capable to
generate a packing having the pressure drop of a reference sphere packing of λ = 4.7 and the much larger
geometric surface area of a packing of λ = 6.6. This task could be fulfilled using a Yo-Yo shape having an
orbital duct and parameters duct width β = 20° and duct deepness a = 2.0 mm. It is however questionable
if such a shape can be produced or is mechanically stable enough to withstand reactor conditions.
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Nomenclature

Latin Symbols

a duct deepness, shape parameter m−1

ageo geometric surface area ageo = N·ap/VT m−1

ap particle surface area m2

d sphere diameter m
D diameter of tube m or voxel
e coefficient of restitution -
f ′ friction coefficient f ′ = ∆P

H ·
dp

ρ·u02 · ε̄3

1−ε̄
-

H height of tube m or voxel
N number of particles per packing -
∆P pressure drop Pa
r control variable in radial direction m
RT radius of the tube m
u0 superficial velocity ms−1

VT volume of tube m3

vp volume of particle m3

zr non-dimensional distance from tube wall in particle
diameters zr =

RT−r
d

-

Greek Symbols

β duct width, shape parameter °
ε local porosity -
ε̄ mean bed porosity -
η fluid viscosity Pas
ηeff bed effectivity ηeff =

ageo
∆P ·ρ ·u0

2 ·H -
λ tube-to-particle diameter ratio -
ρ material density kgm−3

µ coefficient of friction -
ν Poisson’s ratio -
φ degree of achievement -
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8 Numerical Shape Development Study in View
of Random Packed Beds. Part III: Sphere
Feature Evaluation

Abstract
With up-coming additive manufacturing techniques being utilized in the production of shaped hetero-
geneous catalysts, the existing strict geometrical constraints concerning shape design may shift or even
vanish in the near future. However, the influence of shape on fluid dynamics, heat and mass transfer is
largely unknown. An exclusively numerical study unique in the literature was performed, investigating a
range of comparable shapes designed from simple spheres in regard to packing structure, fluid field, and
packed-bed pressure drop. Results include a clearly visible imparity between packing structure and fluid
profiles caused by clogged or unavailable voids for selected shapes resulting in unrealistic high friction
factor values. Moreover, shapes tending to result in more even radial flow profiles come with increased
packed-bed pressure drops at comparable average bed porosities. Thus, optimizing the shaped catalysts
geometry requires a compromise between at least these two parameters which have been combined to a
novel characteristic and dimensionless number.
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8.1 Introduction

8.1 Introduction

In the chemical industry, packed-bed reactors are the universally applicable work horses, especially for
heterogeneously catalyzed reactions. Herefor, the catalytic material is shaped into distinct particles by
means such as tablet pressing and extrusion, and subsequently packed randomly into the reactor tubes.
Besides chemical engineering, many other industrial applications of packed-beds are known, ranging from
nuclear technology [1] over solar energy storage systems [2] to pharmaceutical processing [3].

Decisive parameters of packed-beds have been largely investigated by numerical and experimental
means. However, up to today, experimental techniques struggle to resolve parameters that require the
determination of localized variations as for instance the flow field and heat profiles. Computational
fluid dynamics has been performed over some decades now, but with increasing computer power is
capable to simulate highly resolved and expanded random packings. These simulations include the
determination of fluid dynamics [4–17], heat [18–28] and mass transfer [29–39]. As catalyst shapes
obtained from traditional manufacturing processes only come in a small selection of simple shapes,
experimental and numerical studies have not been performed investigating arbitrary shapes that are beyond
the manufacturing geometry constraints. But with upcoming additive manufacturing techniques [40],
almost any imaginable shape might be available in the near future. It is thus required to investigate novel
shapes that have not been possible before to evaluate the potential 3d printing techniques can unfold in
regard to catalytical packed-bed reactors.

In a previous study, a numerical procedure was described for the simulation of fluid dynamics of packed
beds, as was similarly done dozens of times before [4, 20, 22, 25, 27, 41]. This procedure has been
thoroughly validated using a packing of smooth homo-sized spheres with experimental literature data. It
was then utilized to investigate the influence of parameter variations regarding the novel, so-called Yo-Yo
shape, a sphere with a circumferential duct of certain deepness, width and edge rounding. In contrary
to this previous study, the present investigation comprises shapes that differ from their features, having
ducts, holes, bellies, drops, cavities of different numbers, or combinations thereof. The detailed-shape
parameters, such as hole diameter, rounding radius, drop length, belly width and so on is not varied. In
order to allow comparability between these shapes, they are designed to have the same final volume and
the same feature volume. The presented study is first of its kind, investigating the effect of shape feature
variation on packing structure and fluid dynamics of packed beds.

8.1.1 Packing Structure

Important structural parameters include the geometric surface area ageo, the axially averaged radial
porosity distribution ε(r) and the average bed porosity ε̄ . The water displacement [42–44] and weighing
method [45, 46] are typically used experimental procedures to determine the average bed porosity, which
itself depends on the tube-to-particle diameter ratio λ , the particle’s material, shape and size distribution,
the container’s material and shape and the applied deposition and compaction methods [47, 48]. Except
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the shape, everything else is kept constant in this study, including the tube-to-particle diameter ratio which
is fixed at λ = 5.0.

The confining wall of a packing causes the packing particles to align to this wall’s shape creating a
ring-like pattern easing out 4 to 5 particle diameters into the tube [49]. Especially when packing spheres,
this results in a radial porosity distribution describing roughly a damped oscillating trend [49] often seen
in experiments [50–67]. For packings of spheres, respective correlations are derived [68].

In contrary to spheres, packings of other shapes are only sparsely investigated. These more complex
geometries require a handful of aspect ratios and characteristic diameters. The attempt to find a universal
shape factor as for instance sphericity could not be completed up to today [69]. Consequently, it is not
possible to predict packing structure parameters of arbitrary shapes. Compared to experimental methods,
numerical tools can be used to distinctively evaluate single parameters. These numerical tools comprise
the Discrete Element Method (DEM) [70–72] or similar ones [41, 73–75]. Advantages and limitations of
these tools, especially in the context of shape representation were compared by Fernengel et al. [76] for
spheres and Caulkin et al. [77] for cylinders.

8.1.2 Fluid Dynamics

Fluid dynamics comprises the evaluation of the pressure loss along with the packing and flow field
parameters, including the axially averaged radial profile of the axial velocity component uz(r) and the
radial profile of the radial velocity component ur(r). The importance of the latter was only recently
emphasized in regard to heat transfer [31]. Over about a century, pressure loss experiments have been
performed resulting in a large selection of correlations at least for sphere packings (see [78] for a review).
These relate the non-dimensional pressure loss called friction f ′ to the fluid state indicated by the packing
Reynolds number Rep.

f ′ =
∆P
H
·

dp

ρ ·u02 ·
ε̄3

1− ε̄
= f (Rep) with Rep =

ρ ·dp ·u0

η · (1− ε̄)
(8.1)

Eisfeld and Schnitzlein [79] : f ′ =
K1 ·

(
1+ 2

3·λ ·(1−ε̄)

)2

Rep
+

1+ 2
3·λ ·(1−ε̄)(

k1
λ 2 + k2

)2 (8.2)

Erdim et al. [78] : f ′ =
160
Rep

+
2.81

Rep
0.096 . (8.3)

Available experimental methods for the flow field evaluation including magnetic resonance imaging [12,
66, 80], laser doppler anemometry [81], particle image velocimetry [82], and some others [9, 83, 84]
still struggle in determining flow profiles in high resolution as required for a decent model evaluation in
computational fluid dynamics (CFD). While certain details still remain unveiled, the equivalence of radial
porosity and velocity profiles and thus packing structure and fluid field cannot be overseen, at least for
packings of spheres. Consequently, terms like channeling and wall channeling were established describing
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8.2 Simulation Procedure

the by-passing of flow close to the wall and between sphere rings, where high porosities systematically
occur.

8.2 Simulation Procedure

The herein performed general simulation procedure consists of the steps of i) shape design, ii) numerical
packing generation, iii) mesh creation, iv) steady-state flow simulation and vi) post-processing of the data.
The general procedure is identical as in the previous studies.

shape design
numerical packing
generation mesh creation

steady-state
flow simulation

post-processig

Figure 8.1: General simulation procedure.

8.2.1 Shape Design

The herein investigated shapes are developed from an ideal spherical base shape. This base sphere comes
in three dimensions, having a diameter of d1 = 10.6 mm, d2 = 9.3 mm and d3 = 10.0 mm. In case 1,
internal features summing up to a total feature volume vsub = 102.4 mm3 are removed symmetrically from
the larger sphere’s (d1) interior. In case 2, external features having a total added feature volume vadd =

102.4 mm3 are constructed and symmetrically distributed over the smaller sphere’s (d2) exterior. Finally,
case 3 represents the combination of external addition and internal subtraction of features, each having
vadd = vsub = 102.4 mm3, from the mean sized sphere (d3). For this last case, features designed for case 1
and 2 are explicitly used and combined. These features comprise holes, ducts, cavities, drops and bellies
in different numbers one to multi, and their combinations where possible. Table 8.1 displays an overview
of the shapes designed and incorporated in this study. It is to be emphasized, that all shapes come with
the same final particle volume vp and consequently the same sphere-volume-based characteristic particle
diameter dv = 10 mm.

Additionally, the influence of a spherical void space in the center as introduced in [85, 86] of a sphere is
investigated. Herefor, additional versions of the shapes multi-hole, three-hole-drop and multi-hole-drop
are created having a central void space.
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Table 8.1: Overview of designed shapes incorporated in this study.

case 1: case 2: case 3:
No. hole duct cavity drop belly hole’n’

belly
duct’n’
drop

hole’n’
drop

one

1 6 10 14
19 22

25 29

two

2 7 11 15 20 23 26

three

3 8 12 16 21 24 27 30/31

multi

4/5 9 13 17 32/33

extra

18 28

reference sphere two drop multi duct one hole & drop two duct & drop

one hole two belly multi cavity one hole & belly multi hole & drop

Figure 8.2: Selection of packed tubes with shapes incorporated in this study.
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8.2.2 Numerical Packing Generation

Packing generation is performed incorporating the DigiDEMTM code, a voxelated particle simulation
software incorporating a digital packing algorithm based on the Monte Carlo Approach whilst explicitly
considering physical interaction forces similar to the Discrete Element Method and is elsewhere described
in more detail [58, 87]. The packing procedure is identical to the one we already described [76]. Hereby,
the 3d objects were digitized at a resolution of 10 voxelmm−1. The material properties were set as follows:
density ρ = 3000 kgm−3, coefficient of restitution e = 0.3, coefficient of friction µ = 0.7 and Poisson’s
ratio ν = 0.3. The objects are filled into tubes of constant height H = 3000 voxel (300 mm) and diameter
D = 500 voxel (50 mm). The packing mode was selected to be damping and the stop criterion is a pre-set
time of 3 s.

The packing procedure was validated using ideal spheres both with literature data [76] and experimental
CT-scans Chapter 5. In regard to spheres, the reproducibility as the mean relative standard error of packing
generation was found to be one percent for the radial porosity profiles and 0.5 percent for the bed averaged
porosity, based on ten identical packing repetitions (see Chapter 5).

8.2.3 Numerical Fluid Dynamics

The numerically generated packings were meshed using OpenFOAM tool snappyHexMesh creating a
castellated mesh with higher resolution at particle contact points. The mesh size was refined until reaching
a Fine Grid Convergence Index [88] < 1 %. Steady-state flow of an incompressible fluid was simulated
in OpenFOAM incorporating the SIMPLE algorithm in solver simpleFoam. The Launder-Sharma k− ε

model was utilized as the turbulence model. The validation of the simulations and the selection of the
turbulence model is discussed in the previous study in detail. Air was selected as fluid, having a density
ρ = 1.2 kgm−3 and a viscosity η = 0.018 mPas. A superficial velocity u0 = 1.0 ms−1 was selected and
a parabolic tube flow profile defined at the inflow boundary.

Post-processing was performed incorporating a comprehensive PythonTM script, determining the averages
as well as the radial and axial distributions of porosity, flow components, and pressure drop. For this, the
inflow and outflow region lasting three particle diameters into the tube were excluded, allowing the sole
investigation of the bulk packing part.

8.3 Results and Discussion

8.3.1 Geometrical Considerations

The packing structure is typically analyzed plotting the axially average local porosity in radial direction
from the tube wall to the center. In the theory section, the characteristics of the radial porosity distribution
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(c) shape family "cavity".
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(f) "hole’n’belly".
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(g) "duct’n’drop".
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Figure 8.3: Comparison of the radial porosity distribution ε(r) obtained from the investigated
packings made of particles with certain features as a function of the dimensionless distance
from the tube wall in particle diameters zr =

D/2−r
dv

. In all subfigures, the data of the reference
sphere packing is added as dotted line, the green cross data indicates shapes with additional
inner volume (a), and (h), or those of extra version (e), and (g).
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of a packing of spheres have been discussed, including the wall-induced ring-like pattern spheres are
ordered in, expressed as a damped oscillation function [49, 67]. Starting from this reference packing, the
herein presented shapes may influence the tendency or distinctness of ring-shaped particle arrangement,
the horizontal overlap between these rings and/or the damping of packing order with increasing distance
to the wall. The radial porosity distributions of all investigated shape variations are clustered to their
respective feature family and are depicted in the subfigures of Fig. 8.3.

Focussing on the effect of holes (Fig. 8.3a), a significant smoothening of the porosity minima can be
observed. As the introduction of holes decreases the solid content at the particle centers and as the particles
tend to stack one over another, an overall void increase can be observed at the center of the ring-shaped
particle arrangements. It can be further seen, that hardly any difference is obtained when increasing the
number of holes while keeping the total hole volume constant. Despite, a small increase of horizontal
particle overlap can be observed as maxima are smoothed as well to a certain degree. This is majorly the
case for the one-hole shape. When introducing a central void volume into the geometry represented by the
green curve, the void is again increased at the locations with cumulated particle centers.

Compared to that, shapes with circumferential ducts (Fig. 8.3b) result in smoothed porosity minima and
maxima with decreasing manifestation when increasing the number of elements from one to multi. Shapes
having circular cavities (Fig. 8.3c) lead to a packing with significantly reduced porosity maxima similar
to shapes having bellies (Fig. 8.3d) or drops (Fig. 8.3e). In all cases, the smoothening is decreased with
an increasing element number. Only the one-drop case results in a shift of extrema location and thus the
overall ring-arrangement of the particles. This is probably due to the more prolate spheroid appearance.
The additional multi-drop version with the long narrow drops results in a shift of the porosity profile away
from the wall. This can be explained with the drops creating a distance between the wall and the shape’s
solid body.

Combining two of these aforementioned features leads to combined effects. It can be concluded, that
smoother radial porosity profiles can be obtained in general, when the outer appearance resembles more a
prolate (one drop and combos) or an oblate (one belly, two drops and combos) spheroid appearance rather
than an ideal spherical. Holes and inner volumes decrease the packing density where particle centers
accumulate. Other features such as duct and cavity reduce the overall ring formation tendency and shapes
such as belly, drop and cavity increase the damping toward the center of the tubes.

The averaged bed porosity relative to the reference sphere is displayed in Fig. 8.4. The shape variations
are numbered top-down and left-right based on the order of Table 8.1. Neglecting the cases, where an
additional inner volume is added (case 5, 31 and 33), the loosest packings are obtained with the multi-drop
and multi-drop’n’hole shapes. Generally, packed bed elements with holes and most variations of the
combos result in at least a 10 % higher porosity as the reference sphere. Despite some exceptions packings
with drops and bellies result in a denser packing arrangement. The packing porosity trend with increasing
feature number is not clear, in some cases (e.g. holes, cavity, hole’n’drop) a general increase can be
observed, in others (duct, belly, hole’n’belly, duct’n’drop) is the porosity roughly constant. Comparing
shape variations of same shape family and feature number (17/18 and 26/27) indicate that a slight variation
of geometry may have a significant effect or none at all.
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Figure 8.4: Relative deviation of average porosity ε̄ in regard to the reference sphere packing
ε̄ref.

A geometry variation starting from the reference sphere increases in all cases the geometric surface area
ageo of the packing of up to 70 % as displayed in Fig. 8.5. The highest surface areas can be obtained with
the three-duct’n’drop variation (28) followed by the multi-hole (4/5) and three-hole’n’drop (30/31) shape.
The geometric surface area is influenced by the shapes surface-to-volume ratio which is smallest in case
of the reference spheres and largest in the multi-hole’n’drop (32/33) shape, and the number of particles
in the packing or rather the packing porosity. Good geometric surface areas can be obtained with holes,
hole’n’bellies and hole’n’ drops. A general trend of increasing geometric surface area with increasing
feature number can be observed.

8.3.2 Flow Field Analysis

The flow field is analyzed by splitting the obtained velocity vector with x, y, and z-dimension for each
mesh cell into its components axial uz (in main flow direction), radial ur =

√
ux2 +uy2 (perpendicular to

main flow direction) and the flow vector angle α , defined as the angle between velocity vector and main
flow direction. All obtained distribution plots of these parameters as well as the respective average values
are depicted in the appendix as Figs. 9.A2 to 9.A9 and shall not be discussed in detail hereinafter.

Instead, the focus is laid to evaluate whether an intuitively preferred smooth radial porosity distribution
leads to a comparable smoothening of the radial velocity distribution, or easy put, if a certain radial
porosity profile induces a certain velocity field, which should be intuitively the case. For that, the weighted
standard deviation of the radial profiles of both parameters normalized to their respective weighted average
value is plotted against each other in the parity-plot style diagram of Fig. 8.6. In this diagram, the bisectrix
and their percental deviation are given and additionally the standard deviations to the reference sphere are
highlighted. For instance, shape 13 (multi-cavity) has a porosity standard deviation of 15 % less than a
sphere, a velocity standard deviation of 11 % more than a sphere and the parity of both parameters is 25 %
imbalanced.
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Figure 8.5: Relative deviation of geometric surface area ageo in regard to the reference packing
of spheres ageo,ref.

Despite some exceptions, the investigated shapes can be clustered to certain regions in this plot. The
reference sphere is well on the parity line. Except shape 13, all shapes have a smaller standard deviation
of both, velocity and porosity distribution. In general, shapes having holes or cavities are located above
the parity line while drop and belly shapes are typically below, except the multi-drop variation. Shapes
with ducts and the duct’n’drop combos do well fit the parity. Shapes having an inner void (5,31 and 33)
show the largest imbalace between porosity profile and respective velocity field.

This imbalance of porosity and velocity distribution is thought to be majorily evoked by the occurrence
of void zones that by any reason are not flown through effectively alias dead zones, and the occurrence
of strong radial velocity components that distract the basically axial flow pattern. In order to evaluate
the latter, the average radial velocity is given in Fig. 8.7. It can be seen, that drop and belly shapes come
with a very high radial flow component, except the multi-drop variation. This feature leads to a respective
placing on the parity plot below the parity line except for the multi-drop case. In contrary, very large
positive deviations from the parity can be observed for shapes having holes. Comparing the actual radial
profiles of velocity and porosity indicate, that a significant part of these holes is not effectively part of the
velocity field. Some explicite examples shall emphasize the reasons.

• one hole (1): The single-holed spheres have a significantly smoothed porosity distribution, however
the resulting velocity profile is quite similar to the one of the reference sphere. Consequently, most
of the holes are either blocked by other particles or are oriented perpendicular to the flow direction.
This phenomenon can be also observed in Fig. 8.2.

• one hole-combos (22 & 29): The effectivity of the one-holed spheres can be significantly improved
by adding drops or a belly to the shapes. The additional feature breaks up the packing pattern and
thus prevents hole blockage by other particles. Moreover, the particle orientation is more favorable
with the holes not being perpendicular to the main flow direction (Fig. 8.2). These two shapes are
among the best regarding the fluid field.
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Figure 8.6: Parity plot of the standard deviation of normalized average flow s(uz/u0)
uz/u0

and
porosity s(ε̄)/ε̄.

• two/three/multi-hole (2, 3 & 4): Increasing the number of channels through the particle decreases
the chance of hole blockage. Still, some of the holes are blocked but others are for sure open. Same
accounts for the orientation problem. If one hole is perpendicular to the fluid direction, most others
are not. Thus the parity of porosity and velocity profiles are much better as at least some holes are
open to fluid perfusion.

• the inner voids (5, 31 & 33): Comparing the shapes having an inner void with their respective
counterparts (4, 30 & 32) leads to the conclusion that the enlargements of inner voids do not
contribute at all to the fluid field and thus leading to very large parity deviations.

Regarding the absolute values of the normalized standard deviation, the one-hole’n’belly shape gives
the smallest values and thus the most evenly distributed velocity field. Other very good shapes are the
duct’n’drop shapes, the one/two/tree-drop shapes, the one-duct shape, the hole’n’belly shapes and the
one/two hole’n’drop shapes. In general and with some exceptions it can be concluded that a smoother
profile is obtained for combos and for small feature numbers, especially the one-feature shapes.

8.3.3 Packing Friction

Typically, the flow field is not predominantly considered, but the packing friction as a non-dimensional
pressure drop characteristic. When keeping the fluid properties (superficial velocity u0, density ρ , and
viscosity µ) constant, the packing friction depends majorly on the packing porosity but also on the
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Figure 8.7: Relative deviation of average radial velocity ur in regard to the reference sphere
packing ur,ref.

characteristic diameter and the height normalized pressure drop. The friction factors obtained for a certain
Reynolds number for all investigated cases are summarized in Fig. 8.8. Additionally, the theoretical
correlations of Erdim et al. [78] and Eisfeld and Schnitzlein [79] are added. Their validity was proven
with spheres including packings with small tube-to-particle diameter ratios.
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Figure 8.8: Obtained friction factors f ′ for all shapes at constant fluid properties as a function
of the Reynolds number Rep. Reference correlations for packings of spheres are displayed as
solid and dashed line.

The herein investigated shapes can roughly be divided into two groups in regard to friction: group one
comprises all shapes having at least one hole or cavity and the other group comprises the remaining shapes
having drops, ducts, and bellies. Regarding group two, the obtained friction values are in the order of the
already known correlations. Shapes having ducts result in a friction value slightly below the reference
correlation of spheres, with a tendency to even lower friction values when having more ducts. Shapes
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having one/two/three drops are situated between the two correlations, the multi-drop alternatives come with
a slightly reduced friction. Shapes with bellies are again situated in the range of the correlations with the
one-belly alternative being slightly above and the three-belly version slightly below. The one-duct’n’belly
combo is slightly below the correlation and the two/three duct’n’belly combos are slightly above. The
only more significant variation from the correlations can be determined for the second version of the
three-duct’n’belly combo (28) which is significantly below the given correlation. In summary, the friction
factor of the shapes clustered to group two does vary slightly from the given correlation for spherical
particles. Especially the three-duct (8), three-belly (21) and the three-duct’n’belly2 (28) shape result in
preferred packing friction factors in regard to spheres.

The shapes of group one, however, show a large spread of friction values that are intuitively rather
unrealistic. Especially when comparing the virtually identical shapes with and without added inner
void (4/5, 30/31 and 32/33). Here, the shapes with an additional inner void have a friction factor that is
approximately doubled compared to the very same shape just without the inner void. And when comparing
a sphere with one hole (1) with the solid reference sphere (0), the friction of the first turns out to lay
significantly above the second. Thus, these significant deviations in friction can be identified for the same
shapes that are very prone to dead zones in the fluid field as discussed above. And it is reasonable, that
when a significant part of the packing void does not effectively contribute to the fluid field, why should it
have any effect on the pressure drop. Thus, the obtained pressure drop depends on the effectively flown
through porosity rather than the total existing void. But as the total existing void is included in the friction
factor with power three, a present difference between effective and existing porosity has a major effect
on the obtained friction values. This effect can even be extrapolated into absurdity when considering a
spherical shell with infinitesimal shell thickness. A packing of these shells will have a porosity close to
one, but the fluid field and pressure drop characteristics of a respective solid sphere. Per definition of
the friction factor including the solid spheres pressure drop, but the shells porosity the friction will be
irrationally high.

As the presence of large deviations between effective porosity and real porosity is now obvious for some
shapes, it can not be excluded for all other shapes. It is even more realistic, that all different shape
variations have a very specific tendency to dead zone formation. Thus the friction factor in its generally
accepted form can neither be used as a predictive number nor as a comparative shape characteristic.
The friction factor is probably a great tool to compare and predict the pressure drop of an isolated,
well-researched shape such as the sphere, but for comparison or even prediction of pressure drop for
different shape variations, an upgraded friction factor definition is required.

8.3.4 Effective Porosity

On concept to cope with the above-detected problem is to introduce a shape-dependent effective porosity
parameter ε̄eff. According to the concept, the effective parameter is defined to only include void spaces of
a packing that actually contribute to the fluid dynamics and exclude "dead" voids as inner volumes or
clogged holes. These "dead" voids may be detected numerically, where the velocity magnitude undercuts
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a certain value. Here, the velocity magnitude should be used to include voids having a strong radial but
weak axial component as an actively contributing void. In order to find this limiting velocity value, a
designed shape study needs to be drafted, that allows different amounts of "dead" voids while keeping the
particles outer friction more or less constant.

A possible problem with this approach may be, that "dead" voids do not only occur within particles but
also in the fluid bulk especially close to particle contact points. It is to be investigated if the effective
porosity is based on the void reduction due to inner "dead" voids solely, or to include bulk dead zones as
well. If the latter is chosen, this will also influence the effective porosity of the well-investigated reference
sphere case. If the first option is chosen, it is going to be a challenge to define the border between inner
and outer voids, which gets more complicated the more complex geometries are investigated. The best
example to emphasize this problem are the herein presented cavity shapes, that seem to produce extra
"dead" voids without having a true inner volume.

Another problem is, that this effective porosity is most probably be determined for each shape version
separately. This makes it hardly impossible to estimate a new shapes pressure drop without decent
numerical methods. Moreover, this parameter is probably dependent on the packing method and the
tube-to-particle diameter ratio. For instance, a loose packing of single-holed spheres is presumably
less prone to hole clogging as a completely densified packing structure. Despite, some shapes, such as
those having an internal void responsible for the dead voids may not be affected at all from the packing
procedure. It is further known, that, especially for low tube-to-particle diameter ratios, very ordered
packing structures can be observed, that may increase hole clogging effects. On the contrary, packings
having a very large size ratio may be less prone to dead void formation.

8.3.5 Upgraded Bed Effectivity Parameter

Another possibility is, to define a new shape parameter, that is capable to quantify shape improvements in
regard to pressure drop, without using the strongly porosity-dependent friction factor. This parameter,
however, is not capable to predict the pressure drop of a packing comprising an arbitrary shape depending
on the flow characteristics, but it shall allow at least a comparison.

The first possibility is to use the bed effectivity parameter introduced in our previous study.

ηeff =
ageo

∆P
·H ·u0

2 ·ρ (8.4)

This parameter gives a ratio of the basic parameters of a packed bed that are of technical interest: the
geometric surface area, the pressure drop, and the superficial velocity. This parameter was developed
based on the fact that the ratio of geomteric surface area and pressure drop is constant for a specific
packing when varying the packing height and is thus a practical comparison parameter. Moreover, this
parameter can be rearranged to the friction factor by including the porosity ε̄3.
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Figure 8.9: Relative deviation of bed effectivity ηeff in regard to the reference sphere packing
ηeff,ref.

For a more extensive comparison parameter, this bed effectivity can be weighted with the fluid field
characteristics resulting in ηflow, especially the inverse of the relative standard deviation of the axial flow
component describing the smoothness of velocity distribution and the normalized average radial velocity
component describing the radial dispersion of the fluid field.

ηflow = ηeff ·
(

s(uz/u0)
uz/u0

)−1

· ur

u0
(8.5)

Both parameters can be used for the shape comparison, and the selection of one of them depends on
the actual requirements of the system. Both parameters are intended to prefer higher values and both
parameters have no dimensions. Regarding the second parameter, depending on the system requirements,
the three included parts: bed effectivity, smoothness of velocity distribution and radial dispersion can
be separately weighted. Here, all three parameters are assigned equal importance. All in this study
investigated shapes are compared based on these two parameters and their results are displayed in Fig. 8.9
and Fig. 8.10.

Regarding the original bed effectivity ηeff, the multi-hole, multi-drop, and the multi-hole’n’drop shapes
are especially preferred. Further good shapes are the three-hole, one and three-duct, three belly’n’hole,
one and extra-three-duct’n’drop, and three hole’n’drop. Not preferred are the one-hole shape, all cavity
shapes, the one/two/three-drop shapes, all belly shapes, the two duct’n’drop, and the one drop’n’hole. A
combination of shapes such as hole and belly does not necessarily result in a better bed effectivity. The
easiest way to improve the geometric surface area to pressure drop ratio is to cut at least three holes into
the shape in perpendicular directions.

When additionally considering smooth flow profiles and large radial flow components, the best shapes are
the one-hole’n’belly shape, the multi-hole’n’drop shape, and the multi-hole shape. Very good results are
obtained with almost all combo shapes, two/three-hole shapes and the one-duct shape. Exept the cavity
shapes, all remaining shapes are classified as being good compared to the reference sphere.
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Figure 8.10: Relative deviation of bed effectivity ηflow in regard to the reference sphere
packing ηflow,ref.

In summary, independent from the selected comparison parameter, the multi-hole/hole’n’drop shape gives
very good results. When considering the geometric surface area and pressure drop solely, the multi-drop
shape has favored characteristics, and when including flow properties, the one-hole’n’belly shape is best.
In contrary, the cavity shapes are throughout not recommended. Furthermore, these results are well in
accordance with previous studies regarding the Yo-Yo shape with perpendicular cut (similar to one duct
shape) and straight cut (similar to one cavity shape), where the first performed much better than the
second.

8.4 Conclusion

The herein presented numerical shape study was designed in order to utilize modern numerical methods
to describe and compare random packed bed elements of complex geometries and to develop a selection
guide based on fluid dynamic characteristics. Therefore, shapes were designed with special attention to
comparability based on a spherical reference shape. Packed beds were obtained by numerical packing
means and the fluid flow was simulated in OpenFOAM. It could be found, that the actual geoemetry has a
high impact on radial void and velocity distribution. The intuitive assumption that a certain radial porosity
distribution results in a corresponding velocity field could be proven wrong. Due to the blockage of
shape features, especially holes, and adverse particle orientation, a certain part of the void structure does
not contribute to the resulting velocity field. This also results in irrational friction factor values, as the
friction factor is inherently based on the total void, whereas the included pressure drop appears to be solely
affected by the actually accessible voids. Thus, the generally accepted friction factor correlations that
are frequently used to predict the pressure drop of simple shaped packings appear un-capable to predict
and/or compare shapes of more complex geometries. In order to improve the existing correlations, the
concept of an effective porosity parameter is suggested. However, this parameter is assumed to be highly
dependent on the shape’s geometry, the packing method and the tube-to-particle size ratio, making this
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parameter quite inconvenient. Additionally, a non-dimensional shape comparison parameter called bed
effectivity is introduced in two versions. The basic definition comprises only the major fluid dynamic and
geometric packing characteristics and the upgraded definition additionally includes flow field parameters.
Comparing all investigated shapes and depending on the selected bed effectivity version, geometries
having lots of holes perform best, followed by the novel one-hole’n’drop and the novel multi-drop shape.
An increase of more than 100 % based on the reference sphere packing could be gained with the best of
these shapes in terms of bed effectivity.

The herein presented study can be easily transferred to other shape families especially comprising
cylindrical particles. Moreover, based on the findings in regard to the friction factor correlations it could
be of significant interest to develop a method to determine the effective porosity parameter. It may be of
interest to start a respective study with well-researched simple shapes, were validation is already available
to a certain degree. Especially in regard to the friction factor correlations, it is frequently addressed to
find an appropriate shape factor, which allows the prediction of the pressure drop of unknown shapes.
Independently from the question if the friction factor correlation itself needs some decent review, it is
assumed to be rather unrealistic to find a single shape factor capable to describe the influence of packed
bed geometries.

Finally, it is to be noted, that all herein presented data was not validated by experiment. As the
manufacturing of large numbers of differently shaped particles is actually possible when using modern
additive manufacturing techniques but at a significant cost, so that a comprehensive validation was
renounced. The whole simulation process, however, was validated with respect to the reference sphere.
Furthermore, the herein presented results depend on a single packing mode which is known to lead to
rather densely packed particle arrangements. It can not be excluded, that packings that are packed more
loosely for instance by simple pouring result in different flow characteristics.

254



Nomenclature

Nomenclature

Latin Symbols

ageo geometric surface area ageo = N·ap/VT m−1

ap particle surface area m2

d1, d2, d3 sphere diameter m
dp Sauter diameter of particle dp = 6·vp/ap m
dv volume equivalent diameter of particle dv =

3
√

6·vp/π m
D diameter of tube m or voxel
e coefficient of restitution -
f ′ friction coefficient f ′ = ∆P

H ·
dp

ρ·u02 · ε̄3

1−ε̄
-

H height of tube m or voxel
K1, k1, k2 pre-factors of Eisfeld and Schnitzlein’s [79] correlation -
N number of particles per packing -
∆P pressure drop Pa
r, R control variable in radial and spherical direction m
Rep packing Reynolds number Rep =

ρ·dp·u0
η ·(1−ε̄) -

s(x) standard deviation of measure x -
ux, uy, uz velocity component in coordinate directions ms−1

ur velocity component in radial direction ur = |
√

ux2 +uy2| ms−1

u0 superficial velocity ms−1

VT volume of tube m3

vp volume of particle m3

vadd,vadd added or subtracted feature volume m3

zr non-dimensional distance from tube wall in particle
diameters zr =

D/2−r
dv

-

zR non-dimensional distance from particle center in particle
diameters zR = 2·R

dv

-

Greek Symbols

α flow vector angle in regard to main flow direction °
ε local porosity -
ε̄ mean bed porosity -
ε̄eff effective average porosity -
η fluid viscosity Pas
ηeff, ηflow bed effectivity without or with flow properties -
λ tube-to-particle diameter ratio -
ρ material density kgm−3

µ coefficient of friction -
ν Poisson’s ratio -
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Indices

ref reference sphere packing value
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Figure 9.A1: Comparison of spherical porosity distribution ε(R) of the investigated packings
made of particles with certain features as a function of the dimensionless distance from the
particle centers in particle diameters zR = 2·R

dv
.
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Figure 9.A2: Relative deviation of sauter diameter dp in regard to a reference sphere dp,ref.
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Figure 9.A3: Comparison of the radial distribution of the axial velocity component uz/u0 of the
investigated packings made of particles with certain features as a function of the dimensionless
distance from the tube wall in particle diameters zr.
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Figure 9.A4: Comparison of the spherical distribution of the normalized axial velocity
component uz(R)/u0 of the investigated packings made of particles with certain features as a
function of the dimensionless distance from the particle centers in particle diameters zR.
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Figure 9.A6: Comparison of the radial distribution of the normalized radial velocity
component ur(r)/u0 of the investigated packings made of particles with certain features as a
function of the dimensionless distance from the particle centers in particle diameters zr.
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Figure 9.A7: Relative deviation of flow vector angle α in regard to a reference sphere αref.
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Figure 9.A8: Comparison of radial distribution of flow vector angle α(r) of the investigated
packings made of particles with certain features as a function of the dimensionless distance
from the particle centers in particle diameters zr.
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Figure 9.A9: Relative deviation of standard deviation of flow vector angle s(α) in regard to a
reference sphere s(αref).
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