

Fakultät für Luftfahrt, Raumfahrt und Geodäsie

Lehrstuhl für Flugsystemdynamik

Modular model-based development of safety-critical

flight control software

Dipl.-Ing. Univ. Markus Tobias Hochstrasser

Vollständiger Abdruck der von der Fakultät für Luftfahrt, Raumfahrt und Geodäsie

der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Oskar J. Haidn

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel

 2. Prof. Dr.-Ing. Stephan Myschik

Die Dissertation wurde am 12.06.2020 bei der Technischen Universität München eingereicht

und durch die Fakultät für Luftfahrt, Raumfahrt und Geodäsie am 27.10.2020 angenommen.

1.1 Background

Page i

Acknowledgments

Accomplishing the work for this thesis and writing it down would not have been possible without

the support of many people throughout all the years.

The five years at the Institute of Flight Dynamics had become richer of experience than I ex-

pected the day, when I joined Prof. Holzapfel's team in 2013. In an enormous team effort, we

brought various manned and unmanned aircraft into the sky, with complex and large, but also,

and that is even more important, safe software, which did what it was intended to do.

I want to thank all the colleagues I worked with during these years. Our achievements, the long

nights, our regular coffee breaks and the conferences spread all over the world, which we

attended together, will remain a unique and unforgettable experience in my life.

My special acknowledgments go to Prof. Florian Holzapfel. He gave me the possibility to work

with the Institute and organized the funding for this work. He allowed me finding my direction

from mechanics to software. Throughout the years, he stood by my side with loyalty and was

always available for questions and discussions. With his large network of contacts, he initiated

discussions and workshops with software and aerospace experts around the world, which form

the solid basis for this thesis.

I also want to sincerely thank Prof. Stephan Myschik. He was a valuable advisor over the years,

both technically and psychologically. Without the encouraging and constructive meetings in his

office, this thesis probably would have never been finished. Thank you for all the lunches at

our Indian restaurant, which we will hopefully continue.

In addition, there were a lot of people from The MathWorks Inc., who supported me with their

knowledge during this thesis. Thank you very much for your responsiveness and the oppor-

tunity to work together.

Last but not least, I want to thank my family. My wife, who accepted the countless hours in the

office and the numerous weekends, which I spent in front of my computer. Thank you for bear-

ing the gray hairs, that literally began to grow during this period of time. And my parents, who

always supported me on the path I chose.

1.1 Background

Page iii

Kurzfassung

Die Entwicklung sicherheitskritischer Software befindet sich in einem stetig wachsenden Span-

nungsfeld. Auf der einen Seite wird eine aufwändige und akribische Nachweisführung gefor-

dert, auf der anderen Seite wächst die Softwaregröße sowie die Komplexität der Software

rasant. Hinzu kommen immer kürzer werdende Entwicklungszyklen. Für klein- und mittelstän-

dische Unternehmen ist ein Einstieg in die sicherheitskritische Softwareentwicklung mit enor-

mem Ressourcenaufwand verbunden. Modellbasierte Softwareentwicklung bildet hier seit je-

her eine gute Lösung, stößt aber hinsichtlich der Skalierungsanforderungen zunehmend an

ihre Grenzen.

Diese Arbeit stellt einen neuen, durchgängigen Ansatz für modulare, hochautomatisierte mo-

dellbasierte Softwareentwicklung mit Simulink® und Stateflow® der Firma MathWorks vor. Er

basiert auf aktuellen Luftfahrtstandards und bietet eine Lösung für die gegensätzlichen Anfor-

derungen in der Softwareentwicklung.

Im Rahmen der Arbeit wurde ein modularer Entwicklungszyklus und -prozess entwickelt, der

auf einem modularen Codegenerierungsansatz basiert und sich damit maßgeblich von exis-

tierenden Lösungen mit integraler Codegenerierung unterscheidet. Für den Prozess wurden

neue Modellierungsrichtlinien definiert sowie eine Vielzahl an Artefakten implementiert, die

beim Aufsetzten einer konsistenten Entwicklungs- und Simulationsumgebung, modularer

Codegenerierung sowie einer weitgehend automatisierten Erstellung der Zertifizierungsnach-

weise unterstützen.

Das neu entwickelte Softwarewerkzeug SimPol unterstützt bei der Umsetzung der durch Stan-

dards geforderten bidirektionalen Nachverfolgbarkeitsanforderungen mit Siemens Polarion®

REQUIREMENTS™. Das Softwarewerkzeug hebt sich in Bezug auf Datenmodell, Arbeitsab-

lauf, und Konfigurationsmanagement von bestehenden Lösungen ab und eröffnet dadurch

neue Möglichkeiten der automatisierten Verifikation, Reparatur und Bearbeitung von Verwei-

sen.

Das neuartige, auf Prozessaufgaben maßgeschneiderte Automatisierungswerkzeug mrails

kombiniert Informationen aus der Automatisierung und statischen Nachverfolgbarkeitsverwei-

sen und erlaubt dadurch die automatisierte Überprüfung der Aktualität, Konsistenz und Voll-

ständigkeit von Entwicklungs- und Verifikationsartefakten. Zudem stellt es hochintegrierte Ar-

beitsabläufe für Review-Aufgaben bereit. Die Anwendbarkeit wird mit einer exemplarischen,

weitgehend vollständigen Implementierung des modularen Entwicklungsprozesses demons-

triert.

1.1 Background

Page v

Abstract

Development of safety-critical software emerges in a field of tension between implementation

rigor and extensive verification evidence on the one hand as well as steadily growing software

complexity and size combined with shorter development cycles on the other hand. For small

and medium size companies, entering the market of safety-critical software development is

connected to enormous efforts. Model-based software development has been a viable solution

to reduce adoption risks for years, but faces more and more scalability limitations.

This thesis presents a new, consistent approach for modular, highly automated model-based

software development based on Simulink® and Stateflow® of The MathWorks. It respects the

currently accepted software development standards for airborne software and has the objec-

tive to eliminate the opposing requirements of software development.

In the scope of this work, a modular development life cycle and process has been developed

with generation of modular code at its core. Thereby, the approach significantly differentiates

from existing solutions, which apply integral code generation. For this process, new modeling

guidelines have been defined as well as a variety of artifacts been implemented, which support

the setup of a consistent development and simulation environment, generation of modular

code, and a broadly automated creation of certification evidence.

The novel software tool SimPol helps to implement standard-compliant, bidirectional traceabil-

ity between Siemens Polarion® REQUIREMENTS™ and artifacts from the model-based envi-

ronment. The tool sets itself apart from existing solutions with respect to its data model, work-

flows, and configuration management capabilities. It allows automated verification, repair, and

editing of traces.

The new, process-oriented build tool mrails combines data obtained from automation with

static traceability and derives information about up-to-dateness, consistency, and complete-

ness of development and verification artifacts. In addition, it provides deeply integrated work-

flows for review tasks. Its applicability is shown with an exemplarily, almost complete imple-

mentation of the modular development process.

1.1 Background

Page vii

Table of Contents

1 Introduction .. 1

1.1 Background ...1

1.2 Objective and motivation ...3

1.3 Scope ...4

1.4 Structure of the thesis ...6

1.5 Contributions ...7

1.5.1 Modular development process (part 1) .. 7

1.5.2 Modeling framework for safety-critical MBSwD in SL/SF 9

1.5.3 Traceability rules and tooling ..10

1.5.4 Process-oriented build tool and process automation...10

1.5.5 Modular development process (part 2) ...11

2 Fundamentals..14

2.1 Certification basis .. 15

2.2 ARP-4754A system development process .. 15

2.3 DO-178C .. 16

2.4 DO-331 ... 23

2.5 DO-333 ... 24

2.6 DO-330 Tool qualification .. 25

2.7 Model-based design and software development ... 26

3 Project context...27

3.1 MBSwD as embedded process ... 27

3.2 Hardware .. 29

3.3 Software components ... 31

3.4 Summary of assumptions .. 34

4 Modular development process (part 1) ..39

4.1 Objective ... 39

4.2 State-of-the-art .. 39

4.3 Structure ... 42

4.4 Software Life Cycle ... 43

4.4.1 Model usage ...43

4.4.2 MBSwD process breakdown ...46

4.4.3 Modular code..49

4.5 Development Processes ... 51

1 Introduction

Page viii

4.5.1 Requirements Process (R) ...51

4.5.2 Design Process (D) ..53

4.5.3 Coding Process (C) ..56

4.6 Verification Processes .. 57

4.6.1 Review and analysis of Design Process ...58

4.6.2 Review and analysis of Coding Process ...60

4.6.3 Model simulation and testing ..61

4.6.4 Data coupling and control coupling analysis ...71

4.6.5 Complete testing approach ...73

5 Modeling framework for safety-critical MBSwD in SL ...75

5.1 Objective ... 75

5.2 State-of-the-art .. 75

5.3 Structure ... 78

5.4 Design rules .. 81

5.4.1 Summary of rules ...81

5.4.2 Conformance ..82

5.4.3 Compliance ..82

5.4.4 High-level architectural design ..86

5.4.5 Accuracy and consistency ..98

5.4.6 Algorithm aspects ... 101

5.4.7 Traceability ... 101

5.4.8 Target compatibility .. 102

5.4.9 Verifiability .. 103

5.5 Coding rules for code generation .. 110

5.6 Module design rules .. 111

5.6.1 Summary of rules ... 111

5.6.2 Naming convention ... 112

5.6.3 High-level architectural design .. 113

5.6.4 Detailed design ... 128

5.6.5 Implementation of DO-178C concepts .. 175

5.7 Fundamental modeling rules ... 184

5.8 Modeling environment ... 185

5.9 Summary and outlook ... 187

6 Traceability tooling and rules ... 189

6.1 Objectives ... 189

1.1 Background

Page ix

6.2 State-of-the-art .. 189

6.3 Structure ... 192

6.4 SimPol .. 192

6.5 Traceability rules ... 200

6.5.1 Summary of rules ... 200

6.5.2 RMI settings ... 200

6.5.3 Requirement allocation to modules ... 201

6.5.4 Traceability to higher-level requirements .. 202

6.5.5 Derived LLRs.. 205

6.6 Summary and outlook ... 207

7 Process-oriented build tool and process automation ... 208

7.1 Objective ... 208

7.2 State-of-the-art .. 208

7.3 Structure ... 212

7.4 Process-oriented build tool .. 212

7.4.1 Application life cycle ... 212

7.4.2 Implementation Overview ... 217

7.5 Standardized implementation of build jobs .. 221

7.5.1 Process notation ... 221

7.5.2 Job execution standardization .. 222

7.5.3 Job result standardization ... 224

7.5.4 Justification workflows .. 225

7.5.5 Evidence generation ... 227

7.6 Summary and outlook ... 229

8 Modular development process (part 2) .. 230

8.1 Development tasks ... 230

8.1.1 SwDP-DP-MB 6 – Assembly of Design Description .. 230

8.1.2 SwDP-CP-MB 1 –Modular source code .. 230

8.2 Verification tasks ... 242

8.2.1 SwVP-DP-MB 1 – Static model analysis ... 242

8.2.2 SwVP-DP-MB 2 – Static module analysis ... 247

8.2.3 SwVP-DP-MB 3 – Model review ... 248

8.2.4 SwVP-DP-MB 4 – Traceability review and analysis .. 251

8.2.5 SwVP-DP-MB 5 – Design error detection ... 253

8.2.6 SwVP-DP-MB 6 – Simulation / test procedure and case development................ 261

1 Introduction

Page x

8.2.7 SwVP-DP-MB 7 – Simulation / test case and procedure review 262

8.2.8 SwVP-DP-MB 8 – Simulation testing & result review .. 263

8.2.9 SwVP-DP-MB 9 – Model coverage assessment ... 265

8.2.10 SwVP-CP-MB 1 – Automatic code review .. 273

8.2.11 SwVP-CP-MB 2 – Static code analysis for standard compliance 276

8.2.12 SwVP-CP-MB 3 – Static code analysis for error detection 281

8.2.13 SwVP-CP-MB 4 – Code review .. 282

8.2.14 SwVP-CP-MB 5 – Code proving ... 283

8.2.15 SwVP-CP-MB 6 – SIL testing & result review ... 284

8.2.16 SwVP-CP-MB 7 – SIL structural coverage assessment 288

8.3 Summary and outlook ... 290

9 Conclusions ... 292

10 References .. I

 Review and analysis of data coupling and control coupling XIII

 Coding rules for code generation ... XVI

 Code generation examples ... XXVI

 Comparison of Standard C Library integrations XXXII

 Selected code generation settings .. XXXIII

 Simulink Design Verifier model preprocessing XXXIV

 Simulation case development rules ... XXXVII

 List of artifacts .. XLII

1.1 Background

Page xi

List of Figures

Figure 1: Considered development and integral processes in the scope of the thesis 5

Figure 2: Software component in context .. 14

Figure 3: Simplified ARP-4754A process ... 16

Figure 4: Processes and objectives summarized in DO-178C... 17

Figure 5: DO-178C process in a V-model software life cycle ... 19

Figure 6: Testing activities from DO-178C Figure 6-1 .. 21

Figure 7: Development and verification traceability according to DO-178C .. 23

Figure 8: Model simulation usage possibilities according to DO-331 MB.6.8 .. 24

Figure 9: System breakdown .. 27

Figure 10: Integration of system, hardware, and software processes ... 29

Figure 11: FCC hardware .. 30

Figure 12: FCC hardware modules .. 30

Figure 13: FCC processor communication (from [37]) ... 31

Figure 14: Software components on PowerPC based on considerations from [50] and [52] 32

Figure 15: FCC sequence of tasks from [37] .. 32

Figure 16: Interface control and generation process .. 33

Figure 17: Compilation, linking, and loading ... 37

Figure 18: Architectural breakdown of software .. 46

Figure 19: MBSwD process breakdown as V-model .. 47

Figure 20: MBSwD process breakdown as flow diagram with three exemplary sub-processes 48

Figure 21: Traditional integral code generation approach .. 49

Figure 22: SRATS categorization and refinement .. 52

Figure 23: Test cases and test procedures (DO-178C 11.13).. 62

Figure 24: Duplication of low-level testing (DO-178C 6.4) .. 63

Figure 25: Purpose of structural coverage (according to DO-248C FAQ#43).. 66

Figure 26: PIL setup for software integration and low-level testing using Trace32 (from [97]) 68

Figure 27: DO-178C glossary definition of data and Control Coupling (DO-178C p.110f) 71

Figure 28: Types of test cases relevant for testing strategy (qualitative) .. 74

Figure 29: Modeling framework overview .. 79

Figure 30: DO-178C Glossary - Derived requirements ... 83

Figure 31: Module architecture example .. 88

Figure 32: Module interfaces .. 92

Figure 33: PDI processing in software ... 96

Figure 34: PDI view based on DO-248C Figure 4-4 .. 97

Figure 35: Covered and noncovered design (qualitative) .. 106

Figure 36: DO-331 MB.B.18.9 - Partial Use of Libraries ... 108

Figure 37: Deactivated and dead design ... 109

Figure 38: Core components of SW Design in SL/SF .. 113

Figure 39: Definition of the term “model “ according to DO-331 Glossary .. 114

Figure 40: Custom encapsulation (access) labels in SL Project .. 119

Figure 41: Interface affiliation dilemma ... 120

Figure 42: Example module dependencies/architecture... 121

Figure 43: Example module architecture .. 122

Figure 44: SL data dictionary with model data ... 124

Figure 45: Workspace usage ... 125

Figure 46: Implemented SL data dictionary dependencies ... 126

1 Introduction

Page xii

Figure 47: Desired SL data dictionary dependencies ... 127

Figure 48: Model element hierarchy overview ... 129

Figure 49: Model Hierarchy .. 132

Figure 50: Types of container primitives ... 136

Figure 51: Example SL library.. 137

Figure 52: Reusable model debugging .. 140

Figure 53: Usable container primitives ... 143

Figure 54: Container primitive selection ... 144

Figure 55: Auto-generation of component interface code .. 150

Figure 56: Data store interface usage examples ... 153

Figure 57: slcilib upgrade issue ... 155

Figure 58: Simulink.Bus performance best practices with optimized model (*) .. 161

Figure 59: Safe enumeration screenshot .. 164

Figure 60: Example of enumerations in SL Design Verifier .. 166

Figure 61: Simulink.Signal specifications .. 174

Figure 62: Simple primitive... 182

Figure 63: Complex primitives .. 182

Figure 64: Pseudo-primitives .. 182

Figure 65: Content of modeling environment based on [36] .. 186

Figure 66: Screenshot of SimPol ... 193

Figure 67: Basic SimPol infrastructure .. 194

Figure 68: SimPol allocation process .. 195

Figure 69: Surrogate Linking ... 196

Figure 70: Trace realization (Screenshots) .. 197

Figure 71: SimPol configuration items .. 199

Figure 72: SimPol configuration management workflow for requirement changes 199

Figure 73: Traceability of SW Design and simulation cases ... 202

Figure 74: Documentation of derived requirements ... 206

Figure 75: Interplay between build automation tools .. 214

Figure 76: Command line interface of the build tool .. 215

Figure 77: Graphical user interface of the build tool (adapted from [39])... 216

Figure 78: Components of the process-oriented build tool (adapted from [33]) ... 217

Figure 79: Visualization of an example artifact graph (from [39]) ... 219

Figure 80: Standardized status types based from [39] .. 220

Figure 81: Architecture of status and web-based interface adapted from [33] ... 221

Figure 82: Process notation .. 222

Figure 83: Standardized process execution... 222

Figure 84: Embedded justification workflow .. 226

Figure 85: Embedded review list in process-oriented build tool ... 226

Figure 86: External justification workflow .. 227

Figure 87: Report generation workflow and artifacts ... 228

Figure 88: Example model hierarchy for code generation .. 231

Figure 89: Distributed code folders .. 232

Figure 90: Example for generation of modular code ... 235

Figure 91: Code folder structure ... 235

Figure 92: Workflow for generation of modular code... 239

Figure 93: Example code generation output ... 240

Figure 94: Workflow and artifacts for SwVP-DP-MB 1 .. 243

1.1 Background

Page xiii

Figure 95: Extended configuration information in SL Model Advisor Report (BD = Block Diagram) 245

Figure 96: Workflow and artifacts for SwVP-DP-MB 3 .. 249

Figure 97: Workflow and artifacts for SwVP-DP-MB 4 .. 251

Figure 98: Workflow and artifacts for SwVP-DP-MB 5 .. 254

Figure 99: Example of auto-generated review checklist for SL Design Verifier .. 259

Figure 100: Workflow and artifacts for SwVP-DP-MB 8 .. 264

Figure 101: Workflow and artifacts for SwVP-DP-MB 9 .. 266

Figure 102: Example for multi-dimensional decision points ... 269

Figure 103: Example of an invariant operation ... 271

Figure 104: Workflow and artifacts for SwVP-CP-MB 1 .. 274

Figure 105: Workflow and artifacts for SwVP-CP-MB 2 .. 277

Figure 106: Polyspace options for project derivation from auto-generated code of Embedded Coder (in SL

model configuration settings) .. 279

Figure 107: Workflow and artifacts for SwVP-CP-MB 6 .. 285

Figure 108: Derivation of a safe C subset .. XVII

Figure 109: Classification of noncovered code according to DO-178C and Rierson [45] XXIII

Figure 110: Stubbed unit .. XXXIV

Figure 111: Original model (A) and auto-generated stub model (B)... XXXV

Figure 112: Example of SL Design Verifier signal range expansion .. XXXVI

Figure 113: Test harness model with simulation mode variants .. XLI

Figure 114: SIL code interface setting of model block .. XLI

1.1 Background

Page xv

List of Tables

Table 1: Architectural and software considerations ... 35

Table 2: Model usage examples from DO-331 Table MB.1-1 .. 43

Table 3: Application purposes of system-level models and Design Model .. 45

Table 4: Improvements and challenges of generation of modular code ... 50

Table 5: Tasks for Design Process ... 54

Table 6: Tasks for Coding Process ... 56

Table 7: Tasks for review and analysis of Design Process ... 58

Table 8: Tasks for review and analysis of Code Process .. 60

Table 9: Tasks for simulation / test procedure and case development ... 69

Table 10: Tasks for simulation testing .. 70

Table 11: Tasks for SIL testing... 71

Table 12: Bottom-up testing strategy ... 73

Table 13: Design Standard contents according to DO-178C 11.7... 75

Table 14: Model Standard contents according to DO-331 MB.11.23... 76

Table 15: Code Standard contents according to DO-178C 11.8 ... 76

Table 16: Examples of derived requirements ... 85

Table 17: Properties of modules ... 87

Table 18: Interface classification .. 90

Table 19: Example design naming convention .. 100

Table 20: Analysis tool compatibility .. 105

Table 21: Model coverage resolution ... 106

Table 22: Selected simulation configuration settings ... 116

Table 23: Model type properties .. 131

Table 24: Data type mapping between Simulink and CompCert language set .. 134

Table 25: Qualitative usability analysis of container primitives in R2017b ... 138

Table 26: Bus properties ... 159

Table 27: Safe enum properties .. 163

Table 28: Usage of constant and parameter specializations ... 169

Table 29: Simulink.Parameter specializations .. 171

Table 30: Signal specializations .. 173

Table 31: Model Element Library assessment in the MBSwD process... 181

Table 32: Traceability granularity edge cases ... 204

Table 33: Example status mapping ... 224

Table 34: Modular code generation workarounds .. 234

Table 35: Criticality of modeling rules and checks .. 244

Table 36: Status mapping for SwVP-DP-MB 1 ... 246

Table 37: Status mapping for SwVP-DP-MB 3 ... 249

Table 38: Property categorization from [35] and [174] ... 255

Table 39: Applied SL Design Verifier techniques ... 256

Table 40: Status mapping for SwVP-DP-MB 5 (compatibility checks) .. 257

Table 41: Status mapping for SwVP-DP-MB 5 (assurance-guarantee and run-time error) 258

Table 42: Status mapping for SwVP-DP-MB 5 (quick dead logic) .. 259

Table 43: Status mapping for SwVP-DP-MB 8 ... 264

Table 44: Status mapping for SwVP-DP-MB 9 (DM) ... 271

Table 45: Status mapping for SwVP-DP-MB 9 (D2C) .. 272

Table 46: Status mapping for SwVP-CP-MB 1 ... 275

1 Introduction

Page xvi

Table 47: Status mapping for SwVP-CP-MB 2 ... 280

Table 48: Status mapping for SwVP-CP-MB 3 ... 281

Table 49: Status mapping for SwVP-CP-MB 6 ... 287

Table 50: Status mapping for SwVP-CP-MB 7 (CM) .. 289

Table 51: Status mapping for SwVP-CP-MB 7 (CC) ... 289

Table 52: Simulation case documentation .. XXXVIII

1.1 Background

Page xvii

List of Acronyms

Acronym Description

ARP-4754A / ARP
Refers to SAE ARP-4754A “Guidelines for Development of Civil
Aircraft and Systems” [1]

AS Assumption

COTS Commercial-off-the-self

CP Coding Process

DAL Design Assurance Level

DO-178C
Refers to RTCA DO-178C “Software Considerations in Airborne
Systems and Equipment Certification” [2]

DO-248C
Refers to RTCA DO-248C “Supporting Information for DO-178C
and DO-278A” [3]

DO-330
Refers to RTCA DO-330 “Software Tool Qualification Consider-
ations” [4]

DO-331
Refers to RTCA “Model-Based Development and Verification
Supplement to DO-178C and DO-278A” [5]

DO-333
Refers to RTCA DO-33 “DO-333 Formal Methods Supplement to
DO-178C and DO-278A” [6]

DP Discussion Paper (in DO-331)

DP Design Process

DR Design rule

FAQ Frequently Asked Questions

FCC Flight control computer

FPU Floating-point unit

HLR
Software high-level requirement according to glossary of DO-
178C

HW Hardware

ICD Interface Control Document

IDAL Item Development Assurance Level

JTAG
Joint Test Action Group (synonym for a standardized debugging
interface)

LLR
Software low-level requirement according to glossary of DO-
178C

MB Model-based

MBSwD Model-based Software Development

MR Module design rule

PDI Parameter Data Item (DO-178C)

PIL Processor-in-the-loop

PPC PowerPC

PSAC Plan for Software Aspects for Certification

SIL Software-in-the-loop

SL/SF Simulink and Stateflow

1 Introduction

Page xviii

SLCI Simulink Code Inspector

SRATS System requirements allocated to software

SW Software

SwDP Software Development Plan

SwVP Software Verification Plan

TQL Tool Qualification Level

TR Traceability rule

TUM-FSD
Institute of Flight System Dynamics, Technische Universität
München

WCET Worst-case-execution-time

1.1 Background

Page 1

1 Introduction

1.1 Background

For safety-critical software applications, development standards have evolved over the last

decades. In aerospace, so-called “heavy” development processes are state-of-the-art and ex-

plicitly demanded by authorities. They have been proving their applicability for years as frame-

work for safety-critical software development. The commonly applied process standard is

RTCA DO-178C [2]. The corresponding standard in the automotive domain is ISO 26262-

6:2018 [7] (ISO 26262-6), which overlaps with DO-178C in large parts. However, the last cou-

ple of years revealed a discrepancy between software development needs of the market and

the requirements imposed by the processes.

Software steadily enters new fields of application and conquers new domains. Especially con-

troller tasks evolve from automatic functionality to autonomous behavior with new require-

ments on development and verification activities. In consequence, software development faces

new challenges: Firstly, software complexity and size increases rapidly due to the new func-

tionalities [8]. Secondly, software criticality raises. Software takes over more and more safety-

critical tasks with growing authority. Thirdly, software development cycles accelerate [9, p. 17].

Software vulnerabilities are of higher public interest, easier to access and exploit, and can

cause significantly larger damage due higher software criticality.

In non-safety-critical applications, these challenges are reflected by new methods and strate-

gies for software development, like model-based and agile software development or DevOps

(practices combining software development “Dev” and IT operations “Ops”). In model-based

software development (MBSwD), the software specification is made graphically. The resulting

models are formal and can directly be used for code generation or enhanced analysis methods.

Agile software development comprises agile methods and processes following the principles

of the agile manifesto [10, p. 59], promoting less planning and more interaction as well as

communication between developers. DevOps aims at bringing development and operations

closer together by providing the IT infrastructure and processes for continuous delivery of soft-

ware in an agile environment (cf. [11]).

In safety-critical applications, the adoption of these solutions still faces significant challenges.

The core problem is known under the term “big-freeze problem” as formulated by the Open-

DO initiative some years ago1, saying that it is extremely difficult to introduce changes to a

software once it is certified. Reasons for the “big-freeze” are the large number of verification

activities, the strict process, the lack of automation, or the difficulty to safely identify and isolate

the impact of a change. In consequence, changes are accumulated over some period of time

and implemented, verified, and released together, to reduce the effort.

1 “Open-DO – Towards a cooperative and open framework for the development of certifiable software”,

http://www.open-do.org/ [Accessed on: Sep. 07 2019]

http://www.open-do.org/

1 Introduction

Page 2

Furthermore, many agile commandments conflict with the requirements of “heavy” develop-

ment processes (e.g., “Responding to a change over following a plan” [10, p. 59]). Strategies

to unite these concepts are still subject to research and pilot projects (cf. [12, 13]). A key prin-

ciple of DevOps is to “automate almost everything” [11]. This goal is much harder to achieve

in a safety-critical process due to the larger number of manual activities like reviews or the

necessity for traceability.

And especially in combination with model-based design, this becomes a challenge. The ma-

jority of automation solutions for software development are designed for written code and have

difficulties to work with binary model files.

As a consequence, the effort and uncertainty to setup such a process is immense. At the same

time, the landscape of companies changes. With unmanned aerial vehicles (UAVs), many

small- and medium-size companies enter the aerospace market and have ambitions to certify

their software. In contrast to large aircraft manufacturers, they often have less experience and

a smaller budget.

It remains a challenge to economically apply these “heavy” development standards side by

side with scalability in size, complexity, and short release cycles. Kennedy states that “support

for innovation in software engineering is crucial to the continued success of the aviation indus-

try” [8, p. 3D3-13].

1.2 Objective and motivation

Page 3

1.2 Objective and motivation

Main objective of this thesis is to provide a consistent model-based software development

process with tooling that satisfies applicable standards and is scalable in the sense of agile

methods and DevOps. In particular, the thesis shall

1. Lower the adoption risk of a MBSwD for smaller companies by providing a MBSwD

process and tooling, which is out-of-the box applicable, bridges tool gaps, and is con-

sistent.

2. Improve development efficiency, ensure scalability, and support for agile development

by tool usage and the introduction of a high degree of software modularization and

reuse whilst adhering to process requirements and safety.

3. Provide a solution for exhaustive process automation and keeping a “ready-to-certify”

state of software artifacts.

Process modularization means that not only the software is broken down into modules, but

also the process. Objective is to maximize concurrent development and work out integration

solutions, necessary tool enhancements, and processes that guarantee a consistent set of

certification evidence in the end.

To overcome the “big-freeze” problem, the goal of the Open-DO initiative was “to develop tech-

niques and tools that will allow all software to be constantly maintained in a ‘ready-to-certify’

state” [14]. That means, it is admirable to keep software in a valid state after each change, so

that only some finalizing reviews are required for a new release. Performing additional verifi-

cation, like adding test cases, should not be necessary at this point of time anymore. Objective

was to setup a process automation and tooling that keeps this ‘ready-to-certify’ state covering

a maximum of the defined process activities whilst minimizing the additional effort for develop-

ers.

1 Introduction

Page 4

1.3 Scope

The three objectives are addressed in the scope of a DO-178C process under certain assump-

tions:

 The whole process bases DO-178C “Software Considerations in Airborne Systems and

Equipment Certification” [2] including DO-331, the “Model-Based Development and

Verification Supplement” [5].

 The software under development is a flight control algorithm for an existing flight control

computer (FCC), which has been developed at the Institute of Flight System Dynamics

(Technical University of Munich, TUM-FSD).

 The process respects the tool landscape and previously performed projects at TUM-

FSD.

 Certification under EASA is the goal.

 MBSwD is done with MATLAB®, Simulink®, and Stateflow® (SL/SF)2 as central model-

ing tool and Embedded Coder3 for automatic code generation, both in release 2017b

with update 9 (R2017b).

 Requirements are developed and managed with Siemens Polarion® REQUIRE-

MENTS™ (Polarion)4.

The thesis describes the MBSwD to the best of the author’s knowledge and belief. The process

setup bases on discussions with experts and on extensive experience collected during the

development of flight control algorithms for the DA-42 research aircraft [15]. The algorithms

span functionality of unmanned and piloted aircraft, from system automation [16, 17], over low-

level control [18–21] and autopilot features [22–25], up to enhanced flight management [26–

30] or standardized communication protocols (like STANAG4586 [31]). Parts of the process

have also been presented to the “Wehrtechnische Dienststelle für Luftfahrzeuge und das Mus-

terprüfwesen für Luftfahrtgerät der Bundeswehr” (WTD61/ML) in the project MezA („Model-

based development of certifiable avionic systems”).

The process has not been evaluated in an approved or active certification project involving

authorities. Different auditors may have different opinions on aspects of the model-based de-

velopment process and may demand adaptions.

2 Product of The MathWorks Inc., https://de.mathworks.com/products/simulink.htm

 [Accessed on: Jan. 04 2019], Release R2017b

3 Product of The MathWorks Inc., https://de.mathworks.com/products/embedded-coder.html

 [Accessed on: Jan. 04 2019], Release R2017b

4 Product of Siemens AG, https://polarion.plm.automation.siemens.com/products/polarion-requirements

 [Accessed on: Sep. 07 2019]

https://de.mathworks.com/products/embedded-coder.html
https://polarion.plm.automation.siemens.com/products/polarion-requirements

1.3 Scope

Page 5

The presented, novel process bases on SL/SF Release 2017b. The release had to be frozen

to a certain point of time in order to provide a consistent documentation. It is valid for later

releases to a large part, however, newer releases may have additional features or fixes so that

some workarounds or constraints can be avoided. Whenever the author is aware of such

changes, a respective foot note gives indication.

DO-178C and DO-331, which is the supplement for model-based development of DO-178C,

describe a Planning Process, four Development Processes and four supporting, integral pro-

cesses. The thesis mainly focuses on the Design and Coding process as illustrated in Figure

1 and respective verification activities. Both the Design and Coding process are addressed

from high-level planning to rules in standards. The Requirements and Integration processes

are only discussed selectively as well as the related verification activities.

Some tools use formal methods and are thus subject to DO-333, the DO-178C supplement for

formal methods [6]. The additional objectives are not covered by the thesis, but can easily be

applied on top.

Configuration management plays a minor role in this thesis, but is considered from time to time

for the processes in focus. Out of scope in this thesis are the quality assurance and certification

liaison processes.

The more detailed a process setup is described, the higher is the degree of tailoring to a given

project, company, or tool landscape. The work presented in this thesis thus is not generic in

many parts and strongly relies on a clearly defined context.

Figure 1: Considered development and integral processes in the scope of the thesis

Finally, DO-178C requires tool qualification, i.e., the tools used to satisfy objectives in the pro-

cess have to be verified as well. Tool qualification is described by DO-330 [4]. This thesis

addresses tool qualification just superficially. The process has been defined with tool qualifi-

cation in mind, but it often goes beyond the scope of the tool qualification kit provided by Math-

Works [32]. Due to the limited timeframe, it was not possible to perform any tool qualification

or assess the gap in detail.

IntegrationRequirements

ARP 4754A

Quality Assurance

Certification Liaison

Verification

Configuration Management

Design Coding

D
O

-3
3

1

In focus Selectively discussed Out of scope

1 Introduction

Page 6

1.4 Structure of the thesis

After the introduction, some fundamentals, like the structure of DO-178C/DO-331 and its rela-

tion to other process frameworks, are discussed in section 2. In addition, an overview of

MBSwD is given.

The project context and the necessary assumptions for system, hardware, and surrounding

software aside from the software developed with MBSwD, are discussed in section 3. Most of

the work in this section has been collective effort at TUM-FSD, to which the author has con-

tributed.

The main content of the thesis has been split into four chapters. Due to the difference of the

addressed topics, each part introduces the state-of-the art separately and provides a short

summary with an outlook on future work. The four parts are:

 modular development process (part 1)

 modeling framework for safety critical MBSwD in Simulink

 traceability tooling and rules

 process-oriented build tool

 modular development process (part 2)

For didactical reasons, the presentation of the modular development process has been sepa-

rated into two parts. Part 1 in section 4 introduces the process assembled by the author from

a high-level view. At first, process breakdown and model usage are presented. After that, tasks

for development and verification are defined that fulfill DO-178C/DO-331 objectives. The de-

velopment tasks and the used tools are discussed in section 4.5. The verification tasks for

review and analysis as well as for testing are provided in section 4.6.

Section 5 describes the new modeling framework for modular model-based software develop-

ment in SL consisting of a holistic set of rules and a composed modeling environment.

Section 6 introduces the new developed traceability tooling to bridge the gap between Polarion

and SL as well as a set of traceability rules.

Section 7 presents a new implemented process-oriented build tool mrails, which serves as

foundation and binding framework to automate and visualize the tasks of the MBSwD process.

As part 2 of the modular development process, the detailed implementation of the superficially

defined tasks of section 4 in the build tool framework are presented in section 8. Central aspect

is the realization of generation of modular code in section 8.1 and the automation of verification

tasks in section 8.2.

Finally, section 9 evaluates the achievements of this thesis with respect to the overall objec-

tives, summarizes limitations and offers an outlook on future work.

1.5 Contributions

Page 7

1.5 Contributions

This thesis provides solutions beyond the current state-of-the-art for:

 an efficient and consistent modular model-based software development process for

flight control algorithm development.

 a novel and consistent modeling framework for safety-critical MBSwD in SL/SF that

supports modularization in the scope of DO-178C by design and coding rules, a safe

modeling subset supporting the modular process, and a consistent modeling environ-

ment.

 traceability rules and a new, process-oriented tooling efficiently bridging the traceability

gap between requirements in Polarion and implementation as well as testing in the

SL/SF environment.

 a new kind of build tool with process-oriented features supporting a degree of automa-

tion beyond today’s tool capabilities.

 detailed process task procedures to efficiently, consistently, and safely apply the se-

lected tools of the modular process, as well as an organized way of assessing, review-

ing, and documenting the results.

Detailed descriptions of the contribution are highlighted throughout the thesis in blue boxes as

displayed below. The following sub-sections summarize the contributions.

Contribution X: Blue boxes of this kind describe the contribution of the section(s) at hand
in detail throughout the thesis.

1.5.1 Modular development process (part 1)

A new modular MBSwD process has been implemented based on the applicable process

frameworks. It breaks down the activities, which are required to fulfill objectives of the standard,

into modular sub-processes and thus unveils the potential of agile, parallel development. This

breakdown goes beyond industry standards, since various challenges had to be solved like

enhanced data and control coupling considerations or tool usage outside their normal use

case.

In detail, the contributions of the modular MBSwD are:

Contribution 1: In order to ensure scalability and maximize concurrent, team-based, agile

development, a new modular software development life cycle has been specified. It not only

introduces an architectural breakdown of the software, but also distributes DO-178C process

activities onto module- and integration-levels. Process activities from design to code verifica-

tion can thus be executed earlier and on encapsulated entities. Evidence for certification is

independent and reusable, which saves significant effort. A novel approach for generation of

modular code, which differentiates from the broadly applied integral code generation, amplifies

this effect.

1 Introduction

Page 8

Contribution 2: The abstract DO-178C development objectives have been concretized in spe-

cific tasks adapted for the modular development life cycle. Different model usage workflows,

especially relevant for flight control development, have been considered. Defined integration-

level tasks focus on the distribution of work (allocation of requirements) and the integration

later on. Module-level tasks cover the actual implementation and traceability. This new distinc-

tion and the consistent consideration throughout task definition is one of the key concepts

guaranteeing DO-178C compliance in a modular process.

Contribution 3: The abstract DO-178C verification objectives have been concretized in spe-

cific tasks adapted for the modular development life cycle. The unique separation of tasks into

module- and integration-level tasks leverages full modular development. Integration-level

tasks focus on verification of the interfaces and overall completeness. Module-level tasks allow

early verification and detection of design flaws. This, and the low complexity of the design on

this level, leverage significant time and cost savings.

Contribution 4: An economic modular simulation and testing strategy has been specified. The

testing strategy spans simulation, software-in-the-loop testing, reuse of test cases, model cov-

erage, structural coverage, and data and control coupling. It improves reusability of test cases

and decreases rework by front-loading and modularizing verification activities. Rework cycles

are also significantly shortened, which results in cost reduction and faster development.

The work has partially been published in [33] and presented on DGLR workshops [34, 35].

1.5 Contributions

Page 9

1.5.2 Modeling framework for safety-critical MBSwD in

SL/SF

With the modeling framework, a package of rules and tools has been developed that constrains

SL/SF for modular, safety-critical software development. In detail, the following contributions

are claimed:

Contribution 5: A new set of design rules for modular development has been created. The

rules differ from existing modeling rules by describing overall concepts of the software design

in a development tool-independent manner, but with MBSwD in mind. The new design rules

help developers to understand overall principles and provide reasoning for modeling rules.

They cover topics, which are essential in modular workflows but fairly unaddressed in existing

rule sets, i.e., they formulate requirements for high-level architectures, data encapsulation, and

interface contracting and they specify the way to handle DO-178C Parameter Data Items or

deactivated and noncovered design.

Contribution 6: A set of coding rules specifically tailored to auto-generated code of Embedded

Coder has been written. The coding rules have been specifically defined with respect to the

used code generator, compiler, and hardware.

Contribution 7: A large set of naming conventions has been established ensuring consistent

naming of model elements throughout the design. The rules are important to avoid identifier

clashes or identification of responsibilities for model elements in a team-based development

process.

Contribution 8: Rules for the high-level architectural design have been defined, which map

the generic Design Rules to the SL/SF development environment. They dictate a consistent

solution to specify interfaces of architectural entities, including rarely applied concepts of con-

tracting and encapsulation. To the authors knowledge, the provided rule set is the only rule set

addressing modular design / code generation from this perspective and thus significantly re-

duces the adoption effort for any reader.

Contribution 9: A safe modeling subset for SL/SF has been assembled. It is a set of well-

defined and justified rules limiting SL/SF features and adding conventions. They cumulate best

practices collected by the author in the various accompanied projects. In contrast to many

other existing guideline sets, which blacklist prohibited features, a whitelisting approach is fol-

lowed. Only features from a permitted subset shall be used. This safe modeling subset targets

compatibility of the process, tools, and tasks. It is usable out-of-the-box and significantly lowers

the adoption risk, with which large and small companies struggle. Incremental try-and-error to

reach a compliant guideline is significantly reduced. The rules are also an important pillar for

generation of modular code.

Contribution 10: A novel foundation block library limiting the usable model elements has been

created. This library deviates from block libraries shipped by MathWorks in R2017b, since it is

compliant with the rules at hand (e.g., naming conventions)

1 Introduction

Page 10

Contribution 11: DO-178C/DO-331 concepts relevant for model-based design have been in-

terpreted for SL/SF and constituted in rules. Consistent concepts for the definition of model

elements contributing to the design, noncovered and deactivated design, algorithm correct-

ness and the usage of model element libraries have been prepared. These concepts signifi-

cantly determine, how SL/SF is used and are not covered by documentation offered by Math-

Works. They lower the adoption risk of model-based design and ease discussions with author-

ities in a certification project.

Contribution 13: A consistent modeling environment has been assembled. The modeling en-

vironment comprises all resources to setup SL/SF in the light of the given design, modeling,

traceability, and coding rules. As distributable package, they allow any developer to quickly

turn SL/SF in the controlled environment necessary to implement Design Models.

Aspects for safety-critical software development with SL/SF and especially the modeling envi-

ronment have published by the author in [36] and as co-author in [37].

1.5.3 Traceability rules and tooling

Contribution 14: The author has developed a new, publically available tool called SimPol to

manage traceability between Polarion and SL artifacts. Compared to existing solutions, SimPol

supports all artifacts in SL relevant for the process (SL models, SL tests, SL data dictionaries)

by an extendable, pluggable software architecture. In addition, the management effort is re-

duced by loading bidirectional traces into an integrated, abstract data model, which leverages

automatic identification of missing, corrupted, or outdated traces and their resolution, bending

of trace links to other artifact revisions, as well as impact analysis.

Contribution 15: A new set of traceability rules supports the adoption and consistent usage

of SimPol, for example by clarifying, what kind of artifacts have to be traced to requirements

and to which granularity or how derived low-level requirements are handled. The rules outline

a directly usable traceability solution, which covers many existing use cases and lowers the

adoption effort for small companies, which are not familiar with traceability so far.

SimPol workflows have been published in [38] and presented at [34].

1.5.4 Process-oriented build tool and process automation

In order to keep the process in a “ready-to-certify” state, the process-oriented build tool has

been developed.

Contribution 16: A new type of build tool specifically designed for model-based development

in a process has been implemented. The tool provides a common framework to bundle the

implementation of process tasks and automate their execution based on dependencies. The

tool specifically addresses the needs of a safety-critical process by providing solutions for re-

view workflows as well. Especially review workflows are not well covered by traditional build

tools.

1.5 Contributions

Page 11

Contribution 17: An innovative approach to couple traceability with build dependencies col-

lected during the build has been implemented. The new symbiosis generates fine-granular

traceability of sub-file level in local and CI workflows and facilitates enhanced process analysis

like checking of up-to-dateness, completeness, or cleanliness of development and verification

artifacts.

Contribution 18: The process-oriented build tool leverages novel automated completeness

assessment of the certification artifacts, i.e., whether all activities have been performed on all

artifacts and the necessary certification evidence exists. This allows to keep the process in a

certification-ready state and helps developers to identify upcoming work.

Contribution 19: The process-oriented build tool leverages novel automated consistency as-

sessment to check whether artifacts are outdated and have to be generated or reviewed again.

This allows to keep the process in a certification-ready state at all times.

Contribution 20: The process-oriented build tool has been equipped with easy-to-use web-

based UIs. They summarize the status of the project at a central point, provide status infor-

mation for each task and direct links to open the relevant artifacts. This overview helps devel-

opers keeping track of the project status

Contribution 21: A novel framework for standardizing task execution, evaluation, review, and

report generation has been established. Generalized status types with consistent conse-

quences or actions for all tool outputs have recognition value for developers.

Contribution 22: Functionality for the generation of dynamic review lists has been integrated

into the process-oriented build tool. They can be auto-generated based on the context.

Thereby, review work is significantly reduced and a higher level of consistency is achieved,

since review lists are managed by the tool at a central place and the review status is directly

indicated as for any other automated task.

The author has published the process-oriented build tool and shown its application in [33, 39]

and has presented the work at [34].

1.5.5 Modular development process (part 2)

Finally, the development and verification tasks of the modular MBSwD have been detailed in

application procedures. Tools have been configured and tool usage has been carefully se-

lected. Furthermore, result assessment and the handling of deviations has been chosen. All

tasks have been automated and the result assessment been standardized, so that each task

can be plugged into the process-oriented build tool.

Contribution 23: A process to generate modular code with Embedded Coder has been real-

ized, which fulfills configuration management requirements. Additional scripts and resources

have been created to allow generation of modular code and safe integration into higher-level

SW modules afterwards. Such a workflow is not supported by the MathWorks tool chain na-

tively. Central advance is the handling of shared code. Generation of modular code enables

reusability of code as well as early and separate verification.

1 Introduction

Page 12

Contribution 24: A task for static model analysis has been defined and implemented. Re-

sources have been created that allow the automated execution and result assessment of SL

Model Advisor checks for models. Checks have been implemented for new and adapted mod-

eling rules. A new categorization for the criticality of check violations has been introduced. The

SL Model Advisor results have been integrated into the process-oriented build tool.

Contribution 25: A task for static module analysis has been defined and implemented. Re-

sources have been created that allow the automated execution and result assessment of SL

Model Advisor checks for whole modules. Checks on module level are not part of any check

set shipped by MathWorks and therefore represent an innovation. They are special for the

modular process at hand.

Contribution 26: Dynamic check lists have been implemented for model review tightly inte-

grated in the process-oriented build tool. The dynamic check lists are auto-generated and in-

herit the full feature set of the process-oriented build tool, like automated evaluation of up-to-

dateness. This significantly reduces the review effort.

Contribution 27: Dynamic check lists have been implemented for traceability review. They

are tightly integrated in the process-oriented build tool. The dynamic check lists are auto-gen-

erated and inherit the full feature set of the process-oriented build tool, like automated evalu-

ation of up-to-dateness. This significantly reduces the review effort.

Contribution 28: Simulink Design Verifier has been adapted to perform assurance-guarantee

analysis, run-time error analysis, and dead-logic detection. Resources have been implemented

that allow the automated execution and result assessment. Additional functionality has been

added to support the modular approach of the process at hand.

Contribution 29: Rules for simulation test procedure and case development with Simulink

Test have been developed. These rules help organizing simulation test in a module, ensure

efficient reusability for simulation and tests, and support the modular test and coverage collec-

tion system.

Contribution 30: The jobs for dynamic checklists to review simulation/test cases and proce-

dures have been set up. The dynamic check lists are auto-generated and inherit the full feature

set of the process-oriented build tool, like automated evaluation of up-to-dateness. This signif-

icantly reduces the review effort.

Contribution 31: Resources have been created to automatically execute simulation tests and

assess the results. Dynamic check lists have been implemented for result review. They are

tightly integrated in the process-oriented build tool. The dynamic check lists are auto-generated

and inherit the full feature set of the process-oriented build tool, like automated evaluation of

up-to-dateness. This significantly reduces the review effort.

Contribution 32: Criteria for model coverage assessment have been constituted. Resources

have been created to aggregate model coverage per module and across modules. Such an

automated coverage aggregation and assessment is not natively supported by MathWorks,

but inevitable in a modular process. Model execution coverage is also applied in a new way to

asses coupling between models.

1.5 Contributions

Page 13

Contribution 33: A task has been defined and resources have been created to automatically

execute automated code review with Simulink Code Inspector and assess the returned results.

Contribution 34: Resources have been created to configure Polyspace BugFinder, so that it

checks the selected coding rules and design errors. The analysis and result evaluation has

been fully automated. Different configurations have been developed for module- and compo-

nent-level analysis in the modular process.

Contribution 35: Resources have been implemented that allow the automated execution and

result assessment of simulation/test cases in software-in-the-loop mode and perform equiva-

lence comparison with previously recorded model simulation results.

Contribution 36: Criteria for code coverage assessment have been constituted. Resources

have been created to aggregate code coverage per module and across modules. Such an

automated coverage aggregation and assessment is not natively supported by MathWorks,

but inevitable in a modular process.

2 Fundamentals

Page 14

2 Fundamentals

DO-178C 10.0 states that “certification authorities consider the software as part of the airborne

system or equipment installed on a certified product; that is the certification authorities do not

certify the software as unique, stand-alone product.” The software, which is developed with

model-based techniques in the scope of this work, is just a small piece in a large project. Thus

it is very important to have a clear picture, how the process and product are embedded.

The cascade of process layers is depicted in Figure 2. Any development company needs an

approval by the authority. To obtain the approval, compliance to common quality standards

must be shown, for example EN ISO 9000ff.

In a conducted project, a certification basis is agreed with the authorities depending on the

type of the developed product. The development of the whole product is then performed under

ARP-4754A “Guidelines for Development of Civil Aircraft and Systems” [1]. ARP-4754A is

strongly coupled with ARP-4761 for conducting the safety assessment. Systems and items are

standardized breakdown levels of ARP-4754A. A system (e.g., an aircraft) consists of multiple

subsystems (e.g., flight control system, landing gear,…), which themselves are decomposed

into multiple items.

Figure 2: Software component in context

Items, the smallest units on system level, are, for example, components like a flight control

computer with all its physical interfaces, cooling, case, or mounting. For electronic hardware

(HW), DO-254 is the most common development standard being followed.

The software (SW) itself is programmed and compiled for a specific HW computation target.

The SW is typically divided into components. Operating system, drivers or interface code are

typical non-model-based components developed under DO-178C. Only specific components

are developed under DO-331 and MBSwD, like the flight control algorithms, since MBSwD is

not beneficial for all types of software.

Software Component

(model-based)

(e.g., flight control

algorithm)

Software

Hardware

Item (e.g., flight control computer)

Subsystem(s) (e.g., flight control system)

System (e.g., aircraft)

Product

Company EN ISO 9000 ff

Certification Basis.

ARP4754A
ARP4761

DO-254

DO-178C

DO-331

2.1 Certification basis

Page 15

2.1 Certification basis

Certification of airborne software in the European Union is controlled by EASA. It is typically

obtained within the scope of a whole aircraft Type Certificate (TC) or a European Technical

Standard Order (ETSO) for installable equipment.

In case of a “Normal Category” aircraft, the basic certification specification (CS) is CS-23. At

the time this thesis was written, the current version was Amendment 5. The relevant paragraph

of the CS for digital flight control systems §23.2500 and appended Acceptable Means of Com-

pliance (AMCs) do not provide further guidance. AMC 20-115D [40] (EASA) and AC 20-115D

[41] (FAA) recognize RTCA DO-178(B/C) / ED-12(B/C) and supplements as “acceptable

means, but not the only means, for showing compliance […] with regard to software aspects

of airborne systems and equipment [40]”. AMC 20-115D repeals Certification Memorandum

CM-SWCEH-002 Issue 1 “Software Aspects of Certification” [42] and the proposed CM-

SWAEH-002 Issue 2 of October 2013 [43].

2.2 ARP-4754A system development process

ARP-4754A is the recognized development standard for aircraft and equipment systems that

implement aircraft functions. It describes a top-down V-development cycle as illustrated in Fig-

ure 3 (cf. ARP-4754A 4.1.3).

The cycle begins with the identification of aircraft-level requirements and functions. Aircraft

functions are allocated to derived systems in the “System Requirements Identification”. From

these systems, a system architecture with details up to the item-level is created, to which sys-

tem functions and safety requirements are allocated. Items are further split into HW and SW.

Output of the “Item Requirements Identification” process are system-level requirements allo-

cated to HW or SW (cf. ARP-4754A 4.5).

The item design process itself is not detailed in ARP-4754A, but in other standards like DO-

254 for hardware and DO-178C for software development. ARP-4754A is explicitly written to

support these other standards.

The item is validated against the allocated system requirements and then integrated into the

system. The system is validated against higher-level system requirements and afterwards in-

tegrated into the aircraft and validated again.

The whole system development process is typically spread over multiple teams and companies

and requires a more granular hierarchy, e.g., with subsystems to cover large projects.

2 Fundamentals

Page 16

Figure 3: Simplified ARP-4754A process

During each step on the left side of the V in Figure 3, ARP-4754A requires a safety assessment

with specific methods, which are detailed in ARP-4761. The resulting Function Development

Assurance Level (FDAL) determines the rigor of the requirement identification phases and the

respective verification. To the item, an Item Development Assurance Level (IDAL) is assigned.

The IDAL determines the rigor of the software and hardware development processes.

Primary input for a software development process (item design) are system requirements al-

located to software (SRATS), and the IDAL. However, a constant information flow between

system and the different item design processes is emphasized in ARP-4754A 4.6.1.

2.3 DO-178C

DO-178C spans a commonly accepted, abstract process framework to develop software for

airborne systems and equipment. DO-178C is considered as “heavy” development process

due to its extensive process requirements. The standard assumes that the software process

is embedded in a ARP-4754A system development process.

Additional information on DO-178C is provided by DO-248C “Supporting Information for DO-

178C and DO-278A” [3]. Furthermore, DO-178C has been published with three supplements:

 DO-331 “Model-based development and verification supplement to DO-178C and DO-

278A” [5]

 DO-332 “Object-oriented technology and related techniques supplement to DO-178C

and DO-278A” [44]

 DO-333 “Formal methods supplement to DO-178C and DO-278A” [6]

Aircraft

Requirements

Identification

System

Requirements

Identification

Item

Design

Item

Verification

System

Verification

Aircraft

Verification

Item

Requirements

Identification

Development of

system

architecture

2.3 DO-178C

Page 17

The basic DO-178C standard defines three software life cycle processes, the software plan-

ning process, the development process, and an integral process accompanying them (cf. DO-

178C 3.1). The three processes are schematized in Figure 4. Development and integral pro-

cesses are both divided into four sub-processes.

Figure 4: Processes and objectives summarized in DO-178C

Tailoring, interpretation, and implementation of the DO-178C processes is subject to the pro-

cess applicant. For most of the processes, DO-178C dictates a set of objectives, to which

compliance must be shown. Tables A-1, A-2, and A-8 to A-10 of DO-178C Appendix A list

objectives for the process implementation, which are observed by the software quality assur-

ance process (cf. DO-178C 8.1a). Tables A-3 to A-7 address verification of outputs of the

development processes and are handled by the verification process.

Which objectives apply and how rigorous the processes are, is mainly driven by the allocated

IDAL of the item or, in the terms of DO-178C, the software level. The software is ranked from

A to D, with A indicating the highest criticality. Depending on the software level, DO-178C may

require independent verification of objectives. Independence requirements are not further ad-

dressed in the scope of this thesis.

Although these processes provide a clear framework for software development, the actual

software life cycle, i.e., the partitioning into nested life cycles and the sequencing of these sub-

processes, is explicitly not prescribed by the standard (cf. DO-178C 3.2).

Planning process

The process implementation and the activities, how the objectives shall be fulfilled, are docu-

mented in five plans:

 Plan for Software Aspects of Certification (PSAC)

 Software Development Plan (SwDP)

 Software Verification Plan (SwVP)

 Software Configuration Plan

 Software Quality Assurance Plan

Planning

Development

Requirements Design Coding Integration

Integral

Verification

Configuration Management

Quality Assurance

Certification Liaison

Table A-1

Table A-2

Table A-3-7

Table A-8

Table A-9

Table A-10

2 Fundamentals

Page 18

The PSAC is the plan submitted to the certification authorities in an early stage and provides

an overview of the process. The remaining four plans are written for the developers to provide

guidance.

In addition to the plans, three development standards have to be written, providing detailed

information for the developers in the requirement, design, and coding phase:

 Software Requirement Standard

 Software Design Standard

 Software Code Standard

Development process (SwDP)

As depicted in Figure 4, the development process has the following four sub-processes:

 Requirements Process

 Design Process (DP)

 Coding Process (CP)

 Integration Process

Figure 5 illustrates the development processes in a V-model. Although the idea of the V-model,

which is componentization and top-down development on the left side, and the integration on

the right side of the V, slightly differs from DO-178C, it provides a simple illustration. Software

is more and more detailed from SRATS to Executable Object Code during development on the

left side.

2.3 DO-178C

Page 19

Figure 5: DO-178C process in a V-model software life cycle

C
o
d

e

S
ta

n
d

a
rd

D
e
s
ig

n

S
ta

n
d

a
rd

R
e
q

S
ta

n
d

a
rd

V
e

ri
fi
c
a

to
n

 P
ro

c
e
s
s

(T
e

s
ti
n

g
)

S
y
s
te

m

R
e
q

u
ir
e

m
e

n
ts

A
llo

c
a

te
d
 t

o

S
o

ft
w

a
re

(S
R

A
T

S
)

S
o

ft
w

a
re

A
rc

h
it
e
c
tu

re
 /

 L
L
R

S
o

u
rc

e
 C

o
d
e

E
x
e

c
u
ta

b
le

 O
b

je
c
t

C
o
d

e

S
w

 R
e
q

u
ir
e

m
e

n
ts

P
ro

c
e
s
s

S
w

 D
e
s
ig

n

P
ro

c
e
s
s

S
w

 C
o
d

in
g

P
ro

c
e
s
s

A
-4

:
6

A
-5

:
5

A
-5

:
3

,4
,6

H
ig

h
-l

e
v
e

l

R
e
q

u
ir
e

m
e

n
ts

(H
L
R

)

A
-3

:
6

A
-4

:
2

-5
,7

,9
-1

3

A
-3

:
2

-5
,7

(A
-7

:
9

)

S
y
s
te

m

D
e
v
e

lo
p

m
e

n
t

A
-6

:
1

,2

A
-6

:
3

,4

A
-5

:
7

A
-3

:
1

T
ra

c
e

a
b

ili
ty

C
o
m

p
lia

n
c
e

C
o
n

fo
rm

a
n
c
e

W
o

rk
fl
o

w

A
-4

:
1

,8

A
-5

:
1

,2
,8

A
-7

:
1

,2
,(

5
),

6
-8

T
e
s
t

P
la

n

In
te

g
ra

ti
o

n
 P

ro
c
e
s
s

(L
in

k
in

g
,

L
o

a
d
in

g
)

E
x
e

c
u
ta

b
le

 O
b

je
c
t

C
o
d

e
 o

n
 T

a
rg

e
t

H
a
rd

w
a
re

L
o
w

-L
e
v
e

l
T

e
s
t

P
ro

c
e
d

u
re

s
,

C
a
s
e

s
,

a
n

d

R
e
s
u

lt
s

In
te

g
ra

ti
o

n

T

e
s
t

P
ro

c
e
d

u
re

s
,

C
a
s
e

s
,

a
n

d

R
e
s
u

lt
s

(S
w

/S
w

 –
 H

w
/S

w
)

S
y
s
te

m
 I

n
te

g
ra

ti
o
n

T
e

s
t

P
ro

c
e

d
u
re

s
,

C
a
s
e

s
,

a
n

d

R
e
s
u

lt
s

In
te

g
ra

ti
o

n
 P

ro
c
e
s
s

(C
o
m

p
ila

ti
o

n
,

L
in

k
in

g
)

A
-7

:
1

,2
,(

5
),

6
-8

T
e
s
t

P
la

n

A
-7

:
(5

),
6

-9

V
e

ri
fi
c
a

ti
o

n
 P

ro
c
e

s
s
 (

R
e

v
ie

w
 &

 A
n

a
ly

s
is

)

S
y
s
te

m

D
e
v
e

lo
p

m
e

n
t

A
-5

:
7

-9

2 Fundamentals

Page 20

Main target of the Requirements Process, as described in DO-178C 5.1, is to derive Soft-

ware High-Level Requirements (HLRs) from SRATS. HLRs describe, what the software shall

do. The development of HLRs must conform to rules of the Software Requirement Standard.

In the subsequent design process, HLRs are developed into Software Low-Level Require-

ments (LLRs) and a Software Architecture (cf. DO-178C 5.2). LLRs describe, how the software

shall be implemented. The outputs must conform to the rules defined in the Software Design

Standard. LLRs and software architecture form the SW Design.

In the coding process, LLRs and software architecture are used to program the Source Code

(cf. DO-178C 5.3). The code must conform to the rules defined in the Software Code Standard.

According to DO-178C 5.4.1 a., the objective of the integration process is to produce Execut-

able Object Code as well as associated Parameter Data Item files and load them into the

target. Input therefore is the Source Code. Whether the integration process of DO-178C should

be seen on the left or right side of the V-model is controversial, since it is not the classical

component integration as intended by the V-model. Figure 5 splits the integration process in

two steps. The argumentation is that compilation from Source to Executable Object Code is a

development step, since it transforms Source Code independently of other software libraries,

and linking as well as loading integrates software with software or software with hardware,

respectively.

Verification process (SwVP)

The verification process is executed along with the development process. Its obligation is to

verify the outputs of the development process.

DO-178C distinguishes review and analyses from testing. In the V-model of Figure 5, the re-

view and analysis process accompanies both sides of the V as part of the verification process.

The testing processes can only be found on the right-hand side of the V. The verification ob-

jectives are illustrated by arrows grouped concerning their subject, i.e., traceability, compliance

to other artifacts, and conformance to standards.

Review and analysis can be seen as parallel activity to the processes directly verifying the

outputs after each phase. According to DO-178C 6.3, “analyses provide repeatable evidence

of correctness and reviews provide a qualitative assessment of correctness”. Analyses are

also called static software verification typically not requiring an execution of the software.

Which objectives are verified by reviews, and which by analysis, depends on the process im-

plementation.

Testing is considered as dynamic software verification, which requires execution of the soft-

ware. DO-178C explicitly claims that only executable object code is considered as “tested” (cf.

DO-178C 6.4).

Formally, tests consist of test procedures, test cases, and (after execution) of test results. All

tests for certification credit must be derived from requirements (cf. Figure 6). This is called

requirements-based testing (cf. DO-178C 6.4.2). DO-178C distinguishes between low-level

testing and software as well as hardware-software integration testing.

2.3 DO-178C

Page 21

Testing itself requires review and analysis activities. This comprises analysis to assess the

achieved requirements-based and structural coverage, but also reviews for test procedures

and test results. These actions are referred to as “verification of verification” and documented

in Table A-7. The mentioned test plan in Figure 5 is not required by DO-178C, but follows the

recommendations of Rierson [45] in 9.6.4 to provide guidelines for test case development,

review checklists, or a target environment description.

Figure 6: Testing activities from DO-178C Figure 6-1

Other integral processes

Besides the verification process, software configuration management, software quality assur-

ance, and certification liaison processes support software development.

Configuration management is one of the most important processes to manage the complexity

of development. In DO-178C, it basically comprises of:

 Configuration identification (cf. DO-178C 7.2.1)

 Baselines and traceability (cf. DO-178C 7.2.2)

 Problem reporting, tracking, and corrective action (cf. DO-178C 7.2.3)

 Change control (cf. DO-178C 7.2.4)

 Change review (cf. DO-178C 7.2.5)

 Configuration status accounting (cf. DO-178C 7.2.6)

 Archive, retrieval, and release (cf. DO-178C 7.2.7)

Integration Tests

Requirements-
Based Test

Development

Low-Level
Tests

Software
Integration

Tests

Hardware/Soft
ware

Integration
Tests

Requirements-Based Test Coverage

Software Structural Coverage

From Software
Development
Process

End of testing

2 Fundamentals

Page 22

Often, the configuration management is strongly linked with the system development process,

especially concerning problem reporting and change control. The Configuration Management

Process classifies relevant data into Data Control Category 1, the highest category, and Data

Control Category 2. The Data Control Category specifies the activities to be done in the pro-

cess (cf. DO-178C Table 7-1).

Objective of the software quality assurance process is to verify that the process is implemented

according to DO-178C and that the implementation is applied during software development.

Process assurance activities may have an overlap with respective activities of system pro-

cesses or company-wide quality management system standards like EN ISO 9000ff. The pro-

cess finally requires a Conformity Review “for a software product submitted as part of a certi-

fication application” (DO-178C 8.3).

The Certification Liaison Process briefly describes the communication with the authority and

deliverables. However, authority clarifications, like [43], provide a far more detailed structure,

for example by introducing “stages of involvement”.

Software Life Cycle Data

Software Life Cycle Data is the data produced and controlled during the software life cycle.

Handling this data must fulfill the requirements defined in DO-178C 11.0 and is task of config-

uration management. All before-mentioned plans, standards, development outputs (i.e., HLRs,

Design, Source Code, Executable Object Code), as well as verification cases, procedures,

results, and trace data are part of this data.

Traceability

For safety-critical software, traceability is a mandatory component of approval and certification

processes [46]. Also in DO-178C, the concept of traceability plays an important role. It is an

important concept of software engineering to ensure completeness, consistency and the ab-

sence of undocumented functionality, but also to ease impact analysis and change manage-

ment throughout the whole software lifecycle.

The standard distinguishes between configuration traceability (cf. DO-178C 7.2.2), develop-

ment traceability (5.5) and verification traceability (cf. DO-178C 6.5). Figure 7 illustrates the

required development and verification traces between artifacts. It also references relevant par-

agraphs of the standard. Traceability into object code is only required for DAL A (cf. DO-178C

6.4.4.2). All development and verification traces must be bidirectional as stated in the respec-

tive sections of DO-178C. DO-178C summarizes development and verification traceability in-

formation under the term Trace Data (cf. DO-178C 11.21).

2.4 DO-331

Page 23

Figure 7: Development and verification traceability according to DO-178C

2.4 DO-331

The supplement DO-331 addresses the role of models in software development, modeling

techniques, and how they can be utilized for DO-178C software life cycle activities and data.

DO-331 is supplemental to DO-178C. Many parts remain untouched. For example, traceability

is handled as in DO-178C and the respective objectives are fully applicable (cf. DO-178C

MB.5.5).

In terms of DO-331, a model is “an abstract representation of a given set of aspects of a system

that is used for analysis, verification, simulation, code generation, or any combination thereof.

A model should be non-ambiguous regardless of its level of abstraction” (DO-331 p. 82). For

example, an illustration used as additional information for an HLR is not subject to DO-331,

since its formality is not leveraged for any of the aforementioned tasks.

The supplement clearly distinguishes between Design Models and Specification Models. Ac-

cording to DO-331, a Specification Model replaces “high-level requirements that provide an

abstract representation of function, performance, interface, or safety characteristics of software

components” (DO-331 MB.1.6.2), whereas “a Design Model includes LLRs and/or software

architecture” (DO-331 MB.1.6.2). These are the only types of models possible to replace Soft-

ware Life Cycle Data.

2 Fundamentals

Page 24

For each model type, DO-331 introduces additional objectives as well as verification require-

ments. Central is the introduction of a fourth standard, the Software Model Standard.

DO-331 also promotes model simulation as new verification method to satisfy dedicated ob-

jectives. Figure 8 shows the objectives, which may be fulfilled using model simulation on the

Design Model. Bold are the most commonly satisfied objectives. Model simulation can be ap-

plied on both the Specification and Design Models. The standard distinguishes between model

simulation for verification of the model (cf. DO-331 MB.6.8.1) and model simulation for verifi-

cation of the executable object code (cf. DO-331 MB.6.8.2). The first may be used to satisfy

review and analysis objectives and latter to replace or support testing on the Executable Object

Code. However, independent of how simulation is used, the guidance of DO-178C for review

and analysis (cf. DO-178C 6.3) and testing (cf. DO-178C 6.4) must be satisfied.

Figure 8: Model simulation usage possibilities according to DO-331 MB.6.8

2.5 DO-333

DO-333 is the DO-178C supplement handling the application of formal methods. Formal meth-

ods base on mathematical methods of theoretical computer science to rigorously verify soft-

ware. DO-333 applies, if a formal analysis is applied on a formal model to meet verification

objectives.

A formal model is “an abstract representation of a given set of aspects of the software that is

used for analysis, simulation, and/or code generation” with “an unambiguous, mathematically

defined syntax and semantics” (DO-333 FM.1.6.1). Formal models may either be a direct de-

velopment output or may be derived from software artifacts. For formal analysis on a Design

Model, both is often the case, since further intermediate representations are derived from a

formal model.

Verification of

Design

Verification of

Testing
Testing

MB.A-4: 2

MB.A-4: 4

MB.A-4: 7

MB.A-4: 8

MB.A-4: 1

MB.A-4: 9

MB.A-4: 11

MB.A-6: 1

MB.A-6: 2

MB.A-7: 5

MB.A-7: 6

MB.A-7: 7

Model Simulat ion for

Verification of the Model

(replacing Review & Analysis activities)

Model Simulat ion for

Verification of the Executable Object Code

(replacing Testing and Verification of Testing)

MB.A-7: 3

MB.A-7: 8

Model

Simulation

2.6 DO-330 Tool qualification

Page 25

Formal analysis “implies that all execution cases are taken into account, achieving exhaustive

verification” (DO-333 FM.1.6.2). Exhaustiveness is the main difference to any other verification

method. In addition, DO-331 FM.1.6.2 requires that formal analyses are sound, i.e., it “never

asserts that a property is true when it is not true” (DO-331 FM.1.6.2). But it may raise false

positive (false alarms) or undecidable results.

Asserted properties are either provided by the user or automatically embedded in the tool. For

example, a formal method for code analysis may have embedded properties for division by

zero. But a user could also implement own properties by adding assert statements to the

code, which are picked by the formal method.

Depending on the verification objective of DO-178C, for which a formal method is applied,

additional DO-333 objectives have to be fulfilled. In the scope of this work, model checking

and abstract interpretation tools are used across the process for various verification objectives.

For their use cases, DO-333 definitely applies, but the additional objectives are not addressed

in the scope of this thesis. Since they are mainly supplemental, they can be easily added if

needed.

2.6 DO-330 Tool qualification

Any tool fully or partially eliminating, automating, or reducing a process required by DO-178C

is subject to tool qualification, if the output of the tool is not verified in the Verification Process

(cf. DO-178C 12.2.1). The tool qualification process provides confidence in the tool and is

described in DO-330 [4].

DO-330 is independent of DO-178C. DO-330 distinguishes five tool qualification levels (TQL),

determining, how rigorous the tool qualification process is. The TQL reaches from 1 (the high-

est criticality) to 5 (the lowest criticality).

Defining a tool evaluation strategy, which defines the necessary TQL, is up to the respective

development standard. DO-178C bases the TQL on the tool categorization and the software

level of the developed software. It distinguishes criteria 1, 2, and 3 tools (cf. DO-178C 12.2.2).

If the tool output is part of the resulting software, it is considered as criteria 1 tool (development

tool). Criteria 3 tools are typical verification tools. If the output of a verification tool is additionally

used to justify the elimination of a verification or development process, it is considered as

criteria 2 tool. For example, the SCADE code generator is used as criteria 1 tool in [47], Poly-

space Code Prover as criteria 2 tool [48, p. 4-1] and Simulink Test as criteria 3 tool [49, p. 4-

1].

DO-178C Table 12-1 shows how the TQL is finally obtained as a function of software level and

tool criteria. For a DAL B software, a criteria 1 tool has TQL-2, a criteria 2 tool TQL-4, and a

criteria 3 tool TQL-5.

The dimension of tool qualification is just superficially covered by this thesis.

2 Fundamentals

Page 26

2.7 Model-based design and software development

Models can be used along the full development life cycle, from system to software develop-

ment. The first use case is for plant modeling, like aircraft dynamics or mechanical systems.

Plant models are simulation models of physical systems abstracted by mathematical equa-

tions. Simulation of a physical system supports controller development and validation of re-

quirements on system level. For example, aircraft dynamics are approximated with simplified

equations of motion. Input of the model are control commands, output is the state of the aircraft.

This model can directly be coupled with a controller. Such a setup is called model-in-the-Loop.

The controller is designed in algorithm design models. Goal is rapid prototyping, model-in-the-

loop validation, but also linearization and the application of linear system theory methods.

These models are mainly created in in the system design processes.

When it comes to models used for code generation for a controller, specific software design

models are created. These models respect code generation limitations and have to be discrete

and with a fix step size. Algorithm design models can be refactored into software design mod-

els under certain conditions, but could also be used as executable specification model.

Another use case are requirement models, which formalize textual requirements. In combina-

tion with algorithm or software design models, these can be used as requirement observers or

for formal proofs.

Finally, there are verification and validation models, or also called “test harness models”. They

implement test cases and procedures and can be plugged to algorithm or software design

models. They can specify the input, but also evaluate the output. These models can also be

test beds, e.g., for testing platform interfaces.

3.1 MBSwD as embedded process

Page 27

3 Project context

This section introduces the project context, for which the MBSwD process has been set up in

this thesis.

As depicted in Figure 9, the considered item is a FCC, which is part of a flight control system.

The flight control system spans all electro-mechanical components from control surfaces, con-

trol rods, actuators to onboard network, sensors, and computers. The FCC is one of many

redundant computers. With the system architecture, the criticality of the item has been miti-

gated to IDAL B. Allocated system requirements to SW or HW, interface control documents

(ICDs) as well as the IDAL are inputs to the item design processes.

Figure 9: System breakdown

3.1 MBSwD as embedded process

The MBSwD process is not a standalone process. As part of the item design, it has a strong

linking to the system processes, but also to the development of the hardware. This interplay

often fades into obscurity, since in both industry and research, system, software, and hardware

are isolated topics.

However, especially for flight control software, the system and software levels blur. For exam-

ple, performance requirements for a stability augmentation system or handling qualities are

formulated for the aircraft, but directly impact the control law design in the software. Model-

based development even promotes a merge between system and software development as

described later on.

Item

Software Hardware

System requirements
allocated to software
or hardware + IDAL

System

Software
Component

Aircraft

Flight Control

Computer (FCC)

Flight

Control System

Embedded

Software

FCC

Hardware

3 Project context

Page 28

In addition, it is fairly unrealistic that the whole embedded software is developed using model-

based techniques under DO-331. On the one hand, there are technical limitations of the mod-

eling tools and auto-code generators making traditional programming more efficient in some

use cases. For example, handling and transformation of incoming and outgoing byte streams

of component interfaces is a problem, which is hard to implement in SL (cf. [31]). On the other

hand, a significant number of objectives remains untouched by DO-331 and is covered by

traditional DO-178C development.

Figure 10 illustrates the chosen integration of system development and item design processes.

Hardware and software development are both driven by allocated system requirements (as

part of “Item Requirement Identification”, ARP 4.1.7) and the assigned IDAL. The system pro-

cess accompanies the item design and manages the information exchange (ARP 4.6.1.3).

The DO-254 hardware process is not of special relevance in this thesis. It is assumed that the

FCC has already been developed, satisfies the project target, and is available as commercial-

off-the-shelf (COTS) product with the necessary documentation. The FCC hardware is briefly

described in section 3.1.

3.2 Hardware

Page 29

Figure 10: Integration of system, hardware, and software processes

On software side, it is distinguished between a traditional DO-178C software development

process (blue) and a MBSwD process (orange). The main DO-178C process starts before the

MBSwD process as illustrated in Figure 10 and defines, at first, a software architecture, de-

composing the whole software application into software components (cf. section 3.3) and the

respective HLRs. They respect considerations closely connected to the hardware, for example

partitioning, execution rate, memory sections, or interface handling of the software.

Here is also decided, which software component shall be developed in the traditional DO-178C

and which in the MBSwD process. Latter start a sub-process. Traditionally developed software

components remain in the scope of the main DO-178C process.

Not all system requirements are directly refined in HLRs. Some of them are directly passed to

the MBSwD process.

3.2 Hardware

Target environment for the software is the FCC hardware (Figure 11), which has been speci-

fied by TUM-FSD and developed by the Aircraft Electronic Engineering GmbH (AEE). It has

been presented by Hornauer [50] and Nürnberger [37].

3 Project context

Page 30

Figure 11: FCC hardware

For design of airborne hardware and environmental conditions, DO-254 and DO-160G [51],

respectively, have been considered during the development. The FCC hardware can be seg-

regated into three hardware modules (Figure 12). There is the FCC main module including

power supply and two STM32 microcontrollers with ARM Cortext-M3 I/O processors. It carries

a PowerPC (PPC) with a MPC8349 processor (further on called main processor) and the in-

terface hardware module with the physical interfaces.

Figure 12: FCC hardware modules

The I/O processors handle the data exchange with the external interfaces and transfer it to the

PPC on request via point-to-point dual duplex Ethernet interfaces as illustrated in Figure 13.

The application software is allocated to the PPC.

FCC Main Module

PPC Module

Interface Module

(Hardware only)

I/O1

(STM32)

FCC

Hardware

DO-254

DO-160G

I/O2

(STM32)

3.3 Software components

Page 31

Figure 13: FCC processor communication (from [37])

Of special interest for the software process are the tracing capabilities of the FCC hardware.

The Cortex-M3 processors of the STM32 provide a so-called “Hardware Trace” via the ARM

Embedded Macrocell. Coverage can be collected with hardware probes. The MPC of the PPC

only allows a “Software Trace”, for which handlers in the Source Code or Executable Object

code must be registered (so-called “instrumentation” of the software).

3.3 Software components

In the scope of a traditional DO-178C process, a software architecture has already been es-

tablished distinguishing different software components (cf. [50, 52] and Figure 14).

The main flight control algorithm is contained in the single-rate, cyclically called software ap-

plication, which shall be implemented with MBSwD according to DO-331. It is embedded in the

conventionally developed, handwritten software application framework. Both software compo-

nents are executed on the PPC module.

Additional software components, like the Board Support Package (BSP), device drivers, sup-

port libraries, or the Real-Time Operating System (RTOS), are considered COTS products,

providing the required documentation and evidence or qualification kits to apply them in a

safety-critical application. The handling of these COTS products is not further detailed in this

thesis.

Main
Processor
MPC8349

I/O Processor
2

Cortex-M3

I/O Processor
1

Cortex-M3

Ethernet

Discrete

Discrete

2 x ARINC 825

4 x Serial

ARINC 429

ARINC 429

2 x ARINC 825

4 x Serial

ARINC 429

ARINC 429

3 Project context

Page 32

Figure 14: Software components on PowerPC based on considerations from [50] and [52]

Implementation details of the software application framework have been published by Nürn-

berger and Hochstrasser [37] and are only shortly summarized here. As depicted in Figure 15,

the main processor executes a foreground as well as a background task and is triggered by a

periodic interval timer. In each cycle, the first action is to request data from the I/O processors

and perform a busy wait for a fix time interval. This interval has been chosen based on worst-

case considerations. Subsequent to the waiting interval, the foreground task extracts the re-

ceived data and after that calls the main cycle of the software application (“execute controller”).

After finishing the cycle, the output data is packed and forwarded to the I/O processor, which

itself transmits them to external interfaces. Finally, hardware check functions are called, before

the periodic interval timer is reset again. The whole software on the main processor is imple-

mented without interrupt service routines.

Figure 15: FCC sequence of tasks from [37]

The data transmitted through the interfaces of the FCC hardware are defined in the system

architecture and ICDs for the respective network protocols. All interfaces of the system archi-

tecture are managed in central ICD databases realized in Excel. The ICD database is used to

generate XML ICD data files for each interface. The XML language has been chosen due to

its simple transformability and wide-spread tool support. All XML interface specifications can

be transformed to PDF reports for documentation. The generic ICD definition process has been

implemented by Markus Hochstrasser, Andreas Schwierz (Technische Hochschule Ingolstadt)

and Lukas Steinert (TUM-FSD). The specification was supported by Stanislav Braun (TUM-

FSD) and Markus Geiser (TUM-FSD) for the Sagitta project and Lars Peter (TUM-FSD), Lukas

Steinert (TUM-FSD), Patrick Lauffs (TUM-FSD) and Christoph Dörhöfer (TUM-FSD) for the

DA-42 research aircraft [15].

DO-331

Software Application

SL / SF

(ANSI C99 auto-generated)

DO-178C

Software Application Framework (ANSI C99)

COTS

BSP, Device Drivers, Support Libraries, RTOS

Wait for I/O Data Extract Data

Receive

Time

Execute

Controller

Pack and

Transmit Data

PIT

Reset

Hardware

Monitoring

Wait for PIT

Reset

Wait for I/O Data

PIT

Reset

...Background

Task

Foreground

Task

Pack Received

Data
I/O Controller

Request Data

Send Data

Transmit on

External I/O

Send Data

Pack Received

Data

Request Data

Send Data

Time

3.3 Software components

Page 33

Figure 16: Interface control and generation process

The XML interface specifications are used to generate large parts of the software application

framework, i.e., the “Extract Data” and “Pack and Transmit Data” functions of Figure 15. The

code performs:

 data type conversion.

 copying the fields of the messages into the pre-defined location in the input structure

of the main model-based software application, if a new message was received.

 packaging of the output structure fields into the message byte stream, if the application

code requests sending the message.

The code generator has been implemented by Lukas Steinert, Markus Hochstrasser, and

Kajetan Nürnberger of TUM-FSD. The framework code is not in the scope of this thesis.

System

Architecture

ICD Databases
(Parameters, Messages,
Interfaces, Allocations inbetween)

XML ICDs
for every interface,

not human readable,
but easy to handle under CM

HTML/PDF Report

C Code

Simulink Buses

Input specification for various

other tools

Bus Schedules

3 Project context

Page 34

3.4 Summary of assumptions

In this section, a couple of additional assumptions relevant for the MBSwD imposed by the

system, hardware, and software processes are presented.

AS 1 – System process is defined and interfaces between system and software

process are established.

For the system development process, this thesis relies on various achievements from projects

at TUM-FSD, which planned a system process for flight controls following ARP-4754A.

Therein, the application of modeling and simulation is a central part of the validation and veri-

fication strategy. Especially model-in-the-loop simulations are used to validate requirements.

AS 2 – FCC hardware is defined and available, and debugging capabilities are

understood.

Cf. section 3.1.

AS 3 – System and software requirements are documented in Polarion.

System and software requirements are documented in Polarion. The assumption is that every

requirement is a separate, so-called work item with a unique ID.

AS 4 – Process to handle derived software requirements in Polarion exists.

A process exists to handle derived software requirements in Polarion, identify them, trace

them, and forward them to the system safety assessment.

AS 5 – Process to allocate system requirements to the software components in

Polarion exists.

A process to allocate requirements to software components exists, for example by setting an

ownership in Polarion.

AS 6 – Review and analysis for DO-178C software requirements exist.

As part of the integral verification process, review and analysis is used to verify the objectives

of DO-178C Table A-3.

AS 7 – Design process breaks down the software into components.

Cf. section 3.3.

AS 8 – Fundamental functional and process-relevant DO-178C architectural and

software design decisions have been made for the MBSwD component.

The MBSwD software component

 only interacts with the HW through the software application framework

 has a separate set of allocated requirements

 is cyclically called with a single step function. The execution of a step is not interrupted.

Cf. section 3.3.

3.4 Summary of assumptions

Page 35

DO-178C 2.4 and 2.5 give an overview of architectural and software considerations, which

should be made on system level. Table 1 maps these considerations to the regarded software

application.

Consideration Design Decision and Rationale

Software Level DAL B

Partitioning requirements Not relevant for the nested MBSwD sub-process, but may play a
role for the main DO-178C process.

Independence requirements Not further considered in this thesis.

Multi-versions dissimilar software The system process assesses the degree of dissimilarity. If
multiple-version dissimilar software shall be used, the presented
approach can be seen as one version.

Safety monitoring Not relevant for the nested MBSwD sub-process, but may play a
role for the main DO-178C process.

Parameter Data Items (PDIs) For MBSwD, as described in AS 9.

User-modifiable software Flight control software is not user-modifiable.

Commerical-Off-The-Self Software COTS software is part of the whole software, but the focus is on
the MBSwD part.

Option-selectable Software No option-selectable software component is assumed, only a
single configuration.

Field-Loadable Software Not considered for the application software, but may play a role for
the main DO-178C process. Field-loadable software mainly
enforces requirements concerning the integrity of the loading
process.

Table 1: Architectural and software considerations

AS 9 – Use cases for Parameter Data Items exist.

DO-178C introduces the formal construct Parameter Data Item (PDI), which describes “a data

set that influences the behavior of the software without modifying the Executable Object Code

and is managed as separate configuration item” (DO-178C 2.5.1). A PDI “contains only data

(and no Executable Object Code)” (DO-248C 4.20.2). It describes both structure and values

of the data set. The representation of PDI values in a target-readable format are Parameter

Data Item Files (PDI Files). If certain conditions are met, the parameter data item values can

be managed in a separate life cycle and a change does not require reverification of the Exe-

cutable Object Code of the software they are embedded in (DO-178C 6.6).

In the considered application software, PDI Files are only introduced for the software manu-

facturer to accelerate adaption steps. Typical example for PDIs are lookup table values or

controller gains. PDI Files, software application, and software application framework are ap-

proved as part of the type design data. The software is not field-loadable, but fully loaded in

the factory. To reload the data, the FCC has to be opened and certain verification steps have

to be repeated. The considerations for user-modifiable software do not apply, since it is not

intended by the use case and not possible by implementation to be changed by the user.

No parts of the software shall be option-selectable by PDIs, i.e., PDI configurations shall not

be used to activate and deactivate code.

3 Project context

Page 36

PDIs can contain any data, but are not subject to aeronautical data, which must show compli-

ance to RTCA/DO-200B [53] to obtain an airworthiness approval [54].

AS 10 – Source Code language is C99 and a Software Code Standard exists.

The Source Code language is C99. The Software Code Standard must be applied during im-

plementation.

AS 11 – Tool chain for compilation, linking, and loading of Source Code is de-

fined.

Figure 17 briefly outlines the process and tools to convert Source Code to Executable Object

Code as well as to load it into the target. Preprocessor and compiler generate relocatable

object files from the source files. Relocatable object files, for example, use relative memory

addresses. The linker merges relocatable object files into a single executable object file and

resolves symbols. The loader copies the program into memory and may also perform a relo-

cation depending on the start address [55].

3.4 Summary of assumptions

Page 37

Figure 17: Compilation, linking, and loading

TUM-FSD has an established tool chain for the steps in Figure 17. As preprocessor, the GCC

Preprocessor is used [56]. Cross-compiler for the PowerPC is CompCert, which “is formally

verified, using machine-assisted mathematical proofs, to be exempt from miscompilation is-

sues” [57, p. 7]. The formal verification increases trust in the compilation and leverages the

relevance of Source Code analysis techniques, but it is important to mention, that no certifica-

tion credit is sought for it. CompCert is an optimizing compiler. Since DAL B software is devel-

oped (cf. AS 8), traceability analysis into object code is not required and optimization does not

negatively impact verification activities. For linking, the GCC linker is used [58]. A loader is not

used. The addresses are relocated to a given entry address by the linker.

AS 12 – Processes and tools for the review and analysis of the integration pro-

cess are defined.

Review and analysis happens along the objectives of DO-178C Table A-5. Stack analysis is

assumed to be executed with VerOStack5 and worst case execution time (WCET) analysis

with AbsInt aiT [37]. Both analyses are not further detailed in the scope of this thesis.

5 https://www.verocel.com/tools/stack-analysis/ [Accessed on: Jun. 24 2019]

Source

files

(.c/.h)

Relocatable

object files

(e.g., .obj)

Preprocessor

+ Compiler

Linker

Loader

Debug symbol

file
Link/load mapExecutable

object files

(e.g., .out)

https://www.verocel.com/tools/stack-analysis/

3 Project context

Page 38

AS 13 – Processes and tools for testing of the fully integrated Executable Object

Code exist.

Tools to execute test cases on the fully integrated HW exist. Data and control coupling cover-

age can be measured.

AS 14 – Processes and tools for change management are defined.

Any software component is considered as separate Configuration Item in the sense of DO-

178C and treated as a unit in the software configuration management process.

Chosen tool for version control is GIT. Every configuration item is in a separate GIT repository.

Baselines are tagged revisions in the version control system as described in the configuration

management plan. By committing data to the version control system, the configuration of the

configuration item is unambiguously identified and traceability between configuration items is

automatically established.

4.1 Objective

Page 39

4 Modular development process (part 1)

4.1 Objective

Objective is to derive the new modular, model-based development process from the abstract

DO-178C/DO-331 process framework. This includes the definition of a software life cycle,

which is compliant to DO-178C, transformation activities of the standard into actual tasks, and

the setup of a verification strategy.

4.2 State-of-the-art

Adoption risks of model-based-design

A recent survey funded by NASA revealed a strong increase in the number of companies using

model-based design with auto-code generation in a safety-critical context over the last years

[59, 60]. The companies participating in [60] clearly identified an improvement in productivity

and software quality coming along with MBSwD process, but also emphasized difficulties.

The adoption of MBSwD processes still raises challenges. In [60], an overwhelming majority

of participating companies emphasized the difficulties they had transitioning from traditional

software engineering to MBSwD and learning the effective use of tools. It aligns with a survey

performed by MathWorks [61], which rates tool complexity as one of the most common adop-

tion challenges, which their customers have. Also companies interviewed by Broy [62] saw

“extremely high process redesign costs” as main negative aspect of MBSwD.

In the aerospace domain, only a couple of large companies have elaborate processes based

on SL/SF for DO-178C/DO-331. Bhatt presents an in-house tool-chain for development and

verification of DO-178B software based on SL/SF [63]. Smaller companies face a significant

adoption risk due to missing initial tool knowledge and unknown dependencies. Some research

projects help to lower this entrance barrier, e.g., Reke [64] presents a light-weight process for

MBSwD in the automotive domain.

Main challenge is that DO-178C and DO-331 are process frameworks defining what has to be

done, but not how. They have to be tailored to and implemented for a specific company or

project. Tools must be selected, review checklists must be written, and the activities must be

documented in procedures. Especially in MBSwD, with automatically generated code, this re-

quires over- and foresight.

4 Modular development process (part 1)

Page 40

Tool vendors providing a “chain” of seamlessly integrated tools along the development process

publish workflows and handbooks for different software development standards, mapping the

objectives to their tools. For example, Esterel Technologies provides a “Methodology Hand-

book” for SCADE Suite [47] and MathWorks ships a workflow documentation with the tool

qualification kit [32]. The workflow of MathWorks is also outlined in a set of publications for

DO-178B/C and DO-331 [65, 66] and for software development standards of other domains in

[67, 68]. However, most of these documentations remain abstract. They hardly lower the chal-

lenge of project adoption. For example, they do not define activities, procedures, review lists,

or the required tool setup including rationales. This can be ascribed to the difficulty of formu-

lating a universal solution. The planning and setup requires broad experience and always de-

pends on existing processes in the company, available tools (for example for configuration

management, requirement management, compiler,…), or the project itself (software level, tar-

get requirements, integration requirements,…).

A collection of dependencies is given by Paz [69], who assesses model-based approaches for

the applicability in DO-178C projects and the reachable process coverage. The proposed char-

acteristics clearly show the complexity of the interfaces and the evaluation concludes that to-

day’s solutions have weaknesses especially concerning traceability and process coverage.

Various publications discuss certain aspects. Marques discusses impacted DO-178B objec-

tives by MBSwD and the advantages of model simulation and model coverage analysis [70].

Wu [71] explains seamless model-based design and verification of controllers in SL/SF, but

does not make any connection to applicable standards like DO-331. Basagiannis discusses,

how co-simulation of cyber-physical systems in combination with formal methods can support

the software certification process [72].

Several authors [73–75] point out important topics for the adoption of model-based design, but

mainly focus on organizational strategies, which are independent of the selected process

standard.

Existing examples for model-based development along DO-178C/DO-331 are illustrative, but

have a limited scope. For example, Potter [76] provides a small, but holistic demonstration for

helicopter flight control under ARP-4754 and DO-331. Available DO-331 workflow descriptions

for SL/SF do not address team-based aspects and scalability [32, 65, 77–79]. In contrast, pub-

lications for scalability and team-based work in SL/SF remain general and do not address

safety-critical software development [80, 81].

To sum up, significant process adoption challenges still exist. Published processes remain

vague, are general, and lack of full process coverage. Provided examples are often small and

do not address scalability issues. Setting up a reference process is most often an iterative

process requiring significant resources, which only large companies can afford.

4.2 State-of-the-art

Page 41

Modularization and scaling challenges

Modular software development is attractive from many viewpoints. It leverages independent

development and verification, but is also the key factor for software reuse and thus an eco-

nomic factor. The later the integration happens, the more work can be shifted to modular sub-

processes, and the higher is the benefit. [8] outlines software reuse and agile workflow as

methodology to counteract software complexity and costs, but also recognizes that many of

these technologies are still difficult to apply for safety-critical aviation software.

Modularizing the software itself is a well-known software design concept. Sommerville calls it

“component-based software engineering” [10] and Saleh treats modularity as one of the top

reccuring software design concepts ([82] p.147).

The growing importance of modularization can be observed across all engineering domains by

arising interface standards for hard- and software componentization. In the automotive domain,

the AUTOSAR (AUTomotive Open System ARchitecture) is the most popular standard6. AU-

TOSAR describes a standardized software architecture for electronic control units (ECUs) and

their communication. A similar, standardized architecture concept in aerospace is known under

the keyword “Integrated Modular Avionic” (IMA), which is ascribed to an avionic hardware com-

ponent with standardized hardware and software interfaces. For software-software interfaces,

ARINC 653 “Avionics Application Software Standard Interface” [83] describes a service-based

approach.

AUTOSAR and ARINC 653 are platform- and service-based concepts with an extensive

runtime environment layer responsible for resource allocation/partitioning and scheduling. In

aerospace, such architectures are less common than in the automotive domain. One reason

therefore may be that aerospace software must always be certified together with the hardware

component as a whole. The effort to certify a runtime environment is significant and certifiable

runtime environments are thus just affordable and economical for large manufacturers. In ad-

dition, the service-based concept applied on flight control algorithms is not as beneficial as for

other software, since a majority of the software is application-specific.

For many smaller applications, a more lightweight approach without a runtime environment is

more feasible. One single runtime process without scheduling or memory partitioning require-

ments drastically reduces the certification effort. This was also the approach taken for the flight

control algorithms in the projects at TUM-FSD. Anyway, distributed and concurrent develop-

ment of the software is desirable, especially to create the necessary certification evidence in

parallel with the module development.

6 https://www.autosar.org/ [Accessed on: Sep. 07 2019]

4 Modular development process (part 1)

Page 42

The above mentioned standards only address software architecture, but not how the software

life cycle looks like. Componentization is addressed in DO-178C just superficially, although it

raises new questions concerning interface handling, or data and control coupling. A few publi-

cations addressing agile development life cycles in a DO-178C development exist, which are

modular. [12, 13, 84, 85] superficially discuss and evaluate different variants of DO-178C soft-

ware life cycles, including incremental and functional workflows, but do address the process

breakdown on activity-level.

Also SL/SF, Embedded Coder, and the surrounding verification tool environment just partially

leverage distributed, component-based workflows. Many features exist, like Simulink Projects,

which ease component-based work [80], but a consistent workflow is not provided. Modeling

guidelines for safety-critical software models do not address componentization. Also the DO

Qualification Kit does not address a modular process [32].

In the work of this thesis, an efficient, modular MBSwD process has been developed, which

avoids sophisticated architectural concepts and is compliant to DO-178C. Various tool exten-

sions and modeling rules have been developed closing the gap, which the SL/SF tool chain

leaves.

4.3 Structure

First step is the definition of a software life cycle. DO-331 knows different kinds of model usage.

Section 4.4 addresses the selection of model usage for control algorithms, which already have

very concrete requirements and models at a higher level. Heart of the life cycle is the new

modular MBSwD, which is presented in section 4.4.2. Section 4.4.3 introduces the novel mod-

ular code generation approach, which is an essential part of the process.

Section 4.5 address the selected development tasks for the design and coding process, which

satisfy both DO-331 objectives and modularization requirements.

In section 4.6, verification tasks for the design and coding process are defined. The verification

tasks are separated into review and analysis (section 4.6.1 and 4.6.2) and model simulation

with testing (section 4.6.3). Data and control coupling is separately discussed in section 4.6.4

as overarching concept.

Part 2 in section 8 presents the detailed task procedures for both development and verification

tasks. They have been moved to a separate, downstream section, since knowledge of model-

based design in SL/SF is required.

4.4 Software Life Cycle

Page 43

4.4 Software Life Cycle

4.4.1 Model usage

The first question to be answered is, how models are used in the development process. As

already discussed, DO-331 distinguishes Specification and Design Models. In both cases, the

models replace requirements. Furthermore, DO-331 outlines five scenarios as in Table 2 and

discussed in detail in DO-331 MB.B.17 Discussion Paper (DP) #1.

Example 1,4, and 5 only leverage the Design Model approach. In example 1, HLRs are derived

from system requirements and the Design Model solely replaces the software design. In ex-

ample 4, the Design Model replaces both HLRs and the software design. Example 5 goes even

further and promotes a case, in which the Design Model is already developed as part of the

system development. Example 2 and 3 introduce a Specification Model representing HLRs,

from which either a Design Model is derived or textual LLRs and software architecture.

Process that
generates the
Life Cycle Data

MB Example 1 MB Example 2 MB Example 3 MB Example 4 MB Example 5

System Re-
quirement and
System Design
Processes

Requirements
allocated to soft-
ware

Requirements
from which the
Model is devel-
oped

Requirements
from which the
Model is devel-
oped

Requirements
from which the
Model is devel-
oped

Requirements
from which the
Model is devel-
oped

Design Model

Software Re-
quirement and
Software De-
sign Processes

Requirements
from which the
Model is devel-
oped

Specification
Model

Specification
Model

Design Model

Design Model Design Model Textual Descrip-
tion

Software Cod-
ing Process

Source Code Source Code Source Code Source Code Source Code

Table 2: Model usage examples from DO-331 Table MB.1-1

Information on acceptance of the different workflows by both industry and authorities is barely

publically available. In the DO-178C handbook [47], Esterel follows example 1, similar to

Erkinnen [65] and Marques [70]. Potter [66] and Weber [86] promote example 5 and Eisemann

[79] outlines example 2. The DO Workflow document provided by MathWorks [32] is not written

for a specific approach. It addresses SL/SF for both Specification and Design Models.

The chosen approach in this thesis supports example 1, 4, and 5. For all three scenarios,

strong use cases could be found. Examples with specification models have not been consid-

ered, since they either exclude automatic code generation (example 3) or require two models

(example 2).

4 Modular development process (part 1)

Page 44

Workflow 1

Example 1 is the most common approach. In many cases, system requirements have to be

detailed for software purposes, e.g., robustness requirements with respect to external inputs,

data types or interfaces. This scenario is inevitable and important.

Workflow 4

Example 4 is reasoned with the higher abstraction of Design Models compared to LLRs. For

example, traditional HLRs often contain figures of state diagrams or truth tables. These dia-

grams are very close to the implementation in SF. In such cases, separate HLRs are just an

artificially introduced level leading to “copy-and-paste development”. Important to mention is

that this workflow does not merge HLRs and LLRs, since the system requirements take over

the role of HLRs including all necessary activities and objectives (cf. DO-331 MB.5.0). The

concerns of Position Paper CAST-15 “Merging High-Level and Low-Level Requirements” [87]

are not applicable.

However, actions must be taken to ensure that the system requirements, which have been

developed according to ARP objectives, serve as appropriate DO-178C HLRs. This has been

addressed with an additional activity called “system requirement buy-off”, which is explained

in section 4.5.1.

For SRATS, which become HLRs under workflow 4, it must be clarified, whether they are

tested in the software or system process. This is a case by case decision. DO-178C 2.2.1h

and 2.2.2i indicate that verification activities can be shared between system and software pro-

cesses. Here, since software testing has stricter requirements (e.g., test coverage), all HLRs

are at least tested under the MBSwD process. In consequence, testability is an important re-

quirement for categorization into the workflows.

Workflow 5

Example 5 supports the special use case of flight control laws in software development. Flight

control laws have to be designed on aircraft-level, since they involve knowledge of the whole

system and are derived from aircraft-level handling qualities. Model-based development is

commonly used to simulate and optimize the laws. Flight control law design models exist, but

in a form not ready for software development. As Weber [86] points out, the traditional way

would be defining software requirements “often representing written formulas practically ready

to be pasted into FCS [flight control system, author’s note] software source code.” Essentially,

existing models are artificially broken down into textual requirements.

Example 5 leverages an approach, which allows sharing the model between system and soft-

ware process. However, a couple of arguments must be considered when planning this pro-

cess.

Software architecture considerations or hardware considerations are barely known when the

system design is developed. The approach taken in [86] is to develop a system-level model by

system engineers and let software engineers transform and detail it to a Design Model later

on. The system-level model is discarded after that and any further updates are made on the

Design Model.

4.4 Software Life Cycle

Page 45

Additional effort is required to manage changes. Changes have to be coordinated between

system and software engineering, if both are separate departments. A detailed change man-

agement process is given in [86]. Changes are implemented by the software engineering.

Finally, the modeling technique must be flexible enough to support both the use cases in sys-

tem and software development as listed in Table 3. For controllers, system-level models often

base on performance requirements, which need model-in-the-loop simulation and additional

verification with hardware-in-the-loop or flight tests. SL/SF in combination with Embedded

Coder can satisfy this dual role in general.

Since this workflow omits several requirement levels, it is applied in a very limited scope, i.e.,

in those cases, where additional requirement levels are just artificial. This is mainly the case

for mathematical control algorithms. However, the transformation from system-level model to

Design Model typically leads to new, additional software requirements like robustness require-

ments.

Except from the dual role and the enhanced change control, example 5 aligns with example 4.

In workflow 5, the requirements are just selected from a higher level. The requirements, from

which the system-level model has been developed, become HLRs. However, as in workflow

4, a buy-off is required.

System-level Model Software Design Model

 Linearization

 Application of tools of linear system theory

 Parameter optimization

 High performance for massive simulation (e.g.,
Monte-Carlo)

 Model-in-the-loop simulation

 Fulfill process of ARP-4754A

 Reflect, how the software works (LLR)

 Robust against all inputs, robust outputs

 Hold all information to generate standard-
compliant code for a specific target and
interfaces

 Fulfill process of DO-178C

 Verifiability on software level

Table 3: Application purposes of system-level models and Design Model

4 Modular development process (part 1)

Page 46

4.4.2 MBSwD process breakdown

Contribution 1: In order to ensure scalability and maximize concurrent, team-based, agile
development, a new modular software development life cycle has been specified. It not only
introduces an architectural breakdown of the software, but also distributes DO-178C process
activities onto module- and integration-levels. Process activities from design to code verifi-
cation can thus be executed earlier and on encapsulated entities. Evidence for certification
is independent and reusable, which saves significant effort. A novel approach for generation
of modular code, which differentiates from the broadly applied integral code generation, am-
plifies this effect.

In large projects, multiple developers join MBSwD. It is thus necessary to have a scalable

strategy to work concurrently and contribute to MBSwD without causing conflicts. This thesis

solves these aspects with the modular process introduced in the following, which allows con-

current team work and makes sure that the objectives of DO-178C/DO-331 are met. The first

and obvious step is to break down the MBSwD software component into software modules as

illustrated in Figure 18. One component can consist of multiple, nested modules, however

there is a single component module. A component module defines the component interfaces

and interacts with other components. All other modules are nested inside the component mod-

ule. Each module can contain units. Units are the smallest, independently verifiable entities.

They are further explained later on.

Figure 18: Architectural breakdown of software

Some process activities can be independently and concurrently performed in modules, others

need the view of the whole component (for example, activities with regard to completeness).

The presented approach thus distinguishes two kinds of MBSwD processes as depicted in

Figure 19, the MBSwD component process (C), and the MBSwD module process (M). The

component process covers tasks, which can only be done on component-level and need the

full software application. One can say that they have component scope. The module processes

are executed in isolation on module-level, they have module scope. A component module must

follow both the component and module process.

Full software

Component

(DO-178C)

Component

(MBSwD)

Component Module

Module

(nested)

Module

(nested)

Module

(nested)

U U

U U U U U

U = Unit

4.4 Software Life Cycle

Page 47

Figure 19: MBSwD process breakdown as V-model

A breakdown into modules is not straight-forward from a process point of view. It raises ques-

tions in the top-down workflow, e.g., how requirement allocation to modules is performed and

how traceability is handled, or how interfaces are communicated and how modular code is

generated. But also bottom-up, new problems have to be solved. For example, how coverage

is aggregated or how the coupling between modules is assessed.

Figure 20 details the breakdown of Figure 19 with the DO-178C processes Requirements (R),

Design (D), and Coding (C). Superscripts C and M indicate, to which MBSwD process they

belong.

4 Modular development process (part 1)

Page 48

Figure 20: MBSwD process breakdown as flow diagram with three exemplary sub-processes

The main inputs to the MBSwD process are:

 system requirements allocated to software (SRATS)

 HLR allocated to the MBSwD component

 system-level model in case of a type 5 workflow

 IDAL (here IDAL of the FCC item)

The MBSwD component process begins with a common requirements process (RC) as shown

in Figure 20. Target of the process is to formally accept and categorize system requirements

either into workflow 1, 4, or 5, and, if necessary, add or derive additional HLRs. For workflow

4 and 5, acceptance criteria are checked to make sure that the SRATS are compliant with the

Software Requirement Standard.

The component design process has been split into two phases (D1C and D2C). D1C is called

the architecture phase, D2C the integration phase. From the allocated requirements of the

MBSwD component, a module breakdown and architecture is established in D1C. The module

architecture is part of the Design Model, since it serves as integration model later on, too. The

concept is further detailed in section 5.4.4. After D1C, requirements are allocated to the nested

modules and each module starts a module process.

In the module processes, developers concurrently concretize the requirements, document de-

rived requirements, and establish traceability (RM).

The requirements are implemented in Design Models (DM). All Design Models are fully devel-

oped in SL/SF and traceability is established to the HLRs.

In each sub-level process, modular C code is generated for the Design Model with Embedded

Coder (CM).

SRATS R

…
HW

SW

R

RC

Main

DO-178C

MBSwD

MBSwD Component

D1C

RM1

RM2

RM3

DM1

DM2

DM3

CM1

CM2

CM3

Module

Breakdown

Module 1

Module 2

Module 3

D C I

SW-SW

I

HW-SW

SRATS System Requirements

Allocated To Software
R Requirements

D Design

C Coding
I Integration

SW-SW DO-178C Software-Software
Integration

HW-SW DO-178C Hardware-

Software Integration
C Component process
M Module process

DM CMRM D2C CC

4.4 Software Life Cycle

Page 49

Both design and code are integrated into dependent modules and finally into the component

module as illustrated in Figure 20. After DM of the component module, a single, fully integrated

Design Model exists. The subsequent D2C mainly reflects verification on component scope of

the fully integrated design. After CM, all Source Code has been generated and verified on mod-

ule-level. CC specifies additional component-level verification activities on the full Source Code.

After that, the integration in the sense of DO-178C begins. The generated code is integrated

with the code developed in the main DO-178C process, e.g., with framework code, converted

to executable object code, and loaded onto the target (I).

4.4.3 Modular code

The intended workflow of Embedded Coder follows the approach that all Design Models are

integrated into a single design. Code is then only generated once in the component process

from the fully integrated Design Model (here called integral code generation). Figure 21 shows

this alternative approach. Code would be generated after DM of the component module. Con-

sequently, all code review and analysis activities would have to be done in the component

process.

Figure 21: Traditional integral code generation approach

Integral code generation scores with high consistency of the code, but raises challenges con-

cerning configuration management, limits reusability, and may produce significant, late rework.

Latter is especially critical, since a code change always requires a model change connected

with design verification.

In order to overcome these disadvantages, generation of modular code is focused in this work.

In contrast to the MathWorks process, the software design is transformed to code in each

module process separately and integrated after the coding process. Verification activities are

executed in the module processes to a large degree.

SRATS R

…
HW

SW

R

RC

Main

DO-178C

MBSwD

MBSwD Component

D1C

RM1

RM2

RM3

DM1

DM2

DM3

Module

Breakdown

Module 1

Module 2

Module 3

D C I

SW-SW

I

HW-SW

SRATS System Requirements

Allocated To Software
R Requirements

D Design

C Coding
I Integration

SW-SW DO-178C Software-Software
Integration

HW-SW DO-178C Hardware-

Software Integration
C Top-module process
M Module process

DMRM D2C CC

4 Modular development process (part 1)

Page 50

Table 4 summarizes the improvements and new features, which have been added in order to

achieve and solidify generation of modular code with Embedded Coder. Realization required

an enhanced code generation workflow, which supports integration of existing code and han-

dling of shared code (cf. section 8.1.2), but also design, coding, and modeling subsets opti-

mized for modular code (cf. section 4.6.4).

Improvements New features to be added

 Reuse of verified code possible (modular verified
code can be used in other applications as is)

 Limited impact of design changes on code (code
of other modules remains untouched)

 Higher scalability due to shorter code generation
times and smaller cohesive entities with less
complexity

 Enables concurrent and modular workflows from
design to code verification

 Earlier detection of code verification issues and
shorter rework cycles compared to integral code
generation, since not all modules must be
integrated, before code is generated and verified

 Modular code is also the prerequisite for modular
compilation, which may leverage even more
possibilities for concurrent and incremental work

 Less configuration management effort due to the
limited impact of design changes on code and the
possibility to manage code in independent
version control repositories

 Build process adaptions, since Embedded Coder
is made for top-level builds (e.g., handling of
shared code, reuse of code,…)

 Constraints the Design Model for generation of
modular code and higher modeling discipline

 Implementation of different verification tasks for
component and module processes, since not all
tasks can be fully executed on module level

 Implementation of verification activities to
guarantee interface compatibility, code
consistency on code level as well as coupling

Table 4: Improvements and challenges of generation of modular code

4.5 Development Processes

Page 51

4.5 Development Processes

Contribution 2: The abstract DO-178C development objectives have been concretized in
specific tasks adapted for the modular development life cycle. Different model usage work-
flows, especially relevant for flight control development, have been considered. Defined in-
tegration-level tasks focus on the distribution of work (allocation of requirements) and the
integration later on. Module-level tasks cover the actual implementation and traceability.
This new distinction and the consistent consideration throughout task definition is one of the
key concepts guaranteeing DO-178C compliance in a modular process.

4.5.1 Requirements Process (R)

This section briefly describes the requirements processes RC and RM with focus on a MBSwD

process. It will not give detailed process guidance, since requirement engineering is similar to

traditional DO-178C development.

According to DO-178C, target of the Requirements Process is to derive HLRs from SRATS.

For a modular DO-331 process, this requires some additional considerations. As introduced in

section 4.4, three workflows are possible. In workflow 1, the SRATS are refined with HLRs. In

workflow 4, the SRATS represent the HLRs and the Design Model is directly developed from

the HLRs. And finally, workflow 5 shares a Design Model with the system development pro-

cess, which is directly developed from SRATS. This is equivalent to workflow 4, the require-

ments, which trace to the system-level model become SRATS.

In RC, the SRATS are systematically categorized into the workflow they belong. This step is

called the “system requirements buy-off” and is no activity, which is explicitly required by DO-

331.

In D1C, the software architecture is established and all requirements are allocated to software

modules. After that, in the module process RM, SRATS assigned to workflow 1 must neces-

sarily be refined into HLRs, whereas workflow 4 requirements can directly be implemented.

The whole process is sketched in Figure 22.

4 Modular development process (part 1)

Page 52

Figure 22: SRATS categorization and refinement

System requirements buy-off

Whereas the derivation of HLRs from SRATS is well understood and similar to traditional DO-

178C development, the “system requirements buy-off” is a new concept and shall be elabo-

rated.

According to DO-331 MB.B.17.4, the part of system requirements allocated to software “from

which the Design Model was developed is considered to be the software HLRs, and therefore

will need to comply with objectives of Annex MB.A Table MB.A-3”. The objectives of Table

MB.A-3 are addressed by the Software Requirement Standard.

Workflow 1 derives HLRs from SRATS. The conformance of HLRs is checked against the

Software Requirement Standard and, in consequence, they are full-value HLRs by definition.

The SRATS used as HLRs in workflow 4 and 5 have been developed according to ARP-4754A

5.4.3 and thus only fulfill the requirements stated therein. However, they must comply to the

Software Requirement Standard, too.

Instead of a full reverification against the Software Requirement Standard, a gap analysis is

done. This avoids duplicate verification. The criteria are quite sensitive and are checked by a

review board with specialists from both the software and hardware process. Otherwise, the

risk of unintendedly skipping a necessary requirement level would be high. The chosen work-

flow is documented in the requirements.

RC

SRATS

SRATS =

HLR

(WF 4)

SRATS

(WF 1)

RM1

DM1

RM2

DM2

D1C

HLRHLR

4.5 Development Processes

Page 53

4.5.2 Design Process (D)

DO-178C and DO-331 address necessary activities for the Design Process in MB.5.2.2 and

the objectives MB.A-2:3-5,9,10 of Table MB.A. Output is the Design Description as described

in MB.11.10 and Trace Data as in MB.11.21.

From the objectives and paragraphs, tasks have been derived. Tasks concretize activities with

tool selection, configuration, or checklists. All tasks are summarized in the so-called “task ta-

ble”, for the Design Process in Table 5. Each row in the table describes one task. The first

column titled “Proc” indicates the process, in which the respective task has to be executed. If

two processes are given, the task has two variants. The second column gives the name and

ID of the task. The third and fourth column list required inputs and outputs to perform the

respective task. The fifth column indicates, which DO objectives this task satisfies. The last

column refers to the relevant section in this thesis, which covers the task.

Entry criteria for D1C is that the system-requirement buy-off has been performed in RC, i.e.,

requirements are categorized according to their workflow.

Exit criteria for D1C is that the software architecture has been defined, requirements are allo-

cated to the module.

Entry criteria for DM is the exit criteria of D1C and that workflow 1 SRATS have been refined

(RM).

Exit criteria for DM is that allocated HLRs have been implemented, derived LLRs have been

documented, traceability is established, and the design has been documented. Dependent

modules must be available. Related verification tasks have been performed.

Entry criteria for D2C is the exit criteria of DM for the component module.

Exit criteria for D2C is that related verification tasks with component scope have been per-

formed.

4 Modular development process (part 1)

Page 54

Proc Task ID - Name Inputs Outputs
Mapped DO-331 Objec-
tives of Table MB.A-2

Section

D1C SwDP-DP-MB 1 –

Development of
the software
architecture in
SL/SF

Higher-level re-
quirements allo-
cated to software
component

Software archi-
tecture (as part of
the Design
Model)

N/A 5.4.4
5.6.3

D1C SwDP-DP-MB 2 –

Allocation of
requirements to
modules

Higher-level re-
quirements allo-
cated to software
component

Allocated require-
ments to module

N/A 6.5.3

DM SwDP-DP-MB 3 –

Design Model
implementation in
SL

Self-contained,
allocated set of
HLRs or system-
level model

Software archi-
tecture

Dependent soft-
ware modules

Design Model (of
software module)

3 – Software architecture
is developed
4 – Low-level requirements
are developed
9 – Design Model ele-
ments that do not contrib-
ute to implementation or
realization of any software
architecture are identified
10 – Design Model ele-
ments that do not contrib-
ute to implementation or
realization of any low-level
requirement are identified

4.6.4

DM SwDP-DP-MB 4 –

Tracing to higher-
level requirements

Design Model for
a self-contained
set of require-
ments

Higher-level re-
quirements

Trace Data (of
software module)

4 – Low-level requirements
are developed

6

DM SwDP-DP-MB 5 –

Documentation
and assessment of
derived low-level
requirements

Design Model for
a self-contained
set of require-
ments

Identified and
documented de-
rived low-level re-
quirements with
assessed safety
impact (of soft-
ware module)

5 – Derived low-level re-
quirements are defined
and provided to the system
processes, including the
system safety assessment
process

5.4.3
6.5.5

DM SwDP-DP-MB 6 –

Assembly of
Design Description

Design Model for
a self-contained
set of require-
ments

Trace Data

Documented de-
rived LLRs

Design Descrip-
tion (of software
module)

4 – Low-level requirements
are developed

8.1.1

+ Review and analysis (cf. section 4.6.1)

Table 5: Tasks for Design Process

4.5 Development Processes

Page 55

Purpose of SwDP-DP-MB 1 and SwDP-DP-MB 2 is to develop the software architecture in SL

according to the Software Design and Model Standard by defining:

 modules and necessary library modules

 units and module data

 interfaces between units

 dependencies of modules

and allocating requirements of the software component to the modules.

The actual allocation of requirements is done in Polarion. The developers of the sub-level pro-

cess can then refine (RM) or directly implement the requirements (DM).

In SwDP-DP-MB 3, the detailed design (deeper software architecture and LLRs) is imple-

mented following the Software Design and Model Standard. The Software Model Standard

also identifies model elements not contributing to LLRs and software architecture, as re-

quested by the objectives MB.A-2: 9 and 10. SwDP-DP-MB 3 does also cover the transfor-

mation of system-level models to shared Design Models for workflow 5.

The implementation of the Design Model is not a one-time task, but strongly coupled with the

change management process (as part of the configuration management process). Two sce-

narios exist: Either a new set of HLRs is given and no implementation exists yet. In this case,

all the requirements can be implemented and all downstream development and verification

activities have to be performed. Or a baseline of the software already exists and the change

management process is active. Every modification of the module content now requires a

change request (CR) and the processes described in the Software Configuration Management

Plan must be followed. Reverification is required for impacted artifacts and activities of the

change.

Along with the implementation, bidirectional traces to higher-level requirements are estab-

lished (SwDP-DP-MB 4). This potentially identifies LLRs, which cannot be traced to HLRs.

Some are documented, verified, and justified as derived requirements in SwDP-DP-MB 5.

The final step is the assembly of a Design Description in SwDP-DP-MB 6. The Design De-

scription is the documentation of the Design Model and Trace Data.

4 Modular development process (part 1)

Page 56

4.5.3 Coding Process (C)

The requirements and objectives for the Coding Process are provided by MB.5.3 and Table

MB.A-2:6. Intention is to transform the Design Model into Source Code and provide Trace

Data. The derived tasks are listed in Table 6.

Entry criteria of CM is the exit criteria of DM or the exit criteria of D2C for the component module

(cf. Figure 19).

Exit criteria of CM is that Source Code and Trace Data for the Design Model of the module

has been created. Related verification activities have been performed.

Entry criteria of CC is the exit criteria of CM.

Exit criteria of CC is that the Source Code of the software application has been verified as

whole.

Proc Task ID - Name Inputs Outputs
Mapped DO-331 Objec-
tives of Table MB.A-2

Sec-
tion

CM SwDP-CP-MB 1 –

Modular source
code generation

Design Model (of
software module)

Source Code
(of software mod-
ule)

6 – Source Code is devel-
oped

8.1.2
5.5

CM SwDP-CP-MB 2 –

Trace data
generation

This task part of
SwVP-CP-MB 1.

Design Model (of
software module)

Source Code
(of software mod-
ule)

Trace Data
(of software mod-
ule)

6 – Source Code is devel-
oped

8.2.10

+ Review and analysis (cf. section 4.6.2)

Table 6: Tasks for Coding Process

Table 6 only contains development activities for the module process, thus CC is a pure verifi-

cation process.

In SwDP-CP-MB 1, the Design Model of the software module is translated to modular Source

Code compliant with the Software Code Standard. Embedded Coder is used for automatic

code generation. The whole tailored code generation workflow and code generator settings

are discussed in section 8.1.2.

Trace Data generation SwDP-CP-MB 2 from Source Code to SL/SF and vice versa is a second

step with SLCI. Embedded Coder generates Trace Data during code generation, too. This data

is considered as navigation help only, since it cannot be automatically verified.

4.6 Verification Processes

Page 57

4.6 Verification Processes

Contribution 3: The abstract DO-178C verification objectives have been concretized in
specific tasks adapted for the modular development life cycle. The unique separation of
tasks into module- and integration-level tasks leverages full modular development. Integra-
tion-level tasks focus on verification of the interfaces and overall completeness. Module-
level tasks allow early verification and detection of design flaws. This, and the low complexity
of the design on this level, leverage significant time and cost savings.

The Verification Process is integral and goes along with the respective Development Process.

As already introduced in section 2.3, DO-178C distinguishes between review and analysis,

and testing.

All review and analysis tasks are executed after the respective part of the Development Pro-

cess. The provided breakdown is unique, since the tasks are particularly defined for the mod-

ular MBSwD. They are allocated to the respective modular processes. Everything that can be

done on module-level, is done on module-level. Sections 4.6.1 and 4.6.2 address review and

analysis.

For testing, a tailored simulation and testing strategy has been developed. It enhances tradi-

tional testing, which is normally performed after integration, with new concepts leveraged by

MBSwD. Traditionally, software testing is performed after full integration. With the new tech-

niques, parts of the process can be executed earlier and faster, which leads to shorter design

cycles. The strategy is outlined in section 4.6.3. The tasks performed as part of the MBSwD

process are elaborated in detail. Testing of the Executable Object Code is not explicitly ad-

dressed in the scope of this thesis.

4 Modular development process (part 1)

Page 58

4.6.1 Review and analysis of Design Process

The objectives for review and analysis of outputs of the Design Process (DM and D2C) are listed

in DO-331 Table MB.A-4 and concretized in the tasks provided in Table 7.

Proc Task ID - Name Inputs
Outputs (Soft-
ware Verifica-
tion Results)

Mapped DO-331 Objectives
of Table MB.A

Sec-
tion

DM SwVP-DP-MB 1 –

Static model
analysis

Design Model
(of software
module)

Report and
Justification

4-4: Low-level requirements
are verifiable
4-5: Low-level requirements
conform to standards
4-11: Software architecture
are verifiable
4-12: Software architecture
conforms to standards

8.2.1

DM

D2C

SwVP-DP-MB 2 –

Static module
analysis

Design Model
(of software
module and
dependent
modules)

Report and
Justification

4-5: Low-level requirements
conform to standards
4-12: Software architecture
conforms to standards

8.2.2

DM

D2C

SwVP-DP-MB 3 –

Model review

Design Model
(of software
module)

Checklist 4-3: Low-level requirements
are compatible with target
computer
4-5: Low-level requirements
conform to standards
4-10: Software architecture
is compatible with target
computer
4-12: Software architecture
conforms to standards

8.2.3

DM

D2C

SwVP-DP-MB 4 –

Traceability
review and
analysis

Design Model (of
software module)

Trace Data

HLRs

Checklist 4-1: Low-level requirements
comply with high-level
requirements
4-6: Low-level requirements
are traceable to high-level
requirements

8.2.4

DM SwVP-DP-MB 5 –

Design error
detection

Design Model (of
software module)

Report and
Justification

4-2: Low-level requirements
are accurate and consistent
4-4: Low-level requirements
are verifiable
4-7: Algorithms are accurate
4-9: Software architecture is
consistent
4-11: Software architecture
is verifiable

8.2.5

Notes: Objective 4-13 addresses partitioning integrity and is not referenced. Partitioning, which is a way to
isolate software components, has not been considered, since it is not an applied strategy in the MBSwD
process (cf. assumption AS 8).

Table 7: Tasks for review and analysis of Design Process

4.6 Verification Processes

Page 59

SwVP-DP-MB 1 uses Simulink Model Advisor (SL Model Advisor) 7 to verify the conformance

with the rules defined in the Software Model Standard by static analysis. SL Model Advisor is

an infrastructure, which is part of SL, to run static checks on a single SL model. SwVP-DP-MB

1 mainly focuses on the detailed design. In contrast, SwVP-DP-MB 2 performs module-wide

and inter-module analysis. For example, it checks model data used across SL models or veri-

fies if all requirements have been implemented.

Design and modeling rules, which cannot be verified are subject to manual model review

(SwVP-DP-MB 3). Apart from that, SwVP-DP-MB 4 separately addresses the review of man-

ually established traceability between the Design Model and LLRs. This also covers derived

LLRs.

SwVP-DP-MB 5 proves the absence of certain design errors in the Design Model and interface

compliance. The task leverages formal methods, for which DO-333 applies, and relies on Sim-

ulink Design Verifier 8. The tool is a product of MathWorks for design error detection, dead logic

detection, property proving, and test cases generation based on SL and SF models.

7 Product of The MathWorks Inc., https://de.mathworks.com/help/simulink/examples/model-advisor.html

 [Accessed on: Jan. 04 2020] Release 2017b

8 Product of The MathWorks Inc., https://de.mathworks.com/products/sldesignverifier.html

 [Accessed on: Jan. 04 2020], Release 2017b

https://de.mathworks.com/help/simulink/examples/model-advisor.html
https://de.mathworks.com/products/sldesignverifier.html

4 Modular development process (part 1)

Page 60

4.6.2 Review and analysis of Coding Process

This section references the coding part of DO-331 Table MB.A-5 (CM and CC). The respective

review and analysis tasks are listed in Table 8.

Proc Task ID - Name Inputs
Outputs (Soft-

ware Verification
Results)

Mapped DO-331 Objectives
of Table MB.A

Sec-
tion

CM SwVP-CP-MB 1 –

Automatic code
review

Design Model (of
software module)

Source Code (of
software module)

Report 5-1: Source Code complies
with low-level require-
ments

5-2: Source Code complies
with software architec-
ture

5-5: Source Code is tracea-
ble to low-level require-
ments

5-6: Source Code is accu-
rate and consistent

8.2.10

CM
CC

SwVP-CP-MB 2 –

Static code
analysis for
standard
compliance

Source Code (of
software module)

Report and Justifi-
cation

5-4: Source Code conforms
to standards.

8.2.11

CM
CC

SwVP-CP-MB 3 –

Static code
analysis for error
detection

Source Code (of
software module)

Report and Justifi-
cation

5-4: Source Code conforms
to standards.

5-6: Source Code is accu-
rate and consistent.

8.2.12

CM SwVP-CP-MB 4 –

Code review
Source Code (of
software module)

Checklist 5-3: Source Code is verifia-
ble.

5-4: Source Code conforms
to standards.

5-6: Source Code is accu-
rate and consistent

8.2.13

CM SwVP-CP-MB 5 –

Code proving
Source Code (of
software module)

Report and Justifi-
cation

5-3: Source Code is verifia-
ble.

5-6: Source Code is accu-
rate and consistent

8.2.14

Notes:

The process for Parameter Data Items is described in 5.4.4.6. Parameter Data Item Files are implemented and
verified in the main DO-178C process, thus the objectives are not further considered (objectives MB.A-5:8,9).
Objective MB.A-5:6, “Source Code is accurate and consistent”, requires additional tasks in the DO-178C main
process, like worst-case execution timing analysis or memory analysis (cf. DO-178C 6.3.4f). The integration part
of DO-331 Table MB.A-5, i.e., the compilation, linking, and loading of the software, which is expressed by
objective MB.A-7, is not part of the MBSwD process.

Table 8: Tasks for review and analysis of Code Process

4.6 Verification Processes

Page 61

Most important part is the backward verification of the code generation process with Simulink

Code Inspector (SLCI)9 in task SwVP-CP-MB 1, since Embedded Coder is not shipped with

documentation for tool qualification under DO-330. Qualification of development tools (criteria

1 tool, cf. section 2.6), like code generators or compilers, is in most cases neither economically

nor technically realizable [88].

SLCI verifies the code generation process of Embedded Coder afterwards [89]. It releases

developers from extensive manual reviews of compliance and traceability between code and

model, but also supports verification of accurateness and consistency of algorithms on the

code level depending on the workflow [90]. In 2015, MathWorks announced the successful

completion of a Stage of Involvement 4 (SOI#4) audit with Transport Canada (government

department of Canada) for DO-330 TQL 4 [91]. SOI#4 is the final certification software review

by the authority (cf. EASA CM SWAEH - 002 [43]).

SwVP-CP-MB 2 and SwVP-CP-MB 3 both use Polyspace Bug Finder10 for code analysis.

SwVP-CP-MB 2 searches violations against the Software Code Standard, whereas SwVP-CP-

MB 3 focuses on the detection of implementation and runtime errors, like a division by zero.

Code review (SwVP-CP-MB 4) is a manual review task for rules in the Software Code Stand-

ard, which are not covered by the preceding analyses.

SwVP-CP-MB 5 is formal analysis performed with Polyspace Code Prover11 to prove the ab-

sence of certain runtime errors and interface compliance. Code Prover has less objectives

than Bug Finder, but applies formal methods to prove the absence of errors. This task is subject

to DO-333.

4.6.3 Model simulation and testing

Contribution 4: An economic modular simulation and testing strategy has been specified.
The testing strategy spans simulation, software-in-the-loop testing, reuse of test cases,
model coverage, structural coverage, and data and control coupling. It improves reusability
of test cases and decreases rework by front-loading and modularizing verification activities.
Rework cycles are also significantly shortened, which results in cost reduction and faster
development.

This section derives the complete simulation and testing strategy step by step. Testing is al-

ready known by DO-178C whereas model simulation has been introduced as new verification

technique in DO-331 (cf. section 2.4). Testing executes test cases and test procedures, spec-

ified by DO-178C as in Figure 23, on the Executable Object Code.

9 Product of The MathWorks Inc., https://de.mathworks.com/products/simulink-code-inspector.html

 [Accessed on: Jan. 04 2020], Release 2017b

10 Product of The MathWorks Inc., https://de.mathworks.com/products/polyspace-bug-finder.html

 [Accessed on: Jan. 04 2020], R2017b

11 Product of The MathWorks Inc., https://de.mathworks.com/products/polyspace-code-prover.html

 [Accessed on: Jan. 04 2020], R2017b

https://de.mathworks.com/products/simulink-code-inspector.html
https://de.mathworks.com/products/polyspace-bug-finder.html
https://de.mathworks.com/products/polyspace-code-prover.html

4 Modular development process (part 1)

Page 62

Figure 23: Test cases and test procedures (DO-178C 11.13)

Test procedures specify, how to execute test cases and how to retrieve, archive and evaluate

the results in a manner, that a person, who did not write the test cases, can reproduce the

results [45, p. 208].

 Model simulation

Model simulation is the accepted technique by DO-331 to execute simulation cases with sim-

ulation procedures on Specification or Design Models in order to fulfill objectives of DO-

178C/DO-331 (DO-331 MB.6.8). Concerning their definition, simulation and test cases/proce-

dures are closely related (cf. DO-331 MB.11.13).

Figure 8 outlined objectives, which can be partially or fully satisfied by model simulation. In this

MBSwD process, model simulation shall be used to show that the Design Model:

 complies to high-level requirements (DO-331 MB.A-4:1,8).

 is accurate, consistent, and verifiable (DO-331 MB.A-4:2,4,7,9,11).

In consequence, simulation cases and procedures for model simulation are derived from HLRs

and executed against on the Design Model.

Creating simulation cases and procedures causes additional effort and makes only sense, if

simulation cases are reused to test the Execrutable Object Code later on in the process, i.e.,

if simulation cases become test cases. Otherwise, duplicate work would be necessary to define

separate simulation and test cases. The perspective of reuse is a key advantage of model-

based design, since verification in an early design stage becomes possible without additional

effort. Anyway, reusability imposes additional requirements on the simulation cases them-

selves, because all test case requirements of DO-178C 6.4 apply as well (cf. DO-331 MB.6.8).

The requirements are addressed with the respective testing standards.

The chosen tool to author and run simulation and test cases is Simulink Test (SL Test)12. SL

Test is an infrastructure to implement simulation cases and execute them on the Design Model

or Executable Object Code. Appendix G provides some guidance on how to author test cases

in Simulink Test.

Simulation and test procedures mostly differ due to a different testing environment and tools.

The approach here is to keep them in separate high-level documents (cf. Appendix G).

12 Product of The MathWorks Inc., https://de.mathworks.com/products/simulink-test.html,

 s[Accessed on: Jan. 04 2020], Release 2017b

https://de.mathworks.com/products/simulink-test.html

4.6 Verification Processes

Page 63

 Review and analysis of model simulation / model coverage

According to DO-331 MB.6.8.3.2, simulation cases, procedures, and results have to be re-

viewed and/or analyzed. For the chosen use case of model simulation, objectives MB14-16 of

Table MB.A-4 apply:

 Table MB.A-4:MB14 – Simulation cases are correct

o + Table MB.A-7:3 – Test coverage of HLRs is achieved (cf. MB.6.8.3.2)

o + Table MB.A-7:4 – Test coverage of LLRs is achieved (cf. MB.6.8.3.2)

 Table MB.A-4:MB15 – Simulation procedures are correct

 Table MB.A-4:MB16 – Simulation results are correct and discrepancies explained

Objectives MB.A-7:3 and 4 are named in MB.6.8.3.2 and refer to requirements-based cover-

age analysis (verifying that all requirements have test cases, in contrast to structural coverage)

as defined in DO-178C 6.4.4.1.

MB.A-7:MB14-16 are mainly verified by review. Also requirements-based coverage of HLRs is

verified with review tasks according to DO-178C 6.4.4.1. For requirements-based coverage of

LLRs, Table MB.A-7 alternatively lists model coverage as means of compliance. According to

DO-331 MB.6.7, “model coverage analysis determines which requirements expressed by the

model were not exercised by verification based on the requirements from which the model was

developed.” Model coverage data is collected during execution of simulation cases, i.e., it is a

measure to evaluate, how extensive simulation cases derived from HLRs exercise the Design

Model and thus the LLRs in this case.

However, the impact of model coverage goes further. Under the assumption that all simulation

cases are reused as test cases for the Executable Object Code, model coverage implicitly

shows the compliance to DO-331 Table MB.A-7:4 for test cases as well.

And further, the note in DO-178C 6.4 (Figure 24) holds out that low-level testing can be omitted,

if requirements-based and structural coverage can already be satisfied without low-level tests.

Figure 24: Duplication of low-level testing (DO-178C 6.4)

4 Modular development process (part 1)

Page 64

If full model coverage is obtained and full structural code coverage is achieved with the simu-

lation cases created from HLRs (and derived requirements), no additional low-level tests are

required. Preservation of coverage from model to code (structural) is not guaranteed by Em-

bedded Coder code generation, but a high degree of preservation can be achieved by model-

ing rules (cf. section 8.2.9). The chosen tool to record model coverage is Simulink Coverage13.

 Testing

For model simulation, an executable representation of the Design Model could be used. Test-

ing is performed on the product Executable Object Code. Test procedures and test cases are

typically derived from HLRs and (if needed) from LLRs, but mainly simulation cases are reused

as test cases.

 Test coverage

As already mentioned, testing is subject to test coverage analysis. On the one hand, this is

requirements-based test coverage and on the other hand structural coverage. Since simulation

cases are reused, requirements-based test coverage is already satisfied (if all simulation cases

are reused as test cases, sufficient model coverage is achieved and respective reviews have

been successfully performed).

Structural coverage is a measure for how good the code has been tested. Structural coverage

is required by the following objectives (for DAL B):

 Table MB.A-7:6 – Test coverage of software structure (decision coverage) is

achieved

 Table MB.A-7:7 – Test coverage of software structure (statement coverage) is

achieved

 Table MB.A-7:8 – Test coverage of software structure (data coupling and control cou-

pling) is achieved

The following discussion mainly refers to the objectives MB.A-7:6 and MB.A-7:7. Coupling

coverage is discussed in section 4.6.4.

Structural coverage is recorded during testing and thus on Executable Object Code. However

DO-178C leaves it open, whether coverage is mapped to Source Code, object code, or Exe-

cutable Object Code, but the developer must take additional precautions for object code or

Executable Object Code coverage (cf. DO-248C FAQ #42 or [92]). In consequence, coverage

analysis is performed on Source Code in the presented MBSwD process.

13 Product of The MathWorks Inc., https://de.mathworks.com/products/simulink-coverage.html [Accessed on: Jan.

04 2020], Release 2017b

https://de.mathworks.com/products/simulink-coverage.html

4.6 Verification Processes

Page 65

Typically, coverage is recorded on the target hardware. Bordin et al. [93] summarize that two

categories of workflows for structural coverage recording in safety-critical processes exist.

Some tools instrument the Source Code and measure coverage on the instrumented code. In

this case, it must be shown that the instrumentation did not change the application behavior

and the coverage is representative for the final code. This is typically achieved by additionally

running the tests on the non-instrumented code and comparing the outputs of both runs for

equivalence (equivalence testing). Other approaches use hardware probes and are non-intru-

sive [93]. The target environment (PPC) does not provide this capability (cf. assumption AS 2),

so instrumented code with equivalence testing is necessary.

To record Source Code coverage, Simulink Coverage has been chosen. Simulink Coverage

supports statement and decision coverage in the sense of DO-178C, although named differ-

ently. With SL Coverage, an uncommon workflow is applied promising faster iterations. In a

first step, software-in-the-loop (SIL) testing is performed. Source Code is instrumented and

compiled as executable for the host computer (cf. section 4.6.3.5). Test case execution and

coverage collection is done on the host. In a second step, the non-instrumented Source Code

is cross-compiled and loaded onto the target. The same test cases are executed on the target,

again. This is called Processor-in-the-loop (PIL) testing (cf. section 4.6.3.5). Finally, the last

step compares SIL and PIL outputs to confirm functional equivalence (equivalence testing).

The question, how valid this approach is and whether it conforms with DO-178C, is discussed

in the following. The main difference compared to traditional approaches is that two different

compilers are used, one for host compilation and another one for cross-compilation, and that

the test environments differs. Structural coverage in SIL is collected on the instrumented Exe-

cutable Object Code executed on the host computer, but not on the final target.

Concerning test environment, DO-178C 6.4.1 relaxes the requirements. It would even be pos-

sible to just run selected tests only on a “host computer simulator”, which is not even done

here, since all tests are finally executed on the target environment. Just the structural coverage

is collected on the host computer.

Structural coverage is not a measure to assess the object code. Structural coverage on object

code is even not desired and requires further verification activities according to DO-248

FAQ#42. Only under DAL A, a traceability analysis is required to reveal object code that cannot

be traced to Source Code (objective DO-178C A-7:9). DO-248C FAQ#43 states the purpose

of structural coverage analysis as in Figure 25. (1) to (3) are measures for test cases and code

structure, not for object code structure.

4 Modular development process (part 1)

Page 66

Figure 25: Purpose of structural coverage (according to DO-248C FAQ#43)

Thus it can be argued, that recording SIL coverage on the host computer fulfills the purpose

of structural coverage. Anyway, it’s worth to have a closer look at differences in the compilation

process. The target compiler might:

 add a function, which the host compiler does not. However, this may not even be de-

tected in a traditional approach, if coverage is mapped to Source Code and no object

code traceability analysis is performed.

 remove or modify a function, which the host compiler does not. This would be detected

in the traditional coverage approach, but not with SIL coverage. However, since the

function has SIL coverage and equivalence testing is done, it is ensured that the code

still behaves the same. For software below DAL A, there is neither a requirement for

traceability nor structural equivalence of Source Code and object code, as long as it

passes tests. Also note that in traditional approaches, instrumented code is also differ-

ent Executable Object Code, for which the absence of such deviations cannot be

proved beyond equivalence testing either.

Using SIL coverage the way described here, is a new approach. It should be discussed with

authorities first. Even if SIL coverage cannot be used for certification evidence, since authori-

ties insist on coverage measurements on the cross-compiled code in the target environment,

it provides a valuable and fast way to assess the quality of code and tests in an early, prospec-

tive task. Coverage assessment can easily be coupled with PIL testing, but may require other

coverage recording software. In this thesis, SIL coverage is assumed as valid certification ev-

idence.

Finally, it must be noted that tool qualification is performed with the SIL host compiler [94]. The

compiler can thus be considered as part of the structural coverage analysis tool chain.

 Test frameworks

In a perfect world, all test cases are executed in the target environment with a fully integrated

software image, i.e., a software image, which has all software components integrated and ex-

actly matches the final software product. This approach is also followed by Verocel [95], a

leading company providing tools and services for system and software development for safety-

critical platforms.

4.6 Verification Processes

Page 67

Disadvantage of this approach is that intermediate variables must be exposed and identifiable

throughout the full software image for controllability and observability to allow testing of parts

of the software (specially to obtain full structural coverage). Making intermediate variables writ-

able and identifiable in auto-generated code is challenging and must be considered in the

Design Model.

Also DO-178C recognizes that “more precise control and monitoring of the test inputs and code

execution than generally possible in a fully integrated environment” may be needed and thus

“testing may need to be performed on a small software component that is functionally isolated

from other software components (DO-178C 6.4.1)”.

In the defined testing strategy of the process at hand, three frameworks for testing are used:

 SIL testing

 PIL testing

 Full-image testing

For SIL, the SIL simulation framework included in Embedded Coder is used [96, pp. 64-47ff.].

During the build, it instruments a copy of the Source Code for coverage collection, couples it

with interface code to enable communication with SL, and compiles it with the selected host

compiler.

PIL testing shall allow testing without a full-image of the software on the target. PIL testing

bases on a framework developed at TUM-FSD. Main advantage compared to other solutions

is its independence from interface code. Key of the PIL framework is the communication with

SL through a standardized JTAG interface14. The setup is schematized in Figure 26. Every

execution step, the SL model transmits data to the target by calling the TRACE32 Remote API,

which writes data via the JTAG debug interface. After writing, the target performs the calcula-

tion step. In the meanwhile, SL performs a busy wait, until the breaking point at the start of the

step is reached again. Hornauer implemented this approach in cooperation with Lauterbach

[52, 97]. Saulo O. D. Luiz, Markus Hochstrasser, and Kajetan Nürnberger introduced further

improvements.

14 JTAG (Joint Test Action Group) interface as synonym for IEEE-Standard 1149.1.

4 Modular development process (part 1)

Page 68

Figure 26: PIL setup for software integration and low-level testing using Trace32 (from [97])

Full-image testing uses the fully integrated software in the target environment for testing, i.e.,

not just the software application developed as part of the MBSwD process, but also the appli-

cation framework. Not all PIL tests can be executed in the full image, but full-image testing is

still the best approach and testing of subsets should just be a compromise. Here, full-image

capable test cases are labeled accordingly and executed during hardware/software integration

again. Finally, it must be verified that a sufficient number of full-image test cases exists.

 Tasks

For simulation procedure and case development, the objectives of DO-331 concerning both

simulation and testing apply. The derived tasks are shown in Table 9.

In the first task (SwVP-DP-MB 6), simulation procedures and cases are derived from HLRs

according to a test standard document (cf. Appendix G). They can be used for testing later on.

Important part is establishing bidirectional traceability between HLRs, simulation procedures,

and simulation cases. Under some circumstances, simulation cases may be derived from

LLRs. However, this shall be avoided, since the more detailed the requirement is, the closer

the testing is to “white-box” testing.

In SwVP-DP-MB 7, simulation cases and procedures are reviewed against the applied test

standard. Review of simulation cases includes requirements-based test coverage assessment

concerning HLRs according to DO-331 MB.6.4.4.a. Simulation and test procedures typically

deviate from each other.

4.6 Verification Processes

Page 69

Proc Task ID – Name Inputs
Outputs (Soft-
ware Verifica-
tion Results)

Mapped DO-331 Objec-
tives of Table MB.A

Sec-
tion

DM SwVP-DP-MB 6 –

Simulation / test
procedure and
case development

Design (of soft-
ware module and
dependent mod-
ules)

Simulation Proce-
dures and Cases

Trace Data

N/A 8.2.6

DM SwVP-DP-MB 7 –

Simulation / test
case and
procedure review

Simulation Proce-
dures and Cases

Trace Data

Checklist 4-14: Simulation Cases are
correct.

4-15: Simulation Proce-
dures are correct.

7-3: Test coverage of high-
level requirements is
achieved.*

8.2.7

* Under the assumption that all simulation cases are used as test cases.

Table 9: Tasks for simulation / test procedure and case development

The developed and verified simulation/test cases are executed for simulation and SIL testing

separately. The results are also verified separately. Thus the derived tasks have been split into

two tables, Table 10 and Table 11.

In Table 10, SwVP-DP-MB 8 describes the execution of the simulation cases and the review

of the simulation results. SwVP-DP-MB 9 assesses the correctness of the simulation cases

using model coverage, which is a by-product of the simulation execution. In D2C, the task ac-

counts for coupling coverage.

4 Modular development process (part 1)

Page 70

Proc Task ID - Name Inputs
Outputs (Soft-
ware Verifica-
tion Results)

Mapped DO-331 Objec-
tives of Table MB.A

Sec-
tion

DM SwVP-DP-MB 8 –

Simulation testing
& result review

Simulation Proce-
dures and Cases

Simulation Result

Report

4-16: Simulation Results
are correct and dis-
crepancies are ex-
plained.

4-1: Low-level require-

ments comply with
high-level require-
ments

4-2: Low-level require-
ments are accurate
and consistent

4-4: Low-level require-
ments are verifiable.

4-7: Algorithms are accu-
rate

4-8: Software architecture
is compatible with
high-level require-
ments

4-9: Software architecture
is consistent

4-11: Software architecture
is verifiable.

8.2.8

D2C,
DM

SwVP-DP-MB 9 –

Model coverage
assessment

Simulation Result Report 4-14: Simulation Cases are
correct.

7-4: Test coverage of low-

level requirements is
achieved.*

8.2.9

* Under the assumption that the simulation procedures are equivalent to corresponding test procedures to a
significant extent and discrepancies are separately reviewed.

Table 10: Tasks for simulation testing

The simulation cases are executed as test cases in SIL. This is mainly a different invocation

of the simulation execution. Main purpose is structural coverage assessment in SwVP-CP-MB

7. The outputs are reviewed in SwVP-CP-MB 6, but they are not considered as the final test

results (therefore, PIL is used later on). To highlight this, objective 4-16, which addresses sim-

ulation results, has been listed instead of 7-2, which addresses “test results”. SIL testing con-

tributes to show that the Source Code is testable, thus objective 5-3 is satisfied to some degree

as well.

4.6 Verification Processes

Page 71

Proc Task ID - Name Inputs
Outputs (Soft-
ware Verifica-
tion Results)

Mapped DO-331 Objec-
tives of Table MB.A

Sec-
tion

CM SwVP-CP-MB 6 –

SIL testing & result
review

Simulation Proce-
dures and Cases

SIL Result

Report

4-16: Simulation Results
are correct and dis-
crepancies are ex-
plained.

5-3: Source Code is verifia-
ble

8.2.15

CC, CM SwVP-CP-MB 7 –

SIL structural
coverage
assessment

Simulation Result Report 7-6: Test coverage of soft-
ware structure (deci-
sion coverage) is
achieved.

7-7: Test coverage of soft-
ware structure (state-
ment coverage) is
achieved.

8.2.16

Objective 7-5 describes modified condition/decision structural coverage and is omitted here, since it is only re-
quired for DAL A software, not DAL B (cf. assumption AS 8).

Table 11: Tasks for SIL testing

4.6.4 Data coupling and control coupling analysis

In DO-178C, data coupling and control coupling (DC/CC) is defined as shown in Figure 27.

Figure 27: DO-178C glossary definition of data and Control Coupling (DO-178C p.110f)

In other words, data coupling can be simply described “as the transaction of data values from

a point in the source code where the value is set to another point where the value is referenced

or used” and control coupling as “call sequence of the software”. [98, p. 237]

A technical report commissioned by the FAA outlines four types of coupling dependencies,

which must be documented in requirements and be verified [99, p. 5]: Sequencing, Timing,

Control dependencies (call/return of functions), and data dependencies (consistency and com-

pleteness of data passed, read/write order,…).

The idea of DO-178C is to evaluate the coupling between software components. DO-248C

FAQ #67 states that DC/CC analysis is a combination of

 Review and analysis of Software Architecture

 Review and analysis of Source Code

 Requirements-based testing with structural coverage analysis (verification of the inte-

gration)

4 Modular development process (part 1)

Page 72

Only the third point is an explicit DO-178C objective. Test coverage of the software structure

requires assessing data and control coupling according to DO-178C Table A-7: 8 and DO-

178C 6.4.4.

Structural coverage of DC/CC

CAST-19 provides some clarifications about the method [100]. In general, the intention of

structural coverage analysis is “to provide a measure of the completeness of requirement-

based testing [100, p. 2]”. According to CAST-19, measures like statement or decision cover-

age can be taken in isolation on module-level in order to reduce the complexity. “The intent of

the structural coverage analyses of data coupling and control coupling is to provide a meas-

urement and assurance of the correctness of these modules/components’ interactions and

dependencies. [100, p. 2]”

CAST-19 further states that this activity “should be conducted on R-BT [requirements-based

testing] of the integrated components (that is, on the final software program build) [100, p. 2]”.

Hence, structural coverage of DC/CC is shown as part of the main DO-178C process and not

by the SIL coverage collection with SL Coverage as previously described.

However, due to the strong modularization effort, it is reasonable to provide at least some

measures to confirm that DC/CC is sufficiently tested during the MBSwD process, although

the results are not considered for DO-178C Table A-8, since not measured on the final soft-

ware.

For control coupling coverage, function and function call coverage provided by SL Coverage

[101, pp. 4-5f] is assessed for all test cases executed from the component interface (cf. SwVP-

CP-MB 7). This, for example, aligns with the “procedure coverage” proposed by LDRA [102].

In addition, an equivalent metric has been chosen for simulation testing (cf. SwVP-DP-MB 9).

Data coupling on code- and model-level can currently not be assessed with SL Coverage. A

separate analysis tool is required. Data coupling coverage may log read and write of function

arguments, local, and global variables (cf. “Dynamic Data Flow Coverage” or “Set-Use Cover-

age” in [102]).

Review and analysis of DC/CC

Review and analysis of DC/CC is not a specific task, but covered by the combination other

tasks throughout the process. Such an approach aligns with [98] and [45, 223ff]. Appendix A

lists DC/CC review and analysis contributions during the MBSwD process. The given mapping

is specific for the process at hand and goes beyond the content of existing, published pro-

cesses.

The application is, by assumption AS 8, a typical controller, with a single, completely executed

step function as interface. All code runs at a single rate. To ensure that possible initialization

functions are called first is part of the software application framework. In addition, further review

and analysis may be necessary during integration (e.g., review or analysis of linker tables).

4.6 Verification Processes

Page 73

4.6.5 Complete testing approach

The testing strategy is a bottom-up approach from the lowest (unit) to the highest architectural

entity (full software image) and summarized in Table 12.

Testing Phase Process Execution

Target

Test

Selection

Exit Criteria Objective Task

Module testing

(requirements-

based)

DM Simulation on

host computer

All tests de-

veloped in

module

All tests passed.

Requirement and

model coverage

goal achieved for

each unit

Compliance of SW De-

sign to HLRs/derived

LLRs,

requirements-based

coverage for LLRs

achieved.

SwVP-DP-MB 6

SwVP-DP-MB 7

SwVP-DP-MB 8

SwVP-DP-MB 9

CM SIL on host

computer

All tests passed.

Code coverage goal

achieved for each

unit

Compliance of Source

code to SW Design,

shown, structural cover-

age

SwVP-CP-MB 6

SwVP-CP-MB 7

Equivalence

testing (Simu-

lation - SIL)

After testing

in CM

Host com-

puter

n/a Recorded simula-

tion and SIL module

testing results are

equivalent

Not used as certification

evidence (prospective

only).

SwVP-DP-MB 8

Component

software/soft-

ware integra-

tion testing

DC Simulation on

host computer

Tests test-

ing the

component

interface

(may over-

lap with to

module

testing)

Model coupling cov-

erage goal achieved

Not used as certification

evidence (prospective

only).

SwVP-DP-MB 9

CC SIL on host

computer

Code coupling cov-

erage goal achieved

Not used as certification

evidence (prospective

only).

SwVP-CP-MB 7

Component

hardware/soft-

ware integra-

tion testing

I (not part of

MBSwD)

PIL on target All test

cases

All tests passed Compliance of Executa-

ble Object Code to

HLRs/LLRs

Out of scope

I (not part of

MBSwD)

Hard-

ware/software

testing on full-

image loaded

in target

Full-image

test cases

All tests passed and

code coupling goal

achieved.

Compliance of full-im-

age Executable Object

Code to HLRs/LLRs,

DC/CC coupling.

Out of scope

Equivalence

testing (SIL -

PIL testing)

After testing

in I (not part

of MBSwD)

Compares

SIL and PIL

results for

equivalence

n/a Recorded SIL and

PIL module testing

results are equiva-

lent

SIL code coverage valid

for Executable Object

Code

Out of scope

Table 12: Bottom-up testing strategy

In phase DM, simulation cases are developed from HLRs and derived LLRs. In principle, sim-

ulation cases are divided into two groups: Those testing a module or unit interface, and those

testing the component interface. Latter are expected to support full-image testing in any

case. Simulation cases based on module/unit interfaces may or may not support full-image

testing (Figure 28).

4 Modular development process (part 1)

Page 74

Figure 28: Types of test cases relevant for testing strategy (qualitative)

Module testing (1) is performed for every module. All test cases for a module are executed

and the simulation output is recorded. By the end of module testing, all tests must have

passed and model coverage must be complete for each unit.

After code generation (CM), SIL testing (1) is executed with the same simulation cases and

the output is recorded. At the end of SIL testing, all tests must have passed and code cover-

age must be resolved.

Equivalence testing between simulation and SIL (2) is optionally performed after that. It is

does not contribute to certification evidence.

As part of the component module process, additional coverage criteria related to coupling are

assessed both for the model and the code. The test cases have already been developed dur-

ing module testing in the module process of the component module. They are just executed

again with the new coverage criteria. At the end of DC or CC, respectively, coupling coverage

must be satisfied. This phase is called component software/software integration testing (3).

As mentioned earlier, this coupling coverage is not considered as part of certification evi-

dence, since it is not collected in the target environment.

After that, the MBSwD workflow is left. The whole application code and all simulation cases

are handed over to integration testing of the main DO-178C process. All simulation cases are

executed as test cases on the Executable Object Code compiled for and loaded onto the tar-

get during PIL testing (5). For PIL testing mode, no full image of the software is used, which

allows executing tests that do not support a full-image testing, too. PIL testing results are rec-

orded and compared to SIL results in a subsequent step (6). This verifies that the SIL code

coverage is valid for the Executable Object Code as well.

Those test cases supporting a full-image testing are additionally executed with the full image

in the hardware/software integration testing stage afterwards.

For hardware/software integration testing, overlap with other processes may exist. For exam-

ple, according to DO-254 6.2, “verification of hardware requirements during these processes

[software/hardware integration and systems integration verification processes; note from the

author] are a valid method of hardware verification”. Test cases basing on hardware and sys-

tem requirements may be added.

Test cases on
component interface

Test cases on
module/unit interface

Full-image
support

No full-image
support

5.1 Objective

Page 75

5 Modeling framework for safety-critical
MBSwD in SL

5.1 Objective

This section addresses the specified and implemented modelling framework for the modular

process at hand. The modeling framework concretizes, how the developer shall implement the

Design Model in the Design Process (cf. 4.5.2) by clear design, modeling, and coding rules.

The rules are an essential part of the Software Design, Model, and Code Standard documents.

5.2 State-of-the-art

The implementation of models is not straightforward, since they are the crucial point of

MBSwD. Models used for code generation (here Design Models) are the origin of various au-

tomatically generated artifacts. Their implementation has direct impact on simulation as well

as compatibility with development, verification, and testing tools. The implementation of the

Design Model also directly drives the quality of the generated C code. A violation of a coding

rule can only be reasonably resolved by changing the Design Model.

DO-178C/DO-331 requires to describe the design and modeling tool/language with rules in a

Software Design Standard (DO-178C 11.7) and a Software Model Standard (MB.11.23). The

requirements for the generated code have to be documented in the Software Code Standard

(DO-178C 11.8). All standards are intended to support developers in implementing Design

Models or Source Code with a constant level of high quality. The expected content of the

standards is roughly outlined by Table 13, Table 14, and Table 15 as described by DO-178C

and DO-331.

Design Standard content according to DO-178C 11.7 (shortened)

a Design description method(s) to be used.

b Naming Conventions to be used

c Conditions imposed on permitted design methods

d Constraints on the use of design tools

e Constraints on design

f Complexity restrictions

Table 13: Design Standard contents according to DO-178C 11.7

5 Modeling framework for safety-critical MBSwD in SL

Page 76

Model Standard Content according to DO-331 MB 11.23 (shortened)

a Method and tools used

b Modeling languages used

c Style guidelines and complexity restrictions

d Constraints on the use of the modeling tools

e Method to be used to identify and delimit requirements contained in model

f Method to identify and delimit derived requirements and the method to
provide derived requirements to the system processes

g Identification of model elements that do not contribute to the representation
of the software requirement or architecture

h Rationale for the suitability of the technique for the type of information
expressed by a Design Model

Table 14: Model Standard contents according to DO-331 MB.11.23

Code Standard content according to DO-178C 11.8 (shortened)

a Programming languages to be used and/or defined subset(s)

b Source Code presentation standards

c Naming conventions

d Conditions and conventions imposed on permitted coding conventions

e Constraints on the use of coding tools

Table 15: Code Standard contents according to DO-178C 11.8

Whereas the role of the standards is obvious in traditional software development, the separa-

tion of their content is blurred in MBSwD. For example, 11.7d requests constraints on design

tools and MB.11.23d constraints on modeling tools, which are basically the same. Further-

more, a strong dependency between Model and Code Standard exists. The Code Standard

imposes restrictions on the code implementation. In traditional DO-178C, Software Code

Standards contain an extensive set of rules and are one of the most important documents for

developers. In MBSwD with auto-generated code, the appearance of the generated code is

fully controlled by the Design Model (and thus the Software Model Standard) and code gener-

ator settings.

5.2 State-of-the-art

Page 77

Since SL/SF for MBSwD is broadly used, various companies have developed an own, rich set

of modeling rules. For development of high-integrity software in connection with Embedded

Coder, MathWorks provides so-called guidelines for High-Integrity System Modeling [103] and

the guidelines for code generation [104]. Other code generators, like Target Link, also come

along with separate sets of guidelines15. Also MISRA standardized modeling in the context of

auto-code generation in general [105], and specifically for SL/SF [106, 107]. Different advisory

boards from the automotive domain have been established world-wide over the last years and

created guidelines (cf. MAAB [108] or JMAAB [109] basing on Orion GN&C MATLAB/Simulink

Standards [110]) trying to satisfy simulation, code-generation, and verification requirements.

Some companies also published their modeling guidelines, like the Ford Motor Company [111],

or General Electric [112]. Other guidelines are a subset for a special purpose, e.g., to safe-

guard the translation process to SCADE [113, 114] or support the formalization of the SF lan-

guage [115].

However, just selecting or combining sets is not the solution, since many sets

 base on the same origin, but have project or company specific extensions. They have

contradictory or duplicate rules.

 focus on a specific use case. Some sets primarily cast an eye on simulation, others

respect code generation with a specific code generator.

 are outdated and base on old SL/SF releases, except the guidelines shipped by Math-

Works and JMAAB, which are under active development.

In addition, most of the sets are too general and specific at the same time. For example, the

MathWorks and JMAAB guidelines address specific settings for safety, code generation, or

MISRA compatibility reasons. However, they avoid imposing any restriction on whole features

in order to preserve a broad applicability. The guidelines do not address limitations imposed

by custom processes, like compatibility with defined development and verification tools or the

target environment in the downstream workflow. Developers applying these guidelines get to

a safe design, but often need a lot of rework until they have iterated to a compatible Design

Model for the actual development process.

Furthermore, all known guideline sets just superficially touch topics like software design, con-

ventions, or modularization. Even if different developers fully applied these sets, they would

very likely implement totally different models, which would require significant rework during

integration. Also proving the consistency and completeness of verification evidence would be

difficult.

To sum up, independent, specific sets of modeling rules exist, but with significant gaps for a

consistent design and coding concept embedded in an overall DO-178C process. In the work

of this thesis, existing guidelines have been extended, and new guidelines have been added,

restricting SL/SF modeling in symphony with the whole process.

15 https://www.dspace.com/de/gmb/home/support/kb/supkbspecial/kbtl/tlmodguide/tlapp_modelguide.cfm

 [Accessed on: Jan. 6th 2020]

https://www.dspace.com/de/gmb/home/support/kb/supkbspecial/kbtl/tlmodguide/tlapp_modelguide.cfm

5 Modeling framework for safety-critical MBSwD in SL

Page 78

5.3 Structure

Ultimate goal of the whole standard documents and thus the modeling framework is to provide

rules that help developers satisfying DO-178C/DO-331 objectives. These are

 objectives in Table MB.A-2 “Software Development Process” and referenced activities

in MB.5.2.2

 objectives in Table MB.A-4 “Verification of Outputs of Software Design Process” and

referenced review and analysis in MB.6.3.2 and MB.6.3.3.

The content is guided by the outline of the Software Design, the Code, and the Model Standard

(cf. Table 13, Table 14, Table 15).

The modeling framework consists of the following components:

 Design rules

 Coding rules

 Module design rules

 Fundamental modeling rules

 Traceability rules

The rules are an essential part of the respective standard documents as depicted in Figure 29.

At first, design rules (DRs) are defined in section 5.4. They define concepts and requirements,

which the software design has to fulfill from a functional and process point-of-view. These ob-

jectives are independent of the chosen modeling language, but rely on requirements of DO-

178C/DO-331.

5.3 Structure

Page 79

Figure 29: Modeling framework overview

Similarly, the requirements for the code are formulated as coding rules (CRs) in accordance

with the design rules. They describe the language set and structure of the auto-generated code

and introduce the impact of the target environment. They are discussed in section 5.5.

The defined DRs and CRs are the basis for three types of rules in the Software Model Stand-

ard:

 Module design rules (MRs) introduce basic constraints on SL/SF by limiting the feature

set to a so-called safe modeling subset. Furthermore, they focus on transforming the

design concepts in the DRs into SL/SF, like architectural design, design range con-

tracting, encapsulation, deactivated, dead or unreachable functions.

 Fundamental modeling rules have been selected and slightly adapted from existing

guidelines like the MathWorks high-integrity guidelines [103]. These rules are signifi-

cantly more detailed than MRs and, in general, address specific model settings, but

they do not handle all the facets of module design rules.

 Traceability rules (TRs) have been established to describe, which trace links have to

be created and the applicable granularity as well as the handling of derived require-

ments in SL/SF.

DO-178C/DO-331 Objectives

and Requirements for Standards

Design Rules (DR) Coding Rules (CR)

Module Design Rules (MR)

Traceability Rules (TR)

M
o

d
e

lin
g

 E
n
v
ir
o

n
m

e
n
t

Fundamental

Modeling Rules

with tool

knowledge

Design
Standard

Code
Standard

Model
Standard

5 Modeling framework for safety-critical MBSwD in SL

Page 80

A good example to illustrate the difference between module design rules and fundamental

modeling is the use of signal ranges in SL models. Signal ranges in SL models define the

expected or admissible value range of the signal. Specifying value ranges only makes sense

if planned throughout the process and their meaning is clearly defined. Otherwise their use is

extremely risky due to misinterpretation. The overall concept is a concerted interplay between

run-time diagnostic settings, various verification methods on model and code level, and main-

tainability considerations. The respective high-integrity modeling guidelines (fundamental

rules), however, just specify that value ranges shall be entered in the model at root-level and

provide examples of tools, which can use them [103, pp. 2-34ff]. Any further overall concept is

missing. The respective MRs are more detailed in this case by exactly specifying, for which

architectural component and which model element values can be set in accordance with the

given verification process.

The thesis presents the assembled module design rules in section 5.6. The fundamental mod-

eling rules are just briefly discussed in section 5.7 for completeness. The whole topic of trace-

ability is covered separately in section 6.

All rules are defined in gray boxes with a unique identifier, a short title and the actual content

below. Different types of rules have a different color code, which aligns with the colors of Figure

29. A design rule (DR), for example, has the following format:

DR X – Rule Title

 Rule Content

Each rule is followed by a detailed description and discussion afterwards substantiating the

decisions of the author with arguments and references.

Each rule must be verified in at least one task of the process. DRs can be directly verified by

a task, or implicitly via a MR, TR, or fundamental modeling rule. CRs must always be verified

directly in a respective task. Verification cannot be argued via MR, since a non-qualifiable code

generator is in-between model and code.

In section 5.8, the presentation of the modeling environment summarizes the artifacts required

to realize an implementation complying to the rules.

5.4 Design rules

Page 81

5.4 Design rules

Contribution 5: A new set of design rules for modular development has been created. The
rules differ from existing modeling rules by describing overall concepts of the software de-
sign in a development tool-independent manner, but with MBSwD in mind. The new design
rules help developers to understand overall principles and provide reasoning for modeling
rules. They cover topics, which are essential in modular workflows but fairly unaddressed in
existing rule sets, i.e., they formulate requirements for high-level architectures, data encap-
sulation, and interface contracting and they specify the way to handle DO-178C Parameter
Data Items or deactivated and noncovered design.

For the design rules, traditional software design concepts have been adopted for model-based

design. The rules have been grouped according the objectives of DO-331 Table MB.A-4.

5.4.1 Summary of rules

DR 1 - Conformance to Standards 82

DR 2 - Configuration management 82

DR 3 - Compliance with High-Level Requirements 82

DR 4 - Identification and documentation of derived Low-Level Requirements 84

DR 5 - Unintended functionality 86

DR 6 - Modules 87

DR 7 - Units and module data 88

DR 8 – Encapsulation 89

DR 9 – Coupling 89

DR 10 – Cohesion 90

DR 11 – Interface contracting 90

DR 12 – Component call interface 93

DR 13 – Component data exchange interface 93

DR 14 - Unconstrained data handling strategy 94

DR 15 – Library modules 95

DR 16 – Library module usage 95

DR 17 - Parameter Data Items 98

DR 18 - Error handling strategy 98

DR 19 - Unambiguity, readability, and maintainability 99

DR 20 - Technical Units 99

DR 21 - Design naming conventions 100

DR 22 - Run-time errors 100

DR 23 - Accuracy of mathematical algorithms 101

DR 24 - Traceability to higher-level requirements 101

DR 25 - Data type compatibility 102

DR 26 - Floating-point arithmetic compatibility 102

DR 27 - Units for model simulation and testing 103

DR 28 - Testable design 104

DR 29 - Analysis tool compatibility 104

DR 30 - Noncovered design 105

DR 31 - Deactivated design 107

5 Modeling framework for safety-critical MBSwD in SL

Page 82

5.4.2 Conformance

DR 1 - Conformance to Standards

 A. The SW Design shall conform to the Software Design Standard. Deviations
shall be handled according to the respective verification task.

B. The SW Design shall conform to the Software Model Standard for the se-
lected modeling tool. Deviations shall be handled according to the respective
verification task.

C. The SW Design shall support generation of Source Code, which conforms to
the Software Code Standard.

Conformance to standards results from objectives DO-178C Table-4:5,12. (A) is the trivial re-

quirement. The respective DO-331 objective requires (B). Due to automatic code generation,

the Design Model highly influences the Source Code, which leads to (C).

DR 2 - Configuration management

 The SW Design shall support the Configuration Management Process and consid-
erations.

The SW Design artifacts must be stored and formatted in a way so that they can be handled

according to the principles and processes of configuration management. This starts with

unique names, checksums, goes over change diffing or merging, up to annotations in a review

process.

5.4.3 Compliance

A core idea of DO-178C is that the SW Design bases on allocated requirements. This is re-

ferred to as “compliance” and further detailed in DO-178C Table A-5:1 and 8. The following

rules have been derived from the given objectives.

DR 3 - Compliance with High-Level Requirements

 The LLRs shall satisfy allocated higher-level requirements of the module and the
System Architecture shall not conflict with allocated higher-level requirements.

The SW Design shall implement the behavior described by the HLRs. The type of higher-level

requirements varies with the chosen workflow type (cf. section 4.5.1).

During development, new requirements may arise, the so-called “derived requirements” as

specified by DO-178C according to Figure 30. To avoid subversion of DR 3, they must be

handled with care.

5.4 Design rules

Page 83

Figure 30: DO-178C Glossary - Derived requirements

The following DR addresses derived requirements in the SW Design, only. This means re-

quirements, which appear during the Design process and do not trace up to higher-level re-

quirements (cf. Rierson [45, p. 144]). In MB 5.0, DO-331 explicitly mentions that also “Design

Models may contain derived requirements”.

5 Modeling framework for safety-critical MBSwD in SL

Page 84

DR 4 - Identification and documentation of derived Low-Level Requirements

 A. To be considered as derived requirement, the following criteria shall be fulfilled:

 They shall not directly be traceable to higher-level requirements and/or
specify behavior beyond that specified by higher-level requirements
(DO-178C Glossary).

 They shall document a design decision, which is impacted by or has
impact on externally visible behavior.

B. Derived requirements shall be identified by a unique ID.

C. Derived requirements shall clearly be visible as derived in Trace Data (DO-
178C 5.5b).

D. Each derived requirement shall be documented and provide:

 a clear description

 a rationale for its necessity (where does this requirement originate
from?)

 a rationale why it is not treated as HLR

E. Derived requirements shall be documented and the documentation shall fulfill
the following:

 Derived requirements can be provided to system safety processes to
assess any safety impact according to a method specified in the Soft-
ware Design Standard and/or Software Development Plan (DO-248C
FAQ #37).

 Derived requirements needed for hardware/software integration can be
provided to the hardware life cycle process (DO-178C 2.2.3).

(A) provides some additional guidance on how to distinguish a derived from an ordinary re-

quirement, since the definition in the DO-178C glossary entry (Figure 30) does not necessarily

help identifying derived requirements. It is not always clear, whether a behavior goes beyond

the system requirements, since the design is always a concretization of the requirements. Ad-

ditional hints are provided in DO-248C. According to DO-248C FAQ #36, derived requirements

may on the one hand be “design, performance, or architectural decisions”, which are typically

not traceable to higher-level requirements. On the other hand, they may be design decisions,

which introduce new additional behavior, which is not specified by higher-level requirements.

5.4 Design rules

Page 85

Also the idea of design decisions is difficult to apply, since finally any design of a requirement

bases on design decisions. An additional aspect is given in the Requirements Engineering

Management Handbook published by the FAA. The handbook describes derived requirements

as means of flagging design decisions, which are “indicated by the fact that other design

choices could be made that would affect the externally visible system behavior, while still meet-

ing the system requirements”. [116, p. 59] Hence, it has been decided in (A) that an impact on

the “externally visible system behavior” must exist or the design decision must be impacted by

any external behavior itself. Otherwise it is not a derived requirement. Table 16 discusses

some cases.

Case Derived?

Breakdown of a feature, specified by the high-level
software requirements, into different functions to
reduce complexity.

No – no impact on the externally visible behavior.

Algorithm (binary search) chosen to look up an element
in a lookup table. The breakpoints and values are
provided by Parameter Data Items.

Yes – the binary search imposes a requirement on the
Parameter Data Item (the breakpoints must be
ordered).

Algorithm (binary search) chosen to look up an element
in a lookup table, which represents a hard-coded
characteristic.

No – for the applicant of the function, the internal
implementation is not relevant, as long as the output
fulfills the requirements.

To achieve performance targets, a pre-sorting of (fix)
values in an algorithm is performed the first time it is
executed.

Yes – the first execution steps may be slower than all
other execution steps. This is externally visible
behavior.

A saturation is introduced in the design to avoid a
division by zero. This changes the bandwidth of the
output signal, but it still meets the higher-level
requirements.

Yes – this has an impact on the externally visible
system behavior. It is a design decision, when a
division by zero is captured and what the reaction is.
Typically, division by zero has a physical meaning.

Restrictions of the modeling language require a
workaround.

No – as long as the workaround does neither affect
performance nor any other externally visible system
behavior.

A requirement states that a history of elements shall be
stored in non-volatile memory. Storing values in a non-
volatile memory requires additional functionality.

Yes – affected by hardware requirements and
implementation or may affect the hardware
requirements.

For testing purposes, the design of the algorithm is
adapted. Additional modeling elements are needed to
connect to testing tools. These model elements
influence the generated code, but have no functional
impact.

No – if it can safely be assumed that a functional
impact does not exist. However, it also depends on
how the absence of a function impact is shown.

Adding of scaling limits when using fixed point
arithmetic (example from DO-248C FAQ #36).

Yes – has impact on externally visible system behavior
and is additional functionality.

Interrupt handling is discovered to be needed during
design (example from DO-248C FAQ #36).

Yes – affected by hardware requirements and
implementation or may affect the hardware
requirements.

Table 16: Examples of derived requirements

Derived requirements are discovered either during implementation or during traceability and

requirement coverage review. Even though a design decision is not a derived requirement, its

documentation may be worth it. Then, annotations in the SW Design should be used.

5 Modeling framework for safety-critical MBSwD in SL

Page 86

If a derived requirement is identified, (B) to (E) provide guidance on documentation. (B) is a

critical requirement especially for model-based design. Scoping, uniquely naming, and docu-

menting a requirement, which is, e.g., a part of a flow-diagram, may be challenging.

The rationales requested in (D) can be seen as countercheck. New derived requirements must

be defined with care, since they may conceal, on the one hand, missing HLRs and, on the

other hand, unintended functionality. Rierson [45, p. 144] recommends asking, why the derived

requirement is necessary and why it is classified as derived and not covered by the HLRs?

These rationales shall be documented, which also fulfills DO-178C 5.2.2b.

DR 5 - Unintended functionality

 There shall be no functionality, which is not specified by a (derived) higher-level
requirement.

The requirement for the absence of unintended functionality has been derived from objective

DO-331 Table MB.A-5:1. On the one hand, the SW Design shall not implement more function-

ality than actually specified. In addition, there shall be no dead design, i.e., functionality, which

complies with HLRs, but is either not necessary to fulfill the requirements or is never trans-

formed to Source Code. Dead design is explained in DR 30.

5.4.4 High-level architectural design

Designing software typically consists of two steps: The (high-level) architectural design and

the detailed design. In DO-178C, this maps to the Software Architecture and LLR part of the

design (cf. DO-248C FAQ #35). However, DO-178C does not emphasize a distinction as

strong as in literature (cf. Saleh or Summerville [10, 82]) or other software standards like ISO

26262-6, which separates “Software Architectural Design” and “Software Unit Design” as pro-

cess steps. DO-331 even allows combining Software Architecture and LLRs in a single artifact,

the Design Model.

In this section, rules for the high-level architectural design have been established.

 Software modules

In section 4, a new breakdown concept of the MBSwD into sub-processes for software mod-

ules has been introduced. This section provides the scope and definition of a software module.

Software modules hold software life cycle data from the Requirements to the Code process.

They encapsulate cohesive functionality and have small interfaces, which eases concurrent

development, maintenance, and lowers the integration effort later on.

5.4 Design rules

Page 87

DR 6 - Modules

 A. The Software Architecture shall break down the whole software component
into modules.

B. To any module, a set of higher-level requirements shall be allocated, which
the module implements.

C. A module shall be handled as a separate Configuration Item according to
DO-178C and shall be independently developed in the SW Requirements,
Design, and Code Process.

D. A module shall define the properties of Table 17.

Module ID Two letter identifier ([a-zA-Z][a-zA-Z0-9])

Module Name Arbitrary length with characters [a-zA-Z0-9]

Component Module Yes or No

Partially Usable Library Yes or No

Table 17: Properties of modules

E. A module may depend on other modules. All modules must have been devel-

oped with the same software level under the MBSwD process, with the same
modeling environment and same code generator settings.

As defined by (A), from the viewpoint of configuration management, a software module is de-

fined as a separate DO-178C configuration item and thus, for example, subject to configuration

identification, indexing, baselining, and change control (DO-178C 7.2). All artifacts inside a

module go through the development process together until they are integrated.

Complexity of the process can be managed easier, if the properties listed in Table 17 are

defined for each module. Analogously to the processes, there is one component module and

several sub-level modules. A component module defines the component interface. Depending

on the module type, a different process applies (cf. section 4.4.2).

In addition, modules can be tagged as partially usable library (cf. section 5.4.4.5).

 Software units and module data

Below the module, the next architectural entity is the unit and module data. Units perform an

operation with/on an input and provide an output. Module data are, for example, constants or

type definitions. They can be used by units.

5 Modeling framework for safety-critical MBSwD in SL

Page 88

DR 7 - Units and module data

 A. Modules shall consist of units and module data.

B. Units shall

 be independently verifiable (cf. DR 27).

 have defined interfaces.

C. Selected units and module data shall be accessible from other modules.

Figure 31 illustrates an example SW Design of a MBSwD component. It has a single compo-

nent module, calling units of other modules. Some units are just called from inside its own

module. There is a module at the bottom just holding module data, e.g., the interface type

definitions. In this case, the partially used library module is not part of this component.

Figure 31: Module architecture example

5.4 Design rules

Page 89

 Module interfaces

Interfaces are the key factor for a good design and have an important influence on verification

interactivities. DO-178C 6.6.3b requires to ensure that “a correct relationship exists between

the components of the software architecture”. The presented interface approach is an im-

portant foundation for this objective.

Modules have three types of interfaces of particular interest:

 Component interfaces

 Inter-module interfaces

 Intra-module interfaces

Component interfaces are those at the border of the whole software component, i.e., inputs,

outputs, and Parameter Data Items. Inter-module interfaces connect units of different modules.

Intra-module interfaces connect units of the same module.

The primary goal is to limit the quantity, size and scope of interfaces, since interface handling

always bears additional risks. Three principles help to deal with interfaces:

 Encapsulation: Restricting access to internally used functions and data

 Coupling: Limitation of the number of interfaces

 Cohesion: Reduction of interfaces and preference of intra-module interfaces

 Contracting: Constraints on required interfaces

DR 8 – Encapsulation

 Access to functions or data over module boundaries shall be limited. Functions
and data callable or usable from other software modules shall be explicitly identi-
fied.

Encapsulation is a technique to keep control of external interference and commonly used in

traditional programming languages (like object-oriented languages, which allow the declaration

of public or private variables). The design paradigm is also known as “information hiding” [82].

DR 9 – Coupling

 Coupling shall be measured and kept within thresholds.

Inter-module or external coupling describes the quantity of interfaces and dependencies be-

tween modules. Ultimate design goal is to keep these as small as possible.

Saleh [82] distinguishes the following four relevant types of coupling, from best to worst:

 Data-coupled: Data is passed between modules through inputs and outputs, which is

necessary to execute the receiving module units

 Stamp-coupled: More data than required for execution is passed between modules.

 Control-coupled: Data, which changes the control flow, is passed to a module.

5 Modeling framework for safety-critical MBSwD in SL

Page 90

 Common-coupled: Modules are indirectly related by sharing of global data, structures,

data types, or data files.

 Content-coupled: Statements that jump into another module and execute own functions

in this context, or if one module can change the content of another module.

For all types of coupling, measures and thresholds are highly design tool and language spe-

cific.

DR 10 – Cohesion

 Intra-module cohesion shall be measured and kept within thresholds.

Cohesion describes the reason, why the content of a unit, e.g., a module, belongs together.

According to Saleh [82], different types of cohesion can be distinguished. Cohesion may be

good or bad. Worst is coincidental cohesion. In this case, content is packed together without

any reason. In the best scenario, functional cohesion exists, i.e., all content of a unit serves

the same function ([82] Table 5.7 p.162).

DR 11 – Interface contracting

 A. Data types and structure of data shall be fully specified for all module inter-
faces.

B. Interfaces shall be classified according to the contract types in Table 18.

 Component
Input

Component
Output

Inter-
module

Input

Inter-
module
Output

Inter-
module

Input
(of Lib)

Inter-
module
Output
(of Lib)

Unconstrained x

Wide contract x

Narrow
contract

 x x x x

Table 18: Interface classification

C. Unconstrained and wide contract interfaces shall have a design range speci-

fied in HLRs.

D. Intra-module interfaces shall not have any type of contract.

Although coupling shall be minimized, interfaces are required, but wrongly understood inter-

faces can lead to completely invalid verification results. Constraining the module interface is

called contracting.

All interfaces must specify the data type. This is a minimum requirement (A).

5.4 Design rules

Page 91

Interfaces have been categorized into three contract classes, depending on the preconditions,

which are acceptable:

 Unconstrained: Input or output interfaces only have a data type specification. The value

can be arbitrary (in the range of the specified data type). The software shall neither

assume (for inputs) nor provide (for outputs) conditions on values.

 Wide contract (range unconstrained): The software can assume that the incoming val-

ues fulfill all software requirements (units, special quantities, …), but must assume an

unlimited range (except the limitations provided by the data type). Vice versa, the soft-

ware must make sure that outputs fulfill all software requirements, but must not limit

them to a specific range.

 Narrow contract (range constrained): The software can assume that the incoming val-

ues fulfill all software requirements and are narrowed to the specified range. Vice versa,

the software must make sure that outputs fulfill all software requirements and are lim-

ited to a specific range. The idea of narrow contracting is slicing the software into

pieces.

The classification of (B) can be explained as follows. In terms of defensive programming, ex-

ternal incoming data shall not be trusted. These inputs can have any value, which is represent-

able by the respective data type. This aligns with DO-248C FAQ #32, which proposes various

defensive programming examples for “avoidance of input errors” and “avoidance of interface

errors”.

Inter-module interfaces shall support a narrow contract (i.e., rely on and provide a range spec-

ification). Wide contracts always require a significant amount of robustness code, which de-

creases performance. Narrow contracts also ease the application of formal methods. However,

due to their high impact on software safety, preconditions must be carefully and exhaustively

verified. This is only possible, if all modules are developed under the same software level,

otherwise it must “be confirmed that the higher software level component has appropriate pro-

tection mechanisms in place to protect itself from potential erroneous inputs from the lower

software level component.” (DO-178C 6.3.3b).

Inter-module interfaces into library modules must have a wide contract for inputs, since library

functions are used by different software developers for different purposes. The risk of violating

a range constraint is thus much higher. In contrast, outputs shall provide a narrow contract.

This interface can be controlled very well at a single place.

For (C), it is important to highlight the difference between the range specified in a contract and

a design range. Design ranges are specified in HLRs or Interface Control Documents (ICDs)

defining the normal operation range of the software (verified with normal range testing). How-

ever, the software must expect values outside this normal range, i.e., it must be robust, which

is verified with robustness testing. A range specified by a contract is part of the SW Design

and is not subject to robustness testing. Adherence of callers to contracted ranges must be

formally provable, a violation is thus technically not possible and robustness concerning a vio-

lation must and cannot be shown. Any robustness code would be marked as unreachable in

formal analysis.

5 Modeling framework for safety-critical MBSwD in SL

Page 92

Some examples for encapsulation and contract classification are given in Figure 32. Important

to note is that, although the library module is not in the component, its interface is not consid-

ered as component interface, since the calling component ensures that no unconstrained data

is exchanged.

Figure 32: Module interfaces

5.4 Design rules

Page 93

 Component interfaces

Component interfaces of the model-based software component only communicate with the

software application framework (cf. section 3.1). An agreement must thus exist concerning the

function call and data interface.

DR 12 – Component call interface

 The function call interface shall comply with the interface specified for the software
component.

The function call interface depends on how the code shall be plugged into the surrounding

framework. For example, whether tasks shall be triggered synchronously by a cyclic periodic

interrupt timer. The rule above satisfies assumption AS 8.

DR 13 – Component data exchange interface

 The data interface shall comply with the data interface specified for the software
component.

Selecting the right approach is highly project-specific and depends on the type of application

and the capabilities of the software application framework

5 Modeling framework for safety-critical MBSwD in SL

Page 94

DR 14 - Unconstrained data handling strategy

 A. Only the top-level model in the component module shall handle unconstrained
data.

B. Cohesive and clearly identifiable data conversion and monitoring units shall be
implemented in the top-level model for every incoming external data prior to
any other operation and for outgoing external data after any operation.

C. External incoming data shall be monitored and converted prior to any use:

 Special quantities shall be detected and removed.

 Design ranges shall be checked and the values saturated or reset if
necessary.

 Data types shall be converted.

 Scaling of integers shall be performed.

 Units shall be converted.

D. External outgoing data shall be monitored and converted prior to sending:

 Design ranges shall be checked and the values be saturated if neces-
sary.

 Data types shall be converted.

 Scaling of integers shall be performed.

 Units shall be converted.

According the definitions of the previous section, the format of external data is unconstrained,

since it is often predefined by other components (e.g., commercial-of-the-shelf components)

and cannot be influenced. Inside the software, however, limitations on units, special quantities

(like Inf, NaN, …) exist. The target is thus to limit the access to unconstrained data and keep

its “lifetime” as short as possible.

 Library modules

The purpose of those modules is to share functions and data across different components. A

module tagged as partially usable library can be used in other components as well. Such mod-

ules have special requirements concerning implementation and especially verification. For ex-

ample, not all library functions have to be part of the component software, but are not dead

design.

A typical example for library functions are repeatedly used filters or mathematical utilities.

5.4 Design rules

Page 95

DR 15 – Library modules

 A. Units shall be interfaces for library modules, only (i.e., library functions). Their
implementation shall follow the guidance for deactivated design in DR 31.

B. Requirements, from which the library module is developed, shall be inde-
pendent.

C. The requirements shall state the conditions for usage.

D. Library functions shall be documented in addition to requirements.

E. The symbol of a library function shall be uniquely identifiable, non-mislead-

ing, and documented.

Units provide an independently testable interface by definition (A). Independent requirements

simplify reusability across projects (B). (C) is a requirement from DO-331 MB.B.18.4. (D) is a

requirement from DO-331 MB.B.18.9.

If library functions are used, the following rules apply:

DR 16 – Library module usage

 If a library function is used, operational requirements for the library shall be docu-
mented.

This requirement arises from DO-331 MB.B.18.3.

 Parameter Data Items

The purpose of Parameter Data Items (PDIs) in the context of the project has been discussed

in assumption AS 9. For the described use case, no additional considerations (field-loadable,

option-selectable, or user-modifiable software) apply.

The goal of PDIs is to decouple the verification of PDI Files from verification of the Executable

Object Code. A PDI File is the exchangeable instantiation of a PDI, i.e., the values. This re-

duces verification effort, since values can easily be changed without touching the Executable

Object Code. The conditions, which must hold, are provided in DO-178C 6.6:

 The structure of the PDI life cycle data allows separate management.

 Normal range testing on Executable Object Code for PDI values complying with the

structure and attributes has been performed.

 Executable Object Code is robust with respect to PDI Files structure and attributes.

 All behavior of the Executable Object Code resulting from PDI values can be verified.

PDIs must have the same software level as the application they are used in (DO-178C 2.5.1).

5 Modeling framework for safety-critical MBSwD in SL

Page 96

Usage and implementation of PDIs must be planned. MathWork’s reference workflow [32] does

not address PDIs specifically, although they imply important design decisions. The following

part of the section introduces the chosen way to handle PDIs from specification to implemen-

tation.

Figure 33 illustrates the intended processing of a PDI File in the software. Reading a PDI File

and checking its values is delegated to the software application framework. The framework

provides the PDI as constant (during the execution) to the software application. The software

execution must be stopped to exchange the PDI file, i.e., it is loaded once at initialization of

the software. The software application does not have to perform robustness checks on the PDI

values.

In general, PDI File values must be considered unconstrained by the software, since DO-178C

requires robustness testing for structure and attributes. For practical reasons, it has been de-

cided that robustness code shall be part of the application framework code running prior to the

software application. The reason is that PDI values are immutable and should be checked

once during initialization and not every calculation step. SL/SF in the used release and in com-

bination with the chosen verification tools has limited functionality to model initialize functions

and efficiently check or update large arrays (e.g., lookup table values). In consequence, a

narrow contract can and shall be assumed for PDI values (cf. section 5.4.4.3) in the model-

based application.

Figure 33: PDI processing in software

Figure 34 shows the process responsibility for PDI development in the MBSwD process re-

specting DO-248C DP #20. Structure and attributes of the PDI are defined as HLRs in the main

DO-178C process, since the software application framework has to handle reading and robust-

ness checking. These PDI Structure HLRs may be derived or traced to system requirements.

In the process at hand, they are documented in Polarion as separate work items incorporating

structure and the following attributes (cf. DO-248C DP #20):

 Use case

 Data Type / structure

 Dimension

 Design range

 Unit

Software application

(MBSwD)Software application framework

Read PDI File

Perform

robustness

checks

Provide as read-

only to software

application

Use PDI

PDI File

5.4 Design rules

Page 97

Figure 34: PDI view based on DO-248C Figure 4-4

Afterwards, the PDI Structure HLRs are relevant in three different workflows:

 Development of the software application framework (middle of Figure 34). It refines

structure and attributes in the Design Description and implements the respective data

structures as well as the reading functions in Source Code. The data structures must

be accessible by the auto-generated code of the application later on, so it has been

decided that the software application framework shall expose the values in global var-

iables.

 Development of software application (left-hand side of Figure 34). The Design Model

references the PDIs data structure and consumes the data. Therefore, both information

from the Design Description and Source Code may be required. The reference in the

Design Model provides traceability to the PDI Structure HLR.

 Development of the PDI File (right-hand side of Figure 34).The values are specified in

separate PDI Value HLRs. PDI Structure HLRs drive the format of PDI values and the

PDI File. The PDI Value HLRs are directly implemented into an intermediate represen-

tation (cf. DO-248C Figure 4-4), which is finally translated to a PDI File. All steps are

part of the main DO-178C process.

System requirements

PDI Structure

HLR
(use, structure &

attributes)

Design Model

Source CodeM
B

S
w

D
p

ro
c
e

s
s

PDI Value HLR

PDI structure &

attributes

Intermediate

representation

PDI File
D

O
-1

7
8
C

 m
a
in

p
ro

c
e
s
s

Design

Description

Source Code

EOC

D
O

-1
7
8
C

 m
a
in

p
ro

c
e
s
s

5 Modeling framework for safety-critical MBSwD in SL

Page 98

DR 17 describes the relevant requirements from the perspective of the MBSwD process.

DR 17 - Parameter Data Items

 A. Any reference to a PDI data structure of the framework code in the Design
Model shall be traceable to the PDI Structure HLR.

B. To describe the MBSwD process, assumptions on the PDI implementation in
the main DO-178C are necessary.

C. PDIs shall be referenced in the design and implemented in code in a way that
they can be verified independently of the Executable Object Code.

D. PDIs shall not lead to deactivated design (cf. DR 31).

E. PDIs shall not lead to user-modifiable, option-selectable, field-loadable soft-
ware, or Deactivated Code.

Reading of a PDI data structure in the Design Model underlies verification activities of the

MBSwD. To verify the behavior of the Executable Object Code resulting from PDI values, nor-

mal range test cases shall be formulated as simulation cases in the MBSwD. Robustness test

cases are formulated for the implementation in the application framework as part of the DO-

178C process, only. PDIs shall not lead to Deactivated Code (cf. CR 15), the software must

thus be tested thoroughly for all valid configurations.

 Error handling strategy

DR 18 - Error handling strategy

 A common error handling strategy shall be defined and evaluated, for example, if
and how detected errors are reported to other functions and how they are logged.

If runtime-errors are caught in advance, a strategy is required to handle them. This may reach

from reporting, over logging, to terminating the program. The error handling strategy is im-

pacted by both the system design (e.g., whether a backup controller exists, which takes over

in case of a runtime error) and software. Since there are many ways to implement it and since

it has no further impact on the process itself, the error handling strategy is not detailed here.

5.4.5 Accuracy and consistency

Like for textual LLRs and software architecture, DO-331 also requires accuracy and con-

sistency of the Design Model (as in DO-178C Table A-4:2,9). DO-178C 6.3.3b and DO-178C

6.3.3c provide some additional information on the objectives. DO-178C 6.3.3b specifically

mentions data and control coupling considerations for software architecture. These have been

covered with the high-level architectural design in previous sections. The following DRs focus

on accuracy and consistency of the lower level detailed implementation.

5.4 Design rules

Page 99

DR 19 - Unambiguity, readability, and maintainability

 A. The Design Model shall be non-ambiguous.

B. The Design Model shall be readable, understandable, and transparent.

C. The Design Model shall be maintainable.

D. The Design Model shall have low complexity.

DO-178C 6.3.2b explicitly mentions “non-ambiguity” and “accuracy”. “Non-ambiguity” is nec-

essary to preserve the formal character of the model, hence ambiguous parts of the modeling

language shall not be used (A). “Accuracy” is considered similarly to textual requirements.

They are accurate, if they are short and precise. A Design Model is considered accurate, if it

follows a readable, transparent, and maintainable modeling style (B). Readability means that

structure and organization of the design support orientation of the developer and that the im-

plemented functionality is clearly identifiable. This may be achieved by encapsulation of func-

tionality, clear naming, readable charts, and so on. A maintainable SW Design can be easily

changed and adapted. For example, if repeatedly used values are parameterized and the cou-

pling with other functions is limited. Also unit and naming conventions contribute to an accurate

design (cf. the following rules).

In addition, DO-178C 5.2.2 emphasizes, that the SW Design process “should avoid introducing

complexity”. The complexity type of interest depends on the modeling language, e.g., a SL

diagram requires different complexity considerations than a SF diagram. In consequence,

complexity is detailed as part of the module design or fundamental modeling rules.

 (B) to (D) are concretized with complexity measures in the derived modeling rules.

DR 20 - Technical Units

 A. The used system of technical units shall be the International System of Units
(SI) including the therein specified accepted non-SI units [117].

B. Angles shall always be given in radians.

C. Data at component interfaces may deviate from the unit specification.

A single unit system improves readability and interface compatibility and reduces the risk of

failures. SI units have been a recommended system for years.

Most often, the format of external data cannot be influenced and it is thus unavoidable to have

units deviating from the chosen system in the model. For example, English units like feet or

knots are commonly used. However, those units shall only appear at component interfaces

and be directly converted to SI units (cf. DR 14).

5 Modeling framework for safety-critical MBSwD in SL

Page 100

DR 21 - Design naming conventions

 A. The provided naming conventions shall be applied throughout the SW De-
sign.

B. Names shall be unambiguous, meaningful, and describe the labeled item
properly.

C. Local language shall be English (US).

Design naming conventions are independent of the modeling tool. They describe the designa-

tion of mathematical expressions, units, or Greek variables. This set of guidelines has been

developed by multiple employees of TUM-FSD. One example is provided in Table 19.

Vector Abbreviation

Position of the point G relative
to the center of the earth

(�⃗�𝐺)𝐵

Body-Fixed Frame is Notation Frame

pos_G_B_m

Table 19: Example design naming convention

DR 22 - Run-time errors

 Algorithms shall be free of:

 arithmetic errors (division by zero, invalid use of mathematical functions
outside their domain of definition).

 under- or overflow of integer and floating-point variables.

 index out-of-bounds access.

A general requirement is that the design shall avoid runtime-errors. Run-time errors do not

necessarily lead to a program crash, but often result in unspecified or unexpected behavior.

Consequences of run-time errors are strongly related to the programming language, the com-

piler, or floating-point implementation and may occur for both integers and floating-point num-

bers.

5.4 Design rules

Page 101

5.4.6 Algorithm aspects

Objective DO-178C Table A-4:7 is vague, it requires to “ensure accuracy and behavior of the

proposed algorithm, especially in the areas of discontinuities” (DO-178C 6.3.2g).

DR 23 - Accuracy of mathematical algorithms

 The accuracy of mathematical algorithms shall be confirmed.

Rierson proposes a review of mathematical algorithms with domain experts (cf. [45, 153f.]). In

workflow 5, this DR may have already been considered on system level and documentation

may be reused.

5.4.7 Traceability

Traceability is a pivotal concept of software development and mandatory in various accepted

software standards, also in DO-178C as outlined in section 2.3. This section mainly focuses

on the traceability between LLRs and HLRs as described in objective DO-178C Table A-4:6.

This kind of traceability bases on semantical knowledge and must be manually created and

maintained.

DR 24 - Traceability to higher-level requirements

 A. Trace links shall be established from parts of the Design Model, which imple-
ment the feature, to HLRs.

B. Trace links shall be navigable in both directions.

C. Completeness of design shall be evaluable.

D. Trace links shall satisfy configuration management requirements, i.e., they
shall be archived / under version control and restorable. Changes shall be
traceable

D. Bi-directional impact analysis shall be leveraged between requirements and
design.

Traceability means far more than just creating a link from one artifact to another:

 Allocation: Define, which requirements are implemented by which software compo-

nent or module.

 Realization and Storage: Create a navigable trace between a model element and a

requirement.

 Restoration: Store links in a way that they are restorable at any time and satisfy con-

figuration management requirements.

 Maintenance: Keep the traces valid. Remove deprecated traces in case of removed

requirements or model elements. Add new traces for new requirements or models.

5 Modeling framework for safety-critical MBSwD in SL

Page 102

 Documentation: Export trace data in a format, which allows archival and review (e.g.,

a traceability matrix).

 Trace verification: Check that all requirements trace to model elements and all model

elements trace to requirements (requirement coverage).

 Usage: Check that all functionality has been implemented. In case of changes, find

upstream or downstream impacted artifacts (impact analysis).

5.4.8 Target compatibility

Objective DO-178C Table A-4 shall ensure that no conflicts between the low-level require-

ments, software architecture, and the hardware/software features of the target computer exist

(cf. DO-178C 6.3.2c, DO-178C 6.3.3c).

Since the model-based software only communicates with hardware/software features through

the software framework application, the scope of this objective is limited.

DR 25 - Data type compatibility

 Only data types specified in the Software Code Standard shall be considered in
the design.

Data types drive software low-level design or interface descriptions. They must comply with

those supported by the programming language and the target environment. The data types

are discussed in the Software Code Standard.

DR 26 - Floating-point arithmetic compatibility

 Floating-point numbers shall be preferred for mathematical algorithms and han-
dled as defined in the Software Code Standard.

Calculations with fractional values are typically either carried out in floating-point or fixed-point

arithmetic. C does not provide a built-in data type for fixed-point numbers, so the calculation in

the code must be performed with integers. Floating-point calculations are typically performed

by a separate floating-point unit (FPU) on the hardware. Build-in floating-point data types exist

in C.

Thus, floating-point is easier to handle, but comes along with other problems. The semantics

of floating-point operations are an interplay of hardware, compiler, and software libraries and

the implementation of standards may slightly differ [118]. Another challenge is the precision

and range. With a given scaling, the gap between adjacent fixed-point numbers is known and

uniform. The precision of floating-point numbers is not uniformly distributed [119], floating-point

numbers can represent a significantly higher dynamic range.

5.4 Design rules

Page 103

In this work, floating-point arithmetic has been chosen over fixed-point arithmetic due to vari-

ous reasons. At the time project work has started, the support of fixed-point arithmetic in the

SL/SF tool chain was very limited. Calculations had to be implemented by-hand in SL, which

didn’t seem to be practical. Nowadays, SL can abstract fixed-point arithmetic away from the

user and Embedded Coder can auto-generate respective code. Another argument for floating-

point arithmetic is that controllers are easier to implement with high dynamic range of values.

And finally, the PPC has a highly performant double-precision FPU.

Floating-point arithmetic in the given avionics context has been investigated by Nürnberger

[120].

5.4.9 Verifiability

DO-178C Table A-4:4 and 10 require that both the Software Architecture and LLRs are “veri-

fiable”. The meaning of this term is not further explained, except with the example that there

shall be no unbounded recursive algorithms (DO-178C 6.3.3d).

Under this objective, Rierson mainly understands testability criteria (cf. [45, p. 153]). Since a

Design Model has a higher degree of formality than textual LLRs, a couple of additional anal-

ysis techniques can directly be applied and extend the scope of “verifiability”.

DR 27 - Units for model simulation and testing

 A. Units must support the chosen testing strategy.

B. Inputs and required states of units shall be controllable in simulation and during

Executable Object Code testing.

C. Outputs and required intermediate values of units shall be observable in sim-

ulation and during Executable Object Code testing.

A whole bunch of literature gives advices on testability criteria, but from the viewpoint of the

SW designer and with the assumption of an independent process with black-box testing, an

agreement on testability of units is the most important aspect.

5 Modeling framework for safety-critical MBSwD in SL

Page 104

The testing strategy has been introduced in section 4.6.3. Units are Design Model subsets,

which provide observability and controllability interfaces both in model simulation and Execut-

able Object Code testing. Although the term “unit” is used, simulation and testing is still re-

quirements-based, and not white-box “unit testing”.

DR 28 - Testable design

 A. The SW Design shall satisfy reachability criteria during simulation.

B. There shall be no recursive function execution.

C. There shall be no dynamic memory allocation.

D. There shall be no self-modifying code.

E. There shall be no user-modifiable, option-selectable or field loadable software.

The DR above relates to the system design assumptions presented in AS 8 Table 1, DO-178C

6.3.3d, and Rierson (cf. [45, p. 152]).

DR 29 - Analysis tool compatibility

 The SW Design shall be compatible with all tools applied in the tasks for verifica-
tion purposes.

The list of verification tools operating on the SW Design must be derived from the verification

tasks and depends on the chosen modeling language/tool as in Table 20 for the process at

hand..

Tool Notes

SL Model Advisor as used in SwVP-DP-MB 1

and SwVP-DP-MB 2

Simulink Code Inspector as used in SwVP-CP-

MB 1 and SwDP-CP-MB 2

Amongst others, compatibility considerations under

 [121, pp. 2–2ff.]

 [121, pp. 3-2ff.]

Simulink Design Verifier as used in SwVP-DP-

MB 5

Amongst others, compatibility considerations under

 [122, pp. 3-2ff.]

 [123, p. 6-29]

In addition, the design must be compatible with the

implemented preprocessing algorithms.

Simulation Case Management with Simulink

Test as described in SwVP-DP-MB 6

Model Coverage Evaluation (Simulink

Coverage) as used in SwVP-DP-MB 9

Compatibility with the custom model coverage aggregation

workflow must be given.

5.4 Design rules

Page 105

Beyond that, coverage preservation shall be maximized.

Coverage preservation is further explained in SwVP-DP-MB

9. The goal is that full model coverage leads to full or a very

high degree of structural code coverage, when simulation

cases are reused as test cases. The chosen model elements

and settings may have a significant influence on

preservation.

Model simulation as used in SwVP-DP-MB 8

including diagnostics

Amongst others, compatibility considerations under

 [124, pp. 8-105ff.]

Additional simulation requirements are:

 Guarantee equality of model simulation and code

execution results

 Maximize simulation efficiency and robustness

(simulation speed and avoidance of e.g., algebraic

loops.)

 Execution performance of compilation

SIL Simulation as used in SwVP-CP-MB 6 Amongst others, compatibility considerations under

 [96, pp. 64-67ff.]

 [96, pp. 66-35ff.]

Simulink Code Coverage as used in SwVP-

CP-MB 7

Amongst others, compatibility with the custom model

coverage aggregation workflow must be given.

Polyspace BugFinder as used in SwVP-CP-

MB 2 and SwVP-CP-MB 3

Polyspace Code Prover as used in SwVP-CP-

MB 5

Simulink Report Generator as used in SwDP-

DP-MB 6

SimPol and RMI as used in SwDP-DP-MB 2,

SwDP-DP-MB 4, and SwDP-DP-MB 5

cf. section 6.4

PIL testing limitations cf. section 4.6.3

Table 20: Analysis tool compatibility

DR 30 - Noncovered design

 A. Noncovered design shall be justified.

B. There shall be no dead design in the Design Model.

Noncovered design is design, which is not reached by requirements-based model simulation

and model coverage recording. Noncovered design should be resolved in the first place. If no

resolution strategy is successful, it may be justifiable. If no proper justification applies, the

noncovered design must be considered as dead design as illustrated in Figure 35. Dead design

indicates unwanted functionality and requires rework of the Design Model.

5 Modeling framework for safety-critical MBSwD in SL

Page 106

Figure 35: Covered and noncovered design (qualitative)

Resolution strategies for noncovered design are listed Table 21. They address the possible

deficiencies given by DO-331 MB.6.7.2 and the specific resolution information for the MBSwD.

Cause (Numbering refers to DO-
331 MB.6.7.2)

Resolution Output

a. Shortcomings in simulation
cases and procedures

Review and update of the test cases developed in
SwVP-DP-MB 6 and SwVP-DP-MB 7

Covered design

b. Shortcomings in requirements
from which the Design Model has
been developed

Review and update of the higher-level requirements
(cf. SwVP-DP-MB 9)

Covered design

c. Derived requirements

The noncovered part may be a derived requirement.
Criteria for derived requirements and their
documentation are as discussed in DR 4

Covered design

Shortcoming of analysis method In some cases, a project- or company-wide deviation
applies considering deficiencies of the analysis
method. These deviations are safe to apply.
Examples are given in 8.2.9

Justified
noncovered
design

d. Deactivated design

According to DR 31 Justified
noncovered
design

e. Dead design (unintended
functionality)

If no other cause can be found, it is unintended
functionality, which shall be removed

Dead design

Table 21: Model coverage resolution

The concept of deactivated design is similar to Deactivated Code of DO-178C (cf. CR 15), but

instead of removing or disabling code in the compilation process, deactivated design is re-

moved in the code generation process. Whereas Deactivated Code is separated in two cate-

gories, i.e., code which is never executed, and code which is executed in some configurations,

deactivated design is never executable, since it is never implemented in software. Thus, the

main purpose for deactivated design are library functions.

Similar to Deactivated Code, the main difference between deactivated and dead design is that

deactivated design is planned and traceable to requirements.

Covered Noncovered

Justified

Dead

Design

0% 100%

5.4 Design rules

Page 107

DR 31 - Deactivated design

 A. All public units in modules declared as “partially usable”, and only those, can

be deactivated design and shall underlie the following restrictions:

 They shall not call other units (in- or outside the module).

 The design shall be traceable to requirements and the partial use shall

be specified in those requirements.

 The higher-level requirements of each of those units shall be independ-

ent of other units.

 Simulation cases of traced requirements from those units shall not con-

tribute coverage to other units, i.e., they shall be independent.

B. In the component process, deactivated design shall be identified, documented,

and evidence shall be provided

 that deactivated design is not included in the generated code and can-

not be inserted inadvertently.

 that test cases of traced requirements from deactivated design are not

executed.

As a consequence, the safety challenge with deactivated design is not that it may lead to dead

code, but that it may pretend that a specific functionality is implemented, although it is removed

during code generation later on.

DO-331 addresses deactivated design as “deactivated functionality” in MB.6.7.2.d and re-

quires to show prevention of realization, isolation, or elimination with “a combination of analy-

sis, simulation and testing”.

Deactivated design can also be regarded as unused library functionality. The statement of DO-

331 on unused and partially used model elements is given in MB.B.18.9 (Figure 36).

5 Modeling framework for safety-critical MBSwD in SL

Page 108

Figure 36: DO-331 MB.B.18.9 - Partial Use of Libraries

Both paragraphs MB.6.7.2.d and MB.B.18.9 require to make sure that deactivated design is

not realized. In a modular approach, the decision, whether design is actually deactivated or

not, can only be made on component-level, when all modules are integrated. On module-level,

the design can only be marked as potentially deactivated or not. Assume a partially usable

library module with various utility functions. A function is only deactivated design from a pro-

cess perspective, if it is never used in the whole module hierarchy.

Thus, for public units of library modules, code is generated and they are subject to simulation,

model coverage, and structural coverage on module-level. On module-level, no difference is

made except that certain independence is explicitly required (A).

(B) describes the additional work performed in the component process, but also in subsequent

testing processes. For example, the Source Code generated in the component process shall

not contain the code of deactivated functions (i.e., functions never called in the application).

Deactivated design may be used for small library units (utility libraries). Deactivated design is

not the technique to handle features and software variants. Therefore, whole software modules

can be used.

Figure 37 extends the previously introduced example model architecture with deactivated and

dead design. Units not called in the project and not part of a partially usable module are dead

design. Any module data not referenced in a unit, is dead design. If the unit itself is dead

design, the module data is dead design, too. Deactivated design can only occur in the partially

usable library. If module data is linked to a deactivated unit, it can implicitly become dead

design.

5.4 Design rules

Page 109

Figure 37: Deactivated and dead design

5 Modeling framework for safety-critical MBSwD in SL

Page 110

5.5 Coding rules for code generation

Defining the Software Code Standard in traditional DO-178C development is state-of-the-art.

Not so common is its definition for MBSwD with automated code generation, since DO-331

does not provide an updated interpretation and definition of the Software Code Standard for

model-based techniques.

Contribution 6: A set of coding rules specifically tailored to auto-generated code of Embed-
ded Coder has been written. The coding rules have been specifically defined with respect
to the used code generator, compiler, and hardware.

In the presented process, the generated Source Code is fully determined by the model and the

code generator configuration, which themselves are specified in the Model Standard. The

Code Standard is thus less a document for developers, but more for the process responsible

to document the code requirements as well as to provide rationales for modeling rules and the

basis for code verification activities. This is the reason, why the coding rules are discussed

prior to the modeling rules and have a drastically reduced scope compared to traditional Code

Standards.

In the work for the thesis, a consistent and complete set of code rules from this new point of

view has been created. The rules are specifically tailored to the modular MBSwD, automated

code generation, and the used compiler.

The target environment has been briefly introduced in sections 3.1 and 3.4, more detailed

information provides the following material:

 PowerPC e300 target (PPC Manual [125])

 Compiler-support and implementation provided by the CompCert (cross-)compiler for

PowerPC (CompCert Manual [57])

 GCC Preprocessor (GCC Preprocess Manual [56])

 GCC Linker (GCC Linker Manual [58])

The coding rules (CR) can be found in Appendix A. They are grouped according the objectives

of DO-331 Table MB.A-5. A large part is compliance with the MISRA C:2012 standard (“Guide-

lines for the use of C language in critical systems”) [126], further on denoted as MISRA C.

5.6 Module design rules

Page 111

5.6 Module design rules

This section presents a rule set, which goes beyond existing modeling guidelines. On the one

hand, the new rules focus on transferring the architectural design and modularization concepts

to SL/SF. On the other hand, they constrain SL/SF as modeling language (safe modeling sub-

set). Objective is to provide a selection of features, which allows modeling that is compatible

with the defined process tasks, as well as with respect to the previously defined design rules.

It also leads to code generated with Embedded Coder that conforms to the coding rules.

The rules represent the best practice approaches gained in the various projects accompanied

by the author. The rules, which are ready-to-use, save companies and engineers, which enter

MBSwD with SL for the first time, from costly, iterative process adaptions to achieve Design

Models that are compatible with a process.

In contrast to the design rules, the structuring of the module design rules in this thesis does

not reflect the DO-objectives. They are roughly divided in overall concepts, the high-level as

well as the detailed design and then describe the usable model elements.

5.6.1 Summary of rules

MR 1 - Naming conventions ... 112

MR 2 - SL/SF as Design Model .. 114

MR 3 - Model compilation .. 115

MR 4 - Module definition in SL/SF .. 117

MR 5 - Unit definition in SL/SF ... 117

MR 6 – PIL and full-image testable units .. 118

MR 7 – Unit encapsulation ... 119

MR 8 – Shared module data ... 120

MR 9 – Multirole module architecture ... 121

MR 10 - Model data ... 123

MR 11 - Workspace usage .. 124

MR 12 - Module data dictionary and encapsulation ... 126

MR 13 - Configuration settings and configuration data dictionary ... 127

MR 14 - Software application model hierarchy and execution rate .. 129

MR 15 - SL model types .. 130

MR 16 - Model simulation mode .. 133

MR 17 - SL data types ... 134

MR 18 - Special floating-point quantities ... 135

MR 19 - Container primitive selection .. 143

MR 20 - Model layers ... 145

MR 21 - Private libraries ... 146

MR 22 – Interface constructs .. 147

MR 23 – Signal ranges .. 148

MR 24 – Component interfaces .. 149

MR 25 – Inter- and intra-module interfaces ... 151

MR 26 – Data store interfaces .. 152

MR 27 - Supported atomic model primitives .. 154

MR 28 - Excluded SL functionality .. 157

5 Modeling framework for safety-critical MBSwD in SL

Page 112

MR 29 – Mapping of model data to safe specializations ... 158

MR 30 – Exported and imported buses .. 159

MR 31 - Exported/imported bus usage ... 160

MR 32 - Data alignment in buses .. 162

MR 33 - Definition of a safe enums .. 163

MR 34 - Usage of a safe enums... 167

MR 35 - Constant and parameter specializations (general) .. 169

MR 36 – Parameter object specializations .. 171

MR 37 – Signals .. 173

MR 38 – Quality restrictions ... 175

MR 39 – DO331 Model Elements not contributing to Low-Level Requirements and Software Architecture . 176

MR 40 - Unused model elements ... 177

MR 41 - Deactivatable model elements .. 177

MR 42 - Run-time error handling .. 178

MR 43 – DO-331 Model Element Libraries .. 180

5.6.2 Naming convention

In addition to the naming conventions in DR 21, further naming constraints are necessary for

SL/SF and its model elements.

MR 1 - Naming conventions

 The provided naming convention document shall be applied.

Publicly available naming conventions incorporated, as in the MAAB guidelines, only define

absolute limitations, like usable characters and length of identifiers. However, the goal of nam-

ing conventions is far beyond that as discussed by Hochstrasser [36] in detail.

Therefore, a naming convention document has been assembled, which is separated into:

 design naming conventions, as specified in DR 21

 project-independent modeling naming conventions, standardizing the naming of model

elements with respect to compliance with modeling and coding rules (e.g., MISRA C),

conflict-free integration of software modules as well as readability of models and code

 project-dependent modeling naming conventions for specifics of the respective project

In the following, some rules just refer to the naming convention document, however a few rules

directly provide naming conventions. In this case, they are just a repetition from the naming

convention document for the sake of completeness.

Contribution 7: A large set of naming conventions has been established ensuring con-
sistent naming of model elements throughout the design. The rules are important to avoid
identifier clashes or identification of responsibilities for model elements in a team-based de-
velopment process.

5.6 Module design rules

Page 113

5.6.3 High-level architectural design

 SW Design overview

This section introduces a common terminology, discusses the repeatedly arising questions,

what exactly the Design Model in SL/SF is, how formal the SL/SF “language” is, and how to

handle a SL/SF model with respect to configuration management.

A SW Design in SL/SF composes of a few core components as shown in Figure 38. This view

is not complete and just highlights the most important ones.

Figure 38: Core components of SW Design in SL/SF

Multiple modules compose the SW Design. It has been decided that each module maps to

exactly one SL project. A SL project is a feature provided by MathWorks serving as container

for artifacts and leveraging additional functionality like dependency analysis, source control

integration, and collaboration features for this scope [124, pp. 16-3ff.].

Functionality is implemented in SL models representing graphical data flow (SL) and state (SF)

diagrams. Multiple SL models form a unit and multiple units form a module (cf. DR 7). Addi-

tionally, there is model data, which is equivalent to module data and has an independent life

cycle of the SL model (cf. DR 7).

Contribution 8: Rules for the high-level architectural design have been defined, which map
the generic Design Rules to the SL/SF development environment. They dictate a consistent
solution to specify interfaces of architectural entities, including rarely applied concepts of
contracting and encapsulation. To the authors knowledge, the provided rule set is the only
rule set addressing modular design / code generation from this perspective and thus signif-
icantly reduces the adoption effort for any reader.

5 Modeling framework for safety-critical MBSwD in SL

Page 114

One SL model is one file in the file format .slx. SL models can call each other, this concept

is called model referencing [124, pp. 8–2ff.]. SL models themselves can have multiple layers,

which are called subsystems [124, pp. 3-10ff.].

The algorithms in SL models are implemented with graphical model primitives (e.g., blocks)

and model data (e.g., data type definition or constants). Graphical model primitives form the

SL model. Model data is associated with the SL model or graphical model primitives.

SL model and subcomponents reference and use modeling environment data, which is not

part of a SL Project, but of the modeling environment. This contains for example settings con-

trolling the behavior of the SL model, the configuration settings. The modeling environment

can also contain additional graphical modeling primitives and model data. The data in the mod-

eling environment is not adaptable by the developer as discussed in section 5.8.

 Design Model

 MR 2 - SL/SF as Design Model

A. The compiled in-memory SL model shall be considered as Design Model.

B. The compiled in-memory SL model shall be identified using the structural
checksum, the file checksums, or both, whatever is appropriate for the given
case.

The DO-331 Glossary describes a Model as in Figure 39.

Figure 39: Definition of the term “model “ according to DO-331 Glossary

Main requirement is its non-ambiguity in interpretation and its usability in analysis, verification,

simulation, code generation, or any combination thereof. A “raw” SL model does not fulfill the

“non-ambiguity” requirement, since it does, for example, not define an execution order of

blocks or can have unspecified data types. However, SL models can be compiled, i.e., they

can be converted into an executable form [124, pp. 3-17ff.]. This process adds the missing

information, like the execution order, and performs semantic as well as syntactic checks. Un-

certainties or errors are reported during the compilation process. The additional information of

the compilation process can be displayed in the SL editor as well. The compiled model in

memory is non-ambiguous. Thus, MathWorks defines the compiled, in-memory representation

of the model as the actual LLRs [32, p.1-10].

5.6 Module design rules

Page 115

Defining the Design Model as in-memory representation comes along with consequences:

 A possibility must be found to uniquely identify the compiled model (e.g., as reference

for verification reports).

 There must be a possibility to generate a persistent export as part of the DO-178C

Design Description (cf. DO-178C 11.10).

 Some verification activities must be performed on the compiled model.

Identifying the configuration of a compiled model is unfortunately not straight-forward. In gen-

eral, three options exist:

1. Structural checksum. The behavior of a compiled model in memory is uniquely identifi-

able by its structural checksum [127, pp. 2-527ff.]. However, structural equivalence ig-

nores fundamental non-functional parts of the model, e.g., the graphical layout, docu-

mentation, or the properties of some parameter constructs. Since the Design Model

represents both architecture and LLRs, one of its primary goals is to explain, how the

software works. Readability thus plays an important role and the structural checksum

is not always sufficient.

2. File checksum. A file hash, as described in [127, pp. 2-636f.], is calculated over all files

contributing to the SW Design. If all file dependencies are known and a combined file

checksum is calculated, the configuration is, in theory, fully identified. Shortcoming is

that the compilation process must behave equally.

3. Model version. The model version is an internal model property, which is incremented

each time the model is saved [124, pp. 4-62ff.]. Similar to the file checksum, it only

describes the Design Model holistically, if all dependencies are known. Main problem

with the model version is that it can be easily tweaked.

In consequence, only a combination of structural checksum and file checksums is a valid ap-

proach for configuration identification of the SL model.

DO-178C requires a Design Description as output of the Design Process defining LLRs and

software architecture (cf. DO-178C 11.10). A human-readable dump of the compiled model in

memory must thus be possible. For the Design Description, MathWorks [32, p. 1-10] proposes

to use the “System Design Description” report export (cf. section 8.1.1).

MR 3 - Model compilation

A. Any SL model shall compile without errors.

B. Warnings thrown during compilation shall be documented and justified.

With the definition of the Design Model, model compilation becomes a central feature, which

should be fully understood. Model compilation can be invoked with the so-called model com-

mand [127, pp. 2-378ff.].

5 Modeling framework for safety-critical MBSwD in SL

Page 116

There are a couple of settings controlling the compilation process, from diagnostic to influential

control and data flow settings. A few very important settings for the given safety-critical process

have been listed in Table 22.

Parameter Description Proposed
Value

Rationale

Block reduction

(BlockReduction)

[128, p. 2-99ff.]

Block reduction removes
redundant data type
conversion, dead design
and fast-to-slow rate
transition blocks from
execution.

Off

All criteria for removal describe design
flaws. If removed from the design, they
will not be discovered in requirements-
based simulation and testing. Reduced
blocks may have traceability to
requirements and imply, that a
functionality has been implemented,
although SL has removed it.

Conditional input
branch execution

(ConditionallyExe-
cuteInputs

[128, pp. 2-102ff.]

Data flow branches are
only executed when
needed, e.g., the inputs
branches to a Switch
block.

On This setting totally changes the
behavior of data flow, and may lead to
severe safety issues and runtime-
errors, if not consistently applied
throughout all SL models, since
developers may assume the wrong
behavior.
Example: If an index is greater than the
maximum size of an array, the last
element shall be selected, otherwise
the element referred by the index. If the
different decisions are implemented in
SL in a conditional branches and
conditional branch execution is off, this
will lead to a runtime-error (both
decisions are always executed, only the
result selection is a true switch). It will
work if the setting is on.

Solver type and solver
(Type/Solver)

[128, pp. 7-11ff.]
[128, pp. 17–14ff.]

The solver type can be
either fixed-step or
variable-step, defining
the step size.
The solver is either
discrete or continuous.

Fixed-
step

and
discrete

Execution on the target happens with
fixed-step size (the step() function is
called periodically with a fixed time
interval).
Continuous states are not supported by
a couple of verification tools (e.g.,
SLCI).

Table 22: Selected simulation configuration settings

5.6 Module design rules

Page 117

 Modules

A SW Design is defined as the aggregation of SW modules, which themselves consist of units

and module data (cf. DR 6 and DR 7).

MR 4 - Module definition in SL/SF

 A. Each module shall base on a single SL Project.

B. Each SL Project shall have a unique name with the following syntax: <module-
ID>_<module-name>.

C. The properties of DR 6 shall be encoded in a project specification XML file
located in the root-folder of the project.

A SL project defines the module scope, since it binds multiple file artifacts together. Listing 1

shows an example module description for (C).

1

2
3
4
5
6

<module xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schemas/mrails-module-schema.xsd">
 <id>fc</id>
 <name>flightcontrol</name>
 <partial-use>0</partial-use>
 <component>1</component>
</module>

Listing 1: XML module description

From time to time, the name mrails is mentioned. mrails is the name of the process-oriented

build tool introduced in section 7. Among others, it provides the infrastructure to create and

manage the modules.

 Units

In SL/SF, a unit must fulfill the requirements imposed by DR 7, which especially include com-

patibility with the testing strategy in section 4.6.3. In particular, this means independent simu-

lation, SIL testing, and PIL testing of the unit interface.

MR 5 - Unit definition in SL/SF

 Any SL model can be a unit. Subsystem blocks of SL models shall not be used as
unit.

SL models have a defined interface and are easy to handle in configuration management,

since they are a single file. Subsystem blocks (or just called subsystems) are not independently

testable in SIL and PIL. Section 5.6.4.1 refers to further details on other options and their ad-

vantages or disadvantages.

5 Modeling framework for safety-critical MBSwD in SL

Page 118

MR 6 – PIL and full-image testable units

 A. Inputs, outputs or intermediate values, which must be set or observed, shall
be exported by a Simulink.Signal with a unique identifier as (SINGLETON SIGNAL
as further explained in. MR 37).

B. Simulation cases with reusable models as tested interface shall never be de-
clared as full-image tests.

C. Intermediate values (inputs, outputs, states,…) shall never be observed and
controlled in simulation cases.

The main challenge is making input, outputs, states, and intermediate values accessible on

the target. Inputs and outputs of the tested interface are always accessible, but if the SL model

is tested in the context of another model (which is also the case in a full-image test), inputs

and outputs become intermediate signals.

Intermediate signals and states in SL are only visible in C code, if they are translated to globally

visible identifiers in C code. Embedded Coder can do this for every signal, but both PIL and

the full-image testing framework need to know, how a signal in SL maps to its related variable

in code. This traceability is the main challenge.

By default, signals are mostly translated to local variables and the naming is generated by

Embedded Coder. The way of making signals global is attaching a so-called Simulink.Signal

object to a signal line in SL. The Simulink.Signal object allows specification of further coder

settings. Most important is the so-called storage class, which controls whether a signal is trans-

lated to a global variable and how it is named in code.

An ExportedGlobal storage class ensures that a globally accessible variable of the same

name is generated in Source Code for the respective signal [96, pp. 19-160ff.]. This variable

is written once during one execution step. In consequence, the storage class is only usable in

SL models, which are executable once.

SL models, which have the ability to be executed multiple times (reusable models), cannot use

this storage class. They have to use the SimulinkGlobal storage class [96, pp. 19-160ff.].

The storage class exports signals as global variables as well, but does not have the naming

restriction. Embedded Coder adds a (random) postfix for every instance.

In the case of ExportedGlobal storage classes, the trace between signal name and identifier

name in code can be estimated, since both have the same name.

For signals of type SimulinkGlobal, it is not straight-forward as shown in example 2 of Ap-

pendix C. At the time when this thesis was written, no direct way to obtain the mapping in

R2017b was known to the author. Different workarounds to extract trace data from supported

data exchange interfaces have been tried out, but came up with significant implementation

effort (cf. C API [96, pp. 43-2ff.]) or were even not applicable (e.g., ASAP2 export does not

support SimulinkGlobal storage class [96, p. 44-9]).

5.6 Module design rules

Page 119

To sum up, in PIL, inputs of reusable models can be controlled and outputs be observed, if the

reusable model is the model under test, and not a nested model. Intermediate signals of reus-

able models, i.e., also inputs and outputs of nested models, can never be written or observed.

Since a reusable model is not the tested interface in a full-image test, no test case of reusable

models can be executed on a full-image.

Models, which can only be executed once, support both, PIL and full-image tests.

A final word on states, like in the Unit Delay block [127, 1-1723ff.]. For all states, the same

requirements as for intermediate signals apply. If they shall be controllable and observable,

they must be exposed by defining the appropriate storage class and a name.

MR 7 – Unit encapsulation

 A. Public and private SL models shall be distinguished. Public models are usable
in other modules, private models shall not be used in other modules.

B. SL models shall be labeled as public and private in SL Project in a category
called Access. Unset labels shall be conservatively interpreted as private.

SL models are functions and shall be encapsulated on module-level according to DR 8. Dis-

tinguishing public and private accessibility is a known concept from object-oriented program-

ming.

SL and SL Project have no built-in functionality to restrict the accessibility of models. Thus a

workaround had to be found. SL Project allows placing meta data in form of labels on files,

which are part of the project. Custom labels are allocated to custom categories. Figure 40

illustrates the usage of labels.

Labeling SL models does not preempt invalid referencing. However, it can be verified with a

check afterwards.

Figure 40: Custom encapsulation (access) labels in SL Project

5 Modeling framework for safety-critical MBSwD in SL

Page 120

 Module architecture

Modular development always reveals a dilemma of affiliation. In Figure 41, the component

module references (integrates) two other modules, the auto flight and the system automation

module. fc_main() calls af_core() and sa_moduleSwitch() with passing the sensor data.

The data type of the sensor data is specified by a Simulink.Bus. Simulink.Buses are model

data, which allow the specification of a structured data type in SL (cf. MR 30). The question is

now, in which module the Simulink.Bus object is stored. The answer is that it is not possible in

any of the three modules. If it was stored in the component module, both the auto flight and

the system automation module would not be able to access it. If it was stored in the auto flight

module, the system automation module would not be able to access it.

Figure 41: Interface affiliation dilemma

MR 8 – Shared module data

 Save shared data in defined, globally managed modules.

In software design, it is good practice to keep shared data between modules in a separate

module [129, p. 15]. Suggested is a module structure according to Figure 42 managing shared

data globally. The figure shows example module dependencies for a flight controller. The “Auto

Flight Control” embeds the “Inner Loop Control”. The “Communication Protocol” and “Monitor-

ing” modules are independent of the “Inner Loop”. Functions and data shared between projects

and modules is sorted out into a project-specific global module. All modules integrate this

shared module, either directly or through transitive dependencies (e.g., in Figure 42, module

2 includes the global module through module 3). This eases configuration management dra-

matically. All modules are finally integrated into a single component module. All modules are

subject to the module process and the component module is additionally subject to the com-

ponent process.

In the previous example, the project-specific global module would hold the Simulink.Bus data

type specifications for inter-module interfaces.

System automation module

(sa)

Component module (fc)

fc_main()
(integration unit)

sa_modeSwitch()
(public unit)

Auto flight module (sa)

af_core()
(public unit)

Sensor dataSensor data

5.6 Module design rules

Page 121

Figure 42: Example module dependencies/architecture

In the best case, a module architecture serves multiple purposes:

 It defines the required modules, their naming, the dependencies and interfaces be-

tween the modules a priori to implementation.

 It helps to allocate requirements to modules.

 It can be reused as integration model that allows both simulation as well as code gen-

eration of interfaces in the end.

The following outlines a simple approach for such a “multirole” module architecture.

MR 9 – Multirole module architecture

 A. A module architecture shall be defined during D1C using SL by

 creating empty harnesses for units with Subsystem blocks in the com-
ponent module

 defining interfaces between units in different modules, preferably with
Simulink.Bus objects in a project-specific global module.

B. Implemented units shall be integrated into the component module by replacing
the harnesses during DM of the component process.

The idea of the architecture process shall explained using the example architecture in Figure

43. The boxes represent units. The two-letter notation indicates the module they belong to.

Note that a single module can contain multiple relevant units. All external inputs are routed

through “Input conversion, monitoring, and voting”, and all outputs through “Output conversion,

monitoring, and voting”, which are implemented in the top-level model.

A B

Project-Specific

Global

Module 1
e.g. Communic.

Protocol

Component Module
e.g., Flight Control
Integration (A is integrated in B)

Module 2
e.g. Trajectory

Control

Module 3
e.g. Inner Loop

Control

Module N
e.g. Monitoring

Subject to component and

module processes (C,M)

Subject to module process

only (M)

5 Modeling framework for safety-critical MBSwD in SL

Page 122

Such a module architecture is defined in D1C. Therefore, the modeling tool (SL/SF) is already

used, since the module architecture shall transition into the future top-level model later on.

Each public unit is replaced by a unit harness, since the actual implementation does not exist

yet. As unit harness, a Subsystem block is used, which is exchanged by the actual SL model

later on. Each unit harness is assigned to a module and to each module, requirements are

allocated. Since units belong to modules, they implicitly define module dependencies.

The interfaces of each unit harness are modeled in SL/SF and should use Simulink.Bus ob-

jects. The interface definitions (Simulink.Bus objects) are stored in the project-specific global

module. The module architecture is stored in the component module, since it becomes the top-

level model.

In DM of the component module, implemented units are integrated into the module hierarchy

by replacing the harnesses with the actual SL models. The module architecture is continuously

transformed into the final, executable top-level model.

A nice side effect is that architecture and interfaces are available prior to the implementation

and test cases can be developed in parallel and independently from the actual implementation.

Figure 43: Example module architecture

The presented approach is a workaround, which tries to cope with the missing architecture

design features of SL/SF in the used release. It works best for flat hierarchies, if units are not

nested and requires that a limited number of public units exists in each module.

 Model data

Model data in Simulink can be broken down into two main classes:

 Simple MATLAB variables

 Complex SL Data Objects, i.e., Simulink.Parameter, Simulink.Bus, Simulink.Signal, …

[124, pp. 59-53ff.]

Input conversion,
monitoring, and voting

al_core()
(main auto land

algorithm)

af_core()
(main autoflight

algorithm)

Output conversion,

monitoring, and

voting

External interfaces

Software Application
fc_main() [top-level unit in component module]

sa_modeSwitch()
(main system

automation)

Functionally

organized

output data

Parameter

Data Item

Inter-module interfaces

unconstrained

wide/narrow

tc_core()
(main trajectory ctrl. algorithm)

il_core()
(main inner loop control

algorithm)

Unit harness

narrow

narrow

Modules: [AF] auto flight [AL] auto land [FC] flight control (component)

[GB] project-specific global [IL] inner loop [SA] system automation

[TC] trajectory control

gb_sensorData

Contract type

narrow

narrow

Data store

narrow

Unit of component module

5.6 Module design rules

Page 123

MATLAB variables are of basic MATLAB data types like double, uint8, or structure and can be

scalar, arrays, or matrices. They are independent of SL, i.e., they can be referenced in SL, but

cannot deeply interact with SL. In contrary, SL data objects are variables, which can (re-)define

data types, aliases, or parameters. They have pervasive impact on simulation or code gener-

ation behavior of SL and Embedded Coder.

MR 10 - Model data

 A. All data, which is stored outside SL models (in so-called workspaces), shall be
considered as model data.

B. Model data is equal to module data (DR 7).

All model data referenced in SL/SF diagrams must be stored apart from the model in a work-

space, otherwise we do not consider it as model data. Scalar values explicitly inserted in a

block dialog are not considered as model data.

To store model data, SL provides three workspaces: the base workspace, the model work-

space, and SL data dictionaries [124, pp. 63.2ff.].

The base workspace is volatile. Data must be written into the workspace at project startup. It

is a global storage, which can be accessed, overwritten, and cleared from everywhere within

MATLAB. The base workspace has the weakest usability features (e.g., sorting, filtering,

searching,…).

The model workspace is persistent and either stores data in a separate file or directly in the

model. The scope of the data is limited to the model. To avoid identifier clashes during code

generation, the model workspace does not support data with global storage class including

Simulink.Bus objects in R2017b.

Data dictionaries store data persistently in a binary file. Data dictionaries can reference each

other. In R2017b, duplicate entries (same name) caused by referenced data dictionaries throw

an error. In contrast to all other workspaces, data dictionaries support the insertion of tracea-

bility links to requirements for the model data. Coming along with various features to work with

the data content, data dictionaries provide the highest usability. Usage of base workspace and

data dictionary is exclusive in R2017b, a model can either link to the shared base workspace

or to a data dictionary. Figure 44 shows the screenshot of a SL data dictionary.

5 Modeling framework for safety-critical MBSwD in SL

Page 124

Figure 44: SL data dictionary with model data

MR 11 - Workspace usage

 A. The concept of Figure 45 shall be followed to decide on the used work-
space.

(1) All data, which is not used by the Design Model, shall be exclu-
sively initialized into the base workspace (e.g., signal logging, test
input and output data). This data is not considered as model data.

(2) Data, which is referenced by different models or across modules
shall be stored in the data dictionary.

(3) If the data is only used in a single model, and if it is scalar, nu-
meric and no tunability is required, it can be stored in the model
workspace.

B. Names of model data in the model workspace shall be prefixed with m_.

Data in the data dictionary shall be prefixed with the module ID.

5.6 Module design rules

Page 125

Figure 45 outlines the proposed strategy for workspace usage in a flow diagram.

Figure 45: Workspace usage

The concept extends the suggestions of MathWorks [124, pp. 59–96ff.]. Data referenced by a

Design Model shall only be placed in data dictionaries and model workspaces (1). Especially

in case of modularization, scoping and overwrite protection of variables is of importance, which

is not supported by the base workspace. From experience, errors can occur, which are difficult

to detect, if independently developed modules initialize the variables and overwrite each other

in the base workspace.

If data is used in different models or across modules, it must be placed in a data dictionary (2).

If it is only locally used, the developer can place it in the model workspace, presumed it fulfills

the requirements. In order to control parameter and signal coding properly, as discussed in

section 5.6.4.7, and since the model workspace does not support global data, it was a design

decision to restrict the variables to numeric, scalar values.

To distinguish local model workspace from global data in the data dictionary easily, names of

model workspace data shall be prefixed by m_ (B).

Finally, it shall be mentioned that data dictionaries have two major shortcomings. At first, they

store persistent data in a binary file. From the viewpoint of a version control system, these files

are black boxes. The tools cannot display the actual changes, nor can the user identify or

merge changes retrospectively in the source control tool without MATLAB. No plugin for source

control systems easing this pain is known to the author.

5 Modeling framework for safety-critical MBSwD in SL

Page 126

Second, data is sometimes more than a scalar value. For example, large matrices are hard to

enter in the data dictionary and calculations during initialization are not possible. For parame-

ters, it makes sense to have scripts for initialization, which update the respective data diction-

ary entries at initialization. However, this changes a design artifact during each initialization,

which is a highly undesired behavior. A good solution could not be found yet.

Figure 45 anticipated the term module data dictionary, which is further elaborated in the fol-

lowing. In general, each SL model can link to a single SL data dictionary. Data dictionaries

itself can reference an unlimited number of other data dictionaries.

MR 12 - Module data dictionary and encapsulation

 A. Each module shall contain two SL data dictionaries, the private and public
module data dictionary. Model data placed in the private dictionary shall be
usable in the module of the data dictionary, only. Model data in the public dic-
tionary shall be accessible/usable in other modules, too.

B. All SL models of the module have to link to the public dictionary, which refer-
ences the private dictionary.

C. The private dictionary shall reference a global configuration data dictionary,
which is provided with the modeling environment and contains, for example,
configuration settings.

D. The public dictionary shall reference the private dictionary.

E. The public dictionary may reference public dictionaries of other modules, on
which it depends.

The implementation in R2017b as described is shown in Figure 46. This is not the desired

referencing, since module data cannot be truly hidden this way and an analysis is necessary

to identify inappropriate access. The public module dictionary sees all content of the dependent

public module dictionary, which itself sees all content of the dependent private module diction-

ary. So also the module dictionary sees private module data of the dependent module. Unfor-

tunately, this is the only way to implement it in R2017b.

Figure 46: Implemented SL data dictionary dependencies

5.6 Module design rules

Page 127

The desired referencing of data dictionaries is illustrated in Figure 47. In this case, the SL

model would only have access to the private module data dictionary of its own module and to

all public data dictionaries. However, this was not implementable in R2017b, since model data,

which is not visible for the user, is also not accessible for SL model simulation. So the simula-

tion will not run, if not all data is visible to all models.

Figure 47: Desired SL data dictionary dependencies

Every SL model requires an active configuration set, which defines simulation and code gen-

eration behavior. Technically, configuration settings can either be stored in the model (default),

or externally.

MR 13 - Configuration settings and configuration data dictionary

 A. Configuration settings shall be stored externally to SL models in the configu-
ration data dictionary.

B. Each SL model shall only contain a single (active) configuration reference to
the correct configuration setting.

If configuration settings were stored in the model, every developer would be able to locally

change the settings for each model independently. This might lead to incompatibilities and

safety issues. The recommend approach is thus to use configuration references, which, literally

spoken, place a link to an externally stored, centrally managed configuration set [124, pp. 13-

29ff.]. The best solution is to store these configuration settings in a separate configuration data

dictionary and provide it as read-only part of the modeling environment.

5 Modeling framework for safety-critical MBSwD in SL

Page 128

5.6.4 Detailed design

The previous sections demonstrated the general organization of the Design Model in SL/SF

and discussed high-level architectural guidelines. The content of SL models or model data has

not been introduced.

For the detailed design, a safe subset of SL/SF features, which define all model elements “from

which the model is constructed” (DO-331 p. 82), has been defined. Figure 48 illustrates a

structural breakdown of the complete safe subset of model elements chosen for SL/SF. Only

such a drastically constrained subset supports robustness of the process and compliance with

all tasks to be done for development and verification.

Most general groups are the diagrams itself, the graphical primitives, from which they are com-

posed of, as well as the model data. These three groups are further broken down into selected

SL and SF elements or features. From all of the features in SL/SF, only a few have been

selected as shown in Figure 48. For the third level, the selected features are further constrained

concerning their usage, settings, or parameterization. This finally leads to so-called safe spe-

cializations. They are highlighted in the following with DIFFERENT FORMATTING.

Graphical model primitives require some additional explanation. They have been divided into

atomic primitives and container primitives. In contrast to container primitives, atomic primitives

cannot be further decomposed into further atomic or container primitives. Safe Specializations

for all graphical model primitives are given in the DO-331 Foundation Library, which is a col-

lection of atomic blocks.

In the following, the safe specializations will be presented.

Contribution 9: A safe modeling subset for SL/SF has been assembled. It is a set of well-
defined and justified rules limiting SL/SF features and adding conventions. They cumulate
best practices collected by the author in the various accompanied projects. In contrast to
many other existing guideline sets, which blacklist prohibited features, a whitelisting ap-
proach is followed. Only features from a permitted subset shall be used. This safe modeling
subset targets compatibility of the process, tools, and tasks. It is usable out-of-the-box and
significantly lowers the adoption risk, with which large and small companies struggle. Incre-
mental try-and-error to reach a compliant guideline is significantly reduced. The rules are
also an important pillar for generation of modular code.

5.6 Module design rules

Page 129

Figure 48: Model element hierarchy overview

 SL models

Some deeper considerations for SL models are necessary. Theoretically, models within the

same call hierarchy may also be executed with different sample times. However, the following

restrictions apply.

MR 14 - Software application model hierarchy and execution rate

 A. In the whole software application, there shall be a single model (call) hierarchy
with a single root model.

B. All models within the hierarchy shall be executed with a single execution rate
and thus be simulated with the same application sample time.

Multi-rate execution immediately raises verification questions and tool compatibility issues

(e.g., with SLCI). It also complicates worst-case-execution-time (WCET) analysis. Thus, this

feature has been excluded by (B).

Abstraction Layers
Selected SL/SF

Elements

Safe

Specializations

DO-331

Foundation

Library

Model Element

Data Flow / State Diagram

Graphical

Model Primitiv e

Model Data

SL Model

SL Library

Atomic Primitiv e

Container Primitiv e

Model Ref erence

Subsy stem

Dataty pes

Constants &

Parameters

Signals

Simulink.Bus

Simulink Data

Dictionary

Enumeration

Ty pe

Basic

Imported Bus

Exported Bus

Saf e

Enumeration

Simulink.Signal

Singleton

Signal

MATLAB Variable Constant

Simulink.

Parameter

Constant Parameter

Parameter

Data Item

Selected Atomic

Primitiv es

Priv ate Library

Top-lev el model

Singleton model

Reusable model

Datastore

Signal

5 Modeling framework for safety-critical MBSwD in SL

Page 130

Each SL model must be linked to exactly one configuration set, which defines the simulation

and coding behavior of the model. For units, different SL model types are distinguished by

different configuration settings.

MR 15 - SL model types

 A. Separate configurations settings for three different model types shall be used.

 TOP-LEVEL MODEL

 SINGLETON MODEL

 REUSABLE MODEL

B. A TOP-LEVEL MODEL always represents the root model of the software applica-
tion model hierarchy. It shall not be included somewhere else in the hierarchy
or in other hierarchies. Only one top-level model can exist in the component
module.

C. A SINGLETON MODEL shall be referenced once in a model hierarchy. Any dupli-
cate use shall cause a simulation and coding error.

D. A REUSABLE MODEL can be referenced multiple times in different contexts.

Having three SL model types has been proved as best practice. They differ in the number of

allowed instances, intended use and code interfaces as listed in Table 23. The referenced

parameters are documented in the Simulink and Embedded Coder Reference [130, 131].

5.6 Module design rules

Page 131

 TOP-LEVEL MODEL SINGLETON MODEL REUSABLE MODEL

Indented use Root-level model Uniquely used
functionality

Library / utility functions

Number of instances in model
hierarchy

 (ModelReference
NumInstancesAllowed)

One16 One Multiple

Nested model types Singleton / reusable Singleton / reusable Reusable

Periodic sample time
constraint
(SampleTimeConstraint)

Unconstrained Unconstrained Ensure sample time
independent

Fundamental sample time

(FixedStep)
Application sample time Application sample time n/a

Code function interface initialize
step

<model-name>_initialize
<model-name>_Init

<model-name>_Reset
<model-name>_Disable

<model-name>_initialize
<model-name>_Init

<model-name>_Reset
<model-name>_Disable

Code data interface

(CodeInterfacePackaging)
Nonreusable function Nonreusable function Reusable function

Pass root-level I/O as

(RootIOFormat)
Structure reference Individual arguments Individual arguments

Remove Reset Function

(RemoveResetFunc)
Yes No No

Remove Disable Function

(RemoveDisableFunc)
Yes No No

Terminate function required

(IncludeMdlTerminateFcn)
No No No

Support of Inf and NaN in
code generation

(SupportNonFinite)

Yes No No

Inf / NaN Diagnostics
(SignalInfNanChecking)

None Error Error

Data store – Detect read
before write

(ReadBeforeWriteMsg)

Ensure all error

Disable all Disable all

Table 23: Model type properties

16 The setting also allows Zero instances, which seems reasonable for the root model at first glance, but also pro-

hibits embedding the model into test harnesses or other models for simulation testing purposes.

5 Modeling framework for safety-critical MBSwD in SL

Page 132

REUSABLE MODELS have various limitations concerning simulation [124, pp. 8–105ff.] and cod-

ing [96, p. 4-28]. The following list summarizes the most important ones:

 Hierarchical restriction: SINGLETON MODELS cannot be nested in REUSABLE MODELS,

since it would on the one hand undermine their uniqueness, and on the other hand not

be compatible with exchangeable workspace structures on code level. In other words,

REUSABLE MODELS can only reference other REUSABLE MODELS. For example, “Reusa-

ble Model D” cannot contain “Singleton Model E” in Figure 49.

Figure 49: Model Hierarchy

 Iterative Subsystems blocks: Only REUSABLE MODELS can be nested in iterative subsys-

tems.

 Signals usage: TOP-LEVEL MODELS and SINGLETON MODELS have different requirements

concerning the storage class of signals compared to REUSABLE MODELS (cf. MR 37).

 In SF, reusable models impose restrictions, especially for graphical functions.

In order to embed REUSABLE MODELS into iterative subsystems (for-iterator Subsystem block),

they are not allowed to contain sample times other than Inf or -1. Since SL models with uncon-

strained sample time value Auto cannot be coded without disabling important diagnostics, the

sample time constraint has been set to Ensure sample time independent, which is on the

other side a non-fatal code inspector compatibility (cf. handling of SLCI incompatibilities in

section 8.2.10).

The function and data code interfaces for the TOP-LEVEL MODEL are mainly driven by the inter-

face requirements (cf. DR 12 and DR 13). By setting the interface mode to “Structure Refer-

ence”, Embedded Coder generates a _U structure containing fields for all Inport blocks and a

_Y structure containing fields for all Outport blocks. Furthermore, a void-void call interface is

generated for the TOP-LEVEL MODEL. For nested models, passing variables as individual argu-

ments improves performance, since the values do not have to be copied into a single structure

before being passed.

5.6 Module design rules

Page 133

Conditionally executed models

A special topic are models in conditionally executed contexts, this means for example in atomic

subsystems, which are only executed, if certain conditions hold [124, pp. 10-3ff.]. If models

with states are placed in a conditionally executed context, they require a reset and disable

function in C code. For example, they may be configured to reset all states when activated. To

generate a reset function, the general model configuration setting RemoveResetFunc must be

disabled. The reset function is then always generated, if the model contains states, inde-

pendently of whether it is called or not.

If a SL model is never used in a conditionally executed context, the reset function is Dead

Code. All uncalled (and finally noncovered) functions in the Executable Object Code are Dead

Code according to DO-178C, if well-defined exceptions do not apply (cf. section CR 14).

One way to resolve this issue is the introduction of additional configuration sets, e.g., a condi-

tional singleton and reusable model. This increases the number of model types to five. How-

ever, the problem are models, which are in partially usable library modules. They are inde-

pendently developed, so it is not possible to predict, whether they are used in a conditional

context or not later on. Consequently, different variants would be needed, leading to significant

overhead.

An alternative way is to ensure that uncalled functions are safely removed by the compiler, so

that the exception for safely removed code applies (cf. section CR 16). This approach has

been chosen here. Ensuring safe removal is part of the Integration Process not covered by this

thesis.

Support of special quantities

Most modeling guidelines prohibit support of e.g., Inf and NaN floating-point numbers through-

out all models. The support can be globally disabled in the configuration and SL throws an

error as soon as those quantities occur during simulation. However, the top-level model has to

cope with unconstrained inputs (cf. DR 11) and must allow robustness simulation testing and

generating code, which checks for special quantities. Thus the settings of the top-level model

have been chosen to support special quantities. SLCI flags these settings as non-fatal incom-

patibilities, but as long as no specific blocks for special quantities are used, no verification

problems could be observed.

MR 16 - Model simulation mode

 Models and model references shall be saved with the Normal mode selected.

SL supports different simulation modes to execute the model. The respective compilation is

subsequent to the model compilation in MR 3.

The different simulation modes use different methods to build an executable model. Normal,

Accelerator, and Rapid Accelerator modes use in-memory representations for simulation or

generate optimized code and compile it. SIL (“software-in-the-loop”) and PIL (“processor-in-

the-loop”) modes actually generate the final Source Code and compile this code for simulation

on either the host or the target computer. [124, pp. 8-37f.]

5 Modeling framework for safety-critical MBSwD in SL

Page 134

Only Normal mode is considered as simulation of the Design Model. In all other modes, the

compiled model passes a code generation process afterwards (also in Accelerator mode, sep-

arate executable applications are generated [124, pp. 8-54ff.]). Furthermore, only the Normal

mode supports all runtime diagnostics [124, p. 8-39] and the Accelerator mode cannot be used

for model coverage recording [101, p. 1-2].

Setting the Normal mode as default also has a practical reason. Accelerated execution can be

forced for a model hierarchy with models in Normal mode by setting the simulation mode of

the root model to Accelerator mode, but nested models that are in Accelerator mode can never

be forced to run in Normal mode from the root model [96, pp. 64-37f.].

 MR 17 - SL data types

 A. Only the basic SL/SF data types and their mapping to the data types supported
by the compiler and target hardware according to Table 24 shall be used.

Simulink Data Type Typedef in Source Code Mapping to CompCert
Compiler Data Types as
defined Section 6.5.4

Boolean boolean_T unsigned char

uint8 uint8_T unsigned char

uint16 uint16_T unsigned short

uint32 uint32_T unsigned int

int8 int8_T signed char

int16 int16_T short

int32 int32_T int

single (IEEE 754 single
(32 total bits, 8 exponent
bits))

real32_T float

Double (IEEE 754 double
(64 total bits, 11 exponent
bits))

real64_T double

Table 24: Data type mapping between Simulink and CompCert language set

B. Simulink.Bus data types shall be supported.

The data types supported by the compiler and target hardware are mapped to built-in SL data

types with identical bit and byte representation as shown in Table 24. In terms of tool compat-

ibility, only the built-in SL data types for integers and floating-point arithmetic are used and

custom data and alias types [127, pp. 5-157ff.] are avoided. Simulink floating-point data types

are used as defined in [127, p. 2-283]. Built-in fixed-point data types and complex numbers are

convenient but not supported by SLCI in R2017b [121, p. 3-6].

Simulink.Bus data types [127, pp. 5-207ff.] combine multiple basic data types into a single,

hierarchical structure. Section 5.6.4.7 provides a detailed discussion.

5.6 Module design rules

Page 135

MR 18 - Special floating-point quantities

 Introduction of special floating-point quantities aside from unconstrained interfaces
shall be avoided.

Special floating-point quantities, like NaN or Inf, are part of the floating-point specification, but

require additional attention. The behavior in C is often unspecified, undefined, or implementa-

tion-defined. The values most often indicate a calculation error and behave differently than

ordinary values. They do not represent mathematically treatable values anymore and in many

cases lead to unexpected behavior or malfunction of the application software.

The first source of special floating-point quantities to be considered are constants used in

SL/SF models. For example, automatically calculated, multi-dimensional gain tables used in

lookup table functions. This case is covered in simulation and code generation. During Normal

mode simulation, the diagnostic SignalInfNanChecking throws an error, if the lookup table

block (or any other block) outputs a NaN. However, if the related breakpoints never hit the field

with the special quantity, it remains undiscovered. During code generation, Embedded Coder

throws an error if the configuration setting SupportNonFinite is disabled. In the special case

with the lookup table blocks, a non-finite parameter is also a SLCI incompatibility flagged by

respective checks.

The second source for special floating-point quantities are component interfaces. Component

interface handling is discussed in DR 14 and MR 17. The third source are arithmetic run-time

errors (cf. MR 42).

 SL container primitive usage

Container primitives are core components of the SL/SF modeling language with various con-

figuration settings. They are used to structure models into layers and influence simulation be-

havior or generated code. Choosing the wrong types of container primitives can cause signifi-

cant difficulties for configuration management, verifiability, compatibility with verification tools,

and maintainability of the Design Model. In the SL documentation [124, pp. 15-31ff.], some

aspects of the different modeling approaches are discussed, but not from process-related

viewpoints.

Therefore, a detailed comparison between container primitives in the scope of MBSwD has

been made. It highlights the pros and cons of each approach and gives a final recommenda-

tion. The criteria are a valuable reference for process planners.

An overview of all container types is depicted in Figure 50. Main group of SL container primi-

tives are model references and subsystems. Model references are graphical model elements,

which can embed other SL models. Counterpart of model references are subsystems. They

allow layering within a model.

5 Modeling framework for safety-critical MBSwD in SL

Page 136

Figure 50: Types of container primitives

Settings of container primitives determine the behavior during simulation and code generation.

Model reference behavior is defined by the type of the linked SL model, whereas subsystem

behavior can be controlled in the properties of each Subsystem block or is inherited from the

calling context.

Virtual subsystems are for visual support only. Execution order optimization of blocks and var-

ious other simulation optimizations are performed over subsystem boundaries. In contrast,

blocks inside an atomic subsystem are treated as a unit, they are executed together and the

user has the possibility to influence, when and if they are executed.

One goal of container primitives is encapsulating content and reuse it at different places (reuse

for modeling purpose). Model reference blocks call other models. They can be called multiple

times, if they have a configuration, which allows this. The behavior and execution of the linked

model is independent of the calling context. Models have a defined interface specification

(some values can be propagated, but must always depend on the content of the model itself).

Every model links to a fix configuration set (cf. MR 13). Configuration parameters are not in-

herited from calling contexts.

The mechanism of a subsystems is different. Subsystems can be reused only, if they are

placed in a SL library (cf. Figure 52). SL libraries are SL models, which are not executable and

do not have an attached configuration set. In the calling SL models, a subsystem library link

can be added wherever needed. In a non-compiled model, a linked subsystem just synchro-

nizes with the subsystem in the SL library. A change in the SL library propagates to all linked

subsystems, i.e., they can be centrally changed. But when compiling the model, a new, inde-

pendent instance is created for each linked subsystem. The instances of linked subsystems

inherit the configuration from the model they are embedded in. If not fully defined, also the

interface may be inherited from the context. The behavior of the subsystem thus always de-

pends on the context and can never be verified sufficiently apart from it. In other words, during

modeling, linked subsystems have a common source. During compilation, they become sepa-

rate instances. Subsystems in SL libraries should be considered as underspecified design pat-

terns, like templates in a C++ programming language.

S
im

u
la

ti
o

n
C

o
d

e

Model reference

Singleton model Reusable model

Subsystem

Virtual Atomic

Auto Inlined Nonreusable Reusable

5.6 Module design rules

Page 137

Figure 51: Example SL library

The container primitives also have influence on the reusability on code level, i.e., that C func-

tions are generated, which can be called multiple times and from multiple contexts. Code of

model references always contains independent functions. Whether they are callable multiple

times is equal to the behavior on model-level and depends on the SL model type.

For subsystems, there is no correlation between reusability in the model and reusability of the

code. A subsystem can be reused through a SL library on model-level, but may generate sep-

arate code each time. At the same time, depending on the setting, Embedded Coder may

generate a common C function for subsystems, which are not linked libraries. Since this can

only happen, if Embedded Coder considers two subsystems as equivalent, it is good practice

to keep those subsystems in SL libraries as well.

Virtual subsystem code can never be encapsulated in functions on code level (due to the blurry

boundary and optimizations). Atomic subsystems are always kept together in code, either as

cohesive, inlined code section, or as separate function. The function packaging setting controls

code placement and is independent of whether the subsystem is in a SL library (and thus

reusable on model-level) or not. The following options are available as explained in [127, pp.

1-1538ff.]:

 Atomic subsystem with function packaging setting Inline. Embedded Coder inte-

grates all code into the code of the higher context, but keeps it in cohesive code lines.

 Atomic subsystem with function packaging setting Nonreusable Function. Embed-

ded Coder generates a separate function for each subsystem.

 Atomic subsystem with function packaging setting Reusable Function. Embedded

Coder uses the structural checksum to identify subsystems of the same functionality

and unites them to a single function in C.

In principle, there are two extreme cases for container usage. The whole hierarchy is structured

with models only and subsystems are not used, or a single SL model exists that contains a

single large diagram structured with subsystems only.

5 Modeling framework for safety-critical MBSwD in SL

Page 138

Both subsystems and model references have their advantages and disadvantages. A qualita-

tive evaluation of various criteria has been performed for each container primitive. The results

are displayed in Table 25. (●) indicates that the aspect is well supported, (○) that it can be

partially fulfilled, and () means that the requirement cannot be fulfilled at all. The rating is

discussed in detail below.

Requirements Model Reference Subsystem

Singleton Reusable Virtual Inline Nreusable Reusable

SLCI support ● ● ● ● ○

Hiding of details of the
design and introduce layers
into the model

● ● ● ● ● ●

Usability (less effort to
create new containers and
manage them)

○ ○ ● ● ● ●

Simulatability
(unconstrained simulation)

○ ○ ● ○ ○ ○

Simulation efficiency ○ ○ ● ● ● ●

Debugging capabilities ● ○ ● ● ● ●

Separate review and
analysis of design

● ● ○ ○ ○

Reusability/re-entrance on
model-level

 ● ● ● ● ●

Independent simulation
testing

● ● ○ ○ ○ ○

Model coverage
accumulation of different
instances

n/a ●

Code componentization ● ● ● ●

Independent code
generation

● ●

Code efficiency ○ ○ ● ○ ○ ○

Reusability/re-entrance on
code level

 ● ○

Separate review and
analysis of code

● ●

Independent SIL testing ● ● ○

Independent PIL testing
(with custom PIL tool)

● ●

Table 25: Qualitative usability analysis of container primitives in R2017b

SLCI Support

SLCI supports all types of models. For atomic subsystems, only the Inline and Non-Reusa-

ble Function settings can be verified. Latter is restricted to a narrow configuration requiring

a manually named function with a void_void interface. The function is always coded into main

model source file (file name must be Auto). [121, p. 3-55]

5.6 Module design rules

Page 139

Although Reusable Function code packaging of subsystems is not supported by SLCI in

R2017b, it has been added to the comparison, since support has been added in R2018a17.

Usability

The use of SL models is less convenient. For each SL model, a separate file has to be created,

a configuration set as well as a data dictionary must be linked. Subsystems are created by

dragging them from a library into the model. In R2017b, SL models are always separate win-

dows, which may become confusing.

Simulatability (unconstrained simulation)

All containers except virtual subsystems impose requirements on the design.

If an optimization over the subsystem boundaries is beneficial, virtual subsystems are prefer-

able. This is the case, if algebraic loops [124, pp. 3-37ff.] shall be resolved automatically or the

purpose of the system is mainly signal routing.

Atomic subsystems are required for conditional and iterative execution (e.g., enabled subsys-

tems).

Models have stronger constraints on interfaces than subsystems, e.g., subsystems can inherit

data types from the higher context, models must explicitly specify or derive them from their

own content. Model references, especially REUSABLE MODELS, impose further restrictions as

discussed in MR 17.

Simulation efficiency

From experience, subsystem-based approaches are faster than separate models concerning

loading and initialization in normal simulation mode, since each model causes some overhead.

However, in Accelerator mode, models may leverage incremental build capabilities (dependent

on the settings).

Debugging capabilities

The debugging capabilities of model references are more limited than those of subsystems. In

contrast to subsystems, debugging in nested models is only possible in normal execution

mode, not in Accelerator mode (R2017b).

Additionally, in R2017b, only one instance can be opened in a separate window at the same

time. The visible instance must be separately and explicitly selected in the “Model Block Nor-

mal Mode Visibility” dialog. Simply opening the model does not change the visible instance

and it can also not be changed during execution. If the visible instance is not correct, wrong

data is displayed. In Figure 52, the second instance of model reference xy_reuse is selected

in the dialog at the bottom and thus displayed on the right (which is not obvious from the win-

dow itself). Debugging both instances in the same run is not possible.

17 https://de.mathworks.com/help/releases/R2018a/slci/ref/block-compatibility-alphabetical-list.html#bs6de_k-1

[Accessed on: Nov. 29 2019]

https://de.mathworks.com/help/releases/R2018a/slci/ref/block-compatibility-alphabetical-list.html#bs6de_k-1

5 Modeling framework for safety-critical MBSwD in SL

Page 140

However, it should also be noted that other ways of debugging, like signal logging, streaming

and plotting are typically more relevant for controller development and not limited to this de-

gree.

Figure 52: Reusable model debugging

Separate review and analysis of design

Manual reviews can be independently performed for each container. All of the used tools sup-

port an analysis per model, and some also support the analysis of subsystems. For example,

SL Model Advisor supports analysis of all types of subsystems, and SL Design Verifier sup-

ports atomic subsystems.

Anyway, a subsystem-based workflow is questionable, since a subsystem is never fully inde-

pendent from the model, into which it is embedded. It for example inherits interfaces or config-

uration settings. In consequence, virtual subsystems do not and atomic subsystems do just

partially allow calculation of checksums to identify outdated parts. The best checksums are

supported by models (cf. section MR 2).

Reusability/re-entrance on model-level

Reusing parts of the model can be achieved with model references as well as with subsystems

in SL libraries.

Independent simulation testing

Separate simulation testing requires (amongst others) that the tested entity has a fix interface

and behavior independent of the embedded context and that the selected testing tool, here

Simulink Test (cf. section 4.6.3), can access the interface.

5.6 Module design rules

Page 141

Separate simulation testing is always possible for models, since they can be simulated inde-

pendently.

All types of subsystems are embeddable in a SL test harness and can thus be tested inde-

pendently in simulation, too. However, subsystems do not fulfill the requirements of independ-

ent simulation testing. Their interface and behavior depends on the context.

Also JMAAB advises to carefully investigate introduction of atomic subsystems merely for test-

ability reasons ([109] p. 228).

Model coverage accumulation of different instances

If containers are reused, model coverage shall typically be accumulated over all instances, as

it is the typical approach for functions when assessing structural code coverage. Depending

on the calling context, different decisions may be triggered.

SL Coverage supports automatic accumulation of coverage for instances of REUSABLE MODELS,

but not for linked subsystems (independent of the code function packaging). Even if a rudi-

mentary manual workaround exists [101, pp. 8-8ff.], accumulating coverage of linked subsys-

tems is not appreciated, since they are underspecified and depend on the context. For exam-

ple, a subsystem in a model with conditional branch execution returns different coverage re-

sults as the same subsystem in a model without conditional branch execution (cf. MR 3).

In addition, if the subsystem code function packaging is not reusable, model and code cover-

age do not map.

Code componentization

Code componentization means the ability to split code in separate functions. Both model ref-

erences and subsystems have features to achieve code componentization.

Independent code generation

Embedded Coder supports code generation from both models and subsystems. However, in

R2017b, code generation from a subsystem satisfies another purpose and workflow [96, pp.

3-2ff.]. It is incompatible to code generated from the surrounding model and the code function

packaging options (subsystem is considered as model) and targets a standalone executable.

Code efficiency

Most efficient code can be generated from virtual subsystems, since SL and Embedded Coder

can perform optimizations across boundaries. For all other implementations, Embedded Coder

must respect boundaries. Code of inlined subsystems may provide optimization potential for

the compiler later on.

Reusability/re-entrance on code level

If reusability/re-entrance is given on model-level, it is favorable to structure the code similarly

in order to reduce the lines of code, ease verification and coverage collection. Reusable code

is generated by REUSABLE MODELS and subsystems in SL libraries with the function packaging

setting Reusable Function.

5 Modeling framework for safety-critical MBSwD in SL

Page 142

Beside SLCI incompatibility, the latter approach has some significant shortcomings in a pro-

cess context:

 Embedded Coder uses the structural checksum to identify subsystems of the same

functionality and unites them to a single function in C. A linked subsystem in a SL library

may have different structural checksums dependent on the caller context – no matter

whether it is fully specified or underspecified (see example 1 in Appendix C). Therefore,

it is almost impossible to control, which subsystems really map to a C function and how

functions or files are named. To create C functions in a controlled and configuration

management-friendly manner, models are the only choice.

 According to the documentation, Embedded Coder can detect identical reusable sub-

systems across models and generate a single function, but the naming depends on the

structural checksum [96, pp. 6-54ff.]. This is difficult for configuration control and test-

ing.

Separate review and analysis of code

Manual reviews can be independently performed for each model. The chosen analysis tools,

like SLCI or Polyspace work model-centric. The subsystem verification capabilities of Poly-

space require a standalone-build of the subsystem as described beforehand and are thus not

relevant.

Independent testing in SIL

SL models can be independently simulated in SIL mode.

Although a workflow for subsystem SIL testing exists as well [132, pp. 4-2ff], this approach

raises consistency questions in the process at hand, since code cannot be generated for sub-

systems independently.

Independent testing in PIL

With the custom PIL tool outlined in section 4.6.3.5, only SL model interfaces are supported

for testing. At the time this thesis has been written, standalone testing support for REUSABLE

MODELS was ongoing research work.

5.6 Module design rules

Page 143

Notes on features after R2017b

After R2017b, MathWorks has improved the subsystem support. In R2019a, the so-called li-

brary-based code generation for reusable library subsystems has been introduced18. The user

can attach a code configuration set to a reusable system in a library and make it independent

from the context, from which it will be called. Code functions can be separately generated and

will be called from the context. Still, there is no guarantee, that a code function can be reused

in all contexts, but means are provided to throw an error during code generation of the context

model the code cannot be reused. The feature also supports iterative code generation for dif-

ferent input interfaces. How compatible this workflow is, especially with verification tools, must

be evaluated (e.g., model coverage accumulation, valid interface for SIL or PIL support, …).

Compatibility will probably incubate in future releases, so this workflow may be a welcome

addition.

In R2019b, so-called subsystem references have been added19. They allow storing the content

of a subsystem in a separate file (not a library). The behavior remains as known for subsys-

tems, this means that almost all considerations from above still apply, except that separate

files ease configuration management.

MR 19 - Container primitive selection

 A. Only the containers illustrated in Figure 53 shall be used.

Figure 53: Usable container primitives

B. The selection of the respective container primitive should follow Figure 54.

18 https://de.mathworks.com/help/releases/R2019a/ecoder/ug/library-based-code-generation-for-subsystems-

shared-across-models.html [Accessed on: Nov. 29 2019]

19 https://de.mathworks.com/help/releases/R2019b/simulink/ug/referenced-subsystem-1.html [Accessed on: Nov.

29 2019]

S
im

u
la

ti
o

n
C

o
d

e

Model reference

Singleton model Reusable model

Subsystem

Virtual Atomic

Auto Inlined Nonreusable Reusable

https://de.mathworks.com/help/releases/R2019a/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html
https://de.mathworks.com/help/releases/R2019a/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html
https://de.mathworks.com/help/releases/R2019b/simulink/ug/referenced-subsystem-1.html

5 Modeling framework for safety-critical MBSwD in SL

Page 144

Table 25 shows clearly that none of the edge cases is a good choice. Subsystems have their

strength for the development of the design, because they are easier to handle and have less

restrictions. However, they have strong limitations in R2017b, when it comes to verification,

code generation, and configuration management. Here, model references are the better

choice. This aligns with the recommendations in [133].

In summary, the recommendation is to use a mix of model references and subsystems for

componentization. Although supported by SLCI, the benefit of subsystems with a nonreusable

code function interface is limited and shall, in order to reduce complexity, not be used. With

the selected container set, the hard selection constraints can be boiled down to those in Figure

54.

Figure 54: Container primitive selection

5.6 Module design rules

Page 145

MR 20 - Model layers

 A. Two model layers should be distinguished:

 Routing layer

 Functional layer

B. The routing layer should only contain subsystems and blocks that can be
placed on any model level as defined in MAAB guideline db_0143.

C. The functional layer can contain any type of block.

Each container primitive forms a layer. To avoid arbitrary layering, some guideline sets recom-

mend a distinction according to their function. The concept of layers has been introduced by

JMAAB 10.2 [109] and has been adopted by the MAAB guidelines [108]. Although the JMAAB

architecture defines more layers and a strict hierarchical breakdown, experience showed that

separating between routing and functional layers is sufficient and does not restrict developers

too much. Both layers are also checkable, since the usable blocks are defined.

 Private library

SL libraries and the behaviors have been introduced in section 5.6.4.1. To repeat, SL libraries

in R2017b have no own simulation or code generation configuration set, they can neither be

compiled nor executed, and no code can be generated. In consequence, many verification

techniques are not directly applicable.

SL libraries are easy to use, but can significantly increase the complexity of modeling, verifi-

cation, and traceability. Thus, the specialization of PRIVATE LIBRARIES is introduced to leverage

the power of SL libraries in a controlled way.

5 Modeling framework for safety-critical MBSwD in SL

Page 146

MR 21 - Private libraries

 SL libraries shall only be used as PRIVATE LIBRARIES under the following restrictions
(exception is the DO-331 Foundation Library):

A. SL library subsystems shall only be used in the module they are defined.

B. SL libraries shall not contain further library links (except to the DO-331 Foun-
dation Library).

C. Only subsystems shall be on the root SL model layer.

D. Links shall only be allowed to the top-level subsystems of a SL library.

E. Model references shall not be placed in SL libraries.

Theoretically, a SL library can contain multiple levels of subsystems. Each subsystem can link

to another library, which can link another library, which can link another library, and so on. Or

it can embed model references. Furthermore, theoretically any subsystem layer of a SL library

can be referenced. So parts of the SL library function could be picked.

In sum, the danger of generating complex “spaghetti” models is very high. (B-E) limit the ap-

plication of SL libraries. In addition, if SL libraries are used across modules, the ownership is

difficult. A SL library in another module can change a model and generated code significantly

without changing any file of the module. Thus their scope shall be limited to a single module

(A).

In addition, SL libraries raise problems concerning traceability and verification. If they have

linked requirements, the links would be copied to every instance (since references are just

“duplicated” block patterns). One requirement would have multiple (different) implementations

(in the worst case across modules) and testing in the different contexts would be required.

Furthermore, it is hard to detect unused library functionality, since model coverage is only col-

lected for instantiations and never for a SL library. With sole coverage assessment, it is not

possible to find unused or uncalled library functionality. And many other verification tools do

also not support libraries, since they require fully specified models, which can be compiled.

Only a subset of modeling rule checks can be executed on libraries. Traceability rules are

discussed in section 6.5.4.

5.6 Module design rules

Page 147

 Module interfaces

This section explains, how the different kinds of module interfaces introduced in section 5.4.4.3

are implemented. Data is mainly exchanged through interfaces of SL models, when a model

is called. PDIs are a separate interface not discussed in this section.

MR 22 – Interface constructs

 Only the following constructs are allowed to exchange data with a nested SL
model:

 Port interfaces modeled with Inport and Outport blocks [127, pp. 1-765ff.]

 Data Store interfaces modeled with Data Store Memory, Data Store Read, and
Data Store Write blocks [124, pp. 62-2ff.]

The supported mechanisms to exchange data with a called SL model are listed in MR 22.

Other mechanism, like GoTo interfaces modeled with GoTo and From blocks [127, pp. 1-

713ff.]), exist, but shall not be used. This subset limits the complexity of verification, suffices in

most cases, and has high compatibility with the used verification tools.

For narrow interfaces, value range contracts have to be defined. Therefore, SL offers signal

ranges [124, pp. 64-54ff.]. Both Port and Data Store interfaces support signal ranges. Some-

times signal ranges are also called design ranges in SL. However, here the term “design range”

is only used for ranges specified in HLRs. They are not part of the SW Design and thus shall

not be inserted in SL. All ranges inserted in SL are signal ranges.

5 Modeling framework for safety-critical MBSwD in SL

Page 148

MR 23 – Signal ranges

 A. Design ranges specified in HLRs shall not be inserted into SL models as signal
ranges.

B. Signal ranges shall only be set for interfaces with narrow contracts.

C. Signal ranges shall only be defined in Simulink.Bus (or more specific the
nested Simulink.BusElement) objects.

D. Signal range minimum and maximum values shall be scalar and not NaN,
within the range of the basic data type, and exactly representable in the basic
data type

E. Signal ranges shall not be specified for signals of type boolean and enumera-

tions.

F. Signals passed to models and calculated in models shall always be within the
specified signal range. This shall be proven by formal analysis.

Managing signal ranges is difficult in SL/SF. Signal ranges can be specified redundantly and

with differing values for the same model element. For example, an Inport block referring to a

Simulink.Bus object may have minimum and maximum specifications in the port block mask

or in the Simulink.Bus object. Although there is a defined priority, multiple declarations are

confusing and they are not checked for consistency. In addition, signal ranges can be redun-

dant and incompatible between model elements. For example, an Output block can specify a

range, and a directly connected Inport block can specify a separate range, too. Again, no con-

sistency check exists.

Application must thus be constrained. Signal ranges shall just be used for narrow contract

interfaces as listed in (B). These are inter-module interfaces (cf. DR 11). Only attaching signal

ranges to Simulink.Bus data types ensures consistency (C). It avoids the above listed chal-

lenges, since Simulink.Bus objects are centrally stored and apply for signals, not for either an

in- or outport block.

Another option, which has not been further considered here, is using Simulink.Signal objects

for single value signals (cf. MR 37). They are also centrally stored and can save signal ranges

as well. However, this introduces additional design options, which the verification steps have

to support.

Signal ranges not exactly representable in the basic data type are handled differently depend-

ing on the tool. For example, the specified range of [−3.14, 3.14] for a inport of data type int32

is extended by SL Design Verifier to [−4, 4]. However, the runtime diagnostics use the original

range for range checking. It is thus mandatory to ensure that the entered signal ranges are

representable in the basic data type to avoid confusion (D).

5.6 Module design rules

Page 149

Signal ranges are verified in the following tasks (cf. data coupling and control coupling in sec-

tion 4.6.4):

 SwVP-DP-MB 5 – Design error detection

 SwVP-DP-MB 8 – Simulation testing & result review (runtime-error diagnostics)

 SwVP-CP-MB 5 – Code proving

MR 24 – Component interfaces

 A. Component interfaces shall be modeled as Port interfaces in the top-level
model.

B. The Port interfaces shall have a data type of class EXPORTED BUS (cf. MR 30).

C. The Simulink.Bus objects shall be auto-generated from ICDs and stored in the
component module.

D. The Simulink.Bus objects shall not specify signal ranges, since component in-
terfaces are unconstrained (cf. DR 11).

In section 3.3, the interaction of the software application with the framework has been outlined.

Before each execution step, the application framework unpacks new received incoming data

(of physical interfaces) and copies it into a shared data structure in memory. The application

reads from this structure during execution. Outgoing data is written into another data structure.

After the execution of the application step, the framework searches the data structure with

outgoing data for updated fields, packs messages and forwards them.

The shared data structures are auto-generated with the application Design Model. Therefore,

Simulink.Bus objects for Inport and Outport blocks are automatically derived from the ICDs

and referenced in the top-level model (cf. Figure 55). The top-level model has, according to

MR 15, a void-void interface, and thus forces Embedded Coder to generate a separate input

and output structure. Also the code for unpacking and packing physical messages is auto-

generated.

5 Modeling framework for safety-critical MBSwD in SL

Page 150

Figure 55: Auto-generation of component interface code

The general structure of the auto-generated buses is given in Listing 2.

1
2
3
4
5
6
7

<application-name>_U [_Y]
 .PHYSICAL_INTERFACE
 .MESSAGE_NAME
 .FIELD-1
 ...
 .FIELD-N
 .timestamp_s (uint8) [update_flg (boolean)]

Listing 2: Pseudo-structure for external data exchange

<application-name>_U is the input structure, <application-name>_Y the output structure.

The application framework writes into the input structure and reads from the output structure.

A substructure on the first level is generated for each physical hardware interface (each port

in the SL model). Below, a substructure for each message is added, containing fields for each

parameter. The timestamp_s field is a running number, which is increased by the framework

software every time a new message has been received. This provides a certain amount of

information about the up-to-dateness of the data.

The data exchange structure for outputs is similar. Instead of the timestamp, a boolean called

updated_flg is provided. If it is set, the corresponding message data is forwarded by the

software application framework to the physical I/O interface after the execution step of the

application.

pack_ADC_PRESSURE_ALITUDE_ADC(…)
unpack_ADC_PRESSURE_ALTITUDE_ADC(…)

struct ADC_PRESSURE_ALTITUDE_ADC_in_Bus {
uint8_T timestamp;
uint32_T h_Rpitot_pressure_m_adc;
uint8_T h_pressure_status_adc;
}

struct CAN_0_Bus {
struct ADC_PRESSURE_ALTITUDE_ADC_in_Bus

ADC_PRESSURE_ALTITUDE_ADC_in;
}

struct <application>_U {
struct CAN_0_Bus CAN_0;
}

Usage in

top-level model ports

Auto-generated

bus structure

Auto-generated

C code (shared

data structure)

ICD with physical messages

Auto-generated

pack and unpack

code

5.6 Module design rules

Page 151

MR 25 – Inter- and intra-module interfaces

 A. Inter-module interfaces of units shall be specified with an EXPORTED BUS data
type (cf. MR 30), if

 complex data is exchanged.

 a narrow contract shall be formulated (cf. MR 23).

B. All Simulink.Bus objects specifying inter-module interfaces shall be stored in
the project-specific global module (cf. Figure 42).

C. Inter-module interfaces with a narrow contract shall have a SINGLETON SIGNAL
assigned (cf. MR 37). In consequence, only SINGLETON MODELS can have a
narrow contract interface (cf. MR 6).

D. For intra-module interfaces, no special limitations apply.

(A) and (B) come along with practical aspects. In contrast to basic data types, Simulink.Bus

data type specifications can be stored externally to the SL model including signal ranges. So

they are not managed by one or another module, but globally. This significantly improves in-

terface control.

(C) significantly simplifies assertion of narrow interface on code level (cf. section 8.2.14). Poly-

space Code Prover can only assert value ranges for global variables, which are only easily

identifiable in auto-generated code, if SINGLETON SIGNALS are used. A SINGLETON SIGNAL is a

specialization of a Simulink.Signal [127, pp. 5-490ff.], which controls the code generation of a

specific signal. It creates a uniquely named exported global variable in code for each signal.

The concept of SINGLETON SIGNAL is explained in MR 37. An additional side effect is that SIN-

GLETON SIGNALS simplify testing due to higher accessibility of variables. On the flipside, inputs

normally passed as arguments are now exposed as global variables, which makes data cou-

pling analysis more challenging. However, Embedded Coder ensures that these signals are

just written once per step.

5 Modeling framework for safety-critical MBSwD in SL

Page 152

MR 26 – Data store interfaces

 A. The use of data store constructs should be avoided.

B. If unavoidable, data stores shall be global and written once in the top-level
model before the execution of any nested model. They shall only be read in
sub-modules.

C. Each global data stores shall be based on the DATA STORE SIGNAL specializa-
tion (cf. MR 37).

D. Global data stores shall only be read or written with the Data Store Read and
Write blocks in SL. They shall not be directly read or written in SF.

E. Data stores shall be written completely and once only.

F. If a narrow interface is specified, the underlying Simulink.Signal object must
be of Simulink.Bus data type.

Data store constructs create an invisible data flow, make testing as well as coupling analysis

difficult, and should thus be avoided (A). Anyway, best practice showed, that in some cases,

data stores are reasonable. For example, to form a globally accessible data pool of sensor

signals and avoid inefficient Simulink.Bus copies in the code. MR 26 is defined for these cases

only.

Data stores consist of a Data Store Read, a Data Store Write and, optionally, of a Data Store

Memory block. The code generation of data stores can be specified with Simulink.Signal ob-

jects. A global data store is a data store available across SL model boundaries. It does not

have a Data Store Memory block, but needs a specifically configured Simulink.Signal.

(B)-(E) limit the usage of data stores. Global data stores are a deviation from high-integrity

guideline “hisl_0013” [103, p. 2-38], which recommends to “avoid data store reads and writes

that occur across model and atomic subsystem boundaries”, since the SL sorting algorithm

does not take into account this type of data coupling. However, with (B), an explicit execution

order is ensured. (B) may require changing the execution priority of the Data Store Write block,

so that it is executed at first. This is the only situation, in which changing the execution priority

is allowed. (D) has been introduced to simplify the cases to be considered for formal value

range verification with SL Design Verifier (cf. section 8.2.5).

Only elements in Simulink.Bus objects shall specify signal ranges to guarantee the same signal

ranges everywhere, where the Data Stores are read. Whenever a narrow contract shall be

defined, the DATA STORE SIGNAL must be of type Simulink.Bus (F).

In order to use data stores the recommend way, also the diagnostic settings proposed in

“hisl_0013” had to be adapted. If ReadBeforeWriteMsg always throws an error, no reading SL

models can be independently simulated, because it throws an error. The configuration settings

of sub-level models thus disable the ReadBeforeWriteMsg diagnostics, but not the top-level

model (cf. Table 23). This sounds unsafe for nested models, but actually is not a different

behavior than the simulation of non-instrumented Inport blocks (default initialization with zero).

5.6 Module design rules

Page 153

Figure 56 shows a global data store architecture. Model C is the model referenced in models

A and B as fc_test. The referenced model C can be independently simulated with the diag-

nostic settings described above. Model A cannot be simulated, since it has a read before a

write. In model B, the execution order has been changed and it can be simulated without error.

Figure 56: Data store interface usage examples

5 Modeling framework for safety-critical MBSwD in SL

Page 154

 SL atomic primitives

Figure 48 distinguishes graphical model primitives into atomic and container primitives. Atomic

primitives can graphically not be broken down any further, in contrast to container primitives.

MR 27 - Supported atomic model primitives

 Only the atomic primitives of the DO-331 Foundation Library shall be used.

A block library for the DO workflow does not exist in the shipped version of Simulink (R2017b)

and is not publicly available. A few partially compliant libraries, like the supported block library

of SLCI (slcilib) 20, exist, but they do neither fulfill modeling rules of MAAB, JMAAB, or Math-

Works High-Integrity Guidelines, nor do they comply with project specific requirements. The

DO-331 Foundation Library is a specific SL library containing all preconfigured atomic primi-

tives, which can be used.

The library has been derived from the slcilib, since SLCI imposes the most significant con-

straints on usable block sets. Blocks in the DO-331 Foundation Library are considered as

atomic on model-level from the viewpoint of the process (e.g., static model analysis does not

traverse them). Most of the blocks are actually atomic (simples primitives and complex primi-

tives), others, however, are subsystems with nested blocks, further on called pseudo primitives

(cf. the discussion about the Model Element Library in section 5.6.5.5).

The following refactoring was necessary to make the existing slcilib compliant to the pro-

cess:

 Adaption of blocks labels to naming rules

 Adaption of default block settings compliant to the modeling guidelines and most fre-

quently used options

 Removal of library link breaking

 Removal of unsupported blocks

 Inclusion of custom real and pseudo primitives

20 The slcilib is a block library shipped with SLCI. It can be opened by typing slcilib in the MATLAB com-

mand line window.

Contribution 10: A novel foundation block library limiting the usable model elements has
been created. This library deviates from block libraries shipped by MathWorks in R2017b,
since it is compliant with the rules at hand (e.g., naming conventions) and contains new
blocks.

5.6 Module design rules

Page 155

Removal of library link breaking

If simple or complex primitives are added from a SL library to a SL model, a reference to the

globally available low-level implementation is inserted. The model behavior may change if the

low-level implementation changes, e.g., due to a MATLAB version upgrade.

For pseudo primitives, the slcilib compels a different behavior. Adding the primitive to the

SL model creates an unlinked duplicate of the nested block pattern. This is a non-default be-

havior for libraries, which typically keep a link. The behavior is realized with hidden callbacks.

In consequence, an update of the library is not propagated to already added block patterns.

Practice showed that this mitigates on the one hand the risks connected to changes of the DO-

331 Foundation Library, since they do not influence existing models. On the other hand, im-

portant fixes cannot easily be deployed. In addition, the Simulink Upgrade Advisor [124, pp. 6-

2ff], a tool which supports the migration from one to another MATLAB release, detected many

pseudo primitives as taken from a built-in library (even if they were modified copies) and pro-

posed to automatically reestablish the links to the original version (cf. Figure 5721). It occurred

several times that developers unsuspectingly executed the tool and observed unexpected be-

havior due to wrong reestablished links. Thus, the respective callbacks of the slcilib have

been removed.

Figure 57: slcilib upgrade issue

21 Run upgrade advisor by selecting Analysis > Model Advisor > Upgrade Advisor from the model editor.

https://www.dict.cc/englisch-deutsch/unsuspecting.html

5 Modeling framework for safety-critical MBSwD in SL

Page 156

Removal of unsupported blocks

The following blocks have been removed from the slcilib:

 Discrete time integrator (replaced by new custom integrator blocks)

 Difference (not supported by [108] guideline “jm_0001”)

 Doc block (replaced by new Doc block)

 Variant subsystems, model variants (unsupported according to MR 28)

 Unit conversion (unsupported by process at hand according to MR 28)

 Probe (not supported by [108] guideline “jm_0001”)

 MATLAB Function (unsupported by process at hand according to MR 28)

New custom pseudo primitives

In general, the number of pseudo primitives is kept as small as possible. The preferred method

of implementing reused functionality is the REUSABLE MODEL specialization. However, in some

cases, convincing arguments exist to add a new primitive to the DO-331 Foundation Library.

The design pattern must be sufficiently universal and simple and one of the following criteria

must be met, in order to include a new primitive into the DO-331 Foundation Library:

A. A mask significantly reduces the number of variants or simplifies the interface. Prim-

itives are allowed to have masks, developers, however, shall not implement masks

in the SL model by their own (cf. MR 28).

B. The primitive avoids artificial algebraic loops. SL can resolve algebraic loops across

virtual subsystem borders, but not across model reference or atomic subsystem

borders.

C. The functionality is not or just inconveniently realizable with existing blocks.

The following groups of blocks have been added after intensive testing:

 Doc Block (real primitive, C)

 Integrators (pseudo primitive, B)

 Trigonometric flip functions (pseudo primitive, C)

 2D-Selector22 (pseudo primitive, A+C, natively not supported by SLCI in R2017b)

 NaN-Checking (real primitive, C, SL built-in NaN checking blocks are not supported by

SLCI)

22 Prior to R2017b, SLCI did not support multi-dimensional indexing in the Selector block.

5.6 Module design rules

Page 157

 SL atomic primitive restrictions

The settings and use of atomic primitives underlies certain constraints. Only a few important

concepts are discussed in the following, since most of the restrictions are part of the funda-

mental modeling rules.

MR 28 - Excluded SL functionality

 The following functionality shall not be used in any atomic primitive:

 Prioritization of execution order

 Absolute time

 Units

 Variable size signals

 MATLAB code

 Custom block masks

 Variants

There are a couple of SL features, which have their impact at various places in the model.

They are excluded by this rule. For some of the features listed above, there is no rationale,

they just have not been investigated and conservatively been excluded.

Every block provides the possibility to increase or decrease prioritization in the execution order.

This priority is respected during model compilation as far as possible. Changing the priority

has significant impact on the outcome of the model and may lead to counter-intuitive outputs.

It is thus highly recommended to not use this feature. Single exception are Data Store Write

blocks (cf. MR 26).

The exclusion of MATLAB code results from two considerations. At first, it was not well sup-

ported by SLCI in earlier releases. Second, it would need the definition of MATLAB code guide-

lines. Many tasks can be performed more efficiently in MATLAB code and its support should

be regarded for the future. All controllers of the projects accompanied by the author could be

implemented without MATLAB code.

Developers shall not be allowed to define own block masks. Block masks define behavior,

which is not documented in the Design Description (cf. section 8.1.1), and may totally redefine

block behavior (e.g., self-modifying masks [124, pp.38–56ff.]). Practice showed that, if masks

are allowed, they quickly lead to complex constructs and hidden logic.

Variants allow conditionally exchanging parts of SL models or whole SL models based on

global parameters. This “dynamic” significantly increases verification effort and the identifica-

tion of dead design. Variants were not used in the Design Model to keep the process simple.

5 Modeling framework for safety-critical MBSwD in SL

Page 158

 Model data

SL features open various ways to define and use model data. If all features were allowed, it

would be hard to predict the impact on the generated code and whether verification tasks are

compatible and do the right thing. The novel, composed minimum viable set in this section

covers many use cases and forms a manageable feature set for verification.

Almost all model data are objects in the SL data dictionary. Each entry in the SL data dictionary

is required to be mapped to a safe specialization.

MR 29 – Mapping of model data to safe specializations

 Every model data in the SL data dictionary shall be mapped to safe specializations
by a respective reference in the first line of description field of each entry.

Figure 44 shows a screenshot from a SL data dictionary. In the bottom right, the description

field shows, how the type of the specialization is defined, in this case as bus-exported.

5.6.4.7.1 Buses

SL provides the possibility to define bus data types in order to structure data signals. Buses

are globally defined as Simulink.Bus objects in the SL data dictionary [127, pp. 5-207ff]. They

combine different signals with different data types. Buses can contain other buses and thus

form arbitrary hierarchies.

Two specializations are used:

 EXPORTED BUSES

 IMPORTED BUSES

EXPORTED BUSES are those, which become part of the generated code. IMPORTED BUSES con-

sider the data types as existing in code. Code generation does not translate, but just reference

them. In most cases, EXPORTED BUSES are the right choice, since the type definition shall be

part of the generated C code. IMPORTED BUSES are used, if C type definitions are externally

programmed or generated (component interfaces, or, for example, the communication protocol

implementation by the author in [31]).

5.6 Module design rules

Page 159

MR 30 – Exported and imported buses

 A. Buses shall be created in the SL data dictionary with the properties of Table
26.

Property EXPORTED BUS IMPORTED BUS

Data Scope Imported (Exported during shared

code generation)
Imported

Header File <module-ID>_bus_types.h Any header file

Specialization
name in
description

bus-exported bus-imported

 Table 26: Bus properties

B. Naming conventions shall be applied (cf. MR 1).

The data scope determines, whether the bus declaration is generated in C code (Exported)

or are considered as existing (Imported). For example, the typedef struct in Listing 3 is

generated from an exported Simulink.Bus object.

1 typedef struct {
2 real32_T Phi_rad;
3 real32_T Theta_rad;
4 real32_T Psi_rad;
5 boolean_T Phi_rad_valid_flg;
6 boolean_T Theta_rad_valid_flg;
7 boolean_T Psi_rad_valid_flg;
8 } xy_rawAHRSData_Bus;

Listing 3: Bus structure translated to C code

Nevertheless, independent of whether an imported or exported bus is specified, the data scope

shall be set to Imported (A). In consequence, type definitions are never generated in C code.

During the shared code generation process, which will be detailed in section 8.1.2, the data

scope is changed to Exported.

All exported data types declarations in the code shall be collected in one header file per module

for modular code and readability reasons. Thus the header file is explicitly set (A).

Since Simulink.Bus objects are globally visible in all modules, naming conventions are im-

portant to avoid identifier clashes and identification of module ownership (B). The chosen syn-

tax is <module-ID>_<busName>_Bus. Suffixing the name of the type with _Bus clearly distin-

guishes data types from other model data and especially from the field names in nested bus

structures.

5 Modeling framework for safety-critical MBSwD in SL

Page 160

MR 31 - Exported/imported bus usage

 A. Virtual buses shall not be used for in- or outputs of SL models.

B. Array of buses shall not be used.

C. Subsequent bus assignments on the same bus should be avoided.

In terms of usage, it is distinguished between virtual and non-virtual buses. Virtual buses, like

virtual subsystems, are only graphical elements. They are not visible as structures in the gen-

erated code, whereas data of non-virtual buses is stored in contiguous memory sections [124,

pp. 65-4f.]. Whether a bus is virtual or non-virtual is decided by the usage in the model, not by

a Simulink.Bus object. Simulink.Bus objects are optional for virtual buses [124, pp.64-64ff.].

By construction, virtual buses promise higher performance of code, since the code generator

has more freedom for optimization. Virtual buses, however, must be used with thought, since

experience showed that

 migration to new MATLAB releases caused problems, if virtual busses crossed model

references and were mixed with non-virtual buses.

 SLCI may require to make buses non-virtual in order to analyze traceability.

For testability reasons, buses at in- or outputs of SL models shall directly represent the data

type in the code (A). Buses that never cross the border of a model reference may be virtual.

Array of buses are not supported by SLCI [121, p. 3-6] (B).

In the projects, to which the author contributed, significant effort was spent to improve execu-

tion performance. One identified performance lack was wrongly used buses. In R2017b, buses

tended to introduce data copies in the generated Source Code. Especially in case of large

buses, this can have big impact on execution performance of the code. A change from non-

virtual to virtual buses did not bring the expected performance increase, however optimized

block patterns as in Figure 58 drastically reduced the amount of copies.

In Figure 58, Model A has two Assignment blocks. Each creates a copy of the whole data

structure in R2017b. By combining both Assignment blocks in model A*, one data copy can be

avoided.

5.6 Module design rules

Page 161

Figure 58: Simulink.Bus performance best practices with optimized model (*)

5 Modeling framework for safety-critical MBSwD in SL

Page 162

MR 32 - Data alignment in buses

 If the data type length of all elements in a bus is less than 4 bytes (not considering
nested buses), the alignment shall be enforced with compiler statements. There-
fore, the alignment property of the respective Simulink.Bus object shall be set to
4.

From a modeling point of view, elements can be arbitrarily placed in buses. However, the

translated structures of non-virtual buses in C immediately rise the question of alignment re-

quirements imposed by the processor. If misaligned words are accessed, an alignment fault

may be thrown or additional instructions and calculations are required to access the data. Many

processors just support so-called natural alignment, where the address of a word is the multiple

of its size [129, pp. 245ff].

Misalignment is normally no problem, since either the processor itself handles the misalign-

ment or the compiler or linker introduces padding bytes. However, in two areas further consid-

erations were necessary:

Firstly, padding bytes inserted at external input interfaces may cause problems, especially

memory areas are completely copied into a structure. The application framework presented in

section 3.3 copies field per field into the input structure, so padding bytes have no impact.

Secondly, compatibility to verification tools should be considered. For the tool chain presented

in this work, especially the WCET analysis with aiT WCET Analyzer caused problems with

misaligned data access on the used PowerPC. Time measurements, which form the basis for

the evaluation, only exist for aligned accesses. A misaligned access forces the compiler to

introduce multiple instructions, which are not covered by timing measurements [37].

The brute way to avoid misaligned data access is enforcing alignment by the compiler. Comp-

Cert therefore knows the language extension __attribute__((aligned(%n))), which forces

the compiler to insert padding bytes [57]. By registering a target info in combination with a code

replacement library in Embedded Coder, an alignment specification and rules for application

can be defined for structs [96, pp. 51-135ff.]. In combination with the alignment field in the

Simulink.Bus element, prepending of the extension can be triggered.

Another possibility is to modify the bus. Either padding bytes are manually added or so-called

“natural alignment” [129] is applied. A structure is naturally aligned, if the starting address of

every field (also of nested structs) is a multiple of the field word size. It is implicitly fulfilled, if

fields are arranged by increasing word size as in Listing 3.

Here, bus reordering is not considered as feasible approach due to complex and deep bus

structures. It has been decided to force alignment with compiler statements, which proved to

be compatible with the WCET analyzer [37] as well. In the special case with CompCert, forcing

alignment was only necessary, if no element in the bus had a byte length of four or more.

Otherwise the compiler automatically used a 4-byte alignment. Developers are supported with

a check identifying potential alignment problems in the bus structure.

5.6 Module design rules

Page 163

5.6.4.7.2 Safe enumerations

Enumerations (enums) are a finite set of values with a unique name (literal). Value and literal

are called enumeration constants. The literals have a meaning in the context they are applied,

and often increase the readability of SL models and SF charts. If enumerations are used as

data types, they are called enumeration data types.

The following paragraphs specify definition and usage of enumeration data types and con-

stants.

MR 33 - Definition of a safe enums

 A. Enumerations shall be created in the SL data dictionary with the properties of
Table 27. These are called SAFE ENUMS.

Property Value

Literals/Values Value range [0, 2147483647]
Literal for 0 value is required.
No further constrains, but shall be defined in
monotonically increasing order.

Default Literal of 0 value

Storage Type Native Integer

Description Any

Data Scope Imported (Exported during shared code

generation)

Header File <module-ID>_enum_types.h

Add Class Name To
Enum Names

Enabled

Table 27: Safe enum properties

B. Naming conventions shall be applied (cf. MR 1).

In SL data dictionaries, SL Enumerated Type objects are globally visible entries, which can be

created, modified and removed just the same as Simulink.Bus data types. They are instances

of the Simulink.data.dictionary.EnumTypeDefinition class [127, pp. 5-743ff.]. Since SL

data dictionaries are used, this is the only way to create and use enumerations in SL models.

Figure 59 shows a SAFE ENUM in a SL data dictionary with the enumeration constants AUTO-

MATIC, SEMIAUTO and MANUAL.

5 Modeling framework for safety-critical MBSwD in SL

Page 164

Figure 59: Safe enumeration screenshot

The rationales for (A) are influenced by verification aspects and code generation considera-

tions.

Default value

The constrains on the default value are given by SLCI [121, p. 3-6]. The value is used as

fallback for safe casting.

Storage type

SL Enumerated Type objects allow the specification of the underlying storage type, which is

used in SL and for C code generation. It must be distinguished between basic integer storage

type and a native integer storage type. If basic integer types are used, like uint8 or int16,

the bit length and value range is fix. In C code, Embedded Coder fakes enumeration constants

with preprocessor directives and the enumeration data type with a redefinition of the basic

integer type (Listing 4). “Real” C99 enumerations are not used.

5.6 Module design rules

Page 165

1
2
3
4
5
6

/* This defines an enumerated type for control modes */
typedef uint8_T xy_u8controlMode_Enum;

#define xy_u8controlMode_Enum_AUTOMATIC ((xy_u8controlMode_Enum)0) /* Default value */
#define xy_u8controlMode_Enum_SEMIAUTO ((xy_u8controlMode_Enum)2)
#define xy_u8controlMode_Enum_MANUAL ((xy_u8controlMode_Enum)3)

Listing 4: Enumerations realized with macros

If the native integer storage type is used, the underlying integer data type in SL is chosen

based on the range of the enumerated constants by the simulation engine. In C code, “real”

enum types are used (Listing 5). The compiler choses the data type in the Executable Object

Code during the compilation process. It is thus implementation-defined (C99 6.7.2.2 §4). An

optimizing compiler will realize that the integer range in Listing 5 does not exceed 1 and would

choose an unsigned 8-bit integer.

1
2
3
4
5
6

/* This defines an enumerated type for control modes */
typedef enum {
 xy_controlMode_Enum_AUTOMATIC = 0, /* Default value */
 xy_controlMode_Enum_SEMIAUTO,
 xy_controlMode_Enum_MANUAL
} xy_controlMode_Enum;

Listing 5: Enumerated type

From a functional point of view, implementations with typedef and #define are similar in

these cases ([129, p. 83]), but SLCI only supports native integer storage types [121, p. 3-6].

Enumeration constants

Enumeration constants are the values and literals in an enumeration. C99 knows explicitly and

implicitly specified enumeration constants (C99 6.7.2.2 §3). Latter just have a literal and no

value assignment. Their value is an increment by one of the previous constant in the list. For

implicit definitions, MISRA C Rule 8.12. requires uniqueness of derived constant values.

The SL data dictionary only allows the specification of enumeration lists with explicitly defined

enumeration constants. Whether they are turned into implicit definitions in code is decided by

the code generator, and thus also the final MISRA C compliance (cf. Listing 5 with the explicit

enumeration constant AUTOMATIC, and the implicit enumeration constant MANUAL).

The value range has been limited to [0,2147483647]. As explained before, since native inte-

gers have to be used, the data type size is compiler-dependent. According to [57] §6.7.2.2,

CompCert uses a 4-byte integer for all enumeration values. The definition reflects the positive

value range.

SL Design Verifier supports enumeration data types and narrows the range to the maximum

value. Figure 60 shows verification results of a model using enumeration data types in the

range [0,2]. Green blocks have valid objectives; red blocks have falsified objectives.

5 Modeling framework for safety-critical MBSwD in SL

Page 166

Figure 60: Example of enumerations in SL Design Verifier

Add class name to enum names

In SL, the literals of enumeration constants are always scoped for the enumeration, i.e., two

enumerations can have the same literals. Enum constants are always addressed by a combi-

nation of enum class name and literal (e.g., xy_controlMode_Enum.MANUAL).

In C, the literals are global (e.g., MANUAL can directly be used anywhere in the code). In con-

sequence, to avoid identifier clashes during code generation, the enum class name is pre-

pended during code generation by enabling the option “Add Class Name To Enum Names”.

Data scope

The specification of an explicit header file name and Imported data scope is necessary to

modularize the code. Imported data scope avoids building the code in situ with SL models. In

the shared code generation process (cf. section 8.1.2.2), the data scope is changed. If the

explicit header file were not set, Embedded Coder would generate guarded definitions into the

code of each model, which uses the enumeration (cf. [35] and Listing 6).

Invalid exampe

Valid exampes

1

In1

Enum: xy_controlMode_Enum

[0,2] 1

Out1

uint8

DTypeConv

2

In2

Enum: xy_controlMode_Enum DTypeConv1

Add

3

In3

Enum: xy_controlMode_Enum DTypeConv2

2

Out2

uint8

252

Add1

4

In4

Enum: xy_controlMode_Enum DTypeConv3

3

Out3

uint8

254

Add2

5.6 Module design rules

Page 167

1
2
3
4
5
6
7
8
9
10

ifndef DEFINED_TYPEDEF_FOR_ENUM_xy_controlMode_Enum_
define DEFINED_TYPEDEF_FOR_ENUM_ xy_controlMode_Enum_

typedef enum {
 xy_controlMode_Enum_AUTOMATIC = 0, /* Default value */
 xy_controlMode_Enum_SEMIAUTO,
 xy_controlMode_Enum_MANUAL
} xy_controlMode_Enum;

endif

Listing 6: Guarded enumeration definitions

MR 34 - Usage of a safe enums

 SAFE ENUMS shall only be casted from integer types. A safe cast, which falls back
to the default value, should be used.

SL already restricts usage of enumerations drastically, especially as data types. For example,

arithmetic operations are not possible, as well as casting from a floating-point data type to an

enum.

SL and Embedded Coder can automatically insert a so-called safe cast. The safe cast falls

back to the default value, if the integer value is not supported by the enumeration. This also

works for non-contiguous enumeration values. Safe casting is applied, if the option “Saturation

on overflow” is activated in the Data Type Conversion block [96, pp. 19-74f]. Listing 7 shows

the code generated for safe casting. However, this feature deteriorates model to code cover-

age preservation.

1
2
3
4
5
6
7
8
9
10
11
12
13

static int32_T safe_cast_to_xy_controlMode_Enu(int32_T input)
{
 int32_T output;

 /* Initialize output value to default value for xy_controlMode_Enum (AUTOMATIC) */
 output = 0;
 if ((input >= 0) && (input <= 2)) {
 /* Set output value to input value if it is a member of xy_controlMode_Enum */
 output = input;
 }

 return output;
}

Listing 7: Safe casting of enumerations

5 Modeling framework for safety-critical MBSwD in SL

Page 168

5.6.4.7.3 Constants and Parameter Data Items

The terms constant and parameter are widely used and have different meanings across disci-

plines. Here, the following process-driven definition shall be used: Both constants and param-

eters are constructs that allow the variation of a value from outside a function between execu-

tions without modifying the function. They hold values constant during the execution. A param-

eter is a specified feature (e.g., expressed by requirements), whereas a constant is a simple

design pattern to increase maintainability, readability, reusability, or tunability. Constants are

resolved to a specified constant value at the end of the development phase, in which they are

introduced. All subsequent verification activities have to assume a constant value.

One example for constants are controller gains allowing the application of optimization algo-

rithms in the closed loop simulation. The gain is tunable in simulation, but this tunability is no

feature of the final software. A new optimized parameter value must be updated in the require-

ments afterwards and is then set to a specific constant value in the model. Subsequent steps

consider it as constant.

Parameters are specified in requirements with type, range, or a set of allowed values. The

value ranges must be considered in verification. In this case, the only true parameters are PDIs

(cf. DR 17).

Technically, SL accepts three ways of defining constants and parameters in a model:

1. Block mask parameters,

2. MATLAB variables,

3. Simulink.Parameter objects.

Variables are either directly written into block dialogs (block mask parameters), referenced

from MATLAB variables in a connected workspace, or they are wrapped in a Simulink.Param-

eter object [127, pp. 5-361ff]. Block mask parameters are not further discussed in this context,

since they are not model elements stored in a workspace.

The implementation and use of MATLAB variables and Simulink.Parameter objects has signif-

icant impact on code generation and verification. Thus, it proved reasonable to limit the variety

of implementations and support developers with guidance.

5.6 Module design rules

Page 169

MR 35 - Constant and parameter specializations (general)

 A. The specializations CONSTANT, PARAMETER CONSTANT, and PARAMETER DATA ITEM shall

be used as defined in Table 28.

Criteria Constants Parameters

Specialization CONSTANT PARAMETER

CONSTANT

PARAMETER DATA

ITEM

Implementation Basic MATLAB
variable

Simulink.
Parameter

Simulink.Parameter

Storage location SL data dictionary,
model workspace

SL data dictionary SL data dictionary

Prerequisites Specification as PDI in
HLRs

Reusable X X X

Accessibility Model only,
Private,
Public

Private,
Public

Private,
Public

Tunable in Normal mode
simulation

X X X

Tunable in SIL simulation X

Allowed data types Any basic +
enumeration

Any, but not struct Any, but not struct

Allowed dimensions Any Any, but not auto Any, but not auto

Unit n/a Any Any

Complexity n/a Real Real

Allowed values Any except special
quantities like Inf, -

Inf, NaN, []

Any except
special quantities
like Inf, -Inf, NaN,

[]

Any except special
quantities like Inf, -Inf,

NaN, []

Naming (cf. MR 1) <module-

ID>_c_<name>
<module-ID>_p_<name>

Code placement Inline or pool per
model

Shared for
module

Globally shared

Value influences structural
checksum

Yes No No

Table 28: Usage of constant and parameter specializations

B. None of those specializations shall be used in in constant expressions.

Simulink.Parameter objects have the benefit that they support strong data typing. The devel-

oper can explicitly set a data type, whereas MATLAB variables derive a data type from the

value. For example, in Simulink.Parameter objects, a Simulink.Bus data type can explicitly be

selected. Then, the structured values must satisfy the constraints of the bus specification. In

addition, Simulink.Parameter objects allow granular code generation settings as well as the

specification of signal ranges.

5 Modeling framework for safety-critical MBSwD in SL

Page 170

However, Simulink.Parameter objects are conceptually made for tunable parameters. They

are independent specifications. Neither do all of their properties (signal range, storage class,

value, …) influence the structural checksum of the model, nor does their value appear in the

generated code by default. Why Simulink.Parameter objects have been chosen for constants

anyway is explained in the following paragraphs.

(B) originates from a SLCI limitation with tunable parameter expressions [134, p. 1-4]. The

specializations of (A) are explained in the following.

Simulation tunability

At first, constants and parameters play an important role during model simulation. All speciali-

zations allow accessing and modifying values during execution of SL/SF in Normal, Accelera-

tor and Rapid Accelerator mode (aside from a few exceptions [124, pp. 36–42f.]), even though

different APIs must be used. These modes generate executables, which do not base on the

Source Code, and include methods providing the required tunability.

In simulation modes depending on Source Code, like PIL or SIL, and in Executable Object

Code, tunability depends on how Embedded Coder transforms the parameters into C [96, pp.

64-67ff.].

General code generation behavior

In the following, the tunability in the Source Code is further addressed. Code generation of

MATLAB variables basically depends on the configuration setting "Default parameter behavior"

(DefaultParameterBehavior) [135, p. 15-92], which predefines the behavior, if no further

specification is given. If it is set to tunable, Embedded Coder tries to globally expose a max-

imum number of parameters in C. If set to inlined, no parameter is tunable in the C code

unless tunability is individually enforced.

Since the majority of parameters are constants and resolved after the design phase, the default

behavior is set to inlined. This leads to more efficient code.

If parameters cannot be inlined during code generation, Embedded Coder adds them to a data

pool. The pool is by default generated in the source file <modelname>_data.c, or in a globally

shared file, if the respective Embedded Coder parameter (GenerateSharedConstants) is set

[96, p. 6-84]. In principle, this is a beneficial behavior, since it can drastically reduce the amount

of memory and code, if large parameters are used.

Anyway, parameter pooling has some restrictions:

 Readability is decreased – the numbered identifiers are meaningless at the place where

they are used (cf. example 3 in Appendix C) or even cryptic in shared pools.

 The large parameter pool struct is not readable, since the field names do not occur at

the place where the values are defined, but only in the type definition (Example 3).

 In the given case, a registered Code Replacement Library for data alignment (cf. sec-

tion 8.1.2.5) prevents the generation of a shared pool. Scope of the data pool is always

the model.

5.6 Module design rules

Page 171

The only possibility to share constants across models, avoid parameter pooling and control

coding behavior more granularly, is wrapping the constant with a Simulink.Parameter object

and specifying coder options. Specifications within the Model Parameter Configuration dialog

shall be avoided, since these are ignored, if the model contains any further model references

[128, pp. 5-26ff.].

MR 36 – Parameter object specializations

 A. The coder settings for PARAMETER CONSTANT and PARAMETER DATA ITEM specializa-

tions shall be configured as defined in Table 29.

 PARAMETER CONSTANT PARAMETER DATA ITEM

Signal range Unset (interpreted as constant) Set to a finite value (narrow
contract)

Storage Class ImportedFromFile
(ExportedToFile during shared code

generation)

ImportedExtern

HeaderFile <module-ID>_param_constant.h n/a

Owner Set to model name of helper model
used for shared data code generation
(cf. section 8.1.2.2)

n/a

SourceFile <module-ID>_param_constant.c

during shared code generation

n/a

Table 29: Simulink.Parameter specializations

B. PARAMETER DATA ITEMS shall only be referenced in Constant blocks. They shall

not be directly referenced in SF.

The two specializations differ in their storage classes and other properties to be set as listed

in Table 29. The PARAMETER DATA ITEM specialization fulfills the requirements specified in DR

17. PARAMETER CONSTANTS shall be resolved during code generation and do not have to be ac-

cessed on code level. The compiler can assume them constant and perform optimizations.

(B) has been introduced to ease handling in formal methods (cf. section 8.2.5).

Signal Range

PARAMETER DATA ITEM specializations shall provide a signal range due to their narrow contract

(cf. argumentation and implementation strategy in DR 17).

PARAMETER CONSTANTS shall not be tunable from a process point of view and, in consequence, the

signal range shall not be set to avoid wrong results in verification.

5 Modeling framework for safety-critical MBSwD in SL

Page 172

Storage Class

As shown in Listing 8, storage class ImportedExtern of the PARAMETER DATA ITEM only gen-

erates an extern (forward) declaration in the model code [131, p. 1-111]. The statement tells

the compiler that the variable is defined elsewhere [129, p. 222]. A header file does not need

to be known.

1
2
3
4
5

/* In <modelname>_private.h> (code of consumer model)
 Imported (extern) block parameters */
extern real32_T xy_p_pdi; /* Variable: xy_p_pdi
 * Referenced by: '<Root>/Constant'
 * param-data-item */

Listing 8 : Code snippets for PARAMETER DATA ITEM

For PARAMETER CONSTANTS, the coder settings are changed during shared code generation.

An ImportedFromFile data scope avoids that declarations and definitions are generated with

SL models [96, p. 23–7]. This shall be done during the shared code generation once. Import-

edFromFile only places an #include statement into model code (cf. Listing 9).

In the shared code generation process (cf. section 8.1.2.2), the data scope is changed to Ex-

portToFile [96, p. 23–7]. Embedded Coder then creates both a declaration and a definition

into the shared code (cf. Listing 9).

Since PARAMETER CONSTANT specifies a header and source file name with module prefix during

shared code generation, module parameters are kept separate from parameters of other mod-

ules. The explicit header naming in combination with correct model configuration settings also

forces Embedded Coder to place the declarations in the shared code directory and make them

accessible for other models.

1
2
3
4
5
6
7
8
9
10
11

/* In <module-ID>_param_constant.h (shared scope)
 Declaration for custom storage class: Const */
extern real32_T fc_p_max_ego;

/* In <module-ID>_param_constant.c (shared scope)
 Declaration for custom storage class: Const */
real32_T fc_p_max_ego = 400.0F;

/* In <modelname>_private.h> (code of consumer model)
 Includes for objects with custom storage classes. */
#include "xy_param_constant.h"

Listing 9 : Code snippets for PARAMETER CONSTANT (summary from different files)

5.6.4.7.4 Signals

The term signal in the context of SL/SF is not clearly defined. Generally spoken, signals define

the data flow and data properties in a model. In a programming language, signals would map

to intermediate variables. Signals may be a graphical representation or not. A line connecting

two blocks in SL is always a signal, but a state of a Unit Delay block or a Data Store may be a

signal, too.

5.6 Module design rules

Page 173

Each signal can have meta data, like a name, attached test points, but also a storage class. In

this section, the interest focuses particularly on the storage class. The storage class deter-

mines, how Embedded Coder transforms the signal into code.

The challenge is to manage the various ways to specify signals and to avoid ambiguities. Sig-

nal properties can be specified in separate Simulink.Signal objects, which are attached to sig-

nals, or directly defined in the model. Simulink.Signal objects are intended to store additional

signal data and reside in the data dictionary [127, pp. 5-490ff.].

MR 37 – Signals

A. The SINGLETON SIGNAL and DATA STORE SIGNAL shall be the only used Sim-
ulink.Signal objects, specialized with the properties of Table 30.

 SINGLETON SIGNAL DATA STORE SIGNAL

Data type Auto Any but not auto

Dimensions -1 Any but not -1

Min/Max Unset Unset

Dimensions
mode

Auto Auto

Complexity Auto Real

Unit Unset Unset

Sample time -1 -1

Storage Class ExportedGlobal ExportedGlobal

Alias Unset Unset

Alignment -1 -1

Initial Value Unset Unset

Table 30: Signal specializations

B. Signal properties, except names, shall only be specified with Simulink.Signal

objects. If attached to a signal line or port in SL, the signal shall be explicitly
resolved (indicated by).

C. Naming conventions shall be applied (cf. MR 1).

DATA STORE SIGNAL objects are used for global data stores as described in MR 26. They require

a Simulink.Signal with ExportedGlobal storage class, but also a specified data type, com-

plexity and dimensions.

The second use case of (A), to which SINGLETON SIGNALS map, is to export narrow inter-mod-

ule interfaces and form testable units. Only the ExportedGlobal storage class fulfills this pur-

pose (cf. MR 6). In this case, the SL model specifies many properties of the signal already. To

keep a single source of truth, a Simulink.Signal object shall have a storage class, but inherit

all other properties.

5 Modeling framework for safety-critical MBSwD in SL

Page 174

(B) restricts, how Simulink.Signal objects are attached in SL models. Only a few variations are

shown Figure 61.

1) On line, internally resolved to SINGLETON SIGNAL

2) On line, storage class specified in line properties

3) On line, without specified storage class

4) On state, internally resolved to SINGLETON SIGNAL

5) On Outport block, internally resolved to SINGLETON SIGNAL

Figure 61: Simulink.Signal specifications

Here the approach is followed, that a signal name is only resolved to a Simulink.Signal object,

if explicitly activated. This behavior is enforced in the configuration settings of the model [128,

pp. 9-7f.]. This avoids unintended mapping. Signals 1, 4, and 5 are valid, since they resolve to

a SINGLETON SIGNAL. Signal 2 is exported global, but does not resolve to a Simulink.Signal.

Signal 3 does not even have a storage class.

5.6 Module design rules

Page 175

5.6.5 Implementation of DO-178C concepts

 Quality restrictions

MR 38 – Quality restrictions

 Complexity limitations of the project shall be followed.

Quality restrictions, like complexity, coupling or cohesion measures, are subject to many other

research projects and not further considered here. Olszewska [136] and Dajsuren [137] sum-

marize industrially used complexity metrics for SL models and compare them. The most pop-

ular complexity measure is the cyclomatic or McCabe complexity. In [138], Stürmer highlights

the weaknesses of McCabe complexity and adopts the Halstead Metrics of traditional software

development for MBSwD. Other approaches base on structural and data complexity, like the

weighted block count per layer or dependency measures like instability, abstractness, and dis-

tance [139, 140]. Mäurer [141] adopts object-oriented metrics for MBSwD additionally focusing

on modularization and encapsulation.

Cohesion and coupling as defined in DR 9 and DR 10 is part of these quality metrics.

 DO-331 Model Elements not contributing to LLRs and

Software Architecture

Objectives MB 9 and 10 of DO-331 Table MB.A-2 require the identification of Model Elements,

which do not contribute to implementation or realization of any software architecture or low-

level requirement.

Contribution 11: DO-178C/DO-331 concepts relevant for model-based design have been
interpreted for SL/SF and constituted in rules. Consistent concepts for the definition of model
elements contributing to the design, noncovered and deactivated design, algorithm correct-
ness and the usage of model element libraries have been prepared. These concepts signif-
icantly determine, how SL/SF is used and are not covered by documentation offered by
MathWorks. They lower the adoption risk of model-based design and ease discussions with
authorities in a certification project.

5 Modeling framework for safety-critical MBSwD in SL

Page 176

MR 39 – DO331 Model Elements not contributing to Low-Level Requirements and
Software Architecture

 A. All model primitives allowed in the safe subset contribute to LLRs or Software
Architecture except

 DocBlocks

 Annotations

 Virtual subsystems

B. Model elements of modules not referenced anywhere in the full model hierar-

chy do not contribute (cf. MR 40 and MR 41).

DO-331 does not provide further details except mentioning the example of “comment blocks”.

The MathWorks DO Workflow touches on a difference between virtual and non-virtual blocks,

but remains vague concerning a detailed list of modeling primitives [32, p. 2-17]. The docu-

mentation defines nonvirtual blocks as blocks, which “play an active role in the simulation of a

system [and] if you add or remove a nonvirtual block, you change the model’s behavior” [124,

pp.35-2f.]. In contrast, virtual blocks play no active role in simulation. Whether a block is virtual

or not depends on both of its type and settings.

In consequence, a common assumption is thus that virtual blocks in Design Models do not

contribute information to the implementation or realization of LLRs or Software Architecture. In

fact, examples can be found where virtual locks provide visual help only, but many of them

also have an impact on code generation. For example, a virtual Selector block, which selects

a specific value from a root input for a subsequent operation, contains important information,

which is afterwards found in Source Code. An Inport or Outport block of a subsystem may

define the data type of a signal, although it is virtual.

Since the separation is difficult and cannot be formulated absolutely, it is stated that all mod-

eling primitives contribute to low-level requirements and software architecture, except a few

clearly arguable exceptions.

In addition, model elements of modules not referenced anywhere in the full model hierarchy

do not contribute to the implementation or realization and are considered as unused model

elements (cf. MR 40 and MR 41).

 Noncovered design

DR 30 outlines the handling of noncovered design. Noncovered design is typically detected by

model coverage analysis recorded during requirements-based simulation testing.

Unused design has been identified as additional contribution to noncovered design. Unused

design may be unveiled in coverage analysis. For example, an unused subsystem in a PRIVATE

LIBRARY is not detected in model or code coverage analysis. In contrast, uncalled SL models

are detected by execution coverage or function call coverage.

5.6 Module design rules

Page 177

MR 40 - Unused model elements

 Unused model elements shall be identified on module-level as

A. Private SL models and model data not referenced in any other SL model of the
same module

B. Subsystems in a PRIVATE LIBRARY, which are not used in an SL model of the

same module

and on component-level as

C. Public SL models, which are not deactivatable, and never called

D. Public model data not referenced in any SL model in the integrated Design
Model.

The requirements for deactivatable design from DR 31 have been further detailed for SL/SF.

MR 41 - Deactivatable model elements

 A. Only public SL models as whole shall be deactivatable.

B. Deactivatable SL models shall

 reside in a module declared as “partially usable”.

 be accessible from other modules.

 be specified in and trace to higher-level requirements.

 have higher-level requirements, which are independent from project re-
quirements (e.g., derived).

 not reference other SL models (in- or outside the module).

C. Deactivatable SL models shall not reference model data that leads to shared
code, i.e., specifications of type EXPORTED BUS, SAFE ENUMERATION, or PARAMETERS

CONSTANT.

(C) is the strongest restriction. It originates from the fact, how code is generated for these

specializations. In order to share declarations and definitions across model code, they specify

common header and source files, which are generated once per module (cf. section 8.1.2). At

the time of code generation, it is not known, whether the SL models referencing these values

will be deactivated design or not, so all parameters have to be transformed to Source Code. If

a SL model finally becomes deactivated design, unused definitions and declarations exist in

the code. This is a restriction solely introduced by generation of modular code. In contrast, if

all code would be generated from the top-level model, the code generator could selectively

generate or exclude declarations and definitions and no unused code would exist.

The idea of partially usable library modules is to provide utility functions. Thus, (C) is not con-

sidered as a blocking issue, since those functions typically do not rely on the mentioned spe-

cializations.

5 Modeling framework for safety-critical MBSwD in SL

Page 178

 Algorithm correctness

MR 42 - Run-time error handling

 Run-time errors shall be avoided.

Run-time errors on model-level are not critical itself. However, they always bear the risk of also

appearing in the code. There, they often lead to undefined or implementation-defined behavior,

which doesn’t have to comply with the behavior of SL/SF.

The approach is to look at the run-time errors, which can appear in code, and find out, how

they can be avoided on model-level. MISRA C:2012 Dir 4.1 distinguishes several groups of

run-time errors, which are evaluated with respect to model-based design in SL/SF in the fol-

lowing.

Arithmetic errors – Under- and overflow

Unsigned integers perform a silent wrap and thus can never overflow, whereas the behavior

of signed integer overflows is basically implementation-defined according to ANSI C99 6.3.1.3.

However, implementations defining “signed integer types as also being modulo need not to

detect integer overflow” (ANSI C99 H.2.2 §1). For the CompCert compiler, this is the case as

defined in [57] §6.3.

This complies with the behavior of SL/SF. Although this argumentation releases integer over-

flows from being a run-time error in the given case, they are typically unwanted in SL/SF ap-

plications and not a part of the algorithms (for example, opposite to cryptography applications).

Since they most often indicate a design flaw, they shall be avoided on both model and code

level.

Floating-point overflows are run-time exceptions according to MISRA Dir 4. From a functional

point of view, floating-point overflows like integer overflows indicate design flaws. Thus, they

shall be avoided on both model and code level. Underflows indicate values, which are not

distinguishable from zero anymore and are thus converted to zero. Underflows are uncritical

from a functional point of view.

Both integer and floating-point overflows are avoided by explicit dynamic range checking on

model-level or limitation of admissible signal ranges (cf. section MR 23). Fundamental mod-

eling rules also limit block functionality to avoid overflows (e.g., extrapolation method in

lookup table blocks).

SL diagnostics have been chosen to throw an error upon any simulated overflow (Inte-

gerOverflowMsg, SignalInfNanChecking)or detected parameter under- overflow (Param-

eterOverflowMsg, ParameterUnderflowMsg). This reveals overflows during model simula-

tion, however diagnostics only react, if the test cases actually trigger an overflow. Further for-

mal analysis methods are applied to prove the absence of overflows (cf. section 8.2.5).

5.6 Module design rules

Page 179

Arithmetic errors – Division by zero

The result of a division by zero is undefined in mathematics and according to ANSI C99 6.5.5

§5 and shall thus be avoided.

Division by zeros are avoided by explicit dynamic range checking on model-level or limitation

of admissible signal ranges. If a division by zero occurs, SL diagnostics always terminates the

simulation. This reveals division by zero during model simulation, however diagnostics only

react, if the test cases actually trigger a division by zero. Further analysis methods are applied

to prove the absence of such an event (cf. section 8.2.5).

Arithmetic errors – Array out-of-bounds

Since C internally uses pointer arithmetic to address array fields, index values beyond the

bounds of the array lead to memory access violation or unexpected results.

Array out-of-bounds accesses are avoided by explicit dynamic range checking on model-level

or limitation of admissible signal ranges.

If an array out-of-bounds access occurs, SL diagnostics always terminates the simulation. This

reveals invalid array access during model simulation, however diagnostics only react, if the

tests actually trigger such a case. Further analysis methods are applied to prove the absence

of array out-of-bounds accesses (cf. section 8.2.5).

Function parameters

MISRA defines this run-time error as any call to a library function, which is outside the admis-

sible range. For example, the behavior of the fmod function for the second argument equals

to zero is implementation-defined (ANSI C99 7.12.10.1 §3).

All callable C library functions are robust for any input (cf. section 8.1.2.5)

Pointer arithmetic and pointer dereferencing

As example, MISRA C claims that dynamically calculated pointers must point to “somewhere

meaningful” and NULL pointers are identified before dereferenced. Pointer handling errors

can only be introduced by Embedded Coder, since the user has no direct control of pointers.

SL does not allow explicit pointer access and modification on model-level. SF pointer opera-

tions are forbidden by MAAB jm_0001 [108, pp. 7-55ff.].

Dynamic memory

Dynamic memory allocation shall not be used in C code (cf. DR 28). Dynamic memory alloca-

tion is disabled in SL in configuration settings by not using variable size signals SupportVar-

iableSizeSignals and a disabled dynamic memory allocation at initialization (GenerateAl-

locFcn).

MISRA C Dir 4.12 forbids dynamic memory allocation with the C Standard library or any third-

party implementation.

Model checks detect any deviation from the chosen configuration settings. Calls to the dynamic

memory allocation functions are found, when checking code compliance to MISRA C.

5 Modeling framework for safety-critical MBSwD in SL

Page 180

 DO-331 Model Element Libraries

A known development challenge along a software process are libraries. Main intention of li-

brary functionality is reuse and distributed, independent development. In consequence, finally

ensuring consistent traceability, completeness of software life cycle data, as well as consistent

configuration management requires special attention. Objective of this section is to identify

DO-331 Model Element Libraries in the MBSwD process at hand. Both DO-178C and DO-331

impose additional requirements on libraries.

MR 43 – DO-331 Model Element Libraries

 The following design constructs in SL/SF shall be considered as Model Element
Libraries and underlie the respective requirements of the standards:

 Partially usable module library

 Pseudo primitives in the DO-331 Foundation Library

DO-178C defines Software Library as a “controlled repository containing a collection of soft-

ware and related data and documents designed to aid in software development, use, or mod-

ification. (DO-178C p. 116)”. The term is mentioned a few times, but further guidance is not

given.

DO-331 introduces the definition of a Model Element Library as “a collection of elements used

as a baseline to construct a model. A model may or may not be developed using Model Ele-

ment Libraries (DO-331 p. 82)”. Discussion Paper DP#2 (MB.B.18) “Information on the usage

of libraries in a Model-Based Development and Verification process” of DO-331 addresses the

topic more intensively and formulates various requirements to be fulfilled.

Anyway, it is still controversial, what exactly a Model Element Library in MBSwD is. For exam-

ple, is the set of atomic primitives considered as Model Element Library or does it belong to

the modeling language? If it is a library, how can a model not use Model Element Libraries?

In both definitions given by DO178C and DO-331, configuration management plays an im-

portant role by mentioning a “controlled repository” and a “baseline”. Furthermore, DP#2 dis-

tinguishes between library developers and users and the fact that libraries “are frequently de-

veloped by third parties, such as tool vendors, departments other than the one using the li-

brary”. DO-331 MB.B.18.2 also states that “some libraries are directly developed in a program-

ming language and others are developed in a modeling language.”

In consequence, it is defined that if the following two conditions are met, software must be

handled as library:

1. The software must have been developed in an independent life-cycle.

2. The software is partially usable. It is not required to achieve full coverage of all library

functions in the product software.

5.6 Module design rules

Page 181

For the presented modular approach, three types of library candidates can be identified and

play a role in the process (cf. Table 31). They are treated as described in Table 31 and are

discussed in the following.

 Independent
Development

Cycle

Independent
Verification Cycle

Partially
Usable

Library Type
(DO-178C/DO-

331)

Reference

Partially Usable
Module Libraries

X
(if in a separate

module)

X
(partially if in a

separate module)

X Model Element
Library and

Software Library

MR 9

DO-331
Foundation
Library

X X X Model Element
Library

(partially)

MR 27

Private Libraries n/a MR 21

Table 31: Model Element Library assessment in the MBSwD process

Partially usable modules libraries

Partially usable module libraries have been introduced in DR 6. These are modules developed

in another process/project and are partially usable. They contain publically accessible SL mod-

els (Model Element Library), but also generated and (partially) verified Source Code (Software

Library). Both requirements are met on model and code level, so they are considered as Soft-

ware and Model Element Libraries.

Private libraries

PRIVATE LIBRARIES have been introduced in MR 21. The specialization restricts library use to a

single module, it is developed and used in the same controlled environment and by the same

person. Verification is done where the patterns are instantiated and fully integrated into model

verification. They are not partially usable (cf. MR 40). They are neither Software nor Model

Element Libraries.

DO-331 Foundation Library

The DO-331 Foundation Library, which has been further explained in MR 27, is a single SL

library included in the modeling environment providing all usable atomic primitives. It follows

the Software Environment Life Cycle. The same library is available and must be identical in all

modules, which are integrated into each other.

It is quite controversial, whether it is a Model Element Library or belongs to the modeling lan-

guage. To make a more nuanced point, simple, complex, and pseudo-primitives should be

distinguished.

Simple primitives are atomic blocks directly connected to a low-level implementation in SL.

During code generation, they expand to a limited block of C code, which is inlined in the code

of the higher context (Figure 62). Most of the primitives are unchangeable atomic elements of

the current SL release and undoubtedly part of the modeling language.

5 Modeling framework for safety-critical MBSwD in SL

Page 182

/* Sum: '<Root>/Add' incorporates:
 * Inport: '<Root>/In1'
 */
rtb_Add = xy_model_U.In1 + xy_model_U.In1;

Figure 62: Simple primitive

Complex primitives are atomic blocks connected to a low-level implementation and expand to

complex shared C functions during code generation or call non-generated C functions (e.g.,

from the Standard C Library or a Code Replacement Library). Typical examples are the

LookupTable and TrigonometricFunction blocks (Figure 63). The first generates a shared

utility function look2binlca, the second uses the cert_sin function of the Cert Standard C

Library. Also blocks created from legacy C code (cf. section 8.1.2.5) extend the set of built-in

primitives.

The blocks are unchangeable, atomic elements of the modeling language, but the called C

functions are exchangeable and must developed under DO-178C as Software Library.

b_Lookup2d = look2_binlca(xy_model_U.In1,
 xy_model_U.In2,
 xy_model_ConstP.pooled1,
 xy_model_ConstP.pooled1,
 xy_model_ConstP.Lookup2d_tableData,
 xy_model_ConstP.Lookup2d_maxIndex,
 3U);

/* Trigonometry: '<Root>/sinus' incorporates:
 * Inport: '<Root>/In1'
 */
b_sinus = cert_sin(xy_model_U.In1);

Figure 63: Complex primitives

Pseudo-primitives are blocks, which appear atomic, but actually are subsystems with nested

blocks, e.g., the Interval Test “block” (Figure 64). Various pseudo primitives are provided by

MathWorks (“built-in”), but it was also necessary to add own in some situations.

▼

/* RelationalOperator: '<S1>/Lower Test' incorporates:
 * Constant: '<S1>/Lower Limit'
 * Inport: '<Root>/In1'
 */
rtb_LowerTest = ((-0.5) <= xy_model_U.In1);

/* RelationalOperator: '<S1>/Upper Test' incorporates:
 * Constant: '<S1>/Upper Limit'
 * Inport: '<Root>/In1'
 */
rtb_UpperTest = (xy_model_U.In1 <= 0.5);

/* Logic: '<S1>/AND' */
rtb_AND = (b_LowerTest && b_UpperTest);

Figure 64: Pseudo-primitives

5.6 Module design rules

Page 183

Simple and complex primitives are considered as part of the modeling language, but pseudo

primitives are not considered as part of the modeling language in the process at hand, although

partially shipped by MathWorks and verified in the context. At least for these blocks, guidelines

for a Model Element Library have to be followed. Rational is that pseudo primitives are inde-

pendently developed and often contain complex functionality, which should base on require-

ments and thoroughly be verified on model-level before distributed. Any change to a pseudo

primitive has significant influence on the behavior of models.

Anyway, this conservative decision is controversial and should be clarified with the authority.

One could argue, that pseudo primitives are also pure design patterns fully verified in the con-

text they are instantiated. Size and complexity of the nested block diagram in pseudo primitives

and the capability of verification tools to traverse into linked subsystems and include their con-

tent into verification should be considered as criteria for the decision. Also the action performed

when copying a pseudo primitive from the DO-331 Foundation Library may influence the view-

point. For example, the SL library (slcilib) shipped with SLCI removes the link between the

subsystem and the library as soon as placed in a model. Then, the subsystem is an unlinked,

pure copy, which does not update with library changes anymore.

The additional objectives to be considered for a Model Element Library are listed in DP #2.

The MBSwD process at hand covers the objectives for partially usable module libraries, since

any module has similarities with libraries. Due to their more independent character and usage

across projects, additional effort is necessary to document operational requirements. The sym-

bols of library elements are predefined by the symbols of model reference blocks. Partial use

is covered by the MBSwD (for example, DR 6, DR 31, or MR 41).

The process for the DO-331 Foundation Library needs further considerations, since SL librar-

ies need extensions and deviations to the modeling rules, have to be separately verified, need

separate requirements and have additional considerations concerning process coverage and

reuse. This process is not further regarded in this work.

5 Modeling framework for safety-critical MBSwD in SL

Page 184

5.7 Fundamental modeling rules

The fundamental rules consist of a subset of the high-integrity guidelines [103], the guidelines

for code generation [104], and the MAAB guidelines [108] as well as custom guidelines.

In fundamental rules, low-level block and configuration settings are restricted. For example,

“hisl_0001 – Usage of abs block” [103, p. 2-2] says:

a. “Avoid Boolean and unsigned integer data types as inputs to the Abs block.”

b. “In the Abs block parameter dialog box, select ‘Saturate on integer overflow’”.

Since the sets have been independently developed, significant overlap and also contradictions

exist. Furthermore, many MAAB guidelines are outdated and almost not applicable. Significant

effort was necessary to condense them.

The new custom rules standardize settings throughout the models. For example, the integer

rounding mode or the use of automatic overflow saturation, which almost every block provides.

Another large part predefines configuration settings. Only a few important settings are settled

by the existing guideline sets. For all others, a project-specific value had to be chosen and

rationales had to be documented.

Contribution 12: A consistent set of modeling rules as been condensed from existing guide-
lines sets. The rules address detailed settings of model elements. Various own, custom rules
have additionally been added. These rules target standardized use of settings beyond the
pure safety aspects.

5.8 Modeling environment

Page 185

5.8 Modeling environment

The Software Life Cycle Environment “defines the tools, methods, procedures, programming

languages, and hardware that will be used to develop, verify, control, and produce the software

life cycle data (DO-178C 4.4)” and is included in the Software Development Plan in the Plan-

ning Process (objective DO-178C Table A-1:3). It describes the following:

 Software Development Environment (DO-178C 11.2c, 4.4.1)

 Language and Compiler Considerations (DO-178C 4.4.2)

 Test Environment (DO-178C 4.4.3)

 Simulation Environment (DO-331 MB.4.4.4)

Tools specified as part of the Software Life Cycle Environment are subject to Software Life

Cycle Environment Control, which is a configuration management action (DO-178C Table A-

8:6 and DO-178C 7.5). The connected software configuration management data is the Soft-

ware Life Cycle Environment Configuration Index (DO-178C 11.15). According to DO-178C

7.5a, “configuration identification” is required as minimum.

The modeling environment defines the Software Development Environment and Simulation

Environment for the Design and Coding Process to a high degree. The modeling environment

is “a package of settings, libraries, and templates that are made available to developers in

order to support them in implementing models and generate code that is safe and compliant

to the defined process” [36, p. 70]. It must underlie a strict configuration management process

[142]. Changes must be replicable at any time.

The content of the modeling environment has been presented by Hochstrasser [36], but

evolved over time and had to be adapted for the modular process. Figure 65 provides an up-

dated overview. Essential part are the modeling rules, naming conventions, and configuration

settings constraining the modeling language as presented in the previous sections.

Contribution 13: A consistent modeling environment has been assembled. The modeling
environment comprises all resources to setup SL/SF in the light of the given design, model-
ing, traceability, and coding rules. As distributable package, they allow any developer to
quickly turn SL/SF in the controlled environment necessary to implement Design Models.

5 Modeling framework for safety-critical MBSwD in SL

Page 186

Figure 65: Content of modeling environment based on [36]

The simulation and configuration settings are the three sets introduced in MR 15. They are

part of a general configuration SL data dictionary.

AddOns are little programs, which extend the functionality of SL/SF. On the one hand, this is

the traceability tool SimPol presented in section 6.4, on the other hand the MinGW compiler

used by SL/SF to compile simulation targets. The compiler has been chosen, since it is, espe-

cially for SIL simulations (cf. section 8.2.15), closer to the used cross-compiler CompCert for

Executable Object Code.

Beside the DO-331 Foundation Library, which has been introduced in MR 27, commonly used

constants (e.g., physical constants) have been added to the modeling environment, in Figure

65 entitled DO-331 Foundation Data. This is the only model data, which can, but does not have

to be used in a project, since model data shall not be deactivated design according to section

MR 41. The constants are designed to be inlined in code.

The Software Life Cycle Environment Configuration Index is basically a table with all tool ver-

sions. It is checked when initializing the environment.

The coding artifacts as well as the scripts and tool configurations for verification are discussed

with the respective tasks in section 8.1.2.

Simulation

Conf iguration

Settings

DO-331

Foundation

Library

DO-331

Foundation

Data

Canonical

Shared Code

Code

Replacement

Library

Code

Generation

Template

Coder

Conf iguration

Settings

M
O

D
E

L
IN

G
C

O
D

IN
G

Adv anced

Target-Specif ic

Conf iguration

Rules +

Naming Conv .

Add Ons

M
O

D
E

L
 V

E
R

IF
IC

A
T

IO
N

C
O

D
E

 V
E

R
IF

IC
A

T
IO

N

Tool

Conf igurations

Execution

Scripts

Tool

Conf igurations

Execution

Scripts

Setup

Scripts

c=

Patches

SECI

5.9 Summary and outlook

Page 187

5.9 Summary and outlook

With the modeling framework, a systematic approach to derive design, modeling, and code

rules has been introduced in section 5.3 and applied in subsequent sections.

In a first step, a complete set of tool-independent design rules bridging the gap between ab-

stract requirements of the process standard and detailed settings of modeling rules has been

created. Amongst others, the design rules introduced a concept of modularization in section

5.4.4 by defining modules, units, or library modules. Special attention has been paid on inter-

face specifications in sections 5.4.4.3 and 5.4.4.4, which are the basis for formal and classical

modular verification. Also the development of Parameter Data Items has been planned in detail

in section 5.4.4.6.

Additionally, coding rules for auto-generated code have been written for the chosen code gen-

erator, the selected compiler tool chain around CompCert, and the state-of-the-art coding

standard MISRA C. The rule set is significantly smaller than coding guidelines applicable for

hand-written code, since the requirements for code generators are less strict, e.g., it is as-

sumed that they handle global variables much better and in a more organized way than a

human programmer would, but also since no guidance for programmers is necessary.

Both design and coding rules served as basis for module design and fundamental modeling

rules specifically applicable for SL and SF in section 5.6. The module design rules extended

traditional modeling rule sets with architectural considerations, like the definition of modules

and units, or the exact specification of component and module interfaces in section 5.6.4.4.

Additionally, rules for the application of container primitives like SL models or subsystems

(section 5.6.4.2) have been assessed in the light of the given process context and specified.

To constrain the detailed design, a new approach has been followed. Instead of “blacklisting”

features that are not compliant or safe in SL/SF, permitted features have been “whitelisted”,

e.g., the safe specializations for model data in section 5.6.4.7 or the DO-331 Foundation Li-

brary for atomic blocks in section 5.6.4.5. Finally, rules have been created that address topics

imposed by the standards, like noncovered design or additional considerations for so-called

Model Element Libraries in section 5.6.5.

A considerable amount of complexity in the rules is subject to modularization. Scalability is

only provided and agile work in different teams only possible, if the interfaces are clear and

robust. Converting the higher-level design rules into the SL/SF environment revealed several

gaps in the tool chain with respect to these topics. Best example is encapsulation. SL does not

know a concept for encapsulation for SL models or subsystems. Also encapsulation of model

data is cumbersome.

In addition, the rules show that the intersection of features drastically diminishes, if compatibil-

ity throughout the whole tool chain is required and the workflow deviates from integral code

generation. Carving out this subset is connected to time-consuming trial-and-error. On the op-

posite, the fact that for almost every situation a workaround could be found, demonstrates the

flexibility of the tools.

5 Modeling framework for safety-critical MBSwD in SL

Page 188

The compatibility requirements with the tool chain resulted in a very “model-centric” workflow.

The concept of model references is preferred over library linking. As pointed out in the discus-

sion of section 5.6.4.2, several disadvantages exist in this case, too, like performance or tool

limitations. This drawback has been realized by MathWorks as well. New concepts for library

subsystems in later releases promise alternative workflows and should be investigated to com-

bine the best of both SL models and SL libraries. All guidelines base on SL release R2017b.

In subsequent work, concepts and rules should be assessed in the light of enhanced features

of new releases. Certainly some limitations are not necessary anymore.

In summary, a holistic, adaptable modeling framework has been created with rule sets covering

many aspects of safety-critical model-based software development and guaranteeing con-

sistency as well as a high level of compatibility with development and verification tasks. Alt-

hough the rules constrain the features significantly, they either offer a valuable “out-of-the-box”

solution or profound foundation for many controller development applications.

6.1 Objectives

Page 189

6 Traceability tooling and rules

6.1 Objectives

Gotel et al. describe traceability as “the potential to relate data that is stored within artifacts of

some kind, along with the ability to examine this relationship. […] The value of traceability lies

in the many software and systems engineering activities and tasks that the information pro-

vided through such interrelations can enable, such as change impact analysis, coverage anal-

ysis, dependency analysis etc.” [143, p. 3]. DO-178C requires extensive traceability and it is a

core evidence for showing process compliance to authorities. However, establishing and man-

aging traceability is a significant effort without direct benefit. In consequence, trace data does

not get the required attention and is often incomplete or does not provide the necessary gran-

ularity.

This section introduces, how traceability is established in the process at hand and presents

formulated rules. Since requirements are managed in Polarion, traceability must be estab-

lished between Polarion work items and model elements in the SL/SF environment. Bridging

this gap is thus an important objective.

6.2 State-of-the-art

Traceability has been a research topic for many years. However, the industry still suffers from

traceability gaps. Mäder et al. point out the importance of traceability in safety critical projects,

but also list adoption problems reaching from invisibility of the benefit for developers to granu-

larity issues [144]. Rempel [145] assesses the need for an explicitly defined traceability strat-

egy. In the empirical study, several projects have been analyzed and show traceability gaps.

In their recent study, Salome et al. [146] provide a summary of the traceability challenges in

the automotive domain. In the areas of tool support, human factors, organization and process,

as well as exchange of traceability, a variety of gaps and inefficiencies could be identified.

Overall, the excessive manual work to create and maintain traceability throughout the devel-

opment life cycle is time-consuming and does not appear beneficial to developers. Also, the

lack of flexible tools is mentioned as challenge, which is rarely addressed in literature.

Especially, if the linked artifacts are of a different type, managing traceability is far more chal-

lenging. Even traceability between textual requirements and Source Code, which is applied for

decades, is still unsatisfactorily solved and topic of current research [147]. According to Paz

[69], “traceability appears as fairly unattended” in many MBSwD approaches, especially con-

cerning coverage analysis.

6 Traceability tooling and rules

Page 190

Different strategies are under research depending on the type of the tracing activity. Gotel et

al. [143] distinguish manual tracing activities, where a human tracer establishes the trace links,

as well as automatic and semi-automatic tracing activities. Automatic means that the trace link

is automatically generated, whereas semi-automatic implies the involvement of a human in

some way. In MBSwD, both manual tracing and automatic tracing is necessary. In automatic

code generation with Embedded Coder, traceability from code to design is automatically cre-

ated, whereas the traceability from design to textual requirements must be manually estab-

lished.

In particular, manual tracing activities raise difficulties. In current research, manual tracing is

supported with Information Retrieval (IR) or Machine Learning [148], leading to semi-automatic

tracing activities. However, Salome et al. [146] remark skepticism with respect to these ap-

proaches due to the high “chance that incorrect links are generated or links are missing”. The

interaction between automated traceability capturing and manual post-processing is also con-

troversially discussed in [149, 150]. As more promising approach, smart maintenance capabil-

ities are proposed by [146]. Different research tries to overcome the human factors concerning

traceability and the lack of motivation with gamification approaches [151].

Some research projects address post-creation assessment of trace links. For example,

Rempel describes an approach, in which a guideline traceability model is derived from stand-

ards, the project traceability is recovered, and compared with this model [14, 152].

In the context of the process at hand, traceability had to be maintained between the server-

based requirements management Polarion and SL/SF. It spans multiple tools, with different

APIs and different workflows. With the Polarion Connector for Simulink plugin (version 2.3,

March 2019)23, Polarion only offers a lightweight solution to establish traces between Polarion

work items and SL/SF models based on the Simulink Requirement Management Interface

(RMI [153, pp.5-2ff.]) leaving many questions, like change or configuration management, un-

answered. It only addresses creation of bidirectional traces. Allocation of requirements is not

addressed. No possibility exists to detect unidirectional, broken, or invalid links and to repair

them. Furthermore, the linking workflow is not user-friendly requiring stepping through various

context menus and dialogs for a single link. The linking is also limited to SL/SF, data in data

dictionaries or SL test cases cannot be linked. Impact analysis or requirements coverage are

manual workflows and thus traceability becomes an end in itself.

In release 2017b, MathWorks introduced new requirement management capabilities with SL

Requirements [153], but an integrated solution to link Polarion work items was not included. In

addition, MathWorks follows a different workflow in current releases. Starting with release

2018a24, it is proposed to export Polarion work item into the ReqIF file format [154] and import-

ing them into SL Requirements. However, this approach is not considered as bidirectional and

buries synchronization challenges.

23 http://extensions.polarion.com/extensions/173-polarion-connector-for-simulink [Accessed on: Sep. 07 2019]

24 https://de.mathworks.com/help/releases/R2018a/slrequirements/ug/import-requirements-from-third-party-

tools.html [Accessed on: Sep. 07 2019]

http://extensions.polarion.com/extensions/173-polarion-connector-for-simulink
https://de.mathworks.com/help/releases/R2018a/slrequirements/ug/import-requirements-from-third-party-tools.html
https://de.mathworks.com/help/releases/R2018a/slrequirements/ug/import-requirements-from-third-party-tools.html

6.2 State-of-the-art

Page 191

Beside those two approaches, no further tool is known to the author for traceability between

Polarion and SL/SF. In the work of this thesis, a standalone tool has been implemented in

MATLAB adding the important, missing features and allowing smooth traceability between Po-

larion and SL/SF as well as verification tools.

Beside the tooling, measures for required trace granularity from HLRs to elements of the De-

sign Model is a very unaddressed topic. The question, which model elements have to be linked,

and how many elements of a Design Model can be covered by a single requirement is unde-

fined. Cleland-Huang et al. [46] note that standards like DO-178C “fail to […] specify the gran-

ularity of the links and the optimal trace path (i.e., the path through the graph from source to

target artifacts).” A case study performed in [144] lists a not clearly defined trace granularity as

one of the major problems of traceability in safety critical software projects and also Rierson

emphasizes the importance of a consistent granularity [45, p. 121].

6 Traceability tooling and rules

Page 192

6.3 Structure

Section 6.4 describes the novel tool SimPol, which allows scalable requirement linking and

implements solutions for the traceability workflows outlined in DR 24. The set of features

reaches beyond capabilities of existing tools.

Sections 6.5.1 and 6.5.4 discuss established traceability rules for the presented process. Sec-

tion 6.5.5 specifically addresses derived LLRs and demonstrates a new way of documenting

them with SimPol, which perfectly fits into existing processes.

6.4 SimPol

Contribution 14: The author has developed a new, publically available tool called SimPol
to manage traceability between Polarion and SL artifacts. Compared to existing solutions,
SimPol supports all artifacts in SL relevant for the process (SL models, SL tests, SL data
dictionaries) by an extendable, pluggable software architecture. In addition, the manage-
ment effort is reduced by loading bidirectional traces into an integrated, abstract data model,
which leverages automatic identification of missing, corrupted, or outdated traces and their
resolution, bending of trace links to other artifact revisions, as well as impact analysis.

SimPol is a MATLAB application written by the author. It provides a bunch of features to man-

age traceability. Figure 66 shows a screenshot of the SimPol user interface. The window is

divided into a Polarion side (left), and a SL/SF side (right). The Polarion side lists allocated

Polarion work items and incoming links, whereas the SL/SF side summarizes model elements

and their outgoing links. The divided view allows identification of dangling links and unlinked

items.

For the actual linking workflow, the right-hand side can be hidden, and Polarion work items

can be shown side-by side with a SL model.

6.4 SimPol

Page 193

Figure 66: Screenshot of SimPol

N
e

w
A

llo
c
a

ti
o

n

F
ile

O
p

e
n

A
llo

c
a

ti
o

n
F

Ile

E
d

it
A

llo
c
.

F
ile

M
a

in
te

n
a

n
c
e

 C
e

n
te

r
-

O
v
e

rv
ie

w
o

f
lin

k
in

g

-
B

a
tc

h
 s

c
ri

p
ts

L
in

k
e

r
M

o
d

e

U
p

d
a

te
 C

a
c
h

e
(P

o
la

ri
o

n
)

U
p

d
a

te
 C

a
c
h

e
(R

M
I)

F
ilt

e
ri

n
g

o
f

R
M

I
lin

k
s
 a

n
d

it
e

m
s

C
re

a
te

 n
e

w
lin

k

L
in

k
 a

n
d

 it
e

m
M

e
th

o
d

s

L
in

k

Im
p

o
rt

to
S

L
 R

e
q

u
ir

e
m

e
n

ts

(>
=

 R
2

0
1

7
b

)

6 Traceability tooling and rules

Page 194

On Polarion side, the tool uses the provided Java Web Service API25. In MATLAB, it exchanges

data with the Requirement Management Interface (RMI) (cf. Figure 67). The RMI is the com-

mon gateway used across various MATLAB toolboxes to attach requirement links to various

types of elements (model elements, test cases,…) without altering the content of the artifact

itself.

Figure 67: Basic SimPol infrastructure

Requirement allocation with SimPol

Central element of the SimPol workflow, which also distinguishes it from other approaches, is

the allocation step at the beginning. The user has to select the work items in Polarion as well

as the components in MATLAB, which he plans to link. Work items are container elements that

can represent any kind of information in Polarion, here typically requirements. The selection is

stored in a so-called Allocation File and must be loaded prior to any linking. The subset of

allocated work items is specified by a flexible query string, which supports all query capabilities

of Polarion and any work item type. On MATLAB side, file artifacts must be chosen. Supported

are SL models, SL test files, and SL data dictionaries. The process is illustrated in Figure 68.

25 https://almdemo.polarion.com/polarion/sdk/doc/javadoc/com/polarion/alm/ws/client/WebServiceFactory.html

R
M

I

W
e
b

 S
e
rv

ic
e

Polarion SL/SFSimPol

https://almdemo.polarion.com/polarion/sdk/doc/javadoc/com/polarion/alm/ws/client/WebServiceFactory.html

6.4 SimPol

Page 195

Figure 68: SimPol allocation process

Knowing the cohesive set on both sides enables the tool to determine unlinked elements, cal-

culate coverage, and decide whether links are dangling or unidirectional. Therefore, SimPol

internally builds a Link Table as shown in Figure 68 in an exemplary way. The allocation and

precise selection of work items leverages a modular process and splitting requirements

amongst modules. Allocation files can be created in advance and be provided to the respective

modules.

Link realization and storage with SimPol

To create links, elements must be uniquely identifiable in both Polarion and MATLAB. In Po-

larion, every work item has a unique ID composed of the project name and an immutable,

running number (e.g., proj-75). Work items are accessible via a Unique Resource Identifier

(URI), e.g., https://.../polarion/#/project/proj/workitem?id=proj-75.

In MATLAB, different concepts are used. SL/SF model elements provide a Simulink ID (SID)

[124, p, 1-18], SL Test works with a Universally Unique Identifier (UUID)26, and SL data dic-

tionary items with a unique, global name.

In the simplest case, links directly point to the unique ID of the linked item. Due to their bidi-

rectional character, links are created and stored in both Polarion and MATLAB. The RMI link

holds the URI of the work item, and the Polarion work item the unique ID of the element in

MATLAB (as hyperlink added to the work item). The trace is in consequence navigable in both

directions and each side holds the full trace information.

However, it is good practice that traces are separately stored from the linked artifacts, so that

they don’t change the revision. For example, HLRs are often already verified and baselined

before they are implemented. If any established link increased the revision of the work item, it

would disrupt configuration management.

26 http://www.boost.org/doc/libs/1_65_0/libs/uuid/

Model

Data

Dictionary

Model
SL Test

File

SL Test

File

Req.

Work Item

Req.

Work Item

Req.

Work Item

Req.

Work ItemTest Work

Item

Test Work

Item

Model

Allocation File

Link Table

Polarion MATLAB

?

?

http://www.boost.org/doc/libs/1_65_0/libs/uuid/

6 Traceability tooling and rules

Page 196

The RMI provides features to store links independently of the model (cf. section 6.5.1). How-

ever, hyperlinks written into Polarion work items always modify the revision.

Solution is the so-called Surrogate Linking. The method inserts a surrogate work item created

in Polarion in-between the original Polarion work item and MATLAB elements. Surrogate work

items mirror the actual linked MATLAB elements. The approach is outlined in Figure 69. Title

of the surrogate work item is the unique ID of the respective MATLAB element, in this case the

SID of the model element.

Figure 69: Surrogate Linking

With a surrogate work item, the bidirectional trace consists of three parts as highlighted in the

example of Figure 70:

1. A bidirectional work item link in Polarion of type “implements” from Surrogate Work

Item to HLR work item.

2. An unidirectional hyperlink in the surrogate work item pointing to the model primitive

and containing its SID.

3. An unidirectional work item ID and a hyperlink wrapped in a RMI link of type Polarion

Link attached to a model.

Links from surrogate work items to HLR work items (1) do not impact the revision of HLR work

items, since the link information is only stored in the source work item. The reverse link is

implicit. The directly placed or modified hyperlink to SL/SF (2) only impacts the revision index

of the surrogate work item.

Polarion REQUIREMENTS

mdl:1

mdl:2

mdl:5

mdl
SwRQ

SwRQ

SL / SF

Allocated

HLRs

(1) Polarion internal link

(2) Hyperlink (with unique ID)

(3) Hyperlink (with unique ID)

Surrogate

Work Items

6.4 SimPol

Page 197

Figure 70: Trace realization (Screenshots)

Having the model parts in a requirement tool also allows the adoption of Polarion features like

adding an artifact status to work items, handing them over according to a defined process,

attaching them to tasks, or assigning them to user roles. The embedded image provides a

quick view of the model or subsystem without opening SL/SF.

This surrogate model approach is not new and already featured by the RMI for IBM Doors

[155, pp. 7-13ff]. Also the Polarion Connector for Simulink plugin27 supports the creation of

surrogate items. However, it cannot handle the unneglectable disadvantage of the approach,

which is an increased effort in checking the validity of links and synchronizing the surrogate

work items. In contrast, SimPol can detect dangling links across the surrogate work items,

update their content upon changes, and identify obsolete items. These are capabilities, which

are necessary to successfully apply Surrogate Linking.

Configuration Management and SimPol

Another challenge related to configuration management addresses versioning and restoration.

In reality, work items as well as MATLAB elements are not only identified by their unique ID,

but also by their revision in the respective version control system. For example, a HLR may

evolve over time and even be deleted. Different states are saved in different revisions. Ulti-

mately, a bidirectional link has to address a revision on both sides, too.

Here, MATLAB elements are committed to the GIT version control system. Every commit is a

revision with a unique ID. Revisions can be labeled with so-called tags [156, pp. 54ff]. GIT can

handle different, parallel development branches, into which changes can be committed.

“Branching means you diverge from the main line of development and continue to do work

without messing with that main line” [156, p. 62]. The latest commit of each branch is called

the “HEAD” commit.

27 http://extensions.polarion.com/extensions/173-polarion-connector-for-simulink

Polarion

Work Item

Surrogate

Work Item
SL/SF

(1) Polarion internal link

(2) Hyperlink (with unique ID)

(3) Hyperlink (with unique ID)

RMI Link

http://extensions.polarion.com/extensions/173-polarion-connector-for-simulink

6 Traceability tooling and rules

Page 198

Also Polarion (release 2015) bases on a version control system. Each change in any work item

updates the revision of the underlying version control system. Changes can only be made to

the latest revision (“HEAD”). Working with different branches is not supported in the used re-

lease. However, the latest revision can be baselined at any time under a custom tag. Baselines

can be accessed at any time, but only in a read-only mode.

If an element in MATLAB is linked to a Polarion work item, it can either be linked to the HEAD

in Polarion, which always points to the latest revision, or to a baseline, which points to a fix

revision in the past. The information, where it points to, could be directly stored in RMI links. A

slightly different URI references work items in baselines, e.g., https://.../polar-

ion/#/baseline/82/project/proj/workitem?id=proj-75. However, storing revision in-

formation in RMI links requires an update of all links each time a new baseline is linked. This

taints the link files unnecessarily, since during smaller changes, the majority of links remains

untouched. Instead, SimPol stores the revision in the Allocation File. The RMI link only holds

the relative path. The baseline, to which links direct, can be changed by only modifying the

Allocation File. Broken links due to missing work items in the new revision or new unlinked

work items are indicated in SimPol.

In the opposite direction, i.e., in hyperlinks placed in Polarion work items, a GIT revision is

currently not automatically encoded. Since GIT is not a server-based application, revisions

must be checked out on the file system. The revision information must thus be stored by other

means.

Another problem exists on Polarion side. In a perfect workflow, requirements are baselined.

These requirements are passed to the developer, which implements the design and creates

links to the baselined requirements. However, baselines in Polarion are read-only and linking

to a baseline is not possible.

The clean solution would be using different, linked Polarion projects (one for requirements and

one for the surrogate model), but SimPol does currently not support cross-project linking.

Hence, another pragmatic approach has been chosen. The HLR project in Polarion and the

SW Design in GIT are considered as one configuration item as depicted in Figure 71. This is

reasonable, since both are modified by the same developer, too. The HLR project in Polarion

references other, higher-level Polarion requirement projects (e.g., with system requirements).

The Allocation File references the HLR project.

6.4 SimPol

Page 199

Figure 71: SimPol configuration items

The resulting workflow for a requirement change and a subsequent design change is outlined

in Figure 72. The left blue line always represents important Polarion revisions, and the right

orange line represents revisions of the SW Design versioned in GIT.

Figure 72: SimPol configuration management workflow for requirement changes

1. It is assumed that a SimPol Allocation File, which is baselined in GIT (tagged with

GIT_BASELINE1), points to a Polarion baseline (POL_BASELINE1). POL_BASE-

LINE1 is also equal to the HEAD revision of the Polarion project.

2. From the existing baseline, the requirements in Polarion are updated. This moves the

HEAD revision in Polarion forward. At this point of time, design and implementation are

not current with the requirements.

3. The developer now switches to design. At first, the SimPol Allocation File is changed

to point to the HEAD revision in Polarion. After that, SimPol highlights model elements,

which base on a changed requirement, as well as new requirements and broken links.

The developer updates the design and may commit its changes.

Module SW HLR Project

(Polarion)

Module SW HLR Project

(Polarion)

Higher-level

Requirements Project

(Polarion)

SW Design &

Implementation (GIT)

SW Design &

Implementation (GIT)

Configuration Item Configuration Item

Allocation File

References

 Update requirements Update Design Model Update traces Establish baseline Before change

Baselined revision /

referencing

Non baselined revision /

referencing

6 Traceability tooling and rules

Page 200

4. After updating the design, traces are updated. Every bidirectional trace update is a

separate project revision in Polarion and moves the HEAD revision forward on both

sides, since work items and RMI link files are modified.

5. As soon as all links are up-to-date, a final baseline is established in Polarion

(POL_BASELINE2) for the latest revision. The Allocation File in SimPol is updated to

point to this new baseline. Allocation File and Design Model changes are afterwards

committed to GIT and a tag in GIT is created (GIT_BASELINE2).

If a baseline in GIT is restored at a later point of time, the Allocation File and thus all links

loaded with SimPol automatically direct to the correct baseline in Polarion.

6.5 Traceability rules

Contribution 15: A new set of traceability rules supports the adoption and consistent usage
of SimPol, for example by clarifying, what kind of artifacts have to be traced to requirements
and to which granularity or how derived low-level requirements are handled. The rules out-
line a directly usable traceability solution, which covers many existing use cases and lowers
the adoption effort for small companies, which are not familiar with traceability so far.

6.5.1 Summary of rules

TR 1 – RMI settings ... 201

TR 2 – Requirement allocations to modules ... 201

TR 3 – Surrogate Linking ... 202

TR 4 – Maximum number of traces to requirements on graphical primitives ... 203

TR 5 – Maximum content of linked container primitives .. 204

TR 6 – Linking of Private Library content .. 205

TR 7 – Linking of model data .. 205

TR 8 – Derived LLRs .. 205

6.5.2 RMI settings

The RMI allows various settings for linking and report generation [153, pp. 1-26ff.]. The settings

are stored for the MATLAB instance on the host computer and not with the model (except the

option, whether links are stored externally or internally and the corresponding link file name).

Thus, it is inevitable to restore the required preferences for linking every time before the Design

Model is modified or reports are generated. All settings are independent of SimPol.

6.5 Traceability rules

Page 201

TR 1 – RMI settings

 A. RMI information shall be stored externally (StoreDataExternally set to on).

B. If a model primitive is copied, requirement links shall not be duplicated auto-
matically, but discarded for the new element (DuplicateOnCopy set to off).

RMI links can be stored internally and externally to models dependent on the setting StoreDa-

taExternally. Internally stored links are embedded in the model file, externally stored links

are saved in a .slmx file, which has the same name as the model by default. The advantage

of externally stored links is their independence of the model. Adding, removing, or modifying

links does not change the model version. From a process and configuration management point

of view, external storage is favored.

In addition, the settings DuplicateOnCopy should be disabled. A copy of a model element

would otherwise keep its links to requirements, but would not establish the reverse links in

Polarion. Additionally, a copy of a model element does typically not link to the same require-

ments.

6.5.3 Requirement allocation to modules

The allocation defines, which requirements shall be implemented in which module.

TR 2 – Requirement allocations to modules

 Requirements in Polarion shall be allocated to a module in three SimPol Allocation
Files:

 an Allocation File for design implementation in SL/SF (<module-
ID>_design.spa),

 an Allocation File with PDI HLRs for the public Simulink data dictionary,
if PDIs exist (<module-ID>_data.spa),

 an Allocation File for test implementation in Simulink Test with the de-
sign and PDI requirements (<module-ID_test.spa).

The allocation mechanism of SimPol and the Allocation File has been introduced in section

6.4. Since SimPol supports only one type of link (e.g., SL/SF, Simulink data dictionary,…) per

Allocation File, three files are necessary.

6 Traceability tooling and rules

Page 202

6.5.4 Traceability to higher-level requirements

The previous section answered the question, how to link requirements. This section answers

the question, what to link. Figure 73 illustrates the complete traceability model for SW Design

and simulation cases. Simulation case traceability is further discussed in simulation rule SR 4

of Appendix G.

TR 3 – Surrogate Linking

 Trace links from Design Model or simulation case to higher-level requirements
shall be established with SimPol via a surrogate model as depicted in Figure 73.

Figure 73: Traceability of SW Design and simulation cases

6.5 Traceability rules

Page 203

In MB.11.23(e), DO-331 requires a mechanism to limit the requirements implemented in a

model and in MB.11.21 states that the granularity must be sufficient to demonstrate traceability

to HLRs.

In R2017b, MathWorks added requirement considerations to the high-integrity guidelines. In

[103, p. 8–2], “hisl_0070” states:

A. “Apply requirement links to the lowest level component of model elements. Model ele-

ments that do not impact the model's behavior or the generated code are exempt from

requirement linking.”

B. “At the project level, define the maximum number of unique requirement links associ-

ated with each component. A minimum of one requirement link is required.”

C. “At the project level, define the maximum number of child model elements for each

linked component.”

Components are equivalent to container primitives (cf. 5.6.4.2) plus area annotations.

TR 4 – Maximum number of traces to requirements on graphical primitives

A. Only model elements contributing to the Design Model shall be linked.

B. The maximum number of unique requirement links on a container primitive is

4, the minimum is 1.

C. Atomic primitives should not be linked. If they are linked, the maximum number

of unique requirement links on an atomic primitive shall not exceed 1.

(B) resembles the requirement of “hisl_0070” (B). With (C), the option is introduced to link

single atomic primitives. This might be necessary for blocks with higher complexity, like legacy

code blocks or Lookup Table blocks. It is unreasonable that an atomic primitive links to more

than one high-level requirement. It is a strong indication that the primitive is too complex, or

the requirements are formulated too granular.

The previously formulated rules prohibit too fine-grained linking, but not coarse-grained linking.

Therefore “hisl_0070” is followed.

6 Traceability tooling and rules

Page 204

TR 5 – Maximum content of linked container primitives

The block count of the content of linked container primitive shall not exceed 30.

The approach in “hisl_0070” (C) has some weaknesses. Table 32 lists two edge cases, which

highlight the challenge. Some subsystems are used for extensive routing and bus-reordering

as in 1). They have a high block count, but typically no or few requirements. Other subsystems

have a low block count, but extremely high complexity as in 2). In these cases, the granularity

guidelines may require significant redesign of the model.

One way to overcome this would be more sophisticated granularity criteria, e.g., by just count-

ing the non-virtual blocks or additionally taking a complexity measure into account (e.g., num-

ber of condition points). This is future work.

1) Many model elements with low complexity

Model element count: High
Non-virtual element count: Low
Cyclomatic Complexity: Low
Condition count: Low

2) Single model elements with high complexity

Model element count: Low
Non-virtual element count: N/A
Cyclomatic Complexity: Low
Condition count: High

Table 32: Traceability granularity edge cases

6.5 Traceability rules

Page 205

TR 6 – Linking of Private Library content

Requirement links inside SL libraries shall be avoided.

Rationale is that links must be directly placed in the SL library, instances in SL Models cannot

be linked internally using the RMI. The links in consequence do not trace to the place, where

the block pattern is really implemented and where it appears in code. It is not possible to follow

traces from Polarion requirements via a SL model element to code easily, which was one rea-

son to prohibit linking of SL libraries.

The policy in combination with TR 5 also implicitly limits the size of Private Library subsystems

and promotes the use of REUSABLE MODEL references.

TR 7 – Linking of model data

A. Model data in the data dictionary shall be linked, if it is the Simulink.Parameter
for a PDI (cf. MR 36).

B. Model data in the data dictionary shall be linked, if it is the public model data
(cf. MR 12).

Traceability of PDI implementations aligns with the discussions in DR 17. Public model data,

which can be used in another module, requires further specification like design ranges (cf. DR

11).

6.5.5 Derived LLRs

DR 4 defines the requirements for handling derived LLRs. This section describes a feasible

approach to handle derived LLRs in SL/SF with SimPol.

TR 8 – Derived LLRs

A. Derived LLRs shall be surrogate work items in Polarion and be clearly identifi-

able as such by linking them to a common parent work item.

B. The surrogate work item shall document the derived LLR as required by DR 4.

C. The surrogate work item of the derived LLR may link to other HLRs.

Derived LLRs can be considered as dangling implementation without traceability in most

cases. They violate the traceability granularity constraints and are discovered thereby. Derived

LLRs may be reasonable or unavoidable, but must be identifiable and documented (cf. DR 4).

6 Traceability tooling and rules

Page 206

The given, new approach documents derived requirements and patches granularity gaps. Lat-

ter is a major benefit, since otherwise the granularity measures must be manually compared

with existing derived LLRs.

The solution for derived LLRs is depicted in Figure 74. All model elements, which are consid-

ered as derived, are linked to a single Derived Parent work item in Polarion. This work item

has no further content and is not considered as requirement. For every linked derived LLR,

SimPol creates a uniquely identifiable surrogate work item, containing a picture of the respec-

tive model element in SL/SF. This work item is enriched by the developer with a short descrip-

tion of the functionality, a rationale and justification as required by DR 4. If necessary, tracea-

bility can be established to other requirements, since derived LLRs may or may not be tracea-

ble to higher-level requirements.

Figure 74: Documentation of derived requirements

Documenting derived LLRs in Polarion as separate work items comes along with a couple of

advantages. Rationales, as required by DR 4, can be easily documented in the work item. The

derived requirements can be fed to the safety process with the same workflow as for other

requirements. In addition, traceability is established and the granularity criteria are met. No

separate workflow to check traceability granularity requirements to needed. Traceability to test

cases and procedures can be established as for any other requirement. And finally, derived

LLRs can easily be distinguished from ordinary requirements and made visible by showing all

children of the Derived Parent.

Polarion REQUIREMENTS

mdl

SL / SF

(1) Polarion internal link

(2) Hyperlink (or SID)

(3) Hyperlink (or work item ID)

mdl:3

Derived

Parent

tag: derived

6.6 Summary and outlook

Page 207

6.6 Summary and outlook

Central achievement is the implementation of SimPol presented in section 6.4. The new tooling

allows to establish and maintain bidirectional linking between Polarion and various kinds of

Simulink artifacts.

In connection with SimPol, a workflow to overcome configuration management challenges

across tool and repository boundaries has been specified for the particular use case. In addi-

tion, a new approach for documenting derived LLRs has been defined in section 6.5.5, which

smoothly integrates with existing requirement activities. Also granularity requirements for

model-based development have been refined (cf. section 6.5.4).

SimPol itself is a new tool, which needs continuous improvement. One important point is the

better support of the new Simulink Requirements product, which enables tighter integration

with SL/SF (e.g., drag and drop of requirement links).

The enhanced set of traceability rules gives developers simple criteria for granularity evalua-

tion, but, as pointed out, edge cases still exist, in which these rules are (wrongly) violated.

More accurate metrics are necessary to define granularity requirements. In addition to the

block count, also other measures like complexity should be regarded.

The rules presented focus on the SL side. In Polarion, additional rules to organize surrogate

work items and links consistently across teams may be needed as well. Also the discussed

shortcomings of the configuration management workflow should be followed up. Polarion is a

fast developing tool and may come with new configuration management solutions in future

releases. For example, the missing branching mechanism is currently one of the biggest short-

comings.

After publishing SimPol in the internet, many small- and medium-size companies contacted

the author for support and adaptions. This emphasized the need for such a tool. With SimPol

and the traceability rules, developers get both guidance and tooling to address the traceability

objectives imposed by the standards. The work done as part of this thesis closes many of the

urgent, large inter-tool gaps between Polarion and the SL ecosystem in a new way and is an

important brick for a consistent and complete MBSwD process involving Polarion.

7 Process-oriented build tool and process automation

Page 208

7 Process-oriented build tool and process
automation

7.1 Objective

This section introduces a new tool solution implemented as part of this work to highly automate

the development and verification process. The tool generates and consumes traceability infor-

mation and extends the features of classical build tools with functionality relevant for develop-

ment and verification tasks in a safety-critical process. The tool is used as platform to fully

represent the MBSwD process at hand.

7.2 State-of-the-art

A study commissioned by the Nation Research Council of the U.S. (NRC) in 2010 examining

the current state of the art and future paths for development of software-intensive systems

states in Finding 4-2 [157]:

“Assurance is facilitated by advances in diverse aspects of software engineering and

technology, including modelling, analysis, tools and environments, traceability pro-

gramming languages, and process support. Advances focused on simultaneous crea-

tion of assurance-related evidence with ongoing development effort have high potential

to improve the overall assurance of systems.”

This goal as barely been reached. Although the Open-DO initiative sensitized for the “big-

freeze” problem, retaining a fully “ready-to-certify” state in software projects is still widely

unachieved for DO projects due to the significant number of verification activities to be done

and the difficulties to identify the impact of changes due to missing traceability.

Nowadays, two principle approaches can be observed, which help to keep artifacts in a “ready-

to-certify” state. The first approach is summarized under the term continuous integration (CI).

As many verification activities as possible are automated and re-executed after each change

on a remote server. Only if they pass, a change is accepted and becomes available for other

users.

The second approach is to evaluate development and verification artifacts and their relations

after they have been generated. Desired outcome is an overview of the process completeness

status with the artifacts at hand and a list of action items to restore a compliant state. These

tools are called integrated assessment platforms in the following.

7.2 State-of-the-art

Page 209

Integrated assessment platforms

The wish for integrated assessment platforms managing and interpreting all process-relevant

artifacts and showing process compliance goes back several decades. In 2004, Aldrich et al.

presented their “System Verification Manager”, a formal framework for collecting heterogene-

ous verification and development data [158]. The main research goal was automatic reasoning

based on ontologies [159, 160].

Today, there are a couple of tools on the market following a similar direction. In February 2019,

LDRA announced a partnership with Jama to connect artifact management in Jama with the

verification methods and tools of LDRA28. SQUORE provides software analytics and accumu-

lates software status information in dashboards29. VeroTrace is a cloud-based application

lifecycle management with focus on certification standards30. Becker et al. [161] outline a tool-

chain that uses MES Quality Commander31 to collect, evaluate and display the development

status at a central place. Other tools are BTC Embedded Platform for dSPACE TargetLink32,

PTC Integrity33, or AVL Lab Management34.

None of these tools have a deep integration with SL/SF and most of them cannot manage SL

models and projects to the required granularity, i.e., they cannot analyze traceability into SL

models or the breakdown of SL models. Most of the tools mainly focus on displaying data.

They rarely have a direct support to re-execute analyses or redo reviews. Almost none of the

tools can assess up-to-dateness of artifacts (e.g., if the generated code still fits to the model

or if a test case has to be re-executed after the model has been changed), since they do not

save information about the input of activities at the time when they are executed.

Continuous integration solutions

The quickly increasing computation performance led to the adoption of continuous integration

methods. More tests or analysis are executed more frequently and on separate servers. Per-

manent testing keeps the software in a working state at all times and counteracts process

corrosion, i.e., a slow but steady, unconscious deviation from the standards and plans. This is

a “brute-force” method to keep a software project in good shape.

28 https://ldra.com/technology-partners/jama-connect/ [Accessed on: Aug. 04 2019]

29 A product of SQUORING Technologies, https://www.squoring.com [Accessed on: Aug. 04 2019]

30 A product of Verocel Inc., https://www.verocel.com/tools/lifecycle-management/ [Accessed on: Aug. 04 2019]

31 A product of Model Engineering Solutions GmbH, https://model-engineers.com/de/quality-tools/mqc/ [Accessed

on: Nov. 24 2019]

32 A product of BTC Embedded Systems AG, https://www.btc-es.de/de/produkte/btc-embeddedplatform/ [Ac-

cessed on: Aug. 04 2019]

33 A product of PTC Inc., https://www.net-online.de/ptc-integrity/ [Accessed on: Aug. 04 2019]

34 A product of AVL List GmbH, https://www.avl.com/de-DE/web/guest/lab-management [Accessed on: Aug. 04

2019]

https://ldra.com/technology-partners/jama-connect/
https://www.squoring.com/
https://www.verocel.com/tools/lifecycle-management/
https://model-engineers.com/de/quality-tools/mqc/
https://www.btc-es.de/de/produkte/btc-embeddedplatform/
https://www.net-online.de/ptc-integrity/
https://www.avl.com/de-DE/web/guest/lab-management

7 Process-oriented build tool and process automation

Page 210

CI is realized by a couple of interacting tools. Rahman distinguishes build automation, contin-

uous integration, infrastructure as code, and version control tools [162, p. 21]. Continuous in-

tegration tools are mainly server applications, that “integrate software changes into the shared

mainline” [162, p. 21]. They are fully automated and mostly run on a separate server (e.g.,

Jenkins35).

Continuous integration tools execute build tools, which drive the automation and execute the

tasks. Traditionally, they compile software changes into executable binaries [162]. Nowadays,

this view may be short-sighted, since their functionality reaches far beyond this scope, which

is also expressed by their new naming as “build management tools”. They “calculate, how to

reach the goal you specify by executing tasks in the correct order, running each task that your

goal depends on exactly once” [11]. To a certain degree, they also check up-to-dateness of

tasks depending on the input and manage output artifacts. Build tools are directly pluggable

into CI tools, which integrate software changes.

However, traceability and build automation tools rarely work together deeply, although the po-

tential is amazing. Build automation tools know about input and output dependencies and can

contribute important traceability information. This comes close to the concept of “ubiquitous

traceability” of Gotel [163] and Cleland-Huang [46], which “is achieved automatically, as a re-

sult of collecting, analyzing, and processing every piece of evidence from which trace data can

be inferred and managed” [46, p. 2].

Furthermore, when it comes to setting up a CI system with a build automation tool, the differ-

ences between MBSwD and traditional software development raise challenges. Existing, tra-

ditional build tools, like Maven36, Gradle37, or Apache Ant38, origin from the Java domain. They

are not easily pluggable to SL/SF. These build tools can do up-to-dateness checking to some

amount, but mainly work on file basis. The dependencies in the SL/SF environment are more

complex and cannot be resolved on file basis, only. Seibel describes such relationships as

inherent dependencies [164]. Many artifacts are also only deserializable in MATLAB. Using

any of these build tools would require an external connection to a running MATLAB instance.

In addition, the dependency graphs, which the build tools assemble, are not accessible for

impact analysis and do not include manually established traceability.

The focus of CI tooling is on automation, not on displaying or guiding developers. Many com-

panies have automated the execution of tasks, but face challenges reading back and interpret-

ing the results. CI tools offer some plugins to visualize results in a rudimentary way, but show-

ing the compliance status of a full process is not supported. Even if sophisticated plugins would

be programmed, CI tools like Jenkins are server-side solutions. Evaluating the status of a local

project on the host computer and directly acting on it would not be possible.

35 Open-source software project led by Software in Public Interest, Inc., https://jenkins.io/ [Accessed on: Nov. 24

2019]

36 A software of the Apache Foundation, https://maven.apache.org/ [Accessed on: Aug. 04 2019]

37 A product of Gradle Inc., https://gradle.org/ [Accessed on: Aug. 04 2019]

38 Apache Ant project, https://ant.apache.org/ [Accessed on: Aug. 04 2019]

https://jenkins.io/
https://maven.apache.org/
https://gradle.org/
https://ant.apache.org/

7.2 State-of-the-art

Page 211

Traditional build tools mainly address automatable activities with a clear pass/fail output. How-

ever, such a distinct output is not always present. Although full automation is desirable, not all

activities in a DO-178C process actually allow it. Many analyses require manual review after-

wards (e.g., missing coverage) and hand-written justifications. A significant amount of time is

also spent with model or code reviews, which cannot be automated. Classical build tools do

not support these processes.

Finally, both integrated assessment platforms and continuous integration solutions have their

contribution in maintaining a “ready-to-certify” status. However, they are mostly independent,

solve just parts of the problem, and have their difficulties with model-based development. The

following sections present a tool solution, which combines the best of both worlds and is spe-

cifically aligned to process activities.

7 Process-oriented build tool and process automation

Page 212

7.3 Structure

In section 7.4, the new process-oriented build tool mrails, which has been implemented by the

author, is briefly presented. Since already documented in various publications, technical details

are omitted.

Section 7.5 introduces a new way of standardizing task execution and review leveraged by the

process-oriented build tool. The presented general workflow is valid for all tasks of the process

at hand and consequently applied in section 8.

7.4 Process-oriented build tool

Contribution 16: A new type of build tool specifically designed for model-based develop-
ment in a process has been implemented. The tool provides a common framework to bundle
the implementation of process tasks and automate their execution based on dependencies.
The tool specifically addresses the needs of a safety-critical process by providing solutions
for review workflows as well. Especially review workflows are not well covered by traditional
build tools.

Contribution 17: An innovative approach to couple traceability with build dependencies
collected during the build has been implemented. The new symbiosis generates fine-gran-
ular traceability of sub-file level in local and CI workflows and facilitates enhanced process
analysis like checking of up-to-dateness, completeness, or cleanliness of development and
verification artifacts.

Contribution 18: The process-oriented build tool leverages novel automated completeness
assessment of the certification artifacts, i.e., whether all activities have been performed on
all artifacts and the necessary certification evidence exists. This allows to keep the process
in a certification-ready state and helps developers to identify upcoming work.

Contribution 19: The process-oriented build tool leverages novel automated consistency
assessment to check whether artifacts are outdated and have to be generated or reviewed
again. This allows to keep the process in a certification-ready state at all times.

Contribution 20: The process-oriented build tool has been equipped with easy-to-use web-
based UIs. They summarize the status of the project at a central point, provide status infor-
mation for each task and direct links to open the relevant artifacts. This overview helps de-
velopers keeping track of the project status from a single view, which leads to higher soft-
ware quality and more up-to-date artifacts.

7.4.1 Application life cycle

The process-oriented build tool, called mrails, is, in its core, a build tool that eases automatic

execution of custom, sometimes dependent jobs in organized manner. As any other build tool,

it leverages process automation in a local and server-based workflow, i.e., it can be executed

in a CI environment and on the desktop.

7.4 Process-oriented build tool

Page 213

Figure 75 illustrates the simplified data flow in a continuous integration environment during the

implementation of a software change. Gray boxes indicate those tasks supported by the build

tool. The separation between source files and derived files and their archiving in different re-

positories is a core setup decision. Source files (or source artifacts) are mainly manually mod-

ified artifacts, like requirements, models, or files with justifications and review lists. Auto-gen-

erated code is stepping out of the line, but is also considered as source artifact. Derived files

or artifacts are all other auto-generated artifacts, like verification reports, cache files, or internal

files of the build tool. They are most often binaries and not stored in the version control repos-

itory for source files to save resources. Sometimes it is even sufficient to store them on a

network drive for a limited time. Those files are optional, since they are always reproducible

from the source files, if the same tool chain is used. However, they allow a quick start on the

desktop and contain important information about the current revision. Only if a baseline is cre-

ated, for which certification credit is sought, a copy must be archived under the requirements

imposed by DO-178C.

At the beginning, the developer clones a revision of the project from the MASTER branch of

the source file repository onto his desktop (1). Here, the source file repository is assumed to

be under GIT version control (cf. AS 14). The cloned files only contain source artifacts. The

corresponding derived files must be obtained from a separate repository. The source control

commit contains a reference to the location or revision of the derived files.

After retrieving all artifacts, the developer assesses the impact of the change or directly imple-

ments the change (3). The process-oriented build tool supports both steps with a couple of

features. After that, the developer can pre-qualify the change (4), i.e., the developer runs ver-

ification tasks locally on his machine and checks the output. The process-oriented build tool

helps to identify tasks and artifacts, which are impacted by the change and provides automa-

tion to re-execute those. Final step is to submit the changed sources to a temporary GIT branch

aside the MASTER branch (5).

The submission triggers a CI run. The CI server performs a full rebuild of all tasks and evalu-

ates the outcome automatically (6). If no errors or violations are detected (7), derived files are

pushed into the derived file repository (8) and the change set is merged into the MASTER

branch of the source file repository (9). Otherwise, the developer has to rework and submit a

new version.

Whether a full rebuild is required in CI (6) depends on the robustness of change detection of

the build tool. Partial builds based on impact analysis are drastically faster, but are only relia-

ble, if really all dependencies are known. Since this can hardly be proven in a complex envi-

ronment like SL/SF, a full rebuild should at least be performed before baselining or shipping a

revision.

7 Process-oriented build tool and process automation

Page 214

Figure 75: Interplay between build automation tools

At first appearance, the workflow does not differentiate drastically from any other build tool

workflow. However, this workflow is, in most companies, only implemented for a small subset

of verification tasks, for example testing, for which the result is easy to access and interpret.

Goal of the process-oriented build tool is to achieve full process coverage and also include

review-intensive tasks. Additionally, the process-oriented build tool adds various supporting

features along the workflow as outlined in the following.

Implement change

mrails supports developers in implementing changes into their project in various ways. It sup-

ports the integration of an externally defined modeling environment and setup of the develop-

ment environment. It provides methods to automatically create new modules and integrate

dependent modules as well as methods to quickly create different kinds of model elements.

Any created item conforms with the standards by construction (e.g., new empty SL models,

Simulink.Parameter or Simulink.Bus objects). Last but not least, review of the compliance sta-

tus is possible in a web frontend.

Figure 76 shows a screenshot of the command line interface and a docked status overview.

Source File

Repository

CI

Desktop

(3) Implement

change

(4) Pre-qualify

change(1) Clone repository

with source artifacts

(6) Full rebuild

and result

evaluation

(5) Submit sourcesto

temporary GIT branch,

which triggersCI

(7) Violations

are detected?

Yes

(9) Merge source changes

into master branch

MASTER BRANCH

No

(8) Package and

save derived

artifacts into a

separate storage

(2) Obtain derived

artifacts

Derived File

Repository

7.4 Process-oriented build tool

Page 215

Figure 76: Command line interface of the build tool

Pre-qualify change

To pre-qualify a change, mrails comes along with several novelties.

The tool allows the integration of a full build workflow with jobs and job dependencies, which

can be triggered from a standard interface. Jobs are contained, executable scripts in the build

tool. A job can but must not map to one process task

The tool supports in situ dependency analysis of artifacts along with any build job. The de-

pendency analysis has sub-file granularity, e.g., it recognizes dependences within SL models

or Simulink Test files. This is far below the granularity of traditional build tools.

One of the core features is detection of staleness of jobs and artifacts (incl. missing artifacts)

using the analyzed sub-file dependencies. Only stale jobs are executed by default, which sig-

nificantly reduces pre-qualification effort and time.

The build tool supports the dynamic generation of review lists. Review lists can be generated

depending on the content of artifacts. Review items, which are not relevant, can be dropped.

For example, a review of a modeling rule requires the inspection of a specific block type. If this

block type never occurs, the respective review item needs not to be included in the review list

of the respective SL model.

Review lists support staleness detection like any other job. The tool recognizes review items

to be re-evaluated based on a change of the reviewed artifact. Depending on the type of arti-

fact, staleness can be assessed with sub-file granularity.

1 Command

line interface

2 Docked

status view

7 Process-oriented build tool and process automation

Page 216

Compliance status review is possible in a web frontend. The frontend summarizes all relevant

artifacts of each task and provides quick navigation to them (if MATLAB is running in the back-

ground). Reviews can directly be performed in the frontend as well.

Figure 77 shows a screenshot of the web frontend. The left panel displays the status of the

build workflow and each job (1). By clicking on a job, further details are exposed in the middle

panel (2). Below the description, results for so-called job iterations are displayed (3). Each job

can be automatically executed multiple times on different artifacts.

The panel on the right shows inputs, on which the currently selected iteration depends, as well

as the produced outputs (4). In the displayed example, the selected iteration fc_AHRSVoter is

stale (indicated by gray icons) (5), since the output report fc_AHRSVoter_slci_report.html

does not match to the existing model anymore (6).

Figure 77: Graphical user interface of the build tool (adapted from [39])

CI integration

The tool provides a sophisticated command line interface, which can be used by the CI system

to execute tasks and assess pass or fail criteria. Since the whole UI is web-based, it is techni-

cally possible to show it directly for data on the CI system. The developer can get an overview

of the status in CI without checking out the whole repository locally.

6
Inconsistent
model report

4 Traceability

(up- and
downwards)

2 Selected

job +
description

5 Stale job

iteration

3 Multiple job

iterations (one
per model)

1 Build

workflow with
jobs

7.4 Process-oriented build tool

Page 217

7.4.2 Implementation Overview

The following is a summary from [33], which describes the implementation of the process-

oriented build tool.

Figure 78 illustrates the main architectural components of the build tool: the workflow manage-

ment, the artifact graph, and the status interface.

Figure 78: Components of the process-oriented build tool (adapted from [33])

Workflow management

The workflow management controls the build workflow. It manages a couple of fix steps, so-

called stages, which must be executed sequentially. Jobs of the build workflow can be hooked

into the different stages. The user has to bring the tool into a specific stage. After that, the jobs

of the stage can be executed in arbitrary order. For example, before DESIGN AND BUILD jobs

can be executed, the INIT stage must be passed, which means that all jobs of the INIT stage

must be executed.

The workflow management holds the job execution dependency tree, i.e., it computes the order

in which dependent tasks have to be executed (e.g., generate code before code can be ana-

lyzed).

INIT

DESIGN

+
BUILD

POST-BUILD

(OPTIONAL)

DEPENDENCY

INTEGRATION

Life Cycle

Package

DESIGN SCHEME

BUILD

WORKFLOW

To
o
l

S
ta

g
e
s

MODELING

ENVIRONMENT

Artifact GraphWorkflow

Management

Status Interface

7 Process-oriented build tool and process automation

Page 218

The DEPENDENCY INTEGRATION STAGE interacts with the version control system. De-

pendent modules are downloaded or updated, versions are analyzed and conflicts caused by

transitive dependencies reported. The INIT Stage addresses the loading and setup of the en-

vironment. In the DESIGN AND BUILD stage, the developer actually implements the model,

simulation test cases, and requirement linking. Workflows with tools are not constrained, how-

ever model scaffolding capabilities are provided to accelerate development. The majority of

verification jobs is hooked into this stage, too. The POST BUILD stage presupposes that all

build jobs have been executed at least once and traceability has been established as far as

possible. It is reserved for jobs requiring the full artifact graph (like the detection of temporary,

unused artifacts).

Artifact graph

The main technical innovation of the tool is that sub-file traceability and dependencies are

analyzed in-situ with the build and integrated into a common dependency graph. Extensive

traceability is thus created without any effort for the developer. The combined source of rela-

tionships enables impact analysis, but is also directly consumed to evaluate staleness of build

tasks. This symbiosis is unique.

The relationships are managed in artifact graphs. Technical details of the implementation of

the artifact graph are given in [39]. Figure 79 shows a screenshot of an artifact graph generated

from an example project.

7.4 Process-oriented build tool

Page 219

Figure 79: Visualization of an example artifact graph (from [39])

Life cycle package

Another important concept are life cycle packages. Life cycle packages fully control the behav-

ior of the build tool.

 The life cycle package consists of a

 design scheme

 build workflow

 modeling environment

The three parts are highly coupled and cannot be used in isolation. The design scheme defines

classes of design artifacts including rules, how they can be created, identified, validated, ini-

tialized, or decomposed. In the MBSwD process, the design scheme describes the specializa-

tions of the safe modeling subset introduced in section 5.6.4. The design scheme serves as

source of information for the artifact graph, but also enables model scaffolding. Model scaf-

folding provides methods to quickly create artifacts based on the principle “Convention over

Configuration” [39]. Many tasks, like writing initialization scripts or creating model data objects

according to the modeling rules, are time-consuming, error-prone, and regularly repeated by

every developer. Iterating to compliant models and model data with checks after implementa-

tion is both a reverse and time-wasting workflow. Model scaffolding supports developers doing

the right thing from the beginning.

7 Process-oriented build tool and process automation

Page 220

The build workflow describes the jobs to be executed in a formalized way, their inputs, outputs,

“iterations” to be performed on multiple artifacts, as well as their execution order. Jobs mainly

map to tasks declared in section 4. The structure of build jobs is explained in detail in section

7.5. How each task has been implemented as job is described in section 8.

The third part is the modeling environment as introduced in section 5.8.

Status interface

The status interface is the access point for information. It provides an MATLAB API interface

to query the status for jobs in different formats (e.g., JUnit test format39) and is for example

usable in CI systems.

The status has been standardized. Each element in the build workflow has a status according

to Figure 80. In the hierarchical build workflow, the status is aggregated using a “worst-case”

rule. The priority is also depicted in Figure 80. A status on the top-right has a higher priority

than a status on the lower-left.

Figure 80: Standardized status types based from [39]

The build tool also comes along with a graphical, web-based user interface. An important de-

sign goal was to technically support read-only access without requiring a MATLAB session as

well as a scenario, in which the web interface is fully interactive and closely connected to

MATLAB. [33]

The underlying architecture is depicted in Figure 81. Central part is the status interface in

MATLAB. Upon job execution, status and dependency data is saved in XML files for each job.

A client browser can request this data, e.g., via a running Jetty HTTP server40. The client page

is programmed with JavaScript. Calls and callbacks between the HTTP server and MATLAB

are realized by a Jetty servlet extension and the MATLAB Engine API for Java [165, pp. 12-

2ff].

39 Java testing framework, https://junit.org/junit5/ [Accessed on: Jan. 19 2020]

40 https://www.eclipse.org/jetty [Accessed on: Aug. 04 2019]

FAIL

WARN

PASS

E
x
e
c
u
te

d

E
x
e
c
u
te

d
b
u
t

s
ta

le

N
e
v
e
r

e
x
e
c
u
te

d

N
o
th

in
g

to

e
x
e
c
u
te

UNDE-
CIDED

Increasing priority (dominant)

In
c
re

a
s
in

g

p
ri

o
ri

ty

https://junit.org/junit5/
https://www.eclipse.org/jetty

7.5 Standardized implementation of build jobs

Page 221

Figure 81: Architecture of status and web-based interface adapted from [33]

7.5 Standardized implementation of build jobs

The build tool provides a novel framework to implement tasks in a standardized manner as

build jobs, which is presented in this section.

Contribution 21: A novel framework for standardizing task execution, evaluation, review,
and report generation has been established. Generalized status types with consistent con-
sequences or actions for all tool outputs have recognition value for developers. Core contri-
bution are two different, generic justification workflows that either fully embed justifications
into the process-oriented build tool or are tightly linked to external tool workflows. They offer
up-to-dateness checking of review lists to a certain granularity. Since safety-critical pro-
cesses always require reviews, these workflows significantly reduce the review effort.

7.5.1 Process notation

To describe processes in the following, a notation as given in Figure 82 is used. The process

elements are straight-forward and do not need further explanation. Artifacts are distinguished

in source and derived artifacts as introduced in section 7.4.1.

Furthermore, artifacts are grouped on an abstract-level (colors in Figure 82). Supporting ma-

terial (blue artifacts) is part of the modelling environment, like execution scripts, configura-

tions or templates. The process-oriented build tool writes various artifacts to manage staleness

or justifications (orange artifacts). Evidence artifacts (green artifact) are those artifacts,

which have to be archived and shown to authorities, if requested. These are mainly reports.

All other artifacts are white ().

Status

Interface
(MATLAB)

HTTP

Server
Client

Reads

+ Servlet for
Java-MATLAB

Engine API

JSON data exchange

Access via

MATLAB

Stores

status update

User/CI

System

Async.

AJAX

requests/callbacks

(JSON data)

Requires connected

MATLAB session

Read-only at any time

Process-

oriented
build tool

Persistent

Status Data
(XML)

Requests

7 Process-oriented build tool and process automation

Page 222

Figure 82: Process notation

7.5.2 Job execution standardization

Each task declared in section 4 has been wrapped into a job of the process-oriented build tool.

Figure 83 illustrates the standardized execution process. Each job always has develop-

ment/verification input and output artifacts. Supporting material customizes the execution of

tools. The job implementation class itself is supporting material. The trace file (T) stores check-

sums of the input and output dependencies as well as traceability information. The log (L) is a

dump of the MATLAB command window.

Figure 83: Standardized process execution

Manual review tasks follow the same process. Those jobs do not execute a tool in the execu-

tion step. However, they create checklists.

Each job is wrapped in a MATLAB class derived from a provided abstract class as outlined in

Listing 10. Listing 10 implements the static model analysis. The select method returns the

artifacts from the artifact graph, for which the job shall automatically be repeated (in this case

for every model). requireForEeach defines the inputs and expectForEach the expected out-

puts of the job. The actual execution happens in executeForEach. After that, verifyForEach

is called and assesses the results.

7.5 Standardized implementation of build jobs

Page 223

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

classdef StaticModelAnalysis < mrails.jobs.Job

 methods(Access=public)

 % Return jobs this job depends on

 function depedentJobs = dependsOn(job)
 ...
 end

 % Return artifacts to iterate on
 function selArts = select(job)

 t = job.getSourceTree();

 % Gets the files artifacts of the contains
 indices = [t.selectByGroup('model-top');
 t.selectByGroup('model-reusable');
 t.selectByGroup('model-singleton')];

 % Return artifact objects
 selArts = t.select(indices);

 end

 % Return artifacts that are input
 function at = requireForEach(job, artifact)
 % Depends on all dependencies of the model
 at = job.getSourceTree().getParentTree(artifact);

 % Depends on further artifacts like custom checks,
 % check configuration file,...
 ...
 End

 % Return artifacts that must be there as output
 function at = expectForEach(job, artifact)
 ...
 end

 % Execute iteration of job and return whether everything went right
 function status = doForEach(job, artifact)
 ...
 status = mrails.status.StatusT.PASS;
 end

 % Analyze output and return standardized status (result standardization)
 function status = verifyForEach(job, artifact)
 ...
 status = mrails.status.StatusT.PASS;
 end
end

Listing 10: Example job implementation

7 Process-oriented build tool and process automation

Page 224

7.5.3 Job result standardization

Each execution returns an output, which must somehow be standardized. Figure 80 already

showed the different possible, normed status types. This section explains, how they are inter-

preted in the scope of the process.

Each verification task returns a set of output artifacts with result items. What a result item is,

depends on the type of task output. For example, the check status of every performed SL

Model Advisor check or SL Test results. A result item can indicate that the result is approved

or it can indicate a finding, i.e., if a MISRA C rule violation has been detected.

After job execution, result items are mapped to the standardized status types. Again, the map-

ping is specific for the task and tool. As already introduced, the standardized status distin-

guishes the states PASS, WARN, and FAIL. Those are handled as follows:

 PASS indicates that no action is required.

 FAIL must always be resolved by rework of the requirement, design, or code.

 WARN either requires rework or justification.

 MISSING and STALE status types require rework or re-execution.

The MISSING and STALE status types are evaluated by the build tool. A mapping for the other

status types has been documented as part of this work for each task in section 8.

One benefit of this method is that the mapping can easily be adapted for a desired software

readiness level step by step. In some projects, it makes sense to start with less strict process

requirements, which are stepped up with increasing maturity of the software modules.

An example mapping is provided in Table 33. A tool returns different execution information,

which is mapped to a standardized status. The standardized status for an “Execution with

warning” changes depending on the needed software level. In this thesis, all provided mapping

tables reflect the software readiness level necessary for full DO compliance.

Tool-Specific Result
Item Status

Standardized Status
(Level 2)

Standardized Status
(Level 1)

Execution error

Execution with warning

Execution without warning

 (PASS) (PASS)

Table 33: Example status mapping

 (FAIL) (FAIL)

 (WARN) (FAIL)

7.5 Standardized implementation of build jobs

Page 225

7.5.4 Justification workflows

Some findings with status WARN can be justified, others require rework. Justified findings in-

cluding the justification are called deviations.

Concerning deviations, the MISRA C approach is followed (cf. MISRA C 5.4). It classifies de-

viations as project deviations and specific deviations. Project deviations cover classes of find-

ings and are handled centrally for the whole project while setting up or improving the process.

They can be considered as well-documented and regarded under safety assessment consid-

erations from a developer’s point of view. Provided documentation has project-wide validity. A

good example is a repeatedly thrown warning for a code rule violation that is not critical in

combination with the used compiler, but cannot be turned off.

In contrast, specific deviations require a case by case assessment including a formal analysis

of the impact on safety, which must be documented for each occurrence. The content of a

deviation record, independent of a project or specific deviation, is given in MISRA C 5.4.

For each task with project deviations, a supplemental document with all deviation records is

provided. Specific deviations are documented in records similar to MISRA C Appendix I. Since

the justification capabilities of many tools are limited, deviations are separately documented

and just referenced in the justifications.

The central question is now, how justifications are stored. The process-oriented build tool has

been implemented to support an external and an embedded justification workflow. The differ-

ences are explained in the following.

Embedded justification workflow

In this workflow, justifications are added using the UI of the process-oriented build tool and are

fully controlled by the build tool. It is illustrated in Figure 84. The embedded workflow makes

sense, if no or insufficient tool support for justifications exists and for custom review checklists.

Examples are model reviews or the justification of SL Model Advisor results.

Contribution 22: Functionality for the generation of dynamic review lists has been inte-
grated into the process-oriented build tool. They can be auto-generated based on the con-
text. Thereby, review work is significantly reduced and a higher level of consistency is
achieved, since review lists are managed by the tool at a central place and the review status
is directly indicated as for any other automated task.

First step is the standardization of results. The machine-readable outputs of the execution are

parsed and translated to standardized results according to the mapping table. This process

writes a so-called status file (S) and is implemented in the verifyForEach function of Listing

10.

The standardized results are displayed in the UI of the process-oriented built tool and the user

can directly mitigate the status and add references to deviations in the UI as illustrated in Figure

85. The first column indicates the standardized status. The second column provides a short

title. The third column shows a description (in this case a link to the respective rule, since it is

the checklist of a model review). Column four shows the findings and justifications, which can

7 Process-oriented build tool and process automation

Page 226

be added using the controls on the right-hand side. Each row can be separately justified and

approved.

Input for review and justification are project deviations and the status file. Justifications are

stored in a separate justification file (J) by the process-oriented build tool. Justification files are

source files, so they are submitted into version control. Justifications are automatically im-

ported and overlaid if the UI is opened. If any dependency has changed, the respective items

of the view list are set to STALE and repeated approval is necessary. Specific deviations must

be collected by the reviewer in a separate output document.

Figure 84: Embedded justification workflow

Figure 85: Embedded review list in process-oriented build tool

External justification workflow

In general, however, the analysis tools have own, deeper integrated mechanisms to review

results and attach justifications to findings. One example is model coverage or code analysis

results. For these cases, an external justification workflow exists.

7.5 Standardized implementation of build jobs

Page 227

The workflow is illustrated in Figure 86. The results are reviewed in the analysis tool right af-

ter executing the tool and exported to a tool-specific justification file (as source artifact). After

that, the justifications are added on top of the results during the standardization process. Em-

bedded justifications in the process-oriented build tool are thus not allowed and only a PASS

state is accepted.

Figure 86: External justification workflow

7.5.5 Evidence generation

The final artifacts for certification evidence are printable PDF reports. Report generation is

normally the last step after execution and review of a task. In some cases, it is also part of the

execution step.

Report generation for all tasks has been implemented in a separate job, which requires that all

other tasks have already been executed.

As depicted in Figure 87, inputs are supporting material (like report templates or job implemen-

tation), the original results, the status file, and the tool-specific justifications (in case of the

external review workflow).

Outputs are printable evidence documents (green artifacts).

7 Process-oriented build tool and process automation

Page 228

Figure 87: Report generation workflow and artifacts

7.6 Summary and outlook

Page 229

7.6 Summary and outlook

With the process-oriented build tool, a framework has been created, which has the capability

to automate a majority of tasks from the MBSwD process, including often neglected review

activities, without interfering with existing workflows.

The backend of the build tool comes with several innovative concepts. The idea of collecting

build dependencies in situ with build automation and combining it with other, manually estab-

lished traceability information is new. This quickly leads to extensive traceability/artifact graphs

empowering impact analysis or staleness detection. With build capabilities like sub-file stale-

ness detection, both local pre-qualification and CI runs are significantly accelerated.

The central web interface allows to get a holistic view onto a project from the perspective of

process compliance. It indicates stale and missing artifacts or tasks and provides quick navi-

gation to source and derived artifacts.

Finally, the unique standardized job implementation framework provides a way to plug in al-

most any tool and present outcomes in a way, which are easy to understand and imply con-

sistent actions. A lot of effort has been spent to include review and justification activities in

smooth workflows and also support those with a maximum degree of automation. The external

and embedded justification workflows suffice these requirements, since they fully or tightly

integrate tool-specific review activities, allow dynamic adaption or generation of review lists

and leverage staleness detection.

The build tool is still a prototype and may need further enhancement in the backend, like per-

formance improvement or better integration of nested modules, as well as in the frontend (e.g.,

usability improvements). Although the front end is laid out for standalone usage without

MATLAB, this workflow has never been tested in combination with CI. Settling online-access

of results may be a future goal. Other future aspects are leveraging MATLAB parallel compu-

tation capabilities to execute jobs in parallel, if possible, or the automatic generation of sum-

mary reports.

In addition, the complexity of the artifact graph is unneglectable. Defining queries to fetch the

right inputs is not straight-forward and may require several adjustments in future. The risk can

be mitigated by performing a full-build in continuous integration as outlined in section 7.4.1.

With the process-oriented build tool, a powerful, innovative framework tailored to safety-critical

MBSwD has been created establishing a centralized, unified way to implement and execute

all kinds of process tasks.

8 Modular development process (part 2)

Page 230

8 Modular development process (part 2)

This section is a continuation of section 4, which introduced the tasks of Development and

Verification Processes in the modular MBSwD process on an abstract level and explained the

relevance for DO-178C/DO-331. This section explains, how the detailed implementation has

been realized using the process-oriented build tool. Features and tool settings have been care-

fully selected to support the process goals and various artifacts have been created to guaran-

tee appropriate tool configuration and execution (cf. Appendix H).

8.1 Development tasks

8.1.1 SwDP-DP-MB 6 – Assembly of Design Description

MathWorks proposes the creation of a printable Design Description document (PDF) of the SL

models [32]. Beside the Design Model, the Design Description also contains requirement trace-

ability information (Trace Data). This may be reasonable for long-term archiving, since it is

readable without SL/SF and describes the compiled SL model.

Experience showed that reviewing the Design Model based on the Design Description is im-

practicable due to its organization and the massive amount of data, which is structured in a flat

document. Whether a textual Design Description is required should be discussed with the au-

thorities.

Here, it has been decided to not export the Design Description in every build. The task has

been listed for completeness, only.

8.1.2 SwDP-CP-MB 1 –Modular source code

As defined in section 4.4.3, each module process generates and partially verifies code sepa-

rately, which is novel and not an existing feature of Embedded Coder.

Contribution 23: A process to generate modular code with Embedded Coder has been
realized, which fulfills configuration management requirements. Additional scripts and re-
sources have been created to allow generation of modular code and safe integration into
higher-level SW modules afterwards. Such a workflow is not supported by the MathWorks
tool chain natively. Central advance is the handling of shared code. Generation of modular
code enables reusability of code as well as early and separate verification.

In SL/SF, Embedded Coder generates code per model with the slbuild command [127, pp.

2-856ff.]. It distinguishes between a top-level build and a model reference build differing in the

generated code interface. A top-level build uses slbuild without an additional build specifica-

tion, a model reference build needs the option ModelReferenceRTWTargetOnly. Code of the

latter is callable from another model. Models, which are not integrated into other models should

perform a top-level build. A top-level build considers the modeling as finished and assumes

that all necessary information is available. The code is optimized accordingly.

8.1 Development tasks

Page 231

Independent of the build mode, a build is always greedy, i.e., it builds the whole nested model

hierarchy. In the example of Figure 88, code generation of A1 would always trigger code gen-

eration of A2, A3, B1, and B2 – even in a model reference build. The model reference build

allows a build with the model reference interface, but cannot just build a single model if it has

a nested model hierarchy. All results of one code generation run are placed in one folder hier-

archy.

As consequence, only public models must be built as model reference for a module. Private

units are thereby implicitly built, unless they are dead design. Only the top-level model is built

with a top-level interface.

Figure 88: Example model hierarchy for code generation

If code for a model already exists, it is checked for up-to-dateness and just code of changed

models is regenerated. For example, if A1 is built and, in a subsequent run, B1 is built as model

reference, Embedded Coder would not regenerate code for B1 again.

 Reuse of existing code from other modules

During one build, Embedded Coder can work with exactly one code folder into which it gen-

erates new code and looks for existing code. However, due to source control, modules are in

separate folders. In consequence, each module needs its own code folder as depicted in Fig-

ure 89.

In the example above, if B1 and B2 are built in module B and integrated into module A, Em-

bedded Coder will regenerate B1 and B2, if A1 is built in a new code folder. Ideally, code

folders could be distributed, but this is not possible with Embedded Coder.

8 Modular development process (part 2)

Page 232

Figure 89: Distributed code folders

Thus, different workarounds have been tested to import already verified code into the code

folder of the current module instead of rebuilding it.

 Copy existing code. This approach copies code to the current code generation folder

prior to the build.

 Protected models. The original intention of model protection was to protect intellectual

property by bundling a model simulation target and generated code into a single en-

crypted model. Protected models can be simulated, and they can expand the pre-gen-

erated code, but their content can be hidden [124, pp. 8–95ff]. The idea is to generate

code as part of protected models for all SL models with public interfaces in a model.

The protected models are then provided to other modules. Their models can reference

the protected models. If code is generated for a higher-level model, protected models

just expand the pre-generated code.

 Cross release export and import. Since a few releases, MathWorks provides cross-

release export and import functionality. Existing code can be imported from a reposi-

tory to the current code folder and a SIL block is generated. This SIL block is used in-

stead of model references. [135, pp. 20-85ff]

None of these workarounds proved to be perfect. All of them have their strengths and weak-

nesses as shortly summarized in Table 34 and lead to a lot of scripting overhead and re-

strictions. It is doable, however the robustness of the code generation process and the final

benefit is questionable. In other words, no practical workaround could be achieved with these

approaches to avoid regeneration of code from models in other modules.

Regardless this limitation, modular code could be generated. It was not possible to avoid re-

building completely, but the code could be structured in a way so that it is independent from

code of other modules. As consequence, although the same code is technically rebuilt in other

modules, it can be shown that the code is always equivalent and the previously performed

verification activities remain valid.

The implemented solution is as follows:

 Code is generated for all public models in a module in ModelReferenceRTWTar-

getOnly mode (except for the top-level model, for which the top-level code generation

mode is used). This also generates code of models in other modules (no import is

made).

Code (A)

Dependencies

Module B

Module A

Code (B)

?

8.1 Development tasks

Page 233

 After code generation, for each generated code file belonging to the current module, a

checksum is calculated and stored in a text file. This is triggered in an Embedded Coder

exit hook [96, pp. 70-40f].

 The checksums of files, which belong to regenerated code of other modules, are com-

pared to already existing, stored checksums. If they don’t match, an error is thrown.

Thereby it is ensured that code generation in one module does not change code files of other

modules, i.e., the code remains modular. Figure 90 depicts the idea with the previous example.

In module B, code is generated for B1 and B2. In addition, checksums are prepared for every

code file. In module A, code is generated for A1 to A3, but also for B1 and B2 as well. This is

the part, which cannot be avoided. However, in order to make sure that the code did not

change, all code files of B1 und B2 are compared against the previously stored checksums.

Keeping the code independent is achieved by the various modeling rules. However, there is

still some code, which is reused across modules, so-called shared code. The following sections

address this topic.

8 Modular development process (part 2)

Page 234

Workaround Advantages Disadvantages

Copy existing
code

 No compatibility issues with
other tools or features.

 Manually scripted copying of code from all
nested modules into the current code folder.

 Experiments showed that if existing code was
only copied to an empty code folder, Embedded
Coder would fail to recognize it as up-to-date and
already existing code. A “dummy build” had to be
performed to create the basic code folder
infrastructure. After that the existing code could
be integrated.

Protected
models

 Integration of already
generated module code is
completely handled by
Embedded Coder.

 Mismatching configurations are
detected

 Protected models without
encryption are ordinary zip
archives.

 If just public models were built,
private models would not be
indepentently accessible by
other modules by construction.

 Simple switching between
referenced protected and
unprotected models by simply
putting the relevant models on
the search path without
changing the referencing
model.

 Model protection does not work on models,
which reference protected models themselves.
So a full rebuild of all models is required during
code generation.

 A protected model always includes code for the
whole underlying model hierarchy. The deeper
the model hierarchy, the more models are
embedded in one protected model. In
consequence, multiple version of the same code
may exist in different protected models, if the
same model is referenced multiple times.

 The majority of verification tools does not support

referenced protected models.

 Shared code files are not pre-generated, but

created upon-expansion. So they are not

modularly generated.

Cross-release
export and
import

 Code does not have to be
regenerated

 Pre-compiled simulation target
using the real code

 Feature, which represents the
intended workflow at closest

 Referencing only by a SIL block, which is not
supported by many verification tools. A SIL block
cannot be easily exchanged by a model
reference block (as it is the case for protected
models), so it is a black box for debugging.

 It is unclear, how shared code is handled.

 Slow cross-release import functions

 New feature in R2017b with several
incompatibilities [96, pp. 33-88ff]

Table 34: Modular code generation workarounds

8.1 Development tasks

Page 235

Figure 90: Example for generation of modular code

 Shared code

Shared code is generated code containing declarations and definitions for variables and types,

but also larger code functions for some blocks, which are shared amongst multiple SL models

(and in consequence also amongst multiple modules). In the Embedded Coder documentation,

it is called shared utility code [135, pp. 9–71ff.] and always placed in a folder called _sharedu-

tils. Figure 91 illustrates the position of shared code folder.

Figure 91: Code folder structure

From a process point of view, a solution had to be found for two “sources” of shared code:

1. Design independent shared code

2. Design induced shared code

A

B

Generate code

for module A

Code for models in B

(B1, B2)

Compare

checksums with

checksums

saved in

module B

Code for models in A

(A1, A2, A3)

Generate and

save

checksums

Generate code

for module B

Code for models in B

(B1, B2)

Generate and

save

checksums

Top Model (_ert_rtw)

slprj

ert

Code Folder

_sharedutils

Model Reference A

Model Reference B

8 Modular development process (part 2)

Page 236

Design independent shared code

This group encapsulates all code, whose structure is independent of the SL model and which

can exist prior to a model build. Here, it is the Cert C Standard library, which will be detailed in

section 8.1.2.5, but also so-called canonical shared code.

Canonical shared code is generated code, which is independent of the Design Model. It mainly

represents basic type definitions and complex functionality, which is not explicitly graphically

modeled. A popular example is the code generated from a Lookup Table block (see also sec-

tion 5.6.5.5). Its functions and files have canonical names, which means that there is a unique,

reproducible name for every variation of the block parameters. Figuratively, Embedded Coder

maintains a repository of pre-generated code for special blocks and operations, from which the

canonical functions are copied.

For example, for every combination of algorithm block settings of the Lookup Table block, a

separate canonical function name exists. A binary search with linear interpolation and clipping

extrapolation for double data types results in a function called look1_binlca.

For canonical shared code, no specification exists in the tool documentation and the SL block

itself cannot be considered as sufficient low-level requirement. The code must either be reen-

gineered or replaced by code developed under a traditional DO-178C process. Embedded

Coder must thus be instructed to omit regeneration of shared utility code and import reengi-

neered code (for example with requirement traceability).

Embedded Coder can be instructed to copy the canonical shared code from an existing folder

prior to coding, and skip the generation process (option ExistingSharedCode) [96, p. 33-82].

The process setup can contain preassembled canonical shared code, which has been devel-

oped and verified under DO-178C and serves as repository for Embedded Coder. This method

has been chosen for all design independent shared code, since it is very convenient and can

be configured to throw an error, if an unsupported canonical function is required during code

generation.

It is important to note that the code is not executed in normal simulation runs, i.e., it must be

taken care that simulation matches the code behavior. However, any mismatch will be caught

by equivalence testing.

Design induced shared code

In addition, shared utility code may contain designed declarations and definitions of buses,

types, and data, which are referenced in multiple models (e.g., of a bus, which is used in more

than one model). This truly generated code shall be called design induced shared code.

Design induced shared code is typically generated in situ with code for a model hierarchy, but

has various disadvantages for modularization:

8.1 Development tasks

Page 237

 By default, Embedded Coder “reuses” shared code files and expands them incremen-

tally. For example, if a new shared parameter is discovered during code generation, it

is appended to existing code files (even to code files of previous builds). In the stand-

ard workflow, the same shared files would look differently in each module depending

on what SL models are referenced and in which order. This must be strictly avoided in

generation of modular code, since shared code files of other modules are already ver-

ified.

 Depending on the storage class, some definitions of Simulink.Parameter objects are

only generated with a top-level build, but sub-level modules do not make a top-level

build (no top-level model). But for code verification in the module, these parameters

are already required.

 The header of shared code files is generated with information of the first SL model

(i.e., model name, model version,…), in which a shared variable or type definition oc-

curs. This cannot be controlled using the code generation templates. This information

is misleading and may change the revision, although no actual change of the param-

eter happened.

To modularize design induced shared code, considerations during modeling and independent

share code generation were necessary.

In code generation settings, shared code placement is controlled with the option Utili-

tyFuncGeneration [130, p. 9-15]. It has been set to shared location to instruct Embedded

Coder to place utility code into the _sharedutils under all circumstances. In addition, specific

modeling rules and naming conventions, mainly for storage classes of model data, ensure that

shared code remains modular (cf. section 5.6.4.7). For example, if a Simulink.Bus is specified

as exported with a named header file, the definition will be generated into a shared location

and can be used in the code of different models. If the type definition was not shared, Embed-

ded Coder would generate a definition “guarded” with macros (#ifndef) into the code of every

model using the bus. This, for example, raises MISRA violations (MISRA C Rule 5.6 “A typedef

name shall be a unique identifier”).

Since modeling rules were not sufficient to solve all issues, the code generation approach had

to be modified. An independent shared code generation step generates shared code sepa-

rately from the Design Model. This works as follows:

 A temporary model, which contains all model data of the current module leading to

design induced shared code (EXPORTED BUS, SAFE ENUMERATION, PARAMETER CONSTANT) is

generated.

 Code generation settings are swapped from imported to exported storage class (for

example, cf. MR 36).

 Code for the temporary model is generated once per module in a top-level build prior

to any other model build. Only the generated shared code is archived.

8 Modular development process (part 2)

Page 238

Since all of the model data, for which shared code is generated, must be used in the actual

Design Model (cf. MR 40), these shared files would be generated anyway. The step just antic-

ipates the process to get a reproducible result. As consequence, SLCI theoretically verifies

design induced shared code at least once. Anyway, verification is added to the manual code

review, since the classical code generation process has been modified and it is not clear, how

deep SLCI analyzes data with imported storage class.

 Final code generation workflow

The new code generation workflow is illustrated in Figure 92. In a first step, design induced

shared code is generated for the current module (“Generate module shared code”).

Prior to model code generation, the composition of a so-called shared code repository is exe-

cuted (“Make shared code repository”). Its generation is hooked into the starting sequence of

code generation and executed prior to the actual build of Embedded Coder. Thereby, prepared

canonical shared code is integrated into the shared code repository together with existing,

design induced shared code of all nested modules. Any model build triggered makes a new

clone of the composed shared code repository.

The actual model code generation references the shared code repository and builds code from

the model (“Generate model code”). After code generation, all (regenerated) code of nested

modules, shared or not, is verified against existing checksums, to ensure that the code gener-

ation process did not taint them. For new files, checksums are created and saved (cf. section

8.1.2.1).

8.1 Development tasks

Page 239

Figure 92: Workflow for generation of modular code

8 Modular development process (part 2)

Page 240

 Code archival

Although auto-generated, the Source Code must be treated differently than other generated

artifacts, like reports. According to DO-178C Table A-2, Source Code is of Control Category 1

for all DAL levels A to C, so it must be similarly treated like requirements or the Design Model.

Code generation with Embedded Coder produces a couple of artifacts beside the code as

shown in the screenshot of Figure 93. Strictly spoken, only source and header files (*.c/*.h)

are Source Code. All other files are supporting information for Embedded Coder itself, but also

for many verification tools like SLCI, Polyspace, or SIL simulation. Without this information,

those tools do not work correctly. In addition, these files document the code generation pro-

cess, e.g., by the structural checksum of the model or a copy of the code generation settings.

As consequence, the chosen approach is to put all files in the code generation folder under

source control. The report generation has been disabled, it is only generated on demand. Then

the generated artifacts are easier to predict. Important is to ensure that a clean rebuild is per-

formed before the source code is submitted.

Figure 93: Example code generation output

 Standard C Library

A Standard C Library implements various functions, for which the C standard only provides

function prototypes. Embedded Coder by default assumes the availability of a Standard C Li-

brary and swaps some calculations by just calling the respective function prototypes. A typical

example is the TrigonometricFunction block, which is transformed to a function call direct-

ing into the Standard C Library (e.g., sin(…)).

8.1 Development tasks

Page 241

For safety-critical applications, the standard library is typically replaced, since it must be de-

veloped under DO-178C as well. CR 10 specifies the integration of a Cert Standard C Library

with available function signatures. Theses signatures deviate from the C Standard Library

specified by C99.

If C Standard Library functions are named or called differently, Embedded Coder must be in-

structed to bend the relevant function calls. In principle, two practical solutions exist. Either a

so-called Code Replacement Library (crtool) is registered, which replaces code fragments

during the code generation process, reaching from operators to functions calls [96, pp. 51-1ff].

Or pre-compiled S-Function blocks with code generation assets to replace the relevant func-

tions in simulation and inject custom code during the code generation process with the Legacy

Code Tool [166, pp. 4-44ff] are provided.

The two concepts have been investigated concerning their applicability for the given process.

The results are listed in Appendix D. Under the assumption that the C Standard Library imple-

ments equal behavior as the replaced SL functions, Code Replacement Libraries are chosen,

since they are the more flexible approach.

Only functions explicitly involving special quantities, like isnan, use the Legacy Code ap-

proach. Reason is that the original blocks checking the special quantities are not compliant

with SLCI.

 Code generation settings

The code generation settings are manifold. Discussing each chosen setting would clearly go

beyond the scope of this thesis. Anyway, a few settings required some special considerations

when it comes to certification-ready code generation and are explained in Appendix E.

8 Modular development process (part 2)

Page 242

8.2 Verification tasks

8.2.1 SwVP-DP-MB 1 – Static model analysis

Main objective of this task is to verify conformance of the detailed design with the Software

Model Standard, in particular the design, traceability, module design, and fundamental model-

ing rules. SL Model Advisor is a tool to execute independent checks in the MATLAB and SL/SF

environment in batch. Therefore, built-in checks but also own checks can be used. For own

checks, SL Model Advisor provides an infrastructure to traverse the data model of SL models

and libraries. Using SL Model Advisor in a process context required special consideration and

adaptions.

Application

Figure 94 illustrates the workflow and the created supporting material. Input for execution of

the analysis are a configuration set, which defines the checks to run, and the implementations

of custom checks.

The approach is to run all available checks on all SL models and on SL libraries in a module.

The decision, whether a check is applicable for the library, is made by the check itself (e.g.,

since libraries do not have configuration settings, related checks cannot be executed). Primary

output are intermediate result data for each analyzed model.

In this task, the embedded justification workflow is applied. The result data are imported into

the process-oriented build tool and mapped to the standardized results. Findings can be assed

in the build tool and turned into deviations by adding justifications.

Finally, two PDF reports are generated. One is the standard SL Model Advisor report contain-

ing information about executed checks and the result. The second report mirrors the justifica-

tions of the embedded review.

This task is a module-level task (DM), i.e., it has to be executed for every module including the

component module. However, the check behavior itself may differ for a top-level and nested

models, but the application remains the same from the user’s point of view.

Contribution 24: A task for static model analysis has been defined and implemented. Re-
sources have been created that allow the automated execution and result assessment of
SL Model Advisor checks for models. Checks have been implemented for new and adapted
modeling rules. A new categorization for the criticality of check violations has been intro-
duced. The SL Model Advisor results have been integrated into the process-oriented build
tool.

8.2 Verification tasks

Page 243

Figure 94: Workflow and artifacts for SwVP-DP-MB 1

It is important to execute all checks from the root level of the respective SL model, never from

subsystems. Technically, the tool allows the execution starting at model-level, but also at sub-

system level. However, the impact of a change in the model is typically not clearly isolatable

to a subsystem. Some checks are even not assessable on subsystem level. Custom checks

are also much easier to construct, if they do not have to distinguish between root- and sub-

level entry point. To ensure this, a check has been added verifying that the entry point of the

analysis is the root-level of the SL model.

Prerequisites

In order to prepare SL Model Advisor for the task, prerequisites had to be created and deployed

with the modeling environment:

 Custom checks implemented in MATLAB for module design, traceability rules, and

fundamental modeling rules

 Configuration file selecting and grouping relevant checks

 Traceability from rules to checks

 Detailed job implementation for execution and result standardization

 Detailed job implementation for PDF report generation

8 Modular development process (part 2)

Page 244

The set of checks is a mixture of checks created in this work and checks shipped with Simulink

Check for DO-178/DO-331 compliance [167, pp. 3-41ff.], MISRA C compliance [167, pp. 3-

63ff], MAAB compliance [167, pp. 3-56ff], or SLCI compatibility [135, pp. 2-5ff]. Since the fun-

damental modeling rules are derived from these general sets, numerous rules are directly cov-

ered by them. For own modeling rules and adapted rules, new checks have been created

where feasible.

Since modeling rules vary significantly in their safety impact, they have been assigned to dif-

ferent categories of criticality, in particular safety, compatibility, and quality. This mitigates the

necessary effort for verification and tool qualification. The influence of and reason for catego-

rization has been presented by Hochstrasser [36] and is summarized in Table 35.

 Safety Compatibility Quality

Impact If not respected, hard to
find and/or critical errors
may be introduced.
Negative impact possibly
undetected in verification
activities.

If not respected, rework is
required.
Safety relevant impact is
detected in verification
activities.

No direct influence on
safety, but on readability,
usability, or
maintainability of the
model.

Justification of
Finding

No justification possible,
rework required.

Justification possible,
rework required if not
justifiable.

Rework required if
specified thresholds are
violated.

Tool Qual.
Verification of
Checks

Required Not required Not required

Table 35: Criticality of modeling rules and checks

Authoring custom check requires some experience. Some guidelines are given by Jaffry [168].

The following list provides additional guidelines gathered by the author during check imple-

mentation:

1. SIDs are used for identification of blocks wherever possible. There are different APIs

for Stateflow and Simulink model primitives as well as different IDs (Simulink ID, Block

path, Stateflow ID), but SIDs are the most consistent identification method.

2. The assumption that checks are only executed from the root-level model and not from

subsystems has been respected in check development. This drastically decreased

complexity and implementation effort.

3. Compile checks must follow and analyze library links. Non-compile checks don’t have

to follow library links, since they are executed on SL libraries, too. Checks requiring a

compilation cannot be executed on SL libraries, so they must be analyzed from the

context they are referenced in. However, returning results of referenced libraries is not

the default setting for various API functions (e.g., find_system) and must be activated.

4. The content of pseudo primitives (i.e., subsystems in the DO-332 Foundation Library,

cf. section 5.6.5.5) is not analyzed. They cannot be changed by the developer and are

assumed to be sufficiently verified.

8.2 Verification tasks

Page 245

5. All checks look under all type of masks to avoid that a user can exclude a subsystem

from checks by adding a mask (e.g., with dialogs).

In order to improve configuration management and traceability, a check has been created to

embed the structural checksum of models and file checksum of library files into the report, as

well as a checksum of the check configuration set. The report by default does only include the

model version. This is an extended version of check “Display model version information” [169,

pp. 2-79f].

Figure 95: Extended configuration information in SL Model Advisor Report (BD = Block Diagram)

Result evaluation and justification

SL Model Advisor provides the capability to exclude parts of the model from analysis [167, pp.

3-28ff]. This workflow is considered as dangerous from a safety point of view, since exclusions

are persistent model overlays and not clearly visible. If a subsystem is excluded from a check,

future changes will not be analyzed by the check anymore. In addition, exclusions and justifi-

cations should be kept separate from the Design Model. Checks have been implemented to

make sure that no exclusions exist. The embedded justification workflow of the process-ori-

ented build tool has been leveraged instead.

Prior to review, the results of the checks are standardized as in Table 36. Model Advisor itself

knows the execution states “pass”, “warn”, and “fail”. Checks only fail, if an abnormal condition

in check execution occurs (e.g., a model, which cannot be compiled, or a bug in the check). A

check throws a “warn”, if the checked rule is violated, and a “pass” if not.

How warnings are treated depends on the criticality of the check, which is derived from the

criticality of the connected modeling rules. From all justifiable result items, a review checklist

is auto-generated (one per SL model/library).

8 Modular development process (part 2)

Page 246

SL Model
Advisor Check
Result

Check Criticality Resulting
Standardized
Status

Comment

Fail Any

A failing SL Model Advisor check is not
justifiable and must be followed up. It is
caused by an abnormal condition, e.g., by a
model, which cannot be compiled, missing
dependencies, or a bug in the check itself.

Warn Safety

Violation of checks categorized under “safety”
are not justifiable, since a failure may have a
severe impact on safety of the software.

Compatibility

Compatibility checks can be justified, since a
rationale exists that a tool downstream of the
workflow detects possibly caused safety
issues.

Quality or

 if number
of violations > 2% of
number of model
elements

The sum of quality check violations must lie
below a certain threshold. If this threshold is
exceeded, a non-justifiable failure is thrown.

Pass Any

Table 36: Status mapping for SwVP-DP-MB 1

Limitations

Since executed per model/library, this task just knows the model scope. Module-level assess-

ments, like checking for unused model data, is not covered by this task.

Although configuration settings are globally shared in the module, they are checked for each

model. They should be moved to the Static Module Analysis in future.

At the time when this thesis is written, not all rules are covered by checks. Uncovered rules

are subject to review (cf. SwVP-DP-MB 3). Also only one of the two PDF reports is imple-

mented.

The strategy proposed by MathWorks is to qualify the checks in tool qualification, not SL Model

Advisor itself. The majority of DO-178C checks (cf. [167, pp. 3-41ff]) is covered by the DO

Qualification Kit (cf. Simulink Check Tool Operational Requirements [170]). For custom

checks, the provided tool qualification has to be extended (at least for those categorized under

“safety”). The execution complies with [170].

The automatic generation of review lists after analysis is also not part of the existing tool qual-

ification, but the DO Qualification Kit does not cover the built-in Model Advisor exclusion fea-

ture either ([170] p. 2-1).

 (FAIL)

 (FAIL)

 (WARN)

 (FAIL)

 (PASS)

 (PASS)

8.2 Verification tasks

Page 247

8.2.2 SwVP-DP-MB 2 – Static module analysis

Main objective of this task is to verify conformance with the Software Model Standard on mod-

ule-level, i.e., check modeling rules, which span more than one model and have project scope.

These rules are mainly part of the module design and traceability rule sets.

Application

This task uses the SL Model Advisor framework. In contrast to SwVP-DP-MB 1, the task is not

executed for a specific model, but once per module. Since SL Model Advisor requires a target

model, the check is executed on the built-in Simulink block library, but it analyzes the whole

project.

Some examples for checks are:

 Conformance of model data in the data dictionaries with the safe subset

 Detection of dead units and data (e.g., unreferenced private SL models)

 SL Project sanity analysis (e.g., files that have not been added to the project)

 Encapsulation requirements check (e.g., usage of private SL models of other modules)

 Top-down requirement traceability analysis (e.g., verify that all requirements have a

trace to the Design Model)

This task is a module scope task (DM) and a component scope task (D2C). A couple of checks

have to be executed for every module including the component module and some checks, like

detection of unused, public SL models, can just be executed on component level.

Prerequisites

The described types of checks are not part of any existing check set. All of them had to be

implemented. For check implementation, the aspects described in SwVP-DP-MB 1 hold.

Result evaluation and justification

Result evaluation is equal to SwVP-DP-MB 1.

Limitations

The limitations concerning tool qualification for custom checks are equal to SwVP-DP-MB 1.

Not all module design rules have already been covered with checks. Many rules still require

manual review. Additional effort should be spent in future to implement them.

Contribution 25: A task for static module analysis has been defined and implemented. Re-
sources have been created that allow the automated execution and result assessment of
SL Model Advisor checks for whole modules. Checks on module level are not part of any
check set shipped by MathWorks and therefore represent an innovation. They are special
for the modular process at hand.

8 Modular development process (part 2)

Page 248

8.2.3 SwVP-DP-MB 3 – Model review

The main objective of the task is to verify the conformance to the Software Model Standard for

those rules, which are not automatically checkable in tasks SwVP-DP-MB 1 and SwVP-DP-

MB 2. Examples are the implementation of interfaces compliant to the specification or use of

units.

The following presents an approach that leverages automatic, incremental review list genera-

tion from the Software Model Standard leveraging the embedded justification workflow. Incre-

mental means that existing review lists are updated, deprecated justifications are highlighted

and new findings are appended. This drastically reduces review effort.

Application

During task execution, for each container primitive, a status file is created, containing all rele-

vant review items. The checklist is applicable for the respective layer of the container primitive,

only. Up-to-dateness, i.e., whether the content of the container primitive has changed and re-

view is required again, is checked for each SL model or atomic subsystem by the structural

checksum and for virtual subsystems with the structural checksum of the closest parent.

The machine-readable checklist is imported into the process-oriented build tool during stand-

ardization of result items. Figure 85 illustrates the embedded review workflow and Figure 85

shows a screenshot of the review list.

Contribution 26: Dynamic check lists have been implemented for model review tightly in-
tegrated in the process-oriented build tool. The dynamic check lists are auto-generated and
inherit the full feature set of the process-oriented build tool, like automated evaluation of up-
to-dateness. This significantly reduces the review effort.

8.2 Verification tasks

Page 249

Figure 96: Workflow and artifacts for SwVP-DP-MB 3

Prerequisites

In order to identify rules, which are subject to model review, traceability to checks of tasks

SwVP-DP-MB 1 and SwVP-DP-MB 2 has been established. Scripts have been implemented

to transform and replicate the manually written checklists.

Result evaluation and justification

By default, all review items have the standardized status WARN. If no findings are found, the

status is manually changed to PASS. If findings are found, a justification has to be added and

the status is also changed to PASS.

Review Item Status Standardized
Status

Comment

Unreviewed

Manual review and potential justification.

Reviewed

No finding or approved deviation.

Table 37: Status mapping for SwVP-DP-MB 3

 (WARN)

 (PASS)

8 Modular development process (part 2)

Page 250

Limitations

A structural checksum is the only way to assess up-to-dateness of a subsystem. A structural

checksum only reflects functional changes, not, for example, the appearance of the diagram.

Those changes would not affect the up-to-dateness of the model. I.e., modeling rules address-

ing appearance are not correctly covered. However, the resulting risk is low, since these are

quality rules.

Furthermore, the structural checksum also includes the checksum of all children. There is no

checksum per layer, i.e., for deep subsystem hierarchies, the structural checksum of higher-

level subsystems is a significant over-approximation.

The automatic generation of review lists is also not part of any existing tool qualification.

In the current implementation, task execution only identifies rules, which are not automatically

verified, and copies them into the review list. In future, this process might also involve certain

logic and dynamic. Not every rule is applicable for the content of every container primitive. For

example, some rules target specific SL blocks, which might not be there. Enriching the review

list creation with such logic would significantly decrease review work. The given implementa-

tion is a first step into this direction.

Generation of a PDF report of the embedded checklist has not been implemented yet. Project

deviations have not been collected yet.

8.2 Verification tasks

Page 251

8.2.4 SwVP-DP-MB 4 – Traceability review and analysis

Objective of this task is to review traceability between Design Model and HLRs and verify, if

the design complies with the requirements and if traces are correct. This refers to the tracea-

bility rules of section 6.5, which could not be analyzed with automated checks.

Application

The application aligns with SwVP-DP-MB 3. Instead of model review lists, bottom-up review

lists are auto-generated for every model and a top-down review list is generated once per

module. Templates for these checklists have been developed in this work.

Figure 97: Workflow and artifacts for SwVP-DP-MB 4

Prerequisites

Scripts have been implemented to transform and replicate the manually written checklists. Both

checklists are also unique for the given process. Common traceability review checklists from

traditional DO-178C reviews cannot directly be used, since they have been assembled for

textual requirements. The MathWorks DO Workflow [32] does not include checklists for model-

based software development, either. The created checklists address the specific scenario, in

which traceability from SL models to Polarion is established with SimPol.

Contribution 27: Dynamic check lists have been implemented for traceability review. They
are tightly integrated in the process-oriented build tool. The dynamic check lists are auto-
generated and inherit the full feature set of the process-oriented build tool, like automated
evaluation of up-to-dateness. This significantly reduces the review effort.

8 Modular development process (part 2)

Page 252

In addition to the checklists, some checks have been implemented to replace at least some of

the review items. Those are executed as part of SwVP-DP-MB 1 and SwVP-DP-MB 2. They

supplement the check for high-integrity guideline “hisl_0070” [103, pp. 8-2ff], which does not

cover the special use of libraries or model data (TR 6 and TR 7). Also, the review of certain

rules is supported by analysis with SimPol.

Result evaluation and justification

Equal to SwVP-DP-MB 3.

Limitations

Equal to SwVP-DP-MB 3, but in contrast to SwVP-DP-MB 3, review lists are not generated for

every atomic subsystem, but for whole models, only.

For supporting tooling with SimPol, no tool qualification exists.

Generation of a PDF report of the embedded checklist has not been implemented yet.

8.2 Verification tasks

Page 253

8.2.5 SwVP-DP-MB 5 – Design error detection

This task has two main objectives:

 Assurance-guarantee analysis

 Run-time error analysis (i.e., division by zero, index out of bounds, integer overflow)

In addition, dead logic detection is performed, but without seeking certification credit for it.

The assurance-guarantee analysis shall prove that the signal ranges specified at narrow inter-

faces of modules are satisfied under all circumstances. Signal ranges are not tested for ro-

bustness. It is thus mandatory to prove their correctness. Detection of run-time errors and dead

logic are based on the correctness of the assurance-guarantee analysis.

Application

All analyses are performed with SL Design Verifier. Assurance-guarantee and run-time error

analyses are performed in one execution, whereas the dead logic analysis is a separate run.

Design Verifier analyses are executed on a model and are greedy, i.e., they always analyze

the whole nested model hierarchy by default, i.e., it is sufficient to execute them on all public

SL models41.

Figure 98 illustrates workflow and artifacts.

41 The Test Generation Advisor can analyze subcomponents, but for dead-logic detection and test case genera-

tion only [123, pp. 7-21ff].

Contribution 28: Simulink Design Verifier has been adapted to perform assurance-guaran-
tee analysis, run-time error analysis, and dead-logic detection. Resources have been imple-
mented that allow the automated execution and result assessment. Additional functionality
has been added to support the modular approach of the process at hand.

8 Modular development process (part 2)

Page 254

Figure 98: Workflow and artifacts for SwVP-DP-MB 5

Tool overview

For further understanding, a short discussion about Design Verifier and the applied methods

is required. According to the tool qualification plan, Design Verifier internally applies abstract

interpretation and Satisfiability(SAT)-based model checking. For abstract interpretation it uses

the engine of Polyspace Code Prover, for model checking the Prover Plug-In of Prover Tech-

noloy42. [171, p. 4-4]

These types of analyses are called formal methods and they have to be sound. An analysis is

sound for a specific property, if it does not produce false positive results, or in the words of

DO-333, it “never asserts a property to be true when it is not true (DO-333 p.4)”. However,

results can remain undecided or return false negative results, i.e., raise a failure if there is

actually no failure.

42 https://www.prover.com/software-solutions-rail-control/

https://www.prover.com/software-solutions-rail-control/

8.2 Verification tasks

Page 255

Abstract interpretation is a method of program analysis, which computes an over-approxima-

tion of value ranges possible during program execution in a suitable abstract domain. The

abstraction is designed to preserve the validity of certain properties. One example is the deri-

vation of value ranges. If divisor 𝑥 ∈ [𝑙𝑏, 𝑢𝑏], then abstract interpretation can prove division by

zero for larger derived ranges [𝑙𝑏𝑎, 𝑢𝑏𝑎] with [𝑙𝑏, 𝑢𝑏] ∈ [𝑙𝑏𝑎, 𝑢𝑏𝑎]. Disadvantage is that during

the abstraction process, values ranges can get wide pretty soon and the method may return

false negative results. Abstract interpretation performed by the Polyspace Code Prover engine

is, compared to model checking, fast and bit-precise (i.e., supports floating-point values ac-

cording to IEEE-748 [172]). Further information can be found in the description of the theoret-

ical foundation as part of the DO Qualification Kit [173].

Model checking is a fully automated technique to check properties expressed in computational

tree logic expressions (so-called CTL*). Most tools, like Design Verifier, work on a special

subset of CTL*, the linear temporal logic (LTL). In LTL, only safety and liveness properties can

be specified (cf. Table 38). Reachability, fairness and the freedom of dead lock cannot be

expressed. Design Verifier applies symbolic model checking with a SAT and a LP (“linear pro-

gramming”)-based solver representing the model as a state transition system (an automaton

with a single state) (cf. [171], which provides further references for the theoretical background).

Reachability Safety Liveness Fairness Dead Lock
Freedom

A particular
situation can be
reached.

Under a certain
condition, an event
never occurs.

Under a certain
condition, an event
will ultimately
occur.

Under a certain
condition, an event
will occur (or will fail
to occur) infinitely
often.

The system can
never be in a
situation in which
no progress is
possible

Table 38: Property categorization from [35] and [174]

Both tools apply over- and under-approximations. Over-approximations do not have an impact

on the validity of results, under-approximations may have. The Code Prover documentation

understands over-approximation under the term approximation, which includes abstraction

and preserves exhaustiveness [175, p 4-4]. If Design Verifier reports an approximation, it is an

under-approximation. The analysis is not sound in this case [123, pp. 2-15ff]. Most limiting

under-approximation necessary for model checking is the approximation of floating-point val-

ues with rational numbers, which does not represent rounding and finite precision.

Another method used by Code Prover and Design Verifier to simplify the analysis is stubbing,

which replaces unsupported blocks with stubs that only have an identical interface, but no or

also over-approximated behavior. Design Verifier performs automatic stubbing, which is

sound, and supports custom stubbing.

In case of auto stubbing, if Design Verifier reports an objective as valid, it is valid independent

of over-approximation due to stubbing. Design Verifier performs stubbing automatically, if en-

abled, for supported incompatible blocks [123, pp. 2-8ff], but flags the model as “partially com-

patible” during compatibility checks. Automatic stubbing is not covered by tool qualification kit

[176, p. 2-5]. Automatic stubbing works for built-in blocks and is not customizable. In some

cases, it can introduce a significant over-approximation, although deeper knowledge about the

stubbed system or block is known.

8 Modular development process (part 2)

Page 256

To register custom stubbing, Design Verifier provides the block replacement mechanism [123,

pp. 4-1ff]. Block replacement is a customizable preprocessing step of the model. If block re-

placement is applied, the user must ensure that the replacements are valid over-approxima-

tions.

Prerequisites

In R2017b, Design Verifier comes along with several limitations and incompatibilities for the

chosen safe modeling subset by default. To support the process and modeling rules at hand,

significant preprocessing algorithms for the models had to be implemented. They are docu-

mented in Appendix F.

In addition, a Design Verifier configuration has been chosen. Table 39 maps the previously

introduced task steps to the used Design Verifier technique.

Task Step Design Verifier Technique Applied Formal Method

Assurance-guarantee analysis Design range checks [123, pp. 6–
29ff]

Abstract interpretation

Run-time error analysis Static run-time error detection
[123, pp. 6-24ff]

 Division by zero

 Index out of bounds

 Integer under- and
overflow

Combination of model checking
and abstract interpretation

Dead logic detection Quick dead logic detection [123,
pp. 6-10ff]

Abstract interpretation

Table 39: Applied SL Design Verifier techniques

Design Verifier performs “Design Range Checks", i.e., based on provided range information,

further signal ranges are formally derived and checked. This allows Design Verifier to decide

whether specified intermediate ranges are satisfied. Design Verifier static run-time error de-

tection bases both on abstract interpretation and model checking and reveals the listed design

flaws. For example, division by zero is either decided using Polyspace or Prover.

Dead logic detection requires some additional explanations. Design Verifier offers two options:

Dead logic detection without active logic detection (called “Quick Dead Logic Detection” or

“Reduced Capability” [176, p. 2-1]) or with active logic detection (“Full capability” [176, p. 2-1]).

Quick Dead Logic detection bases on Polyspace Code Prover abstract interpretation, only.

However, dead logic is a reachability property, which cannot be preserved with value range

abstraction. Larger, over-approximated signal ranges may lead to false positive results. Any-

way, this kind of analysis is fast, can reveal certain dead logic patterns, and requires fewer

under-approximations. It is just sound for some known patterns, but not overall [123, p. 6-10].

Active logic checks decision and condition coverage on the returned results of the quick dead

logic check. This method is much slower, but is sound, if it doesn’t require under-approxima-

tions (like floating-point to rational approximation). Only this approach is covered by tool qual-

ification [176, p. 2-5].

The proposed approach is to take the quick dead logic analysis without seeking certification

credit for it, since reachability is thoroughly satisfied by model coverage afterwards.

8.2 Verification tasks

Page 257

Result evaluation and justification

Prior to each execution, Design Verifier performs a compatibility check. The interpretation of

the outcome is listed in Table 40.

Design Verifier
Compatibility
check Status

Standardized Status Comment

Compatible

Partially compatible

Indicates incompatible blocks, which are automatically
stubbed, but is sound.

Not compatible

Design Verifier cannot be executed. The model must be
reworked.

Table 40: Status mapping for SwVP-DP-MB 5 (compatibility checks)

The results of the actual analysis are standardized and subject to the embedded justification

workflow in the process-oriented build tool.

The result states for assurance-guarantee and run-time error analysis are explained in the

Design Verifier documentation [123, pp. 13-34ff], but an interpretation is not given. Thus the

mapping shown in Table 41 has been assembled. Only fully valid objectives are not subject to

review. Just in this case, the analysis is sound. Whenever an approximation is involved, or if

the objective is undecided, manual review and justification is required.

 (PASS)

 (PASS)

 (FAIL)

8 Modular development process (part 2)

Page 258

Design Verifier
Objective
Status

Result of
Generated
Counter
Example
(simulation case)

Standardized
Status

Comment

Valid No counter
example needed

A valid objective has been produced in a
sound analysis.

Valid under
approximation

No counter
example needed

If an under-approximation is applied, the
method is not sound. Cases might exist, in
which the objective is not valid. The objectives
must be manually reviewed and justified.

Undecided due
to stubbing

No counter
example needed

Due to technical or mathematical reasons,
Design Verifier cannot provide a result.
Manual review and justification of the
objectives is required.

In case of a timeout, a rework of the model
should be done to reduce verification times.

Undecided due
to nonlinearities

No counter
example needed

Undecided due
to division by
zero

No counter
example needed

Undecided due
to timeout

No counter
example needed

Falsified – needs
simulation

Simulation test
case returns valid
result

If an objective is falsified, Design Verifier
normally can provide a test case.
If approximations are present, these test
cases can produce a valid result in rare
cases. Then the objective shall be reviewed
and justified.
If the test result is invalid, it is the proof for a
design error.

Simulation test
case returns
invalid result

Falsified – no
counterexample

No counter
example available

In some cases, Design Verifier fails to find a
counterexample (e.g., if the model has no
inputs). Since this could be observed in edge
cases only, where the design was
questionable, no possibility of justification is
provided.

Table 41: Status mapping for SwVP-DP-MB 5 (assurance-guarantee and run-time error)

 (PASS)

 (WARN)

 (WARN)

 (WARN)

 (WARN)

 (WARN)

 (WARN)

 (FAIL)

 (FAIL)

8.2 Verification tasks

Page 259

For dead logic, the relaxed mapping of Table 42 applies. This is argued with the fact that

reachability is sufficiently covered by model coverage. Reviewing and justifying undecidable

objectives would be duplicate work. In addition, quick dead logic analysis does not return un-

decidable objectives.

Design Verifier
Objective Status

Standardized Status Comment

No dead logic

Directly maps to the result states of the quick dead logic
analysis, which does not return undecidable items.

Dead logic

Table 42: Status mapping for SwVP-DP-MB 5 (quick dead logic)

Figure 99 displays the review checklist generated after the analyses in the process-oriented

build tool. It allows jumping into the model quickly and overlays the produced results (Design

Verifier result view). Setting a deviation is enabled according to the standardized status in the

mapping tables.

Figure 99: Example of auto-generated review checklist for SL Design Verifier

Limitations

The presented analysis configuration significantly deviates from the tool operational require-

ments and needs major enhancements of the tool qualification kit.

In order to make Design Verifier usable, significant transformation of the model is required.

This would require significant custom tool qualification enhancements.

 (PASS)

 (FAIL)

8 Modular development process (part 2)

Page 260

Experience also showed, that, if the model is not of logical nature, approximations have a large

impact on the results and many objectives have to be reviewed [35]. However, if no analysis

were applied, these objectives would have to be reviewed anyway. A weaker application would

be to let Design Verifier generate the objectives, transform them to review lists and manually

check those. The objective generation would be fully covered by the tool qualification kit, since

it is not affected by approximations and auto-stubbing and does not require the custom exten-

sions made here.

The automatic generation of review lists after analysis is not part of the existing tool qualifica-

tion.

The project deviations have not been collected in the scope of the thesis.

8.2 Verification tasks

Page 261

8.2.6 SwVP-DP-MB 6 – Simulation / test procedure and case

development

The objective of this task is to derive test cases from HLRs. Implementing simulation cases

from requirements underlies considerable freedom, since many different methods exist to cre-

ate simulation cases. DO-178C requires the development of normal and robustness simulation

cases. DO-178C 6.4.2.1 and 6.4.2.2 give a list of examples, which shall be covered. A further

discussion of test strategies is out of scope of this thesis.

Application

In this task, normal and robustness simulation procedures and cases are manually derived

from HLRs and derived requirements according to simulation rules (SR) documented in Ap-

pendix G. SL Test Manager [132, pp. 5-2ff] is used to author and manage these tests.

The derivation of simulation procedures and cases should follow known testing strategies,

such as boundary value testing [45, p. 200]. Not used shall be Design Verifier test case gen-

eration to auto-generate test cases, since this is not requirements-based testing, but structural

testing (cf. DO-248C FAQ #44).

Prerequisites

Typically, for test case development, a test plan is developed as proposed in [45, p. 206]. The

rules specified therein are then checked in the test case review (SwVP-DP-MB 7). For this

plan, a minimum set of testing rules has been assembled in Appendix G.

Furthermore, SimPol has been enhanced to allow linking of simulation cases in SL Test.

Contribution 29: Rules for simulation test procedure and case development with Simulink
Test have been developed. These rules help organizing simulation test in a module, ensure
efficient reusability for simulation and tests, and support the modular test and coverage col-
lection system.

8 Modular development process (part 2)

Page 262

8.2.7 SwVP-DP-MB 7 – Simulation / test case and procedure

review

Objective of this task is to check, if the simulation procedures comply with the rules specified

in the test plan (simulation procedure review) and to verify that requirements-based coverage

is given for HLRs (simulation case review).

Application

In its execution, this task is similar to SwVP-DP-MB 3 and SwVP-DP-MB 4.

A bottom-up review list is auto-generated for every simulation procedure/case. One top-down

review list is generated per module. The main checklist is the bottom-up review list, which

contains most review items for test rules applicable for the simulation procedures, but also

items to review requirements-based coverage with the traceability from simulation cases to

HLRs. The top-down review checklist is mainly to review requirements-based coverage with

the traceability from HLRs and derived requirements to simulation cases.

Prerequisites

Templates for bottom-up and top-down review lists are required. The review list generation

and result standardization has been implemented.

Result evaluation and justification

Equal to SwVP-DP-MB 3.

Limitations

Equal to SwVP-DP-MB 3 and SwVP-DP-MB 4.

The simulation rules are not yet translated to review lists.

Contribution 30: The jobs for dynamic checklists to review simulation/test cases and pro-
cedures have been set up. The dynamic check lists are auto-generated and inherit the full
feature set of the process-oriented build tool, like automated evaluation of up-to-dateness.
This significantly reduces the review effort.

8.2 Verification tasks

Page 263

8.2.8 SwVP-DP-MB 8 – Simulation testing & result review

In this task, all simulation cases specified in the module are executed and the results are as-

sessed.

Application

Each simulation case in SL Test Manager is executed separately and the results are also

stored separately. I.e., simulations are not executed from higher hierarchical elements like a

SL test suite or a whole file (cf. [132, pp. 5-2ff] for the test hierarchy in the SL Test Manager).

This simplifies result artifact management, since otherwise any combination of result set could

be stored. Recording of coverage happens in-situ with simulation, the coverage settings are

not an execution parameter, but part of the test procedure. Coverage settings are discussed

as part of SwVP-DP-MB 9 in detail.

After the execution, the raw simulation result is exported to the .mldatx format [177, pp. 1-

90ff], which includes coverage and full result data for equivalence testing per simulation case.

The results are imported into the process-oriented build tool. They are displayed, but cannot

be justified. Finally, the results are exported to a PDF test report. The whole workflow is de-

picted in Figure 100.

Prerequisites

Scripts to execute and assess the test case results have been implemented as well as tem-

plates and scripts to exports the reports.

Contribution 31: Resources have been created to automatically execute simulation tests
and assess the results. Dynamic check lists have been implemented for result review. They
are tightly integrated in the process-oriented build tool. The dynamic check lists are auto-
generated and inherit the full feature set of the process-oriented build tool, like automated
evaluation of up-to-dateness. This significantly reduces the review effort.

8 Modular development process (part 2)

Page 264

Figure 100: Workflow and artifacts for SwVP-DP-MB 8

Result evaluation and justification

The mapping of result standardization is given in Table 43 and is straight-forward. A justifica-

tion is not possible in any case.

Review Item Status Standardized
Status

Comment

Pass

Fail

The pass/fail criteria falsified or the
simulation has not been executed
properly. Rework of either the Design
Model or the simulation case is required.

Not executed

There shall be no simulation cases,
which are not executed.

Table 43: Status mapping for SwVP-DP-MB 8

Limitations

This task has no specific limitations beyond tool qualification considerations.

The report generation has not been implemented and project deviations have not been docu-

mented yet.

 (PASS)

 (FAIL)

 (FAIL)

8.2 Verification tasks

Page 265

8.2.9 SwVP-DP-MB 9 – Model coverage assessment

Model coverage has been introduced in section 4.6.3.2. As repetition, in this process, model

coverage has two goals on module-level (DM). It shall show that simulation cases cover LLRs.

As side-product, model coverage shall provide an estimate for structural code coverage. In the

component process (D2C), it measures the control coupling achieved by simulation cases of

the component interface.

Application

Model coverage analysis is executed on the results generated in task SwVP-DP-MB 8. Model

coverage data has already been collected and stored as part of the simulation results. The

settings for coverage are stored in the simulation procedure and have already been verified in

SwVP-DP-MB 7.

In DM, model coverage originating from the execution of all simulation cases in the module is

assessed for every model of the current module. Coverage of nested models from other mod-

ules is assumed to have 100%.

In D2C, model coverage originating from the execution of simulation cases testing the compo-

nent interface is assessed for every model of all modules, except models in library modules.

As input to this task, all stored simulation case results are taken as illustrated in Figure 101.

Each result only contains a portion of the final coverage, since one model is typically executed

by many simulation cases for different execution paths. The coverage inside one simulation

result is thus called a coverage fragment in the following. One coverage fragment may also

contribute coverage to multiple models.

To obtain the complete coverage, all coverage fragments are aggregated. SL Coverage pro-

vides the necessary functionality [101, p. 3-21], since adding up coverage fragments is not

straight-forward. Then, coverage for each model is separately stored as .cvt file.

In addition, a coverage filter file (.cvf file) is generated. Coverage filter files are a file format

of SL Coverage to store exclusions and justifications attached to coverage [101, pp. 7-4ff]. The

basic filter file contains exclusions for model references, which are not in the current module,

since they are separately tested and coverage is assessed separately. Otherwise, a model

would only achieve full coverage, if also all nested models achieved 100% coverage.

The review has been realized with the external justification workflow. Depending on the cover-

age result, justifications can be added to the filter file for particular blocks. Therefore, the SL

Coverage graphical user interface should be used. During result standardization, the build tool

applies the filter file on the coverage and analyzes the outcome. After all findings are resolved,

a report is generated.

Contribution 32: Criteria for model coverage assessment have been constituted. Re-
sources have been created to aggregate model coverage per module and across modules.
Such an automated coverage aggregation and assessment is not natively supported by
MathWorks, but inevitable in a modular process. Model execution coverage is also applied
in a new way to asses coupling between models.

8 Modular development process (part 2)

Page 266

Figure 101: Workflow and artifacts for SwVP-DP-MB 9

Prerequisites

The necessary algorithms for Figure 101 have been implemented in the build tool. The external

justification workflow has been tightly coupled with SL coverage.

Furthermore, coverage settings had to be chosen providing the best outcome for the given

process. Thereby, central question was, what kind of model coverage measures fulfill DO-331

criteria. DO-331 requirements on model coverage are minimalistic. Only a few general and not

very helpful examples are provided in Table MB.6.1. Main requirement is that coverage is rec-

orded with normal range and robustness simulation cases.

More interesting is the objective apart from DO-331, that it shall help to estimate structural

code coverage and provide sufficient coverage preservation capabilities towards code cover-

age. Preservation means that, if full model coverage is achieved, it is very likely, that full struc-

tural coverage can be achieved with the same simulation / test cases on the auto-generated

code as well.

8.2 Verification tasks

Page 267

The structural code coverage objectives for DAL B software are statement and decision cov-

erage (cf. DO-178C Table A-7:6,7). In classical software engineering, decision coverage is

equal to branch point coverage. In the sense of DO-178C, branch point coverage is only a

subset of decision coverage as clarified by the CAST position paper [178]. The DO-178C un-

derstanding of decision coverage is (from [178] p.3):

 Every point of entry and exit in the program has been invoked at least once.

 Every control statement (i.e., branch point) in the program has taken all possible out-

comes (i.e., branches) at least once.

 Every non-constant boolean expression in the program has evaluated to both a True

and a False result,

A boolean expression is any expression resulting into True or False (DO-178C Glossary and

DO-248C DP #13). In consequence, also an operation like D=A&&B is considered as boolean

expression, regardless whether it controls a branch point, like if(…) (cf. [179] and [180]).

Whether bitwise operations are Boolean expressions is under controversial discussion [181].

According to DO-248C DP #13, they are not.

SL Coverage supports eleven different model coverage measures in R2017b [101, pp. 1-3ff].

It is standing to reason to choose model decision coverage as best match, but this type of

coverage bases on branch points as clearly visible in the list of covered blocks [101, pp. 2-2ff].

For example, a Rational Operator block is certainly translated to a boolean expression in code,

however, the block does not have decision model coverage.

The closest match to DO-178C decision coverage, and the criteria chosen here, is assessing

execution, decision, and condition model coverage. A condition is a boolean expression with-

out boolean operator, for which a True or False result must be achieved. In D=A&&B, this would

be A=True, A=False, B=True, and B=False. This is certainly more than code decision cover-

age, but in the opinion of the author, the better match than decision model coverage, only.

Beside coverage criteria selection, a couple other factors like coverage recording settings,

simulation settings, or modeling guidelines have an impact on coverage. They shall be dis-

cussed in the following. Again, coverage preservation is the main driver for these decisions,

thus some more thoughts on this topic shall be made at first.

Preservation of coverage should be considered as nice to have, not as a requirement. As [182]

outlines, formulating preservation criteria between model coverage and code coverage is dif-

ficult due the modeling language style (e.g., control flow vs. data flow representation), higher

abstractions of model elements, or behavior of code generation, which can perform inlining or

optimizations. [183] states that the problems with coverage preservation from model to code

are similar to those from source code to object code and names inlining, reuse, and dead code

as potential issues. However, there is an undeniable correlation between model coverage and

structural coverage as investigated in various assessments [184, 185] and it is reasonable to

choose modeling guidelines and document best practices to improve preservation quality.

8 Modular development process (part 2)

Page 268

There are a couple of simulation settings, which drastically change the behavior of coverage

and may mitigate the effect and applicability of the measures. In particular, MathWorks lists

conditional branch execution, block reduction, and inlined parameters [101, pp. 1-11f]. In MR

3 and MR 35, those settings have already been discussed in other contexts. The therein cho-

sen values comply with the requirements for model coverage preservation.

Another interesting topic is short-circuiting, which is a known coverage dilemma for code. In

ANSI C99, the boolean expression D=A||B contains hidden control flow and is a so-called

short-circuit expression. If A evaluates to true, B is never evaluated. For code coverage collec-

tion, a study conducted by the FAA proposes to expand such expressions with the underlying

control flow [180, p. 17], i.e., for the given example into Listing 11.

1
2
3
4
5
6
7
8
9

if(A)
 D = A;
else
 if(B)
 D = B;
 else
 D = false;
 end
end

Listing 11: Example for expansion of short-circuiting (pseudo code)

This is thus the strategy, which should be followed in model condition coverage by activating

the option “Treat Simulink Logic blocks as short-circuited” (CovLogicBlockShortCircuit) for

model coverage collection [123, p. 2-23]. Otherwise the coverage would not consider short-

circuit expressions and return full coverage, although not the full statement has been evalu-

ated. This typically requires more simulation cases. The setting is only relevant for SL blocks.

Logical expressions in MATLAB or SF action language are treated as short-circuit expressions,

anyway.

There are also a couple of situations, in which the higher-level abstraction may rise preserva-

tion problems. Of course, this problem arises for almost all functions, which generate canonical

shared code. However, these functions are separately verified. But besides, also small block

settings have an impact.

One example is the implicit saturation on integer overflow. Enumerations for example provide

the option of safe casting, which generates addition robustness code (cf. MR 34 and Listing

7). This leads to additional decisions and conditions, which negatively impacts preservation of

coverage. Model coverage analysis addresses “Saturate on overflow” in a separate metrics,

but according to the documentation only requires a case, in which the saturations comes into

effect and a case, in which it doesn’t. The implementations in C often show more complex

behavior concerning execution paths, decisions, and conditions. Since full coverage of “Satu-

rate on overflow” metrics seldom maps to full code coverage, this coverage is not assessed

here. Moreover, fundamental modeling guidelines have been established limiting the use of

block options deteriorating coverage preservation.

8.2 Verification tasks

Page 269

In other cases, model coverage tries to cover all situations and is more sensitive than required.

A typical example are operations on multi-dimensional signals, like in Figure 102. The model

saturates a multi-dimensional signal and model decision coverage is required for each element

of the signal.

Figure 102: Example for multi-dimensional decision points

This may seem unnecessary, since in C code, the whole operation would be nested in a loop

iterating through an array. Code coverage would just require the decisions to be True or False,

once. However, how those operations are actually translated into code is determined by the

Embedded Coder configuration. Embedded Coder can either use the loop syntax, or it can

repeat the same code pattern multiple times (so-called “loop unrolling”). The translated code

variants for Figure 102 are shown in Listing 12. In the latter case, indeed, decision coverage

for each element would be required in C code, too. Thus, model coverage just makes a con-

servative assumption. In consequence, depending on the signal length, achieving full coverage

may be impossible and project deviations should be provided for this case.

8 Modular development process (part 2)

Page 270

1
2
3
4
5
6
7
8
9
10
11
12
13

 /* LOOP UNROLLING THRESHOLD <= 3 */
for (i = 0; i < 3; i = i + 1) {
 u0 = xy_multiDimDecision_U.In1[i];
 if (u0 > 0.5) {
 y = 0.5;
 } else if (u0 < (-0.5)) {
 y = (-0.5);
 } else {
 y = u0;
 }

 rtb_Saturation[i] = y;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

/* LOOP UNROLLING THRESHOLD > 3*/
u0 = xy_multiDimDecision_U.In1[0];
if (u0 > 0.5) {
 rtb_Saturation_idx_0 = 0.5;
} else if (u0 < (-0.5)) {
 rtb_Saturation_idx_0 = (-0.5);
} else {
 rtb_Saturation_idx_0 = u0;
}

u0_0 = xy_multiDimDecision_U.In1[1];
if (u0_0 > 0.5) {
 rtb_Saturation_idx_1 = 0.5;
} else if (u0_0 < (-0.5)) {
 rtb_Saturation_idx_1 = (-0.5);
} else {
 rtb_Saturation_idx_1 = u0_0;
}
...

Listing 12: Example for loop unrolling of vector operations

The difficulties of inlining and reuse of generated code for subsystems have been discussed

in section MR 19. REUSABLE MODELS are, in terms of model coverage, the only reasonable ap-

proach, since they have clearly defined interfaces and behavior, and the coverage aggregates

over multiple instances.

Another challenge, which may arise, is model coverage for invariant operations. In Figure 103,

the Relational Operator block is invariant, since m_var1 and m_var2 are non-tunable MATLAB

variables (cf. MR 35). However, the block receives condition points (which are never achieva-

ble, since the values are constant). Pre-calculation of invariant expressions is not part of the

block reduction and cannot be disabled. In consequence, these situations can occur and pro-

ject deviations must be provided to reference for justification. In most cases, however, these

implementations are also not compatible with SLCI, anyway, and should be replaced with pre-

calculated values.

8.2 Verification tasks

Page 271

Figure 103: Example of an invariant operation

Result evaluation and justification

The recorded coverage is evaluated differently for DM and D2C. In DM, the coverage results for

each model of the current module are assessed separately and further processed according

to Table 44. The chosen coverage objective is that each SL model shall receive 100% model

coverage (execution, decision, and condition) with the simulation cases derived from the re-

quirements allocated to the module, refined in the module, or derived requirements. Refer-

enced SL models from other modules are assumed to have 100% coverage.

Resolution strategies for noncovered design and unreachable design have already been pro-

vided in DR 30.

Coverage
(Execution,
Decision, and
Condition)

Standardized Status Comment

100%

Note: If a model does not have decisions or conditions,
the respective coverage measure is interpreted as 100%.
However it must be checked in advance, whether the
coverage measurement was activated.

< 100%

Missing coverage can be justified if not resolvable
otherwise (DR 30). Project deviations can be referenced.

Not executed or
missing coverage
fragment

Each SL model must at least once be executed in a test,
so a coverage fragment must exist.

Table 44: Status mapping for SwVP-DP-MB 9 (DM)

In D2C, Table 45 applies. To check whether all models are in the call hierarchy, it is sufficient

to evaluate, whether execution coverage exists and is greater than 0% for each SL model in

all modules. Exceptions are SL models in library modules, since they don’t have to be called.

For this kind of coverage, only component simulation test cases are used (cf. Table 12).

 (PASS)

 (WARN)

 (FAIL)

8 Modular development process (part 2)

Page 272

Coverage
(Execution)

Standardized Status Comment

> 0% or in library
module

0%, not executed, or
missing coverage
fragment

Uncalled models are a design flaw and require rework.

Table 45: Status mapping for SwVP-DP-MB 9 (D2C)

Model coverage does not reveal all kinds of unused model elements (cf. MR 40). Thus, essen-

tial part of the verification are the static module checks and all efforts made for data coupling

and control analysis (cf. SwVP-DP-MB 2 and section 4.6.4).

Limitations

The aggregation process is complex and not supported by the existing tool qualification kit of

MathWorks.

Currently, no possibility exists to detect whether deviations inserted through coverage filters

are still valid after modifying parts of a SL model, changing the simulation case, or just re-

executing the simulation case. Thus, existing annotations are dropped in any of these cases,

which requires a lot of additional effort.

Model coverage does not provide any means to evaluate data coupling coverage. The so-

called “Signal Range Coverage” goes into the right direction, but does not support Sim-

ulink.Bus objects.

It is not very clear, where coverage settings are stored and which have precedence. SL Test

has some coverage settings like coverage types, however more detailed settings are not pos-

sible. They are taken from the model under test. Thus, it is important that a harness model is

used, which links to a compatible test configuration set (cf. SR 10).

The report generation has not been implemented yet and project deviations have been col-

lected informally, only.

 (PASS)

 (FAIL)

8.2 Verification tasks

Page 273

8.2.10 SwVP-CP-MB 1 – Automatic code review

This task is executed with Simulink Code Inspector (SLCI). The purpose is, on the one hand,

to generate traceability between Design Model and generated Source Code and verify it. On

the other hand, the step verifies the compliance of Source Code with the Design Model. It is

an independent backward verification of the Embedded Coder code generation process. Code

inspection largely, but not completely, replaces code review of the auto-generated code.

The step combines trace data generation of activity SwDP-CP-MB 2 and its verification. Trace

data is under control category 1 according to DO-178C Table A-2 in this process, whereas

verification results for the respective objective are under control category 2 (DO-178C Table

A-5:5). Since the resulting report combines both, it must be treated as control category 1 arti-

fact.

Tool overview

In general, SLCI generates two intermediate representations in form of abstract syntax trees

(ASTs), one from the Design Model and one from the generated Source Code. These ASTs

are normalized and compared with each other [89, 186]. If the matching fails, code inspection

fails. In case of a fail in one point, SLCI skips analysis of the nested elements. In fact, each

intermediate representation consists of multiple independent ASTs reversely built from outputs

or test points. These ASTs can be separately verified.

The generation of an AST and the matching procedure just works for a limited set of SL/SF

features and just if the Source Code fulfills some requirements. If the AST cannot be built or

matched due to incompatibilities, SLCI is designed to fail, i.e., it is sound.

To predict the success of the inspection, SLCI provides a set of compatibility checks. These

checks test the Design Model and code generation settings for incompatibilities prior to the

actual analysis. The results are categorized as FATAL, for which an inspection will not even

run, and NON-FATAL, for which SLCI at least tries to map the ASTs. Compatibility checks are

implemented in a conservative manner. If a setting may lead to an incompatibility, although

just under some specific conditions, the setting is flagged as NON-FATAL. The code inspection

might succeed nevertheless. In other words, it is ok to have NON-FATAL incompatibility flags,

if the analysis succeeds. Some of these cases are provided in the documentation [134, pp. 1-

4ff]. All compatibility checks have been added to the static model analysis (SwVP-DP-MB 1).

They are categorized as compatibility checks, which allow a deviation.

Application

Code inspection has to be performed separately for every SL model and its generated code.

Code inspection is limited to the scope of one model. SLCI is instructed to perform a top-level

analysis for a top-level model.

Contribution 33: A task has been defined and resources have been created to automati-
cally execute automated code review with Simulink Code Inspector and assess the returned
results.

8 Modular development process (part 2)

Page 274

According to Figure 104, for each SL model, a separate report is generated and stored as trace

data under control category 1. The report is reviewed and directly considered as evidence

artifact.

Figure 104: Workflow and artifacts for SwVP-CP-MB 1

Prerequisites

The correct SLCI options had to be chosen. Execution and result standardization have been

implemented.

8.2 Verification tasks

Page 275

Result evaluation and justification

Output of the task is an inspection report only. SLCI has the ability to generate a traceability

matrix, too [134, p. 3-29]. However, it was not considered necessary, since the report contains

the trace data as well. Furthermore, the possibility to add justifications into the traceability ma-

trix is not required, since the decision here is to follow a fairly conservative approach.

In this process, only a fully verified overall analysis result, without partially or failed sub results,

is acceptable (cf. Table 46). Rationale for this decision was the difficulty to identify the origin

for partially traceable/verifiable elements as well as the impact. Partial results may also be

quite extensive, e.g., if SLCI cancels the analysis after it finds a failure.

SLCI Status Standardized
Status

Comment

Verified

Partially traced /
verified

Partially traced / verified results can
have different reasons. It is hard to
identify the origin. Being able to create
deviations would be an error-prone
process. Rework of the model is
required.

Failed to traced / verify

This is a true traceability or compatibility
issue between Source Code and Design
Model. Rework of the model is required.

Table 46: Status mapping for SwVP-CP-MB 1

Limitations

Identifying the origin of issues is cumbersome, although the documentation provides some

hints [134, pp. 3-19ff]. The report not clearly identifies the reason for failed or partial verifica-

tion. Finding the reason resulted in time-consuming work. With the safe subset, the scope

could be drastically limited and it is more likely to create a compliant model “out-of-the box”.

Shared code is just partially verified. Canonical shared code is excluded from analysis. This is

acceptable, since existing, pre-verified shared code is used (cf. section 8.1.2.2). Also the sep-

arately generated module shared code is not or just partially verified by SLCI and is subject to

review.

Code inspection can only be executed on SL models, which can generate code. SL libraries

cannot be checked. SLCI does not detect SL models and SL library elements, which are not

used.

 (PASS)

 (FAIL)

 (FAIL)

8 Modular development process (part 2)

Page 276

8.2.11 SwVP-CP-MB 2 – Static code analysis for standard

compliance

In this task, Polyspace Bug Finder is used to verify the compliance to the code standard. The

checks mainly cover MISRA C rules. The tool is considered as static code analyzer, not as

formal method tool, since it does not prove that certain violations do not exist. The tool

searches for known patterns.

Application

In CM, a selected set of MISRA C checks is executed on the Source Code of each SL model

(public and private) separately without analyzing nested models.

In CC, all applicable MISRA C checks are executed on the whole Source Code of the applica-

tion starting from the top-level model.

Figure 105 roughly illustrates the automated processes. At first, analysis options are prepared

and a Polyspace project is generated with these options from the SL model (entry point of

analysis). Then the analysis is executed. Output of the analysis is a machine readable data-

base of result data.

Review and justification follows the external workflow. The results are loaded into Polyspace,

reviewed, and justified (annotations). The result standardization overlays result with annotation

data and displays the outcome in the process-oriented build tool. In the final step, a report is

generated as evidence artifact.

Contribution 34: Resources have been created to configure Polyspace BugFinder, so that
it checks the selected coding rules and design errors. The analysis and result evaluation
has been fully automated. Different configurations have been developed for module- and
component-level analysis in the modular process.

8.2 Verification tasks

Page 277

Figure 105: Workflow and artifacts for SwVP-CP-MB 2

Prerequisites

From the large amount of Polyspace settings, analysis options have been selected. Analysis

options define, for example, the type of analysis being executed (like standard checking or run-

time error detection) or target- and compiler-specific settings (polyspace.ModelLinkOptions

[187, pp. 4-121ff]). The analysis options are independent of the analyzed Source Code, i.e.,

they do not define, which files to analyze.

8 Modular development process (part 2)

Page 278

The check selection lists all the checks, which shall be executed during analysis. Bug Finder

is shipped with a set of checks for all MISRA C rules and numerous MISRA C directives43.

However, certain customization and argumentation was necessary:

 Bug Finder provides checks for all MISRA C rules, also for those categorized as unde-

cidable by static code analysis tools in MISRA C. It had to be evaluated, whether the

introduced restrictions and existing limitations are acceptable.

 Not all MISRA rules and directives are evaluable for the code of a secluded model.

Many of them raise false positives, if executed on a part of the whole software applica-

tion.

 For a few rules, documenting project deviations (MISRA C 5.4) cannot be avoided.

 Directives are just partially covered by checks.

MISRA C explicitly supports the use of static code analyzers to verify rules. All rules labelled

as decidable in MIRSA C are theoretically checkable by a static code analysis tool (MISRA C

6.5). However, the property is very conservative. By interpreting the rules in a stricter manner,

Bug Finder also provides checks for, according to MISRA, undecidable rules.

For example, MISRA C Rule 13.1 states that initializer lists shall not contain persistent side

effects. A persistent side effect changes the execution state [126, p. 224]. Due to the unlimited

complexity of side effect constructs, e.g., by function calls, evaluation by static code analysis

might be impossible. The rule is thus categorized as undecidable. By specifying that variables

shall be constants in initializers (and no forwarding function calls), Bug Finder makes the rule

decidable. If such a constraint applies, a Polyspace Specification is given and documented in

the tool requirements [188]. Whether an extended Polyspace Specification is acceptable, has

been documented with the check selection. If a rule (or directive) cannot be checked suffi-

ciently, other means of verification have been specified.

In order to perform a separate analysis for each model reference code and a holistic analysis

from the top-level model, two lists of checks have been assembled. That not all rules are fully

assessable for parts of the software is also considered in MISRA C. It distinguishes between

rules, which can be verified in the scope of a single translation unit, and those, which require

an analysis of the whole code (MISRA C 6.6). The checks of the first group have been selected

for CM and CC analysis. All other checks are only verified as part of code analysis in CC.

43 https://de.mathworks.com/help/releases/R2017b/bugfinder/misra-c-2012-reference.html [Accessed on: Jul. 21

2019]

https://de.mathworks.com/help/releases/R2017b/bugfinder/misra-c-2012-reference.html

8.2 Verification tasks

Page 279

If Embedded Coder is used, Polyspace provides a convenient way to generate a runnable

project based on a SL model and the generated code (pslinkrun [187, pp. 4-18ff]). This

project generation derives additional information, like the location of the analyzable code files,

the root level function calls, and a design range specification (DRS) automatically. The DRS is

a XML file, which contains minimum and maximum ranges specified in the model in a readable

format for Polyspace. To automate the project generation, a script has been created.

The project is generated prior to the analysis. The generation itself can be configured with

pslinkoptions [187, pp. 4-10ff]. The settings are shown in the screenshot of the Polyspace

configuration settings in SL (Figure 106). Some of them are discussed in more detail in the

following, since they have a significant impact in this process.

Figure 106: Polyspace options for project derivation from auto-generated code of Embedded Coder (in SL
model configuration settings)

Especially the model reference verification depth plays an important role. In CM, the option has

been set to “Current model only”. Bug Finder searches for MISRA violations and defects in a

limited scope, since most of them are directly decidable (single translation unit) and it does not

make extensive abstract interpretation to propagate signal ranges. Model code can thus be

analyzed in isolation pretty well. For CC, the depth has been expanded to the full model hier-

archy and “Model by model verification” has been disabled in order to respect coupling effects

and verify the rules with a scope beyond a translation unit.

Other relevant settings in Figure 106 relate to “Data Range Management”. The options control,

whether and if signal ranges from the model shall be considered in the analysis. In the process

at hand, the options InputRangeMode, ParamRangeMode, and OutputRangeMode (Code

Prover only) [187, p. 9-12ff] have all been set to respect the specified minimum and maximum,

since the signal ranges specified at public interfaces (DR 11) shall be incorporated in the anal-

ysis where possible. Especially checking the output range is an important task of Code Prover,

which uses the same DRS.

8 Modular development process (part 2)

Page 280

However, the DRS in combination with the chosen setting required some further considerations

for parameters. ParamRangeMode either defines that the specified ranges or the calibration

data (i.e., the default value, which has been set in the SL model) are used. Latter is a fix value

without range. This is a global analysis setting. However, for the parameter types defined in

MR 36, calibration data setting is required for PARAMETER CONSTANT and the range setting for

PARAMETER DATA ITEM specializations. By default, just one or the other is possible.

The found workaround here was to activate the use of signal ranges for all parameters and

create a hook in the project generation process, which modifies the exported DRS. During this

step, range entries for PARAMETER CONSTANT specializations are removed from the DRS. This was

not possible with the public Polyspace API, since pslinkrun directly starts the analysis after

creating the DRS file. It required support from MathWorks.

Result evaluation and justification

The assessment, interpretation, and justification workflow depends on the criticality of the rule

or directive. MISRA C distinguishes between mandatory, required, and advisory. Deviations

from rules marked as mandatory are not permitted. Deviations from required rules shall be

formally justified and the risks be evaluated. Deviations from advisory rules do not necessarily

underlie a formal process, but should be documented. Interpretation of MISRA violations based

on their category and available justification options are listed in Table 47.

Polyspace knows different ways to store deviations. Annotations can be added to the results

data [189, pp. 1-46ff], to code [189, pp. 1–48ff], or also to the model [189, pp. 8-12ff]. Annota-

tions for blocks are handed over to Polyspace, but are stored in the model. But since they are

verification artifacts, they should not taint the model (no way to store annotations externally in

R2017b is known to the author). Code annotations are for manual workflows and, although

they are not identified as code change by Embedded Coder, overwritten if new code is gener-

ated. Here, it has been chosen to store annotations with the results, which creates a separate

annotation file. Polyspace automatically imports annotations into new runs [189, pp. 5-41f].

Check
Execution
Status

Standardized
Status

Comment

Mandatory

Violation requires rework of model and update
of generated code.

Required

To justify, review Polyspace annotation, set
status in Polyspace to “Justified” and add
comment. Reference to specific deviation.

Advisory /
Readability

Advisory violations should be reviewed and
are automatically documented.

Table 47: Status mapping for SwVP-CP-MB 2

Limitations

The tool qualification does not cover the functionality of pslinkrun (i.e., the project generation)

[190]. In consequence, the project is considered as input of the task and must be reviewed.

This is especially critical for the DRS, which can have a significant impact on the results. In

addition, a customized report is not provided yet.

 (fail)

 (warn)

 (pass)

8.2 Verification tasks

Page 281

8.2.12 SwVP-CP-MB 3 – Static code analysis for error

detection

The objective of the task is to check, whether runtime errors can occur in the code (cf. MISRA

C Dir 4.1). The analysis is performed with Polyspace Bug Finder, and searches for defects. It

is not a formal method.

Application

The workflow for this task is similar as for SwVP-CP-MB 2. The analysis is separately executed

in CM for the code of all SL models and in CC for the top-level model (with full verification depth).

Prerequisites

This task has in principle the same prerequisites as SwVP-CP-MB 2 and the main infrastruc-

ture is reused, except that a selection of activated defect checks [189, pp. 4-2ff] has been

created instead of a list of MISRA C checks and the result standardization process slightly

differs.

Result evaluation and justification

Review is similar to SwVP-CP-MB 2, however for a detected defect, a deviation cannot be

provided as stated in Table 48.

Defect Status Standardized
Status

Comment

Defect found

Any defect requires rework of model and
update of generated code.

No defect

Table 48: Status mapping for SwVP-CP-MB 3

 (fail)

 (pass)

8 Modular development process (part 2)

Page 282

8.2.13 SwVP-CP-MB 4 – Code review

In this task, coding rules, which cannot be checked by analysis with SLCI or Polyspace, are

reviewed. For example, the independence of the algorithm of byte-ordering (CR 9) or design-

induced shared code.

Code reviews for the MBSwD have not been further addressed in this thesis, since they do not

significantly differ from code reviews performed in the industry in traditional software develop-

ment processes.

However, the process-oriented build tool supports auto-generation of interactive review lists

for each code file as well.

8.2 Verification tasks

Page 283

8.2.14 SwVP-CP-MB 5 – Code proving

This task has two objectives and operates on C code:

 Assurance-guarantee analysis

 Run-time error analysis

This task has not been implemented yet in the scope of this work. Anyway, some considera-

tions have been collected.

The task is similar to SwVP-DP-MB 5, just for Source Code. Polyspace Code Prover performs,

in contrast to Polyspace Bug Finder, a sound analysis and proves objectives using abstract

interpretation. Over-approximated design ranges will again lead to various undecidable objec-

tives.

As in SwVP-DP-MB 5, dead code detection can identify some dead code, but not prove the

absence of all dead code. Since reachability is covered by testing anyway, it is not further

regarded in this task.

Since code proving is quite low compared to Polyspace Bug Finder analysis and abstract in-

terpretation may end up in largely over-approximated derived signal ranges, the tool should be

executed on module-level.

The implementation aligns with SwVP-CP-MB 2, since the same Polyspace infrastructure for

configuration, project generation, execution, and result justification is used.

However, workarounds for tool incompatibilities in R2017b must be found. For example, the

tool cannot prove intermediate outputs of SL models. A possible workaround is exporting the

data to global variables, for which assertions to prove can be provided to Polyspace. This has

already been prepared with MR 25.

Another challenge is limiting the analysis depth. A similar approach as for Design Verifier

seems feasible, where stubs have been auto-generated.

8 Modular development process (part 2)

Page 284

8.2.15 SwVP-CP-MB 6 – SIL testing & result review

Purpose of this activity is to execute the simulation cases on the Source Code in SIL in order

to record structural coverage. In the SIL mode, Source Code is compiled for the host computer

and executed on the host.

Application

Prior to testing, the Source Code of the current and nested modules is generated (if not yet

there) and copied to temporary testing location. This temporary testing location is set as new

code repository during PIL testing.

All simulation cases of the module are executed in SIL mode. Embedded Coder automatically

adds the missing interface and instrumentation code and compiles it to an executable, which

is called in SIL testing.

The results are checked for equivalence with the simulation results (cf. SwVP-DP-MB 8) in the

subsequent process. Verifying the equivalence of the SIL results with the model simulation

results is an optional step (cf. Table 12). However, it improves confidence before hardware

testing without additional costs.

The results are reviewed, but cannot be justified. If a test case fails, investigation and rework

is required. Finally, a report of the SIL test results is generated per simulation case.

Contribution 35: Resources have been implemented that allow the automated execution
and result assessment of simulation/test cases in software-in-the-loop mode and perform
equivalence comparison with previously recorded model simulation results.

8.2 Verification tasks

Page 285

Figure 107: Workflow and artifacts for SwVP-CP-MB 6

Prerequisites

Although quite similar to SwVP-DP-MB 8, a couple of problems had to be solved. At first, the

default compiler had to be changed, since the code has some compiler specific language con-

structs (cf. MR 32). The CompCert compiler cannot be used, since it is a cross-compiler for

the target. Since the GNU preprocessor, assembler and linker are part of the target tool chain

(cf. AS 11), MinGW44, a GNU compiler for Windows, is the obvious choice.

44 MinGW is a GNU compiler for Windows, http://www.mingw.org/ [Accessed on: Aug. 20 2019]

8 Modular development process (part 2)

Page 286

In SIL mode, Embedded Coder generates additional code for coverage instrumentation and

data exchange. This code does not change the actual Source Code, but is distributed all over

the code generation folder. Since it is just temporary, it should not be added to source control.

The only option to keep these additional artifacts apart, was copying the Source Code to a new

location, switching the SL code generation path, and deleting the folder after SIL execution.

To prohibit any modification of the code while adding instrumentation, the documentation pro-

poses to set the configuration parameter UpdateModelReferenceTargets to AssumeUp-

ToDate, which never allows a rebuilt [96, pp. 64-23ff, 128, pp. 15-5ff]. However, since this

setting always threw an error in R2017b and its correct execution is hard to prove, additional

checks had to be implemented. After SIL, the code files in the temporary folder and those in

the original code folder are checked for equivalence.

There were also workflow problems related to switching from Normal to SIL mode, since the

simulation mode cannot be passed to SL Test from outside, but is stored in the test case. On

top, the options provided in SL Test are not sufficient to fully control SIL execution. Further

details and a recommended solution are given in SR 10.

Using Code Replacement Libraries was no problem. They were correctly picked from the mod-

eling environment, separately compiled, and linked into the final host executable object code.

In order to make code executable on both the host and target environment, the Embedded

Coder option PortableWordSizes [131, pp. 12-15f] had to be activated during Source Code

generation and the code must be independent of the byte-ordering (cf. CR 9). Especially the

last is a requirement, which can significantly impact the modeling and cannot be solved with

configuration settings.

The equivalence assessment compares simulation with SIL results. This does not mean the

pass/fail status, but signal recordings with a value for each time step. Minimum signal recording

requirements are provided in SR 8 and SR 9. The comparison has been implemented with the

function Simulink.sdi.compareRuns [127, pp. 2-701ff], since the results for normal simula-

tion and SIL are produced in separate runs. SL Test provides an equivalence test, however

this test scenario just compares numerical equivalence between two runs, and not pass fail

criteria. The user would have to duplicate simulation case (baseline + equivalence test type in

SL Test) to achieve the same result.

Result evaluation and justification

Table 49 summarizes, how the SIL testing result is handled.

8.2 Verification tasks

Page 287

Review Item Status Standardized
Status

Comment

Test result status
“Pass”

Test result status “Fail”

Either the pass/fail criteria falsified or the
simulation has not been executed
properly. Rework of either the Design
Model or the simulation case is required.

Equivalence/numerical
mismatch

Any mismatch produces are failure and
must be investigated.

Source Code changed

If any Source code file has been
modified, the SIL results are invalid.

Table 49: Status mapping for SwVP-CP-MB 6

Limitations

The different workflow problems required workarounds. Especially the additional require-

ments on how to structure test cases in SR 10 are not optimal and lead to unnecessary work.

 (PASS)

 (FAIL)

 (FAIL)

 (FAIL)

8 Modular development process (part 2)

Page 288

8.2.16 SwVP-CP-MB 7 – SIL structural coverage assessment

In this task, the structural code coverage, which has been recorded during SIL testing, is as-

sessed.

Application

The application is, in principle, similar to the workflow described in SwVP-DP-MB 9, since SL

Coverage is used as well. The code coverage fragments of the SIL test cases are accumulated

and extracted per code file (instead of per SL model). The coverage is assessed per code file.

Shared canonical code, for which coverage is automatically recorded, is excluded from the

analysis.

Coverage types

DO-178C requires statement and decision coverage for DAL B software. As in SwVP-DP-MB

9 for model coverage, the combination of decision and condition coverage matches DO-178C

decision coverage. DO-178C statement coverage is exposed under execution coverage. For

code coverage, this is also stated in the documentation [101, p. 4-3]. Execution, decision, and

condition coverage is evaluated in the CM process.

In CC, to asses control coupling coverage (cf. section 4.6.4), function coverage is evaluated

[101, p. 4-6]. Function coverage indicates, whether all functions of a code file are called at

least once. Therefore, only the coverage generated by test cases for component interface are

relevant.

Prerequisites

The prerequisites for model and code coverage are mainly identical (cf. SwVP-DP-MB 9).

Result evaluation and justification

The recorded coverage is evaluated differently for CM and CC.

In CM, the coverage results for each code file of the current module are evaluated and further

processed according to Table 50. The different types of unreachable code are described in CR

14, CR 15, and CR 16. Resolution strategies for code coverage gaps are state-of-the-art and

not further discussed here (for example, cf. [45, p. 387]).

Contribution 36: Criteria for code coverage assessment have been constituted. Resources
have been created to aggregate code coverage per module and across modules. Such an
automated coverage aggregation and assessment is not natively supported by MathWorks,
but inevitable in a modular process.

8.2 Verification tasks

Page 289

Coverage
(Execution,
Decision, and
Condition)

Standardized Status Comment

100%

Note: If a code file does not have decisions or conditions,
the respective coverage measure is interpreted as 100%.
However it must be checked in advance, whether the
coverage measurement was activated.

< 100%

Missing coverage shall be justified. Project deviations can
be referenced.
Deviations shall be made using SL Coverage
“Justifications” and be stored in a coverage filter file. Each
deviation requires a rationale.

Not executed or
missing coverage
fragment

Each code file must contain a function at least once be
executed in a test, so a coverage fragment must exist.

Table 50: Status mapping for SwVP-CP-MB 7 (CM)

In CC, Table 51 applies. To check whether all models are in the call hierarchy, a function cov-

erage for every code file of 100% is required. This must be evaluated for all SL models in all

modules, which are not in a library module.

Coverage
(Function, Function
call)

Standardized Status Comment

100% or in library
module

< 100% and not in
library

Uncalled functions are a design flaw and require rework.

Table 51: Status mapping for SwVP-CP-MB 7 (CC)

Limitations

Equal to SwVP-DP-MB 9.

The algorithm for assessing call coverage has not been implemented in the scope of this work.

 (PASS)

 (WARN)

 (FAIL)

 (PASS)

 (FAIL)

8 Modular development process (part 2)

Page 290

8.3 Summary and outlook

Modular development process (part 1)

In section 4.4, the foundation for a modular software life cycle has been laid. The important

distinction of component modules and processes has been introduced in section 4.4, which

became the central concept throughout the thesis. All relevant objectives of DO-331 have been

broken down into dedicated tasks and assigned to the new process categories.

As central point, section 4.6.3 specified a consistent testing strategy involving new concepts

of DO-331, like model simulation, model coverage, or SIL testing. This testing strategy has

been optimized for a maximum of test case reuse and early identification of testing issues, like

missing coverage with dead logic detection, model coverage and optimized preservation of

coverage. The testing strategy also adopted the paradigm of modularization by separating

component- and module-level tests, coverage goals or coupling verification.

The MBSwD in this thesis just roughly describes the directly connected Requirement and In-

tegration Processes. This pretends more independence than really exists. Upstream work-

flows, in which the Design Model replaces high-level or even system requirements, are tightly

coupled. This coupling has not been documented in detail. But also downstream tasks are not

independent. For example, hardware/software integration testing, Worst-Case-Execution-

Time, or Stack analysis need to run simulation cases as well and come along with compatibility

requirements, which have not been respected in the given process.

And finally, concepts like independence or the standards for tool qualification and for formal

methods (DO-331) have not been considered in detail, although, for example, formal methods

are applied. Those topics definitely need further investigation and the additional objectives

have to be integrated.

The presented MBSwD is new and unique in the way it is defined and goes beyond the existing

industry standard by applying innovative workflows combined with modularization.

Modular development process (part 2)

In part 2, the new approach for generation of modular code has been realized. Section 8.1.2

outlined, how the code is generated and how the different types of shared code are treated.

The presented solution supports generation of modular code, although it became clear that

real modular code generation is just partially possible with the available features of Embedded

Coder. Shared code is completely modularly generated, all other code is regenerated in each

module. A post-processing workflow was necessary to ensure equality of regenerated code

with the original code. Being able to skip code regeneration with Embedded Coder would sig-

nificantly reduce code generation times. Especially for shared code, solutions concerning cre-

ation, inclusion into code generation, and the treatment in a modular development had to be

found.

8.3 Summary and outlook

Page 291

For each verification activity, the discussion outlined the chosen application workflow as well

as involved artifacts. The standardized status mapping has been consistently applied. It re-

duces the different outputs of all tasks to a common denominator. The status is directly intuitive

for any developer and has the same consequence or leads to the same actions throughout the

process.

For many tasks, extensive automation enhancements and workarounds have been pro-

grammed. For example, for design error detection, model coverage aggregation and assess-

ment, Polyspace project configuration, or SIL testing.

Finally, for almost each task, an implementation as part of the process-oriented build tool could

be provided. The outcome is a workflow configuration for the build tool, which spans the whole

process and provides the maximum possible automation for every task. Even the review and

justification workflows are tightly coupled or even fully integrated into the build tool.

Nevertheless, future improvements are possible and necessary. At first, there are several un-

addressed topics. Code proving has not been implemented yet and the report generation has

been skipped for several tasks.

Contracting of value ranges makes software development easier and leads to more efficient

code. But contracting is only reasonable, if contracts can be verified with formal methods.

However, here the respective verification tools are not that far yet. On the one hand, the tools

are primarily designed for running them from a root-level entry point. Verifying intermediate

ranges is not supported in the way it should be. But on the other hand, formal methods deliver

highly over-approximated results for large models/code, so that a breakdown is inevitable. A

couple of scenarios with Design Verifier could be solved by implementing pre-processing steps

of the model.

Migration to newer tool releases certainly solves existing problems and makes various worka-

rounds obsolete. For example, later versions of Design Verifier support signal ranges in buses

or the exclusion of objectives. Significant improvements can also be expected concerning SIL

and SIL coverage, which both were fairly new features in R2017b.

With respect to certification, also a gap analysis for tool qualification may be a next step. Sev-

eral functions are used that are not part of the DO Qualification Kit of MathWorks in R2017b.

Some of them have been listed as limitations, however these remarks are certainly not com-

plete.

Also in detail, improvements are possible. The static model and module checks do still not

cover all rules, which leads to more review effort. And the possibility to dynamically create

review items based on the reviewed content should finally be used.

To sum up, with the defined tasks, a majority of the process can be covered. The implemen-

tation as build tool configuration offers high automation and the user-interface of the build tool

turns into a core platform to assess the health and compliance status and navigate to all kinds

of source and derived artifacts from a central platform.

9 Conclusions

Page 292

9 Conclusions

Sections 5.9, 6.6, 7.6, and 8.3 already provided a summary and outlook for the individual top-

ics. This section evaluates the overall achievements of the work with respect to the originally

formulated objectives stated in section 1.2:

1. Lower the adoption risk of a MBSwD for smaller companies by providing a MBSwD

process and tooling, which is out-of-the box applicable, bridges tool gaps, and is con-

sistent.

2. Improve development efficiency, ensure scalability, and support for agile development

by tool usage and the introduction of a high degree of software modularization and

reuse whilst adhering to process requirements and safety.

3. Provide a solution for exhaustive process automation and keeping a “ready-to-certify”

state of software artifacts.

During the implementation of the model-based process, the challenges, which beginners face,

became visible. There is a huge gap between the general objectives in the process standards

and the final implementation guidelines and tool usage for development and verification. Get-

ting lost is a common danger. The thesis addresses this gap in an organized way and covers

the breath of the process. A holistic picture is revealed starting with objectives mapped to tasks

in section 4, the definition of rules in section 5, up to detailed procedures in section 8. No

publication is known to the author offering a similar scope.

In the timeframe of the thesis, it was not possible to address tool qualification, formal methods,

or the other integral processes required by DO-178C to the depth they deserve. Therefore,

additional work is required and some adaptions may be necessary.

The dependencies between standards, tool chain capabilities, and design, model, or coding

rules are complex and only resolvable in an iterative process. Although processes differ by

nature, the given rules and tasks significantly shorten the iterative effort in any adoption pro-

cess and help to avoid common pitfalls. The best practice to componentize models with SL

models instead of SL libraries is one example. The solutions have been discussed with various

experts and contain collected best practices from many projects. Assumptions and context

have been worked out and clearly organized, so that the considerations made for the software

life cycle can be easily adapted to any process. Furthermore, the created artifacts (Appendix

H) are a practical entry-point, in contrast to the generic and broadly applicable tool qualification

kits.

One major tool gap, which has been identified, was related to traceability. Since no satisfying

solution existed to establish and maintain the needed inter-tool traceability between Simulink

and Polarion, SimPol has been developed. After publishing the tool, different companies

reached out for feature requests or bug fixes. The interest shows that SimPol satisfies an ex-

isting demand.

8.3 Summary and outlook

Page 293

Another objective was to optimize the process for efficiency and scalability. Several introduced

tasks go beyond the state-of-the-art in safety-critical workflows, like the different scenarios for

model usage, SIL and PIL approaches, or the application of formal methods. This thesis em-

beds them into a full safety-critical process. For example, SIL in combination with modulariza-

tion allows to evaluate code coverage in an early stage.

Nothing more than consequent modularization paves the way for parallel development, reuse

of certification evidence, and the application of agile methods or DevOps. Thus, modular de-

velopment and verification from design to code has been introduced. The process at hand

shows that a large number of verification tasks, like static model analysis, testing, formal veri-

fication, or coverage can be performed independently to a certain degree. Component-level

tasks have been set up to finally close the gap, which arises, if verification is performed on

module-level. With generation of modular code, all benefits of modularization have been lev-

eraged for code development and verification tasks as well, although true modular code gen-

eration, which avoids regeneration of code, was not realizable.

The prize for modularization are more rules, e.g., for interface specifications, and a more so-

phisticated planning of verification. The thesis showed that the optimization towards modular-

ization also reaches and sometimes crosses the limit of what is possible with today’s tools.

Various workarounds were necessary to achieve the goal, which would finally need additional

tool qualification in a certification project.

The objective of lowering the adoption risks certainly conflicts with the aim of innovating the

process. There are many innovative parts, like the SIL workflow, contracting, or deactivated

functionality that differ from common practice by intention. Companies new to MBSwD should

discuss these new approaches with authorities in advance and in detail.

Finally, the thesis contributed an innovative solution for the “big-freeze” problem. The software

tool mrails brings together manually established traceability and information, which is inherent

of the build process. Although the tool is a prototype and not simply certifiable under DO-330,

it proves the feasibility of a central software platform serving as framework for process auto-

mation and staleness detection of derived artifacts. The considerations made for review work-

flows, which are a fundamental part of safety-critical processes, also distinguish it from existing

solutions. Full automation and containing the impact of a change, also throughout reviews, is

a first step towards continuous software delivery in a safety-critical context.

The thesis has presented novel concepts for modularization and automation, which deliver a

foundation to cope with growing software on the one hand and the necessary certification rigor

in safety critical applications on the other hand.

 10 References

 Page I

10 References

[1] SAE International, “ARP-4754A -Guidelines for Development of Civil Aircraft and Sys-

tems: Aerospace Recommended Practice (ARP),” ARP-4754A, Dec. 2010.

[2] RTCA, “DO-178C - Software Considerations in Airborne Systems and Equipment Certifi-

cation,” DO-178C, 2011.

[3] RTCA, “DO-248C - Supporting Information for DO-178C and DO-278A,” DO-248C,

2011.

[4] RTCA, “DO-330 - Software Tool Qualification Considerations,” DO-330, 2011.

[5] RTCA, “DO-331 - Model-Based Development and Verification Supplement to DO-178C

and DO-278A,” DO-331, 2011.

[6] RTCA, “DO-333 Formal Methods Supplement to DO-178C and DO-278A,” DO-333,

2011.

[7] ISO, “ISO 26262-6:2018(en) - Road vehicles - Functional safety - Part 6: Product devel-

opment at the software level: 43.040.10,” ISO 26262-6:2018(en), Dec. 2018.

[8] J. D. Kennedy and M. Towhidnejad, “Innovation and certification in aviation software,” in

Proc. of Integrated Communications, Navigation and Surveillance Conference (ICNS),

Herndon, VA, USA, Apr. 2017 - Apr. 2017, 3D3-1-3D3-15.

[9] Project manager (Thomas Heimann), “Studie IT-Trends 2019: Intelligente Technolo-

gien,” Capgemini, 2019. Accessed: Sep. 7 2019. [Online]. Available: https://

www.capgemini.com/de-de/wp-content/uploads/sites/5/2019/02/IT-Trends-Studie-

2019.pdf

[10] I. Sommerville, Software engineering, 9th ed. Boston: Pearson Education Limited, 2011.

[11] J. Humble and D. Farley, Continuous delivery: Reliable software releases through build,

test, and deployment automation. Upper Saddle River, NJ: Addison-Wesley, 2015.

[12] J. Marsden et al., “ED-12C/DO-178C vs. Agile Manifesto: A Solution to Agile Develop-

ment of Certifiable Avionics Systems,” in Proc. of Embedded Real Time Software and

Systems (ERTSS 2018), Toulouse, France, 2018.

[13] D. J. Coe and J. H. Kulick, “A Model-Based Agile Process for DO-178C Certification,” in

Proc. of 2013 World Congress in Computer Science, Computer Engineering, and Ap-

plied Computing, Las Vegas, US, 2013.

[14] P. Rempel, P. Mäder, T. Kuschke, and J. Cleland-Huang, “Mind the gap: Assessing the

conformance of software traceability to relevant guidelines,” in Proc. of the 36th Interna-

tional Conference on Software Engineering - ICSE 2014, Hyderabad, India, 2014, pp.

943–954.

[15] P. Lars, “DA42 MNG FBW Research Aircraft,” in In-flight simulators and fly-by-wire/light

demonstrators: A historical account of international aeronautical research, P. G. Hamel

and R. V. Jategaonkar, Eds., Cham, Switzerland: Springer, 2017, pp. 146–148.

[16] C. Krause and F. Holzapfel, “Designing a System Automation for a novel UAV Demon-

strator (submitted for publication),” in Proc. of 14th International Conference on Control,

Automation, Robotics and Vision: ICARCV 2016, Phuket, Thailand, 2016.

[17] C. Krause and F. Holzapfel, “Implementing a multi-level finite state machine with

MATLAB Simulink and Stateflow in the environment of high-integrity aircraft controller

software,” in Proc. of International Conference on Control, Automation and Robotics

2018 (ICCAR), Auckland, 2018, pp. 147–151.

[18] S. P. Schatz and F. Holzapfel, “Modular trajectory / path following controller using non-

linear error dynamics,” in Proc. of Aerospace Electronics and Remote Sensing Technol-

ogy (ICARES), 2014 IEEE International, Yogyakarta, Indonesia, 2014, pp. 157–163.

Page II

[19] S. Schatz and F. Holzapfel, “Nonlinear Modular 3D Trajectory Control of a General Avia-

tion Aircraft,” in Advances in Aerospace Guidance, Navigation and Control: Selected Pa-

pers of the Fourth CEAS Specialist Conference on Guidance, Navigation and Control

Held in Warsaw, Poland, April 2017, B. Dołęga, R. Głębocki, D. Kordos, and M. Żugaj,

Eds.: Springer Cham, 2017, pp. 163–183.

[20] S. Schatz, “Development and flight-testing of a trajectory controller employing full nonlin-

ear kinematics,” Dissertation, Technische Universität München, München, 2019.

[21] Simon Schatz, “Development and Flight-Testing of a Trajectory Controller Employing

Full Nonlinear Kinematics,” Dissertation, Lehrstuhl für Flugsystemdynamik, Technische

Universität München, München, 2018.

[22] E. Karlsson et al., “Automatic Flight Path Control of an Experimental DA42 General Avi-

ation Aircraft,” in Proc. of 14th International Conference on Control, Automation, Robot-

ics and Vision: ICARCV 2016, Phuket, Thailand, 2016.

[23] E. Karlsson, A. Gabrys, S. P. Schatz, and F. Holzapfel, “Dynamic Flight Path Control

Coupling for Energy and Maneuvering Integrity: (submitted for publication),” in Proc. of

14th International Conference on Control, Automation, Robotics and Vision: ICARCV

2016, Phuket, Thailand, 2016.

[24] E. Karlsson et al., “Development of an Automatic Flight Path Controller for a DA42 Gen-

eral Aviation Aircraft,” in Advances in Aerospace Guidance, Navigation and Control: Se-

lected Papers of the Fourth CEAS Specialist Conference on Guidance, Navigation and

Control Held in Warsaw, Poland, April 2017, B. Dołęga, R. Głębocki, D. Kordos, and M.

Żugaj, Eds.: Springer Cham, 2017, pp. 121–139.

[25] A. W. Zollitsch et al., “Automatic takeoff of a general aviation research aircraft,” in Proc.

of 2017 Asian Control Conference Gold Coast, Australia: Gold Coast Convention and

Exhibition Centre, 17th-20th December 2017, 2017.

[26] V. Schneider et al., “Online trajectory generation using clothoid segments,” in Proc. of

14th International Conference on Control, Automation, Robotics and Vision: ICARCV

2016, Phuket, Thailand, 2016.

[27] V. Schneider, N. Mumm, and F. Holzapfel, “Trajectory generation for an integrated mis-

sion management system,” in Proc. of Aerospace Electronics and Remote Sensing

Technology (ICARES), 2014 IEEE International, Kuta, Bali, 2015.

[28] V. Schneider and F. Holzapfel, “Modular Trajectory Generation Test Platform for Real

Flight Systems,” in Advances in Aerospace Guidance, Navigation and Control: Selected

Papers of the Fourth CEAS Specialist Conference on Guidance, Navigation and Control

Held in Warsaw, Poland, April 2017, B. Dołęga, R. Głębocki, D. Kordos, and M. Żugaj,

Eds.: Springer Cham, 2017.

[29] S. P. Schatz et al., “Flightplan Flight Tests of an Experimental DA42 Generation Aviation

Aircraft,” in Proc. of 14th International Conference on Control, Automation, Robotics and

Vision: ICARCV 2016, Phuket, Thailand, 2016.

[30] V. Schneider, “Trajectory generation for integrated flight guidance,” Dissertation, Tech-

nische Universität München, München, 2018.

[31] M. Hochstrasser, C. Krause, V. Schneider, and F. Holzapfel, “Model-based Implementa-

tion of an Onboard STANAG 4586 Vehicle Specific Module for an Air Vehicle,” in Proc.

of AIAA Modeling and Simulation Technologies Conference, Grapewine, Texas, US,

2017.

[32] The MathWorks Inc., “DO Qualification R2017b: Model-Based Design Workflow for DO-

178C,” Natick, MA, USA, Sep. 2017.

 10 References

 Page III

[33] M. Hochstrasser, S. Myschik, and F. Holzapfel, “Application of a Process-Oriented Build

Tool for Flight Controller Development Along a DO-178C/DO-331 Process,” in Model-

Driven Engineering and Software Development: 6th International Conference, MODELS-

WARD 2018, Funchal, Madeira, Portugal, January 22–24, 2018, Revised Selected Pa-

pers, S. Hammoudi, L. F. Pires, and B. Selic, Eds.: SPRINGER NATURE, 2019, pp.

380–405.

[34] M. Hochstrasser, S. Myschik, and F. Holzapfel, “A modular model-based DO-178C soft-

ware life cycle - Planning, realization, and preservation,” München, Oct. 10 2018. Ac-

cessed: Dec. 25 2018. [Online]. Available: https://www.dglr.de/fileadmin/inhalte/dglr/fb/

q3/veranstaltungen/Q34_2018_Agile_SW/DGLR_Q34_2018_Hochstrasser_TUM_Ag-

ile.pdf

[35] M. Hochstrasser, M. Hornauer, and F. Holzapfel, “Formal Verification of Flight Control

Applications along a Model-Based Development Process: A Case Study,” München,

Oct. 5 2016. Accessed: Nov. 9 2016. [Online]. Available: http://www.dglr.de/fileadmin/

inhalte/dglr/fb/q3/veranstaltungen/L63_Q34_2016_Software_Safety/2016_DGLR_Work-

shop_TUM_samoconsult.pdf

[36] M. Hochstrasser, S. P. Schatz, K. Nürnberger, M. Hornauer, S. Myschik, and F. Holzap-

fel, “Aspects of a Consistent Modeling Environment for DO-331 Design Model Develop-

ment of Flight Control Algorithms,” in Advances in Aerospace Guidance, Navigation and

Control: Selected Papers of the Fourth CEAS Specialist Conference on Guidance, Navi-

gation and Control Held in Warsaw, Poland, April 2017, B. Dołęga, R. Głębocki, D. Kor-

dos, and M. Żugaj, Eds.: Springer Cham, 2017.

[37] K. Nürnberger, M. Hochstrasser, and F. Holzapfel, “Execution time analysis and optimi-

sation techniques in the model-based development of a flight control software,” IET

Cyber-Physical Systems: Theory & Applications, Volume 2, Issue 2, pp. 57–64, Jul.

2017, doi: 10.1049/iet-cps.2016.0046.

[38] K. Schmiechen, M. Hochstrasser, J. Rhein, C. Schropp, and F. Holzapfel, “Traceable

and Model-Based Requirements Derivation, Simulation, and Validation Using MATLAB

Simulink and Polarion Requirements,” in AIAA Scitech 2019 Forum, p. 334.

[39] M. Hochstrasser, S. Myschik, and F. Holzapfel, “A Process-Oriented Build Tool for

Safety-Critical Model-Based Software Development,” in Proc. of the 6th International

Conference on Model-Driven Engineering and Software Development, Funchal, Ma-

deira, Portugal, 2018, pp. 191–202.

[40] European Aviation Safety Agency EASA, “AMC 20-115D - Airborne Software Develop-

ment Assurance Using EUROCAE ED-12 and RTCA DO-178: Acceptable Means of

Compliance,” AMC 20-115D, Oct. 2017. [Online]. Available: https://www.easa.europa.eu

/document-library/certification-specifications/amc-20-amendment-14

[41] Federal Aviation Administration FAA, “AC 20-115D - Airborne Software Development

Assurance Using EUROCAE ED-12 () and RTCA DO-178(),” AC 20-115D, Jul. 2017.

[42] European Aviation Safety Agency EASA, “CM-SWCEH-002 - Software Aspects of Certi-

fication,” Mar. 2012.

[43] European Aviation Safety Agency EASA, “CM-SWAEH-002 - Software Aspects of Certi-

fication: Notification of a Proposal to Issue a Certification Memorandum,” CM-SWAEH-

002, Oct. 2013.

[44] RTCA, “DO-332 Object-Oriented Technology and Related Techniques Supplement to

DO-178C and DO-278A,” DO-332, 2011.

[45] L. Rierson, Developing safety-critical software: A practical guide for aviation software

and DO-178C compliance. Boca Raton, FL: CRC Press LLC, 2013.

Page IV

[46] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman, “Soft-

ware traceability: Trends and future directions,” in Proc. of the Conference on Future of

Software Engineering - FOSE 2014, Hyderabad, India, 2014, pp. 55–69.

[47] Esterel Technologies SA, “Efficient Development of Safe Avionics Software with DO-

178C Objectives Using SCADE Suite: Methodology Handbook,” Elancourt, France, Jun.

2015.

[48] The MathWorks Inc., “DO Qualification Kit - Polyspace Code Prover Tool Qualification

Plan: R2017b.,” Natick, MA, USA, Sep. 2017.

[49] The MathWorks Inc., “DO Qualification Kit - Simulink Test Tool Qualification Plan:

R2017b,” Natick, MA, USA, Sep. 2017.

[50] M. Hornauer, F. Schuck, and F. Holzapfel, “Wechselwirkungen zwischen GNC Algorith-

mus und Software,” München, 2013.

[51] RTCA, “DO-160G - Environmental Conditions and Test Procedures for Airborne Equip-

ment,” DO-160G, 2010.

[52] M. Hornauer and F. Holzapfel, “Model Based Testing for CS-23 Avionic and UAV Appli-

cations: DGLR Workshop 2011,” München, 2011.

[53] RTCA, “DO-200B - Standards for Processing Aeronautical Data,” DO-200B, Jun. 2015.

[54] Federal Aviation Administration FAA, “AC 20-153B - Acceptance of Aeronautical Data

Processes and Associated Databases: Advisory Circular,” AC 20-153B, Apr. 2016. Ac-

cessed: Mar. 27 2017. [Online]. Available: https://www.faa.gov/documentLibrary/media/

Advisory_Circular/AC_20-153B.pdf

[55] J. R. Levine, Linkers and loaders. San Francisco, Calif. et al.: Morgan Kaufmann, 2010.

[56] R. M. Stallman and Z. Weinberg, “The C Preprocessor: For gcc version 4.2.4,” 2005.

[57] AbsInt Angewandte Informatik GmbH, Ed., “CompCert User Documentation,” Jul. 2016.

[58] R. M. Stallman, “Using the GNU Compiler Collection: For gcc version 4.2.4,” GNU

Press, Boston, MA, USA, 2005.

[59] J. Schumann and E. Denney, “Customer Survey on Code Generators in Safety-critical

Applications,” Mar. 2006.

[60] K. Goseva-Popstojanova, T. Kahsai, M. Knudson, T. Kyanko, N. Nkwocha, and J. Schu-

mann, “Survey on Model-Based Software Engineering and Auto-Generated Code,”

NASA/TM-2016-219443, Oct. 2016.

[61] G. Reith, Adoption of Model-Driven Engineering in Small Workgroups and in Large Or-

ganisations. [Online]. Available: https://nmi.org.uk/wp-content/uploads/2015/06/Math-

Works-Adoption-of-Model-Driven-Engineering.pdf (accessed: Oct. 27 2017).

[62] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz, “What is the Benefit of a Model-Based

Design of Embedded Software Systems in the Car Industry?,” in Software Design and

Development, I. R. Management Association, Ed.: IGI Global, 2014, pp. 310–334.

[63] D. Bhatt, G. Madl, D. Oglesby, and K. Schloegel, “Towards Scalable Verification of

Commercial Avionics Software,” in Proc. of AIAA Infotech@Aerospace 2010, 2010.

[64] M. Reke, “Modellbasierte Entwicklung automobiler Steuerungssysteme in kleinen und

mittelständischen Unternehmen,” Department of Computer Science, RWTH Aachen,

Aachen, 2013.

[65] T. Erkinnen and B. Potter, Model-Based Design for DO-178B with Qualified Tools: AIAA

Modeling and Simulation Technologies Conference and Exhibit. Hyatt Regency McCor-

mick Place, Chicago Illinois: American Institute of Aeronautics and Astronautics Inc,

2009.

[66] B. Potter, Complying with DO-178C and DO-331 using Model-Based Design, SAE Pa-

per.

 10 References

 Page V

[67] M. Conrad, J. Friedman, and G. Sandmann, “Verification and Validation According to

IEC 61508: A Workflow to Facilitate the Development of High-Integrity Applications,”

SAE Int. J. Commer. Veh., vol. 2, no. 2, pp. 272–279, 2009, doi: 10.4271/2009-01-2929.

[68] M. Conrad, “Verification and Validation according to ISO 26262: A Workflow to Facilitate

the Development of High-Integrity Software,” in Proc. of Embedded Real Time Software

and Systems (ERTSS) 2012, 2012.

[69] A. Paz and G. El Boussaidi, “On the Exploration of Model-Based Support for DO-178C-

Compliant Avionics Software Development and Certification,” in Proc. of 2016 IEEE In-

ternational Symposium on Software Reliability Engineering Workshops (ISSREW), Ot-

tawa, ON, Canada, 2016, pp. 229–236.

[70] J. C. Marques, S. M. H. Yelisetty, L. A. V. Dias, and A. M. da Cunha, “Using Model-

Based Development as Software Low-Level Requirements to Achieve Airborne Software

Certification,” in Proc. of 2012 Ninth International Conference on Information Technology

- New Generations, Las Vegas, NV, USA, 2012, pp. 431–436.

[71] W. Wu, Model-based design for effective control system development. Hershey, PA: In-

formation Science Reference, 2017.

[72] S. Basagiannis, “Software certification of airborne cyber-physical systems under DO-

178C,” in Proc. of 2016 International Workshop on Symbolic and Numerical Methods for

Reachability Analysis (SNR), Vienna, Austria, 2016, pp. 1–6.

[73] E. Dillaber, L. Kendrick, W. Jin, and V. Reddy, “Pragmatic Strategies for Adopting

Model-Based Design for Embedded Applications,” 2010.

[74] P. F. Smith, S. M. Prabhu, and J. H. Friedmann, “Best Practices for Establishing a

Model-Based Design Culture,” SAE Paper, 2007-01-0777, 2007.

[75] R. Aarenstrup, Managing Model-Based Design. Natick, MA, USA: The MathWorks Inc.,

2015.

[76] Bill Potter, DO178_case_study (on MathWorks File Exchange): Case Study for DO-178

using MathWorks tools. [Online]. Available: http://www.mathworks.com/matlabcentral/

fileexchange/56056-do178-case-study (accessed: May 18 2016).

[77] J. Abraham, “Verification and Validation Spanning Models to Code,” in Proc. of AIAA

Modeling and Simulation Technologies Conference 2015, Kissimmee, Florida, 2015.

[78] M. A. Beine, “A Model-Based Reference Workflow for the Development of Safety-Critical

Software,” in Proc. of SAE Convergence Conference 2010, Detroit, Michigan, USA,

2010.

[79] U. Eisemann, “Applying Model-Based Techniques for Aerospace Projects in Accordance

with DO-178C, DO-331 and DO-333,” in Proc. of Embedded Real Time Software and

Systems (ERTSS) 2016, Toulouse, 2016.

[80] S. Mahapatra, J. Ghidella, and G. Walker, “Team-Based Collaboration in Model-Based

Design,” in Proc. of AIAA Modeling and Simulation Technologies Conference, Minneap-

olis, Minnesota, 2012.

[81] K. Grand, V. Reddy, G. Sasaki, and E. Dillaber, “Large-Scale Modeling for Embedded

Applications,” SAE Paper, 2010-01-0938, 2010.

[82] K. A. Saleh, Software engineering: J. Ross Publishing, 2009.

[83] ARINC, “Avionics Application Standard Software Interface, Part 0, Overview of ARINC

653,” 653, Aug. 2015.

[84] G. K. Hanssen, G. Wedzinga, and M. Stuip, “An Assessment of Avionics Software De-

velopment Practice: Justifications for an Agile Development Process,” in Lecture Notes

in Business Information Processing, Agile Processes in Software Engineering and Ex-

treme Programming, H. Baumeister, H. Lichter, and M. Riebisch, Eds., Cham: Springer

International Publishing, 2017, pp. 217–231.

Page VI

[85] J. Marques and A. M. da Cunha, “Tailoring Traditional Software Life Cycles to Ensure

Compliance of RTCA DO-178C and DO-331 with Model-Driven Design,” in Proc. of

2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, Sep. 2018

- Sep. 2018, pp. 1–8.

[86] American Institute of Aeronautics and Astronautics, Inc., Ed., The Liebherr Fully Inte-

grated FCS Design – a Case Study. Los Angeles, CA: American Institute of Aeronautics

and Astronautics, Inc., 2013.

[87] Position Paper CAST-15 - Certification Authorities Software Team (CAST), “Merging

High-Level and Low-Level Requirements: Position Paper,” CAST-15, Feb. 2003.

[88] A. J. Kornecki and J. Zalewski, “The Qualification of Software Development Tools From

the DO-178B Certification Perspective,” CrossTalk - The Journal of Defense Software

Engineering, Apr. 2006.

[89] M. Conrad et al., “Automating Code Reviews with Simulink Code Inspector,” in Proc. of

VIII Dagstuhl-Workshop: Model-Based Development of Embedded Systems (MBEES),

Dagstuhl, Germany, 2012.

[90] The MathWorks Inc., “DO Qualification Kit - Simulink Code Inspector Tool Qualification

Plan: R2017b,” Natick, MA, USA, Sep. 2017.

[91] The MathWorks Inc., Simulink Code Inspector and Polyspace Qualified under DO-330:

Qualified Code Generation with MathWorks Embedded Coder. Natick, MA, USA, 2015.

Accessed: May 3 2016. [Online]. Available: http://de.mathworks.com/company/news-

room/simulink-code-inspector-and-polyspace-qualified-under-do-330.html

[92] Certification Authorities Software Team (CAST), “Position Paper CAST-17 - Structural

Coverage of Object Code: Position Paper,” CAST-17, Jun. 2003.

[93] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, and T. Quinot, “Object and

Source Coverage for Critical Applications with the COUVERTURE Open Analysis

Framework,” in Proc. of Embedded Real Time Software and Systems (ERTSS 2010),

2010.

[94] The MathWorks Inc., “DO Qualification Kit - Simulink Coverage Tool Qualification Plan:

R2017b,” Natick, MA, USA, Sep. 2017.

[95] W. Wong, “George Romanski of Verocel Explains DO-178C Certification for Airborne

Equipment,” Electronic Design, Jul. 2014. Accessed: Jan. 5 2018. [Online]. Available:

http://www.electronicdesign.com/embedded/george-romanski-verocel-explains-do-178c-

certification-airborne-equipment

[96] The MathWorks Inc., “Embedded Coder User's Guide: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/ecoder/ecoder_ug.pdf

[97] Lauterbach, “Integration Trace32 - Simulink,” 2011. Accessed: Jan. 6 2018. [Online].

Available: http://www.lauterbach.com/publications/integration_trace32_simulink_d.pdf

[98] T. Maia and M. Souza, “A Practical Methodology for DO-178C Data and Control Cou-

pling Objective Compliance,” in Proc. of the International Conference on Software Engi-

neering Research and Practice (SERP), The Steering Committee of The World Con-

gress in Computer Science, Ed., 2018, pp. 236–240. Accessed: 1st Dec. 2019. [Online].

Available: https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/SER4278.pdf

[99] J. J. Chilenski and J. L. Kurtz, “Object-Oriented Technology Verification Phase 2 Hand-

book: Data Coupling and Control Coupling,” DOT/FAA/AR-07/19, Aug. 2007.

[100] Certification Authorities Software Team (CAST), “Position Paper CAST-19 - Clarifica-

tion of Structural Coverage Analyses of Data Coupling and Control Coupling: Position

Paper,” CAST-19, Jan. 2004.

 10 References

 Page VII

[101] The MathWorks Inc., “Simulink Coverage User's Guide: R2017b,” Natick, MA, USA,

Sep. 2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/

releases/R2017b/pdf_doc/slcoverage/slcoverage_ug.pdf

[102] S. Bhattacharya, “Introduction to Data Coupling and Control Coupling (LDRA Tech-

nology, Inc.),” Orlando, Florida, US, Tutorials at the 34th International System Safety

Conference 2016, Aug. 2016. Accessed: 1st Dec. 2019. [Online]. Available: https://sys-

tem-safety.org/issc2016/T11_Data_Coupling.pdf

[103] The MathWorks Inc., “Modeling Guidelines for High-Integrity Systems: R2017b,” Na-

tick, MA, USA, Sep. 2017.

[104] The MathWorks Inc., “Guidelines and factors to consider for code generation:

R2017b,” Natick, MA, USA, Sep. 2017.

[105] The Motor Industry Software Reliability Association, “MISRA AC GMG - Generic mod-

elling design and style guidelines,” Nuneaton, UK, May. 2009.

[106] The Motor Industry Software Reliability Association, “MISRA AC SLSF - Modelling de-

sign and style guidelines for the application of Simulink and Stateflow,” Nuneaton, UK,

May. 2009.

[107] The Motor Industry Software Reliability Association, “MISRA AC TL -Modelling style

guidelines for the application of TargetLink in the context of automatic code generation,”

2007.

[108] The MathWorks Automotive Advisory Board (MAAB), “MathWorks Automotive Advi-

sory Board Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and State-

flow: R2017b,” Natick, MA, USA, Sep. 2017.

[109] Japan MBD Automotive Advisory Board (JMAAB), Ed., “Control Algorithm Modeling

Guidelines Using MATLAB, Simulink, and Stateflow,” Jun. 2015.

[110] J. Henry, “Orion GN&C MATLAB/Simulink Standards: FltDyn-CEV-08-148,” CEV

Flight Dynamics Team, Oct. 2011.

[111] Ford Motor Company, “Structured analysis and design using Matlab/Simulink/State-

flow modeling style guidelines.,” 1999.

[112] A. Ferrari and A. Fantechi, “Modeling Guidelines for Code Generation in the Railway

Signaling Context,” in Proc. of the First NASA Formal Methods Symposium, Florence,

Italy, 2009.

[113] G. Walde and R. Luckner, “Bridging the tool gap for model-based design from flight

control function design in Simulink to software design in SCADE,” in Proc. of 2016

IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA,

2016, pp. 1–10.

[114] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi, “Defining and Trans-

lating a "Safe" Subset of Simulink/Stateflow into Lustre,” in Proc. of EMSOFT 2004,

Pisa, Italy, 2004.

[115] G. Hamon and J. Rushby, “An Operational Semantics for Stateflow,” in Lecture notes

in computer science, Fundamental Approaches to Software Engineering, G. Goos, J.

Hartmanis, J. van Leeuwen, M. Wermelinger, and T. Margaria-Steffen, Eds., Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2004, pp. 229–243.

[116] D. L. Lempia and S. P. Miller, “Requirements Engineering Management Handbook,”

Federal Aviation Administration FAA, U.S. Department of Transportation, Springfield,

Virginia, US DOT/FAA/AR-08/32, Jun. 2009. Accessed: Jul. 14 2019. [Online]. Available:

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/ar-08-32.pdf

[117] Bureau International des Poids et Mesures, “The International System of Units (SI),”

2006.

Page VIII

[118] D. Monniaux, The pitfalls of verifying floating-point computations: HAL archives ouver-

tes, 2008.

[119] D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point

Arithmetic,” in Vol 23, No 1, Computer Surveys, ACM, Ed., 1991.

[120] K. Nürnberger, Development of Elementary Mathematics Functions in an Avionics

Context. München, 2019.

[121] The MathWorks Inc., Simulink Code Inspector Reference: R2017b. Natick, MA, USA,

2017.

[122] The MathWorks Inc., “Simulink Design Verifier Reference: R2017b,” Natick, MA, USA,

Sep. 2017.

[123] The MathWorks Inc., “Simulink Design Verifier User's Guide: R2017b,” Natick, MA,

USA, Sep. 2017.

[124] The MathWorks Inc., “Simulink User's Guide: R2017b,” Natick, MA, USA, Sep. 2017.

Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/releases/

R2017b/pdf_doc/simulink/sl_using.pdf

[125] Freescale Semiconductor Inc., Ed., “e300 Power Architecture ™ Core Family - Refer-

ence Manual,” e300CORERM Rev. 4, Dec. 2007.

[126] The Motor Industry Software Reliability Association, “MISRA-C:2012 - Guidelines for

the use of C language in critical systems,” Nuneaton, UK, Mar. 2013.

[127] The MathWorks Inc., “Simulink Reference,” Natick, MA, USA, Sep. 2017. Accessed:

Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/releases/R2017b/pdf_

doc/simulink/sl_using.pdf

[128] The MathWorks Inc., “Simulink Graphical User Interface: R2017b,” Natick, MA, USA,

Sep. 2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/

releases/R2017b/pdf_doc/simulink/slgui.pdf

[129] P. A. Darnell and P. E. Margolis, C, a software engineering approach, 3rd ed. New

York, London: Springer-Verlag, 1996.

[130] The MathWorks Inc., “Simulink Coder Reference: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/rtw/rtw_ref.pdf

[131] The MathWorks Inc., “Embedded Coder Reference: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/ecoder/ecoder_ref.pdf

[132] The MathWorks Inc., “Simulink Test User's Guide: R2017b.,” Natick, MA, USA, Sep.

2017. Accessed: Nov. 29 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/sltest/sltest_ug.pdf

[133] J. Moore and J. Lee, “11 Best Practices for Developing ISO 26262 Applications with

Simulink: White Paper,” 2019. Accessed: May 9 2020. [Online]. Available: https://

de.mathworks.com/campaigns/offers/iso-26262-functional-safety-best-practices.html

[134] The MathWorks Inc., “Simulink Code Inspector User's Guide: R2017b,” Natick, MA,

USA, Sep. 2017.

[135] The MathWorks Inc., “Simulink Coder User's Guide: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/rtw/rtw_ug.pdf

[136] M. Olszewska, Y. Dajsuren, H. Altinger, A. Serebrenik, M. Waldén, and M. G. J. van

den Brand, “Tailoring complexity metrics for simulink models,” in Proccedings of the 10th

European Conference on Software Architecture Workshops - ECSAW '16, Copenhagen,

Denmark, 2016, pp. 1–7.

 10 References

 Page IX

[137] Y. Dajsuren, “On the Design of an Architecture Framework and Quality Evaluation for

Automotive Software Systems,” Dissertation, Technische Universiteit Eindhoven, Eind-

hoven, 2015.

[138] I. Stürmer, H. Pohlheim, and T. Rogier, “Berechnung und Visualisierung der Modell-

komplexität bei der modellbasierten Entwicklung,” in Proc. of Automotive - Safety &

Security 2010, 2010, pp. 69–82.

[139] M. Olszewska, “Simulink-Specific Design Quality Metrics: TUCS Technical Report No

1002,” Abo Akademi University, Department of Computer Science, Turku, Finnland,

Mar. 2011.

[140] J. Scheible, “Automatisierte Qualitätsbewertung am Beispiel von MATLAB Simulink-

Modellen in der Automobil-Domäne,” Dissertation, Faculty of Science, Eberhard Karls

Universität Tübingen, Tübingen, 2012. Accessed: Sep. 4 2016. [Online]. Available:

https://publikationen.uni-tuebingen.de/xmlui/handle/10900/49708

[141] L. Mäurer, T. Hebecker, T. Stolte, M. Lipaczewski, U. Möhrstädt, and F. Ortmeier, “On

Bringing Object-Oriented Software Metrics into the Model-Based World – Verifying ISO

26262 Compliance in Simulink,” in Proc. of System Analysis and Modeling Conference

(SAM) 2014: Models and Reusability, Valencia, Spain, 2014, pp. 207–222.

[142] G. Walker, J. Friedman, and R. Aberg, “Configuration Management of the Model-

Based Design Process,” SAE Paper, 2007-01-1775, 2007.

[143] O. Gotel et al., “Traceability Fundamentals,” in Software and Systems Traceability, J.

Cleland-Huang, O. Gotel, and A. Zisman, Eds., London: Springer London, 2012, pp. 3–

22.

[144] P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang, “Strategic Traceability for

Safety-Critical Projects,” IEEE Softw., vol. 30, no. 3, pp. 58–66, 2013, doi:

10.1109/MS.2013.60.

[145] P. Rempel, P. Mader, and T. Kuschke, “An empirical study on project-specific tracea-

bility strategies,” in Proc. of 2013 21st IEEE International Requirements Engineering

Conference (RE), Rio de Janeiro-RJ, Brazil, 2013, pp. 195–204.

[146] M. Salome, M. Staron, and J.-P. Steghöfer, “Challenges of Establishing Traceability in

the Automotive Domain,” in Proc. of International Conference on Software Quality. Com-

plexity and Challenges of Software Engineering in Emerging Technologies, Wien, Aus-

tria, 2017, pp. 153–172. [Online]. Available: https://books.google.de/books?id=

tC3XDQAAQBAJ

[147] M. Eyl, C. Reichmann, and K. Müller-Glaser, “Traceability in a Fine Grained Software

Configuration Management System,” in Proc. of International Conference on Software

Quality. Complexity and Challenges of Software Engineering in Emerging Technologies,

Wien, Austria, 2017, pp. 15–29.

[148] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic

modeling,” in Proc. of the 32nd ACM/IEEE International Conference on Software Engi-

neering - ICSE '10, Cape Town, South Africa, 2010, p. 95.

[149] D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated Requirements Traceability:

The Study of Human Analysts,” in Proc. of 2010 18th IEEE International Requirements

Engineering Conference, Sydney, Australia, 2010, pp. 231–240.

[150] J. H. Hayes, A. Dekhtyar, and S. Sundaram, “Text mining for software engineering,”

SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, p. 1, 2005, doi: 10.1145/1082983.1083153.

[151] R. M. Parizi, A. Kasem, and A. Abdullah, “Towards gamification in software traceabil-

ity: Between test and code artifacts,” in Proc. of the 10th International Joint Conference

on Software Technologies : Colmar, Alsace, France, 20 - 22 July, 2015, 2015.

Page X

[152] P. Rempel and P. Mäder, “A quality model for the systematic assessment of require-

ments traceability,” in Proc. of 2015 IEEE 23rd International Requirements Engineering

Conference (RE), Ottawa, ON, Canada, 2015, pp. 176–185.

[153] The MathWorks Inc., “Simulink Requirements Reference: R2017b,” Natick, MA, USA,

Sep. 2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/help/

releases/R2017b/pdf_doc/slrequirements/slrequirements_ref.pdf

[154] OMG Object Management Group, “Requirements Interchange Format (ReqIF),” for-

mal/2016-07-01, Jul. 2016. Accessed: Feb. 17 2019. [Online]. Available: https://

www.omg.org/spec/ReqIF/1.2

[155] The MathWorks Inc., “Simulink Requirements User's Guide: R2017b,” Natick, MA,

USA, Sep. 2017. Accessed: Jul. 13 2019. [Online]. Available: https://de.mathworks.com/

help/pdf_doc/slrequirements/slrequirements_ug.pdf

[156] S. Chacon and B. Straub, Pro Git, 2nd ed. Berkeley, CA: Apress, 2014.

[157] National Research Council (U.S.); National Academies Press (U.S.), Critical code:

Software producibility for defense. Washington, D.C: National Academies Press, 2010.

[Online]. Available: http://lib.myilibrary.com/detail.asp?id=291712

[158] B. Aldrich et al., “Managing Verification Activities Using SVM,” in Lecture notes in

computer science, Formal Methods and Software Engineering, D. Hutchison et al., Eds.,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 61–75.

[159] R. Kumar and B. H. Krogh, “Heterogeneous verification of embedded control sys-

tems,” in Proc. of 2006 American Control Conference, Minneapolis, MN, USA, Jun. 2006

- Jun. 2006, 6 pp.

[160] R. Kumar, B. H. Krogh, and P. Feiler, “An Ontology-Based Approach to Heterogene-

ous Verification of Embedded Control Systems,” in Lecture notes in computer science,

Hybrid Systems: Computation and Control, D. Hutchison et al., Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 370–385.

[161] J. S. Becker, V. Bertram, T. Bienmüller, U. Brockmeyer, T. Peikenkamp, and T. Teige,

“Interoperable Toolchain for Requirements-Driven Model-Based Development,” in Proc.

of Embedded Real Time Software and Systems (ERTSS 2018), Toulouse, France,

2018.

[162] A. Rahman, A. Partho, D. Meder, and L. Williams, “Which Factors Influence Practi-

tioners' Usage of Build Automation Tools?,” in Proc. of 2017 IEEE/ACM 3rd International

Workshop on Rapid Continuous Software Engineering (RCoSE), Buenos Aires, Argen-

tina, 2017, pp. 20–26.

[163] O. Gotel et al., “The quest for Ubiquity: A roadmap for software and systems tracea-

bility research,” in 2012 20th IEEE International Requirements Engineering Conference

(RE): Proceedings : September 24-28, 2012 : Chicago, Illinois, USA, Chicago, IL, USA,

2012, pp. 71–80.

[164] A. Seibel, S. Neumann, and H. Giese, “Dynamic hierarchical mega models: Compre-

hensive traceability and its efficient maintenance,” Softw Syst Model, vol. 9, no. 4, pp.

493–528, 2010, doi: 10.1007/s10270-009-0146-z.

[165] The MathWorks Inc., “MATLAB External Interfaces: R2017b,” Natick, MA, USA, Sep.

2017.

[166] The MathWorks Inc., “Developing S-Functions: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Aug. 4 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/simulink/sfunctions.pdf

[167] The MathWorks Inc., “Simulink Check User's Guide: R2017b,” Natick, MA, USA, Sep.

2017.

 10 References

 Page XI

[168] D. Jaffry, Best Practices for Implementing Modeling Guidelines in Simulink. [Online].

Available: http://de.mathworks.com/company/newsletters/articles/best-practices-for-im-

plementing-modeling-guidelines-in-simulink.html (accessed: Feb. 3 2016).

[169] The MathWorks Inc., “Simulink Check Reference: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Aug. 7 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/slcheck/slcheck_ref.pdf

[170] The MathWorks Inc., “DO Qualification Kit - Simulink Check Tool Operational Re-

quirements: R2017b,” Sep. 2017.

[171] The MathWorks Inc., “DO Qualificaton Kit - Simulink Design Verifier Tool Qualification

Plan: R2017b,” Natick, MA, USA, Sep. 2017.

[172] The MathWorks Inc., “DO Qualification Kit - Polyspace Code Prover Tool Require-

ments: R2017b,” Natick, MA, USA, Sep. 2017.

[173] The MathWorks Inc., “DO Qualification Kit - Polyspace Code Prover Theoretical

Foundation: R2017b.,” Natick, MA, USA, Sep. 2017.

[174] J. F. Monin and M. G. Hinchey, Understanding formal methods. London, New York:

Springer, 2003.

[175] The MathWorks Inc., “Polyspace Code Prover Reference: R2017b,” Natick, MA, USA,

Sep. 2017.

[176] The MathWorks Inc., “DO Qualification Kit - Simulink Design Verifier Tool Operational

Requirements: R2017b,” Natick, MA, USA, Sep. 2017.

[177] The MathWorks Inc., “Simulink Test Reference: R2017b,” Natick, MA, USA, Sep.

2017. Accessed: Nov. 29 2019. [Online]. Available: https://de.mathworks.com/help/re-

leases/R2017b/pdf_doc/sltest/sltest_ref.pdf

[178] Certification Authorities Software Team (CAST), “Position Paper CAST-10 - What is a

“Decision” in Application of Modified Condition/Decision Coverage (MC/DC) and Deci-

sion Coverage (DC)?: Position Paper,” CAST-10, Jun. 2002.

[179] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A Practical Tuto-

rial on Modified Condition / Decision Coverage,” NASA Langley Research Center,

Hampton, Virginia NASA / TM-2001-210876, May. 2001.

[180] Federal Aviation Administration FAA, Software Verification Tools Assessment Study:

Final Report. Springfield, Virginia, US: National Technical Information Service (NTIS),

2007.

[181] V. P. Kozyrev and M. A. Saburov, “Satisfying DO-178C Structural Coverage Objec-

tives,” Programming and Computer Software, vol. 44, no. 1, pp. 43–50, 2018, doi:

10.1134/S0361768818010048.

[182] R. Kirner, “Towards Preserving Model Coverage and Code Coverage,” in vol. 2009,

EURASIP Journal on Embedded Systems: Hindawi Publishing Corporation, 2009.

[183] W. Aldrich, “Using Model Coverage Analysis to Improve the Control Development

Process,” in Proc. of AIAA Modeling and Simulation Technologies Conference and Ex-

hibit, Monterey, California, 2002.

[184] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener, “Interplay between Model

Coverage and Code Coverage,” in Proc. of EUROCAST Computer Aided Systems The-

ory, Las Palmas, Gran Canaria, Spain, 2003.

[185] M. Conrad and S. Sadeghipour, “Einsatz von Überdeckungskriterien auf Modell-

ebene–Erfahrungsbericht und experimentelle Ergebnisse,” Softwaretechnik Trends,

2002.

[186] The MathWorks Inc., “DO Qualification Kit - Simulink Code Inspector Tool Operational

Requirements: R2017b,” Natick, MA, USA, Sep. 2017.

Page XII

[187] The MathWorks Inc., “Polyspace Bug Finder Reference: R2017b,” Natick, MA, USA,

Sep. 2017.

[188] The MathWorks Inc., “DO Qualification Kit - Polyspace Bug Finder Tool Require-

ments: R2017b,” Natick, MA, USA, Sep. 2017.

[189] The MathWorks Inc., “Polyspace Bug Finder User's Guide: R2017b,” Natick, MA,

USA, Sep. 2017.

[190] The MathWorks Inc., “DO Qualification Kit - Polyspace Bug Finder Tool Operational

Requirements: R2017b,” Natick, MA, USA, Sep. 2017.

[191] L. Hatton, Safer C: Developing software in high-integrity and safety-critical systems:

McGraw-Hill, 1994.

[192] ISO/IEC, “Programming Languages C - 2nd Edition,” ISO/IEC 9899:1999, Dec. 1999.

[193] The Motor Industry Software Reliability Association, “MISRA C:2012 Amendment 1 -

Additional security guidelines for MISRA C:2012,” Nuneaton, UK, Apr. 2016.

[194] The MathWorks Inc., Embedded Coder MISRA C:2012 Compliance Considerations.

Natick, MA, USA.

[195] ISO/IEC, “Information technology - Language independent arithmetic - Part 1: Integer

and floating point arithmetic,” ISO/IEC 10967-1:2012(E), Jul. 2012.

[196] Certification Authorities Software Team (CAST), “Position Paper CAST-21 - Compiler-

supplied libraries: Position Paper,” CAST-21, Jan. 2004.

[197] B. W. Kernighan and D. M. Ritchie, The C programming language, 2nd ed. Eng-

lewood Cliffs, N.J.: Prentice Hall, 1988.

[198] J. Nellen, T. Rambow, M. T. B. Waez, E. Ábrahám, and J.-P. Katoen, “Formal Verifi-

cation of Automotive Simulink Controller Models: Empirical Technical Challenges, Evalu-

ation and Recommendations,” in Lecture notes in computer science, Formal Methods,

K. Havelund, J. Peleska, B. Roscoe, and E. de Vink, Eds., Cham: Springer International

Publishing, 2018, pp. 382–398.

[199] The MathWorks Inc., “DO Qualification Kit - Simulink Test Tool Operational Require-

ments: R2017b,” Natick, MA, USA, Sep. 2017.

 Appendix

 Page XIII

 Review and analysis of data coupling

and control coupling

Task Sequencing Timing Control Coupling Data Coupling

SwVP-DP-MB 1
– Static model
analysis

 Execution rate is
correct and
execution
dependencies are
correctly
implemented.

Call interface
settings for
simulation and code
generation of
Design Model
conform to
standard.

Coupling and
cohesion is
assessed with
quality measures.

Data interface settings for
simulation and code
generation of Design Model
conform to standard.

Code generation settings
minimize data coupling.

Coupling and cohesion is
assessed with quality
measures.

SwVP-DP-MB 2
– Static module
analysis

 Call coupling is
limited by
encapsulation and
not violated.

No unused units /
models exist.

Coupling and
cohesion assessed
with quality
measures.

Data coupling is limited by
encapsulation and not
violated.

No unused data exists.

Coupling and cohesion
assessed with quality
measures.

SwVP-DP-MB 3
– Model review

Order of
execution is
identified and
correct
(review call
tree in
Simulink).

Execution
dependencie
s are
identified and
correct
(review call
tree in
Simulink).

 Call interface of the
Design Model
complies with HLRs
and ICDs.

Inter-module call
interfaces are
defined, correct,
and consistent with
Software
Architecture.

All external inputs and outputs
are defined in the Design
Model and comply with HLRs
and ICDs.

Inter-module data interfaces
are defined, correct, and
consistent with Software
Architecture.

Units are consistent and
comply with specification.

SwVP-DP-MB 5
– Design error
detection

 No dead logic and
thus uncalled
functions exist.

Signal ranges of external
outputs and inter-module
interfaces are not violated
(formally proven).

Robust data is passed.

Run-time errors do not occur
(index out of bounds, division
by zero, under- and overflow,
unexpected floating-point
values, formally proven).

Appendix

Page XIV

SwVP-DP-MB 7
– Simulation /
test case and
procedure
review

SwVP-DP-MB 8
– Simulation
testing & result
review

SwVP-DP-MB 9
– Model
coverage
assessment

 Control coupling is
correct and
consistent (passing
tests).

Interfaces comply to
specification.

Data is typed correctly and
consistently (compilation,
simulation, testing).

Data corruption is prevented
and detected (robustness
simulation testing).

Signal ranges of external
outputs and inter-module
interfaces are not violated
(run-time diagnostics).

Run-time errors do not occur
(index out of bounds, division
by zero, under- and overflow,
unexpected floating-point
values, by robustness
simulation testing).

SwVP-CP-MB 1
– Automatic
code review

 Code is consistent
with the design
(especially Software
Architecture).

Data interfaces on model and
code level comply and are
traceable.

SwVP-CP-MB 2
– Static code
analysis for
standard
compliance

SwVP-CP-MB 3
– Static code
analysis for
error detection

 [In case of multi-
rate models,
defect analysis
can check further
data flow,
multitasking, and
concurrency
issues. Here, an
application with a
single rate is
assumed.]

 Unused parameters are
detected.

All variables are set (or
initialized) before use. There is
no read before write and no
write without further read.

Run-time errors do not occur
(index out of bounds, division
by zero, under- and overflow,
unexpected floating-point
values).

SwVP-CP-MB 4
– Code review

Order of
execution is
identified and
correct
(review of
Polyspace
call tree)

 Appendix

 Page XV

SwVP-CP-MB 5
– Code proving

 Signal ranges of external
outputs and inter-module
interfaces are not violated
(formally proven).

All variables are set (or
initialized) before use.

Run-time errors do not occur
(index out of bounds, division
by zero, under- and overflow,
unexpected floating-point
values, formally proven).

[Code Prover can support the
identification of unused global
variables and functions,
however, since it uses abstract
interpretation, it may not find
all.]

SwVP-CP-MB 6
– SIL testing &
result review

 Interfaces comply to
specification.

Data is typed correctly and
consistently (compilation,
simulation, testing).

Data corruption is prevented
and detected (robustness
simulation testing).

Appendix

Page XVI

 Coding rules for code generation

CR 1 - Conformance to Software Code Standard ... XVI

CR 2 - Safe C subset ... XVI

CR 3 - Configuration management ... XVIII

CR 4 - Compliance with Design Model ... XVIII

CR 5 - Readability .. XIX

CR 6 - Modular code .. XIX

CR 7 - Floating-point arithmetic ... XIX

CR 8 - Supported data types ... XX

CR 9 - Byte-ordering compatibility .. XX

CR 10 - Cert Standard C Library .. XXI

CR 11 - Header and indentation .. XXI

CR 12 - Hardware resources compatibility .. XXII

CR 13 - Tracing to Design Model ... XXII

CR 14 - Unreachable code and data .. XXII

CR 15 - Deactivated Code .. XXIV

CR 16 - Exceptional code ... XXIV

Appendix B.1.1 Conformance

The rules in this section describe the conformance to standards and the process.

CR 1 - Conformance to Software Code Standard

 The Source Code shall follow the rules of this Software Code Standard. Deviations
shall be handled according to the respective verification task.

The trivial rule results from DO-178C Table A-5:4.

CR 2 - Safe C subset

 The automatically generated C source code shall conform to ANSI ISO/IEC
9899:1999 and MISRA C:2012 “Guidelines for the use of C language in critical
systems” Appendix E.

Especially in safety-critical applications, the C language prevailed against many other lan-

guages like Ada over the last years due to lower implementation costs and vast tool support

(cf. C vs. Ada [191]). In contrast, the C language bases on weak specifications and consists of

a considerable number of derivations. In 1994, Hatton already stated, “that C is full of holes,

but we know where just about all of them are and we know how to plug most of them […] ([191]

p.xi)”.

 Appendix

 Page XVII

Figure 108 roughly illustrates the approach taken to derive a safety-critical C subset for the

given context. Basis is the international standard ANSI ISO/IEC 9899:1999 (C99) [192] speci-

fying a large part of the language, but also containing gaps. The standard categorizes specifi-

cation gaps in undefined, unspecified, and implementation-defined behavior and summarizes

it in Annex J. Undefined behavior is behavior, for which the standard does not postulate re-

quirements (C99 3.4.3). For unspecified behavior, the standard proposes different alternative

implementation possibilities (C99 3.4.4). Implementation-defined behavior is unspecified be-

havior, for which a choice has been made (e.g., by the compiler) and documented (C99 3.4.1).

Figure 108: Derivation of a safe C subset

The standard MISRA C:2012 “Guidelines for the use of C language in critical systems” (MISRA

C) addresses a large set of these deficiencies by defining rules as well as supporting directives

to avoid undefined and unspecified behavior. MISRA C only covers most critical and frequently

occurring undefined and unspecified behavior. It provides a compliance matrix against C99

Annex J in Appendix H. The remaining undefined and unspecified behavior must be avoided,

as declared in MISRA C rule 1.3. Implementation-defined behavior of C99 Annex J must be

documented and understood according to MISRA Directive 1.1. A checklist is provided in

MISRA C Appendix G.

In preparation for MISRA C compliance,

 Implementation-defined behavior has been documented according to checklist MISRA

C Appendix G.

 A set of applicable rules and directives has been identified by taking into account Ap-

pendix E of MISRA C. The appendix mitigates rule criticality for automatically generated

code. For example, various rules are categorized as “readability” rules, which can be

ignored in case of code generation. The additional security guidelines in Amendment 1

of MISRA C [193] have not been considered in this work.

 Verification activities have been assigned and a compliance matrix has been assem-

bled.

C Language
Specification gaps:

• Unspecified

• Undefined

• implementation-defined

• local-specific

behavior (in C99 Annex J)

Remaining unaddressed behavior

(in MISRA C Rule 1.3 / Appendix H and

MISRA C Dir 1.1 / Appendix G)

MISRA C

Rules & Directives
Defined by

IEEE-754 LIA-1

Standard C Library

Preprocessor,

Compiler, Linker

Target Hardware

C99

Prohibited by rules/directives

Specified

Appendix

Page XVIII

According to MISRA C 5.3, compliance statements of automatic code generator vendors (like

Embedded Coder MISRA C:2012 Compliance Considerations [194])“ can be used to signifi-

cantly reduce the number of MISRA C guidelines that need to be checked by other means.” In

some cases, this makes sense, for example if a code generator does not support dynamic

memory allocation, there is no need to check for it. In other, subtler cases, such compliance

statements have been considered with care as the code generator is not under tool qualifica-

tion.

CR 3 - Configuration management

 The code generation and the Source Code shall support the Configuration Man-
agement Process and considerations.

The Source Code artifacts must be generated, stored, and formatted in a way so that they can

be handled according to the principles and processes of configuration management. This starts

with unique names, checksums, and goes over change diffing or merging, up to annotating in

a review process.

This certainly affects the code placement, but also the generated code itself. For example,

assume the coder uses a running number for variables. If a single block is removed, the run-

ning number may change all over the model. Identifying the actual change when comparing

Source Code of two different versions becomes extremely difficult. The code generation should

be as robust as possible.

Appendix B.1.2 Compliance

Compliance requirements have been directly derived from the objectives DO-178C Table A-

5:1,2 and the respective additional information in DO-178C 6.3.4.

CR 4 - Compliance with Design Model

 A. The Source Code shall be accurate and complete with respect to the Design
Model (LLRs).

B. Data- and control flow between Software Architecture and Source Code shall
match.

C. The Source Code shall not implement functionality, for which no SW Design
exists.

Appendix B.1.3 Accuracy and consistency

Accuracy and consistency touches different aspects. DO-178C 6.3.4f especially lists “correct-

ness” as well as a couple of hardware requirements. Note that there is no objective for Source

Code hardware compatibility in DO-178C Table A-5. “Unused variables” are handled as part

of section Appendix B.1.5.

 Appendix

 Page XIX

CR 5 - Readability

 Source Code shall be readable and understandable.

Although auto-generated, Source Code should be readable to a certain extend. Some manual

code review is still required, changes must be identified, and debugging or structural coverage

analysis is performed with the raw Source Code.

For example, a coder should try to reuse naming from the Design Model for variables, so that

the code remains understandable. Some coders allow memory optimizations, which reuse var-

iables of the same data type wherever possible. In this case, the naming of variables does not

necessarily fit to the function they fulfill.

CR 6 - Modular code

 Generated code of a module shall be modular and independently verifiable on
module-level as described by the process.

This is the basic requirement coming from the MBSwD.

CR 7 - Floating-point arithmetic

A. The generated code shall respect floating-point arithmetic according to IEEE

754-2008 / IEC 60559 “Standard for Floating Point Arithmetic” (IEEE 754) with
the following floating-point setup:

 binary representation

 Round-to-Nearest and Round-Ties-to-Even

B. Floating-point exceptions shall neither be actively set nor be used in the algo-
rithms to react on exceptions (cf. MISRA C Rule 21.12).

C. Supported data types shall have single (IEEE 754 32 total bits, 8 exponent
bits) and double precision (IEE 754 64 total bits, 11 exponent bits).

Discussion Paper DP #17 of DO-248C provides technical considerations for the usage of float-

ing-point arithmetic, other with the design and modeling rules.

The double-precision Floating-Point Unit (FPU) of the PowerPC e300 supports “a floating-point

system as defined in the IEEE 754 standard, but requires software support to conform with

that standard (PPC Manual p. 3-13).”

Floating-point calculations are controlled by the Floating-Point Status and Control Register

(FPSCR), which is documented in the PPC Manual 2.1. The reset values are all zeros, which

is the used configuration, too. In this configuration, all floating-point operations conform to the

IEEE 754 standard (NI 0) and floating-point exceptions are disabled.

Appendix

Page XX

With Round-to-Nearest (RN 00), LIA-1 (ISO/IEC 10967-1:2012 “Language independent

arithmetic” [195]) requirements concerning casting between floating-point numbers and from

integer to floating-point numbers can be fulfilled (C99 H2.4 §4/5). Round-to-Nearest and

Round-Ties-to-Even is also the default configuration of the used compiler (CompCert Manual

5 §6.5).

CR 8 - Supported data types

A. Only the supported data types by the compiler shall be used (see CompCert

Manual 5 §5.2.4.2).

B. long double shall not be used.

C. Complex types shall not be used.

D. Bit-fields shall not be used.

E. The code shall respect the representation of signed integers as two’s comple-
ment.

long double is not supported by the selected compiler by default (§5.2.4.2, §6.2.5) and dou-

ble precision is sufficient for the given application. Complex types are not supported by the

selected compiler (§6.2.5).

Bit-fields as defined by C99 6.7.2.1 §8 raise various compatibility issues, especially at external

software interfaces, and are not necessarily required by the presented application.

Two’s complement is the most common signed integer representation and used by CompCert

(§6.2.6) for signed integers.

CR 9 - Byte-ordering compatibility

 The generated code shall work independently of the byte-ordering.

Byte-ordering depends on the target computer and is big-endian for the used PPC (Power PC

Manual [125] 3.1.2), but mostly little-endian for host desktop computers. In order to execute

the same code in both the target (PIL testing) and host environment (SIL testing), the code

must be independent of the byte-ordering.

Byte-ordering has significant impact on the design of algorithms. For example, it must be con-

sidered, if bit operations are applied or byte streams are decoded, since the host and target

endianness may differ.

 Appendix

 Page XXI

CR 10 - Cert Standard C Library

 The generated code shall only call external functions of the Cert Standard C Li-
brary.

Beside language aspects, C99 defines functional prototypes, macros and type declarations for

a standard library addressing, for example, mathematical operations, I/O functionality, or

memory management. C99 does not describe implementations. They are typically target- and

compiler-specific and thus provided with the compiler. Since according to the CAST Position

Paper [196], compiler-supplied libraries are not considered as part of the compiler, but sepa-

rate airborne code requiring development as any other software function, a separate Cert

Standard C Library is used.

The functions called by the generated code shall be limited to:

 cert_sin(f)

 cert_cos(f)

 cert_tan(f)

 cert_asin(f)

 cert_acos(f)

 cert_atan(f)

 cert_atan2(f)

 cert_floor(f)

 cert_ceil(f)

 cert_trunc(f)

 cert_pow(f)

 memset

Only for this set of functions, a DO-178C conform implementation can be provided (cf. the

parallel work of Nürnberger [120]).

CR 11 - Header and indentation

 A. Any source or header file shall start with a comment header including infor-
mation about source model version and name, coder version and settings, and
a copyright statement.

B. Indentation shall comply to K&R.

The listed information in the header helps identifying the source Design Model and the config-

uration of the coder. A project statement is required by the company or project.

C99 and MISRA C do not propose indentation rules, therefore indentation shall be according

to K&R style [197].

Appendix

Page XXII

CR 12 - Hardware resources compatibility

 Worst-case estimations of required hardware resources of Source Code shall
satisfy the hardware requirements. This shall include

 execution timing

 memory and stack

The Source Code shall respect the hardware limitations. Worst-case resource estimations

shall be made to avoid significant rework later on.

Appendix B.1.4 Traceability

CR 13 - Tracing to Design Model

 A. Bi-directional tracing from Source Code to identifiable parts of the Design
Model and derived LLRs shall be in the generated code.

B. The trace shall be added as comment in front of the respective functional code.

C. Traces shall be navigable in both directions.

This rule overwrites MISRA C Dir 3.1 “Requirements Traceability”.

Appendix B.1.5 Verifiability

CR 14 - Unreachable code and data

 There shall be no Extraneous or Dead Code in the Source Code or object code.

Any code, which cannot be covered by structural coverage analysis on the Executable Object

Code, must be investigated. This code shall be called unreachable code or data.

DO-178C further distinguishes Deactivated Code, Extraneous Code, and Dead Code (cf. DO-

178C p.111f and [45]). In addition, DO-178C knows a few exceptions, here summarized under

Exceptional Code. Figure 109 illustrates the classification logic.

Extraneous Code is all unreachable Source Code or object code, which is not traceable to a

higher-level requirement and which does not satisfy the criteria for Exceptional Code. If Extra-

neous Code appears in the executable object code of at least one configuration, it is Dead

Code. Extraneous and Dead code must be removed according to DO-178C 6.4.4.3(c).

 Appendix

 Page XXIII

Unreachable code is not regarded as Extraneous or Dead Code, if one of the following criteria

is met. Either the code is Deactivated Code, which means it must be traceable to requirements

and its deactivation must be planned, or it is Exceptional Code, if one of the following excep-

tions applies:

 Defensive programming structures

 Embedded identifiers

 Safely removed code

The exceptions are further explained in CR 16. Some of them are allowed in the MBSwD pro-

cess, others are prohibited.

Figure 109: Classification of noncovered code according to DO-178C and Rierson [45]

MISRA C uses similar terms, but with a totally different meaning. MISRA 8.2 describes the

treatment of so-called unused code. Unused code is formally provable and it is always a code

construction error. In contrast, DO-178C unreachable code bases on test coverage. Unreach-

able code may exist due to missing requirements, test cases, or the other reasons discussed

before.

Different kinds of unused code exist. MISRA unreachable code (Rule 2.1), which is code that

cannot be executed, is always part of the DO-178C unreachable code. MISRA dead code

(Rule 2.2) describes code that is executed, but does not influence the program behavior (like

two writes before a read). It cannot be reliably revealed by structural coverage analysis. MISRA

also addresses unused type, tag, macro, and label declarations as well as unused parameters

in functions, which are also not in the scope of classical structural coverage measures.

Noncovered

Source Code/Data

Trace to

requirement?

Embedded identifiers? OR

Defensive programming strucutre? OR

Safely removed code?
"Exceptional Code"

Is in the Executable Object Code

of at least one

configuration?

Extraneous Code

6.4.4.3 (d) 2

6.4.4.3 (d) 1
Deactivated Code

(Category 1)

By design only

used in certain

configurations?

By design not

executed/used?

Deactivated Code

(Category 2)

Dead Code

(as subset of

Extraneous Code)

Definition see

DO-178C Glossary

Definition see

DO-178C Glossary

no

yes

no

no

no

yes

no

yes

yes

yes

Appendix

Page XXIV

CR 15 - Deactivated Code

 Code shall not be deactivated.

Deactivated Code is just executed in specific or no configurations of the software application.

In contrast to Extraneous Code, this behavior is planned. The code must be traceable to re-

quirements, and also the deactivation mechanism must be designed and verified (cf. DO-178C

5.2.4). Deactivated Code during structural coverage analysis is handled according to two cat-

egories as explained in DO-178C 6.4.4.3 (d). Hence, deactivation generates more effort than

just not executing Source Code and specifying that it is not executed.

According to DO-178C 5.2.4, a typical example of deactivated code is unselected functionality

or unused libraries. The deactivation mechanisms proposed by Rierson are profound, involving

hardware switches (e.g., pins) or compilers, safely removing deactivated code from the Exe-

cutable Object Code.

In model-based design, the concept of deactivated design, as introduced in DR 31, shall be

leveraged instead of Deactivated Code. It safely removes deactivated design already during

code generation.

PDIs shall also not cause Deactivated Code.

CR 16 - Exceptional code

A. The following defensive programming structures in the sense of DO-178C are

considered as exceptional code:

 else branch for every if construct.

B. Embedded identifiers in the sense of DO-178C shall not be used.

C. Safely removed code shall be documented and the noncovered code in the

structural coverage analysis shall be justified accordingly. The documentation
shall provide:

 reason, why this code cannot be removed.

 evidence that the code does not exist in the Executable Object Code
anymore.

 evidence that procedures are in place ensuring that this code is not
inadvertently inserted in the future (e.g., build process with explicit set-
tings and reasons).

Defensive programming structures

The rule may list accepted defensive programming structures, which are accepted if introduced

by the code generator and justified as such in the coverage analysis. They are not considered

as Extraneous Code. Defensive programming structures are considered as subset of defen-

sive programming practices listed in DO-248C FAQ #32. Defensive programming not specified

as defensive programming structure must base on robustness requirements, which are tested.

 Appendix

 Page XXV

DO-178C details the scope of defensive programming structures in the glossary for “Deac-

tivated Code” (p. 111) as “compiler-inserted code for range and array index checks, error or

exception handling routines, bounds and reasonableness checking, queuing controls, and

times stamps”.

If code-generator-inserted code for range and array index checks can be considered as defen-

sive programming structure must be clarified with the authority. Here, a conservative approach

is taken and the code is not considered as defensive programming structure. The only ac-

cepted defensive programming structures are those listed in (A).

Embedded identifiers

The rule may list accepted embedded identifiers, which can be justified as such if not covered

by structural coverage analysis. According to Rierson [45, p. 384], for example checksums or

part numbers. In the presented project, there is no need for embedded identifiers.

Safely removed code

Safely removed code is code, which is not in the Executable Object Code, but only in the

Source Code or object code. The documentation objectives are from Rierson [45, p. 385].

A common example is generated code, which has a non-configurable code interface with func-

tions, that are never called under some circumstances (cf. section MR 15).

Appendix

Page XXVI

 Code generation examples

 Example 1: Context-dependent reusable

subsystems

This example shows, how the context, in which the atomic subsystem is embedded in, can

influence code generation.

All three atomic subsystems are instances of the same library block, so they have the same

settings. Inport and outport blocks have fix, not inherited values.

The first subsystem is connected to a constant input. The coder recognizes this and generates

a function with constant input. For the second and third atomic subsystem, the input is con-

nected to a model inport. The coder recognizes that the value is a true argument and generates

the reusable function.

For the second and third atomic subsystems, the structural checksum is equal and a reusable

function is generated. For the first, a separate function is generated.

Model with reusable subsystems MODEL

 Appendix

 Page XXVII

saturateValue.c (first function) C CODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

/* Output and update for atomic system: '<Root>/saturateValue0' */
void xy_rassy4_saturateValue(real_T rtu_value, B_saturateValue_xy_rassy4_T
 *localB, const ConstB_saturateValue_xy_rassy_T *localC)
{
 /* Switch: '<S2>/Switch' incorporates:
 * Constant: '<S2>/Constant'
 */
 if (localC->Compare) {
 localB->Switch = rtu_value;
 } else {
 localB->Switch = 0.0;
 }

 /* End of Switch: '<S2>/Switch' */
}

xy_rassy4_saturateValue1.c (second function) C CODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/* Output and update for atomic system:
 * '<Root>/saturateValue1'
 * '<Root>/saturateValue2' */
void xy_rassy4_saturateValue1(real_T rtu_trigger, real_T rtu_value,
 B_saturateValue_xy_rassy_p1u2_T *localB)
{
 boolean_T b_Compare;

 /* RelationalOperator: '<S6>/Compare' incorporates:
 * Constant: '<S6>/Constant' */
 b_Compare = (rtu_trigger <= 3.0);

 /* Switch: '<S3>/Switch' incorporates:
 * Constant: '<S3>/Constant' */
 if (b_Compare) {
 localB->Switch = rtu_value;
 } else {
 localB->Switch = 0.0;
 }

 /* End of Switch: '<S3>/Switch' */
}

Appendix

Page XXVIII

 Example 2: Global signals in reusable

models

This example shall hilight the naming problem with signals in REUSABLE MODELS. The REUSABLE

MODEL xy_sig_reusable has two inports with explicitly assigned signal names and storage

class SimulinkGlobal to expose the variable for testing. External storage classes are not

allowed, since they cause conflicting identifiers.

Model xy_integr_sig_reusable integrates three instances of xy_sig_reusable. The first

observation in the generated code is that the signals may be placed in different structures. As

can be seen in line 7 and 12, variable status1 is a field of the input structure (_U). Since

status2 cannot be taken directly from the input, but is multiplied with two, the signal status2

is generated in the block IO (_B) structure (line 4).

The second observation is that signals with the same name are extended by a mangle. Since

status2 in line 26 already exists in the _B structure, a postfix has been generated.

As a consequence, the naming and placement of a signal with non-external storage class

depends on various factors.

Signals > xy_sig_reusable MODEL

 Appendix

 Page XXIX

Signals > xy_integr_sig_reusable MODEL

Xy_integr_sig_reusable.c C CODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/* Gain: '<Root>/Gain' incorporates:
* Inport: '<Root>/status1'
*/
xy_integr_sig_reusable_B.status2 = 2.0 * xy_integr_sig_reusable_U.status1;

/* ModelReference: '<Root>/xy_model_re_1_1' */
xy_sig_reusable(&xy_integr_sig_reusable_U.status1,
 &xy_integr_sig_reusable_B.status2,
 &xy_integr_sig_reusable_Y.Out1, &xy_integr_sig_reusable_Y.Out2);

/* ModelReference: '<Root>/xy_model_re_1_2' */
xy_sig_reusable(&xy_integr_sig_reusable_U.status1,
 &xy_integr_sig_reusable_B.status2,
 &xy_integr_sig_reusable_Y.Out3, &xy_integr_sig_reusable_Y.Out4);

/* SignalConversion: '<Root>/SignalConv' incorporates:
* Inport: '<Root>/status2'
*/
xy_integr_sig_reusable_B.status1 = xy_integr_sig_reusable_U.status2;

/* Gain: '<Root>/Gain1' */
xy_integr_sig_reusable_B.status2_l5ij = 2.0 * xy_integr_sig_reusable_B.sta-
tus1;

/* ModelReference: '<Root>/xy_model_re_1_3' */
xy_sig_reusable(&xy_integr_sig_reusable_B.status1,
 &xy_integr_sig_reusable_B.status2_l5ij,
 &xy_integr_sig_reusable_Y.Out5, &xy_integr_sig_reusable_Y.Out6);

Appendix

Page XXX

 Example 3: Parameter pooling

This example shows a model, which uses the same offset vector twice in independent addition

operations. The vector is directly defined in a Constant block as mask parameter.

Since arrays in C cannot directly be used in operations, a variable must be declared and de-

fined. These non-inlined parameters are collected in a single structure named Con-

stP_<model-name>_T, like ConstP_xy_calcOff1_T in the first code snippet. The duplicate

usage is recognized by Embedded Coder and a common, pooled variable is generated.

The name of the field in the structure is typically inherited from the context, in which the pa-

rameter is referred to. Is the parameter name used multiple times, Embedded Coder simply

numbers it with pooled<N>.

Parameters > xy_calcOff MODEL

xy_paramPool1.c C CODE

1
2
3
4
5
6
7
8
9

/* Constant parameters (auto storage) */
typedef struct {
 /* Pooled Parameter (Expression: [1 2 3 4 5])
 * Referenced by:
 * '<Root>/offset1' (Parameter: Value)
 * '<Root>/offset2' (Parameter: Value)
 */
 real_T pooled1[5];
} ConstP_xy_paramPool1_T;

xy_paramPool1_data.c C CODE

1
2
3
4
5
6
7
8
9

/* Constant parameters (auto storage) */
const ConstP_xy_paramPool1_T xy_paramPool1_ConstP = {
 /* Pooled Parameter (Expression: [1 2 3 4 5])
 * Referenced by:
 * '<Root>/offset1' (Parameter: Value)
 * '<Root>/offset2' (Parameter: Value)
 */
 { 1.0, 2.0, 3.0, 4.0, 5.0 }
...

 Appendix

 Page XXXI

xy_paramPool1.c C CODE

1
2
3
4
5
6
7
8
9

/* Outport: '<Root>/v_out1' incorporates:
* Constant: '<Root>/offset1'
* Inport: '<Root>/v_in1'
* Sum: '<Root>/AddOffset'
*/
for (i = 0; i < 5; i = i + 1) {
 xy_calcOff1_Y->v_out1[i] = xy_paramPool1_U->v_in1[i] +
 xy_ xy_paramPool1_ConstP.pooled1[(i)];
}

Appendix

Page XXXII

 Comparison of Standard C Library

integrations

Criteria Code Replacement Library Legacy Code

Simulation Behavior A Code Replacement Library replaces calls
in the code generation process. Only SIL or
PIL simulations modes, which compile the
actual Source Code, use the Cert Standard
C Library. Normal mode simulation
behavior may differ depending the Code
Replacement Library implementation.

All simulation modes already use the target
code (S-Function).

Limitations on the
Implementation of the
Cert Standard C Library

If there are target dependencies (e.g.,
endianness may differ between host and
target [31], or calls to RTOS, drivers,...),
Normal mode simulation works in any
case, since it does not use the
replacements. SIL simulation might fail.

S-Functions can only be compiled, if there
is no limiting target dependency and the S-
Functions are executable on the host

Replacement Flexibility The same block type can expand to
numerous different replacements
depending on its settings. For example, the
Trigonometric Function block works for
different input data types and dimensions
of the incoming signal.

Legacy S-Function block have strongly
typed interfaces. A variety of different
blocks is required to cover all use cases.
Calculations on multi-dimensional signals
of different length must be implemented in
wrapping loops.

Only the actual function calls are replaced,
but robustness code remains (e.g., an
asin generates robustness code around

the function). This may, depending on the
verification strategy, lead to unnecessary
or even dead code.

The S-Functions are independent blocks,
which do not generate additional
robustness code.

Blocks with combinations of settings, for
which no replacement exists, can be
simulated and code can be generated. The
call into the wrong library would be
detected late during compilation. However,
model checks can prevent invalid settings.

Only supported functionality can be used
by developer by definition.

Replacements affect the canonical shared
code. However, since in the chosen
approach canonical shared code is not
generated, this is not a true benefit.

No replacement in canonical shared code
(however, existing code is used anyway).

 Using S-Functions in SF blocks has not
further been investigated, but should be
checked for feasibility, if this is a necessary
requirement.

Verification SLCI:
Various limitations, but most mathematical
functions are covered [121, p. 2-26].

SLCI:
No limitations, as long as integration into
start and initialize functions is not required
[121, pp. 3–49f.].

SL Design Verifier:
Code Replacement Libraries do not affect
the analysis. Different behavior of the
replaceable may lead to wrong design
verifier results.

SL Design Verifier:
Can analyze legacy code with limitations.
If not analyzable, S-Functions must be
manually stubbed. Respective stubbing
functions must be provided.

Polyspace Bug Finder / Code Prover:
Works on generated code, and thus needs
the Code Replacement Libraries for
analysis.

Polyspace Bug Finder / Code Prover:
Works on generated code, and thus needs
the Code Replacement Libraries for
analysis.

 Appendix

 Page XXXIII

 Selected code generation settings

Setting Name and
Purpose

Chosen
Setting

Rationale

ReqsInCode

If enabled, copies
requirement information
into code.

Off If On, any minor change in the requirement would update the Source

Code, although the Design Model itself may not require a change.
This causes unnecessary overhead in terms of configuration
management, verification, or build automation.

In addition, direct traceability from code to HLRs is not necessary.
The code traces to the design and the design traces to the HLRs,
which is sufficient.

ExpressionFolding

Eliminates superfluous
local variables by creating
compound expression.

Off Reduces the number of local variables, but may result in long
compound expressions.
This may decrease traceability granularity (since all source block
traces are just listed above the long compound expression).
CompCert applies certain optimizations for the local variables, so
turning off superfluous expression folding did not come along with
heavy performance loses. In contrary, analysis for WCET analysis
were more accurate [37].

PortableWordSize

Generates code, which
compiles on platforms
with different word sizes.

On Required by SIL.

LocalBlockOutputs

Prefers local against
global block outputs.

On Although automatic code generators can better cope with global
variables than manual programmers, their occurrence shall be
minimized to reduce coupling.
Local block outputs are subject to CompCert optimization.

BufferReuse

Reuse local block output
variables.

If activated, local
variables storing block
outputs are reused for
different blocks.

Off Reuse of local block output may reduce the stack memory, but makes
the code hard to read and decreases robustness of the generated
code in case of changes. For example, a variable named by its first
usage may be reused all over the code. If the first usage renamed,
changes occur all over the code.

GlobalBufferReuse

Reuse global variables.

Off Cf. BufferReuse

GlobalVariableUsage

Determines whether the
code generator shall
prefer local or global
variables.

Minimize
global
data ac-
cess

Although automatic code generators can better cope with global
variables than manual programmers, their occurrence shall be
minimized to reduce coupling.

UseSpecifiedMinMax

Optimize code based on
signal ranges.

Off This option may automatically remove dead code and disguise design
errors.

CastingMode

Controls, how the coder
makes castings.

Standards Embedded Coder tries to generate MISRA C compliant casting.

Loop unrolling 2 The default value of 5 leads to partially unrolled loops in (3x3)x(3x1)
matrix-vector multiplications, which is an often used operation in
controllers. SLCI does not support partially unrolled loops.

Appendix

Page XXXIV

 Simulink Design Verifier model

preprocessing

There are some major challenges with using Design Verifier for the proposed safe modeling

subset, since in R2017b, a significant number of unsupported SL features and limitations exist

with Design Verifier [123, pp. 3-10ff].

The problems mainly involve constructs of the safe modeling subset, which allow the specifi-

cation of a narrow contract with signal ranges. As repetition, according to DR 11, inter-module

interfaces specifications can be wide, narrow and unconstrained (which is equal to wide con-

cerning ranges). There are explicit data flow interfaces realized with model references and

their Inport and Outport blocks in SL. And there are implicit data flow interfaces modeled with

Data Store Read/Write blocks. Furthermore, PDIs are a special case of parameters, which

have to be considered as non-constant with a narrow contract. MR 23 states, that only Sim-

ulink.Bus objects should have signal ranges and thus represent narrow contracts.

The only option to overcome the stated issues was a customization of model pre-processing.

Design Verifier performs a pre-processing anyway, e.g., it replaces model references with sub-

system blocks. So it is not a violation of the workflow.

Issue 1: In R2017b, the analysis always traverses a full model hierarchy. It cannot

be limited to certain levels. Thus, Design Verifier analyses are difficult to apply

in large models and no benefit is obtained from narrow interface specifications.

A subsystem analysis as shown in [198] is not a feasible approach, since it re-

quires intermediate signal ranges, which are not specified here (cf. MR 23).

The implemented solution stubs external units as depicted in Figure 110. Calls inside a unit

are not exchanged. The stub models are auto-generated and exchanged during block replace-

ment.

Figure 110: Stubbed unit

The stub models terminate all inputs and provide dummy output signals, which formally span

the whole specified range. The termination of inputs is possible, since Design Verifier already

proves properties, like the signal ranges, at the place, where the incoming signal is written.

 Appendix

 Page XXXV

Figure 111: Original model (A) and auto-generated stub model (B)

For example, from model A in Figure 111, the stub model B is generated. The process is not

so straight-forward as it seems to be due to the limited Simulink.Bus support of Design Verifier

in R2017b. Another problem to overcome is that an incoming signal, which is terminated with

the Terminator block, will be completely ignored in the Design Verifier analysis. This can be

avoided by connecting the incoming signal with a Proof Objective block telling Design Verifier

that the derived ranges are required. Note that property proving is a separate analysis mode

in Design Verifier and not executed. The only purpose of the blocks is to retain the signal.

Unfortunately, Proof Objective blocks need a scalar numeric input, and, in consequence, each

bus must be unfolded. The output replacement is similar to the replacement performed for data

stores and PDIs.

Issue 2: Tunable parameters are not considered as tunable by default in Design

Verifier analysis. They are constant without a dynamic range, which may lead to

incorrect results (here especially for PDIs).

Issue 3: Signal ranges specified in Simulink.Bus objects attached to Sim-

ulink.Parameter and Simulink.Signal objects (as required for Data Stores) are not

considered. For example, a value read from a Data Store field does not have the

signal range of the underlying bus data type.

For PARAMETER CONSTANT objects, the default behavior of Design Verifier fits, which assumes that

the values are invariant. For Constant blocks referencing a PDI and Data Store Read blocks,

the signal range must be “artificially” expanded. In principle, Design Verifier provides a special

configuration for tunable parameters [123, pp. 5-5f.]. In a separate file, the signal range can be

specified for Simulink.Parameter objects, but only for parameters of numeric type. Unfortu-

nately, Simulink.Parameter objects with Simulink.Bus data types are not supported in R2017b.

And there is no feasible way for Simulink.Signals used as data store.

The preprocessing in the implemented workaround thus replaces Data Store Read and Con-

stant blocks, which reference PDIs, with a block pattern supported by SLDV. Therefore, a

temporary numeric Simulink.Parameter object is generated for every element of the bus that

is read. If the output is of bus data type, a Bus Assignment block is used to compose these

Simulink.Parameter objects. For the temporary parameters of numeric type, a parameter con-

figuration file is created with the respective ranges.

Appendix

Page XXXVI

Figure 112 shows an example, in which a simple Constant block that reads a nested structure

from a PDI, is expanded to provide signal ranges for Design Verifier analysis. The respective

parameter configuration file is shown in Listing 13.

Figure 112: Example of SL Design Verifier signal range expansion

1
2
3
4
5
6
7
8
9
10

function params = a2_readPDI_sldv_param_init()
params = [];

% Parameters for model a2_readPDI
params.P_91c4b4a1_a55b_4461_986b_2a3cd4ba7c52 = [-50 50];
params.P_af9c7f91_9f73_4aab_9d6f_63255ade29b1 = [-Inf Inf];
params.P_5c5bd0a2_adae_4c0d_af4b_3d14ac01279b = [-Inf Inf];
params.P_50a109a7_61a9_40c3_bb6e_a0b72442e333 = [-88 88];

end

Listing 13: Example of SL Design Verifier parameter configuration file

According to MR 26, data stores shall only be written once and completely. If the data store is

of bus type, the written signal must be of bus type, too. In consequence, it must be built some-

where inside the model. For any writing of a bus, Design Verifier generates signal range ob-

jectives and proves them. A bus written into a data store can thus never violate the range

constraints, except if an unconstrained top-level input is directly fed into the data store. Since

unconstrained interfaces are subject to robustness testing, this will be revealed.

The transformations work for SL, but not for SF. Thus, PDIs and data stores shall not be used

in SF (cf. MR 26).

 Appendix

 Page XXXVII

 Simulation case development rules

In the following, simulation case development rules (SR) for SL Test in the sense of the

MBSwD process are given.

SR 1 – Simulation procedures

 Simulation procedures are documented in separate high-level documents.

Simulation and test procedures differ and must be exchangeable. In addition, the procedure is

typically identical for all test cases. Rierson notices the possibility to write “separate high-level

documents that explain, how to execute the test cases” [45, p. 208].

SR 2 – Simulation cases

A. Each simulation case shall consist of two parts:

 SL test case object in SL Test Manager (simulation/test case and pro-
cedure).

 Simulation/test case resources.

B. Simulink Test Manager files (SL test files) shall functionally group simulation
cases. Simulink Test Manager suites (SL test suites) inside SL test files may
be used for further hierarchical structuring.

Depending on the type of test, additional resources (like inputs, outputs, Simulink models,..)

are required to run the test.

Appendix

Page XXXVIII

SR 3 – Simulation case documentation

Simulation cases shall be fully documented in SL test cases as in Table 52.

Test Case Revision
History

In description of SL test case.

Test Author In description of SL test case.

Test Procedure Reference to applicable simulation/test procedure(s)

Identification of
Software Under Test

By section “System under test” and connected test harnesses.

Test Description In description of SL test case.

Requirements(s) Tested Documented in section “Requirements”.

Target Environment
Support

Add as tag
FULL-IMAGE
to indicate that this test can be executed on the full image of the
whole software (beyond MBSwD) in the target environment.

Test Category HIGH-LEVEL (derived from HLRs)
LOW-LEVEL (derived from LLRs)
or both

In case of a low-level test, a rational for its necessity shall be
provided.

Test Type Add as tag (exclusive)
NORMAL
ROBUSTNESS

Test Inputs Documented in section “Inputs”

Test Steps or Scenarios Parameter overwrites, configuration overwrites, inputs and
iterations describe the scenarios.
In Simulation Tests, assessment blocks contain a detailed
description of the steps.

Test Outputs Documented in section “Outputs”

Expected Results Simulation Test: Documented in the test model.
Baseline Test: Documented in section “Baseline Criteria”.
Equivalence Test: Documented by results of the compared
simulation.

Pass/fail Criteria Simulation Test: Defined by assessment blocks and
implementation.
Baseline Test: Defined by expected results and the tolerances
specified in section “Baseline Criteria”.

Table 52: Simulation case documentation

The criteria of Table 52 have been taken from Rierson [45] 9.6.5.2 and mapped to the features

of SL test cases.

Traceability is, as for Design Models, established with SimPol according to Figure 73.

 Appendix

 Page XXXIX

SR 4 – Traceability to HLRs

 A. The trace between a simulation cases and a simulation procedure (Polarion
work item) shall be established via surrogate linking.

B. Only SL test cases shall trace to HLRs (not test suites).

C. Every HLR shall trace to at least one simulation case.

D. A sufficient number of robustness and normal range test cases shall be derived
from HLRs.

SL Test can override a couple of simulation settings of the model under test, but not all. Un-

fortunately, SL Test does not distinguish between execution and test case settings.

SR 5 – Traceability to LLRs

 A. Simulation cases derived from LLRs should be avoided. Simulation and test-
ing objectives should be achieved with cases from higher-level requirements.

B. If a simulation case has to be derived from an LLR, the trace between a sim-

ulation cases and the part of the Design Model, from which it has been de-
rived, shall be established with the RMI directly (without SimPol).

C. Only SL test cases shall trace to LLRs (not test suites).

In some cases, it is inevitable to develop a LLR simulation case. These simulation cases per-

form low-level testing.

SR 6 – Simulation case execution settings

A. Model coverage settings shall be set on SL test file level and be inherited

from nested SL test suites or SL test cases.

 Record coverage for system under test and for referenced models.

 Selected coverage is execution, decision, and condition coverage.

B. Simulation mode shall be set to Normal.

The chosen model coverage criteria are discussed in section 8.2.9. Simulation cases must

always be executed in Normal mode to allow coverage recording. In addition, only Normal

mode provides availability of all diagnostics.

SR 7 – Testable units

 A. Only testable units shall be selected as simulation targets.

B. Inputs, outputs, intermediate values, and states must be testable.

Testable units are discussed in MR 6.

Appendix

Page XL

SR 8 – Simulation signal recording

 A. States, data store values, and outputs of the models under test shall be rec-
orded for equivalence testing. If these signal values are sufficient for equiva-
lence testing, additional signal logging shall be activated.

B. Recorded simulation outputs shall have identifiable and understandable
names.

Test cases in SL Test do not record outputs by default. For example, a test harness model as

depicted in Figure 113 verifies outputs implicitly in the Test Sequence block.

SR 9 – Simulation output recording

 Test in SL Test shall comply with the tool operation requirements specified in the
MathWorks tool qualification kit.

The tool qualification kit for Simulink Test imposes some restriction on the usage of SL Test,

e.g., it only supports Intersection and Union modes for synchronizing time vectors and just

the alignment of data vectors (Interp) in Zoh mode [199].

SR 10 – Recommended test harness models

 A. The SL test harness feature should not be used. Test harnesses should be
independent models.

B. Model variants should be used for switching between the different simulation
modes (Normal, SIL, and PIL).

C. In SIL and PIL mode, the code interface of the model reference under test
should be set to Top Model for top-level models, and Model Reference for

all other models.

D. Test harness models should use the base workspace as global workspace.

E. Test harness models should have a separate configuration set. The configu-
ration set should match the test case settings in SL Test, but also further de-
tail e.g., coverage settings.

It is recommended to control the simulation mode not via the test case, but in the model block

properties of the test harness, since in R2017b, the simulation mode cannot be switched with-

out tainting the test case. To avoid tainting the test harness itself, the model block can be

placed in a model variant subsystem (one for each simulation mode, Figure 113). The simula-

tion mode can then be easily switched by changing a parameter in the workspace. Second

argument for this implementation is the fact that the code interface must be specified (top

model or model reference) for SIL (Figure 114). This cannot be done in the test case. If the

code interface is not correctly set, code is regenerated and not the final product code is simu-

lated.

 Appendix

 Page XLI

Figure 113: Test harness model with simulation mode variants

Figure 114: SIL code interface setting of model block

Test harnesses are a practical feature, but are not compatible with the proposed model variant

implementation in R2017b. Manually created test harness models have a little bit less automa-

tion in case of interface updates, but fulfill the same purpose.

In addition, it is also reasonable that a test harness model does not use one of the data dic-

tionaries of the Design Model to avoid tainting them unnecessarily. It should reference the base

workspace. In consequence, it also requires a separate testing configuration set. Here, the

top-level configuration set has been used with additional settings concerning coverage (im-

portant is that the settings match the test case settings, otherwise compilation errors could be

observed).

Appendix

Page XLII

 List of artifacts

This section provides a list of artifacts, which the author has created during this work.

Process Documentation

 Software Verification Plan Template

 Code Standard Document Template

 Naming Convention Document

 Documented design rule set

 Documented module design rule set

 Documented fundamental modeling rules

 Documented traceability rules

 Documented simulation testing rules

 Traceability matrix from DO-178C to design rules to module design rules, traceability, and coding rules

Modeling environment

 SL model and code generation configuration settings for different model types

 DO-331 Foundation Library

 SECI List

 Code Generation Templates

 Prepared canonical shared code

 Code Replacement Libraries

 Legacy Code blocks for floating-point special quantity support

Jobs in the process-oriented build tool (MATLAB code) and related artifacts

 Jobs to set up the environment

o Job to check SLECI

o Job to check installed bug fixes

o Job to register Embedded Coder target extensions

o Job to setup DO-331 Foundation Library

o Job to load configurations

o Job to setup model advisor, default configuration, and custom checks

o Job to setup RMI and preferences

o Job to setup SL file generation control

 Job for generation of modular code and verification

 Job for shared code generation

o Hooks for code generation

 Job to execute static model analysis, evaluate results, and create report

o Custom model checks

o Custom model check configuration

o Project deviation document for static model analysis

 Job to execute static module analysis, evaluate results, and create report

o Selection of custom module checks

o Custom module check configuration

 Job for model review and review list generation

 Job for traceability review and review list generation

o Templates for bottom-up and top-down traceability review lists

 Job to execute design error detection, evaluate results, and create report

o Extended pre-processing algorithm for Simulink Design Verifier

 Job for simulation case & result review and review list generation

 Job to execute simulation cases and evaluate results

 Job to execute model coverage assessment (incl. aggregation) and evaluate results

 Appendix

 Page XLIII

 Job to execute automatic code review, evaluate results, and create report

 Job to execute static code analysis for compliance checking, evaluate results, and create report

o Polyspace check selection

o Polyspace analysis options

o Project deviation document for static code analysis

o DRS post-processing algorithm

 Job to execute static code analysis for error detection, evaluate results, and create report

 Job to assemble code review list

 Job to execute simulation cases, perform equivalence checking, and evaluate results in SIL

 Job to execute structural coverage assessment (incl. aggregation) and evaluate results

Complete software tools

 Tool to manage ICDs and auto-generate framework code for the MBSwD

 Contribution in PIL framework

 SimPol

 Process-oriented build tool mrails

	1 Introduction
	1.1 Background
	1.2 Objective and motivation
	1.3 Scope
	1.4 Structure of the thesis
	1.5 Contributions
	1.5.1 Modular development process (part 1)
	1.5.2 Modeling framework for safety-critical MBSwD in SL/SF
	1.5.3 Traceability rules and tooling
	1.5.4 Process-oriented build tool and process automation
	1.5.5 Modular development process (part 2)

	2 Fundamentals
	2.1 Certification basis
	2.2 ARP-4754A system development process
	2.3 DO-178C
	2.4 DO-331
	2.5 DO-333
	2.6 DO-330 Tool qualification
	2.7 Model-based design and software development

	3 Project context
	3.1 MBSwD as embedded process
	3.2 Hardware
	3.3 Software components
	3.4 Summary of assumptions

	4 Modular development process (part 1)
	4.1 Objective
	4.2 State-of-the-art
	4.3 Structure
	4.4 Software Life Cycle
	4.4.1 Model usage
	4.4.2 MBSwD process breakdown
	4.4.3 Modular code

	4.5 Development Processes
	4.5.1 Requirements Process (R)
	4.5.2 Design Process (D)
	4.5.3 Coding Process (C)

	4.6 Verification Processes
	4.6.1 Review and analysis of Design Process
	4.6.2 Review and analysis of Coding Process
	4.6.3 Model simulation and testing
	4.6.3.1 Model simulation
	4.6.3.2 Review and analysis of model simulation / model coverage
	4.6.3.3 Testing
	4.6.3.4 Test coverage
	4.6.3.5 Test frameworks
	4.6.3.6 Tasks

	4.6.4 Data coupling and control coupling analysis
	4.6.5 Complete testing approach

	5 Modeling framework for safety-critical MBSwD in SL
	5.1 Objective
	5.2 State-of-the-art
	5.3 Structure
	5.4 Design rules
	5.4.1 Summary of rules
	5.4.2 Conformance
	5.4.3 Compliance
	5.4.4 High-level architectural design
	5.4.4.1 Software modules
	5.4.4.2 Software units and module data
	5.4.4.3 Module interfaces
	5.4.4.4 Component interfaces
	5.4.4.5 Library modules
	5.4.4.6 Parameter Data Items
	5.4.4.7 Error handling strategy

	5.4.5 Accuracy and consistency
	5.4.6 Algorithm aspects
	5.4.7 Traceability
	5.4.8 Target compatibility
	5.4.9 Verifiability

	5.5 Coding rules for code generation
	5.6 Module design rules
	5.6.1 Summary of rules
	5.6.2 Naming convention
	5.6.3 High-level architectural design
	5.6.3.1 SW Design overview
	5.6.3.2 Design Model
	5.6.3.3 Modules
	5.6.3.4 Units
	5.6.3.5 Module architecture
	5.6.3.6 Model data

	5.6.4 Detailed design
	5.6.4.1 SL models
	5.6.4.2 SL container primitive usage
	5.6.4.3 Private library
	5.6.4.4 Module interfaces
	5.6.4.5 SL atomic primitives
	5.6.4.6 SL atomic primitive restrictions
	5.6.4.7 Model data
	5.6.4.7.1 Buses
	5.6.4.7.2 Safe enumerations
	5.6.4.7.3 Constants and Parameter Data Items
	5.6.4.7.4 Signals

	5.6.5 Implementation of DO-178C concepts
	5.6.5.1 Quality restrictions
	5.6.5.2 DO-331 Model Elements not contributing to LLRs and Software Architecture
	5.6.5.3 Noncovered design
	5.6.5.4 Algorithm correctness
	5.6.5.5 DO-331 Model Element Libraries

	5.7 Fundamental modeling rules
	5.8 Modeling environment
	5.9 Summary and outlook

	6 Traceability tooling and rules
	6.1 Objectives
	6.2 State-of-the-art
	6.3 Structure
	6.4 SimPol
	6.5 Traceability rules
	6.5.1 Summary of rules
	6.5.2 RMI settings
	6.5.3 Requirement allocation to modules
	6.5.4 Traceability to higher-level requirements
	6.5.5 Derived LLRs

	6.6 Summary and outlook

	7 Process-oriented build tool and process automation
	7.1 Objective
	7.2 State-of-the-art
	7.3 Structure
	7.4 Process-oriented build tool
	7.4.1 Application life cycle
	7.4.2 Implementation Overview

	7.5 Standardized implementation of build jobs
	7.5.1 Process notation
	7.5.2 Job execution standardization
	7.5.3 Job result standardization
	7.5.4 Justification workflows
	7.5.5 Evidence generation

	7.6 Summary and outlook

	8 Modular development process (part 2)
	8.1 Development tasks
	8.1.1 SwDP-DP-MB 6 – Assembly of Design Description
	8.1.2 SwDP-CP-MB 1 –Modular source code
	8.1.2.1 Reuse of existing code from other modules
	8.1.2.2 Shared code
	8.1.2.3 Final code generation workflow
	8.1.2.4 Code archival
	8.1.2.5 Standard C Library
	8.1.2.6 Code generation settings

	8.2 Verification tasks
	8.2.1 SwVP-DP-MB 1 – Static model analysis
	8.2.2 SwVP-DP-MB 2 – Static module analysis
	8.2.3 SwVP-DP-MB 3 – Model review
	8.2.4 SwVP-DP-MB 4 – Traceability review and analysis
	8.2.5 SwVP-DP-MB 5 – Design error detection
	8.2.6 SwVP-DP-MB 6 – Simulation / test procedure and case development
	8.2.7 SwVP-DP-MB 7 – Simulation / test case and procedure review
	8.2.8 SwVP-DP-MB 8 – Simulation testing & result review
	8.2.9 SwVP-DP-MB 9 – Model coverage assessment
	8.2.10 SwVP-CP-MB 1 – Automatic code review
	8.2.11 SwVP-CP-MB 2 – Static code analysis for standard compliance
	8.2.12 SwVP-CP-MB 3 – Static code analysis for error detection
	8.2.13 SwVP-CP-MB 4 – Code review
	8.2.14 SwVP-CP-MB 5 – Code proving
	8.2.15 SwVP-CP-MB 6 – SIL testing & result review
	8.2.16 SwVP-CP-MB 7 – SIL structural coverage assessment

	8.3 Summary and outlook

	9 Conclusions
	10 References
	Appendix A Review and analysis of data coupling and control coupling
	Appendix B Coding rules for code generation
	Appendix C Code generation examples
	Appendix C.1 Example 1: Context-dependent reusable subsystems
	Appendix C.2 Example 2: Global signals in reusable models
	Appendix C.3 Example 3: Parameter pooling

	Appendix D Comparison of Standard C Library integrations
	Appendix E Selected code generation settings
	Appendix F Simulink Design Verifier model preprocessing
	Appendix G Simulation case development rules
	Appendix H List of artifacts

