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Abstract

The avoidance of adverse weather is an important safety-relevant task in aviation. Auto-
mated avoidance can help to improve safety and profitability in manned and unmanned
aviation. For this purpose, the Model Predictive Trajectory Planner (MPTP) is intro-
duced, which is aimed at solving single-source-single-target motion planning problems
amid moving obstacles. The functional principle is explained and tested in scenarios
with time-varying polygonal obstacles, based on external thunderstorm nowcast. The
presented resolution-complete combinatorial planner uses deterministic state sampling to
continuously provide globally near-time-optimal trajectories for the predicted case. Inher-
ent uncertainty in the prediction of dynamic environments is implicitly taken into account
by a closed feedback loop and explicitly by bounded margins. The planner is able to an-
ticipate and avoid future obstacles, while flying inside a restricted mission area. The
computed trajectories are time-monotone and meet the nonholonomic turning-flight con-
straint of fixed-wing aircraft and therefore do not require postprocessing. Furthermore,
the planner is capable of considering a time-varying goal and automatically plan holding
patterns. Besides of the application for weather avoidance, it is suitable for all kinds of
nonholonomic planning problems in the presence of nonlinear moving obstacles, whose
motion cannot be described analytically. Due to its deterministic, reliable and robust
properties, the MPTP provides optimum preconditions for a certification.





Zusammenfassung

Die Vermeidung schlechten Wetters ist eine wichtige, sicherheitsrelevante Aufgabe in
der Luftfahrt. Eine automatische Wettervermeidung kann dazu beitragen, die Sicher-
heit und Kosteneffizienz, sowohl in der bemannten als auch in der unbemannten Luft-
fahrt, zu steigern. Zu diesem Zweck wird der Model Predictive Trajectory Planner
(MPTP) vorgestellt, der darauf ausgelegt ist Flugbahnen für sog. single-source-single-
target-Probleme mit bewegten Hindernissen zu planen. Es wird das Funktionsprinzip
vorgestellt und in verschiedenen Szenarien, mit zeitvarianten Gewittern getestet, deren
Daten von einer externen Gewittervorhersage stammen. Der auflösungsvollständige, kom-
binatorische Planer verwendet eine deterministische Zustandsabtastung, um kontinuier-
lich global nah-optimale Trajektorien für den erwarteten Fall zu berechnen. Die imma-
nente Unsicherheit bei der Vorhersage dynamischer Umgebungen, wird implizit durch
eine geschlossene Rückkopplung und explizit durch diskrete Sicherheitsmargen berück-
sichtigt. Bewegte Hindernisse können vorausschauend vermieden werden, ohne dabei ein
vorgeschriebenes Missionsgebiet zu verlassen. Geplante Trajektorien sind zeitmonoton
und berücksichtigen die nichtholonomen, dynamischen Beschränkungen eines Flächen-
flugzeugs. Daher benötigen diese auch keinerlei Nachbearbeitung. Außerdem ist der
Algorithmus in der Lage, ein zeitveränderliches Ziel vorauschauend anzusteuern und au-
tomatisch Warteschleifen zu planen. Neben der Wettervermeidung, kann die vorgestellte
Planungsmethode auch auf andere Arten von nichtholonomen Planungsproblemen an-
wendet werden, bei denen die nichtlineare Dynamik der Hindernisse nicht analytisch
beschrieben werden kann. Dank seiner deterministischen, robusten und zuverlässigen
Eigenschaften bringt der MPTP optimale Voraussetzungen für eine Zulassung mit sich.
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Chapter 1

Introduction

The avoidance of adverse weather is an ever-present and safety-relevant task in manned
and unmanned aviation. Approximately every fifth accident in commercial aviation and
every fourth in general aviation is related to adverse weather [1, 2]. In particular thunder-
storms and its surroundings are dangerous, as turbulence, gusts, wind shear, lightning,
hail and icing may occur. How elaborate weather avoidance can be, is best illustrated
by High Altitude Pseudo-Satellites (HAPS), which are a class of especially vulnerable
fixed-wing aircraft [3]. Their relatively low weight and low performance increase the
vulnerability to adverse weather [4]. So far the operation of these aircraft requires a con-
siderable amount of manual effort in mission planning and execution. A large part of
the incurring tasks are related to tactical flight planning based on external meteorological
information, as some aircraft are not equipped with an onboard weather radar. For this
purpose, pilots and meteorologists have to consider a large amount of information all at
once, for example actual and future aircraft states, airspace restrictions and time-variant
forecasts under consideration of their uncertainty. However, memory capacity of humans
is usually limited to 7±2 chunks of information [5], which is clearly insufficient to make
optimal use of the available information. In complex scenarios with moving obstacles
this shortcoming is partially compensated by applying quasi-static planning: Moving ob-
stacles are avoided by an imaginary static radius of action plus an additional margin to
account for uncertainty. This method works well when the aircraft moves fast in relation
to the obstacles. However, convective weather has a high rate of change and quasi-static
avoidance is prone to causing reactive flight guidance. Reactive trajectories are subopti-
mal in terms of safety, mission accomplishment and energy consumption. For unmanned
aircraft a loss of link in both line-of-sight and beyond-line-of-sight communication is a
potential incident. The ability to continue flight in these situations, at least for a short

1



1.1 Objectives

period of time, enhances their level of autonomy and safety. The intrinsic complexity
of anticipatory trajectory planning in uncertain dynamic environments calls for an au-
tomated solution. The consideration of kinematic and dynamic constraints further raise
the complexity of the motion planning task [6, 7]. The kinematic constraints are to avoid
time-varying thunderstorms, above a specified radar reflectivity threshold, while staying
inside a restricted mission area. The exact solution of this kind of planning problem is
considered to be NP-hard [8]. To overcome this hardness and find a near-optimal trajec-
tory in reasonable time, the complex avoidance task is simplified to a geometric problem
and is solved by combinatorial motion planning, for which comprehensive summaries can
be found in [9, 10].

1.1 Objectives

The following list contains the objectives of this thesis. Several boundary conditions make
the present planning task very demanding.

1. Feasible Anticipatory Avoidance of Time-varying Thunderstorms

The main objective of this thesis is the development of an automated motion plan-
ning algorithm for unmanned aircraft, which computes feasible trajectories that pre-
sciently avoid obstacles with time-varying shape and position, e.g. thunderstorms.
A collision-free trajectory, which is a path parameterized by time, has to lead from
a start state to a goal state. Since the aircraft’s velocity and its rate of change are
finite and constrained, in both lateral and vertical direction (nonholonomic system),
a planned trajectory has to be curvature-constrained.

2. Fast, Reliable Computation of Near-optimal and Reproducible Results

Planned trajectories have to be optimal or near-optimal with respect to the belief
about the future weather situation. It is intended that results are reproducible, as
this is advantageous regarding a possible certification. This requires a deterministic
property of the planner. The planning algorithm is intended for online-application,
which implies that solutions have to be found in a short amount of time. For this
purpose, a safety guarantee or probability that the planner’s worst case execution
time (WCET) complies with a permissible limit value has to be determined. Fur-
thermore, reliability and a high success rate are essential. In case that no trajectory
can be computed, a fallback planning solution is required, to ensure the aircraft’s
ability to act and to perform a safe flight at all times.

2



Chapter 1: Introduction

3. Consideration of Uncertainty in External Environmental Information

The planner has to be able to plan safe trajectories solely relying on information
about actual and future obstacles, provided by an external source, i.e. thunderstorm
nowcast with a coarse update rate of five minutes. The external prediction regarding
position and shape of thunderstorms is subject to considerable uncertainty, which
has to be regarded for motion planning.

4. Consideration of a Mission Area and Prescribed Safety Margins

For both civil and military operations, it is equally important that an aircraft stays
exclusively in an assigned mission area and avoids, for example densely populated
regions, restricted areas or national territory. Therefore, computed trajectories have
to be exclusively located within a permitted area. Furthermore, they have to comply
at any time with the recommended lateral clearance to thunderstorms, for example
given by the Federal Aviation Administration.

5. Verification of the Motion Planning Algorithm

Finally, the basic applicability of the presented planner to the weather avoidance
task has to be verified.

1.2 State of the Art

In the context of aviation, weather avoidance and conflict resolution with other aircraft
frequently go hand in hand. Many approaches are aimed at the automation of air traffic
control and management tasks. In most cases weather avoidance is the task to circum-
navigate thunderstorms, represented by static obstacles [11, 12, 13]. However, the interest
is increasingly shifting towards the consideration of time-variant and uncertain adverse
weather. An intermediate step is presented in [14], where a nonlinear model predictive
control algorithm is presented, which solves conflicts between aircraft through convective
weather by computing sets of locally optimal trajectories. Although the thunderstorms
are static, the dynamic of the weather is considered by recurrent replanning. This ap-
proach is further developed in [15] by considering dynamic thunderstorm nowcast, which
is represented by time-varying ellipses. A hierarchical approach with a receding horizon
framework is presented, which uses an optimal control formulation. A high-level planner,
which uses a low-fidelity aircraft model, regularly computes locally optimal trajectories,
which simultaneously avoid time-varying obstacles and other aircraft. In [16] a stochastic
optimal control approach for motion planning amid time-varying thunderstorms can be
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found. A finite-horizon reach-avoid problem formulation [17] is applied to maximize the
probability for one aircraft of reaching a given point, while avoiding stochastic obstacles
under the consideration of uncertainties. Due to the curse of dimensionality [18] this kind
of approach is unsuitable for fast computation of problems with high degrees of freedom.
In summary, in the subject area of weather avoidance obstacles are frequently treated as
static and their spatial extension is large to very large.

In contrast, in the extensively researched field of sense and avoid (SAA), obstacles
typically represent other aircraft, which are dynamic but small in size and invariant in
shape. The considered planning scopes are shorter than for weather avoidance and the
focus lies mostly on reactive avoidance. Comprehensive summaries on this topic can
be found in [19, 20]. The components of a SAA system are sensing, conflict detection,
collision avoidance and flight control. In typical scenarios the runtime for the computation
of a feasible trajectory is particularly critical. For the purpose of collision avoidance
commonly geometric [21, 22], potential field [23, 24], sampling-based [25, 26] and numerical
optimization [27, 28] approaches are applied [20]. Some methods, which are suitable for
motion planning amidst moving obstacles, are discussed later in this section. At this point
it is noted that in the field of weather avoidance, research is mostly carried out with static
and large obstacles, while for collision avoidance the obstacles are mainly dynamic and
small. This thesis fills a scientific gap, as it examines the scarcely researched avoidance
of large dynamic obstacles.

The states of a nonholonomic system depend on the path taken to achieve them [29].
As a fixed-wing aircraft is an underactuated system, whose differential constraints are not
analytically integrable, it is a nonholonomic system [10]. Its course change in turning-
flight is proportional to the velocity (time derivative of the position). Therefore, it is not
trivial to plan an optimal sequence of motion between configurations. While the rate of
course change is constrained the space of possible configurations is not. This can be seen
from the fact that a fixed-wing aircraft can reach every position in space, although it is
not able to fly directly up- or sidewards. Considering nonholonomic constraints raises
the complexity of motion planning [7] and is referred to as nonholonomic planning. If in
addition the acceleration of a system is bounded, motion planning is far more complicated
[10]. Problems which include differential constraints on the configuration, e.g. bounds on
velocity, acceleration and external forces, are referred to kinodynamic planning [7]. Ac-
cording to [9] a kinodynamic motion planning problem is a nonholonomic motion planning
problem, where a trajectory within a domain is computed that minimizes a scalar cost
function, i.e. the total time to move from an initial state to a goal state, and is subject to
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bounds on the allowed acceleration and velocity along the path. As a direct consequence,
a solution has to be computed considering time as dimension. In the so called 2D asteroid
avoidance problem, a collision-free trajectory for a point has to be determined, which
moves in a plane with bounded speed. Obstacles are represented by convex polygons,
which can exclusively move at constant velocity and do not collide. The exact solution of
this problem is considered to be NP-hard [8].

Motion planning in real dynamic environments is generally subject to uncertainty in
state sensing, state predictability, environment sensing and environment predictability
[30]. This uncertainty can be considered explicitly, by applying bounded or probabilistic
uncertainty, and implicitly via closed loop feedback strategies [10]. As dynamic envi-
ronments do constantly change, associated information gets outdated. This imposes a
real-time limitation on the motion planning, which is called decision time constraint. In
a highly dynamical environment it may not be possible to find a complete or optimal
trajectory in an allotted time interval, in which case partial planning can be applied [31].

The avoidance of adverse weather is basically a motion planning problem in the pres-
ence of time-varying obstacles, for which encompassing information is found in [10]. Mov-
ing obstacles entail several constraints for motion planning. Regarding kinematics they
constrain the set of possible states (configurations at a certain point in time). In order
to compute an optimal avoidance, instead of a geometric path, a trajectory has to be
computed, which is a sequence of coordinates parameterized by time [10, 32].

For this purpose, the concept of configuration space and state space can be applied
[10]. The configuration q of an aircraft is a combination of its degrees of freedom that
for example can be composed of x-, y-position and course χ, which gives q = (x, y, χ).
The configuration space C, with q ∈ C, is the set of all possible configurations or rather
transformations that can be applied [10]. The concept was introduced by [33, 34] and
is widely used for path planning in static environments. It enables the solution of very
different planning problems using the same algorithms [10]. When dealing with moving
obstacles, reactive planners use the static C-space to perform replanning whenever the
environment changes [35, 36]. For anticipatory trajectory planning in the presence of
moving obstacles, time has to be added to the C-space, which is called state space (X-
space). Even two dimensional motion planning problems are difficult to solve as the
dimensions are raised from two to three [9]. A trajectory in this case is a path, that
is parameterized by monotonically increasing time and is compliant with kinematic and
differential constraints of the aircraft. Time-dependent configurations are called states
x, for example x = (x, y, χ, t) with x ∈ X [10]. To compute optimal trajectories in
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the presence of time-varying obstacles, under consideration of nonholonomic constraints,
motion planning has to be performed in the state space X. Based on a knowledge or an
estimate about the future obstacles, a sequence of states leading from start state to goal
state can be determined. Different motion planning methods that are able to deal with
moving obstacles are presented in the following.

For combinatorial motion planning the free search space is explicitly represented by
a connectivity graph/roadmap in a first step, which can be very costly. The discrete
topology, for example visibility graph, Voronoi diagram, exact or approximate cell de-
composition, is subsequently searched for an optimal solution. In most exact planning
problems the time complexity is exponentially related with the dimensions of the config-
uration space [37]. The upper bound for the complexity of exact motion planning in a
three-dimensional dynamic environment is given by a general algorithm, which uses exact
cell decomposition, with a time complexity that is twice exponential in the dimension
of the configuration space [38]. Canny [6] later introduced a roadmap algorithm where
time complexity is singly exponential in its configuration space dimension. Generally, the
explicit representation of the search space limits the application of combinatorial methods
to problems with low degrees of freedom, i.e. the number of necessary variables to specify
x [10]. Nonetheless, combinatorial planning offers desirable properties like optimality,
completeness and repeatable results which can be important for certification. In [39]
a practical combinatorial planning method to compute time-optimal trajectories in the
presence of moving obstacles is presented that uses a visibility graph representation of the
search space. The algorithm is furthermore capable to deal with a moving goal. In [40]
a heuristic search algorithm is presented, which computes safe time-minimal trajectories
amidst unpredictably moving obstacles, i.e. growing discs.

Sampling-based motion planning algorithms are extremely popular due to their ability
to quickly find feasible trajectories in X-space, for problems with high degrees of freedom
and complicated constraints [41]. LaValle created the basis for effective sampling-based
motion planning by introducing the rapidly-exploring random tree algorithm (RRT) in
[42]. The fundamental idea is to avoid the aforementioned explicit representation of
the configuration space, by using random samples. Rooted in a start node, the algorithm
incrementally grows a tree of feasible trajectories, until a node is in a specified goal region.
A drawback of RRT is that the existing node sequence is not updated, even if between start
to goal a better one exists. This shortcoming was addressed by [43], who introduced RRT*.
There are numerous further developments, for which a comprehensive summary can be
found in [44]. Examples for kinodynamic planning in the presence of moving obstacles can
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be found in [45, 46, 47]. In general, sampling-based methods have difficulties with narrow
passages, as the likelihood for a sample being in free space decreases. Furthermore, if
no system simulation module (local planner) is used, trajectories tend to be jagged and
therefore require postprocessing, e.g. using B-splines, Bézier curves or clothoids [44]. If
random samples are used, algorithms are probabilistically complete. This means that if
a trajectory exists and the number of samples approaches infinity, the probability to find
a trajectory converges to one.

Finite difference motion planning is also capable to deal with moving obstacles. The
fast marching method (FMM) allows an approximate solution of the isochronous level sets,
using a finite-difference method, which can be solved in a fast manner in two or three
spacial dimensions, using the eikonal equation by [48] that accordingly to the Fermat’s
principle describes the shortest path between two points separated by optical media. In
[49] a finite difference motion planning approach is introduced. A front propagates amidst
moving obstacles traveling with bounded velocity. A trajectory is generated from an
initial state to the goal state by using the vector field of the expansion wave and the state
space equation of the system. The time-optimal trajectory is determined by backtracking.
Compared to analytic solutions the discretization in the standard FMM leads to travel-
time errors, which can be substantially reduced by applying a multistencil method [50].
Nonholonomic constraints cannot be considered directly, however, they can be modeled
by penalizing curvatures, as proposed by [51]. The FMM is resolution-complete, near-
optimal and generates smooth trajectories. Furthermore the anisotropic FMM is able to
consider vector fields, for example wind.

1.3 Research Contributions

In this thesis, a deterministic combinatorial motion planner, called model predictive tra-
jectory planner (MPTP), is introduced. Partial results of this work have been published
in [52]. Under the assumption that the velocity and angle of climb of the aircraft are at
least piecewise constant, collision-free, time-monotone, near-time-optimal and curvature-
constrained trajectories from start xs to goal state xg are computed. Global optimization
is performed by a heuristic search, i.e. A*-search algorithm [53]. For fast and reliable
convergence of the planner, the X-space is iteratively built and its growth is curbed by a
novel heuristic function, which effectively reduces the depth of search.

In the presented setup, motion planning is based on external environmental predic-
tion, i.e. thunderstorm nowcast. Motion planning in the real-world is generally subject
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to uncertainty in environment predictability [10]. This immanent uncertainty is explic-
itly modeled by the prediction unit, using different types of discrete margins. Based on
the latest information available, the MPTP plans anticipatory trajectories, avoiding ar-
bitrary moving obstacles, by iterating between its prediction and optimization unit. The
aforementioned uncertainty is furthermore implicitly considered by a closed loop policy,
similar to a model predictive controller. Recurrent replanning in regular intervals enables
a reactive avoidance. Therefore, the MPTP concept combines anticipatory and reactive
planning, which improves the chances for success even in environments with considerable
uncertainty. The research contributions of this thesis are summarized subsequently.

1. Estimated Future Conflict Areas and Estimated State Space (Section 3.3)
Using the fundamental concept of configuration space [33, 34], obstacles are trans-
formed to an obstacle region, which is a set of configurations, where the system is
in collision. This can be done by explicit sampling, which is an established method
for the avoidance of obstacles [37]. Sampling-based planners use deterministic or
random samples in conjunction with a collision detection to determine invalid con-
figurations in C-space and invalid states in X-space [42, 41].
Contribution: Exploiting the property that a shortest trajectory will always pass
tangentially by an obstacle, this thesis demonstrates that it is safe and sufficient to
identify radial state samples, propagated from an initial state, which are in colli-
sion with moving obstacles. Time-varying thunderstorms are transformed to static
obstacles by superposition of estimated future aircraft states (from an initial state)
with their contemporaneous prediction (including uncertainty). The generation of
a state space by superposition of motion estimates, under consideration of uncer-
tainty, has not yet been implemented in this form. A set of state samples, in which
the aircraft is estimated to be in collision with thunderstorms, is called estimated
conflict area (ECA). The free estimated state space (EXfree) is the difference of a
workspace (mission area) and the set of estimated conflict areas. The assessment
of future conflicts from an egocentric perspective, provides the basis for a fast and
reliable computation of anticipatory trajectories in dynamic environments, using a
combinatorial motion planning approach. As the problem space is reduced by the
temporal dimension, moving obstacles can be avoided by solving a set of geometric
problems.

2. Matrix Computation of Visible Tangent and Bitangent Edges (Section 4.1.2)
The determination of tangent edges, between a point and vertices of polygons, and
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bitangent edges, between vertices of polygons, for the construction of a reduced
visibility graph was investigated by several authors including [54, 55, 10].
Contribution: A novel method for the computation of tangent and bitangent edges
is introduced that exclusively uses matrix operations and logical indexing, which
can reduce execution times considerably. At the same time, the convex vertices of
obstacles are determined, leading to a new and less concave form of the obstacles
and consequently to a lower number of edges for intersection tests. Furthermore,
a new method is introduced which allows to determine the visibility of the afore-
mentioned edges, solely by counting the number of their intersections with obstacle
edges. By using information from the matrices, which are used to identify tangent
and bitangent edges, the method is able to deal with geometric degeneracies, i.e.
collinearity. In this way, a reduced visibility graph V Gr can be computed. In-
vestigations regarding the branching factor (mean number of connected vertices) of
reduced and unreduced visibility graphs, exhibit a considerable advantage regarding
a subsequent A*-search.

3. Partial Shortest Path Map (Section 4.1.2, 4.3.1 and 4.3.2)
A roadmap in form of a visibility graph can be searched in order to compute a
shortest path. However, the construction of a complete visibility graph has a lower
bound in big Omega notation [56] (lower bound for the time-complexity of a func-
tion) of Ω(|V |2) or Ω(|E|), where |V | is the total number of obstacle vertices and
|E| is the resulting number of edges in the visibility graph [57]. To speed up the
search for a shortest path, the idea is to omit the construction of a separate visibility
graph and to build a partial shortest path map (SPM) instead [9]. The continuous
Dijkstra paradigm by [58] is an effective approach to compute a SPM that runs in
O(|V | log |V |). However, existing sophisticated algorithms by [59, 60] are difficult to
implement, due to complex data structures and techniques [61]. The fast marching
method (FMM) [62], which is closely related to Dijkstra’s algorithm and runs in
O(|V | log |V |), can also be applied.
Contribution: If, as in the present case, solely the shortest path to one point is
to be generated, even more computational effort can be saved by computing the
introduced partial shortest path map (PSPM). While both the continuous Dijkstra
and FMM visit the complete environment, the presented approach uses exclusively
visible tangent edges in combination with an informed search algorithm, i.e. A* with
Euclidean distance heuristic, whereby the expansion of the search is automatically
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curbed. A tree rooted in the start vertex is iteratively built, which results in a par-
tial shortest path map, amidst static obstacles, or partial shortest trajectory map
(PSTM), amidst moving obstacles. The presented algorithm for the computation
of visible tangent edges runs in O(|V | log |V |) and space of O(|V |), where |V | is the
number of vertices in the free estimated state space. This is repeated until a visible
connection between start and goal is established. The search is complete and finds
the shortest path or trajectory, if a consistent heuristic function is applied.

4. A*-Search in Dynamic Environments - Partial Shortest Trajectory Map

(Section 4.2.2)
For planning in partially known environment with moving obstacles, the A*-search
is applied in combination with a replanning policy, which means that the search is
performed on static obstacles in C-space, and their motion is considered by replan-
ning, e.g. focussed D* algorithm [35] and anytime A* for dynamic environment [63].
The A*-search has been applied for planning in the presence of moving obstacles,
for example in [40].
Contribution: Here, an iterative A*-search in estimated state spaces (EX) is pro-
posed, until the visibility from start to goal state is established, which results in a
partial shortest trajectory map (PSTM) of the dynamic environment. Furthermore,
the omission of certain queries in the A*-search algorithm is proposed for the special
case of a completely dynamic environment (no static obstacles), which can improve
the runtimes, at a low risk of sacrificing optimality. Correctness and optimality of
the presented approach are demonstrated, by comparing the results with Dijkstra’s
algorithm, which is guaranteed to be optimal. In order to consider nonholonomic
constraints, the open list of the A*-search stores various state information, for ex-
ample course angle, bank angle and time of arrival, which are used to determine
feasible/reachable states.

5. Heuristic for A*-Search in Dynamic Environments (Section 4.3.3)
In order to assess the total cost from start to goal, the A*-search requires a heuristic
estimate about the actual cost to the goal. One of the most commonly applied
heuristics is the Euclidean distance, which neglects obstacles and is particularly
unsuitable if they are large, dynamic and concave.
Contribution: In order to enable fast combinatorial planning in state space X,
a novel and particularly targeted heuristic, called Shortest Static Path Heuristic
(SSPH), is introduced. It estimates the cost-to-go of states which are adjacent to

10



Chapter 1: Introduction

an initial state, in the estimated state space of the initial state. A nested A*-search
can be applied, to either search a reduced visibility graph V Gr or to build a shortest
static path, to compute the heuristic cost. This generally limits the search effort
efficiently and opens up the possibility to use the presented motion planner in real-
time. To the best knowledge of the author this approach does not exist in the
literature. Although SSPH is inadmissible due to a possible overestimation of the
cost-to-go, results of a Monte Carlo simulation prove, that computed trajectories
are mostly near-optimal, while the runtimes are greatly improved, compared to the
optimal methods, i.e. A*-search using Euclidean distance heuristic and Dijkstra’s
algorithm.

6. Methods for the Computation of Feasible States (Section 5.1 and 5.3)
The forward simulation of reachable states is typical for sampling-based motion
planning approaches under differential constraints [42]. A system simulation mod-
ule computes feasible state transitions from an initial state by integration, for ex-
ample using Euler method or Runge-Kutta methods. If a simulated state does not
already exist and not collide with an obstacle, it is added to a search graph [10].
The approach in this thesis applies a similar procedure to combinatorial planning.
Nonholonomic constraints of the aircraft are considered by adding so-called auxil-
iary states, which are dynamically feasible states from an initial state, to the search
graph.
Contribution: For the determination of auxiliary states, different methods for low-
and high-fidelity representations of aircraft dynamics are introduced. As states are
waypoints parameterized by time, it is important to asses their feasibility. Similar
to the standard estimations of static waypoints in [64], this is accomplished by geo-
metric considerations. This novel method is a fast and simple way to evaluate both
feasibility and mean stabilization distance of fly-by and fly-over states (waypoints at
a given time). Furthermore, for an improved guidance of low-performance aircraft,
feasible states are simulated by a fast noniterative method, which is based on the
Taylor series and analytically computes reinitialization times in order not to exceed
the commanded course change or maximum bank angle. Thus, the performance of
the aircraft is considered at a time-scale which is below the time increment of the
trajectory planner.

7. Implicit Planning of Holding Patterns (Section 5.4)
The possibility exists that the goal is temporarily inaccessible in the planning hori-
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zon. This is all the more likely if an explicit representation of uncertainty is applied,
as this can lead to excessive coverage of free space. Therefore, it is important that
a planner is capable to employ authorized planning maneuvers, until the goal is
cleared.
Contribution: Due to the addition of auxiliary states, the presented MPTP has the
immanent ability to compute trajectories, which include authorized holding pat-
terns, for example in case that the goal state is covered at some time by a thunder-
storm. By constraining the turning-sense of the aircraft, the planner automatically
generates holdings in form of circular patterns, which are an approved maneuver for
unmanned aircraft. This ability greatly increases the likelihood that a feasible and
sensible trajectory can be computed. It is common for motion planning approaches
under differential constraints to add feasible states to the search graph [42, 10].
However, to the best knowledge of the author, these states are not used for the
planning of holding patterns.

Besides the obvious application for autonomous avoidance of moving obstacles, the
presented planner can also be used as initial guess generator, for example for gradient-
based trajectory optimization in dynamic environments [10]. Thus, an optimal control
sequence in the homotopy class of the initial guess can be determined, using a high-fidelity
aircraft model [65, 66]. It can be furthermore applied to all kinds of nonholonomic and
kinodynamic planning problems, with nonlinearly moving obstacles, whose motion cannot
be described analytically.

1.4 Structure of the Thesis

Throughout this thesis, the results of individual components are presented in their respec-
tive chapter, whereas the overall results of the trajectory planner are found in Section 6.

The thesis is organized as follows. In Section 2, the functional principle of the presented
MPTP is introduced. The prediction unit of the planner and its models are described
in Section 3. In Section 4, the search space representation is introduced. Furthermore,
methods to improve time and space complexity requirements are discussed, followed by a
comparison of different visibility graphs and the implications, regarding the ensuing graph
search. At the end of Section 4 an informed search algorithm is presented, alongside with
different heuristics. Section 5 features three methods for the estimation and simulation of
feasible states, and explains the applied methodology, to compute curvature-constrained
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trajectories. Subsequently, the automatic planning of holding patterns is introduced.
Section 6 presents simulation results for the key capabilities of the MPTP including a
reliability assessment by a Monte Carlo simulation, followed by a discussion in Section 7.
Finally, the thesis is completed by the conclusion in Section 8.
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Chapter 2

Model Predictive Trajectory Planner

In this chapter, the concept of an anticipatory trajectory planner is presented. Planning
is performed by a reactive guidance loop, which resembles the setup of a model predictive
controller (MPC), due to the recurring feedback of environmental and state information.
It is therefore termed Model Predictive Trajectory Planner (MPTP) and provides, as it
will be shown in Chapter 6, resolution-complete, globally near-optimal and dynamically
feasible trajectories for the expected case. Its individual components are explained in
detail in the following Chapters 3, 4 and 5. The MPTP’s task is to compute feasible
trajectories from a start state xs to a goal state xg, avoiding time-varying and uncertain
thunderstorms, and staying inside a prescribed mission area. As safety has the highest pri-
ority, an optimal trajectory is defined as the one, with the shortest distance between start
and goal, while maintaining recommended clearance to thunderstorms and its surround-
ings at all times. Because it is difficult to determine the appropriate altitude for vertical
avoidance of thunderstorms (visible top not necessarily equal to radar top) and turbu-
lence is frequently encountered above storm clouds, the focus lies on lateral avoidance
[67]. Some unmanned aircraft, like HAPS for example, are not equipped with onboard
sensors, such as a weather radar. Thus, the anticipatory planning relies exclusively on
an external prediction, i.e. thunderstorm nowcast. The development of the MPTP was
decisively influenced by the following two principles:
“The philosophy of avoidance is an integral part of flight planning”, by the Federal Avi-
ation Administration [68] and “Simplicity is prerequisite for reliability”, by Edsger W.
Dijkstra.
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2.1 Anticipatory Motion Planning

The memory capacity of humans is limited to approximately 7±2 chunks of information
[5]. In complex environments with time-varying obstacles, this shortcoming can be par-
tially compensated by applying quasi-static planning. In this case moving obstacles are
avoided by an imaginary static radius of action and an additional margin, to account for
uncertainty. This method can be successfully applied, if the aircraft moves relatively fast
in relation to thunderstorms (obstacles). However, for low-performance aircraft this can
lead to a reactive guidance, especially as convective weather has a high rate of change.
This results in suboptimal trajectories, regarding safety, energy consumption and mission
accomplishment. These undesirable effects can be avoided by applying anticipatory tra-
jectory planning, for which Figure 2.1 shows an example. Furthermore, a loss of link,
in both line-of-sight and beyond-line-of-sight communication, is a potential incident for
unmanned aircraft, which cannot be excluded. The ability to continue the flight safely
in this situation, at least for a limited period, could enhance their level of autonomy and
safety considerably. The intrinsic complexity of anticipatory trajectory planning in uncer-
tain dynamic environments calls for an automated solution. The reduction in workload,
improved safety and mission accomplishment, resulting from the enhanced autonomy, are
the motivation for this thesis. In order to be valid, a trajectory has to be compliant
with numerous constraints. A fixed-wing aircraft is a nonholonomic system that requires
nonholonomic motion planning. In order to compute curvature constrained trajectories,
dynamically feasible states are added to the search graph, which is presented in Chap-
ter 5 that is an extension of the optimization in Chapter 4. Generally problems, which
include differential constraints on the configuration are referred to kinodynamic planning
[7]. The velocity of the aircraft is assumed to be constant, from which follows that the
acceleration is zero. Thus, the presented approach can be categorized as a simplified
kinodynamic motion planning problem. The moving obstacles (throughout the rest of
the thesis thunderstorms are treated as obstacles) are global kinematic constraints that
limit the states of the aircraft [7]. For this purpose, time has to be considered, which
is why the motion planning in Chapter 3 and 4 is directly performed in state space X
[69, 10]. Generally, planning in a real dynamic environment is also subject to uncertainty,
regarding recognition and prediction of the state and the environment [30]. The latter
is especially true for the external thunderstorm information obtained from nowcasts (see
Section 3.1), as thunderstorms cannot be predicted exactly due to their highly dynamic
and partially random evolution. Since the presented planning algorithm is intended for
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(a) Aircraft and thunderstorm positions, at T1.
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(b) Aircraft and thunderstorm positions, at T2.

Mission Area

Start

Goal

Time in Advance: +31 min

(c) Aircraft and thunderstorm positions, at T3.
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Time in Advance: +47 min

(d) Aircraft and thunderstorm positions, at T4.

Figure 2.1: An aircraft flies on an anticipatory trajectory, computed by the MPTP,
at time t0. The red areas represent thunderstorms, which are surrounded by growing
discrete margins (transparent red areas). If the aircraft moves slow in relation to the
thunderstorms, the compliance with safety margins is a demanding task.

online application, an additional real-time decision constraint is required for the planner,
due to environmental uncertainty. A fallback solution, e.g. partial planning [31], is re-
quired to ensure the aircraft’s ability to act, in case that the planner does not converge in
an allotted time interval. Figure 2.2 gives a graphical overview about the applying bound-
ary conditions for the present aircraft motion planning problem and therein provides a
classification of the presented MPTP.
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Chapter 2: Model Predictive Trajectory Planner

2.2 Framework of the Model Predictive Trajectory

Planner

The presented MPTP consists of a prediction and optimization unit, which is another
resemblance to a MPC besides the feedback loop (Figure 2.3). The prediction unit (Chap-
ter 3) processes the dynamics of both aircraft and environment, to generate an estimation
of the free state space, which excludes sets of invalid states, i.e. estimated conflict areas.
For the aircraft it is assumed, that both the angle of climb and velocity are at least piece-
wise constant. This is reasonable, as the en-route velocity band of an aircraft is generally
narrow. The motion of thunderstorms is based on nowcast, which is subject to significant
uncertainty. This uncertainty is implicitly considered by a closed feedback loop of the
MPTP and explicitly modeled in the prediction unit, by discrete time-variable bounded
margins (Section 3.1.1). Their size is a function of a probability and time, as proposed
by [70]. The optimization unit creates a graph representation of the aforementioned free
estimated state space and performs an informed search (see Chapter 4). In order to find
a feasible trajectory in a dynamic environment, the MPTP iterates between these two
units, until a solution is found or failure is reported. The drawback of the aforementioned
explicit uncertainty representation can be an over-conservative coverage of free space.
The immanent ability to automatically plan holding patterns (Section 5.4), increases the
likelihood, that a trajectory can be computed, in case, that the goal state or the access
to it is temporally covered. This reduces the number of cases, in which no solution can
be found.

Avoidance basically consists of two goal-oriented tasks i.e. anticipatory planning and
reactive evasion maneuvers. A hierarchical framework is presented in which the MPTP,
which plans with a low-fidelity aircraft model at a low-update-rate, and the flight con-
troller, which operates on the actual aircraft at a high-update-rate, are decoupled, as in
[71, 72, 15]. The high-level MPTP recurrently plans from the actual state (initial state
feedback by the aircraft, Figure 2.3) to the actual goal (reference by the mission planner,
Figure 2.3), based on the latest nowcast (predicted disturbances, Figure 2.3). The periodic
correction of control errors and environmental prediction yields robustness [71]. Its control
output is a set of states, that is transmitted to the low-level flight controller, which acts as
reactive component and ensures that the aircraft reaches commanded states in due time,
compensating for unpredicted disturbances (see Figure 2.3). As mentioned in Section 2.1,
the velocity of the fixed-wing aircraft is finite and nonholonomic constraints for turning
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2.2 Framework of the Model Predictive Trajectory Planner

flight have to be considered, which is described in Chapter 5. Thereby, the feasibility of
trajectories by the high-level planner can be ensured for the wind-free case. The result-
ing curvature-constrained trajectories do not necessarily require post-processing. Müller
demonstrated the feasibility of the proposed guidance strategy, with the setup depicted
in Figure 2.3, in [3]. The simulations are performed with a six degree of freedom aircraft
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Figure 2.3: Schematic of the presented MPTP, embedded in its environment.

model, flight controller and historical wind data. The update horizon TU is equal to the
external nowcast update horizon time ∆TN = 300 s. Therefore, at least twelve trajecto-
ries are computed in the period of one hour. The sample time is ∆t and the planning
horizon TP is identical to the nowcast horizon TN of one hour. This is necessary in order
to determine, if a trajectory to the goal state can be computed. The MPTP recurrently
performs planning, which is triggered by every update of the nowcast. The latest weather
data is immediately processed, which takes a variable runtime δtwp that depends on the
size of the weather data, the selected procedures (see Section 3.1) and usually needs only a
few seconds. Figure 2.4 depicts the proposed cycle scheme of the MPTP. While planning

Δttpδtwp δtwp Δttp

...

t0

t0 + TU t0 + 12∙TU

trajectory plan

partial
plan ...

t0+TN

planning
successful

yes

no
yes plan execution

...
TP = TN = 3600s  

TU = ΔTN = i∙Δt = 300s  

planning
successful

trajectory plan

Figure 2.4: One hour cycle scheme of the MPTP.

takes place, information outdates in dynamic environments. This imposes a real-time
decision constraint and limits the allotted time for the computation of a trajectory [31].
The variable trajectory planning runtime δttp is therefore limited to a fixed value ∆ttp, in
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Chapter 2: Model Predictive Trajectory Planner

order to avoid inactivity [71, 73]. If δttp < ∆ttp, the plan execution starts immediately at
δtwp + δttp after the nowcast update.

As convergence of the MPTP is not guaranteed, a fallback solution is necessary in
order to ensure the aircraft’s safety. Section 3.3 introduces a partial motion planning
strategy, which procures the MPTP time to replan, while the aircraft moves on estimated
safe states. Alternatively, holding patterns (see Section 5.4) can be performed in free
state space, while replanning takes place.
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Chapter 3

Prediction - Estimation of Conflicts

In this chapter the prediction models of the previously presented model predictive tra-
jectory planner (MPTP) are described. The first model predicts the obstacles, i.e. the
expected future thunderstorm areas. For this purpose the nowcast is interpreted regarding
the relative hazard for a specific aircraft, taking into account the immanent uncertainty
(Section 3.1). A second prediction model computes future aircraft state samples (Sec-
tion 3.2). In order to estimate future conflicts (Section 3.3), the aforementioned models
are finally superimposed. As the term conflict seems more appropriate than collision in
the context of weather avoidance, it will be used synonymously throughout this thesis.

3.1 Expected Future Obstacle Locations

Thunderstorms and their surroundings are extremely dangerous for all kinds of aircraft.
The expectation of their future location is based on thunderstorm nowcast, which in this
case is historical weather data issued by the algorithm Radar Tracking and Monitoring
(Rad-TRAM) [74]. The data is provided in Extensible Markup Language format (XML)
by the German Aerospace Center DLR. An XML-file contains nowcasts as well as other
measurements. Thunderstorms are represented as discrete polygons, which ensures small
file size and allows fast processing [75]. Figure 3.1 shows the basic nowcast file structure.
Green arrows indicate real time and the blue ones nowcast time. A nowcast has a tempo-
ral horizon TN of one hour and is updated at an interval ∆TN of five minutes. Therefore,
each nowcast consists of thirteen sets (t0 + 0 min, t0 + 5 min, . . . , t0 + 60 min), containing
the coordinates of storm cells and additional information, for example geometric cen-
ter, movement direction and speed. The first set contains the measured thunderstorm
situation, while the others are predictions.
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Figure 3.1: Basic structure of a thunderstorm nowcast data set.

In aviation a minimum lateral clearance to thunderstorms (especially cumulonimbus
clouds) is recommended [67, 76]. In order to compute safe trajectories, the weather data
has to be interpreted with respect to the limitations of an aircraft. For this purpose, storm
cells are enlarged by appropriate margins. Two kinds of margins are applied to nowcasted
cells, which are described in the following sections. Their purpose is to account for
different kinds of uncertainty regarding the weather nowcast. Information about the wind
field on standard flight levels is based on COSMO-DE model [77] data and supplied in
General Regularly-distributed Information in Binary form (GRIB). The forecast horizon
is 21 hours and the update interval is one hour [78].
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Chapter 3: Prediction - Estimation of Conflicts

3.1.1 Probabilistic Margins

Due to initial condition uncertainties and model errors, forecasts are never accurate [79].
Especially convective weather has a high rate of change and is difficult to predict. The
forecast errors generally increase with advancing time. Here, this fact is explicitly modeled
by applying bounded uncertainty margins. Thunderstorm cells are enlarged by time-
varying, nonuniform deterministic margins (dark red line in Figure 3.2).

The construction of these probabilistic margins is based on the approach in [70]. In a
first step, an original concave thunderstorm polygon is transformed to a convex polygon
(see Figure 3.2, where the concave portion is indicated by dotted red line). This is
reasonable, as concave radar signatures are associated with strong turbulence and hail
[67]. Then, a coordinate system is placed in the geometric center (GC) of the convex
polygon (light red polygon in Figure 3.2). The orientation of the abscissa is determined
by the moving direction vector (bold black arrow). As shown in Figure 3.2, the offset

r1=f(P,θ1,t)

r2=f(P,θ2,t)

moving direction

θ2

GC

θ1

Figure 3.2: Construction of a probabilistic margin based on [70]. It grows with time and
is biggest in moving and smallest in the opposite direction.

of the probabilistic margin to the thunderstorm polygon is constructed by circles with
radius r = f(P, θ, t). P is the probability that a cell will be included by its corresponding
margin at a given time in the nowcast horizon TN , for which specific values can be found
in [70]. θ ∈ [−π, π] is the angle between the abscissa and the vector from the GC to
a vertex, and t is the time in the interval of t0 to t0 + TN . The probabilistic margin is
computed for each thunderstorm polygon and all discrete planning increments, from t0

to t0 + TN in intervals of ∆t. Figure 3.3 shows the radii for two different probabilities P .
The upper surface is for a high and the lower one for a low value of P . With advancing
time t the margins grow. This is a safe procedure, especially when assuming high values
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3.1 Expected Future Obstacle Locations

Figure 3.3: Interpolated margin radius values (colormap) for the construction of exem-
plary probability margins, as function of time t, angle θ and a probability P .

for P . As the presented MPTP computes trajectories based on the expected case, an
overestimation of uncertainty leads to excessive coverage of free airspace. This directly
affects the optimality of trajectories and sometimes even prevents that a solution can be
found [10]. The ability to automatically plan holding patterns (Section 5.4) can solve
some of the cases, in which the goal is covered or the access to the goal is blocked. The
applied strategy is to compute trajectories in parallel using different probabilities P and
then choosing the feasible solution, with the highest P or rather largest margins.

3.1.2 Safety Margins

In contrast to the aforementioned margins, the safety margins account for the uncer-
tainty regarding the presence of thunderstorm accompanying phenomena, for example
strong winds, wind shear, turbulence (e.g. clear air turbulence over and downwind of cu-
mulonimbus clouds), lightning, icing and hail. These phenomena are hardly predictable

26



Chapter 3: Prediction - Estimation of Conflicts

and often detected as late as when being in situ. This is why FAA recommends mini-
mum clearances to thunderstorms [80, 76]. These safety margins are independent from
the nowcast time. Their size partly depends on the structural limits of an aircraft and
furthermore on appearance, size (area) and moving speed of a cell, as these parameters
give an indication on the associated potential danger. In most cases it is safer to avoid
thunderstorms on the upwind side as turbulence and hail is frequently encountered down-
wind [67]. By enlarging cells in these areas, the MPTP is tempted to shift the trajectory.
Table 3.1 shows exemplary values for the aforementioned dependence of safety margins
on external circumstances.

Table 3.1: Exemplary values for situation dependent safety margins, by which thunder-
storms should be avoided, as function of the appearance and wind speed, based on [81].

Wind Speed [m/s] Single Storm [NM] Line of Storms [NM]
< 10 20 30

≥ 10 to < 20 25 35
≥ 20 30 40

3.1.3 Merging of Margins

Safety margins and probabilistic margins can be applied individually or together, however
their combination has previously not been investigated. Two examples for the superposi-
tion are depicted in Figure 3.4. The nowcast for t0 +45 minutes, for 07.07.2016 at 19:44 h
and 22:05 h, are respectively depicted in blue. Merged margins are depicted in light blue
color, while the subsequent true measurements of Rad-TRAM, for the prediction time, are
depicted in red and yellow color. Heavy rain cells with the same identification number, as
in the initial nowcast, are red, while measured cells with different identification numbers
are shown in yellow and are either new or merged with other cells.

3.1.4 Clustering of Margins

High thunderstorm density and close neighboring cells indicate potentially weather active
areas. These are dangerous because the uncertainty in the nowcast is locally high and
sudden changes may happen. The FAA advises to circumnavigate weather active areas
with a thunderstorm coverage of 6/10 or higher [76]. An intuitive interpretation is neces-
sary in order to identify weather active areas, as planning trajectories through them can
cause substantial short-term changes, with respect to the initial route.
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Figure 3.4: Superposition of probabilistic and safety margins for thunderstorms on
07.07.2016 at (a) 19:44 h and (b) 22:05 h, for t0 + 45 min.
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Figure 3.5: Two examples for clustered margins illustrate the suitability for robust tra-
jectory planning, as an intuitive interpretation is given. Despite using large margins some
unpredicted storm cells are not covered.

29



3.1 Expected Future Obstacle Locations

Discrete margins, as presented in the previous sections, have the disadvantage, that
narrow passages may exist, which are likely to vanish in subsequent nowcasts. A human
navigator intuitively avoids such areas, while a planner may uses them, when computing
an optimal trajectory. Therefore, a function is required, which is able to deliver an
interpretation of the situation. The cluster algorithm DBSCAN, which stands for Density-
Based Spatial Clustering of Applications with Noise [82], is suitable for this task. A
cluster is defined as a set of densely connected points. The main feature is the ability to
detect contiguous areas of any shape and size. The main disadvantage is the sensitivity
to the choice of parameters. However, by using the fixed mesh size this problem does
not arise, since the density for the core points is constant. In order to generate a set
of points a grid with a fixed mesh size 2 × 2 km is generated, which corresponds to the
resolution of the radar data of the European radar ensemble, published by the German
meteorological service (DWD), used for the Rad-TRAM nowcast [74]. The grid points,
which are covered by the margins around thunderstorms, are selected as candidate points
for the cluster analysis.

The parameters to detect a cluster are a maximum distance εnp ∈ R, defining the neigh-
borhood between points, and a minimum number of neighbor points npmin ∈ N, located
in εnp. The εnp is set to the maximum inadmissible passage width between neighboring
thunderstorms margins (e.g. 25 km) and can be determined by any distance function.
Here, the Euclidean distance is used for calculation, resulting in a circular area around
each point. The minimum density for identifying a cluster can thus be understood as the
minimum number of neighboring points npmin per circular area ε2npπ. In a first step, the
algorithm classifies all points as core, edge or noise points. A core point must have at least
npmin within a radius of εnp around it. Boundary points have fewer points than npmin

in their neighborhood, but at least one core point. Since in the present case the surface
density of the points is constant due to the homogeneous grid, npmin = 1 can be set.
This implies that no boundary points exist. Noise points have fewer points than npmin in
their neighborhood and are not adjacent to a core point. In the present case, there are
no noise points, as the data is already filtered. After all points are classified, the densely
connected points are determined from any core point, using a depth-first-search and are
subsequently stored as nodes in a graph. Each individual graph represents a cluster. The
algorithm runs until all core points are assigned to a cluster. DBSCAN has a worst case
time complexity of O(n2), where n is the number of points.

Figure 3.5 depicts clusters of margins using npmin = 1 and εnp = 25 km generated on an
equidistant grid spaced by 2000 m. Red and orange polygons are critical, as they represent
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unpredicted thunderstorms. If they are outside the margins, they are not considered for
trajectory planning. After the clusters are identified, concave polygons are generated.

3.1.5 Convex versus Concave Polygons

In many cases, merging (Section 3.1.3) or clustering of the margins (Section 3.1.4) around
thunderstorms results in concave polygons. If the planner can only deal with convex poly-
gons, this can result in negative consequences, regarding excessive mission area coverage.
If concave polygons are converted to convex polygons, overlapping may occur occasionally
whereby new concave polygons are formed. If this process is repeated until all polygons
are convex, this potentially leads to a chain reaction, in which large mission areas are
blocked. An example for this is shown in Figure 3.6. Merged combined margins from
the example in Figure 3.5(a) are depicted in light blue. If they are all converted to a
convex polygon, the covered area is increased by a factor of 1.25 (sum of all medium and
light blue areas in Figure 3.6). If intersecting polygons are merged and transformed into
convex form anew, the covered area is finally 1.63 times larger than initially (sum of all
colored areas in Figure 3.6). Concave areas of thunderstorms should be avoided, as they
frequently indicate dangerous phenomena (see Section 3.1.1). However, concave areas re-
sulting from merged or clustered margins are classified as uncritical [83]. Therefore, they
are not converted to convex polygons, as otherwise excessive coverage of free space is the
consequence [83].

3.1.6 Spatio-Temporal Interpolation

A processed nowcast results in thirteen discrete sets of buffered thunderstorms. However,
the MPTP requires discrete information concerning the obstacles for the intermediate
query times spaced by ∆t. This is achieved by applying a linear spatio-temporal inter-
polation. For instance in the upcoming Figure 6.2, the time increment is ∆t = 100 s,
which is why TN/∆t = 3600 s/100 s= 36 level sets exist. Therefore, between each of the
thirteen sets, two sets of interpolated polygonal shapes for each buffered thunderstorm
have to be computed. An example for this procedure can be found in [83].
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Figure 3.6: Recursive transformation of concave to convex polygons can result in exces-
sive coverage of free airspace, due to a chain reaction [83].

3.2 Estimated Future Aircraft States

Future states of the aircraft are estimated in the earth fixed frame with the basic idea
of a wavefront propagating with constant true airspeed VT . The radial distance between
isochronous state sets is VT∆t in the absence of wind. For the estimation of future states
two cases have to be distinguished, namely wind speed W = 0 m/s or W 6= 0 m/s. In the
real world, wind speed is rarely zero. What matters is, if the aircraft can compensate the
wind.

If wind can be compensated future states primitives for up to one hour of flight can
be preprocessed for different ground speeds VG with VG = VT = V , for W = 0 m/s. For
this purpose a 3-DoF simulation model of the aircraft is used. The aircraft’s equation of
motion in a flight path fixed coordinate system are given by

.
x = V cosχ cos γ, (3.1a)
.
y = V sinχ cos γ, (3.1b)
.
z = −V sin γ, (3.1c)
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with χ being the course or track angle and γ the angle of climb, integrated from

.
V = g(nx − sin γ), (3.2a)
.
χ = g

nz sinµ
V cos γ , (3.2b)

.
γ = g

nz cosµ− cos γ
V

, (3.2c)

where µ is the bank angle, nx is the horizontal load factor and nz is the vertical load
factor, defined as

nx = T −D
mg

, (3.3a)

nz = L

mg
, (3.3b)

with T being the thrust, D the drag, m the mass, g the earth’s gravitation and L the lift.
A controller, which consists of three laws for altitude, speed and azimuth control,

keeps the aircraft model on commanded courses χcmd. These range from χcmd = 0◦ to
χcmd = 360◦ − ∆χ, linearly spaced by a course value of ∆χ. Starting from an initial
state, in the origin of a Cartesian coordinate system heading north at time t0, simulated
future aircraft state samples are stored in time intervals of ∆t. The resulting set of future
aircraft state samples is denoted by Asmp. To obtain the set of future estimated aircraft
states Afut(xin) from an arbitrary initial state xin, the Asmp are rotated around the z-axis
according to the initial course χin and translated in all three spatial dimensions by a
homogeneous transformation matrix H with Afut(xin) = H(xin) · Asmp



xfut

yfut

zfut

1

 =



cosχin sinχin 0 xin

− sinχin cosχin 0 yin

0 0 1 zin

0 0 0 1





xsmp

ysmp

zsmp

1


.

(3.4)

The connection between contemporary aircraft state samples results in isochronous
curves (black lines in Figure 3.7). The heart shape in Figure 3.7(a) results from turning-
flight, when changing the initial course χin = 0◦ from north by ±180◦. If the curve, due
to the initial turning-flight when changing the course, is ignored, future aircraft states
can be approximated with a marching wave expanding from an initial position pin (see
Figure 3.7(b)). The easiest way is to set up a matrix with linearly spaced values for
each spatial dimension, which is applied in Chapter 6. The first dimension is the time
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(a) Exact future state samples.
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(b) Approximate future state samples.

Figure 3.7: Future states are depicted by yellow aircraft symbols. The isochronous
progress is shown with black lines for t1 = 60 s and t2 = 120 s. (a) Results of the flight
simulation with constant velocity VT = VG = 23 m/s and a maximum bank angle of
|µmax| = 19◦ compared to (b) approximated states. In order to avoid a spatially decreasing
density of state samples, as in (a), the number of sample states on the second ring in (b)
is linearly increased by the factor two.
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t and the second one the course χ. However, with this method the resolution of sample
states decreases with each isochronous ring. To obtain a more homogeneous distribution
of the sample states, their number can be linearly increased, so that the kth ring has k
times the number of samples as the first. Hence, in the example in Figure 3.7(b), the
number of states on the second isochronous ring is doubled. For the wind-free case the
first-order nonlinear partial differential Eikonal equation can also be applied to compute
the progress of the aircraft. It can be efficiently solved using the isotropic fast marching
method (FMM) in O(n log n), with n being the number of grid points [84, 62]. This
finite-difference method is suitable for online application. Using the multistencils second
order fast marching method (MSFMM) improves the accuracy considerably [50].

However, for slow aircraft wind has a significant impact on trajectory planning, as
it cannot always be completely compensated. Under the influence of wind, a constant
VT results in a spatially inhomogeneous VG profile. Therefore, exact future states cannot
be preprocessed as the resulting VG depends on the position and course of the aircraft.
In order to compute a trajectory, future states have to be computed several times (see
Chapter 4). Due to the considerable computation time, the iterative simulation of exact
future states is unsuitable for an online application. In case that a constant wind field is
considered, approximate future aircraft states can be quickly computed, using a similar
concept as in Figure 3.7(b). For a vectorized computation, a column vector containing all
the course angles is set up. Additionally, three column vectors of the same size are created,
of which one contains copies of the true airspeed, the other copies of the wind direction and
the last copies of the wind speed. Then, the resulting ground speeds, when remaining on
the respective courses, are computed, for example by passing the four vectors to Matlab’s
driftcorr function. As the wind is constant, the distance traveled on each radial is also
constant. Thus, the ground speed column vector is copied in the time dimension and
subsequently multiplied by a time matrix of the same size, whose rows are spaced by ∆t.
The resulting matrix contains the approximated aircraft progression in the constant wind
field, for which Figure 3.8 shows an example. If the initial position pin is not in the origin
of the coordinate system, the future states are shifted by addition of its coordinates. As
this method is fast, it is possible to recalculate future states based on the latest wind
information, which is ideal for the present planning purpose.

If the wind is variable, instead, a noniterative ordered upwind method (OUM) can be
applied for a fast estimation of future aircraft states [85, 86]. The implementation of this
method is planned for a future version of the MPTP.
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Figure 3.8: Future aircraft states, when considering a constant wind field. The light
gray arrows indicate the direction of the wind, which comes from 225◦ at 4 m/s. The
true airspeed of the aircraft is VT = 23 m/s and the time increment between the black
isochronous progress is ∆t = 60 s. In general it is sensible to use the prevailing mean
wind direction and speed in the mission area.

3.3 Estimated Future State Space

This section features Contribution 1: Estimated Future Conflict Areas and
Estimated State Space.

Obstacle regions with invalid xfut are denoted by Xobs [10]. Originating from an
initial state xin ∈ X, where xin is (xin, yin, zin, χin, tin), deterministic samples of estimated
future aircraft states are used to perform a conflict check with contemporaneous obstacles,
to create an explicit representation of the estimated future obstacle region EXobs (see
Figure 3.11 and 3.12), whose definition is given below. This is done by superposition of
the aforementioned prediction models for expected future obstacle location and estimated
future aircraft states. Figure 3.9 depicts a set of simultaneous future aircraft states and
predicted thunderstorms on different levels of time (vertical axis). The set of estimated
conflicts from an initial state xin is defined as the intersection of the set Afut, consisting of
future aircraft states xfut, and set O, consisting of time-varying obstacles with arbitrary
shape On(t), n ∈ {1, . . . ,m}.
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Chapter 3: Prediction - Estimation of Conflicts

Figure 3.9: Future aircraft states, which are not in conflict with obstacles (thunder-
storms) are depicted in green, while conflicts are marked in red.

Future states on and inside of time-varying obstacles

Afut(xin) ∩On(t) (3.5)

are enclosed by concave polygons, which are called estimated conflict areas (ECA), with
ECAi(xin) and i ∈ {1, . . . , k} being the the index of conflict areas. The estimated obstacle
region, from an initial state, is the union set

EXobs(xin) = ∪ki=1ECAi(xin). (3.6)

Alternatively to the deterministic samples, the ECAs can also be generated by com-
puting the intersections between the isochronous curves (black lines in Figure 3.7) and the
respective contemporaneous obstacles. A naïve intersection check takes O(n2), where n is
the number of edges. If the number of actual intersections k is expected to be smaller than
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n2, it is faster to use a sweep line algorithm, which takes O((n+ k) log n) operations [87].
However, if the number of k is of order O(n2), a sweep line algorithm takes O(n2 log n)
operations, which is worse than the naïve algorithm. The advantage of the intersection
method is, that the representation of the exterior shape of the ECA is more accurate and
less resolution dependent. However, as each polygon is represented by considerably less
points, the shape of the polygons is also less unambiguous and thus not suitable for the
creation of concave polygons. Besides the more robust ECA representation through state
sampling, the in-polygon test, for which efficient implementations exist [88], runs in linear
time [89]. Therefore, Matlab’s inpolygon function is applied, which detects if points are
located inside or on the edges of a polygon.

It is possible to limit the area, in which the aircraft is allowed to fly. The prescribed
mission area for the motion planning is the workspace W . Then, the free estimated
state-space is the difference

EXfree(xin) = W \ EXobs(xin). (3.7)

This operation has to be repeated for each iteration of the MPTP. If either xs or xg is
inside the W but outside of EXfree(xin), it is covered by a thunderstorm.

Figure 3.11 shows an example for the evolution of EXobs under the assumption of
constant ground speed. The isochronous circles can be interpreted as level sets of a
cone that opens perpendicular in the third dimension, that represents the time with
the initial state xin in the center. Contemporary conflicts are depicted in red. If the
wind forecast (Section 3.1) is considered the isochronous progress is not circular anymore
(see Figure 3.12). The shape of the obstacle region EXobs is clearly different than in
Figure 3.11.

The presented method can also be applied to determine EXobs in non-level flight
(Figure 3.10). For this purpose, three-dimensional obstacles are generated by extrusion
of different 2D thunderstorm data i.e. ground and satellite based nowcast. Sufficiently
large safety margins are added in all spatial directions. Where estimated future aircraft
states are in conflict with an obstacle, an estimated conflict surface (ECS) is generated.
For constant angle of climb γ, an approximate avoidance trajectory around moving three-
dimensional obstacles can be computed for nonlevel flight, using the methods described
in Chapter 4.

The previously introduced concept of estimated conflict areas is less safe, than those
by [45, 90], where additionally inevitable collision states are considered. Therefore, the
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Figure 3.10: The estimated conflict surfaces (magenta) for a 3D thunderstorm cloud
(red volume) and its margin (translucent red volume) are shown for climb, level flight and
descent. In this case the set of future aircraft states Afut and future obstacles O are both
⊆ R4 (a tupel of (x, y, z, t)), while the workspace W and estimated obstacle region EXobs

are both ⊆ R3 (a tupel of (x, y, z)).

only areas where safety amidst ECAs can be guaranteed, are sectors between tangent
lines from the initial state to different ECAs. These are called estimated safe areas
ESAs (transparent green areas in Figure 3.11). In case, that no trajectory plan can be
computed, in an allotted time interval (see Chapter 2), it is safe to proceed straight flight,
i.e. normal to the projected isochronous rings, inside an ESA. This is a straightforward
form of partial planning [31], which procures time for replanning, without endangering
the aircraft. In combination with the ability to plan holding patterns (see Section 5.4),
this provides the aircraft’s ability to act.
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Figure 3.11: In this example the ground speed is equal to true airspeed. The evolution
of estimated conflict areas is illustrated at six points in time (t1, . . . , t6). For each time
the estimated future states (highlighted isochrone circle) in conflict with contemporaneous
expected thunderstorms (varying polygon shapes) are marked in red. This results in the
final shape of the ECAs, shown at t6, where each estimated safe area ESA is depicted in
transparent green.
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Figure 3.12: In the anisotropic case, the groundspeed is not equal to true airspeed and
depends on the aircraft’s position and course. The inhomogeneous gridded wind data is
taken from a GRIB file (see Section 3.1). When considering wind, the resulting ECAs
differ noticeably from those in Figure 3.11.
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Chapter 4

Optimization - Trajectory

Computation

This chapter introduces the necessary steps to compute a time-monotone, resolution-
optimal trajectory through predicted, time-varying thunderstorms, under the consider-
ation of nonholonomic turning-flight constraints. A combinatorial planning method is
introduced, for which Section 4.1 describes the discrete representation of the search space
and Sections 4.2 and 4.3 the searching procedure, to effectively find an optimal solution.

4.1 Graph of Free Estimated State Space

A discrete roadmap of the estimated state space EXfree(xin), which in the presence of
obstacles is basically a polygon with holes (see Section 3.3), is created in form of a visibility
graph V G(xin) = (V,E) [10]. It is only constructed, if the direct connection between the
initial xin and the goal state xg intersects an obstacle. A visibility graph contains vertices
v ∈ V and edges e ∈ E, which are undirected and weighted.

Generally in a static avoidance problem in C-space, the search space can be described
by a single V G. However, in the present dynamic problem in X-space, the search space is
usually build gradually from individual V Gs, which is described in detail in Section 4.2.2.
However, in both static and dynamic application the search space representation via V G
has the same advantages. A complete V G contains the optimal solution, if one exists. Its
construction is deterministic and therefore results are reproducible. Additionally visibility
based paths or trajectories are intuitive to humans. The application of a V G is most
suitable for two-dimensional problems with a polygonal obstacle representation, which
corresponds to the problem at hand. A disadvantage of V Gs is, that trajectories can
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4.1 Graph of Free Estimated State Space

pass directly alongside obstacles, which for the present application poses no problem, as
the actual obstacles are thunderstorms, surrounded by safety margins (see Section 3.1).
Another disadvantage is the computational load associated with its construction. The
lower bound for the computation of a complete V G is Ω(|V |2) or Ω(|E|) in big Omega
notation (see Chapter 1.3), where |V | is the total number of obstacle vertices and |E| is
the resulting number of edges [57]. However, sophisticated algorithms with these bounds,
can be difficult to implement. The time complexity of a more simple algorithm, like the
rotational plane sweep algorithm, is O(|V |2 log |V |) [55].

In this section several methods to reduce the computational effort are presented.
Among others, this is the use of a so-called reduced visibility graph (V Gr), which ex-
clusively contains tangent/bitangent edges (see Section 4.1.2) [37]. Ideally, a V G only
consists of tangent edges, between points and obstacles, bitangent (supporting and sep-
arating) edges, between obstacles and bitangent edges on obstacles. Methods for the
construction of partial or complete reduced visibility graphs are introduced, which work
for both convex and nonconvex polygons. Figure 4.1 shows a comparison between three
basic visibility graph variants, inside a mission area (black square) and outside of ob-
stacles (four red icosagons). The unreduced visibility graph V G(xin) contains all visible
edges. A V Gr contains exclusively tangent and bitangent visible edges, while a partial
visibility graph V Gp(xin) only connects the initial state xin to those vertices v ∈ V , which
are connected by a visible tangent edge. The large difference in visible edges (green lines)
in this simple example, is the reason, why only the methods in (b) and (c) are considered
for trajectory planning.

As mentioned before, the time complexity for the construction of a visibility graph can
be expressed by its number of vertices |V | and edges |E|. So can the time complexity of
a graph-search algorithm, which is suitable for searching the V G. The number of vertices
|V | and edges |E| are directly related. Fewer |V | result in fewer |E| and vice versa. As
several visibility operations have to be constructed and searched, in order to compute a
trajectory (see Section 4.2), their efficient computation is crucial for the performance of
the trajectory planner. In the following Sections 4.1.1 and 4.1.2, different methods for
this purpose are presented.

4.1.1 Reduction of Vertices on Obstacles

Polygonal obstacles (nowcasted thunderstorms) are frequently jagged (see Figure 4.2(a)),
which means, that they contain a large number of dispensable vertices. By default,
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(a) Unreduced visibility graph V G.
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(c) Partial visibility graph V Gp.

Figure 4.1: (a) The unreduced V G contains all visible edges, of which a large number
is unnecessary in order to find the shortest connection from xin to xg. (b) The V Gr

exclusively contains tangent edges, between states (black diamonds) and obstacles, as well
as bitangent edges, between and on obstacles. (c) The partial V Gp only contains the visible
tangent edges of first order, between initial state xin and obstacles.
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4.1 Graph of Free Estimated State Space

predicted thunderstorms are enlarged by probabilistic and/or safety margins (see Sec-
tion 3.1) to model the considerable amount of uncertainty in the nowcast (see example in
Figure 6.1). Therefore, these margins do not represent exact boundaries. Thus, a certain
degree of geometric inaccuracy, due to line smoothing, is acceptable. In order to reduce
the number of vertices |V | in the estimated state space, the Douglas-Peucker-algorithm
can be applied to obstacles, before a V G is generated [91], which automatically reduces
|V | in the V G. It should be noted that thereby a complete planning algorithm becomes
resolution-complete. This means, that it is still guaranteed to find a solution if one ex-
ists, however at the lower level of resolution [37, 10]. The line-smoothing algorithm uses
a tolerance band ε > 0, orthogonal to the left and right of an examined curve, on a
equirectangular map projection. Under the assumption that the earth is a sphere, ε is
converted from spherical distance Dm in meters to Dd in degrees by

Dd =
(
Dm

Re

) 180
π

[◦], (4.1)

where Dm is the great circle distance and Re = 6371000 m is the mean earth radius. The
algorithm examines the ordered vertices V = (v1, . . . , vn), of a curve. At the beginning,
the vertex vf , which is orthogonally furthest away from the line segment between the first
and last vertex of the curve, is searched. If vf lies within ε, all vertices between v1 and vf
are removed and a line remains. If vf lies outside of ε, the function is recursively called,
until the whole curve has been examined. Vertices within ε are be removed from the list.
The output of the algorithm is a subset of V . The worst-case time complexity of the
original Douglas-Peucker algorithm is O(nm), where n is the number of vertices of the
input curve and m the number of vertices of the simplified curve. To avoid topological
inconsistencies and to ensure homeomorphism between the original and reduced shape,
the method introduced by [92] can be applied, which also runs in O(nm). In [93] an
algorithm is introduced, which bounds the worst-case running time to O(n log n), which
is the expected case for the original algorithm. Topological problems can be avoided, by
limiting the maximum value for the tolerance band. Through an automatic selection of
an appropriate tolerance band ε, a reduction in |V | can be achieved, under preservation
of the shape, e.g. by an error bound termination condition [94].

Figure 4.2 shows an example for a reduction of vertices, by approximately 60 %, while
the general shape preservation is good. The maximum lateral error in this example is
ε = 0.022◦ ≈ 1.31 NM. The error in the outline length of all obstacles is approximately
4 %. As mentioned before, predicted thunderstorms are enlarged by different discrete
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margins, to model the considerable amount of uncertainty in the nowcast (see Section 3.1).
In worst case, the recommended margin of 20 NM [80], is undercut by the aforementioned
lateral error. In order to ensure, that a prescribed margin is never undercut, the tolerance
band ε can be added to the margin, as shown in Figure 4.3.

4.1.2 Reduction of Edges in a Visibility Graph

This section features Contribution 2: Matrix Computation of Visible Tangent
and Bitangent Edges and Contribution 3: Partial Shortest Path Map.

A visibility graph, which exclusively contains tangent edges between points and obsta-
cles, and bitangent edges between the obstacles, is called a V Gr [37]. A V Gr is complete in
the sense that it contains all connections, which are necessary to find an optimal solution,
e.g. the shortest path. Such a graph can be computed using a naïve approach in O(|E|3),
where |E| is the number of obstacle edges. Alternatively, a rotational sweep algorithm
can be applied, which has a time complexity of O(|E|2 log |E|) [95]. This algorithm can
also be used to compute a V Gr [10]. In [54] a method is introduced for the special case
of exclusively convex polygons and two arbitrary points, i.e. start and goal. It has a time
complexity of (|V |+ |P |2 log |V |), where |V | is the number of vertices and |P | the number
of disjoint polygons. In [96] the same time complexity for the construction of a V Gr in a
polygon with holes is achieved for the general case with concave shapes. This is achieved
by first computing the convex form the concave obstacles and then applying the algorithm
in [54]. This algorithm is optimal, i.e. lower time complexity than O(|V |2), if the number
of obstacles |P | is relatively small. For the avoidance of thunderstorms, |P | is generally
significantly smaller than the number of vertices |V |. Therefore, this is the fastest al-
gorithm for the problem at hand. However, the implementation is not straightforward.
The optimal time complexity to compute an unreduced V G for general disjoint polygons,
is O(|E|2) [97, 98]. Additionally, [98] introduced a method, for sparse visibility graphs,
which runs in O(|E| log |V |), where |E| is the number of edges in the resulting visibility
graph. For the interested reader [99] is recommended, where several of the aforementioned
algorithms are implemented and compared.

In the following, the number of edges of a visibility graph is reduced by preprocessing
exclusively tangent and bitangent edges, using matrix operations. Tangent edges are
determined in O(|VEX |) and bitangent edges in O(|VEX |2), where VEX are the unique
vertices in the estimated state space EX. Consecutively a method is described, which
determines the visibility of these edges solely by counting the number of intersections with
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4.1 Graph of Free Estimated State Space

(a) Original thunderstorm polygons, from a nowcast.

(b) Smoothed shapes, using Douglas-Peucker algorithm.

Figure 4.2: Line-smoothing applied to polygons of a thunderstorm nowcast. While all
shapes are well preserved, the overall number of vertices is reduced from 704, in (a), to
285, in (b).
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Figure 4.3: In this example, a relatively large tolerance band of ε = 0.044◦ is added to
the 20 NM (37040 m) lateral clearance, recommended by the Federal Aviation Adminis-
tration [80]. Thus, the smoothed margin never falls below the 20 NM clearance (blue line
measurement).

obstacle edges, using an algorithm for the general red-blue intersection problem. The
resulting visibility graph is a V Gr[37]. This procedure has two major advantages: under
certain conditions, for example a high sparsity regarding the tangent and bitangent edge
candidates, the generation of a V Gr can be efficient. Secondly, in contrast to a complete
visibility graph V G, a reduced visibility graph V Gr contains a lot less unnecessary edges
(although some bitangent edges lead nowhere, see Figure 4.4(a)), which reduces the mean
branching factor, i.e. number of outgoing edges and therefore states to examine. This
significantly reduces both the runtime and memory requirements of an ensuing graph
search, using e.g. Dijkstra’s algorithm or A*-search.

Selection of Tangent and Bitangent Edges

To determine tangent edges from start (initial) and goal state to the obstacles, a tangent
edge angle matrix (Mta), containing the angles of all possible tangent edge candidates
measured in the canonical way, is set up. Additionally, two matrices of the same size
are set up, which contain all the relative angles (to those in Mta) of the corresponding
adjacent edges on the obstacles. They are called previous edge angle matrix (Mpa) and
next edge angle matrix (Mna). The matrix Mt contains the logical values, which indicate
if an edge (subscript i, j) in Mta is tangent (logic 1) or not (0). The number of unique
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tangent edge candidates Etc in Mt, outgoing from start and goal state to the vertices of
the estimated state space VEX , is given by

|Etc| = 2|VEX |. (4.2)

The dimension of Mta, Mpa and Mna is 2× |VEX |.
In order for an edge to be tangent, the trigonometric conditions are that the relative

angles in Mpai,j and Mnai,j are both either ((0 ≤ Mpai,j < π) ∧ (0 ≤ Mnai,j < π)) ∨ ((π ≤
Mpai,j < 2π) ∧ (π ≤ Mnai,j < 2π)). Figure 4.5 depicts the approach. Four edges, starting
from p7 to the vertices of polygon P3, are examined. The relative angles to the adjacent
edges of P3 are determined in counterclockwise sense (black circle segments). In this
example, the edges from p7 to p9 and p7 to p10 fulfill the aforementioned conditions and
thus are tangent.

For the computation of Mta, Mpa, Mna and Mt each time 2|VEX | operations are per-
formed. Thus, the time complexity to determine the exclusively tangent edge candidates,
between the start state and goal state to the obstacles, is O(|VEX)|.

The selection of bitangent edges follows next. A square matrix (Mbta), built from the
vertices of estimated state space VEX , contains the angles of all bitangent edge candidates.
Analogously to the tangent edge selection, two additional matrices of the same size, as
Mbta, are set up, which contain all the relative angles of the corresponding adjacent edges
on the obstacles. They are again called previous edge angle matrix (Mpa) and next edge
angle matrix (Mna). The matrix Mbt contains the logical values, which indicate if an
edge in Mbta is bitangent or not. The number of unique bitangent edge candidates |Ebtc|
corresponds to the size of the upper triangular matrix, above the diagonal of Mbt and is
given by

|Ebtc| =
|VEX |2 − |VEX |

2 . (4.3)

An exemplary Mbt is depicted on the right side of Figure 4.5. It is built from the ver-
tices of the three polygons P1, P2 and P3. The diagonal represents the vertices themselves.
All possible undirected edge combinations exist. The entries of the matrix, which belong
to the respective polygons on the left side of the figure, are colorized accordingly. Each
entry of Mbta contains either a logical 0 or 1. This indicates whether an edge, starting
from the row-index, encounters the necessary trigonometrical conditions to be tangent,
at the column-index.
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(a) Bitangent edges, of a concave polygon.
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(b) Polygon, built by convex vertices.

Figure 4.4: (a) Exclusively bitangent edges on an obstacle after one iteration. Some dead
ends and unnecessary edges (unnecessary, in order to find the shortest path or trajectory)
may exist. The convex hull of an obstacle is always included. If this procedure is repeated
iteratively, until the number of vertices does not decrease (in which case no more concave
vertices exist), the convex shape of a concave polygon can be computed. (b) By filtering the
concave vertices of the obstacles, a new polygon (closed shape by green lines) is created,
which reduces the number of vertices in the estimated state space.

In order for an edge in Mbta to be bitangent, the same trigonometric conditions as
before apply. However, this time they have to be true in the upper and lower triangular
part of Mbt. Therefore, a test edge is bitangent, if both the entry and its symmetric
counterpart are true (see green entries in Figure 4.6). The relative angles Mpai,j and
Mpai,j have to satisfy

((0 ≤Mpai,j < π) ∧ (0 ≤Mnai,j < π)) ∨ ((π ≤Mpai,j < 2π) ∧ (π ≤Mnai,j < 2π)) (4.4)

and the relative angles Mpaj,i and Mnaj,i also have to satisfy

((0 ≤Mpaj,i < π) ∧ (0 ≤Mnaj,i < π)) ∨ ((π ≤Mpaj,i < 2π) ∧ (π ≤Mnaj,i < 2π)). (4.5)

In the example in Figure 4.5, only the edge between p7 and p9, is bitangent, as both
entries (i = 9, j = 7 and i = 7, j = 9) in the matrix on the right side are true.
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

p1 - 1 1 0 1 0 1 1 1 0 0

p2 1 - 1 0 1 0 1 1 0 1 0

p3 1 1 - 1 0 0 1 0 1 1 0

p4 0 1 1 - 1 0 1 0 1 1 0

p5 0 1 1 1 - 1 0 0 1 1 0

p6 1 1 0 0 1 - 1 0 1 1 0

p7 1 1 0 1 0 1 - 0 1 1 0

p8 1 0 1 0 1 0 1 - 1 0 1

p9 1 0 1 0 1 0 1 1 - 1 0

p10 1 0 1 1 0 1 0 0 1 - 1

p11 1 0 1 1 0 1 0 1 0 1 -

p8

p9 p10

p11

p7

Figure 4.5: The applied trigonometric condition scheme, to determine bitangent edges
between polygons, is depicted on the left side. The angles between the test edges from vertex
p7 to the vertices of polygon P3 and the respective adjacent edges to the aforementioned
vertices are computed. The four test edges are marked by a black box, in the logical matrix
on the right. Only the edge between vertex p7 and p9 is bitangent, as also p9 to p7 is true.

Additional information is stored for each bitangent edge in order to deal with degen-
eracies, i.e. collinearity. If an bitangent edge is directly on an obstacle, it is marked as
body edge. Also the number of adjacent collinear obstacle edges (c) is stored for each of
bitangent edge. If either the angle to a previous edge is 0 or π, or the angle to a next edge
is 0 or π, the respective entry is set to true. If either in the upper or lower triangular part
of Mpa or Mna collinearity is detected, then c = 1. If in both the upper and lower trian-
gular part ofMpa orMna collinearity is detected, then c = 2. This information is required
to determine the visibility of bitangent edges, exclusively by the number of intersections
with obstacle edges, which is described later on.

For the computation of Mbta, Mpa, Mna and Mbt, each time |VEX |2 operations are per-
formed. Thus, the time complexity to determine the exclusively bitangent edges between
the obstacles is O(|VEX |2).

If the algorithm to detect bitangent edges is iteratively applied to a concave shape,
its convex hull can be computed stepwise. Depending on the number of concave poly-
gons and their degree of concavity, up to half of the bitangent edges |Ebt|, between the
obstacles in estimated state space EX, consist of at least one reflex (concave) vertex.
In any case, such a bitangent edge intersects the obstacle, containing the reflex vertex.
Therefore, these edges are directly omitted, as their only purpose is to slow down the al-
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gorithm. By excluding reflex vertices, the number of bitangent edges Ebtc, in the example
in Figure 4.10(b), is reduced from 11648 to 5581, from which only 1273 are visible any-
way. Furthermore, the exclusion of reflex vertices reduces the overall number of resulting
vertices |VV G| in the visibility graph. However, one problem arises, when reflex vertices
of the workspace W are filtered, as the outer limit of the estimated state space EX is
concave. If an obstacle is merged with the workspace, as in the lower right side of the
examples in Figure 4.10, this leads to incorrect results. However, by converting the order
of vertices in the polygon, which contains the boundary of the workspace (mission area),
from counterclockwise to clockwise sense, this issue is resolved.

Sparsity of the Tangent and Bitangent Matrices

A matrix is said to be sparse, if it contains more zero than nonzero elements (NZ). The
sparsity S of a matrix M is calculated by

S(M) = E(M)−NZ(M)
E(M) , (4.6)

where E(M) is the total number of elements in the matrix M .
Table 4.1 shows exemplary values for the sparsity of Mt and Mbt in ten estimated

state spaces EX, similar to the one depicted in Figure 4.10. Especially the sparsity Mbt

is usually high, with S(Mbt) ≥ 90 %. This property is advantageous, as only the tangent
and bitangent edges have to be consecutively checked for intersection against the edges
of obstacles.

Table 4.1: Sparsity of the tangent and bitangent edge candidate matrices, using nowcast
data from the 2015/07/07. Neither line-smoothing nor a limitation of the workspace is
applied. The mean sparsity for the tangent matrices is S(Mt) = 83.42 % and for the
bitangent matrix is S(Mbt) = 96.02 %.

Time [h] Sparsity of Mt [%] Sparsity of Mbt [%]
12:00 79.29 94.75
13:00 81.92 95.30
14:00 80.97 95.55
15:00 84.78 95.77
16:00 84.10 96.09
17:00 84.99 96.24
18:00 85.22 96.65
19:00 83.38 96.74
20:00 84.36 96.10
21:00 85.27 96.45
22:00 83.32 96.62
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Visibility Determination for Preselected Edges

After the tangent and bitangent edges are preselected, their visibility is subsequently
determined. An edge is visible, if it is only intersected at its endpoints, exclusively by
the body edges of obstacles, which share an endpoint. In the example in Figure 4.6,
two bitangent edges are invisible due to intersections (red lines on the left side and red
entries on the right side). The naïve approach is to perform intersection checks for each
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

p1 - 1 1 0 1 0 1 1 1 0 0

p2 1 - 1 0 1 0 1 1 0 1 0

p3 1 1 - 1 0 0 1 0 1 1 0

p4 0 1 1 - 1 0 1 0 1 1 0

p5 0 1 1 1 - 1 0 0 1 1 0

p6 1 1 0 0 1 - 1 0 1 1 0

p7 1 1 0 1 0 1 - 0 1 1 0

p8 1 0 1 0 1 0 1 - 1 0 1

p9 1 0 1 0 1 0 1 1 - 1 0

p10 1 0 1 1 0 1 0 0 1 - 1

p11 1 0 1 1 0 1 0 1 0 1 -
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Figure 4.6: Only edges, which are symmetrically tangent (logical 1), are bitangent (green
entries in the right Mbt). Two bitangent edges are eliminated (red lines, on the left), due
to intersections with polygons P1 and P3. The remaining bitangent edges are visible (green
lines).

preselected edge against all obstacle edges EEX in the estimated state space, which results
in a time complexity of O((|Et|+ |Ebt|)|EEX |).

In the following a novel method is introduced to determine the visibility of the prese-
lected Et and Ebt solely by counting the number of intersections by obstacle edges EEX ,
using the information stored in the previously presented matrices. The prerequisite is an
algorithm that counts the number of intersections between to sets of edges. Suitable for
this purpose is the algorithm by [100], which is able to count the number of intersections
between a set of red edges ER and a set of blue edges EB in R2, for the general case, in
which monochromatic intersections are admissible. Here, the tangent and bitangent edges
form the red set ER, while the edges of the obstacles form the blue set EB. Counting the
number of intersections of all edges in EB (obstacle edges) with each edge in ER (tangent
and bitangent edge) take approximately O(|E|4/3 log |E|), where |E| = |Et|+|Ebt|+|EEX |.
As the intersection counting with the red-blue method is expensive, it is not suitable for
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large scenarios, with dense tangent and bitangent matrices. Table 4.1 indicates that a
high sparsity is present in the problems at hand, which is why such an approach is suitable
for the computation of reduced visibility graphs V Gr. Since the implementation of the
aforementioned algorithm is not straightforward, Matlab’s polyxpoly function is applied.
The input arguments are the two sets of edges ER and EB, which are checked for inter-
section. By using the output argument vector, which contains the related indices of the
edges leading to an intersection point, it is possible to count the number of intersections.
In order to obtain correct results, it is important not to use the unique option. A feature
of polyxpoly is that it reports intersections of collinear edges. However, in the following
a solution is presented for the general case that intersections of collinear edges are not
detected. It is demonstrated, that the visibility of tangent and bitangent edges can be
determined, solely by the number of obstacle edges they are intersected by, and that this
results in a complete V Gr.

A tangent edge always ends on a vertex of an obstacle. Therefore, the maximum
number of intersections for a visible tangent edge is kt = 2. If a tangent edge is collinear
with an obstacle edge, then kt = 1. In case, that the edge is additionally intersected by a
further obstacle, the minimum number of intersections is kt = 3. By setting the condition
kt ≤ 2, the visibility can be clearly determined.

A special case are bitangent edges, whose two vertices are sequential on the same
polygonal obstacle. They are called body edges, as they are located directly on an obstacle.
To determine their visibility three cases have to be distinguished. This allows to deal
directly with degeneracies without using perturbation techniques, as recommended by
[101]. The maximum number of intersections of a body edge is two. The number of
required intersections for visibility is kbt = 2 − c, where c is the number of collinear
adjacent edges. The value for c is taken from a matrix, which contains the relative angles
between the bitangent edges and previous/next edges on the obstacles. If, as depicted in
the upper part of Figure 4.7, no adjacent edge of e5 is collinear, then the condition to
determine the visibility is kbt = 2 − 0 = 2 (depicted by two purple dots). Otherwise, as
shown in the middle, one edge (e2) is collinear, the condition for visibility is kbt = 2−1 = 1
(depicted by one purple dot). Finally, if as shown in the lower part of Figure 4.7, both
adjacent edges of e2 are collinear (e1, e3), visibility is provided if kbt = 2−2 = 0 (no purple
dot).

Also for bitangent edges, whose two vertices do not belong to the same obstacle,
three cases have to be distinguished, in order to determine their visibility. As both
vertices are on different obstacles, the maximum number of intersecting edges is four.
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Figure 4.7: For bitangent body edges three cases have to be distinguished. Either none,
one or both adjacent edges can be collinear. This is decisive for the number of required
intersections, which are depicted by purple dots.

However, if a bitangent edge is collinear with an edge of one or both obstacles, the
number of required intersections for visibility has to be adapted. The rule to overcome
degeneracies is kbt = 4 − c, where c is the number of collinear adjacent edges. In the
upper part of Figure 4.8, no edge is collinear to the red bitangent edge and therefore
kbt = 4 − 0 = 4. In the middle, the edge e6 is collinear with the red bitangent edge
and therefore kbt = 4 − 1 = 3. In the lower part, two collinear edges (e3, e6) result in
kbt = 4− 2 = 2. All three bitangent edges in the example are visible.

In the example in Figure 4.9, a special case with degeneracies is presented, in which
the initial state xin and four vertices v2, v5, v6 and v8 of the polygonal obstacles are
collinear. It is tested, whether a visible connection between xin and v8 can be established,
using the aforementioned conditions for the number of intersections. The red edges are
tangent and bitangent edges ∈ ER, while the obstacle edges ∈ ER are depicted in blue.
Purple dots mark points of intersection between the red and the blue edges. First, in
upper part of Figure 4.9, the direct tangent edge from the initial state xin to vertex v8 is
checked for visibility. The number of admissible intersections is kt ≤ 2. It is intersected
by the edges e1, e2, e4, e6, e7 and e8. The number of intersections is kbt = 6 and thus the
edge is invisible. In the middle, the tangent edge from xin to v2 is visible, as it is only
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Figure 4.8: Three different cases for bitangent edges, connecting two obstacles. Either
none, one or two, out of four adjacent edges, can be collinear. For the determination of
visibility, the number of collinear edges is retrieved.

intersected by e1 and e2 and the number of intersections is kt = 2. It is also attempted to
establish the connection to v8 with the direct bitangent edge from v2, which is intersected
by the edges e1, e2, e4, e6, e7 and e8. Therefore, the number of intersections is kbt = 6
and the edge is invisible. In the lower part of Figure 4.9, the visible connection between
xin and v8 is established, using intermediate connections. The tangent edge from xin to
v2 (kt = 2) is followed by the bitangent edge from v2 to v5. As the upper edge of P2 is
collinear to it, c = 1 and therefore kbt = 4− c = 3. As v2 to v5 is intersected by the edges
e1, e2 and e4, the edge is visible. The edge from v5 to v6 is a bitangent body edge, which is
why kbt = 2− c applies. As the adjacent edges e4 and e6 are not collinear kbt = 2− 0 = 2,
which is why it is visible. Finally, the bitangent edge from v6 to v8 is again collinear with
the upper edge of P2 and therefore kbt = 4−1 = 3. It is intersected by the edges e6, e7, e8

and is therefore visible. This proves that the conditions for the number of intersections
are sufficient to compute a reduced visibility graph V Gr.
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Figure 4.9: This example shows, how the connectivity can be established, even in the
special case of several collinear vertices/edges.

Partial Shortest Path Map

In order to find the shortest path from start to goal, it is not necessary to construct a
complete visibility graph. Instead [58] presented the continuous Dijkstra paradigm, which
effectively computes a shortest path map (SPM), running in O(|V | log |V |) [58, 59, 93, 9].
To further speed up the search, a new approach is presented. The idea is to avoid the
construction of a complete SPM and instead build a partial shortest path map (PSPM).
For the presented approach, the A*-search algorithm (Chapter 4.2) is applied, which is
optimal efficient. This means that no other known algorithm expands its search less, using
the same heuristic function [102]. As estimator for the cost-to-go the Euclidean distance
is applied, which is a consistent heuristic, as it obeys the triangle inequality [103]. As A*
is an informed search algorithm, the number of examined edges is generally significantly
lower than with Dijkstra, which expands like a wavefront. By searching for the optimal
solution to the goal, a PSPM is iteratively assembled from individual partial visibility
graphs V Gp, until the goal is connected to the start via visible edges.
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A V Gp exclusively contains tangent edges, between an initial state and its adjacent
states. The selection of tangent edges takes linear time O(|VEX |). As explained in
Section 4.1.2, the visibility of edges can be determined solely by the number of inter-
sections with the obstacle edges. This can be done with the algorithm given in [100]
(see Section 4.1.2) in O(|Et + EEX |4/3 log |Et + EEX |). Alternatively, a rotational sweep
line segment algorithm [95] can be applied to determine the visibility, which runs in
O(|VEX | log |VEX |). Checking if an edge is tangent takes constant time O(|VEX |). There-
fore, the time complexity of visible tangent edges, in each iteration of the A*-search, takes
O(|VEX | log |VEX |), which is also the overall time complexity. The only nontangent edge,
which is always checked first for visibility, is the direct edge between the initial state and
the goal state. The sweep starts from the angle of this edge and performs a 2π rotation,
if the goal is visible the algorithm breaks and the PSPM is constructed.

The worst time complexity of A*-search is that of Dijkstra’s algorithm, which is the
case when no heuristic is applied. If A*-search is applied with a consistent heuristic (see
Section 4.3 and 4.3.2), a PSPM from start to goal is constructed (see Figure 4.10(d)) and
searched at the same time. For this example, as few as |Et| = 124 tangent edges were
examined (in two iterations), of which 71 are visible. Applying this procedure results in
significant computational savings, while both completeness and optimality of the search
are guaranteed. This method works for static as well as dynamic environments and
is applied in Sections 4.3.1 and 4.3.2 to find time-minimum trajectories amidst moving
obstacles. The shortest map from start to goal amidst time-varying obstacles is called
the partial shortest trajectory map (PSTM), which is applied for trajectory planning in
Section 4.2 and Chapter 6.

Visibility Graph Examples

In general, a visibility graph is computed for an estimated state space EX, which accord-
ing to Equation (3.7), is the difference between the workspace and the estimated obstacle
region (Section 3.3)

W \ EXobs.

For better visualization and reproducibility, in the following example, the obstacle region
EXobs is given by a static set of polygonal obstacles O from the Rad-TRAM nowcast,
issued on 2015/07/07 at 14 : 38 h. The coordinates of the mission area W are 45.00◦

to 55.00◦, in latitude, and 3.00◦ to 16.00◦, in longitude. In the presented example, the
polygons of the state space have |VEX | = 513 unique vertices and |EEX | = 541 unique
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edges. The state space corresponds to the one shown in Figure 4.10(a), where in this
case, an unreduced V G is presented. In (b), a V Gr is calculated for the line-smoothed
state space. With the same settings a V Gr in a limited corridor is shown in (c). Finally
in (d), a partial shortest path map is depicted. According to Equation (4.2) the number
of tangent edge candidates, in this example, is

|Etc| = 2 · 513 = 1026 (4.7)

and according to Equation (4.3) the number of unique bitangent edge candidates Ebtc is

|Ebtc| =
|VEX |2 − |VEX |

2 = |513|2 − |513|
2 = 131328. (4.8)

The total runtime for the selection of tangent and bitangent edges, as a function of the
number of vertices (including start and goal), is plotted in Figure 4.11. The vector-
ized Matlab R2015b code runs on a computer with Intel(R) Core(TM) i7-6700 CPU @
3.40GHz, 32GB RAM and 64-Bit-Windows 7.

The resulting number of tangent edges in the example is Et = 154. According to
Equation (4.6), the sparsity of the tangent edge matrix Mt is

S(Mt) = E(Mt)− Z(Mt)
E(Mt)

100 = 1026− 154
1026 100 = 84.96 %. (4.9)

The maximum number of unique edges, between the obstacles, using Equation 4.3, is
|Ebtc| = 131328. The resulting number of bitangent edges in the example is |Ebt| = 5832.
According to Equation (4.6), the sparsity of the bitangent matrix Mbt is

S(Mbt) = E(Mbt)−NZ(Mbt)
E(Mbt)

100 = 131328− 5832
131328 100 = 95.56 %. (4.10)

By definition, Mt and Mbt, are both sparse. Figure 4.12 shows the sparsity of Mbt, which
contains Ebt = 5832 unique bitangent edges, as a combination of the vertices in the
estimated state space VEX .

If nontangent edges are not filtered, the number of visible edges from start and goal
to the obstacles is 363. The number of visible tangent edges is only |Evt| = 85, which
corresponds to a reduction of 76.85 %. If nonbitangent edges are not filtered, the number
of visible edges, between the obstacle polygons of EX, is 17965, in Figure 4.10(a). The
number of visible bitangent edges is only Evbt = 1668, which corresponds to a 90.72 %
reduction.
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(a) Unreduced visibilty graph (V G).
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(b) Reduced visibility graph (V Gr).
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(c) Reduced visibility graph (V Gr), in a corridor.
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(d) Partial shortest path map with A*-search.

Figure 4.10: The unreduced V G, in (a), contains 18842 visible edges. The reduced
complete V Gr with line-smoothing (ε = 0.022◦), in (b), contains 1273 visible edges, which
is a 93.24 % reduction compared to (a). In (c) the mission area is limited to a corridor
with 230 km of width and an opening angle at start and goal of 120◦. This reduces the
total number of visible edges to 131, while the optimal trajectory is included (which is not
guaranteed, if the corridor is too narrow). The partial shortest path map (PSPM), in (d),
is assembled from two initial states (blue stars), performing an A*-search with Euclidean
distance heuristic. The number of visible edges is reduced to 41, while the optimal solution
is guaranteed to be included, if the applied heuristic is monotone.
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Figure 4.11: Seven degrees of line-smoothing are applied to the scenario in Fig-
ure 4.10(a). Runtimes for tangent and bitangent edge selection, as a function of varying
number of vertices |VEX | (due to different degrees of line-smoothing), are depicted with
black dots.
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Figure 4.12: Sparse adjacency matrix of unique bitangent edge candidates in EX. The
number of nonzero elements is 5832. The sparsity of the upper triangular matrix is
95.56 %.

Tables 4.2 to 4.9 compare the four methods shown in Figure 4.10. These are the com-
plete unreduced (a), complete reduced (b) and incomplete reduced visibility graph (c), as
well as the partial shortest path map (d). For the following considerations, the cost for
the computation of tangent and bitangent edges is not accounted. Several parameters are
computed, among others the worst case search cost of an ensuing graph-search with Di-
jkstra’s algorithm. The time-complexity of Dijkstra’s algorithm is O((|E|+ |V |) log |V |),
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if a binary min-heap is applied for the priority queue. According to [104] the worst-case
bound of Dijkstra, when using a Fibonacci heap, is O(|E|+ |V | log |V |). Filtering nontan-
gent and nonbitangent edges from the visibility graph, implicitly reduces the number of
vertices in the visibility graph. In the presented example, the number of unique vertices
is reduced from initially |VEX | = 513, by 28.46 %, to |VV Gr | = 367. The sum of all edges
in the V Gr is

EV Gr = Evt + Evbt = 85 + 1668 = 1753. (4.11)

The number of operations during a Dijkstra search on the reduced graph V Gr is therefore

OPDr = |EV Gr |+ |VV Gr | log |VV Gr | = 1753 + 367 log 367 = 1753 + 3127 = 4880. (4.12)

Whereas, the unreduced V G contains 363 edges, from start and goal states to the ob-
stacles, 17965 edges, between the obstacles, and EEX = 541 obstacle edges, which adds
up to a total of EV G = 363 + 17965 + 514 = 18869 visible edges. The number of unique
vertices in the V G is equal to |VEX | = 513. The number of operations during a Dijkstra
search on the unreduced graph V G is

OPD = |EV G|+ |VV G| log |VV G| = 18842 + 513 log 513 = 18869 + 4618 = 23487. (4.13)

The ratio of the number of operations from Equations (4.12) and (4.13) allows to estimate
the reduction w.r.t. to the Dijkstra search. SC is defined as the worst case search cost
to find the shortest path in a visibility graph with Dijkstra’s algorithm, relative to the
unreduced V G (without line-smoothing). In this case, the search of the reduced visibility
graph V Gr reduces the maximum number of operations to

SC = OPDr · 100
OPD

= 4880 · 100
23487 = 20.78 % (4.14)

compared to a search of the unreduced visibility graph V G.
Applying line-smoothing on the estimated state space EX, before a visibility graph

is computed, is beneficial for unreduced and reduced variants, as the number of vertices
|VEX | is reduced. Furthermore, a variant with a limitation of the workspace/mission
area is compared. Four different visibility graph variants are compared in the following,
using ten different estimated state spaces for each. The results are for setups, without
(Tables 4.2, 4.3 and 4.4) and with line-smoothing (Tables 4.6, 4.7 and 4.8), including
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variants with restricted workspace W (Tables 4.4 and 4.8). In the following tables, |VEX |
is the number of unique vertices in the estimated state space EX. If line-smoothing is
applied to EX, |VLS| is the resulting number of unique vertices, in the smoothed EX. The
final number of vertices, in the resulting visibility graph, is listed as |VV G|. |EV G| is the
resulting number of visible edges, in a visibility graph. In Chapter 4.2, the visibility graph
is searched by an A*-search algorithm, whose worst time complexity is O(bd). The base
is the so called branching factor b and the exponent d is the depth of the final solution.
Hence, the mean branching factor b̄ has an important influence on the convergence of the
search, which is why it is additionally listed. It is calculated by

b̄ = 2|EV G|
|VV G|

. (4.15)

As b̄ represents the mean number of connected edges/states, the results are rounded to
the next integer for better intelligibility. Using a V Gr, which exclusively contains tangent
and bitangent edges, significantly reduces the mean branching factor. On average, in
Table 4.2, the mean branching factor is b̄ = 68, for the unreduced visibility graph, while
it is b̄ = 8 in Table 4.3, for the reduced one.

Table 4.2: Unreduced visibility graph, on data from the 2015/07/07, without line-
smoothing.

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 241 - - 6867 57 100
13:00 461 - - 13742 60 100
14:00 341 - - 11397 67 100
15:00 669 - - 24930 75 100
16:00 672 - - 25478 76 100
17:00 808 - - 28918 72 100
18:00 912 - - 31565 69 100
19:00 1196 - - 42996 72 100
20:00 996 - - 34945 70 100
21:00 1061 - - 34868 66 100
22:00 994 - - 32734 66 100

Without line-smoothing, the differences between the results in Table 4.2, for the unre-
duced, and Table 4.3, for the reduced visibility graph, regarding the ensuing search with
Dijkstra’s algorithm, are considerable. By applying line-smoothing in the following ex-
amples, the difference becomes less pronounced, but is still considerable.

While the branching factor can be influenced significantly by line-smoothing in the
unreduced V G (compare b̄, in Tables 4.2 and 4.6), for the reduced versions mainly the
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Table 4.3: Reduced visibility graph, on data from the 2015/07/07, without line-
smoothing. The ratio between the initial number of vertices |VEX | in the estimated state
space is reduced to |VV G|. Implicitly the obstacle edges are likewise reduced by 29.61 %.

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 241 - 204 802 8 26.98
13:00 461 - 341 1441 8 24.18
14:00 341 - 269 1234 9 23.87
15:00 669 - 478 2216 9 20.73
16:00 672 - 484 1996 8 19.86
17:00 808 - 573 2367 8 20.74
18:00 912 - 614 2383 8 19.91
19:00 1196 - 833 3302 8 20.61
20:00 996 - 702 3073 9 21.64
21:00 1061 - 704 2750 8 20.66
22:00 994 - 676 2709 8 21.26

Table 4.4: Reduced visibility graph, on data from the 2015/07/07, without line-
smoothing, in a limited corridor.

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 46 - 40 55 3 3.05
13:00 27 - 19 16 2 0.54
14:00 80 - 56 69 2 2.76
15:00 230 - 143 203 1 3.93
16:00 161 - 108 143 2 2.75
17:00 175 - 115 147 2 2.54
18:00 174 - 114 115 2 2.21
19:00 245 - 168 283 3 2.76
20:00 387 - 255 410 3 5.46
21:00 331 - 204 232 2 3.95
22:00 299 - 191 284 3 4.06

number of obstacles in the workspace is decisive. This is the reason why the branching
factor in the example with the restricted workspace (Tables 4.4 and 4.8) is generally lower,
than in the unrestricted case (Tables 4.3 and 4.7). Therefore, it can be summarized, that
the smoothing of obstacles, a reduced visibility graph as well as a reduction in the number
of obstacles (resulting from a restriction of the search space) have a significant influence
on the runtime of the trajectory planning.

The combination of line-smoothing and reduced visibility graph (see Table 4.7) usu-
ally results in considerable reductions of computational effort. Table 4.8 shows, how an
additional restriction of the workspace W offers further potential for savings. However,
the probability of finding a trajectory is reduced and optimality can no longer be ensured.
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Table 4.5: Partial shortest path map, on data from the 2015/07/07, without line-
smoothing. The number of computed visible edges, which are necessary to find the shortest
path to the goal, is relatively small. Generally, a partial shortest map is the most effective
and fastest of all presented visibility methods.

Time |VEX| |VLS| |EV G| A* Iter.
12:00 241 - 37 2
13:00 461 - 1 1
14:00 341 - 1 1
15:00 669 - 16 1
16:00 672 - 97 5
17:00 808 - 122 4
18:00 912 - 42 2
19:00 1196 - 104 4
20:00 996 - 180 11
21:00 1061 - 160 22
22:00 994 - 73 9

Table 4.6: Unreduced visibility graph, on data from the 2015/07/07, with line-smoothing.
A value of ε = 0.022◦, more than halves the original number of vertices (|VEX | vs. |VLS|).

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 241 135 - 2967 44 44.70
13:00 461 236 - 5603 47 41.88
14:00 341 189 - 4846 51 43.99
15:00 669 310 - 7815 50 33.26
16:00 672 322 - 7769 48 32.88
17:00 808 380 - 9147 48 33.78
18:00 912 417 - 10297 49 34.36
19:00 1196 564 - 14721 52 35.99
20:00 996 483 - 12469 52 37.39
21:00 1061 448 - 9933 44 30.48
22:00 994 453 - 10894 48 34.93

The restriction of the workspace can also be on the basis of a distinction between broad
and near phase. The workspace is then reduced to the area of the reachable set of future
aircraft states Afut (see Section 3.3) in the prediction horizon TN of the nowcast. This
restriction of the workspace is applied in all examples in Chapter 6.
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Table 4.7: Reduced visibility graph, on data from the 2015/07/07, with line-smoothing.

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 241 135 127 690 11 17.98
13:00 461 236 198 1100 11 14.65
14:00 341 189 168 1003 12 15.74
15:00 669 310 263 1468 11 11.48
16:00 672 322 278 1351 10 11.35
17:00 808 380 321 1553 10 11.51
18:00 912 417 335 1537 9 10.81
19:00 1196 564 475 2305 10 11.82
20:00 996 483 397 2182 11 12.50
21:00 1061 448 363 1623 9 10.34
22:00 994 453 364 1781 10 11.44

Table 4.8: Reduced visibility graph, on data from the 2015/07/07, with line-smoothing,
in a limited corridor.

Time |VEX| |VLS| |VV G| |EV G| b̄ SC [%]
12:00 46 35 29 55 4 2.23
13:00 27 20 12 16 3 0.33
14:00 80 47 35 49 3 1.61
15:00 230 117 78 148 4 2.04
16:00 161 80 63 115 4 1.55
17:00 175 82 60 84 3 1.19
18:00 174 83 62 96 3 1.15
19:00 245 129 103 209 4 1.63
20:00 387 172 134 286 4 2.75
21:00 331 138 99 153 3 1.78
22:00 299 137 97 186 4 1.94

Table 4.9: Partial shortest path map, on data from the 2015/07/07, with line-smoothing.
The number of computed visible edges, which are necessary to find the shortest path to the
goal, is relatively small.

Time |VEX| |VLS| |EV G| A* Iter.
12:00 241 135 36 2
13:00 461 236 1 1
14:00 341 189 1 1
15:00 669 310 1 1
16:00 672 322 80 4
17:00 808 380 82 3
18:00 912 417 39 2
19:00 1196 564 77 3
20:00 996 483 153 16
21:00 1061 448 70 7
22:00 994 453 37 3
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4.2 Informed Search in Dynamic Environments

In order to find anticipatory near-time-optimal trajectories, A*-search is applied [53]. It is
suitable for single-source-single-target problems and has many advantageous properties,
namely being a complete, optimal, optimal efficient and easy to implement algorithm. The
contributions in this chapter are the concept of partial shortest trajectory maps, changes
to the A*-search algorithm when applied to exclusively moving obstacles (Section 4.2.2)
and an effective heuristic to speed up the search (Section 4.3.3).

4.2.1 A*-Search for Static Environments

The A* is a straightforward informed search algorithm, which means that it uses domain
knowledge to reduce the amount of search in order to find an optimal solution. If the
applied heuristic is at least admissible (see Section 4.3), it is guaranteed to find the
optimal solution, e.g. the shortest path. Furthermore, if a consistent heuristic is used (see
Section 4.3), A*-search is provably optimal efficient, which means that no other known
algorithm, using the same heuristic, expands fewer nodes in order to find a solution [102].
It is also a complete algorithm, which means that if a solution exists it is found.

d1

d2

d3

d4
d5d6

d7

d8d

dd

d

20.5·d 20.5·d

20.5·d 20.5·d

Figure 4.13: Analogous to the equidistant grid on the left and a nonhomogeneous graph,
which represents a visibility graph (see Section 4.1), is depicted on the right side. In con-
trast to an indifferent raster discretization it exclusively contains the actually achievable
shortest paths (straight lines). In conjunction with the methods presented in Section 4.1
this leads in total to a reduction of the search, which represents a significant contribution
of this work.

The algorithm is often applied to a grid representation of the search space. Typical
grids are triangular, square or hexagonal. Left in Figure 4.13, a square grid is depicted,
which allows movement in eight directions, where the cost of a straight movement is the
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distance d and the diagonal cost is
√

2d. Depending on the resolution of a grid, the search
can be rather slow, as a great deal of intermediate nodes have to be expanded. To speed
up the search on uniform-cost grid maps, jump point search can be applied [105]. For
the present application a visibility graph with heterogeneous, nonnegative edge weights
is used, as depicted on the right in Figure 4.13. A reduced visibility graph contains no
unnecessary vertices and edges (see Section 4.1.2) and innately allows to cover greater
distances without intermediate nodes.

In Algorithm 1 the basic A*-search for a static environment is described. The start
configuration is qs and the goal configuration is qg. Initial or intermediate configurations
are qin, adjacent configurations to qin are qa. The bookkeeping is done in the so called
open list (OL). Configurations, which are stored in OL are called candidates qc. The
total estimated F -cost is the distance it takes, to get from the start configuration qs to
goal configuration qg, via an adjacent configuration qa, and is calculated by

F (qa) = G(qa) +H(qa), (4.16)

where G is the actual cost to get from the start to an adjacent configuration and H is the
estimated cost to get from an adjacent to the goal configuration. If an initial configuration
qin is the goal configuration qg (see line 18, in Algorithm 1) and the applied heuristic is
at least admissible, the shortest path is computed.

For static environments the roadmap and even the heuristic costs can be preprocessed.
Alternatively, in Section 4.1.2, the A*-search is applied to compute the roadmap of the
environment, while searching the shortest path to a goal. The resulting graph is termed
partially shortest path map (PSPM). In this case, in Algorithm 1, a function is called
between line three and four, which computes the visible tangent edges from the actual
initial configuration qin, to determine the qa. Each time the visibility of the nontangent
edge between qin and qg is additionally determined.

4.2.2 A*-Search for Dynamic Environments

This section features Contribution 4: A*-Search in Dynamic Environments
- Partial Shortest Trajectory Map.

A free estimated state space EXfree is computed by the prediction unit (Section 3),
whereof different kinds of search-graphs can be created, using the methods from Sec-
tion 4.1. In this section the associated informed graph search is presented. The A*-search
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Algorithm 1: Basic A*-search
Input: start, goal, roadmap, heuristic values
Output: shortest path

1 initalize open list OL = {qs} with the start as initial configuration
2 initalize empty closed list CL = ∅
3 while OL 6= ∅ do
4 foreach qa from the actual qin do
5 if qa /∈ CL then
6 calculate total cost from qs to qg via qa with F (qa) = G(qa) +H(qa)
7 if qa /∈ OL then
8 insert qa as qc in OL
9 else

10 if new G(qc) < than prior G(qc) then
11 replace existing G-cost and set qin as parent configuration qp
12 end
13 end
14 end
15 end
16 pick qc ∈ OL with the minimum F -cost as new qin
17 remove qin from the OL and insert it into CL
18 if qin is the goal state qg then
19 break
20 end
21 end
22 if OL = ∅ then
23 return no path found
24 else
25 construct path by backtracking of the parent nodes
26 end
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algorithm from Section 4.2.1 is adapted, in order to compute near-optimal trajectories,
regarding the prediction from Chapter 3. In the upcoming Section 4.3 a new heuristic
function is introduced to speed up the search.

Prior research, regarding the computation of optimal trajectories in the presence of
time-varying obstacles, was done by [39], using visibility graph representation of the search
space. Time-minimal motion to a moving destination point can be computed, for the
case, in which the agent moves faster than any of the obstacles. The exclusively convex
polygonal obstacles move in a fixed direction at constant bounded velocity.

A heuristic search algorithm for motion planning amidst moving obstacles is presented
in [40]. Safe time-minimal trajectories are computed for the special case of growing discs
with bounded velocity. The agent is required to move faster than any of the obstacles.
Cyclic replanning of trajectories and online application, including a compensation of the
planning time, are discussed.

In both approaches, the obstacles are exclusively convex and nonholonomic constraints
are not considered, although [40] computes smooth paths by using round obstacles. In
the presented case, obstacles are represented by arbitrary polygons, for whose future state
a prediction exists. Aircraft and obstacles move at bounded velocity, without a relative
velocity limitation, i.e. an obstacle is allowed to move faster than the aircraft. In order
to be able to consider dynamic environments, the configurations q are parameterized by
time t. Thus, the A*-search operates with states x = (q, t) instead of configurations q.

At the beginning of the algorithm, the only state in the OL is xs, which automatically
has the lowest estimated F -cost. The EXfree(xin) is computed from xs = xin. Depending
on the applied heuristic a partial or complete visibility representation of EXfree(xin) is
generated, whose nodes are treated as states. In addition to the determination of the
adjacent states to the initial state, either a complete reduced visibility graph or partial
shortest path map are used to estimated the heuristic costs (see Section 4.3.3). An
adjacent state xa is directly connected to its parent state xp = xin, via a visible edge. For
each initial state, at least one so called auxiliary states xaux is added, as adjacent state.
This is necessary, to simulate the nonholonomic turning-flight constraints of a fixed-wing
aircraft, which is explained in detail in Chapter 5.

In the presented approach, a complete roadmap to the goal in X-space does not
exist a priori. Instead, it is incrementally generated by exploring initial states xini , with
i ∈ {1, . . . , k}. This results in a partial shortest trajectory map (PSTM) to the goal state,
which is analogous to the partial shortest path map (SPM) from the previous section.
For every xin, an estimated state space EXfree(xin) is computed and the adjacent states
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Figure 4.14: Schematic of a partial shortest trajectory graph. Adjacent states (e.g. depth
1 states) are visible in the free estimated state space EXfree, from an initial state (e.g.
start state, depth 0). The A*-search always expands the most promising states, from which
a new EXfree is computed, in order to determine its adjacent states. Additionally at least
one auxiliary state is added. Incrementally, a partial shortest trajectory map is built, until
the goal state is reached (green arrows).

are determined. By doing so, A*-search generates a tree of visible connections, which is
rooted in the start state xs (see Figure 4.14). This process is repeated, until the goal state
xg is the initial state xin or no solution exists.

In contrast to the Dijkstra’s algorithm, A*-search does not just compute the G-cost,
which in this case is the time to get from the start state xs to an adjacent state xa.
Instead, it uses an additional heuristic, to estimate the H-cost, which is the time to get
from xa to xg. As in the basic A*-search algorithm, the total estimated F -cost is the time
it takes, to get from xs to xg, via xa, and is calculated by

F (xa) = G(xa) +H(xa). (4.17)

In every while loop of the A*-search, the F -cost for each xa is computed. If the condition
in Algorithm 2, line 20 is met, an xa is inserted into OL. States in OL, are called candidate
states xc. The OL is a priority queue, which is implemented as binary heap. It contains
the candidate states, sorted in ascending F -cost order, as well as their respective parent
states. In order to compute time-monotone and feasible trajectories, for each xc additional
state information is stored in OL (see Table 4.10).
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Table 4.10: The open list stores various information about its candidate states. If a
candidate state is set as new initial state, the information is retrieved, to compute a
feasible trajectory. The time-at-arrival t(xc) ensures, that a trajectory is time-monotone,
while course-at-arrival χ(xc) and bank-at-arrival µ(xc) are necessary, to constrain the
curvature of the trajectory (see Chapter 5).

Open List Information of Candidate States
1 x(xc) x-coordinate
2 y(xc) y-coordinate
3 z(xc) z-coordinate
4 t(xc) time at arrival
5 χ(xc) course at arrival
5 µ(xc) bank angle at arrival
7 G(xc) actual start to candidate cost
8 H(xc) estimated candidate to goal cost
9 F (xc) estimated start to goal cost
10 x(xin) x-coordinate of the parent state
11 y(xin) y-coordinate of the parent state
12 z(xin) z-coordinate of the parent state

In each iteration, the most promising xc, with the minimum estimated F -cost, is set
as the next xin. It is then popped from the priority queue (OL) and inserted into the
so called closed list (CL), which stores already explored states. This process repeats,
until either OL is empty, in which case the algorithm reports that no trajectory to the
goal exists and performs partial planning (see ESA, Section 3.3), or the goal state xg
is inserted into CL, in which case the trajectory is constructed, by backtracking of the
corresponding parent states and is then commanded to the flight controller.

Figure 4.15(a) depicts a five dimensional (east, north, altitude, course, time), discrete
curvature-constrained and time-monotone trajectory, which is computed by solving the
two dimensional problem in Figure 4.15(b). This is done, using the information stored in
OL (Table 4.10) and under the assumption of constant speed VT = VG and angle of climb
γ. The resulting trajectory is a sequence of states, as shown in the example in Figure 4.14
(states connected by green arrows).

The following pseudocode (Algorithm 2), illustrates the flow of the MPTP, including
the aforementioned A*-search. The user can choose between three heuristic functions and
two options, regarding the handling of adjacent states xa. The Option 1 in Algorithm 2,
follows the procedure of the basic A*-search algorithm, as described in Section 4.2.1. Up
to three queries are performed for each adjacent state xa. The first query checks whether
a state with the same position as xa is already in CL. If not, the algorithm examines in
a second query, whether a state, with the position as xa, is already in OL. If not, xa is
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(a) Three dimensional plot of a trajectory.

(b) Two dimensional view of a trajectory.

Figure 4.15: A dynamically feasible and time-monotone trajectory is computed in (a), by
solving the two dimensional geometric problem in (b). The start state xs on level t = 0 min
in (a), is the first of seven initial states. The cones depicted in (a), are isochronous circles,
which are necessary to create the estimated state space EX (see Section 3.3), from each
of the seven initial states.

inserted in OL. Otherwise, if a state with the same position as xa, is already in OL, a
third query examines whether the new G-cost is lower than before. If so, both the G-cost
and parent state xp are updated. In order to ensure the optimality of a trajectory, these
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queries are necessary for environments containing static obstacles, since the estimated
conflict area ECA of a static obstacle is the shape of the obstacle itself. Therefore, it
can occur that positions of states are identical. Thus, it is recommended to use Option 1
for environments containing static obstacles. All results in Chapter 6 are conducted with
Option 1 (OL- and CL-queries activated).

The first two queries have a worst case time complexity of O(n), where n is the number
of entries in the respective list. Especially OL can become very large, gradually slowing
down the search. In environments, in which all obstacles are moving, the likelihood of
repeating states is extremely low. This is due to the fact, that the shape of an ECA is a
function of the future aircraft states from an initial state and an obstacle, as described in
Section 3.3. Therefore, it is possible to leave out the aforementioned queries, by choosing
Option 2. In environments containing exclusively moving obstacles, this can result in
improved runtimes. However, this can be at the expense of optimality.

In Chapter 5, auxiliary states xaux are introduced that are necessary to plan curvature-
constrained trajectories and enable the planning of holding patterns (see Section 5.4).
The position of auxiliary states can occur multiple times, for example in circular holding
patterns, as depicted in Figure 5.10. These overlapping positions do only occur, if an
auxiliary state was added as adjacent state xa to another auxiliary state, which is then
its parent state xp. However, in this case the xp is then inserted into CL. This makes
it possible to plan holding patterns even if Option 1 is selected. However, this entails a
limitation, in case that an inadmissible heuristic (see Section 4.3) is applied. In order
to ensure the optimality of a trajectory, an additional query can be implemented in
Algorithm 2, which examines if a state with the same position, as xa, is already in CL.
If the new G-cost is lower than before, both the cost and parent state xp are updated,
which hence could prevent the planning of automatic holding patterns.

If the position of the goal depends on time, the goal is a state xg. Trajectory planning
to xg can be done in a reactive or tactical fashion. If no prediction for xg exists, the
actual xg is updated by the mission planner in every MPTP iteration (Figure 2.3). The
reactive guidance is likely to result in a trajectory with pursuit curve (see Figure 6.17(a),
Section 6.4). If xg can be predicted by the mission planner (see Figure 2.3), the goal
state, with the minimal normal distance to the matching isochronous set of the aircraft, is
selected for trajectory planning in every MPTP iteration (see Figure 6.17(b), Section 6.4).
This results in the optimal trajectory to the goal state through the moving thunderstorms.
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Algorithm 2: Model Predictive Trajectory Planning
Input: initial state xin(xin, yin, zin, χin, tin) and latest thunderstorm nowcast
Output: anticipatory trajectory in free state space Xfree

1 while aircraft has not arrived at the goal do
2 load thunderstorms On(t) of the latest nowcast, add margins (see Section 3.1)
3 perform spatiotemporal interpolation for the query times spaced by ∆t
4 update the actual aircraft state and set it as start state xs
5 if the goal state xg will be uncovered sometime in the interval from t0 to t0 + TN

then
6 initalize the open list OL = {xin} with the start state xs set as initial state xin
7 initalize empty closed list CL = ∅
8 while OL 6= ∅ do
9 compute the set of estimated future states Afut(xin) for constant VT

10 compute the obstacle region EXobs(xin) = Afut(xin) ∩On(t)
11 compute the free state estimated space EXfree(xin) = W \ EXobs(xin)
12 generate the auxiliary state(s) xaux (see upcoming Section 5)
13 generate roadmap of free state space {V,E} = V G(EXfree(xin))
14 select adjacent states xa to xin, that meet dynamic constraints (Section 5)
15 foreach adjacent state xa do
16 if Option 1: environment contains static and dynamic obstacles then
17 if xa /∈ CL then
18 call one of three heuristic functions to compute H(xa)
19 calculate total cost F (xa) = G(xa) +H(xa)
20 if xa /∈ OL then
21 insert xa in OL
22 else
23 if G(xa) < G(xc) then
24 replace existing costs and set xin as new parent state xp
25 end
26 end
27 end
28 else if Option 2: environment contains exclusively dynamic obstacles

then
29 call one of three heuristic functions to compute H(xa)
30 calculate total cost F (xa) = G(xa) +H(xa) and insert xa in OL
31 end
32 new xin is xc with minimum F -cost, remove xc from OL and insert in CL
33 if xin is the goal state xg then
34 break
35 end
36 end
37 if OL = ∅ then
38 perform partial planning [47], e.g. flight inside estimated safe area ESA
39 else
40 construct the anticipatory trajectory by backtracking of the parent states xp
41 command trajectory states to the flight controller (see Figure 2.3)
42 end
43 else
44 command straight flight in ESA or holding pattern (upcoming Section 5.4)
45 end
46 end
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4.3 Heuristics for the Informed Search

A heuristic is an valuable instrument to solve state-space problems [102]. For trajectory
planning, the H-cost is the estimated time it takes, to get from an adjacent state xa to
the goal state xg. In this thesis A*-search is used with three different heuristics, which
are presented in the following. The choice of the heuristic function is decisive for the
convergence of the search and the optimality of computed trajectories.

A heuristic is admissible, if it never (at any time or any partial solution) overestimates
the costs-to-go. Furthermore, an admissible heuristic is consistent if the heuristic cost of
the goal state is

H(xg) = 0 (4.18)

and if it obeys the triangle inequality. Therefore,

H(xin) ≤ C(xin, xa) +H(xa), (4.19)

where C is the cost to get from xin to xa, has to be true for all existing states and their
adjacent states. While a consistent heuristic is always admissible, an admissible heuristic
can be inconsistent [102]. If the heuristic is at least admissible, A*-search is guaranteed
to find the optimal solution, if one exists. If the H-cost is underestimated, the solution is
optimal but unnecessary search is done, which slows down the convergence. Admissible
heuristics cause A*-search to explore an exponential number of nodes [106] [107].

Inadmissible heuristics can overestimate the costs-to-go. However, they offer good
performance in large search spaces, at the expense of optimality. This is why in some
time-critical applications a deliberate overestimation of the heuristic costs is achieved
using an inflation factor (σ > 1)

F (xa) = G(xa) + σ ·H(xa). (4.20)

This provides A*-search a depth-first nature and speeds up the convergence, as fewer
states are expanded. Bounds on the suboptimality can be given by this very inflation
factor σ [106]. If the total cost is dominated by the heuristic cost

F (xa) = G(xa) +H(xa) ≈ H(xa), (4.21)

then A*-search turns into a greedy best-first search.
Optimally, theH-cost is exactly the real cost, in which case the A*-search only expands
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the states of the optimal trajectory (see an example in Section 6.1, Figure 6.6(b)).
The time complexity of A*-search can be described by O(bd). The base b is the

branching factor, which can be significantly influenced by the representation of the search
(see Section 4.1.1). The exponent d is the depth of the search. While an admissible
heuristic has no influence on the effective branching factor, the effective depth of the
search can be reduced [108]. This is an important benefit, as the search space expands
dynamically in the presented algorithm. A heuristic function can prevent an excessive
growth of the searched state-space, as visible connections in EXfree are generated from
each of the respective candidate states, with the lowest F -cost.

In the following Sections 4.3.1 to 4.3.3, three different heuristics for the A*-search
are described. The selection of a heuristic function, in Algorithm 2, is made inside the
for-loop, in line 18 for Option 1 and line 29 for Option 2.

4.3.1 Dijkstra’s algorithm

The first and most ineffective search-method is Dijkstra’s algorithm, which can be seen
as special case of the A*-search algorithm, where the heuristic value is zero [109]. In this
case, the total cost is calculated by the equation

F (xa) = G(xa) + 0. (4.22)

The A*-search always expands the state with the minimum F -cost first. Therefore, in
this case the state, which is nearest to the start state, is expanded first. The A*-search
becomes Dijkstra’s algorithm and the search expands, like a circular wavefront, in all
directions. While the untargeted search is ineffective, it only requires a partial visibility
graph V Gp (see Figure 4.1(c)), which contains the visible tangent edges of first order to
the adjacent states and is considerably less expensive, than the computation of a complete
V Gr. In each iteration of A*-search, a V Gp is computed from the initial state with the
minimum F -cost (see line 32, in Algorithm 2). This process is repeated, until the goal
state is reached, which results in partial shortest trajectory map (PSTM). This is analog
to the partial shortest path map method, presented in Section 4.1.2. This incremental
A*-search variant is guaranteed to find a near-optimal solution, if one exists, and is used
to compare both the convergence and optimality of the following two A*-search variants,
in Chapter 6.
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4.3.2 Euclidean Distance Heuristic

The Euclidean distance heuristic (EDH) is frequently applied for A*-search. It is an
admissible and consistent heuristic, as the costs-to-go are always underestimated and it
obeys the triangle inequality, which guarantees, that the solution found is optimal [106].
In this case, it estimates the H-costs, to get from each xa to xg, by the beeline distance.
As the computation of the Euclidean distance is inexpensive and A*-search with EDH
only requires a V Gp (see Figure 4.1(c)), this variant is computationally very effective.
As in Section 4.3.1, the incremental search results in a PSTM, which is guaranteed to
contain the optimal solution, if one exists. However, EDH is not ideal for the task of
avoiding time-varying thunderstorms, as obstacles are ignored by the Euclidean distance.
Especially in dense scenarios, the negative effect becomes noticeable in extended runtimes
(see Chapter 6).

4.3.3 Shortest Static Path Heuristic

This section features Contribution 5: Heuristic for A*-Search in Dynamic
Environments.

Finally, a novel heuristic function for A*-search is introduced in this thesis. As men-
tioned in Section 4.2.2, the purpose of a V Gr is not only the determination of adjacent
states xa from an initial state xin. It is furthermore used to calculate the shortest path
from each xa to the goal xg. The length of a shortest path, which can be converted to
time as VT is constant, is applied as H-cost for the respective xa. Therefore, the heuris-
tic function is called shortest static path heuristic (SSPH). It uses a nested A*, which
searches the actual V Gr of EXfree applying the Euclidean distance heuristic. Instead of
determining the H-cost of each adjacent state in one reduced visibility graph V Gr, it can
be determined alternatively by computing a partial shortest path map (see Section 4.1.2)
from each adjacent state xa to the goal state, by performing an A*-search as described
in Section 4.2.1. Generally, the computation and memory requirements are considerably
lower using this method.

In most cases the SSPH does underestimate the cost-to-go. This is due to the fact,
that a shortest path is computed in the static estimated state space from an initial state.
Therefore, every non-straight edge means a change in velocity, which can only be greater
than the planning velocity. In the example in Figure 4.16, the length of |s1| < |s2|, if
δ > 0◦. This implies that V1 = s1/(t2 − t1) < V2 = s2/(t2 − t1). Thus, the time of arrival,
which is the cost-to-go for the MPTP, is underestimated.
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t1 t2

Figure 4.16: The distance covered in ∆t = t2 − t1, is greater than s1, if the deviation
from straight direction δ > 0◦. This error causes an underestimation of the H-cost by the
SSPH, in the actual estimated state space, which is only valid from the initial state, from
which it is computed.

The obstacles (ECAs) for the static shortest path search are generated from an ego-
centric perspective from an initial state xin (see Section 3.3). If a transition between
subsequent isochronous circles is not in straight direction, this equals to a change in ve-
locity, as more distance is covered in the same time interval ∆t. Therefore, only the
visible adjacent states xa are valid. Nevertheless, the static graph of EXfree considers to
some extent the obstacles, even if their shape is distorted. The dependency of the obstacle
shape ECA and initial position is demonstrated in Figure 4.18. Depending on the relative
movement between aircraft and obstacles, the ECA may appear to be larger than they
actually are, which compensates the aforementioned underestimation and causes an over-
estimation of the costs-to-go. Since this cannot be ruled out, SSPH is a nonadmissible and
inconsistent heuristic, which is why the optimality of trajectories cannot be guaranteed.

In [106] the quality of a heuristic function is characterized by the accuracy of its
estimation, which is evaluated on the basis of an abstract analytical model. This is
hardly feasible for SSPH. However, the accuracy can be determined experimentally. For
this purpose, each xa, for which a H-cost is computed, subsequently has to be the set as
start state xs, of a separate A*-search. An ensuing comparison between estimated and
actual H-cost, allows a statistical assessment of the accuracy of the SSPH function, which
however is only valid for the current configuration, i.e. ground speed VG, maximum course
change ∆χmax and time increment ∆t.

Nevertheless, the SSPH function can be characterized, as some parameters have a
significant influence on its accuracy. The ratio RVG , between the ground speeds of the
aircraft VGA and an obstacle VGO , has an important influence. This can be easily proven
by the following thought experiment. If an aircraft travels at finite VGA and an obstacle is
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static, the ground speed ratio is RVG = VGA/0 = ∞. In this case, the H-cost estimation
by SSPH is exact, as the shapes of the ECAs and obstacle identical. As a consequence
the A*-search exclusively expands the states of the optimal trajectory. Thus, it can
be deduced, that RVG is decisive for the accuracy of SSPH. An example of this fact
is given in Figure 4.17. Three aircraft traveling at ground speeds of VG = 60 m/s (a),
VG = 180 m/s (b) and VG = 900 m/s (c) are depicted. As expected, the fastest aircraft has
the best match between, initial (thunderstorms at t0) and estimated obstacles ECAs, as
the ground speed ratio, between aircraft and thunderstorm, is the highest (Figure 4.17(c)).
The SSPH function computes the H-cost based on the shortest distance to the goal state,
in the visibility graph of the static free estimated state space EXfree (area outside the
red polygons in Figure 4.17).

However, RVG is not the only parameter, that influences the accuracy of SSPH. Also,
the relative position of xin, with respect to the ground speed vector of an obstacle, is
decisive for the shape of the resulting ECA. This directly influences the shortest path,
which is theH-cost for the xa. Figure 4.18 shows three examples, for ground speed ratios of
2.1, 2.9 and 20. In each Figure, the initial start state is localized in five different positions.
Depending on ground speed ratio and relative placement (distance to the obstacle and
lateral offset to the axis of motion) of the start state to the obstacle (red circle) axis of
motion, shape and position of the respective ECA varies significantly. The shape of an
ECA is generally closer to the real obstacle as RVG increases.

As mentioned before, a transition between subsequent isochronous circles, which is
not in normal direction, is equivalent to an acceleration. Therefore, another factor for the
accuracy of SSPH is the implicit change in velocity, if the shortest static path is not a
straight line. The smaller the resulting sum of course changes of the shortest path inside
the V Gr of EXfree is, the better the estimate by the SSPH function is. Therefore, it can
be useful to calculate both the shortest path and the integrated velocity deviation (to the
planning velocity) due to the course changes, in order to have a quality criterion for the
prioritization of xa. For this, however, the relationship between velocity deviation and
accuracy of the H-cost estimate has to be determined. This can improve the accuracy
of the SSPH function. Whether this is worth the additional computation has not been
determined yet. Furthermore SSPH is only valid if a path does not return to previous
isochrones, because the information on a previous isochrone is incorrect, as it is outdated.

Although, the SSPH heuristic is computationally more expensive than the EDH func-
tion, the explicit consideration of obstacles speeds up the search in practice (see Chap-
ter 6), as it reduces the expansion of the search space. This is especially valuable, if the
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(a) ECAs: V = 60 m/s and ∆t = 30 s.
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(b) ECAs: V = 180 m/s and ∆t = 10 s.
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(c) ECAs: V = 900 m/s and ∆t = 2 s.

Figure 4.17: The initial state is depicted by the black star in the center. The colormap
indicates the positions of the aircraft, at times from t0 (light yellow) to t0 + 3600 s (dark
blue). The respective ECA(xin) are depicted by red lines, while the nowcast measurement
at t0 (including safety margins) is depicted as black lines.
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(a) ECAs for a ground speed ratio of 2.1.
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(c) ECAs for a ground speed ratio of 20.

Figure 4.18: In all figures an obstacle (red circle) translates in positive x-axis (right
direction on the dashed line) at constant speed. From each start position (colored stars),
placed along a half circle (dotted line), a unique ECA (color of associated start) of the
moving obstacle (red circle) is computed.
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4.3 Heuristics for the Informed Search

obstacles are large, as unnecessary search in impassable areas, can be prevented (see up-
coming example in Figure 6.6). Alternatively to the presented nested A*-search approach,
the fast marching method can be applied (see Section 3.2), to determine the static paths
in V Gr(xin). In this case, no visibility graph is needed, which is especially interesting
when searching three dimensional spaces.
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Chapter 5

Modeling Nonholonomic

Turning-Flight

Kinodynamic and nonholonomic/curvature-constrained motion planning are directly re-
lated [9]. A fixed-wing aircraft has velocity constraints in the y- and z-direction of its body-
fixed frame of reference, as it cannot fly directly sideways or upwards. However, there are
no restrictions in its reachable configurations, as they can be attained by performing a
series of maneuvers. Therefore, a fixed-wing aircraft is a nonholonomic system [37]. If the
future state primitives from Section 3.2 are used, the nonholonomic turning-flight con-
straint is considered innately. For the state sampling, which compute approximate future
states, it has to be modeled explicitly. As the combinatorial planning approach from the
previous chapter does not model the nonholonomic turning-flight by default, an auxiliary
method is required to ensure that computed trajectories are dynamically feasible.

Dubins was one of the first to address the problem of finding the shortest curvature-
constrained path, in the absence of obstacles [110]. When applied in a local planning
method, it can be used to model nonholonomic constraints in the presence of both static
and dynamic obstacles. For example using a RRT-planning approach [42], which uses
three-dimensional Dubins path segments [111] for the tree-expansion [112]. This kind of
forward simulation is typical for sampling-based motion planning approaches under dif-
ferential constraints [42]. A system simulation module computes feasible state transitions
from an initial state, by integration, e.g. using Runge-Kutta methods. If a simulated state
does not already exist and not collide with an obstacle, it is added to a search graph [10].
A similar approach is applied in this thesis to consider nonholonomic constraints in com-
binatorial motion planning. The basic idea is to add flyable states, which in the following
are called auxiliary states xaux, to the list of adjacent states for each initial state xin, in
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5.1 Simple Auxiliary States

the A*-search (see Section 4.2.1), if neither they nor the trajectory to them are in conflict
with obstacles. This results in discrete curvature-constrained time-minimal trajectories,
which can be interpreted as a discrete version of Dubins path [113]. An auxiliary state
can be generated for one turning-sense (unidirectional turning-flight) or both turning-
senses (bidirectional turning-flight). In the following three sections, different methods for
the computation of auxiliary states are presented, which range from low- to high-fidelity
representation of the aircraft performance. Finally, a method for the automatic planning
of holding patterns is introduced in Section 5.4, which enhances the capabilities of the
MPTP considerably.

5.1 Simple Auxiliary States

This section features part of Contribution 6: Methods for the Computation
of Feasible States.

In this section, a straightforward method to compute future states or quickly evaluate
their feasibility, even by hand, is introduced. Starting from xin, the course change is
limited to |∆χmax| = 90◦. Adjacent future states to xin, that require |∆χ| ≥ |∆χmax| are
disconnected from xin in the V G. An xaux is located on the new course at the leg distance
of LD = VT∆t and can be performed as fly-by or fly-over state. In order to ensure, that
a commanded state can be reached in due time, two conditions have to be met. First, the
leg distance LD between the adjacent states has to be longer or equal than the minimum
stabilization distanceMSD [64]. TheMSD is the minimum distance, that it takes for the
aircraft to fly on the new course. Second, to reach the next commanded state (waypoint
at a certain time) in due time, the aircraft has to fly with a corrected mean velocity Vcor.
Generally, the distance covered by the aircraft (ACD) differs from the LD. However,
the aircraft has to arrive at the next state in tin + ∆t. In case of a fly-by state and
0◦ ≤ |∆χmax| ≤ 90◦, the Vcor is ≤ VT . For a fly-over state, and 0◦ ≤ |∆χmax| ≤ 90◦, the
true airspeed VT is ≤ Vcor. The Vcor has to be higher than the stall speed VS and less or
equal to maximum true airspeed VTmax , to ensure feasibility of a trajectory.

In the following, a simple procedure to quickly assess the flyability of states, i.e. ad-
missible combination of selected planning velocity VT , ∆t and |∆χmax|, is presented.
With the setups in Figure 5.1(a) and (b), a normalized minimum stabilization distance
MSDnorm and velocity correction δV are determined as a function of |∆χmax| (see Ta-
bles 5.1 and 5.2), by setting the minimum turn radius to Rmin = 1 (unit turning-circle).
In order to determine the smallest possibleMSD = MSDnormRmin for fly-over states, for

86



Chapter 5: Modeling Nonholonomic Turning-Flight

N
or
th

East

(a) Geometric assumptions, for fly-by states.
East

N
or

th
X

in

MSD
norm

ACD
norm

R
in

= R
min

= 1

R
out

= R
min

= 1

(b) Geometric assumptions, for fly-over states.

X
in

East

N
or
th

(c) MSDnorm for fly-by, as function of ∆χmax.

X
in

East

N
or
th

(d) MSDnorm for fly-over, as function of ∆χmax.

Figure 5.1: Normalized aircraft covered distance and normalized minimum stabilization
distance, when xin is performed (a) as fly-by or (b) as fly-over state. An xaux on the new leg
has to be at least the minimum stabilization distance away from the xin. The normalized
minimum stabilization distance limit from xin, for ∆χmax = [0◦, 90◦], is depicted by a
green line in (c) for fly-by and in (d) for fly-over geometry. States that lie beyond the
green MSDnorm line are feasible from xin.
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5.1 Simple Auxiliary States

both, the roll-in and roll-out radius, Rmin = 1 is applied (see Figure 5.1(b)). Generally,
roll-in and roll-out radius are different, leading to a smooth but longer MSD.

The values for theMSDnorm (Tables 5.1 and 5.2) are computed by the aforementioned
approximation. Therefore, the establishment of the bank angle and the acceleration, for
the correction of the distance per ∆t error, are neglected. To account for these factors, a
distance of Vcorδt can be added to the MSD, for example with δt being 10 seconds, for a
fly-over state [64]. Since the time increment ∆t is a fixed value, the relative distance error
between the normalized distance covered by the aircraft (ACDnorm) and the normalized
minimum stabilization distance (MSDnorm), is used to calculate a velocity correction
factor. Due to the turn anticipation, when performing a fly-by state, the planned distance
corresponding to ACDnorm is twice the MSDnorm (see Figure 5.1(a)). Thus, the relative
distance error for a fly-by state is calculated by

εrel = ACDnorm − 2MSDnorm

2MSDnorm

(5.1)

and the relative distance error for a fly-over state is

εrel = ACDnorm −MSDnorm

MSDnorm

. (5.2)

The velocity correction factor is calculated by

δV = 1 + εrel. (5.3)

Table 5.1: Normalized minimum stabilization distance and velocity correction factors,
as functions of |∆χmax|, for fly-by states.

|∆χmax| 5 12 20 30 45 60 72
MSDnorm 0.044 0.105 0.176 0.268 0.414 0.577 0.727

δV 1.000 1.000 0.999 0.998 0.991 0.969 0.929

Table 5.2: Normalized minimum stabilization distance and velocity correction factors,
as functions of |∆χmax|, for fly-over states.

|∆χmax| 5 12 20 30 45 60 72
MSDnorm 0.210 0.503 0.829 1.220 1.749 2.189 2.463

δV 1.001 1.005 1.015 1.033 1.078 1.139 1.206
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The corrected mean velocity is then computed by

Vcor = VT δV (|∆χmax|). (5.4)

With the value for Vcor and |µmax|, the actual minimum turn radius can be computed

Rmin = Vcor
2

g tan |µmax|
. (5.5)

By multiplying MSDnorm(|∆χmax|) with the minimum turn-radius Rmin(|∆χmax|),
the actual minimum stabilization distance MSD(|∆χmax|) is calculated. Table 5.3 shows
exemplary values for different |µmax|.

Table 5.3: Values for minimum stabilization distances for VT = 80 m/s, |∆χmax| = 45◦
(as used in Chapter 6) for different values of |µmax|, for fly-over and fly-by states.

|µmax| [◦] 5 10 15 20 25 30 35 40 45
MSDov [m] 15091 7488 4928 3628 2831 2287 1886 1574 1320
MSDby [m] 3033 1505 990 729 569 459 379 316 265

In order for a planned trajectory to be discretized in this way, the minimum time
increment ∆t is determined by

∆tmin(|∆χmax|, |µmax|) = MSD

VT
. (5.6)

Notice, that the values for the velocity correction δV , in Tables 5.1 and 5.2, only
apply for the special case, in which the leg distance LD is equal to the MSD. Otherwise,
the corrected mean velocity Vcor is less, as the relative error between ACD and MSD

is correspondingly smaller. This also implies that Rmin(Vcor, µmax) is smaller. Therefore,
if MSD < LD, an iterative calculation is applied, to solve for the necessary Vcor. For
fly-over states this is described by

δV = 1 + ACDnormRmin(VT δV )−MSDnormRmin(VT δV )
LD

= 1 + ACD −MSD

LD
. (5.7)

For the example, in Section 6.3, the leg distance is LD = VT∆t = 4800 m. In the
case of LD = MSD, |∆χmax| = 45◦ and µmax = 25◦, the corresponding value from
Table 5.2 is δV = 1.078. Applying the aforementioned formula, with an convergence
criterion of 10−9, the new value is δV = 1.042. Therefore, the corrected mean velocity is
Vcor = VT δV = 83.36 m/s, instead of 86.24 m/s.
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5.2 Approximate Auxiliary States

For values of |∆χmax| ≤ 90◦, fly-by states generally result in much shorterMSD and a
less critical reduction of the velocity instead, compared to fly-over states. However, even
if all states are fly-over, the simulations in Chapter 6 satisfy the criteria for flyability i.e.
MSD ≤ LD = VT∆t and VS < Vcor < VTmax .

In order to increase the robustness of the MPTP, |∆χmax| can be defined as soft
constraint. A xaux is only valid, if it is neither in nor on EXobs(xin). If no xaux exists,
|∆χmax| can be increased stepwise, until a xaux exists and |∆χmax| is valid, i.e. the actual
MSD ≤ LD.

5.2 Approximate Auxiliary States

Alternatively, the auxiliary states can be computed for a |∆χ| ≤ 90◦ and different values
for µ ≤ |µmax|. The maximum bank angle |µmax| is limited by the aircraft’s dynamics
and can be determined, using the relation between the lift and bank angle

mg = Lmax cosµmax, (5.8)

which solved for the maximum bank angle yields

µmax = arccos mg

Lmax
. (5.9)

The maximum lift can be calculated by

Lmax = CLmax q̄S, (5.10)

where q̄ is the dynamic pressure and S is the wing area of the aircraft.
In the following, a turn is approximated by a circular segment Sc, which neglects both

increase and decrease of the bank angle and thus is only admissible for aircraft with a
high roll rate p or for small bank angles. Due to the combination of circular and straight
trajectory segments the approximate auxiliary state method is basically a Dubins path
[110]. Smooth curvature transitions for aircraft with a slow roll rate can be described by
clothoids [114, 115] or as presented later on, in Section 5.3, by using a Taylor series.

An xaux is located at the end of a Sc, if the length

|Sc| = |∆χR| (5.11)
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is equal to VT∆t (see xaux(µ = 4.6◦) in Figure 5.2). The smallest possible bank angle
µmin, in order to meet this condition, while reaching the commanded course χin + ∆χ, is
calculated by

|µmin| = arctan VT
.
χ

g
(5.12)

with
.
χ = ∆χ

∆t . (5.13)

If |Sc| < VT∆t, the xaux is located at the end of a combination of Sc and a straight segment
Ss (blue line, Figure 5.2), which is attached at the end of the circular segment Sc (red
line in Figure 5.2) and whose length is

|Ss| = VT∆t− |Sc|. (5.14)

Figure 5.2: Approximate auxiliary states, for constant ∆χ and different values of µ.

The Figure 5.2 shows an example for ∆χ = 45◦ and different values of µ including
µmin(∆χ = 45◦) = 4.6◦, where the trajectory solely consist of a circular segment. By
variation of µ the lateral displacement is increased. This method leads to more realistic
xaux, than those presented in Section 5.1, thereby improving the feasibility of the planned
trajectory. In the next section, a forward simulation method is introduced.
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5.3 Simulated Auxiliary States

5.3 Simulated Auxiliary States

This section features part of Contribution 6: Methods for the Computation
of Feasible States.

The methods to generate auxiliary states, presented in Sections 5.1 and 5.2, are in-
tended to minimize computational complexity and load. For aircraft with performance
reserves and considering the large uncertainties in the forecast, it makes little sense to
calculate elaborate xaux. However, for low performance aircraft these methods may be in-
sufficiently accurate, making it impossible for the flight controller to follow the commanded
trajectory. This can result in large spatio-temporal errors. To ensure the feasibility of
xaux, an alternative method is introduced, which explicitly considers the dynamics of the
aircraft (subscale to the planning time increment ∆t of the MPTP). Instead of using a
flight simulation, which is computationally expensive, as future states are computed us-
ing numerical integration of the aircraft’s equations of motion, xaux are computed using
a Taylor series (TS), which is suitable for an online application.

In the following, the procedures to gather the necessary aircraft performance data are
explained step by step. For demonstration purposes, a generic model of a HAPS (see
Figure 5.3) is presented, whose design is inspired by the Zephyr 7 from Airbus.

5.3.1 Generic Low Performance Aircraft Model

A HAPS (high altitude pseudo-satellite) is a special class of unmanned aircraft designed
for long term missions in the stratosphere. In order to achieve this, light weight con-
struction (e.g. missing ailerons) and consequent energy saving (e.g. low thrust reserve)
are crucial. Thus, a HAPS is ideally suited as an example for a low performance aircraft.

Figure 5.3: An exemplary HAPS inspired by Airbus Zephyr 7 design with two engines.
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Table 5.4: Specifications for the generic HAPS configuration.

Aircraft Mass and Inertia
m Curb Weight 100 [kg]
Ixx Rolling Moment of Inertia 1271.30 [kgm2]
Iyy Pitching Moment of Inertia 238.50 [kgm2]
Izz Yawing Moment of Inertia 1488.30 [kgm2]
Ixz Product of Inertia −35.70 [kgm2]

Propulsion
Pmax Engine Power 5000 [W]
ne Number of Engines 4 [-]
ηpt Efficiency Powertrain 0.86 [-]
ηpr Efficiency Propeller 0.82 [-]

Main Wing
- Airfoil Eppler E395
b Wingspan 22.50 [m]
S Wing Area 31.10 [m2]
c̄ Mean Aerodynamic Chord 1.44 [m]

Horizontal Stabilizer
- Airfoil NACA 63010a
- Size 0.85× 4.20 [m]

Vertical Stabilizer
- Airfoil NACA 63010a
- Size 1.50× 1.00 [m]

5.3.2 Aerodynamic and Stability Analysis

In Tables 5.5 and 5.6, the dimensionless derivatives for the HAPS configuration are listed.
All values are computed using the aerodynamic analysis software XFLR5 [116]. They are
fixed and not a function of the Mach number Ma. Since the drag coefficient is obtained
by a vortice lattice method (XFLR5) the viscous drag is not considered. Therefore, the
polar is shifted towards a higher value of CD0 [117] (see Figure 5.4).

The aircraft design fulfills the criteria for longitudinal and lateral static stability. The
damping derivatives Clp , Cmq and Cnr have negative sign. Furthermore Clβ and Cmα are
also negative, while Cnβ is positive. As the center of gravity is before the neutral point,
Cm is negative. At α(Cm = 0) the CL is positive and (CL/CD) is close to (CL/CD)max.

5.3.3 Estimation of True Air Speed Limits

The stall and maximum true air speeds at mean sea level (MSL) and an altitude of 19000 m
are evaluated at international standard atmosphere (ISA) conditions. In the following, it
is briefly presented how these values can be estimated, since they are necessary for the
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Table 5.5: Dimensionless longitudinal derivatives for the generic HAPS.

Drag Force Coefficients
CD0 0.014
CDα 0.100
CDη 0.008
CDζ 0.010
Lift Force Coefficients

CL0 0.380
CLα 5.550
CLq 7.482
CLη 0.487
Pitch Moment Coefficients
Cmα -0.784
Cmq

-15.931
Cmξ

0.005
Cmη

-1.840
Cmζ

0.003
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Figure 5.4: As XFLR5 tends to underestimate the viscous drag, the CL/CD polar (red
line) is shifted towards a higher zero lift drag with respect to the analysis (black line).

forward simulation and trajectory planning.
The stall speed at MSL is approximately

VTS(h = 0m) =
√

2mg
ρSCLmax

=

√√√√ 2 · 100 kg · 9.81m/s2

1.225 kg/m3 · 31.1 m2 · 1.35
= 6.18 m/s. (5.15)
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Table 5.6: Dimensionless lateral derivatives for the generic HAPS.

Side Force Coefficients
CYβ -0.266
CYp -0.275
CYr 0.119
CYξ 0.277
CYζ 0.080
Yaw Moment Coefficients
Cnβ 0.013
Cnp -0.065
Cnr -0.014
Cnζ -0.021
Roll Moment Coefficients
Clβ -0.163
Clp -0.589
Clr 0.117
Clξ -0.109
Clζ 0.003

According to WGS84 the gravitational acceleration at an altitude of h = 19000 m is

g(h) = GM

(R + h)2 = 6.674 · 10−11m3/kgs2 · 5.972 · 1024 kg
(6371000 m + 19000 m)2 = 9.76 m/s2, (5.16)

with G being the gravitational constant, M the mass of the earth and R its mean radius.
The stall true air speed at altitude can be estimated by

VTS(h) =
√

2mg
ρSCLmax

=

√√√√ 2 · 100 kg · 9.76 m/s2

0.121 kg/m3 · 31.1 m2 · 1.35
= 19.60 m/s. (5.17)

For steady level flight the power can be written as thrust times velocity

P = TVT . (5.18)

In steady level flight the equilibrium condition is, that thrust equals drag

T = D. (5.19)

Using Equation (5.19) the Equation (5.18) can be written as

P = DVT , (5.20)
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where the drag is
D = CDq̄S. (5.21)

The required lift for steady level flight is

L = mg = CLq̄S, (5.22)

which solved for the lift coefficient for level flight is

CLlev = mg

q̄S
= 2mg
ρSV 2

T

. (5.23)

The drag coefficient for level flight is described by

CDlev = CDmin + k1(CLlev − k2)2 = 0.012 + 0.029(CLlev − 0.18)2, (5.24)

where k1 is a constant and k2 = CL(CDmin) (see Figure 5.4). Using Equations (5.21), (5.23)
and (5.24) Equation (5.20) can be written as

nePmaxηto = DVTmax = q̄SCDlevVTmax = ρS

2

CDmin + k1

(
k2 −

2mg
ρSV 2

Tmax

)2
V 3

Tmax ,

(5.25)
where ne is the number of engines and ηto is the total efficiency of powertrain ηpt and
propeller ηpr

ηto = ηpt · ηpr = 0.86 · 0.82 = 0.7. (5.26)

Solved for the maximum true airspeed this yields VTmax(h = 0 m) = 38.76 m/s, which
corresponds to Ma = 0.11, and VTmax(h = 19000 m) = 89.21 m/s, which corresponds to
Ma = 0.30.

5.3.4 Nonlinear 6-DoF Flight Simulation

The flight simulation, which is described in this section, is implemented in Simulink. Most
of the equations in this section are given by [118].

Assumptions for the Simulation

• Flat nonrotating earth.

• No relative velocities in the body frame. Aeroelastic effects are not modelled, al-
though a HAPS is a very flexible configuration. The stiff model is sufficiently accu-
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rate to evaluate the average performance of the configuration.

• The air is incompressible, as the aircraft flies in the Mach range Ma ≤ 0.3.

Frames of Reference

Body Frame of Reference:
The body frame of reference (index B) is used for the calculation of forces and moments.
It’s origin is at the center of gravity (CG) and translates and rotates with the aircraft.
The positive xB-axis points toward the nose, the yB-axis towards the right wing and the
zB-axis towards the bottom of the aircraft. The velocity in xB-direction is denoted by u,
in yB-direction by v and in zB-direction by w. The roll rate around xB is denoted by p,
the pitching rate around yB is q and the yaw rate around zB is r.
Aerodynamic Frame of Reference:
Origin of the aerodynamic axis system (index A) is at the CG of the aircraft. First, the
B-frame is rotated around the yB-axis, by the angle of attack −α, and then around its
zA-axis, by the sideslip angle β. The x-axis of the A-frame is aligned with the velocity of
the free airflow V

|V | =
√
u2 + v2 + w2, (5.27)

with 
u

v

w

 =


V cosα cos β
V sin β

V sinα cos β


.

(5.28)

The aerodynamic angles can be expressed in B-frame velocities. The angle of attack is

α = arctan w
u

(5.29)

and the sideslip angle is
β = arcsin v

V
. (5.30)

The derivatives of the aerodynamic angles can be calculated by the formulas given in [118]

.
α =

.
w cosα− .

u sinα
V cos β , (5.31)

.
β = −

.
u cosα sin β + .

v cos β − .
w sinα sin β

V
. (5.32)
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Inertial Earth Fixed Frame of Reference:
The earth fixed frame of reference (index E) serves to determine the position of the
aircraft. The earth is assumed to be flat and does not rotate. This is sufficiently accurate
for short term simulations. The xE-axis points towards geographic north and the yE-axis
towards geographic east. Both are parallel to the local surface of the geoid. The zE-axis
is perpendicular to plane definded by xE and yE and points towards the center of the
earth. The transformation matrix M , from E- to the B-frame of reference, is given by

MBE =


cos Ψ cos Θ sin Ψ cos Θ − sin Θ

cos Ψ sin Θ sin Φ− sin Ψ cos Φ sin Ψ sin Θ sin Φ + cos Ψ cos Φ cos Θ sin Φ
cos Ψ sin Θ cos Φ + sin Ψ sin Φ sin Ψ sin Θ cos Φ− cos Ψ sin Φ cos Θ cos Φ


(5.33)

where Ψ is the azimuth angle, Θ is the pitch angle and Φ is the bank angle. Thus, the
gravitational acceleration can be transformed from E- to the B-frame by


gxB

gyB

gzB

 = MBE


gxE

gyE

gzE


.

(5.34)

Definition of State and Control Vector

The state vector is defined as


u

v

w

p

q

r

x

y

z

Φ
Θ
Ψ



=



velocity in x-axis of the body frame, in [m/s]
velocity in y-axis of the body frame, in [m/s]
velocity in z-axis of the body frame, in [m/s]

roll rate around x-axis of the body frame, in [rad/s]
pitch rate around y-axis of the body frame, in [rad/s]
yaw rate around z-axis of the body frame, in [rad/s]
center of gravity position in direction north, in [m]
center of gravity position in direction east, in [m]
center of gravity position in direction down, in [m]
bank angle of the aircraft w.r.t earth frame, in [rad]
pitch angle of the aircraft w.r.t earth frame, in [rad]

azimuth angle of the aircraft w.r.t earth frame, in [rad]


.

(5.35)
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The control vector is defined as


δξ

δη

δζ

δT

 =



aileron deflection, in [rad]
elevator deflection, in [rad]
rudder deflection, in [rad]

throttle, in [%]


.

(5.36)

Total Coefficients

The total lift-force coefficient is calculated by

CL = CL0 + CLaα + CL .
α

.
α
c̄

2V + CLqq
c̄

2V + CLηδη. (5.37)

According to Equation (5.24) the total drag force-coefficient is

CD = CDmin + k1(CL − k2)2. (5.38)

The total pitching-moment coefficient is

Cm = Cm0 + Cmαα + Cmqq
c̄

2V + Cmξδξ + Cmηδη + Cmζδζ. (5.39)

The total side-force coefficient is

CY = CYββ + CYpp
b

2V + CYrr
b

2V + CYξδξ + CYζδζ. (5.40)

The total yawing-moment coefficient is

Cn = Cnββ + Cnpp
b

2V + Cnrr
b

2V + Cnζδζ. (5.41)

The total rolling-moment coefficient is

Cl = Clββ + Clpp
b

2V + Clrr
b

2V + Clξδξ + Clζδζ. (5.42)

The force coefficients in the xB- and zB-axis are computed by

CX = −CD cosα cos β + CL sinα, (5.43)

CZ = −CD sinα cos β − CL cosα. (5.44)
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Forces and Moments

The actual forces and moments acting on the aircraft are necessary to calculate the
accelerations in the B-frame. For this purpose the dynamic pressure is required, which is
calculated by

q̄ = 1
2ρV

2. (5.45)

With the total coefficients from the previous section, the forces, acting on the aircraft
in body axis reference frame, are calculated by

X = CX q̄S + TB, (5.46a)

Y = CY q̄S, (5.46b)

Z = CZ q̄S, (5.46c)

where TB is the thrust, which is assumed to act in xB-direction and to cause no additional
moments. The moments in body axis are calculated by

L = Clq̄Sb, (5.47a)

M = Cmq̄Sc̄, (5.47b)

N = Cnq̄Sb, (5.47c)

where b is the wingspan and c̄ is the mean aerodynamic chord. The load factors in body
axis can be computed by

nx = X

mg
, (5.48a)

ny = Y

mg
, (5.48b)

nz = −Z
mg

. (5.48c)

Equations of Motion

The translational accelerations are calculated by

.
u = X

m
+ gxB + rv − qw, (5.49a)

.
v = Y

m
+ gyB − ru+ pw, (5.49b)

.
w = Z

m
+ gzB + qu− pv. (5.49c)
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The angular accelerations are calculated by

.
p = IzzL+ IxzN − (Ixz(Iyy − Ixx − Izz)p+ (I2

xz + Izz(Izz − Iyy))r)q
IxxIzz − I2

xz

, (5.50a)

.
q = M − (Ixx − Izz)pr − Ixz(p2 − r2)

Iyy
, (5.50b)

.
r = IxzL+ IxxN + (Ixz(Iyy − Ixx − Izz)r + (I2

xz + Ixx(Ixx − Iyy))p)q
IxxIzz − I2

xz

. (5.50c)

If wind is considered the velocities of the aircraft’s CG in the E-frame (navigation
equations) are 

.
xE
.
yE
.
zE

 = MEB


u

v

w

+


Wx

Wy

Wz


,

(5.51)

where MBE
T = MEB and W is the wind speed vector relative to E-frame.

The kinematic equations, using Euler angles, are

.
Φ = p+ (sin Φq + cos Φr) tan Θ, (5.52a)
.

Θ = cos Φq − sin Φr, (5.52b)
.

Ψ = (sin Φq + cos Φr)
cos Θ . (5.52c)

At the beginning of a simulation the integration blocks are initialized with start values.
The state derivatives are integrated and fed back as the new actual states.

5.3.5 Assessment of Steady-State Angular Rates

Tight turns or rather small turning-radii can cause a strongly asymmetric lift distribution.
If the lateral stability cannot compensate the differential lift, the result is an overbanking
tendency (OBT), which in aircraft like HAPS can already occur at small bank angles.
This effect is not reflected by the equations of motion in Section 5.3.4. If the aircraft
overbanks it is necessary to deflect the aileron in the opposite direction in order to avoid
an increasing bank, which as a consequence reduces the available deflection for the roll-
out. As a result the roll-in rate pri will be higher than the roll-out rate pro for the same
deflection. To exclude effects due to OBT, the bank angle is limited to µmax = 15◦ and
the minimum true airspeed to VT = 22 m/s. Thus, the resulting minimum turn radius is

Rmin = V 2

g tanµmax
= (22 m/s)2

9.81 m/s2 tan (15◦)
= 184.13m. (5.53)
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Using the formula
V = ωRmin (5.54)

the angular velocity can be calculated, which in this case is ω = 0.119 rad/s along the
wing span. Considering the bank angle of µmax = 15◦, the inner and outer wingtip are
at a distance of d = ± cos(µmax)b/2 = ±10.87 m to the center line of the aircraft. With
an airflow velocity of approximately 20.70 m/s at the inner and 23.30 m/s at the outer
wingtip the resulting differential lift is not estimated to be significant. Furthermore, the
pronounced dihedral of HAPS (see Figure 5.3) has a counteractive effect. For this reasons
OBT will not be considered further from here on. Additionally, for the considerations in
the following Section 5.3.6, it is assumed that the roll-in rate pri and roll-out rate pro are
approximately equal, provided that an appropriate controller is equipped and sufficiently
aileron deflection reserve is available. An aileron step input causes a PT1 roll response,
for which a time constant τ can be estimated by

τ = − 1
Lp

= −Ixx
ρ
2SV

(
b
2

)2
Clp

, (5.55)

according to [119]. At an altitude of h = 10000 m and V = 22 m/s, for example, this
yields an approximate roll time constant for the HAPS of τ = 0.12 s. At t = 5τ = 0.6 s
the roll rate is near its steady-state value

p(t) = pss
(
1− e−t/τ

)
= pss(1− e−5) = 0.993pss. (5.56)

With the previously introduced simulation model, it is possible to assess reasonably
accurate values for the roll rate, by trimming steady-state flight conditions, using the
linear analysis toolbox in Simulink. Table 5.7 shows results for different altitudes and
velocities. Tables 5.8 and 5.9 contain the corresponding trim specifications regarding the
inputs and states.

Table 5.7: Steady-state roll rate for an aileron deflection of δξ = −1◦ at altitudes of
h = 1000 m and h = 10000 m.

VT [m/s] 22 26 30 34 38
pss(h = 1000m) [◦/s] 0.342 0.404 0.466 0.529 0.591
pss(h = 10000m)[◦/s] 0.208 0.246 0.284 0.322 0.360
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Table 5.8: State specifications to obtain the steady-state rates in Table 5.7.

State Value Known Steady-State
u VT × ×
v 0 m/s × ×
w - - ×
p - - ×
q 0 ◦/s × ×
r 0 ◦/s × ×
x - - -
y - - -
z h × ×
Φ - - -
Θ - - ×
Ψ - - -

Table 5.9: Input specifications to obtain the steady-state rates in Table 5.7.

State Value Known
δξ −1◦ ×
δη - -
δζ - -
δT - -

5.3.6 Auxiliary States Computation using Taylor Series

The objective of this section is to determine dynamically feasible auxiliary states xaux,
which can be achieved exactly at the planner’s time increment ∆t on a commanded course.
For this purpose, a fast and reasonably accurate computation method is introduced that
consists of a simplified dynamic aircraft model and a noniterative simulation method, i.e.
the Taylor series (TS). Compared to iterative methods, for example Runge-Kutta (RK), it
has the disadvantage that the integration cannot be stopped at certain events, for example
if the maximum bank angle µmax or desired course change ∆χ is achieved. Therefore, the
simulation times at which these events occur have to be precisely specified in advance.
For the present application, this can be accomplished analytically, assuming that roll-in
and roll-out rate are approximately equal and piecewise constant. The presented method
is suitable for real time application and accurate within the limits of the simplifications
made, if the chosen integration interval is not too large or the TS order is high enough.

The Taylor series is based on the Taylor theorem

f(t) = f(tin) +
∞∑
n=1

f (n)(tin)
n! (t− tin)n, (5.57)
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where f(tin) is the initial state. For the implementation of TS integration, automatic
differentiation is applied, as described in [120]. This further speeds up the running times,
as the number of terms to evaluate is reduced. The Matlab implementation is from [121],
where a detailed description can be found. TS uses the following differential equations
for planar motion

u = V cosχ, (5.58a)

v = V sinχ, (5.58b)
.
χ = g tanµ

V
, (5.58c)

.
µ = pss. (5.58d)

A turn from an initial state xin, as center of a Taylor series (TS), to an auxiliary state
xaux always begins with pin = 0 ◦/s, µin = 0◦, ∆χin = 0 ◦ and ends with pfin = 0 ◦/s,
µfin = 0◦ on the desired course. Generally, initial conditions are taken from the navigation
graph (see Table 4.10, Section 4.2.2), which stores the information about candidate states
xin. The first segment, which is always the roll-in, is initialized with these values and each
following one with the last state of the previous segment.

Figure 5.5 shows four cases for turning-flight, which consist of at least two segments
(roll-in and roll-out) and a maximum of four segments (roll-in, constant bank, roll-out,
straight). The temporal limit for the cases in Figure 5.5(a) and (b) is given by

tµmax = µmax
pss

. (5.59)

Under the assumption pss = pri = pro and infinite roll rate acceleration, the necessary
half roll time tr, to achieve a desired course change, can be established using the integral
of Equation (5.58c) in the form

∆χ = g

V

(∫ tr

0
tan(µri(t))dt+

∫ tr

0
tan(µro(t))dt

)
, (5.60)

which using a computer algebra system (CAS) results in

∆χ = g

V

(
− ln(cos(psstr))

pss
+ ln(cos(µri − psstr) sec(µri)

pss

)
, (5.61)
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(a) Limit case: Turn consisting of roll-in and roll-out segment.

tri tro t
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μ
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μ(t) 

ts

μ=0°

(b) Turn consisting of roll-in, roll-out and straight segment.

tnrtri tro t
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μ
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μ(t)
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(c) Limit case: Turn consisting of roll-in, no-roll and roll-out.

tstnrtri tro t
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μ
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μ=0°
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(d) Turn consisting of four consecutive segments.

Figure 5.5: Turn combinations for the construction of auxiliary states with TS integra-
tion. The roll-in segment is depicted in blue, the constant bank angle in red, the roll-out
in green and the straight flight in yellow.
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where µri = psstr. Solved for the half roll time tr this yields

tr = tri = tro = arccos
√

e
−pssV∆χ

g

pss
, (5.62)

which is the foundation for the following simulation method.
Figure 5.5(a) shows the limit case, when the course change is attained exactly in

the planning time increment ∆t, by the roll-in and roll-out segment in 2tr, before the
maximum bank angle µmax is achieved (see leftmost curve in Figure 5.6). This is the
equivalent of the entirely red curve in Figure 5.2, in Section 5.2. The complete time to
achieve the commanded course change is

t∆χ = ∆t = 2tr. (5.63)

TS is initialized with xin = (xin, yin, µin, χin) and pri = ±pss. The state at time tin + tr is
the final state of the roll-in xfin = (xfin, yfin, µfin, χfin), which is used to reinitialize the
TS integration for the roll-out segment. The roll-out rate is set with the opposite sign as
the roll-in rate pro = −pri. The final state of the roll-out segment in (a) is the auxiliary
state xaux.

In Figure 5.5(b) tr < tµmax and 2tr < ∆t and therefore, an additional straight segment
is added to obtain xaux at tin + ∆t. After the roll-out segment, which is computed as
before, TS is initialized with the final roll-out state and pss = 0 ◦/s. The simulation time
for the straight segment is calculated by

ts = ∆t− 2tr. (5.64)

The final state after the straight segment in (b) is the new xaux.
The cases in Figure 5.5(c) and (d) occur, when the necessary half roll time to achieve

∆χ is greater than the time to attain the maximum bank angle tr > tµmax . In this case
a segment with constant bank µ = µmax (red segment in (c) and (d)) has to be added
in order to achieve the desired course change. Figure 5.5(c) shows the second limit case,
where ∆χ is achieved directly after the roll-out segment. The missing ∆χ, which cannot
be achieved by roll-in and roll-out, is computed by

∆χnr = ∆χ− 2∆χr, (5.65)

where ∆χr is the achievable course change by roll-in and roll-out in 2tµmax . The corre-
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sponding no-roll time tnr is calculated by

∆χnr = V tnr
R

, (5.66)

with R being the turn radius
R = V 2

g tanµmax
. (5.67)

Solved for tnr this yields
tnr = ∆χnrR

V
. (5.68)

The complete time to achieve the desired course change in Figure 5.5(c) is

t∆χ = ∆t = 2tµmax + tnr (5.69)

and the final roll-out state of the straight segment is the new xaux.
If 2tµmax + tnr < ∆t, a straight segment has to be added, which corresponds to the

yellow line in Figure 5.5(d). The TS simulation time for the straight segment is given by

ts = ∆t− 2tµmax − tnr. (5.70)

The achievable ∆χ is curbed by the planner’s time increment ∆t. If 2tr > ∆t and
tr < tµmax or 2tr+ tnr > ∆t and tr > tµmax , the desired ∆χ cannot be achieved. Figure 5.6
shows results for the above described TS simulation scheme. In the example HAPS
flies with V = 22 m/s at an altitude of 10000 m, the time increment is ∆t = 50 s
and the desired course change is ∆χ = 45◦. The steady-state roll rate pss ranges from
approximately 0.16 ◦/s to 3.43 ◦/s. The individual sections are color-coded exactly as
in Figure 5.5. The lateral distance between the turns decreases with increasing roll rate.
Generally, the results are accurate and the computation is fast. The mean absolute course
error (desired course versus resulting course) with twelfth order TS is 4.6 · 10−3◦, which is
remarkable, taking into account that the simulations are performed without intermediate
reinitialization, completely relying on precalculated switching times. The mean runtime
to compute the auxiliary states, using Matlab R2015b code on a computer with Intel Core
i7-6700 CPU @ 3.40 GHz and 32 GB RAM running on 64-Bit-Windows 7, is 8.5 · 10−5 s.

In case that the maximum bank angle is not attained before the desired course change
(see Figure 5.5(a) and (b)), it is possible to adjust the piecewise steady-state roll rate, such
that the simulation results are dynamically accurate without losing the advantage of fast
runtimes. This is possible, due to an analytical determination of the previously introduced
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Figure 5.6: Exemplary turns computed with TS integration, based on a simplified aircraft
model, for a commanded course change of ∆χ = 45◦. The color coding is identical to that
in Figure 5.5. The initial state is xin = (0, 0, tin) and the respective auxiliary states are
located at the end of the curves at time tin + ∆t. The leftmost trajectory is the limit
case, shown in Figure 5.5(a), where a turn solely consists of a roll-in (blue) and roll-out
segment (green).

half roll time tr. It shows that it is a good approximation for the points in time, when
the roll function, which considers the finite roll-acceleration by the step response function
in Equation (5.56), starts to decrease or increase (gray dash-dotted lines in Figure 5.7
and 5.8), in order to achieve the commanded ∆χ. The roll rates with finite acceleration
(black line in the upper plots) switch at t ≈ tr and t ≈ 2tr. Then, it takes approximately
7τ until p(t) is back to zero (gray dotted lines). Based on this knowledge, the steady-state
roll-in and roll-out rate of the approximation can be calculated noniteratively, so that the
resulting course change and turning-flight trajectories match reasonably. For this purpose
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the integral of the exact p(t) during the roll-in phase from tin to tin+tr+τ ln 2 is computed
by

µri =
∫ tr

tin
pss

(
1− e−t/τ

)
dt+

∫ τ ln 2

tin+tr
pss − 2psse−t/τ dt+ µin, (5.71)

where µin = 0◦ due to the initial conditions and the time τ ln 2 results from solving

pss − 2pss(1− e−t/τ ) = 0 (5.72)

for t in order to determine the zero crossing of the exact p(t). The integrals can be solved
analytically by

µri = pss
((
−1 + e−tr/τ

)
τ + tr)

)
− pssτ (−1 + ln 2) + µin. (5.73)

Therewith, the approximate steady-state roll-in rate is calculated by

pari = µri
tr + 2τ ln 2 , (5.74)

which is always smaller than the actual steady-state rate, since due to the infinite roll
acceleration assumption the achievable bank angle is generally overestimated. The same
is true for the approximate steady-state roll-out rate, which is determined by

paro = µri
tr
. (5.75)

The resulting approximation is acceptable for aircraft with small roll-time constants, as
can be seen in Figure 5.7, where the results for HAPS with finite roll rate acceleration, roll
time constant τ = 0.12 s, VT = 22 m/s and steady-state roll rate pss = 1.04◦/s (∆ξ = −5◦)
are depicted by black lines and the approximation by red lines. The comparison of the
resulting turn trajectories is depicted in Figure 5.9(a). The omitted roll acceleration can be
partly compensated by adapting the steady-state roll rates, so that the final state is near
to the exact trajectory. Figure 5.8 depicts the same course change for a configuration with
a considerably higher roll time constant of τ = 1.0 s. However, in this case a discrepancy
between the exact (solid black line) and approximated trajectory (dashed colored line) is
visible (Figure 5.9(b)). The simulations in Figure 5.7, 5.8 and 5.9 are computed using
Matlab’s ode45, which is an explicit 4th order RK integration method. It compares the
results of the 4th and 5th order approximation, to automatically adapt the step size h, by
estimating the error to the real function, known as Dormand-Prince method [122].
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Figure 5.7: Turn with finite roll acceleration (black lines) to achieve the commanded
∆χ = 90◦ with HAPS versus the automated TS integration (red lines). The key to re-
produce the results of the exact function is the determination of the roll time tr. The
agreement of the course change is very good (see bottom plot).
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Figure 5.8: Exact turn (black lines) to achieve a commanded ∆χ = 90◦ versus the
automated TS integration (red lines) for a roll time constant of τ = 1 s. Roll-in and
roll-out rate of the approximation are considerably different in order to match the results
of the exact function.
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(a) Trajectory comparison for HAPS with τ = 0.12 s.
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(b) Trajectory comparison for τ = 1.0 s.

Figure 5.9: Comparison between trajectories that are computed with finite (black lines)
and infinite roll rate acceleration with TS (colored lines), for (a) τ = 0.12 s and (b)
τ = 1.0 s, V = 22 m/s and a commanded course change of ∆χ = 90◦. The trajectories
for the small roll time constant are almost congruent.
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5.4 Automatic Planning of Holding Patterns

This section features Contribution 7: Implicit Planning of Holding Patterns.
According to the NATO Standardization Agreement No.4586 the circle is an authorized

holding maneuver for unmanned aircraft. Radius, turning-sense and duration of the hold
are unrestricted [123]. Before a trajectory is planned the algorithm determines if the goal
will be covered by obstacles in the period from t0 to t0 + TN . If the goal is permanently
covered during the period of the actual nowcast, it is declared as not flyable and the
aircraft performs a hold in Xfree until the next nowcast is issued. It is possible to specify
holding locations in advance, which the planner can use when they are in Xfree. If
the goal is only temporarily covered, a holding pattern is performed until the goal is in
EXfree. Therefore, an unidirectional turning constraint is applied, for example only turn
right (UPS-method). This prevents the MPTP to plan meandering trajectories, however,
they may not be near-optimal anymore. It is also important to notice, that resulting
trajectories can be considerably different, depending on the selected sense of rotation.
The xaux, which are always added to model the nonholonomic turning-flight constraint,
naturally result in circular holding patterns in EXfree, if the goal is covered. The ability
to plan holding patterns therefore exists innately, which is very practical and keeps the
algorithm simple. By setting |∆χmax| = 45◦, using the method described in Section 5.1,
a circular holding pattern is described by the xaux, as inscribed regular n-gon with n = 8
(see Figure 5.10, Section 6.3). The distance on a straight segment of an n-gon is given by
Sn = VT∆t. Therefore, a full n-gon takes n∆t time. For fly-over states, the radius Rcc of
the corresponding circumcircle, on whose orbit the aircraft flies, is

Rcc(n) = Sn√
2− 2 cos(2π/n)

. (5.76)

The distance on the corresponding circumcircle segment is

Scc(n) = Rcc∆χmax = Rcc2π/n. (5.77)

As Sn < Scc, the velocity has to be corrected, in order for the aircraft to arrive at a state
in due time. The correction factor is calculated by the relative error of the distances to
Sn, as ∆t is a fixed value

δV (n) = 1 + Scc − Sn
Sn

= 1 +
2π/n−

√
2− 2 cos(2π/n)
2π/n . (5.78)
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The mean corrected velocity is calculated by

Vcor = VT δV (n = 8) = 80 · 1.026 m/s = 82.04 m/s. (5.79)

Figure 5.10: Circular holding pattern, defined by eight fly-over states.

A standard-rate-turn or rate-one-turn (ROT) takes tROT = 120 s to complete a full
360◦ turn. In order to determine the appropriate time increment to perform a ROT, the
following steps are necessary. The circumference of the circumcircle for a ROT is VcortROT ,
which for a planning velocity of 82.04 m/s yields Ccc = 9844.84 m. The corresponding
radius is

Rcc = Ccc
2π = 1566.86 m. (5.80)

By rearranging the Equation (5.76) the straight segment distance is

Sn = Rcc

√
2− 2 cos(2π/n). (5.81)

Using the relationship Sn = VT∆t, the equation can be written as

VT∆t = Rcc

√
2− 2 cos(2π/n). (5.82)
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Solved for the time increment this yields

∆t =
Rcc

√
2− 2 cos(2π/n)

VT
=

1566.86 m
√

2− 2 cos(2π/8)
80 m/s = 14.99 s. (5.83)

For the interpolation of nowcast data (see Section 3.1.6) it is necessary that ∆t is
a factor of the nowcast update interval ∆TN = 300s. In this case, the nearest factor is
∆t = 15 s. Finally, it is important to evaluate, if the bank angle for the ROT is admissible.
The corrected velocity is Vcor = 82.04 m/s and the radius of the circumcircle is 1566.86 m.
Therefore, the required bank angle in this example is

µROT = arctan V 2
cor

gRcc

= arctan (82.04 m/s)2

9.81 m/s2 1527.89m
= 23.67◦. (5.84)

If µROT ≤ µmax and VS ≤ Vcor ≤ VTmax , the flight controller is able to put the presented
guidance strategy into practice in the wind-free case, arriving at the commanded states in
due time. If the method for xaux generation from Section 5.3 is applied, the transitions are
smooth and the feasibility is ensured. Generally, the use of Euclidean distance heuristic
(EDH) is best suited for planning of holding patterns, as the SSHP requires the initial
state to be connected to the goal state, at least by a partial shortest path map (PSPM)
(see Section 4.1.2). Since the goal state is temporarily covered, this is not possible without
edges penetrating EXobs. A possible workaround is to multiply the weights of intersecting
edges, by a sufficiently large penalty value, so that an actually longer trajectory is the
shortest. However, it is difficult to determine the penalty in such way, that the optimal
trajectory is computed. Most of the trajectories, calculated in this way, are neither
intuitive nor optimal.
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Chapter 6

Results

This chapter presents simulation results for the main capabilities of the model predictive
trajectory planner (MPTP). The results of the MPTP subsystems are found in the re-
spective sections. All simulations are computed using Matlab R2015b code on a computer
with Intel Core i7-6700 CPU @ 3.40 GHz and 32 GB RAM running on 64-Bit-Windows
7. As the planning algorithm always performs the same calculation steps and number of
iterations, the computational times are averaged over ten runs. The mission area (white
dashed lines in Figures 6.1 - 6.17) extends from 47.50◦ to 50.00◦ in latitude and 10.25◦ to
14.00◦ in longitude. The origin of the coordinate system in Figures 6.1 to 6.17 is at 47.50◦

latitude and 10.25◦ longitude. It is assumed, that the wind can be compensated by the
flight controller, as an external source of disturbance may prevent the results by different
heuristic methods from being comparable. However, the upcoming Figure 6.4 depicts
a series of trajectories, which are computed considering a constant wind, and thereby
shows that the MPTP is able to handle it. The maximum bank angle of the aircraft is
|µmax| = 25◦ and the maximum true airspeed is VTmax = 90 m/s. The performance data
matches with the aircraft presented in Section 5.3.1. For the following two avoidance sce-
narios, thirteen historical nowcasts by Rad-TRAM from 06/27/2015 are used. All figures
have the same color-code for real time. The period from t0 =19:05 h to 20:05 h UTC is
selected, due to the significant divergence, between nowcast and measured weather. Fig-
ure 6.1(a), shows the nowcast issued at t0, in the nowcast period of t0 to t0 + 60 minutes,
while Figure 6.1(b) shows the respectively measured data for the same instants.
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(a) Nowcast for one hour.
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(b) Actual measurement for the hour.

Figure 6.1: (a) Thunderstorm prediction by the nowcast, issued at 19:05 h, for the next
hour and (b) subsequent real measurements for the same period of time, both issued by
Rad-TRAM.
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6.1 Continuous Avoidance using Different Heuristics

In this section the results of the A*-search using the novel SSPH heuristic (introduced
in Section 4.3.3) are compared to those of A*-search using Euclidean distance heuristic
(Section 4.3.2) and Dijkstra’s algorithm (Section 4.3.1). The latter two are guaranteed to
find the optimal solution, if one exists.

An anticipatory trajectory is computed based on the expectation of how the future
situation will look like (Section 3.3). The Figure 6.2 shows an exemplary trajectory based
on the nowcast from t0 =19:05 h (see Figure 6.1(a)). It is the first trajectory of the
continuous avoidance example in Figure 6.5 (magenta line). The vertical dimension is the

Figure 6.2: Near-optimal anticipatory avoidance trajectory, based on a nowcast issued
at 19:05 h.

nowcast time TN . The dark red areas show the prediction of the nowcast for the next hour.
The surrounding light red areas are the sum of safety and probabilistic margins, introduced
in Section 3.1. Their size varies between 10000 m at t0 to 35000 m at t = TN = 3600 s
and defines the regions to be avoided. The aircraft flies with constant VT = VG = 80 m/s.
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6.1 Continuous Avoidance using Different Heuristics

Future states are sampled on a circular grid with ∆χ = 2◦ using the approximate method
from Section 3.2. Continuous avoidance is achieved by recurrent replanning, based on the
latest environment prediction.

Therefore, more examples of anticipatory trajectories can be found in Figures 6.3
and 6.5 (colored lines), which show the results for the following two continuous avoidance
scenarios, in which the aircraft has to fly towards developing thunderstorms in order to
reach the goal. Both scenarios are critical cases as uncertainty in the nowcast is generally
most pronounced in moving direction of a storm [70]. None of the trajectories is post-
processed, e.g. by B-splines. The colored lines in Figures 6.3 and 6.5 are anticipatory
trajectories, that are computed by the MPTP, starting from the triangles of correspond-
ing color. They mark intermediate states, from which the MPTP is reinitialized. The
continuous trajectory (polychrome line along the triangles) is the composite of the first leg
traveled in ∆TN on the successive anticipatory trajectories. It is important to notice that
only the colors of the continuous trajectory match with those of the real thunderstorm
measurements.

Since all conditions for feasibility from Sections 5.1 and 5.4 are fulfilled, the assumption
is made that commanded states are reached in due time, so that a next initial state (see
Section 3.2) is part of the previously computed trajectory. Hence flight controller and
aircraft blocks are not modeled. While this setup is not eligible to prove the feasibility
of the proposed guidance strategy, it is appropriate to explain the presented trajectory
planning algorithm (see Section 3 and 4), demonstrate continuous avoidance trajectories
on the basis of real thunderstorm forecasts, and compare different computation methods.
The feasibility of the proposed guidance strategy, using a controlled 6-DoF aircraft model,
has been demonstrated in [3].

The trajectories in Figures 6.3 and 6.5 are computed with A*-search using EDH and
SSPH (Section 4.3) and serve for optical comparison. The runtime for each MPTP itera-
tion is plotted in the legends on the top left side. The runtimes for the weather processing
depend on the data and take around 0.9−2.5 s without clustering. They are not included
in the runtimes for trajectory planning as the weather processing is done in advance
(see Chapter 2). Additionally, a constant H-cost of zero is applied, which degrades the
A*-search to the Dijkstra-algorithm. Random perturbations of aircraft states are inten-
tionally omitted in order to compare the different methods, regarding their convergence
and resulting trajectories. A trajectory is path parameterized with time and therefore
consists of states which are abbreviated as TRST . The states which are explored by
A*-search are called EXST . The relation between the number of TRST and EXST is
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a measure for the efficiency of the search. Two avoidance scenarios are presented in the
following. Each scenario is computed with unidirectional or bidirectional turning-flight
(Chapter 5). Tables 6.2 to 6.16 list the results for trajectory planning, with the differ-
ent heuristics, for every iteration of the MPTP. For the nonholonomic turning-flight the
method from Section 5.1 is applied.

6.1.1 Scenario 1

Table 6.1 lists the parameters for the simulation of the first scenario.

Table 6.1: Parameters for the first continuous weather avoidance scenario. Index s
stands for start state and index g for the goal state.

ϕs 48.83◦
λs 13.54◦
χs 280◦
ϕg 49.01◦
λg 11.98◦
t0 19 : 05 h
∆t 100 s
VT 80 m/s
|∆χ| 45◦
ε 0.022◦

The resulting trajectory lengths in scenario 1 are identical for all MPTP iterations,
when using Dijkstra and A*-search with EDH. However, only nine out of ten trajectories
have identical lengths, when using A*-search with SSPH, which is why the lengths are
listed in the tables below. In the fourth MPTP iteration the trajectory using SSPH is
about 200 m longer than with the other methods. The reason for this discrepancy and
the following results are discussed in Section 7.

Unidirectional Turning-Flight

The results in Figures 6.3 to 6.5 and Tables 6.2 to 6.4 are computed with turning con-
strained to right-sense. This means, that in the main loop of A*-search (see Section 4.2),
for every explored state an xaux to the right is added to the OL, as described in Chapter 5.
The MPTP is able to consider constant wind (speed and direction independent of time
and space), using the approximate future aircraft states, introduced in Section 3.2 (see
Figure 3.8). In the example shown in Figure 6.4 the mean wind comes from north at a
speed of 10 m/s, which is why initially the aircraft’s ground speed is lower as it encoun-
ters headwind. In return it subsequently has to deviate less (compared to Figure 6.3)
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6.1 Continuous Avoidance using Different Heuristics

and arrives, due to a slight tailwind, at approximately the same time at the goal as in
Figure 6.3.
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15min, EDH: 0.67s, SSPH: 0.39s

20min, EDH: 0.27s, SSPH: 0.20s

25min, EDH: 0.11s, SSPH: 0.11s

30min, EDH: 0.05s, SSPH: 0.05s

35min, EDH: 0.05s, SSPH: 0.05s

40min, EDH: 0.05s, SSPH: 0.05s

45min, EDH: 0.05s, SSPH: 0.05s

Figure 6.3: All the anticipatory trajectories for the first scenario, computed by A* with
EDH and SSPH, are plotted. Although the fourth trajectory (dark blue) is slightly longer
when using SSPH, the difference is not visible. The runtimes for all MPTP iterations
with EDH and SSPH are listed in the legend.

Table 6.2: Dijkstra’s algorithm applied to the avoidance in Figure 6.3, if the aircraft can
only turn right.

MPTP Iter. TL [km] TRST [-] EXST [-] TRST/EXST [%]
1 247.0 13 628 2.070
2 219.6 11 710 1.549
3 192.6 9 996 0.904
4 159.5 9 420 2.143
5 134.5 2 230 0.870
6 108.6 2 96 2.083
7 84.80 1 115 0.870
8 61.70 1 8 12.50
9 38.60 1 5 20.00
10 15.40 1 2 50.00

122



Chapter 6: Results

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

East [m] x 105

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

N
or

th
 [

m
]

x 105

Mission Area

Start

Goal

Figure 6.4: All anticipatory trajectories for the first scenario considering a constant
mean wind. Due to the distorted isochronous aircraft progress the planned trajectories are
optimal with respect to the actual wind conditions.

Table 6.3: A* with EDH applied to the avoidance in Figure 6.3, for right turn only.

MPTP Iter. TL [km] TRST [-] EXST [-] TRST/EXST [%]
1 247.0 13 58 22.41
2 219.6 11 49 22.45
3 192.6 9 50 18.00
4 159.5 9 14 64.29
5 134.5 2 5 40.00
6 108.6 2 2 100.0
7 84.80 1 1 100.0
8 61.70 1 1 100.0
9 38.60 1 1 100.0
10 15.40 1 1 100.0

Bidirectional Turning-Flight

Here, the aircraft can turn left and right, which ensures, that the trajectory contains no
unnecessary loops. Tables 6.6 to 6.7 contain results for the case, that in the while loop of
the A*-search (see Section 4.2) for every explored state two xaux to the right and left are
added to the OL, as described in Chapter 5. Dijkstra is not listed for comparison as even
the first MPTP iteration does not converge after several hours and 1.5× 106 iterations.
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6.1 Continuous Avoidance using Different Heuristics

Table 6.4: A*-search with SSPH applied to the avoidance in Figure 6.3, if the aircraft
can only turn right.

MPTP Iter. TL [km] TRST [-] EXST [-] TRST/EXST [%]
1 247.0 13 13 100.0
2 219.6 11 11 100.0
3 192.6 9 14 64.29
4 159.7 6 6 100.0
5 134.5 2 3 100.0
6 108.6 2 2 100.0
7 84.80 1 1 100.0
8 61.70 1 1 100.0
9 38.60 1 1 100.0
10 15.40 1 1 100.0

Table 6.5: Ratios between explored states for Dijkstra vs. A*-search with SSPH and
A*-search with EDH vs. A*-search with SSPH, if the aircraft can only turn right.

MPTP Iter. EXST(Dijkstra)/EXST(SSPH) [-] EXST(EDH)/EXST(SSPH) [-]
1 48.31 4.462
3 71.14 3.571
4 70.00 2.333
5 76.67 1.667
6 48.00 1.000
7 115.0 1.000
8 8.000 1.000
9 5.000 1.000
10 2.000 1.000

Table 6.6: A*-search using EDH applied to the avoidance in Figure 6.3, if the aircraft
can turn left and right.

MPTP Iter. TL [km] TRST [-] EXST [-] TRST/EXST [%]
1 247.0 13 12159 0.107
2 219.6 11 1397 0.787
3 192.6 9 113 7.964
4 159.5 9 14 64.29
5 134.5 2 5 40.00
6 108.6 2 2 100.0
7 84.80 1 1 100.0
8 61.70 1 1 100.0
9 38.60 1 1 100.0
10 15.40 1 1 100.0
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Table 6.7: A*-search using SSPH applied to the avoidance in Figure 6.3, if the aircraft
can turn left and right.

MPTP Iter. TL [km] TRST [-] EXST [-] TRST/EXST [%]
1 247.0 13 15 86.67
2 219.6 11 11 100.0
3 192.6 9 14 64.29
4 159.7 6 6 100.0
5 134.5 2 3 66.67
6 108.6 2 2 100.0
7 84.80 1 1 100.0
8 61.70 1 1 100.0
9 38.60 1 1 100.0
10 15.40 1 1 100.0

Table 6.8: Ratios between explored states for A*-search with EDH vs. A*-search with
SSPH, if the aircraft can turn left and right.

MPTP Iter. EXST(EDH)/EXST(SSPH) [-]
1 810.6
2 127.0
3 8.071
4 2.333
5 1.667
6 1.000
7 1.000
8 1.000
9 1.000
10 1.000

6.1.2 Scenario 2

Table 6.9 lists the parameters for the simulation of scenario 2. In this example, identical
parameters produce identical anticipatory trajectories for all MPTP iterations, when ap-
plying Dijkstra, A*-search with EDH and A*-search with SSPH. Their respective lengths
are 250.5 km, 228.8 km, 199.6 km, 177.5 km, 143.7 km, 119.5 km, 92.00 km, 66.90 km,
41.80 km and 16.70 km. The results are discussed in Section 7.

Unidirectional Turning-Flight

The results in Tables 6.10 to 6.12 are computed with turning constrained to right-sense.
This means, that in the main loop of the A*-search (see Section 4.2), for every explored
state an xaux to the right is added to the OL, as described in Chapter 5.

A comparison for the first MPTP iteration in Tables 6.11 and 6.12 is visualized in
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6.1 Continuous Avoidance using Different Heuristics

Table 6.9: Parameters for the second continuous weather avoidance scenario. Index s
stands for start state and index g for the goal state.

ϕs 48.154◦
λs 13.868◦
χs 205◦
ϕg 49.006◦
λg 11.980◦
t0 19 : 05 h
∆t 100 s
VT 80 m/s
|∆χ| 84◦
ε 0.031◦
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Figure 6.5: All trajectories in the second scenario are identical for EDH and SSPH. The
runtimes for the MPTP iterations are listed in the legend. The first three iterations display
the strength of the SSPH. A comparison of the runtimes for the first three iterations clearly
shows the advantage of SSPH over EDH.

Figure 6.6. The success rate (TRST/EXST ratio) or rather convergence of A*-search
using EDH in (a) versus the proposed SSPH in (b) is compared. The fact, that all
candidate states are in the final trajectory show how accurate the cost estimation by
SSPH can be, even in dense scenarios.
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(a) A*-search using Euclidean distance heuristic.

(b) A*-search using shortest static path heuristic.

Figure 6.6: (a) Trajectory with A*-search using EDH. Candidate future states in the
closed list are depicted by yellow and red dots. Until the goal is reached the search incre-
mentally generates ramifications in the X-space, all rooted in the start state. (b) Trajec-
tory with A*-search using SSPH. The hit rate in this first MPTP iteration is 100 %, as
all candidate states are part of the planned trajectory. This is due to an accurate estima-
tion of the costs-to-go, which is achieved by explicitly taking obstacles into account, and
represents the great strength of the new heuristic method.
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Table 6.10: Dijkstra applied to the avoidance in Figure 6.5, if the aircraft can only turn
right.

MPTP Iter. TRST [-] EXST [-] TRST/EXST [%]
1 6 17633 0.034
2 8 63940 0.013
3 8 174137 0.005
4 8 6960 0.115
5 3 768 2.391
6 3 145 2.069
7 1 24 4.167
8 1 19 5.263
9 1 6 16.67
10 1 3 33.33

Table 6.11: A*-search with EDH applied to the avoidance in Figure 6.5, if the aircraft
can only turn right.

MPTP Iter. TRST [-] EXST [-] TRST/EXST [%]
1 6 231 2.597
2 8 346 2.312
3 8 145 5.517
4 8 18 44.44
5 3 13 23.08
6 3 4 75.00
7 1 1 100.0
8 1 1 100.0
9 1 1 100.0
10 1 1 100.0

Table 6.12: A*-search with SSPH applied to the avoidance in Figure 6.5, if the aircraft
can only turn right.

MPTP Iter. TRST [-] EXST [-] TRST/EXST [%]
1 6 6 100.0
2 8 10 80.00
3 8 11 72.73
4 8 9 88.89
5 3 4 75.00
6 3 3 100.0
7 1 1 100.0
8 1 1 100.0
9 1 1 100.0
10 1 1 100.0

Bidirectional Turning-Flight

The aircraft can turn left and right, which ensures, that a trajectory does not contain
unnecessary loops. The Tables 6.14 to 6.16 show results for the case, that in the main loop
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Table 6.13: Ratios between explored states for Dijkstra vs. A*-search with SSPH and
A*-search with EDH vs. A*-search with SSPH, if the aircraft can only turn right.

MPTP Iter. EXST(Dijkstra)/EXST(SSPH) [-] EXST(EDH)/EXST(SSPH) [-]
1 2939 38.50
2 6394 34.60
3 15830 13.18
4 733.3 2.000
5 192.0 3.250
6 48.33 1.333
7 24.00 1.000
8 19.00 1.000
9 6.000 1.000
10 3.000 1.000

of the A*-search, for every explored state, two xaux are added to the OL (see Chapter 5).
Dijkstra’s algorithm is again not listed for a comparison for bidirectional flight, as even
the first MPTP iteration does not converge after hours.

Table 6.14: A*-search with EDH applied to the avoidance in Figure 6.5, if the aircraft
can turn left and right.

MPTP Iter. TRST [-] EXST [-] TRST/EXST [%]
1 6 28007 0.021
2 8 13809 0.058
3 8 1267 0.631
4 8 67 11.94
5 3 19 15.79
6 3 5 60.00
7 1 1 100.0
8 1 1 100.0
9 1 1 100.0
10 1 1 100.0
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Table 6.15: A*-search with SSPH applied to the avoidance in Figure 6.5, if the aircraft
can turn left and right.

MPTP Iter. TRST [-] EXST [-] TRST/EXST [%]
1 6 6 100.0
2 8 10 80.00
3 8 11 72.73
4 8 9 88.89
5 3 4 75.00
6 3 3 100.0
7 1 1 100.0
8 1 1 100.0
9 1 1 100.0
10 1 1 100.0

Table 6.16: Ratios between explored states of A*-search with EDH vs. A*-search with
SSPH, if the aircraft can turn left and right. Yielding the same results, the additional
computational expenditure of using EDH is considerable.

MPTP Iter. EXST(EDH)/EXST(SSPH) [-]
1 4668
2 1381
3 115.2
4 7.444
5 4.750
6 1.667
7 1.000
8 1.000
9 1.000
10 1.000

6.2 Analysis of MPTP Performance Characteristics

In this section performance characteristics of the MPTP, i.e. mean success rate and mean
search efficiency, are estimated based on a large number of samples, which are generated
by performing a Monte Carlo simulation (MCS). The MCS is based on the law of large
numbers and the central limit theorem. If a sample mean exists and the variance is
bounded, the law of large numbers states that the mean value of independent samples
converges to the true value as the number of trials goes to infinity

lim
n→∞

x̄ = µ, (6.1)

where n is the number of samples, x̄ is the sample mean and µ is the true unknown mean.
The central limit theorem states that given a sufficiently large number of random samples,
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the distribution of the sample means is approximately normal [124].
A total of n = 10000 independent trajectory samples are computed by the MPTP,

using EDH and the novel SSPH, for bidirectional turning-flight. The parameters for MCS
are listed in Table 6.17 and the applied thunderstorm data is the Rad-TRAM nowcast
from 06/27/2015, issued at 19 : 05 h (see Figure 6.1(a)). External errors, for example
due to nowcast uncertainty, are not considered in this setup, as this would falsify the
MPTP’s reliability. Thunderstorm margins vary between 10000 m at t0 (resulting in
18.2 % mission area coverage) to 20000 m at t = TN = 3600 s (resulting in 26.4 % mission
area coverage). The random variables for MCS are start position, initial course and goal

Table 6.17: Parameters for the Monte Carlo simulation.

t0 19 : 05 h
∆t 50 s
VT 80 m/s
|∆χ| 45◦
ε 0.022◦

position, which have to meet the following conditions. Start and goal position are given
by uniformly distributed random numbers in the finite latitude/longitude interval of the
mission area. In order to be valid, they are not allowed to lie directly on a border or to be
covered by thunderstorm, at any time. To ensure, at least to some extent, that the goal
is reachable in the nowcast horizon of one hour, the shortest path between the potential
start and goal positions is determined in the last nowcast (largest mission area coverage),
using visibility and A*-search (see Chapter 4). The length of a shortest path has to be
in the range of 30 % to 80 % of the theoretical range of the aircraft, which is given by
VT3600s. The initial course is a random integer number in the interval from χs ∈ [0, 359].
It must not point directly to the goal to avoid trivial (straight-line) trajectories. Thus,
in the simplest case a trajectory starts with a turn. Figure 6.7 depicts the distribution of
the total trajectory course change for all 9963 successful MPTP trials with SSPH. When
start, initial course and goal fulfill all conditions the MPTP is called twice, once with
EDH and once with SSPH.

A trial is considered to be successful if the MPTP is able to compute a trajectory
within a maximum number of 100 iterations (equal to EXST ). This strict criterion is
particularly well suited for assessing the convergence or rather real-time capability of
both motion planning variants, as it is completely independent of hardware and software
implementation.
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Figure 6.7: The distribution of the summed course changes of all sampled trajectories
shows that due to the initial course constraint no trivial (straight line) trajectories are
computed.

Figure 6.8 shows twelve successive random trajectories of different complexity level,
which all converge under 100 iterations. The dotted lines of different color show the final
path, while the respective solid lines show the actual trajectory progress. The position of
aircraft and obstacles can be observed at six different times. If the MPTP converges, the
success of avoidance is guaranteed, as the computed trajectories are free of conflicts.

The MPTP results of each trial are stored, of which success (0 or 1), number of
explored states (EXST ) and number of trajectory states (TRST ) are of special interest
as important performance characteristics can be deduced. The sample mean is calculated
by

x̄ = 1
n

n∑
i=1

xi, (6.2)

where n is the number of samples and x is the sample value [125]. According the central
limit theorem the resulting distribution is normal as the number of samples goes to infinity.
The z-score, which is applicable to normal distribution, is zα/2 = 2.58 for a 99 % confidence
interval CI99. Generally, the confidence interval for a mean sample value, assuming that
a sufficiently large number of samples is available (central limit theorem), is calculated by

CI = x̄± zα/2
σ√
n
, (6.3)
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Figure 6.8: Twelve successive random trajectories for bidirectional turning-flight are
depicted, in six time steps with a ten minute interval. The dotted lines show the final
path, while the solid lines display the actual covered distance. The black outlined dots, of
same color as the trajectories, indicate the actual position of the aircraft.
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6.2 Analysis of MPTP Performance Characteristics

where σ is the sample standard deviation [125], which is

σ =
√√√√ 1
n− 1

n∑
i=1
|xi − x̄|2. (6.4)

Figure 6.9 shows the results for mean planning success in bidirectional turning-flight for
EDH and SSPH over the number of trials. If the motion planning is successful with both
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Figure 6.9: Mean planning success of the MPTP using EDH (solid black line) and SSPH
(dotted black line) are depicted in their respective 99 % confidence interval (red lines). Af-
ter 10000 trials the confidence interval for SSPH is very narrow (CI99 = [99.47, 99.79] %),
which indicates that the sample mean is close to the true mean success rate fo the MPTP.

heuristics (7760 of 10000 trials), the mean trajectory length using EDH is 135966.27 m
and 135967.06 m using SSPH, which is a difference of +0.79 m due to the fact that SSPH
is inadmissible. Given the large amount uncertainty in the nowcast, the 5.81 · 10−04 %
relative error in length is negligible and shows how little the overall optimality in practical
applications is affected by the inadmissibility of SSPH (see Section 4.3.3). The mean
ratio between trajectory states and explored states (TRST/EXST ) is a measure for the
efficiency of the search. Even in simple scenarios A*-search with EDH is less efficient than
with SSPH, which means that more states have to be explored in order to find a feasible
trajectory. Figure 6.10 shows the mean search efficiency with both heuristics. The MPTP
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has a mean search efficiency of 85.07 % using EDH and 93.74 %with SSPH. However, EDH
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Figure 6.10: If the MPTP successfully plans trajectories with both heuristics (7760
trials): mean search efficiency of the MPTP using EDH (solid black line) and SSPH
(dotted black line) are depicted in their respective 99 % confidence interval (red lines).

fails to plan a trajectory in ≤ 100 iterations in 2240 out of 10000 trials. In many cases
the number of iterations then exceeds several thousand. Taking the number of resulting
trajectory states as a measure for the difficulty of a planning problem, the mean number
of trajectory states when EDH finds a solution is TRST = 3.69 and the mean number of
trajectory states when EDH fails and SSPH succeeds is TRST = 10.26. Figure 6.11 shows
the overall mean search efficiency of the MPTP using SSPH in 9963 successful trials. The
99 % confidence interval for the true search efficiency is CI99 = [88.76, 89.59] %, which is
a very good range. If the maximum iteration limit would be set to 20, the MPTP with
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Figure 6.11: The overall mean search efficiency (TRST/EXST ) of the MPTP using
SSPH (dotted black line) over 9963 successful trials, including 2203 trials where EDH
failed to converge under 100 iterations, is depicted in the 99 % confidence interval (red
lines). The final mean value is 89.17 %, which proves how efficient A*-search with SSPH
is.

135



6.2 Analysis of MPTP Performance Characteristics

SSPH is still able to compute trajectories in 94.79 % of the cases, which can be seen in
Figure 6.12. With the same limit MPTP with EDH is only successful in 70.99 %.
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Figure 6.12: The number of successful trials in the first MCS is plotted against the
number of iterations of the MPTP with EDH (solid black line) and SSPH (dotted black
line).

In the following, a second MCS is performed, again with n = 10000 independent
trajectory samples. In this case the MPTP is only called with SSPH and the number of
iterations is not constrained, which would be impracticable with EDH, as it often does not
converge. The MCS parameters are the same as in Table 6.17, except for the smaller time
increment of the MPTP, which now is ∆t = 10 s. Furthermore, the size of the margins
for the selection of admissible start and goal positions is the same as before, however,
the size of the actual thunderstorms is slightly smaller and varies between 8500 m at t0
to 17000 m at t = TN = 3600 s. This has the effect that the start position cannot be
directly alongside an obstacle by chance, which in combination with an unfavorable initial
course results in an unsolvable problem. Under these conditions, the success rate of the
MPTP with SSPH is 100 %, as shown in Figure 6.13. The overall mean search efficiency
is 87.51 % (see Figure 6.14), which is only slightly below the 89.17 % of the first MCS
(see Figure 6.11). This shows that a time increment variation only has a minor influence
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on the search efficiency. The most extensive trial requires 495 iterations, which can be
seen in Figure 6.15. The associated trajectory contains 21 states, which indicates that it
is a rather intricate trajectory.
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Figure 6.13: In the second Monte Carlo simulation the number of iterations for each
trial is unconstrained and the mean planning success of the MPTP using SSPH (dotted
black line) is 100 %. Although the informative value of this plot is limited, the author was
keen to illustrate this graphically.
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Figure 6.14: The overall mean search efficiency (TRST/EXST ) of the MPTP using
SSPH (dotted black line) is 87.51 % in the second Monte Carlo simulation. The 99 % con-
fidence interval (red lines) is CI99 = [86.98, 88.04] %. The search is again very effective,
although the time increment is relatively small.

Regarding a certification, the hazard is that no trajectory can be computed by the
MPTP. The severity classification of this failure condition is estimated to be between
minor and major, due to the use of generous safety margins and an existing emergency
strategy (ESA, see Section 3.2). In this case, the allowable quantitative probability for a
class I aircraft (single reciprocating engine and 6000 pounds or less of weight) is between
< 10−3 and < 10−4, according to AC 23.1309-1E [126], which, as demonstrated earlier,
can be achieved by the MPTP using SSPH.
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Figure 6.15: The successful trials of the second Monte Carlo simulation are plotted
against the number of corresponding search iterations of the MPTP with SSPH (dotted
black line). The maximum number of necessary iterations is 495. About 98 % of the trials
can be accomplished with ≤ 50 explored states.

6.3 Automatic Holding Pattern Scenario

Table 6.18: Parameters for the automatic holding Scenario. Index s stands for start
state and index g for the goal state.

ϕs 49.134◦
λs 12.168◦
χs 220◦
ϕg 49.006◦
λg 11.980◦
t0 19 : 05 h
∆t 60 s
VT 80 m/s
|∆χ| 45◦
ε 0.022◦

Table 6.18 lists the parameters for the automatic holding pattern example. The Fig-
ure 6.16(a) shows, how the MPTP plans holding patterns and adapts to changing nowcasts
by replanning a trajectory in every iteration. In this example A*-search with EDH is ap-
plied. The meteorological data is the same, as in the previous section. In the first iteration
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of the MPTP, at t0 = 19 : 05 h UTC, the algorithm plans four and a half circular holdings
before ending the hold at t0 +38 min and arriving scheduled at the just uncovered goal at
t0 + 44 min= 19 : 49 h (see Figure 6.16b). In the second iteration at t1 = t0 + 5 min, the
updated nowcast allows, that the aircraft ends the hold after three circles at t1 +24 min to
arrive scheduled at the goal t1 +31 min. In the third iteration at t2 = t0 +10 min the now-
cast indicates, that the aircraft can exit the hold after one and half circles at t2 + 12 min
to arrive at the goal at t2 + 18 min. In the fourth iteration t3 = t0 + 15 min the algorithm
plans to exit the hold immediately with an expected time of arrival of t3 + 5 min. At
t4 = t0 + 20 min the margins around the nowcast cover the goal forcing the algorithm to
plan an additional hold. Finally at t5 = t0 + 25 min the aircraft heads to the uncovered
goal. The final flight duration is t5 + 4 min= 29 min, and the actual time of arrival is
19 : 34 h.
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6.3 Automatic Holding Pattern Scenario

(a) All consecutive MPTP trajectories.

(b) Three dimensional illustration of the first MPTP trajectory.

Figure 6.16: (a) Anticipatory trajectories including automatic holding patterns with
runtimes for the MPTP iterations in the legend. The trajectories are depicted one above
the other to illustrate the different points in time, at which they are computed. As the
method from Section 5.4 is applied, a holding pattern is represented by a regular octagon.
(b) First iteration of the MPTP at t0 in three dimensions. The static goal is indicated by
a white line. As soon as the goal is uncovered, it is approached.
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6.4 Moving Goal Scenario

Table 6.19: Parameters for the moving goal Scenario. Index s stands for start state and
index g for the goal state.

ϕs 48.154◦
λs 13.868◦
χs 205◦
t0 19 : 05 h
∆t 30 s
VT 80 m/s
|∆χ| 45◦
ε 0.022◦

Table 6.19 lists the parameters for the moving goal examples. The applied heuristic is
the Euclidean distance. In Figure 6.17(a) the actual position of the moving goal (colored
star markers) is updated with every nowcast, which results in a reactive navigation. In
Figure 6.17(b) the MPTP has information about the future goal states in advance (see
Table 6.20), which allows a tactical trajectory directly towards the estimated rendezvous
location. Table 6.20 shows the states of the moving goal xg used in this example.

Table 6.20: The goal state consists of coordinates parameterized by time.

Time [min] ϕg [◦] λg [◦]
0 49.006 11.980
5 48.957 11.896
10 48.948 11.776
15 48.903 11.750
20 48.858 11.723
25 48.804 11.697
30 48.786 11.657
35 48.732 11.604
40 48.696 11.537
45 48.678 11.511
50 48.651 11.484
55 48.606 11.471
60 48.597 11.405
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-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

East [m] x 10
5

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

N
o

r
th

 [
m

]

x 10
5

Mission Area

Goal

Start

at   0min

at   5min

at 10min

at 15min

at 20min

at 25min

at 30min

at 35min

at 40min

(a) Reactive trajectory to the goal state.
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(b) Anticipatory trajectory to the goal state.

Figure 6.17: (a) The information about the position of the goal state is updated simul-
taneously with the nowcast. This leads to reactive planning and thus results in a pursuit
curve, which becomes apparent approximately from the 28th minute (first bend after the
light blue triangle). In (b) a prognosis of the goal movement is available, which results in
a straightway trajectory towards the moving goal.
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Chapter 7

Discussion

This chapter discusses the simulation results from the previous Chapter 6, with which
Objective 5 is accomplished. Comparing Figure 6.1(a) and 6.1(b) illustrates the consid-
erable amount of prediction uncertainty the MPTP is subjected to. This manifests in
the differences, between the anticipatory trajectories (monochrome lines) in Figures 6.3
to 6.5. Although solely relying on external information by nowcast, the MPTP safely
avoids thunderstorms in all presented scenarios (Section 6.1 to 6.4). The key is the im-
plicit consideration of uncertainty, by replanning a near-optimal anticipatory trajectory
for the expected case, with every update of the nowcast.

Figure 6.2 illustrates that trajectory planning is done in three-dimensions as time has
to be considered in dynamic environments. The anticipatory nature of the trajectory is
shown by the absence of pursuit curves. It is free of conflicts and the vertical slope is
always positive, which means that time is monotonically increasing. Due to the constant
ground speed, the vertical slope is likewise constant.

The final trajectories, from start state to goal, in the first and second scenario, are
assembled by the first legs of the anticipatory trajectories, with a duration of ∆TN . As
each of them is the best guess at the time, in both scenarios, the final trajectory is
shorter, than expected in the first MPTP iteration. Probabilistic margins help to prevent
the MPTP from replanning substantially diverging trajectories.

In the second scenario, the goal lies in the direction of the moving thunderstorms
(Figure 6.5). At 19:05 h, the thunderstorms are moving at ground speeds ranging from
6.2 m/s to 17.6 m/s and courses ranging from 88.5◦ to 128.5◦ (mean 110◦). The beeline
distance to the goal is 170.9 km and the course is 303.7◦, which is almost opposite to
the thunderstorms. Although uncertainty is explicitly considered, in the fourth MPTP
iteration, the aircraft is suddenly inside a safety margin, but still outside the cell itself
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(fourth, dark blue triangle from the start). A robust feature is the addition of the aircraft
to Xfree, if the aircraft is suddenly trapped. Thus, the algorithm is able to exit the
conflict as fast as possible, while only marginally changing the course. This behavior is
compliant with FAA rules [80]. Due to the fast development of thunderstorms, the nowcast
uncertainty is sometimes so large, that even extended probabilistic safety margins cannot
completely rule out such incidents, without excessive blockage of airspace. The only way
to prevent this kind of unexpected incident, is the usage of an onboard radar.

The results in Section 6.1 show, that trajectory planning with unidirectional con-
strained turning is faster for all heuristics. This is intuitive, as only one instead of two
auxiliary states (Section 5) is added into the open list, which reduces the branching factor
for the A*-search. It is important to keep the number of additional states in the open
list, as small as possible. However, although not evident from the presented results, the
unidirectional constrained flight can lead to suboptimal trajectories, due to unnecessary
turning and even compromises convergence in some cases.

The performance of A*-search with three different heuristics is compared in Section 4.3.
The ratio between the number of trajectory states (TRST) and the number of explored
states (EXST), in order to compute the trajectory, is taken as criterion for effectiveness
of the search. If the heuristic cost H is set to zero, A* basically becomes Dijkstra’s
algorithm. As expected this results in the lowest ratios for TRST/EXST, in all iterations
of both scenarios. The reason is, that the priority queue basically organizes the candidate
states in ascending order, regarding their G-cost. The uninformed search leads to the
exploration of unnecessary candidate states. When bidirectional turning flight is applied,
Dijkstra does not converge in hours, which is why in both scenarios no data is presented.
As two newly added auxiliary states are near the actually explored state, they are high
in the priority queue. This inhibits the progression of the search towards the goal. In
the first scenario, the TRST/EXST hit ratio, for unidirectional turning, is ≤ 2.2 %, when
obstacles are in between start and goal (Table 6.2). In the second scenario, the maximum
allowed deviation is larger than in the first scenario, which causes more candidate states
in the open list. The TRST/EXST ratio, in the first four MPTP iterations, is extremely
poor (Table 6.10). In the third MPTP iteration, the number of explored states is 15830
times higher, than that of A*-search with SSPH (Table 6.13). These results indicate, that
Dijkstra is unsuitable for the present application in state space.

The A* performs better with EDH, as the search is informed. Without obstacles in
between start and goal, the EXST/EXST ratio with EDH is en par with SSPH, in uni-
and bidirectional flight (last MPTP iterations in Tables 6.5, 6.8, 6.13, 6.16). Although
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the pruning of nontangent edges prevents unnecessary candidate states, the search with
EDH can be rather slow, especially in crowded environments. The reason is, that the Eu-
clidean distance, from start to goal, ignores obstacles. In unidirectional turning flight, the
unnecessary exploration of auxiliary states is inhibited by increasing values for Euclidean
distance when performing a turn. This is why A* with EDH performs reasonably, in
both scenarios for unidirectional turning. In the first scenario (Table 6.5), A* with EDH
explores at most 4.46 times more states, than A* with SSPH and in the second scenario,
at most 38.5 times more (Table 6.13). However, by adding left and right auxiliary states
in every A* iteration, the inhibition of excessive exploration is abolished and the perfor-
mance is unacceptable, for the first MPTP iterations in the Tables 6.8 and 6.16. The
search is unwilling to increase the H-cost, in order to fly around obstacles, and mainly
explores the auxiliary states in front of the obstacles.

The A*-search with SSPH has the highest TRST/EXST hit rate in all MPTP itera-
tions of both scenarios, as obstacles are taken implicitly into account. As only the most
promising states are explored, the performance between uni- and bidirectional turning
flight is almost identical. Only in the first scenario, in the first MPTP iteration, the
bidirectional search explores two states more than in the unidirectional case (compare
Table 6.4 and 6.7). In the second scenario, the number of EXST is identical for all MPTP
iterations (compare Table 6.12 and 6.15). The introduced SSPH is not admissible as
overestimation of the heuristic cost is theoretically possible, which is why the optimality
of trajectories cannot be guaranteed. This is due to the fact, that SSPH is computed in
the free estimated state space from the perspective of the actual initial state Xfree(xin).
Strictly speaking, the shape of the obstacles is only valid, when staying on the radials
outgoing from the initial state. As shortest paths for the adjacent states, to the initial
state, are evaluated around approximate obstacle shapes, under- as well as overestima-
tion of the H-cost is possible. This mainly depends on the motion of obstacles relative
to the shortest static path. If it passes on the side of movement direction, the H-cost is
underestimated. Underestimation slows the convergence, yet leads to an optimal result
and is therefore admissible. If the shortest path is on the backside of obstacle movement,
the H-cost is overestimated, which can lead to suboptimal results. An overestimation of
the H-cost is sometimes done on purpose, using an inflation factor ε ≥ 1, as this can
speed up the search [127, 106]. However, the SSPH generally tends to underestimate the
cost-to-go, due to nonnormal shortest path segments, in the isochronous rings from the
initial state (Figure 4.16).

In the first scenario, in the fourth iteration of the MPTP, the computed trajectory
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with SSPH (Table 6.4) is 200 m longer than with Dijkstra (Table 6.2) or A* with EDH
(Table 6.3). Generally, if there is a difference between the trajectories, it is small. Com-
pared to the large amount of nowcast uncertainty and extensive margins, these differences
are negligible. The fact, that Dijkstra and A*-search with EDH produce identical trajec-
tories in 19 of the 20 presented anticipatory trajectories, indicates, that A* with SSPH
frequently produces near-optimal results. Overall, the A*-search with SSPH is well-suited
for planning in dynamic environment. It is considerably faster and more consistent, com-
pared to Dijkstra and A* with EDH. The runtime for trajectory planning is crucial for an
online application. For example, in Chapter 6, the aircraft travels at VT = VG = 80 m/s.
In the first MPTP iteration, of the second scenario, the aircraft covers a distance of
80 m/s·0.42 s=29.6 m, using A* with SSPH, whereas it covers 80 m/s·11.29 s= 903.2 m,
using A* with EDH, while the trajectory is computed.

In summary, in Section 6.1 the Objectives 1, 3 and 4 are accomplished. It is demon-
strated that the presented motion planning algorithm is capable to successfully avoid
time-varying thunderstorms in anticipatory fashion, based solely on uncertain external
environmental prediction, while staying inside an assigned mission area. Furthermore,
the example in Figure 6.4 demonstrates that the MPTP is capable of handling wind.
Due to implicit consideration, using approximate future states for constant wind (see
Figure 3.8), the MPTP computes a series of trajectories that get the aircraft to the goal
at almost the same time as in the wind-free case (see Figure 6.3), despite the initial
headwind.

The results in Section 6.2 show the potential of the MPTP, which is able to compute
feasible trajectories in a real scenario quickly and extremely reliably, which fulfills Ob-
jective 2. The MPTP with SSPH, which achieves a mean success rate of over 99 % in
the iteration constrained Monte Carlo simulation, meets the demand for a simple and
reliable motion planning algorithm from Chapter 2. Without the limitation to 100 it-
erations the success rate of EDH is higher, however, at the same time the number of
mean explored states increases considerably, making it too slow for an online application.
Another finding is that the trajectories computed with SSPH are very close to those of
EDH, regarding optimality. The mean relative length error, compared to the optimal
trajectories computed with EDH, is only +5.81 · 10−4 %, which is negligible considering
how much faster and more reliable SSPH is. Furthermore, in real operations the resulting
errors caused by uncertainty, for example in the environmental prediction, are orders of
magnitude larger. The mean success rate in the second Monte Carlo simulation is 100 %
for an unconstrained number of iterations. The highest necessary number of explored

146



Chapter 7: Discussion

states is 495, when applying a relatively small time increment of ∆t = 10s. Interestingly
the mean search efficiency is barely affected by the time increment.

Finally, it should be noted that it is not possible to draw a general statement regarding
the mean performance of the MPTP based on the performed Monte Carlo simulation, as
the values determined are only valid for the present setups. To determine more reliable
values, testing has to be carried out in a large number of different scenarios, which is at
least in the order of magnitude of the applied 10000 trials. Due to the large number of
trials the execution of this experiment is planned as future work. The aim is to develop
a counter-optimization, which subjects the MPTP to a kind of reactive stress test.

As it may not be possible to find a complete trajectory in an allotted time interval
an additional partial planning strategy is needed, in order to avoid passivity [31] and
guarantee decisioning. A simple and safe procedure is to continue straight flight inside an
estimated safe area (ESA), as presented in Section 3.3. Another strategy is to perform
holdings in free state space. The example in Section 6.3 shows the ability of the planner,
to automatically plan holding patterns, e.g. if the goal is temporarily covered. This
is important, as bounded margins (see Section 3.1) sometimes conservatively cover free
space, including the goal state, which reduces the probability of finding a solution. Like
before, the final trajectory takes less time, than first guessed. Due to periodic replanning
(Chapter 2) and estimation of future aircraft states (Section 3.2), the planner also has the
innate ability to deal with a time-varying goal state, which is demonstrated in Section 6.4.
If a prognosis is available, the MPTP finds the shortest trajectory to the moving goal,
through time-varying thunderstorms (see Figure 6.17(b)).
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

A viable method for robust trajectory planning in uncertain dynamic environments was
presented. It enables anticipatory avoidance of static and moving obstacles. The shape
and movement of the polygonal obstacles can be arbitrary. The combinatorial algorithm is
resolution-complete and near-time-optimal for the expected case, under the assumption of
constant true airspeed and angle of climb. Since it always performs the same deterministic
computations, the results are repeatable, which is advantageous regarding a certification.
Also favorable, is the fast and highly reliable computation of trajectories in combination
with the novel shortest static path heuristic, as demonstrated in Section 6.2. Due to
anticipatory planning and consideration of nonholonomic turning-flight constraint of fixed-
wing aircraft, computed trajectories do not necessarily require postprocessing, which was
demonstrated in [3]. The ability to automatically plan holding patterns, if the goal itself
or the access is covered by obstacles, further improves the probability for success. The
capability, to plan with a time-varying goal state, expands the horizon of possibilities. In
conclusion, it can be stated that the presented MPTP fulfills all the objectives set out
in Chapter 1 and is ideally suited for online motion planning in dynamic environments.
The research contributions of this thesis and respective results are summarized in the
following.

• Contribution 1: In Section 3.3, future estimated state space and estimated future
conflict areas were introduced. Time-varying thunderstorms are transformed to
state space obstacles by superposition of their prediction (including uncertainty)
with contemporaneous estimated future aircraft states (from an initial state). A set
of states, in which the aircraft is estimated to be in collision with thunderstorms,
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is called estimated conflict area (ECA). The free estimated state space (EXfree)
is the difference of a workspace W (mission area) and the set of ECAs. The pre-
sented concept enables fast and reliable anticipatory trajectory planning in dynamic
environments by solving geometric problems, which was demonstrated in numerous
simulations in Chapter 6.

• Contribution 2: The determination of the visibility between discrete obstacles can
be a bottle neck, regarding a fast computation of trajectories. In Chapter 4, several
methods to minimize the computational load were introduced. Line-smoothing of
polygonal obstacles is one of them (Section 4.1.1). Although this results in some in-
accuracy, it is minor regarding the considerable uncertainty in the nowcast. Thereby,
the safety of trajectories is not affected, as it is applied to margins around the actual
thunderstorms. In Section 4.1.2, a novel method to determine tangent edges and bi-
tangent edges was introduced, which exclusively uses matrix operations. The stored
trigonometric information can be theoretically used to determine the visibility of the
filtered edges by counting the number of intersections with the edges of EXfree, tak-
ing geometric degeneracies into account. The use of exclusively tangent/bitangent
edges in a visibility graph, reduces the mean branching factor, which was analyzed
at the end of Section 4.1.2. Compared to a grid representation of the state space
the proposed visibility methods contribute to a more efficient search, which is the
basis for real-time motion planning in dynamic environments.

• Contribution 3: A simultaneous construction and search of a tangent visibility graph
to the goal, is presented. With this method the shortest path (static obstacles,
see Section 4.1.2) or trajectory (moving obstacles, see Section 6.1 and 6.3) can be
efficiently computed, which is explained in the Sections 4.1.2, 4.3.1 and 4.3.2. The
time complexity is the same, as for the continuous Dijkstra, with O(|VEX | log |VEX |),
where |VEX | is the number of vertices in the estimated state space. The search is
complete and optimal, if a consistent heuristic function is applied. Using A*-search
with Euclidean distance heuristic in a dynamic environment, is considerably faster
at building a partially shortest trajectory map, than Dijkstra’s algorithm, which
was demonstrated in Chapter 6.

• Contribution 4: Section 4.2 features an A*-search, to compute near-optimal trajec-
tories in dynamic environments. By using the concept of estimated state space and
partial shortest trajectory map, near-optimal trajectories in dynamic environments
can be computed using different heuristic functions. However, the convergence can
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be rather slow, when using common heuristic functions, like the Euclidean distance.
In most cases, the convergence can be significantly improved with the help of the
novel SSPH heuristic function, which is demonstrated in Chapter 6, by compari-
son with Dijkstra’s algorithm and the Euclidean distance. The omission of certain
queries from the original A*-search was proposed in Section 4.2.2, for the special
case, in which all obstacles are moving. This measure can improve the runtime, at
a low risk of sacrificing optimality.

• Contribution 5: The novel shortest static path heuristic (SSPH) for an efficient
A*-search in dynamic environments was introduced in Section 4.3.3. It is a partic-
ularly targeted cost-to-go estimator, which enables fast combinatorial planning in
state space X. This opens up the possibility, to use the presented MPTP online.
Although, the presented heuristic is inadmissible and optimality cannot be guaran-
teed, as an overestimation of the cost-to-go is possible, the results in Section 6.2
indicate, that the computed trajectories are generally identical to optimal methods,
for example A*-search using Euclidean distance heuristic.

• Contribution 6: The presented planner is able to consider nonholonomic constraints
of a fixed-wing aircraft by adding feasible states to the search-graph in Chapter 5.
For their determination different methods, ranging from low- to high-fidelity repre-
sentation of aircraft dynamics, were introduced. As states are waypoints parame-
terized by time, it is important to asses their feasibility. The method presented in
Section 5.1 is a fast and simple way to evaluate both feasibility of fly-by and fly-over
states. For an improved guidance of low-performance aircraft, feasible states can be
simulated by a fast noniterative method, which is based on the Taylor series and
analytically computes reinitialization times in order not to exceed the commanded
course change or maximum bank angle (see Section 5.3.6). Additionally, for the case
in which the maximum bank angle is not achieved before the commanded course
change, a method was introduced, which improves the accuracy of the TS approxi-
mation by tuning the piecewise constant roll-in and roll-out rates.

• Contribution 7: The discrete representation of obstacles and their uncertainty can
lead to an excessive coverage of free space. The presented trajectory planner has
the immanent ability to plan holding patterns, which was described in Section 5.4.
This is especially useful, if the goal state is covered or the access is blocked by
thunderstorms. It is achieved by constraining the turning-sense of the aircraft,
which results in circular patterns, which are an approved maneuver for unmanned
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aircraft. The ability to hold increases the likelihood to compute a sensible and
intuitive trajectory, which can be seen in Section 6.3.

8.2 Outlook

Motion planning in time-varying environments is a very exciting scientific field. As for the
presented planner, there is still potential for improvement and open questions. Through
optimization of the algorithm and the implementation in C/C++, a significant improve-
ment in the runtimes of the MPTP can be expected.

In order to obtain reliable statements regarding the performance of the MPTP a large
number of experiments in different scenarios has to be carried out, which can be done using
the Monte Carlo simulation presented in Section 6.2. In this context, another interesting
point to investigate is the influence of margin scaling regarding the length of resulting
trajectories and the convergence of the MPTP, for which a stochastic analysis is ideally
suited.

The planner is sensitive to certain parameters, which influence the computational time
and quality of the trajectories, e.g. the time step for the prediction and optimization. An
automated selection of these parameters can improve the results.

Until now the algorithm plans with at least piecewise constant velocity. It is planned
to include variable velocity into the MPTP, as parameter for the optimization.

Provision is made to offer the possibility to climb during holding phases. Especially
for aircraft like HAPS, with little energy on board, it is important to use it as effectively
as possible. In order to plan safe trajectories in three spatial dimensions, the concept of
estimated conflict surfaces (see Section 3.3) will be applied.

The coupling of MPTP and gradient based optimization, e.g. the optimal control tool
FALCON.m by TUM-FSD [128], is especially interesting. The model predictive trajectory
planner computes a trajectory in a dynamic environment, which is used as initial guess for
the optimization of the trajectory of a simple point-mass model. The optimum trajectory
of the simple model is then used for the optimization of the trajectory of a high-fidelity
model, e.g. 6-DoF aircraft simulation. By comparison with optimized trajectories, based
on other initialization methods, e.g. rapidly-exploring random trees [42, 41], the capability
of the MPTP as initial guess generator for dynamic environments can be examined.
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