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ABSTRACT

Using dense soil moisture (SM) measurements in the upper Huai River basin of China, this
study evaluated the spatial patterns of L-band satellite-based SM products, including Soil
Moisture Active Passive (SMAP) L3, Soil Moisture and Ocean Salinity (SMOS) L3 and the
European Space Agency’s Climate Change Initiative (ESA CCl) SM products. The mean
difference (MD), root mean squared error (RMSE), unbiased root mean square error
(ubRMSE) and Pearson correlation coefficient (R), were used in the evaluation. The evaluation
results presented that SMAP and ESA CCl products can well capture the temporal variation of
SM at single points quite well, with average R values of 0.51 and 0.46, respectively. And SMAP
had the highest overall accuracy among the three satellite-based products in study area. We
also analyzed the correlations between the four accuracy indexes and six environmental
factors including the proportions of five land use/land cover types (i.e. water bodies, paddy
fields, construction land, dryland and forest) and the average NDVI (Normalized Difference
Vegetation Index) in 2016 in each grid. Analysis showed that the proportions of paddy fields
and water bodies in each grid had significant positive correlations with MD, RMSE and
ubRMSE, while NDVI, and the proportions of dryland and construction land had significant
negative correlations with these three indexes. The significant correlations between the
accuracy of SMAP, SMOS and ESA CCl SM products and environmental factors indicate that
there exist systematic biases in these products, which can provide valuable insights into
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algorithm improvements.

Introduction

Soil moisture (SM) has essential impacts on the parti-
tion of energy and water over land surface, and it also
exerts a critical control on land-atmosphere interac-
tion, hydrological and biogeochemical cycles (Brocca
et al, 2016; Paloscia, Pettinato, & Santi, 2012).
Therefore, the knowledge of surface SM is crucial
for many studies, such as climate simulation, flood
forecasting as well as land surface modeling (Brocca,
Ciabatta, Massari, Camici, & Tarpanelli, 2017;
Vittucci et al., 2013).

Passive microwave remote sensing is very sensitive to
surface SM content (Jackson, Vine, Hsu, & Oldak, 1999)
and has become a promising approach to mapping
regional or global SM. During the past few decades,
passive microwaves of different frequency (e.g. X,
C and L bands) have been widely used to estimate SM
(Kolassa, Gentine, Prigent, & Aires, 2016; Schmugge,
Gloersen, Wilheit, & Geiger, 1974; Vittucci et al., 2013).
The L-band observation can penetrate a deeper depth
than X- and C-band, which makes it more optimal for

SM retrieval. At present, Soil Moisture Active Passive
(SMAP, 1.41 GHz) and Soil Moisture and Ocean
Salinity (SMOS, 1.4 GHz) are currently available satel-
lites carrying L-band microwave radiometers. Global
surface SM products retrieved from the observations
of SMAP and SMOS have been released to the public,
which have great value for related researches and appli-
cations (Anam, Chishtie, Ghuffar, Qazi, & Shahid, 2017;
Shellito et al., 2016).

Satellite-based SM products need to be validated
before their application with certainty. In this regard,
several researches have been conducted to evaluate the
SMAP and SMOS passive SM products (Dong, Crow, &
Bindlish, 2018; Dorigo et al., 2015; Pierdicca, Pulvirenti,
Fascetti, Crapolicchio, & Talone, 2013). For example,
for the evaluation of SMAP passive SM product,
Colliander et al. (2017) validated SMAP SM products
with in situ SM measurements from 34 in situ stations
around the world. Results showed that the SMAP SM
product can meet an accuracy of 0.04 m*/m> (unbiased
root mean square error, ubRMSE). Pan, Cai, Chaney,
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Entekhabi, and Wood (2016) acquired similar results by
comparing the SMAP L3 passive SM product with
in situ measurements from 258 in situ stations over
the continental United States. For the evaluation of
SMOS SM product, Yee et al. (2017) evaluated two
different versions of SMOS L3 products with SM mea-
surements from 37 in situ stations in southeast
Australia. They found that the SMOS SM retrieved
from morning overpasses was more accurate compared
with those retrieved from afternoon overpasses. In
addition, by comparing SMOS SM products with the
in situ measurements (10 stations in the Genhe area of
China), Cui et al. (2017) pointed out that the temporal
variation of SMOS L3 SM data is noisy and unstable.

The validation studies based on in situ measure-
ments place more emphasis on the overall accuracy of
satellite-based SM products rather than the spatial pat-
terns. As a representative of spatial pattern evaluation,
Li et al. (2018) evaluated the SMAP Enhanced SM
products by comparing them with high-resolution
model simulations. The result shows that the spatial
patterns of SM for the SMAP Enhanced SM products
and the model simulation agree well. However, few
studies have been done to evaluate the spatial patterns
of satellite-based SM products with in situ SM measure-
ments due to the limited density or spatial coverage of
in situ stations. Several research questions remain to be
answered, including (1) whether the L-band satellite-
based passive SM products can capture the real-world
spatial patterns at the regional scale? (2) How is the
spatial distribution of the accuracy of satellite-based SM
products and which environmental factors affect the
accuracy? This study aims to answer these questions.
The answer to these questions can provide valuable
clues to further improve the retrieval algorithm of
remote sensing SM.

In this study, two currently available L-band
SMAP and SMOS SM products was evaluated using
the in situ measurements from a dense network in the
upper Huai River basin, China. The European Space
Agency’s Climate Change Initiative (ESA CCI) pas-
sive SM product (version v04.2), which combined
L-band SMOS measurements, was also evaluated as
a reference. The specific objectives of this study were
(1) to detect the spatial patterns of the L-band satel-
lite-based passive SM products; (2) to analyze the
relationships between the accuracy of satellite-based
SM products and the environmental factors.

Study area

In this study, the upper Huai River basin was selected
as the study area (Figure 1). In this area, the terrain is
mainly plains, and only a few mountains are distrib-
uted in the southwest. The main land cover is farm-
land in the plain areas, including dryland and paddy
fields, which accounts for 75.6% of the total area.
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Forest and grass are mainly located in the mountai-
nous area. The rainfall decreases progressively from
the south to the north with rainfall amount ranging
from 400 to 1730 mm in 2016, and about 80% of the
rainfall is concentrated between June and August.

Data sets and methods
Data sets

In situ SM data set

There are 131 in situ SM stations deployed in this
area (shown in Figure 1). The in situ SM data were
collected at 8 am (Beijing time) every day from
1 January 2016 to 1 January 2017, which allows for
evaluation of SMAP, SMOS and ESA CCI SM pro-
ducts for an entire year 2016. The volumetric SM was
measured every 10 cm within a depth of 0-1 m below
land surface, and the Time Domain Reflectometry
sensor was used to measure the SM.

The L-band satellite SM products can only provide
the near-surface SM observation (5 cm depth or so). But
there is no SM observation at 5 cm depth in the study
area. Here we made an assumption that the in situ SM at
10 cm is close to that at 5 cm, and the in situ
SM measurements at the depth of 10 cm were chosen
as the reference to evaluate the satellite-based products.
The intention of this assumption is to take advantage of
the dense SM stations in this study area although it is
admitted that it will bring uncertainty to the evaluation.
In addition, the same assumption was also made by
some previous studies (An et al., 2016; Dorigo et al.,
2015; Peng, Niesel, Loew, Zhang, & Wang, 2015; Qiu,
Gao, Wang, & Su, 2016).

SMAP L3 passive SM product

The SMAP mission was developed by the National
Aeronautics and Space Administration (NASA). The
satellite was launched on 31 January 2015, and was
placed into a polar sun synchronous orbit (descend-
ing orbit at 6 am local solar time and ascending orbit
at 6 pm local solar time) (Colliander et al., 2017). The
satellite carries both an L-band radar and an L-band
radiometer. Unfortunately, the radar instrument
stopped working a few months later after launching
due to an irrecoverable hardware failure. The left
radiometer onboard still can provide 36 km-
resolution passive observations every 2-3 days
(O’Neill, Chan, Njoku, & Jackson, 2015). The SMAP
L3 passive SM product with single channel algorithm
at vertically polarization (V polarization) was used in
this study. In the operational retrieval algorithm, the
mixed emissivity is firstly calculated from the physical
temperature. Then soil emissivity is extracted from
the mixed emissivity after correcting for the vegeta-
tion and surface roughness. Finally, the dielectric
constant is calculated from the Fresnel equation and
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Figure 1. (a) Location of the upper Huai River basin in China; (b) elevation of the basin and the selected SMAP grids; (c) land
cover map and the selected SMOS grids and (d) rainfall in 2016 and the selected ESA CClI SM grids.

a dielectric mixing model is adopted to retrieve SM
data (Wigneron et al., 2017). In this process, the
physical temperature is estimated independently and
provided by the NASA Goddard Earth Observing
System Model, and the Normalized Difference
Vegetation Index (NDVI) derived from MODIS data-
sets were used to correct the mixed emissivity.

In this study, the SMAP L3 Radiometer Global
Daily 36 km EASE-Grid Soil Moisture was used
(Version 4, https://nsidc.org/data/smap/smap-data.
html). The daily SMAP SM data retrievals from
morning overpasses were chosen, and the data were
filtrated according to the retrieval quality flag
(Colliander et al., 2017).

SMOQS L3 SM product

The SMOS mission was the second Earth Explorer
Opportunity mission of ESA. The satellite was
launched on 2 November 2009, carrying a two-
dimensional interferometric microwave radio-
meter that can provide both multiangular and
dual-polarization measurements. It was the first
L-band microwave satellite that was dedicated for
global near-surface SM observation (5 cm depth or
so). This satellite can revisit one area within
2-3 days at 6 am local solar time (ascending

orbit) and 6 pm local solar time (descending
orbit). The L-band Microwave Emission of the
Biosphere (L-MEB) model was used for SMOS
SM retrieval (Wigneron et al, 2007). In the
L-MEB model algorithm, the parameters of surface
SM and vegetation optical depth are retrieved
simultaneously taking advantage of the SMOS
multiangular data. More details about the L-MEB
model can be found in Wigneron et al. (2007) and
Kerr et al. (2012).

The SMOS SM product evaluated in this study was
the L3 product from the Centre National d’Etudes
Spatiales and the Centre Aval de Traitement des
Données SMOS (https://www.catds.fr/Products/
Available-products-from-CPDC) (Jacquette et al,
2010). These data are organized by EASE-Grid 2.0 at
a spatial resolution of 25 km (Chen et al., 2017). Daily
SMOS SM retrievals from the morning overpasses
were validated, and the data were also filtered if the
retrieval quality fields (Soil_Moisture_Dgx and
Rfi_Prob fields) indicate poor quality (Cui et al., 2017).

ESA CClI passive SM product

The ESA CCI SM product was developed as part of
the ESA Program on the Global Monitoring of
Essential Climate Variables (Liu et al., 2012). Several
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versions of the ESA CCI SM products have been
published since 2010, including passive product,
active product and combined product. For the passive
SM product, the Land Parameter Retrieval Model
(LPRM) was used to convert the observed brightness
temperatures to SM (Owe, de Jeu, & Holmes, 2008).
In general, the LPRM model links surface SM to
brightness temperature, and the SM, vegetation den-
sity as well as surface temperature are retrieved
simultaneously.

The latest version of the ESA CCI SM product (i.e.
CCI SM v04.2) at a spatial resolution of 0.25° was
released in 18 January 2018 by the Vienna University
of Technology, covering the period from 1978 to 2016
(Dorigo et al., 2017). The brightness temperature mea-
surements of the SMOS satellite were also used to gen-
erate this product (Gruber, Dorigo, Crow, & Wagner,
2017). The daily Passive Soil Moisture Product of CCI
SM v04.2 was also evaluated as a reference in present
study (http://www.esa-soilmoisture-cci.org/node/145).

Auxiliary data sets

Land use and NDVT data sets were used to analyze the
relationships between environmental factors and the
accuracy of satellite-based SM products. The land use
data set was derived from 1km X 1km resolution land
use map of China, which was released by the Institute of
Geographical Sciences and Natural Resource Research,
Chinese Academy of Sciences (http://www.resdc.cn/
Default.aspx). The yearly averaged NDVI was calcu-
lated with the surface reflectance of MODIS
MODO09A1.005 products, and these MODIS products
were downloaded from Google’s Earth Engine. The
land use and NDVI data sets were upscaled to the
same resolution of satellite-based SM products before
the analysis. For the land use data, the proportion for
each type of land use in every selected satellite data grid
was calculated, and for the NDVI data, the average
value in every selected satellite data grid was calculated.
The precipitation and elevation data sets were only used
for visualization and were not used to analyze the spatial
pattern of SM data, so no resolution transformation was
needed. The precipitation data set is derived from a
0.1° x 0.1° resolution gridded precipitation product,
which can be downloaded from China Meteorological
Administration  (http://data.cma.cn/site/index.html).
The 1km X 1km resolution elevation data can be down-
loaded from the Institute of Geographical Sciences and
Natural Resource Research, Chinese Academy of
Sciences (http://www.resdc.cn/Default.aspx).

Methods

Matching in situ measurements with satellite-based
SM data

There exists a scale mismatch between satellite-based SM
data at the grid scale and the in situ measurements at the
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point scale. To conduct the validation, point-scale mea-
surements were converted into the grid scale. The ordin-
ary kriging method was used to interpolate the daily
in situ SM measurements into a spatially continuous
field at a finer spatial resolution of 1 km, which was
then aggregated to the grid scales of each satellite-based
SM data (36-km resolution for SMAP, 25-km resolution
for SMOS and 0.25° for CCI) through averaging.

For interpolation, the error is minimal at the loca-
tion of interpolation point. In order to minimize the
error of in situ measurements, only the grid with at
least one in situ site within it was used in further
evaluation, and the grids without any in situ site in
them were left out. In addition, multiple in situ sites
may locate in one grid, and the spatial resolution of
the satellite-based SM products is different. Those
two factors result in different number of grids for
the three satellite-based SM products were chosen
for evaluation. In the end, the numbers of such
grids were 91, 120 and 116 for SMAP, SMOS and
ESA CCI, respectively (Figure 1(b), (c) and (d)).

Statistic analysis methods

Four common accuracy indexes, including mean dif-
ference (MD), root mean squared error (RMSE),
ubRMSE as well as Pearson correlation coefficient
(R), were chosen to validate the satellite-based SM
products (Crow et al., 2012; Kawanishi et al., 2003;
Wang, Mo, Liu, Lin, & Hu, 2016). The four statistic
indexes are calculated using the following formulas:

SV (SSM; — M_SM;)

MD = ~ 1)

RMSE \/Zﬁl(S_SMi SMsM)
N

WbRMSE = 1/ (RMSE)” — (MD)? 3)

R — Doits (S-SMi — p) (MSM; — ) @

(N —1)8,5,,

Here, S_SM represents the SM value of satellite-based
product, while M_SM represents the in situ SM mea-
surement (m’/m?). In formula (4), Us represents aver-
age satellite-based SM, u,, represents average in situ
SM (m®/m?), 8, and §,, are the standard deviations of
the two types of SM data (m’/m?), respectively.

Spatial autocorrelation analysis

Moran’s I was used to quantify the spatial autocorre-
lation of the four accuracy indexes in this study. The
positive value of Moran’s I means the variable is
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aggregated in space, the negative value means the
variable is discrete, and the zero value means the
variable is random. The Z-score was used to indicate
the confidence level. For reference, the Z-score for
a 95% confidence level is larger than 1.96 or smaller
than —1.96, while the Z-score for a 99% confidence
level is larger than 2.58 or smaller than —2.58.

Results
Spatial patterns of satellite-based SM

Figure 2 shows the average daily SM of SMAP L3,
SMOS L3, ESA CCI and the interpolation of in situ
SM measurements for the year 2016. All SM products
displayed progressive decreasing trend from south to
north, which showed a high degree of similarity to the
spatial pattern of rainfall in this area (Figure 1(d)). In
addition, the ranges of satellite-based SM products were
larger than the interpolated in situ SM; they were
0.13-0.45 m’/m’, 0.09-0.47 m’/m’, 0.25-0.64 m*/m’
and 0.15-0.38 m*/m’ for SMAP, SMOS, ESA CCI and
the interpolated in situ values, respectively. The average
SM of SMAP and SMOS for the whole study area was
0.25 m*>/m” and 0.22 m*/m’, which were close to that of
interpolated in situ values (i.e. 0.23 m’/m?). However,
the average SM of ESA CCI was much higher with
a value of 0.39 m*/m’.

The wettest area in the interpolated SM map was
located in the southwest of the study area, which was
not well captured by all the three SM products.
Compared with SMAP and ESA CCI, the spatial
distribution of SMOS SM was more fragmented in
space, which may be because that SMOS suffered
more significantly from radio frequency interference
(Colliander et al., 2017). There existed large differences
among these satellite-based SM products in the south
part of the study area, where the SM was very high in
SMAP (ranging from 0.4 m>/m® to 0.6 m>/m?) but very
low in SMOS (ranging from 0.1 m*/m’ to 0.2 m*/m’),
and was null in ESA CCI due to poor retrieval quality.
The interpolated in situ SM in the south part was in the
medium level ranging from 0.15 m>/m’ to 0.3 m*/m”.
These results suggest that large uncertainty existed in
the satellite-based SM products in the south part of the
study area.

Overall accuracy of satellite-based SM products

The evaluation indexes of the SMAP, SMOS and ESA
CCI SM products are shown in Table 1. SMAP had the
overall best performance with the lowest RMSE and
moderate correlation coefficient. ESA CCI had the
highest correlation coefficient, which means that it
could represent the temporal and spatial variation of
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Figure 2. Average SM of SMAP (a), SMOS (b), ESA CCI (c) and the interpolated in situ measurements and (d) in 2016.



Table 1. Accuracy index of the SMAP, SMOS and ESA CCI
products. The indexes include MD, RMSE, ubRMSE and R,
which were calculated with the 91, 120 and 116 grids of
SMAP, SMOS and ESA CCl in 2016, and the same in the tables
below.

SM products MD RMSE ubRMSE R

SMAP —-0.04 0.10 0.10 0.32
SMOS 0.04 0.15 0.15 0.25
ESA CCl 0.16 0.20 0.12 0.40

SM better than SMAP and SMOS in this study area, but
it was very poor in terms of higher MD and RMSE.

As Figure 3 shows, the accuracy of the satellite-
based SM products varied in different months. For
example, in terms of MD, RMSE and ubRMSE, the
ESA CCI SM product had the best performance in
July, while SMAP and SMOS had the worst perfor-
mance in June. The correlation coefficients were gen-
erally higher in the first half (January-June) than in
the second half of the year for all the three products.
The smallest correlation coefficient occurred in
August for all the three products, being close to 0,
which means that none of these products can capture
the spatial-temporal variation of SM in August.

Spatial distribution of the accuracy of
satellite-based SM products

Figure 4 shows the spatial distribution of the accuracy
index for SMAP (the left column), SMOS (the middle
column) and ESA CCI (the right column). As men-
tioned above, only the grid with at least one in situ
site within it was used in further evaluation, and the
grids without any in situ site in them were left out.
The blank areas in Figure 4 are the grids without any
in situ. For the MD index (the first row in Figure 4),
the spatial patterns of SMAP, SMOS and ESA CCI
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smaller values in the northwest. Both SMAP and
SMOS overestimated SM in the southeast and under-
estimated SM in the northeast, while ESA CCI over-
estimated SM over the whole area. The RMSE of ESA
CCI SM products (Figure 4(f)) showed an increasing
trend from the northwest to southeast. There was no
obvious spatial trend for the RMSE of SMAP and
SMOS (Figure 4(d-e)). For ubRMSE (the third row
in Figure 4), it is interesting that the spatial distribu-
tion of SMAP showed an obvious increasing trend
from northwest to southeast, while the spatial trends
of SMOS and ESA CCI were not obvious. The aver-
age RMSE of all the selected grids was 0.09 for SMAP,
0.13 for SMOS and 0.18 for ESA CCI. The average
ubRMSE was 0.05 for SMAP, 0.12 for SMOS and 0.09
for ESA CCL

The average RMSE and ubRMSE calculated here
were smaller than those in Table 1. This difference is
because that to calculate the values in Table 1, the
mean square error of all the SM data of all the
selected grids were calculated first and then its square
root was taken, while here RMSE of each grid was
calculated first and then averaged.

The fourth row in Figure 4 shows the correlation
coefficients at each selected grid. The average correla-
tion coefficients were 0.51, 0.20 and 0.46 for SMAP,
SMOS and ESA CCI, respectively. The result means
that SMAP and ESA CCI SM products can well cap-
ture the temporal variation of SM compared with
SMOS. The correlation coefficients of SMAP and
ESA CCI also had stronger spatial aggregation than
those of SMOS (see the Moran-I values in Table 2).

Table 2 summarizes the results of Moran’s I and
the corresponding Z-scores. All the Z-scores are lar-
ger than 2.58, which means that the four indexes had
significant spatial aggregation. MD had the strongest
aggregation among the four indexes. For MD and
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data of each grid in 2016.

aggregation, while for RMSE and R, ESA CCI showed

the strongest spatial aggregation.

Table 2. Moran’s | and the Z-scores of the four accuracy

indexes for SMAP, SMOS and ESA CCl.

Discussion

The capability of the satellite-based products in
capturing spatial patterns of SM

MD RMSE ubRMSE R

SMAP Moran's-I 1.03 0.56 0.87 0.49
Z-score 13.0 7.2 10.2 6.4

SMOS Moran'’s -| 0.72 0.49 0.48 0.18
Z-score 10.8 7.4 7.7 29

ESA CCl Moran’s -I 0.77 0.76 0.28 0.64
Z-score 11.8 11.8 1.9 4.6

In order to quantify the capability of satellite-based
products in capturing the spatial patterns of SM, the
scatterplots of average satellite-based SM against
average in situ SM in 2016 are shown in Figure 5.
The in situ SM measurements were concentrated in
a narrow range (from 0.2 to 0.3 m>®/m?), while the
satellite-based SM cover much wider ranges (about
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Figure 5. The scatterplots of yearly averaged satellite-based SM against average in situ SM in 2016 (a) for SMAP, (b) for SMOS

and (c) for ESA CCl.

from 0.15 to 0.4 m*/m> for SMAP and SMOS, from
0.24 to 0.6 m’/m> for ESA CCI). The determination
coefficients (R?) are very low (<0.10), indicating that
all the three satellite-based SM products performs
poorly in capturing the spatial patterns of real SM
in study area. However, as shown in Figure 4, satel-
lite-based SM products, especially SMAP and ESA
CCI, can capture the temporal variation of SM in
each grid fairly well. These results suggest that the
current satellite-based soil products are more suitable
for temporal analysis rather than spatial analysis.

Relationship between the accuracy of
satellite-based SM and environmental factors

In order to detect relationship between the accuracy of
satellite-based SM products and environmental factors,
Tables 3-5 show the correlation coefficients between
the four accuracy indexes and six environmental factors
for SMAP, SMOS and ESA CCI products, respectively.
The six environmental factors included the proportions
of five land use/land cover types (i.e. water bodies,
paddy fields, construction land, dryland and forest)
and the average NDVI in each grid in 2016.

The correlations between MD, RMSE, ubRMSE
and the six environmental factors show a good con-
sistency for all the three satellite-based SM products.
The proportions of water bodies and paddy fields
showed positive correlations with MD, RMSE and
ubRMSE, while NDVI, the proportions of dryland
and construction land showed negative correlations.
Most of these correlations are significant at 0.01 level.
There were significant correlation between R and the

Table 3. The correlation between the four accuracy indexes
of SMAP and environmental factors.

Paddy
Water fields  Dryland Construction Forest NDVI
MD 0.55** 0.73**  —0.80**  —0.51**  0.36** —0.28**
RMSE 0.30**  0.30** -0.46**  —0.25* 0.28** —0.42**
ubRMSE  0.56**  0.83** —0.76**  —041* 013  —0.42**
R —0.08 0.40**  —0.38**  —0.27**  0.16 0.01

**Means the correlation is significant at 0.01 level, *Means significant at
0.05 level.

Table 4. The correlation between the four accuracy indexes
of SMOS and environmental factors.

Paddy
Water fields Dryland Construction Forest NDVI
MD 0.32%* 0.73%* —0.52%* —0.29%* —0.07 -0.35**
RMSE 012 0.43* —0.28** —0.29** 0.06 -0.41**
ubRMSE 0.15  0.39** -0.21*  —0.21** —0.14 -0.37**
R 0.31** 0.37** —-0.33** 0.10 -0.02 -0.09

**Means the correlation is significant at 0.01 level, *Means significant at
0.05 level.

Table 5. The correlation between the four accuracy indexes
of CCI SM and environmental factors.

Paddy
Water  fields Dryland Construction Forest ~ NDVI
MD 0.42**  0.64** —0.72** —0.43** 0.40** —0.27**
RMSE 0.43**  0.66** —0.75** —0.50** 0.47** —0.27**
ubRMSE  0.13 0.38** —0.49**  —0.56** 0.67** —0.09
R -0.19* -0.36** 0.35** 0.24** -0.09 -0.07

**Means the correlation is significant at 0.01 level, *Means significant at
0.05 level.

proportion of paddy fields and dryland for all the
three products. For SMAP and SMOS, the correlation
was positive between R and the proportion of paddy
fields, and was negative between R and the propor-
tion of dryland, while the opposite was true for
ESA CCI.

The scatterplots of MD against the proportions
of five land use/land cover types and the average
NDVI are shown in Figure 6 for SMAP, Figure 7
for SMOS and Figure 8 for ESA CCIL. The spatial
resolutions of current satellite-based SM products
were coarse, so there usually exist multiple land
use/land cover types within one grid. If there are
water bodies in a grid, the microwave signals
received by the satellites contain not only the infor-
mation of soil but also that of land-surface water.
Because water has higher dielectric constant than
soil, the overall dielectric constant of the grid will
be elevated. Higher dielectric constant will lead to
higher estimated SM (Chan et al, 2018; Gruber
et al., 2017). This is the reason why the proportions
of water bodies and paddy fields in each grid show
positive correlations with MD for all the three
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Figure 6. The scatterplots of MD against six environmental factors for the SMAP SM product. Each point in the scatterplot
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satellite-based SM products. The significant positive
correlations between MD and the proportions of
dryland may be caused by the negative correlations
between the proportions of dryland and those of
paddy rice. It is worth noting that when the pro-
portions of water bodies/paddy fields were zero,
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Figure 8. The scatterplots of MD against six environmental factors for the ESA CCl SM product. Each point in the scatterplot
represents one grid cell, and there are totally 116 points in each plot.

By contrast, the construction land had lower dielec-
tric constant than soil, so it reduced the dielectric con-
stant of the whole grid and led to underestimated SM.
The proportions of forest were concentrated in small
values, so the obtained relationship may not be stable.
NDVT had significant negative correlations with MD
for all the three products in this region. Because differ-
ent SM products adopted different algorithms to deal
with vegetative biomass, the reason of the significant
negative correlations between MD and NDVI needs
further research.

Previous studies have pointed out that SM retrieved
from passive microwave remote sensing would be influ-
enced by the complexity and variability of vegetation
canopy and land surface roughness (Chan et al., 2018;
Cui et al., 2017; Zhan, Crow, Jackson, & O’Neill, 2008).
It was also reported that the accuracy of satellite-based
SM products varies with land cover types (Zhang,
Zhang, Huang, Hong, & Meng, 2017). Our results
further verify these existing conclusions with dense
SM measurements in a new study area, which can
provide valuable guidance for algorithm improvements
in the future.

Conclusions

This study evaluated the spatial patterns of SMAP,
SMOS and ESA CCI passive SM products and
explored the spatial distribution of their accuracy
with dense SM measurements from 131 in situ

stations in the upper Huai River basin of China.
According to the obtained results, following conclu-
sions can be drawn: (1) SMAP had the overall best
performance with the lowest RMSE and moderate
correlation coefficient, while ESA CCI had the high-
est correlation coefficient. (2) The four accuracy
indexes (i.e. MD, RMSE, ubRMSE and R) all had
significant spatial aggregation. (3) SMAP and ESA
CCI SM products could well capture the temporal
variation of SM in each grid, but all the three satel-
lite-based SM products can hardly capture the spatial
patterns of measured SM. (4) For all the three satel-
lite-based SM products, the proportions of water
bodies and paddy fields showed positive correlations
with MD, RMSE and ubRMSE, while NDVI, the
proportions of dryland and construction land showed
negative correlations.

Compared to other works on the evaluation of
SM on the plot scale, this study used a more dense
in situ observation network and most grid cells in
the study area have SM stations in them. Thus, this
study could analyze the spatial distribution of the
accuracy of the three satellite SM products and
detect the relationships between the accuracy of
satellite-based SM products and the environmental
factors. We hope these results could provide valu-
able information for the spatial distribution of errors
of satellite-based moisture products and comple-
ment existing researches based on high-resolution
model simulations (Li et al., 2018).
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