ТЛП

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Chemie Institut für Siliciumchemie

Synthesis, Isolation and Reactivity of Silyl-Substituted Functionalized Silylenes

Gizem Dübek Bengi

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Lukas Hintermann

Prüfer der Dissertation: 1. Prof. Dr. Shigeyoshi Inoue

2. Prof. Dr. Angela Casini

Die Dissertation wurde am 26.06.2020 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 23.07.2020 angenommen.

Acknowledgements

First of all, I am grateful to Shige (Prof. Dr. Shigeyoshi Inoue) for giving me this opportunity to pursue my PhD study in his research group. I deeply appreciate his constant guidance and support through my scientific journey that helped me in developing both scientifically and personally in TU München.

I would like to thank Dr. Thomas Renner, Dr. Richard Weidner, Dr. Elke Fritz-Langhals, Dr. Jan Tillmann and Dr. Niklas Wienkenhöver of WACKER Chemie AG for their joint project work, many technical discussions, the productive as well pleasant atmosphere at the regular meetings.

I am thankful to all members of AK Inoue who helped my throughout this journey and also for introducing me with Bavarian culture (*Servus!*). I especially thankful to members of our "*Lunch club*", *Amelie Porzelt, Dr. Catherine Weetman* and *Dr. Daniel Franz* for nice (and mostly funny) conversations during lunch time. In particular, many thanks to *Amelie* and *Cath* for helping me in proof reading this thesis and most importantly their constant encouragement and motivation during our "*fresh air breaks*" that ease not only my PhD journey but also everyday life problems.

I would also like to thank you to my life-long friends; *Nagme*, *Nil*, *Dr. Merve* and *Zeynep* for showing me that the almost 2000 km distance is nothing to keep me motivated and create smile in my face and also in my heart. I am also thankful to my friends in Bochum; *Derya*, *Nesli* and *Secil*. I especially thank *Nesli* for regular long hours Skype talks that starting with chemistry, evolving to being an international and finalizing with discussion on delicious foods in Turkish cuisine.

Finally, I would like to thank my dear parents for believing, understanding and supporting me all the time. Especially to the most colorful sister in the world, *Cisem*, for her constant support and help while preparing TOC pictures. Last but not least, I am grateful to my husband, *Burak*, for his patience, understanding and also his immense support in every way he can. I am the luckiest to have you all.

List of Abbreviations

Ad	Adamantane (C ₁₀ H ₁₆)
Ar	Aryl group
B(Ar ^F) ₄	Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate
BCF	Tris(pentafluorophenyl)borane
cAAC	Cyclic alkyl(amino)carbene
COD	1,5-Cyclooctadiene (C ₈ H ₁₂)
Ср	Cyclopentadienyl
Cp*	Pentamethylcyclopentadienyl
Су	Cyclohexane (C_6H_{12})
DFT	Density Functional Theory
Dipp	2,6-di- <i>iso</i> -propylphenyl (2,6- <i>i</i> Pr ₂ -C ₆ H ₃)
dippe	1,2-Bis(di-iso-propylphosphino)ethane
DMAP	4-Dimethylaminopyridine ((CH ₃) ₂ NC ₅ H ₄ N)
dmpe	1,2-bis(dimethylphosphino)ethane
dms	Dimethylsulphide
Е	Element
e. g.	Latin (exempli gratia): for example
Eind	1,1,3,3,5,5,7,7,-octaethyl-s-hydrindacen-4-yl
Et	Ethyl
et al.	Latin (et alii): and others
etc	Latin (<i>et cetera</i>): and the rest
EWG	Electron withdrawing group
h	Hour
НОМО	Highest occupied molecular orbital
hv	Photolysis, irradiation
$I^i Pr_2 Me_2$	1,3-bis(iso-propyl)-4,5-dimethylimidazol-2-ylidene
IEt_2Me_2	1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene
IMe ₄	1,3,4,5-Tetramethylimidazol-2-ylidene
ⁱ Pr	iso-propyl
kcal	Kilocalorie
K-Selectride	Potassium tri-sec-butylborohydride
L	Ligand

LUMO	Lowest unoccupied molecular orbital
Μ	Metal
m.p.	Melting point
Me	Methyl
Mes	2,4,6-Trimethylphenyl (2,4,6-Me ₃ -C ₆ H ₂)
mmol	milli-mole
МО	Molecular orbital
mol	moles
NHC	N-Heterocyclic carbene
NHI	N-Heterocyclic imine
NHSi	N-Heterocyclic silylene
NMR	Nuclear magnetic resonance
OTf	Triflate, trifluoromethanesulfonate ($CF_3SO_3^-$)
Ph	Phenyl
ppm	Parts per million
R	Functional group
r.t.	Room temperature
s-Bu	sec-butyl (C ₄ H ₉)
SC XRD	Single-crystal X-ray diffraction
Tbb	$C_6H_2-2,6-[CH(SiMe_3)_2]_2-4-tBu$
<i>t</i> Bu	<i>tert</i> -butyl
THF	Tetrahydrofuran
Tipp	2,4,6-tri- <i>iso</i> -propylphenyl (2,4,6- ^{<i>i</i>} Pr ₃ -C ₆ H ₂)
ТМ	Transition metal
tmps	MeSi(CH ₂ PMe ₂) ₃
TMS	Trimethylsilyl
UV-vis	Ultraviolet-visible spectroscopy
Х	Halogen atom and related substituent

Publication List

- C. Eisenhut, T. Szilvási, <u>G. Dübek</u>, N. C. Breit, S. Inoue, *Inorg. Chem.* 2017, *56*, 10061-10069.
 "Systematic Study of *N*-Heterocyclic Carbene Coordinate Hydrosilylene Transition-Metal Complexes"
- <u>G. Dübek</u>, D. Franz, C. Eisenhut, P. J. Altmann, S. Inoue, *Dalton Trans.* 2019, 48, 5756-5765.
 "Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron sources"
- <u>G. Dübek</u>, F. Hanusch, S. Inoue, *Inorg. Chem.* 2019, 58, 15700-15704.
 "NHC-Stabilized Silyl-Substituted Chlorosilylene"
- <u>G. Dübek</u>, F. Hanusch, D. Munz, S. Inoue, *Angew. Chem. Int. Ed.* 2020, *59*, 5823-5829.
 "An Air-Stable Heterobimetallic Si₂M₂ Tetrahedral Cluster"

Table of Contents

Acknowledgements	I
List of Abbreviations	II
Publication List	IV
Table of Contents	V
1 Introduction	1
1.1Low-Valent Heavier Main Group Elements	1
2 Carbenes	3
2.1 N-Heterocyclic Carbenes (NHCs)	4
2.2 NHCs in Low-Valent Main Group Chemistry	5
3 Silylenes	8
3.1 N-Heterocyclic Silylene (NHSi)	10
3.2 Acyclic Silylene	11
3.3 Base Stabilized Silylene	12
4 Functionalized Stable Silicon(II) Compounds	
4.1 Silicon(II) Halides	13
4.2 Silicon (II) Hydrides	19
5 Silicon-Transition Metal Multiple Bonds	
6 Motivation of This Work	
7 Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron	sources 32
8 NHC-Stabilized Silyl-Substituted Chlorosilylene	
9 An Air-stable Heterobimetallic Si ₂ M ₂ Tetrahedral Cluster	
10 Summary and Outlook	
11 Bibliography	
12 Appendix	66
12.1 Supporting Information for Chapter 7	66
12.2 Supporting Information for Chapter 8	
12.3 Supporting Information for Chapter 9	119
12.4 Licenses for Copyrighted Content	

1 Introduction

1.1 Low-Valent Heavier Main Group Elements

The life on earth depends on the element carbon (C), it is a versatile element that finds itself in everything from DNA to materials in everyday use. As carbon is extensively distributed in nature, it has been subject of intense research by scientists for more than 200 years and hence its properties are widely known. Not only in nature, that we come in contact with everyday life, the existence of lowvalent carbon plays a crucial role in interstellar space among Group 14 elements and is particularly important in astrochemistry.^[1] In comparison to carbon, the chemistry of low-valent heavier group 14 elements (Si, Ge, Sn, Ph) only began to be investigated in the last three decades of the twentieth century. Due to the close proximity between carbon and silicon in the periodic table, it could be predicted that they would have similar electronic properties. However, there are fundamental differences between the lighter (C) and heavier elements (Si, Ge, Sn), as the covalent radii increases by nearly 50% from C (0.77 Å) to Si (1.11 Å) (Figure 1).^[2-3] Due to the increased radii, the tendency to form hybridized orbitals vanishes for silicon atom. In addition, Group 14 represents the sole group which contains all three major classification of elements: non-metal, metalloid and metal (Figure 1). Since the beginning of the twentyfirst century, spectacular discoveries in heavier-main group chemistry have led to them being described as "transition-metal like".^[4-6] Stable low-valent derivatives of heavier main group elements have either open or quasi-open coordination sites, which classifies them as highly reactive species and thus they bear the ability to mimic transition metals. Regarding their chemical reactivity, this transition metal like nature has enabled the activation of small molecules under mild conditions and recent achievements have showcased their catalytic ability.^[5, 7]

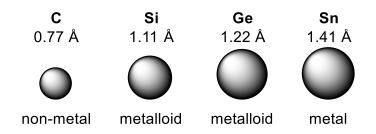


Figure 1. Variation in covalent radii and metallic character upon descending group 14.

The key factor, enabling major breakthroughs in low-valent main group chemistry, has been due to smart ligand design. Sterically demanding ligand motifs provide kinetic stabilization, whilst use of electron donating groups provide electronic stabilization. Consideration of both of these features has allowed for the isolation of stable low coordinate and/or low oxidation state systems and subsequently investigations into their reactivity. The discovery of a variety of simple, easily prepared ligands, which meet the above criteria, has allowed for an increasing number of low-valent main group species. In addition, this has led to the discovery of room-temperature stable main group complexes with astonishing properties, reactivity and catalytic ability. Many of the heavier group 14 elements display high reactivity towards utilization of small molecules such as dihydrogen^[8-10], C^{II} and C^{IV} oxides^[11-13] or ethylene^[14-15] which generally had been reported only for transition-metal species. These reports highlight main group elements compounds showcasing transition-metal like reactivity and open the door to a fruitful and also challenging area of main group catalysis as a replacement for precious and toxic transition metals.

2 Carbenes

Carbenes (general formula, R₂C:) are electronically neutral species. The central carbon's sixelectron valence shell is covalently bonded through two σ orbitals, with two remaining electrons as a non-bonding electron pair. These two non-bonding electrons can occupy the degenerate p_x and p_y orbitals in a linear carbene structure which includes *sp*-hybridization (Figure 2, left). Alternatively, they can distribute as spin-paired (singlet) or spin-non-paired (triplet) in a bent structure carbene with a *sp*²hybridized carbon atom (Figure 2, middle and right). Due to their incomplete electron octet, synthesis and isolation of free, uncoordinated carbenes have been synthetic targets since 1835.^[16]

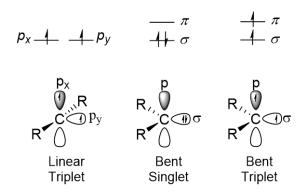


Figure 2. Schematic representation of the different electronic configurations of carbenes (R₂C:).

A pioneering study was reported by Bertrand and co-workers in the late 1980s, on isolation of the first acyclic carbene **S2.1** that is stabilized by phosphino and silyl substituents (Figure 3).^[17] Shortly after, in 1991, Arduengo *et al.* reported the first "bottleable" carbene **S2.2** (Figure 3) that is integrated into a nitrogen heterocycle, namely a *N*-heterocyclic carbene (NHC). This was achieved via deprotonation of 1,3-di-1-adamantylimidazolium chloride with sodium hydride in THF.^[18]

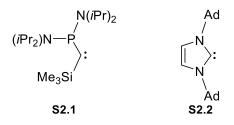


Figure 3. The first reported acyclic (phosphino)(silyl)carbene (S2.1, left) and first N-heterocyclic carbene (S2.2, right).

2.1 *N*-Heterocyclic Carbenes (NHCs)

After their discovery in 1991, room temperature isolable carbenes, in particular NHCs have played a key role in developing modern organometallic chemistry. Various contributions have been made by several research groups in the development of NHCs and as a result its applications are widely exploited.^[19-23] NHCs have found application not only in homogeneous or organo-catalysis^[24-25], but also in material science^[26-28] and medicinal chemistry^[29-30].

One of the main applications of NHCs are their use as ligands for metal-based catalytic reactions. Since they are strong σ -donors and weak π -acceptors, NHCs are comparable to the ligand class of phosphanes. In fact, it was found that NHCs have various advantages over phosphanes, since they form particularly stronger metal-carbon σ -bonds than the corresponding phosphine complexes. Comparison of the NHC-stabilized second generation Grubbs` catalyst [(SIMes)(PCy₃)RuCl₂(CHPh)] versus the phosphane-stabilised first generation Grubbs` Catalyst [(PCy₃)₂RuCl₂(CHPh)] shows the strong σ -donation ability and *trans* effect of the coordinated NHC.^[31] This results in enhanced stability and catalytic activity in olefin metathesis.

Although NHCs are mostly known as excellent ligands for metal-based catalysis, another major field of application is the use of nucleophilic carbenes as organocatalysts.^[32] Metal-free catalyzed processes are attractive alternatives to classical metal-based reactions due to their economical low cost and reduced environmental impact. The application of NHCs in organocatalysis first started with benzoin-type reactions (benzoin condensations).^[33-34] Since this initial reactivity several new types of NHC-based organocatalysis has developed rapidly, for example transesterification^[35], ring opening polymerizations (ROPs)^[36] and 1,2-addition reactions.^[37]

The main application of NHCs that has most relevance to this thesis is their use in low-valent main group element chemistry. NHCs have proven to be superior ligands in terms of stabilization of low-oxidation and/or low-coordinate main group elements compared to Lewis base ligands. Thanks to the their tunable steric and electronic properties, numerous remarkable achievements have been reported in the low-valent chemistry of group 13, 14 and 15, which are addressed in detail in the Chapter 2.2.

2.2 NHCs in Low-Valent Main Group Chemistry

Although the majority of scientific contributions focus on the coordination of NHCs to transition metals and their use in organocatalysis, in the last two decades, it was shown that NHCs can also efficiently stabilize low oxidation state Group 13, 14 and 15 elements. One of the main features of the NHCs, in low-valent main group chemistry, is the σ -donation of the NHC to a free σ -accepting orbital of the low valent p-block element.²¹ In addition to their high σ -donor ability, NHCs can be sterically flexible depending on the size of the "wingtip" substituents. Moreover, the electronic characteristic of NHCs can be tuned by altering the number of nitrogen atoms adjacent to carbene carbon atom in the heterocyclic structure, as well as ring size or ring constitution (Figure 4). For example, in 2005, Bertrand et al. reported a new type of carbene, by replacing one of the NR groups in the cyclic framework with a CR₂ group, namely cyclic alkyl(amino) carbene (cAAC).^[38-41] Due to presence of σ -donating CR₂ group next to the carbon carbon instead of nitrogen, cAACs are stronger σ -donors as well as better π -acceptor ligands than classical NHCs. Furthermore, cAACs are also able to activate small molecules like H₂, NH₃ or CO due to the small HOMO-LUMO separation.^[42] As an additional member of the carbene family, we can also count an isomeric NHC, namely, "abnormal" NHCs (aNHC) are better σ -donors and weaker π -acceptors than the classical isomer due to the reduced heteroatom stabilization.^[43-46] Whilst "normal" NHCs can bind to the metal/element at the C(2) position (NC(2)N), aNHCs can bind through either C(4) or C(5) positions.

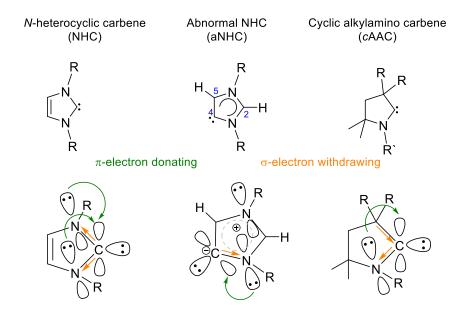


Figure 4. Electronic properties of classical NHC, aNHC and cAAC ligands.

Pioneering work in stabilization ability of NHCs to low-valent group 14 elements was carried out by Robinson and co-workers in 2008.^[47] This enabled the isolation of a stable silicon (0) species by the reduction of NHC-stabilized silicon tetrachloride. The obtained disilicon complex **S2.6** (Figure 5) consists of two silicon atoms each exhibiting a non-bonding electron pair. In 2013, the group of Driess reported the synthesis of cyclic silylone **S2.7** (Figure 5), this was made possible by usage of a bidentate NHC ligand in which the NHCs are connected via a methylene bridge.^[48]. In the same year, Stalke, Roesky and Frenking *et al.* also described a *c*AAC stabilized biradicaloid silicon atom in the formal oxidation state of zero.^[49] In addition to neutral low-valent main group compounds, NHCs have also led the way to accessing positively charged silicon (II) cations, namely silyliumylidene ions. The groups of Tokitoh, Sasamori and Matsuo as well as Inoue have described numerous examples of silyliumylidene ions **S2.8** (Figure 5) with various ligands and NHCs on the cationic silicon atom.^[50-54] A rare example of silicon (II) dication was reported by Filippou in which three IMe₄ (1,3,4,5-Tetramethylimidazol-2-ylidene) ligands are coordinated to the low-valent silicon center.^[55]

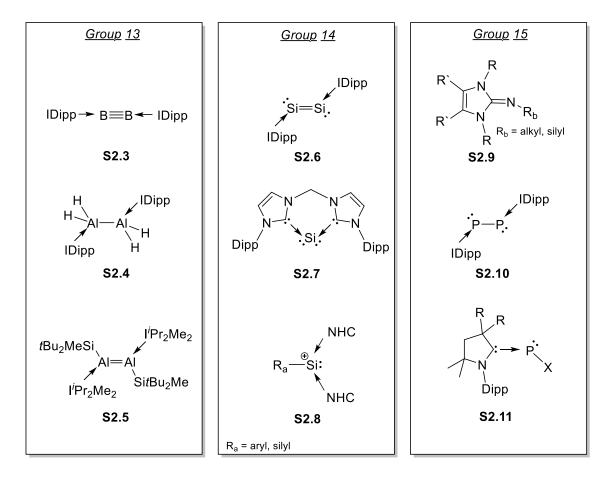


Figure 5. Selected examples of low-valent main group compounds stabilized by NHCs.

NHCs ability to stabilize low coordinate compounds is not just exclusive to group 14 compounds, they are also widely used to stabilize highly reactive group 13 elements in low oxidation states. In 2007, the group of Robinson reported the first bis-NHC-stabilized neutral diborene NHC \rightarrow (H)B=B(H) \leftarrow NHC (NHC = IDipp) upon reduction of NHC–BBr₃ adduct with KC₈.^[56] Following this achievement, five years later, Braunschweig *et al.* reported a linear bis-NHC-stabilized diboryne **S2.3** (Figure 5) via the reduction of a bis-NHC stabilized tetrabromodiborane with a one-electron reducing agent.^[57] In 2010, Jones and co-workers isolated the parent dialane **S2.4** (Al₂H₄) as bis-NHC adduct through a hydrogen atom transfer from NHC-stabilized AlH₃ (Figure 5).^[58] Very recently, Inoue and co-workers succeeded in the isolation of the first neutral dialumene **S2.5** (Figure 5). Complex **S2.5** contains a formal aluminium double bond which is stabilized by employing both a NHC and sterically demanding di-*tert*-butyl(methyl)silyl (*t*Bu₂MeSi) group which can be used for the fixation and catalytic reduction of CO₂.^[59-60]

One important example regarding the chemistry of NHC-adducts within group 15 elements was reported by Robinson in 2008, as this enabled the isolation of a bis-NHC stabilized diphosphorus compound **S2.10** (Figure 5).^[61] In 2017, Stalke and Roesky reported *c*AAC-supported phosphinidene **S2.11** with hydride and halogen functionality (Figure 5).^[62] As for nitrogen, this can be incorporated into the NHC ligand scaffold to create a new ligand class, namely *N*-heterocyclic Imine (NHI) **S2.9** (Figure 5) ligands. NHI ligands are strong electron donors due to the efficient delocalization of the cationic charge density over the heterocyclic ring system, hence a better choice than NHCs for thermodynamic stabilization of electron deficient compounds.^[63] NHI systems have also proven as a successful ligand choice in isolating elusive main group species, such as a Al=Te double bond **S2.12** ^[64] and a three-coordinate silanone **S2.13** (Figure 6).^[65]

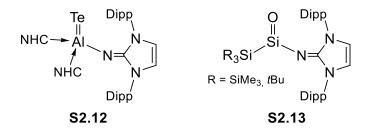


Figure 6. Reported elusive examples in main group compounds with NHI ligands.

Further numerous novel classes of low-valent compounds including functionalized low-valent silicon (II) compounds, with outstanding properties and reactivity have been isolated and investigated which will be described in detail in a separate chapter.

3 Silylenes

Silylenes R₂Si(II), the heavier congeners of carbenes, are electronically neutral silicon compounds with a non-bonding electron pair at the divalent silicon center. Despite the close relationship in the periodic table, silylenes differ massively in their electronic properties from their lighter carbon congener. If you consider the calculated molecular structure and electronic configuration of the two divalent parent systems, methylene (H₂C:) and silylene (H₂Si:), methylene mainly favors the triplet ground state due to very low, indeed negative, singlet-triplet gap ($\Delta E_{S,T} = -14$ kcal/mol). On the other hand, silylene (H₂Si:) has a greater single-triplet gap ($\Delta E_{S,T} = 16.7$ kcal/mol)^[66] separation that results in a low tendency to form hybrid orbitals, hence favoring the singlet ground state (Figure 7).

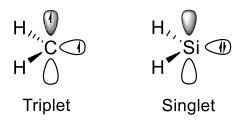
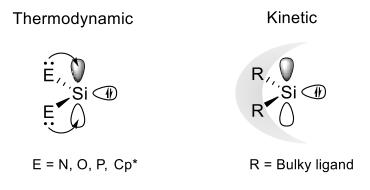



Figure 7. Molecular structure and electronic configuration of methylene (H₂C:) and silylene (H₂Si:).

Due to the electron configuration of singlet silvlenes, the p_z orbital remains unoccupied which makes them susceptible to oligomerization. This results in the formation of disilenes which are still extremely reactive species. Thus, kinetic and/or thermodynamic stabilization is essential to isolate the low-valent silicon center in silvlenes. Thermodynamic stabilization can be achieved by donation from the π -donor ligands to the empty *p*-orbital and kinetic stabilization by introducing sterically demanding ligands (Figure 8).

Figure 8. Thermodynamic stabilization of silylenes by π -donor ligands (left) and kinetic stabilization by sterically encumbered ligand (right).

In 1964, the group of Goldstein reported a dimethylsilylene ($(CH_3)_2Si$:) in the gas phase as a short-lived intermediate upon reduction of dimethyldichlorosilane ($(CH_3)_2SiCl_2$) with sodium-potassium vapor at 260-280 °C.^[67] Over the subsequent two decades, silylenes were thought only to be stable under inert matrices at cryogenic temperatures.^[68] In 1986, Jutzi *et al.* reported the first room temperature stable silicon(II) compound, decamethylsilicocene **S3.1**, from the reduction of the corresponding dihalide with alkali metal (Figure 9).^[69] This report was a great breakthrough in the history low-valent silicon chemistry and has been the subject of recent research.^[70-71] In 1990, Karsch *et al.* reported a four-coordinate stable bis-donor stabilized silylene **S3.2** with a stereochemically active lone pair at the silicon center (Figure 9).^[72] Although these compounds are counted as milestones in low valent silicon chemistry, they are not recognized as "true silylenes" due to the their high coordination numbers.

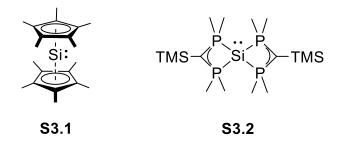


Figure 9. First examples of room temperature isolable divalent Si(II) compounds

3.1 N-Heterocyclic Silylene (NHSi)

In 1991, Arduengo *et al.* reported the first NHC **S2.2** (Figure 3) and led the way to the numerous applications not only in academic but also in industrial research. One year later, the first bis(amino)silylene (Me₂Si(N*t*Bu)₂Si:) was reported by Veith upon photolysis of silicon diazide (Me₂Si(N*t*Bu)₂Si(N₃)₂) in an argon matrix at cryogenic temperatures.^[73] Unfortunately, this compound was only stable up to 77 K. Finally, in 1994, Denk and West successfully isolated the first room temperature stable divalent *N*-Heterocyclic Si(II) compound (NHSi) **S3.3**, also known as "West's silylene", from the reduction of the corresponding silicon(IV) dichloride precursor with elemental potassium (Figure 10).^[74] Compound **S3.3** is the first member of the divalent cyclic silicon(II) species, which is stabilized by two π -donating amino groups and kinetically supported by two sterically demanding *tert*-butyl groups (Figure 8). Subsequently, the same group also isolated a saturated analog via a similar reduction method.^[75] This analog is more reactive than the unsaturated silylene, and as such it is distinctly less thermally stable.

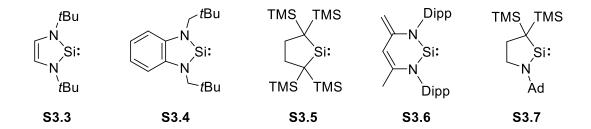


Figure 10. Selected examples of stable *N*-heterocyclic silylenes (NHSi).

Following the isolation of the first NHSi, further examples were described through modifications of the ligand backbone or the amino substituents. For example, in 1995, Lappert and Gerhus reported a new silylene **S3.4** that employed a benzo-fused backbone (Figure 10).^[76] Also in 2006, Driess and co-workers isolated the β -diketimidato-stabilized silylene **S3.6** (Figure 10), this showed ambivalent reactivity towards nucleophiles due to its ylide-like electronic resonance structures.^[77] Roesky, in 2006, reported the first stable chlorosilylene **S4.1** (Figure 13) that is electronically stabilized by a chelating amidinato ligand.^[78] Due to the relevance of this thesis, it will be separately discussed in detail in the Chapter 4.1. As a notable example, Kira *et al.* described a carbocyclic bis(alkyl)silylene **S3.5** (Figure 10). Within this achievement, they showed that stable silylenes do not necessarily need π -donor ligands, which had been previously achieved through use of nitrogen substituents, and can therefore be stabilized only by steric protection.^[79] Very recently, in 2016, the group of Iwamoto reported the synthesis of a novel cyclic(alkyl)(amino)silylene

(*c*AASi) **S3.7** (Figure 10) which is similar to established carbon derivative (*c*AACs).^[80] Compound **S3.7** shows improved thermal stability in comparison to the prior bis(alkyl)silylenes, whilst maintaining similar observed reactivity.

3.2 Acyclic Silylene

Until 2012, stable two-coordinate silylenes were limited to compounds that exhibited the silicon atom as part of a rigid cyclic framework (i.e. NHSi) or high coordination number at silicon(II) center. Although room temperature stable heavier Group 14 tetrylenes ($(SiMe_3)_2N_2E$: (E = Ge, Sn) have been known since 1970s,^[81-82] the stable acyclic silylene remained elusive. In 2003, West and Müller reported a semi-stable acyclic bis(bis(trimethylsilyl)aminosilylene (($(SiMe_3)_2N)_2Si$:) which is stable at -20 °C yet rapidly decomposes above 0 °C.^[83] Finally in 2012, the group of Power succeeded in generating an acyclic thiolate substituted silylene **S3.8** (Figure 11).^[84] Within the same issue, the groups of Aldridge and Jones reported the synthesis of a new acyclic silylene **S3.9** (Figure 11) that bears one amino group and an electropositive σ -donating ligand.^[8] The latter group also implemented a silyl group (Si(SiMe₃)₃) instead of a boryl ligand to be able to synthesize silyl-substituted acyclic silylene **S3.11** (Figure 11).^[85] Two years later, the same groups also reported a new-type isolable acyclic silylene **S3.11** (Figure 11) that bears an extremely bulky boryl-amide ligand.^[86] Thanks to the bulky peripheral substituents, all below compounds **S3.8–11** (Figure 11) are kinetically stabilized and hence thermally robust.

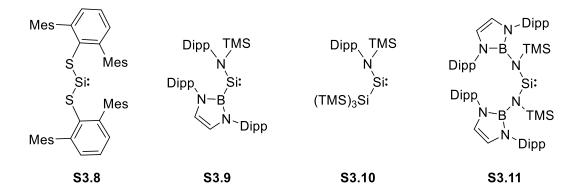


Figure 11. Selected examples of room temperature stable acyclic silylenes.

Acyclic silylenes are thought to be more promising candidates in terms of reactivity towards small molecule activation and/or oxidative addition reactions than NHSi's due to their coordinative flexibility rather than the rigid cyclic framework. In fact, boryl(amino) silylene **S3.9** can active dihydrogen even at 0 °C.^[8] Similarly, the silyl coordinated silylene **S3.10** (Figure 11) can also split

dihydrogen at room temperature to give corresponding dihydrosilane. Very recently, the same group reported the reductive coupling of CO and CO₂ with **S3.9** (Figure 11).^[87] Inoue and Rieger reported a very reactive acyclic iminosilylsilylene that reversibly inserts into an aromatic C=C double bond to form silacycloheptatriene (silepin).^[88] This silepin can be used as a synthetic equivalent to acyclic silylene. Indeed, treatment of silepin with N₂O successfully furnished the first examples of isolable acyclic, neutral and three-coordinate silanone, which has enhanced stability in both solution and solid state, due to the π -donating NHI ligand and σ -donating silyl groups.^[65]

3.3 Base Stabilized Silylene

The first NHC-adduct of an acyclic bis(silyl)silylene **S3.12** was reported by Sekiguchi in 2012 by reductive dehalogenation of $(tBu_3Si)_2SiBr_2$ in the presence of IMe₄ (Figure 12).^[89] This compound gained particular interest among the silicon chemistry community, since compound **S3.12** is a rare example of silyl-substituted silylenes. Recently, Cowley and co-workers isolated a NHC-stabilized bis(silyl)silylene **S3.13** (Figure 12) from a donor-supported disilene.^[90] Not only NHCs, but also milder Lewis bases like DMAP can also support reactive acyclic silylenes **S3.14** (Figure 12) as very recently demonstrated by the Inoue group.^[91]

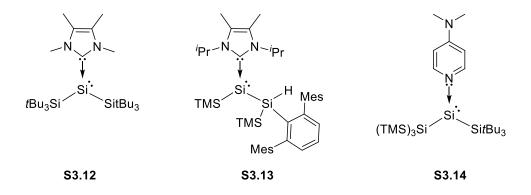


Figure 12. Selected examples of NHC-stabilized acyclic silyl-substituted silylenes.

In addition to acyclic silylenes, Robinson and co-workers reported NHC-stabilized bissilylenechloride (NHC:(Cl)Si–Si(Cl):NHC) upon reduction of a NHC adduct of SiCl₄ in hexane.^[47] In recent years, NHCs have contributed greatly towards allowing access to a large number of novel lowvalent silicon(II) complexes especially in terms of functionalized silylenes, which will be discussed in details in following Chapter 4.

4 Functionalized Stable Silicon(II) Compounds

Over the past 30 years, NHSi ligands have been studied extensively in terms of their synthesis, reactivity and applications in transition-metal like catalysis. A handful of reviews based on the reactivities of bare silylenes have been reported so far^[75, 92-95], however, in contrast much less is known about substituted/functionalized silylenes. In particular, α -substituted three-coordinate silylenes, in which an additional reactive site is gained due to labile substituents, are expected to have distinct reactivity compared to two-coordinate silylenes.

4.1 Silicon(II) Halides

Among functionalized silylene compounds, chloro-substituted silylenes are the most developed class due to the presence of a labile Si-Cl bond. These compounds are prone to undergo salt metathesis type reactions and hence indispensable building blocks for synthetic organosilicon chemistry. The first stable monomeric chlorosilylene **S4.1** (Figure 13) was reported by Roesky and co-workers in 2006, via reduction of amidinato trichlorosilane with finely divided potassium at room temperature in a 10% yield.^[78] The following chemistry of this particular chlorosilylene was limited due to its low yield, yet the same group reported an improved synthesis four years later from the direct reaction of amidinato dichlorohydrosilane with bis-trimethyl silyl lithium amide (LiN(TMS)₂), this increased the isolated yield to 90%.^[96] Compound **S4.1** is kinetically stabilized by sterically hindered amidinato ligand and displays a trigonal pyramidal geometry suggesting the presence of an active lone pair at the silicon center.

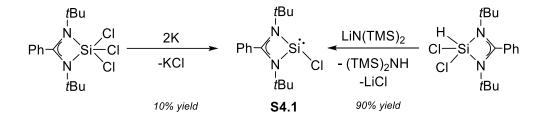


Figure 13. Two alternative synthetic approaches for amidinato chlorosilylene S4.1.

Since the successful isolation of the first chlorosilylene (**S4.1**, Figure 13), numerous reactivity investigations have been carried out. Treatment of **S4.1** with biphenyl alkyne at room temperature successfully formed silicon-containing cyclic compound 1,2-disilacyclobutene **S4.2** via oxidative addition (Figure 14). This can be further fluorinated upon using trimethyltin fluoride to form fluoro-substituted disilacyclobutene.^[96] Upon introduction of a less hindered alkyne (methylphosphaalkyne) formation of a five –membered cyclic cation was observed, which consists of silicon, carbon and phosphorus centers.^[97] In 2011, Roesky and co-workers showed that compound **S4.1** can activate P₄ to form a zwitterionic amidinato ligand stabilized Si₂P₂ four membered unit **S4.5** (Figure 14).^[98] Interestingly, in the same year, Inoue and Driess reported the isolation of same Si₂P₂-cycloheterobutadine **S4.5** that is derived from the reaction of phosphasilene **S4.3** with dichlorotriphenylphosphorane Ph₃PCl₂.^[99] Treatment of compound **S4.1** with N₂O at room temperature furnished the six-membered Si₃O₃ ring **S4.4**, whilst treatment with benzophenone afforded a monosilaoxirane type complex (Figure 14).

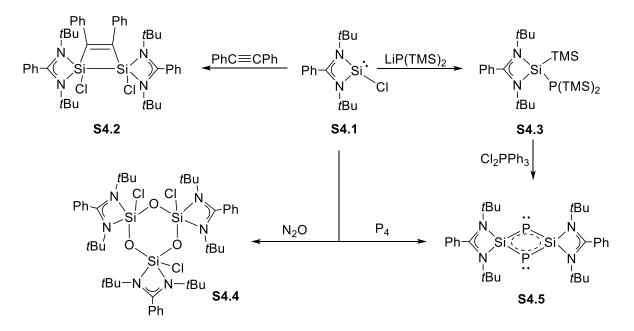


Figure 14. Selected reactivities of amidinato chlorosilylene S4.1.

In 2010, Baceiredo and Kato reported a phosphine–stabilized chlorosilylene **S4.6** that shows delightful reactivity, enabling the isolation of a variety of novel silicon containing compounds (Figure 15).^[100] The reaction of chlorosilylene with lithiated phosphinodiazomethane affords phosphino(silyl)diazomethane, this allowed for access to the first isolable phosphine-stabilized silyne (Si=C) complex upon photolysis.^[100] The obtained compound **S4.7** is stable up to -30 °C and has a very

short silicon-carbon bond that compares well with theoretical predictions for silicon-carbon triple bonds. By using the same synthetic analogy, they also considered to obtain a silylene-substituted azide as a potential precursor for silanitrile (Si \equiv N) species. Unfortunately, reaction of chlorosilylene **S4.6** with sodium azide did not yield the corresponding azide yet it formed 1,3-diaza-2,4-disilacyclobutadine **S4.8** (Figure 15) with an exceptionally short but non-bonded Si...Si distance, which lies in the range for that of a Si \equiv Si double bond.^[101] This Si₂N₂ four-membered unit can be considered as the dimeric form of the desired silanitrile. Recently, the same group also reported the formation of a donor-stabilized silavinylidene phosphorene **S4.9** upon treatment of chlorosilylene with P,S-bis-ylide which results in a remarkably high electron density on the carbon center (Figure 15). Hence, compound **S4.9** can also be considered as a silylene/phosphine supported C(0) center.^[102]



Figure 15. Selected reactivity of a phosphine-stabilized chlorosilylene S4.6.

Recently, Driess and co-workers described the isolation of a β -diketiminato chlorosilylene **S4.10** (Figure 16) via the use of a bulky NHC as a dehydrochlorination reagent.^[103] In the same year, Aldridge and co-workers reported a substituted β -ketiminato ligand stabilized chlorosilylene **S4.11**, (nacnac)^{Dipp}SiCl ((nacnac)^{Dipp} = HC(Me₂N)C(Dipp)N)₂)) that is mildly oxidized with N₂O at room temperature to form a sila-acyl chloride **S4.12** (Figure 16) without the presence of a stabilizing Lewis acid.^[104] Furthermore, nucleophilic substitution of the Si(O)Cl unit with either K[HBEt₃] or KO^tBu successfully furnishes a sila-aldehyde **S4.13** (borane-stabilized) and a sila-ester **S4.14**, respectively (Figure 16).^[104]

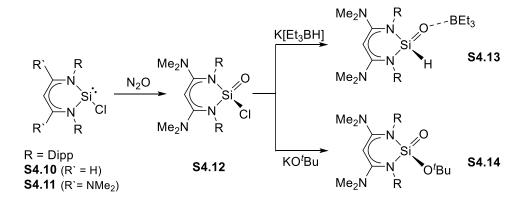


Figure 16. Formation of sila-acyl chloride, sila-aldehyde and sila-ester compounds from β-ketiminato chlorosilylene S4.11.

In addition to intramolecular Lewis-donor stabilized chlorosilylenes, external Lewis-bases, more precisely NHCs can be also used to support such functionalized silylenes. The first example of a NHC-adduct of chlorosilylene was reported by Filippou et al. in 2010.^[105] Whilst one of the two equivalents of NHC selectively dehydrochlorinate the arylchlorosilanes SiArHCl₂ (Ar = C_6H_3 -2,6-Mes₂; C_6H_3 -2,6-Trip₂), the other equivalent externally stabilizes the chlorosilylene **S4.15** (Figure 17). One of the breathtaking compounds derived from **S4.15**, was the first isolable transition metal-silylyne complex (Si≡M) which will be described in detail in Chapter 5. One year later, Cui and co-workers described a new donor-stabilized aminochlorosilylene S4.16 RClSi:←NHC (R = 2,6 $iPr_2(C_6H_3)(SiMe_3)N)$ via the same method. Compound **S4.16** can be used as a reagent enabling stereoselective bis-silvlation of terminal alkynes containing electron withdrawing groups (EWG) to afford compound **S4.18** (Figure 17).^[106-107] Treatment of **S4.16** with various enolizable ketones afforded silicon bis-enolates, whilst use of SiCl₄ yielded different reactions products depending on the reaction conditions.^[108-109] For example, under ambient temperature in Et₂O it formed a rare example of a NHCstabilized silaimine, whereas in hot toluene it transformed to a dimer of dichlorosilaimine (ArN=SiCl₂) that consists of a planar Si₂N₂ central ring. In 2012, Rivard group synthesized amidochlorosilylene S4.17 (Figure 17) by treating NHC-SiCl₂ adduct with Li[NHDipp].^[110] The reaction of compound S4.17 with a hydride source (LiBH₄) afforded a Si(II) hydride (borane substituted) complex S4.19 (Figure 17). The same group also reported the heavier congeners (Ge, Sn) via the same synthetic approach. In 2016, Müller group reported another synthetic approach to reproduce Filippou's arylchlorosilylene **S4.15** that involves NHC-induced fragmentation of 7-chloro-7-silanorbornadiene with IMe₄.^[111] Although obtained chlorosilylene was proven to be same compound spectroscopically, it decomposed due to the reaction conditions.

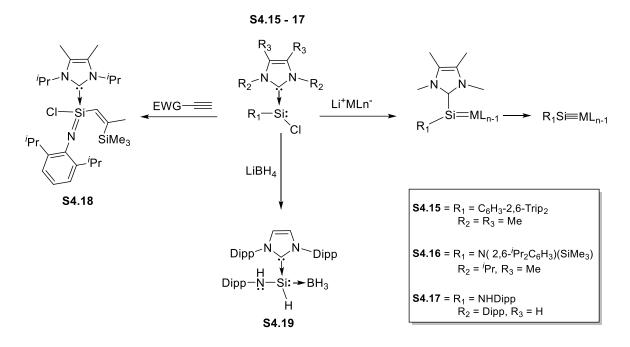


Figure 17. Selected reactivity products of NHC-stabilized chlorosilylenes.

In addition to monochlorosilylene, dihalosilylenes (SiX₂, X = Cl, Br, I) are an important class of compounds due to their roles in industrial applications such as in microelectronic devices as well as purification of silicon, the so-called Siemens process.^[112] Earlier attempts by Schenk, Schmeisser, Margrave and others to isolate dihalide silylenes at room temperature resulted in mostly polymeric species (SiX₂)_n.^[113-115] In several reports, it was noted that SiX₂ can be generated in gas phase yet it is stable only at very low temperatures.^[116-118] Finally, the first room temperature stable dichlorosilylene **S4.20-Cl** was reported with NHC stabilization by the group of Roesky *et al.* in 2009.^[119] In fact, they have reported two synthetic procedures for the desired IDipp \rightarrow SiCl₂ (Figure 18). In a similar fashion to the monochlorosilylenes, dehydrohalogenation of trichlorosilane (HSiCl₃) with two equivalents of NHC directly yielded the NHC-stabilized dichlorosilylene in 79% yield.

Another multistep synthetic approach was also described within the same report. It is also obtainable via formation of NHC-stabilized SiCl₄ followed by concomitant reduction of the adduct IDipp \rightarrow SiCl₄ with two equivalents of KC₈. The ²⁹Si NMR shift of this dichlorosilylene ($\delta = 19.06$) is line with those for monochlorosilylenes.^[78, 103, 105, 110-111, 120-121] Similarly, disproportionation of Si₂Cl₆ also results in both the base-stabilized SiCl₂ and SiCl₄ complexes.^[122] The compound IDipp \rightarrow SiCl₂ can be converted the novel dichlorosilaimine upon treatment with RN₃ which is then further reduced to yield a dimeric silaisonitrile (RNSi:)₂.^[123] Within the same issue, Filippou`s group reported the analogous IDipp \rightarrow SiBr₂ **S4.20-Br** via reduction of the ionic complex [IDipp \rightarrow SiBr₃]Br with potassium graphite.^[124] Four years later, Filippou also reported diiodosilylene **S4.20-I** utilizing the same method

(Figure 18).^[55] Aside from usage of NHCs as a HCl scavenger to obtain dihalosilylenes, halogenation of the Si=Si double bond of base-stabilized Si(0) compounds with 1,2-dihaloethanes (1,2-C₂H₄X₂, X = Cl, Br, I) has proven to be an efficient method to access dihalosilylenes. Indeed, in 2015, Filippou and co-workers reported the synthesis of a series of complexes **S4.20-X** (X = Cl, Br, I) (Figure 18) via comproportionation of (IDipp)₂Si₂. These can be further used as precursors for NHC-stabilized silazines and silaimines.^[125-126]

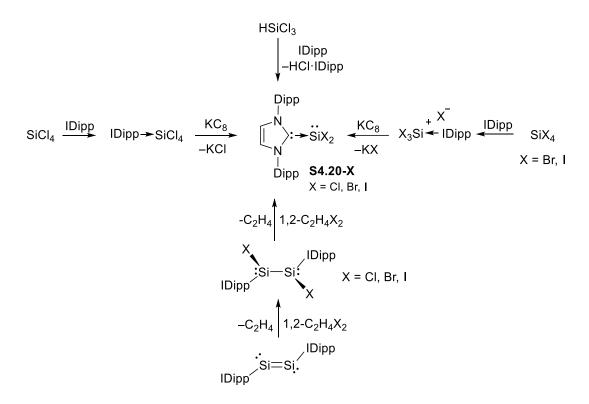


Figure 18. Different synthetic approaches to obtain NHC-stabilized dihalosilylenes (NHC→SiX₂).

Other than NHC ligands, different bases such as cAACs can be also used to support these reactive dihalosilylenes externally. Although, attempts to prepare $cAAC \rightarrow SiCl_2$ resulted in polymorphic structures for Roesky's group,^[127-128] So and co-workers were able to isolate a stable $cAAC \rightarrow SiI_2$ upon reduction of $cAAC \rightarrow SiI_4$ with two equivalents of KC₈ in toluene.^[129] It is important to note that, formation of desired compound is solvent dependent and no product formation was observed when THF was used instead of toluene.

4.2 Silicon (II) Hydrides

Hydrosilylenes, with the generic name as H₂Si:, are silicon(II) compounds that exhibit minimum one α -substituted hydrogen. These species have only been studied either at very high temperatures or in an argon matrix at cryogenic temperatures, due to the highly reactive silicon center with an unoccupied *p*-orbital and an active lone pair. In addition to that, the lability of the terminal Si-H bond, which is negatively polarized towards hydrogen (Si^{$\delta+-$}H^{$\delta--$}), makes such elusive species even more reactive in comparison to the tetravalent silicon(IV) hydrides. Hydrosilylenes are important intermediates in the industrial manufacturing process for amorphous silicon and silicon films via the pyrolysis of silane (SiH₄).^[130-131] These hydrosilylenes become valuable synthetic targets due to their great potential in synthetic chemistry such as hydrosilylation reactions. So far, several room temperature-stable silicon(II) hydrides are reported, the majority were synthesized via donor-acceptor stabilization.

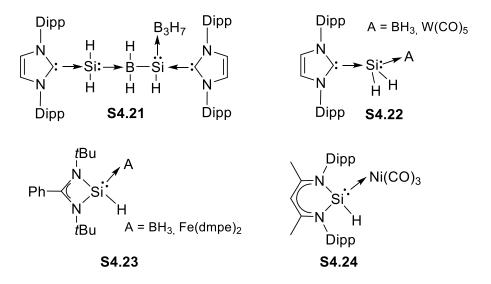


Figure 19. Selected examples for isolated silylene(II) hydrides that adopt donor-acceptor (push-pull) stabilization.

In 2011, the group of Robinson succeeded to isolate the parent silylene **S4.21** (H₂Si:) unit by "push-pull" stabilization, employing NHC and boranes for the respective push-pull unit (Figure 19). This was achieved by the borane-induced Si-Si bond cleavage of the NHC-adduct of disilicon (NHC \rightarrow Si=Si \leftarrow NHC, NHC = IDipp).^[132] One year later, the group of Rivard introduced an alternative route to access parent silylenes via the reaction of NHC-stabilized dichlorosilylene complex (IDippSiCl₂) with LiAlH₄ to afford the NHC-stabilized silicon(II) dihydride-borane **S4.22** adduct (Figure 19).^[133] Interestingly, this complex reacts with W(CO)₅·THF to yield a dihydride-tungsten complex (IDipp \cdot SiH₂·W(CO)₅) via a silylene group transfer mechanism (Figure 19). Furthermore, the

same group reported the synthesis of a silicon(II) amidohydride adduct via chloride/hydride metathesis reaction of the corresponding amido chloro silylene with LiBH₄.^[110]

The first mononuclear stable Lewis acid-base stabilized Si(II) hydride **S4.23** (Figure 19) was reported by Roesky and Stalke via the reaction of the corresponding silicon(II) chloride **S4.1** (Figure 13) with borane THF adduct (BH₃·THF) in 2011.^[134] With the help of the stabilizing chelating amidinato ligands, the obtained Lewis acid-base stabilized monochlorosilylene was converted to monohydridosilylene **S4.23** with hydrogenating agent potassium K-selectride (K[(*s*-Bu)₃]BH). One year later, by employing the same chlorosilylene as precursor, Driess and Inoue succeeded in isolating the first example of a bis(hydrido)silylene complex which is also stabilized by means of a push-pull methodology. The reaction of titanium complex [Cp₂Ti(PMe₃)₂] with two equivalents of chlorosilylene resulted in the formation of the bis(chlorosilylene)titanium complex that is subsequently converted into the bis-silylenehydride complex upon treatment with Li(HBEt)₃.^[135] This report also demonstrates that not only Lewis acids, but also transition metal fragments, can be also used as protecting groups in order to stabilize Si(II) hydride complexes. Similarly, the reaction of the Fe(0) complex [(dmpe)₂Fe(PMe₃)] (dmpe = 1,2-bis(dimethylphosphino)ethane) with chlorosilylene yielded the new chlorosilylene-iron complex, which can be further converted to the corresponding hydridosilylene-iron complex with Li(HBEt)₃ via halide-hydride exchange.^[136]

In addition to the amidinate ligand class, the β -ketiminate ligand stabilized silylene hydride **S4.24** (Figure 19) was also reported. Driess *et al.* reported the formation of Ni(CO)₃ coordinated NHSi. The reaction of the silylene-nickel complex with hydrogen chloride (HCl) afforded the chlorosilylene-nickel complex quantitatively, followed by an exchange of the chloride by hydride with Li(HBEt)₃ to afford desired isolable silicon(II) hydride-nickel complex **S4.24**.^[137] The afforded hydrosilylene complex was also accessible through treatment with a hydrogen source, like ammonia-borane, with the NHSi-nickel complex. In the same report, it was shown that compound **S4.24** is suitable as a hydrosilylation agent for diaryl-substituted alkynes. A second example of a hydridosilylene with β -diketiminate ligand was obtained by the reaction of NHSi with the iridium hydride complex [Cp*IrH₄].^[138] This resulted in the formation of the first silyl-iridium complex via oxidative addition into the iridium-hydrogen bond followed by rearrangement to hydridosilylene in 24 hours at room temperature.

In contrast to various examples of donor-acceptor stabilized silicon(II) hydrides, the isolation of an acceptor free system remained elusive until 2011. The group of Kato and Baceiredo successfully synthesized the first acceptor free phosphine-stabilized silylene(II) hydride **S4.25** (Figure 20) by reductive dehalogenation of the corresponding dichlorosilane derivative with elemental magnesium.^[139]

The reaction of acceptor free silylene(II) hydride with olefins (cyclopentene) afforded the cyclopentanesubstituted silicon(II) complex which represents the first example of hydrosilylation in the absence of a supporting catalyst.

Figure 20. Reported acceptor-free silylene(II) hydrides.

In 2013, Inoue and co-workers reported a novel acceptor free NHC-stabilized silyl-silylene hydride **S4.26** (Figure 20) by reductive dehydrohalogenation of a supersilyl-substituted dihydrochlorosilane (tBu₃SiSiH₂Cl).^[140]

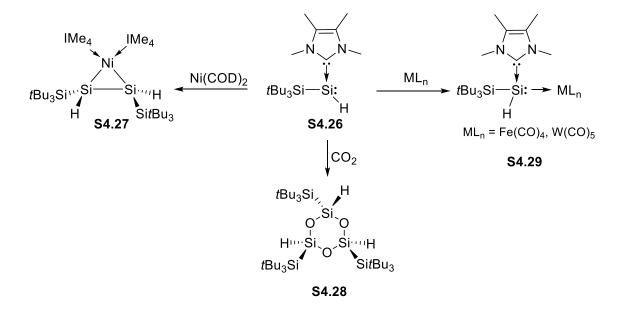


Figure 21. Selected reactivities of NHC-stabilized silyl-substituted silylene (II) hydride.

Interestingly, treatment of NHC-silylene hydride with half an equivalent of Ni(COD)₂, results in the two NHC-ligands, that were formerly attached to the Si(II) center, being transferred to the Ni center, furnishing the first example of a dihydrosilene Ni(0) complex **S4.27** (Figure 21). Compound **S4.26** undergoes [2+2+1] cycloaddition reactions with phenyl acetylene and diphenyl acetylene to form 1-alkenyl-1-alkynylsilane and 2,3,4,5-tetraphenyl-1-(tri-*t*Bu-silyl)-1*H*-silole, respectively.^[141] Furthermore, treatment of silylene (II) hydride with excess CO₂ affords the cyclotrisiloxane **S4.28** in 82% yield (Figure 21).^[142] Recently, the same group also presented the novel iron and tungsten carbonyl complexes **S4.29** (Figure 21) that exhibit exceptionally long silicon-metal bond lengths due to the zwitterionic resonance structures.^[143] In 2016, Müller group described a new synthetic approach to access Lewis base stabilized hydridosilylenes. This described the formation of NHC supported arylsubstituted silylene (II) hydride via NHC-induced fragmentation of silanorbornadiene derivatives which forms hydrosilylene iron complex upon treatment with diironnanocarbonyl (Fe₂(CO)₉).^[111]

5 Silicon-Transition Metal Multiple Bonds

Multiple bonds between transition metals and main-group elements have gained considerable attention, since their discovery in 1964.^[144-145] The first transition metal carbene complex [(CO)₅W=CMe(OMe)] was reported by E. O. Fischer followed by R. R. Schrock with the isolation of (*t*BuCH₂)₃Ta=CH(*t*Bu) in 1974. Since these seminal discoveries, numerous examples of transition metal carbene complexes have been reported. In terms of their application, these complexes have been widely utilized in alkene metathesis and cross coupling reactions.^[146] The most far-reaching reactivity of metal-carbene complexes is their contributions to the olefin metathesis reactions, which resulted in a Nobel Prize in chemistry in 2005.^[31] Olefin metathesis is one of the versatile methods in the synthesis of new carbon-carbon bonds in not only organic and polymer chemistry but also in pharmaceutical manufacturing.^[147] Grubbs' catalysts are chosen widely in industrial applications^[148-151] for olefin cross-metathesis (CM), ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM) and acyclic diene metathesis (ADMET) reactions due to its functional group tolerance, stereoselectivity and catalyst longevity.^[152-153]

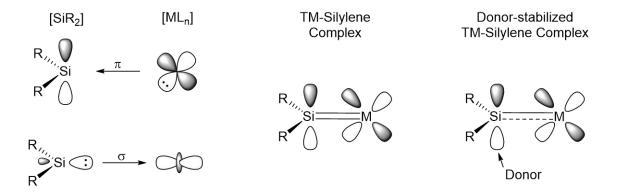


Figure 22. Schematic representation of the orbital interactions in TM-Silylene and a donor-stabilized TM-Silylene Complexes according to Dewar-Chatt-Duncanson model.

Among group 14 elements, many attempts have focused on the ability to isolate silicon analogs of transition metal–carbene multiply bonded complexes, due to the close proximity of carbon and silicon in the periodic table. Transition metal-silylene complexes (LTM=SiR₂) can be described as complexes displaying planar geometries, with the TM–Si bond displaying double bond character. The bonding situation can be illustrated by Dewar-Chatt-Duncanson model similar to metal-carbene complexes (Figure 22).^[154] A σ -bond occurs between the lone pair of the silicon center and empty orbital of the transition metal. A π -bond forms via back donation from a filled d-orbital of the metal to the empty *p*-orbital of the silicon. Due to the higher electrophilicity of silicon center compared to the carbon

analogue in TM=E (E = p-block) complexes, silvlene complexes can also be donor stabilized via coordination of Lewis bases. This results in elongation of the bond between silicon and metal. Transition metal-silvlene complexes are sought to be observed as reactive intermediates or in the gas phase in molecular beam experiments. Although they were synthetic targets since the 1960s, earlier attempts did not provide successful results. Thus, further supporting the justification that these complexes are very reactive compared to lighter carbene complexes.

The first isolated transition metal-silylene complexes were donor-stabilized, reported by the two independent groups of G. Müller (**S5.1**) and D. Tilley (**S5.2**) in 1987 (Figure 23).^[155-156] These complexes have a considerably long metal-silicon bond and distorted tetrahedral geometry and hence feature silyl complexes. In addition to base-stabilized silylene complexes, several base-free metal-silylene complexes with different substituents at silicon were discovered.

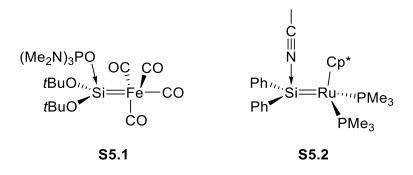


Figure 23. First examples of donor-stabilized transition metal-silylene complexes.

The first base-free silylene complex **S5.3** ([Cp*(PMe₃)₂Ru=Si(SR)₂][BPh₄] (R = Et, $-C_6H_3$ -4-Me)) was isolated by abstraction of an anionic group (OTf⁻) from [Cp*(PMe₃)₂Ru-Si(SR)₂OTf] (**A**, Figure 24).^[157] Abstraction of an anionic group produces a cationic silylene complex and is a reliable procedure to generate silylene complexes. Alternatively, other general synthetic approaches have developed these either involve coordination of a free silylene (**S5.4**, **B**, Figure 24)^[158] or α -substituent (mostly hydrogen) migration (**S5.5**, **C**, Figure 24).^[159]

Metal-silylene complexes that are mentioned above can be classified as Fischer-type with the bond highly polarized in a M^{δ} =Si^{δ +} manner. Since compounds S5.1-5 have highly electrophilic silicon and nucleophilic metals, they are thought to be more reactive than the metal-carbene complexes in particular towards nucleophiles.^[160] Moreover, metal-silylene complexes are intriguing to investigate due to their possible roles in metal-catalyzed transformations (i.e. dehydrogenative coupling of hydrosilanes, scrambling of substituents in silanes).^[161-165] Indeed, Glaser and Tilley reported that the cationic ruthenium-hydrosilylene complex is catalytically active in hydrosilylation of alkenes.^[166] TM-

silylene complexes have now been accessible for more than three decades and the chemistry of various silylene complexes including stoichiometric and catalytic transformation reactions have made a steady progress.^[167-175]

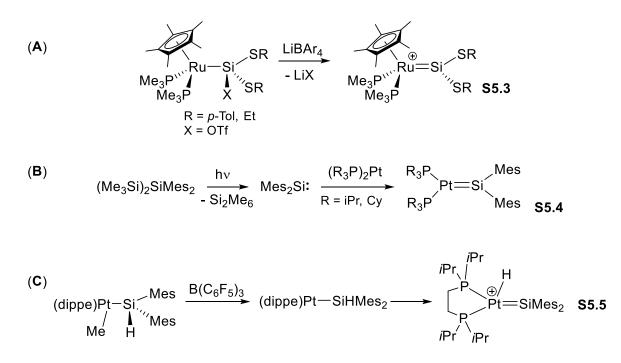
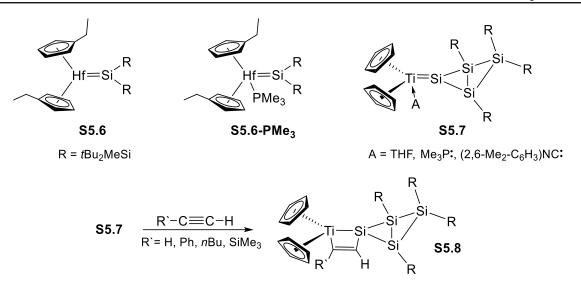



Figure 24. Synthetic routes for base-free silylene complexes by (A) substituent abstraction, (B) coordination of a free silylene to a TM, (C) α -Hydrogen migration.

Although most of the metal-silylene complexes are Fischer-type, a limited number of Schrocktype metal-silylenes were also described. In 2006, the group of Sekiguchi reported the first Schrocktype Hafnium–silylene complex **S5.6** (Figure 25) via the coupling reaction of 1,1-dilithiosilane (Si(Li)₂(*t*Bu₂MeSi)₂) with (η -C₃H₄Et)₂HfCl₂. The obtained 16-electron hafnium-silylene complex is thermally instable and rapidly decomposed at 0 °C, yet could be isolated as 18-electron hafnium-silylene phosphine complex **S5.6-PMe₃** upon addition of PMe₃ to the hafnium center (Figure 25).^[176] Later in 2013, the same group isolated the new Schrock type titanium-silylene complex with bicyclic silylene ligand **S5.7** and explored it's reactivity towards simple unsaturated substrates.^[177-178] Compound **S5.7** undergoes [2+2] cycloaddition with terminal alkynes to afford silatitanacyclobutenes **S5.8** as [2+2] cycloaddition products (Figure 25). Due to the use of an early transition metal and electropositive silyl substituent at the silylene center, the bond in compound **S5.6** is polarized in an opposite manner as M^{δ_1} =Si^{δ_-}. Therefore, complexes **S5.6–7** undergo nucleophilic attack at the silicon atom instead of the transition metal as would be expected from classical Schrock-type TM complexes of main group elements.

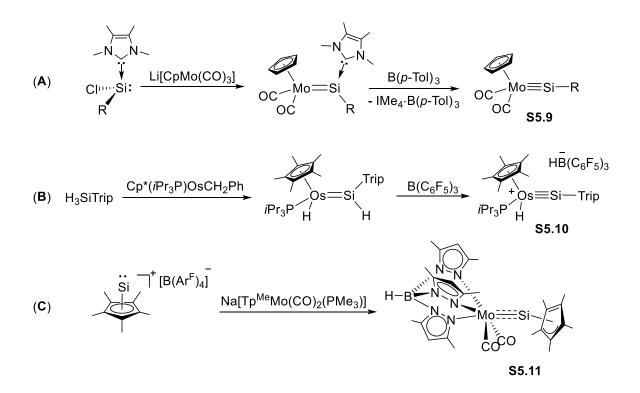


Figure 25. Schrock-type transition metal-silylene complexes and [2+2] cycloaddition reaction of titanium-silylene complex **S5.7**.

Unlike metal-silylene complexes,^[160, 179-180] the chemistry of metal-silylyne complexes featuring a triple bond between silicon and a transition metal center (Si≡M) is relatively unexplored, due the lack of suitable Si(II) A to precursors. notable silylyne complex $[Cp*(dmpe)(H)MoSiMes][B(C_6F_5)_4]$ (dmpe = PMe₂CH₂CH₂PMe₂) was reported by Mork and Tilley in 2003 upon subsequent chloride abstraction from chlorosilylene Cp*(dmpe)(H)Mo=SiClMes with Li[B(C₆F₅)₄].^[181] Although this complex has very short Mo–Si bond length of 2.219(2) Å and downfield shifted resonance in the ²⁹Si NMR spectrum at $\delta = 289$ ppm, it was not considered a "true" metalsilvlyne complex, due to the presence of an agostic hydrogen interaction between the transition metal and silicon center.

Later in 2010, a genuine Mo=Si triple bonded complex **S5.9** (Figure 26) was successfully isolated by the group of Filippou from the base-stabilized silicon(II) halide.^[182] The treatment of NHC–SiCl(R) (R = C₆H₃-2,6-Trip₂) with lithium metallate (Li[CpMo(CO)₃] furnished the NHC-stabilized metal-silylene complex upon salt metathesis. Subsequent abstraction of the NHC via the Lewis acidic borane (B(*p*-Tol)₃) affords the neutral molybdenum-silylyne complex **S5.9** Cp(CO)₂Mo=Si(C₆H₃-2,6-Trip₂) with the bond length between silicon and molybdenum being 2.2241(7) Å (**A**, Figure 26).^[182] In addition to the base-stabilized Si(II) halides, half an equivalent of dihalodisilenes can be used as a halosilylene synthetic equivalent as recently described by Filippou in the synthesis of [(κ^3 -tmps)(CO)₂Nb=Si(Tbb)] (Tbb = C₆H₂-2,6-[CH(SiMe₃)₂]₂-4-*t*Bu).^[183-184] A cationic silylyne complex was reported by Tilley as having an Os=Si triple bond **S5.10** which was formed by hydride abstraction with the strong Lewis acid B(C₆F₅)₄ from the hydrosilylene complex [Cp*(^{*i*}Pr₃P)(H)Os=Si(H)Trip] (**B**, Figure 26).^[185] A similar synthetic route to obtain a triple bond between silicon and transition metal was reported by Tobita and co-workers via dehydrogenation from

a metal-silylene complex containing a (H)W=Si(H) moiety. They reported the synthesis of a neutral $Cp^*(CO)_2W$ =SiTsi (Tsi = C(SiMe_3)_3) via the stepwise proton and hydride abstraction utilizing Lewis bases (NHC) and Lewis acids (B(C_6F_5)_3), respectively.^[186] Using the same methodology, it was found that the dimeric structure of [Cp*(CO)_2W=Si(Eind)]_2 (**S5.13**, Figure 27) is in equilibrium with its monomer.^[187] Very recently, a new synthetic approach to access metal-silylyne **S5.11** complexes was reported by Filippou. In contrast to previous routes which used silicon halides or hydride/halogen abstraction from the corresponding metal-silylene complexes, this new method involves the direct transfer of a silyliumylidene ion to form the metal-silylyne complexes (**C**, Figure 26).^[70]

Figure 26. Selected synthetic approaches for novel transition metal-silylyne complexes. (**A**), starting from base-stabilized Si(II) halides via salt metathesis; (**B**), starting from silicon (IV) hydrides via abstraction of hydride group from hydro-silylene complex; (**C**), starting from silyliumyliedene ions.

The most important reactivity of TM=C complexes is their reactivity with various unsaturated organic substrates and the ability to undergo metathesis reactions, as represented by olefin and alkyne metathesis. Although many reviews are well documented regarding the stoichiometric and catalytic reactions of metal-carbyne complexes,^[188-189] the chemistry of heavier analogues (M=Si) is still in its infancy.

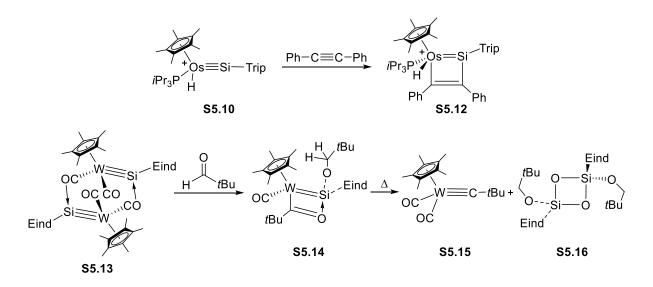


Figure 27. Reactions of silylyne (TM \equiv Si) towards alkyne to form thermally stable metallocycle (S5.12) and towards aldehyde to lead to metathesis-like fragmentation (S5.15).

In 2013, Tilley and co-workers reported the formation of metallosilacyclobutadiene **S5.12** (Figure 27) via the [2+2] cycloaddition reaction between compound **S5.10** and an alkyne (PhC=CPh).^[185] In a general metathesis reaction, formation of four-membered metallocycle is proposed to be the key intermediate. However, in the case of Tilley the obtained product is thermally stable and further conversion could not be obtained. Very recently, the Hashimoto and Tobita groups introduced the reactions of a tungsten silylyne complex with aldehydes and their metathesis like fragmentation.^[190] According to their report, treatment of a half equivalent of compound **S5.13** with pivalaldehyde undergoes a [2+2] cycloaddition reaction to yield the four-membered W–Si–O–C metallocycle **S5.14** (Figure 27). This is then further converted to a carbyne complex **S5.15** and 1,3-cyclodisiloxane **S5.16** upon gentle heating (Figure 27). In addition to the reactivity of metal-silylyne complexes towards unsaturated organic complexes, a handful of examples have shown reactions towards nucleophiles^[191], bond activations mediated by electron-transfer^[191] and carbonylation reactions^[192]. Since their discovery, the synthesis and chemistry of transition metal-silylyne complexes is one of the exciting yet challenging research fields over the last two decades.^[193]

In addition to TM-Silicon multiple bonded systems, bimetallic complexes with bridging silicon units are considered to be an important class in organo-transition metal chemistry since they are alleged key intermediates in various transition-metal catalyzed transformations^[194-196] like dehydrocoupling of hydrosilanes and the metathesis of olefins.^[197-198] Hybrid clusters including group 14 elements with M₂C₂ core are well known after the first discovery in the bonding ability of acetylenes across metalmetal triple bonds to form quasi-tetrahedral compounds.^[199-201] After that various $M(\mu-C_2R_2)M$ dimetallatetrahedrane complexes were reported not only with acetylenes but also with alkynes that are known as catalytically active in the polymerization of alkynes^[202-211] and in hydroboration reactions.^[212] Among the heavier analogues, many M₂Si₂ dimeric binuclear complexes with various transition-metals (M = Ti, W, Co, Rh, Ni, etc.) were reported including their catalytic activities since 1900s.^[197, 213-234] In 1988, the group of Young reported a Pt₂Si₂ complex S5.17 (Figure 28) which is a potential key intermediate in the platinum-catalyzed dehydrocoupling of hydrosilanes. Later in 2000, Mol and coworkers suggested that the W_2Si_2 cluster S5.18 (Figure 28) can act as a catalyst precursor for terminal olefin metathesis under irradiation.^[197-198] Thus far reported complexes with M₂Si₂ core bearing a planar, diamond-shaped or butterfly type environment, but neutral bimetallic tetrahedral structures remain elusive.

Figure 28. Selected examples of reported planar clusters with M₂Si₂ core.

6 Motivation of This Work

As highlighted in the introduction, unlike the rich field of organic chemistry, relating to the carbon-based systems, the chemistry of heavier main group elements like silicon remains under studied despite silicon being more abundant within the Earth's crust. Undoubtedly, the last two decades have witnessed remarkable achievements in new strategies for synthesis and application of low-valent heavier main group species. Sterically demanding ligand design is one of the key factors for isolating these reactive species. In respect to smart ligand choice, electropositive and sterically demanding silyl substituents (R_3Si-) have become principal ligands in organosilicon chemistry, since they have enabled access to seminal examples in main group chemistry. For instance, it was reported that the σ -donating silyl group is one of the key factors for the enhanced stability of the first neutral acyclic three-coordinate silanone **S2.13** (Figure 6).^[65] Furthermore, silyl groups have also proven effective ligands across the p-block, as highlighted by the isolation of the first neutral dialumene **S2.5** (Figure 5).^[59]

Among low-valent main group species, functionalized silylenes, particularly chlorosilylenes are an intriguing class of compounds. Due to the presence of a labile Si–Cl bond, as well as their empty lone pair, chlorosilylenes are ideal candidates for building blocks towards novel organosilicon compounds, as shown in Chapter 4.1. So far various ligands have been utilized to support the reactive chlorosilylenes via differing kinetic and thermodynamic stabilization strategies, ^[78, 100, 103, 110, 120] yet chlorosilylenes bearing silyl-substituents are the still missing pieces. This work aims to close this gap to uncover the combined effect of chloro- and silyl-substitution onto the central silicon atom. With this ligand combination, a good understanding to further versatile silylene reactivity and an access to variety of low-valent functionalized silylenes are anticipated (Figure 29).

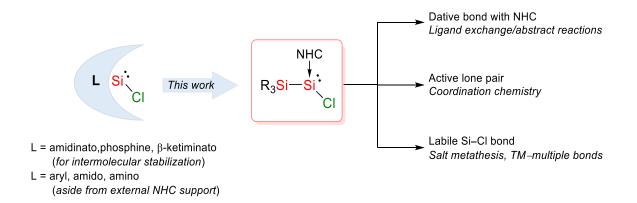


Figure 29. Aims of this thesis: Synthesis of silyl(chloro)silylenes and examination of its reactivity according to the potential reactive sites.

To achieve this challenging task, in addition to the silyl-ligand, further stabilization will be sought via NHCs as they bring easily tunable steric and electronic properties. With the targeted class of compound in hand, it is investigated concerning its reactivity towards a variety of Lewis acids and bases, which will be discussed in Chapter 8. It is moreover an ideal candidate giving access to novel silicon-transition metal multiple bonded species, discussed in Chapter 9.

Moreover, the only reported NHC-stabilized monohydride and silyl-substituted functionalized silylene **S4.26** (Figure 20) with be further surveyed concerning its potential to build up silicon-boron bonds. Initial reactivity investigations with **S4.26** highlighted its coordination chemistry with regards to transition metal^[140, 143] and functional organic groups such as carbonyls and alkynes^[141-142]. Usage of this particular silylene to achieve silicon–boron bonds is rather uncommon despite of numerous studies on silylene-derived silicon-element bond formation. Known silicon coordinated borane moieties bear "acceptor stabilization" as shown for the compounds **S4.21–23** (Figure 19) or those compounds are even not accessible, as silylenes were often found to be prone to insertion of the silicon atom into the boron-heteroatom bond. Thus, we envisaged the use of silylene hydride as ideally suited as a reaction partner with electrophilic boron sources, enabling the build-up of silicon-boron bond, which is discussed in Chapter 7.

Title:	Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron sources
Status:	Research Article, published online April 3, 2019
Journal:	Dalton Transactions, 2019, 48, 5756-5765.
Publisher:	Royal Society of Chemistry
DOI:	10.1039/C9DT00608G
Authors:	Gizem Dübek, Daniel Franz, Carsten Eisenhut, Philipp J. Altmann and Shigeyoshi Inoue*

7 Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron sources

Content: Silylenes with an active lone pair on the Si(II) atom have been frequently used as electronpair donors towards boron-centered electrophiles. In this report, we investigated the reactivity of silylene hydride towards various types of boron-centered electrophiles that are commonly encountered in molecular chemistry. Reaction of silylene hydride with BX_3 (X = H, F, Cl, Br) lead in most cases to formation of the Lewis acid-base adducts of silylene hydride (R₃SiSi(H) \rightarrow BX₃). Depending on the Lewis acidity of BX₃ an equilibrium to the auto-ionized products [R₃SiSi(H)BX₂]⁻[BX₄]⁺ (X = F, Cl) was found. Interestingly, treatment of Si(H) with ammonia borane (H₃N·BH₃) led to formation of a NHC adduct of R₃SiSiH₂NHBH₂. This was formed through the dehydrogenation of H₃N·BH₃ yielding H₂NBH₂, followed by silylene insertion into the N–H bond concomitant with the migration of NHC from the Si center to the B atom. Accordingly, a similar adduct formation (R₃SiSi(H) \rightarrow B(Ar)) was also observed in the case of the organoboranes (BPh₃ or BPh₂Br). As a major result of this study, the stability of the silylene adduct correlates to the relative Lewis acidity of the borane sources and resembles with the stability of the corresponding dimethylsulphide (dms) complexes of boranes.

G. Dübek, D. Franz, C. Eisenhut, P. J. Altmann, S. Inoue, *Dalton Trans.* **2019**, *48*, 5756-5765. Reproduced by permission of the Royal Society of Chemistry.

^{*} G. Dübek and D. Franz planned all experiments and co-wrote the manuscript. G. Dübek conducted 70% and C. Eisenhut contributed with 30% of the experimental work including analysis. P. Altmann conducted all SC XRD measurements and managed the processing of the respective data. All work was performed under the supervision of S. Inoue.

Dalton Transactions

PAPER

5756

Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron sources†

Gizem Dübek, 💿 a Daniel Franz, 💿 a Carsten Eisenhut, ^b Philipp J. Altmanna and Shigeyoshi Inoue 💿 *a

Silylenes have become an indispensable tool for molecular bond activation. Their use for the construction of silicon–boron bonds is uncommon in comparison to the numerous studies on silylene-derived silicon-element bond formations. Herein we investigate the reactivity of the pyramidal NHC-coordinated hydrosilylene tBu_3SiSi(H)L^{Me4} (**1**; NHC = N-heterocyclic carbene, L^{Me4} = **1**,3,4,5-tetramethyl-imidazolin-2-ylidene) with various boron-centered electrophiles. The reaction of **1** with THF-BH₃ or H₃N→BH₃ afforded the silylene complex **1**→BH₃ or the product of insertion of the silicon(ii) atom into an N-H bond with concomitant dehydrogenation along the HN–BH moiety (**2**). The respective conversion of **1** with BPh₃ yields **1**→BPh₃ which readily reacts with excess L^{Me4} to form the more stable complex L^{Me4}→BPh₃ with release of **1**. Treatment of **1** with the haloboranes Et₂O→BF₃, BCl₃, BBr₃ and Me₂S→BBr₃ resulted in the formation of the Lewis acid base adducts **1**→BX₃ (X = F, Cl, Br) and an equilibrium with their auto-ionization products [**1**₂BX₂]⁺[BX₄]⁻ slowly develops. The ratio of **1**→BK₃ significantly increases with rising atomic number of the halide, thus **1**→BF₃ majorly transforms within hours while **1**→BBr₃ is near-quantitatively retained over time. Accordingly, the complex **1**→BPhBr₂ was isolated after conversion of **1** with PhBBr₂.

Received 9th February 2019, Accepted 3rd April 2019 DOI: 10.1039/c9dt00608g rsc li/dalton

Introduction

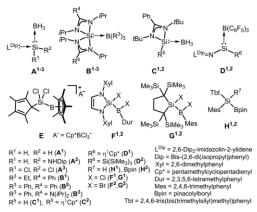
There has always been a strong link between the chemistry of silicon and boron as implied by the diagonal relationship of these metalloids in the Periodic Table of Elements. Boron-doped silicon semiconductors are a prominent example from materials science in which the combination of these elements fostered tremendous innovation.¹⁻³ Molecular chemistry benefits from the particular properties of the silicon-boron bond. It is sufficiently stable to craft durable compounds but also susceptible to mild methods of chemoselective cleavage to enable metallyl group transfer, thus, enriching the evergrowing library of organometallic synthesis.⁴⁻⁶ The ylidenic compound class of silylenes are a subtype of molecular silicon complexes with one lone pair majorly located at the metalloid center. As a result, the formal oxidation number +II is assigned to the silicon atom. Silylenes have gained outstanding atten-

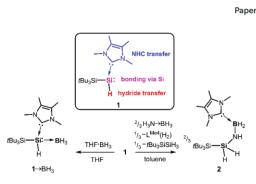
tion as key compounds to bring forward new ways for bond activation and catalysis.4,7-15 In particular, silylenes may act as ligands to enhance the catalytic activity of transition metal complexes.^{9,10,14} Moreover, the potentially ambiphilic silicon(II) atom itself may engage in bond activations via addition and insertion pathways. Taking into account their ylidenic character it does not come as a surprise that there has been made frequent use of silylenes as electron-pair donors towards boron-centered electrophiles. An early report of Metzler and Denk from 1996 described the formation of the adduct between a five-membered ring N-heterocyclic silylene (NHSi) and $B(C_6F_5)_3$ which slowly transforms to the product of Si-insertion into a B-C bond.¹⁶ However, neither the adduct nor the insertion product were structurally characterized in the solid state (i.e. XRD study, XRD = X-ray diffraction). In fact, more than 20 years later, one can easily survey the stock of compounds in which conversions of a silylene with an electrophilic borane derivative resulted in the structural characterization of a species that contained a silicon-boron bond.17-39 Often a silicon-coordinated borane moiety affords isolation of an otherwise elusive kind of silylene (i.e. "acceptor stabilization"). A prominent example for this concept is the silylene dihydride A1 described by Rivard and coworkers (Fig. 1).30 Structurally related compounds have also been reported (A^2, A^3) .^{29,33} Bis(guanidato)-, as well as bis(amidinato)silylenes tend to switch between isomers with a three- or with a four-

This journal is © The Royal Society of Chemistry 2019

View Article Online

^aDepartment of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4,


⁸⁵⁷⁴⁸ Garching bei München, Germany. E-mail: s.inoue@tum.de


^bInstitut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany

[†]Electronic supplementary information (ESI) available: Depiction of analysis spectra and crystallographic details. CCDC 1896328–1896331. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9dt00608g

^{5756 |} Dalton Trans., 2019, 48, 5756-5765

Dalton Transactions

View Article Online

Scheme 1 Reactive sites at the NHC-stabilized hydrosilylene 1 and its conversions with trihydroboranes.

one particular silylene's reactivity towards different types of boron sources is rather uncommon with a respective report of Cui being a rare example.²⁵ In the context of discussing silylene-borane adducts one should note the small number of boryl-substituted silylenes, as well as the exceptional reaction of a disilicon(0) complex with THF·BH₃ to outstanding silylene-borane complexes.^{34,41,42} Moreover, silicon-silicon multiple bonded systems with boryl functionalities have been reported.⁴³⁻⁴⁷

Recently, we have isolated the NHC-stabilized hydrosilylene 1 and studied its reactivity towards transition metal complexes (e.g. Ni(COD)₂, Fe(CO)₅, W(CO)₅; COD = 1,5-cyclooctadiene) and functional organic groups (e.g. carbonyls, alkynes; Scheme 1).^{48–52} As a distinct characteristic 1 marks three sites that may react with boron-centered electrophiles: (i) the ylidenic site at the silicon center, (ii) the dative bond between the NHC and the silicon atom which may be cleaved by electrophilic attack, and (iii) the Si-H functionality which may readily transfer a hydrogen atom (Scheme 1). Considering the importance of silicon-boron compounds to the community it was apparent to systematically study the reactivity of 1 towards various types of electrophilic boron-sources commonly encountered in molecular chemistry (e.g. hydro-, organo-, haloboranes). We took the marked scarceness of reports on simple Lewis acid base adducts of silylenes with haloboranes as a particular motivation for our investigation.

Results and discussion

Conversions with trihydroborane complexes

A plethora of chemical transformations has derived from complexes of NHCs with the parent borane (*i.e.* NHC \rightarrow BH₃).⁵³⁻⁵⁶ In sharp contrast, only few silylene adducts with the trihydroborane group are known as outlined above. In fact, two-coordinate silylenes do not commonly form simple and stable Lewis acid base adducts upon reaction with borane complexes (*e.g.* THF·BH₃, Me₂S \rightarrow BH₃, H₃N \rightarrow BH₃; here stable means to be isolatable at room temperature in the condensed phase). This will be majorly due to the enhanced Lewis acidity of low-

Fig. 1 Selected examples for outcomes of conversions of silylenes with various boron sources.

coordinate silicon atom. The high-coordinate species may be stabilized in the form of borane adducts of type B^{1-3} (Fig. 1).^{23,26} The amidinato ligand was also implemented in four-coordinate adducts between silylene and the trihydroborane group (C^{1,2}, Fig. 1).^{21,31} Similar to type **B** the silylene adducts **D**^{1,2} are observed in solution whereas for the respective "free" silylenes (with no borane moiety attached) the coordination number of the silicon centers rapidly changes (Fig. 1).^{17,28}

Despite these various examples for "acceptor stabilization" silylenes were often found to be prone to insertion of the silicon atom into boron-heteroatom bonds as implied by the pioneering study of Metzler and Denk (vide supra).16 Jutzi and coworkers described the insertion of the high-coordinate silylene center of Cp*2Si into boron-chloride bonds upon its conversion with Cp*BCl₂ to afford E (Fig. 1).³⁸ In agreement with the high reactivity of bonds between boron and the heavier halides (e.g. Cl, Br, I) this type of insertion was also observed for low-coordinate silylenes (i.e. two-coordinate NHSi) as demonstrated by Braunschweig and coworkers with the isolation of $\mathbf{F}^{1,2}$ and by the group of Iwamoto ($\mathbf{G}^{1,2}$, Fig. 1).²⁴ As verified by the synthesis of $\mathbf{H}^{1,2}$, the ylidenic center in silylenes may also insert into boron-hydrogen bonds, as well as unpolarized boron-boron bonds (Fig. 1).37 Interestingly, the group of Chiu reported the conversion of a two-coordinate bulky NHSi with borabicyclo[3.3.1]nonyl triflate (9-(OTf)BBN) to furnish the product of boron-oxygen insertion.39 Obviously, the triflate group complies to its pseudohalide character and, thus, the reactivity of the ambiphilic NHSi with the boron-triflate functionality is reminiscent of Braunschweig's study on treating NHSi with organoborohalides. In addition to these synthetic examples the reader is also referred to theoretical studies on the insertion of silylene into boron-element bonds.40 In consideration of the hitherto outlined scope of compounds we were surprised that systematic investigations of

This journal is © The Royal Society of Chemistry 2019

Dalton Trans., 2019, 48, 5756–5765 | 5757

Paper

Published on 03 A pril 2019. Downloaded by Technical University of Munich on 4/26/2020 8:47:47 PM.

coordinate silylenes which causes side-reactions (i.e. hydride shift from B to Si) that follow after the initial coordination between the metalloid centers. It is apparent, that the prospect for forming stable Lewis acid base adducts is higher for threecoordinate silvlenes as the silicon center is less electrophilic because of the stabilizing effect of an additional electron-pair donor. Accordingly, the conversion of 1 with a slight excess (1.3 equiv.) of borane tetrahydrofurane complex (THF·BH₃) furnished the chiral adduct $1 \rightarrow BH_3$ (isolated: 93%) as suggested by multinuclear NMR spectroscopy, high-resolution mass spectrometry (HRMS), as well as XRD structural study (Scheme 1). The ¹¹B NMR spectrum in C₆D₆ reveals a quartet at -40.8 ppm (J = 95 Hz) that collapses into a singlet in the proton decoupled experiment. This confirms a BH₃ group with a four-coordinate boron nucleus (cf. A^1 : δ (¹¹B) = -46.2 ppm, J = 93 Hz, in C₆D₆). In the ¹H NMR spectrum the prominent Si-H functionality gives rise to a quartet at 4.31 ppm with the coupling to the boron-bonded hydrogen atoms resolved $({}^{3}J_{HH} =$ 5 Hz, ²⁹Si satellites with J_{SiH} = 150 Hz). Notably, this is markedly shifted to lower field in comparison to the precursor (1: $\delta({}^{1}H)_{SiH} = 3.17$ ppm in C₆D₆).⁴⁸ Despite the quadrupolar momentum of the ¹¹B nucleus the NMR signal of the ²⁹Si atom is observed as a broad peak at -77 ppm in the INEPT experiment. As a prominent structural parameter the Si-B distance in the single crystal XRD study of $1{\rightarrow}BH_3$ is found at 2.009(5) Å which resembles A¹ (1.992(2) Å) and is longer than in A^{2,3} (1.976(2) Å (A²), 1.965(2) Å (A³)), as well as $C^{1,2}$ (1.962(1) Å (C1), 1.972(2) Å (C2), Fig. 2). 21,30 The bond length between the silicon center and the ipso-carbon atom of the NHC group seems to be unaffected by coordination of the silylene to the BH₃ fragment (Si-C_{NHC}: 1.942(3) Å for $1 \rightarrow BH_3$, as well as for 1). In contrast, the band of the Si-H stretching mode in $1 \rightarrow BH_3$ is observed at higher wavenumber

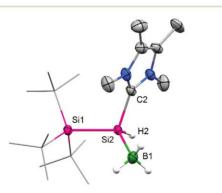


Fig. 2 Ellipsoid plot (30% level) of the molecular structure of $1 \rightarrow BH_3$ in the single crystal. H-atoms omitted (except on B, Si). Wireframe model for tert-butyl groups. Selected interatomic distances [Å] and angles [°]: Si2-B1 = 2.009(5), Si2-C2 = 1.942(3); Si1-Si2-B1 = 123.3(2), C2-Si2-B1 = 108.2(2), Si1-Si2-C2 = 111.3(2). Note: The Si2 and B1 atoms are disordered over two sites (occupancy levels: 0.85/0.15 each) and only the higher occupied sites are considered.

5758 | Dalton Trans., 2019, 48, 5756-5765

View Article Online Dalton Transactions

 $(2083~{\rm cm^{-1}})$ in comparison to the "free" silylene $1~(1984~{\rm cm^{-1}})$ which suggests strengthening of the Si–H interaction upon bonding to the Lewis acid.

As an alternate source of the trihydroborane group we converted 1 with borane trimethylamine complex (Me₃N \rightarrow BH₃). However, no reaction occurred at room temperature which agrees with the pronounced stability of this adduct as compared to THF·BH₃. On the contrary, the treatment of 1 with one equivalent borane ammonia complex (H3N→BH3) furnishes the silylaminoborane complex 2 (46% yield isolated) (Scheme 1). Its formation can be rationalized by dehydrogenation of H₃N→BH₃ to produce H₂N-BH₂ (note: this aminoborane is prone to aggregation) and formal insertion of the silvlene into the N-H bond. In the course of this reaction the NHC ligand ends up attached to the boron center which is reasonable as otherwise a five-coordinate silicon complex and a three-coordinate boron atom would coexist instead of two four-coordinate metalloid centers. In support of this reaction pathway the formation of tBu₃SiSiH₃, as well as dihydrogenated NHC (i.e. L^{Me4}H₂, dihydrogenated at the formerly ylidenic carbon atom) was suggested by NMR study and verified by HRMS analysis. Accordingly, half an equivalent of 1 is consumed to produce one equivalent of H2N-BH2 which in the following reacts with the remaining silylene to yield 2 (Scheme 1). Reminiscent of this reactivity treatment of a 1,3diketiminosilylene with gaseous NH3 has been described to afford the product of N-H insertion.57 On the other hand, the conversion of a 1,3-diketiminosilylene tricarbonylnickel complex with $H_3N \rightarrow BH_3$ resulted in dihydrogenation of the silylene with one hydrogen atom bonded to the silicon center and one additional hydrogen atom in the ligand backbone.58 In the ¹¹B NMR analysis of 2 in C₆D₆ the compound gives rise to a signal at -18 ppm which is deshielded with respect to $1 \rightarrow BH_3$ in accordance with replacement of a hydride at a fourcoordinate boron-center for a more σ electron-withdrawing nitrogen atom. The Si-H protons are observed at 5.24 ppm (d, $J_{\rm HH}$ = 4 Hz) in the ¹H NMR analysis. The ²⁹Si NMR spectrum of the complex exhibits a signal at -46.3 ppm for SiH₂ which is downfield shifted from the precursor (1: δ (²⁹Si) = -137.8 ppm). The single crystal structure of 2 was elucidated by XRD methods (Fig. 3). As expected the B-N distance of 1.542(4) Å in this bulky silylaminoborane is shorter than the length of the dative bond in typical trihydroborane complexes of bulky primary amines (e.g. $H_2(Dip)N \rightarrow BH_3$, B-N = 1.620(2) Å; $H_2(Ar^*)N \rightarrow BH_3$, B-N = 1.641(3) Å; $Ar^* =$ 2,6-(Ph2CH)2-4-Me-C6H2).59 In agreement with the proposed dehydrogenation this distance relates to the B-N single bond length in the bulky organylaminoborane adduct $L^{\rm Dip} \overset{}{\cdot} BH_2N(H)$ Dip (B-N (mean) = 1.54 Å).29

Conversions with triarylboranes

If a mixture of a strong Lewis acid (typically a triarylborane) and a Lewis base does not recombine to the respective adduct (usually due to steric hindrance) the chemical potential of the system may be exploited for the activation of bonds in unhindered *Small Molecule* substrates (*i.e.* Frustrated Lewis Pair

This journal is © The Royal Society of Chemistry 2019

Dalton Transactions

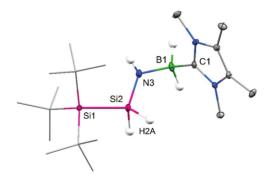
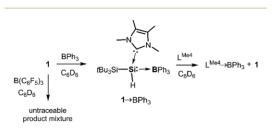
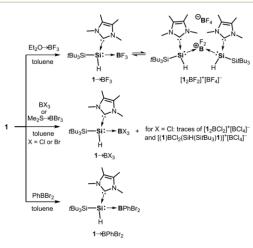



Fig. 3 Ellipsoid plot (30% level) of the molecular structure of 2 in the single crystal. H-atoms omitted (except on B, N, Si). Wireframe model for tert-butyl groups. Selected interatomic distances [Å] and angles [°]: Si2-N3 = 1.703(3), B1-N3 = 1.542(4), B1-C1 = 1.635(4); Si1-Si2-N3 = 114.4(1), Si2-N3-B1 = 123.2(2), N3-B1-C1 = 110.2 (2).

(FLP) chemistry). $^{60-65}$ In order to probe the bulky silylene 1 for FLP characteristics, it was converted with the archetypical boron-centered Lewis acids triphenylborane and tris(pentafluorophenyl)borane (Scheme 2). The conversion of 1 with BPh₃ was expected to afford the complex $L^{Me4} \rightarrow BPh_3$ which may easily form via abstraction of the NHC from the silylene.66 The cleavage of the dative type bond between silicon and NHC by virtue of triarylborane has previously been reported to afford such type of NHC-borane adducts.^{25,66,67} However, when repeating the conversion in C6D6 in an NMR sample tube and monitoring the course of the reaction we recognized the formation of the proposed complex $1 \rightarrow BPh_3$. A signal at 4.38 ppm is assigned to the SiH hydrogen in the ¹H NMR analysis which is reminiscent of the respective chemical shift in $1 \rightarrow BH_3$. The ¹¹B NMR spectrum reveals a signal at -3.2 ppm. Hence, the signal of the three-coordinate borane precursor (cf. BPh₃: $\delta(^{11}B) = 67$ ppm in Et₂O)⁶⁸ is shifted to a value for the chemical shift typical of four-coordinate boron nuclei. Another persuasive hint towards the putative $1 \rightarrow BPh_3$ is given by the ¹H¹³C HMBC correlation experiment in which a cross-peak is given rise to by coupling between the ipso-carbon atoms of the BPh3 group and the SiH hydrogen atom. We verified the stabi-

Scheme 2 Conversions of the hydrosilylene 1 with triarylboranes.

This journal is © The Royal Society of Chemistry 2019


View Article Online Paper

lity of the complex in C_6D_6 solution at 50 °C for a period of two days. Nevertheless, the "free" silylene **1** is readily released upon conversion of $\mathbf{1} \rightarrow BPh_3$ with L^{Me4} and the overtly more stable $L^{Me4} \rightarrow BPh_3$ is furnished. Interestingly, when bringing **1** into contact with the more potent Lewis acid $B(C_6F_5)_3$ we were not able to assign any silicon-containing species neither in the product mixture nor as a temporary intermediate.

Conversions with haloboranes

In contrast to the boron sources mentioned in the previous paragraphs (*e.g.* trihydroboranes, triarylboranes) the conversion of silylenes with haloboranes is majorly limited to examples of the groups of Jutzi, of Braunschweig, and of Iwamoto as pointed out in the introduction. In addition, a respective study of Tokitoh and coworkers is to be highlighted in particular.³⁶ In these cases insertion of the silicon atom into a boron–halide bond occurs.

Considering the isolation of $1 \rightarrow BH_3$ after exposing 1 to the parent borane source THF·BH₃ we decided to probe boron halide reagents going from lower to higher atomic number. When the three-coordinate silylene 1 in toluene solution was brought into contact with $Et_2O \rightarrow BF_3$ a colorless precipitate rapidly formed (Scheme 3). The solid was obtained in 87% yield after a period of 2 h and redissolved in deuterated fluorobenzene. The ¹¹B NMR analysis reveals a quartet at 4.8 ppm which is produced by a BF3 group and deviates from the precursor (note: $Et_2O \rightarrow BF_3$ is the external standard for the 0 ppm value of the ¹¹B nucleus). Moreover, weaker signals were observed at 10.5 ppm (triplet) and 0.4 ppm (sharp singlet), respectively. The shifts agree with four-coordinate boron centers and the resonances are diagnostic for a BF_2 group and [BF₄]⁻. In fact, the intensity of the weaker signals significantly increased upon storage of the sample tube for a period of 20 h while the ratio of the BF3 species decreased in the mixture.

Scheme 3 Reactions of the hydrosilylene 1 with different haloboranes.

Dalton Trans., 2019, 48, 5756-5765 | 5759

Paper

Accordingly, a signal pattern assigned to one $tBu_3SiSi(H)L^{Me4}$ moiety had been observed in the ¹H NMR spectrum after 2 h reaction time and two additional signals in a 1:1 ratio rose after storage of the sample for 20 h. From the NMR study we conclude that the initial product $1 \rightarrow BF_3$ slowly transforms into $[1_2BF_2]^{+}[BF_4]^{-}$. Notably, the transformation equilibrates over time and full reaction to the auto-ionization product was not observed.

Moving our systematic investigation to the next heavier halide we treated a yellow colored solution of 1 in toluene with one equivalent of BCl3 (as a 1 M solution in heptane, Scheme 3). As expected a colorless solid was isolated in 71% yield and combustion elemental analysis confirmed the stoichiometric composition of the trichloroborane compound 1-BCl₃. The ¹H NMR analysis revealed the product to contain one major type of the tBu3SiSi(H)LMe4 moiety and additional species are hardly found. The ¹¹B NMR analysis (in CD₂Cl₂) showed a resonance at 5.5 ppm which is in accordance with a four-coordinate boron nucleus and suggests the formation of the Lewis acid base adduct 1→BCl₃ (note: uncomplexed BCl₃ produces a resonance at about 40-46 ppm depending on the analytic setup). Nevertheless, a very weak signal at 6.9 ppm hints towards the presence of [BCl₄]⁻ in solution. Due to the discrepancy in the intensity ratio (a strong and a weak signal) it is precluded that the 5.5 ppm signal is produced by $[1_2BCl_2]^{\dagger}$ the formation of which via auto-ionization of $1 \rightarrow BCl_3$ should coincide with the $[BCl_4]^-$ content. Most likely, the observation of the minor amounts of $[\mathbf{1}_2 BCl_2]^+$ is hampered by signal broadening. Thus, we surmise that $1 \rightarrow BCl_3$ is prone to a similar auto-ionization process as presumed for $1 \rightarrow BF_3$ but the equilibrium is shifted more to the $1 \rightarrow BCl_3$ side. Notably, from the literature a few examples can be retrieved for bidentate nitrogen-based ligands to exert auto-ionization on BCl₂ to furnish [BCl4]⁻ salts of chelate fashioned boronium dichloride cation complexes.⁶⁹⁻⁷² For carbene or silylene ligands, however, salts of the type [(ligand)2BX2][BX4] (with X = halogen) are to the best of our knowledge scarcely reported in the literature. The formation of chloroborane species bearing one or two groups of 1 was corroborated by our ESI mass spectrometric analysis (positive mode) in which signals were assigned to $[1 \cdot BCl_2]^+$, $[1 \cdot BCl_2(L^{Me4})]^+$, and the auto-ionization product [12BCl2]+. Furthermore, the spectrum includes two peaks correlated with the stoichiometries [(1)BHCl(SiH(SitBu₃)1)]⁺ and [(1)BCl₂(SiH(SitBu₃)1)]⁺. In fact, we obtained crystalline batches of $1 \cdot BCl_3$ and from these single crystals of $1 \rightarrow BCl_3$, as well as $[(1 \rightarrow BCl_2 \leftarrow SiH(SitBu_3) \leftarrow 1]^+[BCl_4]^-$ have been picked. Unfortunately, the insufficient quality of these data prohibits discussion of the respective structural parameters (see the ESI[†] for details on mass spectrometry and structure depiction). It is also worth noting that incremental addition of BCl₂ (as a 1 M solution in heptane) to an NMR sample of 1.BCl₃ in CDCl₃ did not change the ¹¹B NMR spectrum except for the rising of a signal at 46 ppm produced by "free" BCl₃. This suggests that the auto-ionization proceeds very slowly.

As expected, a colorless precipitate also formed upon treatment of a yellow solution of the pyramidal silylene **1** in

5760 | Dalton Trans., 2019, 48, 5756-5765

View Article Online Dalton Transactions

toluene solution with BBr3 (Scheme 3). The ¹H NMR spectrum of the isolated solid (in CD2Cl2) diagnoses one product species and the elemental combustion analysis agrees with the proposed stoichiometric composition 1·BBr₃. A proton resonance at 4.76 ppm is assigned to the SiH hydrogen atom (Si,H-satellites: ${}^{1}J(Si,H) = 168$ Hz) which proves that the conceivable hydride-abstraction from the hydrosilylene by the Lewis acid is no relevant side reaction. Interestingly, while we isolated the product in moderate yield upon conversion of 1 with BBr₃ (50%) the use of the milder boron tribromide source Me₂S→BBr₃ resulted in higher amounts of obtained product (74%). This also means that 1 possesses a higher affinity to BBr₃ than dimethyl sulphide. The ¹¹B NMR analysis of 1·BBr₃ (in CD₂Cl₂) shows the presence of a four-coordinate boron center as implied by a signal at -11.8 ppm (95 Hz) which is significantly shifted to higher field with respect to BBr₃ (39 ppm in CD₂Cl₂) and also with regard to the value of 4.5 ppm for the presumed $1 \rightarrow BF_3$, as well as 5.5 ppm for $1 \rightarrow BCl_3$. The upfield shift is easily explained by the "heavy atom effect" that is imposed by bromine to inflict an upfield shift on the NMR signals of attached nuclei.73 For comparison the ¹¹B nucleus of the NHC adduct $L^{iPr} \rightarrow BBr_3$ had been reported to resonate at -15 ppm (in $C_6 D_6, \ L^{\rm iPr}$ = 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene). A signal produced by [BBr₄]⁻ (expected at about -24 ppm) is not observed. The structural formulation of 1.BBr3 as the Lewis acid base complex $1 \rightarrow BBr_3$ is supported by the XRD study conducted on single crystals grown from a concentrated solution of 1.BBr₃ in a 1:1 mixture of dichloromethane with hexane (Fig. 4). The Si-B distance amounts to 2.045(3) Å and, thus, is very similar to the respective distance in $1{\rightarrow}BH_3.$ The Si–C_{NHC} bond length is determined to 1.922(3) Å which is only marginally shorter than observed in the trihydroborane complex, hence, the

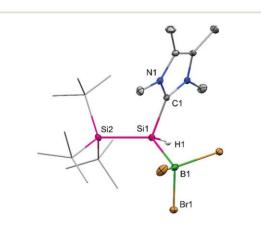
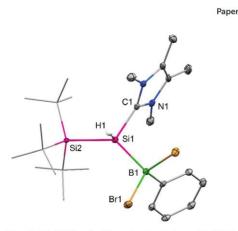


Fig. 4 Ellipsoid plot (30% level) of the molecular structure of $1 \rightarrow BBr_3$ in the single crystal. H-atoms omitted (except on Si). Wireframe model for tert-butyl groups. Selected interatomic distances [Å] and angles [°]: Si1–B1 = 1 2.045(3), Si1–C1 = 1.922(3); Si2–Si1–B1 = 130.1(1), C1–Si1–B1 = 104.9(1), Si2–Si1–C1 = 113.6(1).

This journal is © The Royal Society of Chemistry 2019


Dalton Transactions

bonding situation within the SiL^{Me4} fragment seems to be affected only to a small degree by the Lewis acidity of the attached borane group. At this point it is to emphasize that we are not aware of any structural report on a simple Lewis acid base adduct between a silylene and a haloborane group as related examples commonly involve transfer of a halide from the boron- to the silicon atom.

We conclude that the susceptibility of the system consisting of 1 and a boron trihalide to auto-ionization decreases with a rise in atomic number of the halide. This agrees with the general trend reported for complexes between boron and diorganyl compounds of the heavier chalcogens (*i.e.* $R_2E \rightarrow BX_3$ with E = S, Se, Te and X = halogen). The complex stabilities of these increase in the order F < Cl < Br for the respective chalcogen.^{74–76} Moreover, the pronounced stability of the widely employed [BF₄]⁻ anion explains why the boron fluoride system is particularly prone to auto-ionization.

Because we had studied the triarylborane complex $1 \rightarrow BPh_3$ and the trihaloborane adducts $1 \rightarrow BX_3$ it was obvious that the study of a mixed system, that is an arylhaloborane, needed to be included in our systematic investigation. Further reason was given by the recent reports of Braunschweig and coworkers who have disclosed various insertions of two-coordinate NHSi into boron-halide bonds of arylhaloboranes and we sought to contrast these reactivities by employing a three-coordinate silylene in organohaloborane chemistry.22,24 Thus, we brought PhBBr₂ into contact with 1 in toluene solution and, reminiscent of the related conversions described above, we observed discoloration and formation of a precipitate (Scheme 3). A sample of the isolated product (70% yield isolated) in CDCl₃ solution exhibited a resonance at -1 ppm in the ¹¹B NMR analysis which is deshielded in comparison to $1 \rightarrow BBr_3$ and corresponds to the typical chemical shift expected for four-coordinate boron nuclei. Additionally, the observation of the prominent SiH signal at 4.50 ppm in the ¹H NMR spectrum and the ¹³C NMR resonance assigned to the silicon-bonded carbene center provides evidence that ligand exchange reactions between the metalloid centers are inhibited. We surmise that the silylene Lewis acid base adduct $1 \rightarrow BPhBr_2$ forms in similar fashion as found in the related reaction between 1 and BBr₃. This is confirmed by the structural characterization of single crystals of 1→BPhBr2 (Fig. 5). Geometric parameters concerning metalloid coordination differ only by increments from the tribromoborane congener $1 \rightarrow BBr_3$, that is the Si-B bond and the Si-C_{NHC} are slightly elongated (2.074(3) Å and 1.931(3) Å) with respect to the higher brominated derivative. This can be attributed to the small increase of steric repulsion caused by the phenyl group rather than differences in the Lewis acidities of the tribromoborane and phenyldibromoborane fragments. Notably, the silicon-boron bond length of 2.024(3) Å in \mathbf{F}^2 is shorter by about 0.05 Å in comparison to that in $1 \rightarrow BPhBr_2$. The respective bond length in G^2 , however, amounts to 2.077 (2) Å which is very similar to our new complex. Consequently, it can hardly be concluded on the type of silicon-boron interaction (e.g. dative bond, single bond) from this structural parameter on the scarce basis of reported examples. We envisaged

This journal is © The Royal Society of Chemistry 2019

View Article Online

Fig. 5 Ellipsoid plot (30% level) of the molecular structure of $1 \rightarrow BPhBr_2$ in the single crystal. H-atoms omitted (except on Si). Wireframe model for tert-butyl groups. Selected interatomic distances [Å] and angles [°]: Si1-B1 = 2.074(3), Si1-C1 = 1.931(3); Si2-Si1-B1 = 131.9(1), Si2-Si1-C1 = 113.1(1), C1-Si1-B1 = 103.0(1).

that $1 \rightarrow BPhBr_2$ constitutes a promising precursor for reductive debromination, as well as bromide abstraction experiments to produce novel types of silylene-stabilized organoborylene systems and borenium cation species. In fact, Lin, Xie and coworkers have reported a borylene complexe stabilized by a bis(silylene) ligand with four-coordinate silicon centers bearing amidino groups. Unfortunately, our attempts of exposing $1 \rightarrow BPhBr_2$ to common reducing agents (*e.g.* KC₈, sodium naphthalenide, NaSitBu₃) afforded ill-defined product mixtures. Similarly, treating $1 \rightarrow BPhBr_2$ with bromide scavengers (*e.g.* Ag[Al(OC(CF₃)₃)₄], K[B(C₆F₅)₄]) yielded an untraceable product.

Conclusions

The build-up of silicon-boron bonds by reaction of a threecoordinate silylene with electrophilic boron sources was systematically investigated. We treated the NHC-stabilized pyramidal hydrosilylene $tBu_3SiSi(H)L^{Me4}$ (1, $L^{Me4} = 1,3,4,5$ -tetramethyl-imidazolin-2-ylidene) with trihydroboranes, organoboranes and haloboranes. The reaction of 1 with THF·BH3 or $H_3N{\rightarrow}BH_3$ afforded the silylene complex $1{\rightarrow}BH_3$ or the product (2) of ammoniaborane dehydrogenation with concomitant insertion of the silicon(II) atom into an N-H bond. Conversion of 1 with BPh₃ leads to the formation of $1 \rightarrow BPh_3$ complex which readily converts with additional LMe4 to $L^{Me4} \rightarrow BPh_3$ and "free" silvlene 1. Treatment of 1 with the haloboranes Et₂O→BF₃, BCl₃, BBr₃ and Me₂S→BBr₃ resulted in formation of the Lewis acid base adducts $1 \rightarrow BX_3$ (X = F, Cl, Br) which slowly equilibrated to the auto-ionization products $[1_2BX_2][BX_4]$. The ratio of $1 \rightarrow BX_3$ significantly increased with rising atomic number of the halide. Accordingly, the complex $1 \rightarrow BPhBr_2$ was isolated after conversion of 1 with PhBBr₂. The

Dalton Trans., 2019, 48, 5756-5765 | 5761

Paper

relative stability of $1 \rightarrow BE_3$ (E = H, F, Cl, Br), as well as $1 \rightarrow BPhBr_2$ strongly correlates with the relative stability of respective borane dimethyl sulphide adducts.

We envisage that the use of complexes between silylenes and boranes will complement the toolkit of organometallic synthesis similar to the ubiquitous compound class of carbene–borane complexes. The silylene–haloborane compounds in particular provide high prospect for access to hitherto unknown low-coordinate silicon–boron complexes *via* dehalogenation methods.

Experimental section

General considerations

All experiments and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques or an MBraun glovebox workstation. Glassware was heat dried under vacuum prior to use. Solvents were dried by standard methods. NMR spectra at ambient temperature (298 K) were recorded on a Bruker AV400US, DRX400, AVHD300, or AV500C device. $\delta(^{1}H)$ and $\delta(^{13}C)$ were referenced internally to the relevant residual solvent resonances. $\delta(^{11}B)$ was referenced to $Et_2O \rightarrow BF_3$ as an external standard. $\delta(^{29}Si)$ was referenced to tetramethylsilane (TMS) ($\delta = 0$ ppm) as an external standard. Abbreviations: s = singlet, q = quartet, n.o. = not observed. Elemental analyses (EA) were conducted with a EURO EA (HEKA tech) instrument equipped with CHNS combustion analyzer. The silylene⁴⁸ 1, Me₂S·BBr₃⁷⁶ and PhBBr₂⁷⁷ were prepared according to literature procedures. THF·BH₃, H₃N→BH₃, BCl₃ (1.0 M in heptane) and BBr₃ were purchased and used as received. $Et_2O \rightarrow BF_3$ was distilled and stored in a fridge under argon. BPh3 was sublimed at 80 °C in vacuum prior to use.

Synthesis of $1 \rightarrow BH_3$

A solution of THF·BH₃ (1.0 M, 0.3 mL, 0.30 mmol) in THF was added to a solution of silylene 1 (80 mg, 0.23 mmol) in THF (5 mL) at ambient temperature dropwise. The color of the solution changed from vellow to colorless immediately. The reaction solution was stirred for additional 30 min. All volatiles were removed in vacuum to give $1 \rightarrow BH_3$ as colorless solid (77 mg, 93%). Colorless crystals suitable for single crystal X-ray diffraction analysis were obtained at ambient temperature from a benzene solution. ¹H NMR (400.1 MHz, C₆D₆, 298 K): δ [ppm] = 4.31 (q, ${}^{3}J(H,H)$ = 4.8 Hz, Si,H-satellites: ${}^{1}J(Si,H)$ = 150 Hz, 1H, Si-H), 3.71 (s, 3H, N-CH₃), 3.09 (s, 3H, N-CH₃), 1.36 (s, 27H, C(CH₃)₃), 1.29 (s, 3H, C-CH₃), 1.19 (s, 3H, C-CH₃), n.o. (BH). ¹¹B NMR (128.4 MHz, C₆D₆, 298 K): δ [ppm] = -40.8 (q, ¹*J*(B,H) = 93 Hz, *B*H₃). ¹³C{¹H} NMR (100.6 MHz, C_6D_6 , 298 K): δ [ppm] = 161.8 (: CN_2), 127.0 (C-CH₃), 126.9 (C-CH₃), 35.0 (N-CH₃), 34.1 (N-CH₃), 32.1 (C(CH₃)₃), 24.5 (C(CH₃)₃), 8.5 (C-CH₃), 8.1 (C-CH₃). ²⁹Si¹₁H} INEPT NMR (79.5 MHz, C₆D₆, 298 K): δ [ppm] = -77.0 (Si-H), 13.1 (*t*Bu₃*Si*). APCI-MS $m/z = 365.2977 [M - H]^+$, calc: 365.2974. IR (KBr) $\tilde{\nu}$ [cm⁻¹] = 2974 (w), 2950 (w), 2885 (w), 2852 (s), 2311 (br, B-H), 2238 (w, B-H), 2083 (m, Si-H), 1914 (w),

5762 | Dalton Trans., 2019, 48, 5756-5765

View Article Online Dalton Transactions

1648 (w), 1468 (m), 1437 (m), 1385 (s), 1364 (m), 1131 (w), 1021 (s), 931 (w), 888 (s), 814 (s), 775 (m), 591 (s).

Synthesis of 2

To a solution of silylene 1 (250 mg, 0.71 mmol) in 10 mL toluene, NH3BH3 (22 mg, 0.71 mmol) in 5 mL toluene was added dropwise at ambient temperature. The yellow solution turned colorless immediately. The reaction mixture stirred additional 3 hours; toluene was removed under vacuum, hexane was added (2 \times 15 mL) and it was filtered. Hexane was removed in vacuum to afford a colorless solid. Yield: 40 mg, 46%. Colorless crystals suitable for X-ray diffraction analysis were obtained from a toluene : pentane (1:1) mixture at 5 °C. ¹H NMR (400.1 MHz, C_6D_6 , 298 K): δ [ppm] = 5.24 (d, ${}^{3}J(H,H) = 4$ Hz, 2H, Si- H_{2}), 3.30 (s, 6H, N- CH_{3}), 1.37 (s, 27H, C(CH₃)₃), 1.21 (s, 6H, C-CH₃). ¹¹B NMR (128.4 MHz, C₆D₆, 298 K): δ [ppm] = -17.8 (t, BH₂, ${}^{1}J(B,H) = 94$ Hz). ${}^{13}C{}^{1}H$ NMR (100.6 MHz, C_6D_6 , 298 K): δ [ppm] = 122.6 (C-CH₃), 31.8 (C(CH₃)₃), 31.1 (N-CH₃), 23.7 (C(CH₃)₃), 7.8 (C-CH₃), n.a $(:CN_2)$. ²⁹Si{¹H} NMR (79.5 MHz, C₆D₆, 298 K): δ [ppm] = -46.3 (SiH_2) , 2.4 ppm (tBu_3Si). APCI-HRMS $m/z = 380.3093 [M - H]^+$, calc: 380.3083.

Synthesis of 1→BPh₃

Freshly sublimed triphenylborane (BPh₃) (34.4 mg, 0.14 mmol) and silylene 1 (45 mg, 0.13 mmol) were added to a NMR sample tube and dissolved in C₆D₆ (0.5 mL). After sealing the NMR-tube the spectroscopic investigation was processed. ¹H NMR (400.1 MHz, C₆D₆, 298 K): δ [ppm] = 7.81 (d, 6H, C^{2,6}-H, C₆H₅), 7.22 (t, 6H, C^{3,5}-H, C₆H₅), 7.12 (m, 3H, C⁴-H, C_6H_5), 4.38 (s, Si,H-satellites: ${}^{1}J(Si,H) = 149$ Hz, 1H, Si-H), 2.90 (s, 3H, N-CH₃), 2.62 (s, 3H, N-CH₃), 1.17 (s, 27H, C(CH₃)₃), 1.14 (s, 3H, C-CH₃), 1.07 (s, 3H, C-CH₃). ¹¹B NMR (160.5 MHz, C_6D_6 , 298 K): δ [ppm] = -3.2 (*B*Ph₃). ¹³C{¹H} NMR (125.8 MHz, C_6D_6 , 298 K): δ [ppm] = 161.8 (: CN_2), 156.6 (PhC), 136.8 (PhCH), 127.5 (C-CH3), 126.5 (PhCH), 126.3 (C-CH3), 123.6 (PhCH), 36.0 (N-CH₃), 33.8 (N-CH₃), 32.4 (C(CH₃)₃), 24.6 $(C(CH_3)_3)$, 8.4 $(C-CH_3)$, 7.7 $(C-CH_3)$. ²⁹Si{¹H} NMR (99.4 MHz, C₆D₆, 298 K): δ [ppm] = -76.6 (Si-H), 24.4 (tBu₃Si). Isolated in 60% yield. Elemental analysis (%): calcd for C37H55BN2Si2: C, 74.71; H, 9.32; N, 4.71. Found: C, 73.58; H, 9.51; N, 4.42.

Synthesis of 1-BF₃

Et₂O→BF₃ (0.05 mL, 0.36 mmol) was added dropwise to a yellow solution of 1 (86 mg, 0.25 mmol) in 10 mL toluene. Immediate decolorization followed by formation of a colorless precipitate occured. The suspension was stirred for 2 hours at room temperature and the phases were separated. The colorless solid was washed with pentane (10 mL) and dried in vacuum to give 1·BF₃ (90 mg, 87%). Mono-adduct: ¹H NMR (300.1 MHz, C₆D₅F, 298 K): δ [ppm] = 4.39 (s, 1H, Si-H), 4.01 (s, 3H, N-CH₃), 3.58 (s, 3H, N-CH₃), 1.79 (s, 6H, C-CH₃), 1.50 (s, 27H, (C(CH₃)₃)). ¹¹B NMR (96.3 MHz, C₆D₅F, 298 K): δ [ppm] = 4.85 (q, *J* = 85.3 Hz). ¹⁹F NMR (376.5 MHz, C₆D₆, 298 (K)): δ [ppm] = −138.12 (q, ¹*J*(B,F) = 36 Hz). ²⁹Si{¹H} NMR

This journal is © The Royal Society of Chemistry 2019

Dalton Transactions

(99.4 MHz, C₆D₅F, 298 K): δ [ppm] = -84.0 (*Si*-H), 19.4 (*t*Bu₃*Si*). Elemental analysis (%): calcd for C₁₉H₄₀BF₃N₂Si₂: C, 54.27; H, 9.59; N, 6.66. Found: C, 52.79; H, 9.61; N, 6.22 (the low value for C is reasoned by the formation of incombustible boron- and silicon carbides).

Synthesis of 1·BCl₃

To a solution of 1 (100 mg, 0.28 mmol) in 10 mL toluene, BCl₃ (1 M in heptane, 0.3 mL, 0.3 mmol) was added dropwise at ambient temperature. The yellow solution turned colorless immediately and a colorless precipitate formed. The resulting suspension was stirred overnight. After filtration the colorless powder was dried in vacuum for 2 hours to give analytically pure 1·BCl₃. Yield: 95 mg, 71%. ¹H NMR (400.1 MHz, CDCl₃, 298 K): δ [ppm] = 4.49 (s, Si,H-satellites: ${}^{1}J(Si,H)$ = 165 Hz, 1 H, Si-H), 3.98 (s, 3H, N-CH₃), 3.81 (s, 3H, N-CH₃), 2.23 (d, J = 6.5 Hz, 6H, C-CH₃), 1.21 (s, 27H, (C(CH₃)₃)). ¹¹B NMR (128.4 MHz, CD₂Cl₂, 298 K): δ [ppm] = 5.45 ($h_{1/2}$ = 90 Hz). ¹³C{¹H} NMR (100.6 MHz, CD_2Cl_2 , 298 K): δ [ppm] = 155.5 (: CN_2), 129.6 (C-CH₃), 128.5 (C-CH₃), 37.6 (N-CH₃), 35.5 (N-CH₃), 31.9 (C(CH₃)₃), 24.4 (C(CH_3)₃), 10.0 (C- CH_3), 9.4 (C- CH_3). ²⁹Si{¹H} NMR (79.5 MHz, CD₂Cl₂, 298 K): δ [ppm] = 19.3 (*t*Bu₃S*i*), n.o. (*Si*-H). Elemental analysis (%): calcd for C19H40BCl3N2Si2: C, 48.57; H, 8.58; N, 5.96. Found: C, 48.28; H, 8.31; N, 5.61.

Synthesis of 1→BBr₃

To a solution of 1 (176 mg, 0.5 mmol) in 10 mL toluene, BBr₃ (0.05 mL, 0.5 mmol, d: 2.65 g mL⁻¹) was added dropwise. The yellow solution turned colorless after 15 min and a precipitate formed. The reaction mixture was stirred overnight. The suspension was filtered and the obtained off-white powder dried in vacuum for 2 hours to give analytically pure compound $1 \rightarrow BBr_3$ (152 mg, 50%). Colorless crystals were grown from dichloromethane: hexane (1:1) at room temperature. (The same product could also be obtained by using the more convenient Me₂S→BBr₃ adduct instead of BBr₃ with 74% yield.) ¹H NMR (400.1 MHz, CD_2Cl_2 , 298 K): δ [ppm] = 4.76 (s, Si,H-satellites: ${}^{1}J(Si,H) = 168$ Hz, 1 H, Si-H), 4.00 (s, 3H, N-CH₃), 3.80 (s, 3H, N-CH₃), 2.23 (d, J = 3.2 Hz, 6H, C-CH₃), 1.22 (s, 27H, (C(CH₃)₃)). ¹¹B NMR (128.4 MHz, CD₂Cl₂, 298 K): δ [ppm] = -11.8 ($h_{1/2}$: 95 Hz). ¹³C{¹H} NMR (100.6 MHz, CDCl₃, 298 K): δ [ppm] = 156.3 (:*C*N₂), 128.9 (*C*-CH₃), 127.8 (C-CH₃), 37.9 (N-CH₃), 35.3 (N-CH₃), 31.9 (C(CH₃)₃), 24.3 (C(CH₃)₃), 9.9 (C-CH₃), 9.3 (C-CH₃). ²⁹Si{¹H} NMR (79.5 MHz, CDCl₃, 298 K): δ [ppm] = 22.0 (*t*Bu₃S*i*), n.o. (S*i*-H). Elemental analysis (%): calcd for C19H40BBr3N2Si2: C, 37.83; H, 6.68; N, 4.64. Found: C, 38.8; H, 6.66; N, 4.12.

Synthesis 1→BPhBr₂

PhBBr₂ (105 mg, 0.43 mmol) in 3 mL toluene was added dropwise to a solution of **1** (150 mg, 0.43 mmol) in 7 mL toluene. The yellow solution gradually decolorized, approximately 10 minutes later a white precipitate formed. For a complete conversion, the suspension was stirred overnight. It was filtered and the colorless solid was washed with 10 mL hexane and dried in vacuum to give analytically pure $1 \rightarrow BBr_2Ph$.

This journal is © The Royal Society of Chemistry 2019

View Article Online

Paper

Yield: 180 mg, 70%. ¹H NMR (400.1 MHz, CDCl₃, 298 K): δ [ppm] = 7.86–7.64 (m, 2H, Ph–H), 7.18–6.89 (m, 3H, Ph–H), 4.50 (s, Si,H-satellites: ¹*J*(Si,H) = 161 Hz, 1H, Si–*H*), 3.93 (s, 3H, N–*CH*₃), 3.66 (s, 3H, N–*CH*₃), 2.18 (s, 6H, C–*CH*₃), 1.06 (s, 27H, C(*CH*₃)₃). ¹¹B NMR (128.4 MHz, CDCl₃, 298 K): δ [ppm] = -0.77 ($h_{1/2}$: 550 Hz). ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 298 K): δ [ppm] = 157.5 (:CN₂), 133.8 (PhCH), 128.4 (*C*–CH₃), 127.3 (*C*–CH₃), 126.6 (PhCH), 125.5 (PhCH), 37.7 (N–*C*H₃), 35.0 (N–*CH*₃), 126.6 (PhCH), 125.5 (PhCH), 37.7 (N–*C*H₃), 35.0 (N–*CH*₃). ²⁹Si{¹H} NMR (99.4 MHz, CDCl₃, 298 K): δ [ppm] = 20.2 (*t*Bu₃Si), n.0. (*Si*–H). Elemental analysis (%): calcd for C₂₃H₄₅BBr₂N₂Si₂: C, 50.01; H, 7.55; N, 4.67. Found: C, 49.05; H, 7.27; N, 4.47 (the low value for C is reasoned by the formation of incombustible boron- and silicon carbides).

Conflicts of interest

The authors affirm that there are no conflicts to declare.

Acknowledgements

We gratefully acknowledge financial support from WACKER Chemie AG and the European Research Council (SILION 637394). We thank Lorenz J. Schiegerl (TUM) and Dr Maria Schlangen-Ahl (TU Berlin) for mass spectrometric analyses.

References

- 1 Y. Cui, X. Duan, J. Hu and C. M. Lieber, J. Phys. Chem. B, 2000, 104, 5213-5216.
- 2 Y. Cui and C. M. Lieber, Science, 2001, 291, 851-853.
- 3 N. Fukata, Adv. Mater., 2009, 21, 2829–2832.
- 4 M. Oestreich, E. Hartmann and M. Mewald, *Chem. Rev.*, 2013, **113**, 402–441.
- 5 C. Kleeberg and C. Borner, *Eur. J. Inorg. Chem.*, 2013, 2013, 2799–2806.
- 6 E. Yamamoto, R. Shishido, T. Seki and H. Ito, Organometallics, 2017, 36, 3019–3022.
- 7 Y. Mizuhata, T. Sasamori and N. Tokitoh, *Chem. Rev.*, 2009, **109**, 3479–3511.
- 8 M. Asay, C. Jones and M. Driess, *Chem. Rev.*, 2011, **111**, 354–396.
- 9 B. Blom, M. Stoelzel and M. Driess, *Chem. Eur. J.*, 2013, 19, 40-62.
- 10 Z. Benedek and T. Szilvási, RSC Adv., 2015, 5, 5077-5086.
- 11 C. Marschner, Eur. J. Inorg. Chem., 2015, 2015, 3805-3820.
- 12 T. Troadec, A. Prades, R. Rodriguez, R. Mirgalet, A. Baceiredo, N. Saffon-Merceron, V. Branchadell and T. Kato, *Inorg. Chem.*, 2016, 55, 8234–8240.
- 13 J. A. Cabeza, P. García-Álvarez and D. Polo, *Eur. J. Inorg. Chem.*, 2016, **2016**, 10–22.
- 14 S. Raoufmoghaddam, Y.-P. Zhou, Y. Wang and M. Driess, J. Organomet. Chem., 2017, 829, 2–10.

Dalton Trans., 2019, 48, 5756-5765 | 5763

View Article Online

Dalton Transactions

Paper

- 15 C. Weetman and S. Inoue, *ChemCatChem*, 2018, 10, 4213–4228.
- 16 N. Metzler and M. Denk, Chem. Commun., 1996, 1996, 2657–2658.
- 17 D. Wendel, A. Porzelt, F. A. D. Herz, D. Sarkar, C. Jandl, S. Inoue and B. Rieger, *J. Am. Chem. Soc.*, 2017, **139**, 8134– 8137.
- 18 H. Wang, L. Wu, Z. Lin and Z. Xie, J. Am. Chem. Soc., 2017, 139, 13680–13683.
- 19 Y. Suzuki, S. Ishida, S. Sato, H. Isobe and T. Iwamoto, Angew. Chem., Int. Ed., 2017, 56, 4593–4597.
- 20 Y. Li, R. K. Siwatch, T. Mondal, Y. Li, R. Ganguly, D. Koley and C.-W. So, *Inorg. Chem.*, 2017, **56**, 4112–4120.
- 21 S. Kaufmann, S. Schäfer, M. T. Gamer and P. W. Roesky, *Dalton Trans.*, 2017, **46**, 8861–8867.
- 22 H. Braunschweig, T. Brückner, A. Deißenberger, R. D. Dewhurst, A. Gackstatter, A. Gärtner, A. Hofmann, T. Kupfer, D. Prieschl, T. Thiess and S. R. Wang, *Chem. – Eur. J.*, 2017, 23, 9491–9494.
- 23 F. M. Mück, J. A. Baus, R. Bertermann, C. Burschka and R. Tacke, *Organometallics*, 2016, 35, 2583–2588.
- 24 A. Gackstatter, H. Braunschweig, T. Kupfer, C. Voigt and N. Arnold, *Chem. - Eur. J.*, 2016, 22, 16415-16419.
- 25 H. Cui, M. Wu and P. Teng, Eur. J. Inorg. Chem., 2016, 2016, 4123–4127.
- 26 K. Junold, J. A. Baus, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt and R. Tacke, *Chem. – Eur. J.*, 2014, 20, 12411–12415.
- 27 R. Rodriguez, T. Troadec, T. Kato, N. Saffon-Merceron, J.-M. Sotiropoulos and A. Baceiredo, *Angew. Chem., Int. Ed.*, 2012, 51, 7158–7161.
- 28 S. Inoue and K. Leszczyńska, Angew. Chem., Int. Ed., 2012, 51, 8589–8593.
- 29 S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson and E. Rivard, *Chem. Eur. J.*, 2012, **18**, 13810–13820.
- 30 S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson and E. Rivard, *Chem. Commun.*, 2012, 48, 1308–1310.
- 31 A. Jana, D. Leusser, I. Objartel, H. W. Roesky and D. Stalke, *Dalton Trans.*, 2011, 40, 5458.
- 32 A. Jana, R. Azhakar, S. P. Sarish, P. P. Samuel, H. W. Roesky, C. Schulzke and D. Koley, *Eur. J. Inorg. Chem.*, 2011, 2011, 5006–5013.
- 33 R. Azhakar, G. Tavčar, H. W. Roesky, J. Hey and D. Stalke, *Eur. J. Inorg. Chem.*, 2011, 2011, 475–477.
- 34 M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, P. v. R. Schleyer and G. H. Robinson, *J. Am. Chem. Soc.*, 2011, **133**, 8874–8876.
- 35 R. S. Ghadwal, H. W. Roesky, S. Merkel and D. Stalke, *Chem. Eur. J.*, 2010, **16**, 85–88.
- 36 T. Kajiwara, N. Takeda, T. Sasamori and N. Tokitoh, Organometallics, 2004, 23, 4723-4734.
- 37 T. Kajiwara, N. Takeda, T. Sasamori and N. Tokitoh, *Chem. Commun.*, 2004, 2004, 2218–2219.
- 38 U. Holtmann, P. Jutzi, T. Kühler, B. Neumann and H.-G. Stammler, Organometallics, 1999, 18, 5531–5538.

- 39 H.-C. Tsai, Y.-F. Lin, W.-C. Liu, G.-H. Lee, S.-M. Peng and C.-W. Chiu, Organometallics, 2017, 36, 3879–3882.
- 40 B. Geng, C. Xu and Z. Chen, J. Mol. Model., 2016, 22, 134.
- 41 A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford and S. Aldridge, *J. Am. Chem. Soc.*, 2012, 134, 6500–6503.
- 42 R. S. Alfredo, A. B. Isabel, B. Antoine, S. M. Nathalie, M. Stéphane, B. Vicenç and K. Tsuyoshi, *Angew. Chem., Int. Ed.*, 2017, 56, 10549–10554.
- 43 S. Inoue, M. Ichinohe and A. Sekiguchi, *Chem. Lett.*, 2008, 37, 1044–1045.
- 44 K. Takeuchi, M. Ichinohe and A. Sekiguchi, Organometallics, 2011, **30**, 2044–2050.
- 45 T. Kosai and T. Iwamoto, J. Am. Chem. Soc., 2017, 139, 18146-18149.
- 46 T. Kosai and T. Iwamoto, Chem. Eur. J., 2018, 24, 7774– 7780.
- 47 K. Takeuchi, M. Ikoshi, M. Ichinohe and A. Sekiguchi, J. Am. Chem. Soc., 2010, 132, 930–931.
- 48 S. Inoue and C. Eisenhut, J. Am. Chem. Soc., 2013, 135, 18315–18318.
- 49 C. Eisenhut, T. Szilvási, N. C. Breit and S. Inoue, *Chem. Eur. I.*, 2015, 21, 1949–1954.
- 50 C. Eisenhut, N. C. Breit, T. Szilvási, E. Irran and S. Inoue, *Eur. J. Inorg. Chem.*, 2016, 2016, 2696–2703.
- 51 C. Eisenhut and S. Inoue, *Phosphorus, Sulfur Silicon Relat.* Elem., 2016, **191**, 605–608.
- 52 C. Eisenhut, T. Szilvási, G. Dübek, N. C. Breit and S. Inoue, *Inorg. Chem.*, 2017, 56, 10061–10069.
- 53 T. Kawamoto, S. J. Geib and D. P. Curran, J. Am. Chem. Soc., 2015, 137, 8617–8622.
- 54 T. R. McFadden, C. Fang, S. J. Geib, E. Merling, P. Liu and D. P. Curran, *J. Am. Chem. Soc.*, 2017, **139**, 1726–1729.
- 55 D. P. Curran, A. Solovyev, M. M. Brahmi, L. Fensterbank, M. Malacria and E. Lacôte, *Angew. Chem., Int. Ed.*, 2011, 50, 10294–10317.
- 56 A. Prokofjevs, J. W. Kampf, A. Solovyev, D. P. Curran and E. Vedejs, J. Am. Chem. Soc., 2013, 135, 15686–15689.
- 57 A. Jana, C. Schulzke and H. W. Roesky, J. Am. Chem. Soc., 2009, 131, 4600–4601.
- 58 M. Stoelzel, C. Präsang, S. Inoue, S. Enthaler and M. Driess, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 399–403.
- 59 K. J. Sabourin, A. C. Malcolm, R. McDonald, M. J. Ferguson and E. Rivard, *Dalton Trans.*, 2013, **42**, 4625–4632.
- 60 D. W. Stephan, S. Greenberg, T. W. Graham, P. Chase, J. J. Hastie, S. J. Geier, J. M. Farrell, C. C. Brown, Z. M. Heiden, G. C. Welch and M. Ullrich, *Inorg. Chem.*, 2011, **50**, 12338–12348.
- 61 D. W. Stephan, Science, 2016, 354, aaf7229.
- 62 S. A. Weicker and D. W. Stephan, Bull. Chem. Soc. Jpn., 2015, 88, 1003–1016.
- 63 D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 10018– 10032.
- 64 D. W. Stephan, Acc. Chem. Res., 2014, 48, 306-316.

5764 | Dalton Trans., 2019, 48, 5756–5765

This journal is © The Royal Society of Chemistry 2019

Dalton Transactions

- 54, 6400-6441.
- 66 A. C. Filippou, O. Chernov, K. W. Stumpf and G. Schnakenburg, Angew. Chem., Int. Ed., 2010, 49, 3296-3300.
- 67 H. Cui, J. Zhang and C. Cui, Organometallics, 2013, 32, 1-4. 68 H. C. Brown and U. S. Racherla, J. Org. Chem., 1986, 51, 427-432.
- 69 K. V. Vasudevan, M. Findlater and A. H. Cowley, Chem. Commun., 2008, 2008, 1918-1919.
- 70 H. A. Jenkins, C. L. Dumaresque, D. Vidovic and J. A. C. Clyburne, Can. J. Chem., 2002, 80, 1398-1403.
- 71 L. Weber, J. Förster, H.-G. Stammler and B. Neumann, Eur. J. Inorg. Chem., 2006, 2006, 5048-5056.
- 65 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015, 72 M. Möhlen, K. Harms, K. Dehnicke, J. Magull, H. Goesmann and D. Fenske, Z. Anorg. Allg. Chem., 1996, 622, 1692-1700.

View Article Online

Paper

- 73 A. C. Neto, L. C. Ducati, R. Rittner, C. F. Tormena, R. H. Contreras and G. Frenking, J. Chem. Theory Comput., 2009, 5, 2222-2228.
- 74 C. K. Y. A. Okio, W. Levason, F. M. Monzittu and G. Reid, J. Organomet. Chem., 2017, 848, 232-238.
- 75 H. C. Brown and N. Ravindran, Inorg. Chem., 1977, 16, 2938-2940.
- 76 M. Schmidt and H. D. Block, Chem. Ber., 1970, 103, 3705-3710.
- 77 D. Kaufmann, Chem. Ber., 1987, 120, 853-854.

This journal is © The Royal Society of Chemistry 2019

Dalton Trans., 2019, 48, 5756-5765 | 5765

Title:	NHC-Stabilized Silyl-Substituted Chlorosilylene
Status:	Communication, published online November 11, 2019
Journal:	Inorganic Chemistry, 2019, 58, 23, 15700-15704.
Publisher:	American Chemical Society
DOI:	10.1021/acs.inorgchem.9b02670

Gizem Dübek, Franziska Hanusch and Shigeyoshi Inoue*

8 NHC-Stabilized Silyl-Substituted Chlorosilylene

Authors:

Content: After the isolation of the first amidinato ligand stabilized monochlorosilylene by Roesky in 2006, several donor-stabilized silylenes with chloride functionality were reported. These subsequent reports utilized different ligands including phosphine, β -diketiminato, aryl or amino substituents yet silyl-substituted chlorosilylene remained missing. Silyl-groups are one of the excellent substituents in main group chemistry due to their tunable steric demand and high σ -donation properties. Therefore, we aimed to synthesize and isolate a novel monochlorosilylene that bears a silyl-substituent. This was achieved via the selective dehydrochlorination of a silyl-based Si(IV) precursor to afford the first NHC-stabilized (silyl)chlorosilylene. In addition, the reactivity of the title compound was explored and found to react through three distinct active sites. Firstly, (silyl)chlorosilylene can coordinate the iron carbonyl via its ylidenic site at the silicon center to form an iron chlorosilylene complex, with a relatively long Si–Fe bond length. Secondly, the title compound undergoes chloride/hydride metathesis to yield a stable NHC-silylene hydride borane adduct upon treatment with LiBH4 which corroborates the Si–Cl functionality. Furthermore, due to the dative bond between the NHC and silicon atom, chlorosilylene can transform to a silyliumyliedene ion upon treatment with excess less sterically demanding NHCs through ligand exchange reaction.

Reprinted with the permission from G. Dübek, F. Hanusch, S. Inoue, *Inorg. Chem.* **2019**, *58*, 15700-15704. Copyright 2019 American Chemical Society.

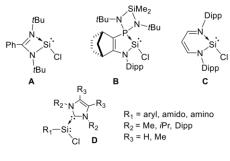
^{*} G. Dübek planned and executed all experiments including analysis and wrote the manuscript. F. Hanusch conducted all SC XRD measurements and managed the processing of the respective data. All work was performed under the supervision of S. Inoue.

Inorganic Chemistry © Cite This: Inorg. Chem. 2019, 58, 15700-15704

Communication pubs.acs.org/IC

NHC-Stabilized Silyl-Substituted Chlorosilylene

Gizem Dübek, Franziska Hanusch,[©] and Shigeyoshi Inoue^{*©}


Department of Chemistry, Catalysis Research Center and WACKER-Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany

S Supporting Information

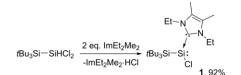
ABSTRACT: The first N-heterocyclic carbene (NHC) stabilized silyl-substituted chlorosilylene (1) was isolated via selective dehydrochlorination by NHC from silylbased Si(IV) precursor tBu₃SiSiHCl₂. Compound 1 can form an iron chlorosilylene complex (2) with an iron carbonyl dimer and undergoes chloride/hydride metathesis to yield a stable NHC-silylene hydride borane adduct (3). Upon treatment with additional NHC, chlorosilylene 1 was converted into silyl-substituted silyliumylidene ions (4).

 ${\displaystyle S}$ ilylenes, the heavier analogues of carbenes, are key intermediates in many thermal and photochemical reactions in organosilicon chemistry.1 Prior to their discovery in 1994, silvlenes were considered to be unstable species and could only be isolated at cryogenic temperatures.² Shortly after the initial report of the isolation of stable N-heterocyclic carbene by Arduengo et al., Denk and West et al. were able to isolate a stable dicoordinate N-heterocyclic silylene (NHSi). Since then a good number of room temperature stable silylenes were reported.⁴ Apart from the silylenes, the chemistry of functionalized silylenes has been given great attention. Among the α -substituted silvlenes, divalent chlorosilvlenes are an important group of compounds in organosilicon chemistry because of their industrial applications.5 Due to their high reactivity, organosilicon(II) halides can be isolated by either intramolecular donor-acceptor or Lewis-base stabilization. After the first isolation of monomeric amidinato chlorosilylene [PhC(NtBu)₂]SiCl by Roesky and co-workers in 2006 (A, Chart 1), it led the way to the investigation of various novel divalent silicon halide compounds.7 Baceiredo, Kato, and co-

ACS Publications © 2019 American Chemical Society

workers reported another intermolecular stabilized chlorosilylene B, by using phosphine as donor in 2010.8 Recently, Driess and co-workers have reported intramolecular Lewis-donorstabilized silylenes by a well-known β -diketiminate ligand in 2018 (C).5 Aside from the intramolecular stabilization, electron donating N-heterocyclic carbenes (NHCs) can also be used to stabilize reactive main group species.¹⁰ The group of Filippou reported the first NHC adduct of an arylchlorosilylene in 2010, which was later successfully used as a precursor to isolate the first transition metal silylyne complex.¹¹ Not only aryl substituted but also amido- and amino-chloro silylenes were reported by external support via NHCs (D). 11a,12 Apart from their electronic donation, bulky N-heterocyclic ligands can also provide steric hindrance to allow access to halosilylenes with a reactive Si(II) center like gaseous dichlorosilylene. In 2009, Roesky et al. showed the first room temperature stable base-stabilized silicon dichloride (LSiCl₂; L = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene), and concurrently Filippou et al. reported the analogous SiX_2 (X = Br, I) employing the same NHC ligand.

Although various different ligands have been employed as kinetic and thermodynamic stabilization of these highly reactive species so far, a silyl-substituted chlorosilylene has not yet been reported due to the lack of suitable synthetic methods. Since electropositive and sterically demanding silyl substituents (e.g fBu₃Si) can enhance the stability of low-valent silicon species and overcome the inherent high reactivity of chlorosilylenes, we embarked on introducing the bulky silyl substituent along with the NHC. Silyl-substituted chlorosilylene would be an excellent precursor for the synthesis of novel low-valent organosilicon compounds. Herein, we describe the preparation and characterization of the first isolable NHCstabilized silyl-substituted chlorosilylene and its reactivity.


The treatment of a silyl-substituted dichlorosilane $tBu_3SiSiHCl_2$ precursor with two equivalents of ImEt_2Me_2 (1,3-diethyl-4,5-dimethylimidazol-2-ylidene) in toluene at -50 °C (Scheme 1) furnished silicon(II) monochloride NHC adduct 1 in excellent yields (92%). Compound 1 is a deep orange, air- and moisture-sensitive solid and slowly decomposes at room temperature even under an inert atmosphere.

It is worthwhile to mention that the introduction of a smaller NHC (ImMe₄) did not yield the desired chlorosilylene. In the ²⁹Si NMR spectrum of 1, the signal corresponding to the terminal Si(II)-Cl appears at 18.3 ppm, which is downfield shifted from previously reported NHC-stabilized arylchlor-

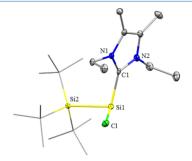
Received: September 5, 2019 Published: November 11, 2019

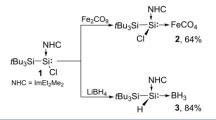
15700

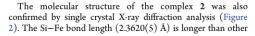
Scheme 1. Synthesis of NHC-Adduct of Silyl-Substituted Chlorosilylene 1

osilylenes (0.77–1.34 ppm) probably due to the presence of an electropositive silyl substituent.^{11a} The ¹³C NMR signal for the NHC carbon atom of 1 (169.71 ppm) is consistent with other NHC \rightarrow Si complexes.^{11a,13a} The ¹J(Si, C^{NHC}) coupling constant of 49 Hz is smaller than that of Si–C(sp²) single bonds in silanes (64–70 Hz) or Si–C(sp) bonds in silaallenes (84–142 Hz) and slightly larger than previously reported NHC-stabilized chlorosilylene (33–37 Hz), indicating a higher s character of 1.^{11a,14}

The molecular structure of complex 1 was determined by X-ray crystallographic analysis and displays a trigonal pyramidal geometry, with the sum of bond angles at the silicon center being 309.25° (Figure 1). The Si–C^{NHC} bond length of




Figure 1. Ellipsoid plot (50% level) of the molecular structure of compound 1. Hydrogen atoms are omitted for clarity, and *tert*-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (deg): Si1–C1, 1.9572(19); Si1–Si2, 2.4421(7); Si1–Cl, 2.1947(7); C1–Si1–Cl, 99.23(6); Cl–Si1–Si2, 103.51(3); C1–Si1–Si2, 106.51(6).


1.9572(19) Å suggests relatively stronger donor–acceptor interaction than known for NHC-stabilized silylene (II) chlorides (Si– C^{NHC} bond length = 1.963(2)–2.0023(19) Å).^{11a,12}

Considering the existence of a stereochemically active lone pair on the silicon, and a functional group attached to the α position of the silicon center, it was apparent to study the fundamental reactivity of compound 1. Treatment of 1 with half of an equivalent of Fe₂(CO)₉ afforded the silylene iron complex **2** as beige powder in 64% yield (Scheme 2). We observed no reaction between **1** and Fe(CO)₅. A significant downfield shift (**1**, δ 18.30; **2**, δ 64.94) in the ²⁹Si NMR was observed, which verifies the coordination of the iron center to the lone pair of the chlorosilylene and the presence of an active lone pair at the silicon center. Carbonyl groups were observed at δ 218.15 in the ¹³C NMR spectrum, which is comparable with previously reported silylene iron complexes.¹⁵

15701

Scheme 2. Syntheses of Compounds 2 and 3 from Chlorosilylene 1

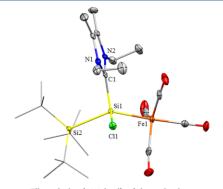
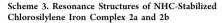
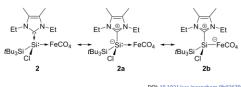




Figure 2. Ellipsoid plot (50% level) of the molecular structure of compound 2. One out of two crystallographically independent molecules is shown. Hydrogen atoms are omitted for clarity, and *tert*-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å): Si1–Fe1, 2.3620(5); Si1–Si2, 2.5185(6); Si1–C1, 1.9927(16); Si1–Cl, 2.1440(6).

reported Si–Fe bonds (2.15–2.32 Å); however, it is slightly shorter than the recently reported $fBu_3Si(H)(ImMe_4)Si:\rightarrow$ $Fe(CO)_4$ (2.3717(16) Å).^{15a,b,16} Elongation of the silicon– iron bond length can be explained by the α -silyl effect. As also clarified by our recent report, introduction of the electrondonating bulky silyl-substituent in complex 2 compels more electron density on the silylene silicon, which stabilizes the zwitterionic resonance structures (Scheme 3).^{15b} As expected, the presence of a highly electronegative chlorine atom in complex 2, instead of hydrogen, results in the shortening of the Si–Fe bond length compared to the hydrogen derivative.

Recently Rivard et al. reported that halide substituents on the tetrel(II) dihalides can undergo chloride/hydride metathesis.¹⁷ Encouraged by these studies, we aimed to functionalize the chlorine atom of complex 1, by treating it with LiBH4. As expected formation of new silicon(II) hydride borane complex 3 was obtained and could be isolated in 84% yield (Scheme 2). Chloride/hydride metathesis was evident by inspection of ¹H NMR spectrum, with the Si-H bond assigned as a quartet at 4.31 ppm due to coupling with boron and silicon bonded hydrogens (${}^{3}J_{HH} = 5.5$ Hz, ${}^{29}Si$ satellites ${}^{1}J_{SiH} =$ 150 Hz). Ethyl and backbone hydrogens in the $ImEt_2Me_2$ exist in different magnetic environments giving rise to distinct shifts probably due to different orientation of the Et groups. The same behavior can be also observed in the ¹³C NMR spectrum. The ¹¹B NMR spectrum gave a quartet at -40.31 ppm that was displayed as a singlet in the proton decoupled experiment, which also confirms coordination of the BH3 group to the silicon. Due to the quadrupolar momentum of the ¹¹B nucleus, the signal for the coordinated silicon could not observed in the 1D ²⁹Si NMR; however, we could assign the peak at -64.17 ppm in the ²⁹Si{¹H} heteronuclear correlation spectrum. The IR spectrum of compound 3 shows an absorption band for B– H stretching modes from 2233 to 2330 cm⁻¹ and a sharp Si–H stretching mode at 2087 cm⁻¹ which is in agreement with the reported values.^{12a,18}

The molecular structure of 3 was further determined by X-ray diffraction analysis (Figure 3), and the Si–B distance is

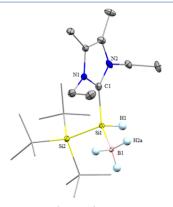


Figure 3. Ellipsoid plot (30% level) of the molecular structure of compound 3. Hydrogen atoms except on B and Si are omitted for clarity, and *tert*-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (deg): Si1–B1, 1.999(7); Si1–Si2, 2.374(5); Si1–C1, 1.963(6); Si2–Si1–B1 = 121.0(2); C1–Si1–B1 = 112.0(2); Si2–Si1–C1 = 112.0(2).

found at 1.999(7) Å, which resembles previously reported silicon(II)–borane adducts (1.965(2)–2.009(5) Å).^{12a,18c,19} Very recently, we reported an isostructural complex with smaller NHC (ImMe₄), and as expected all spectral and structural data of the previously reported complex $tBu_3Si(H)$ -(ImMe₄)Si: \rightarrow BH₃ are consistent with that observed for compound 3.^{18c} Interestingly, we observed a second set of signals, which is consistent with the spectroscopic data of compound 3 in all multinuclear NMR spectra. Since in those analytics isolated crystals were used, it prohibits the presence

Communication

of a side product or impurity. The ${}^{13}C/{}^{1}H$ and ${}^{29}Si/{}^{1}H$ HMBC experiments reveal the formation of a minor product with a ratio of 1:6 in which we assume a symmetric (ethyl–CH₃ exist in same magnetic environments) isomer of compound 3. Upon heating, we did not observe any changes in the ${}^{1}H$ spectrum of 3, suggesting that the minor product does not form thermodynamically. Other reagents, like LiI and (dme)-(TMS)₂PLi, were also used to exchange the chloride atom at the silicon center; however, compound 1 was relatively stable under these conditions, and we did not observe the formation of the desired product. Moreover, attempts to abstract chloride from the halide substituted compounds (1 and 2) by common reducing agents (e.g., KC₈) lithum naphthalenide, fBu₃SiNa-(thf)₂, etc.) were unsuccessfull and yielded ill-defined mixtures.

In addition to the lone pair and halide functionality, complex **I** bears one more reactive site which is the coordinated NHC. Our first attempt was to exchange ImEt₂Me₂ with smaller NHC (ImMe₄), which was reported earlier by Scheschkewitz and co-workers.^{18b,20} Upon treatment of complex I with one equivalent of ImMe₄ in toluene, we observed immediate precipitation, which implies the formation of silyliumylidene. At this point, we aimed to treat chlorosilylene (1) directly with two equivalents of ImMe₄ to obtain the corresponding silylsilyliumylidene ion [ftbu₃SiSi(ImMe₄)₂]Cl (4) as reported very recently by our group (Scheme 4).²¹ As expected upon

Scheme 4. Conversion into NHC-Stabilized Silyliumylidene Ions (4a and 4) from Chlorosilylene 1

treatment of 1 with NHC, immediate yellow precipitate was formed in toluene, which was isolated in good yield (92%). Although our presumption was to coordinate two ImMe₄'s to the silicon center by reaction with excess NHC, the ¹H NMR spectrum displayed the formation of mixed silvliumylidene ion 4a. Two signals can be observed in the ¹³C NMR at 163.28 and 162.97 ppm for the central carbons of the different NHCs. Complex 4a has comparable ¹H and ¹³C shifts with previously reported silyl-substituted silyliumylidene ion 4 and almost an exact ²⁹Si signal (4a = δ - 80.51, 4 = δ - 82.0).²¹ We conducted a time dependent ¹H NMR experiment of compound 4a in CD₃CN at ambient temperature. Compound 4a in solution showed no change at room temperature for 24 h but started to form compound 4 only after heating to 65 °C (see Supporting Information for full spectrum). Unfortunately, during crystallization, 4a rearranged to 4, hence 4a could not be characterized crystallographically.

In conclusion, we described the synthesis, isolation, and reactivity of novel NHC-stabilized silyl-substituted chlorosilylene (1). Compound 1 reacts readily with $Fe_2(CO)_9$ through its lone pair to yield the corresponding iron complex (2). Compound 2 has a relatively long Si–Fe bond length which can be attributed to the presence of an electron-donating bulky silyl substituent. Treatment of 1 with LiBH₄ afforded stable silylenehydride borane adduct (3) via the chloride-hydride salt metathesis reaction. Moreover, chlorosilylene 1 underwent a ligand exchange reaction with excess ImMe₄, resulting in the formation of an asymmetric NHC silyliumylidene ion (4a),

15702

which further transformed into more stable symmetric silyliumylidene ion 4. We envisage that an electropositive silyl substituent on the low valent silicon(II) chloride is a promising building block since it is prone to metathesis reactions and can lead to various novel organosilicon compounds. Further reactivity investigations of compound 1 with transition metallates as well as other organic/inorganic small molecules are currently under investigation in our research group.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.9b02670.

Experimental details, including synthesis, and depiction of analysis spectra (PDF)

Accession Codes

CCDC 1950760-1950761 and 1961386 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/ cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author *E-mail: s.inoue@tum.de. **ORCID** Franziska Hanusch: 0000-0002-9509-194X Shigeyoshi Inoue: 0000-0001-6685-6352 Notes The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from WACKER Chemie AG and the European Research Council (SILION 637394). We thank Dr. Daniel Franz for measurement of structures 2 and 3 and Dr. Philipp Altmann for measurement and refinement of structure 1.

REFERENCES

(1) (a) Gaspar, P. P.; West, R. Silylenes. The Chemistry of Organic (1) (a) Gaspai, P. P., West, R. Subenes, Ph. Commun. Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, Ltd., 1998; pp 2463–2568. (b) Asay, M.; Jones, C.; Driess, M. N-Heterocyclic Carbene Analogues with Low-Valent Group 13 and Group 14 Elements: Syntheses, Structures, and Reactivities of a New Science Scienc Generation of Multitalented Ligands. Chem. Rev. 2011, 111, 354–396. (c) Gehrhus, B.; Lappert, M. F. Chemistry of thermally stable bis(amino)silylenes. J. Organomet. Chem. 2001, 617–618, 209–223. (d) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Stable Heavier Carbene Analogues. Chem. Rev. 2009, 109, 3479-3511.

(2) Drahnak, T. J.; Michl, J.; West, R. Dimethylsilylene, (CH₃)₂Si. J.

 Am. Chem. Soc. 1979, 101, 5427-5428.
 (3) (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361-363. (b) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. Synthesis and Structure of a Stable Silylene. J. Am. Chem. Soc. **1994**, 116, 2691–2692.

(4) (a) Gehrhus, B.; Lappert, M. F.; Heinicke, J.; Boese, R.; Bläser, D. Synthesis, structures and reactions of new thermally stable silylenes. J. Chem. Soc., Chem. Commun. 1995, 1931–1932. (b) Driess, M.; Yao, S.; Brym, M.; van Wüllen, C.; Lentz, D. A New Type of N-

Heterocyclic Silylene with Ambivalent Reactivity. J. Am. Chem. Soc. 2006, 128, 9628-9629. (c) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. The First Isolable Dialkylsilylene. J. Am. Chem. Soc. 1999, 121, 9722-9723. (d) West, R.; Denk, M. Stable silylenes: synthesis, structure, reactions. Pure Appl. Chem. 1996, 68, 785.

(5) (a) Sirtl, E.; Reuschel, K. Über die Reduktion von Chlorsilanen mit Wasserstoff. Z. Anorg. Allg. Chem. 1964, 332, 113-123. (b) Bylander, E. G. Kinetics of Silicon Crystal Growth from SiCl₄ Decomposition. J. Electrochem. Soc. 1962, 109, 1171-1175. (c) Lorey, L.; Roewer, G. The direct synthesis of methylchlorosilanes: New aspects concerning its mechanism. Silicon Chem. 2002, 1, 299-308. (6) Khan, S.; Roesky, H. W. Carbene-Stabilized Exceptional Silicon

Halides. Chem. - Eur. J. 2019, 25, 1636–1648. (7) So, C.-W.; Roesky, H. W.; Magull, J.; Oswald, R. B. Synthesis and Characterization of [PhC(NtBu)2]SiCl: A Stable Monomeric Chlorosilylene. Angew. Chem., Int. Ed. 2006, 45, 3948-3950.

(8) Gau, D.; Kato, T.; Saffon-Merceron, N.; De Cózar, A.; Cossío, F. P.; Baceiredo, A. Synthesis and Structure of a Base-Stabilized C-Phosphino-Si-Amino Silyne. Angew. Chem., Int. Ed. 2010, 49, 6585-6588

(9) Xiong, Y.; Yao, S.; Kostenko, A.; Driess, M. An isolable β diketiminato chlorosilylene. Dalton Trans 2018, 47, 2152-2155.

(10) Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group Chemistry. Chem. Rev. 2018, 118, 9678-9842.

(11) (a) Filippou, A. C.; Chernov, O.; Blom, B.; Stumpf, K. W.; Schnakenburg, G. Stable N-Heterocyclic Carbene Adducts of Arylchlorosilylenes and Their Germanium Homologues. Chem. Eur. J. 2010, 16, 2866-2872. (b) Filippou, A. C.; Chernov, O.; Stumpf, K. W.; Schnakenburg, G. Metal-Silicon Triple Bonds: The Molybdenum Silylidyne Complex [Cp(CO)₂Mo≡Si-R]. Angew. Chem., Int. Ed. 2010, 49, 3296–3300.

(12) (a) Al-Rafia, S. M. I.; McDonald, R.; Ferguson, M. J.; Rivard, E. Preparation of Stable Low-Oxidation-State Group 14 Element Amidohydrides and Hydride-Mediated Ring-Expansion Chemistry of N-Heterocyclic Carbenes. Chem. - Eur. J. 2012, 18, 13810-13820. (b) Cui, H.; Cui, C. Silylation of N-heterocyclic carbene with aminochlorosilane and -disilane: dehydrohalogenation vs. Si-Si bond cleavage, Dalton Trans 2011, 40, 11937-11940.

(13) (a) Ghadwal, R. S.; Roesky, H. W.; Merkel, S.; Henn, J.; Stalke, D. Lewis Base Stabilized Dichlorosilylene. Angew. Chem., Int. Ed. 2009, 48, 5683–5686. (b) Filippou, A. C.; Chernov, O.; Schnakenburg, G. SiBr₂(Idipp): A Stable N-Heterocyclic Carbene Adduct of Dibromosilylene. Angew. Chem., Int. Ed. 2009, 48, 5687-5690. (c) Filippou, A. C.; Lebedev, Y. N.; Chernov, O.; Straßmann, M.; Schnakenburg, G. Silicon(II) Coordination Chemistry: N-Heterocyclic Carbene Complexes of Si²⁺ and SiI⁺. Angew. Chem., Int. Ed. 2013, 52, 6974-6978.

(14) (a) Brook, A. G.; Abdesaken, F.; Gutekunst, G.; Plavac, N. Carbon-13 and silicon-29 chemical shifts and coupling constants involving tris(trimethylsilyl)silyl systems. Organometallics 1982, 1, 994-998. (b) Trommer, M.; Miracle, G. E.; Eichler, B. E.; Powell, D. R.; West, R. Synthesis and Reactivity of Several Stable 1-Silaallenes. Organometallics 1997, 16, 5737–5747. (c) Spirk, S.; Belaj, F.; Albering, J. H.; Pietschnig, R. Formation of a Silylated 1-Silaallene via an Intermediate 1-Chloro-1-silaallene. Organometallics 2010, 29, 2981-2986.

(15) (a) Lutters, D.; Severin, C.; Schmidtmann, M.; Müller, T. Activation of 7-Silanorbornadienes by N-Heterocyclic Carbenes: A Selective Way to N-Heterocyclic-Carbene-Stabilized Silylenes. J. Am. Chem. Soc. 2016, 138, 6061-6067. (b) Eisenhut, C.; Szilvási, T.; Dübek, G.; Breit, N. C.; Inoue, S. Systematic Study of N-Heterocyclic Carbene Coordinate Hydrosilylene Transition-Metal Complexes. Garberte Construct Viewshifter Frankriker Computers Inorg. Chem. 2017, 56, 10061–10069. (c) Corriu, R. J. P.; Lanneau, G. F.; Chauhan, B. P. S. Photochemical reaction of 16-e metal species generated from $Fe(CO)_5$, $Cr(CO)_6$, or $RCpMn(CO)_3$ (R = H, Me), with primary and secondary arylsilanes in the presence of internal or external electron donors: formation of functionally stabilized

15703

hydrosilanediyl-transition metal complexes. Organometallics 1993, 12, 2001-2003.

(16) (a) Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li-E112. Chem. - Eur. J. 2009, 15, 12770-12779. (b) Blom, B.; Enthaler, S.; Inoue, S.; Irran, E.; Driess, M. Electron-Rich N-Heterocyclic Silylene (NHSi)–Iron Complexes: Synthesis, Structures, and Catalytic Ability of an Isolable Hydridosilylene-Iron Complex. J. Am. Chem. Soc. 2013, 135, 6703-6713. (c) Braunstein, P.; Huch, V.; Stern, C.; Veith, M. Stannylene insertion into an amino-stabilized iron-silylene complex. Synthesis of

 $[(OC)_{3} \{(Me_{2}N)_{2}(RO)P\}Fe\{[NMe_{2}Si-(OR)_{2}(SnNButSiMe_{2}NHBut)]\}](R = Me, Et). Chem. Commun. 1996, 2041-2042. (d) Zybill, C.; Wilkinson, D. L.; Leis, C.;$ Müller, G. Identification of $[(OC)_4 FeSi(CH_3)_2 \cdot \{(H_3C)_2N\}_3 PO]$ as Intermediate in the Formation of Polysilanes from (H₃C)₂SiCl₂ and [Na₂Fe(CO)₄]. Angew. Chem., Int. Ed. Engl. 1989, 28, 203-205. (e) Simons, R. S.; Galat, K. J.; Bradshaw, J. D.; Youngs, W. J.; Tessier, C. A.; Aullón, G.; Alvarez, S. Reaction chemistry, NMR spectroscopy, and X-ray crystallography of $[Fe_2(\mu-SiMe_2)_2(CO)_4]$ and $[Fe_2(\mu-SiMe_2)_2(CO)_4]$ SiMeCl)2(CO)4]. Electronic structure and bonding in Fe2E2 rings of $[Fe_2(\mu-ER_2)_2(CO)_4]$ binuclear complexes (E = C, Si, Ge, Sn, Pb). J. Organomet. Chem. 2001, 628, 241–254. (f) Schmedake, T. A.; Haaf, M.; Paradise, B. J.; Millevolte, A. J.; Powell, D. R.; West, R. Electronic and steric properties of stable silylene ligands in metal(0) carbonyl complexes. J. Organomet. Chem. 2001, 636, 17–25. (g) Leis, C.; Wilkinson, D. L.; Handwerker, H.; Zybill, C.; Mueller, G. Structure and photochemistry of new base-stabilized silylene (silanediyl) complexes $R_2(HMPA)Si:M(CO)n$ of iron, chromium, and tungsten (R = tert-BuO, tert-BuS, MesO, 1-AdaO, 2-AdaO, NeopO, TritO, Me, Cl; M = Fe, n = 4; M = Cr, W, n = 5): sila-Wittig reaction of the base-free reactive intermediate $[Me_2Si:Cr(CO)_5]$ with dimethyl carbonate. Organometallics **1992**, 11, 514–529. (h) Kawamura, K.; Nakazawa, H.; Miyoshi, K. Selective Abstraction of an OR Group in the Reaction of $(C_5H_5)(CO)Fe{SiMe_2(OR^1)}{PN(Me)-CH_2CH_2NMe(OR^2)}$ with a Lewis Acid: Preferential Formation of a Silylene Complex over a Phosphenium Complex. Organometallics 1999, 18, 1517-1524. (i) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. Synthesis, characterization, and x-ray crystal structure of a donor stabilized bis(silylene)iron complex. J. Am. Chem. Soc. 1988, 110, 4092–4093. (j) Zybill, C.; Wilkinson, D. L.; Müller, G. Synthesis and Structure of $[(OC)_4Fe = Si = Fe(CO)_4 2(Me_2N)_3)PO]$ —a Complex of Formally Zerovalent Silicon. Angew. Chem., Int. Ed. Engl. **1988**, *27*, St3-St4. (k) Ghadwal, R. S.; Azhakar, R.; Pröpper, K.; Holstein, J. J.; Dittrich, B.; Roesky, H. W. N-Heterocyclic Carbene Stabilized Dichlorosilylene Transition-Metal Complexes of V(I), Co(I), and Fe(0). Inorg. Chem. 2011, 50, 8502-8508. (1) Blom, B.; Pohl, M.; Tan, G.; Gallego, D.; Driess, M. From Unsymmetrically Substituted Benzamidinato and Guanidinato Dichlorohydridosilanes to Novel Hydrido N-Heterocyclic Silylene Iron Complexes. Organometallics 2014, 33, 5272-5282. (17) (a) Ibrahim Al-Rafia, S. M.; Malcolm, A. C.; Liew, S. K.;

Ferguson, M. J.; McDonald, R.; Rivard, E. Intercepting low oxidation state main group hydrides with a nucleophilic N-heterocyclic olefin. Chem. Commun. 2011, 47, 6987-6989. (b) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M. J.; Rivard, E. Stabilization of the Heavy Methylene Analogues, GeH₂ and SnH₂, within the Coordination Sphere of a Transition Metal. J. Am. Chem. Soc. 2011, 133, 777-779. (c) Thimer, K. C.; Al-Rafia, S. M. I.; Ferguson, M. J.; McDonald, R.; Rivard, E. Donor/acceptor stabilization of Ge(ii) dihydride. Chem. Commun. 2009, 7119–7121. (d) Rivard, E. Group 14 inorganic hydrocarbon analogues. Chem. Soc. Rev. 2016, 45, 989-1003.

(18) (a) Brown, H. C.; Singaram, B.; Mathew, C. P. Addition compounds of alkali metal hydrides. 20. Reaction of representative mono- and dialkylboranes with saline hydrides to form the corresponding alkylborohydrides. J. Org. Chem. 1981, 46, 2712-Silylene towards Lewis Acids and Lewis Bases. Eur. J. Inorg. Chem. 2016, 2016, 4123-4127. (c) Dübek, G.; Franz, D.; Eisenhut, C.;

Altmann, P. J.; Inoue, S. Reactivity of an NHC-stabilized pyramidal hydrosilvlene with electrophilic boron sources. Dalton Trans 2019, 48. 5756-5765

(19) (a) Jana, A.; Leusser, D.; Objartel, I.; Roesky, H. W.; Stalke, D. A stable silicon(ii) monohydride. Dalton Trans 2011, 40, 5458-5463. (b) Leung, W.-P.; So, C.-W.; Chong, K.-H.; Kan, K.-W.; Chan, H.-S.; Mak, T. C. W. Reactivity of Pyridyl-1-azaallyl Germanium(II) Chloride: Synthesis of Novel Lithium Germinate [{(PhC≡ C)₃Ge}₃GeLi(Et₂O)₃] and Ge(II)-M(I) (M = Cu and Au) Adducts. Organometallics 2006, 25, 2851-2858. (c) Spikes, G. H.; Fettinger, J. C.; Power, P. P. Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. J. Am. Chem. Soc. 2005, 127, 12232-12233. (d) Ding, Y.; Hao, H.; Roesky, H. W.; Noltemeyer M.: Schmidt, H.-G. Synthesis and Structures of Germanium(II) Fluorides and Hydrides. Organometallics 2001, 20, 4806-4811. (e) Abraham, M. Y.; Wang, Y.; Xie, Y.; Wei, P.; Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. Cleavage of Carbene-Stabilized Disilicon. J. Am. Chem. Soc. 2011, 133, 8874–8876. (f) Azhakar, R.; Tavčar, G.; Roesky, H. W.; Hey, J.; Stalke, D. Facile Synthesis of a Rare Chlorosilylene-BH3 Adduct. Eur. J. Inorg. Chem. 2011, 2011, 475 - 47

(20) (a) Guddorf, B. J.; Hepp, A.; Lips, F. Efficient Synthesis of a NHC-Coordinated Trisilacyclopropylidene and Its Coordination Behavior. Chem. - Eur. J. 2018, 24, 10334–10338. (b) Maiti, A.; Mandal, D.; Omlor, I.; Dhara, D.; Klemmer, L.; Huch, V.; Zimmer, M.; Scheschkewitz, D.; Jana, A. Equilibrium Coordination of NHCs to Si(IV) Species and Donor Exchange in Donor-Acceptor Stabilized Si(II) and Ge(II) Compounds. *Inorg. Chem.* 2019, 58, 4071–4075.
 (c) Jana, A.; Omlor, I.; Huch, V.; Rzepa, H. S.; Scheschkewitz, D. N-Heterocyclic Carbene Coordinated Neutral and Cationic Heavier Cyclopropylidenes. Angew. Chem., Int. Ed. 2014, 53, 9953-9956. (21) Frisch, P.; Inoue, S. NHC-stabilized silyl-substituted silyliumylidene ions. *Dalton Trans* **2019**, *48*, 10403–10406.

15704

9 An Air-stable Heterobimetallic Si₂M₂ Tetrahedral Cluster

Title:	An Air-stable Heterobimetallic Si ₂ M ₂ Tetrahedral Cluster
Status:	Research Article, published online January 14, 2020
Journal:	Angewandte Chemie International Edition, 2020, 59, 5823-5829.
Publisher:	John Wiley & Sons, Inc.
DOI:	10.1002/anie.201916116 and 10.1002/ange.201916116
Authors:	Gizem Dübek, Franziska Hanusch, Dominik Munz and Shigeyoshi Inoue*

Content: After the successful isolation of the first (silyl)silylene chloride, and the discovery that it contained a labile Si-Cl bond, it was hypothesized that this complex would be an ideal precursor for the formation of transition metal-silylene complexes. In this report, we demonstrated the synthesis and isolation of new NHC-stabilized transition-metal silylene (M = Mo, W) complexes which contain a metal-silicon double bond. In the next step, elimination of the coordinated NHC ligand from TM-silylene complexes was examined via addition of different Lewis acids. Treatment with strong Lewis acids such as B(C₆F₅)₃ or AlCl₃ led to the reversible coordination of the Lewis acid to one of the carbonyl ligands on metal center. The use of a milder Lewis acid like BPh₃, however, successfully removes the NHC from the TM-silylene complexes. Surprisingly, this affords the first examples of heterobimetallic tetrahedral Si₂M₂ clusters which were found to be air- and moisture stable and show no reaction with methanol even after prolonged heating at 70 °C. Computational investigations revealed the formation of tetrahedral cluster is based on the dimerization of the intermediate metal-silylyne (M=Si) complex. This indicates that the steric bulk of the silyl-substituents on silylyne intermediate prevents the formation of planar four-membered ring and allows only tetrahedral structure due to perpendicular arrangement of the two silylyne groups.

^{*} G. Dübek planned and executed all experiments including analysis and wrote the manuscript. F. Hanusch conducted all SC XRD measurements and managed the processing of the respective data. D. Munz designed and performed the theoretical analyses and contributed to manuscript. All work was performed under the supervision of S. Inoue.

Research Articles

Cluster Compounds

International Edition: DOI: 10.1002/anie.201916116 German Edition: DOI: 10.1002/ange.201916116

An Air-Stable Heterobimetallic Si₂M₂ Tetrahedral Cluster

Gizem Dübek, Franziska Hanusch, Dominik Munz, and Shigeyoshi Inoue*

Dedicated to Professor Yitzhak Apeloig on the occasion of his 75th birthday

Abstract: Air- and moisture-stable heterobimetallic tetrahedral clusters $[Cp(CO)_2MSiR]_2$ (M = Mo or W; $R = SitBu_3$) were isolated from the reaction of N-heterocyclic carbene (NHC) stabilized silyl(silylidene) metal complexes $Cp(CO)_2M=Si-(SitBu_3)NHC$ with a mild Lewis acid (BPh_3). Alternatively, treatment of the NHC-stabilized silylidene complex $Cp(CO)_2W=Si(SitBu_3)NHC$ with stronger Lewis acids such as $AlCl_3$ or $B(C_6F_3)_3$ resulted in the reversible coordination of the Lewis acid to one of the carbonyl ligands. Computational investigations revealed that the dimerization of the intermediate metal silylidyne (M=Si) complex to a tetrahedral cluster instead of a planar four-membered ring is due to steric bulk.

Introduction

Tetrahedral clusters that consist of main-group elements are attractive synthetic targets because of their high ring strain and reactivity.^[1] Even white phosphorus (P₄), which has been known for centuries, has recently been the subject of intense research (I; Figure 1).^[2] The heavier homologue, As₄, is challenging to handle because of its thermal and photochemical instability. Nevertheless, Cummins and co-workers even managed to isolate As₃P, the first example of a heteroatomic tetrahedrane.^[3] The archetypical organic tetrahedrane (tBuC)₄ (II) was isolated by Maier and co-workers in 1978,^[4] whereas Wiberg et al. reported the heavier analogue, tetrasilatetrahedrane (tBu₃SiSi)₄ (III), in 1993.^[5] One decade later, Sekiguchi and co-workers isolated a further tetrasilatetrahedrane $(R_4Si_4, R = SiMe((CH(SiMe_3)_2)_2))$ while trying to isolate a disilyne with a Si=Si triple bond.[6] Very recently, another neutral tetrahedron that contains two different heteroatoms, (tBuCP)2 (IV), was reported to form upon dimerization of

[*]	G. Dübek, F. Hanusch, Prof. S. Inoue Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University Munich Lichtenbergstraße 4, 85748 Garching bei München (Germany) E-mail: s.inoue@turm.de
	Dr. D. Munz Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Department of Chemistry and Pharmacy General and Inorganic Chemistry Egerlandstraße 1, 91058 Erlangen (Germany)
Ø	Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201916116.
ഹ	© 2020 The Authors, Bublished by Wiley VCH Verlag CmbH & Co

Angew. Chem. Int. Ed. **2020**, 59, 5823–5829

 $\textcircled{\sc c}$ 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library 5823

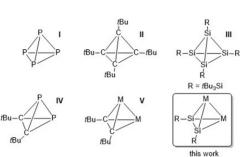
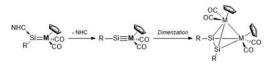


Figure 1. Selected examples of known neutral tetrahedranes.

phosphaalkynes (RC=P).^[7] In addition to neutral tetrahedral complexes, anionic tetrahedral $[E_4]^{4-}$ (E = Si, Ge, Sn) species, so-called Zintl-type polyanions, are known.^[8] Whilst binary combinations in Zintl tetrahedral clusters $[E_mM_{4-n}]$ have been reported.^[9] there are no examples of neutral heterobimetallic tetrahedral clusters with heavier main-group elements and transition metals.

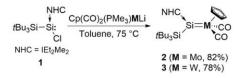
Numerous examples are known of M2C2-type bimetallic complexes (V) with bridging acetylene or acetylene derivatives that exhibit tetrahedral structures.^[10] Such complexes find application in the Pauson-Khand synthesis of cyclopentanone derivatives and are catalysts in hydroboration reactions,^[11] yet heavier congeners have remained unexplored to the best of our knowledge. Among heavier analogues of Group 14 element compounds M2E2 (E = Si, Ge, Sn), particular interest has been devoted to silicon as bimetallic clusters with bridging silicon atoms are indeed alleged key intermediates in various transition-metal-catalyzed transformations.[12] Since the 1900s, various M₂Si₂ binuclear transition-metal complexes have been reported and their catalytic activities have been exploited in the dehydrocoupling of hydrosilanes and the metathesis of olefins.[13] Thus far, however, all of these complexes feature a planar, diamond-shaped, or butterflytype M2Si2 core, whereas tetrahedral structures remain elusive.^[13a,14] Generally, monoatomic tetrahedral derivatives R₄E₄ can be generated photochemically from the corresponding planar linear compounds by elimination or photoisome-rization as reported for II (1.15) Accordingly, tetrahedranes can form by dimerization of disilynes or nickel-mediated dimerization of phosphaalkynes.[7,16]


Herein, we report the first isolable heterobimetallic M_2Si_2 cluster with a tetrahedral structure. Inspired by the previous reports from the groups of Wiberg and Sekiguchi, we based our synthetic strategy on the elimination of an N-heterocyclic carbene (NHC) from a silylidene complex (Si=M) to generate

^{© 2020} The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Articles

a silylidyne complex (Si $\equiv\!M),$ which was hypothesized to dimerize subsequently to a tetrahedral M_2Si_2 cage cluster (Scheme 1).


Scheme 1. Synthetic strategy to isolate a neutral M_2Si_2 tetrahedrane upon dimerization of a transient silvlidyne complex (S \models M).

The chemistry of transition-metal silvlidyne complexes has a short, yet spectacular history. The arguably first silylidyne complex [Cp*(dmpe)(H)MoSiMes] (dmpe = PMe₂CH₂CH₂PMe₂) was reported by Tilley and Mork in 2003.^[17] Shortly after, when the role of the NHC in stabilizing low-valent silicon(II) species had been recognized, a genuine Mo=Si triple-bonded complex was isolated by the group of Filippou using this elegant synthetic approach.^[18] Following this achievement, a handful of transition-metal silvlidvne complexes and their reactivities were reported by further research groups.^[17-19] Characteristically, all room-temperature isolable transition-metal silylidyne complexes bear very bulky ligands either on the silicon center (e.g., ArTrip, Eind) or on the metal center (e.g., Cp*, Tbb). We concluded that a M=Si complex with comparably reduced bulk on both the silicon atom and the transition-metal center should be an excellent choice for the targeted tetrahedral cluster.

Results and Discussion

Very recently, we reported the synthesis of the first silylsubstituted chlorosilylene (1) and studied the reactivity associated with its lone pair and chloride substituent.^[20] Compound 1 is prone to salt metathesis reactions because of the presence of the chloride atom. In fact, heating an orange toluene solution of chlorosilylene 1 with Cp(CO)₂⁻ (PMe₃)MLi (M = Mo, W) at 75 °C smoothly gave the IEt₂Me₂ (1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene) stabilized transition-metal silylidene complexes 2 and 3 as air- and moisture-sensitive, dark-green solids (2, M = Mo, 82%; 3, M = W, 78 %; Scheme 2).

The ²⁹Si NMR spectra of **2** and **3** show characteristic resonances, which are shifted strongly downfield to 278.8 ppm

Scheme 2. Synthesis of NHC-stabilized molybdenum (2) and tungsten (3) silylidene complexes.

and 229.7 ppm (${}^{1}J_{\text{st-W}}$ =261 Hz), respectively, in reference to those of **1** (δ =18.3 ppm). Similar chemical shifts were observed for the previously reported transition-metal silylidene complexes.^[18,19m,21] The silicon-bonded NHC carbene atoms resonate at 168.3 ppm (**2**) and 172.6 ppm (**3**) in the ¹³C NMR spectroscopic analysis, which is similar to the chemical shift found for **1** (δ =169.7 ppm).

The IR spectra of 2 and 3 each show two $\nu(CO)$ absorption bands at 1782 and 1864 cm⁻¹ (2), and at 1770 and 1849 cm⁻¹ (3). The positions of these bands agree well with previously reported metal arylsilylidene complexes and our predictions by density functional theory (DFT) calculations (3: 1837 and 1892 cm⁻¹).^[18,19] Single crystals of 2 and 3 were obtained from a toluene/pentane (1:3) mixture at ambient temperature, and the structure in the solid state was determined by X-ray diffraction analysis (Figure 2). Complex 2 features a Mo=Si double bond (2.3499(10) Å), which is shorter than that found for the donor-free molvbdenum silylidene complex Cp*(CO)2(SiMe3)Mo=Si(Mes)2 (2.3872(7) Å) and lies in the range of previously reported molybdenum silylidene complexes (d(Mo-Si) = 2.288(2) - 2.288(2))2.3872(7) Å).[22] Similarly, 3 exhibits a W=Si (2.346(2) Å) bond that is considerably shorter than in [Cp*W(CO)₂(= SiMes₂)(SiMe₃)] (2.3850(12) Å) and in the neutral alkyl(sily-

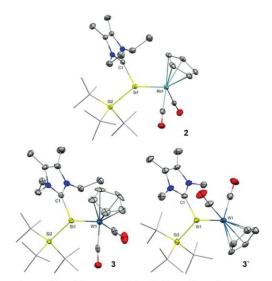
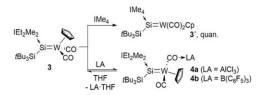
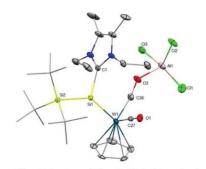


Figure 2. Ellipsoid plots (set at 50% probability) of the molecular structures of compounds 2 (one out of two independent molecules in the asymmetric unit is shown), 3 (one out of three independent molecules in the asymmetric unit is shown) and 3'¹⁹ Hydrogen atoms are omitted for clarity, and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths [Å] and angles [¹2: Si1–Mo1 2.3499(10), Si1–Si2 2.4418(11), Si1–C1 1.949(2); C1-Si1-Si2 102.64(6), Mo1-Si1-C1 116.33(6), Mo-Si1-Si2 141.03(3). 3: Si1–W1 2.346(2), Si1–Si2 2.428(3), Si1–C1 1.935(7); C1-Si1-Si2 105.1(2), W1-Si1-C1 113.5(2), W1-Si1-Si1 21.3.534(10). 3'. Si1–W1 2.3534(12), Si1–Si2 2.4402(16), Si1–C1 1.941(5); C1-Si1-Si2 104.15(14), W1-Si1-C1 115.67(14), W-Si1-Si2 140.15(6).


5824 www.angewandte.org © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2020, 59, 5823-5829

Research Articles

lidene)tungsten complex [(n⁵-C₅Me₄Et)(CO)₂(H)W=Si{C-(SiMe₃)₃] (2.3703(11) Å), but slightly longer than that of the anionic complex [Cp*(CO)2W=SiH{C(SiMe3)3][HMeIPr] (2.3367(17) Å).^[21,23] UV/Vis analysis (Figure S6) revealed a characteristic absorption band at $\lambda^{max} = 418 \text{ nm}$ for the Mo=Si complex 2. For the W=Si complex 3, a band at λ^{max} = 418 nm and a very broad and weak band ranging from approximately $\lambda = 500$ to 700 nm were found (Figure S12). Time-dependent DFT (TD-DFT) calculations reproduced these values very well (Figure S63). In addition, the Löwdin population analysis indicates that 3 has a d⁴ electron configuration with considerable negative partial charge at the tungsten atom, which is consistent with an oxidation state of + II. Both complexes 2 and 3 feature trigonal-planar-coordinated silicon centers, with the sum of bond angles at the silicon center being 360°.


We investigated the replacement of the NHC moiety and treated the bulky IEt_2Me_2 compound with more nucleophilic IMe_4 .^[24] Indeed, treatment of **3** with excess IMe_4 resulted in quick conversion (60% in 30 min) and eventually, after 12 h, quantitative exchange of IEt_2Me_2 by IMe_4 (**3**'; Scheme 3). As

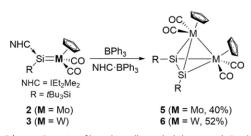
Scheme 3. Synthesis of 3' and 4 a, b from NHC-stabilized silyl(silylidene) tungsten complex 3.

expected, only minor shifts in reference to the starting material were observed in all (¹H, ¹³C, ²⁹Si) NMR experiments. Single crystals of **3'** were obtained at ambient temperature from a $C_6D_6/pentane$ (1:1) mixture, and the molecular structure was also confirmed by X-ray diffraction analysis (Figure 2). The W–Si bond is slightly elongated for **3'** (2.3534(12) Å) in comparison to **3** (2.346(2) Å); nevertheless, the structural parameters are very similar.

The ligand exchange ability of 3 encouraged us to abstract the NHC by treatment with Lewis acids. Indeed, treatment of 3 with the strong Lewis acid B(C6F5)3 or more oxophilic AlCl3 resulted in an immediate color change from dark green to dark red in toluene (Scheme 3). Significant downfield shifts of the ²⁹Si NMR resonances for **4a** (δ = 322.0 ppm) and **4b** (δ = 323.2 ppm) compared to that of 3 ($\delta = 229.7$ ppm) were observed, whereas the ¹³C NMR spectra of **4a** and **4b** displayed only a very small change in shift (166.9 ppm for **4a** and 167.3 ppm for **4b**) from **3** (¹³C $\delta = 172.6$ ppm). This suggests that the NHC remains coordinated to a silylidene unit. Intriguingly, the addition of coordinating THF to the red solutions of 4a or 4b resulted in the regeneration of the darkgreen color, and the ¹H NMR spectroscopic analysis confirmed the regeneration of the initial starting material 3. This reaction corroborated the formation of a peculiar Lewis acidcarbonyl adduct, and was likewise confirmed by X-ray crystal structure analysis of **4a** (Figure 3). A comparable terminal carbonyl ligand activation was observed by Cummins and coworkers during preparation of a terminal molybdenum carbide upon acylation of a Mo^{II} carbonyl complex with pivaloyl chloride.^[25]

Figure 3. Ellipsoid plot (set at 30% probability) of the molecular structure of compound **4a**. Hydrogen atoms are omitted for clarity, and *tert*-butyl groups are depicted in wireframe for simplicity.¹³⁹ Selected bond lengths [Å] and angles [°]: Si1–W1 2.3630(18), Si1–Si2 2.437(2), Si1–C1 1.940(10), Al1–O2 1.777(8), W1–C27 1.975(7), W1–C28 1.840(7); C1-Si1-Si2 106.4(6), W1-Si1-C1 114.6(6), W-Si1-Si2 138.89(9).

The W-Si bond in 4a (2.3630(18) Å) is elongated in reference to 3 (2.346(2) Å) because of the reduced backdonation from tungsten to silicon and in line with the downfield-shifted resonance in the ²⁹Si spectrum ($\delta =$ 322.0 ppm). The W-C bond length for the AlCl₃-coordinated CO ligand (1.840(7) Å) is significantly shortened in comparison with that of the terminal carbonyl ligand (1.975(7) Å) and even in the range of tungsten carbyne complexes (1.82-1.87 Å).^[26] The Al-O bond length in 4a (1.777(8) Å) is comparable with previously reported AlCl₃ coordinated to the oxygen atom of a carbonyl ligand without bond rupture (1.812(2) Å).^[27] Compound 4a has a similar absorption band at 400 nm in the UV/Vis spectrum in toluene. Unfortunately, 4b could only be isolated as a sticky solid and not in crystalline form. The IR spectrum of 4a in the solid state shows two $\nu(CO)$ bands that appear as broad bands at 1813 cm⁻¹ for AlCl₃-coordinated CO and at 1901 cm⁻¹ for the terminal CO. Two peculiar carbonyl stretching frequencies are observed because of enhanced π -back-donation from tungsten to the carbonyl ligand and simultaneous weakening of the C-O bond (C27-O1 1.158(8) Å, C28-O2 1.255(9) Å) that is coordinated to AlCl₃. Similarly, 4b also shows two ν (CO) bands at 1906 cm⁻¹ and 1873 cm⁻¹. The latter can be assigned to CO-B(C6F5)3, which appears at a higher wavenumber than in [Cp*(CO)-{C₆F₅)₃B····OC}W=Si(H)Tsi]- $[H^{Me}I^{i}Pr]$ (v(CO···BCF) = 1535 cm⁻¹).^[19a] This observation indicates weaker coordination of the borane to the carbonyl group in comparison to that of the anionic silvlidene complex.


In order to abstract the NHC from the silylidene complexes, we hence used a milder Lewis acid, namely triphenylboron (BPh₃, Scheme 4). Indeed, heating toluene

Angew. Chem. Int. Ed. 2020, 59, 5823 – 5829 💿 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 5825

Research Articles

Angewandte Chemie

Scheme 4. Formation of heterobimetallic tetrahedral compounds 5 and 6 by abstraction of the NHC from TM silvlidene complexes 2 and 3 by BPh₂

solutions of 2 and 3 with one equivalent of BPh₃ for 30 min to 90 °C afforded the desired tetrahedral clusters 5 and 6 in 40 % and 52% vield, respectively. These heterobimetallic compounds are well soluble in aromatic as well as aliphatic organic solvents. Surprisingly, the heterobimetallic tetrahedral Si₂M₂ clusters 5 and 6 are perfectly stable in moist air, as has been also reported for tetrasilatetrahedrane (tBu₃SiSi)₄ (III). It is interesting to note that these complexes did not even react with methanol when heated to 70°C for 24 h.

The single-crystal structure of 6 revealed the formation of a tetrahedral, bimetallic transition-metal silicon cluster (Figure 4). The W-Si (2.5507(15)-2.6913(15) Å) bonds in 6 are significantly longer than those in 3 (2.346(2) Å) and reported W=Si double bonds (2.34-2.47 Å), and fall in the range of W-Si single bonds (2.47–2.71 Å).^[21,23,28,29] The structural parameters of complex 6 are akin to the planar complexes W-Si-W-Si (W–W 3.183(1) Å, W–Si 2.586(5)–2.703(4) Å) and W-Si-W-H (W–Si 2.489(2)–2.487(2) Å). $^{[14e,30]}$ The Si–Si bond (2.2221-(19) Å) is significantly shorter than those in previously reported MSiSiM butterfly-shaped clusters (d(Si - Si) = 2.85-2.98 Å) and also those of tetrasilatetrahedranes, where the

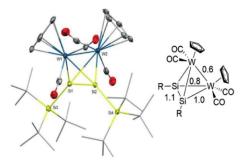


Figure 4. Ellipsoid plot (set at 30% probability) of the molecular structure of compound 6 (left; one of three independent molecules in the asymmetric unit is shown) and bond orders as predicted by the Löwdin population analysis (right). Hydrogen atoms are omitted for clarity, and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths [Å] and angles [°]: Si1-W1 2.5507(15), Si1-W2 2.6913(15), Si2-W1 2.6790(14), Si2-W2 2.5593(14), W1-W2 3.0732(8), Si1-Si2 2.2221(19); W1-Si1-W2 71.73(4), W1-Si1-Si2 67.89(5), W2-Si1-Si2 61.92(5)

5826 www.angewandte.org © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2020, 59, 5823-5829

Si-Si bond lengths range from 2.315(2) to 2.3830-(19) Å.^[5,6,14a,31] The short Si–Si separation is attributed to the partial multiple bond character (Figure 4, right) and reduced σ -donation from the silvl substituents due to the elongation of the exocyclic Si-Si bonds (Si1-Si3 2.437(2) Å. Si2-Si4 2.430(2) Å). The formation of bimetallic clusters for 5 and 6 was also confirmed by mass-spectrometric analysis (Figures S36-S46), which suggested that 5 is isostructural with 6. The tetrahedral M2Si2 clusters melt below 70°C (m.p. 64-65°C for 5; 67-69°C for 6), yet we did not observe any changes in the ¹H NMR spectra upon heating xylene solutions to 120°C. This observation corroborates the high thermal stability and the absence of an equilibrium between the monomer (Cp(CO)₂M=SiSitBu₃) and the dimeric forms of 5 and 6, and is consistent with diffusion NMR experiments (DOSY; Figures S28 and S40). The ²⁹Si NMR signals of skeletal silicon atoms shifted strongly to higher fields ($\delta =$ 3.65 ppm for **5**, GIAO = 5 ppm; $\delta = -63.04$ ppm (${}^{1}J_{\text{Si-W}} =$ 52 Hz) for 6; GIAO = -48 ppm), which corroborates strong silyl character due to a change in hybridization from sp² to sp3.[19j,32] In addition, such an upfield shift is also typically observed for ring C atoms of tetrahedranes.[1,4,15a,33] The small ${}^{1}J_{\text{si-w}}$ coupling constant of 52 Hz indicates a high degree of p-character at the Si atom and a relatively small contribution from the silicon's s-orbital. A significant low-field shift was observed for the supersilyl ligand ($\delta = 48.32$ ppm for 5; 43.99 ppm for 6). Similar shifts for tBu_3Si were also reported for Wiberg's tetrasilatetrahedrane $(tBu_3SiSi)_4$ (²⁹Si, $\delta =$ 53.07 ppm; III, Figure 1).^[5] The IR spectra of 5 and 6 showed two ν (CO) bands at higher wavenumbers than for the NHC-TM-silvlidenes 2-4a.b (1844 and 1918 cm⁻¹ for 5: 1860 and 1914 cm⁻¹ for 6; DFT: 1904 and 1916 cm⁻¹). This hypsochromic shift is due to reduced π -back-donation from the transition metal to the CO ligand. The UV/Vis spectra of 5 and 6 in toluene showed absorption bands at 543 nm and 530 nm, respectively. In excellent agreement, TD-DFT calculations for 6 predict the HOMO-LUMO transition to lie at 501 nm.

We performed detailed DFT calculations at the PBE0-D3BJ(SMD)/ZORA-def2-TZVPP//PBE0-D3BJ/def2-SVP level of theory in order to understand the electronic structures of 6 and 3 (Figures S57–S62).^[34,35] Indeed, Löwdin population analysis of the DFT-optimized structure of 6 also indicated a Si-Si bond order of 1.1, indicative of only very small multiple bond character (Figure 4, right), which is in line with the short Si-Si bond length in 6. Interestingly, the calculations suggest a higher Si-Si multiple bond character of 1.3 for the molybdenum complex 5 (Figure S61), which is in line with the relative ²⁹Si NMR shifts of 5 and 6 (see above). Plotting the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) corroborates delocalization of both orbitals over the whole cluster (Figure S58). The intrinsic bond orbitals (IBOs)[36] show two different, yet quite covalent, o-interactions between Si1 and W1 or W2, respectively (Figure 5, top). The Si1-W1 σ-bond is polarized towards Si, whereas the longer Si1-W2 bond features additionally a π -back-bonding interaction with the CO π^* orbitals. Besides, we found a Si1–Si2 σ -bond as well as considerable bonding interactions between the W1 and W2 atoms (Fig-

Research Articles

Angewandte

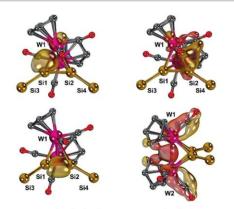


Figure 5. Intrinsic bond orbitals (IBOs) associated with the Si1–W1 (top, left), Si1–W2 (top, right), Si1–Si2 (bottom, left) and W1–W2 (bottom, right) bonds (fBu groups and hydrogen atoms are omitted for clarity, but were included in the calculations).

ure 5, bottom). Overall, the calculations confirmed a tetrahedral structure with strong and covalent interactions between all silicon and tungsten atoms.

Furthermore, the reaction mechanism for the formation of **6** was modeled in order to understand the peculiar Si-Si dimerization (Figure 6).^[37] The restricted DFT calculations

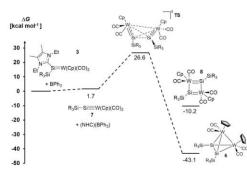


Figure 6. Proposed reaction profile for the formation of $\mathsf{W}_2\mathsf{Si}_2$ tetrahedral cluster 6.

suggest that the formation of the intermediate silylidyne complex **7** proceeds essentially in isoergic fashion ($\Delta G =$ +1.7 kcalmol⁻¹). The subsequent dimerization ($\Delta G =$ -43.1 kcalmol⁻¹) features a barrier of $\Delta G^+ =$ +26.6 kcal mol⁻¹, which agrees well with a reaction occurring at elevated temperatures. The transition state (Figure 6) shows a very large separation of the two tungsten atoms (5.05 Å) and hence is indicative of only weak interactions between these two atoms. Nevertheless, a very small orbital overlap in HOMO-3 substantiates a very asynchronous, yet still concerted formation of the Si–Si and W–W bonds^[38]

Most importantly, the transition state reveals that the steric bulk associated with the supersilyl groups and the Cp substituents allows only for a perpendicular arrangement of the two silvlidyne groups. This orientation consequently determines the formation of the tetrahedral cluster instead of four-membered rings as would be expected by simplifying polarity considerations. Indeed, attempts to geometry-optimize four-membered rings with either Si-Si/W-W or alternating Si-W bonds led to isomeric tetrahedra ($\Delta G =$ $-34.0 \text{ kcal mol}^{-1}$; Figure S70), three-membered rings ($\Delta G =$ -15.8 kcal mol⁻¹; Figure S70), or quadrangles of much higher energy (Si-W-Si-W quadrangle 8: $\Delta G = -10.2 \text{ kcal mol}^{-1}$). Attempts to model dimeric compounds with decoordination of only one NHC also did not meet with success. We conclude that the steric bulk in 6 prevents the formation of quadrangles or triangles and allows only for the formation of a tetrahedral cluster subsequent to abstraction of the NHC ligand.

Conclusion

We have reported the isolation of the heteroatomic, bimetallic M_2Si_2 tetrahedral clusters 5 and 6. These compounds form after NHC abstraction from the respective NHC-stabilized silylidene complexes 2 and 3 by dimerization of transient transition-metal silylidyne complexes. These tetrahedral clusters are air- and moisture-stable unlike many other main-group organometallic compounds. Furthermore, we have shown that the NHC (IEt₂Me₂) in complex 3 can be exchanged for a more nucleophilic NHC (IMe₄). Contrarily, the addition of stronger Lewis acids such as AlCl₃ or B(C₆F₅)₃ resulted in reversible activation of the carbonyl ligands (4a,b). Calculations confirm the covalent bonding in the cluster and indicate that steric bulk is crucial for the formation of the tetrahedron-type structure.

Acknowledgements

We are grateful to WACKER Chemie AG and the European Research Council (SILION 637394) for financial support. We thank M. Muhr (Prof. R. A. Fischer, TUM) for the LIFDI-MS measurements, P. Frisch for measurement and refinement of the structure of **2**, and P. Nixdorf (TU Berlin) for measurement of the structure **3'**. D.M. thanks the RRZE Erlangen for computational resources, K. Meyer for continuous support, and the Fonds der chemischen Industrie for a Liebig fellowship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cluster compounds · silicon · silylidenes · silylidynes · tetrahedranes

Angew. Chem. Int. Ed. 2020, 59, 5823 – 5829 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 5827

Research Articles

How to cite: Angew. Chem. Int. Ed. 2020, 59, 5823–5829 Angew. Chem. 2020, 132, 5872–5878

<u>GDCh</u>

- G. Maier, Angew. Chem. Int. Ed. Engl. 1988, 27, 309-332; Angew. Chem. 1988, 100, 317-341.
- [2] a) A. Wiesner, S. Steinhauer, H. Beckers, C. Müller, S. Riedel, *Chem. Sci.* 2018, 9, 7169–7173; b) U. Lennert, P. B. Arockiam, V. Streitferdt, D. J. Scott, C. Rödl, R. M. Gschwind, R. Wolf, *Nat. Catal.* 2019, 2, 1101–1106.
- [3] B. M. Cossairt, M.-C. Diawara, C. C. Cummins, Science 2009, 323, 602-602.
- [4] G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Angew. Chem. Int. Ed. Engl. 1978, 17, 520–521; Angew. Chem. 1978, 90, 552–553.
- [5] N. Wiberg, C. M. M. Finger, K. Polborn, Angew. Chem. Int. Ed. Engl. 1993, 32, 1054–1056; Angew. Chem. 1993, 105, 1140–1142.
- [6] M. Ichinohe, M. Toyoshima, R. Kinjo, A. Sekiguchi, J. Am. Chem. Soc. 2003, 125, 13328–13329.
- [7] G. Hierlmeier, P. Coburger, M. Bodensteiner, R. Wolf, Angew. Chem. Int. Ed. 2019, 58, 16918–16922; Angew. Chem. 2019, 131, 17074–17078.
- [8] a) M. Waibel, F. Kraus, S. Scharfe, B. Wahl, T. F. Fässler, Angew. Chem. Int. Ed. 2010, 49, 6611–6615; Angew. Chem. 2010, 122, 6761–6765; b) T. Henneberger, W. Klein, J. V. Dums, T. F. Fässler, Chem. Commun. 2018, 54, 12381–12384; c) C. Liu, Z.-M. Sun, Coord. Chem. Rev. 2019, 382, 32–56.
- [9] a) H. G. Von Schnering, M. Baitinger, U. Bolle, W. Carrillo-Cabrera, J. Curda, Y. Grin, F. Heinemann, J. Llanos, K. Peters, A. Schmeding, M. Somer, Z. Anorg. Allg. Chem. 1997, 623, 1037–1039; b) J. Witte, H. G. Schnering, W. Klemm, Z. Anorg. Allg. Chem. 1964, 327, 260–273; c) I. F. Hewaidy, E. Busmann, W. Klemm, Z. Anorg. Allg. Chem. 1964, 328, 283–293.
- [10] a) F. A. Cotton, J. D. Jamerson, B. R. Stults, J. Am. Chem. Soc. 1976, 98, 1774–1779; b) J. F. Halet, J. Y. Saillard, J. Organomet. Chem. 1987, 327, 365–377; c) A. S. Foust, C. F. Campana, J. D. Sinclair, L. F. Dahl, Inorg. Chem. 1979, 18, 3047–3054; d) S. Kahlal, J.-F. Halet, J.-Y. Saillard, K. H. Whitmire, J. Organomet. Chem. 1994, 478, 1–8; e) P. Bougeard, S. Peng, M. Mlekuz, M. J. McGlinchey, J. Organomet. Chem. 1985, 296, 383–391.
- [11] a) J. A. Casalnuovo, N. E. Schore, *Modern Acetylene Chemistry*, VCH, Weinheim, **1995**, pp. 139–172; b) R. Wilczynski, L. G. Sneddon, J. Am. Chem. Soc. **1980**, 102, 2857–2858.
- [12] M. Suginome, Y. Ito, Chem. Rev. 2000, 100, 3221-3256.
- [13] a) E. A. Zarate, C. A. Tessier-Youngs, W. J. Youngs, J. Am. Chem. Soc. 1988, 110, 4068–4070; b) N. B. Bespalova, M. A. Bovina, A. V. Popov, J. C. Mol, J. Mol. Catal. A 2000, 160, 157– 164.
- [14] a) S. Shimada, M. L. N. Rao, T. Hayashi, M. Tanaka, Angew. Chem. Int. Ed. 2001, 40, 213-216; Angew. Chem. 2001, 113, 219-222; b) M. H. Mobarok, R. McDonald, M. J. Ferguson, M. Cowie, Inorg. Chem. 2012, 51, 9249-9258; c) M. J. Bennett, K. A. Simpson, J. Am. Chem. Soc. 1971, 93, 7156-7160.
- [15] a) G. Maier, J. Neudert, O. Wolf, D. Pappusch, A. Sekiguchi, M. Tanaka, T. Matsuo, J. Am. Chem. Soc. 2002, 124, 13819–13826; b) M. Nakamoto, Y. Inagaki, T. Ochiai, M. Tanaka, A. Sekiguchi, *Heteroat. Chem.* 2011, 22, 412–416.
- [16] A. Sekiguchi, M. Ichinohe, R. Kinjo, Bull. Chem. Soc. Jpn. 2006, 79, 825–832.
- [17] B. V. Mork, T. D. Tilley, Angew. Chem. Int. Ed. 2003, 42, 357– 360; Angew. Chem. 2003, 115, 371–374.
- [18] A. C. Filippou, O. Chernov, K. W. Stumpf, G. Schnakenburg, Angew. Chem. Int. Ed. 2010, 49, 3296–3300; Angew. Chem. 2010, 122, 3368–3372.
- [19] a) T. Fukuda, T. Yoshimoto, H. Hashimoto, H. Tobita, Organometallics 2016, 35, 921–924; b) T. Fukuda, H. Hashimoto, H. Tobita, J. Am. Chem. Soc. 2015, 137, 10906–10909; c) P. F. Engel, M. Pfeffer, Chem. Rev. 1995, 95, 2281–2309; d) H.

Hashimoto, H. Tobita, Coord. Chem. Rev. 2018, 355, 362-379; e) A. C. Filippou, D. Hoffmann, G. Schnakenburg, Chem. Sci. 2017, 8, 6290-6299; f) P. Ghana, M. I. Arz, G. Schnakenburg, M. Straßmann, A. C. Filippou, Organometallics 2018, 37, 772-780; g) Z. Xu, M. B. Hall, Inorg. Chim. Acta 2014, 422, 40-46; h) P. G. Hayes, Z. Xu, C. Beddie, J. M. Keith, M. B. Hall, T. D. Tilley, J. Am. Chem. Soc. 2013, 135, 11780-11783; i) S. D. Grumbine, R. K. Chadha, T. D. Tilley, J. Am. Chem. Soc. 1992, 114, 1518-1520; j) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2011, 50, 1122-1126; Angew. Chem. **2011**, *123*, 1154–1158; k) A. C. Filippou, O. Chernov, B. Blom, K. W. Stumpf, G. Schnakenburg, Chem. Eur. J. 2010, 16, 2866-2872; 1) A. C. Filippou, O. Chernov, G. Schnakenburg, Chem. Eur. J. 2011, 17, 13574-13583; m) T. Yoshimoto, H. Hashimoto, N. Havakawa, T. Matsuo, H. Tobita, Organometallics 2016, 35, 3444 – 3447

- [20] G. Dübek, F. Hanusch, S. Inoue, *Inorg. Chem.* 2019, 58, 15700– 15704.
- [21] a) K. Ueno, S. Asami, N. Watanabe, H. Ogino, Organometallics 2002, 21, 1326-1328; b) T. Watanabe, H. Hashimoto, H. Tobita, Angew. Chem. Int. Ed. 2004, 43, 218-221; Angew. Chem. 2004, 116, 220-223.
- [22] M. Hirotsu, T. Nunokawa, K. Ueno, Organometallics 2006, 25, 1554–1556.
- [23] T. Fukuda, H. Hashimoto, S. Sakaki, H. Tobita, Angew. Chem. Int. Ed. 2016, 55, 188–192; Angew. Chem. 2016, 128, 196–200.
- [24] a) B. J. Guddorf, A. Hepp, F. Lips, Chem. Eur. J. 2018, 24, 10334–10338; b) H. Cui, M. Wu, P. Teng, Eur. J. Inorg. Chem. 2016, 4123–4127; c) A. Maiti, D. Mandal, I. Omlor, D. Dhara, L. Klemmer, V. Huch, M. Zimmer, D. Scheschkewitz, A. Jana, Inorg. Chem. 2019, 58, 4071–4075; d) A. Jana, I. Omlor, V. Huch, H. S. Rzepa, D. Scheschkewitz, Angew. Chem. Int. Ed. 2014, 53, 9953–9956; Angew. Chem. 2019, 48, 10403–10406.
- [25] J. C. Peters, A. L. Odom, C. C. Cummins, Chem. Commun. 1997, 1995–1996.
- [26] a) E. O. Fischer, H. Hollfelder, P. Friedrich, F. R. Kreissl, G. Huttner, Angew. Chem. Int. Ed. Engl. 1977, 16, 401–402; Angew. Chem. 1977, 89, 416–417; b) W. W. Greaves, R. J. Angelici, B. J. Helland, R. Klima, R. A. Jacobson, J. Am. Chem. Soc. 1979, 101, 7618–7620; c) H. Huang, R. P. Hughes, A. L. Rheingold, Dalton Trans. 2011, 40, 47–55; d) J. D. Carter, K. B. Kingsbury, A. Wilde, T. K. Schoch, C. J. Leep, E. K. Pham, L. McElwee-White, J. Am. Chem. Soc. 1991, 113, 2947–2954; e) H. Sakaba, M. Yoshida, C. Kabuto, K. Kabuto, J. Am. Chem. Soc. 2005, 127, 7276–7277.
- [27] a) D. Vidovic, S. Aldridge, Angew. Chem. Int. Ed. 2009, 48, 3669–3672; Angew. Chem. 2009, 121, 3723–3726; b) A. Jayaraman, B. T. Sterenberg, Organometallics 2016, 35, 2367–2377.
- [28] a) T. Watanabe, H. Hashimoto, H. Tobita, Chem. Asian J. 2012, 7, 1408–1416; b) B. V. Mork, T. D. Tilley, J. Am. Chem. Soc. 2001, 123, 9702–9703; c) K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916–917.
- [29] Based on a study of the Cambridge Structural Database (CSD).
- [30] a) H. Hashimoto, Y. Odagiri, Y. Yamada, N. Takagi, S. Sakaki, H. Tobita, J. Am. Chem. Soc. 2015, 137, 158–161; b) H. Hashimoto, K. Komura, T. Ishizaki, Y. Odagiri, H. Tobita, Dalton Trans. 2017, 46, 8701–8704.
- [31] W. D. Wang, R. Eisenberg, J. Am. Chem. Soc. 1990, 112, 1833– 1841.
- [32] A. G. Brook, F. Abdesaken, G. Gutekunst, N. Plavac, Organometallics 1982, 1, 994–998.
- [33] G. Maier, D. Born, Angew. Chem. Int. Ed. Engl. 1989, 28, 1050– 1052; Angew. Chem. 1989, 101, 1085–1087.
- [34] a) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78; b) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327.

5828 www.angewandte.org © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2020, 59, 5823–5829

Research Articles

- [35] See the Supporting Information for a detailed benchmark analysis with experimental properties (CO stretching frequen-cies, structural parameters, NMR shifts, UV/Vis transitions) and a comparison with the functionals BP86, M06, and TPSSh.
- a comparison with the functionals BP86, M06, and TPSSh.
 [36] G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834-4843.
 [37] The dimerization of a tungsten alkylidene has also been reported in the literature; see: S. Arndt, R. R. Schrock, P. Muller, Organometallics 2007, 26, 1279-1290.
 [38] FOD analysis and CASSCF(12,12) calculations suggest small multireference character for the transition state. For details, see the Sumacting Information.
- the Supporting Information.
- [39] CCDC 1970332 (2), 1970333 (3), 1970334 (3'), 1970335 (4a), and 1970336 (6) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Manuscript received: December 16, 2019 Accepted manuscript online: January 14, 2020 Version of record online: February 20, 2020

Angew. Chem. Int. Ed. 2020, 59, 5823–5829 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org 5829

10 Summary and Outlook

This PhD project was started with initial focus to continuative reactivity studies of the (silyl)hydrosilylene **S4.26** (Figure 20), previously reported by our group.^[140] Beside the already reported reactivity of compound **S4.26** towards transition metals^[143] and unsaturated organic small molecules, ^[141-142, 235] our target was the systematic investigation of the reactivity of **S4.26** towards different Lewis acidic borane sources.

The treatment of NHC-stabilized (silyl)silylene hydride **S4.26** with BR₃ (R = H, Ph) or $H_3N \rightarrow BH_3$ leads to formation of the silylene-hydride-borane complex **S10.1** or the product **S10.3** due to ammonia borane dehydrogenation, with concomitant insertion of the silicon (II) atom into an N-H bond (Figure 30).

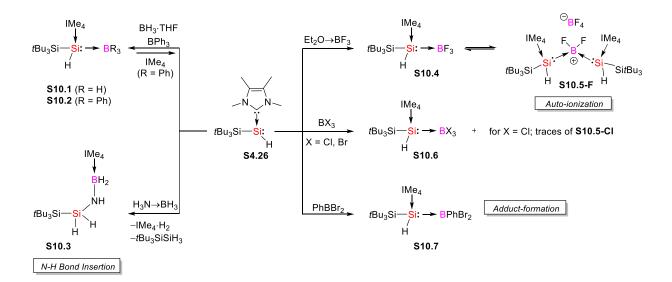


Figure 30. Reactivity of NHC-stabilized (silyl)silylene hydride (S4.26) towards electrophilic borane sources (e.g. hydro-, halo-, organo-boranes).

Different to the BH₃-Adduct **S10.1**, the organoborane (BPh₃) adduct **S10.2** (Figure 30) is converted back to the free silylene upon treatment with excess IMe₄ with IMe₄ \rightarrow BPh₃ obtained as side product. The reaction of silylene hydride **S4.26** with haloboranes (Et₂O \rightarrow BF₃, BCl₃, BBr₃) resulted in the formation of Lewis acid-base adducts **S10.4**–6 which slowly equilibrated to the auto-ionization products **S10.5-X**, (X = F, Cl). The ratio of **S10.5-X** significantly depends on the atomic number of the halide. We conclude that the formation of auto-ionized products decreases with the rising atomic number of the halide. Hence, the stability of afforded Lewis acid-base adducts increases in the order Br > Cl > F. Although, the conversion of silylenes with haloboranes mostly occurs via insertion of the silicon atom into a boron-halide, with the hydrosilylene **S4.26** it successfully furnished the Lewis acidbase adducts. Moreover, upon increasing stability of the counter anion $[BX_4]^-$, the system is more prone to auto-ionization. Accordingly, the treatment of **S4.26** with a mixed system BPh₂Br afforded the compound **S10.7** (Figure 30) as reminiscent of the related conversions described above.

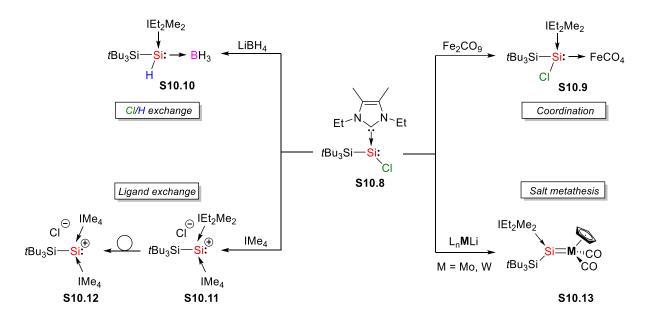
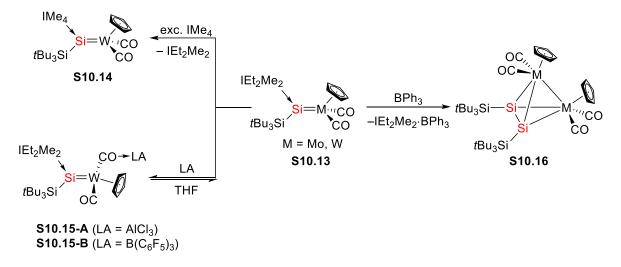



Figure 31. Reactivity products of NHC-stabilized (silyl)chlorosilylene S10.8 via its corresponding active sites; (i) through active lone pair (S10.9), (ii) through labile Si–Cl bond (S10.10, S10.13), (iii) through its dative bond with NHC (S10.11, S10.12).

In an effort to expand the chemistry of functionalized low-valent silvlenes, particular attention was paid to synthesis and isolation of silvl-substituted chlorosilylenes. As a major goal of this thesis, the aim was to exchange the hydride in **S4.26** and add a halide functionality to the (silyl)silylene, to afterwards take advantage of the silicon-halide bond being more labile than a silicon-hydride bond. Moreover, silyl-substituted halosilylenes had remained elusive due to the lack of suitable synthetic methods. Since (silyl)halosilylene, particularly chlorosilylene, would be prone to salt metathesis reactions, it should be an excellent precursor for the access of novel organosilicon compounds. The reaction of silyl-based Si(IV) precursor (tBu₃SiSiHCl₂) with two equivalents of IEt₂Me₂ in toluene at -50 °C successfully gave access to the silicon(II) monochloride NHC adduct S10.8 (Figure 31) in excellent yields (92%) with a trigonal pyramidal geometry with the sum of bond angles at the silicon center being 309.25°. In the ²⁹Si NMR spectrum of S10.8, the signal corresponding to the terminal Si(II)-Cl appears at 18.3 ppm, that is downfield shifted to that of the NHC-stabilized arylchlorosilylenes **S4.15**^[105], due to the presence of an electropositive silvl substituent. Since compound **S10.8** has three potential active reactive sites, we investigated the-reactivity of each of those active sites. Compound **S10.8** reacts readily with $Fe_2(CO)_9$ through its active lone pair to afford the corresponding silvlene chloride-iron complex S10.9 (Figure 31) with relatively long Si-Fe bond length due to the electrondonating bulky silyl substituents. Treatment of (silyl)chlorosilylene **S10.8** with LiBH₄ leads to the formation of stable silylene hydride borane adduct **S10.10** (Figure 31) via Cl/H exchange, which is isostructural to **S10.1** (Figure 30). Moreover, chlorosilylene **S10.8** underwent a ligand exchange reaction with the less sterically demanding, but more σ -electron donating IMe₄ ligand, resulting the formation of an asymmetric NHC-silyliumyliedene ion **S10.11** which is confirmed by hetero-nuclear NMR analysis. Although compound **S10.11** found to be stable over time according to NMR experiments, it converted into more stable symmetric silyliumylidene ion **S10.12** (Figure 31).

We then continued by using the lability of Si–Cl bond stepwise to allow for accessibility to Si-M multiple bonds. As a starting point, salt metathesis reaction of (silyl)chlorosilylene (S10.8) towards transition metallates was investigated. Treatment of compound S10.8 with $Cp(CO)_2PMe_3Li$ (M = Mo, W) in hot toluene smoothly affords the NHC-stabilized M=Si complexes S10.13 (Figure 31) as dark green solids in good yields (M = Mo, 82%, M = W, 78%). The ²⁹Si NMR spectrum of compounds **S10.13** have characteristic resonances (**S10.13-Mo**, $\delta = 279$ ppm; **S10.13-W**, $\delta = 230$ ppm) similar to the reported transition metal-silvlene complexes S5.1-7. Following this outcome, we studied whether or not NHC exchange is possible from compound S10.13 with the smaller and more nucleophilic IMe₄. Treatment of compound S10.13-W with excess IMe_4 resulted in a fast and quantitative exchange with the formerly coordinated IEt₂Me₂ by IMe₄ to afford the compound **S10.14** (Figure 32). As expected, the structural parameters were very similar with S10.13-W. With the ability of ligand exchange proven in compounds **S10.13**, we tackled the next level to access increased bonding between silicon and the metal centers: abstraction of the NHC. As such, we introduced various Lewis acids in order to abstract the NHC as a Lewis acid-base adduct. The reaction of **S10.13-W** with strong Lewis acids like $B(C_6F_5)_3$ or more oxophilic AlCl₃ resulted in an immediate reaction to afford a peculiar Lewis-acid carbonyl adduct **S10.15A-B** (Figure 32) as confirmed by the single crystal X-ray crystallography. Interestingly, the addition of a coordinating solvent (i.e. THF) to the dark red solutions of S10.15 spontaneously resulted in the regeneration of the initial starting material **S10.13**.

Thus clearly paving the way of milder Lewis acids, like triphenyl borane (BPh₃), being necessary in order to abstract the NHC from the TM-silylene complexes **S10.13**. Heating a toluene solution of **S10.13** to 90 °C with one equivalent of BPh₃ yielded the desired NHC abstraction to afforded the air- and moisture-stable heterobimetallic tetrahedral complexes **S10.16** (Figure 32). The ²⁹Si NMR signals of the skeletal silicon atoms shifted strongly to the high field region (**S10.16-Mo**, $\delta = 4$ ppm; **S10.16-W**, $\delta = -63$ ppm) which corroborates strongly with the silyl characters change in hybridization from sp² to sp³. Moreover, such an upfield shift is also characteristic for the ring C atoms of tetrahedranes.^[236] According to DFT calculations, silicon and tungsten atoms in compound **S10.16-W** possesses two different yet quite covalent σ -interactions. In addition, a σ -bond between the two skeletal silicon atom as well as a considerable bonding interaction between the two tungsten atoms was found.

Overall, the DFT calculations confirm consequently a tetrahedral structure with strong and covalent interactions between all silicon and tungsten atoms in compound **S10.16**.

Figure 32. NHC exchange/abstraction products of TM-silylene complexes (S10.13) to afford compounds S10.14-16.

In order to understand the peculiar Si–Si dimerization for the formation of tetrahedral clusters, the reaction mechanism was modelled. The restricted DFT calculations suggest that compound **S10.16** forms via subsequent dimerization of linear transient TM-silylyne complex (Si=M) ($\Delta G = +1.7$ kcal mol⁻¹). Most importantly, the transition state reveals that the steric bulk associated with the supersilyl group on the silicon atom and Cp ligands on the metal center allows only for a perpendicular arrangement of the two silylyne complexes and hence determines the formation of tetrahedral cluster instead of a four-membered ring, as would be expected by simplifying polarity considerations.

Future reactivity investigations of chlorosilylene, compound **S10.8** should build on the work highlighted within this thesis. In particular, towards accessing different anionic complexes through salt metathesis as it has been shown to be possible through the formation of **S10.10** and **S10.13**. For example, adapting a similar synthetic approach as for compound **S4.7** (Figure 15), treatment of compound **S10.8** with anionic diazo compound could give access to the formation of a silicon-carbon bond and subsequent elimination of N_2 and NHC may afford donor-free silynes (Si=C), which is a long-sought target compound in silicon chemistry. An alternative approach would involve the NHC exchange reaction of **S10.8** with isocyanide (R–N=C) which might yield a isocyanide stabilized chlorosilylene, that can be further reduced by alkali metals to afford triple bond between silicon and carbon.

This thesis also gives insight from a different perspective, as it was shown by DFT that the formation of the intermediate TM-silylyne complex is actually isoergic ($\Delta G = +1.7 \text{ kcal mol}^{-1}$) with TM-silylene complex **S10.13**. This finding suggests that the employed *t*Bu₃Si substituent is not

sterically demanding enough to kinetically stabilize a silicon metal triple bond, hence subsequently dimerization occurs to yield tetrahedral heterobimetallic clusters **S10.16**. Moreover, this also implies that with increased steric bulk on either the silicon center and/or on metal center, first silyl-substituted TM-silylyne complex could be obtained. With this compound in hand, further investigated in terms of sila-alkyne type metathesis, akin to TM-carbyne complexes, would be great interest.

In conclusion, this doctoral work extends the scope of low-valent group 14 element chemistry especially in regard to low-valent functionalized silylene compounds. The work within this thesis has succeeded in the synthesis of first example of silyl-substituted chlorosilylene **S10.8** and formation of several novel low-valent silicon compounds **S10.9-15** via its three different reactive sites. With this achievement, the one of the missing spot for the class of functionalized low-valent silylenes was fulfilled. Strikingly, within this work the first neutral heterobimetallic tetrahedral cluster **S10.16** with Si₂M₂ core was discovered and thoroughly characterized from an experimental and theoretical point of view.

11 Bibliography

- [1] S. K. Mandal, H. W. Roesky, Chem. Commun. 2010, 46, 6016-6041.
- [2] H. Jacobsen, T. Ziegler, J. Am. Chem. Soc. 1994, 116, 3667-3679.
- [3] W. Kutzelnigg, Angew. Chem. Int. Ed. Engl. 1984, 23, 272-295.
- [4] P. P. Power, *Nature* **2010**, *463*, 171-177.
- [5] C. Weetman, S. Inoue, *ChemCatChem* **2018**, *10*, 4213-4228.
- [6] A. H. Cowley, J. Organomet. Chem. 2004, 689, 3866-3872.
- [7] T. Chu, G. I. Nikonov, *Chem. Rev.* **2018**, *118*, 3608-3680.
- [8] A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500-6503.
- [9] J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622-18625.
- [10] G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232-12233.
- [11] J. Li, M. Hermann, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 8611-8614.
- [12] D. Gau, R. Rodriguez, T. Kato, N. Saffon-Merceron, A. de Cózar, F. P. Cossío, A. Baceiredo, Angew. Chem. 2011, 123, 1124-1128.
- [13] X. Wang, Z. Zhu, Y. Peng, H. Lei, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2009, 131, 6912-6913.
- [14] R. Rodriguez, D. Gau, T. Kato, N. Saffon-Merceron, A. De Cózar, F. P. Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 10414-10416.
- [15] Y. Peng, B. D. Ellis, X. Wang, J. C. Fettinger, P. P. Power, Science 2009, 325, 1668-1670.
- [16] J. B. Dumas, E. Peligot, Ann. Chim. Phys 1835, 58, 5-74.
- [17] A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463-6466.
- [18] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
- [19] W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290-1309.
- [20] D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39-92.
- [21] M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485-496.
- [22] A. Doddi, M. Peters, M. Tamm, Chem. Rev. 2019.
- [23] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678-9842.
- [24] N. Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
- [25] D. Enders, O. Niemeier, A. Henseler, *Chem. Rev.* 2007, 107, 5606-5655.
- [26] R. Visbal, M. C. Gimeno, Chem. Soc. Rev. 2014, 43, 3551-3574.
- [27] A. J. Boydston, K. A. Williams, C. W. Bielawski, J. Am. Chem. Soc. 2005, 127, 12496-12497.
- [28] K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 9262-9264.
- [29] W. Liu, R. Gust, Chem. Soc. Rev. 2013, 42, 755-773.
- [30] K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs, Chem. Rev. 2009, 109, 3859-3884.
- [31] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.
- [32] M. Fèvre, J. Pinaud, Y. Gnanou, J. Vignolle, D. Taton, *Chem. Soc. Rev.* 2013, 42, 2142-2172.
- [33] C. A. Dvorak, V. H. Rawal, *Tetrahedron Letters* **1998**, *39*, 2925-2928.
- [34] J. C. Sheehan, D. H. Hunneman, J. Am. Chem. Soc. 1966, 88, 3666-3667.
- [35] R. Singh, R. M. Kissling, M.-A. Letellier, S. P. Nolan, *The Journal of Organic Chemistry* 2004, 69, 209-212.
- [36] N. E. Kamber, W. Jeong, S. Gonzalez, J. L. Hedrick, R. M. Waymouth, Macromolecules 2009, 42, 1634-1639.
- [37] G. O. Jones, Y. A. Chang, H. W. Horn, A. K. Acharya, J. E. Rice, J. L. Hedrick, R. M. Waymouth, J. Phys. Chem. B 2015, 119, 5728-5737.
- [38] V. Lavallo, Y. Canac, C. Präsang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705-5709.
- [39] S. Kundu, S. Sinhababu, V. Chandrasekhar, H. W. Roesky, *Chem. Sci.* **2019**, *10*, 4727-4741.
- [40] M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2015, 48, 256-266.
- [41] M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10046-10068.
- [42] G. D. Frey, V. Lavallo, B. Donnadieu, W. W. Schoeller, G. Bertrand, Science 2007, 316, 439-441.
- [43] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556-559.
- [44] Á. Vivancos, C. Segarra, M. Albrecht, *Chem. Rev.* **2018**, *118*, 9493-9586.
- [45] Q. Zhao, G. Meng, S. P. Nolan, M. Szostak, Chem. Rev. 2020.
- [46] S. C. Sau, P. K. Hota, S. K. Mandal, M. Soleilhavoup, G. Bertrand, Chem. Soc. Rev. 2020.
- [47] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. von R. Schleyer, G. H. Robinson, Science 2008, 321, 1069-1071.
- [48] Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 7147-7150.
- [49] K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, B. Niepötter, H. Wolf, R. Herbst-Irmer, D. Stalke, Angew. Chem. Int. Ed. 2013, 52, 2963-2967.
- [50] N. Hayakawa, K. Sadamori, S. Mizutani, T. Agou, T. Sugahara, T. Sasamori, N. Tokitoh, D. Hashizume, T. Matsuo, *Inorganics* 2018, 6, 30.
- [51] S. U. Ahmad, T. Szilvási, S. Inoue, Chem. Commun. 2014, 50, 12619-12622.
- [52] S. L. Powley, S. Inoue, Chem. Rec. 2019, 19, 2179-2188.
- [53] T. Agou, N. Hayakawa, T. Sasamori, T. Matsuo, D. Hashizume, N. Tokitoh, Chem. Eur. J 2014, 20, 9246-9249.
- [54] P. Frisch, S. Inoue, *Dalton Trans.* 2019, 48, 10403-10406.

[61]

- [55] A. C. Filippou, Y. N. Lebedev, O. Chernov, M. Straßmann, G. Schnakenburg, Angew. Chem. Int. Ed. 2013, 52, 6974-6978.
- [56] Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2007, 129, 12412-12413.
- [57] H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, Science 2012, 336, 1420-1422.
- [58] S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nature Chemistry 2010, 2, 865-869.
- [59] P. Bag, A. Porzelt, P. J. Altmann, S. Inoue, J. Am. Chem. Soc. 2017, 139, 14384-14387.
- [60] C. Weetman, P. Bag, T. Szilvási, C. Jandl, S. Inoue, Angew. Chem. Int. Ed. 2019, 58, 10961-10965.
 - Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970-14971.
- [62] S. Roy, K. C. Mondal, S. Kundu, B. Li, C. J. Schürmann, S. Dutta, D. Koley, R. Herbst-Irmer, D. Stalke, H. W. Roesky, *Chem. Eur. J* 2017, 23, 12153-12157.
- [63] T. Ochiai, D. Franz, S. Inoue, Chem. Soc. Rev. 2016, 45, 6327-6344.
- [64] D. Franz, T. Szilvási, E. Irran, S. Inoue, Nat. Commun. 2015, 6, 10037.
- [65] D. Wendel, D. Reiter, A. Porzelt, P. J. Altmann, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 17193-17198.

- [66] Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479-3511.
- [67] P. S. Skell, E. J. Goldstein, J. Am. Chem. Soc. 1964, 86, 1442-1443.
- [68] T. J. Drahnak, J. Michl, R. West, J. Am. Chem. Soc. 1979, 101, 5427-5428.
- [69] P. Jutzi, D. Kanne, C. Krüger, Angew. Chem. Int. Ed. Engl. 1986, 25, 164-164.
- [70] P. Ghana, M. I. Arz, G. Schnakenburg, M. Straßmann, A. C. Filippou, Organometallics 2018, 37, 772-780.
- [71] P. Jutzi, *Chem. Eur. J* **2014**, *20*, 9192-9207.
- [72] H. H. Karsch, U. Keller, S. Gamper, G. Müller, Angew. Chem. Int. Ed. Engl. 1990, 29, 295-296.
- [73] M. Veith, E. Werle, R. Lisowsky, R. Köppe, H. Schnöckel, Chem. Ber. 1992, 125, 1375-1377.
- [74] M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691-2692.
- [75] R. West, M. Denk, Pure Appl. Chem. 1996, 68, 785.
- [76] B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Bläser, J. Chem. Soc., Chem. Commun. 1995, 1931-1932.
- [77] M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628-9629.
- [78] C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. Int. Ed. 2006, 45, 3948-3950.
- [79] M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722-9723.
- [80] T. Kosai, S. Ishida, T. Iwamoto, Angew. Chem. Int. Ed. 2016, 55, 15554-15558.
- [81] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc., Dalton Trans. 1977, 2004-2009.
- [82] D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1974, 895-896.
- [83] G.-H. Lee, R. West, T. Müller, J. Am. Chem. Soc. 2003, 125, 8114-8115.
- [84] B. D. Rekken, T. M. Brown, J. C. Fettinger, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2012, 134, 6504-6507.
- [85] A. V. Protchenko, A. D. Schwarz, M. P. Blake, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, Angew. Chem. Int. Ed. 2013, 52, 568-571.
- [86] T. J. Hadlington, J. A. B. Abdalla, R. Tirfoin, S. Aldridge, C. Jones, Chem. Commun. 2016, 52, 1717-1720.
- [87] A. V. Protchenko, P. Vasko, D. C. H. Do, J. Hicks, M. Á. Fuentes, C. Jones, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 1808-1812.
- [88] D. Wendel, A. Porzelt, F. A. D. Herz, D. Sarkar, C. Jandl, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 8134-8137.
- [89] H. Tanaka, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 5540-5543.
- [90] M. W. Stanford, J. I. Schweizer, M. Menche, G. S. Nichol, M. C. Holthausen, M. J. Cowley, Angew. Chem. Int. Ed. 2019, 58, 1329-1333.
- [91] D. Reiter, R. Holzner, A. Porzelt, P. J. Altmann, P. Frisch, S. Inoue, J. Am. Chem. Soc. 2019, 141, 13536-13546.
- [92] M. Haaf, T. A. Schmedake, R. West, Acc. Chem. Res. 2000, 33, 704-714.
- [93] A. Gackstatter, H. Braunschweig, T. Kupfer, C. Voigt, N. Arnold, Chem. -Eur. J. 2016, 22, 16415-16419.
- [94] S. Raoufmoghaddam, Y.-P. Zhou, Y. Wang, M. Driess, J. Organomet. Chem. 2017, 829, 2-10.
- [95] N. J. Hill, R. West, J. Organomet. Chem. **2004**, 689, 4165-4183.
- [96] S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem. Soc. 2010, 132, 1123-1126.
- [97] S. S. Sen, J. Hey, M. Eckhardt, R. Herbst-Irmer, E. Maedl, R. A. Mata, H. W. Roesky, M. Scheer, D. Stalke, Angew. Chem. Int. Ed. 2011, 50, 12510-12513.
- [98] S. S. Sen, S. Khan, H. W. Roesky, D. Kratzert, K. Meindl, J. Henn, D. Stalke, J.-P. Demers, A. Lange, Angew. Chem. Int. Ed. 2011, 50, 2322-2325.
- [99] S. Inoue, W. Wang, C. Präsang, M. Asay, E. Irran, M. Driess, J. Am. Chem. Soc. 2011, 133, 2868-2871.
- [100] D. Gau, T. Kato, N. Saffon-Merceron, A. De Cózar, F. P. Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2010, 49, 6585-6588.
- [101] D. Gau, R. Nougué, N. Saffon-Merceron, A. Baceiredo, A. De Cózar, F. P. Cossío, D. Hashizume, T. Kato, Angew. Chem. 2016, 128, 14893-14897.
- [102] T. Troadec, T. Wasano, R. Lenk, A. Baceiredo, N. Saffon-Merceron, D. Hashizume, Y. Saito, N. Nakata, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 56, 6891-6895.
- [103] Y. Xiong, S. Yao, A. Kostenko, M. Driess, Dalton Trans. 2018, 47, 2152-2155.
- [104] D. C. H. Do, A. V. Protchenko, M. Ángeles Fuentes, J. Hicks, E. L. Kolychev, P. Vasko, S. Aldridge, Angew. Chem. Int. Ed. 2018, 57, 13907-13911.
- [105] A. C. Filippou, C. Oleg, B. Blom, K. W. Stumpf, G. Schnakenburg, Chem. Eur. J 2010, 16, 2866-2872.
- [106] J. Li, B. Ma, C. Cui, Organometallics 2016, 35, 1358-1360.
- [107] H. Cui, B. Ma, C. Cui, Organometallics 2012, 31, 7339-7342.
- [108] H. Cui, C. Cui, Dalton Trans. 2015, 44, 20326-20329.
- [109] Y. Li, B. Ma, C. Cui, Dalton Trans. 2015, 44, 14085-14091.
- [110] S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Eur. J 2012, 18, 13810-13820.
- [111] D. Lutters, C. Severin, M. Schmidtmann, T. Müller, J. Am. Chem. Soc. 2016, 138, 6061-6067.
- [112] J. M. Charig, B. A. Joyce, J. Electrochem. Soc. 1962, 109, 957.
- [113] M. Schmeisser, P. Voss, Z. Anorg. Allg. Chem. 1964, 334, 50-56.
- [114] J. L. Margrave, P. W. Wilson, Acc. Chem. Res. 1971, 4, 145-152.
- [115] P. W. Schenk, H. Bloching, Z. Anorg. Allg. Chem. 1964, 334, 57-65.
- [116] M. Schmeisser, M. Schwarzmann, Z. Naturforsch., B 1956, 11, 278.
- [117] S.-H. Kang, J. S. Han, M. E. Lee, B. R. Yoo, I. N. Jung, Organometallics 2003, 22, 2551-2553.
- [118] R. A. Benkeser, Acc. Chem. Res. 1971, 4, 94-100.
- [119] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683-5686.
- [120] H. Cui, C. Cui, Dalton Trans. 2011, 40, 11937-11940.
- [121] D. C. H. Do, A. V. Protchenko, M. Ángeles Fuentes, J. Hicks, E. L. Kolychev, P. Vasko, S. Aldridge, Angew. Chem. 2018, 130,
- 14103-14107.
- [122] R. S. Ghadwal, K. Pröpper, B. Dittrich, P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358-364.
- [123] R. S. Ghadwal, H. W. Roesky, K. Pröpper, B. Dittrich, S. Klein, G. Frenking, Angew. Chem. Int. Ed. 2011, 50, 5374-5378.
- [124] A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687-5690.
- [125] M. I. Arz, D. Geiß, M. Straßmann, G. Schnakenburg, A. C. Filippou, Chem. Sci. 2015, 6, 6515-6524.
- [126] M. I. Arz, D. Hoffmann, G. Schnakenburg, A. C. Filippou, Z. Anorg. Allg. Chem. 2016, 642, 1287-1294.
- [127] K. C. Mondal, B. Dittrich, B. Maity, D. Koley, H. W. Roesky, J. Am. Chem. Soc. 2014, 136, 9568-9571.
- [128] K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, I. Tkach, H. Wolf, D. Kratzert, R. Herbst-Irmer, B. Niepötter, D. Stalke, Angew. Chem. Int. Ed. 2013, 52, 1801-1805.
- [129] Y. Li, Y.-C. Chan, Y. Li, I. Purushothaman, S. De, P. Parameswaran, C.-W. So, Inorg. Chem. 2016, 55, 9091-9098.

- [130] J. M. Jasinski, F. K. LeGoues, Chem. Mater. 1991, 3, 989-992.
- [131] J. G. Ekerdt, Y. M. Sun, A. Szabo, G. J. Szulczewski, J. M. White, Chem. Rev. 1996, 96, 1499-1518.
- [132] M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2011, 133, 8874-8876.
- [133] S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Commun. 2012, 48, 1308-1310.
- [134] A. Jana, D. Leusser, I. Objartel, H. W. Roesky, D. Stalke, *Dalton Trans.* 2011, 40, 5458-5463.
- [135] B. Blom, M. Driess, D. Gallego, S. Inoue, Chem. Eur. J 2012, 18, 13355-13360.
- [136] B. Blom, S. Enthaler, S. Inoue, E. Irran, M. Driess, J. Am. Chem. Soc. 2013, 135, 6703-6713.
- [137] M. Stoelzel, C. Präsang, S. Inoue, S. Enthaler, M. Driess, *Angew. Chem. Int. Ed.* **2012**, *51*, 399-403.
- [138] A.-K. Jungton, A. Meltzer, C. Präsang, T. Braun, M. Driess, A. Penner, Dalton Trans. 2010, 39, 5436.
- [139] R. Rodriguez, D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 11492-11495.
- [140] S. Inoue, C. Eisenhut, J. Am. Chem. Soc. 2013, 135, 18315-18318.
- [141] C. Eisenhut, T. Szilvási, N. C. Breit, S. Inoue, Chem. Eur. J 2015, 21, 1949-1954.
- [142] C. Eisenhut, N. C. Breit, T. Szilvási, E. Irran, S. Inoue, Eur. J. Inorg. Chem. 2016, 2016, 2696-2703.
- [143] C. Eisenhut, T. Szilvási, G. Dübek, N. C. Breit, S. Inoue, Inorg. Chem. 2017, 56, 10061-10069.
- [144] E. O. Fischer, Angew. Chem. 1974, 86, 651-663.
- [145] R. R. Schrock, Angew. Chem. Int. Ed. 2006, 45, 3748-3759.
- [146] D. J. Cardin, B. Cetinkaya, M. F. Lappert, Chem. Rev. 1972, 72, 545-574.
- [147] C. S. Higman, J. A. M. Lummiss, D. E. Fogg, Angew. Chem. Int. Ed. 2016, 55, 3552-3565.
- [148] J. C. Mol, J. Mol. Catal. A: Chem. 2004, 213, 39-45.
- [149] A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243-251.
- [150] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527.
- [151] J. W. Herndon, Coord. Chem. Rev. 2002, 227, 1-58.
- [152] A. M. Lozano-Vila, S. Monsaert, A. Bajek, F. Verpoort, Chem. Rev. 2010, 110, 4865-4909.
- [153] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym. J. 2010, 42, 905-915.
- [154] J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939-2947.
- [155] C. Zybill, G. Müller, Angew. Chem. Int. Ed. Engl. 1987, 26, 669-670.
- [156] D. A. Straus, T. D. Tilley, A. L. Rheingold, S. J. Geib, J. Am. Chem. Soc. 1987, 109, 5872-5873.
- [157] D. A. Straus, S. D. Grumbine, T. D. Tilley, J. Am. Chem. Soc. 1990, 112, 7801-7802.
- [158] J. D. Feldman, G. P. Mitchell, J.-O. Nolte, T. D. Tilley, J. Am. Chem. Soc. 1998, 120, 11184-11185.
- [159] G. P. Mitchell, T. D. Tilley, Angew. Chem. Int. Ed. 1998, 37, 2524-2526.
- [160] M. Okazaki, H. Tobita, H. Ogino, *Dalton Trans.* 2003, 493-506.
- [161] F. Gauvin, J. F. Harrod, H. G. Woo, in Adv. Organomet. Chem., Vol. 42 (Eds.: F. G. A. Stone, R. West), Academic Press, 1998, pp. 363-405.
- [162] M. D. Curtis, P. S. Epstein, in Adv. Organomet. Chem., Vol. 19 (Eds.: F. G. A. Stone, R. West), Academic Press, 1981, pp. 213-255.
- [163] H. K. Sharma, K. H. Pannell, Chem. Rev. 1995, 95, 1351-1374.
- [164] C. Zybill, H. Handwerker, H. Friedrich, in Adv. Organomet. Chem., Vol. 36 (Eds.: F. G. A. Stone, R. West), Academic Press, 1994, pp. 229-281.
- [165] M. F. Lappert, R. S. Rowe, Coord. Chem. Rev. 1990, 100, 267-292.
- [166] P. B. Glaser, T. D. Tilley, J. Am. Chem. Soc. 2003, 125, 13640-13641.
- [167] T. Watanabe, H. Hashimoto, H. Tobita, Chem. Asian J. 2012, 7, 1408-1416.
- [168] H. Sakaba, M. Tsukamoto, T. Hirata, C. Kabuto, H. Horino, J. Am. Chem. Soc. 2000, 122, 11511-11512.
- [169] H. Sakaba, H. Oike, Y. Arai, E. Kwon, Organometallics 2012, 31, 8172-8177.
- [170] B. V. Mork, T. D. Tilley, J. Am. Chem. Soc. 2001, 123, 9702-9703.
- [171] T. Watanabe, H. Hashimoto, H. Tobita, J. Am. Chem. Soc. 2006, 128, 2176-2177.
- [172] T. Watanabe, H. Hashimoto, H. Tobita, Angew. Chem. Int. Ed. 2004, 43, 218-221.
- [173] K. Ueno, M. Sakai, H. Ogino, Organometallics 1998, 17, 2138-2140.
- [174] K. Ueno, S. Asami, N. Watanabe, H. Ogino, Organometallics 2002, 21, 1326-1328.
- [175] K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, J. Am. Chem. Soc. 2009, 131, 916-917.
- [176] N. Nakata, T. Fujita, A. Sekiguchi, J. Am. Chem. Soc. 2006, 128, 16024-16025.
- [177] V. Y. Lee, O. A. Gapurenko, V. I. Minkin, S. Horiguchi, A. Sekiguchi, Russ. Chem. Bull. 2016, 65, 1139-1141.
- [178] V. Y. Lee, S. Aoki, T. Yokoyama, S. Horiguchi, A. Sekiguchi, H. Gornitzka, J.-D. Guo, S. Nagase, J. Am. Chem. Soc. 2013, 135, 2987-2990.
- [179] H. Ogino, Chem. Rec. 2002, 2, 291-306.
- [180] R. Waterman, P. G. Hayes, T. D. Tilley, Acc. Chem. Res. 2007, 40, 712-719.
- [181] B. V. Mork, T. D. Tilley, Angew. Chem. Int. Ed. 2003, 42, 357-360.
- [182] A. C. Filippou, O. Chernov, K. W. Stumpf, G. Schnakenburg, Angew. Chem. Int. Ed. 2010, 49, 3296-3300.
- [183] A. C. Filippou, D. Hoffmann, G. Schnakenburg, Chem. Sci. 2017, 8, 6290-6299.
- [184] P. Ghana, M. I. Arz, U. Chakraborty, G. Schnakenburg, A. C. Filippou, J. Am. Chem. Soc. 2018, 140, 7187-7198.
- [185] P. G. Hayes, Z. Xu, C. Beddie, J. M. Keith, M. B. Hall, T. D. Tilley, J. Am. Chem. Soc. 2013, 135, 11780-11783.
- [186] T. Fukuda, T. Yoshimoto, H. Hashimoto, H. Tobita, Organometallics 2016, 35, 921-924.
- [187] T. Yoshimoto, H. Hashimoto, N. Hayakawa, T. Matsuo, H. Tobita, Organometallics 2016, 35, 3444-3447.
- [188] R. R. Schrock, Chem. Rev. 2002, 102, 145-180.
- [189] E. O. Fischer, in Adv. Organomet. Chem., Vol. 14 (Eds.: F. G. A. Stone, R. West), Academic Press, 1976, pp. 1-32.
- [190] T. Yoshimoto, H. Hashimoto, N. Takagi, S. Sakaki, N. Hayakawa, T. Matsuo, H. Tobita, Chem. Eur. J 2019, 25, 3795-3798.
- [191] A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2011, 50, 1122-1126.
- [192] A. C. Filippou, B. Baars, O. Chernov, Y. N. Lebedev, G. Schnakenburg, Angew. Chem. Int. Ed. 2014, 53, 565-570.
- [193] H. Hashimoto, H. Tobita, Coord. Chem. Rev. 2017.
- [194] J. Y. Corey, Chem. Rev. 2011, 111, 863-1071.
- [195] J. Y. Corey, J. Braddock-Wilking, Chem. Rev. 1999, 99, 175-292.
- [196] M. Suginome, Y. Ito, Chem. Rev. 2000, 100, 3221-3256.
- [197] E. A. Zarate, C. A. Tessier-Youngs, W. J. Youngs, J. Am. Chem. Soc. 1988, 110, 4068-4070.
- [198] N. B. Bespalova, M. A. Bovina, A. V. Popov, J. C. Mol, J. Mol. Catal. A: Chem. 2000, 160, 157-164.
- [199] W. G. Sly, J. Am. Chem. Soc. 1959, 81, 18-20.
- [200] H. W. Sternberg, H. Greenfield, R. A. Friedel, J. Wotiz, R. Markby, I. Wender, J. Am. Chem. Soc. 1954, 76, 1457-1458.

- [201] W. I. Bailey, M. H. Chisholm, F. A. Cotton, L. A. Rankel, J. Am. Chem. Soc. 1978, 100, 5764-5773.
- [202] E. J. Forbes, N. Goodhand, T. A. Hamor, N. Iranpoor, J. Fluorine Chem. 1980, 16, 339-350.
- [203] P. M. Boorman, M. Wang, M. Parvez, J. Chem. Soc., Dalton Trans. 1996, 4533-4542.
- [204] Q. Feng, M. L. H. Green, P. Mountford, J. Chem. Soc., Dalton Trans. 1992, 2171-2181.
- [205] M. L. H. Green, P. C. McGowan, P. Mountford, J. Chem. Soc., Dalton Trans. 1995, 1207-1214.
- [206] L. T. Byrne, C. S. Griffith, G. A. Koutsantonis, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1998, 1575-1580.
- [207] J. C. Stichbury, M. J. Mays, J. E. Davies, P. R. Raithby, G. P. Shields, J. Chem. Soc., Dalton Trans. 1997, 2309-2314.
- [208] P. C. Dos Santos, D. R. Dean, Y. Hu, M. W. Ribbe, Chem. Rev. 2004, 104, 1159-1174.
- [209] E. Sappa, A. Tiripicchio, P. Braunstein, Chem. Rev. 1983, 83, 203-239.
- [210] I. Yuji, T. Fumihide, W. Hachiro, Bull. Chem. Soc. Jpn. 1970, 43, 1520-1523.
- [211] M. F. D'Agostino, M. J. McGlinchey, *Polyhedron* 1988, 7, 807-825.
- [212] R. Wilczynski, L. G. Sneddon, J. Am. Chem. Soc. 1980, 102, 2857-2858.
- [213] E. A. Zarate, C. A. Tessier-Youngs, W. J. Youngs, J. Chem. Soc., Chem. Commun. 1989, 577-578.
- [214] L. Rosenberg, M. D. Fryzuk, S. J. Rettig, *Organometallics* **1999**, *18*, 958-969.
- [215] S. Shimada, Y.-H. Li, M. L. N. Rao, M. Tanaka, Organometallics 2006, 25, 3796-3798.
- [216] S. Bourg, B. Boury, F. Carré, R. J. P. Corriu, *Organometallics* **1997**, *16*, 3097-3099.
- [217] S. Bourg, B. Boury, F. H. Carré, R. J. P. Corriu, Organometallics 1998, 17, 167-172.
- [218] H. Arii, M. Takahashi, M. Nanjo, K. Mochida, Organometallics 2011, 30, 917-920.
- [219] R. S. Simons, K. J. Galat, J. D. Bradshaw, W. J. Youngs, C. A. Tessier, G. Aullón, S. Alvarez, J. Organomet. Chem. 2001, 628, 241-254.
- [220] H. Hashimoto, Y. Sekiguchi, T. Iwamoto, C. Kabuto, M. Kira, Organometallics 2002, 21, 454-456.
- [221] M. Auburn, M. Ciriano, J. A. K. Howard, M. Murray, N. J. Pugh, J. L. Spencer, F. G. A. Stone, P. Woodward, J. Chem. Soc., Dalton Trans. 1980, 659-666.
- [222] G. L. Simon, L. F. Dahl, J. Am. Chem. Soc. 1973, 95, 783-789.
- [223] M. M. Crozat, S. F. Watkins, J. Chem. Soc., Dalton Trans. 1972, 2512-2515.
- [224] M. Cowie, M. J. Bennett, Inorg. Chem. 1977, 16, 2325-2329.
- [225] M. Van Tiel, K. M. Mackay, B. K. Nicholson, J. Organomet. Chem. 1993, 462, 79-87.
- [226] W. D. Wang, S. I. Hommeltoft, R. Eisenberg, Organometallics 1988, 7, 2417-2419.
- [227] S. G. Anema, S. K. Lee, K. M. Mackay, B. K. Nicholson, J. Organomet. Chem. 1993, 444, 211-218.
- [228] G. Hencken, E. Weiss, Chem. Ber. 1973, 106, 1747-1751.
- [229] M. Stosur, A. Kochel, A. Keller, T. Szymańska-Buzar, Organometallics 2006, 25, 3791-3794.
- [230] M. Tanabe, K. Osakada, Organometallics 2010, 29, 4702-4710.
- [231] P. Jena, Q. Sun, Chem. Rev. 2018, 118, 5755-5870.
- [232] R. H. Heyn, T. D. Tilley, J. Am. Chem. Soc. 1992, 114, 1917-1919.
- [233] W. D. Wang, R. Eisenberg, J. Am. Chem. Soc. 1990, 112, 1833-1841.
- [234] S. Shimada, M. L. N. Rao, T. Hayashi, M. Tanaka, Angew. Chem. Int. Ed. 2001, 40, 213-216.
- [235] C. Eisenhut, S. Inoue, Phosphorus Sulfur Silicon Rel. Elem. 2016, 191, 605-608.
- [236] G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Angew. Chem. Int. Ed. Engl. 1978, 17, 520-521.

12 Appendix

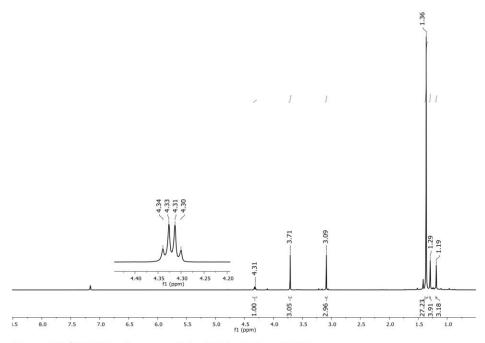
12.1 Supporting Information for Chapter 7

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2019

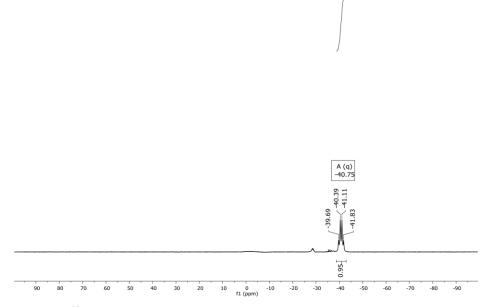
Electronic Supplementary Information ESI

Reactivity of an NHC-stabilized Pyramidal Hydrosilylene with

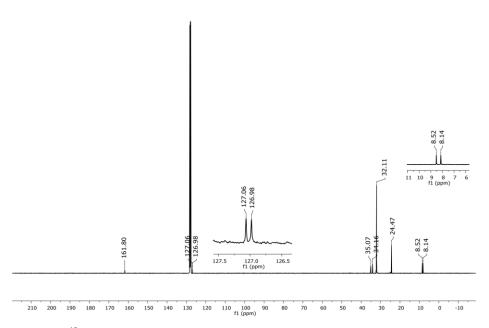
Electrophilic Boron Sources

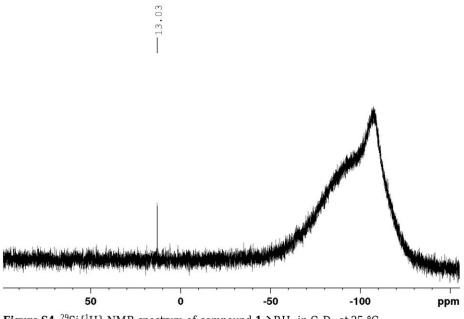

Gizem Dübek, Daniel Franz, Carsten Eisenhut, Philipp J. Altmann, Shigeyoshi Inoue*

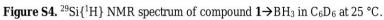
Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany

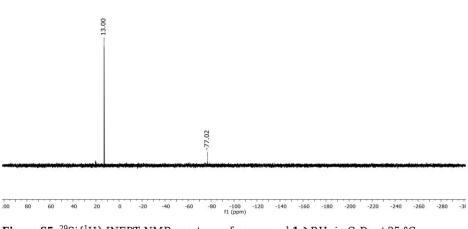

Table of Contents

I.	NMR Spectra	2
II.	Mass Spectra	21
III.	IR Spectrum	23
IV.	Single-Crystal X-ray structure determination	24


I. <u>NMR Spectra</u>


Figure S1. ¹H NMR of compound $1 \rightarrow BH_3$ in C₆D₆ at 25 °C.




Figure S2. ¹¹B NMR spectrum of compound $1 \rightarrow$ BH₃ in C₆D₆ at 25 °C.

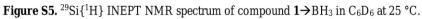


Figure S3. ¹³C NMR spectrum of compound $1 \rightarrow$ BH₃ in C₆D₆ at 25 °C.

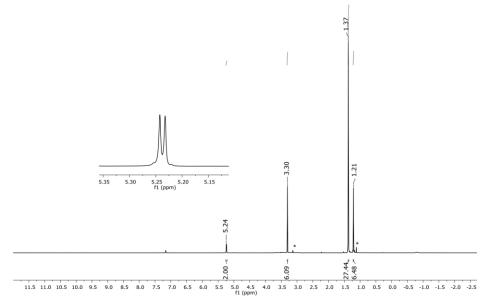


Figure S6. ¹H NMR spectrum of compound 2 in C₆D₆ at 25 °C. (*: tBu₃SiSiH₃, 2%)

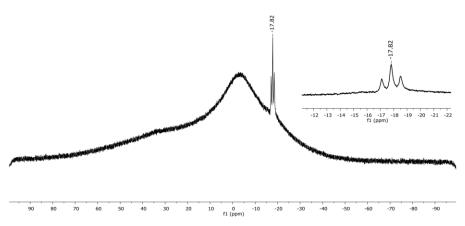
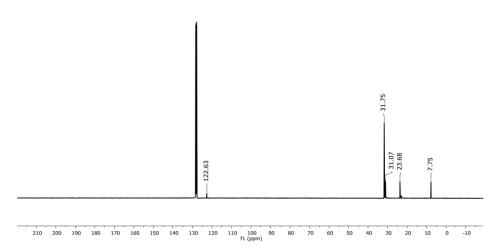
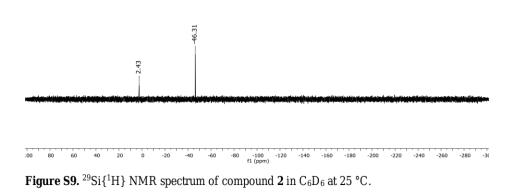
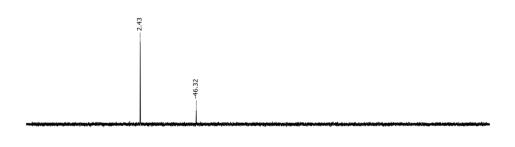
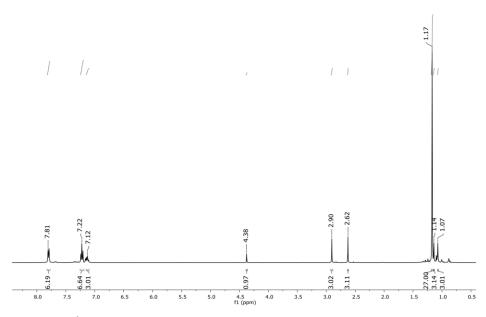
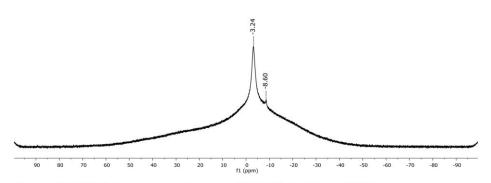


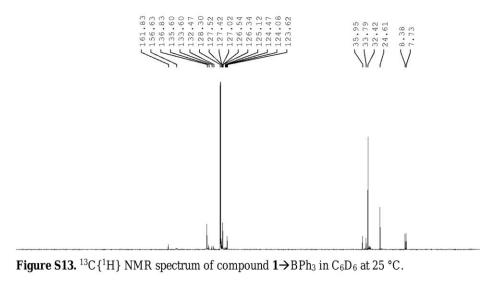
Figure S7. 11 B NMR spectrum of compound 2 in C₆D₆ at 25 °C.

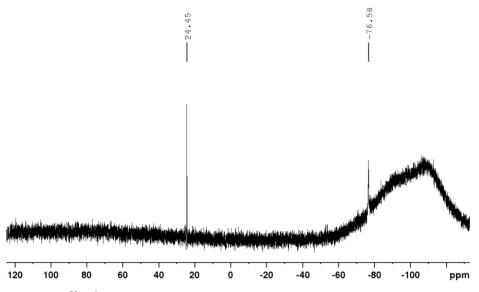




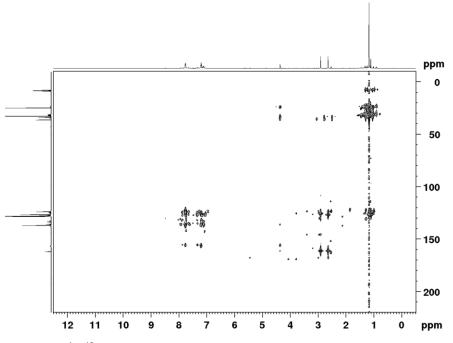

Figure S8. ${}^{13}C{}^{1}H}NMR$ spectrum of compound 2 in C_6D_6 at 25 °C.

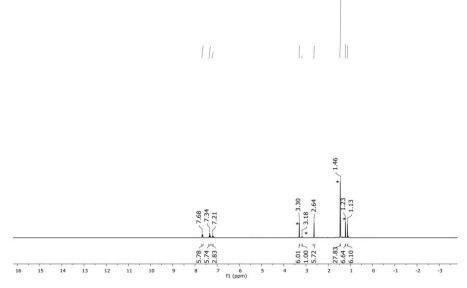


1.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3(f1 (ppm)




Figure S11. ¹H NMR spectrum of compound $1 \rightarrow$ BPh₃ in C₆D₆ at 25 °C.


Figure S12. ¹¹B NMR spectrum of compound $1 \rightarrow$ BPh₃ in C₆D₆ at 25 °C.



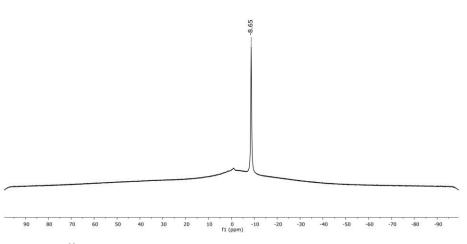

Figure S14. ²⁹Si{¹H} NMR spectrum of compound $1\rightarrow$ BPh₃ in C₆D₆ at 25 °C.

Figure S15. ¹H-¹³C-HMBC NMR spectrum of compound $1 \rightarrow$ BPh₃ in C₆D₆ at 25 °C.

Figure S16. ¹H NMR spectrum of the reaction of compound $1 \rightarrow BPh_3$ with 1 equivalent of L^{Me4} in C_6D_6 at 25°C. (*: tBu₃SiSi(H)L^{Me4}, 1)

Figure S17. ¹¹B NMR spectrum of the reaction of compound $1 \rightarrow$ BPh₃ with 1 equivalent of L^{Me4} in C₆D₆ at 25°C.

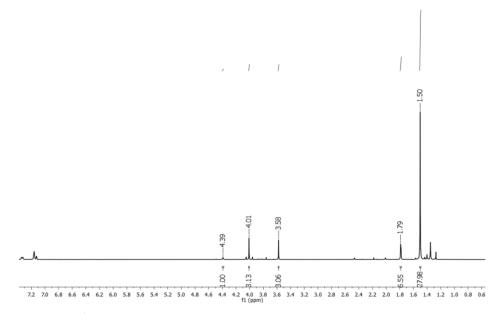


Figure S18. 1H NMR spectrum of the compound $1{\cdot}BF_3$ in C_6D_5F at 25 °C.

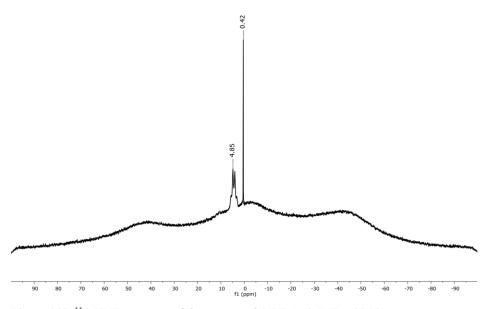


Figure S19. ¹¹B NMR spectrum of the compound $1 \cdot BF_3$ in C_6D_5F at 25 °C.

Figure S20. ^{19}F NMR spectrum of the compound $1{\cdot}BF_3$ in C_6D_6 at 25 °C. (RT 1 h)

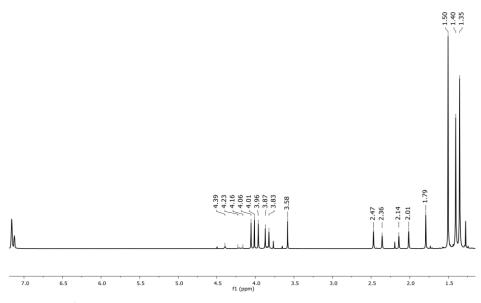


Figure S21. ¹H NMR spectrum of the compound $1 \cdot BF_3$ in C_6D_5F at 25 °C after 20 hrs.

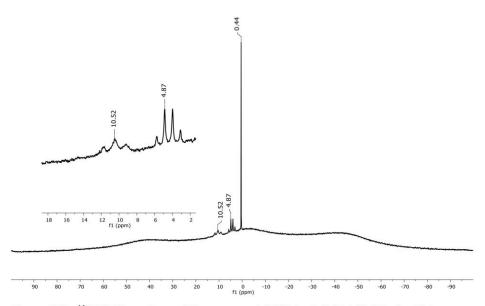


Figure S22. ¹¹B NMR spectrum of the compound 1·BF₃ in C₆D₅F at 25 °C after 20 hrs.



Figure S23. ^{19}F NMR spectrum of the compound $1\cdot BF_3$ in C_6D_6 at 25 °C after heating 70 °C 1h.

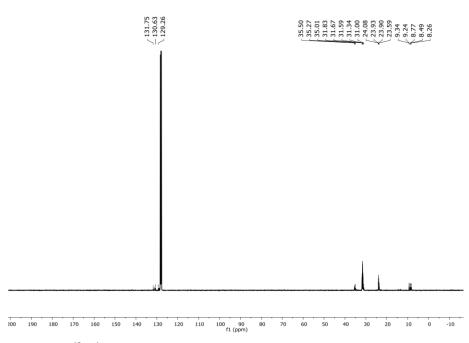


Figure S24. $^{13}C\{^{1}H\}$ NMR spectrum of the compound $1\cdot BF_{3}$ in $C_{6}D_{6}$ at 25 °C after heating 70 °C 1h.

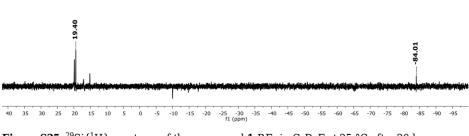


Figure S25. $^{29}Si\{^{1}H\}$ spectrum of the compound $1 \cdot BF_3$ in C_6D_5F at 25 °C after 20 hours.

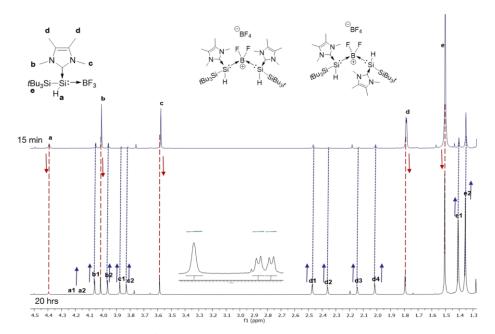


Figure S26. Comparison of 1H NMR spectrum for $1\cdot BF_3$ in C_6D_5F at 25 $^\circ C$ after 15 min and 20 hours.

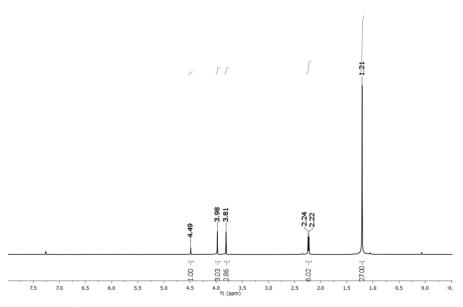


Figure S27. ¹H NMR spectrum of compound 1·BCl₃ in CD₃Cl at 25 °C.

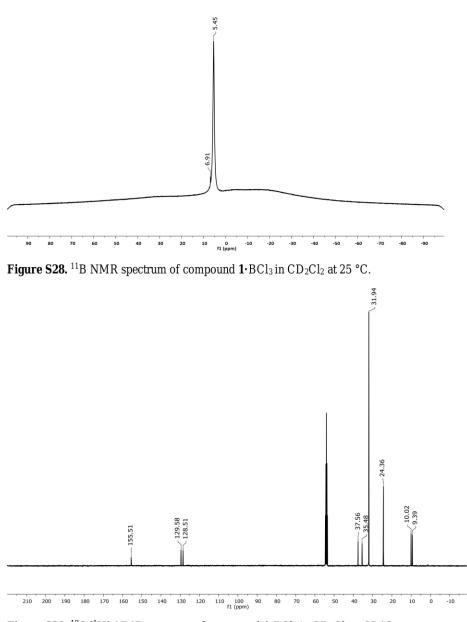
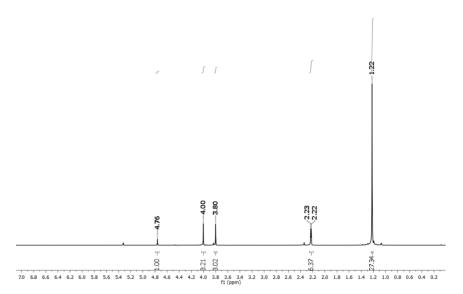
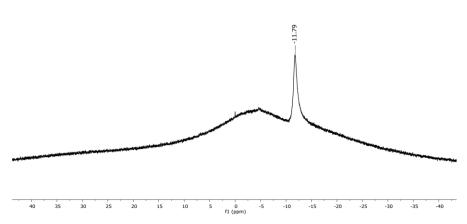
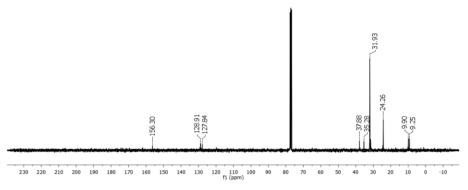
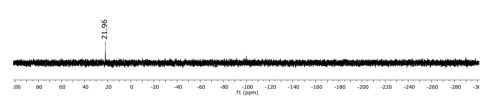



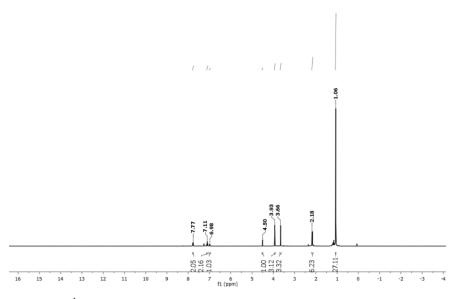
Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of compound $1 \cdot BCl_3$ in CD_2Cl_2 at 25 °C.

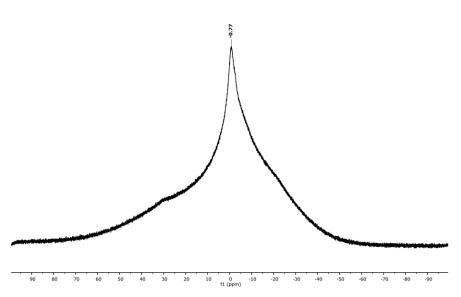


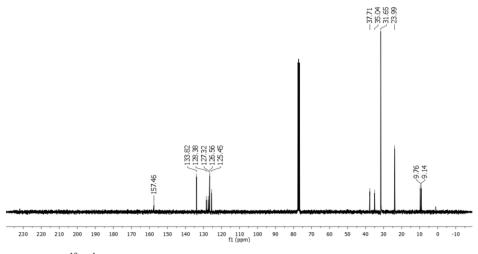
loo 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31 fi (opm)

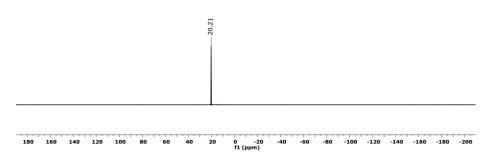

Figure S30. ²⁹Si{¹H} INEPT spectrum of compound **1**·BCl₃ in CD₂Cl₂ at 25 °C.

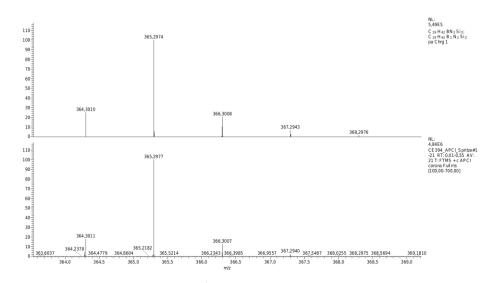

Figure S31. ¹H NMR spectrum of compound $1 \rightarrow$ BBr₃ in CD₂Cl₂ at 25 °C.

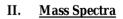

Figure S32. ¹¹B NMR spectrum of compound $1\rightarrow$ BBr₃ in CD₂Cl₂ at 25 °C.


Figure S33. ¹³C{¹H} NMR spectrum of $1 \rightarrow BBr_3$ in CD₃Cl at 25 °C.


Figure S34. ²⁹Si{¹H} INEPT spectrum of compound $1 \rightarrow BBr_3$ in CD₃Cl at 25 °C.


Figure S35. ¹H NMR spectrum of the compound $1 \rightarrow$ BPhBr₂ in CD₃Cl at 25 °C.


Figure S36. ¹¹B NMR spectrum of the compound $1 \rightarrow$ BPhBr₂ in CD₃Cl at 25 °C.



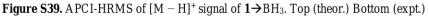

Figure S37. ¹³C{¹H} NMR of spectrum of the compound $1 \rightarrow$ BPhBr₂ in CD₃Cl at 25 °C.

Figure S38. ²⁹Si{¹H} INEPT spectrum of the compound $1 \rightarrow$ BPhBr₂ in CD₃Cl at 25 °C.

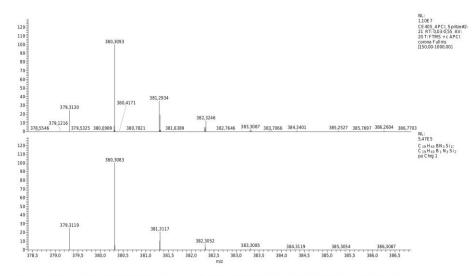


Figure S40. A PCI-HRMS of $[M - H]^+$ Signal of 2. Top (expt.) Bottom (theor.).

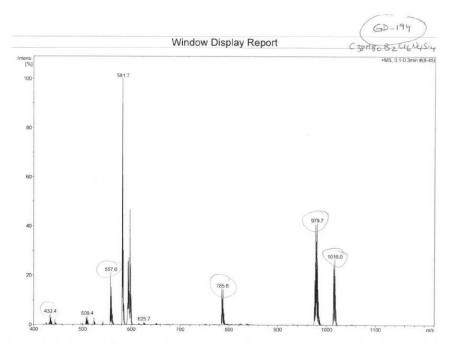


Figure S41. Scan of the original printout from the ESI measurement (positive mode) of $1\cdot BCl_3$ (sample provided in CH_3CN solution). See Figure S42 for signal assignment.

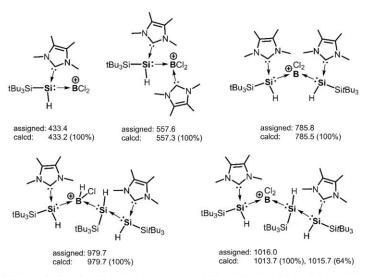


Figure S42. Suggested molecular structures derived from the stoichiometries assigned to the mass spectrum signals in Figure S41.

III. IR Spectrum

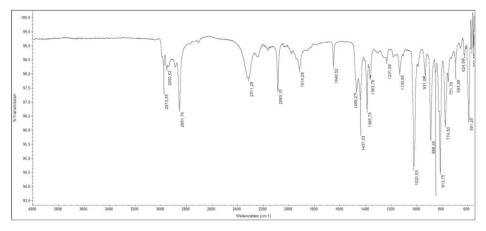
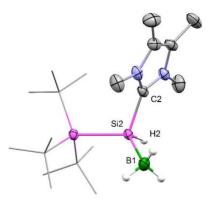



Figure S43. IR spectrum (no matrix) of compound $1 \rightarrow BH_3$

IV. Single-Crystal X-ray structure determination

Data for the Single Crystal XRD structure were collected on a Bruker D8 Venture Duo IMS system equipped with a Helios optic monochromator and a Mo IMS microsource ($\lambda = 0.71073$ Å). The individual crystals were mounted on a glass capillary or a MiTiGen MicroMount microsampling tool in per-fluoropolyether oil and measured in a cold N₂ flow. The data of the compound **1**·BH₃ were collected on an Oxford Diffraction SuperNova at 150 K (Cu-Ka radiation, $\lambda = 1.5418$ Å). The structures were solved by direct methods and refined on F² with the SHELX-97[3] software package. The H atoms at the silicon and boron centers were found in the electron density map while all other hydrogen atoms were calculated and considered isotropically according to a riding model.

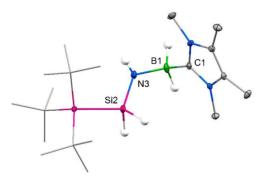

CCDC numbers: 1896328 (1-BH₃), 1896329 (1-BBr₃), 1896330 (2), 1896331 (1-BPhBr₂)

Figure S44. Molecular structure of compound $1\rightarrow$ BH₃. Thermal ellipsoids are drawn at the 30% probability level. H atoms except for the hydrogens at the silicon and at the boron have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Si1-Si2 2.401(1), Si2-C2 1.942(3), Si2-B1 2.009(5), Si1-Si2-B1 123.3(2), C2-Si2-B1 108.2(2), Si1-Si2-C2 111 3(2)

Empirical formula	$C_{19}H_{43}BN_2Si_2$	
Formula weight	366.54	
Temperature	150.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	I2/a	
Unit cell dimensions	a = 15.5684(6) Å	$\alpha = 90^{\circ}.$
	b = 8.9172(5) Å	$\beta = 100.255(4)^{\circ}$
	c = 35.2491(17)	$\gamma = 90^{\circ}.$
Volume	4815.3(4) Å ³	
Z	8	
Density (calculated)	1.011 Mg/m ³	
Absorption coefficient	1.340 mm ⁻¹	
F(000)	1632	
Crystal size	0.40 x 0.28 x 0.06 mm ³	
Theta range for data collection	2.55 to 67.49°.	
Index ranges	-18<=h<=18,-9<=k<=10,	
	-37<=1<=42	
Reflections collected	8677	
Independent reflections	4347[R(int) = 0.0413]	
Completeness to theta = 67.48°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9239 and 0.6136	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4347 / 0 / 243	
Goodness-of-fit on F ²	1.052	
Final R indices [I>2sigma(I)]	R1 = 0.0714, wR2 = 0.1743	
R indices (all data)	R1 = 0.0844, wR2 = 0.1863	
Largest diff. peak and hole	0.712 and -0.332 e.Å ⁻³	

Table S1. Crystal data and structure refinement for compounds $1 \rightarrow BH_3$

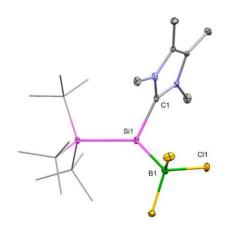


Figure S45. Molecular structure of compound **2**. Thermal ellipsoids are drawn at the 30% probability level. H atoms except for the hydrogens at the silicon, boron and nitrogen have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Si1-Si2 2.363(11), Si2-N3 1.703(3), B1-N3 1.542(4), B1-C1 1.635(4), Si1-Si2-N3 114.35(10), Si2-N3-B1 123.2(2), N3-B1-C1 110.2 (2).

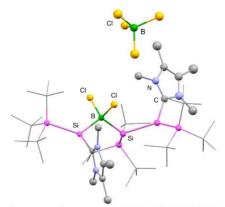

Empirical formula	$C_{19}H_{44}BN_3Si_2$	
Formula weight	381.56	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.3084(7) Å	α = 81.990(3)°
	b = 8.5790(7) Å	β = 81.622(3)°
	c = 19.8196(16) Å	γ = 61.427(2)°
Volume	1223.45(18) Å 3	
Z	2	
Density (calculated)	1.036 g/cm ³	
Absorption coefficient	0.152 mm ⁻¹	
F(000)	424	
Crystal size	0.377 x 0.399 x 0.581 mm	
Theta range for data collection	2.71 to 25.03°	
Index ranges	-9<=h<=9, -10<=k<=10,	
	-23<=l<=23	

Table S2. Crystal data and structure refinement for compound 2.

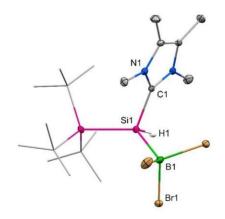

Reflections collected	34475	
Independent reflections	4326 [R(int) = 0.0648]	
Completeness to theta	96.5%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9450 and 0.9170	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4326 / 0 / 255	
Goodness-of-fit on F^2	1.134	
Final R indices [I>2sigma(I)]	R1 = 0.0509, wR2 = 0.1179	
R indices (all data)	R1 = 0.0584, wR2 = 0.1258	
Largest diff. peak and hole	0.433 and -0.297 eÅ ⁻³	

Figure S46. Molecular structure of compound $1 \cdot BCl_3$ in the solid state. Thermal ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Data quality is insufficent for parameter discussion. Space Group: monoclinic, P2₁/n. Cell Parameters: a = 8.97 Å, b = 19.71 Å, c = 13.57 Å; $\alpha = 90^{\circ}$, $\beta = 91.9^{\circ}$, $\gamma = 90$.

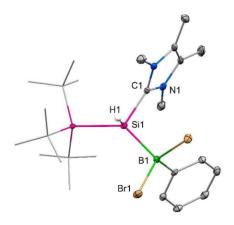

Figure S47. Molecular structure of compound $[(1)BCl_2(SiH(SitBu_3)1)]^+[BCl_4]^-$ in the solid state (Ball&Stick Model). H atoms have been omitted for clarity. Data quality is insufficient for parameter discussion. Space Group: monoclinic, P2₁/n Cell Parameters: a = 14.85 Å, b = 21.26 Å, c = 21.75 Å; $\alpha = 90^{\circ}$, $\beta = 104.6^{\circ}$, $\gamma = 90$.

Figure S48. Molecular structure of compound $1 \rightarrow BBr_3$. Thermal ellipsoids are drawn at the 30% probability level. H atoms except for the hydrogens at the silicon have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Si1-Si2 2.428(2), Si1-C1 1.922(3), Si1-B1 2.045(3), Si2-Si1-B1 130.09(11), C1-Si1-B1 104.92(14), Si2-Si1-C1 113.56(10).

Empirical formula	$C_{19}H_{40}BBr_3N_2Si_2$	
Formula weight	603.25	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 9.131(5) Å	$\alpha = 90^{\circ}$
	b = 20.191(11) Å	$\beta = 93.274(17)^{\circ}$
	c = 14.376(8) Å	$\gamma = 90^{\circ}$
Volume	2646.(2) Å ³	
Z	4	
Density (calculated)	1.514 g/cm ³	
Absorption coefficient	4.672 mm ⁻¹	
F(000)	1224	
Crystal size	0.263 x 0.286 x 0.344 mm	
Theta range for data collection	2.45 to 29.65°	
Index ranges	-12<=h<=12, -27<=k<=21,	
	-17<=l<=19	
Reflections collected	23398	
Independent reflections	7373 [R(int) = 0.0396]	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.3730 and 0.2960	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7373 / 331 / 380	
Goodness-of-fit on F ²	1.048	
Final R indices [I>2sigma(I)]	R1 = 0.0396, wR2 = 0.0784	
R indices (all data)	R1 = 0.0577, wR2 = 0.0837	
Largest diff. peak and hole	2.227 and -0.726 eÅ ⁻³	

Table S3. Crystal data and structure refinement for compound $1 \rightarrow BBr_3$.

Figure S49. Molecular structure of compound $1 \rightarrow$ BPhBr₂. Thermal ellipsoids are drawn at the 30% probability level. H atoms except for the hydrogen atom at the silicon atom have been omitted for clarity. Selected interatomic distances [Å] and angles [°]: Si1-Si2 2.421(1), Si1-C1 1.931(3), Si1-B1 2.074(3), Si2-Si1-B1 131.9(1), C1-Si1-B1 103.0(1), Si2-Si1-C1 113.1(1).

Empirical formula	$C_{25}H_{45}BBr_2N_2Si_2$	
Formula weight	600.42	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P - 1	
Unit cell dimensions	a = 8.6853(5) Å	α = 85.276(2)°
	b = 9.0560(5) Å	$\beta = 89.604(2)^{\circ}$
	c = 20.7220(12) Å	$\gamma = 63.638(2)^{\circ}$
Volume	1454.61(15) Å ³	
Ζ	2	
Density (calculated)	1.371 g/cm ³	
Absorption coefficient	2.885 mm ⁻¹	
F(000)	624.0	
Crystal size	0.263 x 0.286 x 0.344 mm	

	Table S4.	Crystal	data and	structure	refinement	for com	pound 1 •BPhBr ₂ .
--	-----------	---------	----------	-----------	------------	---------	--------------------------------------

Theta range for data collection	2.52 to 25.79°	
Index ranges	-10<=h<=10, -11<=k<=11,	
	-25<=l<=25	
Reflections collected	61899	
Independent reflections	5567 [R(int) = 0.0338]	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7453 and 0.5649	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5567 / 1 / 306	
Goodness-of-fit on F ²	1.169	
Final R indices [I>2sigma(I)]	R1 = 0.0378, wR2 = 0.0937	
R indices (all data)	R1 = 0.0395, wR2 = 0.0945	
Largest diff. peak and hole	2.222 and -0.745 eÅ ⁻³	

12.2 Supporting Information for Chapter 8

Supporting Information NHC-stabilized Silyl-substituted Chlorosilylene

Gizem Dübek, Franziska Hanusch and Shigeyoshi Inoue*

Department of Chemistry, Catalysis Research Center and WACKER-Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstraße 4, D-85747 Garching, Germany

Table of Contents

1.	Experimental Section	S2
1.1	General Methods and Instrumentation	S2
1	NHC-stabilized silyl-chlorosilylene (1):	S2
5	Synthesis of compound 2	S5
5	Synthesis of compound 3	S8
5	Synthesis of compound 4a	S13
2.	Single Crystal X-ray structure determination	S17
3.	References	S22

S1

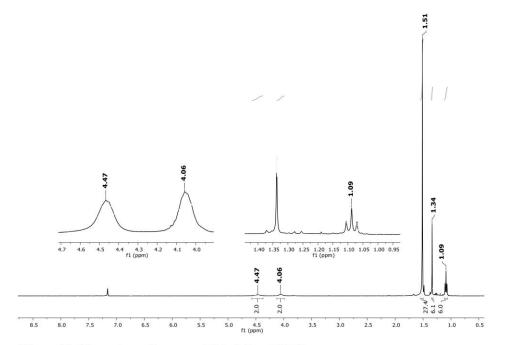
1. Experimental Section

1.1 General Methods and Instrumentation

All experiments and manipulations were carried out under argon atmosphere using standard Schlenk techniques or in an MBraun inert-atmosphere glovebox. Glassware was heat dried under vacuum prior to use. Solvents were dried by standard methods. NMR spectra at ambient temperature (298 K) were recorded on a Bruker AV400US, DRX400, AVHD300, or AV500C device. $\delta(^{1}\text{H})$ and $\delta(^{13}\text{C})$ were referenced internally to the relevant residual solvent resonances. $\delta(^{29}\text{Si})$ was referenced to the signal of tetramethylsilane (TMS) ($\delta = 0$ ppm) as external standard. Some NMR spectra include resonances for silicone grease (C₆D₆: $\delta(^{1}\text{H}) = 0.29$ ppm, $\delta(^{13}\text{C}) = 1.4$ ppm and $\delta(^{29}\text{Si}) = -21.8$ ppm) derived from B. Braun Melsungen AG Sterican® cannulas. Elemental analyses (EA) were conducted with a EURO EA (HEKA tech) instrument equipped with CHNS combustion analyzer by microanalytical laboratory of the Catalysis Research Center, Technische Universität München. IR spectra were recorded on a Perkin Elmer FT-IR spectrometer (diamond ATR) in a range of 400–4000 cm⁻¹ at room temperature inside an argon-filled glovebox. The compounds 1,3,4,5-tetramethylimidazol-2-ylidene (ImEt₂Me₂)¹ and *t*Bu₃SiSiHCl₂² were prepared according to literature procedures.

Abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, n.a. = not applicable/no answer, n.o. = not observed, SCXRD = Single Crystal X-ray diffraction, IG = Inverse-Gated, INEPT = Insensitive Nuclei Enhanced by Polarization Transfer, HMBC = Heteronuclear Multiple Bond Correlation.

NHC-stabilized silyl-chlorosilylene (1): A solution of $ImEt_2Me_2$ (4.32g, 28 mmol) in 30 mL toluene added dropwise to a cooled ($-50^{\circ}C$) solution of $tBu_3SiSiHCl_2$ (4.25g, 14 mmol) in 100 mL toluene. Upon addition, colorless precipitate formed while the color of the reaction mixture turned into red-orange. After 1 hour, cooling bath was removed and the suspension stirred overnight. Reaction mixture was filtered via frit, extracted with toluene (3 x 50 mL) and toluene removed by vacuum. The resulting orange powder was washed with pentane (2 x 25 mL) and dried under vacuum at 40°C for 3 hours. Suitable crystals for single X-ray diffraction analysis of 1 were obtained by slow diffusion of pentane to a concentrated toluene solution of 1 at room temperature. Yield: 5.4 g (92%).


¹**H NMR (400 MHz, C₆D₆, 298K):** δ 4.47 (br, 2H, N-C*H*₂CH₃), 4.06 (br, 2H, N-C*H*₂CH₃), 1.51 (s, 27H, ((C*H*₃)₃C)), 1.34 (s, 6H, C-C*H*₃), 1.09 (t, 6H, N-CH₂C*H*₃).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 169.71 (:CN₂, ¹*J*(SiC) = 49.32 Hz)), 126.19 (CH₃C=CCH₃), 43.48 (N-CH₂CH₃), 32.77 (C(CH₃)₃), 25.90 (C(CH₃)₃), 15.13 (N-CH₂CH₃), 8.19 (CH₃C=CCH₃).

²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298K): δ 18.30 (ClSi:), 9.44 (tBu₃Si)

²⁹Si INEPT NMR (79 MHz, C₆D₆, 298K): δ 9.44 (*t*Bu₃S*i*)

EA: C₂₁H₄₃ClN₂Si₂; Calculated [%]: C (60.75), H (10.44), N (6.75); Measured: C (59.94), H (10.48), N (6.06)

Figure S1. ¹H spectrum of compound **1** in C₆D₆ at 298 K.

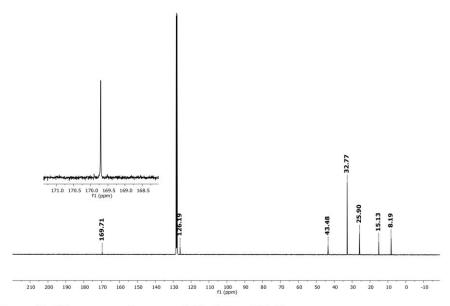


Figure S2. ¹³C spectrum of compound 1 in C₆D₆ at 298 K.

S3

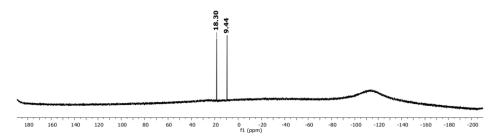


Figure S3. ${}^{29}Si{}^{1}H$ NMR spectrum of compound 1 in C₆D₆ at 298 K.

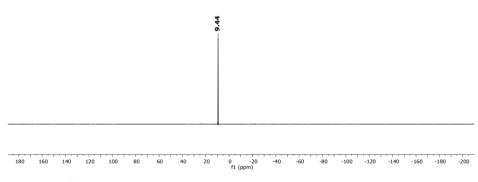


Figure S4. ²⁹Si–INEPT NMR spectrum of compound 1 in C₆D₆ at 298 K.

S4

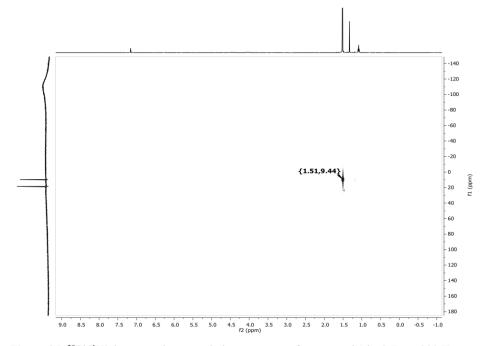
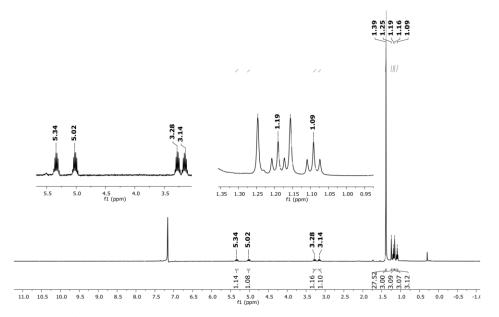
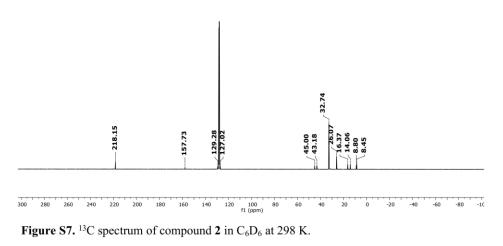


Figure S5. ²⁹Si{¹H} heteronuclear correlation spectrum of compound 1 in C_6D_6 at 298 K.

Synthesis of compound 2: Compound 1 (100 mg, 0.24 mmol) and $Fe_2(CO)_9$ (45 mg, 0.12 mmol) were placed in a Schlenk flask and dissolved in 25 mL THF. The reaction mixture turned from red-orange to brownish purple after 30 minutes and was stirred overnight at ambient temperature. Solvent was removed and residue extracted with toluene (2 x 20 mL). Toluene was removed, the residue washed with hexane (2 x 10 mL) and dried. Suitable crystals for single X-ray diffraction analysis of 2 were obtained by layering of pentane onto concentrated toluene solution at room temperature. Compound 2 was isolated as a beige solid. (90 mg, 0.15 mmol, 64%)


¹H NMR (400 MHz, C₆D₆, 298K): δ 5.34 (m, 1H, N₁-CH_{2a}CH₃), 5.02 (m, 1H, N₂-CH_{2a}CH₃), 3.28 (m, 1H, N₁-CH_{2a}CH₃), 3.14 (m, 1H, N₂-CH_{2a}CH₃), 1.39 (s, 27H, ((CH₃)₃C)), 1.25 (s, 3H, C-CH_{3a}), 1.19 (t, 3H, N-CH₂CH_{3a}), 1.16 (s, 3H, C-CH_{3b}), 1.09 (t, 3H, N-CH₂CH_{3b}).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 218.15 (CO), 157.73 (:CN₂), 129.28 (CH₃C=CCH₃), 127.02 (CH₃C=CCH₃), 45.00 (N-C_aH₂CH₃), 43.18 (N-C_bH₂CH₃), 32.74 (C(CH₃)₃), 26.07 (C(CH₃)₃), 16.37 (N-CH₂C_aH₃), 14.06 (N-CH₂C_bH₃), 8.80 (CH₃C=CCH₃), 8.45 (CH₃C=CCH₃).


²⁹Si NMR (79 MHz, C₆D₆, 298K): δ 64.94 (ClSi:→ Fe), 16.77 (*t*Bu₃Si).

IR (ATR, neat) [cm⁻¹]: v(CO) = 2013, 1934, 1899, 1877

EA: $C_{25}H_{43}ClFeN_2O_4Si_2$; Calculated [%]: C (51.50), H (7.43), N (4.80); Measured: C (51.53), H (7.53), N (4.87)

Figure S6. ¹H spectrum of compound **2** in C₆D₆ at 298 K.

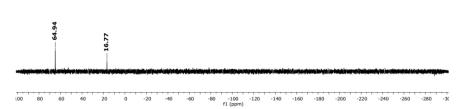


Figure S8. ${}^{29}Si{}^{1}H$ NMR spectrum of compound 2 in C₆D₆ at 298 K.

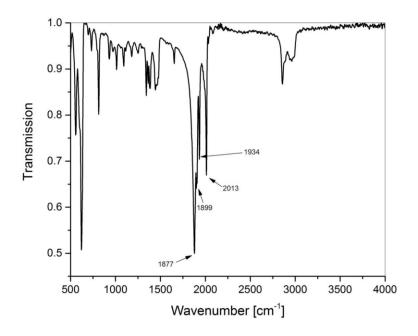


Figure S9. IR spectrum of compound 2 (ATR, neat). S7

Synthesis of compound 3: To an orange solution of compound 1 (120 mg, 0.29 mmol) in 20 mL THF, LiBH₄ (8 mg, 0.35 mmol, 1.2 eq) in 5 mL THF was added via syringe at room temperature. The reaction mixture stirred overnight while the orange color disappeared to yield almost colorless, pale yellow cloudy solution. THF was removed by reduced pressure, toluene was added (20 mL + 5 mL) and filtered. Toluene was evaporated to afford colorless powder. Washing with 5 mL pentane followed by drying under reduced pressure yielded compound 3 in 84% yield (96 mg). Suitable crystals for single crystal X-ray diffaraction analysis were obtained by layering pentane to a concentrated toluene solution of compound 3.

¹H NMR (500 MHz, C₆D₆, 298K): δ 4.75 (m, 1H, N₁-CH_{2a}CH₃), 4.31 (q,³J(H,H) = 5.5 Hz, Si,H satellites: ¹J(Si,H) = 150 Hz, 1H, Si-H), 4.25 (m, 1H, N₂-CH_{2a}CH₃), 3.48 (m, 1H, N₁-CH_{2b}CH₃), 3.17 (m, 1H, N₂-CH_{2b}CH₃), 1.39 (s, 27H, ((CH₃)₃C)), 1.31 (s, 3H, C-C_{H3a}), 1.27 (t, 3H, N-CH₂CH_{3a}), 1.26 (s, 3H, C-C_{H3b}), 0.88 (t, 3H, N-CH₂CH_{3b}), n.o (BH). Minor product; ¹H NMR (400 MHz, Benzene-d₆) δ 1.41 (s, 27H), 1.32 (s, 6H), 1.08 (t, *J* = 6.9 Hz, 6H) n.o. N-CH₂CH₃ and Si-H.

¹¹**B** NMR (128 MHz, C₆D₆, 298K): δ – 40.31 (q, ¹*J*(B,H) = 92.9 Hz, *B*H₃, major product), – 31.41 (q, ¹*J*(B,H) = 92.0 Hz, *B*H₃, minor product)

¹³C NMR (101 MHz, C_6D_6 , 298K): δ 162.60 (: CN_2), 126.87 ($CH_3C_a=CCH_3$), 125.98 ($CH_3C=C_bCH_3$) 43.81 ($N-C_aH_2CH_3$), 42.40 ($N-C_bH_2CH_3$), 32.16 ($C(CH_3)_3$), 24.65 ($C(CH_3)_3$), 16.23 ($N-CH_2C_aH_3$), 15.60 ($N-CH_2C_bH_3$), 8.17 ($CH_3C=CCH_3$), 8.05 ($CH_3C=CCH_3$). Minor product: 43.99 ($N-CH_2CH_3$), 32.66 ($C(CH_3)_3$), 25.19 ($C(CH_3)_3$), 16.61 ($N-CH_2CH_3$), 8.28 ($CH_3C=CCH_3$), n.o. : CN_2 and $CH_3C=CCH_3$.

²⁹Si NMR (79 MHz, C₆D₆, 298K): δ –64.17 (HSi:), 11.93 (tBu₃Si). Minor product: 8.63 (tBu₃Si).

IR (ATR, neat) [cm⁻¹]: v(Si-H) = 2087, v(B-H) = 2233 - 2330.

EA: C₂₁H₄₇BN₂Si₂; Calculated [%]: C (63.92), H (12.01), N (7.10); Measured: C (61.22), H (11.32), N (7.20)

Note: The low value for carbon explained by formation of incombustible boron and silicon carbides.

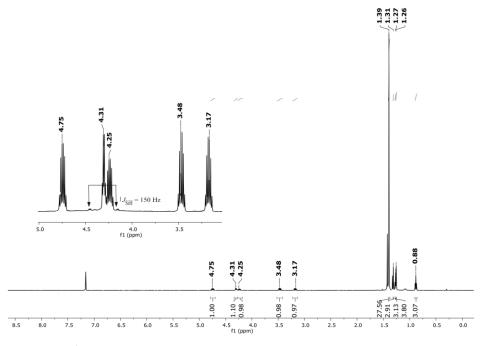
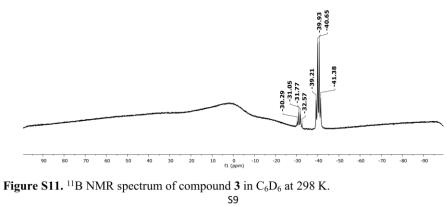



Figure S10. ¹H NMR spectrum of compound 3 in C₆D₆ at 298 K.

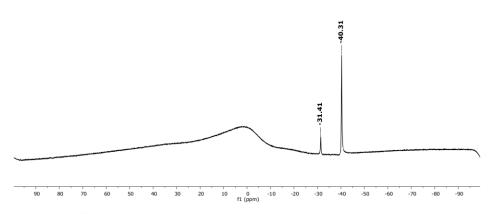


Figure S12. ¹¹B $\{^{1}H\}$ NMR spectrum of compound 3 in C₆D₆ at 298 K.

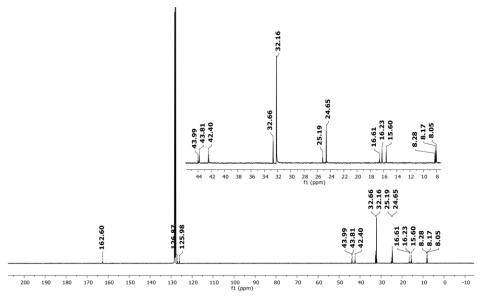


Figure S13. ¹³C NMR spectrum of compound 3 in C₆D₆ at 298 K.

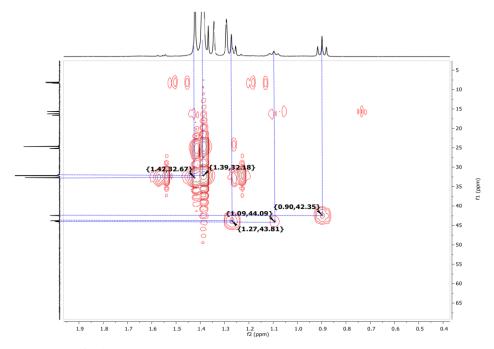


Figure S14. ¹³C{¹H} heteronuclear correlation spectrum (2–0.4 ppm) of compound 3 in C_6D_6 at 298 K.

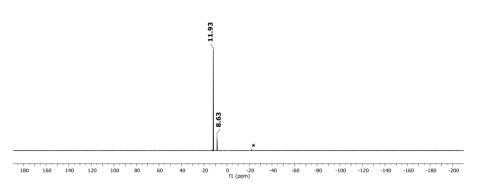


Figure S15. ²⁹Si–INEPT NMR spectrum of compound 3 in C₆D₆ at 298 K. (*: silicon grease)

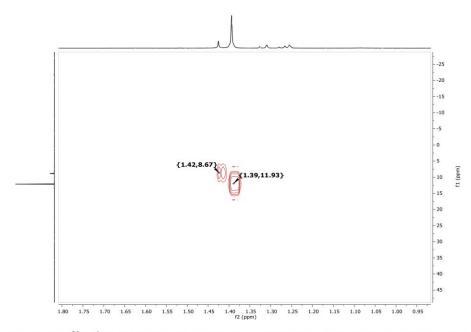



Figure S16. $^{29}Si\{^{1}H\}$ heteronuclear correlation spectrum (1.8–0.95 ppm) of compound 3 in C_6D_6 at 298 K.

Figure S17. ²⁹Si $\{^{1}H\}$ heteronuclear correlation spectrum (9.0–0 ppm) of compound **3** in C₆D₆ at 298 K. (*: silicon grease)

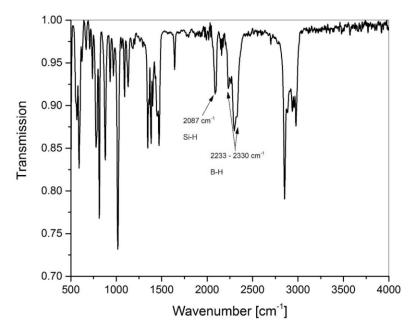


Figure S18. IR spectrum of compound 3 (ATR, neat).

Synthesis of compound 4a: Pale yellow solution of $ImMe_4$ (61 mg, 0.48 mmol, 2 equiv.) in 2 mL toluene was added dropwise to a deep orange solution of compound **1** (100 mg, 0.24 mmol) in 4 mL toluene. Approximately 5 minutes after addition, yellow solid dropped out of the solution. The suspension stirred additional 1 h, during this time more precipitate formed while the color of supernatant became pale yellow. Suspension filtered, yellow solid washed two times with toluene (2x3 mL), then with pentane (2x4 mL) and dried under vacuum. Compound **4a** afforded as a yellow solid (120 mg, 92%). During the crystallization process (slow diffusion of pentane into concentrated difluorobenzene solution of compound **4a**), compound **4a** rearranged itself to compound **4** as the measured crystal showed the already reported structure of $[tBu_3SiSi(ImMe_4)_2]Cl.^3$

¹**H NMR (400 MHz, CD₃CN, 298K):** δ 4.40 (q, 4H, N-CH₂CH₃), 3.88 (s, 6H, N-CH₃), 2.20 (s, 6H, NHC-CH₃), 2.18 (s, 6H, NHC-CH₃), 1.20 (s, 27H, (CH₃)₃C), 0.95 (t, 6H, N-CH₂CH₃).

¹³C NMR (101 MHz, CD₃CN, 298K): δ 163.28 (:CN₂), 162.97 (:CN₂), 129.88 (CH₃*C*=*C*CH₃), 129.18 (CH₃*C*=*C*CH₃), 45.27 (N-*C*H₂CH₃), 37.21 (N-*C*H₃), 33.06 (*C*(CH₃)₃), 26.17 (C(*C*H₃)₃), 14.84 (N-CH₂CH₃), 9.58 (CH₃C=CCH₃), 9.39 (CH₃C=CCH₃).

²⁹Si NMR (79 MHz, CD₃CN, 298K): δ 21.79 (*t*Bu₃S*i*), -80.51(Si:⁺)

EA: $C_{28}H_{55}CIN_4Si_2$ Calculated [%]: C (62.35), H(10.28), N(10.39); Measured: C(63.59), H(9.83), N(9.29)

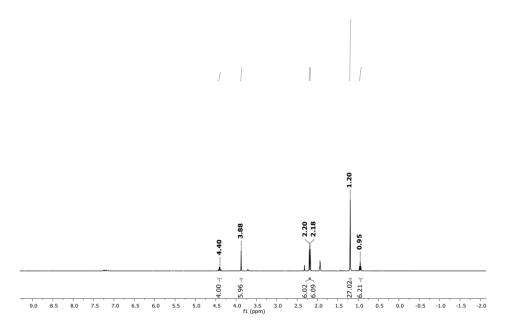


Figure S19. ¹H NMR spectrum of compound 4a in CD₃CN at 298 K.

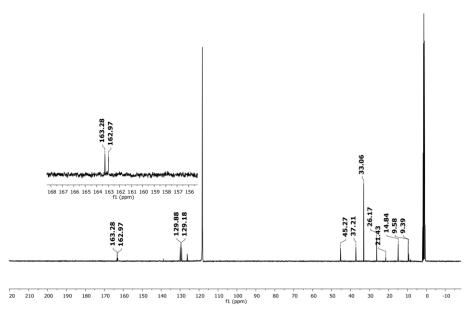


Figure S20. ¹³C NMR spectrum of compound 4a in CD₃CN at 298 K.

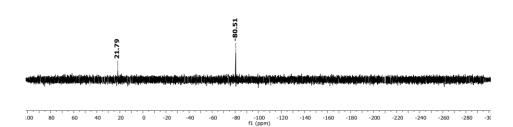
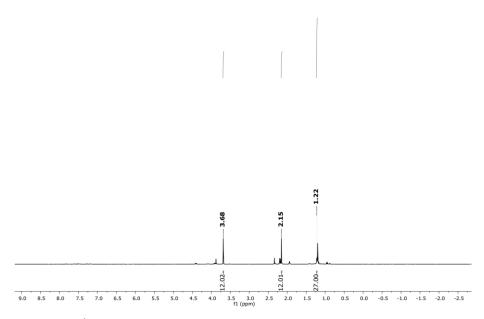
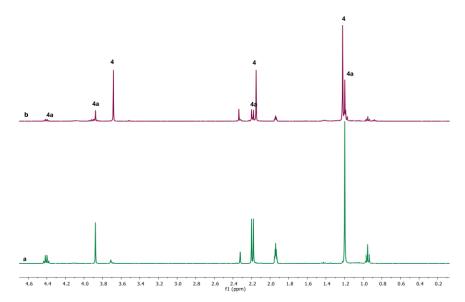
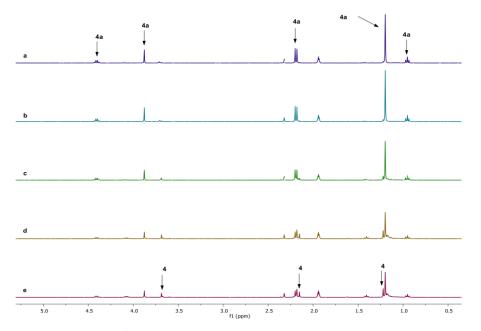



Figure S21. ²⁹Si NMR spectrum of compound 4a in CD₃CN at 298 K.

Figure S22. ¹H NMR spectrum of compound **4** in CD₃CN at 298 K (obtained crystals from slow diffusion of pentane to the concentrated solution of **4a** in DFB).

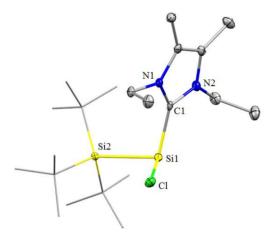

Figure S23. Comparison of ¹H NMR spectra of compounds 4 (b) and 4a (a) in CD_3CN at 298 K.

Figure S24. Stacked ¹H NMR spectra of the NHC exchange of compound **4a** to the compound **4** upon heating in CD₃CN. (a) t: 12 hrs, (b) t: 24 hrs, (c) Heating 2 hours at 65 °C. (d) Heating 3 hours at 70 °C. (e) Storing the heated solution (d) at room temperature for 2 days.

2. Single Crystal X-ray structure determination

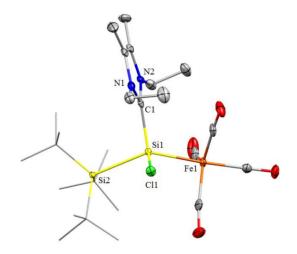

Single crystal diffraction data were recorded on a Bruker D8 Venture system equipped with a Helios optic monochromator and a Mo TXS rotating anode ($\lambda = 0.71073$ Å). The data collection was performed, using the APEX III software package⁴ on single crystals coated with Fomblin ® Y as perfluorinated ether. The single crystal was picked on a micro sampler, transferred to the diffractometer and measured frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.⁵ Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.⁵ Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX III software in conjunction with SHELXL-2014⁶ and SHELXLE.⁷ H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and $Uiso(H) = 1.2 \cdot Ueq(C)$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing Σw (Fo2-Fc2)2 with the SHELXL weighting scheme.⁸ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.⁹ The images of the crystal structures were generated by Mercury.¹⁰ The CCDC numbers CCDC-(1950760), CCDC-(1950761) and CCDC-(1961386) contain the supplementary crystallographic data for the structures 1, 2 and 3, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Figure S25. Ellipsoid plot (50% level) of the molecular structure of compound **1**. Hydrogen atoms are omitted for clarity and *tert*-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (°): Si1–C1: 1.9572(19), Si1–Si2: 2.4421(7), Si1–C1: 2.1947(7); C1–Si1–C1: 99.23(6), Cl–Si1–Si2: 103.51(3), C1–Si1–Si2: 106.51(6)

Empirical formula	C ₂₁ H ₄₃ ClN ₂ Si ₂	
Formula weight	415.20	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 8.7189(8) Å	$\alpha = 90$
	b = 12.8975(13) Å	$\beta = 99.928(4)$
	c = 21.868(2) Å	$\gamma = 90$
Volume	2422.3(4) Å ³	
Ζ	4	
Density (calculated)	1.138 g/cm3	
Absorption coefficient	0.265 mm-1	
F(000)	912	
Crystal size	0.108 x 0.133 x 0.176 mm	
Theta range for data collection	2.40 to 25.03°	
Index ranges	-10<=h<=10, -15<=k<=15, -	
	26<=l<=26	
Reflections collected	73528	
Independent reflections	4283 [R(int) = 0.0875]	
Completeness	100.0%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7452 and 0.7152	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4283 / 0 / 248	
Goodness-of-fit on F ²	1.070	
Final R indices [I>2sigma(I)]	R1 = 0.0374, wR2 = 0.0739	
R indices (all data)	R1 = 0.0509, wR2 = 0.0780	
Largest diff. peak and hole	0.394 and -0.213 eÅ ⁻³	

Table S1. Crystal data and structure refinement for compound 1.

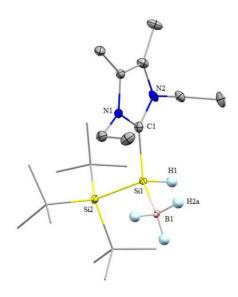


Figure S26. Ellipsoid plot (50% level) of the molecular structure of compound **2**. One out of two crystallographically independent molecules is shown. Hydrogen atoms are omitted for clarity and *tert*–butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å): Si1–Fe1: 2.3620(5), Si1–Si2: 2.5185(6), Si1–C1:1.9927(16) Si1–C1: 2.1440(6).

Empirical formula	C ₂₅ H ₄₃ ClFeN ₂ O ₄ Si ₂	
Formula weight	583.09	
Temperature	100K	
Wavelength	0.71073	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 13.2797(6)	$\alpha = 96.182(2)$
	b = 15.4976(8)	$\beta = 107.635(2)$
	c = 16.8010(8)	$\gamma = 110.024(2)$
Volume	3008.5(3)	
Ζ	4	
Density (calculated)	1.287	
Absorption coefficient	0.701	
F(000)	1240	
Crystal size	0.135 x 0.220 x 0.275 mm	
Theta range for data collection	2.38 to 25.35°	
Index ranges	-15<=h<=15, -18<=k<=18, -	

Table S2. Crystal dat	a and structure refinement	for compound 2.

	20<=1<=20	
Reflections collected	126810	
Independent reflections	10980	
Completeness	0.999	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7015 and 0.7452	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	10980 / 0 / 657	
Goodness-of-fit on F ²	1.050	
Final R indices [I>2sigma(I)]	R1 = 0.0242, wR2 = 0.0541	
R indices (all data)	R1 = 0.0294, wR2 = 0.0565	
Largest diff. peak and hole	0.308 and -0.273 eÅ ⁻³	

Figure S27. Ellipsoid plot (30% level) of the molecular structure of compound **3**. *Tert*-butyl groups are depicted in wireframe for simplicity. H atoms except B-H₃ and Si-H have been omitted for clarity. Selected bond lengths (Å) and angles (°): Si1–B1: 1.999(7), Si1–Si2: 2.374(5), Si1–C1: 1.963(6); Si2–Si1–B1 = 121.0(2), C1–Si1–B1 = 112.0(2), Si2–Si1–C1 = 112.0(2)

Empirical formula	$C_{21}H_{47}BN_2Si_2$	
Formula weight	394.60	
Temperature	100K	
Wavelength	0.71073	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 8.757(9)	$\alpha = 90$
	b = 12.714(17)	$\beta = 103.51(4)$
	c = 11.610(14)	$\gamma = 90$
Volume	1257(3)	
Ζ	2	
Density (calculated)	1.043	
Absorption coefficient	0.149	
F(000)	440	
Crystal size	0.148 x 0.231 x 0.245 mm	
Theta range for data collection	2.39 to 25.91°	
Index ranges	-10<=h<= 9, -15<=k<= 15, -	
	14<=1<=14	
Reflections collected	9833	
Independent reflections	4738	
Completeness	0.998	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.6162 and 0.7453	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4738 / 86 / 294	
Goodness-of-fit on F ²	1.077	
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1205	
R indices (all data)	R1 = 0.0483, wR2 = 0.1244	
Largest diff. peak and hole	0.571 and -0.618 eÅ ⁻³	

Table S3. Crystal data and structure refinement for compound 3.

3. References

- Kuhn, N.; Kratz, T., Synthesis of Imidazol-2-ylidenes by Reduction of Imidazole-2(3H)thiones. Synthesis 1993, 1993, 561-562.
- (2) Wiberg, N.; Niedermayer, W.; Nöth, H.; Knizek, J.; Ponikwar, W.; Polbom, K., Supersilylsilane R*SiX3: Darstellung, Charakterisierung und Strukturen; sterische und van-der-Waals Effekte der Substituenten X [1] / Supersilylsilanes R*SiX3: Syntheses, Characterization and Structures; Steric and van-der-Waals Effects of Substituents X [1]. *Zeitschrift für Naturforschung B* 2000, 55.
- (3) Frisch, P.; Inoue, S., NHC-stabilized Silyl-substituted Silyliumylidene Ions. Dalton Trans. 2019.
- (4) APEX suite of crystallographic software, APEX 3 version 2015.5-2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2015.
- (5) SAINT, Version 7.56a and SADABS Version 2008/1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
- (6) Sheldrick, G. M. SHELXL-2014, University of Göttingen, Göttingen, Germany, 2014.
- (7) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2011, 44, 1281-1284.
- (8) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany, 1998.
- (9) Wilson, A. J. C. International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
- (10) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.

12.3 Supporting Information for Chapter 9

Supporting Information

An Air-Stable Heterobimetallic Si₂M₂ Tetrahedral Cluster *Gizem Dübek, Franziska Hanusch, Dominik Munz, and Shigeyoshi Inoue**

anie_201916116_sm_miscellaneous_information.pdf

Supporting Information

Contents

1.	Experimental Section	S 2
(General Methods and Instrumentation	S 2
	Synthesis of Cp(CO) ₂ Mo=Si(SitBu ₃)(IEt ₂ Me ₂) (2)	S 3
9	Synthesis of $Cp(CO)_2W = Si(SitBu_3)(IEt_2Me_2)$ (3):	S 6
	Synthesis of Cp(CO) ₂ W =Si(SitBu ₃)(IMe ₄) (3 `):	S11
I	[Cp(CO)(Cl ₃ Al…OC)W =Si(SitBu ₃)(IEt ₂ Me2) (4a)	S13
I	[Cp(CO)((C ₆ F ₅) ₃ B…OC)W =S i(S itBu ₃)(IEt ₂ Me2) (4b):	S13
١	[Cp(CO) ₂ MoSi(SitBu ₃)] ₂ (5):	S18
١	[Cp(CO) ₂ WSi(SitBu ₃)] ₂ (6):	S25
I	Isolation of IEt_2Me_2 ·BPh ₃	S 32
2.	Single Crystal X-ray structure determination	S 35
3.	Computational Data	S40
(General	S40
4.	R eferences	S63

1. Experimental Section

General Methods and Instrumentation

All experiments and manipulations were carried out under argon atmosphere using standard Schlenk techniques or in an MBraun inert-atmosphere glovebox unless otherwise stated. Glassware was heat dried under vacuum prior to use. Solvents were dried by standard methods. NMR spectra at ambient temperature (298 K) were recorded on a Bruker AV400US, DRX400, AVHD300, or AV500C device. $\delta({}^{1}H)$ and $\delta({}^{13}C)$ were referenced internally to the relevant residual solvent resonances. δ ⁽²⁹Si) was referenced to the signal of tetramethylsilane (TMS) ($\delta = 0$ ppm) as external standard. Some NMR spectra include resonances for silicone grease (C₆D₆: $\delta(^{1}H) = 0.29$ ppm, $\delta(^{13}C) = 1.4$ ppm and $\delta(^{29}Si) = -21.8$ ppm) derived from B. Braun Melsungen AG Sterican® cannulas. Elemental analyses (EA) were conducted with a EURO EA (HEKA tech) instrument equipped with CHNS combustion analyzer and melting points (m.p.) were determined in small glass capillaries under air by a Büchi M-565 melting point apparatus by microanalytical laboratory of the Catalysis Research Center, Technische Universität München. IR spectra were recorded on a Perkin Elmer FT-IR spectrometer (diamond ATR) in a range of 400-4000 cm⁻¹ at room temperature inside an argon-filled glovebox. Mass spectrometry data were acquired using an Exactive Plus Orbitrap system (ionization method: LIFDI) by Thermo Fisher Scientific. The compounds 1,3,4,5tetramethylimidazol-2-ylidene (IMe₄)^[1], Cp(CO)₂(PMe₃)MLi^[2] and tBu₃SiSi(Cl)(IEt₂Me₂)^[3] were prepared according to literature procedures. Commercially available chemicals (BPh₃, AlCl₃ and $B(C_6F_5)_3)$ were purchased from abcr GmbH or Tokyo Chemical Industry Co., Ltd and used without further purification. Abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, n.a. = not applicable/no answer, n.o. = not observed, SCXRD = Single Crystal X-ray diffraction, IG = Inverse-Gated, INEPT = Insensitive Nuclei Enhanced by Polarization Transfer, HMBC = Heteronuclear Multiple Bond Correlation.

121

Synthesis of $Cp(CO)_2Mo=Si(SitBu_3)(IEt_2Me_2)$ (2) : $tBu_3Si(CI)Si: \leftarrow IEt_2Me_2$ (1) (500 mg, 1.2 mmol) and $CpMo(CO)_2PMe_3Li$ (380 mg, 1.26 mmol, 1.05 equiv.) were mixed in 15 mL toluene and the suspension heated to 75 °C overnight. During this time almost all solids were dissolved and color of reaction changed from orange to dark green. Suspension filtered from colorless precipitate (LiCI) and toluene was removed under vacuum to yield dark green residue. Residue filtered by toluene:pentane mixture (10 mL:30 mL) from insoluble brown material. Suitable crystals for single X-ray diffraction analysis were obtained by toluene:pentane (1:3) mixture of compound 2 at room temperature. Yield: 590 mg (82%)

¹H NMR (400 MHz, C₆D₆, 298K): δ 5.44 (s, 5H, C₅H₅), 4.32 (m, 2H, N-CH₂CH₃), 3.62 (m, 2H, N-CH₂CH₃), 1.42 (s, 6H, C-CH₃), 1.35 (s, 27H, ((CH₃)₃C)), 1.25 (t, 6H, N-CH₂CH₃).

¹³C NMR (101 MHz, C_6D_6 , 298K): δ 241.51 (CO), 168.26 (:CN₂), 125.79 (CH₃C=CCH₃), 90.14 (C₅H₅), 42.59 (N-CH₂CH₃), 32.57 (C(CH₃)₃), 24.96 (C(CH₃)₃), 14.58 (N-CH₂CH₃), 8.33 (CH₃C=CCH₃).

²⁹Si{¹H}NMR (80 MHz, C₆D₆, 298K): δ 278.76 (Si=Mo), 6.36 (tBu₃Si)

²⁹Si INEPT NMR (80 MHz, C₆D₆, 298K): δ 6.36 (tBu₃Si)

IR (ATR, neat) [cm⁻¹]: v(CO) = 1782, 1864

EA: $C_{28}H_{48}MoN_2O_2Si_2$; Calculated [%]: C (56.35), H (8,11), N (4.69); Measured: C (56.34), H (8.12), N (4.46)

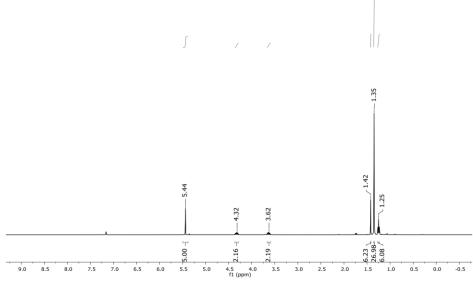
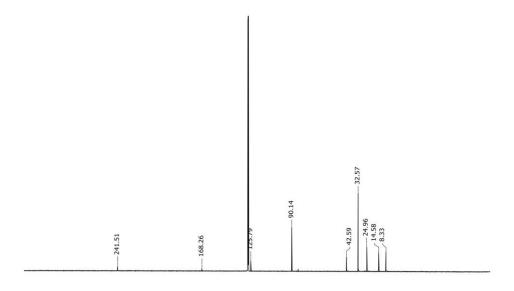



Figure S1. ¹H spectrum of compound 2 in C₆D₆ at 298 K.

320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -8 fl (ppm)

Figure S2. ^{13}C spectrum of compound 2 in C $_6\text{D}_6$ at 298 K .

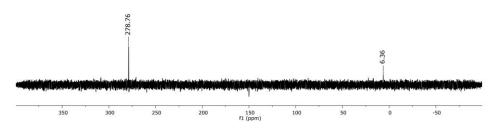


Figure S3. $^{29}Si\{^{\!\! 1}H\}$ spectrum of compound 2 in C_6D_6 at 298 K.

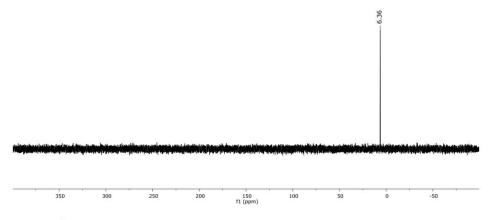


Figure S4. 29 Si-INEPT spectrum of compound 2 in C₆D₆ at 298 K.

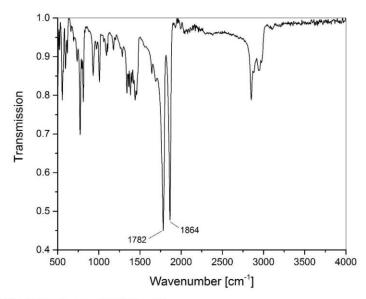


Figure S5. IR Spectrum of compound 2. (ATR, neat)

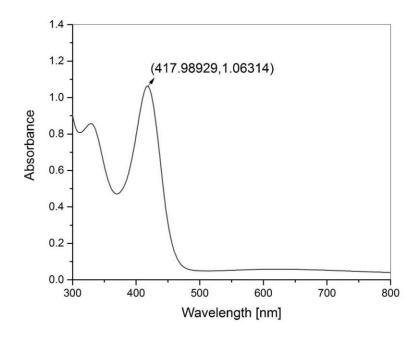


Figure S6. UV-Vis spectra of compound 2 in toluene. (Conc. 1.173×10^{-4} M; $\varepsilon = 9063$ L mol⁻¹cm⁻¹)

Synthesis of Cp(CO)₂W=Si(SitBu₃)(IEt₂Me₂) (3): tBu₃Si(Cl)Si: \leftarrow IEt₂Me₂ (1) (500 mg, 1.2 mmol) and CpW(CO)₂PMe₃Li (490 mg, 1.26 mmol, 1.05 equiv.) were mixed in 15 mL toluene and the suspension heated to 75 °C overnight. During this time almost all solids were dissolved and color of reaction changed from orange to dark-brown green. Suspension filtered from colorless precipitate (LiCl) and toluene was removed under vacuum to yields dark green residue. Residue filtered by toluene:pentane mixture (15 mL:20mL) from insoluble brown material. Suitable crystals for single X-ray diffraction analysis were obtained by toluene:pentane (1:1) mixture of compound **3** at 4 °C. Yield: 640 mg (78%).

¹H NMR (400 MHz, C₆D₆, 298K): δ 5.38 (s, 5H, C₅H₅), 4.54 (m, 2H, N-CH₂CH₃), 3.80 (m, 2H, N-CH₂CH₃), 1.43 (s, 6H, C-CH₃), 1.34 (s, 27H, ((CH₃)₃C)), 1.21 (t, 6H, N-CH₂CH₃).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 232.77 (CO), 172.62 (:CN₂), 125.60 (CH₃C=CCH₃), 88.68 (C₅H₅), 40.95 (N-CH₂CH₃), 32.51 (C(CH₃)₃), 24.45 (C(CH₃)₃), 14.63 (N-CH₂CH₃), 8.28 (CH₃C=CCH₃).

29Si{¹H}NMR (99 MHz, C₆D₆, 298K): δ 229.71 (Si=W, ¹J_{WSi} = 261 Hz), 12.32 (tBu₃Si)

29Si INEPT NMR (80 MHz, C₆D₆, 298K): δ 12.38 (tBu₃Si)

IR (ATR, neat) [cm⁻¹]: v(CO) = 1770, 1849

EA: $C_{28}H_{48}WN_2O_2Si_2$; Calculated [%]: C (49.12), H (7.07), N (4.09); Measured: C (51.38), H (7.79), N (3.90)

 $\label{eq:LIFDI-MS} \mbox{[m/z]: calculated (for C_{28}H_{48}N_2O_2Si_2W): 684.2765, observed: 684.2765}$

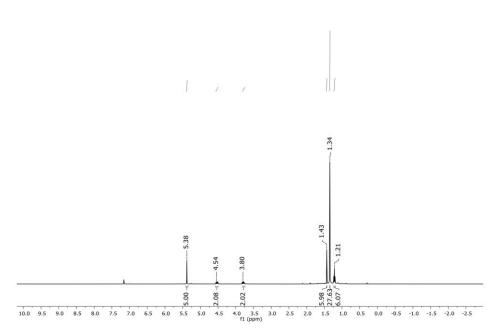
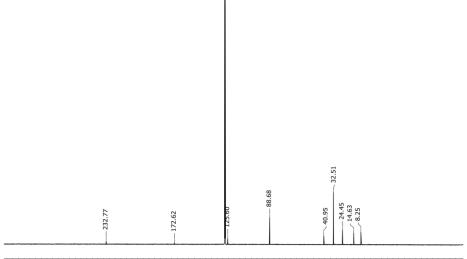



Figure S7. ^1H spectrum of compound 3 in C_6D_6 at 298 K.

320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -8 f1 (ppm)

Figure S8. 13 C spectrum of compound 3 in C₆D₆ at 298 K.

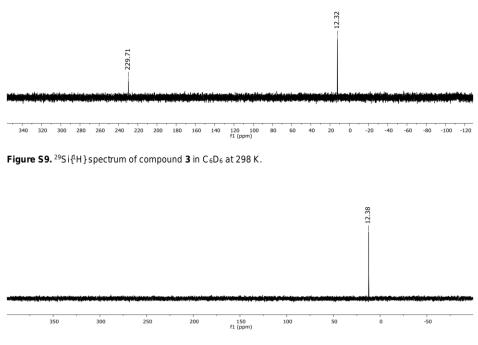


Figure S10. 29 Si-INEPT spectrum of compound 3 in C₆D₆ at 298 K.

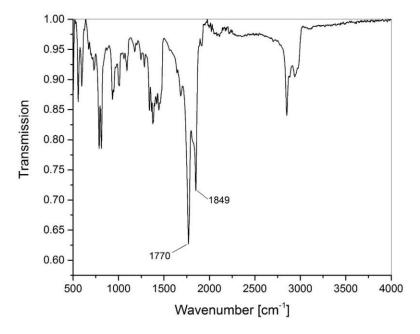


Figure S11. IR Spectrum of compound 3. (ATR, neat)

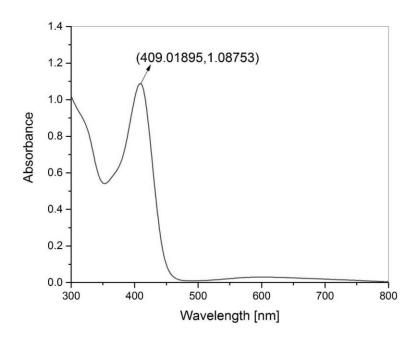


Figure S12. UV-Vis spectra of compound 3 in toluene. (Conc. 1.168 x 10⁻⁴M; ϵ = 9311 L mol $^{-1}cm^{-1})$ S 9

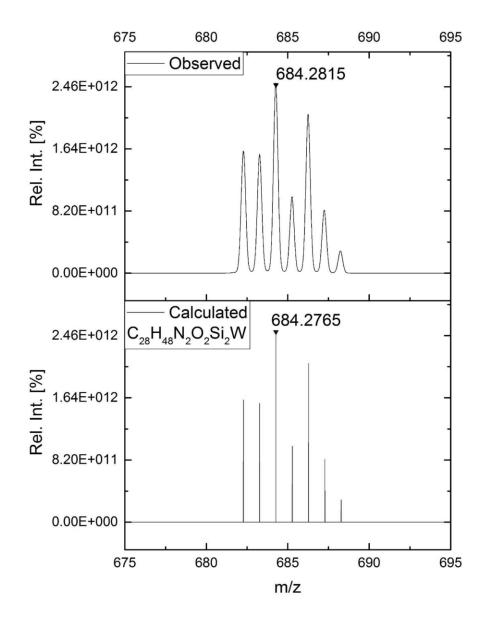


Figure S13. LIFDI-MS Spectrum: Expanded region of the compound signal showing the isotopic pattern of compound 3. Observed (top) and calculated (bottom).

Synthesis of Cp(CO)₂**W=Si(SitBu**₃)(**IMe**₄) (**3**[°]): To an NMR solution of compound **3** (25mg, 0.036 mmol) in 0.4 mL C₆D₆, IMe₄ (5 mg, 0.04 mmol, 1.1 equiv.) added. The ¹H NMR spectra of reaction mixture was measured at room temperature after 30 minutes in which signals of **3** and **3**[°] were observed in an approximately 40:60 ratio. After 12 hours a quantitative exchange was observed in ¹H NMR spectrum. Suitable crystals for single X-ray diffraction analysis were obtained by C₆D₆:pentane (1:1) mixture of compound **3**[°] at ambient temperature.

¹H NMR (400 MHz, C₆D₆, 298K): δ 5.48 (s, 5H, C₅H₅), 3.64 (s, 6H, N-CH₃), 1.34 (s, 6H, C-CH₃), 1.28 (s, 27H, ((CH₃)₃C)).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 235.48 (CO), 172.73 (:CN₂), 125.69 (CH₃C=CCH₃), 89.88 (C₅H₅), 32.27 (C(CH₃)₃), 31.68 (N-CH₃), 24.01 (C(CH₃)₃), 7.84 (CH₃C=CCH₃).

²⁹Si{¹H}NMR (80 MHz, C₆D₆, 298K): δ 231.14 (Si=W, ¹J_{WSi} = n.a.), 13.49 (tBu₃Si)

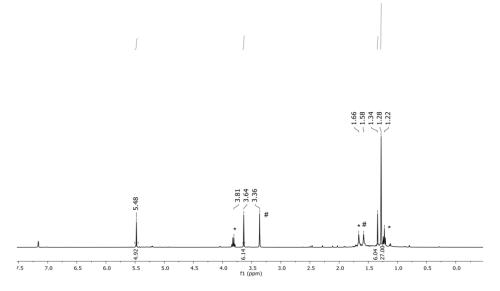


Figure S14. ¹H spectrum of compound 3' in C₆D₆ at 298 K. (* = free IEt₂Me₂, # = Excess IMe₄)

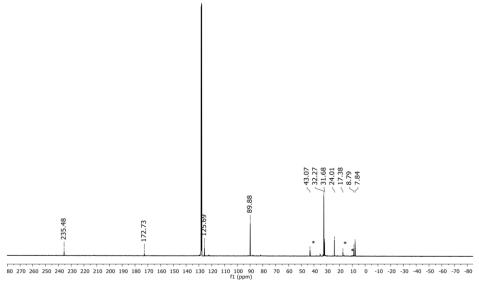


Figure S15. ^{13}C spectrum of compound 3' in C_6D_6 at 298 K. (* = Free IE t_2Me_2)

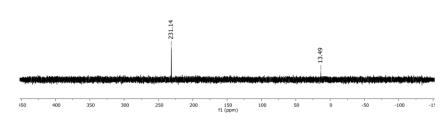


Figure S16. $^{29}Si\{^{1}H\}$ spectrum of compound 3` in $C_{6}D_{6}$ at 298 K.

[Cp(CO)(Cl₃Al···OC)W=Si(SitBu₃)(IEt₂Me2) (4a) : To a toluene solution of 3 (50 mg, 0.073 mmol), AlCl₃ (10 mg, 0.073 mmol) added. Dark green solution turned immediately to dark red which was filtered from insoluble oily residue. Toluene was removed and 4a was obtained as sticky dark red solid in 64% yield. Suitable crystals for single X-ray diffraction analysis were obtained by concentrated toluene solution of 4a at 3 $^{\circ}$ C.

¹H NMR (400 MHz, C₆D₆, 298K): δ 5.28 (s, 5H, C₅H₅), 3.97 (m, 1H, N-CH₂CH₃), 3.88 (m, 1H, N-CH₂CH₃), 3.49 (m, 1H, N-CH₂CH₃), 3.32 (m, 1H, N-CH₂CH₃), 1.76 (s, 3H, C-CH₃), 1.74 (s, 3H, C-CH₃), 1.14 (s, 27H, ((CH₃)₃C)), 1.36 (t, 6H, N-CH₂CH₃).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 220.22 (CO), 166.86 (:CN₂), 126.82 (CH₃C=CCH₃), 91.51 (C₅H₅), 43.55 (N_a-CH₂CH₃), 41.85 (N_b-CH₂CH₃). 32.14 (C(CH₃)₃), 24.80 (C(CH₃)₃), 15.15 (N_a-CH₂CH₃), 13.21 (N_b-CH₂CH₃), 8.75 (CH₃C=CCH₃), 8.40 (CH₃C=CCH₃).

²⁹Si{¹H}NMR (80 MHz, C₆D₆, 298K): δ 322.03 (Si=W, ¹J_{WSi} = n.a.), 15.59 (tBu₃Si)

29Si INEPT NMR (80 MHz, C₆D₆, 298K): δ 15.57 (tBu₃Si)

IR (ATR, neat) [cm⁻¹]: υ(CO) = 1813, 1901

EA: Due to presence of undefined oily impurities, satisfactory elemental analysis results were not obtained.

 $[Cp(CO)((C_6F_5)_3B\cdots OC)W=Si(SitBu_3)(IEt_2Me2)$ (4b): Compound 4b was synthesized in similar manner as 4a. Unfortunately, we could not isolate 4b due to its oily nature hence we could not obtain pure NMR spectra except ¹¹B and ²⁹S i.

¹¹B NMR (128 MHz, C₆D₆, 298K): $\delta - 14.53$

²⁹Si{¹H} NMR (80 MHz, C₆D₆, 298K): δ 323.15 (Si=W, ¹J_{WSi} = n.a.), 17.06 (tBu₃Si).

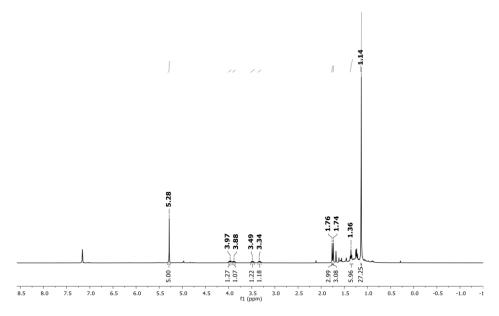
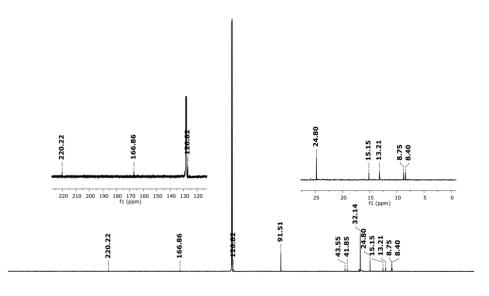



Figure S17. ^1H spectrum of compound 4a in C_6D_6 at 298 K.

290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 ft (ppm)

Figure S18. ^{13}C spectrum of compound 4a in C_6D_6 at 298 K.

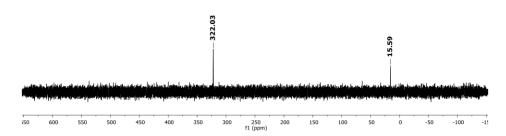


Figure S19. $^{29}\text{Si}\{^{\!\!1}\text{H}\}$ spectrum of compound 4a in C_6D_6 at 298 K.

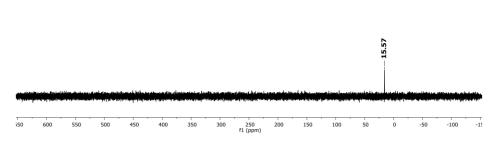


Figure S20. $^{29}\text{Si-INEPT}$ spectrum of compound 4a in C_6D_6 at 298 K.

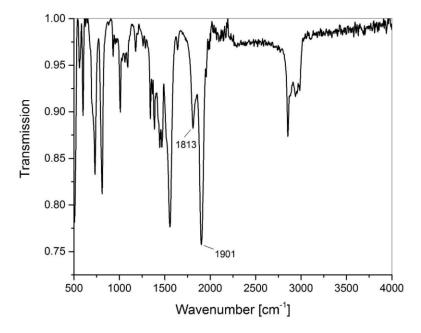


Figure S21. IR Spectrum of compound 4a. (ATR, neat)

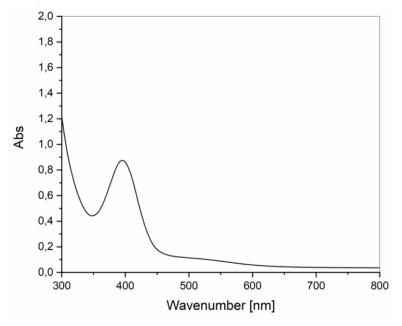


Figure S22. UV-Vis spectra of compound 4a in toluene. (Conc. 1.17 x 10^{-4} M; ϵ_{395} = 7474 L mol $^{-1}$ cm $^{-1}$)

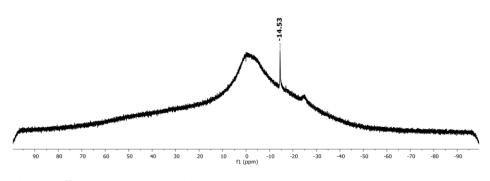


Figure S23. ^{11}B spectrum of compound 4b in C_6D_6 at 298 K.

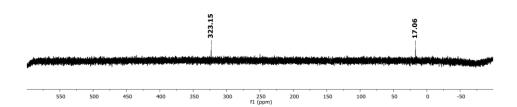


Figure S24. $^{29}Si\{^{1}H\}$ spectrum of compound 4b in $C_{6}D_{6}$ at 298 K.

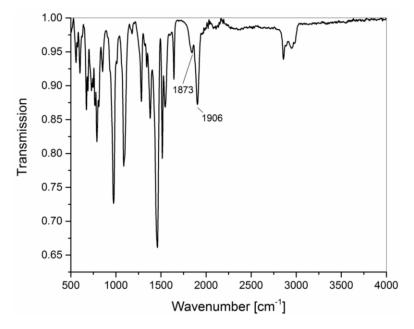


Figure S25. IR Spectrum of compound 4b. (ATR, neat)

 $[Cp(CO)_2MoSi(SitBu_3)]_2$ (5): Compound 2 (250 mg, 0.42 mmol) and BPh₃ (102 mg, 0.42 mmol) were dissolved in 10 mL toluene and heated to 90 °C. After 30 minutes the dark green solution turned into purple-brown solution. Toluene was removed to yield purple waxy residue and 15 mL pentane was added (upon pentane addition, beige solid precipitated, which was later characterized as BPh₃·IEt₂Me₂). Suspension placed at -80 °C cold bath for 30 minutes and purple solution was filtered at cold. Added 5 mL pentane to the beige solid, stirred 10 minutes, placed in cold bath again for 40 minutes and filtered again. Pentane was evaporated to yield compound **5** as a purple solid. (75 mg, 40%)

¹H NMR (400 MHz, C₆D₆, 298K): δ 4.72 (s, 5H, C₅H₅), 1.43 (s, 27H, ((CH₃)₃C)).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 238.09 (CO), 230.37 (CO), 86.50 (C₅H₅), 32.77 (C(CH₃)₃), 25.96 (C(CH₃)₃).

²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298K): δ 3.65 (SiMo), 48.32 (tBu₃Si)

²⁹Si INEPT NMR (79 MHz, C₆D₆, 298K): δ 48.52 (tBu₃Si)

IR (ATR, neat) [cm⁻¹]: v(CO) = 1844, 1918

LIFDI-MS [m/z]: calculated (for C₃₈H₆₄O₄Si₄Mo₂): 889.2004, observed: 889.1627

M.P.: 64-65 °C

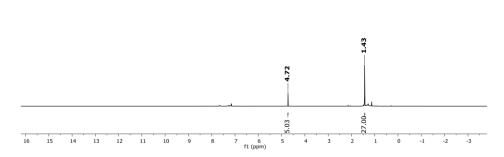


Figure S26. ¹H spectrum of compound 5 in C_6D_6 at 298 K.

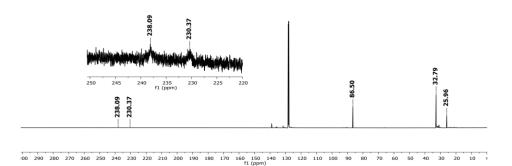


Figure S27. ^{13}C spectrum of compound 5 in C_6D_6 at 298 K.

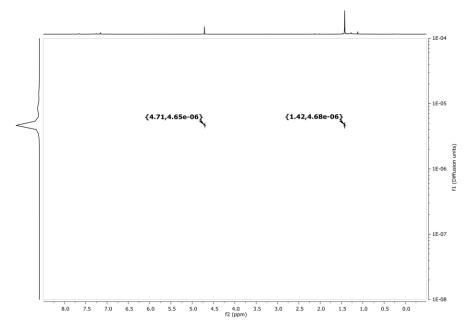


Figure S28. 1 H-2D DOSY NMR spectrum of compound 5 in C₆D₆ at 298 K.

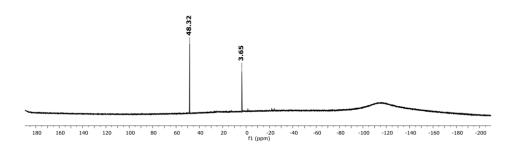


Figure S29. ${}^{29}Si{}^{1}H$ NMR spectrum of compound 5 in C₆D₆ at 298 K.

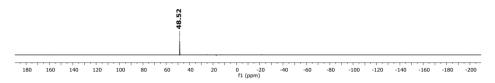


Figure S30. ²⁹Si–INEPT NMR spectrum of compound 5 in C₆D₆ at 298 K.

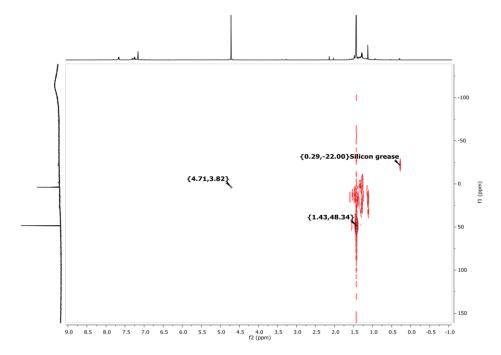


Figure S31. $^1\text{H}\text{-}^{29}\text{Si}$ HMBC NMR spectrum of compound 5 in C_6D_6 at 298 K.

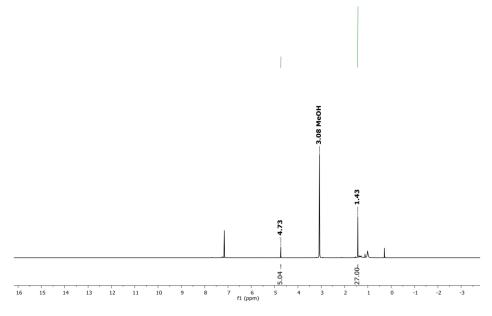


Figure S32. ¹H NMR spectrum of compound 5 upon treatment of excess MeOH in C_6D_6 at 298 K.

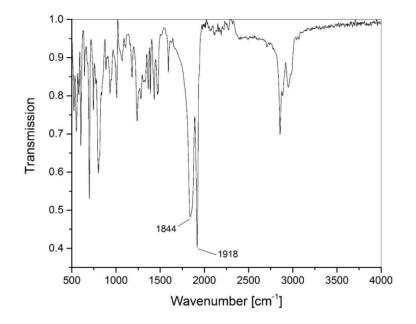


Figure S33. IR Spectrum of compound 5. (ATR, neat)

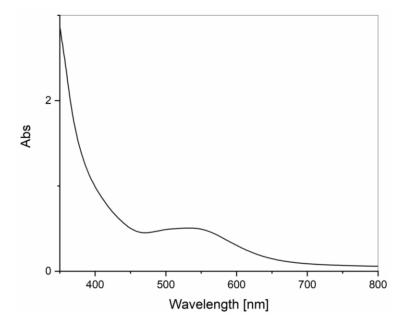


Figure S34. UV-Vis Spectra of compound 5 in toluene at 298 K. (Conc. 5.625 x 10^{-4} M; ε_{543} = 894 L mol⁻¹cm⁻¹)

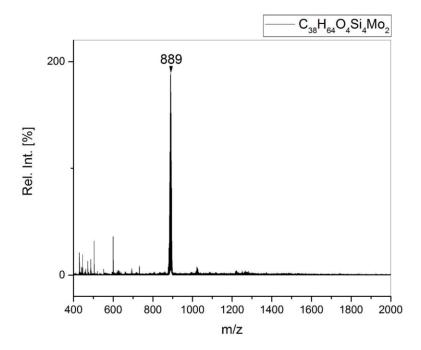


Figure S35. LIFDI-MS spectrum of compound 5 (in toluene solution). Compound observed at m/z = 889.

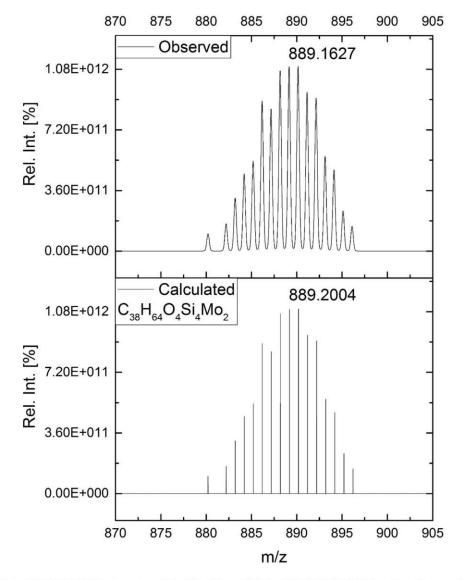


Figure S36. LIFDI-MS Spectrum: expanded region of the product signal illustrating the isotopic pattern of compound 5. Observed (top) and calculated (bottom).

[Cp(CO)₂WSi(SitBu₃)]₂ (6): Compound **3** (99 mg, 0.14 mmol) and BPh₃ (35 mg, 0.14 mmol) were dissolved in 8 mL toluene and heated to 90 °C. After 30 minutes the dark green solution turned into dark red. Toluene was removed to yield red waxy residue and 15 mL pentane was added (upon pentane addition, beige solid precipitated, which was later characterized as BPh₃·IEt₂Me₂). Suspension placed at -80 °C cold bath for 30 minutes and red solution was filtered. Added 5 mL pentane to the beige solid, stirred 10 minutes, placed in cold bath again for 40 minutes and filtered again. Pentane was evaporated to yield compound **6** as a red solid. (40 mg, 52%). Suitable crystals for single X-ray diffraction analysis were obtained by concentrated hexane solution of **6** at ambient temperature.

¹H NMR (400 MHz, C₆D₆, 298K): δ 4.70 (s, 5H, C₅H₅), 1.44 (s, 27H, ((CH₃)₃C)).

¹³C NMR (101 MHz, C₆D₆, 298K): δ 225.38 (CO), 215.11 (CO), 83.99 (C₅H₅), 32.85 (C(CH₃)₃), 25.82 (C(CH₃)₃).

²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298K): δ –63.04 (SiW, $^{1}J_{WSi}$ = 52.07 Hz), 43.99 (tBu₃Si)

²⁹Si INEPT NMR (79 MHz, C₆D₆, 298K): δ 44.10 (tBu₃Si)

IR (ATR, neat) [cm⁻¹]: v(CO) = 1860, 1914

LIFDI-MS [m/z]: calculated (for C₃₈H₆₄O₄Si₄W₂): 1064.2903, observed: 1064.3159

M.P.: 67−69 ^oC

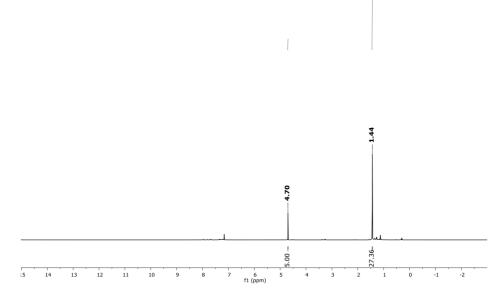
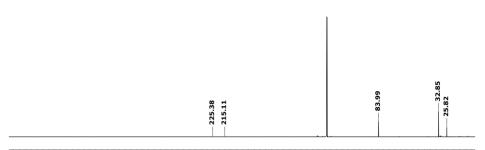



Figure S37. ¹H NMR spectrum of compound 6 in C₆D₆ at 298 K.

390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Figure S38. ^{13}C NMR spectrum of compound 6 in C_6D_6 at 298 K.

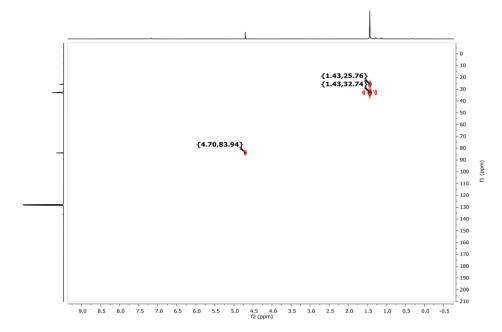


Figure S39. $^1\text{H-}{^{13}\text{C}}$ HMBC NMR spectrum of compound 6 in C₆D₆ at 298 K.

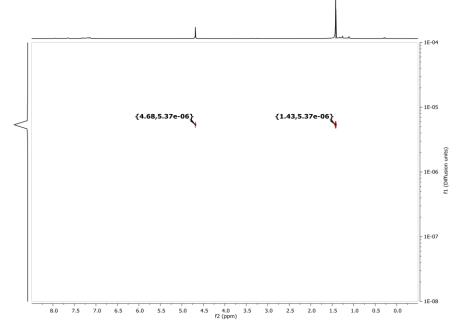


Figure S40. 1 H-2D DOSY NMR spectrum of compound 6 in C₆D₆ at 298 K.

S 27

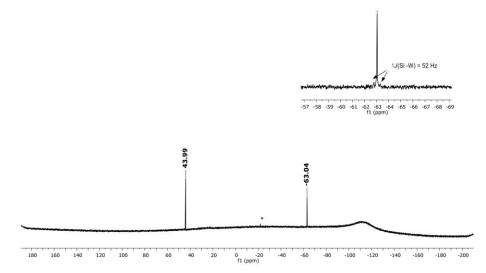


Figure S41. ²⁹Si 4 H}NMR spectrum of compound 6 in C₆D₆ at 298 K. (* = silicon grease)

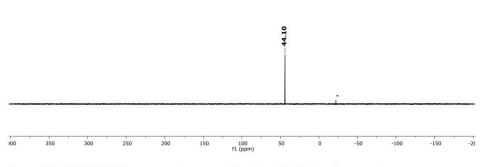


Figure S42. $^{29}{\rm Si-INEPT}$ NMR spectrum of compound 6 in C_6D_6 at 298 K. (* = silicon grease)

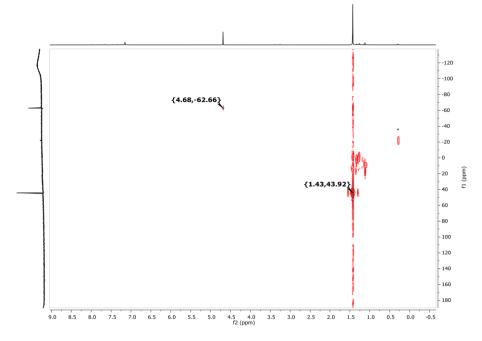


Figure S43. $^{29}\text{Si-}^{1}\text{H}$ HMBC NMR spectrum of compound 6 in C_6D_6 at 298 K.

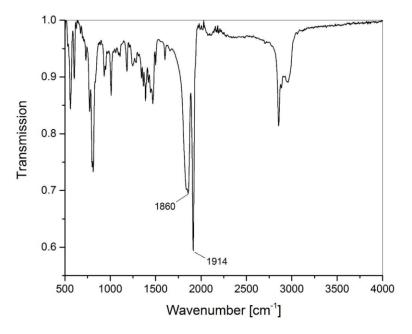


Figure S44. IR Spectrum of compound 6. (ATR, neat)

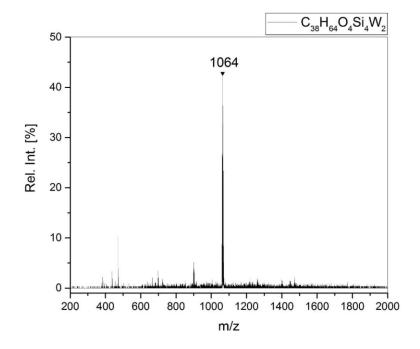


Figure S45. LIFDI-MS spectrum of compound 6 (in toluene solution). Compound observed at m/z = 1064.

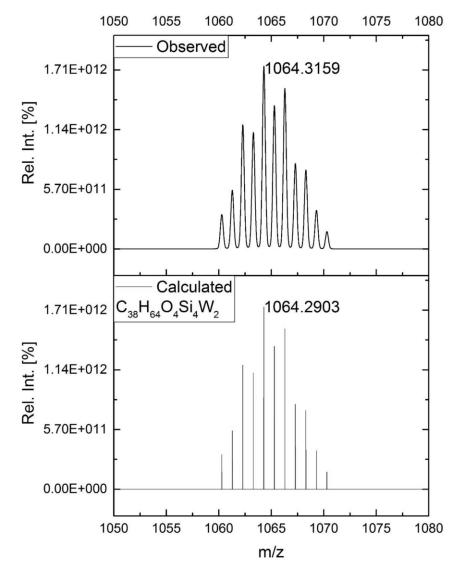


Figure S46. LIF DI-MS Spectrum: expanded region of the product signal illustrating the isotopic pattern of compound 6. Observed (top) and calculated (bottom).

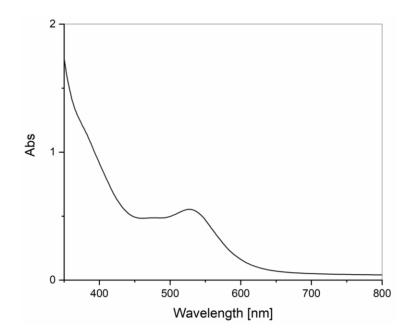


Figure S47. UV-Vis Spectra of compound 6 in toluene at 298 K. (Conc. 4.695×10^{-4} M; $\epsilon_{530} = 1178$ L mol⁻¹cm⁻¹)

Isolation of IEt₂Me₂·BPh₃ (beige precipitate that collected from synthesis of compound 6)

¹H NMR (400 MHz, C₆D₆, 298K): δ 7.69 (d, 6H, o-C₆H₅), 7.34 (t, 6H, m-C₆H₅), 7.21 (t, 3H, p-C₆H₅), 3.38 (q, 4H, N-CH₂CH₃), 1.28 (s, 6H, CH₃C=CCH₃), 0.33 (t, 6H, N-CH₂CH₃).

¹¹B NMR (128 MHz, C₆D₆, 298K): -8.53 (br, $w_{\frac{1}{2}} = 46.8$ Hz)

¹³C NMR (101 MHz, C₆D₆, 298K): 169.25^a (N₂C:BPh₃, IEt₂Me₂), 157.71^a (B-C₆H₅), 136.2 (o-C₆H₅), 127.33 (m-C₆H₅), 124.70 (p-C₆H₅), 124.29 (CH₃C=CCH₃), 41.77 (N-CH₂CH₃), 14.59 (N-CH₂CH₃), 8.21 (CH₃C=CCH₃).

a: The signals were not observed in ¹³C-1D NMR spectra but found in the 2D ¹H¹³C HMBC experiment.

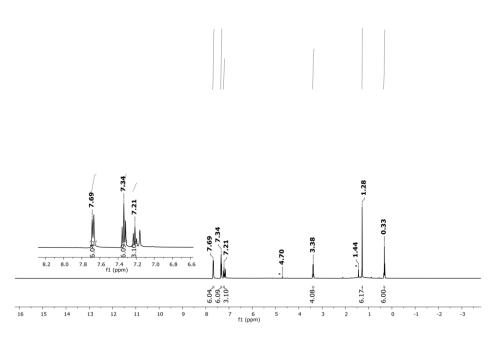
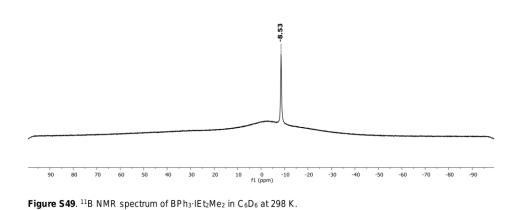



Figure S48. ¹H NMR spectrum of BPh₃·IEt₂Me₂ in C₆D₆ at 298 K. (* = compound 6)

S 33

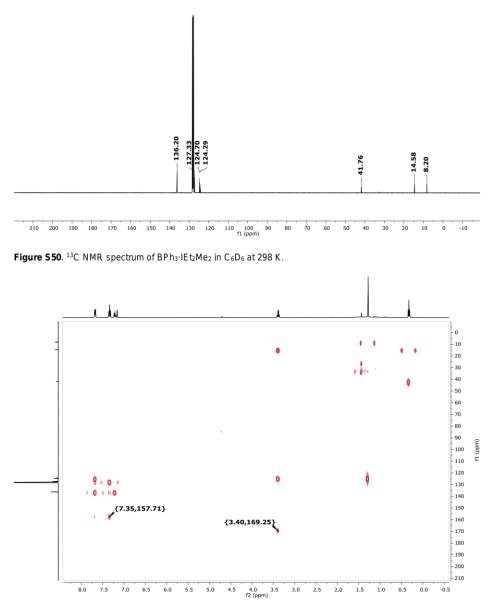
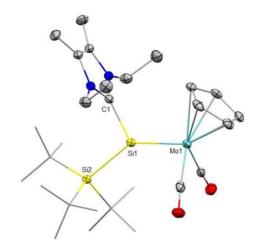
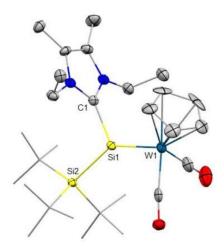



Figure S51. ^{1}H - ^{13}C HMBC of BPh₃·IEt₂Me₂ in C₆D₆ at 298 K.


S 34

2. Single Crystal X-ray structure determination

Single crystal diffraction data were recorded on a Bruker Photon CMOS system equipped with a Helios optic monochromator and a Mo IMS microsource λ (= 0.71073 Å) and an Atlas SuperNova system equipped with a mirror monochromator and a Cu micro-focus sealed X-ray tube (λ = 1.54178 Å). The data collection was performed, using the APEX III software package^[4] and CrysAlisPro on single crystals coated with Fomblin ® Y as perfluorinated ether. The single crystal was picked on a micro sampler, transferred to the diffractometer and measured frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[5] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[5] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX III software in conjunction with SHELXL-2014^[6] and SHELXLE.^[7] H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and $Uiso(H) = 1.2 \cdot Ueq(C)$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing Σw (Fo2-Fc2)2 with the SHELXL weighting scheme.^[8] Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the nonhydrogen atoms were taken from International Tables for Crystallography.^[9] The images of the crystal structures were generated by Mercury.^[10] The CCDC numbers CCDC-1970332 (2), 1970333 (3), 1970334 (3'), 1970335 (4a), 1970336 (6) contain the supplementary crystallographic data for the structures 2 - 6. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

Figure S52. Ellipsoid plot (50% level) of the molecular structure of compound **2** (one out of two independent molecules in the asymmetric unit is shown). Hydrogen atoms are omitted for clarity and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (°): Si1-Mo1 2.3499(8), Si1-Si2 2.4418(9), Si1-C1 1.949(2), C1-Si1-Si2 102.64(6), Mo1-Si1-C1 116.33(6), Mo-Si1-Si2 141.03(3)

Figure S53. Ellipsoid plot (50% level) of the molecular structure of compound **3** (one out of three independent molecules in the asymmetric unit is shown). Hydrogen atoms are omitted for clarity and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (°): Si1–W1 2.346(2), Si1–Si2 2.428(3), Si1–C1 1.935(7), C1–Si1–Si2 105.1(2), W1–Si1–C1 113.5(2); W1–Si1–Si2 141.38(10).

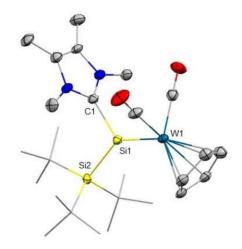


Figure S54. Ellipsoid plot (50% level) of the molecular structure of compound 3'. Hydrogen atoms are omitted for clarity and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles ('): Si1–W1 2.3534(12), Si1–Si2 2.4402(16), Si1–C1 1.941(5), C1–Si1–Si2 104.15(14), W1–Si1–C1 115.67(1); W–Si1–Si2 140.15(6).

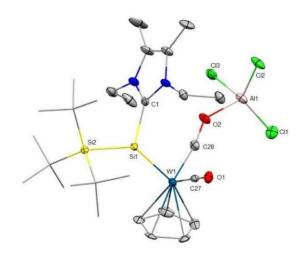
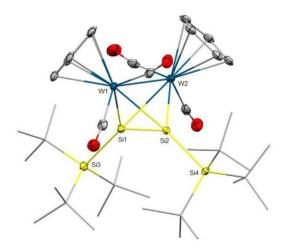



Figure S55. Ellipsoid plot (30% level) of the molecular structure of compound 4a. Hydrogen atoms are omitted for clarity and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths (Å) and angles (`): Si1-W1 2.3630(18), Si1-Si2 2.437(2), Si1-C1 1.940(10), Al1-O2 1.777(8), W1-C27 1.975(7), W1-C28 1.840(7), C1-Si1-Si2 106.4(6), W1-Si1-C1 114.6(6), W-Si1-Si2 138.89(9).

Figure S56. Ellipsoid plot (30% level) of the molecular structure of compound **6** (one out of three independent molecules in the asymmetric unit is shown). Hydrogen atoms are omitted for clarity and tert-butyl groups are depicted in wireframe for simplicity. Selected bond lengths [Å] and angles [°]: Si1-W1 2.5507(15), Si1-W2 2.6913(15), Si2-W1 2.6790(14), Si2-W2 2.5593(14), W1-W2 3.0732(8), Si1-Si2 2.2221(19); W1-Si1-W2 71.73(4), W1-Si1-Si2 67.89(5), W2-Si1-Si2 61.92(5).

Table S1. Crystal data and structure refinement for compound 2, 3, 3', 4a and 6.

Compound #	2	3	3'	4a	6
Chemical formula	C28 H48 Mo N2 O2 Si2	C28 H48 N2 O2 Si2 W	C26 H44 N2 O2 Si2 W	C28 H48 AI Cl3 N2 O2 Si2 W	C38 H64 O4 Si4 W2
Formula weight	596.80 g/mol	684.70 g/mol	656.65 g/mol	818.03 g/mol	1064.93 g/mol
Temperature	100 K	100 K	150.00(10) K	100 K	100 K
Wavelength	0.71073 Å	0.71073 Å	1.54178 Å	0.71073 Å	0.71073 Å
Crystal size	0.142 x 0.109 x 0.104 mm	0.253 x 0.161 x 0.146 mm	0.187 x 0.165 x 0.144 mm	0.208 x 0.099 x 0.096 mm	0.265 x 0.231 x 0.189 mm
Crystal habit	clear green-blue fragment	clear blue fragment	clear dark green fragment	clear orange fragment	clear red fragment
Crystal system	triclinic	monoclinic	triclinic	monoclinic	triclinic
Space group	P -1	P 21/n	P -1	C 2/c	P -1
Unit cell dimensions	a = 11.022(3) Å; α = 87.215(12)°	a = 17.245(4) Å; α = 90°	a = 8.4517(2) Å; α = 88.492(2)°	a = 43.864(4) Å; α = 90°	a = 14.4964(17) Å; α = 86.770(4)
	b = 16.013(5) Å; β = 74.756(11)°	b = 16.554(4) Å; β = 96.375(8)°	b = 11.0751(3) Å; β = 88.555(2)°	b = 10.3745(9) Å; β = 103.431(3)°	b = 17.691(2) Å; β = 87.223(4)°
	c = 17.938(6) Å; γ = 85.153(12)°	c = 32.197(8) Å; γ = 90°	c = 16.9012(5) Å; γ = 83.191(2)°	c = 17.2634(16)Å; γ = 90°	c = 24.954(3) Å; γ = 79.443(4)°
Volume	3042.5(16) Å ³	9135(4) Å ³	1569.92(7) Å ³	7641.2(12) Å ³	6276.5(13) Å ³
z	4	12	2	8	6
Density (calculated)	1.303 g/cm ³	1.494 g/cm ³	1.389 g/cm ³	1.422 g/cm ³	1.691 g/cm ³
Radiation source	IMS microsource	IMS microsource	SuperNova (Cu) X-ray Source	IMS microsource	IMS microsource
Theta range for data collection	1.92 to 25.68°	2.05 to 25.37 °	2.62 to 73.81°	2.02 to 25.35°	1.91 to 25.35°
Index ranges	-13<=h<=13, -19<=k<=19, - 21<=l<=21	-20<=h<=20, -19<=k<=19, - 38<=l<=38	-9<=h<=10, -9<=k<=13, -20<=l<=20	-52<=h<=52, -12<=k<=12, - 20<=l<=20	-17<=h<=17, -21<=k<=21, - 30<=l<=30
Reflections collected	66492	16712	10942	64728	22936
Independent reflections	11544	13102	6143	7002	18819
Completeness	0.999	0.999	0.963	0.998	0.998
Absorption correction	Multi-Scan	Multi-Scan	Multi-Scan	Multi-Scan	Multi-Scan
Max. and min. transmission	0.7217 and 0.7467	0.6520 and 0.7452	0.54903 and 1.00000	0.6167 and 0.7452	0.6388 and 0.7416
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F			
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	$\Sigma w(F_o^2 - F_c^2)^2$			
Data / restraints / parameters	11544 / 0 / 657	16712 / 658 / 1151	6143 / 252 / 358	7002 / 566 / 506	22936 / 672 / 1443
Goodness-of-fit on F ²	1.036	1.147	1.064	1.074	1.140
Final R indices [I>2sigma(I)]	R1 = 0.0238, wR2 = 0.0533	R1 = 0.0430, wR2 = 0.0992	R1 = 0.0388, wR2 = 0.1152	R1 = 0.0457, wR2 = 0.1231	R1 = 0.0281, wR2 = 0.0585
R indices (all data)	R1 = 0.0288, wR2 = 0.0566	R1 = 0.0693, wR2 = 0.1247	R1 = 0.0404, wR2 = 0.1168	R1 = 0.0584, wR2 = 0.1313	R1 = 0.0453, wR2 = 0.0687
Largest diff. peak and hole	0.338 and -0.391 eÅ ⁻³	6.273 and -3.373 eÅ-3	1.698 and -2.626 eÅ-3	3.499 and -2.028 eÅ-3	1.311 and -1.409 eÅ-3

3. Computational Data

General

All calculations were performed with ORCA v. 4.0.1.[11] The geometric parameters were optimized using the PBE0 functional,^[12] with dispersion correction D3(BJ)^[13] and the def2-SVP basis set.^[14] For Si and W, the def2-TZVP basis set and the def2-ECP for W were used.^[15] Tighter than default scf ("tightscf") and optimization criteria ("tightopt") were chosen in conjunction with finer than default grid values ("grid6"; "nofinalgrid"; "gridx6"). The RIJ COSX approximation with the related auxiliary basis sets (def2/J) was used.^[16] The optimized geometric parameters were verified as true minima by the absence of negative eigenvalues in the harmonic vibrational frequency analysis (one for the transition states, respectively); calculated frequencies were scaled by 0.95 according to the Database of Frequency Scale Factors for Electronic Model Chemistries by D. Truhlar.^[17] For the analysis of the electronic structure and final energies, single point calculations with either the def2/TZVPP basis set or scalar relativistic calculations with the Zeroth Order Regular Approximation (ZORA)^[18] and the all-electron ZORA-def2-TZVPP basis set ("SARC-ZORA-TZVPP" for W; "old-ZORA-TZVPP" for Mo) were subsequently performed with even tighter grid settings ("grid7", "nofinalgrid"). The latter method was also used to calculate the NMR shifts^[19] and the TD-DFT transitions. For the TD-DFT calculations, 50 roots were calculated WITHOUT application of the Tamm-Dancoff approximation and with inclusion of solvation effects through the SMD model (solvent: TOLUENE).^[20] The reported energies for the mechanism relate to the PBE0-D3BJ (SMD=TOLUENE)/ZORA-def2-TZVPP//PBE0-D3BJ /def2-SVP level of theory. Localized orbitals were generated using Knizia's Intrinsic Bond Orbitals at the PBE0-D3BJ/def2-TZVPP//PBE0-D3BJ /def2-SVP level of theory.^[21] Single point calculations with the hybrid meta-GGA functionals M06^[22] (ZORA-def2-TZVPP) with D3ZERO^[23] dispersion correction and TPSSh^[24] (ZORA-def2-TZVPP) with D3BJ dispersion correction gave consistent results (vide infra).

For compound **3**, three conformers (NHC-Si-W-Cp torsion) were calculated. The most stable isomer **3** is not the one obtained in the solid-state **3**^{XRAY} ($\Delta\Delta G = +2.3 \text{ kcal mol}^{-1} \text{ vs}$. the most stable conformer), but corresponds to the conformation found in **3**'. The energy of the third investigated isomer **3**^{rot} is even higher ($\Delta\Delta G = +3.0 \text{ kcal mol}^{-1} \text{ vs}$. the most stable conformer). The most stable conformer **3** was used for the calculation of the dimerization mechanism.



Figure S57. The lowest-energy isomer 3 (left), the solid-state structure conformer 3^{XRAY} (middle) and the third investigated isomer 3^{rot} (right).

The calculated carbonyl stretching frequencies of the most stable isomer fit best to the experimental values.

 $\label{eq:table_transform} \mbox{Table S2. Comparison of experimental and calculated IR stretching frequencies for the CO ligands. Values are given in cm^{-1}.$

	Compound 3		Compound 3XRAY		Compound 3 ^{Rot}		Compound 6	
	1	2	1	2	1	2	1	2
Exp.	1770	1849	1770	1849	1770	1849	1860	1914
Calc.	1837	1892	1878	1921	1838	1912	1904	1916

Table S3. Comparison of experimental and calculated 29 Si NMR shifts for tungsten complexes. Values are given inppm vs. SiMe4; values are averaged for the two Si atoms for compound **6**.

	Compound 3		Compound 3XRAY		Compo	und 3 ^{Rot}	Compound 6	
	Si1 (Si=W)	Si2 (tBu₃Si)	Si1 (Si=W)	Si2 (tBu₃Si)	Si1 (Si=W)	Si2 (tBu₃Si)	Si1 (Si-W)	Si2 (tBu₃Si)
Exp.	+230	+12	+230	+12	+230	+12	-63	+44
Calc.	+267	+10	+229	+3	+255	+1	-48	+22

Table 54. Comparison of experimental and calculated ${}^{29}Si$ NMR shifts for molybdenum complexes. Values are given in ppm vs. SiMe₄; values are averaged for the two Si atoms for compound **5**.

	Compound 2		Compound 2XRAY		Compo	und 2 ^{Rot}	Compound 5	
	Si1 (Si⊨Mo)	Si2 (tBu₃Si)	Si1 (Si=Mo)	Si2 (tBu₃Si)	Si1 (Si=Mo)	Si2 (tBu₃Si)	Si1 (Si-Mo)	Si2 (tBu₃Mo)
Exp.	+279	+6	+279	+6	+279	+6	+4	+48
Calc.	+265	-2	+292	-10	+309	+1	+5	+51

Table S5. Comparison of bond lengths (in Å) and angles (in ⁹) for compound 3^{XRAY}.

Compd. 3XRAY					
	Si1-Si2	W1-Si1	Si1-C1NHC	Si2-Si1-W1	Si2-Si1-C1NHC
X-Ray	2.428(3)	2.346(2)	1.949(2)	141.38(10)	105.1(2)
Calc.	2.412	2.349	1.952	140.5	105.0

Compd. 6	X-Ray	Calc.
W1-W2	3.073	3.065
W1-Si1	2.551	2.564
W2-Si2	2.559	2.559
W2-Si1	2.691	2.726
W1-Si2	2.679	2.706
Si1-Si2	2.222	2.235
Si1-Si3	2.437	2.423
Si2-Si4	2.429	2.416
Si1-W1-Si2	50.2	50.1
Si1-W2-Si2	50.0	49.9
Si3-Si1-Si2-Si4	3.5	2.7

Table S6. Comparison of bond lengths (in Å) and angles (in $^{\text{o}}$) for compound 6.

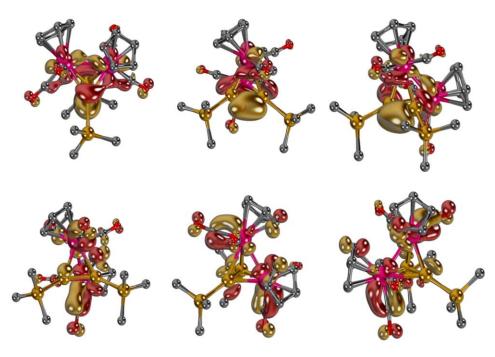


Figure S58. Canonical HOMO (top) and LUMO (bottom) molecular orbitals of 6 from different view angles.

Figure S59. The canonical HOMO of molybdenum complex **5** (shown from three different perspectives) is delocalized, yet shows significant Si–Si π -character indicative of considerable multiple bond character.

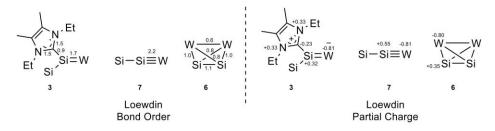


Figure S60. Löwdin bond orders and partial charges of compounds 3, 6 and 7.

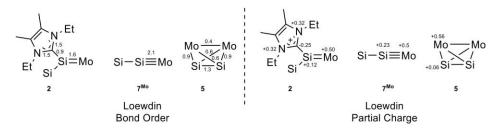


Figure S61. Löwdin bond orders and partial charges of compounds 2, 5 and 7^{Mo} .

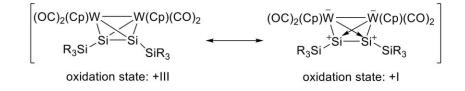
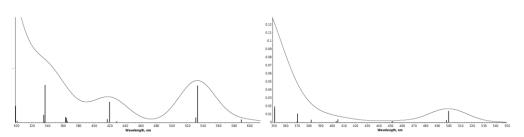
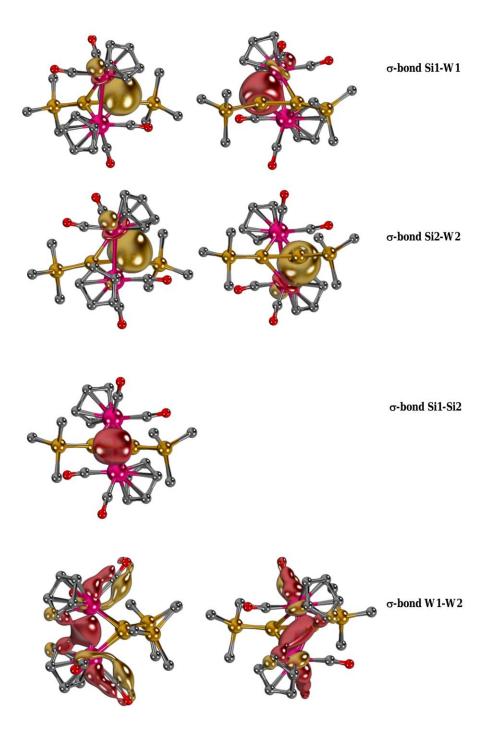
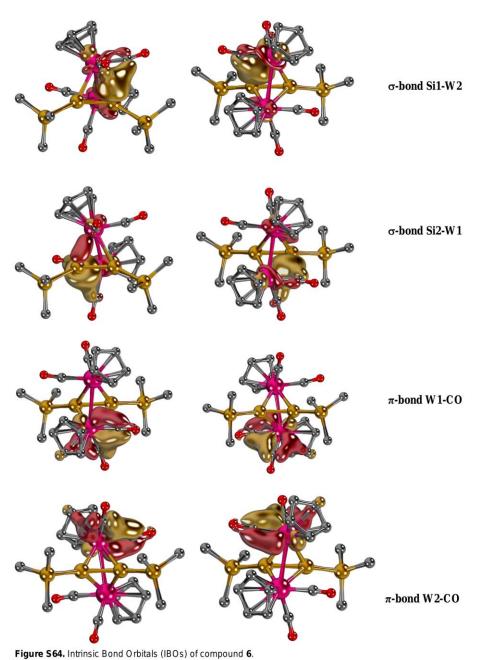
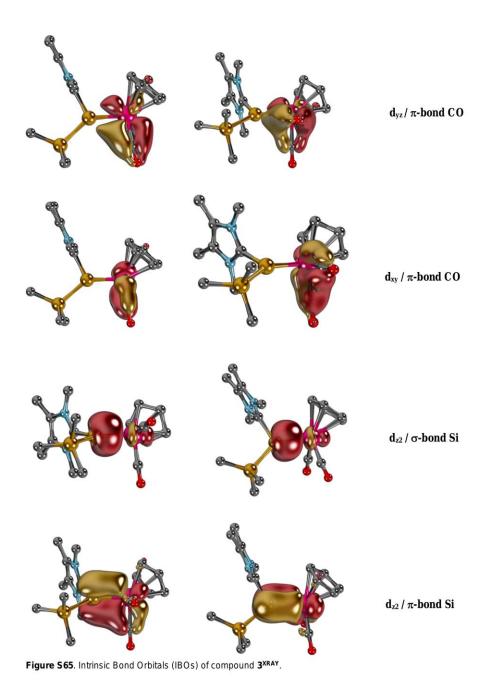


Figure S62. Important resonance structures of compound 6.


Figure S63. Calculated UV-Vis spectrum of compound 3 (left) and compound 6 (right).


Г

	3		6
Wavelength [nm]	MO Contributions	Wavelength[nm]	MO Contributions
658	$HOMO \rightarrow LUMO$	501	$HOMO \rightarrow LUMO$
663	$HOMO-1 \rightarrow LUMO$	499	$HOMO-1 \rightarrow LUMO$
534	HOMO-2 → LUMO	452	$HOMO \rightarrow LUMO+1$
411	HOMO-3 → LUMO	453	$HOMO \rightarrow LUMO+2$
397	$HOMO \rightarrow LUMO+2$	404	$HOMO \rightarrow LUMO$
399	$HOMO \rightarrow LUMO+3$		

Table S4. Excerpt of the TD-DFT calculations of the compounds 3 and 6 with approximate assignment of transitions.

S47

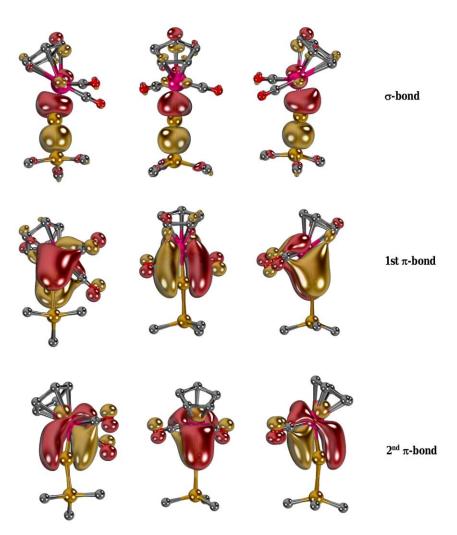


Figure S66. Intrinsic Bond Orbitals (IBOs) of calculated silylidyne 7.

Multireference Character

	s/t gap [kcal mol ⁻¹]	FOD
Compd. 3	22	0.63
Compd. 7	25	0.44
Transition State	12.5	1.69
Compd. 6	27	0.53

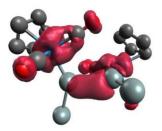


Figure S67. FOD plot of transition state (tBu groups and H atoms omitted for clarity)

NEVPT2/CASSCF(12,12) calculations

State averaged (triplet, singlet) NEVPT2/CASSCF(12,12) calculations were performed on top of the DFT optimized transition state structure using the scalar relativistic ZORA method, the def2-TZVPP basis set and without using the frozencore approximation (*"nofrozencore"*). The calculations suggest a vertical singlet/triplet gap of 0.9 eV and indicate moderate multireference character. The active space relates to the metal valence d-orbitals, viz. the molecular orbitals associated with the π -/ π *-interaction with the silylidyne / carbonyl ligands (antibonding and bonding interaction).

0.79876 [0]: 222222000000
0.03449 [7]: 222220200000
0.01441 [111]: 222202020000
0.00985 [35]: 222211110000
0.00834 [781]: 222022002000
0.00817 [1563]: 221221100100
0.00771 [15133]: 202222000020
0.00726 [49741]: 022222000002
0.00386 [772]: 222022101000
0.00379 [2070]: 221122001100
0.00378 [7282]: 212122001010
0.00362 [777]: 222022011000
0.00344 [112]: 222202011000
0.00314 [1560]: 221221200000
0.00274 [2060]: 221122101000
0.00262 [1632]: 221212110000
0.00251 [275]: 222121100100

Figure S68. W eight of configuration state functions.

Energies

	lmag [cm ⁻¹]	PBE0/def2- SVP	PBE0/def2- SVP	PBE0/ZORA- def2- TZVPP// PBE0-def2- SVP	PBE0(SMD)/ ZORA-def2- TZVPP// PBE0/def2- SVP	PBE0/def2- TZVPP//PBE0/ def2-SVP	M06/ZORA- def2- TZVPP//PBE0- def2-SVP	TPSSh/ZORA- def2-TZVPP// PBE0/def2- SVP
		E in [H]	G in [H]	E in (H)	E in [H]	E in [H]	E in [H]	E in [H]
2XRAY	-	-2000.24248	-1999.59267	-6024.41583	-6024.44417	-2001.91944	-6025.45827	-6026.65264
2	-	-2000.24781	-1999.59851	-6024.42144	-6024.44748	-2001.92503	-6025.46426	-6026.65807
2 ^{rot}	-	-2000.24426	-1999.59508	-6024.41727	-6024.44238	-2001.9209	-6025.4602	-6026.65445
3XRAY		-1999.13023	-1998.48144	-18567.2136	-18567.2423	-2000.80334	-18568.4797	-18569.0821
3		-1999.13547	-1998.48713	-18567.2189	-18567.245	-2000.80866	-18568.4855	-18569.0874
3 ^{rot}		-1999.13221	-1998.48407	-18567.2154	-18567.2407	-2000.80497	-18568.482	-18569.0843
Dimerization_ W_Silylidyne TS	-52	-3075.69875	-3074.83416	-36212.383	-36210.2539	-3078.06816	-36212.383	-36212.7819
5		-3078.03052	-3077.15966	-11124.7358	-11124.76226	-3080.40433	-11126.43	-11128.0232
6		-3075.81128	-3074.94228	-36210.3398	-36210.3663	-3078.17885	-36212.4837	-36212.8895
6 ^{isomer}	-	-3075.79762	-3074.92756	-36210.326	-36210.3528	-3078.16608	-36212.4696	-36212.8754
6 ^{triangle}	-	-3075.76715	-3074.89987	-36210.2928	-36210.3211	-3078.13349	-36212.4354	-36212.8446
6 ^{quadrangle}		-3075.70572	-3074.84306	-36210.2796	-36210.3076	-3078.07667	-36212.3835	-36212.8315
7	-	-1537.84152	-1537.42475	-18105.1121	-18105.1297	-1539.0311	-18106.1871	-18106.3843
7 ^{Mo}	-	-1538.95499	-1538.53815	-5562.31354	-5562.33075	-1540.14716	-5563.16436	-5563.95395
ИНС		-461.211612	-461.007568	-462.03349	-462.054493	-461.702762	-461.902537	-462.628445
NHC_BPh3		-1179.77885	-1179.30746	-1181.81734	-1181.84028	-1181.01074	-1182.29374	-1183.35556
NHC_BPh3_ isomer	8-8	-1179.77938	-1179.30768	-1181.81802	-1181.84713	-1181.01139	-1182.29501	-1183.35628
BPh₃	-	-718.48888	-718.249696	-719.714015	-719.733555	-719.237788	-720.001761	-720.658419
Add NHC BPh₃ TS	-51	-1179.71819	-1179.25024	-1182.25217	-1181.79097	-1180.95401	-1182.25217	-1183.30158
3_minusCO		-1885.91415	-1885.27032	-18453.7465	-18453.7701	-1887.45371	-18454.9503	-18455.4873
со		-113.096482	-113.109772	-113.345053	-113.340665	-113.231974	-113.417016	-113.4731

Table S9. Calculated Energies and imaginary frequencies.

Mechanism

The potential energy surface is very flat, complicating the search for transition states (cf. imaginary frequencies for transitions states). Accordingly, no transition states could be found for model systems with truncated ligands and barrierless dimerization was obtained instead. Furthermore, no transition state could be found for the dimerization of the silylidyne on the triplet hypersurface and instead also barrierless dimerization was predicted. Equally, no transition state could be found for the abstraction of the NHC from **3** by BPh₃. A scan of the NHC–Si bond distance indicates also here barrierless dissociation without interaction between the NHC and the silylidyne at a distance of 3.7 Å.

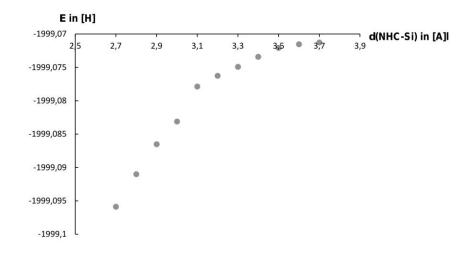


Figure S69. Scan of the NHC-Si distance in 3.

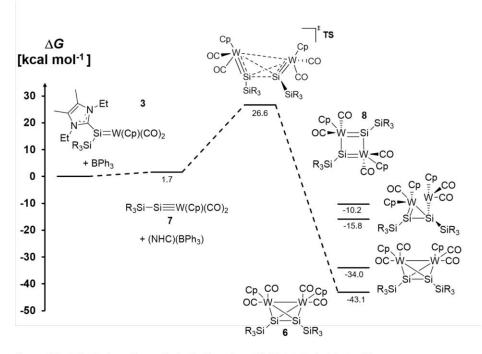


Figure S70. Calculated reaction profile for the formation of W 2Si2 tetrahedral cluster (6).

The reaction of the free NHC with BPh₃ (Addition NHC BPh₃ TS) proceeds with a low barrier of 13.7 kcal mol⁻¹ (imaginary frequency: 51 cm^{-1}).

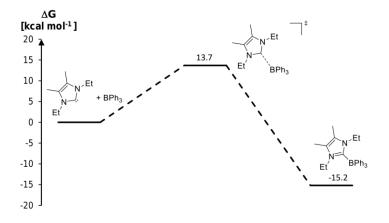


Figure S71. Calculated reaction profile for the reaction of the NHC with BPh_3 .

XYZ Coordinates

Silyli	idene 3				С	2.68808	2.60193	14.21008
Ŵ	5.80079	1.14558	8.94433		Н	1.81600	2.04600	13.83541
С	7.04750	1.33319	10.44622		Н	2.33777	3.58732	14.54534
Õ	7.73023	1.34996	11.39590		Ĥ	3.05015	2.06134	15.10347
č	6.95458	2.28164	7.87700		C	1.58183	3.03804	10.81587
			7.21403		C			
0	7.64277	2.96573				1.57891	1.50746	10.86764
С	4.92286	-0.34194	7.33002		Н	0.73025	1.11610	10.27840
Η	4.77398	-0.03554	6.29597		Η	1.46656	1.12515	11.89185
С	6.09525	-0.95130	7.87247		Η	2.50125	1.08469	10.44289
Н	7.00959	-1.18668	7.33212		С	0.33314	3.54235	11.54846
С	5.84027	-1.21476	9.24511		Н	0.18861	4.62773	11.44638
Η	6.53865	-1.66979	9.94586		Η	0.34683	3.30585	12.62317
С	4.51127	-0.80585	9.55273		Η	-0.56164	3.05577	11.11837
H	4.01927	-0.90067	10.51870		C	1.46741	3.42444	9.33492
C	3.95276	-0.25381	8.37066		Ĥ	2.28929	2.98441	8.74652
H	2.94725	0.15053	8.26423		H	1.46605	4.50990	9.16609
Si	4.91555	3.09497	9.88313		H	0.52200	3.02896	8.92070
Si					C			
	3.28507	3.68162	11.55707		Č	3.18730	5.61004	11.93348
С	5.83784	4.74317	9.41157		С	4.57089	6.25955	12.06690
С	7.35150	6.39311	9.21159		Н	5.06658	6.35333	11.09260
С	6.40191	6.58265	8.24615		Н	5.24745	5.71637	12.73800
С	7.77023	4.62749	10.95877		Η	4.45924	7.28237	12.47148
Н	7.13962	3.84309	11.39839		С	2.41504	5.87502	13.23310
Η	7.94785	5.38098	11.74265		Н	2.26116	6.96246	13.35811
С	9.06277	4.02417	10.44417		Н	2.97017	5.52537	14.11526
Н	8.84854	3.29032	9.65654		Н	1.42451	5.39906	13.25054
Н	9.57739	3.50377	11.26297		С	2.48014	6.33829	10.78580
H	9.73909	4.78673	10.03302		H	2.99640	6.18055	9.82638
Ĉ	8.55869	7.20057	9.51595		Ĥ	2.48097	7.42665	10.97889
H	9.45780	6.79892	9.02287		Ĥ	1.43166	6.03440	10.66371
H	8.75937	7.24214	10.59611		11	1.40100	0.00110	10.000/1
Ĥ	8.41737	8.23142	9.16426		C:I.	lidene 3 ^{rot}		
							1 17004	0 00000
С	6.33416	7.60876	7.17837		W	5.29667	1.17904	8.69639
Н	6.69979	7.21242	6.21711		С	5.73132	2.38735	7.25758
Н	6.96202	8.46934	7.44266		0	6.04227	3.10727	6.38065
Н	5.31028	7.97782	7.02133		С	3.42414	1.20774	8.08258
С	4.34323	5.32709	7.52005		0	2.31326	1.12552	7.74076
Н	3.84324	6.29341	7.35474		С	5.48044	-0.84096	10.00825
Н	3.63956	4.69453	8.08021		Н	4.81360	-1.06099	10.83945
С	4.72002	4.65935	6.21206		С	5.27211	-1.20676	8.64668
Н	3.84161	4.62472	5.55143		Н	4.41049	-1.74943	8.25910
Н	5.07235	3.63447	6.39821		С	6.38524	-0.76852	7.88121
H	5.51922	5.20380	5.69042		Ĥ	6.54215	-0.92909	6.81616
N	6.98740	5.24666	9.89990		C	7.27292	-0.08581	8.76426
N	5.48380	5.55580	8.39387		H	8.22796	0.35688	8.48521
C			13.16705		-			10.07714
	3.80987	2.67498			С	6.71153	-0.13665	
С	5.03686	3.34469	13.79868		H	7.16672	0.27241	10.97729
H	5.87545	3.40709	13.08693		Si	4.78101	3.08651	9.96159
H	5.38949	2.73753	14.65094		Si	4.23998	3.68525	12.24542
Η	4.83064	4.35345	14.18451		С	4.84944	4.72340	8.89889
С	4.23230	1.23693	12.83223		С	5.69382	6.45279	7.72967
Н	4.97513	1.19316	12.02362		С	4.38369	6.30918	7.37004
Н	3.38393	0.60613	12.53912		С	7.26542	5.22035	9.24734
Н	4.68788	0.77787	13.72843		Η	7.10483	4.61781	10.14829
				6 6 5				

Н	7.66961	6.18773	9.58176		Н	2.52990	4.84835	14.56902
С	8.23383	4.50464	8.32693		С	1.42725	4.36246	12.05534
Н	7.89191	3.47899	8.13483		Η	1.40868	3.91884	11.04684
Н	9.21990	4.46717	8.81313		Η	0.64018	5.13736	12.09302
Н	8.34673	5.01042	7.35871		Η	1.13867	3.58067	12.77002
С	6.71203	7.42706	7.26518					
Η	7.49137	6.93978	6.65910		Silyl	idene 3 ^{x ray}		
Н	7.21261	7.93683	8.10295		Ŵ	5.73523	1.01184	8.94357
Н	6.23766	8.19474	6.64105		С	3.90332	0.70141	8.32508
С	3.54900	7.14746	6.47582		Ο	2.82883	0.49779	7.92253
Н	3.20487	6.60414	5.58397		С	5.13895	-0.19950	10.35426
Н	4.12667	8.01537	6.13352		Ο	4.81438	-0.98910	11.14858
Н	2.65854	7.52533	7.00298		С	8.13267	1.10793	8.71130
С	2.58647	4.61997	7.88480		Н	8.77689	1.45374	9.51655
Н	1.81331	5.38800	8.04536		С	7.72726	-0.23638	8.51119
Н	2.46666	3.86507	8.67683		Н	8.00399	-1.08115	9.13982
C	2.46155	3.96594	6.52017		C	6.90906	-0.28856	7.35175
Ĥ	1.53293	3.38198	6.47086		Ĥ	6.45823	-1.18267	6.92598
H	3.30108	3.27953	6.35133		C	6.78335	1.04178	6.84745
H	2.45244	4.70556	5.70803		H	6.24806	1.32886	5.94353
N	5.95325	5.46665	8.66868		C	7.54321	1.90910	7.68973
N	3.89525	5.22818	8.09003		H	7.69837	2.97735	7.54176
C	5.90382	4.36839	13.04971		Si	5.01265	2.95164	10.05299
č	6.13245	5.81624	12.59482		Si	3.33844	3.68152	11.62823
H	6.06665	5.93916	11.50446		C	5.90403	4.58718	9.46800
H	7.13905	6.15129	12.90494		č	7.33071	6.32047	9.26153
H	5.40851	6.50855	13.04664		č	6.40427	6.42272	8.26087
C	7.11353	3.53094	12.60135		č	7.73986	4.66120	11.12204
H	7.11007	3.29139	11.52566		H	7.13392	3.83125	11.51538
H	7.16475	2.56755	13.12379		H	7.76400	5.44499	11.89621
H	8.04739	4.07633	12.82761		C	9.13219	4.16941	10.77030
C	5.88078	4.35698	14.58172		Н	9.07559	3.38726	10.00266
Н	5.81235	4.33098	14.98662		H	9.61602	3.74053	11.65992
H	5.04853	4.93949	14.90002		H	9.77620	3.74033 4.97445	10.38855
Н	6.81450	4.93949 4.79897	14.99650		п С	9.77020 8.44706	4.97443 7.23662	9.60428
					Н			
C C	3.70491	1.99509	13.07356			9.39705	6.93719 7.29525	9.13320
	4.93093	1.09888	13.27358		H H	8.61072	7.28525	10.69015
Н	4.60207	0.10128	13.61825			8.21020	8.25354	9.26279
Н	5.61808	1.48894	14.03745		С	6.29362	7.43114	7.17914
H	5.49069	0.95967	12.33700		H	6.64387	7.03263	6.21337
С	3.03278	2.19400	14.43800		Н	6.91018	8.30728	7.41771
Н	2.07542	2.72962	14.36675		Н	5.25855	7.77710	7.04127
Н	3.67032	2.74033	15.14815		С	4.41009	5.06366	7.54052
Н	2.81183	1.20671	14.88338		H	3.86465	6.00581	7.38110
С	2.74179	1.23269	12.15284		Н	3.74458	4.39077	8.09947
Н	3.21279	0.98380	11.18870		С	4.80808	4.41904	6.22858
Н	1.81991	1.78752	11.93456		Η	3.92752	4.34414	5.57485
Η	2.44340	0.28597	12.64033		Η	5.19136	3.40500	6.41472
С	2.78196	5.00350	12.38294		Н	5.57595	4.99867	5.69642
С	2.97142	6.14820	11.38212		Ν	7.01321	5.17137	9.97116
Н	2.85538	5.79651	10.34847		N	5.54277	5.34684	8.41079
Η	3.94872	6.64160	11.45847		С	3.84564	2.85530	13.34077
Н	2.20058	6.92027	11.55606		С	4.97617	3.64234	14.01432
С	2.68125	5.60800	13.79020		Η	5.85231	3.73969	13.35314
Н	1.81967	6.29866	13.83435		Н	5.31427	3.09299	14.91132
Н	3.57038	6.19446	14.06194		Η	4.68045	4.64903	14.34365
				C F 4				

~					~ ~ · · · ~ ~		
С	4.39885	1.44604	13.10959	С	3.64406	9.10574	19.76039
Η	5.27419	1.45457	12.44436	Н	4.56318	8.82065	20.26204
Η	3.66884	0.75653	12.67194	С	3.26551	8.75976	18.43197
H	4.72054	1.01701	14.07638	Ĥ	3.84576	8.14823	17.74273
С	2.66652	2.74916	14.31428	С	2.01927	9.39515	18.14378
Н	1.86625	2.10747	13.91957	Н	1.48546	9.36949	17.19558
Η	2.22476	3.72182	14.57213	С	1.62393	10.11321	19.31434
Н	3.01131	2.28373	15.25581	Н	0.72650	10.72026	19.42031
С	1.66032	2.95529	10.91849	С	2.63138	9.94565	20.29859
č	1.68124	1.42944	11.06614	H	2.64996	10.40407	21.28210
H	0.84461	0.99206	10.49458	Si	0.58905	5.78884	21.25788
Η	1.56871	1.10866	12.11144	Si	-0.94319	3.91714	21.12540
Н	2.60411	0.98347	10.67081	С	-0.61245	2.70713	22.62512
С	0.39733	3.48771	11.60767	С	-0.34643	3.47924	23.92237
Η	0.23742	4.56203	11.43111	Н	0.56111	4.09040	23.85090
Н	0.39926	3.32147	12.69507	Н	-0.18506	2.76263	24.74753
Ĥ	-0.48346	2.96038	11.19810	Ĥ	-1.16956	4.14058	24.21774
С	1.54681	3.26193	9.41873	С	0.61989	1.84155	22.36838
Η	2.38202	2.82529	8.85257	Н	0.48730	1.14744	21.52752
Н	1.49827	4.33736	9.20021	Н	0.82960	1.22939	23.26298
Н	0.62474	2.80409	9.01864	Н	1.50842	2.45170	22.17389
С	3.20657	5.63312	11.84142	С	-1.80385	1.76576	22.84126
Ĉ	4.57644	6.30964	11.97844	Ĥ	-2.06642	1.19610	21.93769
H	5.09050	6.36711	11.01043	Ĥ	-2.70449	2.29206	23.18540
							23.62455
H	5.24435	5.80846	12.68947	H	-1.54376	1.03227	
Н	4.44218	7.34864	12.33250	С	-0.57873	3.08004	19.39879
С	2.38689	5.96709	13.09548	С	0.93436	2.92014	19.19832
Н	2.21824	7.05826	13.14967	Н	1.13302	2.55813	18.17391
Н	2.91101	5.67574	14.01640	Н	1.37619	2.19399	19.89197
H	1.40139	5.48181	13.10550	H	1.47594	3.86768	19.32233
C	2.52749	6.27863	10.62946	C	-1.22871	1.69628	19.27113
H	3.06480	6.05079	9.69680	H	-2.32142	1.72488	19.39204
Η	2.52356	7.37817	10.74419	Н	-0.82806	0.97301	19.99511
Н	1.48253	5.96385	10.50471	Н	-1.02186	1.28995	18.26475
				С	-1.11737	3.96176	18.26586
6				Н	-0.77658	3.55931	17.29618
W	0.95300	7.82770	22.76892	Н	-0.75801	4.99909	18.32814
Ċ	1.42549	6.54499	24.18628	Ĥ	-2.21614	3.98316	18.24433
	1.64348	5.90094	25.12143	C	-2.75544	4.64398	21.27016
0							
С	2.71772	8.60767	23.10396	С	-3.83812	3.65161	20.83035
0	3.64859	9.22986	23.41587	Н	-3.75709	3.39213	19.76479
С	-1.38523	8.34948	22.79252	Н	-4.82906	4.11938	20.97366
Н	-2.16475	7.72713	22.36470	Н	-3.83227	2.71716	21.40607
С	-0.72850	9.43042	22.14386	С	-2.87683	5.89576	20.40209
Н	-0.92387	9.77052	21.13130	Н	-2.73704	5.69900	19.33264
C	0.18061	10.01368	23.06372	Ĥ	-2.13454	6.64928	20.68529
H	0.81254	10.87940	22.87055	H	-3.87682	6.35028	20.52497
С	0.08155	9.30327	24.30096	С	-3.04002	5.07105	22.71706
Η	0.61672	9.53590	25.21968	Н	-2.23804	5.70552	23.12438
С	-0.88148	8.26468	24.12090	Н	-3.16645	4.21882	23.39771
Η	-1.20691	7.55574	24.88061	Н	-3.97897	5.65302	22.75141
W	1.63645	7.82696	19.78073	Si	2.75905	6.27817	21.48054
Ċ	1.62757	6.42061	18.39725	Si	4.92560	5.25611	21.79793
ŏ	1.64264	5.74536	17.45812	C	6.07512	6.45581	22.82579
С	-0.29735	7.94424	19.42648	С	7.52940	5.96584	22.87954
0	-1.38071	8.19973	19.10201	Н	7.99970	5.95962	21.88515
				C F F			

Н	7.64030	4.96439	23.31378	С	6.02187	7.40739	21.75465
Н	8.11883	6.65784	23.50657	Ο	7.09864	7.18203	22.07715
С	6.10771	7.86998	22.23818	С	4.86422	9.78746	20.04726
Н	6.66341	7.92145	21.29425	Н	4.31508	9.84697	19.10736
Н	6.61050	8.54809	22.94876	С	4.33698	10.09074	21.35012
Н	5.10751	8.27940	22.07562	Н	3.32888	10.44835	21.56146
С	5.52690	6.54773	24.25608	С	5.45093	10.29228	22.21328
Н	4.46833	6.84468	24.28567	Н	5.38161	10.51515	23.27695
H	6.09146	7.30882	24.82164	C	6.63354	10.18875	21.46317
Н	5.62306	5.59790	24.79976	Н	7.64574	10.24280	21.86365
С	5.60522	4.94336	19.99218	С	6.28428	9.85149	20.15003
С	6.09532	6.24543	19.35311	Н	6.97996	9.66305	19.33202
Н	6.38898	6.05104	18.30574	Si	3.07004	6.81500	23.06211
Н	6.97649	6.66094	19.86036	Si	2.54856	7.31703	25.35234
Н	5.30750	7.01138	19.33957	С	0.61829	7.12778	25.57042
C	6.78203	3.95953	20.01980	Č	3.14039	9.13452	25.75826
Н	7.17315	3.82777	18.99507	С	3.55957	5.98222	26.35707
Н	6.49402	2.96450	20.38567	Si	4.08105	5.85187	19.63371
Н	7.61490	4.31602	20.64221	Si	4.94709	5.31058	17.48219
C	4.50123	4.39055	19.08576	C	6.85339	5.43200	17.91584
Н	4.89779	4.24160	18.06557	С	4.35851	6.64777	16.18733
Н	3.66136	5.09498	19.00733	С	4.39731	3.51008	16.97038
Н	4.10144	3.42885	19.42467	С	2.71132	10.10879	24.65350
C	4.63032	3.57033	22.74844	Ĥ	2.98666	9.73792	23.65522
С	3.55919	3.76250	23.82276	Н	1.63248	10.30556	24.65395
Н	2.60724	4.07299	23.37021	Н	3.21894	11.07833	24.80424
Н	3.82326	4.51053	24.57961	С	4.67088	9.17206	25.81382
H	3.37840	2.80821	24.34880	Ĥ	5.00340	10.21160	25.98577
С	4.10849	2.50144	21.78488	Н	5.08582	8.56669	26.63008
Н	3.23515	2.85675	21.22023	Н	5.12421	8.83027	24.87031
Н	3.79203	1.61421	22.36018	С	2.58991	9.63826	27.09822
Н	4.86647	2.16557	21.06498	Н	3.01335	10.63499	27.31782
С	5.90452	3.03592	23.41302	Н	1.49616	9.75170	27.08427
Н	6.73093	2.89355	22.70103	Н	2.84922	8.98136	27.94083
Н	5.68912	2.05211	23.86698	С	0.22710	7.02039	27.04961
Н	6.25982	3.68755	24.22304	Н	0.52574	7.90362	27.63099
				Н	-0.86989	6.92118	27.13975
6 ^{quadr}	angle			Н	0.67152	6.13949	27.53472
Ŵ	3.01173	4.75285	21.61299	C	-0.09457	8.33304	24.94671
	1.46312						
С		5.82802	20.81261	Н	0.19264	8.48754	23.89347
Ο	0.52145	6.31099	20.35709	Н	-1.18708	8.17147	24.96597
С	4.96311	4.78166	22.16039	Н	0.10275	9.26554	25.49254
Ō	6.05613	4.63142	22.50076	C	0.10634	5.87861	24.84794
		2.00142					
С	3.01372	2.86442	22.95333	Н	0.51755	4.95553	25.27559
Н	3.60299	2.80464	23.86631	Н	-0.99301	5.82442	24.94333
С	3.45074	2.47529	21.64040	Н	0.35063	5.89299	23.77359
Ĥ	4.42925	2.07196	21.38604	C	4.93698	5.80138	25.70538
С	2.36785	2.65070	20.74314	Н	5.52832	6.72415	25.66734
Н	2.36651	2.41628	19.68221	Н	5.52355	5.05455	26.26941
С	1.27306	3.15899	21.49327	Н	4.85044	5.42111	24.67581
H	0.28749	3.39186	21.09212	C	3.73587	6.36293	27.83119
С	1.66315	3.28709	22.85682	Н	4.34130	7.27008	27.96445
Н	1.03108	3.62686	23.67170	Н	2.77411	6.52519	28.34028
W	4.08861	7.75134	21.10799	Н	4.25873	5.55018	28.36628
C	2.37009	8.43144	20.25263	C	2.85914	4.62147	26.28948
0	1.47985	8.93165	19.72260	Н	3.50867	3.85109	26.74229
				C E C			

Н	1.90756	4.60211	26.83908	С	-0.35638	9.14493	20.23758
H	2.66107	4.32490	25.25000	Ō	-1.26019	9.54242	20.85288
C	2.96145	6.33204	15.64286	č	2.63313	9.40994	19.61206
H	2.64860	7.14481	14.96484	ŏ	3.65632	9.94427	19.79342
H	2.92870			C	0.58725	9.15711	
		5.40247	15.05793				16.47431
Н	2.20784	6.26720	16.44321	Н	0.65683	8.35508	15.74366
С	4.26292	8.03125	16.84077	С	-0.60745	9.57119	17.13250
Н	5.22236	8.39097	17.23396	Н	-1.58878	9.11280	17.03002
Н	3.90548	8.76609	16.09735	С	-0.29472	10.69732	17.94188
Н	3.54795	8.03316	17.67676	Н	-0.99442	11.23214	18.58238
С	5.33815	6.69807	15.00770	С	1.08302	10.98563	17.79754
Н	5.44626	5.72269	14.50965	Н	1.62339	11.79154	18.29098
Н	4.97600	7.41429	14.24918	С	1.63493	10.03780	16.88181
Н	6.34093	7.03012	15.31354	Н	2.66626	10.02184	16.53807
C	7.25351	6.90311	18.07156	Si	0.26950	6.57622	20.09908
H	8.28391	6.96241	18.46659	Si	-1.81780	5.39156	20.06522
H	7.23170	7.45593	17.12194	C	-1.26101	3.52575	19.83112
H	6.60189	7.42129	18.79013	C	-2.88183	6.05224	18.55670
				C			
С	7.75024	4.76776	16.86889	C	-2.74002	5.64066	21.76671
Н	7.55549	3.68914	16.77107	Si	1.73671	6.55805	18.36974
Н	7.64110	5.22205	15.87316	Si	3.24323	5.32004	16.86857
Н	8.80912	4.87681	17.16637	С	4.50794	6.68422	16.26255
С	7.10575	4.78292	19.28263	С	2.17288	4.59457	15.39081
Н	6.52312	5.27491	20.07784	С	4.13941	3.89375	17.85118
Н	6.87856	3.71013	19.31408	С	-2.03735	6.21573	17.28913
Н	8.16584	4.90993	19.56487	Н	-1.14403	6.83063	17.47110
С	4.81198	3.13496	15.54271	Н	-1.70844	5.25701	16.87027
Н	4.49065	2.10005	15.32383	Н	-2.63916	6.71731	16.50914
H	4.34129	3.78242	14.78924	C	-3.44055	7.43565	18.91229
H	5.90008	3.17986	15.39075	H	-3.91934	7.87917	18.02060
C	2.87215	3.38893	17.07860	H	-4.21187	7.38491	19.69248
Н	2.34494	3.95101	16.30101	H	-2.66133	8.13105	19.09240
H	2.57638	2.32944	16.96586	С	-4.05630	5.12453	18.22218
H	2.50007	3.74909	18.05111	H	-4.66603	5.58189	17.42204
С	5.00509	2.49430	17.94293	Н	-3.71972	4.14549	17.84909
Н	4.78110	2.75184	18.99082	Н	-4.72261	4.94936	19.07775
Н	4.58396	1.49234	17.74274	С	-2.37494	2.51059	20.10230
Н	6.09665	2.41388	17.84007	Н	-3.27182	2.69093	19.49200
				Н	-2.00970	1.49587	19.85970
6 ^{triang}	le			Н	-2.68556	2.49870	21.15670
W	1.82922	7.80405	21.69639	С	-0.77983	3.33265	18.39459
С	1.54025	9.69186	22.21706	Н	-0.00769	4.07442	18.13741
0	1.40016	10.78401	22.56757	Н	-0.32889	2.32966	18.28696
č	0.42453	7.67082	23.03910	H	-1.59079	3.40394	17.65614
ŏ	-0.26736	7.57241	23.96712	C	-0.06815	3.20168	20.74098
č	2.90923	6.14551	22.86201	Н	-0.33921	3.17146	21.80318
H	2.35835	5.44785	23.49070	H	0.34513	2.21270	20.47184
C	3.43532		23.26634	H		3.93718	20.62248
		7.41175			0.74444		
H	3.36615	7.84981	24.26062	С	-2.82255	7.12171	22.14594
С	4.09810	7.98062	22.13958	H	-3.51893	7.68299	21.51300
Н	4.59985	8.94548	22.09978	Н	-3.17919	7.21441	23.18668
С	4.02499	7.04895	21.06747	Н	-1.85515	7.62725	22.09233
Н	4.45126	7.20261	20.07987	С	-4.17087	5.09139	21.73909
С	3.29765	5.91561	21.51001	Н	-4.81806	5.67483	21.06873
Н	3.07373	5.02297	20.93233	Н	-4.23228	4.03633	21.43607
W	0.94301	8.84286	18.75438	Н	-4.60748	5.17223	22.75080
				S 57			

С	-1.96018	4.91533	22.87208	Н	4.64103	5.83485	23.20760
Н	-2.39503	5.17504	23.85263	W	1.57227	8.81040	19.15827
H	-2.00751	3.82156	22.77243	C	-0.26124	8.92708	19.80312
Ĥ	-0.90179	5.21303	22.90348	ŏ	-1.34230	9.21819	20.12176
C	1.57011	3.22695	15.72992	C	1.91392	9.97972	20.69259
H	0.86494	2.94025	14.93119	0	2.01957	10.89609	21.41025
Н	2.32799	2.43484	15.78577	С	0.79648	9.44774	17.06777
Н	1.00896	3.22666	16.66903	Н	-0.19797	9.16096	16.73129
С	1.00652	5.54341	15.09394	С	1.12928	10.63322	17.79533
Н	1.34157	6.53982	14.77276	Н	0.43237	11.40365	18.12053
Н	0.38168	5.12983	14.28222	С	2.54030	10.64764	17.98323
Н	0.35246	5.66785	15.97114	Н	3.10358	11.42013	18.50484
C	3.00829	4.39917	14.11759	C	3.07976	9.47908	17.40659
H	3.86816	3.73329	14.28321	Ĥ	4.13327	9.21979	17.37032
H	2.37787	3.92452	13.34472	C	1.99744	8.72574	16.84255
				Н			
H	3.38401	5.34002	13.69362		2.08029	7.78527	16.30310
С	3.80008	7.63331	15.29410	Si	0.64293	6.50318	20.01129
Н	4.46228	8.48578	15.06035	Si	-1.45514	5.27469	19.81751
Η	3.53329	7.15866	14.34055	С	-0.86971	3.43103	19.52818
Н	2.88378	8.03879	15.74301	С	-2.40467	5.93919	18.23151
С	5.73477	6.08006	15.56774	С	-2.51932	5.44992	21.44146
Η	6.35389	5.49223	16.26052	Si	2.79611	6.52810	19.42957
Н	5.47549	5.43649	14.71523	Si	4.45857	5.12977	18.36381
Ĥ	6.37205	6.89497	15.18041	C	5.80587	6.33433	17.60098
C	4.99082	7.54421	17.43666	C	3.58896	4.07940	16.96351
H	4.15430	8.03011	17.96030	C	5.23285	3.95842	19.72895
	5.58099		18.16966	C			
H		6.97941			-1.40720	6.28704	17.11799
Н	5.64162	8.34966	17.05382	Н	-0.63390	6.99028	17.46540
С	4.86019	2.92816	16.89872	Н	-0.89264	5.40593	16.71430
Н	5.40814	2.17636	17.49428	Н	-1.94510	6.76686	16.28022
Н	4.17469	2.37817	16.24068	С	-3.22438	7.19736	18.53720
Н	5.59969	3.43814	16.26484	Н	-3.66835	7.56990	17.59643
С	3.13141	3.11250	18.70178	Н	-4.06046	6.98857	19.21937
Н	2.39874	2.56081	18.10035	Н	-2.63164	8.00854	18.97051
Н	3.66423	2.37699	19.32971	С	-3.40557	4.89952	17.70278
Ĥ	2.56100	3.77581	19.36843	Ĥ	-3.95035	5.33815	16.84773
C	5.19471	4.46869	18.79817	Ĥ	-2.93597	3.97499	17.34348
Н			19.49587	H			
	4.77671	5.20329			-4.15725	4.62482	18.45643
Н	5.62536	3.65301	19.40565	С	-1.96369	2.39300	19.80296
Н	6.02525	4.94553	18.26002	Н	-2.87867	2.56525	19.21756
-				Н	-1.58059	1.39395	19.52670
6 ^{isomer}				Н	-2.24396	2.34691	20.86460
W	2.43224	7.39341	21.84786	С	-0.40565	3.24761	18.08194
С	0.72339	8.04323	22.61734	Н	0.33631	4.00238	17.79085
0	-0.17202	8.49848	23.18264	Н	0.06821	2.25734	17.97282
С	1.91253	5.59321	22.46020	Н	-1.23106	3.28706	17.36075
Ο	1.70850	4.56892	22.95902	С	0.32093	3.12993	20.44056
Ċ	3.46243	7.62666	23.87545	H	0.08229	3.23213	21.50655
H	2.99029	7.27759	24.79227	Ĥ	0.66920	2.09430	20.27338
C	3.35984	8.93486	23.30953	Ĥ	1.16893	3.79949	20.23100
H							
	2.77264	9.76636	23.69520	С	-2.72789	6.91692	21.82649
С	4.19228	8.98110	22.15702	Н	-3.30289	7.48048	21.08422
H	4.34374	9.84691	21.51852	H	-3.28588	6.96461	22.77895
С	4.79283	7.70984	21.98195	Н	-1.78488	7.44879	21.98075
Н	5.50468	7.45586	21.20460	С	-3.90448	4.81318	21.25140
С	4.33547	6.86540	23.03605	Н	-4.50202	5.34965	20.50093
				CEO			

Н	-3.86809	3.75548	20.95880		Н	7.74949	2.54582	6.49859
H	-4.45956	4.86868	22.20462		C	8.12371	1.92486	8.61503
C	-1.81649	4.77031	22.62272		H	8.53874	2.82668	9.06223
							2.43643	
Н	-2.41932	4.92294	23.53530		Si	4.67571		10.34503
H	-1.69441	3.68586	22.49199		Si	3.14132	3.40328	11.85138
Н	-0.82307	5.20067	22.81474		С	3.81864	2.92884	13.61890
С	2.88255	2.86446	17.57114		С	5.01446	3.80988	13.99550
Н	2.27667	2.36994	16.79175		Н	5.82255	3.75712	13.24837
Н	3.59124	2.11687	17.94901		Η	5.43639	3.45664	14.95324
Н	2.20750	3.13498	18.38992		Н	4.73950	4.86628	14.12790
С	2.53495	4.93486	16.25001		С	4.32060	1.47726	13.61882
H	2.98715	5.75446	15.67477		H	5.11651	1.31133	12.87274
H	1.96327	4.31277	15.53798		H	3.52843	0.74532	13.42066
H	1.81636	5.36983	16.96306		H	4.75293	1.23948	14.60728
С	4.57935	3.54074	15.92331		С	2.73783	3.07771	14.69495
Н	5.35615	2.90606	16.37460		Н	1.87698	2.41811	14.51457
Η	4.02962	2.91406	15.19814		Η	2.35979	4.10878	14.77297
Η	5.07889	4.33116	15.34817		Η	3.15641	2.80218	15.67972
С	5.28131	6.95712	16.30256		С	1.44089	2.56109	11.40011
Н	5.95376	7.77234	15.98263		С	1.43163	1.11441	11.90738
Η	5.24359	6.23402	15.47762		Н	0.50300	0.61997	11.57379
H	4.27668	7.38237	16.41339		H	1.45999	1.04260	13.00326
C	7.12323	5.61881	17.26866		H	2.26941	0.52752	11.49866
H	7.63220	5.23451	18.16377		C	0.24792	3.30911	12.00601
H	6.98524	4.77990	16.57178		H	0.24792	4.32678	11.60037
Н	7.81420	6.33230	16.78462		Н	0.30520	3.38780	13.10211
С	6.11121	7.47576	18.57971		Η	-0.68377	2.76764	11.76255
Η	5.19746	7.98609	18.92620		С	1.26462	2.49354	9.87581
Η	6.66012	7.12433	19.46468		Η	2.10398	1.98344	9.37772
Н	6.75264	8.22791	18.08634		Н	1.14763	3.47761	9.40732
С	6.03835	2.81482	19.09850		Н	0.36022	1.90583	9.63968
Н	6.47985	2.19962	19.90291		С	3.22694	5.30251	11.43083
Н	5.42148	2.14340	18.48696		С	4.68534	5.76427	11.29117
H	6.86706	3.17536	18.47248		H	5.23460	5.16866	10.54229
C	4.12883	3.37182	20.61448		Ĥ	5.24499	5.72212	12.23357
H	3.43418	2.72229	20.01410		H	4.70616	6.81117	10.93836
					C			
Н	4.58432	2.76548	21.41777			2.52736	6.13193	12.51400
Н	3.53670	4.16384	21.09381		Н	2.51297	7.19797	12.22440
С	6.17266	4.72833	20.65745		Н	3.04655	6.06672	13.48235
Η	5.64181	5.53853	21.16738		Η	1.48275	5.82340	12.67200
Н	6.55782	4.04519	21.43531		С	2.56218	5.55896	10.07253
Н	7.04358	5.15228	20.13889		Н	3.00463	4.94821	9.26869
					Η	2.71033	6.61680	9.79237
7					Н	1.47887	5.37530	10.08346
W	5.76185	1.50307	8.62325					
C	4.67350	2.72465	7.51904		7Mo			
ŏ	4.06426	3.43429	6.83331		м́о	5.81411	1.52968	8.68367
C	4.20481	0.29797	8.59241		C	4.69836	2.72609	7.60947
						4.05913	3.41569	6.93301
0	3.30746	-0.43694	8.55388		0			
С	7.90567	0.68374	9.28237		C	4.28071	0.33780	8.81014
Η	8.13274	0.46612	10.32478		0	3.39221	-0.40675	8.85187
С	7.34756	-0.22763	8.34890		С	7.95737	0.67483	9.18377
Η	7.08646	-1.26413	8.55659		Η	8.27805	0.50449	10.21031
С	7.22336	0.44320	7.09250		С	7.27848	-0.25865	8.35953
Η	6.85422	0.00874	6.16541		Н	6.99988	-1.27161	8.64612
С	7.69888	1.77736	7.26846		С	7.05210	0.35252	7.08664
				S 50				

тт		0 11007	C 00F17		0.07020	0 221 47	00 04470
Н	6.57750	-0.11337	6.22517	Н	-0.27039	9.32147	22.34472
С	7.59777	1.66905	7.14038	С	1.27376	8.81336	23.88440
Н	7.60021	2.39432	6.32801	Н	2.02072	9.59217	23.73730
С	8.15263	1.86939	8.43058	С	1.34061	7.75887	24.84652
Η	8.63857	2.77597	8.78774	Н	2.14075	7.59135	25.56573
Si	4.80946	2.50780	10.40322	С	0.16564	6.96423	24.69869
Si	3.16964	3.41973	11.85448	Ĥ	-0.10546	6.09788	25.30035
C	3.79568	2.93874	13.64015	W	2.49451	8.80853	18.26328
C	4.96112			C	1.57038	7.93983	
		3.83737	14.06685				16.75208
H	5.79456	3.81047	13.34670	0	1.08249	7.49617	15.79660
Η	5.35791	3.48051	15.03402	С	0.89109	9.01135	19.34846
Н	4.66023	4.88629	14.20281	О	-0.01718	9.26253	20.03564
С	4.32324	1.49670	13.64217	С	4.16457	9.89352	16.95788
Н	5.14634	1.35176	12.92144	Н	4.60003	9.42062	16.07932
Η	3.55003	0.75411	13.41119	С	3.01043	10.73616	16.97568
Н	4.72727	1.25577	14.64184	Н	2.39999	11.00511	16.11507
Ĉ	2.67747	3.05567	14.68143	C	2.80120	11.17052	18.31068
H	1.83863	2.37735	14.46985	H	1.99880	11.82287	18.65223
	2.27335	4.07733	14.75295	C	3.81427	10.59714	19.12899
Н							
H	3.07001	2.78330	15.67783	Н	3.94682	10.75205	20.19836
С	1.49199	2.56100	11.34899	С	4.64928	9.80100	18.29015
С	1.49784	1.10231	11.82187	Н	5.53650	9.26274	18.61329
Н	0.58361	0.60173	11.45901	Si	0.58200	5.89609	20.74426
Η	1.50570	1.00569	12.91627	Si	-1.36565	4.87121	19.70311
Н	2.35060	0.53681	11.41512	С	-1.31525	2.97072	20.14593
С	0.27238	3.27097	11.94889	C	-1.35232	5.21595	17.79840
Ĥ	0.15755	4.29628	11.56638	Č	-2.84096	5.77652	20.62245
H	0.30362	3.32219	13.04737	Si	2.91272	6.70196	19.11845
		2.71789	11.67089	Si	4.55117	4.87777	
H	-0.64276						18.85462
С	1.34177	2.53059	9.82080	C	6.21761	5.91676	18.81866
Н	2.21411	2.08538	9.31964	С	4.24299	4.06896	17.09526
Н	1.17569	3.52156	9.38273	С	4.50300	3.55235	20.27987
Η	0.47433	1.90244	9.55324	С	0.02284	4.85996	17.23012
С	3.22828	5.32718	11.46436	Н	0.82614	5.42831	17.72556
С	4.67875	5.82491	11.38977	Н	0.25248	3.79332	17.32469
Н	5.27377	5.25004	10.65970	Н	0.06485	5.11873	16.15954
н	5.20094	5.78883	12.35356	С	-1.60637	6.70248	17.52840
H	4.68831	6.87477	11.04530	Ĥ	-1.46438	6.91202	16.45528
C	2.46335	6.13161	12.52155	H	-2.62910	7.00800	17.78990
H	2.43865	7.19977	12.24016	H	-0.90491	7.35131	18.07363
					-2.41351		17.06100
H	2.93830	6.06870	13.51260	C		4.38959	
H	1.41959	5.79977	12.62847	H	-2.38845	4.64150	15.98588
С	2.61450	5.58381	10.08201	H	-2.23535	3.30700	17.14156
Η	3.09218	4.98168	9.29221	Н	-3.43394	4.58943	17.41832
Н	2.76167	6.64470	9.81294	С	-2.72089	2.36712	20.03805
Η	1.53361	5.38883	10.05235	Н	-3.13826	2.45255	19.02377
				Н	-2.67560	1.29187	20.28901
Dim	erization_Siy	lidvne TS		Н	-3.43569	2.82462	20.73379
W	1.40311	6.73536	22.73563	С	-0.39446	2.19558	19.19842
C	1.91511	4.89353	23.19323	Ĥ	0.62464	2.60564	19.18068
ŏ	2.17314	3.82108	23.55267	H	-0.31844	1.14860	19.54159
C							
	3.27500	7.28578	22.35007	H	-0.77055	2.17180	18.16571
0	4.32491	7.76027	22.26296	C	-0.78899	2.75370	21.57100
С	-0.62341	7.54164	23.66445	H	-1.34530	3.31336	22.33157
Н	-1.60184	7.19925	23.34161	Н	-0.87232	1.68201	21.82576
С	0.06171	8.68498	23.16227	Н	0.27147	3.03178	21.66916
				S 60			

С	-2.58142	7.28685	20.67454	С	5.33105	-0.31629	1.50694
Н	-2.66100	7.76343	19.69085		6.27264	-2.55665	-0.87361
				H			
Н	-3.32708	7.76737	21.33251	Н	3.83136	0.97413	-1.25721
Н	-1.58546	7.53655	21.06791	Н	6.56216	-2.09143	1.54395
С	-4.18553	5.55487	19.91568	Н	4.03899	1.38334	1.17715
Н	-4.19944	5.98363	18.90374	Н	5.45919	-0.10837	2.57253
H	-4.46523	4.49484	19.83878	C	5.13408	0.13110	-3.79916
H	-4.98077		20.49053	C	4.70102		-5.13611
		6.06243				0.02497	
С	-2.96467	5.26530	22.06266	C	5.67024	1.36957	-3.39131
Н	-3.70142	5.88174	22.60730	С	4.78258	1.10224	-6.01385
Н	-3.31821	4.22678	22.11710	С	5.76122	2.44906	-4.26438
Н	-2.01093	5.31930	22.60684	С	5.31072	2.31783	-5.57840
С	3.19191	2.95915	17.16831	Н	4.27222	-0.91722	-5.48599
Ĥ	2.96033	2.61038	16.14614	Ĥ	6.03575	1.48108	-2.36796
H	3.53881	2.08464	17.73582	H	4.42511	0.99663	-7.04127
Н	2.25202	3.31007	17.61412	Н	6.18977	3.39353	-3.91961
С	3.72521	5.10884	16.09480	Н	5.37208	3.16523	-6.26606
Н	4.38008	5.98192	15.98796	С	4.82252	-2.53415	-3.31938
Н	3.63206	4.63859	15.09945	С	5.50541	-3.05132	-4.43687
Н	2.73102	5.48474	16.37164	С	3.89812	-3.37693	-2.67394
C	5.53278	3.44248	16.54238	Č	5.27049	-4.34657	-4.89286
H	5.96611	2.69064	17.21816	č	3.62539	-4.65630	-3.15195
Н	5.30422	2.92994	15.59091	С	4.31357	-5.14349	-4.26282
Н	6.30954	4.18620	16.32284	Н	6.23891	-2.42659	-4.95408
С	6.31475	6.72080	17.51560	Н	3.36995	-3.00762	-1.79062
Н	7.18114	7.40466	17.57220	Н	5.82560	-4.73413	-5.75100
Н	6.46830	6.08379	16.63463	Н	2.88129	-5.28120	-2.65194
Н	5.41609	7.32957	17.33841	H	4.10077	-6.14695	-4.64123
				11	1.100//	0.11000	1.01120
C	7 16222	5 00515	10 02021				
С	7.46223	5.02515	18.92931				
Н	7.55134	4.55899	19.92122				
H H	7.55134 7.49767	4.55899 4.22518	19.92122 18.17761	NHC	_BPh ₃		
H H H	7.55134 7.49767 8.36158	4.55899 4.22518 5.65059	19.92122 18.17761 18.78262	С	_ BPh ₃ 5.84621	4.71537	9.54301
H H	7.55134 7.49767	4.55899 4.22518	19.92122 18.17761	С	5.84621		
H H H	7.55134 7.49767 8.36158	4.55899 4.22518 5.65059	19.92122 18.17761 18.78262	C C	5.84621 7.31519	6.39897	9.19188
H H H C H	7.55134 7.49767 8.36158 6.24629 5.38278	4.55899 4.22518 5.65059 6.90972 7.59048	19.92122 18.17761 18.78262 19.98228 19.96553	C C C	5.84621 7.31519 6.75407	6.39897 6.08919	9.19188 7.98710
Н Н С Н Н	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329	C C C C	5.84621 7.31519 6.75407 6.97449	6.39897 6.08919 5.71436	9.19188 7.98710 11.55327
H H C H H H	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080	C C C H	5.84621 7.31519 6.75407 6.97449 8.03502	6.39897 6.08919 5.71436 5.96985	9.19188 7.98710 11.55327 11.68726
H H C H H C	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854	C C C H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950	6.39897 6.08919 5.71436 5.96985 4.75206	9.19188 7.98710 11.55327 11.68726 12.04390
H H C H H C H H C H	$\begin{array}{c} 7.55134 \\ 7.49767 \\ 8.36158 \\ 6.24629 \\ 5.38278 \\ 6.25066 \\ 7.16072 \\ 5.40694 \\ 5.31703 \end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755	C C C H H C	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787
H H H C H H C H H C H H	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100	C C C H H C H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809
H H H C H H H C H H H H H H H H C H	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\\ 6.46784\end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585	C C C H H C H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476
H H H C H H H C H H H C H H H C	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100	C C C H H C H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476
H H H C H H H C H H H C H H H C	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\\ 6.46784\end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585	C C C H H C H H H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778
H H H C H H H C H H H C H	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909	$\begin{array}{c} 19.92122\\ 18.17761\\ 18.78262\\ 19.98228\\ 19.96553\\ 20.96329\\ 19.92080\\ 19.97854\\ 20.79755\\ 19.05100\\ 19.90585\\ 20.45851\\ 19.60876\end{array}$	C C C H H C H H H C	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800
H H H C H H H C H H H C H H H C H H	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\\ 6.46784\\ 3.06987\\ 2.73203\\ 3.00679\end{array}$	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933	$\begin{array}{c} 19.92122\\ 18.17761\\ 18.78262\\ 19.98228\\ 19.96553\\ 20.96329\\ 19.92080\\ 19.97854\\ 20.79755\\ 19.05100\\ 19.90585\\ 20.45851\\ 19.60876\\ 21.35972 \end{array}$	C C C H H C H H C H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613
Н Н Н С Н Н Н С Н Н Н С Н Н Н	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904	$\begin{array}{c} 19.92122\\ 18.17761\\ 18.78262\\ 19.98228\\ 19.96553\\ 20.96329\\ 19.92080\\ 19.97854\\ 20.79755\\ 19.05100\\ 19.90585\\ 20.45851\\ 19.60876\\ 21.35972\\ 20.59632 \end{array}$	C C C H H C H H H C H H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602
ННСНННСНННСНННС	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060	C C C H H C H H H C H H H H H H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389 8.68290	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166
ННСНННСНННСННКСН	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086	C C C C H H C H H H C H H H C H H C C C	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ \end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270	$\begin{array}{c} 9.19188\\ 7.98710\\ 11.55327\\ 11.68726\\ 12.04390\\ 12.13787\\ 11.65809\\ 13.21476\\ 12.00778\\ 9.54800\\ 9.99613\\ 10.26602\\ 8.65166\\ 6.64619 \end{array}$
ННСНННСНННСНННСНН	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512	$\begin{array}{r} 4.55899\\ 4.22518\\ 5.65059\\ 6.90972\\ 7.59048\\ 6.41859\\ 7.52793\\ 2.34916\\ 1.61383\\ 1.82840\\ 2.62863\\ 3.04097\\ 2.43909\\ 2.40933\\ 3.86904\\ 4.16130\\ 5.04065\\ 3.41792\end{array}$	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524	C C C C H H C H H C H H C H H C H H C H H C	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389 8.68290 6.99510 7.56455	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930
ННСНННСНННСННКСН	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086	C C C C H H C H H H C H H H C H H C C	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ \end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270	$\begin{array}{c} 9.19188\\ 7.98710\\ 11.55327\\ 11.68726\\ 12.04390\\ 12.13787\\ 11.65809\\ 13.21476\\ 12.00778\\ 9.54800\\ 9.99613\\ 10.26602\\ 8.65166\\ 6.64619 \end{array}$
ННСНННСНННСНННСНН	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512	$\begin{array}{r} 4.55899\\ 4.22518\\ 5.65059\\ 6.90972\\ 7.59048\\ 6.41859\\ 7.52793\\ 2.34916\\ 1.61383\\ 1.82840\\ 2.62863\\ 3.04097\\ 2.43909\\ 2.40933\\ 3.86904\\ 4.16130\\ 5.04065\\ 3.41792\end{array}$	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524	C C C C H H C H H C H H C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389 8.68290 6.99510 7.56455	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125
ННСНННСНННСНННСНН	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512	$\begin{array}{r} 4.55899\\ 4.22518\\ 5.65059\\ 6.90972\\ 7.59048\\ 6.41859\\ 7.52793\\ 2.34916\\ 1.61383\\ 1.82840\\ 2.62863\\ 3.04097\\ 2.43909\\ 2.40933\\ 3.86904\\ 4.16130\\ 5.04065\\ 3.41792\end{array}$	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524	C C C C H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192 \end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248
Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н В С Н Н С Н Н В С Н В С Н В В В В	$\begin{array}{c} 7.55134\\ 7.49767\\ 8.36158\\ 6.24629\\ 5.38278\\ 6.25066\\ 7.16072\\ 5.40694\\ 5.31703\\ 5.12873\\ 6.46784\\ 3.06987\\ 2.73203\\ 3.00679\\ 2.35560\\ 4.95514\\ 4.36011\\ 4.82512\\ 6.01521\end{array}$	$\begin{array}{r} 4.55899\\ 4.22518\\ 5.65059\\ 6.90972\\ 7.59048\\ 6.41859\\ 7.52793\\ 2.34916\\ 1.61383\\ 1.82840\\ 2.62863\\ 3.04097\\ 2.43909\\ 2.40933\\ 3.86904\\ 4.16130\\ 5.04065\\ 3.41792\\ 4.45156\end{array}$	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839	C C C C C H H C H H H C H H H C H H H C H H C	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192\\ 4.97947\end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106
Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н В С Н Н С Н Н В С Н В С Н В С В В С В В С В В В В	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148	C C C C C H H C H H H C H H H C H H H C H H C H H C C C H H C C C C C H H C C C C C C C C C C H H C H C H C H C H H C H C H H C H C H H C H H C H H C H H C H H H C H H H H C H H H H C H H H H H H C H	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192\\ 4.97947\\ 4.46974 \end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798
Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н С Н Н С Н Н В С Н С Н	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148 -1.25563	ССССННСНННСНННСННН	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389 8.68290 6.99510 7.56455 7.56757 6.05192 4.97947 4.46974 4.20498	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463 3.93499	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798 7.72199
Н Н Н С Н Н Н С Н Н Н С Н Н Н В Р h ₃ В С С	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521 5.00819 5.05365 5.79497	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148 -1.25563 -0.43042	ССССННСНН ССССННС СССНН ССС СС СС СС СС	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192\\ 4.97947\\ 4.46974\\ 4.20498\\ 5.68486\end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463 3.93499 3.63498	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798 7.72199 6.17989
Н Н Н С Н Н Н С Н Н Н С Н Н Н В Р h ₃ В С С С	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521 5.00819 5.05365 5.79497 4.42658	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156 -1.06686 -0.81168 -1.67835 0.29136	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148 -1.25563 -0.43042 -0.64517	ССССННСНН ССССННС СССННС ССС ССС ССС СС	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192\\ 4.97947\\ 4.46974\\ 4.20498\\ 5.68486\\ 4.93677\end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463 3.93499 3.63498 3.19546	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798 7.72199 6.17989 5.50478
Н Н Н С Н Н Н С Н Н Н С Н Н Н В Р № В В С С С С С	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521 5.00819 5.05365 5.79497 4.42658 5.95468	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156 -1.06686 -0.81168 -1.67835 0.29136 -1.42250	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148 -1.25563 -0.43042 -0.64517 0.92934	ССССННСНН ССССННС СССННС ССС ССС ССС СС	5.84621 7.31519 6.75407 6.97449 8.03502 6.79950 6.07893 6.24418 6.27388 5.02167 8.34933 9.23677 7.97389 8.68290 6.99510 7.56455 7.56757 6.05192 4.97947 4.46974 4.20498 5.68486 4.93677 6.21588	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463 3.93499 3.63498 3.19546 2.81158	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798 7.72199 6.17989 5.50478 6.67421
Н Н Н С Н Н Н С Н Н Н С Н Н Н В Р h ₃ В С С С	7.55134 7.49767 8.36158 6.24629 5.38278 6.25066 7.16072 5.40694 5.31703 5.12873 6.46784 3.06987 2.73203 3.00679 2.35560 4.95514 4.36011 4.82512 6.01521 5.00819 5.05365 5.79497 4.42658	4.55899 4.22518 5.65059 6.90972 7.59048 6.41859 7.52793 2.34916 1.61383 1.82840 2.62863 3.04097 2.43909 2.40933 3.86904 4.16130 5.04065 3.41792 4.45156 -1.06686 -0.81168 -1.67835 0.29136	19.92122 18.17761 18.78262 19.98228 19.96553 20.96329 19.92080 19.97854 20.79755 19.05100 19.90585 20.45851 19.60876 21.35972 20.59632 21.61060 21.89086 22.41524 21.59839 -2.80148 -1.25563 -0.43042 -0.64517	ССССННСНН ССССННС СССННС ССС ССС ССС СС	$\begin{array}{c} 5.84621\\ 7.31519\\ 6.75407\\ 6.97449\\ 8.03502\\ 6.79950\\ 6.07893\\ 6.24418\\ 6.27388\\ 5.02167\\ 8.34933\\ 9.23677\\ 7.97389\\ 8.68290\\ 6.99510\\ 7.56455\\ 7.56757\\ 6.05192\\ 4.97947\\ 4.46974\\ 4.20498\\ 5.68486\\ 4.93677\end{array}$	6.39897 6.08919 5.71436 5.96985 4.75206 6.78806 7.76466 6.89621 6.51385 7.40365 6.92862 8.14929 7.94192 6.68270 6.00817 7.61411 6.92294 4.50570 5.35463 3.93499 3.63498 3.19546	9.19188 7.98710 11.55327 11.68726 12.04390 12.13787 11.65809 13.21476 12.00778 9.54800 9.99613 10.26602 8.65166 6.64619 5.98930 6.74125 6.13248 7.20106 6.71798 7.72199 6.17989 5.50478

Ν	6.74041	5.54652	10.12476	Η	7.17904	6.10270	11.48303
Ν	5.85403	5.06147	8.22991	Н	5.45507	6.48040	11.60552
В	4.93611	3.47425	10.16113	С	3.77043	5.36793	9.52643
С	5.32494	2.19308	9.20304	Н	3.58437	5.92109	10.45696
С	4.37986	1.40350	8.53132	Н	3.65476	4.29393	9.74703
Ĉ	6.67482	1.85494	8.98600	H	2.97487	5.64707	8.81806
C	4.74936	0.34558	7.69794	С	4.69023	4.88727	6.65552
č	7.06045	0.79019	8.16972	H	5.25537	5.00605	5.72194
č	6.09382	0.02791	7.51442	H	3.76570	5.47914	6.54488
H	3.31743	1.63853	8.64053	C	4.36067	3.42530	6.91574
H	7.45804	2.45981	9.45623	H	3.92529	2.96621	6.01565
H	3.97764	-0.23365	7.18382	H	3.63614	3.29657	7.73160
H	8.12060	0.55944	8.02958	Ĥ	5.26696	2.86544	7.18937
H	6.38793	-0.80015	6.86437	N	7.14972	6.45560	8.62992
C	3.35805	3.90409	10.09189	N	5.52003	5.48941	7.67693
č	2.37941	2.99299	10.53517	B	8.91246	4.21910	6.39204
c	2.89026	2.99299 5.16842	9.70196	D C	8.52870	3.34825	7.65008
c	1.02482	3.31449	10.56463	č	8.77536	3.80729	8.95853
c	1.53441	5.50746	9.72774	C	7.89712	2.09762	7.53048
c	0.59222	4.57716	9.72774	C	8.38123	3.09042	10.08258
Н	0.59222 2.69758	2.00959	10.15495	C	8.38123 7.48572	3.09042 1.37415	8.64933
				C		1.3/415	
H	3.60360	5.93238	9.37538	С	7.71874	1.87148	9.93039
H	0.29980	2.57719	10.91961	Н	9.26998	4.76910	9.09647
H	1.21340	6.50413	9.41153	H	7.72157	1.67853	6.53696
H	-0.46927	4.83808	10.18063	H	8.58789	3.48861	11.08027
С	5.27997	3.12063	11.73548	Н	6.97772	0.41472	8.51986
C	4.57365	3.74465	12.78218	Η	7.38776	1.30812	10.80663
С	6.25350	2.18473	12.12592	С	8.43646	3.82053	4.94144
С	4.85168	3.49082	14.12486	С	9.34856	3.88123	3.87206
С	6.53744	1.91351	13.46536	С	7.14103	3.36488	4.64150
С	5.84369	2.57437	14.47646	С	8.98704	3.51356	2.57641
Η	3.77426	4.44947	12.53595	С	6.75836	3.02850	3.34612
н	6.80525	1.63374	11.36264	С	7.68410	3.10087	2.30512
н	4.27828	4.00417	14.90180	Η	10.36951	4.22152	4.06433
Н	7.30023	1.17253	13.72024	Η	6.41415	3.28029	5.44657
Н	6.06407	2.36004	15.52594	Η	9.72508	3.56083	1.77167
				Η	5.73691	2.69345	3.14598
	tion NHC BI	Ph ₃ TS		Η	7.38966	2.82415	1.28922
С	6.78199	5.93522	7.43181	С	10.04957	5.31013	6.48363
С	6.16955	6.31755	9.60464	С	9.96196	6.49024	5.71991
С	5.11403	5.70952	8.98982	С	11.18493	5.15241	7.29745
С	8.35769	7.22906	8.82937	С	10.93896	7.47889	5.79074
Н	9.08519	6.89737	8.08076	С	12.17747	6.13153	7.36275
Н	8.77195	6.98950	9.82173	С	12.05232	7.30300	6.61689
С	8.10587	8.72028	8.69656	Η	9.08450	6.64156	5.08644
H	7.74562	8.95271	7.68307	Н	11.30152	4.23989	7.88886
H	9.03029	9.28707	8.88239	Н	10.83082	8.39343	5.20192
н	7.34436	9.06931	9.40969	H	13.05175	5.97608	8.00046
С	6.36554	6.69121	11.02849	Н	12.82358	8.07588	6.67410
Н	6.61741	7.75510	11.16400				

4. References

- N. Kuhn, T. Kratz, Synthesis 1993, 1993, 561-562.
 W. Malisch, R. Lankat, S. Schmitzer, R. Pikl, U. Posset, W. Kiefer, Organometallics 1995, 14, 5622-5627.
 G. Dübek, F. Hanusch, S. Inoue, Inorg. Chem. 2019, 58, 15700-15704.
 APEX suite of crystallographic software, APEX 3 version 2015.5-2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2015
 SAINT, Version 7.56a and SADABS Version 2008/1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
 G.M. Sheldrick, SHELXL-2014, University of Göttingen, Göttingen, Germany, 2014.
 C.B. Hübschle; G.M. Sheldrick; B.J. Dittrich, Appl. Cryst. 2011, 44, 1281-1284.
 G.M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1998.
 A.J. C. Wilson, International Tables for Crystallography, Vol. C., Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
 C.F. Macrae; I.J. Bruno; J.A. Chisholm, P.R. Edgington; P. McCabe; E. Pidcock; L. Rodriguez-Monge; R. Taylor; J. van de Streek; P.A.J. Wood, Appl. Cryst. 2008, 41, 466-470.
 a) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1327; b) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73-78.
 a) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982-9985; b) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
 a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2005, 7, 3297-3305.
 a) D. Andrae, U. Häußermann, M. Doig, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123-141; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Phys. Chem. Chem. Apy. 7, 132-73.
 b) Andrae, U. Häußermann, M. Doig, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123-141; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 1

- [20]

- [21] [22] [23] [24]
- 2004.
 C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760-768.
 G. Knizia, J. E. M. N. Klein, Angew. Chem., Int. Ed. 2015, 54, 5518-5522.
 Y. Zhao, D. G. Truhlar, Theor Chem Acc 2008, 120, 215-241.
 L. Goerigk, J. Phys Chem Lett 2015, 6, 3891-3896.
 a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401; b) V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129-12137.

12.4 Licenses for Copyrighted Content

"Reactivity of an NHC-stabilized pyramidal hydrosilylene with electrophilic boron sources"

G. Dübek, D. Franz, C. Eisenhut, P. J. Altmann and S. Inoue, *Dalton Trans.*, 2019, **48**, 5756 **DOI:** 10.1039/C9DT00608G

If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

- For reproduction of material from NJC: [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
- For reproduction of material from PCCP: [Original citation] - Reproduced by permission of the PCCP Owner Societies
- For reproduction of material from PPS: [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
- For reproduction of material from all other RSC journals: [Original citation] - Reproduced by permission of The Royal Society of Chemistry

If you are the author of this article you still need to obtain permission to reproduce the whole article in a third party publication with the exception of reproduction of the whole article in a thesis or dissertation.

"NHC-Stabilized Silyl-Substituted Chlorosilylene"

Center	tsLink®	Home	Help	Email Support	Gizem Dübek 🗸		
	NHC-Stabilized S	ilyl-Substitute	ed Chlo	rosilylene			
	Author: Gizem Dübek,	Franziska Hanus	ch, Shigey	voshi Inoue			
ACS Publications	Publication: Inorganic Chemistry						
Most Trusted. Most Cited. Most Read.	Publisher: American C	hemical Society					
	Date: Dec 1, 2019						
	Copyright © 2019, America	an Chemical Society					
This type of permission/licen charged for your order. Pleas		rd Terms & Cond	itions, is s	sent to you becaus	se no fee is being		
- Permission is granted for yo	e requested, they may be	e adapted or used	l in part.				
- Please print this page for yo - Appropriate credit for the re	equested material should	d be given as follo	ws: "Rep	rinted (adapted) w			
- Please print this page for yo	equested material should CITATION). Copyright (Y apitalized words. nted only for the use spe	d be given as follo EAR) American Cl cified in your req	ows: "Rep nemical S uest. No a	rinted (adapted) w ociety." Insert app additional uses are	ropriate		

© 2020 Copyright - All Rights Reserved Copyright Clearance Center, Inc. Privacy statement Terms and Conditions Comments? We would like to hear from you. E-mail us at customercare@copyright.com

"An Air-Stable Heterobimetallic Si2M2 Tetrahedral Cluster"

Research Article 🖞 Open Access 💿 🚺

An Air-Stable Heterobimetallic Si₂M₂ Tetrahedral Cluster

Gizem Dübek, Franziska Hanusch, Dr. Dominik Munz, Prof. Shigeyoshi Inoue 🔀

Publisher: John Wiley and Sons

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Open Access Article

This article is available under the terms of the Creative Commons Attribution License (CC BY) (which may be updated from time to time) and permits use, distribution and reproduction in any medium, provided that the Contribution is properly cited.

For an understanding of what is meant by the terms of the Creative Commons License, please refer to Wiley's Open Access Terms and Conditions.

Permission is not required for this type of reuse.

Wiley offers a professional reprint service for high quality reproduction of articles from over 1400 scientific and medical journals. Wiley's reprint service offers:

· Peer reviewed research or reviews

- Tailored collections of articles
- · A professional high quality finish
- · Glossy journal style color covers
- Company or brand customisation
 Language translations
- · Prompt turnaround times and delivery directly to your office, warehouse or congress.