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1. Introduction

In this perspective article, we review the 
current state of data-driven materials 
science with a focus on materials data 
infrastructures. Data-driven invokes asso-
ciations with big data, data management, 
open data and artificial intelligence (e.g., 
machine learning). The public debate of 
these terms is currently dominated by 
internet giants like Google, Amazon, and 
Facebook who also lead the technological 
development of data infrastructures, algo-
rithms, and analysis tools. Compared to 
these e-commerce and social media devel-
opments, the field of data-driven materials 
science is still under construction. By way 
of analogy, it is nonetheless still instruc-
tive to imagine a Materials “Google”—the 
Materials Ultimate Search Engine (MUSE). 
In this article, we address what it takes to 
develop such a search tool for materials.

Materials science, the study of the characteristics and 
applications of materials is a well established discipline that 
combines chemistry, physics, and engineering research. Mate-
rials scientists frequently dream of designing new materials 
from scratch for use in society.[1] However, instead of finding 
new materials using the MUSE, they discover new materials 
through conventional experimental, theoretical, or compu-
tational research (see left panel of Figure 1). This pipeline 
through which new materials are discovered, designed, devel-
oped, manufactured, and deployed remains slow, costly, and 
highly inefficient: By the time a new material comes to market, 
the patent protection of the original invention is at the end of 
its tenure, and proprietary advantage is lost[2] (see also ref. [3]). 
By applying data science to materials research, we now have 
a way to accelerate the materials value chain from discovery 
to deployment.

Data science has developed out of the growing demand 
for open science combined with the meteoric rise of AI and 
machine learning. As these innovative technologies allow 
ever-larger datasets to be processed and hidden correlations 
to be unveiled, data-driven science is emerging as the fourth 
scientific paradigm[4,5] (cf. Figure 1) following the first three 
eras of experimentally, theoretically, and computationally pro-
pelled scientific discoveries. Often connected to the fourth 
industrial revolution[6] or the second machine age,[7] such 
data-driven approaches permeate science, business, politics, 
and even social life. Since materials innovation is a critical, 
well-recognized driver of economic development and societal 
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progress, it is important that new trends, such as data science, 
are embraced if they have the potential to advance the field.

Data-driven materials science and materials informatics 
are umbrella terms for the scientific practice of systematically 
extracting knowledge from materials datasets. This practice dif-
fers from traditional scientific approaches in materials research 
by the volume of processed data and the more automated way 
information is extracted (cf. Figure 1), for example, through 
the use of machine learning (see refs. [5,8–23] for recent 
review articles on machine learning in materials science). In 
our MUSE analogy, this would be the search and find part. In 
addition to data processing and data analysis tools, data-driven 
materials science also requires physical infrastructures that 
host and preserve that data. These would be the data storage 
part of our MUSE example, which, as physical infrastructures, 
require dedicated community efforts and sustained investment 
to become and remain operational.

Stakeholders in academia, industry, governments, and the 
public attach different meanings and expectations to data-
driven materials science. The actual material science is carried 
out in academia and research and development (R&D) depart-
ments in industry. Scientists at universities and companies not 
only produce materials data that could then be stored in data 
facilities, they are also the primary user group of materials data 
infrastructures. In the wake of digitalization, industry has a 
further interest in digitizing materials data and incorporating 
data-driven materials science into their value chain. Policy 
makers and governmental or private funding agencies may 
have an interest in promoting open science data and can stir 
scientific developments through policy and funding decisions. 
The general public benefits from materials science by quality-
of-life enhancement through new products and technologies. 
They have an indirect interest in data-driven materials science 
as a means to accelerate innovations and follow developments 
in science and open data in the media. Together these stake-
holders form an ecosystem of mutual benefit. The vitality of 
this ecosystem is crucial for the success and the longevity of 
data-driven materials science.

In this article, we embed our perspective in the emerging 
field of data-driven materials science in the context of the 
open science movement, which has shaped the philosophy 
and design of several materials science data infrastructures. 
We discuss how these infrastructures grew historically from 
simple databases into data centers that then progressed into 
materials discovery platforms, and we detail the current 
state of data infrastructure. A list of current challenges pro-
vides the gateway to the second part of this article, in which 
we delve deeper into data organization, acquisition, quality, 
and machine learning. We conclude with an industrial per-
spective that addresses the future and longevity of materials 
data infrastructures.

2. Open Science Movement

Many of the fundamental aspects of data-driven materials 
science are built upon the key elements of the Open Science 
movement. The European Commission outlines[24] Open 
Science as “…a new approach to the scientific process based 
on cooperative work and new ways of diffusing knowledge by 
using digital technologies and new collaborative tools.” Here 
we reflect on those aspects of Open Science that are particularly 
relevant to the birth and future of data-driven materials science.

Openness in science was initially curtailed by the prestige 
wars between the patrons of early scientists and their associ-
ated, convoluted encryption schemes.[25] Once more profes-
sional scientific practice developed, scientists embraced the 
idea of accessibility of research as a cornerstone of progress, 
and this has been generally mandated by public policy. As early 
as 1710 in the UK, the Copyright Act endowed the ownership 
of copyright to authors rather than publishers, encouraging 
authors to deposit manuscripts into national libraries to make 
them publicly accessible. In addition to accessibility, public 
accountability and scientific reproducibility have remained 
powerful driving forces in the way science has been conducted 
and disseminated, and significant deviations from these norms 
are of great concern to the community.[26] More recently in 
the 1990s, the development of the internet transformed this 
debate as it became possible to make nearly all aspects of the 
scientific research process easily accessible, from preliminary 
data to final publications. While arguments over fair alloca-
tion of rewards for scientific achievement versus full and early 
research dissemination remain challenging,[27] and intellectual 
property management regularly introduces conflicts,[28] the era 
of Open Science[29,30] (or indeed Open Innovation[31]) is here to 
stay and contributes to scientific advancement overall.[32] Open-
access journals and data, and open-source software have signifi-
cant impacts on the Open Science movement.

2.1. The Rise of Open Access Publishing

Building on the foundations of the very first online journals, 
websites like arXiv (established in 1991) took the first steps 
in providing Open Access to scientific publications. As more 
content became available online, and the need for physical 
copies of journals in libraries rapidly diminished, many 
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Figure 1. Materials discovery schematic. In the traditional approach, 
new materials are discovered by experimentation, theory, or computation 
(also referred to as 1st, 2nd, and 3rd paradigms and symbolized by the 
three icons at the top of the left panel). In the 4th paradigm of data-driven 
materials science, available data is gathered in data infrastructures, and 
machine learning approaches discover new materials.
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expected a significant reduction in the cost of journal sub-
scriptions. When this did not happen, it catalyzed the Open 
Access movement and other alternatives to conventional 
scientific publishing practices. At present, over 50% of newly 
published articles are Open Access, and conservative estimates 
place achievement of complete Open Access by 2040.[33,34] 
Current Open Access approaches tend to fall into two classes 
(or hybrids thereof[34]): gold, where the article is freely avail-
able at the point of publication; and green, where the authors 
can deposit the article in a public repository, for example, at 
their home institution. Some publishers require an embargo 
period before deposition in a public repository, but there is 
little evidence in terms of publisher income to support the 
existence of such embargoes.[27] Many funding agencies have 
embraced Open Access publishing as a way to improve public 
transparency and accountability, and these agencies have 
made it a condition for support—this includes all European 
Union funding for 2020 and beyond.[35] As such, Open Access 
is at the heart of the Open Science movement and certainly 
overlaps with one of the critical developments in data-driven 
science, Open Data.

2.2. Open Access Data

The initiative to make data Open Access can be traced to efforts 
to establish scientific global data centers in the 1950s,[36] largely 
as a way to store data long term and make it internationally 
accessible—all data was fully available for the cost of printing 
and delivery. Following this change, demands for scientific data 
sharing continued to rise, especially after the development of 
the internet and the tantalizing prospect of easy upload and 
download of data globally.

While many scientists were quick to embrace this, it took a 
decade for Open Data to appear as a clear objective and topic 
for scientific policy. In 2004, science ministers of most devel-
oped countries signed an agreement that all publicly funded 
archive data should be made available, with the guidelines for 
this following in 2007.[37] As is often the case, the scientific 
communities themselves were ahead of policy changes, and 
many bespoke scientific databases had already proliferated, pro-
viding data repositories in almost every field across the globe. 
There are now thousands of them, and finding useful ways to 
search for a relevant repository, let alone data within it, requires 
serious effort.[38]

Motivation to make this effort is increasing rapidly, with 
many journals and funding agencies demanding the avail-
ability of data tied to publication or grants. Contributing to 
many aspects of the Open Science initiative, the Public Library 
of Science[39] has pioneered this development, with a clear 
policy on data sharing for its publications and likely rejection 
if policies are not followed. Other major publishers have also 
been active, with at least the creation of specific Open Data 
journals,[40] policies,[41] and collaboration with Open Data ini-
tiatives.[42] Many funding agencies now insist on a data man-
agement plan with all submissions, and this plan must give 
a detailed account of how data will be stored, secured, and 
shared—with particular attention to the Open Science rules of 
the agency in question.

In an attempt to provide unifying guidelines for the widely 
varying groups interested in Open Data and to aid in data man-
agement development, the FAIR Data Principles were estab-
lished.[43,44] These principles have been adopted by several 
major players in global data management (see Table 1). The 
ideas behind making data searchable, accessible, flexible, and 
reusable at the core of FAIR are also the concepts that make the 
power of data-driven science actually attainable.

2.3. Open-Source Software for Science

The development of open-source software entails the final ele-
ment of the Open Science movement. Its development started 
in parallel with the earliest computing hardware efforts, with 
nearly all software freely available in the public domain as 
part of large academic and corporate collaborations. Since the 
relative cost of software compared to hardware has increased, 
this openness began to steadily decline until the early 1980s 
with the launch of the GNU project and the parallel explosion 
of Linux and the internet in the early 1990s. This provided a 
powerful platform and toolset for the collaborative development 
of software that could then be freely downloaded, culminating 
in the active open-source movement in 1997.[45] In particular, it 
suited the kind of focused, rapidly changing software that char-
acterizes nearly all scientific applications.

In 2005, the creation (by Linus Torvalds) and rapid adop-
tion of Git as a distributed revision control system, closely 
followed by hosting site GitHub, put the seal on the standard 
approach for open-source scientific software development that 
remains to this day. It became possible to manage updates to 
codes from a large development team, while providing a plat-
form for feedback, bug notification, and feature requests from 
users. It is now possible to find Open Source software for 
nearly every aspect of a scientific project,[46] from electronic 
lab notebooks,[47] experimental toolsets,[48] and simulation 
packages,[49] to machine learning libraries[50] and online collab-
orative writing sites.[51] With freely accessible data, Open Access 
publications explaining the science behind it, and a wealth of 
open-source software to mine it, the way is clear for innovative 
data-driven science.

3. Materials Data Infrastructures

Having established the context for Open Science, we next 
review the emergence of materials data infrastructures that 
collect, host, and provide materials data to stakeholders. We 
first reflect on early digital materials infrastructures before dis-
cussing the current state.

3.1. Development of Materials Infrastructures

The increasing capabilities of first-principles methods—
and the increasing capabilities of computational science in 
general—have accelerated materials researchers interest for 
new, computer-based pathways to materials discovery and 
design—better, faster, and cheaper than ever before. Perhaps 
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Table 1. List of current major materials data infrastructures. The entries are divided into non-commercial (top) and commercial (bottom). Note that 
some platforms are named after the leading research project and may host multiple services under different names. As contact person we listed the 
director(s) of each infrastructure, in such cases, where they were clearly identifiable. Data volume numbers reflect the state in April 2019.

Name Website Contact Overview Ref.

AFLOW aflowlib.org Stefano Curtarolo,  

Duke University

Computational data consisting of 2 118 033 material 

compounds and 281 698 389 calculated properties with 

focus on inorganic crystal structures. Incorporates  

multiple computational modules for automating  

high-throughput first principles calculations.

[83,91]

Computational Materials 

Repository

cmr.fysik.dtu.dk Kristian Thygesen  

and Karsten Jacobsen, DTU

Computational datasets from a diverse set of  

applications. Data creation and analysis  

with the Atomic Simulation Environment (ASE).

[92–94]

Crystallography Open Database crystallography.net Open-access collection of crystal structures of organic, 

inorganic, metal–organic compounds and minerals, 

excluding biopolymers.

[95,96]

HTEM htem.nrel.gov Caleb Phillips and Andriy  

Zakutayev, NREL

Properties of thin films synthesized using  

combinatorial methods. Contains 57 597 thin film 

samples, across a wide range of materials  

(oxides, nitrides, sulfide, intermetallics).

[97,98]

Khazana khazana.gatech.edu Rampi Ramprasad,  

Georgia Institute of Technology

Platform to store structure and property  

data created by atomistic simulations, and tools to 

design materials by learning from the data.  

Tools include Polymer Genome and AGNI.

[99–101]

MARVEL NCCR nccr-marvel.ch Nicola Marzari, EPFL Materials informatics platform for  

data-driven high-throughput quantum  

simulations. Data available at materialscloud.org,  

powered by the AiiDA-infrastructure.

[85]

Materials Data Facility (MDF) materialsdatafacility.org Ben Blaiszik and Ian  

Foster, University of Chicago

Data publication network for computational  

and experimental datasets. Data exploration  

through the Forge python package.

[102,103]

Materials Project materialsproject.org Kristin Persson, LBNL Online platform for materials exploration  

containing data of 86 680 inorganic  

compounds, 21 954 molecules and 530 243  

nanoporous materials. Develops various  

open-source software libraries, including pymatgen, 

custodian, FireWorks, and atomate.

[84,104]

MatNavi/NIMS mits.nims.go.jp Yibin Xu, NIMS An integrated material database  

system comprising ten databases, four  

application systems and the NIMS  

Structural Datasheet Online.

[105]

NOMAD CoE nomad-coe.eu Matthias Scheffler, FHI/ 

Max Planck Society

Provides storage for full input and  

output files of all important computational  

materials science codes, with multiple  

big-data services built on top. Contains  

over 50 236 539 total energy calculations.

[106,107]

Organic Materials Database omdb.mathub.io Alexander Balatsky, Nordita Open access electronic structure database for  

3-dimensional organic crystals. Contains approximately 

24 000 materials.

[108,109]

Open Quantum Materials 

Database

oqmd.org Chris Wolverton,  

Northwestern University

Database of DFT-calculated  

thermodynamic and structural properties  

with focus on inorganic crystal structures.  

Contains 563 247 entries with support  

for full download and advanced usage  

through the qmpy python package.

[90,110]

Open Materials Database openmaterialsdb.se Rickard Armiento,  

Linköping University

Computational database primarily based  

on structures from the Crystallography  

Open Database. Data creation and analysis  

with High-Throughput Toolkit (httk).

[111,112]
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one of the first attempts to use materials information in a 
different and more efficient way was the development of the 
Calculation of Phase Diagrams (CALPHAD, 1970s) method 
and database, in which multiple calculations of phase dia-
grams were put in a centralized database to speed up the 
design and development of new alloys.[52] In the 1990s, the 
increasing capability to collect, store and analyze “big data” led 
researchers to explore the potential of data-science in scientific 
research (for more information, see ref. [4]). With these inno-
vative ideas up in the air, material scientists at the Massachu-
setts Institute of Technology (MIT) developed tools to predict 
the properties of materials from datasets.[53] Around the same 
time, researchers at the Technical University of Denmark dem-
onstrated the potential of evolutionary algorithms in finding 
materials with specific properties,[54] or to use high-throughput 
screening for candidate materials with key parameters to 
narrow down the number of required experiments.[55–57] The 
researchers at MIT even envisioned how with such computa-
tional tools a “virtual materials laboratory” could be build, in 
which new materials are designed and tested based on com-
puter calculations.[53] These ideas eventually led to the launch 
of a curated database that is now called the Materials Pro-
ject.[58,59] This Open Access (see Section 2.2) database would 
use high-throughput computing to uncover the properties of 
all known inorganic materials and enable future researchers to 
find appropriate materials through interactive exploration and 
data mining.[59,60]

As big data and data science became increasingly fashion-
able, the US government announced the launch of the Materials 

Genome Initiative (MGI) in 2011.[61] This initiative emphasized 
the usefulness of data informatics for materials discovery and 
design. As similar efforts were launched around the world 
promoting the availability and accessibility of digital data in 
science, a trend was set and a new paradigm of materials sci-
ence emerged:[5] data-driven materials science. Set to reduce 
time and investment needed to support the typical 10–20 year  
research-development-commercialization cycle for new 
materials, more and more Open Access materials data initia-
tives opened worldwide, as illustrated by Figures 2 and 3.

Most of the early materials data initiatives started as data-
bases that hosted data and offered search functionality with the 
idea to encourage materials scientists to share their data with a 
larger community. The launch of the Materials Genome Initia-
tive became a defining moment in data-driven materials science 
(see Figure 3) as databases evolved into data centers that offered 
rudimentary materials and data analysis services. The emerging 
interest around data mining and AI made materials scientists 
increasingly eager to use such algorithms in their research. As a 
result, the focus of most centers transitioned to developing work-
flows that would enable scientists to search, mine, and query the 
databases. This marks another turning point in the history of 
data-driven materials science, with infrastructures becoming 
materials discovery platforms (see Figure 3), whose self-declared 
mission is to facilitate the discovery of novel materials.

The distinction between databases, data centers and mate-
rials discovery platforms introduced in the previous paragraph 
is based on the loose definitions given in the paragraph. 
The terminology reflects our impression of the evolution of 
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Name Website Contact Overview Ref.

SUNCAT suncat.stanford.edu Thomas Francisco  

Jaramillo, SLAC/ 

Stanford University

Materials informatics center for atomic-scale  

design of catalysts. Online tools and  

computational results for 112 157 surface reactions  

and barriers available at catalysis-hub.org.

[89,113]

Citrine Informatics citrine.io Bryce Meredig and  

Greg Mulholland

A materials informatics platform combining  

data infrastructure and AI. Open database  

and analytics platform for material  

and chemical information available at the Citrination 

platform: citrination.com.

[114,115]

Exabyte.io exabyte.io Timur Bazhirov Cloud-based modelling platform  

for materials informatics.

[116,117]

Granta Design grantadesign.com Mike Ashby and David Cebon R&D organization offering data, tools  

and expertise for materials design.

[118]

Materials Design materialsdesign.com Clive M. Freeman, Erich  

Wimmer and Stephen J. Mumby

Software products and services  

for chemical, metallurgical, electronic,  

polymeric, and materials science  

research applications.

[119–121]

Materials Platform for Data 

Science

mpds.io Evgeny Blokhin Online edition of the PAULING FILE with focus on 

curated experimental data for inorganic materials.

[122,123]

MaterialsZone materials.zone Assaf Anderson and Barak Sela Provides a notebook-based materials  

informatics environment together  

with experimental data.

[124]

SpringerMaterials materials.springer.com Michael Klinge Curated data covering multiple material classes, 

property types, and applications. A set of advanced func-

tionalities for visualizing and analyzing data provided 

through SpringerMaterials Interactive.

[125]

Table 1. Continued.
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materials data infrastructures and provides a simple classifi-
cation scheme to distinguish different infrastructure types. 
For the remainder of the article, we will use materials data 
infrastructure as the most general and encompassing term to 
refer to either of the three types.

The spillover effect from data science to materials science is 
currently boosting the emerging field of data driven materials 
science or materials informatics.[5] The computational possibili-
ties of machines to analyze and detect patterns in data has cre-
ated a new feedback loop in the relationship between hypothesis 
and experiment, which facilitates the next step to mix human 
trial-and-error experimental and computational research with 
“artificial intuition” (or to use data mining tools to approach 
human-like intuition to suggest candidate materials that are 
further refined via computational and experimental research).

Big data and data science are also prevalent in other scientific 
fields. In chemistry, databases emerged earlier than in mate-
rials science,[62–64] as exemplified by Chemical Abstracts Service 
(CAS), the principal chemical database provider[65,66] whose 
first database was created in 1965.[66,67] Carefully produced and 
curated datasets were essential for developments in quantum 
chemistry.[68–71] In particle physics, the CERN Open Data 
Portal[72] offers more than 1 petabyte of open data for research 
conducted at their facilities. In biology, a variety of databases 
and metadatabases store biological information, for example, 
ConsensusPathDB[73] for human protein–protein, genetic, 
metabolic, signaling, gene regulatory, and drug–target interac-
tions; the protein data bank[74] that houses 3D structural data 
of large biological molecules; and the International Nucleotide 
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Figure 3. Number of materials informatics projects and infrastructures 
as function of time (see Figure 2 and Table 1 for details on individual 
projects and infrastructures). We divide the time axis into three periods 
that reflect the evolution of the data infrastructures (see text for details).

Figure 2. Timeline and geographic distribution of materials data infrastructures and companies. The colour of the dots represents the time of esta-
blishment. The map shows that historically more centers have emerged in the U.S. and Europe, with Asia catching up over time. In addition, the 
U.S. has a higher renewal rate than Europe, as can be seen in the larger number of ligher colored dots. CSD: Cambridge Structural Database, ICSD: 
Inorganic Crystal Structure Database, ESP: Electronic Structure Project, AFLOW: Automatic-Flow for Materials Discovery, AIST: National Institute of 
Advanced Industrial Science and Technology Databases, COD: Crystallography Open Database, MatDL: Materials Digital Library, CMR: Computational 
Materials Repository, NREL CID: NREL Center for Inverse Design, CEPDB: The Clean Energy Project Database, MGI: Materials Genome Initiative, 
CMD: Computational Materials Network, OQMD: Open Quantum Materials Database, NOMAD: Novel Materials Discovery Laboratory, MaX: Materials 
Design at the Exascale, MICCOM: Midwest Integrated Center for Computational Materials, MPDS: Materials Platform for Data Science, CMI2: Center 
for Materials Research by Information Integration, HTEM: High Throughput Experimental Materials Database, JARVIS: Joint Automated Repository for 
Various Integrated Simulations, OMDB: Organic Materials Database, QCArchive: The Quantum Chemistry Archive.
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Sequence Database Collaboration[75,76] that collects and dissem-
inates DNA and RNA sequences. In this perspective article, our 
focus is on materials science, but it is clear that the “4th scien-
tific paradigm”[4] is emerging in other fields as well.

3.2. Overview of Current Materials Infrastructures

Figure 3 depicts a clear rise of active materials infrastructures, 
many of which have developed into very mature and stable ser-
vices used in everyday research processes.[77–80] Table 1 shows 
a summary of the most prominent materials discovery plat-
forms in existence today. As these platforms have matured, 
the range of different services they provide has grown (for 
another perspective on the components of materials data infra-
structures see ref. [21]), and Table 2 shows their features. Data 
infrastructures that have emerged at the time of submission 
of this article, such as, e.g., QCArchive[81] have not yet been 
included in Tabels 1 and 2.

Perhaps the most important service that a data platform has 
to offer is an efficient distribution channel for the data stored 
within. Often the data is accessible through a webpage that 
its clients can access online. This has the lowest adoption bar-

rier since no additional software is needed and the data can be 
explored visually through a browser. Examples of such services 
include the Novel Materials Discovery Laboratory (NOMAD) 
Encyclopedia,[82] AFLOWlib,[83] the Materials Project,[84] and the 
Materials Cloud.[85] A browser-based method is, however, rarely 
useful for materials informatics applications, which require 
automated access to large volumes of data. To facilitate access 
to large data volumes, it is typical to offer an application pro-
gramming interface (API) to users to enable automatic data 
crawling. This is often done by defining a Representational 
State Transfer (REST) or GraphQL interface to the data.[86–89] 
These interfaces allow automated access through program-
mable queries. Another way, as adopted by OQMD,[90] for 
example, is to offer an offline version of the database as a direct 
download to users. Offline access provides the most flexibility 
and performance but typically requires knowledge on how to 
interact with the underlying database with Structured Query 
Language (SQL) or object-relational-mapping (ORM). That said, 
a full download is not practical for large data volumes.

As the amounts of data produced by materials science 
increases, a practical concern over long-term storage of this 
data is emerging. There is also increasing pressure from 
funding agencies and other institutions to ensure the correct 
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Table 2. Services provided by the selected materials data infrastructures. Open Access: provides partial or full free access to data. Computational 
data: contains data originating from software simulations. Experimental data: contains data originating from experiments. Data upload: allows upload 
of own data, with the possibility of issuing Digital Object Identifiers (DOIs). Workflow management tools: provide or collaborate in the development 
of open-source software tools for workflow management. Web API: data can be accessed remotely with automated scripts. Data analysis tools: pro-
vide online or offline data analysis tools, including machine learning.

Open access Comp. data Exp. data Data upload 
(DOIs)

Workflow  
management tools

Web API Data analysis 
tools

AFLOW ✓ ✓ ✓ ✓ ✓

Computational Materials Repository ✓ ✓ ✓ ✓

Crystallography Open Database ✓ ✓ ✓ ✓

HTEM ✓ ✓ ✓ ✓ ✓

Khazana ✓ ✓ ✓ ✓

MARVEL NCCR ✓ ✓ ✓ ✓ ✓

Materials Data Facility (MDF) ✓ ✓ ✓ ✓ (DOI)a) ✓

Materials Project ✓ ✓ ✓ ✓ ✓

MatNavi/NIMS ✓ ✓ ✓ ✓

NOMAD CoE ✓ ✓ ✓ (DOI) ✓ ✓

Organic Materials Database ✓ ✓ ✓

Open Quantum Materials Database ✓ ✓ ✓

Open Materials Database ✓ ✓ ✓ ✓ ✓ ✓

SUNCAT ✓ ✓ ✓ ✓

Citrine Informatics ✓b) ✓ ✓ ✓ ✓ ✓

Exabyte.io ✓ ✓

Granta Design ✓ ✓ ✓

Materials Design ✓ ✓ ✓

Materials Platform for Data Science ✓c) ✓ ✓ ✓ ✓

Materials Zone ✓ ✓

Springer Materials ✓ ✓

a)Upload requires access to private/institutional storage space; b)Open access to a subset of data; c)Open access to limited set of materials properties.
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and safe long-term storage of data. To answer this demand, 
some data infrastructures now provide data storage services 
for materials data. Currently, Springer-Nature lists two recom-
mended data repositories for materials science:[126] the NOMAD 
Repository[107] and the Materials Cloud.[127] Both of these free 
services are for computational materials data, accept uploads 
from any source, and guarantee data storage for at least 10 years 
after data deposition. Often the data volumes in experimental 
studies, especially in imaging, far outnumber computational 
efforts. For instance, electron microscopes can easily generate 
tens of gigabytes of data in a day of operation.[128] Because of 
this higher volume, it is much more challenging to organize 
central and free data storage for experimental data. Instead the 
storage space is provided by the host university or laboratory, 
as in the case of the Materials Data Facility,[102] which is a col-
laboration between US universities and research centers. In 
addition to the materials-science-specific storage solution, there 
are also free solutions to store generic scientific data, such as 
Zenodo,[129] Dryad,[130] Figshare,[131] and Dataverse.[132]

The online analytics tools[85,117,133] provided by data infra-
structures are fairly modern additions that have emerged 
from the rise and popularity of interactive browser content 
and notebook-based environments, such as the Jupyter note-
book.[134] These online tools range from simple tutorials to 
realistic materials property prediction and materials discovery 
through machine learning. They can be used without local 
hardware or software resources and have therefore become an 
important channel for dissemination and learning. Some plat-
forms also participate in the development of Open Source soft-
ware (see Section 2.3) libraries for performing offline data anal-
ysis on materials data.[135–138] Such libraries have high reuse 
value for scientists working with materials data and, through 
Open Source distribution and contribution mechanisms, can 
remain in active use beyond the lifetime of individual projects.

The value of materials data has also been recognized by 
materials informatics companies. We have included a selection 
of these companies in Tables 1 and 2. A major selling point of 
these companies is the access they provide to privately owned, 
highly curated materials property data that is inherently valuable 
in R&D. In sufficiently large quantities, this kind of materials  
data can help firms immensely in selecting optimal materials 
for products, without having to spend additional expenses on 
building their own research infrastructure. Another recently 
emerging business model revolves around selling access to soft-
ware environments with a Software as a Service (SaaS) model. In 
this model, companies offer on-demand access to preconfigured 
cloud-based environments for materials informatics. Such services 
can be valuable for companies and research laboratories because 
they can be used according to current demand, do not require 
large one-off investments in hardware, and do not require special-
ized skills in software configuration and system management.

3.3. Current Challenges

Having reviewed the current state of data infrastructures in 
materials science, we now return to the MUSE analogy. The 
previous two sections illustrated that despite enormous pro-
cess in data-driven materials science, several challenges need 

to be overcome before a powerful materials search engine 
and discovery tool takes shape. The challenges are depicted in 
Figure 4 and are raised here briefly before being discussed in 
detail in corresponding sections.

3.3.1. Relevance and Adoption

Materials data infrastructures must provide relevant data and 
information to be adopted by stakeholders, be it scientific com-
munities, industries, governments, or the public. Relevance 
is determined by data volume, data type, and data quality, and 
entails data completeness, and data homogeneity. Different 
communities will have different specifications of these terms, 
which makes it challenging to develop general and interdis-
ciplinary infrastructures that can be adopted. Relevance and 
adoption are therefore closely related to the subsequent chal-
lenges of completeness, standardization, and acceptance.

Relevance also includes tools that operate on the data and 
help users to classify, analyze, and correlate data. Machine 
learning has gained the most prominence in this regard and 
is reviewed in Section 7. Since machine learning is always data 
hungry, it makes sense to integrate machine learning applica-
tions directly into materials data infrastructures. Challenges to 
such one-stop-shop solutions, which would increase the accept-
ance of materials infrastructures, include the wide variety of 
available machine learning approaches and data diversity. For 
data to be informative for machine learning algorithms, its fea-
tures and properties need to be relevant and complete.

3.3.2. Completeness

Completeness is “the quality of being whole or perfect and 
having nothing missing.” While ideal completeness is hard to 
attain in practice, data infrastructures today suffer from a real, 
severe completeness problem: they contain mostly computa-
tional and almost no experimental data (cf. Table 2). This state 
of affairs is rooted in the historic development of data-driven 
materials science presented in Section 3.1. Since computational 
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Standardization
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Current Challenges

Figure 4. Challenges faced by materials data infrastructures (on the left) 
on the way to increase the adoption by stakeholders from academia, 
industry, governments and the public (depicted on the right).



www.advancedsciencenews.com

1900808 (9 of 23) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedscience.com

data comes in a digital format, computational scientists were 
early adopters of database platforms. Moreover computational 
data is currently more homogeneous and easier to curate than 
experimental data.[139] Facilitating a seamless comparison 
between computational and experimental data is, however, 
an important step toward validating theoretical predictions 
and in driving materials discovery and development efforts:[139] 
materials that are identified as promising still require further 
evaluation, selection, and experimentation. Building synergies 
among computational and experimental databases thus 
remains an important challenge for the future of data-driven 
materials science, which we address in Sections 4 and 5.

3.3.3. Standardization

Some form of standardization is essential in the widespread 
adoption of a new paradigm or technology.[140,141] Stakeholders 
can only participate in the development of a technology if they 
speak a common language. The language analog in data-driven 
materials science is metadata. Metadata provides relations 
(the grammar) between data items (the words). Developing 
standardized metadata for materials science that is informa-
tive, exhaustive, and adaptable is an outstanding challenge. We 
address the first steps toward creating a materials ontology in 
Section 4. Such an ontology, or classification system, would be 
the foundation for materials science metadata and the evolution 
of different materials science dialects into a common language.

3.3.4. Acceptance and Ecosystems

Materials data infrastructures will only be useful if they are 
accepted as a useful tool by various stakeholders. Apart from 
being relevant and complete, data infrastructures have to be 
user friendly to be widely adopted. User friendliness includes 
easy upload and download of data. Easy data upload also facili-
tates completeness since it reduces hurdles to data sharing. 
Widespread acceptance furthermore requires trust in the stored 
data, and this can only be achieved through data curation. 
Data curation is the management and quality control of data 
throughout its lifecycle, from creation and initial storage to the 
time when it is archived for posterity or becomes obsolete and 
is deleted. We address the challenges pertaining to data crea-
tion and curation in Sections 5 and 6.

Infrastructure acceptance is different for different stake-
holders. Current infrastructures are predominantly built and 
used by scientists in academia, as detailed in the previous  
section. Industry interest and participation has not been sys-
tematically studied, and it is dependent mostly on anecdotal 
evidence. Some materials companies leverage the value of refer-
ence databases (e.g., IBM[142] and ASM International[143]), while 
others contract the services of intermediaries (cf. Table I and  
Table II). Apart from this, industry seems to still be exploring 
the opportunities and potential benefits of materials infor-
matics[144] without full engagement with academia.

The disconnect between academic and corporate R&D in 
many fields makes industry involvement more difficult in this 
specific case. A hurdle to widespread industry adoption is the 

materials gap—the fact that industry requires other data than 
what is currently stored in the available materials data plat-
forms. Ecosystems that facilitate the interaction between aca-
demic, corporate, governmental, and public stakeholders are a 
potential solution that we discuss further in Section 9.

3.3.5. Longevity and Diffusion

With increasing awareness for open and data-driven science, 
national, and international funding for the development of Open 
Science (see Section 2) is rising, and new materials data plat-
forms are emerging in their wake. However, longevity and diffu-
sion of innovations and new technologies are rarely considered by 
funding agencies, and long-term financial support for sustained 
operation is not guaranteed. The initial wave of digital materials 
infrastructures were built predominantly by materials scientists 
whose main focus lies in basic science. The long-term mainte-
nance and usability of infrastructure is often only a secondary 
priority for most scientists. As a result, these digital infrastruc-
tures are in danger of becoming digital ruins of the expansion of 
Open Science. We discuss potential solutions in Section 9.

Next we explore central topics and applications around data-
driven materials science to provide insight into these chal-
lenges and into the successes of data-driven materials science.

4. Materials Ontology

We begin our more detailed review sections with the relevance, 
completeness, and standardization challenges. One of the first 
decisions in the planning of a materials data infrastructure is 
which types of materials will be relevant to its intended user 
base. The most complete representation of these materials will 
then have to be stored in the database of the infrastructure. The 
storage requires standardization and the development of meta-
data formats. Storing only the raw materials data without any 
metadata would be futile because raw data is neither searchable 
nor suitable for machine learning.

The development of a metadata framework requires mate-
rials classification schemes from which metadata entries 
and relations can be derived. Crude classification schemes 
group materials by their functional properties (electronic, 
optical, mechanical), topological characteristics (bulk, surface, 
nanotube, polymer, see Figure 5), or by material type (ceramics, 
metals, glasses, polymers, or composites). More sophisticated 
classification schemes are clearly needed to facilitate data-
driven materials science. In addition, the origin of the raw data 
needs to be encoded in the metadata. For real samples, these 
would be the synthesis and processing conditions and the his-
tory of the sample since creation. For virtual samples, the gen-
erating computer code and the computational settings need to 
be known. This clearly demands the classification and organi-
zation of materials data in a materials ontology.

Ontology is originally a field of philosophy defined as the 
study of properties, events, processes, and relations of exist-
ence.[146] In computer science, the term ontology has been co-
opted to more specifically mean a formal collection of entities, 
relationships between those entities, and inference rules that 
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are shared by a community. In materials science, a materials 
ontology would be a classification scheme for materials, their 
properties, units, and limits, and their interrelations. Defining 
an ontology is conceptually important for the purpose of 
establishing a standard that can be shared by different people 
working with the same data, and it is a practical necessity in 
database design. The ontology concept is also closely linked 
to the ability to search data: the ontology defines the available 
search terms and facilitates semantic reasoning, which then 
facilitates complex searches.

Creating the necessary machinery for ontologies in mate-
rials science is a tremendous task. An ontology structure has 
to be developed, suitable formats and standards for encoding 
meaning have to be defined, and wide-spread adoption of the 
ontology has to be ensured. For example, a substantial part of 
information available on the internet today consists of human 
written text. To interpret the information contained within this 
text requires human reasoning or sophisticated natural language 
processing software. But there is a complementary standard by 
the World Wide Web Consortium called Semantic Web that 
defines an explicit, machine-readable format (Resource Descrip-
tion Framework, RDF) to organize information on the web. 
It provides an ontology language (Web Ontology Language, 
OWL) to describe ontologies for sharing concepts across con-
tent creators.[147] If this semantic web standard were embraced 
by the web community, it would significantly boost information 
sharing across the internet and unleash the power of automated 
semantic reasoning by artificial intelligence.[148] As of now, this 
powerful idea remains largely unrealized.

Similarly in materials science, a standardized ontology that 
ensures a complete representation of materials has not yet 
emerged. Currently various ontologies and less-than-formal 
standards compete. NOMAD Meta-info,[86,149] ESCDF,[86] and 
OpenKIM[150] are the first attempts to categorize computational 
results in atomistic materials science. PLINIUS[151] is used in 
the field of ceramics, ONTORULE[152] in the steel industry, 
SLACKS[153] for laminated composites, and PIF,[154] Ashino,[155] 
EMMO,[156] MatOnto,[157] Premap,[158] and MatOWL[159] repre-
sent general materials science data. Although the development 
of these materials ontologies has accelerated, they are not nearly 
as mature as in other fields, for example, the biosciences.[160] 

Especially for industrial purposes, these publicly available 
ontologies are typically insufficient, forcing companies to create 
their own internal, domain-specific ontologies.[156]

The lack of standardization aggravates data sharing. Com-
putational science, for example, still relies on file-based data 
exchanges between different codes. Such file-based data 
exchange requires interfacing software, significant human 
resources, and expertise on how the data is structured. More-
over, incompatible standards lead to conversion errors and 
data loss. These interoperability problems could be solved by a 
common ontology and a standardized representation of knowl-
edge within this ontology. Fitting existing and novel data into 
such an ontological framework would still be a tedious and 
error-prone task for humans. Existing tools and techniques 
could, however, be used to simplify and automate this process. 
Data curation services[161] help in organizing and annotating 
data, natural language processing can be used to mine data 
from scientific literature,[162,163] and automated structural clas-
sification helps in categorizing the contents.[145,164,165]

The ontologies themselves could also be constructed semi-
automatically by observing the nomenclature and the relation 
of concepts used in the literature.[166,167] If widely adopted in 
materials infrastructures, this standardization would enable 
the vision of a powerful search platform for materials sci-
ence. Once defined and filled, AI solutions would benefit from 
it. One could envision virtual AI agents helping scientists to 
answer complex questions related to material performance and 
synthesis by analyzing materials databases and scientific litera-
ture. Such AI agents would not only aid basic research, they 
would also help businesses that could then more effectively lev-
erage existing scientific knowledge in their R&D.

Recently there have been promising efforts in trying to unify 
the nomenclature and standards in materials science by the 
European Materials Modelling Council,[156] the Research Data 
Alliance (RDA),[168] and by a collaboration between NOMAD 
scientists and the Centre Européen de Calcul Atomique et 
Moléculaire (CECAM).[86] A concrete example of such collabo-
ration is the Open Databases Integration for Materials Design 
(OPTiMaDe) consortium.[169] OPTiMaDe is building a common 
interface for accessing data from multiple materials platforms. 
The diversity of subfields and stakeholders in materials science 
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Figure 5. Example of an ontological hierarchy for the structural characterization of materials: a materials tree of life. Adapted under the terms of the 
Creative Commons Attribution 4.0 International License.[145] Copyright 2018, the Authors, Published by Springer Nature.
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might make it impossible to define one universal materials 
ontology. We, however, recommend that unifying ontologies 
whenever possible and disseminating these efforts to the mate-
rials science community are key steps in making the most out 
of the rich body of materials data created with the modern 
experimental and computational methods discussed next.

In summary, standardization facilitates data sharing. A mate-
rials ontology is a classification scheme for materials that ena-
bles standardization. Ontologies also ensure completeness of 
materials data since everything that falls outside of an ontology 
by definition indicates a lack of completeness in the ontology. 
Attempts at constructing materials ontologies are underway. 
However, more needs to be done to ensure that relevant mate-
rials and relevant materials properties are incorporated into 
existing materials infrastructures. Otherwise our MUSE will 
return irrelevant information when queried.

5. Data Creation

We now stay with the challenges of relevance and completeness 
and address how enough relevant data can be generated to feed 
a materials infrastructure. Once again, we encounter standardi-
zation but this time in the context of standards for generating 
data. We briefly review techniques and recent improvements 
in data creation methodology—so-called high-throughput 
methods—that are enabling experimental and computational 
scientists to efficiently create data for data-hungry repositories 
and applications.

For experimental materials data, the introduction and refine-
ment of deposition and analysis methods has had perhaps the 
greatest impact on data creation efficiency. In 1965, the first 
composition gradients could be achieved in thin-film material 
codeposition,[170] offering a more efficient replacement for the 
one-by-one creation and study of materials. Since then, multiple 
improved materials synthesis and characterization techniques 
have been introduced.[171–175] They have enabled the rapid gen-
eration of composition–structure–property relationships.[176–180] 
State-of-the-art deposition techniques, such as combinatorial 
laser-molecular beam epitaxy (CLMBE)[173] introduced around 
the year 2000, can be used to create temperature and compo-
sition gradients across the sample and provide control of the 
deposition in three dimensions.

These new methods facilitate a finer and more complete sam-
pling of structural phases and chemical compositions in a single 
experiment. They efficiently create materials libraries—experi-
mental samples with one or more composition or phase gradi-
ents. Each library represents part of a well-defined materials 
space. Measurements from such materials libraries are now made 
accessible through Open Access online services, such as the High 
Throughput Experimental Materials (HTEM) database.[97]

In contrast, and perhaps surprisingly, the high-throughput 
creation of computational materials data has only become 
common practice in the 21st century.[90,181,182] Thanks to Moore’s 
law and massively parallel computing architectures, available 
computational power has increased steadily, and computational 
data creation has quickly taken advantage of this power, even sur-
passing experimental efforts. For example, the Open Quantum 
Materials Database (OQMD) performs virtual high-throughput 

materials synthesis by decorating known crystal structure pro-
totypes with new elements. It has now grown from the initial 
set of roughly 30,000 experimentally known crystal structures 
from Inorganic Crystal Structure Database (ICSD) to more 
than 560,000 computationally predicted materials.[90,110] High-
throughput workflows have now matured and are increasingly 
applied to screen also complex properties such as coupling and 
reorganization energies in organic crystals.[183,184]

In the creation of such massive datasets, it is increasingly 
important to adhere to computational standards. This stand-
ardization has been pioneered by the Materials Project and the 
Automatic-Flow for Materials Discovery (AFLOW)-consortium 
(see Table 1), with comprehensive specifications for the meth-
odological details, such as k-point grid densities, cutoff ener-
gies, pseudopotentials, and convergence criteria, related to 
density functional theory (DFT) calculations.[185–187] This stand-
ardization ensures that data can be made cross-compatible 
within a database or even across databases.

Relatively recent additions to computational materials sci-
ence are workflow management tools like FireWorks,[188] 
atomate,[189] AiiDa,[190] and AFLOWπ.[191] These tools enable 
researchers to build automated and robust workflows for cre-
ating consistent datasets. Workflows connect different compu-
tational steps and checks into a single computational graph. 
The computational steps generate data, and checks aid with 
automated recovery from errors that might occur in a computa-
tional step, for instance due to incorrect computational settings 
or hardware failures. An example of a workflow graph from 
FireWorks is given in Figure 6.

In summary, materials data needs to be created in suffi-
cient volumes for materials infrastructures to be relevant and 
complete enough. To fulfill this need, high-throughput experi-
mental and computational methods have emerged. The level of 
automation and efficiency provided by these methods ensures 
that the bandwidth at which materials data can be created 
should not be an issue for the MUSE of the future.

6. Data Quality

From data generation, we move on to data quality. As already 
alluded to in the previous section, the quality of data is related 
to standardization in the generation of data and considerably 
affects the acceptance of data infrastructures.

Big data is often characterized in terms of four Vs: volume, 
velocity, variety, and veracity. Each V poses a challenge, 
although the volume challenge could, in principle, be solved 
by more storage space, and the velocity challenge of faster data 
generation could be addressed by faster computer processing 
and accelerated measurement and fabrication techniques. 
Increased variety is more a challenge for standardization 
and ontology integration, yet it is also a benefit for machine 
learning and materials discovery algorithms. Veracity, how-
ever, is the most problematic because it is a softer measure of 
how to quantify the degree of trust in data and how to improve 
its trustworthiness.

Data veracity has two aspects: bias and variance. In an 
experiment or a calculation, the bias of the result is quanti-
fied as the offset of the average result from the ground truth, 
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whereas variance is quantified by its probabilistic definition as 
the spread of the results over identical runs. Note that the vari-
ance and bias discussed here originate from approximations in 
theoretical models or experimental uncertainties, not from sto-
chastic processes in the experiment or calculations, for example 
in molecular dynamics simulations. We also disambiguate the 
use of bias and variance here from the same terminology com-
monly used in machine learning.

For users of data infrastructures, it is important to know the 
quality of available datasets. However both data bias and its 
veracity may be hard to quantify.

In the computational realm, variance can be caused by dif-
ferent computational environments or differences in imple-
mentation but it is typically negligible even between different 
software implementations.[192] Computational variance is 
also often one or several orders of magnitude lower than the 
corresponding experimental variance.[193] The veracity of 
computational data is thus dominated by bias—offset from the 
experimental ground truth. The estimation of this bias depends 
on access to experimental data or comparison to results from 
a higher-level theory.[194] The bias also depends on the types 
of chemical elements in the materials. Some computational 
approaches or approximations may break down for specific 
groups of elements, such as dispersion-governed compounds, 
magnetic materials, strongly correlated materials, and relativ-
istic effects in heavy elements, leading to much larger errors for 
these groups of materials.[193]

While computational scientists have full control over their 
simulations, experimental scientists often face errors that are 
beyond the control of their experimental setup. Bias in measure-
ments can be due to incomplete knowledge of a sample’s con-
tent and history, as well as interactions between the sample and 
the environment. Variance can be caused by material imper-
fections and contaminants, and experimental uncertainties  

introduced by the equipment. As such, it is typically difficult 
to discriminate between bias and variance in experimental  
errors. If there are no comparable experimental facilities, this 
can also make it hard to assess the data quality. In some cases, 
quality-controlled commercial equipment and widely accepted 
standard procedures are available when performing measure-
ments. However, there is often a need to use custom-built 
equipment or to measure materials for which the standard 
procedures are not applicable, making it harder to reproduce 
and validate results. This difficulty of controlling more elabo-
rate experimental setups means that reliable experimental data 
exists for simple systems, such as small molecules[195] or ele-
mental crystals,[193] but for more complex systems and meas-
urements, the data quality may be harder to determine.

The combination of high bias in computational results and the 
difficulty of controlling errors in experiments makes the overall 
estimation of data veracity in materials science particularly hard. 
One example is given by the formation energies of crystals for 
which computational and experimental values notably differ. 
This discrepancy is caused by both systematic errors in the com-
putational methodology and experimental uncertainties.[196] Due 
to the species-specific nature of the computational error and the 
vastness of compositional and structural space, it is impossible 
to make an exhaustive brute-force comparison between experi-
ment and computation. However intelligent error extrapolation 
schemes are being developed. In one such scheme, the com-
putational error of nonconverged energies for crystals with two 
different chemical species—compared to fully converged ener-
gies—can be estimated by using a linear combination of errors 
from solids with only one chemical species.[197] Such schemes 
could also be extended to estimate the error between experi-
mental and computational data. This will require systematic data 
collection from both experiment and computation but it may 
prove to be fertile for practical error estimation.
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Figure 6. A computational workflow used in creating a dataset of elastic tensors with the FireWorks workflow manager. The indigo boxes correspond 
to inputs or results, lighter blue boxes correspond to actions, and green diamonds correspond to decisions. Adapted with permission.[188] Copyright 
2019, Wiley.



www.advancedsciencenews.com

1900808 (13 of 23) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advancedscience.com

In summary, data quality is important to ensure standardiza-
tion of data and to increase acceptance of data infrastructures, 
but it is challenging to quantify. Two indicators of quality are 
bias and variance. Systematic data collection and new extrapola-
tion schemes would facilitate bias and variance assessments in 
the future.

7. Data Analytics

To increase the adoption of data infrastructures, developers 
are adding tools and apps to their data platforms that operate 
directly on the data in the infrastructure’s database. These tools 
add value to the data and enhance its relevance. Many tools now 
include machine learning. Here we briefly review the main 
types of machine learning and illustrate how they could add 
value to material infrastructures.

7.1. Introduction to Machine Learning

Machine learning is the scientific study of how to construct 
computer programs that automatically improve with experi-
ence.[198] More specifically, machine learning algorithms use 
statistical models and optimization algorithms to reveal pat-
terns in training data to make predictions or decisions without 
being explicitly programmed to perform a certain task. The 
advantage over human learning is that computers can often 
handle much larger and higher dimensional data, and suitable 
approximations can be automatically found by monitoring how 
well the models generalize to unseen data.

Many of the statistical methods in machine learning have 
been around for decades. For example, Marvin Minsky built 
the first hardware implementation of a neural network[199] in 
1951. Our current AI boom has been facilitated by the rapid 
hardware development for information storage and processing, 
the conscious effort of data gathering and curation, as well as 
increased developments of machine learning methods and 
libraries by private companies, the public sector and academia, 
driven by the potential that machine learning can unlock from 
previously untapped data resources. Today machine learning 
is a key ingredient of materials informatics, as showcased by 
various reviews on the topic.[5,8–10,13,14,17,18,22,23]

Machine learning can be divided into different subfields that 
are characterized by the available data. Supervised learning is 
the most mature and powerful of these subfields and is used 
in the majority of machine learning studies in the physical 
sciences.[17] Supervised learning applies in situations where a 
machine learning model is trained on input–output pairs from 
a real process to produce optimal outputs for unseen inputs. 
Typical applications are predictions of physical properties (like 
formation energies[200–202] or molecular properties[203–207]) given 
the input features of a material or process (e.g., geometry, phys-
ical properties, external conditions).

In unsupervised learning, only input data is given to a model 
but no output. The machine is then tasked with a learning objec-
tive, for example to find rankings or patterns for this input. Unsu-
pervised learning is often used to preprocess input data, such 
as dimensionality reduction by principal component analysis  

(PCA),[208,209] or aiding the analysis of complex output data like 
visualization of high-dimensional data with T-distributed sto-
chastic neighbor embedding (T-SNE)[97,210] or sketchmap.[211]

Finally reinforcement learning is a rapidly emerging field 
with promising applications in tasks that require machine 
creativity. In reinforcement learning, a model is given a task 
of choosing a set of actions to optimize a long-term goal. As 
such, it differs from supervised learning because no cor-
rect input–output pairs are presented for individual actions, 
but the training is a mixture of exploration and exploitation 
guided by a long-term reward.[212] This mode of learning can 
be useful in the exploration of compound and material spaces 
like exploration of grain-boundary structures with evolutionary 
algorithms[213] and the search for new molecules with objective-
reinforced generative adversarial networks.[214]

The knowledge contained in a machine learning model is 
encoded in the parameters of the model, and it is, in prin-
ciple, tractable. However the number of parameters can reach 
into the millions, which makes these models quite opaque 
to human interpretation. This is different from the scientific 
approach thus far, which has relied on deriving and discov-
ering physical laws that are encoded in humanly readable 
equations. For commercial applications, the transparency 
of the models is not as important as their performance, but 
for advancing scientific understanding and wider acceptance, 
better human interpretability would be beneficial. Recent 
examples of approaches that analyze machine learning models 
to reveal their mechanisms include the analysis of input fea-
ture importance,[200] explicit formulation of the input in alge-
braic form,[215,216] and analysis of convolutional neural network 
filters.[217]

7.2. Specifics of Machine Learning in Materials Science

Currently the applications of machine learning in materials 
science are rich and diverse, ranging from catalyst design,[19,80] 
exploring the mechanisms of high-temperature superconduc-
tivity,[218,219] to predicting excitation spectra.[206] Building such 
applications can generally be broken down to four key steps: 
data acquisition, feature engineering, model building, and anal-
ysis. These steps are illustrated in Figure 7. They are, however, 
interdependent and often multiple iterations of each step are 
required to create a successful machine learning system. Special-
ized software frameworks[220–222] have been developed to aid the 
set-up and build and management of machine learning models.

While machine learning generally requires data, the amount 
of data depends on the specific problem. Figure 8 illustrates 
the trade-off between the available data volume and the com-
plexity of the underlying process for different machine learning 
approaches. Problems in the top-left corner are not suitable 
for machine learning due to the low amount of available data. 
The further to the right a problem sits, the more suitable it 
becomes for machine learning. In practice, it is often difficult 
to place machine learning methods and new problems in this 
diagram. Thus rapid prototyping of the problem is frequently 
a key to successful machine learning. Since we have control 
over only one of these parameters—the amount of data—the 
importance of open data access, materials databases, efficient 
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data creation, and data veracity is paramount for the success of 
machine learning.

Machine learning models expect input data in alpha-numer-
ical form, typically as an array of letters or more often as num-
bers. Raw data, however, is usually unsuitable for machine 
learning. The first task in building a machine learning model is 
therefore to extract informative features from the raw data (cf. 
Figure 7). Feature engineering refers to the act of introducing 
domain expertise to the learning model by affecting which fea-
tures are used. It can be beneficial to apply problem-specific 
feature transformations, called feature extraction,[212] which 
exploit known symmetries in the input for example, making 
it easier for the model to learn a unique mapping. This can 
be especially important for input features that encode atomic 
geometries. Physical properties exhibit symmetries with respect 
to translation, rotation, and index permutation in the Cartesian 
coordinates representing a geometry. Using a transformation 
that makes the input invariant with respect to these symmetries 
will help the learning process by creating a unique mapping  
from an atomic geometry to its properties. Such structural 
descriptors have been successfully applied in the prediction of 
molecular and crystalline properties,[203,205,229] and there their 
development has exploded in recent years.[202,203,205,229–238] To 
facilitate easier navigation through descriptor choices, applica-
tion-neutral software libraries for descriptors are being devel-
oped.[239,240] In contrast to human-driven feature engineering, 
the optimal features can also be discovered more systematically 
by learning them directly from the data with feature learning. 
In the simplest form this can be achieved by methods like 
principal component analysis (PCA),[208] which is based on 
the variance of the input features. In the other extreme,  the 
features may be formed by an encoder as a nonlinear latent 

space within an autoencoder neural network.[241] Analyzing the  
features used by the machine learning model in making a deci-
sion forms the basis of understanding and verifying the correct-
ness of the model. Integrating such analysis into the workflow 
of building machine learning models is still lacking in many 
cases, hindering their acceptance and interpretability.

After feature selection (cf. Figure 7), the machine learning 
algorithm must be chosen (see different machine learning 
types discussed at the beginning of this section). Each algo-
rithm has its own application domain, and there is currently 
no algorithm that is optimal for all problems.[10] This conun-
drum is also known as the “no free lunch theorem.”[242] 
Some common choices include feed-forward neural net-
works,[243] decision trees,[244] kernel ridge regression,[245] sup-
port vector regression,[245] and Gaussian processes.[246] These 
approaches are common in computer science and are avail-
able in generic software packages that help select the best 
model for a task.[50,247–254] Apart from such generic approaches 
and packages, machine learning models are often customized 
to materials science. One example is the creation of custom 
neural network architectures[201,204,206,255,256] that have been 
designed specifically for atomistic geometries, reducing the 
need for feature engineering.

One practical concern in model selection is the amount 
of data that is available for training the model. Methods like 
kernel ridge regression require an inversion of a matrix whose 
size is proportional to the number of training samples. This 
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Figure 8. The machine learning domain in terms of data volume and 
the complexity of the physical process, with selected examples placed 
in this domain. The complexity of a physical process here means the 
complex, nonlinear structures present in the data. Two opposing learning 
scenarios, a hard and an easy one, are illustrated in the lower panel. 
In these two cases, the underlying physical process is represented by a 
colored contour map, and the sampling of this process is represented by 
black crosses.[223–228]

Figure 7. Key steps in building a machine learning model. The white 
arrows indicate the flow of data, green arrows indicate actions that can 
be identified and performed after analysis to improve the performance 
of the model.
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restricts their usability for large datasets because the time taken 
by a brute force inversion scales as n( )3  with the dataset size n. 
Other models like neural networks can handle larger datasets 
since they can be trained by using small batches of the training 
data, and their performance can be monitored during training. 
At the other end of the spectrum we find powerful tools for 
small datasets such as, regression with Gaussian processes and 
Bayesian optimization,[18,257] the extraction of effective materials 
descriptors with subgroup discovery[258] or compressed sensing 
as done in, e.g., the least absolute shrinkage and selection oper-
ator (LASSO) or the sure independence screening and sparsi-
fying operator (SISSO).[215,216] Also some forms of input are 
better suited for certain models. For example, images exhibit 
a high degree of correlation between adjacent input points. 
Models that exploit such correlations, like convolutional neural 
networks,[259] may then be the best choice. In other cases, the 
input features have no apparent correlations or have completely 
different numerical ranges, and decision trees may exhibit the 
best performance.[244]

The final step in the machine learning workflow is the perfor-
mance assessment (cf. Figure 7). This analysis guides all other 
aspects of learning - from excluding corrupt learning samples 
to optimizing the features and the model itself. The analysis 
step is general for all application areas of machine learning. For 
a more in-depth introduction, we refer the reader to existing lit-
erature.[198,212] The goal of this step is to ensure that the model 
generalizes well to unseen data. Two common problems are 
over- and underfitting. In over-fitting, the model becomes too 
specific. It reproduces the training data very well but performs 
poorly on new data. In underfitting, the model learns rules that 
are too general and averages through training and through new 
data. The balancing act between over- and underfitting is called 
the bias-variance trade-off, and it is typically controlled with 
cross-validation and careful dataset design. The whole dataset is 
usually split into a training set, from which a further validation 
set for hyperparameter optimization can be split off, and a test 
set. Model performance is then evaluated on the test set. The 
dataset contents and the exact way the data is split into training 
and test sets can affect the reported performance and in some 
cases lead to unrealistic results. Often the sampling of training 
examples is not very even in the input space, as the samples can 
exhibit high levels of clustering—for example, the dataset may 
comprise of multiple clustered material types that have very 
similar properties. In such cases the model is able to interpolate  
very well even if it has only been trained on one representa-
tive of each cluster, but its performance will start to deteriorate 
for unseen material types, which are hard to leave out of the 
training set with purely random selection. Due to this effect 
randomly split training and test sets can offer unrealistic per-
formance metrics and alternative cross-validation strategies like 
leave-one-cluster-out cross-validation (LOCO CV)[260] offer more 
realistic performance metrics.

All the key elements for successfully applying machine 
learning in materials science are in place, as illustrated also by 
the applications showcased in the next section. However, sev-
eral challenges prevail. For example, selecting the optimal com-
bination of data, features, machine learning models and anal-
ysis tools can be a formidable task, especially because the field 
is advancing so rapidly and practices become outdated quickly. 

Careful curation and standardization of both data and machine 
learning models can to some degree mitigate the problem, but 
not enough benchmark sets have been established in the com-
munity. Also, available data volumes are often still too small to 
apply machine learning tools that have been successful in other 
domains, e.g., commerce or social media.

Another challenge is the exchange of pre-trained models. 
Projects such as OpenML[261] and DLHub[262] are first exam-
ples for model-and-data sharing platforms that enable transfer 
learning, but more could be done. Metric assessment is a fur-
ther challenge. The reported performance for machine learning 
models is an important selection criterion for adopting certain 
models or features. However, performance metrics are not yet 
standardized. Standardized datasets help, but more attention 
should be devoted to the selection of test and training sets to 
obtain more realistic error bars.

We have already discussed the challenge of interpretability. 
As the exact way input data informs the machine learning 
model is often blindly guided by the model optimization and 
hidden behind internal parameters, better methods for inter-
preting the decisions made by machine learning models are 
required. Although the natural sciences rarely have to worry 
about ethical consequences—unlike the social sciences that 
are now adopting AI into their decision making[263] —a critical 
evaluation of the decision mechanisms is important for under-
standing the shortcomings of machine learning models and to 
advance scientific understanding.

In summary, machine learning is a powerful concept for data 
analysis and materials informatics. Machine learning is a field 
undergoing very active development, and a plethora of suitable 
machine learning methods has been applied to materials sci-
ence. Increasingly such machine learning tools are incorpo-
rated directly into data infrastructures. In our MUSE analogy, 
they will provide meaningful answers to our “searches.”

8. Applications

Staying with relevance and adoption, we now briefly present 
areas in which data-driven materials science has been applied 
successfully. Success stories are important for the development 
of any field as they inspire trust and commitment in stake-
holders. We have identified three major research objectives for 
which we think data-driven approaches have the largest impact 
on materials science: materials discovery, understanding mate-
rials phenomena, and advancing materials modelling. We review 
these three areas briefly and present relevant studies.

Materials discovery is a complex problem in which a list 
of target specifications are given and the optimal material 
is sought. Such discovery is often performed by using a for-
ward solution—simply calculating the key properties for a 
pool of candidate materials to identify the best ones for fur-
ther in-depth analysis, characterization, and verification. By 
using existing or dynamically generated materials data, sci-
entists can build heuristic models (often through machine 
learning) to dramatically speed up the identification of best 
candidate materials for experimental synthesis. Although 
experimental synthesizability is often a bottleneck, there are 
multiple studies that have verified that this approach has the 
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power to accelerate the discovery of novel or improved mate-
rials. The examples that have already resulted in experimen-
tally synthesized novel compounds include new molecules for 
efficient organic light emitting diodes (OLEDs),[264] polymer 
dielectrics for electrostatic energy storage,[265] novel gallide 
Heusler structures,[266] NiTi-based shape memory alloys with 
small thermal dissipation,[267] lead-free piezoelectrics[268] and 
metallic glasses,[269] and high-entropy alloys[270] for structural 
applications requiring hardness and corrosion resistance. 
Furthermore, multiple novel materials identified by this vir-
tual screening are awaiting experimental validation, including 
photo voltaics,[271,272] photoelectrochemical water splitting 
materials,[273,274] topological insulators,[275,276] and novel binary 
or ternary crystal structures.[277,278]

If the desired candidate material is not in the pool of mate-
rials that are being screened with the forward solution, then it 
cannot be found in this way. In such cases, the problem has to 
be inverted, that is, a mapping from the target property space 
to materials space has to be found. For solid clusters, simple 
inverse relations have recently been established between X-ray 
absorption (XAS) spectroscopy[279–281] and coordination shells of 
atoms. For molecules, neural-network-based auto encoders and 
decoders[282] were combined with a grammar-based variational 
autoencoder[283] to map from the discrete molecular space into 
a continuous latent space (in which optimizations can be per-
formed) and back again. Even with such sophisticated models, 
it is not easy to generate valid, synthesizable molecules and 
materials with the wanted properties, and inverse predictions 
remain difficult in practice.

Historically new materials were often discovered by first 
understanding fundamental materials phenomena and then 
applying them to look for other materials that might fit the 
same physical laws. Machine learning based predictions 
conceal these physical laws and do not provide the same 
understanding of materials-property relations. By changing 
the objective to understanding the underlying materials 
phenomena (asking why instead of what), we can hope to 
use reductionistic approaches to transcribe data into laws 
and equations that are more typically associated with sci-
entific progress. In vast and high-dimensional materials 
data landscapes, for which human-intuition is ill-suited, 
this discovery of materials phenomena can be aided by a 
data-driven approach. The fundamental mathematical for-
mulation of physical laws, such as conservation laws and 
differential equations, can be automatically deduced from 
data.[284–286] Methods based on compressed sensing[215,216] 
provide a systematic way of identifying the algebraic form 
of the descriptors that capture the underlying mecha-
nisms behind material properties, providing a more natural  
basis for human interpretation. These methods have been suc-
cessful in identifying physically meaningful descriptors that 
control the stability of perovskites[287] and monolayer metal 
oxides coatings.[288] Another idea is to map high-dimensional 
data into more easily human analyzable two- or 2D maps with 
unsupervised learning. This idea of “materials cartography” 
has been used to identify common features for high-temper-
ature superconductor materials,[218] to group molecules into 
intuitive maps that can reveal key structure–property rela-
tions,[211] find phase transitions in complex systems,[289] or 

establish the key descriptors in the catalytic properties of metal 
surfaces.[290]

The final application area is related to advancing materials 
modelling with automated construction of surrogate models 
directly from data. These surrogate models can replace the 
laborious fitting of semiempirical models, and if trained with 
highly accurate data are able to reproduce complex chemical 
phenomena with very low computational cost by sacrificing 
some of the accuracy. Such AI-based modelling tools are able 
to assist even in very challenging tasks, as demonstrated by 
IBM RXN[291]—a free online tool that uses a machine transla-
tion inspired architecture to predict the product of chemical 
reaction from the structural formulas of the reactants. Another 
example is the creation of classical force fields from DFT 
training data.[204,224–226,292]

The promise of these methods is to achieve near DFT-level 
accuracy in the physical and chemical description of a system 
but at the much lower computational cost that is closer to clas-
sical force fields. These machine learned force fields enable 
studies of systems and mechanisms that have so far been out 
of the realm of computational studies, such as identifying the 
growth mechanism of amorphous carbon coatings[293] under 
deposition and the composition and activity of nanoclusters 
in aqueous solutions.[294] The implementations have now also 
made their way into established molecular dynamics soft-
ware, where they can in some cases be used as a plug-and-play 
replacement for traditional force fields.[295–298]

Going one step up in the theoretical ladder, energies of 
very accurate, yet computationally very expensive coupled 
cluster theory calculations have been learned.[22,299–301] Another 
example is the training of exchange-correlation functionals or 
direct potential-to-density mappings from density or wave-func-
tion based methods.[302,303] Such efforts are an exciting step in 
expanding existing theoretical knowledge to new time and size 
regimes in materials modelling.

In summary, machine learning and data-driven approaches 
are being applied in materials science. The wider the range of 
successful applications, the higher the acceptance of materials 
data infrastructures will be. New applications will, in turn, chal-
lenge established machine learning methods, which will have 
to be further developed to address these challenges. This cre-
ates a feedback loop with developments in computer and data 
science and ensures that our MUSE continues to learn.

9. Stakeholder Relations

In previous sections, we have addressed the acceptance of mate-
rials data infrastructures from a technological viewpoint. We 
now reflect on how materials data infrastructures are currently 
received by different stakeholders. Strong support from stake-
holders is needed to guarantee the diffusion of innovations 
to a wider pool of stakeholders and to ensure the longevity of 
data infrastructures.

Materials scientists in academia are actively pushing the fron-
tiers of materials informatics to advance and accelerate mate-
rials design and discovery. However emerging fields require the 
interaction of various actors and stakeholders from different 
communities (academia, government, industry, and the public, 
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cf. Figure 9a) to generate understanding of the field and nego-
tiate community boundaries.[304] A recent socioeconomic study 
investigated the emerging field of data-driven materials science. 
It identified that the field is scattered and largely lacking a sup-
portive ecosystem with nonacademic stakeholders.[305,306]

The socioeconomic study identified visionary scientists at 
academic institutions who have pursued their idiosyncratic 
research objectives using trending topics in public discussions 
and governmental funding, including Open Science, Big Data, 
and AI. At the same time, government and funding agencies 
have provided strategic research openings focused on propel-
ling the field of data-driven science in general. However, the 
focus on materials science applications or on finding and devel-
oping industry applications has been limited by the lack of 
targeted funding opportunities. With the exception of the US, 
which released substantial government funding to advance the 
field of data-driven materials science via the Materials Genome 
Initiative,[61] most government-sponsored funding schemes 
have been more general. In the European Union, two successful 
projects have been funded (MaX[307] and NOMAD CoE[106]). 
However both centers were facilitated by the European Union’s 
Horizon 2020 high-performance computing grants rather than 
funding schemes focused on data-driven materials science. 
Until now, no call tailored to the exploration and exploitation 
of data-driven materials science has been issued by the EU, 
although this may change in the new framework program. 
Nevertheless national differences exist. For example in Switzer-
land, the importance of data-driven materials science has been 
acknowledged by the support for the MARVEL National Center 
of Competence in Research (NCCR).[85] In 2018 in Finland, a 
Future Makers funding call was opened specifically focused 
on the initiation of “high-level, ambitious strategic research 
openings that combine internationally top-level science and 
industrial impact … to build long-term sustainable renewal and 
competitiveness of the Finnish technology industry based on … 
data-based materials science”.[308] Despite the call, none of the 
applications from materials science were funded.

The socioeconomic study further concludes that industry has 
remained seemingly reluctant to invest in data-driven scientific 
applications in materials research and development. This reluc-
tance could be driven by government hesitation to fund data-
driven materials science, but it could also be the result of the 

material industries’ desire to work with proprietary databases, 
the generally long timeframe for the development of new mate-
rials (10–20 years), and/or the limited number of manufacturing 
employees with informatics backgrounds.[144] Industries do, 
however, capitalize on the creation and appropriation of (new) 
knowledge,[309] and new materials could advance such fields as 
health, energy, aerospace, automotive, semiconductor, and con-
sumer goods:[144] materials informatics provides unprecedented 
opportunities for an industry to better use the existing vast 
“storehouses of information”[310] that firms possess to propel 
materials innovation at greater rates and lower costs. Despite 
the potential gains, uptake by industrial partners is challenging. 
Although materials companies generate enormous quantities 
of R&D data, this data is often undocumented and intangible. 
Before proprietary databases could be created, the archival data 
of companies needs to be structured, connected, and updated. 
Ignoring the identified challenges—acceptance (easy data upload 
and download, data curation, materials gap), standardization, 
and longevity—slows down industry adoption of data-driven 
materials science even further. In addition, firms face significant 
challenges to become or transform into data-driven organizations 
as they require different skills, knowledge, and resources.[311]

To capitalize on their data, three business models can be 
applied or are considered for application.[305,306] First, firms 
can consult and collaborate directly with established data plat-
forms (see Figure 9b), for example those discussed in Figures 2 
and 3. Traditionally such collaborations take the form of stra-
tegic interfirm alliances that influence companies’ potential for 
knowledge creation.[312] Propelled by the drive for Open Sci-
ence from policy players, Open Innovation is another potential 
form of collaboration in which firms open their internal inno-
vation processes by purposefully allowing knowledge to freely 
circulate among all actors to accelerate internal innovation.[31] 
As a result, such data platforms offer data and services that can 
be used by academia and industries alike.

In the second model, if a firm does not wish to collaborate, 
it can consider building a proprietary digital infrastructure 
by dedicating a large, one-off investment in hardware and by 
acquiring software and specialized skills in software configura-
tion and system management[313] (Figure 9c). This integration 
requires attracting computer scientists or materials scientists 
with extensive coding capabilities.
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Figure 9. a) Schematic of an ecosystem in data-driven materials science with materials data platforms at the center. In this ecosystem, different stake-
holders from universities, the public, industry, and government facilitate the development of a technology. b–d) Possible relationships between data 
platforms and industry, discussed in the text.
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A final business model is developed around new interme-
diaries that position themselves between data platforms and 
industry (Figure 9d). Examples of such new intermediaries 
are materials informatics companies—often spin-off com-
panies from academic efforts—that sell access to privately 
owned, highly curated materials property data that can be 
linked to data repositories within the firm and used in R&D 
processes. Collaboration with start-ups and companies (e.g., 
Citrine Informatics, Exabyte.io, Materials Design, and Granta 
Design[115,116,118,121]) can help firms develop new skills, capabili-
ties, and knowledge.[312,314]

Each of these data platform–industry relationships have 
implications for the larger ecosystem of data-driven materials 
science. That is, industry and academia often hold contradicting 
interests. From the academic perspective, commercial business 
opportunities stimulate private data ownership and proprietary 
databases (e.g., Figure 9c), which can be detrimental for sci-
entific progress since valuable data stays locked in the private 
domain. Furthermore, industries outside materials science are 
quickly recruiting academic employees with new coding and 
machine learning expertise in the field; this raises concerns 
over a possible “brain drain” from universities. Nevertheless 
the establishment and institutionalization of data science and 
machine learning for materials science within educational 
institutions could result in an increase in research funding, stu-
dents, and industry interest or collaboration.[305]

At the same time, industries’ need for these newly-skilled 
employees raises fear of “job loss” among established scien-
tists within R&D departments in those firms. However, mate-
rials that are identified as promising through the materials 
informatics paradigm still require further evaluation, selection, 
experimentation, certification, and manufacturing. Building 
synergies among computational and experimental researchers 
therefore remains a key enabler toward reaping the benefits of 
data-driven materials science in firms.[305]

In summary, the field of data-driven materials science is still 
in its infancy, with an emerging ecosystem, ongoing commu-
nity boundary negotiations, limited governmental funding, and 
an as yet disinterested industry. To establish data-driven mate-
rials science as a new paradigm in materials research, joint eco-
system efforts between research, industry, and public and gov-
ernmental organizations are necessary.

10. Take-Home Messages

In this review article, we provide an overview of the current 
state of data-driven materials science. From a historical per-
spective, the field has matured greatly, but we identify key 
challenges—relevance, completeness, standardization, accept-
ance, and longevity—that still need to be resolved to create 
the MUSE. Better standardization of materials data through a 
materials ontology would immensely help sharing, integrating, 
and employing AI-powered analysis of materials data. Creating 
feedback mechanisms between experimental and computa-
tional data for error estimation provides a way toward solving 
the veracity problem in materials data. The use of machine 
learning is transformational for research, but it requires con-
scious efforts in the curation and standardization of both data 

and machine learning models, and techniques to make the 
models more interpretable. The synergy between academic 
developments and industrial interest remains a major chal-
lenge, but it is key to creating a sustainable ecosystem for 
materials data and expertise. Despite these challenges, there 
has been a dramatic rise in data-driven materials science using 
the full spectrum of this new paradigm. And doubtless we have 
only seen a glimpse of this data-driven revolution.
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