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Abstract: Ordinal patterns are the common basis of various techniques used in the study of dynamical
systems and nonlinear time series analysis. The present article focusses on the computational problem
of turning time series into sequences of ordinal patterns. In a first step, a numerical encoding scheme
for ordinal patterns is proposed. Utilising the classical Lehmer code, it enumerates ordinal patterns
by consecutive non-negative integers, starting from zero. This compact representation considerably
simplifies working with ordinal patterns in the digital domain. Subsequently, three algorithms for the
efficient extraction of ordinal patterns from time series are discussed, including previously published
approaches that can be adapted to the Lehmer code. The respective strengths and weaknesses of those
algorithms are discussed, and further substantiated by benchmark results. One of the algorithms
stands out in terms of scalability: its run-time increases linearly with both the pattern order and
the sequence length, while its memory footprint is practically negligible. These properties enable
the study of high-dimensional pattern spaces at low computational cost. In summary, the tools
described herein may improve the efficiency of virtually any ordinal pattern-based analysis method,
among them quantitative measures like permutation entropy and symbolic transfer entropy, but also
techniques like forbidden pattern identification. Moreover, the concepts presented may allow for
putting ideas into practice that up to now had been hindered by computational burden. To enable
smooth evaluation, a function library written in the C programming language, as well as language
bindings and native implementations for various numerical computation environments are provided
in the supplements.

Keywords: Lehmer code; ordinal patterns; symbolic dynamics; permutation entropy; symbolic
transfer entropy

1. Introduction

The article Permutation Entropy: A Natural Complexity Measure for Time Series by Christoph Bandt
and Bernd Pompe [1] pioneered a novel approach towards nonlinear time series analysis. In essence,
the time series of interest is embedded in an m-dimensional phase space, then each delay vector is
discretised according to the ordinal ranks among its m components. This procedure yields a sequence
of symbols synonymously called order patterns or ordinal patterns, whereas the parameter m is either
referred to as the embedding dimension, or simply the order of the ordinal pattern. Permutation
entropy (PeEn) is in turn defined as the Shannon entropy [2,3] of a marginal probability distribution of
such ordinal patterns.

Comprehensive overviews on the many applications of PeEn are given in [4–6]. Following the
initial publication of 2002 [1], numerous extensions and modifications of PeEn have been devised,
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for instance, the methods proposed in [7–10]. Apart from Shannon entropy, other information-theoretic
measures have been applied to ordinal pattern distributions, among them conditional entropy [11],
mutual information [12], and transfer entropy [13,14]. Recurrence plots [15] and various correlation
functions [16] were also transferred to the so-called ordinal pattern space [17]. On a more abstract
level, ordinal patterns were tightly integrated into the general theory of discrete dynamics. A thorough
introduction to such topics is provided in the book Permutation Complexity in Dynamical Systems by
José Amigó [18].

1.1. Efficient but Infeasible?

Besides its conceptual simplicity and its robustness against certain forms of measurement noise,
computational efficiency is likely one of the most-cited advantages of the Bandt–Pompe approach
towards time series analysis [1,4,6–11,14,15,19–24]. However, this well-acclaimed run-time behaviour
is not a specific property of ordinal analysis, but constitutes a feature of discrete dynamics in general.
By matter of principle, coarse-graining the phase space of a dynamical system can radically reduce
the computational cost of its analysis because quantisation turns continuous probability densities into
discrete probability masses. A concise example (intentionally unrelated to ordinal patterns) can be
found in [25], wherein Andreas Kaiser and Thomas Schreiber address the intricacies of estimating
transfer entropy from continuously-valued time series, as compared to the far simpler discrete case.

Before the computational benefits of symbolisation can take any effect in ordinal analysis,
the (usually real-valued) input data need to be converted into sequences of discrete ordinal patterns.
Somewhat paradoxically, extracting ordinal patterns from time series is computationally a lot heavier
than literature commonly suggests. Determining a single ordinal pattern of order m requires a total of
(m2 −m)/2 pairwise comparisons, resulting in a computational complexity of O(m2). In other words,
“the computation time increases rapidly with m”—as has been pointed out by Matthäus Staniek and
Klaus Lehnertz [26], the creators of symbolic transfer entropy [14]. In a similar context, Amigó stated
that “there is no substitute for substantial computational effort when [the order m] becomes sufficiently
large”, and further conjectured that working with ordinal patterns beyond approximately m = 12 may
likely be “computationally unfeasible” [18].

Besides computational complexity, another closely related issue is the spatial complexity of ordinal
analysis: how should ordinal patterns best be represented in the digital domain, and what amount
of extra memory is required to obtain that representation? Because a total of m! different ordinal
patterns of order m exist (see Section 2.2), their memory footprint scales at a super-exponential rate of
O(m!). Although posing a computational challenge to the investigator, this combinatorial explosion
also has a beautiful application in the study of complex dynamics. The increasing spatial complexity
of ordinal patterns will at some point transcend the irregularity producible by any chaotic dynamics,
which gives rise to the notion of so-called forbidden ordinal patterns. This term describes patterns that
do exist in theory, but cannot be generated under the particular evolution rule of a given dynamical
system. Their presence or absence can therefore guide the distinction between complex determinism
and mere randomness [18,27,28]. In the words of Amigó and colleagues: “Chaos [. . .] cannot cope with
a super-exponentially growing manifold such as that of order patterns” [27].

Against this backdrop, and especially considering the semantic gap between “high efficiency” and
downright “infeasibility”, it seems justified to elaborate on the computational pitfalls and algorithmic
possibilities of encoding ordinal patterns. Literature on this subject is still rather scarce. To the best
of our knowledge, there is only one group of researchers who have published on the topic until now,
which is the team led by Karsten Keller. In their white paper on ordinal analysis, Karsten Keller,
Mathieu Sinn and Jan Emonds proposed a numerical encoding scheme for ordinal patterns [17],
which Valentina Unakafova and Karsten Keller subsequently optimised for speed of execution [21].
The results of their work enable the efficient extraction of ordinal patterns from time series for the
most commonly used pattern orders [29] that is, for m ∈ {2, 3, . . . , 9}. (To avoid ambiguity, please
note that the Keller group prefers a different definition of the pattern order, according to which the
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ordinal pattern of an m-dimensional vector is of order d = m− 1.) Expanding on the aforementioned
work of the Keller group [17,21], the present article proposes to use the Lehmer code for mapping
ordinal patterns onto non-negative integer values, and demonstrates that simple, efficient and versatile
algorithms result from this modification.

1.2. Structure of the Article

Section 2 discusses a few simple (yet rather uncommon) mathematical concepts and notations,
including the definition of ordinal patterns used throughout the present article. On that basis, Section 3
discusses the Lehmer code as an advantageous numerical representation for ordinal patterns, and
presents a closed-form solution for their encoding. A comparable approach, originally proposed in [17],
is also summarised and put into context. Section 4 then expands on these concepts, describing three
different algorithms for transforming univariate time series into sequences of ordinal patterns—among
them, the aforementioned solution by Unakafova and Keller [21]. The main computational challenges
of turning those algorithms into run-time efficient code are addressed in Section 5, and possible
optimisation techniques are suggested. Both aspects are immediately substantiated by run-time
measurements. The hurried reader can safely skip to the concluding Section 6, which should provide
enough information to put the ideas of the article into action by utilising the supplementary software
library. That being said, readers concerned with the inner workings of ordinal pattern encoding
(and those who lack blind trust in foreign code) are invited to follow through the article in its entirety.
Let us start with some mathematical underpinnings.

2. Preliminaries

2.1. Iversonian Brackets

Throughout this article, we will be using a highly convenient, if slightly uncommon notational
convention, called the Iversonian bracket [30,31]. In terms of computer science, the Iversonian bracket
represents a data type conversion from Boolean to integer: for a given logical expression L, it holds that

[
L
]
=

{
0, if L is false,

1, if L is true.
(1)

For example, the number of positive elements in a finite time series {x1, x2, . . . , xN} can compactly be
written as ∑N

t=1
[
xt > 0

]
.

2.2. Ordinal Patterns

Any m-tuple (x1, x2, . . . , xm) ∈ Xm of pairwise distinct elements from a totally ordered set X has
a unique ordinal pattern. This abstract entity describes how the tuple’s elements relate to one another
in terms of position and rank order. For example, the ordinal pattern of the tuple (17, 7, 8) ∈ N3 is fully
specified by:

“There are three elements, the first is the greatest, the second is the least.” (2)

This same ordinal pattern applies to any tuple (x1, x2, x3) for which the order relations x2 < x3 < x1

hold. By contrast, each permutation of the elements {x1, x2, x3} yields a different ordinal pattern,
so any given m-tuple of pairwise distinct elements (x1, x2, . . . , xm) ∈ Xm has exactly one out of m!
different ordinal patterns. We here call the tuple length m ∈ {2, 3, . . .} the order of the set of ordinal
patterns Ωm = {Π1, Π2, . . . , Πm!}. Any such pattern Πi ∈ Ωm can formally be denoted by a distinct
permutation function

σ : N→ N, such that xσ(1) < xσ(2) < · · · < xσ(m),



Entropy 2019, 21, 1023 4 of 27

or, equivalently, by its inverse function

σ−1 : N→ N, such that σ−1(i) < σ−1(j) ⇐⇒ xi < xj.

Intuitively, the permutation function sorts the tuple, whereas its inverse function assigns a unique
rank to each element. Variants of both notations coexist in literature [1,14,16–18,23]. For the scope of
the current article, we choose to represent ordinal patterns as m-tuples of ranks (λ1, λ2, . . . , λm) ∈ Nm,
where λi = σ−1(i).

The strict limitation to pairwise distinct elements is usually dropped in practise. The common
approach is to stipulate λi < λj for any pair of values xi = xj if their order of appearance is i < j, and
vice versa. (Depending on the amplitude distribution of the input data [22], it may be advisable to use
a more sophisticated technique of resolving tied values during data pre-processing, that is, prior to the
rank analysis considered here.) Adopting this simple convention, we arrive at the following definition.

Definition 1. For any given m-tuple (x1, x2, . . . , xm) ∈ Xm from a totally ordered set X, its ordinal pattern
Πi ∈ Ωm = {Π1, Π2, . . . , Πm!} of order m is the unique m-tuple of ranks (λ1, λ2, . . . , λm) ∈ {1, 2, . . . , m}m,
such that

∀i, j ∈ {1, 2, . . . , m} : λi < λj ⇐⇒
(

xi < xj ∨ (xi = xj ∧ i < j)
)
. (3)

Note that, under this definition, any given Πi ∈ Ωm does not only represent an ordinal pattern,
but rather is the ordinal pattern itself. To motivate this, let us further introduce the function

op : Xm → Ωm ⊂ Nm,

(x1, x2, . . . , xm) 7→ (λ1, λ2, . . . , λm),
(4)

which enables statements like Πi = op(x1, x2, . . . , xm). Then, due to Definition 1, the rather curious
expression op(Πi) is actually well-defined: it is the ordinal pattern of the ordinal pattern Πi,
which simply is the ordinal pattern of an m-tuple of pairwise distinct positive integers. Moreover, it is
easily confirmed that op(Πi) = Πi for all Πi ∈ Ωm, which implies that the function op = op ◦ op is an
idempotence—the ordinal pattern of another ordinal pattern is that other ordinal pattern.

2.3. Ordinal Processes and Markov Chains

The fundamental idea presented by Bandt and Pompe is to transform a given time series {xt}with
time indices t ∈ {1, 2, . . .} into a sequence of discrete symbols {Πt} prior to any further processing.
This approach builds upon the delay embeddings used in dynamical systems theory. Using a fixed
pattern order m ∈ {2, 3, . . .} and a time lag τ ∈ {1, 2, . . .}, one creates the sequence

{Πt} with Πt = op(xt, xt+τ , . . . , xt+(m−1)τ), (5)

that is, the ordinal patterns of the consecutive delay vectors of {xt}. In the light of Definition 1,
this transformation combines delay embeddings with a nonlinear form of vector quantisation. For this
reason, some authors prefer to call the pattern order m the embedding dimension of the ordinal pattern.

Assuming that the time series {xt} is a realisation of some stochastic process, it makes sense to
postulate that its corresponding sequence of ordinal patterns {Πt} originates from an underlying
stochastic process as well. In particular, this process is time-discrete, and its state space is the set of
ordinal patterns Ωm. Keller, Sinn, and Emonds coined the term ordinal process for this concept [17].
The most decisive property of an ordinal process of order m > 2 is that its random variables can never
be independent. In this respect, observe that, for any time t, the m-dimensional delay vectors

(xt, xt+τ , . . . , xt+(m−1)τ) and (xt+τ , xt+2τ , . . . , xt+mτ)
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overlap in m− 1 out of m values. Consequently, with Πt already fixed, an ordinal process cannot draw
Πt+τ from its full state space Ωm, but merely from a subset of cardinality m! /(m− 1)! = m. Keller and
colleagues regard this property as the very definition [17] of ordinal processes, by contrast with any
other process drawing from the state space Ωm. As already mentioned, ordinal processes of order
m = 2 constitute an exception in this regard because (xt, xt+τ) and (xt+τ , xt+2τ) overlap in merely one
value, such that their ordinal patterns have disjoint order relations. Consistently, it holds that 2! = 2.

For the time lag τ = 1, an ordinal process is a first-order Markov chain. Because of the inter-pattern
dependencies just described, its corresponding transition matrix T is sparse, containing no more than
m positive entries per row. Assuming m = 3, for instance, the matrix cannot be less sparse than

T =



(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(1,2,3) p1,1 p1,2 0 p1,4 0 0
(1,3,2) 0 0 p2,3 0 p2,5 p2,6

(2,1,3) p3,1 p3,2 0 p3,4 0 0
(2,3,1) 0 0 p4,3 0 p4,5 p4,6

(3,1,2) p5,1 p5,2 0 p5,4 0 0
(3,2,1) 0 0 p6,3 0 p6,5 p6,6


.

In the general case of τ > 1, an ordinal process behaves like τ such Markov chains interleaved. By
way of further illustration, a state diagram for the order m = 3 (and necessarily, the time lag τ = 1) is
depicted in Figure 1.

(1, 2, 3)

(3, 2, 1)

(1, 3, 2) (2, 1, 3)

(3, 1, 2) (2, 3, 1)

Figure 1. State diagram for an ordinal process of order m = 3 and time lag τ = 1, which can be
interpreted as a first-order Markov chain. Its transition probabilities depend on the underlying process,
and some can be zero. However, no other transitions than the ones depicted are possible because
consecutive patterns overlap in two out of three values.

3. Ordinal Patterns in the Digital Domain

In the last section, we defined ordinal patterns as m-tuples of ranks (λ1, λ2, . . . , λm) ∈ Ωm ⊂ Nm,
and thereby also established an easily interpretable means of notation. Human interpretability is,
however, not a primary concern when storing data in computer memory. Different requirements then
prevail, and render the rank representation rather cumbersome. Before we discuss suitable encodings
for the digital domain, let us look at these requirements.

Assume that we want to store an ordinal pattern (λ1, λ2, . . . , λm) of order m in the main memory
of a computer. The naïve solution (for any m < 256) would then be to use an array of m consecutive
bytes, each holding a particular rank λi. This approach is disadvantageous in several respects, the most
prominent being:
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1. While there are m! distinct ordinal patterns of order m, a block of m bytes can take on 256m

different states. Due to m!� 256m for small m, the memory footprint of the above encoding is far
from optimal.

2. Testing a pair of ordinal patterns for equality requires up to m byte-wise comparisons, which is
particularly detrimental to the run-time of operations like sorting and searching.

3. Counting distinct pattern occurrences in a sequence of ordinal patterns requires an associative
array that provides a map from each possible tuple of ranks to its respective counter variable.

Those shortcomings can be overcome by representing the patterns Ωm = {Π1, Π2, . . . , Πm!} using
non-negative integers {0, 1, . . . , m!− 1} that is, by establishing a bijective map,

enc : Ωm → N0,

Πi 7→ i− 1.
(6)

Such a map could readily be implemented in software by means of a lookup table. However, encoding
a pattern would then require up to m! iterations of that table, with each iteration involving up to
m integer comparisons. Fortunately, literature knows better ways of enumerating permutations, and,
thus, of encoding ordinal patterns numerically.

3.1. The Keller–Sinn–Emonds Code

Against this backdrop, Keller, Sinn, and Emonds [17] proposed a closed-form solution that
directly maps a given m-tuple of values (x1, x2, . . . , xm) ∈ Xm onto its ordinal pattern in numerical
representation, that is, the authors suggested a function of the form

enc ◦ op = sym: Xm → N0.

The principle is as follows: given an ordinal pattern Πi = (λ1, λ2, . . . , λm) ∈ Ωm of order m, one
interprets its ranks (λ1, λ2, . . . , λm) as a permutation of the integers {1, 2, . . . , m}, and in turn obtains
its right inversion counts

(r1, r2, . . . , rm) where ri =
m

∑
j=i

[
λi > λj

]
. (7)

For any fixed pattern order m, there are a total of m! pairwise distinct tuples (r1, r2, . . . , rm), and each
corresponds to a particular ordinal pattern Πi ∈ Ωm. Any such tuple of inversion counts can then
bijectively be mapped onto a distinct non-negative integer

n =
m

∑
i=1

ri
m!

(m− i + 1)!
such that n ∈ {0, 1, . . . , m!− 1}. (8)

With rm = 0 for the rightmost right inversion count, and λi > λj if and only if xi > xj (see Definition 1),
the ordinal pattern symbolisation function

sym∗ : Xm → N0,

(x1, x2, . . . , xm) 7→
m−1

∑
i=1

(
m!

(m− i + 1)!

m

∑
j=i+1

[
xi > xj

]) (9)

follows immediately. This function maps any m-tuple of values (x1, x2, . . . , xm) ∈ Xm onto a distinct
numerical representation of its ordinal pattern. As discussed in the beginning of the current section,
this is highly advantageous in computational terms. Still, a minor drawback of Equation (9) is that
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factorial functions and integer division operations are involved, which are computationally expensive
in general. As suggested in [21], this can be resolved by computing the weights

wi =
m!

(m− i + 1)!
for i ∈ {1, 2, . . . , m− 1}

only once in advance, and looking them up during the actual encoding. Alternatively, the encoding
given by Equation (8) can be modified, as will be discussed in the following.

3.2. The Lehmer Code

Named in appreciation of Derrick Lehmer, the Lehmer code assigns a unique non-negative integer
n ∈ {0, 1, . . . , m! − 1} to each permutation of a set of m elements. The mathematical foundations
of this problem had already been studied in the 19th century [32], and Lehmer incorporated them
into his work on algorithms for combinatorial computing, published as Teaching Combinatorial Tricks
to a Computer [33] in 1960. Lehmer’s approach towards enumerating permutations is conceptually
similar to the solution that Keller and colleagues [17] proposed for the encoding of ordinal patterns.
Given some permutation (λ1, λ2, . . . , λm), which could be the ranks of an ordinal pattern Πi ∈ Ωm

without loss of generality, its corresponding set of right inversion counts (r1, r2, . . . , rm) in terms of
Equation (7) are obtained. Then, and by contrast with Equation (8), a unique integer representation of
that permutation is calculated according to

n =
m

∑
i=1

ri (m− i)! such that n ∈ {0, 1, . . . , m!− 1}. (10)

In other words, the tuple of right inversion counts (r1, r2, . . . , rm) is interpreted as an m-digit factoradic
numeral of the form “r1r2 · · · rm” [33]. In analogy with Section 3.1, but utilising the Lehmer code
instead, the ordinal pattern of an m-tuple (x1, x2, . . . , xm) ∈ Xm can therefore be extracted and encoded
by computing the function

sym: Xm → N0,

(x1, x2, . . . , xm) 7→
m−1

∑
i=1

(
(m− i)!

m

∑
j=i+1

[
xi > xj

])
.

(11)

With a view to software implementation, Equation (11) still provides opportunity for optimisation.
In its current form, the factorial (m− i)! needs to be re-evaluated for each iteration of the outer sum.
In general, calculating a (non-trivial) factorial requires a sequence of multiplications, but, due to the
specific structure of Equation (11), these multiplications are avoidable here in their entirety. Taking
advantage of the fundamental recurrence relation k! = k(k− 1)! , the value of sym(x1, x2, . . . , xm) can
be computed recursively by initialising n0 = 0, and successively iterating

ni = (m− i)(ni−1 + ri) with ri =
m

∑
j=i+1

[
xi > xj

]
. (12)

The recursion terminates after iteration i = m− 1, and yields nm−1 = sym(x1, x2, . . . , xm) as the result.
The arithmetical equivalence with Equation (11) can be proven by mathematical induction, and is also
evident from the following example.
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Example 1. Let (r1, r2, . . . , r6) ∈ R6 denote the right inversion counts to the ordinal pattern of a given tuple
(x1, x2, . . . , x6). According to Equation (11), the numerical representation of this ordinal pattern of order m = 6
is obtained by computing

sym(x1, x2, . . . , x6) = 5× 4× 3× 2× r1

+ 4× 3× 2× r2

+ 3× 2× r3

+ 2× r4

+ r5 .

Iterating the recurrence relation given by Equation (12) for the same right inversion counts (r1, r2, . . . , r6) and
the same pattern order m = 6, we obtain

n5 = sym(x1, x2, . . . , x6) = (((r1 × 5 + r2)× 4 + r3)× 3 + r4)× 2 + r5.

Not only are both solutions arithmetically identical, but the recursive approach also requires considerably fewer
multiplications—quod erat illustrandum.

The recursion given by Equation (12) thus enables a remarkably simple algorithm for extracting
and storing ordinal patterns in computer memory, as is demonstrated by the pseudocode of the
following Algorithm 1.

Algorithm 1. Given an m-tuple (x1, x2, . . . , xm) ∈ Xm of elements from a totally ordered set X, a distinct
numerical representation n ∈ {0, 1, . . . , m!− 1} of its ordinal pattern of order m can be obtained as outlined
by the following pseudocode.

1 function encode_pattern
2 input
3 (x1, x2, . . . , xm) ∈ Xm with m ∈ {2, 3, . . .}
4 output
5 n ∈ {0, 1, . . . , m!− 1}
6 begin
7 n← 0
8 for i← 1 to m− 1 do
9 for j← i + 1 to m do

10 n← n +
[
xi > xj

]
11 end
12 n← (m− i) n
13 end
14 return n
15 end.

The computational complexity of Algorithm 1 in dependence of the pattern order m is O(m2),
as is further substantiated in Section 5.1.

Compared to the encoding scheme originally proposed in [17] and summarised in Section 3.1,
adopting the Lehmer code allows for algorithms that can be implemented without relying on either
factorial functions and division operations, or on lookup tables. Moreover, the encoding resulting
from Equation (11) provides for an intuitive enumeration of ordinal patterns: figuratively speaking,
the Lehmer code preserves the lexicographic sorting order of the permutations it encodes [33].
When applied to ordinal patterns, their tuples of ranks, tuples of inversion counts, as well as the
resulting numerical codes are all consistently sorted. The reader may find Example 2 instructive in this
respect.
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Example 2. Consider the m! = 24 ordinal patterns (λ1, λ2, λ3, λ4) ∈ Ω4 of order m = 4. Each of them has a
distinct tuple of right inversion counts (r1, r2, r3), and its corresponding numerical representation n is obtained
by interpreting (r1, r2, r3) as the digits of a factoradic numeral, in particular, n = 6r1 + 2r2 + r3. As shown
in Table 1, the tuples of ranks, tuples of inversion counts, and numerical codes all obey the same lexicographic
sorting order.

Table 1. The ranks (λ1, λ2, λ3, λ4), right inversion counts (r1, r2, r3), and numerical representations n
for the m! = 24 ordinal patterns of order m = 4.

Ranks Inversions Code Ranks Inversions Code
λ1 λ2 λ3 λ4 r1 r2 r3 n λ1 λ2 λ3 λ4 r1 r2 r3 n
1 2 3 4 0 0 0 0 3 1 2 4 2 0 0 12
1 2 4 3 0 0 1 1 3 1 4 2 2 0 1 13
1 3 2 4 0 1 0 2 3 2 1 4 2 1 0 14
1 3 4 2 0 1 1 3 3 2 4 1 2 1 1 15
1 4 2 3 0 2 0 4 3 4 1 2 2 2 0 16
1 4 3 2 0 2 1 5 3 4 2 1 2 2 1 17
2 1 3 4 1 0 0 6 4 1 2 3 3 0 0 18
2 1 4 3 1 0 1 7 4 1 3 2 3 0 1 19
2 3 1 4 1 1 0 8 4 2 1 3 3 1 0 20
2 3 4 1 1 1 1 9 4 2 3 1 3 1 1 21
2 4 1 3 1 2 0 10 4 3 1 2 3 2 0 22
2 4 3 1 1 2 1 11 4 3 2 1 3 2 1 23

4. Encoding Time Series Data

Any form of ordinal pattern-based time series analysis requires that sequences of elements from a
totally ordered set X (usually, the real numbers R) be converted into sequences of ordinal patterns.
Given a finite time series {xt}, with xt ∈ X and t ∈ {1, 2, . . . , N}, we select a pattern order m > 2 and
time lag τ > 1, and subsequently obtain {Πt}, where

Πt = op(xt, xt+τ , . . . , xt+(m−1)τ) for all t ∈ {1, 2, . . . , N − (m− 1)τ}. (13)

In doing so, we assign to each ordinal pattern Πt the time index t of the leftmost of its underlying
tuple elements. Consequently, the last (m− 1)τ indices of the time series {xt} do not reference any
ordinal pattern, and the resulting pattern sequence {Πt} thus comprises of N − (m− 1)τ elements.
To perform this transformation in software, the encoding approach described in the previous section
can directly be utilised.

4.1. The Straightforward Approach (Plain Algorithm)

Algorithm 1 maps any given m-tuple (x1, x2, . . . , xm) ∈ Xm of elements from a totally ordered
set X onto a non-negative integer n ∈ {0, 1, . . . , m!− 1}, such that the value

n = enc(op(x1, x2, . . . , xm)) = sym(x1, x2, . . . , xm)

uniquely identifies the ordinal pattern op(x1, x2, . . . , xm) = (λ1, λ2, . . . , λm) ∈ Ωm of the m-tuple.
This encoding strategy is easily expanded, so as to turn an entire time series {xt} into numerical
representations {nt} of its ordinal pattern sequence {Πt}, whereby

nt = enc(Πt) = sym(xt, xt+τ , . . . , xt+(m−1)τ) for all t ∈ {1, 2, . . . , N − (m− 1)τ}. (14)

The extension of Algorithm 1 merely requires an additional loop and proper indexing. It results in the
following algorithm.
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In analogy with Algorithm 1, the computational complexity of Algorithm 2 is O(m2) with regard
to the pattern order m. It is O(N) in dependence of the sequence length N, and O(1) for any choice of
the time lag τ (also see Sections 5.1 and 5.8).

Algorithm 2. Plain Algorithm. To transform a finite time series {xt} of elements from a totally ordered set
X into a sequence of non-negative integers {nt}, select a pattern order m > 2 and a time lag τ > 1, and
proceed according to the pseudocode below. The value nt ∈ {0, 1, . . . , m!− 1} then uniquely identifies the
ordinal pattern Πt of order m, which is extracted from the time series {xt} at time index t using the time
lag τ. The function encode_pattern is specified in Algorithm 1.

1 function encode_sequence
2 input
3 m ∈ N with m > 2
4 τ ∈ N with τ > 1
5 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
6 output
7 {nt} with nt ∈ {0, 1, . . . , m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
8 begin
9 for t← 1 to N − (m− 1)τ do

10 nt ← encode_pattern(xt, xt+τ , . . . , xt+(m−1)τ)

11 end
12 end.

4.2. An Optimised Encoding Strategy (Overlap Algorithm)

Algorithm 2 still contains some redundant operations, and does therefore not scale too well with
the pattern order m. This aspect can be targeted by further optimisation. Bandt and Pompe had already
hinted at this possibility in their seminal publication on ordinal patterns, suggesting there was “an
extremely fast algorithm where each pair of values need to be compared only once” [1]. Keller, Sinn,
and Emonds further elaborated on this matter, and demonstrated that the overlap property described
in Section 2.2 can be exploited computationally [17]. The algorithm described in the following builds
upon the same fundamental idea, but additionally uses the recursive Lehmer encoding proposed in
Section 3.2.

Written out in its entirety, Algorithm 2 converts a time series {xt}, indexed by t ∈ {1, 2, . . . , N},
into a sequence of non-negative integers {nt}, such that

nt =
m−1

∑
i=1

(
(m− i)!

m

∑
j=i+1

[
xt+(i−1)τ > xt+(j−1)τ

])
for all t ∈ {1, 2, . . . , N − (m− 1)τ}. (15)

As derived in Section 3.2, each evaluation of the inner sum of Equation (15) yields one of the m− 1
non-trivial right inversion counts to the ordinal pattern Πt. The encoding can hence be reformulated
in terms of

nt =
m−1

∑
i=1

(m− i)!× rt, i where rt, i =
m

∑
j=i+1

[
xt+(i−1)τ > xt+(j−1)τ

]
. (16)

Now recall from Section 2.3 that any two ordinal patterns Πt−τ and Πt at a distance equalling the time
lag τ share all but one of their underlying time series values. Consequently, the inversion counts to the
patterns Πt−τ and Πt are strongly interrelated as well. In particular, it is easily confirmed that

nt =
m−1

∑
i=1

(m− i)!× rt, i where rt, i =
[
xt+(i−1)τ > xt+(m−1)τ

]
+ rt−τ, i+1. (17)
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This recurrence relation is highly advantageous in computational terms. Let us assume that, in the
overall process of encoding a time series {xt}, the inversion counts to the pattern Πt−τ have just been
determined. If those are kept in memory for τ more iterations, then encoding the pattern Πt merely
requires m− 1 additional comparisons. In turn, each such comparison yields one of the inversion
counts to the pattern Πt, which can then be reused to efficiently encode Πt+τ another τ time steps
ahead. Merely the first τ ordinal patterns {Π1, Π2, . . . , Πτ} require additional consideration because
obviously, none of them has a neighbour located τ time steps earlier. While {Π1−τ , Π2−τ , . . . , Π0}
are hence undefined, all but the leftmost of their respective inversion counts still formally exist.
More precisely,

Rinit =


r1−τ, 2 r1−τ, 3 · · · r1−τ, m−1

r2−τ, 2 r2−τ, 3 · · · r2−τ, m−1
...

...
. . .

...
r0, 2 r0, 3 · · · r0, m−1

 (18)

are all well-defined, and suffice to calculate {n1, n2, . . . , nτ} in terms of Equation (17). The procedure
of encoding a time series thus comprises of two stages: (1) obtain the initial inversion counts Rinit, then
(2) iterate Equation (17) for all t, starting from t = 1. Each such iteration yields an encoded pattern nt,
as well as a corresponding set of inversion counts. The latter are temporarily buffered in memory,
reused τ iterations later, and then become obsolete. The entire process is summarised in Algorithm 3.

Algorithm 3. Overlap Algorithm. To transform a finite time series {xt} of elements xt ∈ X into a sequence
of non-negative integers {nt} representing the ordinal patterns {Πt} of the time series, select a pattern
order m > 2 and time lag τ > 1. Then, proceed as follows.

1 function encode_sequence
2 input
3 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
4 m ∈ N with m > 2
5 τ ∈ N with τ > 1
6 output
7 {nt} with nt ∈ {0, 1, . . . , m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
8 locals
9 {ri, j} with i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , m}

10 begin
11 ri, j ← 0 for all i ∈ {1, 2, . . . , τ} and all j ∈ {1, 2, . . . , m}
12

13 /* Obtain initial right inversion counts Rinit */
14 for t← 1 to τ do
15 for i← 1 to m− 2 do
16 for j← i + 1 to m− 1 do
17 rt, i+1 ← rt, i+1 +

[
xt+(i−1)τ > xt+(j−1)τ

]
18 end
19 end
20 end
21

22 /* Extract and encode ordinal patterns */
23 i← 1
24 for t← 1 to N − (m− 1)τ do
25 for j← 1 to m− 1 do
26 ri, j ← ri, j+1 +

[
xt+(j−1)τ > xt+(m−1)τ

]
27 nt ← (m− j)(nt + ri, j)
28 end
29 i← (i mod τ) + 1 /* Increment circular buffer index */
30 end
31 end.
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Notice that we favour readability over efficiency in the pseudocode of Algorithm 3. Actually, a
smaller buffer {ri, j}with i ∈ {1, . . . , τ} and j ∈ {2, . . . , m− 1}will suffice for an actual implementation
because the recurrence relation does not depend on ri, 1 at all, whereas ri, m = 0 always. In addition,
the modulo operation used for circular buffer indexing may impose a considerable run-time penalty.
Both aspects are addressed in the reference implementation of Algorithm 3, which is provided by the
ordpat_encode_overlap function in the supplementary file ordpat.c.

Independent of such details of implementation, and let aside the initialisation of Rinit,
the asymptotic computational complexity of Algorithm 3 is O(N) for the sequence length N, and a
constant O(1) for the time lag parameter τ. By contrast with Algorithm 2, however, Algorithm 3 offers
a complexity of O(m) with regard to the pattern order m (see Section 5.1 for details).

4.3. The Unakafova–Keller Approach (Lookup Algorithm)

Algorithm 3 is based on the fact that two ordinal patterns Πt−τ and Πt overlap in all but one of
their underlying time series values. Utilising the same interrelation, Valentina Unakafova and Karsten
Keller proposed [21] a different encoding strategy that (by contrast with our Algorithm 3, as well
as their own previous work [17]) does not depend on buffering inversion counts. The approach is
compellingly simple: as described in Section 2.3, an ordinal pattern Πt−τ of order m can only have
m different succeeding patterns Πt at τ time steps distance. Consequently, if the ordinal pattern
Πt−τ = op(xt−τ , xt, . . . , xt+(m−2)τ) is known in advance, then the value of the expression

λt, m = m−
m−1

∑
i=1

[
xt+(i−1)τ > xt+(m−1)τ

]
(19)

uniquely determines the pattern Πt = op(xt, xt+τ , . . . , xt+(m−1)τ). In connection with Definition 1, the
decisive variable λt, m ∈ {1, 2, . . . , m} is easily identified as the rightmost rank of the ordinal pattern
Πt = (λt, 1, λt, 2, . . . , λt, m). As is visualised in Figure 2, each value that λt, m can take on represents one
of the m different ordinal patterns Πt that may possibly follow after a particular pattern Πt−τ .

λt, 4 = 1

λt, 4 = 2

λt, 4 = 3

λt, 4 = 4

xt−τ xt xt+τ xt+2τ xt+3τ

xt−τ xt xt+τ xt+2τ xt+3τ

Πt−τ

Πt

Figure 2. Assume pattern order m = 4, without loss of generality. For any fixed ordinal pattern Πt−τ ,
its succeeding pattern Πt = (λt, 1, λt, 2, λt, 3, λt, 4) at τ time steps distance has merely one degree of
freedom: its rightmost rank λt, 4.

These considerations essentially imply that a surjective map (Πt−τ , λt, m) 7→ Πt exists for any
pattern order m and time lag τ. Likewise, there has to be a well-defined surjection

N0 ×N→ N0,

(nt−τ , λt, m) 7→ nt
(20)

for ordinal patterns represented numerically. Note that the particular encoding function enc : Ωm → N0

in terms of Equation (6) does not make a difference in this regard—as long as it is bijective, such that
each ordinal pattern is assigned a unique numerical label. In their original publication [21], Unakafova
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and Keller used the encoding given by Equation (9). To implement Equation (20), the authors rely on a
lookup table holding m!×m entries, in particular

Lm =

 L1, 1 · · · L1, m
...

. . .
...

Lm!, 1 · · · Lm!, m

 such that nt = Li, j for i = nt−τ + 1 and j = λt, n. (21)

Encoding a time series {xt}, with t ∈ {1, 2, . . . , N}, is then a matter of computing the numerical codes
{n1, n2, . . . , nτ} for the first τ patterns by direct evaluation, and subsequently iterating Equation (20)
to obtain the remaining symbols {nτ+1, nτ+2, . . . , nN−(m−1)τ}. Algorithm 4 describes the process in
full detail.

Algorithm 4. Lookup Algorithm. To transform a finite time series {xt} into a sequence of non-negative
integers {nt} representing its ordinal patterns, select a pattern order m > 2 and time lag τ > 1. In addition,
prepare a lookup table {Li, j} according to Equation (21) that matches the encode_pattern function to be
used. This can be the sym-function given by Equation (11), the sym∗-function of Equation (9), or any other
bijective map yielding nt ∈ {0, 1, . . . , m!− 1}. Then, proceed as follows.

1 function encode_sequence
2 input
3 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
4 m ∈ N with m > 2
5 τ ∈ N with τ > 1
6 output
7 {nt} with nt ∈ {0, 1, . . . , m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
8 locals
9 {Li, j} with Li, j ∈ {0, 1, . . . , m!− 1} and i ∈ {1, 2, . . . , m!} and j ∈ {1, 2, . . . , m}

10 begin
11 {Li, j} ← load_lookup_table(m)
12

13 /* Encode first τ ordinal patterns */
14 for t← 1 to τ do
15 nt ← encode_pattern(xt, xt+τ , . . . , xt+(m−1)τ)

16 end
17

18 /* Encode all remaining patterns */
19 for t← τ + 1 to N − (m− 1)τ do
24 row ← nt−τ + 1
20 col ← 1
21 for i← 1 to m− 1 do
22 col ← col +

[
xt+(i−1)τ > xt+(m−1)τ

]
23 end
25 nt ← Lrow, col
26 end
27 end.

In terms of computational complexity, the asymptotic behaviour of Algorithm 4 is identical to
that of Algorithm 3. Putting aside the initialisation steps, its computational complexity is O(N) for the
sequence length N, O(m) for the pattern order m, and O(1) with regard to the time lag τ. In practice,
however, the run-time properties of the two algorithms can differ substantially. On the one hand,
Algorithm 4 requires significantly fewer computational operations per ordinal pattern (see Table 2),
as is the very purpose of using a lookup table. On the other hand, this reduction in computational
complexity does come at a price—as will be further discussed in Section 5.7.
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5. Implementation and Run-Time Performance

Three encoding algorithms of varying complexity have been presented in the previous section.
Those will henceforth also be referred to by the plain algorithm (Algorithm 2), the overlap algorithm
(Algorithm 3), and the lookup algorithm (Algorithm 4). Each algorithm comes with strengths and
weaknesses, and raises different implementational challenges. Thus, the following section is intended
to guide the reader in selecting and implementing the most appropriate algorithm for a particular
execution platform and task. In particular, we will consider GNU Octave [34], Matlab (The Mathworks,
Natick, MA, USA), NumPy/Python [35], and the C programming language.

5.1. Theoretical Computational Complexities

The computational complexities of the plain, overlap, and lookup algorithm (Algorithms 2–4)
differ substantially in dependence of the pattern order m. This can be derived from the basic operation
counts provided in Table 2.

Table 2. Number of operations required to encode a single ordinal pattern of order m, using either
the plain algorithm (Algorithm 2), the overlap algorithm (Algorithm 3), or the lookup algorithm
(Algorithm 4). Early initialisation operations have not been considered.

Algorithm Add Multiply Compare Increment Assign Modulo Total

plain
m2 + 3m− 2

2
m− 1 m2 − 1

m2 + m− 2
2

m2 + 3m
2

0
5m2 + 9m− 8

2

overlap 9m− 8 6m− 6 2m− 2 m 2m 1 20m− 15

lookup [21] 6m− 3 2m− 1 2m− 2 m− 1 m + 3 0 12m− 4

Following from the total operation counts given in Table 2, the plain algorithm has an asymptotic
computational complexity of O(m2). By contrast, the overlap and lookup algorithm both scale linearly
with the pattern order, that is, their complexity is O(m). However, the lookup algorithm avoids
many of the computations that the overlap algorithm has to perform. Therefore, the theoretical
computational complexity of the three algorithms decreases from the plain algorithm to the overlap
algorithm, and again from the overlap algorithm to the lookup algorithm.

In practice, however, the way that an abstract algorithm is translated into actual software can make
a big difference for its run-time efficiency. Taking into account application-dependent requirements
and platform-specific peculiarities is essential in this regard. Therefore, the rest of this section focusses
on those practical aspects of implementing the three encoding algorithms.

5.2. Memory Alignment

The algorithms described in Section 4 represent the ordinal patterns Ωm = {Π1, Π2, . . . , Πm!}
by distinct integers {0, 1, . . . , m!− 1}, thereby providing a bijective map Πi 7→ i− 1 as stipulated by
the enc-function of Equation (6). The resulting symbols are highly memory-efficient, theoretically
requiring a mere log2 m! bit per pattern. Note that log2 m! also is the entropy of a uniform distribution
of m! elements, and, thus, the maximum entropy an ordinal pattern distribution of order m can possibly
attain. Putting aside data compression techniques, no other encoding can be more compact (as is
assured by Shannon’s source coding theorem [2,3]).

In practice, it makes sense to align ordinal patterns to byte boundaries, which can be accomplished
by dedicating an integer power of 2 (but at least 8) bits to each ordinal pattern, such that the resulting
bit width per pattern is

wb = 2k > log2 m! where k ∈ {3, 4, . . . }. (22)
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Any digital processor equipped with 64-bit integer registers will therefore handle ordinal patterns
of order m 6 20 natively—that is, at hardware efficiency. For reference, Table 3 lists the maximum
pattern orders that fit the primitive data types available on standard computer systems.

Table 3. Maximum pattern orders representable by standard integer and floating point data types.

Data Type Significant Bits Maximum Order
wb m

uint8 8 5
uint16 16 8
uint32 32 12
uint64 64 20

binary32 (single) 24 10
binary64 (double) 53 18

Although ordinal patterns and their numerical representations are intrinsically integral, Table 3
also references two IEEE 754 floating point formats [36,37]. Those were included because computation
environments like NumPy/Python, GNU Octave, and Matlab by default use the binary64 floating
point data format. Previously known as double [36], this format features an effective mantissa length of
53 bit [37], and can therefore represent a total of 253 distinct non-negative values at integer precision [38].
If this limit is exceeded, mantissa truncation will silently cause unexpected results (like the erroneous
253 = 253 + 1), and distinct patterns will falsely be labelled as identical. When working with patterns of
order m > 18 in such computation environments, this bug-inviting peculiarity must be kept in mind.

Independent of the software platform used, ordinal patterns of order m > 20 require additional
thought because current general-purpose processors do not provide native support for integers wider
than 64 bits. Therefore, each pattern of order m > 20 has to be stored as an array of integers, and all
arithmetical and logical operations need to be emulated in software. Those matters will be further
discussed in Section 5.6.

5.3. Run-Time Test Environment

All performance testing was done on a conventional x86-64 laptop computer, equipped with
an Intel Core i7-5600U processor (Intel Corporation, Santa Clara, CA, USA) and 8 GB of random
access memory (RAM). An Arch Linux distribution of the GNU/Linux operating system was used,
running the default kernel (linux, 5.2.arch2-1) and C standard library (glibc, 2.29-3). Pre-built binary
packages of GNU Octave (octave, 5.1.0-4), Python 3 (python, 3.7.3-1), NumPy (python-numpy, 1.16.4-1),
and FFTW (fftw, 3.3.8-1), as well as their respective dependencies were installed from the official
repositories of the distributor. The Linux version of the Matlab 2018b release was used. All source
code written in the C programming language was compiled using the GNU Compiler Collection
(gcc, 8.3.0-2). The parameters -march=x86-64 -mtune=generic -O3 were selected to allow for heavy
compiler optimisation, while not relying on any model-specific features of the targeted processor.

5.4. Test Signal Generation

Based on the fact that ordinal patterns of any order are uniformly distributed in white noise [18],
sequences of independent and uniformly distributed pseudo-random numbers were used to test the
performance of the algorithms. This choice ascertains that all ordinal pattern transitions (see Figure 1)
appear at the same relative frequency, such that each possible path of execution is taken equally often.
In addition, to test for a possible dependency between the run-time of the algorithms and the ordinal
complexity of the input signal, low-pass filtered (and thus, self-correlated) noise of various bandwidths
was incorporated into the test procedure where appropriate. Filtering was performed by zeroing bins
in the Discrete Fourier Transform (DFT) of the signal.
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To maintain reproducible test signals across all software environments, the xorshift random
number generator by George Marsaglia [39] was used with a word size of 32 bits and the standard
shift parameters (13, 17, 5). In this configuration, xorshifting produces a pseudo-random sequence of
period length 232 − 1, and elements drawn from {1, 2, . . . , 232 − 1}. Normalisation (as in zero-mean
or unit-variance) was omitted, considering that ordinal patterns are invariant to order-preserving
transformations anyway [1]. However, the integer-valued test signals were stored in binary64 floating
point representation, as this is the expected input format in ordinal pattern analysis.

5.5. The Plain Algorithm (Algorithm 2)

The plain algorithm is the simplest among the three encoding strategies considered in this
manuscript. As it makes no effort to avoid redundant operations, it may at first glance seem generally
inferior to the more sophisticated overlap and lookup algorithms (Algorithms 3 and 4). Quite the
contrary, the plain algorithm may actually be preferable when numerical scripting languages like
GNU Octave, Matlab or NumPy/Python shall be used to encode ordinal patterns. The reason is
that, by contrast with the recursive Algorithms 3 and 4, the plain algorithm allows for a vectorised
implementation that avoids loops.

Compared to pre-compiled languages like C, scripting languages are relatively slow at iterating
loops. This clearly manifests if we implement the plain algorithm in a straightforward manner, which
then requires three levels of nested loops. See the encode_plain functions in the supplementary
files encode_plain.m and ordpat.py, as well as the ordpat_encode_plain function in ordpat.c,
respectively. As shown in Table 4, the run-time efficiency varies by orders of magnitude across
different execution environments.

Table 4. Computation time (median of 20 trials) for turning 3.6× 105 samples of uniform white noise
into a sequence of ordinal patterns of order m, using the time lag τ = 1. Straightforward iterative
implementations of Algorithm 2 were tested in various computation environments.

Order Computation Time (ms)

m GNU Octave NumPy/Python Matlab C

2 7.9× 103 2.4× 103 1.1× 101 7.8× 10−1

3 2.0× 104 5.7× 103 2.2× 101 1.6× 100

4 3.6× 104 1.0× 104 3.5× 101 2.8× 100

5 5.6× 104 1.5× 104 5.5× 101 4.3× 100

6 8.1× 104 2.1× 104 8.5× 101 6.0× 100

7 1.1× 105 2.9× 104 1.2× 102 8.0× 100

8 1.4× 105 3.7× 104 1.6× 102 1.0× 101

9 1.8× 105 4.6× 104 2.0× 102 1.3× 101

Those differences are due to the iterative nature of the plain algorithm, which forces the Octave
and Python language interpreters to translate the same sequence of instructions over and over again,
for each and every loop iteration. Consistently, the Matlab just-in-time compiler performs better,
but is in turn outperformed by the machine code of the fully-optimising C compiler. To mitigate the
performance penalty inherent to numerical scripting languages, a programming technique known as
vectorisation can be applied in many cases. In a nutshell, vectorisation is about avoiding element-wise
operations in favour of high-level instructions acting on blocks of data, like vectors (hence the name),
matrices, and tensors. Vectorising the plain algorithm is a bit tricky, but the performance gain is well
worth the effort. The approach is best explained by means of a practical example. We will be using
Matlab code here, but the concepts translate to other programming environments as well. Recall from
Equation (11) that the map

(x1, x2, . . . , xm) 7→
m−1

∑
i=1

(
(m− i)!

m

∑
j=i+1

[
xi > xj

])
(23)
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is the basis of the plain algorithm, and yields the ordinal pattern of the m-tuple (x1, x2, . . . , xm) in its
numerical representation. Now consider that, for any fixed pattern order m, the result of this function
can be rewritten without relying on summation signs. Assuming the order m = 5, for example,
the mathematical expression

24×
([

x1 > x2
]
+
[
x1 > x3

]
+
[
x1 > x4

]
+
[
x1 > x5

])
+ 6×

( [
x2 > x3

]
+
[
x2 > x4

]
+
[
x2 > x5

])
+ 2×

( [
x3 > x4

]
+
[
x3 > x5

])
+ 1×

( [
x4 > x5

])
is admittedly more tedious, but arithmetically equivalent to the compact formulation in Equation (23).
The point here is that this expression can directly be translated into a single Matlab instruction, namely

24 * ( (x1 > x2) + (x1 > x3) + (x1 > x4) + (x1 > x5) ) ...
+ 6 * ( (x2 > x3) + (x2 > x4) + (x2 > x5) ) ...
+ 2 * ( (x3 > x4) + (x3 > x5) ) ...
+ 1 * ( (x4 > x5) );

Let us assume that the time series to be analysed is represented by a N × 1 vector input on the Matlab
workspace. Obviously, if we initialise the variables

x1 = input(1); x2 = input(2); x3 = input(3); x4 = input(4); x5 = input(5);

and call the above instruction, we obtain the ordinal pattern of the vector input(1:5) in its numerical
representation. This is an optimisation technique called loop unrolling. Furthermore, consider that,
in numerical scripting languages, most basic operations are not limited to scalar values, but can in
principle handle arrays of arbitrary dimension as their operands. If we thus set x1, . . . , x5 to the
delay vectors

x1 = input(1:end-4);
x2 = input(2:end-3);
x3 = input(3:end-2);
x4 = input(4:end-1);
x5 = input(5:end-0);

instead, we can obtain from input its full sequence of ordinal patterns of order m = 5 and lag τ = 1
by calling a single Matlab instruction. Arbitrary time lags τ > 1 can in turn be realised by using the
generalised delay vectors

x1 = input(1 + 0*lag : end - 4*lag);
x2 = input(1 + 1*lag : end - 3*lag);
x3 = input(1 + 2*lag : end - 2*lag);
x4 = input(1 + 3*lag : end - 1*lag);
x5 = input(1 + 4*lag : end - 0*lag);

in conjunction with the exact same Matlab expression. As a side note, the operation is also applicable
to multidimensional data structures like matrices and tensors, such that multivariate time series can as
well be encoded by means of a single invocation.

The downside of this approach is that each pattern order m requires a dedicated piece of code.
When working with low pattern orders, implementation by hand may be acceptable because it
still yields comprehensible code—as is demonstrated by the symbolise.m function provided in
the supplements of [40]. For higher pattern orders, though, another convenient feature offered
by scripting languages should rather be utilised. GNU Octave, Matlab and NumPy/Python all support
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self-modifying code, which is source code that can dynamically modify its own sequence of instructions
at run-time. Supporting languages provide built-in functions like eval or exec for this purpose, which
take a string as their input argument and hand it over to the execution engine for evaluation. Such
language facilities can neatly be utilised to obtain an efficient, universal implementation of the plain
algorithm: we just have to write a function that dynamically creates the appropriate vectorised code for
a given pattern order m and time lag τ, then executes it. Consider the functions encode_vectorised
in the supplementary files encode_vectorised.m and ordpat.py for reference. As can be seen from
Table 5, the optimisation yields a tremendous increase in run-time efficiency.

Table 5. Computation time (median of 20 trials) for turning 3.6× 105 samples of uniform white noise
into a sequence of ordinal patterns of order m, using the time lag τ = 1. Vectorised implementations
of Algorithm 2 were tested in various computation environments. The results of Table 4 (relating to
iterative implementations of Algorithm 2) were replicated for ease of comparison.

Order Computation Time (ms)

m GNU Octave NumPy/Python Matlab C

loops vectors loops vectors loops vectors loops

2 7.9× 103 1.5× 100 2.4× 103 7.9× 10−1 1.1× 101 3.8× 100 7.8× 10−1

3 2.0× 104 6.5× 100 5.7× 103 1.3× 100 2.2× 101 9.0× 100 1.6× 100

4 3.6× 104 1.4× 101 1.0× 104 2.0× 100 3.5× 101 1.2× 101 2.8× 100

5 5.6× 104 2.0× 101 1.5× 104 2.9× 100 5.5× 101 1.5× 101 4.3× 100

6 8.1× 104 3.3× 101 2.1× 104 5.3× 100 8.5× 101 1.8× 101 6.0× 100

7 1.1× 105 4.2× 101 2.9× 104 6.8× 100 1.2× 102 2.3× 101 8.0× 100

8 1.4× 105 5.7× 101 3.7× 104 8.5× 100 1.6× 102 2.7× 101 1.0× 101

9 1.8× 105 6.8× 101 4.6× 104 1.3× 101 2.0× 102 3.2× 101 1.3× 101

For any of the numerical computation environments considered, using a vectorised version of the
plain algorithm allows for encoding millions of ordinal patterns in milliseconds, without having to rely
on pre-compiled external libraries. Most noteworthy, the vectorised NumPy/Python implementation
actually outperformed the pre-compiled C code in the majority of cases. This hints at the amount of
sophistication put into the development of the free and open source NumPy/Python framework.

5.6. The Overlap Algorithm (Algorithm 3)

The prerequisite for vectorising an algorithm is that all input data be available in advance,
such that they can be passed to the software in parallel. Therefore, and by contrast with the plain
algorithm considered above, recursive solutions like the overlap algorithm (Algorithm 3) cannot be
fully vectorised, but inevitably require some sort of iteration. Due to the reasons given in Section 5.5,
implementing the overlap algorithm in a numerical scripting language thus defeats its very purpose,
which is the efficient evaluation of Equation (15). This can be demonstrated by benchmarking a Matlab
implementation of the overlap algorithm against a vectorised Matlab implementation of the plain
algorithm (Algorithm 2). The code for both implementations is provided in the supplements. While
the overlap algorithm should be superior in theory, a vectorised implementation of the plain algorithm
can actually be faster under practical conditions, as can be observed in Figure 3.
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Figure 3. Computation time (median of 20 trials) for transforming 3.6 × 105 samples of uniform
white noise into a sequence of ordinal patterns of order m. The lag was set to a constant τ = 1,
and the Matlab functions encode_vectorised and encode_overlap from the supplementary files
encode_vectorised.m and encode_overlap.m were used for the simulation.

To benefit from the overlap algorithm in terms of efficiency, it is therefore highly advisable to
use a compiled programming language instead. In the following, we shall exclusively be concerned
with implementing the overlap algorithm in the C programming language. For pattern orders up
to m = 20, the pseudocode of Algorithm 3 can directly be translated into C code (assuming 64-bit
integer support on the targeted platform). Admittedly, a few minor tweaks are still possible, but those
are easily understood from the reference implementation, that is, from the ordpat_encode_overlap
function provided in the supplementary ordpat.c file. Typical run-time performances achieved by
C implementations of the plain versus the overlap algorithm are depicted in Figure 4.
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Figure 4. Computation time (median of 20 trials) for transforming 3.6× 105 samples of uniform white
noise into a sequence of ordinal patterns of order m. The time lag was set to τ = 1, and the C functions
ordpat_encode_plain and ordpat_encode_overlap from the supplementary file ordpat.c were used
for the simulation. The run-time complexity of the plain algorithm is O(m2), whereas the overlap
algorithm generally scales at O(m). For m = 2, there is no advantage over the plain algorithm: all order
relations are then disjoint, such that no overlap can be exploited (see Section 2.3).

The aforementioned limitation to pattern orders m 6 20 results from the relation 20! < 264 < 21!,
which implies that patterns beyond m = 20 cannot be represented by 64-bit integers (see Section 5.2).
Reconsidering the pseudocode of Algorithm 3, it is easily confirmed that the only instruction actually
affected by this limitation is

nt ← (m− j)(nt + ri, j) (24)
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in line 27 of the listing: if the variable nt is limited to 64 bits of accuracy, it will eventually overflow for
pattern orders m > 20. Fortunately, it merely takes

1. an arbitrary-precision integer representation for the variable nt,
2. a function that adds a non-negative integer to nt, and
3. a function that multiplies nt with a non-negative integer

to overcome this upper boundary. Although books have been written about the details of arbitrary
precision arithmetic [41,42], a simplistic approach will fully satisfy the current application. For an
arbitrary pattern of order m, its maximum bit width is known in advance, and amounts to log2 m! bit.
To ease subsequent analyses, it is advisable to keep the width constant across all patterns of a given
order, such that we do not have to be concerned with dynamic memory reallocation. Any operation
applied to an arbitrary-precision variable nt will then result in a fixed-length sequence of machine
instructions, each acting on a fraction of the overall data. To minimise the instruction count, it thus
makes sense to allocate an integer multiple of the machine word size per pattern. On contemporary
hardware platforms, a total of

d = dlog2(m!)/64e (25)

consecutive 64-bit words should be used for each ordinal pattern. Given a sequence of N ordinal
patterns of order m, its resulting in-memory representation is then a 64-bit unsigned integer array
comprised of d× N elements. The addition and multiplication functions required for the evaluation
of Equation (24) should ideally act “in-place” on the array-valued operand nt, while their respective
second operands can safely be restricted to 32-bit unsigned integers. This is based on the conjecture that
m < 232 will not constitute a limitation in practice. The pair of arithmetical functions then boil down to
a straightforward addition-with-carry, as well as a schoolbook multiplication approach. For reference,
see the functions add_mp and multiply_mp, as well as the resulting multi-precision implementation of
the overlap algorithm called ordpat_encode_overlap_mp (all to be found in the supplementary file
ordpat.c). As is to be expected, the multi-precision approach introduces a certain performance penalty
when compared to the standard implementation. This overhead is depicted in Figure 5 for the range of
pattern orders supported by both variants. The run-time behaviour of ordpat_encode_overlap_mp
for a wider range of pattern orders is in turn visualised in Figure 6.
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Figure 5. Computation time (median of 20 trials) for transforming 3.6× 105 samples of uniformly
distributed white noise into a sequence of ordinal patterns of pattern order m, using the constant
time lag τ = 1. The C functions ordpat_encode_overlap and ordpat_encode_overlap_mp from the
supplementary file ordpat.c were used for the simulation. The arbitrary-precision arithmetic used in
the ordpat_encode_overlap_mp function increases the overall run-time complexity, and the timing is
less stable than for strictly hardware-based arithmetic operations.
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Figure 6. Computation time (median of 20 trials) for transforming 3.6× 105 samples of uniformly
distributed white noise into a sequence of ordinal patterns of order m. The time lag was set to τ = 1,
and the C function ordpat_encode_overlap_mp (an arbitrary-precision implementation of the overlap
algorithm) from the supplementary file ordpat.c was used for the simulation. The memory required
per pattern is growing with m in a stepwise manner, increasing by one 64-bit word at each vertical grid
line. The computational cost in turn rises linearly with the number of memory words to be iterated for
each pattern, which shows as distinct jumps in the graph. Independent of that, the run-time complexity
also increases linearly with the pattern order m as such. Both effects combined explain the parabolic
envelope of the curve depicted.

As can be seen from Figures 5 and 6, some of the run-time efficiency of the overlap algorithm
has to be traded off to allow for pattern orders m > 20, which require multi-precision (and thus,
multi-iteration) integer arithmetic. Although the overall computational complexity then scales with
O(m2) again, the absolute run-time of the approach is still acceptable: encoding a one-hour sequence of
data sampled at 100 Hz will take less than one second of processing time for orders as high as m = 100,
for which an inconceivable number of 100! ≈ 9.3× 10157 distinct ordinal patterns do formally exist.

5.7. The Lookup Algorithm (Algorithm 4)

In analogy with the overlap algorithm (Algorithm 3) discussed in Section 5.6, the lookup
algorithm (Algorithm 4) cannot be fully vectorised due to its recursive nature. Regarding run-time
efficiency, numerical scripting languages are thus at a considerable disadvantage compared to compiled
programming languages. We therefore implemented the lookup algorithm in the C programming
language to enable meaningful comparison with Algorithm 3 (see the ordpat_encode_lookup function
provided in the supplementary ordpat.c file). Still, native implementations for numerical scripting
languages are provided in the supplements for the sake of completeness. Those are meant to allow the
reader a quick confirmation of the aforementioned performance drop.

In theory, the lookup algorithm (Algorithm 4) is computationally more efficient than the overlap
algorithm (Algorithm 3). For each pattern to be encoded, the overlap algorithm has to calculate an
integer representation n ∈ {0, 1, . . . , m!− 1} from a tuple of inversion counts (r1, r2, . . . , rm), whereas
the lookup algorithm can fetch the result of this operation from memory. This reduces the number of
computational operations per ordinal pattern (see Table 2).

In practice, however, the overall run-time of a piece of software is not exclusively determined
by the number of operations it performs, but also depends on memory requirements and memory
access patterns. In this regard, and as described in Section 4.3, Algorithm 4 requires a lookup table of
m!×m elements, each holding the numerical representation of a particular ordinal pattern of order m.
Thus, the size of the lookup table increases rapidly with the pattern order: conservatively assuming
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log2 m! bit of storage space per pattern, the table size exceeds a gigabyte for m = 11, and occupies
more than five terabytes of memory for the order m = 14. Therefore, memory access times quickly
become prohibitive as the pattern order increases. For this reason, Unakafova and Keller stated that
the applicability of their algorithm be limited to the pattern orders most commonly used [21], and
provided precomputed lookup tables for m ∈ {2, 3, . . . , 9}. Nevertheless, the principal problem of
memory access times still persists for low pattern orders. In cases where the lookup table is too large to
entirely reside in the processor’s internal cache, the overall run-time efficiency of Algorithm 4 strongly
depends on the nature of the input data. Time series of high ordinal complexity will then result in
frequent cache misses. In other words: if the time series contains many different ordinal patterns, the
processor will frequently have to reload different parts of the lookup table from main memory into
cache, which stalls the processor and thus slows down the encoding process. This circumstance can
be demonstrated by feeding low-pass filtered noise of increasing bandwidth to the lookup algorithm,
which yields results as presented in Figure 7.
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Figure 7. Computation time (median of 20 trials) for transforming 3.6 × 105 samples of uniform
white noise, low-pass filtered to various relative bandwidths bw, into sequences of ordinal patterns
of order m. The time lag was set to a constant τ = 1, and the C functions ordpat_encode_lookup
and ordpat_encode_overlap from the supplementary file ordpat.c were used for the simulation.
The time required for loading lookup tables from mass storage into main memory was not taken into
account. Filtering to bw = 0.0 results in an all-zero input signal, whereas bw = 1.0 results in white
noise. The computation time increases not only with the pattern order m, but also with the ordinal
complexity of the input signal.

It is therefore hard to draw a general conclusion on the run-time efficiency of the lookup algorithm.
Suffice it to say that, for input data of low ordinal complexity, the lookup algorithm may outperform
the overlap algorithm, as can be substantiated by using an all-zero time series as the test signal. In this
idealised case, the algorithm will look up the exact same ordinal pattern again and again, and will
therefore not run into cache contention issues, as is demonstrated in Figure 8.



Entropy 2019, 21, 1023 23 of 27

2 3 4 5 6 7 8 9 10

0

1

2

3

4

pattern order m

co
m

pu
ta

ti
on

ti
m

e
(m

s)
lookup algorithm (gcc8, zeroes)
overlap algorithm (gcc8, zeroes)
overlap algorithm (gcc8, noise)

Figure 8. Computation time (median of 20 trials) for transforming 3.6× 105 samples of data into
sequences of ordinal patterns of order m. Either zeroes or uniform white noise were used as input
data. The time lag was set to a constant τ = 1, and the C functions ordpat_encode_lookup and
ordpat_encode_overlap from the supplementary file ordpat.c were used for the simulation. The time
required for loading lookup tables from mass storage into main memory was not taken into account.
For an all-zero input signal, no cache contention will occur, and the lookup algorithm can outperform
the overlap algorithm as the pattern order m (and thus the computational workload for the overlap
algorithm) increases.

Figure 8 also shows that the performance of the overlap algorithm is independent from the
input data. It remains stable for both extreme cases: sequences of zeroes, as well as white noise.
The benchmark presented in Figure 8 also conveys the impression that the overlap algorithm may
be at an advantage for m ∈ {2, 3, 4} and any type of input signal. A possible explanation could be
that addressing and accessing the lookup table in cache still imposes some constant delay, causing the
processor to stall for the pattern orders with the lowest computational workload. However, considering
that under the above conditions both algorithms achieve a data throughput of more than 1 GB per
second, we did not study this effect any further: loading input data from mass storage will likely take
a lot longer than the actual processing times considered here.

5.8. Sequence Length and Time Lag

In the previous simulations, signals of a fixed N = 3.6× 105 samples length have been processed,
using the constant time lag τ = 1 throughout. A remaining question therefore is how the plain, overlap
and lookup algorithms (Algorithms 2–4) scale with regard to the length N of the input sequence, as well
as the time lag τ under practical conditions. Fortunately, those aspects are qualitatively identical for all
three algorithms, and their run-time behaviour is consistent with theoretical expectation: let aside the
τ additional steps required to initialise the overlap and lookup algorithms, each of the algorithms is
repeated once per ordinal pattern to be encoded, so doubling the amount of input data will coarsely
double the computational effort. In addition, the data to be encoded are iterated in a linear manner.
Therefore, neither inordinate cache misses nor incorrect branch prediction should pose a problem in
theory. Simulation confirms that the run-time of all three algorithms scales linearly with the sequence
length, as can be observed in Figure 9.
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Figure 9. Computation time (median of 20 trials) for transforming N samples of uniform white
noise into a sequence of ordinal patterns, using order m = 5 and time lag τ = 1. The respective
C functions ordpat_encode_plain, ordpat_encode_overlap and ordpat_encode_lookup from the
supplementary file ordpat.c were tested. The time required for loading lookup table data from
mass storage into main memory was not taken into account. The order m = 5 was selected so
as to operate the ordpat_encode_lookup function at its sweet spot with regard to cache utilisation.
In good approximation, the computation time then increases linearly with the sequence length N for
all three algorithms.

The relation between the time lag τ and the overall run-time is even simpler. With respect to
computational effort, the time lag should not make any difference because, for all three algorithms,
the value of τ is predominantly used to calculate memory addresses, where its absolute value cannot
have any influence on the computational workload. On the other hand, τ determines the stride of
the (otherwise linear) memory access pattern. Therefore, increasing the time lag could theoretically
be detrimental to the cache performance. Under test conditions, however, the choice of τ had no
noticeable influence on run-time efficiency: consider the measurements depicted in Figure 10.

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

time lag τ

co
m

pu
ta

ti
on

ti
m

e
(m

s)

plain algorithm (gcc8)
overlap algorithm (gcc8)
lookup algorithm (gcc8)

Figure 10. Computation time (median of 20 trials) for transforming 3.6× 105 samples of uniform
white noise into a sequence of ordinal patterns, using the fixed order m = 5 and increasing
time lags τ. The respective C functions ordpat_encode_plain, ordpat_encode_overlap and
ordpat_encode_lookup from the supplementary file ordpat.c were tested. The time required for
loading lookup table data from mass storage into main memory was not taken into account. The order
m = 5 was selected so as to operate the ordpat_encode_lookup function at its sweet spot with regard
to cache utilisation. The simulations did not reveal any noticeable dependency between the time lag τ

and the computation time.
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6. Conclusions

Three different algorithms were discussed that all analyse the ordinal patterns (see Definition 1)
of a given time series, and encode them in a computationally advantageous way, such that the ordinal
patterns {Π1, Π2, . . . , Πm!} of order m are compactly represented by the set of non-negative integers
{0, 1, . . . , m!− 1} in a one-to-one manner. The theoretical foundations for this encoding were adopted
from the Lehmer code [33], a classical approach in computational combinatorics (see Section 3).

6.1. Picking the Right Tool for the Job

From a theoretical perspective, the plain algorithm (Algorithm 2) has the highest computational
complexity, followed by the overlap algorithm (Algorithm 3), and in turn followed by the lookup
algorithm (Algorithm 4), which is the least computationally complex among the three (see Section 5.1).
In practice, however, the algorithms presented are complementary with regard to their scope of
application, and each can be worth considering.

Being fully vectorisable, the plain algorithm (Algorithm 2) is a particularly good choice for
computational environments like Matlab, GNU Octave or NumPy/Python, and its efficiency should
suffice most standard applications of ordinal pattern analysis (see Table 5).

By contrast, the overlap algorithm (Algorithm 3) constitutes a general-purpose solution, providing
high data throughput over a wide range of pattern orders m, while only requiring a small amount of
extra memory. To achieve suitable run-time performance, it needs to be implemented in a compiled
programming language, though. This is not an actual limitation in practice because virtually any
high-level scripting language can link against pre-compiled library functions. Under this paradigm of
execution, the overlap algorithm clearly outperforms the plain algorithm. Implementing the overlap
algorithm in the C programming language is straightforward, and provides plenty of opportunity for
platform-specific optimisation: as demonstrated in Section 5.6, arbitrary-precision arithmetic can easily
be incorporated to enable pattern orders m > 20, and (although not considered in this manuscript)
single-instruction-multiple-data (SIMD) processing could be employed to further boost the run-time
performance on supporting architectures. With regard to real-time applications running on specialised
embedded systems, it may be worth mentioning that the algorithm does not depend on floating-point
arithmetic, and merely uses a few extra bytes of working memory on top of its input/output buffers.

As with the overlap algorithm, the lookup algorithm (Algorithm 4) should ideally be implemented
in a compiled programming language to maximise its performance. By matter of principle, it has a
narrower scope of application, though. Depending on a lookup table of m!×m elements, its memory
requirements currently limit the algorithm to pattern orders m ∈ {2, 3, . . . , 10}. For the same reason,
its run-time performance varies with the nature of the input data (see Figure 7). When analysing time
series of comparatively low ordinal complexity, the lookup algorithm may outperform the overlap
algorithm. On the other hand, time series of higher ordinal complexity will result in frequent cache
misses, and may lead to a substantial drop in the overall run-time. Thus, if performance is critically
important, both algorithms should be tested for the particular kind of data to be analysed.

6.2. Final Remarks

The general aim of the present article is to improve the run-time performance of known methods
in ordinal pattern analysis, and to foster the development of new applications, so far hindered by
computational limitations. To that end, the publication is supplemented by a cross-platform software
library that supports various programming languages commonly used in scientific computing, namely
NumPy/Python, GNU Octave, Matlab, as well as the C programming language. The library includes
reference implementations for all algorithmic variants considered here, and is provided under the
permissive terms of a 3-clause Berkeley Software Distribution (BSD) license.

Mapping time series onto sequences of ordinal patterns is essential to the methodology, but
constitutes only the first step of ordinal pattern analysis. Other aspects often include the estimation of



Entropy 2019, 21, 1023 26 of 27

(possibly multi-dimensional) probability masses. As soon as the pattern order m increases beyond a
certain point, those can pose a computational challenge in their own right. Thus, a follow-up article
discussing such matters is currently under preparation.

Last but not least, it has to be stated clearly that the present work is exclusively concerned with
computational feasibility as such, and in no way with the actual relevance of high pattern orders.
Most prominently, the part on multi-precision arithmetic in Section 5.6 was written in the hope that it
will be useful to researchers further exploring the possibilities of ordinal pattern analysis. That being
said, the authors do not endorse the extension of well-established analysis methods to unreasonably
high pattern orders: for a fixed sequence length N, not only computational efficiency, but also statistical
validity may vanish quite rapidly as the pattern order m increases.

Supplementary Materials: The supplementary code is available online at http://www.mdpi.com/1099-4300/
21/10/1023/s1, and will be developed further at https://github.com/seb-berger/libordpat.
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