TUM «» PreciBake

Deep Active Learning for Classification Tasks

Technische Universitat Minchen

Department of Mathematics

A

Master's Thesis

Moritz Spielvogel

Supervisor: Prof. Ph.D. Hans-Joachim Bungartz
Advisor: M.Sc. Mathias Sundholm, M.Sc. Ionut-Gabriel Farcas

Submission Date: 03/03,/2020

I hereby declare that this thesis is my own work and that no other sources have been used
except those clearly indicated and referenced.

Miinchen, 03,/03,/2020

Acknowledgements

First of all, I would like to thank Prof. Ph. D. Bungartz for super-
vising me on this thesis.

Then, I would especially like to thank my advisor Mathias Sundholm
from PreciBake GmbH for all his support and the inspiring discussions
I have had with him, for his time and ideas.

Also, I would like to thank my advisor Ionut-Gabriel Farcas from Prof.
Bungartz’ chair for all his help, his different views onto the topic on
Machine Learning and his time to answer all my questions.

Lastly but not less important, I would like to thank my girlfriend
Sarah Dorr and my family for their constant motivation and ongoing
support.

I dedicate the master thesis to my grandfather Horst (1 02.02.20) and
my brother Toni (* 02.02.20).

IT

Abstract

Deep neural networks need in general high amounts of data to gain high performance
on a test set. Depending on the task, labeling such a big data set is very expensive
whereas it is often easy to get huge amounts of unlabeled data. The purpose of this
thesis is to find a much smaller subset on which the network performs similarly well.
Thus, an active learning framework is built, which gradually samples from the given
pool of unlabeled data. For the sampling process, different sampling methods such as
uncertainty sampling, class balance sampling, and representation sampling are compared
and combined in order to find the best method. By using Bayesian neural network, the
uncertainty of the network’s parameters is extracted. Since they are intractable, different
approximation methods are tested. Neural networks tend to overfit on small data sets.
By applying regularization methods throughout the training, this can be reduced. From
all these sampling methods, the combination of uncertainty sampling and class prediction
methods yielded the best results. With the previous sampling method, the framework
yielded a similar performance on the data set provided by PreciBake GmbH, but only
used a tenth of the data for training.

I1I

Zusammenfassung

Tiefe Neuronale Netze (Deep neural networks) brauchen im Allgemeinen grofie Mengen
annotierte Daten, um hochperformante Ergebnisse erzielen zu konnen. Die Idee von Ac-
tive Learning (Aktives Lernen) ist hingegen die Daten, welche annotiert werden sollen,
auszuwahlen, damit das Neuronale Netz auch mit diesem Datensatz eine vergleichbare
Performanz erreicht. Hierfiir wird ein Algorithmus entwickelt, welcher von diesem Daten-
satz schrittweise Teilmengen einer bestimmten Grofile auswahlt, diese annotieren lésst
und das Neuronale Netz auf dem annotierten Teildatensatz trainiert. In dieser Masterar-
beit werden verschiedene Methoden eingefiihrt und miteinander verglichen, welche in jeder
Runde eine Teilmenge des Datensatzes auswahlen. Eine der am vielversprechensten Meth-
oden ist die Unsicherheit des Models tiber die Klassenzugehortigkeit der nicht-annotierten
Daten zu betrachten und Elemente auszuwahlen auf denen das Model am unsichersten
ist. Hierfr sind Bayes Neuronale Netze von Noten. Andere Methoden beachten etwa
die Balanciertheit des Teildatensatzes oder aber dessen Diversitat. Nicht zuletzt werden
andere Neuronale Netze verwendet, um die Elemente des gesamten Datensatzes mit dem
Teildatensatz reprasentieren oder rekonstruieren zu konnen. All diese Methoden werden
evaluiert und die Performanz des Neuronalen Netzes wird mit der zufalligen Auswahl eines
Datensatzes der gleichen Grofle genauso wie mit dem Training auf dem gesamten Daten-
satz verglichen. Auflerdem werden verschiedene Regulierungsmethoden (Regularization)
auf das Training des Netzes angewandt, damit es sich nicht einfach die gelabelten Daten
merken kann. Das Hauptresultat ist, dass sich durch die Kombination der Konstruktion
eines balancierten Teildatensatzes und eines mit Elementen, auf welchem das Neuronale
Netz am unsichersten ist, die wenigsten Daten (zehn Prozent) braucht, um eine genauso
gute Genauigkeit durch das Training auf dem Testdatensatz zu haben, wie durch das
Training auf dem gesamten Datensatz.

IV

TABLE OF CONTENTS

Table of contents

I__Introductionl
(L1 Motivationl.
(1.1.1 Active Learning in Schooll
(1.1.2 From School to Machine Learning|
(1.2 Application - The Company|
(.3 Related Workl
[2° Background|
[2.1 ~Probability Theory| oo
2.2 Artificial Neural Networksl oo
|2.2.l Illllg!!lll(:hi()lﬂ
[2.2.2 Optimization|
[2.2.3 Bayesian Neural Networks|
[2.3 Approximation of Bayesian Neural Network{
2.3.1 Markov Chain Monte Carlol
2.3.2 Variational Inferencelo
[2.3.3 Monte Carlo Dropout and Batch Normalization|
2.3.4 Ensemble Methods
[2.4 Uncertainty ot Bayesian Neural Networks|.
[2.4.1 Uncertainty Decomposition using Predictive Variancel
[2.4.2 Uncertainty Decompostion using Information Theory|
[3 Active Learning|
[3.1 Scenarios of Active Learning|
[3.2 Active Learning Framework| L.
[3.3 Uncertainty Selection Strategies|
[3.3.1 Direct Uncertainty Sampling|.
[3.3.2 Uncertainty by Committee|
[3.4 Class Balancing| o oo
B.41 Class Predictionl. o
[3.4.2 Local-Sensitivity Hashingl

[3.5 Representation and Diversity Selection Strategies|

13
17
19
19
20
25
27
29
30
34

TABLE OF CONTENTS \Y

[3.5.1 k-Center Problem| 46

[3.5.2 Reconstruction Methods 0. 50

(3.6 Combination of different Methods 53
[3.7 Regularization in Active Learning| 54

[4 Experiments| 57
[4.1 Experimental Setup|. oo 58
411 Oraclel 58

1.2 DataSetd 58

[4.1.3 Classification Networkl 59

[4.1.4 ‘lTramning Process| 59

4.2 Pwvaluation of Methods oo oo 61
[4.2.1 t-distributed stochastic embedding| 61

[4.2.2 Minimal number of images per class|. 67

423 Class Balancel 000000 68

M3 Resulls. oo 72
[4.3.1 Direct Uncertainty Sampling|. 73

[4.3.2 Uncertainty by Committee Sampling| 74

M3.3 Class Balancel oo 79

[4.3.4 Representation Sampling| 81

[4.3.5 Reconstruction Error]o 83

[4.3.6 Regularization|. o000 85

[4.3.7 Combinations of Class Prediction and Uncertainty Sampling| 87

4.3.8 Best Results 91

[4.4 Summary| Lo 94
5__Conclusion| 96
[References i
A ppend vi
[A_Neural Network Architectures| vi
[A.l DenseNetlI21l o o o vi

VI TABLE OF CONTENTS

[A.3 DenseNetSmall-32|. ix
[A.4 Variational Autoencoder] ix
[A.5 Convolutional Variational Autoencoder X
(B Training Hyperparameters| xii
[B.1 Augmentation|o Xiv
[C_Data sets| XV
[D_Additional Methods| Xvi
[D.1 Bayes by Backprop| xvi

[D.2 Bayesian Generative Active Learningl Xix

1 Introduction

In this chapter, active learning is introduced. First, in Section [I.1], the problem is stated.
To understand the idea of active learning, it is compared with active learning in schools
in Sections [L.1.1] and [1.1.2] Then, in Section the use case of the company PreciBake
GmbH, with which the thesis was written, is explained. Finally, in Section[I.3] the related
work is presented.

The remainder of this work is organized as follows. In Section [2] the reader is provided
with the notation, which is used in this work. Then, in Section |3| the active learning
framework and the different subset selection methods are presented. In Section [4], these
methods are evaluated and learning curves are presented in order to indicate the success
of each subset selection method.

1.1 Motivation

Deep neural networks often need huge labeled data sets to perform well on unseen data.
However, annotating the whole data set gets time and money consuming, whereas un-
labeled data sets can be generated without much effort. For example, in computational
pathology expert knowledge is needed to be able to annotate the given data. This expert
may need a lot of time to label each data point correctly. Since such experts are expensive
annotating a huge data sets gets also very expensive. Moreover, similar samples may be in
the pool of unlabeled data and are therefore redundant to label. The unlabeled pool may
also be class unbalanced, i.e. there are classes with considerably more samples than in
other classes. To overcome these problems, active learning is introduced. Active learning
is an algorithm (or framework), which chooses the data points on which the given deep
neural network is trained. It aims to use fewer annotated data points while achieving
similar test results (i.e. a similar accuracy on the test set). [58]

In order to understand the idea behind active learning, the application of active learning
in the educational system will be introduced to compare it afterwards with active learning
for Machine Learning.

1.1.1 Active Learning in School

As explained in [13] and [50], there exist passive and active learning as learning techniques
in the educational system.

Passive Learning In passive learning the student or pupil does nothing or little in
order to gain the knowledge. This means that the student is only observing the presented
knowledge. The most common example for passive learning is lecture-style teaching.
Especially when the student does not have any prior knowledge, passive learning may be
more efficient than active learning. Also in the case in which the student has to gain lots
of knowledge passive learning might be the best choice.

2 1 INTRODUCTION

Active Learning Opposing to passive learning the student has to do something in
active learning in order to gain the knowledge. Examples for active learning strategies are
project-based learning, flipped classroom or any form of discussion in the classroom. The
philosophy behind active learning is constructivism, which means that the student uses
its current knowledge in order to build upon it new knowledge and to deepen the already
acquired knowledge. In a project a student may use its current knowledge (combined with
the knowledge of other students) and build upon it new knowledge or deepen the current
knowledge in order to achieve the goal of the project. In the case of flipped-classrooms
students have to prepare the knowledge, which they would otherwise obtain passively by
frontal learning, before class such that they can use this knowledge for other activities
during class. Thus, instead of getting only the knowledge in school, they have to prepare
it on their own in order to apply it. Such activities reduce the lecturing time and yield
to more interaction between the student, the task and especially the content.

For active learning it may be more difficult to understand what a student has learned
since the knowledge differs from student to student because of its constructivism. Another
problem of active learning is that it consumes more time and needs much more effort to
be prepared by the teacher. But with active learning a student can learn how to learn
and even deepen the knowledge much better than in passive learning.

1.1.2 From School to Machine Learning

Following the definition of [26] there are the same types of learning in Machine Learning.

Passive Learning In Machine Learning passive learning means that the network gets
the whole set of data and does not need to do anything in order to acquire the labeled
data. To query randomly instances, which need to be labeled by the oracle, can also be
seen as passive learning since the model is not using any information about the data.

Active Learning In active learning the algorithm chooses the data it wants to learn
from. It therefore constructs this data set step-wise. Active learning is, similar to the case
of active learning in school, more time consuming because the network has be retrained
after each step of the construction. Moreover, it has to acquire the instances on which
it wants to be trained next, too. This means that the learner has to ”understand” the
content (i.e. the data), which it already knows (or has been trained on), better before
it gets new information. This knowledge is necessary to choose those samples, which
are most valuable for the learner. In lots of cases the time of the machine needed to
train the network and to figure out which instances are most valuable to be labeled is
not as important as the time of the annotator. Therefore, it is more important to save
the annotator’s time by providing fewer samples to label. The learner has to choose the
data it wants to be labeled by an annotator (from a pool or a sequence) or it needs to
create the instances which have to be labeled on its own (see section [3.1]). Thus, similar
to active learning in school also active learning for machine learning can be understood
in the philosophy of constructivism.

The main difference between active and passive learning is the queuing component [65].

1.2 Application - The Company 3

1.2 Application - The Company

This master’s thesis is written in cooperation with the company PreciBake GmbH. PreciBake
is an artificial intelligence (AI) and sensor technology company, which provides software
and hardware solutions to the professional food and baking industry. To achieve this
goal, PreciBake came up with the concept of a virtual baker, which functions as an Al-
empowered assistance system for ovens [1]. This system is used by customers like grocery
stores because bakery products build an important sector. The virtual baker provides
solutions for baking sessions in order to receive a high quality of baking products and
to automatize the baking process. This means that the virtual baker detects the bak-
ing products once they are loaded into the oven and chooses the corresponding baking
program.

The detection process is a classification task. A model classifies the oven’s input by a
deep neural network which gives as its output a prediction of the corresponding class or
in this case the name of the baking good. PreciBake gets the oven’s input as image from
its costumers. Thus, the company gets the unlabeled samples for free but needs to label
them on its own. Because of the time and money consumption of the labeling process,
PreciBake wants to reduce the amount of labeled data needed to achieve a high model
performance. Moreover, in the given unlabeled data sets, there are often samples, which
are similar to each othere annd the classes are not equally distributed. Therefore, active
learning is needed in order to construct a suitable data set.

1.3 Related Work

In this thesis, an active learning framework is designed to overcome the stated problem.
The presented framework is an extension of the one presented in [30]. It samples se-
quentially £ € N samples from a given pool of unlabeled samples &/ and annotates these
samples.

The focus of this thesis lies in the sampling process. Different methods are tested,
which can be grouped into uncertainty sampling, class balance sampling and represen-
tation sampling. Uncertainty sampling can be split into two classes: direct uncertainty
sampling (known as uncertainty sampling [42]) and uncertainty by committee sampling
(known as query by committee sampling [59]). Direct uncertainty sampling is using the
probabilistic output of a classification network while uncertainty by committee sampling
needs a committee of models with different hypothesis for the label prediction. In order
to generate such a network, Bayesian neural networks are introduced. Since Bayesian
neural networks are intractable, approximations are needed. They can get approximated
by Monte Carlo Markov Chain methods [61]. These methods have a low bias but a high
variance and therefore converge slowly. They are therefore not suitable for the application
on deep neural networks. Thus, Variational Inference methods are introduced [25]. This
method has been optimized for deep neural network, by taking advantage of the way the
gradient is computed. This optimization is called Bayes by Backprop [8]. For convolu-
tional neural networks, the local reparameterization trick yields an approximation which
saves a lot computations [41]. Since these methods approximate the posterior distribu-

4 1 INTRODUCTION

tion of the Bayesian neural network, it is still necessary to sample from this distribution
to obtain a committee. Calculating a specific uncertainty directly from this distribution
was shown to be infeasible [41]. In [17] a method is introduced, which creates a com-
mittee of realizations of a Bayesian neural network directly. This method uses stochastic
noise (i.e. Dropout) during inference time, which is usually only enabled during training.
Thus, a committee of different hypothesis is built by predicting the outcome of a network
on a given sample several times. [64] proposes to enable Batch Normalization instead of
Dropout during inference. Thus, the output of a mini batch of samples needs to be com-
puted simultaneously to be able to apply this technique. Finally, ensembles of artificial
neural networks can be used, to create a committee. Here, each member of the ensemble
is a member of the committee [37].

For class balance sampling the unlabeled data set is divided into clusters. In order
to do so the label can be predicted or a hash can be calculated according to specific
properties of the input sample. In this thesis hashs are computed with Local-Sensitivity
Hashing [14] using the feature vector of the sample.

Because the framework selects in every round not only one, but k£ samples, samples
within the selected subset might be similar to each other. This is especially true for
uncertainty sampling. Thus, [30] presented methods to find the most diverse or the most
representative subset of a given set.

Since active learning deals with small data sets, it is important to prevent the clas-
sification network from overfitting. Thus, different regularization methods can be used
for active learning. Stochastic noise can, for example, be injected to neural networks.
This is done by Dropout |62] or Batch Normalization |29]. Moreover, data augmentation
techniques [63] can increase the variation within the same data set and thus yield a more
general representation. Finally, one can find the most vulnerable direction of an artificial
neural network on a specific sample, the adversarial direction [20]. Adversarial Training
trains the network in order to predict for each data point of the input space a label, which
is similar to the labels of its neighbors in the adversarial direction. In Virtual Adversarial
Training [46], the labels of the neighbors in the adversarial direction are predicted. This
enables the use of unlabeled data sets as well. Since in active learning scenarios, the pool
of unlabeled data is usually huge, this method is of particular interest.

2 Background

In this section, the reader is provided with the theoretical background, which will be used
in the following chapters. In Section [2.1], the background about the basic statements and
definitions of probability theory and statistics is given in order to apply these statements
on artificial neural networks (introduced in Section to introduce Bayesian neural
networks (Section . Additionally, in Section an introduction into optimization
methods of artificial neural networks is given. Bayesian neural networks are necessary
because they enable the user to obtain the networks uncertainty. Since Bayesian neural
networks are intractable, approximations are introduced in Section2.3] as well. Having
computed the uncertainty of an artificial neural network on a specific input image, this
information can be used for active learning (see Chapter [3)).

2.1 Probability Theory

In order to be able to define a probability measure and to later state Bayes’ theorem, a
few definitions need to be introduced. The theoretical foundation of a probability measure
is a measurable space defined by [9]:

Definition 2.1. A system F of subsets of a nonempty set X is called o-algebra if the
following holds:

1. X e F

2. FeQ=F :=X\FeF

3. Fi,Fy,...e F= U F,eF

i=1
The pair (X, F) is called measurable space or event space.

Using the definition of a measurable space, one can define the probability space in the
following way:

Definition 2.2. Let (X, F) be a measurable space and let F' € F. A map p with pu(F)
> 0 or pu(F) = oo is called a measure if it satisfies:

1. w(@)=0

2. 1u(UR) = Sutr), Freo

i>0 i>0

for every finite or infinite sequence F; € F with Fy, F,,... C F being pairwise disjoint.
The tripe (2, F, p) is then called measure space. If yu(F) = 1, then p := pu is called a
probability measure and the measure space (X, F,p) is called probability space.

6 2 BACKGROUND

Using the definition of a probability measure, a random variable can be defined as done
in [54].

Definition 2.3. Let (X, F), (£,S) be measurable spaces. A map X : X — ¥ is called a
measurable function or a random variable if it satisfies:

X9 ={xeX : X(x)eSteF vSes.

For simplicity, the following abbreviations are introduced:

Notation 2.4. Let (X, F,p) be a probability space, (X, S) a measurable space, X : X — X
be a random variable and A € §. Then

p(x) :==p({x € X : X(x) = z}),
=p(A) =p({x € ¥: X(x) € A}).

Using the definition of a probability measure and the previous notation, the conditional
probability distribution can be defined as done in [54].

Definition 2.5. Consider a probability space (X, F,p) and two events A, B € F with
p(B) > 0. Then, the conditional probability distribution of A given B is defined by

p(ANB)

p(A| B):= o)

(2.1)

Having defined the conditional probability of one event, given another, one can finally
state Bayes’ Theorem:

Theorem 2.6 (Bayes’ Theorem). Let (X, F,p) be a probability space and A, B € F with
p(B) > 0. Then,
p(B[A)-p(A)

p(A| B) = (B

(2.2)

Proof. Chapter 2.1 of [54]. O

Given the conditional probability of an event X, given y and its probability. The
probability of the event X can be obtained by marginalization. The following theorem
will therefore be important for the calculation of the evidence of a Bayesian neural network

(Section [2.3)).

Theorem 2.7 (Marginalization). Let (X, F,p1), (V,S,p2) be two probability spaces. Let
X € F. Then it applies

p(X) = /y (X | 9)pa(y)dy. (2.3)

Proof. Chapter 5.1 of [54]. O

2.1 Probability Theory 7

In order to train an artificial neural network, data needs to be observed, which is
then used to optimize the artificial neural network’s parameters. The foundation of such
data observations and parameter optimization is statistics. Thus, the following definitions
(founded on [35]) are of importance for artificial neural networks.

Definition 2.8. Let (X, F) be a measurable space. Let (p,).ecq be a family of probability
measures. Then the tripe (X, F, (p,)weq) is called statistical model. X is called
sample space.

Definition 2.9. Let (X, F, (p,)wecq) be a statistical model. A statistic is a measurable
function S : X — Y. Let 7 : @ — X be a map. Then a statistic T : X — X is called
estimator for 7.

Definition 2.10. Let (X, F, (pu)wen) be a statistical model with probability mass func-
tion p,. The function p : X x Q@ — [0, 1] with p(D,w) := p,(D) is called likelihood
function. The map pp : Q — [0, 1] with D — p(D,w) is called likelihood function to
the event D € F. An estimator T : X — () is called maximum likelihood estimator

if p(D,T(D)) = max p(D,w) D € F, (2.4)

weN

i.e. pp is maximal at T'(D).

Having observed data X and its corresponding labels Y, the aim of the maximum
likelihood estimator is to find parameters w € €2 such that the given labels y € Y are
most likely to belong to the corresponding samples x € X. D is written instead of Y
given X. Thus, D represents the observed data and p(D) its corresponding probability.

The probability of the likelihood function can, especially in the case of a classification
task, be seen as the output of an artificial neural network.

The aim of probability theory is to find the properties of the outcomes of a given prob-
ability distribution, whereas the inverse problem is to find the properties of a probability
distribution if the outcomes are given. This problem is known as statistical inference.
This shifts the problem from maximizing p(D|w) w.r.t. w to the problems of calculat-
ing the posterior distribution p(w|D) and use the posterior to predict the outcome of the
model. Also, this leads to distributed parameters and therefore Bayesian neural networks.

The following definition names the conditional distribution of the data given the pa-
rameters (likelihood) as well as the probability distribution of the parameters (prior) and
the probability of the given data (evidence).

Definition 2.11. Let (X, F, (pu)wen) be a statistical model. Let D € F and w € Q.
Then, the probability density function p : Q x X — [0, 1] with p(w, D) := p(w|D) is called
posterior distribution. The probability density function p of w, p : Q — [0, 1], is called
prior distribution of w. And the probability density function of X p: X — [0, 1], p(D)
is called evidence or normalizer.

Onto those probability distributions Bayes’ theorem can be applied:

8 2 BACKGROUND

Theorem 2.12. Let (X, F,(py)wea) be a statistical model. Let D € F. Then, the
posterior distribution can be computed using the likelthood, prior and evidence:

p(Plw) - p(w)
pw|D) = BRI PL&) 2.5
Proof. This is an application of Bayes’ Theorem [2.6] O

Having a prior distribution applied on the neural networks parameters, their posterior
distribution can be computed by the application of Theorem [2.12] Having computed the
posterior distribution, the probability of a label y*, given a new instances x* to the neural
network, can be determined by Bayesian inference:

Theorem 2.13. Let (X, F, (p,)wea) be a statistical model and let D € F. Then, inte-
grating over all possible w € §2 (Marginalization gives the probability for a new data
point x* belonging to label y*

p(y*|z*, D) = /Q p(y* |z, w)p(w|D)dw.

This process is called inference or posterior predictive distribution.

Proof.
* * m k *
w1 D) D [ply'la . Dip(wi D)
Q
= /p(y*|x*, w)p(w|D)dw (2.6)
Q
in Equation x* is assumed to be conditionally independent to X [19].]

Instead of summing over all possible parameters w with their corresponding probability,
a point estimate of the parameters can be used as well, given the posterior. This point
estimate is called maximum a posteriori estimate [23]. But as it is only a point estimate,
it is not often used in practice.

Definition 2.14. Let (X, F, (p,)wecq) be a statistical model. An estimator 7' : X — 2 is
called maximum a posteriori estimator, if

p(T(D),D) = max p(w,D) VD e F.

weN

2.2 Artificial Neural Networks

For the classification of for example an oven’s input, a classification model is needed. The
best classification results, according to the model’s accuracy, were achieved by deep neural
networks, which are layered feed forward neural networks with a high number of layers.
Thus, both feed forward neural networks, and more generally, artificial neural networks
will be introduced in this chapter. At the end of this chapter Bayesian neural networks
are introduced, which are needed to be able to calculate the model’s uncertainty.

2.2 Artificial Neural Networks 9

2.2.1 Introduction

Artificial neural networks aim to mimic the human brain. Since the human brain is a
network consisting of neurons or nerve cells (see Figure[1)), an artificial neural network is
a network of artificial neurons or nodes (see Figure [2). Artificial neural networks can be
used for classification tasks.

cell body

dendrites

Figure 1: A sketch of a biological neuron.

Definition 2.15. Let N € N, z € RY. Then an artificial neuron is defined as the
function

n: RY - R, n(z) = o(w’z +b),

where o : R — R is a non-linear function (called activation function), w € RY and b € R
are the parameters of the neuron.

Following the introduction of [6§], the combination and composition of artificial neurons
results in an artificial neural network. It can be described by a weighted, directed graph
G = (V, E) with vertices corresponding to neurons, input or output nodes. If the graph G
is acyclic, it represents a feedforward neural network, otherwise it represents a recurrent
neural network. If the neurons of a feedforward neural network can be organized in distinct
layers and there only exist connections between neurons of two neighboring layers, then
this network is called layered feedforward neural network (see Figure [3). Usually, the
activation functions are in all hidden layers the same and only at the output a different
activation function is chosen depending on the task the model should be trained on.

Definition 2.16. Let N € N, 2 € R" be the input vector. Let [; be the i-th layer of
artificial neurons n;;, j € {1,...,4}, where k; € N is the number of neurons of /;. Let

\\\:;* . p
\ zwjxj+bL> ;]W,;X,'+b)

Figure 2: An artificial neuron with input z € RY, parameters w € R%,b € R and a
nonlinear activation function o.

10 2 BACKGROUND

Hidden

Figure 3: An artificial neural network consisting of an input layer, two hidden layers
and an output layer. The first hidden layers consists of five artificial neurons and the
second one of four.

w;; € R, b;j € R be the parameters of such a neuron. Let

T
Wy bi1
T
w; b,
M/ o 12 P 12
1T) B’L T)
T

Then a fully connected layered feedforward neural network (FC-NN) f with m layers
is defined as the function

fiRY 5 R (1) = 0ot (Win(..(c(Wa (o (Wyz + By)) + By))...) + Bp),

where 0, 0, : R¥ — R¥ are non-linear functions (called activation functions), W; € RN
and B; € R¥ are the parameters of the neuron.

https://www.overleaf.com/project/5d9db704e8ac710001¢a8333 Fully connected layered
feedforward neural networks will in the following be called fully connected neural networks
to avoid the long name. Moreover, for classification tasks the output dimension k,, of a
neural network is equal to the number of classes C.

For image classification tasks, artificial neural networks are used with images as input.
Using only fully connected layers leads to a very high number of parameters of the artificial
neurons in the network. This is especially the case for a high image resolution. Thus,
convolutional neural networks will now be introduced.

Convolutional Neural Network Since the input of convolutional neural networks
(CNN) is always an image, a specific property of images can be used in order to have less
computations. Namely, this property is that in a specific region of the image, the pixels
do not differ much. Images are of the form h x w X ¢, (e.g. 128 x 128 x 3) with h being

2.2 Artificial Neural Networks 11

its height, w its width and ¢ the number of its channels. RGB images have 3 channels.
A convolutional layer consists of K € N filters applied on the channels of the previous
layer. Each filter is applied on all regions of the filter’s size. A filter consists of a weight
matrix w € R"*% and a bias b € R. Therefore, only K x h x w + 1 learnable parameters
are used in each layer. As can be seen in the appendix, the kernel size (dimension of the
filter) is most of the time less or equal than four. With less than 256 filters, the number of
learnable parameters is reduced enormously. The architecture of a convolutional neuronal
network consists of convolutional layers, followed by non-linear functions (an activation
function) and pooling layers and at its end it consists of fully-connected layers.

Convolutional Layer A convolutional layer is as described in [17] a linear transfor-
mation, which preserves spatial information of the input image. The convolution of a
sequence of K; kernels Iy with & € {1, ..., K;} is a convolutional layer. Each kernel Ky
consists of a filter W, v € RM>*wxKi-1 and a bias by € R. Usually, the bias is set to 0. Let
r € RHi-1>xWis1xKi-1 he the input of a convolutional laye and the output of the layer is
y € REXWixE: Fach y; ;. is the sum over all n patches of the element wise product of
the filter Wy, and a patch of the input of size h x w x K;_;.

Ki_1
Y = Wk,k/ * T + bk (27)
k'=1

with the convolutional operation W * z; ; being:

h w

Wik % 2k)ig = DD Wl Togpo 1e541-15 (2.8)

o=1 [=1

with 2/ = x, with padding p, weigths w,; € R"*(and w,; € Wy 1)) and stride s. Padding
is the addition of pixels with value 0 to the edges of the input x. The factor p describes
how many rows and columns of zeros are added to the input. The stride is defined by the
amount of movement between two applications of the filter to the input. Usually, it has
the same value for the horizontal and vertical direction.

The convolution can be seen as a linear operation as well. It can be composed to the
matrix product

FxW+b=ge RN (2.9)

with & € Rhwkior 1) ¢ RwKiixKi and b € RX, where 4 is a matrix having in each

row a vectorized patch of the input. As we have n such patches this yields & consisting

of n rows. The weight matrix W has in its columns each filter vectorized. It therefore

consists of K; such vectors. Since the number of patches depends on H;_; and W;_; and
n = H; « W; with

S S

4 2xp—w—1-1
+1Jandwi_vv“+ il +1J,

i can be rearranged to y € RH>WixKi,

As already mentioned, a convolutional neural network’s architecture can furthermore
contain the following layers:

12 2 BACKGROUND

Filters

Layer Output

Figure 4: Visualization of a convolutional layer with an input of size 10 x 10 x 3 with 3
being the number of channels, two 3 x 3 x 3 filters and an output of size 4 x 4 x 2, where
2 is the number of channels of the output which equals the number of filters.

Pooling Layer In this layer the dimension of a layer is reduced by the application of
a nonlinear function on a region of the output of the layer. These regions are usually
quadratic and distinct. Applied nonlinear functions are for example the maximum or the
average of the region, e.g. a 2 x 2 kernel.

Noise Layer Noise layers inject stochastic noise to a previous layer. These layers will be
of Importance for the approximation of Bayesian neural networks. Two examples for noise
layers are Batch Normalization layers and Dropout layers. These examples are described
in the following.

Batch Normalization Layer Batch normalization is a unit-wise operation, which was
proposed by . Its aim is to standardize the distribution of the input of each unit
of the previous layer. It is applied before the activation function and after the linear
transformation, i.e.

(BN 5,(Wz + B)). (2.10)

The output of a node in a fully connected layer is 1 dimensional. Thus, the mean and
variance of a mini batch (introduced in Section [2.2.2)) B are calculated in the following

2.2 Artificial Neural Networks 13

way:
_ 1 zm:h (2.11)
uB = m £ i .
o= LSy (2.12)
m “

On the other hand, for a convolutional layer as the previous layer, batch normalization
is calculated as follows:

hIF = pI R (2.13)
m W, H;
= h* 2.14
re m+H*mzZ:1:j:1kl ()
W, H;
2 gk 2
_ (h? 2.15
Oh = H T, ; 3 (2.15)

Thus, Batch normalization is computed by using algorithm

Data: Mini batch B = {x1, ..., x,, }, hyperparameters ~, /3
Result: Batch normalized y

W, ~~H; ik
B = Zz y hior pp = m+1i*wi > i Zj:l >kt

1.
W; H; i,k

2: o = % >t (hi = p)? or o5 = o 2ot Yo (WY —)?

3: . Ti— 1B

4

Algorithm 1: Batch Normalization by [29)

Batch normalization is during training time a stochastic process due to the fact that
the samples in the mini-batches are chosen randomly. This randomness influences p and
o in a way that having different samples in a batch leads to different p and o.

During evaluation time the batch becomes the whole training set.

Dropout Layer In this layer, it is with probability of p € (0,1) decided whether an
artificial neuron or a kernel of the previous layer should be set to zero (i.e. dropped out).
This is done in order to prevent the network from overfitting, but it can be used in order
to make the model stochastic. The model becomes stochastic because each neuron is
randomly set to zero during training time. During test time no neuron will be set to zero.

2.2.2 Optimization

Classification There are two known tasks for artificial neural networks. On one hand,
there exists the regression task for which the output of the artificial neural network is a

14 2 BACKGROUND

continuous value y € R. On the other hand, for the classification task the neural network
has values of the output of the form of a class label y € C with C being a discrete set. In
this thesis the methods are only applied on classification tasks.

Loss and risk function In order to be able to optimize an artificial neural network’s
parameters it is necessary to measure how well the artificial neural network’s prediction
approximates the real labels. Therefore, a loss function is needed, which quantifies the
distance between the prediction and the ground truth. For classification tasks, the cross-
entropy loss is used.

Definition 2.17. Let f, : X — Y with f, being a realization of an artificial neural
network. Let w be its parameters. Then the loss function is definedin L : Y x)Y — R,.
And the Cross Entropy loss can be defined as

Fon(e.y) — —tog [—cPU@h)) |
crley) g<zflexp<fw<x>c> 219

Having a loss function the risk function is defined as follows:

Definition 2.18. Let (X x Y, F,p) be a probability space, f, : X —) with f, being a
realization of an artificial neural network. Let w be its parameters and L : Y x Y — R,
be a loss function. The risk function R : {C}(X;))} — [0,00) is defined as the average
loss, i.e.

R(h) := /X Ly Llz)dpte) (2.17)

The empirical risk function R : {C}(X;))} — [0,00) is defined as its empirical ap-
proximation, i.e.

R(b) i= 3 Llyis fula) 219

Gradient Descent Having the risk function, the aim is to find the parameters of the
artifical neural network which yield the smallest risk function value. In general, deep
neural networks are high-dimensional and non-convex. Thus, the global minimum of the
risk function is not easy to obtain. In order to find a local minimum an algorithm is
used which aims to descent from the given starting point to a minimum. A reasonable
direction in which one should descent is the steepest one.

Definition 2.19. Let f € C'(R™;R), z € R" with Vf(z) # 0. Then, the solution d* of
argminV f(x)"d (2.19)

deRn

is called steepest descent direction of f in x.

2.2 Artificial Neural Networks 15

Theorem 2.20. Let f € CL(R™R), x € R" with Vf(x) #0. Then

Vf(z)
&= (2.20)
IV f(z) |l
is the unique solution of[2.19
Proof. see Figure Chapter 7.1 of [51]. O

In order to have a step size, which is neither to small nor to wide, the following rule
for updating the step size is introduced.

Definition 2.21 (Armijo rule). Let v, 3 € [0,1], f € C'(R™;R). Take the highest o}, €
{1, 8,82, ...} with
f@* +oys™) = f(z") = oV f(a*)T 5", (2.21)

This leads to Algorithm [2| (Gradient Gescent).

Data: starting point 2°, hyperparameters ~, 3 for
Result: sequence {z*}>0
1. for k€ {1,2,...} do
if Vf(2*) =0 then

2

3 STOP

4: end if

5. sP=—Vf(zF)

6: define o, with definition [2.21
7. set 2t = 2F 4 gpsF

8:

end for
Algorithm 2: Gradient Descent

Algorithm [2] converges to a stationary point, which is in some cases a local minimum.

Theorem 2.22 (Convergence of Gradient Descent). Let v,3 € [0,1], f € C'(R™%R).
Then, Algorithm @ is terminating with V f(z*) = 0 or with a sequence with the following
properties:

1. Vk : f(xF+h) < f(2),

2. For all accumulation point T of the sequence it holds: V f(Z) =0
Proof. see Figure Chapter 7.3 of [51]. O

There are more efficient algorithms to optimize the parameters of an artificial neural
network, which have for example a different learning rate for each parameter. Adam [32]
is one algorithm of this kind.

In order to apply Gradient Descent or Adam it is necessary to compute the gradient of the
artificial neural network’s risk function with respect to its parameters. As this function
gets especially for deep neural networks very complex the following trick is used:

16 2 BACKGROUND

Back-propagation The idea of back-propagation [55] is to use the chain rule in order
to divide the complex derivative of the empirical risk function into simple subfunctions
of which a closed derivative exits. This is, for simplicity, only demonstrated with a fully
connected neural network f,,. Let ™ = f,(z) = oo (2™), 2™ = wmThm= 140" bl = o (),
2= pi1 4 o', 1 €{0,...,m—1} and m being the number of layers. Then, one gets by
back-propagation the following derivatives:

B

o = Tout(%]") (2.22)
J
OR <~ OR Oh R
M= = ko o (2™ (2.23)
70z &= Ohy oz Ohp
A N, ~ N, A N
OR <~ Ok 970 N OR , l ,
G T L 2 gk) T LA) (224
J k=1 J =1 k=1
N,
OR ~ OR 02
N\ — Slpit (2.25)
ot ; ; dzj 0wl 7
Nl -
OR OR 0zL
Ot _ N~ ORO% s 2.26
o~ 2oL ar (2.26)

Thus, to compute the partial derivative with respect to a parameter of layer I, §% has
to be computed for every neuron k of the layer. To compute 6. of layer [and neuron k
the value of 2. has to be stored from the forward pass and 6;“ has to be used from the
following layer [+ 1. Hence, back-propagation is done recursively in the reverse direction
of the forward pass and therefore also known as backward pass.

Mini Batch In the gradient descent algorithm the gradient of the empirical risk function
is calculated (also called batch gradient descent). This computation is too expensive if
the number of samples in the training set is high. On top, this may converge to a local
minimum or saddle point and does not find the global minimum.

Instead, one may calculate the gradient of the empirical risk function over only one
sample and then update the parameters. This leads to less computational costs per
iterations (one update of the parameters) but there are lots of iterations and therefore
updates of the parameters per epoch (one full training circle) needed. This is called
stochastic gradient descent. It has in average the same empirical risk, but it is more noisy
and may overjump a local minimum or saddle point but also may not stop at a global
minimum.

Mini-batch gradient descent is a mixture of both methods and uses a mini-batch of
size 2F with k chosen depending on the size of the data and its resolution.

Validation Set Gradient Descent (Algorithm or a similar algorithm is applied on the
training set. In order to find the optimal number of steps e (called epochs) a validation
set is used. Thus, the training stops, when the value of the risk function on the validation

2.2 Artificial Neural Networks 17

set converges or before it starts to get higher again. This set consists of 10 to 30 percent
of the labeled data.

Figure 5: Gradient descent (black) converges to an accumulation point (see Theorem
2.22)) whereas stochastic gradient descent (green) only converges to the yellow region.
Mini Batch Gradient Descent is a mixture of both methods.

2.2.3 Bayesian Neural Networks

A Bayesian neural network is an artificial neural network with a probability distribution
placed on its parameters. In order to be Bayesian this is achieved by placing a prior
distribution on every weight and after observing the labeled data, a posterior distribution
is calculated for every weight.

Definition 2.23. Let (X, F, (p,)wen) be a statistical model. Let D € F, f, be a fully-
connected neural network and w be the network’s parameters (i.e. the weigths and biases).
If the parameter’s distribution is given by the posterior (Theorem , then f, is a
Bayesian neural network (BNN).

Bayesian Convolutional Neural Network A Bayesian convolutional neural net-
work is a convolutional neural network with its filters being additionally threatened in a
Bayesian manner.

Definition 2.24. Let (X, F, (p,)weq) be a statistical model. Let D € F, f, be a con-
volutional neural network and w be the network’s parameters (i.e. the filters, biases and
weights). If the parameter’s distribution is given by the posterior (Theorem , then
f. is a Bayesian convolutional neural network (BCNN).

18 2 BACKGROUND

Filters

5’_gplémmm

pn_| [AT aa 1] .1 1[.80 1[o6 |

i2 g
i
.
e
g 1[7]
EN
B

\

s Input Layer’s Output

Figure 6: Visualization of a Bayesian convolutional layer with an input of size 10 x
10 x 3 with 3 being the number of channels, 2 3 x 3 x 3 filters and an output of size
4 x 4 x 2, where 2 is the number of channels of the output which equals the number of
filters.

The given observation of data D is in the supervised case the same as observing the
samples X and the corresponding labels Y. The probability of observing D is the same
as observing the labels Y given the samples X, i.e.:

P(D) = P(X | Y). (2.27)

Theorem 2.12 can therefore be rewritten as:

p(Y | X, w)p(w)

plw|X,Y)= VX))

(2.28)

with p(Y | X,w) being a neural network (convolutional neural network) with fixed pa-
rameters w. The underlying prior distribution of the parameters is represented by p(w)
and p(Y | X) is the model’s evidence.

Theorem 2.25. Let (Y, F, (po)wen)) be a statistical model, (2, S,p) be a probability
space and let Y € F,w € Q). Then, the evidence can be determined by integration over all
possible model parameters w € €.

mwxwaémwXmewm

2.3 Approximation of Bayesian Neural Network 19

Proof. Marginalization, theorem [2.7]]

The evidence is therefore the probability of observing the data under all possible param-
eter values, which are weighted by their respective prior probabilities.

2.3 Approximation of Bayesian Neural Network

Intractability of the Evidence In higher dimensions (and this is the case in Ma-
chine Learning, especially for computer vision tasks) calculating the evidence becomes
intractable. Thus, the exact computation of the posterior is infeasible and cannot ana-
lytically be done. Therefore, approximation techniques like Markov Chain Monte Carlo
or Variational Inference are needed.

2.3.1 Markov Chain Monte Carlo

As stated in [53], Markov Chain Monte Carlo (MCMC) consists of two parts, namely
Markov Chains and Monte Carlo sampling. To generate sample (or states) from a distri-
bution, Monte Carlo sampling is used. Markov Chains are used to determine the probabil-
ities for the sampling of a new state, given the current state. A Markov Chain is chosen,
which is insensitive to a normalization factor (namely a reversible Markov Chain) [53].
If the Markov Chain’s stationary distribution is the posterior distribution (likewise the
non-normalized posterior distribution), samples generated after a certain amount of time
(burn-in B) are distributed according to the stationary distribution. Such a Markov Chain
can be generated using the Metropolis-Hasting or the Gibbs Sampling algorithm [53]. In
order to get independent samples from the posterior distribution, not directly subsequent
samples should be taken but rather samples should be chosen after a lag L (see Algorithm
3). (The lag L can be estimated with the help of the autocorrelation function.) An initial
sample can be generated using the prior distribution and Monte Carlo sampling.

Data: Markov Chain’s transition probabilities ¢, prior distribution p, burn-in B,
Lap L

Result: samples 2z, ..., zy from arbitrary close approximation of normalized
posterior distribution

: draw sg ~ p(so)

: foriin {1,...,.L*N+B} do

draw s; ~ q(s;|si-1)

end for

: for iin {0,....N} do

choose z; = Sixp1B

end for
Algorithm 3: Markov Chain Monte Carlo sampling

A A

“This sequence is constructed so that, although the first sample may be generated from
the prior, successive samples are generated from distributions that probably get closer and
closer to the desired posterior.” [36]

20 2 BACKGROUND

0.40 1 —— Unnormalized Distribution
------ Normalized Distribution

0.351
Samples from Unnormalized Distribution

0.301
0.251
0.201
0.151

0.101

0.05 1

0.00 1

Figure 7: Samples generated by the Markov Chain Monte Carlo algorithm after a
burn-in B and using a lap L.

Having generated samples from the posterior distribution, those samples can be used
in order to calculate statistics of the posterior distribution (e.g., its mean, variance).

For the MCMC approach there is no model assumption for the posterior distribution
needed. It therefore has a low bias but a high variance. The problem with this method is
that it is not a-priori known how many iteration are needed to approximate the posterior
well (the burn-in B is unknown). Moreover, since the variance of such sampling methods
is high, it takes a lot of time to get close to the burn-in B. Therefore, MCMC is not
suitable for deep Bayesian convolutional neural networks. [56]

2.3.2 Variational Inference

The solution of a Variational Inference method is the best approximation of the posterior
distribution from a parametrized family. Thus, ¢* := mingee D(qg,p), where O is a
parameter family, p is the posterior distribution and D is a divergence measure between
two distributions. The aim of Variation Inference is to replace the marginalization of the
evidence (see Theorem with an optimization problem. Hence, the task is shifted away
from an integration problem towards a derivation problem.

Parameterization Family A parameterization family should not be too small nor too
big. Two parameterization families are shown in Figure [§] The smaller the family, the
simpler is the optimization process but the higher the bias (see in Figure |§| the difference
between the orange line and one of the blue lines). If the family is bigger it may yield to

2.3 Approximation of Bayesian Neural Network 21

an intractable optimization problem and to overfitting to the training data. Thus, smaller
distributions with less hyperparameters are prefered, if the bias is low enough.

05 0.25
0.4 0.20
0.3 0.15
0.2 0.10
0.1 0.05 \N
0.0 0.00
-6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6
(a) Family 1: Different Gaussian (b) Family 2: Different mixtures of two
distributions Gaussian distributions

Figure 8: Two parameterization families. The first one has two parameters to optimize:
i, 0. The second family has four parameters to optimize: pq, pus and o1, 0s.

Divergence Having found a suitable parametrization family, the task is to find the
best approximation of the posterior distribution up to its normalization factor among
this family. Thus, an error measurement needs to be found which is insensitive to a
normalization factor.

Definition 2.26. Let (2, S, p) and (€2, S, ¢) be two probability space. Then, the Kullback-
Leibler (KL) divergence is defined as

KL(l0) = [ple)log (%) do (2.29)

Theorem 2.27. Let ((£2, S, (qs)oco) be a statistical model and (2, S,p) be a probability
space. Then, minimizing the KL-divergence w.r.t. 0 € © 1is invariant to a factor of p, i.e.

argmin KlL(gg||Cp) = argmin KlL(gy||p) (2.30)
6in© 0co

Proof. Let C € R.

KL(go[|Cp) = /Q qo(w)log <é§$) dw
= [wtoros (%57) ~tostera
= [oo (3557) e ot

22 2 BACKGROUND

0.40+ —— Best Approximation Family 1
—— Best Approximation Family 2
—— Unnormalized Distribution
0.30- Normalized Distribution

0.351

0.251

0.201

0.151

0.10

0.05 1

0.00 1

Figure 9: The non-normalized posterior distribution as an non-normalized mixture of
three Gaussian distributions and the best approximations of both parameterization fami-
lies. While the best approximation of the family of Gaussians has a high bias, the closest
distribution of the family of mixtures of two Gaussians approximates the normalized pos-
terior distribution well.

— argmin KIL(gy||Cp) = arg min KL(gy||p) — log(C)
6in© C
= arg min KlL(g|[p)
90

O

Another divergence measure, which does not consider the model’s evidence is the Ev-
idence lower bound:

Definition 2.28. Let (X, F, (pu)wen), ((2, S, (go)eco) be statistical models, (€2, S, p) be
a probability space and let D € F, w €), § € © with © being a parametrization
family. Then the Evidence Lower Bound (ELBO) of the posterior p(w | D) and its
approximation ¢y is defined as

Lpr(go(w), p(w | D)) = Egyu[log(p(D, w))] — Hy, (w) (2.31)

Theorem 2.29. Let (X, F, (pu)wea), (£2,S,(qs)sco) be statistical models, (2, S,p) be a
probability space and let D € F,w € Q. Then, minimizing the KL divergence of the
posterior p(w|D) and its approximation qg(w) is equivalent to the mazimization of the
corresponding FLBO.

2.3 Approximation of Bayesian Neural Network 23

Proof.

arg min KIL(gg(w)|p(w|D)) =" arg min KILL(gg(w)|p(w, D))
9o e

= —argmax KL(gg(w)|p(w, D))
)

= arg max — KL(gy(1)|p(w. D)
(

qo w)
= arg max — wllo dw
%o /Q%(Jiog (pw,m)

~ arg max — / 40(w)10g(g9(w)) — Log(p(D, w))duw

— arg max / 40(e)log(p(D, w))dw — / 40()10g(qo(w))

9co
= ar%ergax Eq, w)[log(p(D,w))] — Hy, (w) = Lyi(ge(w), p(w | D))
]

Optimizing the ELBO yields therefore a variational distribution with a high probability
mass on regions where the non-normalized posterior distribution is high (first term). The
second term is the entropy of the variational distribution ¢(w) and is by the maximization
encouraged to get as high as possible [23]. This leads a more general distribution and the
second term can therefore be seen as a regularization term as well.

Theorem 2.30. The ELBO can also be expressed in terms of the prior distribution and
the likelihood function:

Lyi(gs(w), p(w | D)) = —Egy(w)[log(p(D | w))] + KL(gs(w)|[p(w))) (2.32)

Proof.

argmax By, () [log(p(D,w))] — Hy, (w)

0cO

~ argmas / 4o ()10g(p(D, w))dw — / 4o (@)10g(gs ())dw

— argmas / 00(@)log(p(D | w)p(w))dw / 0(0)10g(qo(w))

— argunx [go(e)ogp(D |)dw — | auletog (%)

dw
0O p(w)
= arg min — w)lo w))dw w)lo %) w
= argm /qu()log(p(D | w))d +/Qqa()l g(p(w)>d
= argergin — Egy()log(p(D | w))] + KL(gs(w)||p(w)))

24 2 BACKGROUND

Inserting the data X and its labels Y from the set of labeled data £ instead of the
placeholder D yields an ELBO equality of the form:

Lgo(w), p(w | £)) = —Egy)[log(p(Y | X, w))] + KL(go(w)][p(w))) (2.33)

Inserting the data points of (z;,y;) € (X,Y) yields:

Lyi(ge(w), p(w | £)) Zqu(w [log(p(yi | i, w))] + KlL(gs(w)|[p(w))) (2.34)

=1

Using only a mini batch the term can be approximated by:

Ly1(gs(w). p(w | £)) %Z) [log(p(yi | wi,w))] + Kl(go(w)[lp(w))) (2.35)

A method optimizing the ELBO w.r.t. the parameters w is Bayes by Backprop (see
Section in the Appendix). It considers a Gaussian parameterization family for the
parameters. This method has not been tested on PreciBake’s data set yet, but this will
be done in the future. In the following subsections, methods are presented, which use
Monte Carlo Variational Inference.

Monte Carlo Variational Inference Monte Carlo Variational Inference samples from
the parameterized distribution of the network’s parameters gs(w). Thus, w; is sampled T’
times from gg(w) and yields the Monte Carlo estimator:

].NTM

Lue(ao).ple | D)) = =7 323 log(pluf) + KLl lp))) (2:36)

t=1
gy can therefore be approximated by its unbiased estimator gs:

T

Qo (yilz:) = Zp(yi\ﬂfm@t) (2.37)

t=1

This converges for 7' — oo to the estimator of the model’s posterior distribution:

T
Bolls) = 3 plules,) T / P2,)0 () oo, (2.38)
t=1

The advantage of Monte Carlo Variational Inference is, that architectures of convolutional
neural networks can be used. For Monte Carlo Variational Inference methods, stochastic
noise (e.g. Dropout or Batch Normalization) may be introduced, which makes it compu-
tationally cheap to sample from the distribution. But the distribution is not Gaussian.
Another technique is to initialize an ensemble of T differently initialized models, which
are initialized according to Gaussian prior. Thus, their posterior is a Gaussian as well,
but the optimization takes more time.

2.3 Approximation of Bayesian Neural Network 25

2.3.3 Monte Carlo Dropout and Batch Normalization

Approximation with Dropout As it is computationally expensive to parameterize
every parameter of an artificial neural network, one needs to find a way to approximate
a Bayesian neural network without dealing with two many computations. One way to
approximate a Bayesian neural network is to use dropout during the inference process.
The intuition of dropout is to set an artificial neuron or a kernel of the previous layer
with probability p € (0,1) to zero. This can be used to model a prior distribution of the
artificial neuron, kernels and even of its parameters. One therefore gets a Bernoulli prior
distribution.

Let ¢; ~ Bernoulli(p),p € (0,1), let €; being a realization of ¢; and let € = (ey, €3, ...,)7,
¢; analogously.

Applying dropout to a fully connected neural networks yields, with Z, = W, A1+ B
and Wy, By being the parameters of the layer k (W weights, B biases) and Aj_; being
the output of the previous layer:

§ = Oout(Z1) = Tout(WiAp_1 + Bi) = Gout(Wi(Ap_1 © diag(¢)) + By)
= Oou (Wi © diag(é)) Ax—1 + Br) = Oous(WiAx—1 + Br) = 0ou(Wio(Zs1) + By)
= Cout(Wio (Wi_1 A2 + By_1) + By) = ...
= 0ot (Wio (W10 (Wi_20(...) + By_2) + By_1) + By

with A, = A; ® diag(é), W, =W, ® diag(é). Thus, the FCNN with dropout layers can
also be written as a Bayesian neural network with a Bernoulli prior distribution on the
network’s parameters.

To illustrate how convolutional neural networks work with dropout, the input A;_; of
cach layer needs to be transformed to a vector of patches as described in Section [2.2.1]
Let A be such a transformation of A. For a convolutional layer applying dropout means
that a kernel is dropped with a probability of p € (0, 1), i.e. set to zero. Or in Bayesian
terms: a prior is placed over each kernel. Let ¢; j; ~ Bernoulli(p),p € (0,1), and let €,
being a realization of ¢; ;; where ¢ is the layer, j the kernel and [the patch. ¢; ;; denotes
the probability of inputs vaules of patch [being dropped for kernel j in layer ¢. Let
E, = diag([ei,j,l]]l-{:_li) and D; = diag([E;,]}-,). Then, dropout applied to a convolutional
layer can be seen as:

A = ¢ |, with A{ € R"Ei-1 being the jth patch of A;.

26 2 BACKGROUND

Al Aldiag(le;;0]75") AlE;,
= A2 21, .. K_i 2.
AW, + b, = A Wi+ b, = Ai dmg([ew’lbzl) W, +b; = AiBis W;
Ar Ardiag([e; ;1]55") AV E;
Al
A2 . .
= Y| DiWi+ b = AiDiWi + b = AW, + b;
A’Vl

with W; := diag([E;,Wi]i,)
Thus, applying dropout after a convolutional layer is equivalent to parameterizing the
weights of the convolutional layer.

Having noise injected, which is Bernoulli distributed, the weights will also get Bernoulli
distributed. This does not approximate a Gaussian distribution well.

One gets:
P 157 X V)% [Catly | o)) B | i (2.39)
0,1
C
* 61 = 0 e
= / wae(x*)%p(e)de with ip(=0=p (2.40)
{0,134 .2 pleg=1)=1-p
2.50] r e
~ > [fo(@)¥ with &) = wié; and & ~ p(e | p) (2.41)
t=1 c=1

(A
with pleg=0)=p
pleg=1)=1-p
Equation [2.40] can neither be solved with a closed form solution and thus, the parameters
e need to be sampled during inference time. This leads to Equation 2.41] During training
time these noise injections were not used to approximate a distribution but to regularize
the network.

Problems with this approach In practice, dropout is not applied to every layer.
Thus, not every layer has weights with an underlying distribution. Also a Bernoulli
distribution does not approximate a Gaussian distribution well. Thus, the results may
not be the best approximation of the posterior distribution.

2.3 Approximation of Bayesian Neural Network 27

Approximation with Batch Normalization As stated in [64], the same approach is
possible using Batch Normalization as noise injection. Let w € R? be all parameters of
the network and let Wy = wy, ..., w0, be the parameters of the weight or filter matrix
of the k™ layer, By = Witoy11, -+, Witoyto, D€ the parameters of the bias of the k™ layer.
Then, it holds for a network only consisting of fully connected layers:

- 5 Zy — WiAy_1+ By —
U = Oout(Zk) = Oout (BN 5(Zk)) = Oout (fyk—’u[” + 5) = oy (7 kAk—1 K — MB N 5)

\/03-1-6 \/0'1234-6

., f)/WkAk—l_F(Bk_,uB)_i_ﬁ s YWiAg—1 (B — 1) ny
out VOB + € out \/03+6 VO + €

W, — . - . .
= Oout (Tk ’7(k NB) 5) = O-out(WkAkfl + Bk) = Uout(Wko'(Zkfl) + UBk)

gt
\/O’B—i—G ! \/UB—i-e

= .. = Oout(Weo (Wi—10(Wi—20(...) + Br_a) + Be_1) + By)

And for a convolutional layer it holds:

5= 0(2:) = o (BN, 5(Z:) = 0(7(2)+6> ((A’W"*B"‘“B)w)

VOog+€ Vog+e

[AW LB -)+5 i Wi V(Bi—us)Jrﬁ
\/O'B—I—E Vog+e VOog+e€ VOog+ €
- O-out<AzVVz’ + Bz)
As described in the previous equations the noise, which is injected by Batch Normalization

to the input of the non-linearity, can be considered to belong to the parameters. Thus,
the function BN (w) is justified. It holds:

P 1" XX) % [Catly | fawy @)pl0| X.¥)a0 (2.42)

c
Z Hf Ve with @, = BJ\/’Z’i,y(w) and 0, ~ p(0 | X,Y) (2.43)

t=1 c=1

Problems with this approach In practice, Batch Normalization is not applied to
every layer. Thus, not every layer has weights with an underlying prior distribution.
Moreover, since # depends on the data, whose distribution is not known, the distribution
of W is unknown, i.e. the prior distribution of the parameters is unknown. This may result
in a good or a bad approximation.

2.3.4 Ensemble Methods

Ensemble methods are in Machine Learning used because it may be better to not only
rely on one model’s prediction but on a myriad of model’s predictions since one does

28 2 BACKGROUND

not know if the prediction of one model is the most accurate. Having the same architec-
ture of all models and training the models on the same data set should lead to slightly
different models, if they are initialized differently. Training models with all possible ini-
tializations (according to a prior distribution) would therefore lead to every deterministic
representation of a Bayesian neural network. Thus, using T' € N ensembles with dif-
ferent initializations approximates a Bayesian neural network. Let {M; ..., Mt} be the
ensemble of 7" models.

p(y* | 2", X,Y) = / Cat(y* | fo(2™)p(w | X,Y)dw (2.44)
Q
d
~ >] fon (@)% with &, hatw, ~ p(w | X,Y), (2.45)
m=1 c=1

Ensemble by Cyclic Learning Instead of training different models, one model is in
this method trained in the following way: The model is trained in a normal manner and
after finishing the training process the learning rate is reset to its starting value and the
model is trained again. This process is done 7' times and each trained model is saved in
order to get an ensemble of 7" different models. This method is inspired by [27].

Deep Probabilistic Ensembles As stated in [10] ensembles are easy to optimize and
fast to execute. But the model’s uncertainty is not approximated in the same matter as it
is by using Bayesian neural networks. This is due to complexity of deep neural networks
and the fact that a parameter may serve a different purpose for different members of the
ensemble. Thus, the variance of these parameters cannot be compared to the variance,
which would have been obtained in a Bayesian neural network with the same architecture.
The KL divergence term of Equation [2.32| needs to be applied as a regularization penalty
to the set of values that a given parameter takes over all the members of the ensemble. By
assuming that the parameters of the model are mutually independent (which is in general
not true) and that they are Gaussian, the KL divergence term of the Equation can
be computed analytically by:

KL(pllq) = % (log (03) + 7+ e = 1)) 1) (2.46)

52
Tp

This leads to the following optimization problem:

w* = argjninz Z L(yi, fo,(x:)) + BR(w), (2.47)

i=1 m=1

with {(x;,v;)} labeled data points, {M; ..., Mz} ensemble of E models, w,, parameters
of model M,, represented by f, and w being the parameters of all models. R describes a
regularization term, i.e. Equation and L is the first term of Equation [2.32]

2.4 Uncertainty of Bayesian Neural Networks 29

2.4 Uncertainty of Bayesian Neural Networks

Once an approximation method of a Bayesian neural network is found, it can be used in
order to determine the network’s uncertainty.

For active learning a specific type of uncertainty can be used in order to find the
instances, on which the model learns the most (as it is not yet certain about them). This
type is called epistemic uncertainty and will be introduced in this chapter. Moreover, two
uncertainty decomposition techniques are presented in this chapter in order to find the
model’s epistemic uncertainty of a given input sample.

There exist two types of uncertainty, namely aleatoric and epistemic uncertainty.
Aleatoric uncertainty is the uncertainty of the data (measurement errors, etc.) and epis-
temic uncertainty is the uncertainty of the model, more precisely of its parameters [31].

Aleatoric Uncertainty The English word aleatoric comes from the Latin word aleae
which means rolling a die, gambling or game of chance. Therefore, by aleatoric uncertainty
the natural randomness of an event is meant. There are two types of aleatoric uncertainty:
heteroscedastic and homoscedastic uncertainty. The first one describes input-dependent
uncertainties while the latter one describes input-independent uncertainties.

Epistemic Uncertainty The English word epistemic comes from the Greek word
episteme which means knowledge. In the context of artificial neural networks, it therefore
tells how much a model knows. The knowledge of a network can be improved with more
data and thus, the epistemic uncertainty decreases as the model learns from more data.
Moreover, a network can gain more knowledge from some data than from others. To
model the epistemic uncertainty, a distribution needs to be placed over every weight of
the model. In the Bayesian approach this is done by placing a prior distribution over
each weight of the network and then update the distribution by determining the posterior
distribution using Bayes’ theorem (see Theorem , which was already shown in Section
2.3l

Let ¢(w|X,Y") be an approximation of the underlying weight distribution p(w | X,Y).
By marginalization if follows:

Py | 2% X,Y) = / Py | 2% whp(w | X, Y)dw (2.48)
Q

Q

/p(y* | 2", w)g(w | X, Y)dw =: q(y" | ¥, X, Y) (2.49)
Q

Mﬂ

yrlat o) =4yt | 2, XL Y) (2.50)

with @& ~ ¢(w | X,Y). Wlth G(y* | z*,X,Y) being an unbiased estimator of ¢(y* |
X, Y):
q(y" | 2%, X, Y) = g [p(y” | 27, w)].

Having a measurement of uncertainty, these definitions help in order to distinguish the
uncertainty into epistemic and aleatoric uncertainty.

30 2 BACKGROUND

Classes Uncertainties

® class1 class 2 03 04 05 06 07 08 09 10

Figure 10: Visualization of the model’s epistemic uncertainty on given samples. The
epistemic uncertainty is given by the uncertainty of the model’s parameters, represented
by the red decision boundary. Being close to the model’s decision boundary means that
the model is uncertain about a specific instance because a small change in the parameters
would lead to a slightly different decision boundary, which may yield different predictions
for samples close to the decision boundary.

For simplicity following notations will be used in the following theorem:

Notation 2.31. Let (X, F,p), (X, F,q) and (2,S,q) be probability spaces, (y*,z*) €
X, (X,Y) e Fand we€ Q. Then it is written:

q(w) = gq(w | X,Y)
Q(y* | ZL'*) = q(y* | z*, X, Y)
p<y* | l‘*) = p(y* | z*, X, Y)

2.4.1 Uncertainty Decomposition using Predictive Variance

The task is to determine the epistemic uncertainty of the prediction of y*, while z* is
given. Using the variance of the prediction of y*, given z* this leads to the following
decomposition:

Theorem 2.32 (Predictive Variance Decomposition Theorem). Let (X, F, (pu)wea) be a
statistical model, (X,F,q) and (Q,S,q) be probability spaces, (y*,z*) € X, (X,Y) € F
and w €). Then, the predictive variance of the Bayesian neural network approximation

2.4 Uncertainty of Bayesian Neural Networks 31

q on y* can be decomposed into its aleatoric and epistemic uncertainty on y*. [39]
* * kT * *
Varg(y o) [y"] = Egr1on [YY" | = Eqgyjon) Y 1 Eq(yjzn) [y I (2.51)

- /Q [diag(Epy+ o) [U"]) — Epgyeje w) [0 1 Bpyrar) [¥7]"] @(w) dw

J/

Vv
aleatoric

* * * * T
+ /Q [Epotyiar) (] = Bae o) [07]] [y ler) 7] = Bayrlan) 3] q(w) dw,

J/

-
epistemic

(2.52)

where diag(v) is a diagonal matriz with the entries of the vector v being on its diagonal.

Proof.
Eotyr oy] = / vy q(y* | 7%)dy

/ * *T/p(y* | 2, w)q(w)dwdy”
//y*y*pr | 2*, w)g(w)dwdy*
Fubini % % * * *
2 [y ™ [ol Lot wa(w)dedy
//y*y*Tp | 2%, w)dy*g(w)dw

— [vl o)

*one—hot—coded

e [By diagly)
diag(Ep(y* |z* ,w) [y*])Q(W)dw

diag(Epqy(arw) [U°]) = Epeior) [0 T Bpge i w) 0]

[ES—"
S— 5

|

Bty o=) [0 By o= [47] T ¢(w)dw

diag(Ep(y* |z*,w) [y*]) — Ep(y* E)) [y*]Ep(y* |z*,w) [y*]Tq(w)dw

+

S~ S5—

IE:D(y* |z* ,w) [?J*]Ep(y* |z* w) [y*]Tq(w)dw (2-53)

Eq(y) [y*] = / Yy qly | 2) dy* = / Y /Q p(y" | 2", w)q(w) dw dy*

_ / / g ply” | 2t w) dyq(w) dw = / E o [y"] a(w) do
Q Q

32 2 BACKGROUND

—Eyyron) [V By) [y*] = E <y*|x*>[y*]Eq(y*|x*)[y*]T — 2By 10) [V Bqy o) [07] "

= Eqyi) [Y 1 Eqy 1o [T = 2Eqqyrtan) (4 By 1o [T
L Ey [?J*]Eqw*u*)[y*]T
2 /Q Ep(y e w) V] ¢(w)dwEq(yx(av) [y*]T
= Eqylo) [y [Eqqyrien [v7]" (2.54)
-2 /Q Epyfa) Y] (W) Eq(yejam[y*]" dw (2.55)
(2.56)
Vary(y o) [¥*] = Eqge o) 070"] — Eqge o) [0 Batyeian) [y]" (2.57)

m * * *
/ dzag(E *|e*w) [y]) - Ep(y*\x*,w) [y]Ep(y*\w*,w) [y]Tq(w)dw

- /QEp(y*x*,w)[y*]Ep(y*x*,w)] q(w)dw — Bqe oo [y Bogyeam [y (2.58)

Epistemic and Aleatoric Uncertainty Let p(y* | 2*,w) = Cat(y* | f,(z*)) with
fu(x) representing a model with input x. This gives the following for the expectation of
y* under p(y* | %, w):

categorial categorial *
Epyorar[y]” =N yp(y | ot w) TNy Cat(y | ful(a®)

y*eC y*eC

C C
e ot e [T = fula?) (2:59)

/=1 c=1

2.4 Uncertainty of Bayesian Neural Networks 33

with e; being the canonical vector with its 7*" entry being 1.

1 Y* categorial % % *
Eairon] 2 vat |0 [l o gl

y*eC y*eC
", w)q(w)dw = [Epprew)y']g(w w23 w w
/yzecy”‘ i)k = [Epmaolylo()do = [0")g(e)d
2.60)
2.61)

Thus, it applies for the aleatoric uncertainty:

/Q [diag(fu(2™)) — ful@™)fu(z)T] g(w)dw

= Ey [ding(fule") — fula) fula®)] (2.62)
(2.63)

Having Equation [2.62] it can be seen that the aleatoric uncertainty captures randomness
in the observed data. The aleatoric uncertainty would be zero if f,(z*) is a one-hot coded
vector and it reaches its maximum if each value of f,(z*) equals £. This coincides with
the noise of an instance as the network would not be able to classify a noisy instance
to a one-hot coded vector and if so, the noise would at least not affect the classifiers
performance.

For the epistemic uncertainty it applies:

* * * * T
/ Eow o) 0] = ooy [7]] [Bogyriar) 7] = Eggrian [v7]] g(w) dw

D [[1la") = Bl]] (") = Bl)) o
[ramon i [ewin s
= Ey) | (fola”) = Eqolfur (@) (fula”) = Egolfur (@)]) (2:64)

~
variability of the model depending on w

Having Equation [2.64] it can be seen that the epistemic uncertainty measures the vari-
ability of the model’s output depending on its parameters w.

To summarize, the aleatoric uncertainty can be determined for each model instance
separately whereas the epistemic uncertainty needs all model instances in order to deter-
mine the variability of the parameters.

34 2 BACKGROUND

Computation of Epistemic Uncertainty Now, ¢ is approximated with ¢ being the
Monte Carlo estimator of g. This gives with p; := fs, (z*) and § := 3, fo, (z*) with &y ~
qlw | X, Y):

T

T T
1) 1 1 L
ZE~ = > (=0 =) ==Y ol —pib pp 90T = =) vl — 2pi0” + 0P

t=1 t=1 t=1
1 < 1 & 1 <
=P) mwl =25) o =00+ Y el =207 =) ol — 0"
t=1 t=1 t=1 t=1
(2.65)

Thus, using Monte Carlo Varational Inference estimator, the epistemic uncertainty can
be approximated by Equation [2.65]

2.4.2 Uncertainty Decompostion using Information Theory

Definition 2.33. Let (X, F,px), (J,G,py) be a probability spaces, (X,S) a measurable
space, X : X — X and Y : Y — ¥ be random variables. Then, the Shannon Entropy
of X is defined as

== px(x)log(px(z)) (2.66)

zeX

This definition can be generalized to continuous probability densities and is called differ-
ential entropy:

) = = | Loglox (@)px(o)ds (267)
X
The conditioned entropy of X, given Y is defined as
By, [Hy (X[Y)] == " log(px (x[y))px (|y)py (y) (2.68)
yeY zeX

And the conditioned differential entropy of X, given Y is defined as

Epy [y (X[Y)] / / log(px (2ly))px (2ly)dz py(y)dy (2.60)

Let moreover (X x Y, F x G, p(x,y)) be the joint probability space of the random variables
X and Y. Then their mutual information is defined as

I(X;Y) := KL(px,v)|lpx @ py) (2.70)

Theorem 2.34 (Entropy Decomposition Theorem). Let X,Y be random variables as
defined in Definition[2.35. Then, the differential entropy of X can be decomposed into the

conditioned differential entropy of X given Y and their mutual information, i.e.

hpx (X) = Epy [(X[Y)] +I(XY). (2.71)

2.4 Uncertainty of Bayesian Neural Networks 35

Proof.

I(X;Y) =KL (pxy)llpa ®py

P bedte.)

p\r)p

(ont
log (p(m) P x’wp(y)d(x,y)
(

p(y)

pely)p<x | w)p()d(z,)

(log(p(x | y)) — log(p(x))) p(x | y)p(y)d(x,y)
(log(p([y))p(z | y)p(y)d(z,y)

- log((@)))p(x | y)p(y)d(z, y)

||@
><

/zog (x| 9)pla | v)p(y)dady

e |

/ / log(p(2)))p(x | y)p(y)dydz
- /y /X (log(p(z | y))p(z | y)dap(y)dy
- /X log(p(a)))p(a)da
=h

px (X) = Epy [(X]Y)] (2.72)

Epistemic and Aleatoric Uncertainty The task is to determine the uncertainty of
the prediction of y*, while z* is given. Using Equation [2.48 and Equation [2.49] the
uncertainty can be modeled by the entropy h,(y* | z*). and can be decomposed into
aleatoric and epistemic uncertainty, by using Equation [2.71]

he(y™ | %) = Eqquy [hq(y"[2", w)] +1(y" [| @) (2.73)

This equals the Shannon Entropy since y* is a discrete random variable:

Hy(y" | 27) = Eqr) [Hy(y" [z, w)] + 1(y" || w) (2.74)
~ ~- < \‘t/—"
aleatoric epistemic

Since the aleatoric uncertainty Eg.[H,(y*|z*, w) has fixed weights w, it does not de-

36 2 BACKGROUND

pend on the variability of w. The epistemic uncertainty I(y* || w) can be written as:

1 1lw) = [3" log (qq“’* e >q<y* |)
_ / ilog <<J(y* :_c | 2%, w)g w)> A" = ¢ | 2 w)q(w)dw

S (A s

c=1

J/

C
_ / S loglaly” = ¢ | %,w) — log(q(y” = ¢ | %)) a(y” = ¢ | 2", w)g(w)dw

TV
variability depending on w

Computation of Epistemic Uncertainty The epistemic uncertainty using the infor-
mation theoretic approach can by Theorem be calculated by:

I(y" [| w) = ho(y™ | 27) = Eqqu) [hg(y"[2", w)] (2.75)
This equals the Shannon Entropy as y* is a discrete random variable:
I(y" [| w) = Ho(y" | 2%) — Eqq,, [Hy(y"|2", w)] (2.76)

Which can again be approximated using the tractable estimator ¢ of ¢ and an unbiased
approximation of the expectation with w; ~ g(w):

1 T

Iy || w) = Haly™ | 27) — D H(y" | %, 6. (2.77)

t=1

A tractable estimator ¢ is for example a Monte Carlo Variational Inference estimation.

37

3 Active Learning

As already mentioned, the aim of active learning is to find the most label-efficient data
set. Therefore, in Section different scenarios are discussed in order to find the most
appropriate scenario for the given use case. Then, in Section a general active learning
framework is developed for the selected scenario. Finally, from Section to Section
different query strategies are presented to be used in this framework. And in Section
[3.7] are regularization methods for active learning presented in order to prevent the used
network from overfitting on the small selected data sets.

By [58| active learning (other names in the literature are ”query learning” or ”optimal
experiment design”) is a subfield of Machine Learning, which is a subfield of Artificial
Intelligence. In some Machine Learning tasks it is expensive to label all the data. To
overcome this bottleneck active learning uses queries of unlabeled instances, which the
oracle has to label. The goal of active learning is to use as few labeled instances as possible
while the active learner still wants the used network to achieve a high test accuracy.

An oracle can be a human being or a machine with the task to label the chosen instances
and a learner will in the following be considered as the framework or algorithm which aims
to find or create the best fitting instances for the learning process.

3.1 Scenarios of Active Learning

By [58] there exist various problem scenarios for the context of active learning. In the
literature three scenarios have mainly been considered: membership query synthesis,
stream-based selective sampling and pool-based sampling. All these scenarios assume
that unlabeled instances are queued in order to be labeled by an oracle.

Membership Query Synthesis The learner requests labels for any unlabeled instances
[2]. Those unlabeled instances can be generated by the learner itself or sampled from an
underlying natural distribution, but the first case is mostly considered. The application of
membership query synthesis is in some cases reasonable, but it gets difficult to annotate
the generated sample for a human. Thus, this scenario is, except for augmentations (see
Section not further considered for the given task. But in the case of augmentation
an instance from a natural distribution is labeled first and then it gets augmented. Thus,
there is no need to annotate augmented samples.

Stream-Based Selective Sampling Stream-Based selective sampling introduced by
[4] (also known as Stream-Based active learning or Sequential active learning) underlies
the assumption that obtaining an unlabeled instance is for free. Thus, after obtaining such
an instance, the learner decides whether this instance needs to be labeled by the oracle.
Opposing to Membership Query Synthesis such instances only come from an underlying
natural distribution. The decision whether an instance has to be labeled by the oracle can
be made with the help of an informative measure |12]. Such an informative measure can
be used in a way that instances, which are according to that measure more informative,

38 3 ACTIVE LEARNING

will be more likely to be labeled. An approach for this idea is the following: If the value
of such an informative measure on the instance is higher than a specific threshold, then
the instance is given to the oracle. Another approach would be to find the region of
uncertainty [11] which is a part of the version space (the space, which is consistent with
the labeled data set [45]) in which the instances are most ambiguous to the learner. Le.
if any two models of the same model class agree on all labeled data but disagree on the
some unlabeled instance, then that instance lies within the region of uncertainty.

Pool-Based sampling The assumption for Pool-Based sampling, which was proposed
by [42] is that a large collection of unlabeled instances can be gathered at once (or before
the active learning process). Pool-Based sampling therefore has the following setting: A
small labeled set £, which has initially size zero, and a large unlabeled set U. Queries
are then selectively drawn from the pool of unlabeled instances [58]. An approach is to
query the instances in a greedy fashion according to the value of each instance of the
informativeness measurement. Thus, the learner decides which instances are the most
informative ones of the pool and therefore have to be labeled by the oracle.

To resume, Stream-Based Selective Sampling scans sequentially through the data and
makes query decisions individually whereas Pool-Based Sampling ranks the entire unla-
beled set or a subset of it before selecting the best query. For the given task, a large pool
of unlabeled data U/ is easily obtained. Thus, Pool-Based sampling is the most appropriate
scenario for the given task.

3.2 Active Learning Framework

Once the Pool-Based scenario is chosen, Algorithm [4] can be implemented. Nonetheless,
Algorithm [can handle a Stream-Based scenario as well. Namely, if new unlabeled in-
stances are obtained, it adds them to the pool of unlabeled data /. Then, they are
taken into consideration in the next round. Let the labeled set be £ with samples X,
and the corresponding labels Y. Let U be the pool of unlabeled samples and let Xy be
the unlabeled samples. Then, the classifier M is trained by the following active learning
framework:

Data: unlabeled instances U = (X)), number of rounds R € N, amount of
roundly added samples k € N, untrained or pretrained classification
network M

Result: trained classification network M, labeled set £ = (X, Y7)

initialize small set X; € Xy, label it and add (X7, Y7) to £

: train M on L

: for round in {1,..., R} do

select k instances X* Xy

find labels Y* from X*, add (X*,Y™) to £

(optional: augment X* to (X*,V*), add (X*,Y*) to L)

retrain M on £

end for
Algorithm 4: General Active Learning Algorithm

S BN

3.3 Uncertainty Selection Strategies 39

This algorithm builds the foundation of the active learning framework. In line [, Algo-
rithm 4] uses the in the upcoming subsections presented sample selection methods. Some
of these methods make use of acquisition function to find the most valuable samples others
take randomly a specific number of samples from clusters. This line is also represented
by the green box in Figure

\S Oracle Sg,

Labeled Query samples Pool of
Samples Selection Unlabeled Samples
y ot =)
f“@,b) Classification >
//} l..{{\
(o network i \0\0

Figure 11: Visualization of the Active Learning Framework

Inspired by [18] an acquisition function is defined as follows:

Definition 3.1. Let M be a classification network, & be the pool of unlabeled in-
stances.Let a : Xy — Ry Then, a is an acquisition function of z, if the active learning
framework can use is it to decide which instances z* € Xy it has to query next, i.e.

" = argmax a(z) (3.1)
reXy

3.3 Uncertainty Selection Strategies

In these query selection strategies the learner (i.e. the active learning framework) selects
the samples with the highest uncertainty. On a sample with a high uncertainty, the
network is uncertain about. This can have, depending on the measurement of uncertainty,
different meanings. In general, it can be said that a network is uncertain about a sample,
if it likely to predict different labels for it on different runs. There are different kinds
of methods to measure the uncertainty. One kind uses the output of an artificial neural
network whereas another kind uses the outputs of different realizations of a Bayesian
neural networks (a committee of networks) to determine the uncertainty. Both kind of
methods as well as different kind of measurements of the uncertainty are in the following
presented.

3.3.1 Direct Uncertainty Sampling

In the case of a classification task, the output of a neural network is probabilistic. If the
output vector of the classification model is not one-hot coded, it is not totally confident

40 3 ACTIVE LEARNING

about its class-label. If the vector’s highest entries are almost equal, the input sample is
close to a decision boundary of the artificial neural network. Thus, the probabilities of the
artificial neural network can be used in order to determine its uncertainty. This is quite
straightforward for the binary case (i.e. the case of only two classes). Here, the samples
with the higher probability being closest to 0.5 are chosen. For classification with more
than two classes there are different approaches:

Measurements of Uncertainty The method of the binary case can also be applied to
the case of multiple classes. Again, the value of the highest class probability is considered.
This leads to the misclassification rate or least confident measurement as acquisition
function:

o = argmax 1 — py(9|x), with § = arg max py(y|x), (3.2)

zeXy yel

which is equivalent to the expectation of the 0/1-loss because it only considers information
about the most probable label.

One can also consider more than one class probability. The difference of the two highest
class probabilities is called margin because it is the space between the prediction and the
second most probable prediction. Thus, sampling the instance with the smallest margin
is called margin sampling. The corresponding acquisition function is given by:

xy; = argmax pg(ya|r) — pe(y1]z), with g1 = argmax py(y|x), and g, = arg max py(y|x)
zeXy s yeC\{y1}
(3.3)

The information theoretic approach, which considers all class probabilities and which
represents the amount of information needed to encode a distribution, is called Shannon
entropy. It is equivalent to the expectation of the log-loss and generalizes better to
multiple classes. Those instances are chosen, which have the highest Shannon entropy:

Z‘GXU

Ty = argmax — Zpe(gi|x)509(pe(ﬁi|$)) (3.4)

The difference of the measurements is shown in Figure [12]

Since neural networks tend to be overconfident, their probability estimates may not
provide reliable information. In contrast, Bayesian models provide a principled approach
to estimate uncertainties of the model [10].

3.3.2 Uncertainty by Committee

The in [16], with the name Query-by-Committee, introduced method consists of a com-
mittee of 7" models { M1, My, ..., M7} with parameters {0;,0s,...,07}, T € N, which are
all trained on the labeled set £, but represent different, competing hypotheses. Each
committee member can then vote for a label of an instance. A vote can be hard (i.e. the
member of the committee chooses one class) or it can be soft (i.e. each member gives

3.3 Uncertainty Selection Strategies 41

L

0.2 0.4 0.6 0.8 1.0

(c) Shannon Entropy

Figure 12: The uncertainty of 2.000 samples is displayed depending on its probability
belonging to one of the three different classes. Different acquisition functions consider
different samples as uncertain. According to a given acquisition function, the network is
on pink samples very uncertain and on turquoise ones certain. The acquisition functions
misclassification rate and margin sampling take, in contrast to entropy, samples into
consideration, which have a very low class probability for one class.

a probability for the instance belonging to each class). This yields the following vote
functions:

T Lif ¢ = argmax py, (y|x)
Hard votes: Vi, : {1,...,C} = {L,.. T} Vi(c) = > ye{L..C}
i=1 0, else,
(3.5)
T
and soft votes: V, : {1,..,C} = [1,... T}, Vi(¢) = Y _po,(y = c|x). (3.6)
=1

Both functions will in the following be summarized to V' (¢) and both can be substituted
whenever V (c¢) is written.

As described in Section [3.1] the aim of the Uncertainty by Committee method is to
minimize the region of uncertainty with as few labeled instances as possible. Therefore, the
active learning framework chooses the instances on which the members of the committee

42 3 ACTIVE LEARNING

most disagree on. This means that different votes are made by the committee members.
Such samples should be close to the decision boundary of the Bayesian neural network,
of which the committee members are realizations (see Figure [10]).

Measurements of Disagreement Again, there are different ways to measure the dis-
agreement in the committee or the uncertainty of the Bayesian neural network respectively.
The methods from Section [3.3.1] can be generalized in order to be used for the committee.
Define the vote probability as py(c) = @ The generalization of the misclassification
rate is then the variation rate with the following acquisition function:

T, = argmax 1 — py (g | x), with y = argmax py(y |). (3.7)
zeXy yed{1,...,C}

The Shannon entropy will be generalized to the vote entropy:

vy =argmax Y —py(y =c|z)log(pv(y = c| x)). (3.8)

zeXy o—1
The vote entropy can be decomposed into the mutual information Z(pa, . myp; pv(c))
of the probabilistic outcomes of the committee members and the vote probability, and
their conditioned entropy as shown in Section Since the mutual information gives
an epistemic uncertainty of the Bayesian neural network, represented by the committee
members, this approach is theoretically best founded. The corresponding acquisition
function is given by:

T
. 1
zhy = argmax [[(y | z);w] = argmax H,, (v |) — = ZHP% (y | z). (3.9)

IEXU :EEXU T t=1

Another way to obtain the approximation of an epistemic uncertainty of the Bayesian
neural network is to decompose the predictive variance into epistemic and aleatoric
uncertainties. This is described in detail in Section [2.4.I] As the predictive variance
is given in the form of a matrix, this is also the case for the decomposed epistemic
uncertainty. Thus, to get scalar value, which are necessary for an acquisition function’s
output, the sum is taken over all its entries. This yields the following acquisition function:

€Xu i1 t=1

c T
T'py = arg max Z (% Zpet(y | 2)pe, (| 90)T —pv(y [2)pv(y | x)T) . (3.10)

3.4 Class Balancing 43

3.4 Class Balancing

Balanced Data Set For a classification task, a balanced data set contains for every
class the same amount of instances. This is in most applications not the case because
in the real world not every class has the same probability. The data set from Precibake
contains for example different amounts of images per class because more Laugenbrezels
are sold than other baking products. Thus, balanced data sets are artificially generated.
This is done for the CIFAR10 data set or for the balanced test set of bakery products as
can be seen in Section [4.1]

Importance of Balanced data sets Artificial neural networks are sensitive to the
proportion of the classes. This is due to the fact that the value of the risk function is
influenced by every instances with the same weight. Thus, having a high proportion of
a specific class (major class), forces the network to prefer the major class. Which means
that they have a higher probability than they would have on a balanced data set. This
gets problematic if the task is to predict a class with a smaller proportion (minor class)
of the data set. An example would be to predict the occurrence of cancer. Usually, the
proportion of the society having cancer is lower than the proportion of people not having
cancer. Thus, an imbalanced data set is easily created. One assumes that 99% of the
people included in the data set do not have cancer. This means that if the network always
predicts to "no cancer”, its accuracy would be 99% as well. If the task is now to find
people having cancer, the network could not perform worse. Having a balanced data set
is a good way to overcome this issue. Other examples are given in . also describes
ways to overcome this issue. In the following there are different methods presented to
overcome this issue in the active learning framework.

7000

6000

o
=3
S
S

4000

3000

Number of Images

2000

Number of Images

& &
<

. N
R & ¥ >

&

o '
S &
< ’(‘0

Class

Class

(a) Unbalanced data set provided by (b) CIFAR10: balanced data set
PreciBake

Figure 13: Histograms of an unbalanced and a balanced data set

44 3 ACTIVE LEARNING

3.4.1 Class Prediction

In order to get a balanced data set, the label of each sample of the unlabeled pool U can
be predicted by the current model M. Then, the samples from the pool are clustered
according to their labels. Afterwards, the same number of samples is, if possible, ran-
domly chosen from every cluster. Supposing that k& samples are added in every round of
Algorithm [4] and that C' is the number of classes. It is possible to add an equal amount
of samples to L, if k is divisible by C' and the model M has at least predicted % samples
for each cluster. If k£ is not divisible by C, each needs to contain at least [%J samples in
order to add an almost balanced subset of U to L. If a cluster does not contain % sam-
ples, all its samples are taken and from the other clusters is an equal amount of samples
taken. Assuming that the model M predicts perfectly (100% accuracy on a test sets),
this method would yield a as perfectly as possible balanced subset of /. But if this would
be the case, no active learning framework would be needed because the model is already
performing perfectly. Still, this method balances the model more than a random selection
(assuming that the classes are not already equally distributed) of the subset because the
model’s accuracy is better than a random prediction. If it would be worse, the model
would not have learned from the data.

Consider labeled set £ Since the approach above only takes the pool of unlabeled
data U into consideration, this approach can only asymptotically and not directly balance
the labeled set £. In order to obtain a better balanced data set £ the labels from the
previous step need to be considered as well. The approach is then to take into account
the amount of samples per class and only choose samples from the less represented classes
until all classes have an equal amount of instances. Then, the above presented method
can be applied.

3.4.2 Local-Sensitivity Hashing

Hash table As stated in [21], a hash table consists of a bucket array and a hash function.
The hash function h : R" — {0, ..., K — 1} gives the index of each sample in the bucket
array with K being the capacity of the bucket array. Every bucket of the array can contain
multiple instances.

By [38] and [22] Locality-sensitive hashing (LSHash) is an algorithmic technique using
hash functions in order to configure buckets such that similar inputs belong to the same
bucket with high probability.

Feature Vector A feature vector fv € R" to the sample = is a n-dimensional repre-
sentation of the sample. In Machine Learning, a feature vector is given as the output of
a specific layer of an artificial neural network [6]. In the application of active learning,
LSHash is used in order to minimize the amount of similar instances in the training set.
This is done in the following way: First, & hyperplanes are randomly generated in the
space of the samples feature vectors. Then, of every sample is the feature vector deter-
mined to get a lower dimensional vector of the input sample. Afterwards, it is checked

3.5 Representation and Diversity Selection Strategies 45

whether the feature vector is above or below the hyperplane. This yields a vector of
zeroes (the feature vector is below a hyperplane) and ones (the feature vector is above
a hyperplane) as the output of the hash function h. The stated process is formulated in
Algorithm

Data: Unlabeled instances (most informative or a random subset) Xy
Result: B instances, which are the first of each bucket
1. for j € {1,....k} do

Generate hyperplane w; randomly
end for
: forie{l,..,N} do
sample x, ~ Xy
determine feature vector fv of x,
for j € {1,...,k} do

Create hash for fv:

1, ifwla >0

h i —

(Fv); {O, else

9: end for

10: add hash A’ to the hashtable H*

11: choose B instances, which are the first L%J of each bucket plus the remaining ones

12: end for
Algorithm 5: Algorithm of Local-sensitivity Hashing

In the case of class balancing, the number of different hashes 2 should equal the
amount of different classes C. In the best case, if the feature vectors of the classes differ
enough and if the hyperplanes are close to the class boundaries, the LSHash approach
finds in each round a balanced subset of the given data set.

Consider labeled set £ The in Section [3.4.1] presented idea to consider the labeled
set L can also be applied to LSHashs. In order to apply the idea, a hash of each labeled
sample has to be determined first.

Nonetheless, since the feature vectors are generated by the given classification model
M, LSHash only approximates the label prediction method. If 2% is considerably higher
than the amount of classes C', LSHash can be seen as a representation or diversity selection
methods, which are introduced in the next subsection.

3.5 Representation and Diversity Selection Strategies

Both methods use a distance metric to find a balanced data set which needs to be labeled.
They can both be described by the k-center problem with k£ € N being the number of
instances to be labeled. But there are other methods as well to find a most representative
subset. One considered method adds the samples to the labeled set, which cannot get
by an encoder-decoder network, which is trained on the labeled samples L, reconstructed
well.

46 3 ACTIVE LEARNING

Representation The aim is to find the most representative subset X* of a given set
V. This means a subset which represents all other samples well. This can be interpreted
in mathematical terms by the subset with the lowest sum over all elements which are not
in X over the minimal distance to an element of x. Or as presented in [30]:

Xt —)?é«%g;lmkzirg} dist(z,y) (3.11)
Theorem 3.2.
arg min me dist(z,y) = argmin Z min dist(z,y) (3.12)
XcVIX|=k, zeX XCViIX|=k Sy zeX
Proof.

arg min E min dist(z,y)
XCVIX|=k, i

= argmin g min dist(x,y) + argmin g min dist(x,y)
zeX zeX
XcviIX|=k SNk XCVIX|=k , X

dz‘st(:gz) arg min Z min d’LSt CE y) +0

zeX
XCV)|X|=k yeEV\X

= argmin Z mln dist(z,y)
XcViIX|=k S ex

]

Diversity The aim is to find the most diverse subset X C V. That is a subset X in
which all elements are as different from each other as possible. This means in mathe-
matical terms that the subset with the minimal value of the minimum mutual distance
dist(x,y) of elements z,y € X is chosen. Or as presented in [30]:

X* = argmax min dist(z,y). (3.13)
XCV,|X|=kTYEXa#Y

Another way to interpret a most diverse subset was presented in [70] and is of the form:

X* = argmax —————— dist(x,x'). (3.14)
| X \X| Z 2.

XCVIX|=k J:EX /e X, t'#t

The most diverse set is in this form a set in which the sum over all mutual distances is
the highest.

3.5.1 k-Center Problem

The aim of k-center problem is to find a subset of k£ data points, k centers, which represents
the given data set best. The idea is to minimize the maximum distance of a data point

3.5 Representation and Diversity Selection Strategies 47

Representation Diversity

) o ° °) ° ° ([
[[) °

[} [] [] [J [J [J [J [J

[J [} [J [} [J [J [J [J
([(] ° °

° ° °) (] ° ° []

® chosen sample e sample

Figure 14: Visualization of the most representative (using formula (3.11])) and the most
diverse subset (using formula (3.13))) of a given set.

of the given data set to a center [57], [43]. This idea has already been mathematically
formulated in Equation [3.11} A similar problem can be analogously formulated for a most
diverse subset consisting of k£ data points (see Equation [3.13)).

In order to find an optimal subset for representation or diversity, every subset of the size
k of a set of size n needs to be evaluated according to a measurement of its representation
or diversity. The computational cost of it is O((}))). Having high numbers of the size
n of the set as well as the size k of the subset, it is intractable to find a solution of the
k-center problem. This is stated in the following theorem.

Theorem 3.3 (NP Hardness k-Center Problem). Approximating the k-Center Problem
with any factor € is NP-hard.

Proof. Pages 3-8 from [57]. O

Greedy Algorithm An algorithm which does not need to consider every possible sub-
set X but aims to construct a set, which approximates the optimal solution, is the greedy
algorithm. Let f(j|X*) = f(X* U {j}) — f(X") with f being the utility function of the
subset (e.g. for representation Formula and for diversity Formula , then the
greedy algorithm for the k-center problem can be formulated as:

Data: k, images, similarity S

Result: subset of size k

X0 {)

. while X < k do

Xl = X" Uargmax f(j]X")
JEVA\X?

W o

4: end while
Algorithm 6: k-Center Greedy Algorithm

To formulate how well the greedy algorithm approximates the k-Center problem, the

48 3 ACTIVE LEARNING

bottleneck distance is introduced.

Definition 3.4. Let S be a set and C be the set of chosen centers. Let N.OS be a set
of points to which the center point c is the closest one. The bottleneck of a center point
¢ € C is defined as the maximum distance of a point x € N, to ¢. Then, the bottleneck
distance of the set of centers is defined as the maximum bottleneck over all center points.

Theorem 3.5. Let S be a set, let C be the set of the optimal solution of the k-center
problem. Then, the bottleneck distance of the greedy algorithm is at most two times bigger
than the bottleneck distance of the optimal solution.

Proof. Pages 68-72 from [47] (Greedy Approximation Algorithms: The k-Center-Problem).
[

Thus, with a growing number of selected samples, the difference between the optimal
solution and the by the greedy algorithm constructed solution is converging to zero.

Distance Metrics In order to be able to apply the k-center problem, a distance metric
has to be used. Those metrics can be directly applied to two samples directly or to their
feature vectors. Direct distance metrics can for example be the following: In a normed
space a distance measurement can be defined as dist(x,y) = ||y — x||, of two vectors
x,y € R™. In the case of computer vision, images can be vectorized and afterwards they
can be proceeded in the common way (i.e., taking the element-wise difference and then
the p-norm of it).

Depending on the layer of which the feature vector is taken, different representations of
the sample are given, which leads to different distances. A feature vector of the first layer
would be close to the direct difference whereas the feature vector of the last layer would
very likely differ for samples from different classes. Hence, taking the feature vectors of
the last layer into consideration may lead to class balancing, which was introduced in
Chapter 3.4 Taking the feature vectors of one of the first layers into consideration would
yield distances due to differences in more general features of the samples, whereas the
distance of feature vectors of later layers would be due to differences in more specific
features of the samples.

In the tested methods, the negative cosine similarity was used with the feature vectors
of the penultimate layer as a distance measure, i.e.

ZL'Ty

CIR (3.15)

dict(z,y) = —cos(z,y) = —
A similarity of 1 means in this case that the vectors are similar, while -1 indicates, that
they are the exact opposite.

As artificial neural network are used in order to determine the feature vectors, the
distance, which uses feature vectors, depends on the data on which the artificial neural
network was trained on in previous rounds. Therefore, the distance between samples of
different classes should grow with a growing number of labeled samples, on which the
network was trained on before the evaluation on the unlabeled samples.

3.5 Representation and Diversity Selection Strategies 49

Problem with the Greedy Algorithm In each step the greedy algorithm has to
consider all possible set with one more sample. For a big size of V' the value of the utility
function of a lot sets needs to be considered. As the size of the set X is increasing with
every step of the greedy algorithm, the calculation of the function’s value is taking much
more time as well. This makes the greedy algorithm too slow to be used in practice. Thus,
a faster method is needed.

LSHash as Approximation With a high number of different hashes (each containing
at least one instance) - optimally as high as the size of chosen subset is - LSHash can be
used to approximate the construction of the most diverse subset. This is due to the fact
that the hyperplanes, which are constructed by LSHash divide the feature space, in which
the feature vectors of the considered samples lie. Thus, having the feature space divided in
the number of samples which are chosen, the diversity and the representation problem can
be approximated. With a higher number of chosen instances the approximation becomes
better.

There are two options how to use LSHash. The first option is to only consider instances
of the set, of which the instances should be chosen (i.e. a subset of the unlabeled pool U
from. Then, from every bucket the first instances are chosen until the number of chosen
instances is reached. If one bucket does not contain any element, it is not considered.
The other option is to determine the hash of the already labeled instances first and to
add them to the corresponding bucket in the hash table. Then, determine the hash of the
set of which the instances should be chosen and to add them as well. As before the firstly
added elements of the each bucket are taken. But if an element is already labeled then
this element is not taken. Instead, the bucket is skipped. This yields to a more diverse
labeled data set.

Advantages of LSHash Let N be the size of the set of which a subset needs to be
chosen. Then, from every sample a hash is only once determined and then a specific
amount of samples is chosen from every hash. Therefore, the computational effort is with
O(N) much less than the computational effort of the greedy algorithm (Algorithm [6),
which has a computational effort of O(N?).

Which set should get represented? The arising question is whether to take into
account the labeled set and the unlabeled set or only consider the unlabeled set as the set
to get a representative subset from. Assume to take into account the union of the labeled
and unlabeled set as the one to find a representative subset from. In the general framework
(Algorithm , a specific number k of instances needs to be annotated in every round. Let
L be the size of the labeled set £ and K be the number of centers needed to find for the
k-Center problem. Thus, with an increasing number of rounds the number K = L + k of
centers increases as well. Finding K centers would also differ in every round. Instances,
which were considered as a center in a previous round may not be a center in the next
round. Thus, in every round L + k centers have to be found, which can get intractable for
the greedy algorithm. If only the unlabeled set has to be represented, this can be done
in every round with a non-changing amount of centers K = k. Hence, only the unlabeled

20 3 ACTIVE LEARNING

set was considered in the experiments. Using both sets does not become intractable for
LSHash as mentioned in the previous paragraph. How to apply the k-Center problem for
both data sets was already mentioned in Section [3.4]

3.5.2 Reconstruction Methods

Reconstruction Error The idea of this method is the following: If the reconstruction
error of an encoder-decoder model, which is trained on the labeled set L, is for an instance
low, then this instances is well represented by the other instances from £. This means
that the encoder-decoder is trained on samples, which are similar (or ”close”) to the
current instance. Thus, there is no need to label it. Contrary, if an instance has a
high reconstruction error, it is not represented well by £. Such instances are chosen by
the, in the following, introduced acquisition function. An encoder maps the given high-
dimensional input to a low-dimensional latent representation and a decoder aims to map
a low-dimensional latent representation to the high-dimensional input. This is visualized
in Figure [15] Let e be an encoder network and d be the corresponding decoder network.
Then the reconstruction loss is defined as:

Liee() = ||T — Tree||2, with 2., = d(e(x)). (3.16)
The corresponding acquisition function is therefore defined as:
Ty, = argmax Ly..(z). (3.17)
zeXy
Input Encoder z Decoder Output
X e(x) d(z) b

Figure 15: Visualization of the general idea of Decoder-Encoder networks.

For the experiments a Variational Autoencoder (VAE) (introduced by [34]) is used as
an encoder-decoder model. As explained in [15], the goal of Virtual Autoencoders is to
get a good latent representation z given the observed data L£. Thus, the goal is to find
the underlying distribution p(z | £). Using Bayes’ Theorem (Theorem [2.12] this equation

can be expressed as:
p(L] 2)p(2)
2| L) = .

Again, p(L) is intractable. Thus, Variational Inference needs to be performed as shown
in Section [2.3.2] p(z | £) is assumed to be Gaussian. Therefore the Gaussian parameter-
ization family is used in order to find the best approximation gy(z | £) of p(z | £). In

(3.18)

3.5 Representation and Diversity Selection Strategies 51

order to find a tractable solution ELBO is used (see Section [2.3.2)). This finally yields
(according to Equation [2.32)) the following risk function:

Ryi(go(z | £),p(2 | £)) = =Egy(a10)[log(p(L | 2))] + KlL(go(2 | £)[[p(2))) (3.19)

p(L | z) represents the decoder and gy(z | £) the encoder. The first term of Equality
encourages the decoder to learn to reconstruct the observed data £, whereas the second
terms aims to keep the representation of the latent variable z diverse.

u
Probabilistic \ Probabilistic
Input | Ercoder Sample* 2 ——» Decoder —» Output
20 | L X
7] \‘ o P(

Figure 16: Visualization of the general idea of Virtual Autoencoders.

The general idea of VAE is visualized in Figure [16| and the used model architectures
are shown in Section [A.4] For the encoder, the actual model of Algorithm [could have
been used as well.

Virtual Adversarial Active Learning As described in [60], the Virtual Adversarial
Active Learning (VAAL) framework consists of a Variational Autoencoder and a discrim-
inator. The discriminator (also known as adversarial network) classifies to which pool the
instances belong to (i.e., the unlabeled pool U or the labeled pool £). The discriminator is
therefore an artificial neural network with two artificial neurons in the output layer. The
VAE learns a latent representation such that sets of labeled and unlabeled instances are
mapped into one common embedding. As the discriminator aims to distinguish between
labeled and unlabeled instances, this leads to a min-max game, which is usually known
in GAN-architectures [60]. This, is due to the fact that the VAE network wants the ad-
versarial network to classify all instances as labeled, whereas the discriminator wants to
distinguish between labeled and unlabeled instances. This can be confirmed by taking a
look at the risk function:

RV% e = Ellog(pe(xr]zr))] — BKL(qs(zL|zL)||p(2L))

+ Ellog(pe(wv|zv))] — BKL(ge(2v|2v)|Ip(2L)) (3.20)
The aim of this risk function is to measure how well the instances can be reconstructed.
RS = —Ellog(D(qe(zL|z1)))] — Ellog(D(ge(zu|zv)))] (3.21)

This risk function is low if all images are classified by the discriminator as belonging to
the labeled pool.

RVAE = AlejE + /\QR(\I/dXE (322)

52 3 ACTIVE LEARNING

This risk function is a composition of the previous ones with hyperparameters \;, Ay € R,
which is used to train the VAE network.

Rp = —E[log(D(qe(zc|z1)))] — Ellog(1 — D(gs(zv]v)))] (3.23)

This risk function is low if the labeled samples are classified as labeled samples and the
unlabeled ones as unlabeled.

To select the most representative subset of U, the learner selects instances, which are
sufficiently different from the latent space. This sample selection process is done by a
discriminator and is done as follows:

Xg = argmin{D(qy(zp))} (3.24)

|Xs|=k

Thus, those instances are selected on which the discriminator is least confident about.
This leads to the following algorithm for the selection of unlabeled data points to get
annotated:

Data: labeled instances (X, Y7), unlabeled instances (Xy)
Result: X* C Xy

1: for epoch in epochs do
sample batch (xp,yr) ~ (Xr, Y1)
sample batch (zy) ~ (Xy)
compute risk functions Ry g and Rp
update network parameters:
0y ap = Ovar —oaVRyap

/D = ‘9D - OéQVRD;
8: end for
9: select samples X* using equation [3.24]

Algorithm 7: Data Selection with VAAL

Similarities and Differences between Uncertainty, Diversity and Representa-
tion Sampling The aim of uncertainty sampling is to find samples, on which the model
is most uncertain about. While the model is trained on the labeled data set and aims to
find instances, on which it is uncertain, this may yield, in the case of uncertainty, to sam-
pling samples, which differ from the labeled set. This is comparable to finding a subset,
which is diverse, if both the unlabeled and the labeled data set are considered. But for
uncertainty sampling, the mutual diversity within the selected subset is not considered.

In the case of uncertainty sampling the model is trained on the labeled data and it aims
to find instances on which it is uncertain about, those instances should be instances which
the model has not ”"seen” before or which are badly represented by the ones it has learned
from. Thus, the aim is to find a representative subset of the unlabeled samples. Since
the mutual similarity within the selected subset is, again, not considered for uncertainty
sampling, this approach can be better compared with the reconstruction methods than
the other representation sampling methods.

3.6 Combination of different Methods 53

But since in all cases it is dealt with approximations of the problem and the solutions
differ in practice. Therefore, they are presented in different subsections and are seen as
different approaches.

3.6 Combination of different Methods

In this subsection, fours ways are presented in order to combine different subset selection
methods on the unlabeled data set ¢. In the presented methods either an acquisition
function was used to select the most valuable (Weighting) samples, U was divided into
clusters (Dividing) or a subset was constructed (Constructing).

Weighting and Constructing Weighting and Constructing can be combined in the
following way: Let k be the size of the selected subset. Then, U is weighted according
to an acquisition function. Afterwards, h > k samples of U/ are chosen for which the
acquisition function has the highest values. Finally, from this set a subset of size k is
constructed.

An application of this combination method was proposed by [30]. Here, h samples
with the highest direct uncertainty were chosen and a subset was constructed using the
Greedy algorithm (see Algorithm @ or a variation of the algorithm, which is faster.

Weighting and Clustering Clustering and Weighting can be combined in two ways.
The first one is to first divide U into clusters and then apply weighting on every cluster,
i.e. take from every cluster the samples with the highest acquisition value. The second
way is similar to the one of Weighting and Constructing, i.e. first select a subset of size
h > k and then cluster this subset and select from every cluster the same amount of
samples randomly.

Weighting and Weighting The idea is to combine two acquisition functions a; and
as with a hyperparameter \:

as(z) = a1 (z) + Aag(x), (3.25)

An application of this method was proposed by [52]. Its aim is to select samples, on which
the model is not only uncertain but which are representative as well. The corresponding
framework is called informative density framework. a measures the uncertainty and the
second term how well a sample can represents the other samples from Y. Applying exp(as)

yields with a(z) = e{(z), (ﬁ > wrexy Sim(a, m’)) and 3 = e*:
1 B
xjp = argmax a(z) x | —— Z sim(x,2') | , with sim = —dist. (3.26)
2EX Xul =

As stated in [58], this method is superior to methods which do not include a measure to
find representative samples. Moreover, if the distances can be precomputed efficiently for

54 3 ACTIVE LEARNING

later use, the time required to select the next query would not be essentially different to
the time required when only the acquisition function a is considered. This is due to the
fact that the distance of two samples does not change with respect to the training of the
model. Therefore, distances are not allowed to be computed with the help of the feature
vectors of the current model.

Clustering and (Clustering or Constructing) Finally, it is also possible to divide
U first into clusters and then construct within each cluster a subset or divide it again
into clusters and select from each of those cluster randomly samples. Thus, class balance
methods can be combined with representation methods in order to get a class balanced
subset, which is representative for every class.

The only applied combination is, until now, the first way of Weighting and Clustering.

3.7 Regularization in Active Learning

As the labeled set L is, especially during the first rounds of the active learning framework,
quite small and the artificial neural network has a lot of parameters, it is prone to overfit
to the training data. This means that it could easily remember every data point of the
training set exactly but it would still perform badly at the test set because it is not able to
generalize well. But the goal of active learning is to perform well on unseen data with only
as many data points as needed. Therefore it is helpful to use regularization techniques to
generalize better.

Early Stopping of Training While the training error keeps reducing with more epochs,
the validation error may reach a point after which it is increasing (see Figure . At this
point the model starts to overfit. A way to overcome this problem is to take the model
with the lowest validation error. This can be done in the following way: A copy of the
model is stored every time the error on the validation set is lower than the errror of the
previous best model. After training the parameters of the model with the lowest valida-
tion error are then loaded in order to get the most general model. This regularization
technique is used in all experiments.

Noise Injection Adding or multiplying, during training time, noise to the network’s
hidden units is, as described in [48], another regularization technique for neural networks.
Noise injection methods aim to find the best trade-off between the data fitting process
(having the lowest value of the risk function on the training data) and model regularization
[48]. Two examples of noise injection were described in Section and Section [2.3]
namely having a Batch normalization layer or a Dropout layer. Both are applied in the
convolutional neural networks in the experiments since injected noise can also be used in
order to approximate a Bayesian neural network as shown in section [2.3]

Adversarial Training Artificial neural networks are vulnerable to small perturbations
in a specific direction [46], i.e. the adversarial direction. The adversarial direction is the

3.7 Regularization in Active Learning 55

direction in the input space, in which the label probability p,(y = k|z) of the model is
most sensitive.

Thus, [20] proposed Adversarial Training, in which the model is trained in order to
assign to each data point of the input space a label that is similar to the labels, which are
assigned to its neighbors in the adversarial direction. Let D be a non-negative divergence
function between two probability distributions, let x; € X, be a instance of the labeled
samples £ and let ¢(y|x;) be the true distribution of the output label, which is unknown
and can be approximated by a one-hot coded vector (which is one at the true label of z;).
Then, the adversarial loss on z;, given the networks parameters w, is defined as:

Laav(z1,w) == Dlq(ylz1), po(ylz1 + Taaw)], (3.27)
where 7,4, := arg max '||D\< lq(y|z1), po(y|z + 7)] (3.28)

Virtual Adversarial Training The in [46] proposed method Virtual Adversarial Train-
ing (VAT) is a semi-supervised Adversarial Training method. Let x, be either a labeled
instance x; € X or an unlabeled instance z, € Xy. To be able to use the unlabeled
instances as well, "virtual” labels are introduced. ”Virtual” labels ¢ are sampled from
the current model distribution p,(y;x). They are used in order to approximate the true
distribution of the output label ¢(y | x).

Lvadv<x*7w) = D[w(mx*>apw<g’x* + Tvadv)]y (329)
Tvadv = argmax H?< [pw(glx*)va(g|x* + T)] (330)
r;||r]|2<e

[46] proposes to use a regularization term of the form:

! S Lua(e,w), (331)

EARP NN

Rvadv (w)

which leads to a regularized risk function of the form R,.,(w) = R(w) + aRyadp(w). Thus,
in contrast to generative models, only two hyperparameters (namely € and «) need to be
set.

This method is of interest for active learning as it takes, during training, the pool
of unlabeled into consideration. Since the pool of unlabeled data U is usually big in
comparison to the set of labeled instances L, it contains a lot of additional information
and should therefore yield better classification boundaries.

Supervised VAT is almost similar to Adversarial Training, except that the actual
labels are replaced by virtual labels. Semi-supervised and supervised VAT regularization
methods are applied in the experiment section.

Augmentation Random image augmentation is a variant of random perturbation that
simply augments the data set consisting of images by perturbation using regular defor-
mation [46].

As stated in [67], instead of using a large data set, augmentation can be used in order
to create an artificially large data set. Data set augmentation is applied in computer

o6 3 ACTIVE LEARNING

vision tasks, especially in classification tasks. This is due to the fact that images are high
dimensional and can include factors of variation which can be easily simulated. Examples
are operations like translations, rotation, cropping, etc.

Two different augmentation techniques are test in the experiment section. The used
deformation techniques are displayed in the appendix (see Section Bfof the Appendix).

A whole active learning framework, which takes into consideration both uncertainty
by committee sampling and augmentation of the sampled images is described by [66] and
explained in more detail in Section of the appendix because it seems to be promising
for further testing.

57

4 Experiments

In this chapter are the experimental results presented. In Section [£.1] the experimental
setup is explained. Then, in Section are the query selection methods evaluated. And
in Section are learning curves shown in order to compare the performance of different
methods with random sampling and with the training on the whole data set. A learning
curve, which reaches the test accuracy of the whole data set before having labeled all the
data, is said to be one solution of the problem statement of Section[I.I} The best solution
is the one, which reaches the test accuracy of the whole data set first.

Table 1: In this table are the used experiment types displayed. MC is the abbreviation
of Monte Carlo and therefore describes the tractable Bayesian neural network approxi-
mations of Section i.e. MC Ensemble Cyclic is the Monte Carlo Variational Inference

method, which uses ensembles with a cyclic learning rate.

Query Method Specification Specification Abbreviation
Direct Misclassification Rate DU-MR
Uncertainty Shannon Entropy DU-SE
Mutual Information UC-D-MI
MC Dropout Predictive Variance ~ UC-D-PV
Mutual Information UC-B-MI
Uncertainty MC Batchnorm Predictive Variagce UC-B-PV
by MC Ensemble Mutl.lal. Informatlon UC-E-MI
Committee Predictive Varlagce UC-E-PV
MC Ensemble Cyclic Mutt.lal.Informlatlon UC-EC-MI
Predictive Variance UC-EC-PV
MC Ensemble DPE Mutual Information UC-ED-MI
~ C(lass predicitions ~ CBLsL
Class Balance Class predictions Including labeled set £ CB-LS-L
LSHash CB-LS-LV
LSHash Including labeled set £ CB-LS-L
~ Representation =~ RP-RP
Diversity RP-DV
Representation Reconstruction Err. VAE with FC-NN RP-RE-FC
Reconstruction Err. VAE with CNN RP-RE-CN
Virtual Advers. Active Learning RP-VA-AL
" Virtual Advers. Train. Semisupervised =~ RG-VA-SS
Regularization Virtual Advers. Train. Supervised RG-VA-SV
Augmentation 1 RG-AU-1
Augmentation 2 RG-AU-2
-~ ¢cBPB DU-MR ~ CO-CB-DU-CP-MR
CB-PB DU-SE CO-CB-DU-CP-SE
CB-PB UC-D-MI CO-CB-UC-CP-D-MI
Combinations CB-PB UC-B-MI CO-CB-UC-CP-B-MI
CB-PB UC-D-MI, RG-VA CO-CB-UC-CP-D-MI-VA
CB-PB UC-D-PV CO-CB-UC-CP-D-PV
CB-PB UC-B-PV CO-CB-UC-CP-B-PV

o8 4 EXPERIMENTS

4.1 Experimental Setup

Now, the setup of Algorithm [is explained. In Algorithm {4} an artificial neural network
is trained by an initially selected subset of the given pool of unlabeled data ¢/. Then, the
active learning process is done for R € N rounds. In every round the following steps are
done: Query selection is applied, i.e. a subset from I/ is selected. Then, these samples are
labeled by an oracle (a human annotator for instance). Finally, the network is retrained
on the labeled samples L.

Since the query selection methods have already been explained in detail in Section 3,
the experimental setup for the following steps needs to get specified in the following: the
oracle, the data set, the classification network and the training process.

4.1.1 Oracle

For the purpose of this thesis, data set are chosen, which are already labeled. But samples,
which have not been labeled according to the framework, are treated as if they have not
been labeled yet. Thus, there is no human annotator needed for this experimental session.

4.1.2 Data Sets

Different computer vision data sets are used, to get more empirical evidence about the
performance of the different methods. Moreover, the selected data sets have different
characteristics regarding the resolution of the images and the class balance of the data
sets. Thus, if a method is performing well on both data sets, there is a higher chance that
it may also perform well on another data set.

PreciBake’s Data Set This data set contains 12 classes of bakery products from four
different ovens. The images are made during the loading process. As can be seen in Table
the classes have different amounts of images and the data set is therefore not class
balanced. This makes it less easy to find a class balanced labeled set and it is therefore
less probable that the random sampling method finds a class balanced labeled set. This
data set is not artificially created and it therefore may represent the real world distribution
of baking products. The images have size 224 x 224 x 3 and are therefore colored.

CIFAR10 CIFARI0 contains of 60,000 images of 10 classes (see Table . Each image
has size 32 x 32 x 3, thus they are colored low resolution images. Since every class
contains the same amount of images, the data set is class balanced. Thus, the random
sample selection is less prone to construct an unbalanced data set. Therefore, it is more
difficult to find better samples for the Active Learning framework.

4.1 Experimental Setup 59

4.1.3 Classification Network

For each data set a different classification model is used because the input size of the
images differs. But for all experiments for a data set the same model is trained and
evaluated in order to be able to compare different selection methods. That does not
mean that a different method would not outperform the best network in this setting
when another network is used instead. Prerequisite for the model are that it has Batch
normalization and Dropout layers because there are methods, which need at least one

of these two methods. A state of the art network which satisfies both requirements is
DenseNet [28].

In the experiments, the active learning framework uses for the training with the data
set provided by PreciBake the DenseNetSmall-128 architecture (see Section , which
consists of the DenseNet121 architecture (see Section , except that the third Transi-
tion layer and the fourth Dense block are removed from the DenseNetSmall-128 model.
For the training on the CIFARIO set, the DenseNetSmall-32 architecture (see Section
is used. It consists as well of the DenseNet121 architecture but additionally, the
second Transition layer and the third Dense block are removed. By the initialization of
the model and also all the other randomized processes in the framework seeds has been
used for the purpose of reproducibility.

4.1.4 Training Process

Initialization Sets As the network is not yet trained, the initialization is done ran-
domly. To be able to train the network, it is necessary to have one instance in each class.
Thus, the initialization process is stopped when every class of the training and every class
of the validation set has at least one instance. To have a more significant result, the
experiments are done multiple times with different seeds. Different seed lead to different
initialization sets. This leads to a different size of those sets. Thus, it is not possible to
compare one seed with another (i.e. to determine the mean of the test accuracies with
respect to the part of the data set or the number of instances already included). There-
fore, only one instances per class is chosen in order to be able to compare different seeds
with each other.

Way to Query As querying single samples and retraining the model after adding this
single sample is not feasible for deep neural networks [10] it is likely that it does not have
a statistical impact on the model’s performance. Moreover, adding only one sample is
computationally intractable as the data sets are in general huge and the networks has to
be retrained as often as an instance is added. Thus, as can be seen in Section (B of the
appendix, 100 (PreciBake’s data set) or 200 (CIFAR10) instances were added after every
round. The number of selected instances is higher for the data set provided by PreciBake
because its samples have a higher resolution. Moreover, CIFAR10 contains more samples.
Adding a subset of a least size 100 is done because this results in significant changes in
the test accuracy between different rounds.

60 4 EXPERIMENTS

Validation Set Once the instances are labeled, the network needs to be trained on
them. For the purpose of training, it is not only a training set but also a validation set
needed.

Active Learning for Validation Set Since a good performance on the validation set
should lead to a good performance on the test set, it is crucial to select data points for
the validation set wisely. In order to approximate the distribution of the test set well,
different approaches might be of interest. The in Section |3| presented subset sampling
methods can be taken into consideration for the construction of a validation set as well.
A subset, which represents the test set well might be of interest. Since the test set is not
a-priori known, one may try to represent the pool of unlabeled samples well. Another
alternative is to find a class balanced validation set. Even uncertainty sampling may
yield to a better validation set. Nonetheless, these methods are out of the scope of this
thesis and might be interesting for future work. In the experiments it is assumed that a
randomly selected validation set approximates the test set distribution well.

Weight Initialization The retraining process of line 7 (of Algorithm {4)) can be done
in one of the two following ways: The network’s weights are after every round initialized
with the values the same values as in line 2 of the algorithm. Or the network uses the
weights of the best previous validation epoch as this can be seen as the probably best
weight initialization. The second method is used in the experiments.

Learning Rate Initialization In every round the network has to be retrained on the
labeled data (see the Algorithm . For the learning rate initialization there exist different
options: The learning rate can be initialized with the same value after every round (cyclic
learning rate) or it gets the value of the last learning rate of the last round. Taking the
value of the last rounds may not converge to a local minimum because the step size may be
too small. This is due to the fact that the learning rate is decreasing during the training
(at least within a round). For the first setting is the optimization process may overshoot
a local minimum but as the learning rate is decreasing during the training it can still end
up at a minimum. Thus, a cyclic learning rate is used in the following experiments.

Test Set The problem described in Section is also of importance for the testing
of the model. Testing a model on an unbalanced data set prefers models, which favor
overrepresented classes. As a result the model with the best test accuracy is not able
to detect samples of underrepresented classes. An unrepresented class is in Histogram
the class Knusperspitz. This data set is balanced by only taking an equal amount
of samples of each class for testing. This yields Histogram [I7bl Thus, the unbalanced
test set from PreciBake is distributed in the same way as the training set, whereas the
balanced test set contains now of the same amount of images per class.

4.2 Evaluation of Methods 61

1600 1600

1400 1400

S

-
N
o
o
S

-
N
1=}
S

1000 1000

Number of Image
=3
o
o

Number of Image:
=]
(=3
o

-3
o
o
o
o
o

IS
1<}
S

N
=3
S
N}
=3
S

Class Class

(a) Unbalanced test set (b) Balanced test set

Figure 17: Histograms of an unbalanced and a balanced test set, provided by PreciBake

Training In Figure |18 the validation and training losses are displayed per epoch of the
training process. Each round is separated from another by a vertical black line. (This
means that at every black line selected samples are added to the training and validation
set. In the cases of random selection, those samples are randomly selected. After the
training process of a round is finished, the model with the lowest validation loss per
epoch is chosen and the model is retrained having this model as its initialization. The
learning rate is also reset to its starting value. As the number of rounds increase, so
does the number of data points in the training and validation sets. This leads to more
iterations per epoch. Thus, the total number of iterations increases with a higher number
data points in the set and would therefore overfit earlier. Hence, with more data points in
the data sets it is valid to train with less epochs. It can be seen that the difference between
the training and validation loss is decreasing with an increasing number of rounds, i.e.
more training and validation samples added. Thus, the network is less prone to overfit to
the training set with bigger training and validation sets.

4.2 Evaluation of Methods

In this subsection, the methods are evaluated. In Section two uncertainty sampling
methods are evaluated, which is followed by the evaluation of the class balance of the se-
lected subset (Section and of the labeled data set £. In Section only methods
were included, which directly aim to have a diverse or balanced subset. In Section
all methods from Table [1| are evaluated, except regularization methods, because regular-
ization methods are not query methods (they only regularize the model’s parameters).
All evaluations are done on the data set provided by PreciBake.

4.2.1 t-distributed stochastic embedding

t-distributed stochastic embedding (tsne) is a technique for dimensionality reduction, which
is well suited for the visualization in a low embedded space (e.g. two or three dimensions)

62 4 EXPERIMENTS

T T T T T | I I I |
8 —— loss train per epoch

—— loss val per epoch
—— chosen epoch

6
5
(%]
3
S4
3
2
1
0 ks iy
0 100 200 300 400 500 600 700 800
Number of Training Epochs
T T T T T
16 —— loss train per epoch
—— loss val per epoch
1.4 —s— chosen epoch

0.2

iAot L S L,
NI S -~ n_|

I~
0 20 40 60 80 100 120 140 160
Number of Training Epochs

0.0

Figure 18: Training Process with Random Selection: loss values of training and
validation per epoch and round.

of high dimensional embedded data sets (e.g. image data) [44]. It is a variation of the
Stochastic Neighbor Embedding technique presented by but it produces significantly
better visualization results because it is less prone to crowd points in the center of the map.
Moreover, it reveals the structure of the data set at many scales . In Figure |19 the
application of the tsne technique on feature vectors of all training samples of PreciBake’s
data set is shown for round one until five. The feature vectors are determined using the
model trained on the labeled images after a specific round.

Mutual Information with MC Dropout (Figure After training the classifier on
the data selected in the first round, the most samples were selected from the classes Son-
nenblumenbrétchen (red, 29) and Schnittbrotchen (lighter red, 30). This can be backed
by the facts that there is a lot confusion in the center of the left-hand tsne plot, i.e.
clusters of these two different classes are mixed. And regarding the right-hand plot, in

4.2 Evaluation of Methods 63

the regions, which are dominated by the named classes, are purple points, which indicate
sample points with a high uncertainty. Nonetheless, considering the right-hand tsne plot,
one might expect more than two Laugenbrezels being sampled from the method.

After the training of round two, most samples are selected from Ciabatta (20, blue),
Schnittbrétchen (19, lighter red) and Baguette (16, dark blue). Since those samples are
mixed in the left tsne plot for round two, this result is backed. At the right plot, it can be
seen that samples with a high mutual information are all over the plot and from this plot it
cannot be indicated which class provides the sample with the highest mutual information.
After the training of round three, most samples are taken from Apfelecke (purple, 23) and
Schinken-Kése (orange, 11). Both lie at the lower centers of the tsne plots. In this region,
there are not many purple dots in the right-hand tsne plot showing the uncertainty. For
the class Laugenbreze, the framework selects the second-most samples (green, 13). This
can also be observed in the right-hand plot.

The training of round four results in tsne plots, which show among others the classes
of Kategorie-Brot (lighter blue, 30), Sonnenblumenbrétchen and Schnittbrétchen being
not well separated. Thus, most samples are chosen from those classes. This can be seen
in the right tsne plot, as there are more purple plots at the left-hand side of the plot.

The training on the images labeled after round four, yields the most images being
chosen from the classes Pizza (lighter orange, 28), Kategorie Brot (lighter blue, 23) and
Schnittbrétchen (lighter red, 12). This can be backed by lots of purple plots in the tsne
plot on the right-hand side as well as the fact that there is a confusion of different classes
at the left-hand side of the left tsne plot.

Shannon Entropy (Figure After the training on the data set with the first chosen
samples by the direct uncertainty method, there are, except for Laugenbreze, no class
boundaries to detect (see left tsne plot). Surprisingly, Laugenbreze has a lot of samples
with a high uncertainty. Nonetheless, only one of the 100 chosen samples is from this
class. The most samples were chosen from the class Kategorie Brot (lighter blue, 68
images chosen) even if only some samples are marked purple in the right-hand plot. The
second-most samples are taken from the class Sonnenblumenbroétchen (lighter red, 18).
For this class more purple dots can be indicated.

For the tsne plot of the feature vectors based on the network trained on samples chosen
after round one, it can be stated that the uncertainty is better distributed over the whole
set of data, i.e. there are purple points all over the right-hand tsne plot. This is also
true for samples of the classes Laugenzopf (lighter green, 32) and Apfelecke (purple, 30),
which represent the most chosen samples after round two.

After the training in round three, the most images were selected from the classes
Apfelecke (purple, 32) Ciabatta (blue, 25) and Baguette (dark blue, 14). This is backed
by the fact that in the region of these blue/purple classes, a lot classes are mixed (see left
tsne plot). The right-hand plot also shows many purple dots in this region.

Training on images selected during the first three rounds yields a classifier being mostly
uncertain about samples from the classes Pizza (lighter orange, 27) and Ciabatta (blue,
14). At the left-hand tsne plot, it can be seen that Pizza is clustered in a region but

64 4 EXPERIMENTS

there are also samples from Pizza, which do not belong to this cluster. Those samples are
close to samples of other classes and therefore have a high mutual information (right-hand
plot). Thus, they are selected by the framework. Images from the class Ciabatta are also
mixed with images from other classes and have a high uncertainty on the right-hand plot
as well.

The image selection after round five reveals, that the class Apfelecke (purple, 24) has
the most samples from the 100 most uncertain samples. Baguette (darker blue, 22) has
the second-most. Even if the images are better clustered according to the left-hand plot,
there are samples with higher uncertainties at the borders of the named classes.

4.2 Evaluation of Methods

[

Apfelecke

Baguette

Ciabatta
Kategorie-Brot
Knusperpitz e
Laugenbreze e

Laugenbroetchen
Laugenzopf

Pizza

Schinken-Kaese
Schnittbroetchen
Sonnenblumenbroetchen

0.0

[
02 04

[

[

I
0.6

[

[
0

I

I
8

Il
1.0

65

Figure 19: tsne plots showing the subset selection for MC Dropout with mutual infor-
mation for five rounds. Left: tsne plot colored by labels, right: tsne plot colored by

uncertainties.

66 4 EXPERIMENTS

Round 1

» Apfelecke Laugenbroetchen

» Baguette Laugenzopf
» Ciabatta Pizza 00 02 04 06 0.8 1.0
Kategorie-Brot Schinken-Kaese

Knusperpitz © Schnittbroetchen

Laugenbreze © Sonnenblumenbroetchen

Figure 20: tsne plots showing the subset selection for direct uncertainty with Shannon

Entropy for five rounds. Left: tsne plot colored by labels, right: tsne plot colored by
uncertainties.

4.2 Evaluation of Methods 67

4.2.2 Minimal number of images per class

This evaluation method visualizes how well the considered selection method can balance
the selected subset of unlabeled images, which is added to the labeled set. The minimum
amount of images per class in each selected set is displayed on the y-axis where on the
x-axis is the number of rounds is displayed. The maximal amount of images in the class
with the lowest amount is for data set provided by PreciBake given by [£] = [42| =8
with k£ = 100 being the number of samples, which is annotated per round and C' = 12 is
the number of classes.

7 \ / NN Vi
\ - ~ . \
4 N NN S AN
© AR / \ / -
Y / \ v
o AN </ /
Qo [N
" : N/
o, RN/
o 2 LSHash
£ / ---- LSHash including labels
G 4 /./ —-— Class predictions
§ / Class predictions including labels
83 ./' —— Random
©
€
3
£2
£
=
1
0 5 10 15 20 25
Round

Figure 21: Class balance of the selected subset of unlabeled data, selected by class
balance methods. Both class prediction methods outperform random subset selection
and both LSHash methods by four to five images per round. Class prediction adds after
eight rounds between five and seven images per round to the class with the lowest amount
of images. By a possible maximum of eight images for the lowest class, this method adds
an almost perfectly balanced subset to the labeled set, which is the aim of this method.
Both LSHash methods do not have an effect on the minimal number of images per class.
The effect of both methods which include the already labeled set £ is slightly smaller
since it does not only consider the subset.

Observing Figure [21] it can be seen that both class prediction methods yield a more
balanced selected subset. Since class prediction only considers the subset and not the
labeled data, it achieves higher results for this evaluation method. Thus, the methods
perform as intended. For LSHash, there is no big difference to see in the amount of images
for the smallest class in comparison to random sampling.

In Figure 22] it can be seen that especially diversity sampling but also representation
sampling have higher peaks than random subset selection. Thus, these methods lead in
specific rounds to a better balanced selected subset than a randomly selected one.

68 4 EXPERIMENTS

w

=)

[S)
—

---- Diversity with Greedy
------- Representation with Greedy
—— Random

N N
w ~
o w

N
N
o

= =
v ~
=} o

Minimum amount of images per class
- N
N =
w o

g
=}
oS

8 10 12 14 16
Part of Dataset in %

Figure 22: Class balance of the selected subset of unlabeled data, selected by repre-
sentation and diversity methods. The diversity selection methods has higher peaks
than random subset selection as well as representativeness subset selection. Therefore, all
in all, the minimum number of images per class is slightly higher for diversity selection.

4.2.3 Class Balance

This evaluation visualizes how the presented methods balance the set of data on which
the classifier is trained. The mean of the outcomes of the four different seeds is here
visualized (except for the diversity /representation methods, where only the first seed was
used). If a data set achieves a balance of 100%, the class with the smallest amount of
images has as many images as the one with the most. A class balance of 0 means that
the smallest class does not posses any image. All methods are evaluated only on the data
set provided by PreciBake since it is unbalanced.

First, the class balance methods are evaluated and the expected outcome can be ob-
served (see Figure . [.e. the methods, which take the already labeled set into consid-
eration achieve a higher class balance. Moreover, the class prediction methods achieve
a higher class balance than the LSHash methods, as class prediction aims to cluster the
selected set into the different classes whereas LSHash only aims to cluster the samples.

Considering the class balance of the direct uncertainty sampling methods (see Figure
, both methods achieve a higher class balance after the third round of training than
random sampling achieves. After round 10, both methods converge to a class balance of
50%. Both methods do not differ much in terms of the class balance.

To the class balance of the uncertainty by committee sampling methods (see Figure
and Figure it can be said that all methods achieve higher class balances than random
sampling for mutual information as acquisition function while MC Batchnorm and MC
Dropout only achieve lower class balances after round nine or 19. The MC Ensemble
methods achieve almost equal class accuracies for both acquisition functions. But except
MC Ensemble Cyclic, all methods seem to converge to the same class balance as random

4.2 Evaluation of Methods 69

sampling (around 40 percent).

The class balances of the methods using the reconstruction error or the VAAL frame-
work (see Figure , are only between 3 and 15 rounds higher than the of random
sampling. Afterwards, they seem to converge to the same value (40 percent).

The diversity and representation subset selection methods jump to its highest class
balance and keep this balance afterwards (see Figure . But since the methods were
only tested using one seed, it cannot be said much about the resulting class balance.

100

© | e =
Tel T T
— /’ -
B e e Lt Py
o e P i - -
wn T e ———
© _/‘/ ST
3 60 R e
[m} 7/ S0 et T e
- 7 e e
s} 7 s
v s
% 40 /.i/
D s .
= R LSHash
@ Ij' ---- LSHash including labels
8 204 —-— Class predictions
Class predictions including labels
—— Random
% 5 10 15 20 25

Round

Figure 23: Comparison of the class balance of the class balance sampling strategies
and random sampling. Class predictions, which takes the labeled set £ into consideration,
yields an almost perfectly balanced labeled set after 10 rounds of training. Class predic-
tion, which does not consider the labeled set, achieves a class balance of 80% after 30
rounds. Both LSHash methods lead to a better class balance as random subset selection.
LSHash achieves after 30 rounds a class balance of 50% and LSHash considering £ of
70%. This is the expected result.

70 4 EXPERIMENTS

100

o
> g0
£
@
[92]
©
g 60 R r—
I e < ~m._.oImEnznIneeu=iT
()
o
c
o
©
m
(%] B
@ 7
5 200 7, —-— Shannon Entropy
4
o ---- Misclassificaiton Rate
—— Random
% 5 10 15 20 25

Round

Figure 24: Comparison of the class balance of the direct uncertainty sampling strate-
gies and random sampling. Both direct uncertainty selection methods yield a higher bal-
anced data set. Misclassification rate yields to the highest class balance between round
two and 20. Afterwards, both methods are more or less equal.

100

)
= —. T T T T
2 | = T
-~
n -
g 60 /'/‘/
G / T O
8 '/ e /r‘h-N‘“‘ D PP L LU L L L
s 40 | LenpEEE TR R e o atchnorm
g —-— MC Ensemble Cyclic
5 B MC Ensemble DPE
S {’ C Enserny
’ ---- MC Ensemble
—— Random
00 5 10 s = -
Round

Figure 25: Comparison of the class balance of the uncertainty by committee sampling
strategies using mutual information and random sampling. MC Dropout sampling has
after seven rounds a higher class balance then MC Batchnorm and random sampling,
MC Batchnorm is after seven rounds higher than random selection. After 20 rounds all
methods, except MC Ensemble Cyclic and MC Ensemble DPE seem to converge to the
same class balance. MC Ensemble Cyclic yields the highest class balance.

4.2 Evaluation of Methods 71

100

—-— MC Ensemble Cyclic
2040 MC Dropout

Class Balance of Data Set in %

! ---- MC Ensemble
—— Random
% 5 10 15 20 25
Round

Figure 26: Comparison of the class balance of the uncertainty by committee sampling
strategies using the epistemic uncertainty of the predictive variance and random sam-
pling. MC Batchnorm has a higher class balance than random selection until nine rounds
and MC Dropout until 19 rounds. Afterwards both methods yield a less balanced data set
but seem to converge to the same class balance. MC Ensemble and MC Ensemble Cyclic
both achieve almost the same values for the class balance as for mutual information.
Moreover, both yield after round one a higher class balance than random sampling.

100

80

60

EPrre e

Class Balance of Data Set in %

200 0 e Reconstruction CNN-VAE
r ---- Reconstruction FC-VAE
—-— Virtual Adversarial Active Learning

0 5 10 15 20 25
Round

Figure 27: Comparison of the class balance of the sampling strategies using the recon-
struction error of different artificial neural network architectures, the VAAL sampling
method and random sampling. Until 14 rounds (FC-VAE), 17 rounds (VAAL) and 19
rounds (CNN-VAE) all methods yield a more balanced labeled data set than random
selection. Afterwards, the methods yield a slightly less balanced labeled set but tend to
converge to the same class balance.

72 4 EXPERIMENTS

100

80

60

e T —— e T T LTI
..................

40

S0l ---- Diversity with Greedy
(25 DO Representation with Greedy
—— Random

Class Balance of Data Set in %

0 5 10 15 20 25
Round

Figure 28: Comparison of the class balance of the representation and diversity sam-
pling strategies and random sampling. Diversity selection jumps after one round to its
maximal balanced data set and the balance remains more or less stable after this round.
The same happens for representation selection after 12 rounds. Both methods yield after
17 rounds equally balanced labeled sets while both yield a more than 10% more balanced
labeled set than the set generated by random selection.

4.3 Results

In this subsection, learning curves are shown for the methods from Table [Ij and both data
sets. First, the learning curves are shown for the methods on the data set provided by
PreciBake for an unbalanced and a balanced test set. To confirm the results, the methods
were, if they achieved good results on the data set provided by PreciBake, tested on the
CIFARI10 set as well. Thus, such learning curves are in such cases shown after those on
PreciBake’s data set. At the end of this section, the results are summarized in a table.

Learning curves were originally proposed by [69] and they ”provide a mathematical
representation of the learning process that takes place as task repetition occurs.” [3]
Here, the repeated task is to classify the images from the test set while the network is
trained on a gradually increasing amount of labeled samples. Thus, the learning curve
represents the test accuracy with respect to the portion of the data set, which is labeled.
If the learning curve intersects the horizontal line, which represents the test accuracy
of the training on the whole data set, it means that the method has selected a subset,
which has an equally good test accuracy. Thus, having intersected this line means that a
solution for the problem is found. Random sampling can be seen as the way the pool of
unlabeled data was constructed since the samples are randomly selected from this pool.
Therefore, a learning curve, which is above the learning curve of random sampling, means
the method constructs a better set.

4.3 Results 73

4.3.1 Direct Uncertainty Sampling

In this experimental setup random sampling is compared to sampling, which takes the
instances, which have the highest uncertainty. The uncertainties are computed using the
output of the artificial neural network with the misclassification rate or Shannon entropy
as acquisition function. This method is described in Section [3.3.1

As Figure shows, sampling by using the misclassification rate achieves a higher
accuracy than random sampling after two percent of the data being labeled and Shannon
entropy achieves this after less four percent for the unbalanced test set. For the balanced
test set both methods achieve a higher accuracy after two percent. A higher or equal
accuracy is achieved compared to the training on the whole data set after seven percent
for misclassification rate and for Shannon entropy after eight percent for the unbalanced
data set and for the balanced after 10 and 8.5 percent respectively.

Both acquisition functions yield to an improvement compared to random sampling.
The misclassification rate seems to be better than Shannon entropy at the beginning of
the training, while Shannon entropy is later better. Both methods perform nonetheless
worse than random sampling in the first rounds.

80

70

D
o

Accuracy in %
w
o

N
o

—-— Shannon Entropy
---- Misclassificaiton Rate
—— Random

—— Whole Dataset

30

20

10 20 30 40 50
Part of Dataset in %

Figure 29: Comparison of Random Sampling and direct uncertainty sampling using
Shannon entropy and misclassification rate as acquisition functions. The method using
misclassification rate has a higher test accuracy than random sampling after five percent
of the data is labeled whereas the method using Shannon entropy achieves this after ten
percent. After twelve percent, Shannon entropy is slightly better than misclassification
rate. They keep achieving higher test accuracies until 60 percent of the data is labeled
but do not achieve a test accuracy, which is as high as training on the whole labeled data
set.

74 4 EXPERIMENTS

Accuracy in %

—-— Shannon Entropy
---+ Misclassificaiton Rate
—— Random

—— Whole Dataset

50

40

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

Accuracy in %

i —-— Shannon Entropy

40|/ ---- Misclassificaiton Rate
] —— Random
30 —— Whole Dataset
2 4 6 8 10 12 14 16

Part of Dataset in %
(b) Balanced

Figure 30: Comparison of Random Sampling and direct uncertainty sampling using
Shannon entropy and misclassification rate as acquisition functions. Using the unbal-
anced test set, the method using the misclassification rate is until four percent of the
data set are labeled better than Shannon entropy. After three percent both methods yield
a higher test accuracy than random sampling. And after eight percent both methods are
better than or equal to training ont the whole labeled data set. For the balanced test
set, the difference in the accuracy of the methods and random sampling is bigger. Again,
both methods are after three percent better than random sampling, but here they equal
the test accuracy of the whole data set after eleven percent.

4.3.2 Uncertainty by Committee Sampling

The images with the highest uncertainty are sampled according to measurements described
in Section [3.3.2, Namely, the epistemic uncertainty of the entropy (mutual information)

4.3 Results 5

and the epistemic uncertainty of the predictive variance are used as acquisition functions.
For both sampling methods the test accuracy of a classification network is compared
between different ways to approximate a Bayesian neural network using the given classifi-
cation network and with random sampling. Finally, the accuracy is compared to the test
accuracy if the classification network is trained on the whole data set.

Mutual Information In Figure it can be seen, for the unbalanced test set of
PreciBake, that the approximation with MC Batchnorm is after one percent of the labeled
data set better than the other methods. After three percent MC Dropout is the highest
and after ten percent equal to the training on the whole data set. MC Batchnorm is af-
ter three percent equal to random sampling, while the ensemble methods are worse than
random sampling. For PreciBake’s balanced test set, the difference between the accuracy
of MC Dropout and random sampling is bigger, but MC Dropout reaches the accuracy
of the training on the whole data set not before 13 percent. MC Ensemble Cyclic is now
reaching an equal accuracy as random selection, whereas the difference to MC Ensemble
is even bigger. And for the balanced CIFARI10 data set (Figure , the method using
MC Ensemble as a Bayesian neural network approximation is, in terms of the test ac-
curacy, again performing much worse than random sampling, whereas MC Dropout and
MC Batchnorm perform better than random sampling. MC Dropout’s accuracy is more
stable than the one from MC Batchnorm and all in all a bit higher. No method with a
labeled data set smaller than 60 percent is better or equal to the training on the whole
data set.

Predictive Variance Using the epistemic uncertainty of the predictive variance, the
following can be said about its performance on the data set provided by PreciBake (see
Figure :On the unbalanced test set, MC Dropout achieves a slightly higher accuracy
than random sampling since two percent of the data being labeled, while MC Batchnorm
is more or less equal to random sampling and MC Ensemble Cyclic performs a bit worse.
MC Ensemble however performs a lot worse than random sampling. For the balanced test
set, the difference between MC Dropout and random sampling is bigger. MC Ensemble
Cyclic is, as in the case of mutual information as acquisition function, now performing
more or less equal to random sampling. MC Ensemble is again performing even worse.
To the performance on the CIFAR10 set, it can be said that only the approximation
using Batch Normalization (MC Batchnorm) is yielding a better test accuracy than ran-
dom sampling (since four percent). MC Dropout performs slightly worse, whereas MC
Ensemble performs a lot worse (see Figure [34).

76 4 EXPERIMENTS

------- MC Batchnorm

---- MC Ensemble Cyclic
MC Ensemble DPE

------- MC Dropout

---- MC Ensemble

30 —— Random

—— Whole Dataset

Accuracy in %

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

100

80

60

------- MC Batchnorm

---- MC Ensemble Cyclic
40 MC Ensemble DPE
------- MC Dropout

---- MC Ensemble

20 —— Random

—— Whole Dataset

Accuracy in %

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 31: Comparison of random sampling and sampling using mutual information as
acquisition function and different Bayesian neural network approximations on PreciBake’s
data set. For the unbalanced test set, the approximation with MC Batchnorm is after
one percent of the labeled data set better than the other methods. After three percent
MC Dropout is the highest and after ten percent equal to the training on the whole data
set. For the balanced test set, the difference between the accuracy of MC Dropout and

random sampling is bigger, but MC Dropout reaches the accuracy of the training on the
whole data set not before 13 percent.

4.3 Results 7

80
70

N 60

ES

9

8 50

=}

(9]

O .

<A MC Batchnorm

/ ---- MC Dropout
30 —-— MC Ensemble
—— Random

20 —— Whole Dataset

10 20 30 40 50
Part of Dataset in %

Figure 32: Comparison of random sampling and sampling using mutual information as
aquisition function and different Bayesian neural network approximations on the CIFAR10
data set. The method using MC Ensemble as a Bayesian neural network approximation
is, in terms of the test accuracy, again performing much worse than random sampling,
whereas MC Dropout and MC Batchnorm perform better than random sampling. MC
Dropout’s accuracy is more stable than the one from MC Batchnorm and all in all a bit
higher. No method with a labeled data set smaller than 60 percent is better or equal to
the training on the whole data set.

From the methods presented for uncertainty by committee sampling, MC Dropout was
the Bayesian neural network approximation with the highest test accuracies. Thus, it can
be assumed that this method approximates a Bayesian neural network better than the
other methods. Compared to the presented Ensemble methods, an explanation is that the
committee is larger for MC Dropout and MC Batchnorm (50) than for MC Ensemble (8),
MC Ensemble Cyclic (8) or MC Ensemble DPE (4). MC Dropout and MC Batchnorm
achieved higher test results with mutual information as acquisition function. Therefore,
MC Dropout with mutual information can be considered to be the best method of the
given ones.

78 4 EXPERIMENTS

100

90

80

70

Accuracy in %

601 F e MC Batchnorm

---- MC Ensemble Cyclic
s0if e MC Dropout

---- MC Ensemble

2 —— Random

—— Whole Dataset

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

©o
o

®
o

~
o

------- MC Batchnorm

- MC Ensemble Cyclic
------- MC Dropout

40 ---- MC Ensemble

—— Random

30 —— Whole Dataset

Accuracy in %

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 33: Comparison of random sampling and sampling using the epistemic uncer-
tainty of the predictive variance with different Bayesian neural network approxima-
tions on the data set provided by PreciBake. On the unbalanced test set, MC Dropout
achieves a slightly higher accuracy than random sampling since two percent of the data
being labeled, while MC Batchnorm is more or less equal to random sampling and MC
Ensemble Cyclic performs a bit worse. MC Ensemble is however performing a lot worse

than random sampling. For the balanced test set, the difference between MC Dropout
and random sampling is bigger.

4.3 Results 79

Accuracy in %
w1
o

o164 MC Batchnorm
---- MC Dropout
30 —-— MC Ensemble
—— Random
20 —— Whole Dataset
10 20 30 40 50

Part of Dataset in %

Figure 34: Comparison of random sampling and sampling using the epistemic uncer-
tainty of the predictive variance with different Bayesian neural network approxi-
mations on the CIFAR10 set. Only the approximation using Batch Normalization (MC
Batchnorm) is yielding a better test accuracy than random sampling (since four percent).
MC Dropout performs slightly worse, whereas MC Ensemble performs a lot worse.

4.3.3 Class Balance

In this experiment, the sampling methods, which aim to sample a class balanced set or
to yield a class balanced labeled set £, are compared with the random sampling method
as well as with the training on the whole data set. The class prediction method describes
clustering by a prediction of the corresponding class label, whereas the clustering is done
for the LSHash methods by the corresponding LSHashs. “including labels” means that
the LSHashs of the labeled instances are considered first.

Figure |35 displays their respective test accuracies according to the part of the data set
on which the model is trained on for the balanced an unbalanced test set from PreciBake.
It can be seen that each method yields a slightly higher test accuracy (with “class pre-
diction” higher than “class predictions including labels” higher than “LSHash including
labels” higher than “LSHash”) for the unbalanced test set. On the balanced set these
differences in the test accuracies are intensified.

Due to the fact that the CIFAR10 data set is already balanced, the presented methods
do not lead to a better performing network. The class predictions method, which takes the
already labeled samples into consideration, even performs worse than random sampling.
This can be seen in Figure [36]

80 4 EXPERIMENTS

100

90

80

70

60

Accuracy in %

---- LSHash including labels
—-— Class predictions
Class predictions including labels
—— Random
—— Whole Dataset

50

40

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

100

90

80

70

60

Accuracy in %

50 ---- LSHash including labels

—-— Class predictions

40 Class predictions including labels
—— Random

30 —— Whole Dataset

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 35: Comparison of random sampling and class balance sampling on the data
set provided by PreciBake. For the unbalanced test set, all methods achieve, after
the first percent of data added to the labeled set, a slightly higher test accuracy than
random sampling. For the balanced test set, this effect is even higher. In general,
it can be concluded that for both test sets class prediction is a bit better than class
prediction, which considers the already labeled data, which is better than the method
using LSHash. The method using LSHash performs worse than the one which considers
the already labeled samples.

4.3 Results 81

Accuracy in %
w
o

N
o
1
1
I

- LSHash including labels
—-— Class predictions

30 Class predictions including labels
—— Random
20 —— Whole Dataset
10 20 30 40 50

Part of Dataset in %

Figure 36: Comparison of random sampling and class balance strategies on the CIFAR10
set. On the CIFARIO test set, the methods, except class prediction taking the labeled
data into consideration, do not really seem to differ from random sampling in terms of
the test accuracy. This method performs worse than random sampling.

4.3.4 Representation Sampling

In this experiment, only the first seed was used since the methods took too much time
to run. The representation utility function of Equation and the diversity utility
function of Equation are used in combination with the greedy algorithm (Algorithm
@ to approximate the optimal solution of the k-Center problem.

In Figure there are, for both test sets, no big differences in the accuracy of the
two models in comparison to random sampling to detect. Diversity selection seems to
perform slightly better for more than eight percent of the data being labeled, whereas
representation selection seems to perform slightly better between two and ten percent of
PreciBake’s data set being labeled.

Due to the long sampling times, there were not tested any greedy k-Center method on
the CIFAR10 data set. And due to the results given by PreciBake’s data set, this does
not seem to be necessary.

82 4 EXPERIMENTS

90

[+
o

Accuracy in %
~
o

D
o

---- Diversity with Greedy

------- Representation with Greedy
0 —— Random
—— Whole Dataset

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

90

80

~
o

Accuracy in %
()]
o

u
o

---- Diversity with Greedy

------- Representation with Greedy
—— Random

—— Whole Dataset

40

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 37: Comparison of random sampling and diversity and representation sampling
methods on the data set provided by PreciBake. The diversity subset selction method
has after eight percent of the data set a slightly better test accuracy for the unbalanced
test set than achieved by the random sampling method. The representation sampling

method is more or less equal to random sampling. This is also observed for the balanced
test set.

4.3 Results 83

4.3.5 Reconstruction Error

Two reconstruction methods are, in this experiment, compared with the VAAL method
[60] and random sampling. For “Reconstruction FC-VAE” the network is used. For
the VAAL method as well as for “Reconstruction CCN-VAE” is the network [A.5] used in
order to reconstruct the unlabeled samples.

Figure displays that for the data set provided by PreciBake, the best result is
achieved by the reconstruction method using a convolutional neural network. Comparing
this to the results of the reconstruction method using a fully connected neural network,
the difference can be explained by the fact that convolutional neural networks are better
suited for the task of image reconstruction and the considered neural network does also
have more learnable parameters than the considered fully connected neural network. The
VAAL framework performs in terms of the achieved accuracy on a test set worse than
expected as it does not even outperform the random sampling method. Thus, the subset
is worse sampled than the randomly sampled subset. To achieve a better performance, the
hyperparameters of the VAAL framework may have to be tuned more. This explanation
is true for tests on the unbalanced and balanced data set provided by PreciBake, but the
described effects are even stronger on the balanced test set.

The methods, which take the reconstruction error into consideration, are as well tested
on CIFARI10 (see Figure) Surprisingly, the opposite effect can be observed. Namely,
the reconstruction error sampling method, which is based on a convolutional neural net-
work was in general worse on the test set than the method based on a fully connected
network, which achieved worse test results than random sampling.

84 4 EXPERIMENTS

90

[o)
o

X

£

> 70

(9}

c

=}

§ 60| f

/ —— Random
5 I! ------- Reconstruction CNN-VAE
i ---- Reconstruction FC-VAE

—-— Virtual Adversarial Active Learning

40 —— Whole Dataset

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

o
o

o
o

~
o

Accuracy in %
(o))
o

v
o
~

—— Random

------- Reconstruction CNN-VAE

J ---- Reconstruction FC-VAE

1 —-— Virtual Adversarial Active Learning
—— Whole Dataset

N
o

w
o

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 38: Comparison of random sampling and sampling methods using the recon-
struction error of Variational Autoencoders on the data set provided by PreciBake. For
the unbalanced test set a small improvement of the test accuracy between 0.5 percent
and four percent. Afterwards, there is no difference to notice. For the balanced test
set there is a difference between the reconstruction methods and random sampling until
the 16 percent of the training. This difference is bigger than the difference noted for the
unbalanced test set. The test accuracy is for the method using a convolutional variational
autoencoder higher than for the method using a fully connected variational autoencoder.

This is especially true for the first six percent of the test sets. The VAAL framework
could not yield better test results than random sampling.

4.3 Results 85

80

70

Accuracy in %
w1
o

N
o

—— Random

------- Reconstruction CNN-VAE
---- Reconstruction FC-VAE
—— Whole Dataset

30

20

10 20 30 40 50
Part of Dataset in %

Figure 39: Comparison of random rampling and sampling methods using the reconstruc-
tion error of Variational Autoencoders on the CIFAR10 set. Here, the opposing effect
can be noted. Namely, the reconstruction error samplig method using a variational au-
toencoder consisting of convolutional layers (CNN-VAE) performs worse than the method
using a varitional autoencoder consisting only of fully connected layers (FC-VAE), which
achieves a lower test accuracy than random sampling.

4.3.6 Regularization

The classifier’s test accuracies of different regularization methods for random sampling
(Virtual Adversarial Training and augmentation) are in this experimental setup compared
with random sampling using no regularization method. Two different Virtual Adversarial
Training methods are used. The first one aims to find the adversarial direction using
the unlabeled instances and the label instances (semi-supervised) while the second only
considers the labeled instances (supervised) (see Section [3.7). Moreover, two different
augmentations are tested.

In Figure it can be seen that the Virtual Adversarial Training methods achieved
both a higher accuracy until 10 percent of the data being labeled on PreciBake’s data
sets. Afterwards random sampling performs equally well considering both test sets. The
augmentations did not lead to an improvements in terms of the test accuracy. It is
important to note that especially at the beginning of the training, when only one or
two percent of PreciBake’s data set is used, the VAT methods and in particular the one
using both labeled and unlabeled images, are learning faster (i.e. achieve a higher test
accuracy).

On the CIFARI10 set (see Figure all regularization methods except the first augmen-
tation method (Augmentationl) achieved a lower test accuracy than random sampling.
Augmentationl only achieved more or less equal results than random sampling.

86 4 EXPERIMENTS

100

90

80

70

60

Accuracy in %

------- Augmentation 1

—-— Augmentation 2

—— Random

---- Virtual Adversarial Training supervised
—-— Virtual Adversarial Training semisupervised
—— Whole Dataset

501§

a0k

30

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

©O
o

o
o

~
o

------- Augmentation 1

—-— Augmentation 2

—— Random

---- Virtual Adversarial Training supervised
—-— Virtual Adversarial Training semisupervised
—— Whole Dataset

Accuracy in %
B w [«
o o o

w
o

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 40: Comparison of random sampling and random sampling with different regu-
larization methods on the data set provided by PreciBake. For the unbalanced test
set, Virtual Adversarial Training improves the accuracy especially at the beginning of the
training and leads to - compared to other methods on this test set - a big improvement
in the first rounds (between 0.5 and 6%. Until ten percent, the semi-supervised method
achieved the highest test accuracies. Afterwards, this can be stated for the supervised
method. Contrary to the VAT methods, the experiment with both augmentations did not
lead to an improvement in terms of the test accuracy. It is less or equally accurate than

random sampling. Again, for the balanced test set the difference is bigger between the
different methods.

4.3 Results 87

o)
o

~
o

D
o

x
£
250
E
=} oS .
Sl e Augmentation 1
< }'/ —-— Augmentation 2

30 —— Random

---- Virtual Adversarial Training supervised
20 —-— Virtual Adversarial Training semisupervised

—— Whole Dataset

10 20 30 40 50
Part of Dataset in %

Figure 41: Comparison of random sampling and random sampling with different regu-
larization methods on the CIFARI10 set. For the test set of CIFAR10, the accuracy of
random sampling is for all rounds higher than or equal to the ones of the different regu-
larization methods. Supervised Virtual Adversarial Training performs less worse than the
semi-supervised approach, which performed better than Augmentation2. Augmentationl
does not perform worse than random sampling but neither does it perform better.

4.3.7 Combinations of Class Prediction and Uncertainty Sampling

The combination methods are only tested on the unbalanced and balanced data set from
PreciBake, because class predictions did not have an effect on the balanced CIFAR10
data set. Class prediction was selected as class balance method as it yielded the biggest
improvement during the experiments in Section [£.3.3]

For the direct uncertainty sampling methods, the prediction of the class labels for each
instance yields an improvement in the first rounds for Shannon entropy but also yields a
deterioration during the first rounds for the misclassification rate. This deterioration is
smaller than the improvement for Shannon entropy (see Figure [42)).

For the combination of uncertainty by committee sampling and class predictions, the
best two Bayesian neural network approximations (according to the experiments in Section
were tested with class predictions (see Figure 43 and Figure . The combination
with class predictions leads to an improvement (especially during the first rounds) for
all acquisition functions and Bayesian neural network approximations. Only for MC
Batchnorm with mutual information as acquisition function there was a small range after
ten percent of the data being labeled at which the combination with class predictions had
a negative effect on the test accuracy.

38

4 EXPERIMENTS

Allin all, class balance seems to improve the performance the active learning framework
using uncertainty sampling methods on an unbalanced unlabeled pool of data.

100

e W R, e

90

80

70

60

Accuracy in %

40

Shannon Entropy with class prediction

Shannon Entropy
i —-— Misclassificaiton Rate with class prediction

50 . e

Misclassificaiton Rate

Random
Whole Dataset

2 4 6 8

10 12

Part of Dataset in %

(a) Unbalanced

14

16

100

g
i

90

80

70

60

Accuracy in %

’ —_——

50

40

30

R SE S SR

Shannon Entropy

Misclassificaiton Rate
Random
Whole Dataset

Shannon Entropy with class prediction

—-— Misclassificaiton Rate with class prediction

2 4 6 8

10 12

Part of Dataset in %

(b) Balanced

14

16

Figure 42: Comparison of Random Sampling and the combination of direct uncer-
tainty sampling and class prediction and direct uncertainty sampling methods on
the data set provided by PreciBake. For the unbalanced test set, class prediction has
only a small negative effect between 1.5 and 2% on the test accuracy of the method using
the misclassification rate as acquisition function but a bigger positive effect for Shannon
entropy until four percent. For the balanced test set, especially the negative effect on

the method with the misclassification rate is

stronger.

4.3 Results 89

100

f—. —. e
o =

90

80

70

old e MC Batchnorm

---- MC Batchnorm with class prediction
—-— MC Dropout with class prediction
------- MC Dropout

—— Random

—— Whole Dataset

Accuracy in %

50

40

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

100

90

80

70

60

------- MC Batchnorm

50 ---- MC Batchnorm with class prediction
—-— MC Dropout with class prediction

a0 e MC Dropout

—— Random

30 —— Whole Dataset

Accuracy in %

2 4 6 10 12 14 16

8
Part of Dataset in %
(b) Balanced

Figure 43: Comparison of random sampling and mutual information sampling with a
combination of mutual information sampling and class prediction. For the unbalanced
test set, class prediction yields a relatively big improvement for MC Dropout in terms of
the test accuracy of the model trained on the selected data set. An improvement can be
noted for MC Batchnorm everywhere except in the range between ten and 13 percent. For

the balanced test set, the improvement is bigger and the negative effect in the interval
from to 13 percent is not as big.

90 4 EXPERIMENTS

100

90

80

70

Accuracy in %

0l £ e MC Batchnorm

---- MC Batchnorm with class prediction
—-— MC Dropout with class prediction
------- MC Dropout

—— Random

—— Whole Dataset

50

40

2 4 6 8 10 12 14 16
Part of Dataset in %

(a) Unbalanced

100

90

80

70

60

------- MC Batchnorm

50 ---- MC Batchnorm with class prediction
—-— MC Dropout with class prediction

404 e MC Dropout

—— Random

30 —— Whole Dataset

Accuracy in %

2 4 6 10 12 14 16

8
Part of Dataset in %
(b) Balanced

Figure 44: Comparison of random sampling and sampling using the epistemic uncer-
tainty of the predictive variance with a combination of it and class prediction. For
the unbalanced test set, class prediction yields a small improvement for both, MC
Dropout and MC Batchnorm. For the balanced test set, the improvement is relatively
small for MC Dropout but big for MC Batchnorm.

4.3 Results 91

4.3.8 Best Results

Comparing the best results for the data sets from PreciBake (see Figure , it can be
observed, that MC Dropout with mutual information as acquisition function yields the
highest improvement for the model’s test accuracy. This is especially true during the first
rounds (between zero and four percent of the data being labeled). MC Dropout using
mutual information is performing until two percent of the data is labeled better than
the direct uncertainty methods. Nonetheless, all of them achieve, in this interval, worse
test accuracy results than random sampling. After eight percent all of these methods are
equally better than random sampling and achieve equally high test accuracies on both
test sets as the training on the whole data set achieves.

The bad test results in the first rounds can be improved by combining “MC Dropout
with mutual information” with “class predictions”. This combination yields test results,
which perform at all stages better or equal to random sampling. Applying on this method
the semi-supervised regularization technique Virtual Adversarial Training, yields only
during the first round a further improvement. After eight percent of the data is labeled,
it worsens the test results.

For the CIFARI10 data set (see Figure , the best results are achieved, except in
the interval between 25 and 35 percent, for the uncertainty by committee method, MC
Dropout sampling using mutual information, which performs better than both direct
uncertainty methods, which outperform random sampling.

80

i S AN, e T
o J PRy I TINT I - Gmp et
,,--.,}'Ju,,;\w._-_-eq:d "‘V‘ Nt
e E N

it

. Sk
~TER TN

-

70 i ap Y

D
o

Accuracy in %
w1
o

------- Shannon Entropy

---- Misclassificaiton Rate

—-— MC Dropout Mutual Information
—— Random

—— Whole Dataset

N
o

30

20

10 20 30 40 50
Part of Dataset in %

Figure 45: Comparison of random sampling and the best methods for CIFAR10. All
methods achieve after three percent better test accuracies than random sampling. Be-
fore, only MC Dropout with mutual information as acquisition function reached equal
accuracies. Except in the interval between 25 and 35 percent, MC Dropout with mutual
information outperformed both direct uncertainty sampling methods.

92 4 EXPERIMENTS

100

. - s ey

90

80

R
c
:>; 70 y o Shannon Entropy with class prediction
g ,?' ---- Misclassification Rate with class prediction
S 60 i —-— Misclassification Rate
<t i MC Dropout (MI) with class prediction
fi MC Dropout (MI) with class prediction and VAT
50 MC Dropout (Ml)
—— Random
40 —— Whole Dataset
2 4 6 8 10 12 14 16

Part of Dataset in %

(a) Unbalanced

100

e RN
.

.............

90
80

70
7 Shannon Entropy with class prediction
/ ---- Misclassification Rate with class prediction
—-— Misclassification Rate
------- MC Dropout (MI) with class prediction
MC Dropout (MI) with class prediction and VAT
MC Dropout (Ml)
—— Random
—— Whole Dataset

60

Accuracy in %

50

40

30

2 4 6 8 10 12 14 16
Part of Dataset in %

(b) Balanced

Figure 46: Comparison of random sampling and the best methods for PreciBake’s sets.
On the unbalanced test set, MC Dropout (MCD) with class prediction (CP) achieves
at all stages a higher or equal test accuracy than the other methods, except MCD with
CP and VAT until two percent. The latter method becomes after percent worse than
or equal to random sampling. Both methods are especially during the first rounds of
the active learning framework (between 0 and 4 percent) better than the other sampling
methods. Afterwards, all methods (except MCD with CP and VAT) converge to the test
accuracy of the classifier trained on the whole data set. The balanced test set fortifies
the difference between the methods and random sampling after two percent of the data
were labeled. All other results are also true for the balanced test.

4.3 Results

93

94 4 EXPERIMENTS

4.4 Summary

Table 2: Difference of every tested sampling method and random sampling on
the unbalanced (unbal.) and balanced (bal.) test set from PreciBake with respect to
the part of data set, which was labeled. It can be observed, that the test accuracies
of the combination of MC Dropout with mutual information and class prediction (CO-
CB-UC-CP-D-MI) are always higher than the of random sampling. This is especially
not true for the direct uncertainty sampling methods. Nonetheless, the combination
of direct uncertainty sampling methods with class prediction yields higher test results
for the training on one percent of the data, too. Moreover, using Virtual Adversarial
Training (RG-VA-SS or RG-VA-SV) yielded higher test results than random sampling
during the first rounds (here one percent). But it had, at 16 percent, the same test results
as random sampling. The combination with the best method (CO-CB-UC-CP-D-MI-VA)
was only improved at the beginning and later (after eight percent) not better than random
sampling.

Part of data in % 1 8 16
unbal. bal. wunbal. bal. unbal. bal.
DU-MR -8.68 -10.63 4.74 7.56 2.23 3.05
DU-SE -13.96 -19.33 4.74 8.85 2.51 3.95
UC-D-MI -4.02 -3.95 3.55 6.79 1.76 3.37
UC-B-MI 1.98 3.03 0.50 1.29 0.54 0.95
UC-E-MI 08 -1.61 -721 -870 -7.75 -11.10
UC-EC-MI -0.91 -0.69 -0.83 294 -1.31 0.09
UC-ED-MI -15.23 -22.53 -10.31 -10.78 -15.95 -20.10
UC-D-PV -1.82 -2.92 3.02 5.61 1.03 1.83
UC-B-PV -2.27 -0.47 0.67 1.68 -2.96 -3.89
UC-E-PV 08 -1.61 -721 -870 -7.75 -11.10
UC-EC-PV -0.91 -0.69 -0.83 294 -1.31 0.09
CB-CP 0.42 -0.13 2.47 6.64 0.66 1.80
CB-CP-L 3.02 3.22 2.19 5.11 0.98 1.98
CB-LS -0.26 -0.79 0.84 1.03 0.21 1.16
CB-LS-L 1.96 2.77 2.41 4.79 -0.29 -0.39
RP-RP -2.01 -0.97 1.69 2.92 -0.31 0.09
RP-DV -2.95 -6.46 1.36 0.77 0.63 0.77
RP-RE-FC 1.63 2.62 0.33 1.63 0.34 1.10
RP-RE-CN 0.91 4.21 1.06 2.71 -0.04 0.99
RP-VA-AL -16.97 -19.37 0.03 1.46 -0.63 -1.61
RG-VA-SS 5.73 8.93 3.12 6.34 -0.68 0.71
RG-VA-SV 2.51 4.77 3.23 5.69 -0.04 0.15
RG-AU-1 -0.83 -3.63 -0.15 0.11 -1.88 -2.13
RG-AU-2 -4.03 -4.36 0.55 -0.06 0.64 0.67
CO-DU-CP-MR -6.26 -12.33 3.85 7.7 2.30 3.48
CO-DU-CP-SE -7.38 -6.23 442 9.45 2.44 3.88
CO-CB-UC-CP-D-MI 2.18 3.67 5.01 9.04 2.21 3.26
CO-CB-UC-CP-B-MI 1.16 2.71 1.97 4.79 0.66 1.95
CO-CB-UC-CP-D-MI-VA 4.70 6.19 2.81 3.97 -0.32 0.30
CO-CB-UC-CP-D-PV -0.29 0.84 2.14 4.49 0.88 2.02

CO-CB-UC-CP-B-PV -2.43 -2.38 1.84 3.03 0.94 1.98

4.4 Summary 95

Table 3: Difference of every tested sampling method and random sampling on
the balanced set CIFARI10 with respect to the part of data set, which was labeled. It
can be observed, that except MC Ensemble (UC-E-MI, UC-E-PV) and MC Dropout with
the epistemic uncertainty of the predictive varaince (UC-D-PV), all uncertainty sampling
methods yielded higher test accuracies than random sampling. All remaining sampling
methods did not yield better test accuracies than random sampling.

Part of data in % 14 28 56

DU-MR 2.51 0.06 2.80
DU-SE 3.01 1.34 2.92
UC-D-MI 1.29 -0.09 3.49
UC-B-MI 2.75 1.13 0.67
UC-E-MI -12.84 -14.54 -13.42
UC-D-PV -6.50 -4.06 -0.23
UC-B-PV 4.00 0.90 1.15
UC-E-PV -12.84 -14.54 -13.42
CB-CP -0.66 -0.36 -0.31
CB-CP-L -3.11 -5.33 -3.46
CB-LS 1.91 -0.46 1.30
CB-LS-L 0.72 -0.15 0.00
RP-RE-FC -0.35 -1.65 -0.24
RP-RE-CN -1.09 -3.37 -0.69
RG-VA-SS -6.89 -819 -7.65
RG-VA-SV -4.92 -6.52 -4.52
RG-AU-1 -5.98 -7.86 -6.68

RG-AU-2 0.98 -0.43 1.26

96 5 CONCLUSION

5 Conclusion

This thesis aimed to label a significantly smaller subset of a given unlabeled pool of data.
On this subset, the chosen artificial neural network should achieve similar test results
as on the whole labeled pool. Therefore, an active learning framework was built, which
gradually selects subsets from the pool of unlabeled data. This framework makes use of
different subset selection methods, which can be grouped into uncertainty sampling, class
balance sampling, and representation sampling. Additionally, the framework can combine
different sampling methods. Since deep neural networks tend to overfit on small data sets,
different regularization methods were applied as well.

From the three presented sampling groups, the methods from uncertainty sampling
achieved the best test results and they improved the accuracy on all test sets. Class
balance sampling methods improved the test results (compared to random sampling) for
the data set provided by PreciBake, especially on the balanced test set, but they had a
negligible effect on the test results on the balanced CIFAR10 data set. Representation
sampling has varying results on the data set provided by PreciBake and even deteriorates
the test results on the CIFAR10 set (compared to random sampling). Some regulariza-
tion methods improved the performance of random sampling for the data set provided
by PreciBake but they worsened the test accuracy for CIFAR10. Nevertheless, their hy-
perparameter may have to be tuned further. Thus, for each data set, it must be decided
separately how useful a regularization method is for the framework.

For uncertainty sampling, the best methods were the uncertainty by committee selec-
tion methods MC Dropout and MC Batchnorm with mutual information as acquisition
function. They had higher test accuracies especially during the first rounds of the training
on PreciBake’s data set. MC Dropout with mutual information achieves, all in all, higher
test accuracies than the uncertainty sampling methods for CIFAR10.

All class balance sampling methods yielded higher test accuracies than random sam-
pling, while class predictions improved the results the most. However, the methods,
except class predictions, which included the already labeled set, had negligible changes
of the test accuracies on CIFAR10. The latter yielded worse results. This can be ex-
plained by the fact that CIFAR10 is a class balanced data set. While for representation
sampling the methods representation and diversity did not significantly improve the test
accuracy in comparison to random sampling, sampling methods using the reconstruc-
tion error as acquisition function yielded higher test accuracy for the data set provided by
PreciBake but lower for CIFAR10. The combination of the best class balance method and
the best uncertainty sampling methods did not significantly change the test accuracies
on PreciBake’s data set. The best combination of methods is, as for uncertainty sam-
pling, class predictions with MC Dropout and mutual information as acquisition function.
This method yielded especially during the first rounds the best results. Since the semi-
supervised Virtual Adversarial Training regularization method yielded better results for
random sampling on PreciBake’s data set, it was also tested on the best method. While
this combination improved again the test results during the first rounds, its test accuracy
was after eight percent (of the data set were labeled) worse than the uncertainty sampling
methods and achieved similar results as random sampling.

97

It can be concluded, that the problem could be solved with different methods with a
similar test accuracy as the training on the whole labeled data set would have yielded
by only using a subset of the tenth size. Overall, the best performance is achieved by a
combination of the class balance sampling method class prediction and the uncertainty
sampling method MC Dropout with mutual information as acquisition function. Hence,
existing uncertainty sampling methods have been improved by combining it with class bal-
ance sampling methods. Moreover, Virtual Adversarial Training as regularization method
should only be used in the first few rounds of the active learning framework.

Future Work Since the most positive effect on the model’s accuracy was scored by
uncertainty by committee methods, it is most promising to improve these methods to
get a better model accuracy with even less data. The performance can be improved by
a better Bayesian neural network approximation. Using a higher number of committee
members or a different approximation method like Bayes by Backprop [8], [41] may yield
better approximations. Thus, it is advisable to test especially the latter method in the
future.

Since the methods using the reconstruction error as acquisition function yielded im-
provements for PreciBake’s data set, these methods may get improved by using different
encoder or decoder networks. For example, the classification network (or a part of it up
to a specific layer) can be used as the encoder.

For regularization, the Bayesian Generative Active Learning framework [66], which
augments the samples directly after they are labeled, can be tested during further research.

REFERENCES 1

References

1]
2]
[3]

Precibake homepage. http://www.precibake.com/. Accessed: 2020-01-25.
Dana Angluin. Queries and concept learning. Machine learning, 2(4):319-342, 1988.

Michel Jose Anzanello and Flavio Sanson Fogliatto. Learning curve models and
applications: Literature review and research directions. International Journal of
Industrial Ergonomics, 41(5):573-583, 2011.

Les E Atlas, David A Cohn, and Richard E Ladner. Training connectionist networks
with queries and selective sampling. In Advances in neural information processing
systems, pages 566573, 1990.

Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of
the behavior of several methods for balancing machine learning training data. ACM
SIGKDD explorations newsletter, 6(1):20-29, 2004.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Marcus D Bloice, Christof Stocker, and Andreas Holzinger. Augmentor: an image
augmentation library for machine learning. arXww preprint arXiv:1708.04680, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. arXww preprint arXiw:1505.05424, 2015.

Kersting Gotz Brokate, Martin. Maf$ und Integral. Birkhatiser, 2011.

Kashyap Chitta, Jose M. Alvarez, and Adam Lesnikowski. Large-scale visual active
learning with deep probabilistic ensembles, 2018.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine learning, 15(2):201-221, 1994.

Ido Dagan and Sean P Engelson. Committee-based sampling for training probabilistic
classifiers. In Machine Learning Proceedings 1995, pages 150-157. Elsevier, 1995.

Dr. Darrin. Passive ~ vs Active Learning. https://
educationalresearchtechniques.com/2018/02/14/passive-vs-active-
learning/. Accessed: 2019-12-31.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 253-262, 2004.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016.

Gregory Druck, Gideon Mann, and Andrew McCallum. Learning from labeled fea-
tures using generalized expectation criteria. In Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 595-602. ACM, 2008.

http://www.precibake.com/
https://educationalresearchtechniques.com/2018/02/14/passive-vs-active-learning/
https://educationalresearchtechniques.com/2018/02/14/passive-vs-active-learning/
https://educationalresearchtechniques.com/2018/02/14/passive-vs-active-learning/

1

[17]

[18]

[19]

[20]

[21]

[22]

[26]

[27]

[28]

[29]

[30]

[31]

REFERENCES

Yarin Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University of
Cambridge, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning
with image data. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1183-1192. JMLR. org, 2017.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and
Donald B Rubin. Bayesian data analysis. Chapman and Hall/CRC, 2013.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Michael T Goodrich and Roberto Tamassia. Algorithm design: foundation, analysis
and internet examples. John Wiley & Sons, 2006.

David Gorisse, Matthieu Cord, and Frederic Precioso. Locality-sensitive hashing

for chi2 distance. IEEFE transactions on pattern analysis and machine intelligence,
34(2):402-409, 2011.

Stephan Guiinemann. Introduction to machine learning. University Lecture at Te-
chinical University of Munich, 2019.

Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In Advances
in neural information processing systems, pages 857-864, 2003.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic
variational inference. The Journal of Machine Learning Research, 14(1):1303-1347,
2013.

Stefan Hosein. Active learning: Curious ai algorithms. https://www.datacamp.com/
community/tutorials/active-learning, 2018.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q.
Weinberger. Snapshot ensembles: Train 1, get m for free, 2017.

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell,
and Kurt Keutzer. Densenet: Implementing efficient convnet descriptor pyramids.
arXiwv preprint arXiw:1404.1869, 2014.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor,
and Ganesh Ramakrishnan. Learning from less data: A unified data subset selection

and active learning framework for computer vision. In 2019 IEEE Winter Conference
on Applications of Computer Vision (WACYV), pages 1289-1299. IEEE, 2019.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? CoRR, abs/1703.04977, 2017.

https://www.datacamp.com/community/tutorials/active-learning
https://www.datacamp.com/community/tutorials/active-learning

REFERENCES iii

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXw preprint arXiw:1412.6980, 2014.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the
local reparameterization trick, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Claudia Kluppelberg. Einfiihrung in die statistik. University Lecture at Techinical
University of Munich, 2016.

D. Koller and N. Nir Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press, 2009.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and
active learning. In Advances in neural information processing systems, pages 231-238,
1995.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable
image search. In ICC'V, volume 9, pages 21302137, 2009.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Un-
certainty quantification using Bayesian neural networks in classification: Application
to ischemic stroke lesion segmentation, 2018. Online: https://openreview.net/
pdf?id=Sk_P2Q9sG.

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, Hugo Larochelle, and Ole
Winther. Autoencoding beyond pixels using a learned similarity metric. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Re-

search, pages 1558-1566, New York, New York, USA, 20-22 Jun 2016. PMLR.

Felix Laumann, Kumar Shridhar, and Adrian Llopart Maurin. Bayesian convolu-
tional neural networks. CoRR, abs/1806.05978, 2018.

David D Lewis and William A Gale. A sequential algorithm for training text classi-
fiers. In SIGIR’94, pages 3—12. Springer, 1994.

Andrew Lim, Brian Rodrigues, Fan Wang, and Zhou Xu. k-center problems with
minimum coverage. Theoretical Computer Science, 332(1-3):1-17, 2005.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579-2605, 2008.

Tom M Mitchell. Generalization as search. Artificial intelligence, 18(2):203-226,
1982.

Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adver-
sarial training: A regularization method for supervised and semi-supervised learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):1979-1993,
Aug 2019.

https://openreview.net/pdf?id=Sk_P2Q9sG
https://openreview.net/pdf?id=Sk_P2Q9sG

v

[47]

[48]

[49]

REFERENCES

David M Mount. Cmsc 451 design and analysis of computer algorithms. Dept. of
Computer Science, University of Maryland, pages 1-135, 2003.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing
deep neural networks by noise: its interpretation and optimization. In Advances in
Neural Information Processing Systems, pages 5109-5118, 2017.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthe-
sis with auxiliary classifier gans. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2642-2651. JMLR. org, 2017.

Michael Prince. Does active learning work? a review of the research. Journal of
engineering education, 93(3):223-231, 2004.

Prof. Dr. Stefan Ulbricht Prof. Dr. Michael Ulbricht. Nichtlineare Optimierung.
Birkhaiiser, 2012.

Rouhollah Rahmani and Sally A Goldman. Missl: Multiple-instance semi-supervised
learning. In Proceedings of the 23rd international conference on Machine learning,
pages 705-712. ACM, 2006.

Joseph Rocca. Bayesian inference problem, MCMC and variational infer-
ence. https://towardsdatascience.com/bayesian-inference-problem-mcmc—
and-variational-inference-25a8aa9bce29, 2019. Accessed: 2019-11-26.

Silke Rolles. Einfiihrung in die wahrscheinlichkeitstheorie. University Lecture at
Techinical University of Munich, 2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533-536, 1986.

Tim Salimans, Diederik P. Kingma, and Max Welling. Markov chain monte carlo
and variational inference: Bridging the gap, 2014.

Peter Sanders, Rob van Stee, and P Sanders. Approximations- und online-
algorithmen. University Lecture at Karlsruher Institut fui Technologie, https:
//algo2.iti.kit.edu/vanstee/courses/kcenter.pdf, 2007.

Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee.
In Proceedings of the fifth annual workshop on Computational learning theory, pages
287-294, 1992.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active
learning. CoRR, abs/1904.00370, 2019.

Adrian FM Smith and Gareth O Roberts. Bayesian computation via the gibbs sam-
pler and related markov chain monte carlo methods. Journal of the Royal Statistical
Society: Series B (Methodological), 55(1):3-23, 1993.

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://algo2.iti.kit.edu/vanstee/courses/kcenter.pdf
https://algo2.iti.kit.edu/vanstee/courses/kcenter.pdf

REFERENCES v

[62]

[63]

Nitish Srivastava. Improving neural networks with dropout. University of Toronto,
182(566):7, 2013.

Martin A Tanner and Wing Hung Wong. The calculation of posterior distributions
by data augmentation. Journal of the American statistical Association, 82(398):528-
540, 1987.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation
for batch normalized deep networks, 2018.

Simon Tong and Daphne Koller. Support vector machine active learning with ap-
plications to text classification. Journal of machine learning research, 2(Nov):45-66,
2001.

Toan Tran, Thanh-Toan Do, lan Reid, and Gustavo Carneiro. Bayesian generative
active deep learning. arXww preprint arXiv:1904.11643, 2019.

Yash Upadhyay. Regularization techniques for Neural Networks. https:
//towardsdatascience.com/regularization-techniques-for-neural-
networks-e55f295f2866), 2019. Accessed: 2019-11-14.

Michael M. Wolf. Mathematical foundations of machine learning. University Lecture
at Techinical University of Munich, 2018.

Theodore P Wright. Factors affecting the cost of airplanes. Journal of the aeronautical
sciences, 3(4):122-128, 1936.

Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforcement learning for unsuper-
vised video summarization with diversity-representativeness reward, 2017.

https://towardsdatascience.com/regularization-techniques-for-neural-networks-e55f295f2866
https://towardsdatascience.com/regularization-techniques-for-neural-networks-e55f295f2866
https://towardsdatascience.com/regularization-techniques-for-neural-networks-e55f295f2866

vi

Appendices

A NEURAL NETWORK ARCHITECTURES

A Neural Network Architectures

A.1 DenseNetl121

Table 4: DenseNet121: the convolutional layer has stride = 2 and padding = 3, the
max pooling layer has stride = 2 and padding = 1.

Layer Type Output Channels Input Shape Layer Specs NonLinearity

Convolution 64 N x3x112x112 ker=7x7,pad =3

Batch Norm 64 N x64x 112 x 112 ReLU

Max Pooling 64 N x64x112x 112 ker =3 x 3

Dense Block (1) 256 N x 64 x 56 x 56 6x Dense Layer

Transition Layer 128 N x 256 x 56 x 56 ReLU

Dense Block (2) 512 N x 128 x 28 x 28 12x Dense Layer

Transition Layer 256 N x 512 x 28 x 28 ReLU

Dense Block (3) 1024 N x 256 x 14 x 14 24x Dense Layer

Transition Layer 512 N x 1024 x 14 x 14 ReLU

Dense Block (4) 1024 N x512x7x7 16x Dense Layer

Batch Norm 1024 N x 1024 x 7 x 7

Avg Pooling 1024 N x 1024 x 7 x 7 ker =1x1

FC Layer 1000 N x 1024 Softmax
Owtput Nx100

A.1 DenseNet121

vii

Table 5: Dense Layer: the first convolutional layer has padding = 0 and stride = 1, the
second has padding = 1 and stride = 1.

Layer type

Input Shape

Output Channels

Kernel Size Non-Linearity

Batch Normalization
Convolution
Batch Normalization

Convolution

Dropout (p = 0.5)

N X ¢y X b X w
N X ¢y X b X w
N x 128 X h X w
N x 128 X h X w

N x32x hxw

Cin
128
128

32

ReLU
1x1

ReLU
3 %3

N x32x hxw

Table 6: Transition Layer: the convolutional layer has stride = 1 and padding = 0, the
pooling layer has stride = 2 and padding = 0

Layer type

Input Shape

Output Channels

Kernel Size Non-Linearity

Batch Normalization
Convolution

Average Pooling

N X ¢ X h X w

N X ¢, X h x w

ReLU

viii A NEURAL NETWORK ARCHITECTURES

A.2 DenseNetSmall-128

Table 7: DenseNetSmall-128: for the convolutional layer is stride = 2 and padding =
3, for the max pooling layer is stride = 2 and padding = 1.

Layer Type Output Channels Input Shape Layer Specs NonLinearity
Convolution 64 N x3x128x 128 ker =7 x 7, pad =3

Batch Norm 64 N x 64 x 128 x 128 ReLLU
Pooling 64 N x 64 x 128 x 128 ker =3 x 3

Dense Block (1) 256 N x 64 x 64 x 64 6x Dense Layer

Transition Layer 128 N x 256 x 64 x 64 ReLU
Dense Block (2) 512 N x 128 x 32 x 32 12x Dense Layer

Transition Layer 256 N x 512 x 32 x 32 ReLLU
Dense Block (3) 1024 N x 256 x 16 x 16 ~ 24x Dense Layer

Batch Norm 1024 N x 1024 x 16 x 16

Pooling 1024 N x 1024 x 16 x 16 ker = 16 x 16, avg

FC Layer 12 N x 1024 Softmax

A.3 DenseNetSmall-32 ix

A.3 DenseNetSmall-32

Table 8: DenseNetSmall-32: for the convolutional layer is stride = 2 and padding = 3,
for the max pooling layer is stride = 2 and padding = 1.

Layer Type Output Channels Input Shape Layer Specs NonLinearity

Convolution 64 N x3x32x32 ker =7x 7, pad =3

Batch Norm 64 N x 64 x32x 32 ReLU

Pooling 64 N x64x32x32 ker=3x3

Dense Block (1) 256 N x 16 x 16 x 64 6x Dense Layer

Transition Layer 128 N x 256 x 16 x 16 ReLU

Dense Block (2) 512 N x 128 x 8 x 8 12x Dense Layer

Batch Norm 512 N x 512 x8x8

Pooling 512 N x512x8x8 ker = 8 x 8, avg

FC Layer 10 N x 512 Softmax
outpwt Nx10

A.4 Variational Autoencoder

Table 9: Variational Autoencoder consisting of fully connected layers (FC-VAE)

(a) encoder

Layer Type Input Size Output Size Non-Linearity
Fully Connected N x 3 x h*xw 400 ReLU

Fully Connected N x 3 x 400 20

Output N x 3 x 20

(b) decoder

Layer Type Input Size Output Size Non-Linearity
Fully Connected N x 3 x 20 400 ReLLU
Fully Connected N x 3 x 400 h *w Sigmoid

X A NEURAL NETWORK ARCHITECTURES

A.5 Convolutional Variational Autoencoder

Table 10: Convolutional Variational Autoencoder with convolutional layers for the
CIFARI10 data set (CNN-VAE). All (transpose) convolutional layers have stride = 2 and
padding = 0.

(a) encoder

Layer Type Kernel Size Input Shape Output Channels Non-Linearity
Convolution 4 x4 N x 3 x32x 32 32 ReLU
Convolution 4 x4 N x32x15x15 64 ReLU

Fully Connected N X 64%x6%6 32

Output N x 32

(b) decoder

Layer Type Kernel Size Input Shape Output Channels Non-Linearity
Fully Connected 6 x6 N x 32 64

Transp. Convolution 6 x 6 Nx64x1x1 32 ReLU
Transp. Convolution 6 x6 N x32x6x6 16 ReLU
Transp. Convolution 2x2 N x 16 x 16 x 16 3 Sigmoid

Output N x 3 x32x 32

A.5 Convolutional Variational Autoencoder

X1

Table 11: Convolutional Variational Autoencoder with Convolutional layers for the
data set provided by PreciBake (CNN VAE). All convolutional and transpose convolu-
tional layers have stride = 2 and padding = 0.

(a) encoder

Layer Type Kernel Size Input Shape Output Channels Non-Linearity
Convolution 4 x4 N x 3 x 128 x 128 32 ReLU
Convolution 4 x4 N x 32 x 63 x 63 64 ReLU
Convolution 4 x4 N x 64 x 30 x 30 128 ReLU
Convolution 4 x4 N x 128 x 14 x 14 256 ReLU
Fully Connected N x 256 % 6 * 6 32
Output N x 32

(b) decoder
Layer Type Kernel Size Input Shape Output Channels Non-Linearity

Fully Connected

Transp. Convolution
Transp. Convolution
Transp. Convolution
Transp. Convolution

Transp. Convolution

N x 32

N x256 x1x1
N x 128 x 5 x5
N x 64 x13 x 13
N x 32 x 30 x 30
N x 16 x 64 x 64
N x 3 x 128 x 128

256
128
64
32
16

ReLU
ReLU
ReLU
ReLU
Sigmoid

Table 12: Discriminator for Variational Adversarial Active Learning

Layer Type Output Size Input Shape NonLinearity
Fully Connected 512 N x 32 ReLLU

Fully Connected 512 N x 512 ReLLU

Fully Connected 512 N x 512

Fully Connected 1 N x512 Sigmoid
Output N x1

xii

B TRAINING HYPERPARAMETERS

B Training Hyperparameters

Table 13: Training Hyperparameters for both data sets. 1" and E are only necessary when
the corresponding Bayesian neural network approximation is used.

Hyperparameter Value

loss Leg (Equation
optimizer Adam [32]

learning rate type exponential

learning rate start 0.001

learning rate decay 0.997

initialization set train
initialization set val

MC samples (T)

one image per class

one image per class

50 (Dropout, Batchnorm)

8 (Ensemble, Ensemble Cyclic)
4 (Ensemble DPE)

Table 15: Hyperparameters for the
training with the CIFAR10 data set

Table 14: Hyperparameters for the training with Hyperparameter Value
the data set provided by PreciBake
minimum number of itera- 150
Hyperparameter Value tions
minimum number of iterations 250 minimum number of epochs 20
minimum number of epochs 10))
. . maximum batch size 1024
maximum batch size 64
labeled images per round train 100 labeled images per round 200
(B) train (B)
preselected images per round 400)
(8) preselected images per 800
labeled images per round val 42 round (6)
rounds 30 labeled images per round 85
seeds 0,123,999, 5 val
dropout rate 0.5
rounds 100
seeds 0

123

Table 16: Hyperparameters for all Vari-
ational Auto-Encoder networks

Hyperparameter Value

epochs 40 (FC), 80
(CNN)

loss L = MSFE +
KL

optimizer Adam [32]

learning rate decay exponential

type

learning rate start 0.001

learning rate decay 0.997

Table 17:

xiil

Hyperparameters for the Varia-
tional Adversarial Active Learning

Hyperparameter Value

iterations 10,000

maximum batch size 1024

optimizers Adam [32]

learning rates’ decay step decay

type

learning rates’ decay 400

step

learning rates” decay 0.9

Lird MSE -SKILL

6] 1

Ly binary cross en-
tropy

)\1 1

A2 1

number steps VAE 2

Lp binary cross en-
tropy

number steps D 1

X1iv

B.1 Augmentation

B TRAINING HYPERPARAMETERS

Table 18: Hyperparameters for Augmentation 1, augmentation methods used from |[7].

Augmentation Method Probability Parameter

Parameter

rotation 0.3
flip top bottom 0.25
flip left right 0.25
crop random 0.25
random contrast 0.5
resize 1

max. rot. left: 10

percentage area = 0.9
min factor = -0.5
height: 128 or 32

max. rot. right: 10

max factor = 0.5
width = 128 or 32

Table 19: Hyperparameters for Augmentation 2, augmentation methods used from |[7].

Augmentation Method Probability Parameter

Parameter

rotation
flip top bottom
zoom random

1 percentage area: 0.5

1 maximal rot. left: 5 maximal rot. right: 5

XV

C Data sets

Table 20: Data set provided by PreciBake
with the number of images per class for the

training, validation and testing of the model Table 21: CIFAR10 with 10 classes and

the corresponding number of images per
Class Name Train + Val = Test class and for training and validation or
testing of the model

Apfelecke 1,225 306
Baguette 1,756 439 Class Train + Val Test

Name
Ciabatta 1,030 257

airplane 5,000 1,000
Kategorie Brot 3,961 989

automobile 5,000 1,000
Knusperspitz 387 97)

bird 5,000 1,000
Laugenbrezel 6,353 1,588

cat 5,000 1,000
Laugenbrotchen 593 148

deer 5,000 1,000
Laugenzopf 1,624 381

dog 5,000 1,000
Pizza Magherita 1,900 476

frog 5,000 1,000
Schinken-Kése 764 191
Croissant horse 5,000 1,000
Schnitt- 3,803 974 ship 5,000 1,000
brotchen truck 5,000 1,000
Sonnenblumen- 2,041 510 total 50,000 10,000
brétchen

xvi D ADDITIONAL METHODS

D Additional Methods

D.1 Bayes by Backprop

This method is another technique to get an approximation of the real underlying dis-
tribution of a Bayesian neural network. Bayes by Backprop is a Variational Inference
approach. It aims to find the best parameters of a given parametrization family with
backpropagation and the local reparameterization trick.

As stated in [§] it applies:

Theorem D.1. Let € ~ q(¢) be a random variable with q(e)de = q(w|0)dw and let w =
t(0,€) with t being a deterministic function. Then for a function f with derivatives in w
it applies:

9 0f (w,0)]dw _ Of (w,0)
gLt [f (0, 0)] = By | =—5 =55 + == (D.1)
Proof. In section 3.1 of [§]. O
Using this theorem, v = %w,e)] only needs to be determined once. This yields for

gaussian distributed weights with w = pu + o * € to the following equations:

ow 00 ou
_ow | 0f(w,p)
B V@u + ou
st Of(w,p)
O

g, - w0 ow oftw.p

and

_ 07w,) ow | 05(w,0)
- w90 do
ow Of(w,o)

- ”ao oo

ow
80': Ve _'_ af<w7 /"L)
op

Vo

D.1 Bayes by Backprop xvii

This leads to the following algorithm.

Data: non-normalized probability distribution
Result:

: draw € ~ N(0,1)

w = p+log(1+ exp(p)) * €

0 = (u,p)

f(w,0) = log(q(w|0)) — log(p(w)p(Y | X, w)) (ELBO)
of(w)]

V=T
Of (w,0)

Vi=v+=5"=

. € 8f(w70)
VP o V1+emp(fp) + oo
= p—aVv,

pp—aV,

Algorithm 8: Bayes by Backprop [§]

Deep neural networks have lots of parameters. The need of sampling errors gets compu-
tationally very costly for lots of parameters in network architectures with a high amount
of layers. Thus, assume for example a layer with m neurons with inputs x € R, For
only this layer € has to be sampled m*1000 times. Thus, this method is not suitable for
deep neural networks. The local reparameterization trick overcomes this issue by sampling
only the activation functions.

Local reparameterization trick [33] As the input of an activation function is of a
lower dimension then the product of the weight matrix of the layer and its input, it is less
costly to sample for each output of the activation function instead of sampling for each
summand of the matrix product. Assuming a gaussian distributions of the parameters
this yields to the following sampling methods for fully connected and convolutional layers
respectively. For a fully connected layer the input z;; of the activation function is with
input values x; ;:

M;—y
zij = E Wi j kTt Wi (D.2)
k=1

It applies with ¢; ; ~ N(0,1) and

Zij = Yij T 0ij * € (D.3)
M;_1 M;_1

= . , . 2 2 € D.4

- ILLZ7]7kxk7] + ILLZvo + O—Z,j,kxk,j + 0—27061/7] : (:)
k=1 k=1

Equation yields z; ; ~ N (7i;,0;;). And finally, Equation yields the weights w; ;
of the j* neuron of the i layer to be distributed with gg(w; ;x| X,Y) = N (1ijk, Oijk)-

xviii D ADDITIONAL METHODS

And for a convolutional layer the input z; of the nonlinear function is with input values
T

K; 1
2k = Z Wik w * xpr + Wi o (D.5)
k=1
It applies with e, ~ N(0,1):
Zik = Yijk + € x0ik (D.6)
K 1 Ki 1
= Z ik k' * Ty + Tik0 + €k Z Uikvk/ * T+ Uik,o (D.7)
k=1 k'=1

Equation yields 2z, ~ N (7, 0k)
And finally, Equation yields the weights w; x» € Wi s 4 of the k" filter of the i** layer
to be distributed Wlth qg(wi7k7k/7h7w|X, Y) = N(:“Lk,k’,h,wy Ui,k,k’,h,w)'

The local reparameterization trick is especially important for convolutional layers as
the weights e i . would be sampled for every wy, i . H;* W, times as this is the number
of patches obtained from the input x.

Estimating Uncertainties using Bayes by Backprop Usually, in Bayes by Back-
prop it is assumed gp(w|X,Y) ~ N (w | p, X) with 6 = {p, X}.
Moreover, Bayes by Backprop assumes the weights independent of each other.

o 0 - 0
0 o3

Thus: X =1 . o .| with d being the number of parameters in the network.
o 0 -.. 03

Using Equation leads to a predictive posterior distribution of the form:

py* | 2%, X)Y) ~ /Qp(y* | 2,)N (w | p, X)dw (D.8)

As the task is a classification problem, the label y* of the unseen instance z* is assumed
to be categorical distributed, which leads to:

P o X Y) = [Catly” | LN (o | 1, s D9
_ / ﬁf (.I*)y: 1 €_wdw
a QL N (2m)kdet(X)

d
— [T [[ommge = a (D.10)

D.2 Bayesian Generative Active Learning Xix

For Equation there does not exist a closed-form solution [41]. Thus, the unbiased
estimator of the form of Equation has to be used and one obtains:

c d 1 7(wi—w)2
(x*)ve e % dw D.11
/5261:[1 Jul@) H V2mo? ()
T C
~ > T for (2% with & ~ N (s, 07) (D.12)

Epistemic Uncertainty To approximate the epistemic uncertainty of the predictive
variance Equation [2.65 can be used and in order to approximate the epistemic uncertainty
of the entropy Equation [2.77] can be used.

D.2 Bayesian Generative Active Learning

The idea of Bayesian Generated Active Learning (BGAL) is as described in [66] to com-
bine data augmentation with active learning. Data augmentation generates artificially
new instances, which increases the size of the training set. This training set is especially
low for active learning. Some of the previously considered active learning methods se-
lect instances by an acquisition function ax(z). Assume that an acquisition function
is used, then active learning may avoid that the data augmentation generates instances
which waste computational resources but may generate them in a way that their informa-
tion gain for the network is closely as good as the one from the most informative instances.

Theorem D.2. Assume that there exists the gradient V ax () of the acquisition function
apn(x) with respect to the instance x and that x* is an interior point of the unlabeled pool
U. Let 2’ be a generated point from then x* by line [from algorithm[9, then

am(z") ~ ap(z*). (D.13)

Proof. In section 3.3 of [66]. O

This means that a generated instances is also informative.

The in [66] proposed procedure is therefore following: First, select the most informative
instances, then label them and finally produce new artificial samples (k € N each) of
those instances by a generator. The preferred model is a VAE-ACGAN network, which
is a combination of a VAE-GAN [40] network and an ACGAN [49] network. The encoder
network F consists of the VAE part of the network whereas the generator/decoder network
GG and the descriminator network D are included in the ACGAN architecture. The loss

XX D ADDITIONAL METHODS

function L of this network consists of the following functions:

Ly ag = Lyec + Lprior
Lacaan = log(dy,(2)) + log(1 — dy,, (g0, (2))) + log(1 — dg,, (9o ()
+ log(o(c(x))) + log(a(c(g(2)))) + log(o(c(goq (1))
with u ~ N(0,I) and o being the softmax activation function.

L = Lyag+ Laccan

Data: selected instances (most informative) X}, C Xy
Result: labeled selected instances augmented instances (X}, Y7)
1: for z; € X{; do

2: ask to oracle to find label y; for x;

3: add z;,y; to L

4z egy(x;)

5. for je{l,..,k} do

6wl gne()

7 compute loss Ly ag

8: sample u ~ N (0, 1)

9: compute loss Licaan

10: update network parameters:

11: O <+ O — CY1V9ELVAE

12: O < g — a1V, (VLree — Lacgan)
13: Op < 0p — oV, Lacaan

14: add augmented instances (z; ;, ;) to £

15: end for

16: end for
Algorithm 9: Data Augmentation Algorithm

(D.14)
(D.15)
(D.16)

(D.17)

	Introduction
	Motivation
	Active Learning in School
	From School to Machine Learning

	Application - The Company
	Related Work

	Background
	Probability Theory
	Artificial Neural Networks
	Introduction
	Optimization
	Bayesian Neural Networks

	Approximation of Bayesian Neural Network
	Markov Chain Monte Carlo
	Variational Inference
	Monte Carlo Dropout and Batch Normalization
	Ensemble Methods

	Uncertainty of Bayesian Neural Networks
	Uncertainty Decomposition using Predictive Variance
	Uncertainty Decompostion using Information Theory

	Active Learning
	Scenarios of Active Learning
	Active Learning Framework
	Uncertainty Selection Strategies
	Direct Uncertainty Sampling
	Uncertainty by Committee

	Class Balancing
	Class Prediction
	Local-Sensitivity Hashing

	Representation and Diversity Selection Strategies
	k-Center Problem
	Reconstruction Methods

	Combination of different Methods
	Regularization in Active Learning

	Experiments
	Experimental Setup
	Oracle
	Data Sets
	Classification Network
	Training Process

	Evaluation of Methods
	t-distributed stochastic embedding
	Minimal number of images per class
	Class Balance

	Results
	Direct Uncertainty Sampling
	Uncertainty by Committee Sampling
	Class Balance
	Representation Sampling
	Reconstruction Error
	Regularization
	Combinations of Class Prediction and Uncertainty Sampling
	Best Results

	Summary

	Conclusion
	References
	Appendices
	Neural Network Architectures
	DenseNet121
	DenseNetSmall-128
	DenseNetSmall-32
	Variational Autoencoder
	Convolutional Variational Autoencoder

	Training Hyperparameters
	Augmentation

	Data sets
	Additional Methods
	Bayes by Backprop
	Bayesian Generative Active Learning

