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Abstract

Given recent discussions of forming a liberalized market at the distribu-
tion grid level, this dissertation focuses on the coordinated market framework.
Based on spot pricing principles, the market framework comprises market
structures and pricing schemes that allow greater economic efficiency and
continued satisfactory operation of the distribution grid in a decentralized man-
ner. We focus on the following research areas at two hierarchical levels. At a
lower level, a market framework that comprises a coordinated market-clearing
model for i) a centralized distribution grid operator (DSO) market for ancillary
services (ASs) in distribution grids and, ii) a fully decentralized market for peer-
to-peer (P2P) energy trade. The P2P market enables the bilateral transaction
between prosumers, whereas the ASs market is supposed to procure suffi-
cient resources for improving the local/upstream grid stability. This is because
the grid constraint violation is the major challenge for P2P energy sharing in
the low-voltage (LV) distribution grid, despite its appealing perspective in en-
abling a consumer-centered market. To mitigate the grid-constraint-violation
issue, we envision that the AS market can be organized by DSO that uti-
lizes distributed energy resources (DERs) to improve economic efficiency. To
regulate and encourage the market participants in the P2P market towards
“grid-friendly” behavior, a grid usage pricing (GUP) scheme is developed to
interlink the decoupled markets. By calculating the decomposable distribution
locational marginal prices (DLMPs), the essential price information of provid-
ing ASs can be recovered to allocate the grid usage cost to each P2P trans-
action. By examining the composition of GUPs, we show that it serves as
price signals to incentivize the P2P market to support the grid operation in
terms of loss reduction, voltage support and congestion management. The
duality analysis of the coordinated market-clearing model provides the analyt-
ical results for the composition of P2P trading prices and their interpretations.
Moreover, a numerical analysis demonstrates the effectiveness of the mar-
ket design to support grid operational objectives of loss reduction, congestion
management, and voltage control. At a higher level, the region-to-region coor-
dination between the local distribution grid markets is proposed. In principle,
each distribution grid regional operators maximizes its social-welfare, which is
the local (regional) version of the overall social-welfare maximization problem.
The individual problem incorporates the coupled physical information (voltage
magnitude, angles and line flows) from its neighboring regions. The consen-
sus regarding these state variables of all regions is enforced through the pro-
posed Consensus-Alternating direction method of multipliers Structured Trust-
region (CAST) algorithm. On convergence, DLMPs are recovered for each
region, which is novel in the sense that on one hand they are computed in
a distributed manner, i.e. with preserving local information, and, on another
side, they accurately represent loss allocation from the neighboring regions.
The framework hierarchically coordinates information, while aiming to achieve
consensus by sharing physically coupled information among multiple regional
operators. The proposed methodologies are further validated with numerical
examples.
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Zusammenfassung

Dieser Arbeit konzentriert sich auf den koordinierten Ordnungsrahmen für
die Aufstellung eines liberalisierten Marktes im Verteilungsnetz. Auf der Grund-
lage von Spot-Pricing-Grundsätzen umfasst der vorgeschlagen Ordnungsrah-
men die Marktstruktur und Preisschema, die eine höhere Wirtschaftlichkeit und
einen weiterhin zufriedenstellenden dezentralen Betrieb des Verteilungsnet-
zes ermöglichen. Die folgende Forschungsbereiche auf zwei hierarchischen
Ebenen werden untersucht. Auf der niedrigeren Ebene, der Ordnungsrah-
men umfasst ein koordiniertes Marktbereinigungsmodell für i) einen zentral
oganisierten DSO-Markt für Systemdienstleistungen (ASs) in Verteilungsnet-
zen und ii) einen vollständig dezentralisierten Markt für Peer-to-Peer (P2P)
Energiehandel. Der P2P-Markt ermöglicht die bilaterale Transaktion zwischen
Prosumern, während der AS-Markt aus Gründen der lokalen/globalen Net-
zstabilität ausreichende Ressourcen beschaffen soll. Dies liegt daran, dass
der Verstoß gegen die Netzbeschränkung die grösste Herausforderung für
den P2P Energiehandel im Niederspannungsverteilungsnetz darstellt, obwohl
die Ermöglichung eines verbraucherorientierten Marktes attraktiv ist. Um das
Problem des Verstoßes gegen die Netzbeschränkung zu mindern, schlagen
wir vor, dass der AS-Markt vom DSO organisiert werden kann, der verteilte En-
ergieressourcen (DERs) koordiniert, um die Wirtschaftlichkeit zu verbessern.
Um die Marktteilnehmer im P2P-Markt zu "netzfreundlichem" Verhalten zu an-
imieren, wird ein Netznutzungspreis (GUP) entwickelt, der die entkoppelten
Märkte miteinander verknüpft. Durch die Berechnung der zerlegbaren Dis-
tribution Location Marginal Prices (DLMPs) können die wesentlichen Preisin-
formationen für die Bereitstellung von ASs wiederhergestellt werden, um die
Netznutzungskosten jeder P2P-Transaktion zuzuordnen. Anhand der Zusam-
mensetzung der GUPs zeigen wir, dass sie als Preissignale dienen, um den
P2P-Markt anzuregen, den Netzbetrieb in Bezug auf Verlustreduzierung, Span-
nungsunterstützung und Engpassmanagement zu unterstützen. Die Dualitäs-
analyse des koordinierten Marktbereinigungsmodells liefert die Ergebnisse für
die Zusammensetzung der P2P-Handelspreise und deren Interpretation, währ-
end eine numerische Analyse die Wirksamkeit des Marktdesigns zur Unter-
stützung der Netzbetriebsziele (Verlustminderung, Engpassmanagement und
Spannungsregelung) demonstriert. Auf der höheren Ebene wird die regionale
Koordinierung zwischen den lokalen Verteilnetzmärkten untersucht. Grundsät-
zlich maximiert jeder regionale Verteilungsnetzbetreiber seine gesamtwirtsch-
aftliche ökonomische Wohlfahrt, was die lokale (regionale) Version des all-
gemeinen Problems der Maximierung der ökonomischen Wohlfahrt darstellt.
Das individuelle Problem bezieht die gekoppelten physikalischen Informatio-
nen (Spannungsgrösse, Spannungswinkel und Lastfluss) aus seinen Nachbar-
regionen ein. Der Konsens von diesen Zustandsvariablen aller Regionen wird
durch die vorgeschlagene Methode Consensus-Alternating direction method
of multipliers Structured Trust-region (CAST) erzwungen. Bei Konvergenz wird
der DLMP für jede Region erhalten. Dies ist insofern neu, als er einerseits
verteilt berechnet wird, d.h. unter Beibehaltung lokaler Informationen, und an-
dererseits die Verlustverteilung aus verschiedenen Nachbarregionen darstellt.
Die Ordnungsrahmen koordiniert Informationen hierarchisch und strebt gle-
ichzeitig einen Konsens an, indem physisch gekoppelte Informationen zwis-
chen mehreren regionalen Betreibern ausgetauscht werden. Die vorgeschla-
genen Methoden werden in der numerischen Analyse validiert.
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Nomenclature

Scalars are denoted with lower-case letters, i.e., x, whereas vectors and matrices
are in bold letters, i.e., x,X. We specify the entries of a matrix X by xij and the
entries of a vector x by xi. For multiple regions in distribution grids, the regional ver-
sion of a variable/parameter x i is indexed as xi. Conjugates of a complex scalar,
vector or matrix are denoted with underline, i.e., x,x,X. The obtained optimal solu-
tions are denoted as x∗,x∗. For complex scalars, vectors or matrices, <(),=() are
used to extract the real and imaginary part. The transpose of a vector or matrix is
denoted by ()ᵀ and diag(x) constructs a diagonal matrix using vector x as the di-
agonal elements. |x|,|x| is for extracting the magnitude of a complex quantity. Note
tuning parameters in various algorithms are excluded here. Terms “bus” and “node”
are interchangeable throughout of the work.  is the imaginary unit with 2 = −1
(where “:=” means “is defined as”).

Number Sets

C Complex Numbers

R Real Numbers

B Buyer Nodes, B := {1, 2, ..., b}

F Flexible loads (FLs), F := {1, 2, ..., f l}

G Distributed generators (DGs), G := {1, 2, ..., g}

H Grid lines, H := {1, 2, ..., h}

L PQ Nodes, L := {1, 2, ..., n}

N All Grid Nodes, N := {0, 1, 2, ..., n}

S Seller Nodes, S := {1, 2, ..., s}

Constants

ηch Charge efficiency factor

ηd Discharge efficiency factor

b Buyers number

fl FL number

xv



xvi NOMENCLATURE

g DG number

h Grid lines number

n Grid nodes number (excluding root-node)

r Regions number in distribution grids

s Sellers number

sl Static (non-elastic) loads number

Model Parameters

Ax Mapping matrices to grid nodes, Ax ∈ Rx×(n+1), x ∈ {g, fl, sl}

Cf,Ct Mapping matrices of “from”/“to” nodes to grid nodes, Cf,Ct ∈ Rh×(n+1)

cx Cost coefficient of market bids, cx ∈ Rx, x ∈ {g, fl}

dx Cost coefficient of market bids, cx ∈ Rx, x ∈ {g, fl}

mpp
L Senstivity matrix of slack node active power injection with respect to active

power injections at PQ buses mpp
L ∈ R1×n

mpq
L Senstivity matrix of slack node active power injection with respect to reactive

power injections at PQ buses mpq
L ∈ R1×n

mqp
L Senstivity matrix of slack node reactive power injection with respect to active

power injections at PQ buses mqp
L ∈ R1×n

mqq
L Senstivity matrix of slack node reactive power injection with respect to reac-

tive power injections at PQ buses mqq
L ∈ R1×n

Mvp
L Sensitivity matrix of voltage magnitudes w.r.t. active power injections at PQ

nodes, Mvp
L ∈ Rn×n

Mvq
L Sensitivity matrix of voltage magnitudes w.r.t. reactive power injections at

PQ nodes, Mvq
L ∈ Rn×n

mvv
L Senstivity matrix of voltage magnitudes at PQ nodes with respect to slack

node voltage magnitude, mvv
L ∈ Rn×1

Mθp
L Sensitivity matrix of voltage angles w.r.t. active power injections at PQ

nodes, Mθp
L ∈ Rn×n

Mθq
L Sensitivity matrix of voltage angles w.r.t. reactive power injections at PQ

nodes, Mθq
L ∈ Rn×n

mθv
L Senstivity matrix of voltage angles at PQ nodes with respect to slack node

voltage magnitude, mθv
L ∈ Rn×1

Q Battery capacity vector

Y Nodal admittance matrix, Y ∈ C(n+1)×(n+1)



NOMENCLATURE xvii

mpv ∈ R Senstivity of slack node active power injections with respect to slack node
voltage magnitudes, mpv ∈ R

mqv ∈ R Senstivity of slack node reactive power injections with respect to slack
node voltage magnitudes, mqv ∈ R

yij Admittance of line (i, j)

Primal Variables

θ Voltage angle vector, θ ∈ Rn+1

E Energy transfer matrix between seller and buyer node in P2P trade, E ∈
Rs×b

p Active power nodal injection, p ∈ Rn+1

px Active power injection from DGs, FLs, static loads, sellers, buyers, px ∈
Rx, x ∈ {g, fl, sl, s,b}

q Reactive power nodal injection, q ∈ Rn+1

qg Reactive power injection from DGs, qg ∈ Rg

s Complex nodal injection, s = p + q ∈ Rn+1

sf/t Complex “from”/“to” line flow, sf/t = pf/t + qf/t ∈ Ch

u Complex voltage vector u := veθ ∈ Cn+1

v Voltage magnitude vector, v ∈ Rn+1

ploss Active power loss, ploss ∈ R

qloss Reactive power loss, qloss ∈ R

Dual Variables

λ Dual variables for equality constraints

Λ,Φ Energy exchange prices for P2P trade

µ, ν Dual variables for inequality constraints

Π Grid usage prices for P2P trade

π Distribution locational marginal prices

πc Distribution locational marginal prices: congestion part

πe Distribution locational marginal prices: energy part

πe Distribution locational marginal prices: loss part

πv Distribution locational marginal prices: voltage part





Chapter 1

Introduction

1.1 Background

1.1.1 Discussions on transactive energy paradigm in distribution
grid

Due to its convenience to transfer energy, electricity has been adapted in vast,
growing applications in our daily life and becomes the backbone of the economy
and technology. Power system is built to supply, transfer and utilize electric power.
The system has been continuously growing ever since its emergence during the
second industrial revolution. In the past, electric power systems used to contain
a few large-scale generation facilities that supplied energy to the passive loads.
Recently, due to the renewable integration and market liberalization, this arrange-
ment is slowly transforming into a multiple-layered, cyber-physical intelligent grid
with active loads and small-scale renewable generators. In view of the evolution of
the electricity market, the integration of the distributed resources and installation of
new demand-side management technologies are the cornerstones that pave way
for the decarbonization of the electricity sector, where the distribution grid is likely to
accommodate the distributed energy resources (DERs). This entails new control
technologies along with market frameworks for their cost-effective integration.

In line with the DER integration and market deregulation process, there is an
increasing interest in proposing decentralized grid operation, e.g., microgrids [3],
virtual power plant (VPP) [4]. The technologies provide opportunities for demand-
side-management in the distribution grids. By enabling the decentralized opera-
tions, the vision of smart grids on the market liberalization process promises new
market and regulatory paradigms for efficient energy markets at the distribution grid
level, which ends the monopoly of the electricity utility company. From the bulk sys-
tem operation’s perspective, the distribution grids cannot be simply integrated in the
current transmission level markets [5]. Fundamentally, the difficulty originates from
the fact that distribution grids have i) higher nonlinearities in the power flow due to
the high R/X ratio, and ii) larger number of nodes compared to transmission grids.
This brings practical challenges to the grid operation, which necessitate different
forms of services such as voltage control and congestion management (conven-
tionally provided by Distribution System Operator (DSO)). With the integration of
DERs, there is a potential to use market mechanisms to procure the grid operation
services from DERs, which eventually leads to more efficient grid management and

1
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lower prices of electricity.
In light of this, this fundamental transformation towards the distribution grid mar-

ket shall be accompanied by the evolution of DSO model. Conventionally, the power
system is organized to facilitate the energy flow from the high-voltage transmission
system to low-voltage distribution grid and then to the end-customers and DSOs
are the asset owners and the grid operators that maintain the local distribution grid
stability. In line with the discussion on transactive energy paradigm (see, e.g., [6,
7]), an independent DSO model is introduced that is envisioned to have the func-
tion of both grid operator and market operator. In the aspect of the grid operation
function, it is supposed to be an independent, not-for-profit entity to coordinate,
control and monitor the local distribution systems. For market operation function,
DSO is assumed to operate the energy market and the ancillary service (AS) mar-
ket in different time scales to achieve a cost-effective allocation of grid operation
resources. With the development of these new concepts, technologies and mech-
anisms, the electricity market at the distribution grid will be undergoing significant
structural changes in the coming decades.

1.1.2 Spot pricing principles and distribution grids operation

In the transmission grid, the electricity spot markets have been established since
the 1980s when the electricity pricing theory was introduced by Fred C. Schweppe
et al in the work "Spot Pricing of Electricity" [8]. The introduced pricing concept is
termed as "spot pricing principle" and later on implemented to liberalize the elec-
tricity sector in various countries. Markets that adopt the spot pricing principles are
established around the globe and may varying implementation in different coun-
tries, e.g., the North America market and Nord Pool in Europe.

Based on spot pricing theory, rules for optimal short-run decisions and long-run
actions, e.g., system planning, can be derived. The general procedure to derive
spot prices is based on solving the social welfare optimization problem subject to
energy balance and network constraints. Then the resulting spot prices can be
explicitly given as [9]:

Optimum Spot Price =Marginal Generator Cost
+ Energy Balance Quality of Supply Premium
+ T&D Network Quality of Supply Premium, (1.1)

where the Marginal Generator Cost1 is the incremental fuel cost of the marginal
generator. Energy Balance Quality of Supply Premium is the premium to reduce
the demand or increase the supply to maintain the energy balance constraint. The
premium is equal to zero when there is a surplus generation or tie-line capacity.
T&D Network Quality of Supply Premium is the price signal (non-negative when
the network constraints are binding) sent to customers so that they can adjust their
consumption behavior to remove the line congestion and voltage violations. The
location-specific cost are also termed as locational marginal price (LMP).

Based on the spot pricing principle, a typical market design in the current whole-
sale market implementation can be followed by step i) the submission of supply

1It is also termed as marginal fuel cost in [9]
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offers by electricity generators, step ii) the submission of (fixed) demand by load
aggregators, and step iii) the aggregation of supply offers to form a system dis-
patch curve based on their merit order and clearance of the market at the point,
where the dispatch curve intersects the (fixed) level of demand by the transmis-
sion grid operator. Those generators with supply offers below the market-clearing
point are dispatched while those with supply offers above the market clearing point
are not dispatched. Given no tie-line congestion, all the generator facilities upon
market-clearing will get paid by the same marginal price. When there is trans-
mission congestion, the marginal cost of meeting demand in one location will be
different from the marginal cost of meeting demand in another location due to the
different costs and supply offers by generators. The spot pricing principle is not only
used for the procurement of electricity but also can be used to procure the ASs like
reserves for frequency control and ramping support. The financial settlement for
the some types of ASs can be calculated by T&D Network Quality of Supply Pre-
mium in (1.1) in an integrated market environment. One example that adopts the
integrated market design is the California market (CalPX) [10, 11].

With the shift of generation and active demand-side management to the dis-
tribution system, notable effort in the research community to extend the current
wholesale market is made for the distribution grid context. Fundamentally, the driv-
ing forces for the increasing propositions to extend the spot pricing principles to
distribution grid are:

• the decreasing grid inertia at the bulk system level due to the integration of
renewable energy resources shifts some of the grid operation tasks, e.g.,
provision of reserve capacity, to the distribution grid,

• the continuous improvement of communication infrastructure and the deploy-
ment of enabling technologies such as IoT (Internet-of-Things) devices, smart
meters and advanced control devices for demand-side management,

• the need of incentives provision for the aggregation of the DERs to respect
the local distribution system constraints.

To this end, the coordination mechanism between different system levels such as
transmission grid, distribution grids, and DERs needs to be developed. Particularly,
in the center of the enabling technology is the concept of active distribution grid,
which is envisioned to be a smart low-voltage grid that is capable of real-time mon-
itoring of its feeding area and utilizes the flexibility of DERs to enhance the hosting
capacity of the network [12]. With the advanced data analysis and control capabil-
ity, the active distribution grid is essential to fulfill the promise of transactive energy
in the future.

1.1.3 Distribution grid market through DLMPs

With the deployment of enabling technologies and regulatory frameworks, a generic
distribution grid market can be cast as in Fig. 1.1. In essence, the DSO procures
energy and ASs either from upstream wholesale market or from local DERs. After
the local grid demand is satisfied, DSO can make additional capacity available to
the transmission grid. This kind of organization introduces the interface of DSO
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between small-scale DERs and the bulk system. Note that different coordination
schemes can be organized between DSO and transmission system operator (TSO)
level, which has been a study object for a notable number of projects and propos-
als (see, e.g., [13, 5, 14, 15]).

DSO
Energy

Ancillary services for congestion, 

voltage control, loss balancing,  

peak shaving etc.

Wholesale market (energy, ancillary services) TSO

B DERsFlexible 

loads

Distributed 

generators

Nonelastic 

loads

Bids
Cleared 

Bids
Bids

Cleared 

Bids
Price 

Fig. 1.1: Overview of market layers.

Specific to the DSO market, the market-clearing process can be generally pro-
vided by the following steps. First, the DERs submit their bids in the DSO market.
Then the DSO clears the market and sends the cleared bids (may include market-
clearing price and quantity) to the DERs. The pricing mechanism that achieves
the market equilibrium can be based on the same spot pricing principles as in
Equation (1.1). This pricing scheme, which is a variant of LMP in transmission
grid, is termed as distribution LMP ( distribution locational marginal price (DLMP))
that can achieve accurate cost allocation, DSO budget balance and optimal grid
operation. Overall, the DLMP-based market mechanism coordinates the goal of
DSO and its underlying market participants like flexible loads (FLs), distributed
generators (DGs) and conventional loads (nonelastic load), and is the cornerstone
to achieve different coordination scheme between entities, regulatory bodies and
DERs aggregators.

Although DLMP shows promising prospects for the DER integration, some prac-
tical aspects of applying such a scheme are still under investigation. Phenomena
like price volatility and price differentiation create acceptability issues as conven-
tional electricity users are lacking in knowledge or equipment to react on quick
time-varying price signals. Investment in advanced communication infrastructure is
generally expensive and therefore, designing incentives for investment and its un-
derlying market structure is the research interest of a considerable number of pro-
posals (see e.g., [16, 17]). In view of the transactive energy mechanisms, these
investment questions may be tackled by promoting the decentralized grid opera-
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tion in distribution grids. Compared to the centralized system, decentralized grid
operation is proved advantageous in terms of computation efficiency, modularity,
scalability, and privacy [3]. Moreover, emerging technologies like microgrids and
VPPs introduce consumer-friendly interfaces between energy market and small-
scale prosumers, which provides opportunities for decentralized/distributed frame-
works to operate a cluster of geographically-closed DGs, energy storage units and,
small residential loads.

An important part of these frameworks is also a proposal to encourage the de-
centralized energy trading [13]. Yet, the nature of energy trade between market
participants can be very distinctive, and therefore their respective regulatory frame-
works should be designed accordingly. For example, a number of prosumers can
initiate an “energy community” that establishes a local market to exchange energy.
The regulatory works, hence, needs to take into account the selfishness of the par-
ticipants, particularly in the case of some participants having the market power. On
the other hand, suppose two geographically-separated distribution grid to exchange
power. The exchange prices can be negotiated by the regional grid operators in a
way to be aligned to the collective objective (maximization of the social welfare). In
relevance to this, DSO-operated market need to be accompanied by the concept of
regional DSOs, independent entities, with the task of operating their local regions
safely and securely and monitoring their power flows from the neighboring regions.
This kind of regional coordination between DSOs can potentially encourage the
physical energy and ASs trade between different regional distribution grids.

1.2 Motivation

In this work, aiming to form efficient and consumer-centered distribution grid mar-
kets, the research questions arise in i) how to develop the coordination scheme
between DSO-operated market and alternative transactive platforms using spot
pricing principles (DLMPs), and ii) how to achieve the regional coordination be-
tween interconnected spot markets at the distribution grid level. Details for each
research question are provided in the following.

1.2.1 Coordination between potential markets

The current discussion on distribution grid market liberalization focuses on two
types of mechanisms that can be potentially implemented to enable the participa-
tion of small-scale energy prosumers. The first option is to form a spot market that
resembles the structure of the current wholesale market at transmission level as a
natural extension to the distribution system (e.g., [13, 2]). As an alternative way,
a bilateral market, also termed as peer-to-peer (P2P) electricity market, can be
introduced (see also [18]). The P2P energy trade requires the market participants
to settle bilateral energy transactions without any third-party supervision [18] and
therefore enables a consumer-centric market that allows small and medium-sized
prosumers to trade energy based on their preferences. On the other hand, the
spot market mechanism is closely coupled with introducing an independent body
that operates the market (similarly as Regional Transmission Operator (RTO)/ in-
dependent system operator (ISO)). The spot market is centrally operated market.
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Therefore, the market operation function is commonly suggested to be realized by
DSO that monitors and ensures the grid stability while operating the market.

P2P market DSO market 

• Energy

• Ancillary Service Market 
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Peak shaving etc.)

Grid usage pricing

Distribution Grid Market

Coordination
Regional Distribution Grid Market Regional Distribution Grid Market

Wholesale Market (bulk system)

DSO
Energy

Ancillary services for congestion, 

voltage control, loss balancing,  

peak shaving etc.

Wholesale market

Coordination

Request

Fig. 1.2: Overview of distribution grid market organization.

A fundamental challenge to implement such P2P energy trade is the necessity
to respect electric grid constraints while transporting the energy from the seller
to the buyer in a bilateral transaction [19, 20]. This issue may not be significant
if the P2P energy market platform is a relatively small compared to the size of
the wholesale market. However, if bilateral energy trade becomes a widespread
practice, the assumption of minor impact may no longer be valid. This is because,
unlike the exchange of conventional goods, the transport of electricity based on
a P2P transaction is governed by nonlinear power flow equations for the current
electricity infrastructure. To this end, the routing of energy transfer for a given P2P
transaction cannot be imposed straightforwardly.

In the context of transmission grid, existing practice for bilateral/multilateral
transactions is to form Genco-Disco pair in the transmission system [21], where
the traded quantities and prices agreed upon are negotiated on a bilateral basis
and not a matter for the system operators. Note that this coincides with the idea of
P2P energy trade that the transaction is made without third-party intervention and
the transmission grid operator only provides power transport facilities and essential
ASs. Then the P2P transaction should be reported to the balancing authorities to
be taken into account for in the grid operations and the final cost settlement. How-
ever, this practice may not be applicable in distribution grids. The difficulty exists
in i) higher dynamic of distribution system compared to transmission system and
ii) potentially large number of small prosumers. One potential solution can be re-
flected in the transmission grid market, where the network constraints are explicitly
considered by applying the spot market pricing principles. Specifically, the agents
in the P2P energy trade can be enforced to respect the network constraints by im-
posing a mandatory energy transport price. This concept is depicted in Fig. 1.2. It
requires a coordinated optimization between centralized DSO market and the de-
centralized P2P market to determine the grid usage price (GUP) while the P2P
energy exchange can be incentivized to behave in a “grid-friendly” manner. In this
work, we intend to provide such a coordinated optimization model and the underly-
ing GUP formulation.
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1.2.2 Multi-regional distribution grid operation

In resemblance to the existing market operation at the transmission grid level,
where multiple RTOs operate their regional transmission grid while exchanging en-
ergy and ASs to maximize the social welfare of the overall system (see also [22,
23]), market-clearing procedures can be coordinated between interconnected dis-
tribution grids. In the envisioned market integration in Fig. 1.3, the regional DSO
is held responsible to support the energy/ASs exchange between two hierarchical
levels (upstream wholesale market and neighboring DSO markets).
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Coordination

Distribution Grid Market

Coordination
Regional Distribution Grid Market Regional Distribution Grid Market

Wholesale Market (bulk system)

DSO
Energy

Ancillary services for congestion, 

voltage control, loss balancing,  

peak shaving etc.

Wholesale market

Coordination

Fig. 1.3: Overview of multi-regional concept.

Based on the argument that distribution grids are more dynamic and sensitive
compared to the bulk transmission system, the coordination of two interconnected
distribution grids is considered to be difficult. Particularly, the cost allocation in grid
operation for coupled distribution systems should be carefully treated. Towards the
envisioned decentralized grid operation, two research questions are further speci-
fied in the following.

• What is the suitable coordination mechanism for market-clearing purpose be-
tween regional DSO markets?

• How to achieve the financial settlement for energy exchange between neigh-
boring distribution grid regions in a cost-effective manner?

1.3 State-of-the-art market frameworks

Grid usage pricing

The idea of introducing transport cost for energy transfer in a bilateral contract
is not new. In the transmission grid, earlier work [11] has formulated prices for
point-to-point transfer in an auction-based transmission grid market using LMPs. In
the context of distribution grid operation, however, studying the cost allocation for
such a service using a dynamic pricing model is still a new subject in the research
community. For example, P2P energy trade are assumed to be practiced at the en-
ergy community basis which is supposed to be realized by advanced power-routing
technologies [24]. Hence, the electric grid constraints are neglected. Work [25]
addresses the grid-constraints-violation issue by suggesting the DSO in the P2P-
clearing process to check for constraint violations and calculate power flow equa-
tions in real-time. In [26], it utilizes a system-centric design for P2P transactions,
which in principle relies on the DSO to collect the bids and clear the P2P market in
a centralized way. These proposals suffer from drawbacks in the aspects, where,
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i) the system-centric P2P framework resembles the current wholesale market de-
sign and contradicts the fundamental idea of the P2P market to remove third-party
supervision and ii) there is no economic incentive for the DSO to deliver such a ser-
vice for checking constraint violations. As an alternative, reference [27] addresses
this by proposing the transformation of the DSO into an energy transport service
provider for the P2P energy trade and a cost allocation scheme is designed to
charge the P2P transactions for their electric grid usage with a uniform GUP prior
to the trade settlement. However, the adoption of a DC power flow model limits
the scope to transmission grid operation, and GUP requirements at the distribution
grid level such as voltage support and loss compensation are excluded from the
discussion.

In fact, GUP has been conceptualized and implemented in the transmission grid
market for a long time, where it is evaluated by the nodal price difference between
two transactive nodes in a bilateral agreement [11]. In line with this approach, refer-
ence [28] proposes a method for calculating the GUP through the DLMP based on
a second-order conic programming (SOCP) formulation in the distribution grid con-
text, focusing on the comparison of different market-clearing configurations and ar-
chitectures. This approach is appealing as the DLMP formulation and exact power
flow can be used to recover the exact grid operational cost. However, the DLMP
formulation in [28] from relaxation-based optimal power flow (OPF) is non-intuitive
which results in the difficulty to decouple GUP for various cost-centers to collect
the payment. As the GUP is a derivative of the DLMP, the interpretation of the
DLMP plays a key role in understanding the behavior of the GUP. In light of this,
earlier work [5] has shed light on this issue, where the SOCP-based formulation
and two alternative DLMP models including the implicit-function-based formulation
and marginal losses are analyzed. It generally turned out that the relaxation-based
AC optimal power flow (AC-OPF) results in a recursive formula that potentially

leads to a non-intuitive interpretation of marginal changes in a radial network and
the implicit-function-based formulation provides the most accurate interpretation.
To this end, I derived the GUP, which is inherited from the implicit-function-based
DLMP formulation, to obtain the desirable P2P market equilibrium point from the
grid operation perspective. As the time of writing, a very recent work [29] investi-
gated the integration of DLMP in the P2P energy trade, where probabilistic DLMPs
are developed to charge the P2P market participants for their grid usage. The idea
coincides with the proposed framework in the sense that the implicit-function-based
formulation are adopted in both works.

Ancillary service market with DLMPs

Another development is the increasing trends in proposing AS market in distribution
grid. Traditionally, grid stability is ensured by the DSO, which in the past means
that the distribution grid equipment is sufficiently sized for peak load conditions.
The load flexibility and DGs, either locally utilized or provided to upstream or down-
stream grid operators, presenting great potential to increase the grid inertia to pre-
vent cascade failure. In the scope of P2P energy trade, while the GUP provides
an incentive for P2P market participants to prefer transactions that will improve the
grid conditions, this incentive does not guarantee feasible grid conditions alone. To
address the economical aspects of providing such services, a notable number of
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research effort, e.g., [13, 14, 30] propose the introduction of an AS market into the
distribution system that adopts a similar approach to the existing frameworks at the
transmission system level.

In the AS market, reserve capacities of local DERs are dispatched in such a
way that voltage constraints are maintained, grid congestion is removed and power
losses are balanced. In [13, 14, 2], the AS market was proposed as a complement
to a energy spot market at the distribution system level rather than a P2P energy
market. In line with the transactive energy paradigm development, recent proposals
for P2P market designs also include a two-stage market-clearing structure of for-
ward and real-time market to accommodate uncertainties [31] and differentiation
among prosumers based on their heterogeneous preferences [32]. Nevertheless,
the settlement of losses and other ASs are assumed to be accounted for by a sep-
arate process in these works and a coordinated market-clearing model to underpin
these potential markets has received limited attention in the literature.

DLMPs for multi-regional operation

In view of DLMP for multi-regional operation, it essentially involves the calculation of
DLMP in a distributed way. For the calculation of accurate and interpretable DLMP,
the state-of-the-art work mainly focuses on the centralized methods for computa-
tion, composition and interpretation of DLMP [5]. Since the transformation of DSO
model to an independent market operator is under discussion, the majority of the
literature for distribution grid market naturally assigns the DSO to operate the dis-
tribution grid market and maximize social welfare (see e.g., [5, 33, 16, 2, 34]).
In terms of centralized DLMP calculation, references [34, 35] provide a DLMP
model obtained from a linearized OPF with features such as congestion manage-
ment and a multi-period energy-dispatch model for a day-ahead market. However,
power flow linearization in [34, 35] inflicts an error in calculating DLMPs, removed
in [2] by using a trust-region algorithm. Moreover, it is shown that the trust-region
based methodology yields a tractable solution along with DLMP decomposition into
loss, congestion and voltage components. Alternative DLMP models are proposed
in [36, 37, 13] using convexified load-flow models which suffer from the drawbacks
of lack of straight-forward interpretation as discussed in [5, 2]. More specifically,
the DLMP decomposition based on the formulation of the relaxation of AC-OPF re-
sults in a recursive formula that potentially leads to non-intuitive interpretations of
marginal change in distribution grids.

For the multi-regional operation purpose, it entails a distributed DLMP scheme
that can protect the regional operation autonomy. In this scope, a price-based con-
trol framework has been proposed earlier in [38, 39, 40], where the subgradient
algorithm is adopted to achieve a distributed implementation to protect the infor-
mation privacy of market participants. However, with a direct-current power-flow
model, it inflicts a large error in low voltage networks. This is important since the
power flow parameters like voltages are strongly coupled between distribution grid
portions. The work in [40] uses a distributed online pricing scheme using the primal-
dual method, where the prices are devised as the online incentive control signal.
To our knowledge, the authors in [40] (i) used a static linear approximation of power
flow and (ii) organized the framework in terms of only an operator and end con-
sumers. Both considerations come with drawbacks. The first drawback is related
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to the fact that static linear approximations inflict errors as compared to the actual
power flow [2, 34, 35]. Another drawback arises from the fact that no coordination is
provided when the grid is operated by multi-region DSOs, which only have access
to local information and physically connected neighbors. Reference [37] proposed
a three-level hierarchical market framework consisting of a TSO, DSOs and local
aggregators without the coordination of operators in the distribution grid being han-
dled. The work in [13] has to be mentioned, where the distributed calculation of
DLMP is proposed by using convexified load flow models. Nevertheless, all these
works [40, 37, 13] do not address the effect on the price due to physically connected
neighboring regions, i.e., the effect of coupled losses and the associated cost allo-
cations between distribution grid regions. In light of the aforementioned challenges,
methods for accurate and scalable DLMP calculations need to be addressed.

1.4 Technical Contributions

In view of above research gaps in the previous works, the technical contributions of
this work are outlined as follows.
• We propose a coordinated market design including two emerging markets at

the distribution grid level (AS and P2P) with a simultaneous market-clearing
model, aiming to provide a DLMP-based common tool to direct DERs towards
“grid-friendly" behavior;

• An interpretable GUP scheme is derived based on implicit function formu-
lation, wherein the GUPs lend themselves as price signals because they
are naturally decomposable into price signals for voltage support, congestion
management, and loss compensation. This GUP scheme can be utilized for
DSO to allocate its cost, which is also shown to effectively incentivize the P2P
market participants to reduce the grid operation cost in various scenarios;

• We propose an alternating direction method of multipliers (ADMM)-based
regional coordination scheme together with the accurate cost-allocation for
interconnected distribution grids. The DLMP calculation has been fully dis-
tributed into each region while only limited information exchange is required.
We derive the multi-regional injection sensitivity to describe the influence be-
tween regions to achieve the distributed DLMP computation. The derived
sensitivity only reveals the physical information on the coupled buses between
regions. Therefore, the regional operation autonomy is preserved.

1.5 Assumptions

In light of the solution methodologies and their application perspectives, it is impor-
tant to have a brief discussion of the assumptions of the mathematical tools that
have been utilized in this work.

Duality-based Pricing

As DLMP is used as the main coordination mechanism between the market op-
erator and participants in this work, it is worth mentioning that the duality theory
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(detailed in Chapter 3) serves as the theoretical foundation to derive various opti-
mal prices in this work. Hence, it is essential to be aware of the assumptions and
requirements to underpin the functionality of the duality-based pricing, which are
summarized in the following.

First, convexity is the backbone of duality-based pricing. This is because, con-
vex problem formulation provides strong duality, whereas in the cases of non-
convex problems and local optimal solutions, the dual variables as prices sig-
nals may not be support the market participants to make the social optimal de-
cisions [41]. Second, individual agent is assumed to be economical rational, which
means the agents are able to make optimal decisions given limited information and
time. Third, spot pricing principles is derived based on the assumption of price-
taking agents, which means the market participants’ awareness of the effects of
their decision on the market-clearing outcome is not taken into account. It is worth
noticing that for the market design that adopts the spot-pricing principle, Lagrangian
duality plays a vital role to translate the OPF solutions into prices to incentivize
selfish agents to behave in a social-economic way. This mathematical realization,
however, may never fully apply in reality [41].

Distributed Optimization

In this work, there are some settings, where distributed optimization techniques are
shown to be useful. For example, in distribution grids, a large number of DERs
are embedded in the low-voltage feeder, where the individual DER is constrained
by their communication, computation and information capabilities. Under the as-
sumption of the agents to be collaborative, distributed optimization can be utilized
in this context to organize the agents towards the collective objective while entail-
ing necessary information exchange between agents. Note that it is necessary
for the individual agent to fully comply with the protocol predefined by distributed
optimization methods to reach the collective objectives.

Another setting is to utilize distributed optimization as a market-clearing mech-
anism to solve the optimal exchange problems, e.g., settling the P2P energy trade.
It is worth noticing that the adoption of distributed optimization only is applicable
for non-strategic agent behavior. This assumption is realistic for the case that the
market place is sufficient competitive and the agents can only behave as price
takers. It is also similar to assumption to adopt the duality-based pricing, where
each individual agent is assumed to fully comply to the protocol and not aware of
its effects on the market outcome and their profitability. We contrast this to the
game-theoretical approaches where each agent optimizes their decisions by esti-
mating the other agents’ decisions and gains additional profits than usual. Note that
game-theoretical approaches remove the price-taker assumptions in duality-based
pricing, which may be more realistic in some scenarios (see, e.g., presence of mar-
ket power [42]), it does not come without drawbacks. The assumptions of fully
rational market participants may crumble as the anticipation of market outcome is
generally very difficult and considered to be out of reach for ordinary people. On
the other side, the computational complexity of game theory makes the approach
intractable compared to optimizations. It is important to emphasize that we limit
ourselves to price-taker assumptions in this proposal for elaborating on the mar-
ket structures and organizations. Nevertheless, the compatibility of game theory to
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distributed optimization is briefly discussed in Chapter 4 in the P2P energy trade
context, which may provide some technical details required for the future extension
of the current proposal.
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1.7 Outline

The dissertation is structured as follows. In Chapter 2 and Chapter 3, we introduce
the theoretical basis of optimal power flow models and spot pricing principles. As
an essential tool, the duality analysis and distributed optimization solution method-
ologies are interlinked and introduced in Chapter 3, which are the key enablers to
derive the coordination schemes by using their economic interpretations. Further-
more, as the main body of this dissertation, the solution methodologies to address
the research questions are proposed in Chapter 4 and Chapter 5, respectively, to-
gether with their numerical validation, limitations and potential extensions. Finally,
discussions on the proposals in the dissertation and interesting future works will be
presented in Chapter 6.
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Chapter 2

System Modeling

In this chapter, we derive the system models and basic concepts that lay the cor-
nerstone for the coordinated market mechanisms. We start with the DER models
with their linear approximations and integrate them into the load flow models. The
variety of solution methodologies for OPF problems with an emphasis on nonlin-
ear programming technique and their respective model accuracy are discussed
in the second half of this chapter. Note that the dissertation views power sys-
tem through linearization-colored glasses, so to say, with the chapter dedicated to
linear-approximation-based distribution system optimization.

2.1 Distributed energy resources modeling

2.1.1 Distributed generator model

𝑝g,max

𝑞g
𝑠dg,norm

𝑝 [𝑀𝑊]

𝑞 [𝑀𝑣𝑎𝑟]
0

Fig. 2.1: The range of dispatchable qg in dependence of pg and the nominal power
sdg,nom for photovoltaic generators [55].

The DG model, e.g., PV or wind turbine systems, for real-time market participation
is considered to be equipped with a full-scale grid-side inverter. The inverter allows
the reactive power to be controlled independently from the active power within the
DG’s power rating [56, ch. 3]. To facilitate DG aggregator to be able to follow the
power generation trajectory in a single market interval, it is assumed that the energy

15
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storage systems is part of the DG system that buffers the renewable energy output
and reduces the uncertainty [57].

The dispatchable region of the inverter-interfaced DGs is considered as fol-
lows. In principle, the DG reactive power output is supposed to be time-invariant
that is restricted by a ratio κ to its nominal apparent power of the DG system de-
noted as sdg,nom, i.e., [−κsdg,nom, κsdg,nom]. In Fig. 2.1, we illustrate the dispatch-
able reactive power for a typical DG. The reactive power capability of a DG unit
(e.g. photovoltaic generators) is in general dependent by its nominal apparent
power capability sdg,nom as well as the instantaneous time-varying active power
pg (i.e. qg ≤

√
(sdg,nom)2 − (pg)2), which makes the reactive power injection time-

varying and complicates the optimization problem. To tackle this, the nominal ap-
parent power capability sdg,nom of the inverter is advocated to be larger than the
maximal active power pg,max, such that enough freedom can be provided for re-
active power dispatch in most cases [55, 58]. Since the nominal apparent power
sdg,nom is preset to a value which is larger than the maximally admissible value
of the active power pg,max, a time-invariant set for the reactive power (as approx-
imation), i.e. qg ≤

√
(sdg,nom)2 − (pg,max)2 := κsdg,nom is obtained. A reasonable

value for oversizing the inverter can be set as sdg,nom = 1.1pg,max, which gives
qg ≤ 0.45pg,max [55]. With a time-invariant approximation, the feasible region of the
dispatchable reactive power qg is obtained as a constrained area regardless of the
active power injections of the DG unit.

2.1.2 Flexible load model

A generic FL model is considered in this work, which captures the nature of heat-
ing, ventilation, and air conditioning (HVAC) system, charging system for electrical
vehicles (EVs). The characteristic of these systems are described by the concept
of virtual battery (VB) [59]. Let fl denote the number of FLs, the dynamic of the
FLs can be essentially described by a linearized state of charge (SOC) model:

soct = soc0 − diag−1(Q)
t∑

k=1

(
1

ηd
pd
k − ηchpch

k )∆t, (2.1)

where soct ∈ Rfl denote the SOC of the VB at time step t, ηch, ηd ∈ R represent
the charge and discharge efficiency and ∆t represents the market period duration,
Q ∈ Rfl denotes the battery capacity, and pd,pch ∈ Rfl denote the discharge and
charge power. The parameters can be determined based on recent works using
techniques like machine learning [60] or linear regression [61]. Note that the charge
and discharge power are limited at each time intervals, which can be modeled by
box constraints during their market participation.

2.2 Distribution grid modeling

2.2.1 Load flow models - steady state

We consider a balanced low-voltage distribution grid with a radial network topol-
ogy. In reality, however, most of distribution feeders are three-phase and even
unbalanced. For the sake of notational simplicity, we derive the main body of the
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framework based on balanced network. Extensions to unbalanced three-phased
are covered by work [62, 63, 64].

The distribution feeder has a root node with index 0, which is modeled as a
slack node. This node refers to the power supply point (PSP) connected to the
transmission grid, whereby its voltage is considered as a control variable. This is
realized by voltage regulation devices like on load tap changer (OLTC) transform-
ers, which are usually operated by DSOs. The rest of the nodes are modeled as
PQ buses contained in the set L := {1, 2, ..., n}. For all grid nodes we obtain the
set N := L ∪ {0}. For all grid nodes, we have complex injections and voltage as
s := p + q and u := v · eθ all with size Cn+1, where vectors that are associ-
ated to PQ buses are given as sL,uL ∈ Cn and the individual node i ∈ N defines
si := pi + qi and ui = vie

θi . Note that active and reactive power for the entire grid
consists of p = (p0,p

ᵀ
L)ᵀ, q = (q0,q

ᵀ
L)ᵀ.

𝑦𝑖𝑗

𝑠𝑓 𝑠𝑡

𝑢𝑖 𝑢𝑗

𝑠𝑖 𝑠𝑗

Fig. 2.2: Nodal injection model.

For energy balance of node i, the nodal injection si equals to the collective
branch flows to the neighboring nodes, i.e.,

sij =
∑
j 6=i

ui(ui − uj)yij , (2.2)

where yij is the admittance of the lines, ui, uj are the complex voltage at these
nodes, respectively. The above relations extend to the whole distribution system
by defining the following system admittance matrix. Let i ∼ j denote if node i
is connected to node j. The admittance matrix Y ∈ C(n+1)×(n+1) is defined as
follows1:

Yi,j =


∑

k∼j yik if i = j

−yij if i ∼ j
0 if i � j

. (2.3)

Hence, the following nodal injection model is to be satisfied for the distribution grid:

s = p + q = diag(u)Y u. (2.4)

We are also interested in the collective active/reactive power losses on the lines
since in the spot pricing theory, the power losses is used to formulate the global
power balance equation (with the nodal prices derived for nodal balance equations
at each grid node). The power balance equation is provided as:

s0 + sL = sloss. (2.5)

1Note that shunt admittance is neglected in the grid modeling.
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with the total power losses on the lines calculated as the sloss =
∑

i∈N si. It gives

sloss = ploss + qloss = uᵀY u. (2.6)

Furthermore, we define the "forward"/"to" directions for a line as in Fig. 2.2, which
is important to capture the thermal limits of the power flow on the distribution lines.
Hence the thermal limit can be defined for the squared magnitude of |sf|2, |st|2. Note
that exceeding the thermal limit is termed as line congestion in this dissertation.
The expression of |sf|2, |st|2 can be given in a similar form as in nodal injection
model, i.e., eq. (2.4), which can be found in references [65, 66].

In essence, eq. (2.4) is a nonlinear equation that can be solved by methods like
Newton-Rapson iterations [67], where linearization of the nonlinear equations at a
given operating point are necessary at each Newton-Rapson step. Also, the feasi-
bility of the solutions for such a equation can not be guaranteed at all times. This
subject has been intensively studied in the past years (see e.g. [68]). Recent ex-
positions focus on fixed point method to provide existence conditions for balanced
and unbalanced networks. For power system optimization problems, power flow
linearizations and the sensitivity analysis lay the foundations for applying optimiza-
tion methods. Particularly, the structural information like gradients, Hessians and
sparsity plays a key role in the representation and interpretation of the LMPs and
DLMPs. In the following, we briefly cover the topic of power flow linearization in an
explicit-function form.

2.2.2 Explicit distribution grid power flow linearization

This section presents the power flow linearization for the slack bus, PQ buses and
the power loss. The considered control variables are the nodal injections at PQ
buses, i.e. pL and qL and voltage at the slack bus v0 by assuming OLTCs located
at the PSPs. The linearization is considered as “’explicit’ since all linearized terms
are parameterized regarding the predefined control variables pL, qL and v0, which
can be contrasted to the implicit linearization methods in [63].

PQ buses

For a given operating point (v̂L, θ̂L), the linear estimate of (ṽL, θ̃L) is obtained as[
ṽL
θ̃L

]
=

[
v̂L
θ̂L

]
+

[
Mvp
L Mvq

L
Mθp
L Mθq

L

] [
∆pL
∆qL

]
+

[
mvv
L

mθv
L

]
∆v0, (2.7)

where ∆pL := p̃L − p̂L, ∆qL := q̃L − q̂L are the active/reactive power injection
variations, respectively. Sensitivity matrices Mvp

L ,M
vq
L ,M

θp
L ,M

θq
L translate the im-

pact of PQ injections pL and qL to the voltage and angle variations and are given
analytically in [63, Proposition 1]. The sensitivity vectors mvv

L ,m
θv
L translate the im-

pact of the slack bus voltage to the voltage and angles at PQ buses. The nodal
injection model is complex and nonlinear. We adapt the first-order linearization of
(2.4) as in [63, Proposition 1].[

Mvp
L Mvq

L
Mθp
L Mθq

L

]
=
[(
〈[Yu]〉+ 〈diag(u)〉N〈Y〉

)
R(u)

]
(2.8)
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with following operators defined:

N :=

[
In×n 0

0 −In×n

]
, 〈X〉 :=

[
<(X) −=(X)
=(X) <(X)

]
,

R(u) :=

[
diag(cos(θ)) −diag(v)diag(sin(θ))
diag(sin(θ)) −diag(v)diag(cos(θ))

]
.

To derive the sensitivity mvv
L ,m

θv
L , it is assumed that the power injection of all

PQ buses are not affected by their voltage, i.e., sL is independent of vL. We rewrite
(2.4) for i ∈ L, (PQ nodes) in the following scalar form:

si = ui
∑

j∈{0}∪L

Yi,juj . (2.9)

The partial derivative of si with respect to v0 is given as

∂si
∂v0

=
∂ui
∂v0

∑
j∈{0}∪L

Yi,juj + ui
∑

j∈{0}∪L

Yi,j

∂uj
∂v0

. (2.10)

Consider replacing the complex voltage in polar coordinate system, where we have
ui = vie

θi . It gives

∂ui
∂v0

= eθi
∂vi
∂v0

+ viθie
θi

∂θi
∂v0

. (2.11)

Equation (2.11) can be further simplified for the case of slack node i = 0, where

∂u0
∂v0

= 1. (2.12)

Recall the assumption of PQ nodes, where ∂si/∂vk = 0. Substitute it with (2.12)
into (2.10), we have (2.10) reformulated as

−uiYi,0 =
∂ui
∂v0

∑
j∈{0}∪L

Yi,juj +
∑
j∈L

Yi,j

∂uj
∂v0

. (2.13)

We rewrite it in a matrix form. More specifically, a total number of n equations can
be written for (2.13) for all PQ nodes i ∈ L. Note that we also have ∂vL/∂v0 ∈ Rn
and ∂θL/∂v0 ∈ Rn (a total number of 2n) as unknowns. By rewriting (2.13) into
real and imaginary part (a number of 2n), we can obtain the solutions for ∂vL/∂v0
and ∂θL/∂v0. We define the following matrices A,B ∈ Rn×n,C ∈ Rn×1 to write the
solutions in a compact form:

Ai,l =

{
uiYi,ie

θi + eθi
∑

j∈{0}∪LYi,juj if i = l

uiYi,le
θl if i 6= l

(2.14)

Bi,l =

{
uiθi(

∑
j∈{0}∪LYi,juj + uiYi,j) if i = l

uiYi,jujθj if i 6= l
(2.15)

Ci,l = −uieθlYi,l (2.16)
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The final result of
[
mvv
L

mθv
L

]
∈ R2n×1 is obtained as:

[
mvv
L

mθv
L

]
=

[
<(A) <(B)
=(A) =(B)

]−1 [<(C)
=(C)

]
. (2.17)

Since the matrix is invertible, the above linearization result is unique [69, Theory
1].

Slack bus

L

0s

0s DGPCC
1s 3s

12y
23y

01y01s

0v 1v

1s

Fig. 2.3: Slack bus nodal injection.

For the slack (root) node, voltage v0 are considered to be adjustable, whereas
angle θ0 is fixed quantity. The power flow linearization is obtained as the slack
nodal injections with respect to the changes of PQ nodal injections and slack node
voltage magnitude, i.e.,[

p̃0
q̃0

]
=

[
p̂0
q̂0

]
+

[
mpp
L mpq

L
mqp
L mqq

L

] [
∆pL
∆qL

]
+

[
mpv

mqv

]
∆v0, (2.18)

where mpp
L ∈ R1×n given as

mpp
L =

n∑
k=1

{(−<(v0Y0,k) cos(θk) + =(v0Y0,k) sin(θk))M
vp
L ek

+ (<(v0Y0,k) sin(θk)−=(v0Y0,k) cos(θk))vkM
θp
L ek}. (2.19)

ei ∈ Rn is defined as a vector with i-th entry equal to 1 and rest of the entries
equal to 0. Similar results can be found for mpq

L , mqp
L , mqq

L ∈ R1×n, where their
representation are excluded here.

The derivation is provided in the following. In Figure 2.3, the nodal injection at
the slack bus is equal to the branch flow, i.e., s0 =

∑n
k=1 s0k. Consider the first-

order derivative of slack nodal injection with respect to PQ nodal injection, which
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gives

∂p0
∂pL

=
∂<(

∑n
k=1 s0k)

∂pL
(2.20)

=
∂

∂pL
<

n∑
k=1

(u0(u0 − uk)Y0,k). (2.21)

By substituting ui = vie
jθi into (2.20) and extracting the real part, we obtain the

analytical form of mpp
L as in (2.19). Alternative vectors mpq

L , mqp
L , mqq

L ∈ R1×n can
be derived in a similar manner.

The sensitivity of slack bus injections with respect to slack bus voltage mpv,mqv

are derived as follows. From the power balance equation (2.5), we have

∂s0
∂v0

+
∂sL
∂v0

=
∂sloss

∂v0
. (2.22)

With the PQ nodal injections remaining unchanged, i.e., ∂sL∂v0 = 0 we have

∂s0
∂v0

=
∂sloss

∂v0
. (2.23)

Recalling the loss representation in (2.6) we obtain

∂s0
∂v0

=
∂(uᵀY u)

∂v0
=
∂uᵀ

∂v0
Y u + uᵀY

∂u

∂v0

= (
∂v

∂v0
ejθ + juθ

∂θ

∂v0
)ᵀY u (2.24)

+ uᵀY(
∂v

∂v0
e−jθ − juθ ∂θ

∂v0
). (2.25)

Note that ∂v
∂v0

, ∂θ∂v0 is the voltage and angle sensitivity with respect to v0, i.e., mvv
L ,m

θv
L .

Hence the slack-bus injection with respect to slack-bus voltage is given as

[mpv,mqv] = [<(
∂s0
∂v0

);=(
∂s0
∂v0

)]. (2.26)

losses

For loss linearization p̃loss and q̃loss, we have[
p̃loss

q̃loss

]
=

[
p̂loss

q̂loss

]
+

[
mpl,p
L mpl,q

L
mql,p
L mql,q

L

] [
∆pL
∆qL

]
. (2.27)

Specifically, Mloss
L ∈ R2×2n consists of four parts with respect to active power and

reactive power:

Mloss
L :=

[
mpl,p
L mpl,q

L
mql,p
L mql,q

L

]
, (2.28)

where it can be calculated as [2]:

Mloss
L =

(
〈(Y ûL)ᵀ〉+ 〈ûᵀ

L〉N〈Y〉
)
R(ûL)MPQ

L (ûL). (2.29)
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Remark (Correlation between power loss sensitivities and slack node sensitivities).
Loss linearization can be related to slack bus injection linearization by the power
balance equations, i.e., p0 + 1ᵀ

npL = ploss. By taking the first-order derivative on
both sides of the equation, we obtain

∂p0
∂pL

+ 1n =
∂ploss

∂pL
. (2.30)

Note that the loss sensitivity is usually very small. Hence, intuitively, for small-
scale networks, by increasing/reducing the power injections at PQ buses, similar
amount of power will be reduced/increased at the slack bus, i.e., ∂p0

∂pL
≈ −1n.

Extension to unbalanced system

The extension to unbalanced system can be followed by two steps. First, the ad-
mittance matrix should be constructed for each phase by using unbalanced system
modeling. Techniques can be found in e.g., [69, 70]. Second, repeat the same
load flow linearization and OLTC linearization steps as above. There are existing
works that focus on the load flow linearization for three-phase unbalanced network,
e.g., [62]. Note that because of the nature of three-phase OLTC, the slack node
voltage magnitudes of all phases are considered as control variables.

2.2.3 Linearized nodal injection model at flat voltage - a special case

In general, to calculate and update the sensitivity matrices is a tedious job. For
some applications like voltage control, an approximation of load flow based on
pre-defined operating point may achieve a good trade-off between accuracy and
algorithmic tractability. Now assume that the nodal angle differences are very small
throughout the network and use the flat voltage at the linearization point, we sub-
stitute θ ≈ 0,v ≈ 1 into (2.8) and obtain the following linearized power injection
model [63, 68] [

p
q

]
=

[
<(Y) −=(Y)
−=(Y) −<(Y)

] [
v
θ

]
. (2.31)

The above approximate model has shown to perform reasonably well in voltage
estimation (0.25% error for 5% voltage variation from the nominal voltage [71]) while
neglecting the higher order active/reactive loss terms. We show in the following, the
model (2.31) is indeed equivalent to the linearized DistFlow model, which is more
interpretable.

Equivalence to linearized DistFlow model

The nodal injection model (2.4) is not the only model to describe the power flow.
DistFlow model, as an alternative, may provide a better physical insights compared
to the compact representation of the nodal injection model. Given a branch (i, j)
connecting bus i and j, the network branch flow can be described using the LinDist
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flow model [72].

pj = pij − rijlij +
∑

(i,j)∈H

pjk (2.32)

qj = qij − xijlij +
∑

(i,j)∈H

qjk (2.33)

v2j = v2i − 2(rijpij + xijqij) + (r2ij + x2ij)lij (2.34)

lij =
p2ij + q2ij

vi
(2.35)

with pij , qij , lij ∈ R denoting the branch active/reactive flow and the branch current
magnitude. rij , xij are the branch resistance and reactance respectively. Now
neglecting the higher-order loss terms rijlij , xijlij and (r2ij+x

2
ij)lij in (2.32) to (2.34)

and applying a flat voltage profile approximation that v2j − v2i = (vj + vi)(vj − vi) =
2(vj − vi), we obtain

pj = pij +
∑

(i,j)∈H

pjk (2.36)

qj = qij +
∑

(i,j)∈H

qjk (2.37)

vj = vi − (rijpij + xijqij) (2.38)

which is a linearized DistFlow model. We use the resistance and reactance matrix
R,X ∈ C(n+1)×(n+1) to model the grid, hence we can rewrite the above equation
(2.36) to (2.38) in a compact form as:

v = v0 + Rp + Xq (2.39)

where v0 ∈ Rn+1 is a vector with all the entries equal to v0 (slack bus). The lin-
earized DistFlow model is essentially equivalent to the linearized nodal injection
model at flat voltage in (2.31) since both model are based on the assumption of
substitution of flat voltage into different forms of power flow representations [63].

Linearized line current magnitude model

For the linearized DistFlow model, we consider the following linearized line current
model to constrain the line flow not to exceed the thermal limit. Defining the line
current between node i and node j as lij ∈ C, thermal limits are usually defined as
line current magnitude |lij |, which is directly related to the conductor’s temperature.
For brevity, assuming no shunt admittance exists, we obtain line current magnitude
as

|lij | =
√
lijlij

=
√

(ui − uj)yij(ui − uj)yij

=
√
|yij |2(v2i + v2j − vivje(θi−θj) − vivje(θj−θi)) (2.40)
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Based on the same assumption of small angle variance, i.e., θi − θj = 0, we obtain

|lij | = |yij ||vi − vj |. (2.41)

Interestingly, the results coincide with the linear line flow in [73]. Note that simple
extension of this formulation also exists to include shunt admittance. The linearized
line current is a conservative estimation of line current flow by neglecting the ac-
tive/reactive power losses on the lines. We further validate the accuracy of the
model with a test feeder.

We now rewrite (2.41) in a compact form using the admittance matrix Yline ∈
Ch×h and the from/to mapping matrix Cf,Ct ∈ Rh×(n+1) [74]. The basic idea of rep-
resenting in from/to quantities is illustrated in Fig. 2.2, where each line segment is
assigned a from/to direction from the start/end node to the end/start node. Hence,
Cf/Ct maps each line segment to the corresponding node index. Yline is defined
as a matrix with its diagonal terms equal to the line admittance and the off-diagonal
terms equal 0. We obtain the line current magnitude vector |l| ∈ Rh represented as

|l| = |Yline||Cfv −Ctv|, (2.42)

where |Yline| ∈ Rh×h extracts the magnitude of the matrix Yline. Consider the
thermal constraint that |l| ≤ |l|; an equivalent box constraint is obtained as

−|l| ≤ |Yline|(Cf −Ct)v ≤ |l| (2.43)

144-bus network example for linearized DistFlow model

The linearized power flow model and current magnitude model is evaluated using
the test network in [75] with the results plotted in Fig. 2.4. The voltage estimation
error is very small, which verifies the claims from [71] whereas the current mag-
nitude estimation achieves similar accuracy. Nevertheless, it is worth noticing that
the error of the current magnitude estimation at the root node is the largest. This
is because the deviation physically represents the loss quantities being neglected
that is at its the largest near the root node for a distribution feeder. The average
estimation error for active/reactive power branch flow is plotted in Fig. 2.4 for the
loading factor range between 0.1 and 1.5. The estimation error increases with in-
creasing load, whereas the maximum error is around 0.5 % for a loading factor of
1.5.

2.3 Optimal power flow

Optimal power flow serves as a fundamental tool for power system planning, oper-
ation and control. Since its introduction, it is applied for long-term planning, day-
hour-minute scheduling, pricing and real-time control by system operators. Math-
ematically speaking, the objective of optimal power flow is to find a feasible power
flow solution that can minimize user-defined cost function subject to the state vari-
ables of power system (voltage, angle, active/reactive power, current), which can
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Fig. 2.4: a) - b) linearized voltage and current magnitude compared to AC power
flow under nominal loading; c) average error of active/reactive branch flow under
different loading conditions (factor to nominal load varies from 0.1 to 1.5).

be over a single or multiple time period. We briefly recapture the basic formulation
of the optimal power flow problem as the following optimization problem

min f(p,q,v) (2.44a)
s.t.

p + q = diag(u)Y u (2.44b)
p ≤ p ≤ p (2.44c)

|sf|2 ≤ |sf|2 (2.44d)

|st|2 ≤ |st|2 (2.44e)
q ≤ q ≤ q (2.44f)

v ≤ v ≤ v, (2.44g)

where the objective function is assumed to be a convex function that might repre-
sent one of the following objectives: i) the cost of power generation, ii) the overall
losses on the lines, iii) penalty cost of system state variables (e.g. voltage devia-
tions to the flat voltages). The optimal power flow model is a steady-state based
formulation, which means the system dynamics in transient state and
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harmonics are neglected. In the context of distribution grid, the control variables
are considered to be the nodal injections and the slack node voltage (controlled by
tap changers at the PSP). The capacitor bank switch is not considered in this highly
simplified OPF model.

Discussion on solution methodologies for OPF problems

The problem given by (2.44) is a nonconvex and nonlinear problem due to the na-
ture of power flow constraint in Eq. (2.44b), which makes the problem difficult to
solve. In the power system research community, solving the optimal power flow
has become a frequent optimization routine with the solution methodologies mainly
categorized into: i) linearized optimal power flow, ii) convex relaxations of opti-
mal power flow and iii) nonlinear programming algorithms. From the perspective
of model applicability, a linearized optimal power flow model, despite their suc-
cessful deployment in transmission grid operation, may not deliver sufficient model
accuracy for the highly dynamic distribution grid physics. Hence, the subsequent re-
source allocation may not be optimal. On the other hand, the category ii) relaxation-
based optimal power flow is proved to solve the OPF problem accurately, particu-
larly in the case of the radial network topology [76], while a number of nonlinear
programming (NLP) algorithms in category iii) are developed as exact, non-convex
OPF models. Both category ii) and iii) show similar model accuracy while the
convex-relaxation-based methods are computationally most intensive. The central
motif of the dissertation is to impose certain economic interpretations and intuitions
when addressing the solutions to the research questions.

In this regard, we limit our discussions in this work to the linearization-based
approaches and nonlinear programming-based optimization without including the
relaxations-based approaches in our discussion in great detail. This is based on
the argument that relaxed-OPF-based DLMP models may not be the most intuitive
one to be interpreted. More specifically, the SOCP-based formulation and other
alternative relaxation-based DLMP models in comparison to the implicit-function-
based formulation (corresponds to the category of LP and NLP) are analyzed in [5]
and it generally turned out that the relaxation-based AC-OPF results in a recursive
formula that potentially leads to a non-intuitive interpretation of marginal changes
in a radial network and the implicit-function-based formulation provides the most
accurate interpretation. Note that most NLP methods are based on newton’s steps.
Hence linearization is involved in NLP steps. In the following, we focus on one
NLP method to form the basis for further discussions. On the other hand, the
generic NLP methods generally reveals only Karush-Kuhn-Tucker (KKT) points.
Yet, the hope is, the NLP converges to the global optimal point in the context of the
distribution grid (radial topology), which has been reported in several references
including [77, 2]. For meshed networks, there is no consensus in the research
community about the solution methods to underpin the convexity and strong duality.

2.3.1 Nonlinear programming of optimal power flow

The NLP algorithms can be generally categorized into Newton-based method, which
often involve the calculation of the Jacobian and Hessian to determine the search
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direction and approximate the power flow constraint. As discussed previously, the
advantage of NLP algorithms is that they provably converge to exact power flow
solutions. We focus on trust-region method in this work to solve optimal power
flow problems and motivate the adoption of NLP for the market-clearing purpose.
Compared to the alternative NLP methods, e.g., primal-dual Interior Point Method
(IPM), the benefits gained by trust-region method are twofold. First, a feasible
power flow solution is guaranteed at each step. Second, the implicit computation
of power flow sensitivities can be utilized for efficient DLMP calculations to enable
online implementation.

Generic NLP problem

min f(x) (2.45a)

s.t.

gi(x) ≤ 0, i = 1, ...,m (2.45b)
hi(x) = 0, i = 1, ..., p, (2.45c)

where the feasible set X of x ∈ Rn is given as a continuous set that is defined
by the inequality and equality equations (2.45b) and (2.45c). Depending on the
availability of first-order derivative information of the functions f and gi, the above
definition can be categorized into i) smooth, and ii) non-smooth optimization prob-
lems. Since the derivative information is available on the functions f and gi in the
generic OPF problems as discussed in Section 2.2.2, we limit our context in the
smooth optimization. To this end, a generic structure can be cast for formulating
NLP algorithms to find a optimal solution for the problem as

Algorithm 1 Generic nonlinear programming [1]
while converged? do

k := k + 1;
determine search direction r(k);
next iteration is x(k + 1) := x(k) + diag(λ(k)) · r(k).

end

Note that λ is the step-size that can be time-invariant when adjusting the step sizes
in the iterations. Variable r is the search direction determined by the gradient infor-
mation of the constraint and objective function. Under this structure, a number of
algorithms and variants are developed, including trust-region method [78], primal-
dual IPM [79]. An interesting feature of trust-region method is the exactness of
power flow solution, where the ability of online applications in close-to real-time op-
eration can be exploited. The adoption of trust-region to solve the OPF problem is
given in the following.

2.3.2 Trust-region algorithm in solving optimal power flow problem

The core idea of handling the power flow constraint (2.44b) in trust-region algo-
rithm is to create an approximate model (e.g., linear model) for the initial operating
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point within a feasible region (trust region). The approximate model should be suf-
ficiently accurate so that one can “trust” the model for finding the objective decent
direction within the “trust-region”. With the help of the minimization step, the steep-
est descent direction along the objective function can be found. In a new iteration,
the linearized model is then updated using the new operating point projected to
the AC power flow model (by solving the nonlinear functions with the new decision
variables). The algorithm repeats the steps until no further improvement can be
found within the next minimization step. Note that the trust region is adjusted from
iteration to iteration, i.e., the trust region will be enlarged if the approximate model
represents the original problem well and vice versa.

Recall the OPF problem in (2.44), the power flow equations are replaced by
its first-order approximations. More specifically, the nonlinear equation (2.44b) are
approximated by using linear estimates:[

ṽL
θ̃L

]
=

[
v̂L
θ̂L

]
+

[
Mvp
L Mvq

L
Mθp
L Mθq

L

] [
∆pL
∆qL

]
+

[
mvv
L

mθv
L

]
∆v0, (2.49)

and [
p̃0
q̃0

]
=

[
p̂0
q̂0

]
+

[
mpp
L mpq

L
mqp
L mqq

L

] [
∆pL
∆qL

]
+

[
mpv

mqv

]
∆v0, (2.50)

where a new operating point (ṽL, θ̃L, p̃0,i, q̃0,i, ṽ0,i) is approximated by the given
(old) operating point (v̂L, ŝθL, p̂0,i, q̂0,i, v̂0,i) using the linearization coefficient ma-
trices or vectors denoted by Mvp

L ,M
vq
L ,M

θp
L ,M

θq
L ∈ Rn×n,m

pp
L ,m

pq
L ,m

qp
L ,m

qq
L ∈

R1×n, mvv
L ,m

θv
L ∈ Rn×1, mpv,mqv ∈ R. Based on this, the trust-region is formed

using the linear estimates. Hence, a quadratic problem can be formulated in each
step that searches for the optimal solution within the trust region. Let the decision
variables for node i denoted by χi := [pi, qi, vi] ∈ R3, the detail of trust-region algo-
rithm is given in Algorithm 2. Note that a feasible power flow solution is recovered
in step 1.3, which can be used to form a feed-back control loop to enable the online
implementation.

Three-bus network example

𝑦12

𝑠1
𝑠3

𝑦23

𝑠2

DGPSP Load

Fig. 2.5: Three-bus network example.

We illustrate the trust-region with a numerical example in the following. The test
case is based on a three-bus network depicted in Fig. 2.5 with the network config-
uration provided in Table 2.1. In principle, two energy sources, i.e., PSP and DG,



2.3. OPTIMAL POWER FLOW 29

Algorithm 2 Trust-region Algorithm of Solving OPF [2]
Input: χ̂Li(0) - initial feasible state variable, fi(χ̂Li(0)) - initial local objective value
Parameters: ε - termination tolerance, ϕi(k) - trust-region radius; ϕmax - maximal
trust-region radius; η, β, γ ∈ (0, 1) - trust-region constants;

Step 1. (Local minimization with trust-region algorithm)

1.1 Choice of linearized model: to construct/update the sensitivity matrix for
linearized power flow model at operating point (û(k), ŝ0(k)), i.e., (2.49)
and (2.50).

1.2 Trust region minimization with f(χ):

χ̃∗L(k + 1) := arg min
χ̃
f(χ) (2.46a)

s.t. (2.44c) to (2.44g), (2.49) and (2.50)
||χ̃L(k + 1)− χ̂L(k)|| < ϕ

1.3 Feasible power flow projection: the next operating point χ̂L(k+ 1) is obtained
by projecting the optimization results χ̃∗L(k + 1) to the feasible power flow
solution, e.g. by using a Newton–Raphson algorithm [67].

1.4 With the previous operating point χ̂L(k), the approximate point χ̃L(k+ 1) and
the current operating point χ̂L(k + 1), the following ratio is computed:

σ(k + 1) =
f(χ̂L(k + 1))− f(χ̂L(k))

f(χ̃∗L(k + 1))− f(χ̂L(k))
(2.47)

which represents the ratio between actual objective reduction and predicted
reduction.

1.5 Trust region radii evaluation and update:

ϕ(k + 1) =


γϕ(k) σ(k + 1) ≤ η
min{ϕmax, 2ϕ(k)} σ(k + 1) ≥ (1− η)

ϕ(k) otherwise
(2.48)

1.6 Trust region solution evaluation:
If σ(k + 1) > β, solution of χ̂L(k + 1) is accepted, otherwise rejected and
χ̂L(k + 1) = χ̂L(k) is set.

1.7 Termination criteria check of trust region: ||χ̃L(k + 1)− χ̂L(k + 1)|| < ε.

compete with each other to supply to the load located at node 2. With the marginal
cost of the two energy sources, the optimal point for the minimal power procure-
ment cost is equivalent to the problem to minimize the power losses. Note that the
feasible set of control variables are defined for (p3, q3) ∈ R2, as the power injection
at PSP can only be changed “passively”. We plot the cost function with respect to
its feasible region in Fig. 2.6. It can be observed that the feasible region (p3, q3) is
described by a non-convex set (“belt" shape in the figure). The optimal point (red
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Table 2.1: Data for 3-bus network example.

Load 1 + 1  [pu]

Line y12 y23
0.1 + 0.15 [pu] 0.1 + 0.14 [pu]

Generation
PSP DG

capacity price coefficient capacity price coefficient
[0 inf] 10 [0 2] 10
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Fig. 2.6: Objective function.

dot in the figure) can be found on the boundary line of the feasible region. To this
end, the target of the optimization method is to find the minimum-cost point given a
starting point. The complete feasible set is defined with respect to all power flow
state variables including the voltages at all buses, which can be described by the
power flow manifold. In Fig. 2.7, the power flow manifold is plotted for the nodal
voltage at bus 3 with respect to its active/reactive nodal injections. Particularly, one
can observe the voltage lower bound of 0.90 pu.

Consider applying trust-region to solve the above test case. At each step, a
trust-region is formed by obtaining the approximate model at the operating point
(rectangular area). Then the direction of the arrow in Fig. 2.7 is determined by
the maximal objective decent direction in the trust region algorithm step 1.2. The
trust region (blue area) size is adjusted at each step based on the model accuracy
measured by the error between real approximated power flow and the actual power
flow solutions. The iterations repeat until a stable point (hopefully a global optimal
point) is found. Note that despite the adoption of nonlinear non-convex optimal
power flow models in this work, the trust-region method empirically yields the global
optimal solution for the radial distribution network (in fact, for all test scenarios
that have been tested in this work). At the time writing, there is no mathematical
proof for this to be guaranteed. In relevance to this, similar investigations [80] for
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convexification of optimal power flow exist in the literature.

2.4 Summary

This chapter reviews the basic modeling for electrical distribution system. As the
key elements for optimal decision tools, explicit power flow linearization, optimal
power flow problems and trust-region algorithm are introduced. It is important to
notice that depending on the application and the real-world grid parameters, lin-
earized power flow model provides a trade-off between the model accuracy and
the computational effort, which must be taken into account to provide solutions
for different applications. For example, for applications like voltage control, a lin-
earized DistFlow model is sufficiently adequate to estimate the voltage magnitude
and, hence, can be used to design distributed/centralized controller to regulate the
voltage. For applications in the market design, we are more interested in the exact
cost allocations. To this end, exact power flow solution and the respective solution
methodologies are better suited.





Chapter 3

Spot Pricing and Distributed
Optimization

Based on duality theory, the optimal spot pricing can be derived by the solution of
optimal power flow problems. It results in a DLMP formulation, which follows the
same form as in (1.1). The derivation of DLMP is closely related to the classical
welfare theorem in microeconomics. In this chapter, we start by solving a generic
optimization problem by applying the duality theory. The presentation of its math-
ematical formulation is aimed to provide some intuition behind the functionality of
using dual variables as the optimal prices. Some of the practical aspects to imple-
ment DLMP in relevance to the research questions in chapter 1 are also addressed.
The following discussion on the fundamentals of duality and pricing is inspired from
the textbook [41, 81]. Sharing the same origin of using duality to solve optimiza-
tion problems, distributed optimization methods are another cornerstone to enable
decentralized market implementation. In the second half of this chapter, we focus
on one of the methods, i.e., ADMM, which is detailed in its motivation, derivation,
implementation and performance.

3.1 Market modeling

3.1.1 Fundamentals of duality

Consider a generic convex optimization in the same form of (2.45), which is referred
as the primal problem in the context of duality. Lagrangian can be defined as

L(x,λ,ν) = f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

νihi(x), (3.1)

where λ ∈ Rm,ν ∈ Rp are referred as dual variable vectors for the inequality and
equality constraints, respectively. To this end, the dual function can be obtained as
the minimum of Lagrangian over x

L(λ,ν) = min
x
L(x,λ,ν). (3.2)

The dual function is always a concave function, since it is the minimum of a family of
affine functions. Due to its concavity, the dual function is easy to solve and proved

33
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useful to obtain the lower bounds for the primal problem’s objective. This means, for
an optimal solution p∗ = f(x∗) of problem (2.45) and a non-negative dual variable
λ ≥ 0, we can obtain the lower bounds for the optimal solutions of the problem

L(λ,ν) ≤ f(x∗), (3.3)

where its proof can be simply followed by substituting the eq. (2.45b) and (2.45c)
into the Lagrangian.

This inequality condition is commonly referred as weak duality. To obtain the
largest lower bound, the following dual problem can be defined as

d∗ = max
λ,ν
L(λ,ν) (3.4a)

s.t.

λ ≥ 0, (3.4b)

where, due to its concave function characteristic, the dual problem is in general
easy to solve. The definition of weak duality motivates to define the concept of
strong duality as

d∗ = p∗. (3.5)

Strong duality usually holds when the primal problem is convex under some mild
constraint qualification condition. It also holds, in some rare cases, for non-convex
problems. Furthermore, both primal and dual variables should satisfy the following
KKT conditions if they are the optimal under the strong duality.

Karush-Kuhn-Tucker conditions

∇L(x,λ,ν) = 0 stationary condition (3.6a)
gi(x) ≤ 0, , i = 1, ...,m (3.6b)
hi(x) = 0, i = 1, ..., p primal feasibility (3.6c)
λ ≥ 0 dual feasibility (3.6d)
λigi(x) = 0 complementary slackness (3.6e)

KKT conditions are necessary conditions for optimality. In the case of convex
optimization problems, they are also sufficient conditions. KKT conditions play a
central role to associate the optimal power flow solutions with the optimal electricity
and AS prices. Essentially, the dual variables can be devised as the optimal prices
based on KKT condition. In this scope, the interpretation of dual variables as the
marginal cost for electricity is important. Consider the modified generic optimization
problem (2.45) to

min p = f(x) (3.7a)
s.t.
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gi(x) ≤ ai, i = 1, ...,m (3.7b)
hi(x) = bi, i = 1, ..., p, (3.7c)

where the right side of the equality and inequality constraints are replaced with a
infinitesimal number ai, bi. The respective Lagrangian is obtained as

L(x,λ,ν) = f(x) +
m∑
i=1

λi(gi(x)− ai) +

p∑
i=1

(νihi(x)− bi), (3.8)

Applying the stationary condition on the infinitesimal number, the dual variables are
obtained as the sensitivity of the optimal objective solution to ai, bi:

λi = −∂p
ai

and νi = −∂p
bi
. (3.9)

Hence the dual variables are obtained as the sensitivity of the total cost subject
to the infinitesimal additive modification of constraint bounds, i.e., marginal cost to
comply with the respective constraint. Now recall the constraints defined in the
generic OPF problem. If we associate the dual variables to the grid stability con-
straints like voltage bound or thermal limit, the respective dual variables can be
interpreted as the marginal cost to provide the ASs that maintain the stability, which
gives the mathematical formulation of T&D network quality of supply premium in
Eq. 1.1 in the spot pricing principles.

3.1.2 Optimal pricing

As aforementioned, for a typical optimal power flow problem, some dual variables
can be interpreted as the marginal cost to maintain the grid stability. Then the
question arises in how to define a market mechanism that can direct the market
participants to satisfy various power system constraints in the electricity market.
Consider the following problem, which can be viewed as a simplified form of optimal
power flow problem,

min
n∑
i=1

fi(xi) (3.10a)

s.t.
gi(y) ≤ 0, i = 1, ..., n : µi ∈ R (3.10b)
xi = hi(y), i = 1, ..., n, : λi ∈ R (3.10c)

where the objective of the problem is assumed to be separable into each agent
i. The objective function is further interpreted as the sum of the cost function
(maximization of social-welfare) for each agent. By applying the stationary con-
dition (3.6a) with respect to the local decision variable xi, we obtain

∂fi(xi)

∂xi
− λi = 0. (3.11)

The solution above is essentially equivalent for the agent i to solve the following
optimization problem

min fi(xi)− λixi, (3.12)
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which is a cost minimization problem for agent i with λi given as the pre-defined
price for the purchased/provided quantity xi. Hence, if we can set the prices λi
properly, the social-welfare problem (3.10) can be aligned to the individual prob-
lems (3.12) of agent i. The example above gives us the intuition to develop socially
optimal pricing scheme for the electricity market. In the following, we introduce its
adoption in the context of distribution grid market.

3.1.3 Distribution locational marginal price formulation based on
spot pricing principles

In the center of the proposal for optimal electricity pricing in distribution grid, DLMPs
are derived based on the social welfare maximization problem for the whole dis-
tribution system, which represents the minimization of the DSO’s total cost for en-
ergy/flexibility procurement subject to all system and electric grid constraints. Math-
ematically speaking, the social welfare function, i.e., the difference of utility function
and the cost function of all DERs, is expressed as

w(pg,qg,pfl) = Cfl(pfl)− Cp(pg)− Cq(qg). (3.13)

where the total active/reactive power nodal injections are given as

p = Agpg −Aflpfl −Aslpsl (3.14)

q = Agqg −Aslqsl (3.15)

with Ag ∈ R(n+1)×g,Afl ∈ R(n+1)×fl,Asl ∈ R(n+1)×sl representing the mapping
matrices of DGs FLs and static loads to the grid nodes. The maximization of the
overall social welfare for the whole distribution system is described by

max w(pg,pfl,qg) (3.16a)
s.t.

1ᵀ
n+1p = ploss : λp ∈ R (3.16b)

1ᵀ
n+1q = qloss : λq ∈ R (3.16c)

p ≤ p ≤ p : µp,µp ∈ Rn (3.16d)

q ≤ q ≤ q : µq,µq ∈ Rn (3.16e)

v ≤ v ≤ v : µv,µv ∈ Rn (3.16f)

|sf|2 ≤ |s|2 : µsf ∈ Rh (3.16g)

|st|2 ≤ |s|2 : µst ∈ Rh, (3.16h)

where constraints (3.16b) and (3.16c) are the active and reactive power balance
equations. Constraints (3.16d) to (3.16h) are the box constraints for nodal power
injections and voltage magnitude and bi-directional line flow. Note that constraints
(3.16b) and (3.16c) contain the power flow equation implicitly. The dual variables
are listed on the right side of their respecting constraints with the same dimensions.

The DLMPs are then evaluated with the respective sensitivity matrices upon
the obtaining the optimal solutions. More specifically, after obtaining the optimal
solutions, the DLMPs can be recovered using the KKT conditions by calculating the
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first-order derivative of the Lagrangian function for nodal active power. As a result,
the DLMPs for active power π ∈ Rn are given as the sum of four components [35,
2]:

π = πe + πl + πv + πc, (3.17)

where πe := cp,01n is the energy component with cp,0 as the active power price at
PSP from the wholesale market, πl := −((∂p

loss

∂pL
)ᵀcp,0 +(∂q

loss

∂pL
)ᵀcq,0) is the loss com-

ponent with ∂ploss

∂pL
, ∂q

loss

∂pL
∈ R1×n as the loss sensitivity coefficient for active/reactive

power losses in respect to the nodal injections and cq,0 as the reactive power price
at PSP, (iii) πv := ( ∂v

∂pL
)ᵀ(µv − µv) is the voltage support component with ∂v

∂pL
∈

Rn×n as the voltage sensitivity with respect to active power injections, and (iv)
πc := (∂|s

f|2
∂pL

)ᵀµsf + (∂|s
t|2

∂pL
)ᵀµst is the congestion component with ∂|sf|2

∂pL
, ∂|s

t|2
∂pL

∈ Rh×n

denoting the sensitivity of the squared line flow with respect to the active power
injection. Note that the DLMP representation is referred as implicit-function based
decomposition in [5] that naturally lends itself into forming three different grid op-
eration products: loss compensation, voltage support and congestion reduction for
each node to contribute to the overall grid operational cost.

Options for market implementation based on DLMPs

Depending on the organization of information flow, there are two ways to organize
the market using DLMPs. The first option, which is in the category of centralized
control, resembles an auction-based wholesale market implementation. It can fol-
low the following steps.

1. DGs, FLs submit their bids, energy requirements as well as the dispatch ca-
pabilities to the DSO.

2. The DSO forecasts its underlying grid demand and price for the power supply
from wholesale market.

3. The DSO clears regional DLMPs to be passed on to local DGs together with
their contracted energy supplies/demand.

Note that both the forward market and real-time market (for balancing) can be es-
tablished in a similar manner. The second option can be categorized into decentral-
ized control, where the DSO simply sets the price signals and DGs and FLs reacts
accordingly. More specifically, the steps in this setting can be provided as follows.

1. The DSO forecasts its underlying grid demand and price for the power supply
from wholesale market. The DSO either forecasts or requests the availability
and supply/demand data of DGs/FLs.

2. The DSO calculates the DLMPs and publishes to DG/FL aggregators, and
alternative load serving entities.

This kind of decentralized operation are proposed in a number of references includ-
ing [16]. Since information privacy and autonomy is an important topic for decen-
tralized energy management, the load aggregators tend to protect their sensitive



38 CHAPTER 3. SPOT PRICING AND DISTRIBUTED OPTIMIZATION

information such as utility function. Hence, it is worth mentioning that iterative ap-
proaches that utilizes decomposition methods, e.g., dual decomposition, ADMM,
are the research interest of many proposals [82, 2]. This kind of approach gener-
ally requires the exchange of dual variables between DSO and DER aggregators,
where the sensitive information like utility/cost functions, bid formulation remain
locally with the DER-end. Beyond this scope, there are other occasions, where de-
composition methods, or distributed optimization methods have practical use cases.
We elaborate this aspect in the following section.

3.2 Distributed optimization method

As the main theme of this work is to provide the coordination scheme between mar-
ket operators (DSOs), market participants (DERs), distributed optimization tech-
niques can be found very useful in a variety of settings, e.g., formulating DER-to-
DER, DSO-to-DSO coordination mechanisms. In this work, we focus on ADMM-
based solution methodology, where its applications are demonstrated for a number
of use cases. The arguments of the adoption of ADMM include i) implementation
robustness and flexibility, ii) the interpretation as a market mechanism. Specifically,
ADMM can be interpreted as a price coordination mechanism to achieve the Wal-
rasian tâtonnement process [83], which only requires the information exchange of
proxy variables without revealing the sensitive local information like utility function
and constraints. It is also a robust method, which is shown in recent exposition [84]
in the presence of asynchronous data update and packet loss. To this end, it makes
the protocol suitable for plug & play applications.

ADMM was first introduced by Gabay, Mercier, Glowinski, and Marrocco in the
mid-1970s. Since then, it has been continuously developed and intensively studied
in the following decades. Only in recent years, with the emergence of large-scale
data analysis techniques like artificial intelligence, it is of prime importance to de-
velop suitable methods that can handle problem in parallel and distributed fashion,
wherein the method fits well in the picture. The derivation of ADMM is deeply rooted
in the duality theory that can be traced back as a variant of primal-dual method to
solve convex optimization problems. In this section, we aim to provide the intu-
ition to interlink ADMM with the duality theory, which is inspired from the Boyed’s
work [83].

3.2.1 Dual decomposition

Consider a generic convex optimization problem in the form of (2.45) with only
equality constraint.

min f(x) (3.18a)

s.t.

Ax = b, : ν. (3.18b)

Assuming that the strong duality holds, for a given optimal dual variable ν∗, the
optimal solution x∗ can be recovered by

x∗ = arg min
x
L(ν∗,x). (3.19)
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Recall the definition of dual problem, where it can be used to find the maximal
lower bound of the primal problem, a method to solve the optimization problem that
is termed as dual ascent method, can be formulated by using the idea of gradient
ascent. Recall the stationary condition in KKT conditions, where the gradient of dual
function with respect to the dual variable, given as ∇νL = Ax− b, is supposed to
be equal to zero. To this end, the iterative steps of dual ascent method can be given
as

x(k + 1) := arg min
x
L(x,ν(k)) (3.20a)

ν(k + 1) := ν(k) + α(Ax(k + 1)− b), (3.20b)

where α > 0 is the stepsize. Note that based on the discussion in Section 3.1.1, the
dual variable ν is the marginal cost to satisfy the equality constraint. The advantage
of dual ascent method is that it can be implemented in a distributed way for some
special types of problems. Consider the following case, where the objective is
separable, i.e.,

f(x) =
n∑
i=1

fi(xi), (3.21)

with separable constraint term Ax =
∑n

i=1 Aixi. Hence, the Lagrangian is rewritten
as a sum of individual terms as

L(ν,x) =

n∑
i=1

Li(νi,xi) =

n∑
i=1

(
fi(xi) + νᵀ(Aixi − b)

)
, (3.22)

This formulation results in a parallel-implementable dual-ascent method, which is
commonly referred as dual decomposition, provided as

xi(k + 1) := arg min
xi

Li(x,ν(k)) (3.23a)

ν(k + 1) := ν(k) + α(Ax(k + 1)− 1

n
b), (3.23b)

where step (3.23a) can be solved in parallel in n agents and step (3.23b) requires
a central entity to collect the local update xi and update the dual variable centrally.
Then the updated dual variables will be redistributed to each agent to accomplish
the next iteration. The above procedures are demonstrated in the following exam-
ple.

Examples for dual decomposition

Consider a simple decomposable optimiztion problem with strict convex objective
function in following form

min
x1,x2

f(x1, x2) = x21 + x1 + x22 + x2 (3.24a)

s.t.

x1 + x2 = 2, (3.24b)
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Fig. 3.1: Example for dual decomposition (ν(0) = 0, α = 0.1). Plot a) shows
the contour of the objective function and the linear constraint. Plot b) shows the
evolution of ν over the iterations of dual decomposition methods. Plot c) depicts the
evolution of the subproblem Lagrangian over the iterations.

where the problem has a separable quadratic objective function of variables x1, x2
and is subject to the affine constraint. Based on the dual decomposition method,
the solution can be found by the following iterations:

x1(k + 1) := arg min
x1

(
x21 + x1 + ν(x1 − 1)

)
, (3.25a)

x2(k + 1) := arg min
x2

(
x22 + x1 + ν(x2 − 1)

)
, (3.25b)

ν(k + 1) := ν(k) + α(x1(k + 1) + x2(k + 1)− 2). (3.25c)

The evolution of the iterations are plotted in Fig. 3.1. Note that the subprob-
lems (3.25a) and (3.25b) are unbounded in their quadratic objectives, which are
trivial to solve. Hence, for the initial step, it is intuitively to find the origin of the
objective function (−0.5,−0.5) as the optimal point (see subplot a) in Fig. 3.1).
With the increasing penalty term from decreasing ν, the origin of the Lagrangian of
the subproblems are slowly shifted to the optimal point with the binding constraint.
This can be observed in subplot c) of Fig. 3.1, where the origin of the quadratic
Lagrangian function of the subproblem is shifted to the constraint-binding point.

Note that based on the stationary KKT condition, i.e., ∇L(x,λ,ν) = 0, the local
optimality should coincide with the global optimality, where the optimal solutions
should satisfy

∂f(x1, x2)

∂x1
= −ν, (3.26a)

∂f(x1, x2)

∂x2
= −ν. (3.26b)

The overall problem is strictly convex and, hence, the solution is unique for the
given example.
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Fig. 3.2: Example for dual decomposition in an unstable scenario (ν(0) = 0, α = 0.1
). Plot a) shows the contour of the linear objective function and the constraint. Plot
b) shows the oscillations of ν over the iterations for the modified problem. Plot c)
depicts the subproblem Lagrangian over the iterations.

In the case that the objective function is not strictly convex (even the overall
problem has a unique solution), the dual ascent method has convergence issue.
We illustrate by replacing objective function in problem (3.24) with an affine function
as

min
x1,x2

f(x1, x2) = x1 + x2 (3.27a)

s.t.

x1 + x2 = 2, (3.27b)
0.5 ≤ x1 ≤ 2, (3.27c)
0.5 ≤ x2 ≤ 2. (3.27d)

Similarly, we apply the dual decomposition method for the modified example and
present the results in Fig. 3.2. One can observe from subplot a) in Fig. 3.2 that all
the iterations are mostly concentrated at two end points along the decent direction
of the objective (red line). This can be explained by the unbounded subproblems
in plot c), where the Lagrangian for subproblem with varying ν is depicted. It can
be seen that an infinitesimal change of the dual variable can lead to the change
of the sign in the gradient of the Lagrangian when the iterations approaching the
optimal point (1, 1). For unbounded subproblems with linear objective, the change
of sign will cause the “oscillation” between two end points at (0.5, 0.5) and (2, 2).
This in turn results in the instability of the dual decomposition method for this type
of problem.

3.2.2 Method of multipliers

Based on the above discussion, dual decomposition method has convergence is-
sue when the objective function is not strictly convex. To bring robustness into the
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method, the method of multipliers is introduced as follows. First define the aug-
mented Lagrangian for problem (3.18)

Lρ(ν,x) = f(x) + νᵀ(Ax− b) +
1

2
ρ||Ax− b||22 (3.28)

with a positive constant ρ, which is also termed as penalty factor. The primal prob-
lem that associated to the augmented Lagrangian is clearly equivalent to the origi-
nal problem (3.18).

Example
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Fig. 3.3: Augmented Lagrangian for subproblem (3.25a) (ρ = 0.3, ν ∈ [−2, 0]).

Consider the previous example with affine objective function in problem (3.27)
as follows. We plot the associated augmented Lagrangian for the subproblem in
Fig. 3.3. We can observe that the associated augmented Lagrangian is able to
robustify the dual decomposition method by adding the augmented second-order
term, which provides a unique solution at the optimal point x1 = 1. Furthermore,
the value of dual variable ν can be trivially calculated as finding the origin of the
augmented Lagrangian, where − 0.7+ν

0.3·0.5·2 = 1 gives ν = −1.

In the example above, the modified Lagrangian provides the benefit that the
dual function associated to the primal problem is differentiable even under rather
mild conditions. Hence the underlying gradient update in the dual ascent method
is more robust compared to the original dual decomposition method. The modified
dual ascent method is obtained as

x(k + 1) := arg min
x
Lρ(x,ν(k)), (3.29a)

ν(k + 1) := ν(k) + ρ(Ax(k + 1)− b), (3.29b)

which is referred as the method of multipliers. The method converges under more
general conditions including non-strictly-convex objective function f(x).
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Now consider the separable-objective example introduced in the dual decompo-
sition method, where f(x) =

∑n
i=1 fi(xi). We still like to achieve the similar parallel

computation structure in (3.23). However, the penalty term 1
2ρ||Ax − b||22 is not

separable. Hence the method of multipliers cannot be directly transformed for the
decomposition purpose. In light of this, alternating direction method of multipliers
is introduced.

3.2.3 Alternating direction method of multipliers

Consider the following problem

min f(x) + g(y) (3.30a)

s.t.

Ax + By = b : ν ∈ Rn (3.30b)

with variables x ∈ Rk, y ∈ Rl, mapping matrices A ∈ Rn×k,B ∈ Rn×l, and b ∈ Rn.
It is also assumed that both f(x) and g(y) are convex functions. The augmented
Lagrangian is defined as

Lρ(ν,x,ν) = f(x) + g(y) + νᵀ(Ax + By − b) +
1

2
ρ||Ax + By − b||22. (3.31)

ADMM is provided with the following steps in Algorithm 3.

Algorithm 3 ADMM algorithm
while converged? do

x(k + 1) := arg min
x
Lρ(x,y(k),ν(k)) (3.32)

y(k + 1) := arg min
y
Lρ(x(k + 1),y,ν(k)) (3.33)

ν(k + 1) := ν(k) + ρ(Ax(k + 1) + By(k + 1)− b) (3.34)

end

The generic form of ADMM algorithm works in a way that the primal variables
x,y are updated in a alternating manner (alternating direction). Then the dual vari-
ables can be updated either centrally or locally (requires different information flow).
Regarding the convergence property, ADMM is able to converge to optimal solu-
tions when f(x), g(y) are convex functions. It may even converge when the prob-
lem is nonconvex [83]. We will discuss this aspect from the application perspective
in Chapter 4 and Chapter 5. Depending on the form of the problems, ADMM can
be reformulated or simplified accordingly. Interested readers may refer [83] for the
substantial review of these problems. To this end, we focus a special form of ADMM
in solving consensus optimization problem, which is particularly interesting to for-
mulate the electricity market coordinate scheme.
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3.2.4 Consensus problem

Consider the generic consensus problem in the following form

min

n∑
i=1

fi(xi) (3.35a)

s.t.
xi = Aiz : νi ∈ Rni , i = 1, ..., n (3.35b)

with z ∈ Rm as the global variable, which the local variables xi should agree upon
(consensus). Matrix Ai ∈ Rni×m is the incidence matrix that projects the entries
of x to the corresponding entries of global variable z. We illustrate the mapping of
the local variables to the global variables with Figure 3.4. It shows that one global
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Fig. 3.4: Consensus problem.

variable can be associated to multiple local variables that the agents should agree
upon. To this end, the incidence matrix to describe the mapping is defined as

(Ai)k,l =

{
1 if (xi)k = zl

0 if others
. (3.36)

Adopting Algorithm 3 to solve problem (3.35), we get the following iterations in Algo-
rithm 4. Note that the step (3.38) is obtained from reformulating step (3.33), where
the global variable z is updated by averaging the local variable’s value xi. One
can easily verify this by substitution of the augmented Lagrangian of consensus
constraint into (3.33) and obtain the subproblem as a minimization problem of a
quadratic function. The trivial solution is then obtained as the origin of the quadratic
function, which is equivalent to the average values of the corresponding entries in
xi. Interested readers may refer to [83] for substantial detail for the derivation. In
terms of communication, the averaging step (3.38) can be fully decentralized into
each of the components of z and updated at each zi node. This provides flexibility
for the practical implementation for information exchange schemes. In Chapter 4
and Chapter 5, an extended discussion on communication and information privacy
will be provided from the market perspective.
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Algorithm 4 Consensus-ADMM algorithm.
while converged? do

xi(k + 1) := arg min
xi

(
fi(xi) + νᵀi (k) · xi +

1

2
ρ||xi −Aiz(k)||22

)
(3.37)

z(k + 1) := diag−1(
n∑
i=1

Aᵀ
i 1ni×1)

n∑
i=1

Aᵀ
i xi(k + 1) (3.38)

νi(k + 1) := νi(k) + ρ(xi(k + 1)−Aiz(k + 1)) (3.39)

end

Remark. Based on the problem structure, a direct implementation can be formed
to coordinate regional operators of power system to solve the maximize the social
welfare of the overall system, as power system is de facto operated by different
regional operators due to geographical restrictions. First, the power flow from one
region to another should comply with physical laws. The consensus constraints
regarding the physical quantities (voltage magnitude, angles) shall be enforced be-
tween regions. On the other side, we are also interested to obtain the energy/ASs
exchange prices between regions. The quantity of the energy and ASs should be
agreed upon on a bilateral basis and the price signals can be directly derived based
on the economical perception of ADMM, where the dual variables of the consensus
constraints are used as the optimal exchange prices for the respective commodi-
ties.

3.2.5 ADMM Interpretation

Competitive market mechanism

In this section, we show that the presented ADMM algorithm can be interpreted
as a form of tâtonnement process that essentially adjusts the prices to achieve
the market equilibrium, following the Walras theory of general equilibrium [85]. In
this scope, the commodity to be exchanged is denoted by global variables z in the
consensus problem that needs to be agreed upon the quantity among n agents.
Assuming there exists a market equilibrium where the supply of the commodity
meets the demand, we consider the following game with a fictitious central market
operator. The game consists of three steps [86]:

(i) The central market operator announces an initial price vector ν(0) for com-
modity exchange between each agent pairs.

(ii) Obtaining the price vector, each submits their supply/demand quantity based
on the optimization results according to the announced price vector.

(iii) Central market operator calculates the commodity quantities excess demand
and adjusts the price vector as follows: if the demand exceeds the supply,
the price will be increased stepwise, otherwise reduced. The game continued
until the market equilibrium price is achieved.
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Now recall the dual variables in the augmented Lagrangian where ν are associated
to the excess supply/demand for commodity exchange. Hence it can be readily
interpreted as the market-clearing prices upon convergence of the algorithm. Then
Tâtonnememnt is a process to provide the market equilibrium [86]. By comparison,
the initialization of ν in Algorithm 4 and solving the local optimization problem of
ADMM corresponds to trading game step (i), whereas the price adjusting step (iii)
is equivalent to ADMM step 2 and 3. The penalty factor in ADMM is therefore the
step size of the price adjustment. Hence, ADMM can be viewed as the algorithmic
expression of the game wfithout the central market operator, i.e., a decentralized
competitive market mechanism.

3.2.6 Alternative distributed optimization methods

There are alternative methods that are widely proposed for application in power sys-
tem (see e.g. proximal message passing (PMP) [87], Consensus + Innovation [88],
Benders decomposition, and many other methods therein). Several review works
[46, 54, 3, 89, 13] exist to compare these methods in the aspect of computation,
communication and organizational requirement. We briefly describe some repre-
sentative methods and their advantages/disadvantages in comparison to ADMM as
follows.

Benders decomposition

In the category of cutting-plane technique, Benders decomposition was initially in-
troduced for Mixed Integer Linear Programming (MILP) [90], where the integer are
handled as continuous variables and the enforcement of integer constraint is done
by adding additional affine constraints from a separate process. Specifically for
applying benders decomposition in solving the OPF problem, a new entity (data
coordinator) is required to generate the additional constraints. The subproblems
are solved in parallel by the individual agents, where the so-called “infeasibility
cuts” are generated and then passed to the data coordinator. The communication
structure resembles very much the structure of dual decomposition methods. In
terms of computational performance, Benders decomposition yields a faster con-
vergence rate compared to ADMM in general, whereas its organizational flexibility
is less. Interested readers are encouraged to refer to our work [46] for more a
detailed comparison.

KKT-condition based decomposition

Another popular category of decomposition methods is based on the solving KKT
conditions in a distributed way. As described previously, KKT conditions are es-
sentially a combination of linear equations and inequality conditions. Under the
assumption that the primal problem is a convex problem, the basic idea is to use ad-
equate protocol to find the variable values that comply with these conditions. Con-
sensus + Innovation (C+I) protocol [91] is one of the protocol that can be adopted
for this purpose, which leads to a large number of proposals for multi-agent grid
management. In terms of communication structure, both ADMM and C+I can be
implemented in a fully distributed way, meaning only neighbor-to-neighbor commu-
nication is necessary for implementation. From the perspective of flexibility, ADMM
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is more flexible in a sense that size of the sub-problems can be constructed more
flexibly than it in the case of decomposition of KKT conditions, where the decom-
position is derived from a fixed number of stationary conditions and feasibility con-
ditions. On the other hand, the convergence rate of KKT-based decomposition is
substantially slower than it in ADMM. An overview of the qualitative comparison is
summarized in the following table.

Method Computation Communication fexibility Convergence rate
Benders +++ + +++
ADMM +++ +++ ++
KKT-based (C+I) + ++ +

Table 3.1: Qualitative comparison of decomposition methods.

3.3 Summary

This chapter provides two key elements to form the market coordination scheme.
Both are originated from the theory of duality. The duality theory is used to drive the
optimal pricing for price-taking agents in a competitive market environment. ADMM
is a competitive market mechanism as well as a robust distributed optimization
method that is aimed to mitigate the convergence issue of the dual decomposition
methods, which traces back to the primal-dual method of solving convex optimiza-
tion problem. Note that ADMM converges under more mild conditions even for
nonconvex problems. Its economical interpretations is particularly interesting to
derive rules for cooperative agents to work towards a collective objective. In the
next two chapters, we exploit two use cases of ADMM to organize large number of
agents in electricity distribution system.





Chapter 4

Regional Distribution Grid Market
Organization

This chapter presents the local distribution grid market organization including a
centralized DSO-market for ASs and decentralized P2P market to accommodate
the prosumer preferences. The proposed market structure ensures the prosumer
autonomy and privacy while the grid stability is guaranteed. The core of the pro-
posal focuses on the functionality of GUP (derivative of DLMP) as a coordination
scheme between the two markets.

The technical contributions of this chapter are threefold. First, we propose a
simultaneous market-clearing model for P2P energy trade and AS market, which
utilize DLMP as a common tool to direct DERs towards “grid-friendly" behavior. This
tool provides coordinated behavior between the emerging markets at the distribu-
tion grid level. Second, an interpretable and decomposable GUP scheme is derived
based on implicit function formulation. The GUPs lend themselves as price signals
because they are naturally decomposable into price signals for voltage support,
congestion management, and loss compensation, which can be used to recover
the cost of grid usage in each category. We show that the proposed GUP scheme
effectively incentivize the P2P market participants to reduce the grid operation effort
of the grid operators under various of scenarios. Third, to emphasize the implemen-
tation scalability and potential limitations on the privacy and communications, we
propose the P2P market equilibrium to be obtained with an ADMM-based tractable
solution. The obtained energy exchange prices are shown to reflect the cost al-
location of ASs and peers’ price differentiation based on their contribution to the
grid operation for fairly large-scale systems. The main results in this chapter are
included in publication [43].

4.1 DSO Market for integrated energy and ancillary
services

To focus on the local distribution grid market design, following assumptions are
made for the DSO-operated market. Note that the emergence of distribution grid
market also involves the coordination with upstream transmission grid market, which
is beyond the scope of this dissertation. First, transmission grid supplies the ma-
jority energy to the distribution grid demand. Hence the marginal cost is genuinely

49
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determined by the price at PSP. Second, DSO Market clears before the wholesale
market. The excessive energy/ASs are made available to transmission grid. Under
these assumptions, the proposed distribution grid market organization is depicted
in Fig. 4.1, which is operated in different time scales. Two types of markets are en-
visioned: i) forward market and, ii) real-time market. The forward market is a finan-
cial market, where the contractual arrangements regarding the dispatch volumes of
prosumers in day-ahead and hourly-ahead manner are made. In this chapter, we
focus on the (close-to) real-time (RT) market coordination, since the forward market
clearing model can be formalized as a multi-time step convex optimization problem
that resembles the RT-market clearing model in this proposal. Interested readers
may refer [2, 35] for more details for day-ahead DSO-market clearing procedures.

RT market

DSO market (voltage 

control & congestion 

management)

forward market

Bilateral market

Real-time
Day-ahead, 

hourly- ahead 

Fig. 4.1: Market organization and time scales.

As we approach the real-time operation horizon, the uncertainties due to fore-
cast errors are assumed to be neglectable. Prior to the real-time market-clearing,
the energy can either be traded based on bilateral contract or transacted in a cen-
trally operated DSO market. Furthermore, the unbalances and grid operation con-
tingencies are supposed to be handled by DSO, which is able to purchase addi-
tional energy and load flexibility to maintain the grid stability. This market settings
entails the temporal coordination between the bilateral market (P2P market) and
the DSO market. The workflow of the coordinated market-clearing model for bi-
lateral market and DSO market can be cast as follows. First, the P2P negotiation
for energy trade is initialized in fully distributed manner. Second, the GUPs are
updated by DSO and communicated to peers. The negotiation steps repeat until
a consensus is reached between peers regarding the trading price and quantity.
The AS market that complements the P2P market is centrally operated by DSO to
remove any existing violation of grid constraints during negotiations. The scope of
the P2P energy trade is to settle local transactions between sellers, i.e., DGs and
energy storage systems (ESSs), and buyers, i.e., FLs and conventional loads, in

the distribution system. Note that the bilateral market is decoupled from the DSO
market from the operational perspective, which ensures peer-centric autonomy. In
light of the distribution grid market organization, we briefly describe the motivation
for the inclusion of P2P market in the following.
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4.2 P2P market for energy and flexibility

4.2.1 Consumer-centric market transformation

As the DSO-operated market focuses on market efficiency and grid stability, the
heterogeneous preference of prosumers remains unaccommodated. According to
the European Union (EU) Strategy Energy Technology Plan [92], prosumers (smart
consumers) are envisioned to be at the center of the future energy system. Pro-
sumers are defined as small-scale energy end-users with generation, energy stor-
age and interoperable information and communication technologies (ICT), who ac-
tively manage their energy portfolio. In this scope, to encourage the transformation
from passive consumers to prosumers, in some countries, e.g., Germany [93], eco-
nomic incentives including feed-in tariff are provided for consumers to install the
solar PV and ESSs. Feeding-into-the-grid practice, however, leads to issues of
grid inertia reduction as the energy provided by renewable energy is not control-
lable. This in turn requires the installation of more flexible resources and flexible
generations as reserves. On the other side, the fair prices for electricity become
difficult to be recovered since the feed-in tariff is highly subsidized. The increasing
needs for the provision of flexibility, which may potentially make it profitable for en-
ergy consumer to provide loading elasticity to the grid [30]. Proposals by California
ISO consider the flexibility as fast ramping capacity to account for the uncertainty
before real-time clearing (5 min) [94]. The need for flexibility essentially comes
from the stochastic nature of renewable generations as well as the grid operational
challenges like voltage congestion and congestion management in the future distri-
bution grids. To this end, flexibility products are usually proposed to be procured by
grid operators (TSO or DSO), and market entities (balancing responsible parties).
Considering the deployment of IoT devices, the harvesting of flexibility from end-
customers with limited capacity is considered to be difficult as there are no mature
market models to enable this. Therefore, bi-lateral contracts can be used to procure
the flexibility services and between different market layers and entities.

In view of the heterogeneous preference of the prosumers, the current power
system treats electricity as a homogeneous product. A number of studies have
found out that the electricity consumers are willing to pay premium based on their
own preference for the generation sources e.g., local generations [95, 96]. Addi-
tional surveys also showed that people are willing to share the excess power with
their community members [97]. In this scope, the P2P energy trade can be cast
as an alternative way to encourage and foster the deployment of renewable en-
ergy and the exchange of green energy. In line with this, the Brooklyn microgrid
has demonstrated that by establishing a small-scale P2P energy exchange market
in the microgrid, profits by energy trading can be captured within the community,
which in turn provides incentives for renewable generations/ESS to be deployed for
balancing local supply and demand [98].

4.2.2 Market scope

In line with the discussion towards consumer-centric market organization, the P2P
market model can be applied for the exchange of energy and flexibility. For illus-
tration, consider the following example in Fig. 4.2 in an urban city, where multiple
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Fig. 4.2: Example for P2P trading flexibility in an urban environment.

commercial buildings and electric vehicle charging stations are located along the
same distribution feeder. Suppose the DSO market has implemented a local mar-
ket, where the contracted amount of energy for DER aggregators are fixed after
the day-ahead market-clearing (see Section 3.1.3). Approaching the real-time op-
eration, the car-park charging station aggregator has an over-demand of charging
power that exceeds the contracted power from the day-ahead market. To avoid the
penalty cost, the car-park aggregator seeks for the procurement of the additional
amount of energy from alternative sources. The building aggregator may happen
to have sufficient reserves to reduce its power consumption by the same amount.
To this end, the selling of the flexibility from the building aggregator to the car-park
charging station can take place on a bi-lateral basis without the direct involvement
of the DSO. Nevertheless, the grid-usage pricing should be imposed for such a
transaction to mitigate the impact on the grid operation. Note that the exchange of
flexibility can also take place between two hierarchical levels, such as aggregators
and end-customers, to harvest large amount of small-scale flexibility.

4.2.3 P2P market-clearing mechanism

Various market-clearing mechanisms exist in the literature, which are applicable to
distinct market setting. We briefly summarize these approaches, focusing on the
basic concepts of the approaches and the application perspective.

Centralized and distributed optimization

In light of economic efficiency and fairness in a market-design, optimization is per-
haps the most intuitive tool to match the seller and the buyers and clear the market.
The market-clearing problem can be formalized to maximize the social welfare or
maximize the profit of the platform provider. This can be organized by a central
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entity that collects the offers and bids from prosumers and solves the problem in a
centralized manner. The optimal exchange prices can be derived based on the du-
ality, as in primal-dual methods (see Section 3.1.2). This approach does not come
without drawbacks. Indeed, the main motivation for implementing P2P energy ex-
change is to promote consumer-centric markets, where DERs are participating the
market in an autonomously fashion. Another issue of the centralized optimization is
the scalability. Considering the large number of small prosumers, centralized opti-
mization may face bottlenecks in communication, particularly in dealing with packet
losses and delays. Distributed optimization can be utilized to remove the short-
comings of the centralized organization. This is because distributed optimization
preserves a P2P communication structure, which facilitate the implementation in a
plug-in-and-play manner. It is also worth noticing that distributed optimization gen-
erally needs more time to converge to the optimal solution while preserving a P2P
communication structure.

Game-theoretical approaches

From higher level, the game-theoretical approach is especially useful for analyzing
strategic behaviors (see assumption in Section 1.5). Mathematically speaking, it
comprises a broad category of games to model the decision making process in a
competitive scenario. Examples can be found in the literature to model the P2P
trade as non-cooperative games [99], Stackelberg game [100], and cooperative
games [101, 102]. A brief introduction of these approaches is given in the following.

For non-cooperative game, it analyzes the strategic decision-making process of
a number of independent players who may have partially or completely conflicting
interests. It is important to note that the definition of “non-cooperative” does not
forbid the cooperation between players. It is, rather, to emphasize that the coop-
eration cannot be a result of the communication or the coordination of strategic
choices among the players [103]. Popular solutions for non-cooperative game in-
cludes Nash Equilibrium [104] and Variational Equilibrium [105], in which the play-
ers can not receive a better pay-off by unilaterally changing its action. Another
popular non-cooperative game is Stackleberg game, which can be used to capture
the strategic behavior in a hierarchical game. The game is also known as leader-
follower game, where at least one player is modeled as leader to commit a strategy
before other players. Then the follower players commit their strategies in response
to the leader’s action. This approach is particularly suitable to model the players at
different hierarchical levels, e.g., aggregators and prosumers.

Another category of games is the cooperative game, which is also termed as
coalitional games. Here, the focus is on designing incentives for independent play-
ers to act together as a group to improve their individual position in the game.
More specifically, the study objects include the terms and conditions, under which
the coalition can form, and the revenue distribution scheme to fairly allocate the rev-
enue to the player in the coalition. A typical classification of coalitional game include
three types: a coalition formation game, a coalitional graph game, and canonical
coalition game [106].
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Fig. 4.3: Bid formulation for flexible loads.

Auction and transaction platforms

Alternative approaches also consider double-auction as a suitable mechanism to
organize the interaction between sellers and buyers. The market-clearing process
essentially establishes the merit order of the supply-side and demand-side bids and
the auction price is determined by the intersection point of two curves. It resembles
the organization of wholesale-market clearing. While the market-clearing mecha-
nisms settle the market, transaction platforms and data structures provide trusted
intermediary to enable the P2P trade in a decentralized manner. This was empha-
sized in a reasonable number of proposals, including [98, 107] to apply blockchain
technologies for transactive purpose.

4.3 Coordinated market clearing

4.3.1 Bid formulation for DERs

It is assumed in this dissertation that DERs are price takers and there are sufficient
market participants, which makes the DERs not be able to gain additional benefits
with strategic-bidding behavior. Hence, the DERs tend to bid at the marginal cost.
On the other hand, the DERs are assumed to provide price-sensitive bids for their
market participation. For illustration, an example bid is is given in Fig. 4.3 for FLs.
The bid consists of a baseline load pfl and a price-sensitive part [pfl,pfl] with the
marginal cost

cfl + diag(dfl) · pfl (4.1)

to represent their willingness to be curtailed depending on the market-clearing
price. As aforementioned, to maximize the benefit of DERs, the DERs may want to
bid at the marginal cost, which requires them being a aware of the historical data of
the market-clearing price and their distribution. An example to calculate the price-
sensitivity dfl may be based on evaluating the merit order of the electricity supply in
the market [108]. More specifically, a fit function is determined based on the histor-
ical data of the spot price at the particular node where the FL is connected. Then
the coefficient dfl is evaluated as the first order coefficient of the Taylor expansion
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Fig. 4.4: Price sensitivity concept [36].

of the fit function. The above process is illustrated in Fig. 4.4. Note that the merit-
order function of the demand side bidding is assumed to extract from historical data
that are published by the DSOs.

For those FLs that provides ASs, it can be viewed as negative generators with
negative baseline load, whereas a positive baseline load for FL in a conventional
participation of demand side bidding. The electric power injection or consumption
is limited by the respective system constraints, e.g., the curtailment capacity of a
commercial building is limited by the comfort of its occupants; the reactive power
injection of a DG is limited by the inverter. Such system constraints are expressed
as box constraints:

px ≤ px ≤ px, (4.2)

qx ≤ qx ≤ qx, x ∈ {g, fl}. (4.3)

In the context of the real-time markets, DERs, i.e., prosumers, are assumed to
form their bids based on their preferences and the local system constraints and
choose to submit their bids either to the P2P market or to the AS market. Note
that due to the inter-temporal coupling constraints of FLs, the prosumers may need
to adjust the parameters in the bid functions in different market intervals to reflect
the consumption preference. This, however, does not change the convexity of the
cost function formulation. Interested readers may refer to [31, 38] for more details
to incorporate these inter-temporal constraints for day-ahead and real-time market
coordination in P2P market and spot-market context respectively.

To this end, the cost function for DSO to procure electric power generation/flexibility
from the DERs in AS market or energy procurement between DERs in a bilateral
market can be expressed with a quadratic function

Cx(px) = (cx + diag(dx) · px)ᵀ · px, x ∈ {g, fl}, (4.4)

where px ≥ 0 ∈ Rx, x ∈ {g, fl} is the electric power injection or consumption and
cx,dx, x ∈ {g, fl} are the coefficients for the linear and quadratic terms. It is as-
sumed that the cost functions are strictly convex with zero-crossing. In general,
the quadratic cost function in (4.4) can be used to incorporate the prosumer prefer-
ences associated with different types of flexible resources [109]. This also makes
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the cost function strictly convex and can be used to remove the multiple solution is-
sue as discussed in [82, 16, 110], where a linear-programming based formulation
may cause the divergence of centralized DSO optimization and decentralized DER
optimization.

Remark (Discussions on the impact of inter-temporal constraints). In sec. II.A, one
of the assumptions of the work is that the DSO operates the market in multiple-time
scale including day-ahead and real-time, which necessitates the market partici-
pants like FLs to take into account the inter-temporal constraints while maximizing
their surplus. Assuming the market-clearing price forecast data is available to the
DERs and the DERs are price-taking agents, the participation strategy in the day-
ahead market for the FLs can be based on formulating a revenue maximization
problem of FLs subject to their inter-temporal constraints. Having the optimal dis-
patch quantity obtained, they can submit the bids to the day-ahead market. Prior to
the real-time market clearing, the demand of FLs is no longer uncertain. Hence the
FLs solves the revenue maximization problem in a horizon-receding manner based
on their updated price/demand predictions. In the case of over-demand contracts in
the day-ahead market, they may provide load reduction bids in the AS market. For
the case of insufficient-demand contracts, they may seek to procure energy from
P2P market.

4.3.2 Bilateral trade modeling

A P2P energy transaction is modeled with a directed graph as in Fig. 4.5. The
edges ei,j , ∀i ∈ B, j ∈ S between two transactive nodes represent the active power
transfer from seller to buyer. For the compact representation, the energy transfer
matrix E ∈ Rs×b with entries ei,j is used to map all energy transactions. For this
representation, an energy trading price λi,j ∈ R can be associated to each energy
transfer ei,j . Note that this representation only allows a single transaction between
each seller and buyer per market interval. Since the edges are directed, this mod-
eling forbids prosumers from selling and buying energy simultaneously.
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Fig. 4.5: P2P energy trade modeling.
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4.3.3 Grid usage pricing

In transmission grid market, the nodal prices can be significantly different due to
line congestion and losses. To this end, financial transmission right (FTR) is a
tool that can be procured by market participants in a bilateral contract for energy
transmissions, which can also be used to hedge against price volatility. Defining the
transmission right, however, has proven not trivial. Fundamentally, this is because
the power flow path due to the bilateral contract cannot be easily predetermined,
particularly in the case of highly meshed transmission grid and high penetration of
renewable energy. This is also part of the reasons that we only focus on the real-
time market implementation as the uncertainty eliminates when operating close to
real-time. In light of this, FTR is defined based on the nodal price difference for a
node pair, which is a pure financial product that is always implementable, regardless
of the physical consistency. By using the historical data and forecast data, FTR can
be then calculated for a span of time defined by the market rules.

The GUPs are formulated based on the DLMP model in (3.17), which is consid-
ered to be updated in real-time. We term the marginal price of the transport cost as
the grid usage prices (GUP). For brevity, the vectors πs ∈ Rs and πb ∈ Rb denote
the DLMPs for all the seller nodes and buyer nodes. For each potential energy
transaction ei,j ,∀i ∈ S, j ∈ B, the nodal injection/consumption at the seller/buyer
node results in the reward πs

i for the seller and cost for the buyer πb
j . The GUP for

a given energy transaction ei,j is denoted by Πi,j and defined as

Πi,j = −πs
i + πb

j

= −(
∂ploss

∂pb
j

− ∂ploss

∂ps
i

)ᵀcp
0 − (

∂qloss

∂pb
j
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∂ps
i

)ᵀcq
0

+ (
∂v
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− ∂v

∂ps
i
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∂pb
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∂ps
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)ᵀµsf

+ (
∂|st|2

∂pb
j

− ∂|st|2

∂ps
i

)ᵀµst, (4.5)

where the cost of energy components is canceled by a common marginal supply
unit, which is usually the active power cost of PSP for the distribution grid. We ob-
serve that the price scheme essentially includes the same grid operation products
as the aforementioned DLMP decomposition, i.e. loss compensation, voltage sup-
port and congestion management. The functioning of GUPs as grid operation cost
allocation and the incentive functionality is discussed in the following remarks.

Remark (Implications of decomposable GUP for cost allocations). Based on the
decomposition of GUP, the active loss term −(∂ploss

∂pb,j
− ∂ploss

∂ps,i
)ᵀcp,0 and reactive loss

term (∂qloss
∂pb,j
− ∂qloss

∂ps,i
)ᵀcq,0 are essentially determined by the PSP price cp,0, cq,0, where

its cost can be first collected by DSOs and then passed to the loss balancing en-
tities (TSO in this work). As for the voltage control term ( ∂v

∂pb,j
− ∂v

∂ps,i
)ᵀ(µv − µv)

and congestion term (∂|sf|2
∂pb,j

− ∂|sf|2
∂ps,i

)ᵀµsf + (∂|st|2
∂pb,j

− ∂|st|2
∂ps,i

)ᵀµst, the associated costs
are allocated to the service providers (DGs and FLs). This type of cost allocation
essentially resembles the practice at the transmission grid level, where financial
transmission rights (FTRs) can be procured by market participants in a bilateral
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electricity trade to hedge against price volatility. FTRs are generally evaluated
based on nodal price difference (πb,j − πs,i), where, by using detailed lineariza-
tion of exact power flow as in Section 2.2.2, FTRs can be decoupled into loss and
congestion part to construct contracts with service providers (see [111, ch. 1]).

Remark (GUP as an incentive scheme). According to the definition in (4.5), the
GUP is a monotonic function of the sensitivity differences between buyer and sell-
ers on losses, voltages and line flow. It can be interpreted as follows. Consider
only the loss term; If sensitivities for nodal injections at node i and j are equal, no
additional losses will be caused by the respective energy transfer due to P2P trans-
actions. Hence the charge for losses in the GUP scheme is obtained as πl

j−πl
i = 0.

Alternatively, the loss term is positive if losses are increased due to the P2P trans-
action and negative if losses are reduced because of the P2P transaction. Similar
explanation holds for the functioning of GUP to reduce the voltage deviation and
congestion. GUP generally serves as product differentiation price that captures
regulation objectives to subsidize or penalize the energy transfer.

A compact representation of the GUP in matrix form as Π ∈ Rs×b can be given
as

Π = −πs1ᵀ
b + 1s(π

b)ᵀ, (4.6)

which corresponds to the energy transfer matrix E. Hence the total cost based on
GUPs for all P2P energy transactions can be given as

1ᵀ
s · (Π ◦E) · 1b, (4.7)

where Π ◦E is the entrywise product of matrices Π and E.

4.3.4 ADMM-based P2P trade matching

Different P2P matching models for P2P energy trade exist in the literature. From
the communication perspective, these can be distinguished based on whether a
central coordinator is required in the market-clearing process. In the category with-
out the involvement of central coordinator, approaches can be categorized into
i) distributed optimization approaches (DOA), e.g., consensus protocol [112] and
ADMM [83], and ii) game-theoretical approaches, including cooperative games,
e.g., [102], and non-cooperative games [104, 113].

The assumptions for the two type of approaches are generally different, where
for the type of DOA prosumers are assumed to be non-strategic agents that col-
laboratively minimize the overall cost of the group. This can be true for the market
with sufficient market participants, so that individual participants cannot improve
their surplus by strategic behavior [114]. In contrast, game-theoretical approaches
generally assume that the agents intend to maximize their payoffs by adjustment
of their actions. To overcome the inconsistencies of the assumptions, recent expo-
sitions [115, 116] penetrate game-theoretical approaches in distributed optimiza-
tion and show the compatibility of DOA as a distributed Nash equilibrium seeking
method under the assumption of an imperfect local communication network. This
is done by predefining the players’ strategy based on the DOA protocols and each
player implementing the gradient play. In this work, we adopt a similar approach for
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the P2P trade context. First, the ADMM protocol is provided to solve the collective-
objective (social welfare) maximization problem in (4.8). Then, the interpretation of
ADMM as the solution methodology for Nash equilibrium seeking in the n-person
game [113] is discussed in detail in Section 4.3.5.

To this end, the P2P market clearing, i.e. the matching of sellers and buyers,
is programmed to seek the maximization of the social welfare of all P2P market
participants. The social welfare optimization problem can be formulated as follows:

max. f(ps,pb) := −
(
Cs(ps)− Cb(pb) + 1ᵀ

s · (Π ◦E) · 1b
)

(4.8a)

s.t. E1b = ps : λs ∈ Rs (4.8b)

Eᵀ1s = pb : λb ∈ Rb (4.8c)
ps ≤ ps ≤ ps : µs,µs ∈ Rs (4.8d)

pb ≤ pb ≤ pb : µb,µb ∈ Rb (4.8e)

E ≥ 0 : Ω ∈ Rs×b (4.8f)

where the objective (4.8a) represents the social welfare consisting of sellers’ rev-
enue, buyers’ cost and the grid usage cost. Constraints (4.8b) and (4.8c) provide
the power balance between the power to be transferred and the power to be in-
jected/consumed by each peer. Constraints (4.8d) and (4.8e) represent the DERs
limits, respectively. Constraint (4.8f) allows for only a positive energy transfer from
buyer to seller. The respective dual variables of all the constraints are listed on
the right side of the equations. In general, ADMM serves as a framework for dis-
tributed optimization and is widely proposed for applications in power systems due
to its scalability and robustness. To emphasize on the data privacy and scalability
to solve (4.8) in a fully distributed way with only P2P communications, the ADMM-
based solution methodology is adopted as follows. As a starting point, the central
problem is decomposed into individual problems for seller and buyer. Therefore,
the augmented Lagrangian for seller i ∈ S is formulated as

Ls,admm
i (ps

i , ei,∗) =Cs
i (ps

i ) +
1

2
ei,∗π

ᵀ
i,∗ + Λi,∗(ei,∗ − e+i,∗)

ᵀ

+
1

2
ρ(ei,∗ − e+i,∗)(ei,∗ − e+i,∗)

ᵀ, (4.9)

where ei,∗,πi,∗ ∈ Rs denotes the i-th row of the matrices E and Π. Hence, the
GUP is denoted by 1

2ei,∗π
ᵀ
i,∗, where the factor 1/2 results from splitting the costs

into two equivalent parts for seller and buyer. Λ ∈ Rs×b is the Lagrangian multiplier
matrix, which essentially represents the energy trade price information (identical for
seller and buyer upon consensus) for the energy transaction. In addition, a local
copy is defined for the energy transfer matrix, which is denoted by E+ with their i-th
row e+i,∗ included in (4.9). The buyer and seller are required to reach a consensus
on the value of this local copy at the end of the P2P market clearing. The penalty
factor is denoted by ρ ∈ R, which remains constant during ADMM iterations. For
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individual seller i, the constraints (4.8b) and (4.8d) are rewritten as

ei,∗1b = ps
i : λs

i (4.10)
ps
i
≤ ps

i ≤ ps
i : µs

i
, µs

i (4.11)

eᵀi,∗ ≥ 0 : Ωi,∗. (4.12)

For the buyer i ∈ B, the augmented Lagrangian is similarly formulated as

Lb,admm
i (pb

i , e∗,i) = −Cb
i (pb

i ) +
1

2
eᵀ∗,iπ∗,i

+ Φᵀ
∗,i(e∗,i − e+∗,i) +

1

2
ρ(e∗,i − e+∗,i)

ᵀ(e∗,i − e+∗,i) (4.13)

with Φ ∈ Rs×b representing the respective Lagrangian multiplier matrix. The con-
straints for the individual buyer i are reformulated as

eᵀ∗,i1s = pb
i : λb

i (4.14)

pb
i
≤ pb

i ≤ pb
i : µb

i
, µb

i (4.15)

e∗,i ≥ 0 : Ω∗,i. (4.16)

The ADMM algorithm for P2P-market clearing is described in Algorithm 5. The
algorithm consists of four main steps: i) seller/buyer individual optimization that runs
in parallel in all peers, ii) broadcasting of local optimization results between buyer
and seller, iii) global variable update for energy transfer, and iv) energy exchange
price update. Note that only peer-to-peer communications are necessary for the
negotiation process.

Remark (Convergence property). For the convergence of the ADMM-based market
clearing process, the following intuitions can be provided. Assuming a static DLMP
for problem (4.8), the convex problem can be solved using ADMM with global op-
timality guaranteed [83]. However, since the GUP is iteratively updated in the
ADMM loop with GUPs (DLMPs) derived from KKT conditions, where the KKT con-
ditions are in general non-convex [117]. It results in the non-convexity of the over-
all two-stage optimization problem for the coordinated-market-clearing. Hence, the
ADMM-based solution methodologies may converge to KKT points without a global
optimality guarantee [83].

4.3.5 The ADMM-based P2P market-clearing from game-theoretical
approaches’ perspective

The ADMM-based P2P market-clearing in Section 4.3.4 is based on the assump-
tion of non-strategic and collaborative agents that maximize social welfare. In real-
world applications, the selfishness of the agents and imperfect communications
should be taken into account. To this end, we elaborate how to incorporate the
strategic behaviors of the prosumers based on the expositions [115, 116] of pen-
etrating DOA with game-theoretical approaches, wherein ADMM is provided as a
distributed approach for Nash equilibrium seeking in a non-cooperative game.

Let P := S ∪ B denote a set of players including sellers and buyers for the P2P
trade. For a seller player i ∈ S, its payoff function can be defined as

gi(p
s
i , ei,∗) = −Cs

i (ps
i )−

1

2
ei,∗π

ᵀ
i,∗ −Λi,∗(ei,∗)

ᵀ, (4.17)
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Algorithm 5 ADMM for P2P market clearing.
1: procedure ADMM LOOP

2: Seller/buyer peer surplus maximization (parallel in all peers),
for seller i:

(ps
i )
∗(k + 1), ê∗i,∗(k + 1) := arg minLs,admm

i (ps
i , ei,∗)

s.t. (4.10) to (4.12)

for buyer j:

(pb
j )
∗(k + 1), ẽ∗∗,j(k + 1) := arg minLb,admm

j (pb
j , e∗,j)

s.t. (4.14) to (4.16)

3: Seller i broadcasts ê∗i,∗(k + 1) to all buyers;
Buyer j broadcasts ẽ∗∗,j(k + 1) to all sellers;
Sellers/buyers Obtain new GUPs from DSO;

4: Global variable update:

e+i,∗(k + 1) =
1

2

(
ê∗i,∗(k + 1) + ẽ∗i,∗(k + 1)

)
e+∗,j(k + 1) =

1

2

(
ê∗∗,j(k + 1) + ẽ∗∗,j(k + 1)

)
5: Energy exchange price (Lagrangian multiplier) update:

Λi,∗(k + 1) = Λi,∗(k) + ρi(ê
∗
i,∗(k + 1)− e+i,∗(k + 1))

Φ∗,j(k + 1) = Φ∗,j(k) + ρi(ẽ
∗
∗,j(k + 1)− e+∗,j(k + 1))

6: end procedure

where ps
i is the local action of player i and ei,∗ represents the common action with

the trade partner of player i. Note that the action on ei,∗ ∈ Rb should be agreed
upon by the player i and its trade partner, which creates the dependency between
seller and buyer pairs. With abuse of notation the dependency reads

e(s)
i,∗ = e(b)

i,∗. (4.18)

The payoff for a single player is determined by player’s own action and its trade
partner’s. The respective local action set for a player i is given as

∆i = {ps
i ∈ R| ps

i satisfies (4.10) to (4.12)}.

For brevity, the payoff functions and action set for a buyer player are not listed here.
Hence the game can be defined by the payoff function and the actions over the set
of players P, where each player maximizes its payoff function, i.e.,

max. gi(p
s
i , ei,∗) (4.19a)

s.t. ps
i ∈ ∆i (4.19b)
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The game is a concave n-person game with concave payoff function in local ac-
tion set. Nash equilibrium is defined as an action profile on which no player can
gain better payoff by unilateral changing its own action, i.e., we call a action profile
(ps
i , e∗,i) Nash equilibrium if [104].

gi((p
s
i )
∗, e∗i,∗) ≥ gi(ps

i , e
∗
i,∗) (4.20)

A Nash equilibrium point that is defined by (4.8) exists for such an n-person
game [113, Theorem 1]. The goal is to design the strategy for the players to find
the Nash equilibrium without a central coordinator. The difficulty exists that i) each
player performs the optimization (4.19) simultaneously with the dependency be-
tween solutions of (4.19), and ii) a single player may not have access to the actions
of all other players considering all-to-all communication may not always be feasible.

The ADMM-based distributed Nash equilibrium seeking is then provided as fol-
lows [115]. To tackle the dependency on the energy transfer quantity of E, local
estimates are created for each player (given as local copies E+ in ADMM protocol).
Each player follows the strategy provided in algorithm 5, i.e., i) action update based
on local optimization ii) communication on the common action, iii) estimates up-
dates, and iv) energy exchange price update. The following conditions are further
required to be fulfilled.

• The communication between all players can be described by a connected
undirected graph.

• The payoff function gi(ps
i , ei,∗) is concave in px,i for any given ei,∗; The action

set ∆i is a convex set ∈ R

The convergence of the ADMM-based distributed Nash equilibrium seeking can be
proven [115, Theorem 1].

AS market clearing

We first summarize the coordinated market-clearing process for P2P and ASs in
Fig. 4.6. Prior to each market interval, each DER determines their participation
strategy for both markets, where the submission of their respective bids to DSO
are required. This is followed by the initiation of the P2P negotiation process based
on the ADMM protocol. At each ADMM iteration, DSO is held responsible for the
calculation of the GUP for a potential energy exchange between any P2P pairs and
the process repeats until the simultaneous market-clearing process has converged.

In relevance to the DSO market for ASs, we focus on a local market to provide
the two types of ancillary services: i) voltage control and ii) congestion manage-
ment. Note that the AC-OPF model in (3.16) allows the market-clearing for energy
and ASs in a simultaneous manner that resembles the integrated market system
at the transmission grid level [11]. The market-clearing procedure for ASs can be
then followed by

1. DSO predicts the loading profile and energy price from wholesale market
cp
0/c

q
0. DSO also received the bid from the DER with the DG and FL dispatch

capacity.



4.3. COORDINATED MARKET CLEARING 63

Peer local optimization 

step

Buyer/seller information 

exchange

Global variable update 

Trading price update 

AC-OPF

GUP update

Peers - ADMM Loop

AS market

not converged

converged

Bids

P2P market 

Bids

Cleared Bids Cleared Bids

DSO

  
 ,   

 

DLMP 

Π 

Fig. 4.6: Process diagram for the coordinated market-clearing.

2. Upon the convergence of the coordinated market-clearing in Fig. 4.6, the
DLMPs are passed from DSO to DERs and DGs/FLs are rewarded with the
DLMP for their scheduled dispatch amount p∗g,q

∗
g,p
∗
fl, respectively.

Since a differentiation for conventional loads based on their geographical locations
might not be acceptable in distribution grids, energy price for non-elastic loads
based on uniform supply price (USP) in the distribution network zone can be given
as the total energy cost divided by the total non-elastic energy consumption:

USP =
(cp,0,π

ᵀ)ᵀ ·Asl · psl

pᵀ
sl · 1n+1

, (4.21)

where the energy to the end customers can be charged by introducing additional
market layers, such as retailers to avoid exposing price volatility to the end cus-
tomers.

Remark. Assuming the market equilibrium is obtained for the P2P energy trade,
the total grid usage cost can be expressed as:

1ᵀ
s · (Π ◦E) · 1b = −(ps)ᵀπs + (pb)ᵀπb (4.22)

The derivation is provided by substituting (4.6) into the left side of (4.22):

1ᵀ
s · (Π ◦E) · 1b = 1ᵀ

s · (−πs1ᵀ
b ◦E + 1s(π

b)ᵀ ◦E) · 1b

= −
s∑
i=1

πs
i (

b∑
j=1

ei,j) +

b∑
i=1

πb,i(

s∑
j=1

ej,i). (4.23)
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By substituting (4.8b) and (4.8c) into the right side of the (4.22), we obtain the same
result. This makes intuitive sense, i.e., the total grid usage cost is equal to the buyer
cost (the buyer nodal consumption times the buyer DLMPs) minus the seller reward
(the seller nodal injections times the buyer DLMPs).

4.3.6 Duality analysis

Upon convergence of ADMM, the obtained P2P energy trade price Λ is subjected
to the following duality analysis. We first write the Lagrangian function of problem
(4.8) as:

L = (cs)ᵀps + (ps)ᵀdiag(ds)ps − (cb)ᵀpb − (pb)ᵀdiag(db)pb

+ 1ᵀ
s · (Π ◦E) · 1b + (λs)ᵀ(E1b − ps) + (λb)ᵀ(E1s − pb)

+ (µs)ᵀ(ps − ps)− (µs)ᵀ(ps − ps) + (µb)ᵀ(pb − pb)

− (µb)ᵀ(pb − pb)− 1ᵀ
s · (E ◦Ω) · 1b. (4.24)

The first-order optimality condition for seller nodal injections is obtained as

∂L

∂ps := cs + 2 · diag(ds) · ps − λs + µs − µs = 0. (4.25)

Hence, we obtain the price for the seller energy balance λs as

λs = cs + 2 · diag(ds) · ps + µs − µs. (4.26)

Now consider the KKT conditions for the individual seller/buyer problem. The La-
grangian function for seller peer i is given as

Ls,i =cs
ip

s
i + ds

i (p
s
i )

2 +
1

2
ei,∗π

ᵀ
i,∗ + Λi,∗(ei,∗ − e+i,∗)

ᵀ

+
1

2
ρ(ei,∗ − e+i,∗)(ei,∗ − e+i,∗)

ᵀ + λs
i (ei,∗1b − ps

i )

+ µs
i (p

s
i − ps

i )− µs
i
(ps
i − ps

i
)− ei,∗Ω

ᵀ
i,∗ (4.27)

Hence, the first-order optimality condition for energy transfer vector ei,∗ of seller i is
given as

∂Ls,i
∂ei,∗

:=
1

2
πᵀ
i,∗ + Λᵀ

i,∗ + ρ(ei,∗ − e+i,∗)
ᵀ + λs

i1b −Ωᵀ
i,∗ = 0. (4.28)

Taking into account that the derivative of the second-order term is equal to zeros,
i.e. ρ(ei,∗ − e+i,∗)

ᵀ = 0 upon convergence, we obtain the trading price upon market
equilibrium for i as

Λᵀ
i,∗ = −1

2
πᵀ
i,∗ − λ

s
i1b + Ωᵀ

i,∗.

Substitute the results of λs:

= −1

2
πᵀ
i,∗ − (cs

i + 2ds
i · ps

i + µs
i − µs

i
) · 1b + Ωᵀ

i,∗. (4.29)
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The results make intuitive sense: for a seller i, the converged trading price com-
prises the grid usage cost and seller generation cost. Note that for a single seller,
the price differentiation to each buyer is determined by the GUPs. For the com-
ponent of Ωᵀ

i,∗, we provide the following interpretation: constraint (4.8f) essentially
forbids the reverse energy flow from buyer to seller. Hence its dual variables Ωᵀ

i,∗
can be interpreted as the marginal value of forbidding simultaneous buying and
selling the energy in the P2P market. Note that the energy flow between buyer and
seller is not constrained explicitly in this work to create congestion. Therefore, the
value of Ωᵀ

i,∗ is expected to be neglectable, which can be verified in Section 4.4.
For the energy trade price of buyer peers, a similar derivation can be followed.

4.4 Numerical examples

We test the proposed P2P algorithm on an 141-bus system [118] as illustrated
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Fig. 4.7: 144-bus network [75]. P2P/AS configurations are shown in Table I/II.

in Fig. 4.7 with three test scenarios. The test system has a total static load of
11.9 MW and 7.38 MVAr. The test scenarios aim to demonstrate the effectiveness
of the proposed coordinated market framework for distribution system operation,
the convergence of the P2P market clearing process and the P2P energy trading
price decomposition as in (4.29). Note that the AC-OPF solver is implemented
with a trust-region method as in [2] to obtain the DLMPs, and the individual peer
problem is implemented with YALMIP [119] and solved with GUROBI. For all
test scenarios, the participants of the P2P market and AS market are described in
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Table 4.1: Peer-to-peer market participants.

Participant Seller 1 Seller 2 Seller 3 Seller 4 Seller 5 Seller 6
Grid node index 34 130 52 138 95 32
Injection capacity [MW] [1 1.60] [0 2.3] [0 2.9] [0 2.5] [0 2.5 ] [0 3.5]

Price coefficient c 3.7 4.3 3.0 4.5 3.2 3.8
d 0.03 0.02 0.03 0.04 0.05 0.06

Participant Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5 Buyer 6 Buyer 7
Grid node index 2 6 43 50 64 99 137
Consumption capacity [MW] [1.8 2.2] [0.9 1.3] [0.4 0.6] [0.5 0.7] [1.3 1.5] [2.4 2.5 ] [1.9 2.4]

Price coefficient c 3.6 4.0 4.1 3.8 4.0 3.3 5.0
d -0.12 -0.21 -0.03 -0.05 -0.07 -0.09 -0.13

Table 4.2: Ancillary services market participants.

AS market
Node index 1 30 42 80 74 128
DG/FL capability [MW] [0 Inf] [0 3.5] [0 3.5] [0 3.9] [-0.3 0] [-0.6 0]
Price coefficients c [$/MW] 17 20 23 20 18 20.6
Price coefficients d [$/MW2] 0.01 0.02 0.01 0.01 -0.03 -0.02

Tables 4.1 and 4.2, voltage constraints are defined as [0.95, 1.05] and the ADMM
parameters are set as ρ = 8× 102, λi(0) = 0, i ∈ S,B.

4.4.1 Scenario 1 - loss reduction

The first test scenario considers only the losses without binding the voltage and
line flow limits. The root node voltage is set equal to 1.05 pu. DLMPs can be
used as an estimation for the GUP and an indicator for the overall grid operational
cost. To demonstrate the effectiveness of the proposed P2P in the reduction of the
overall operational cost, we present the DLMP results (in $/MW) in Fig. 4.8. Both
curves depict the DLMPs after the P2P market is cleared, where the blue curve
shows the results without considering the GUP, i.e., 1ᵀ

s · (Π ◦ E) · 1b = 0 being
set for solving problem (4.8). The DLMPs result shows a clear reduction of DLMPs
for the proposed P2P scheme. Note that since the DLMPs merely represent the
marginal cost for the losses in this scenario, the GUP is only obtained with the loss
term. By comparing the exact active power loss, we observe that the proposed
P2P with GUP has obtained less loss (0.5545 MW) than the P2P scheme without
GUP (0.6024 MW). We present the trade price decomposition between buyer 1
and different sellers in Fig. 4.9. It can be observed that the price decomposition of
the P2P energy trade price coincides with the results obtained from ADMM, which
verifies eq. (4.29). Note that the GUP is obtained as a negative cost (cost reduction)
for seller 2 to 6 since these transactions have helped to reduce the losses. We also
notice that the GUP (cost of losses) is small compared to the marginal generation
costs of sellers.

4.4.2 Scenario 2 - voltage support

The second test scenario considers a voltage violation in which the voltage con-
straint is binding in this case. The associated voltage profile considering the baseload
together with the P2P energy transfer is shown in Fig. 4.10, wherein a voltage viola-
tion downstream of node 37 is observed. Therefore additional ASs are procured to
maintain the voltage within safe bounds. This can be observed in the DLMP result
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Fig. 4.8: DLMPs in all scenarios.

in Fig. 4.8, where a significant increase of DLMP between nodes 42 and node 87
is shown, which is resulted from the procurement of energy dispatch from DG at
node 42 and FL unit at node 74. Note that the local voltage is globally affected by
all nodal injections, which is in contrast to line flow (test scenario 3). This can be
observed from the voltage charges that are applicable to all grid nodes in Fig. 4.8.

We compare two cases of i) P2P market clearing without taking into account
of GUP and ii) the proposed P2P market clearing with GUP. The results show
that the social welfare for the case with GUP is improved, which is reflected in the
DLMPs. The associated voltage profiles for the comparison are shown in Fig. 4.10.
It can be seen that the P2P with GUP market has improved the voltage profile in
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Fig. 4.9: Energy trade price decomposition for buyer 1 in all scenarios.

the sense that the voltage variations from the flat voltage have been reduced. The
trade price decomposition for buyer 1 is depicted in Fig. 4.9. We observe that i)
the marginal generation cost for seller 3 and 5 are further increased due to the
binding constraint of the dispatch capacities; and ii) the trade price with seller 2
to 6, particularly with seller 3, has a larger reduction based on the negative GUP,
which in turn incentivizes buyer 1 to procure the more energy from these sellers to
improve the voltage profile.
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4.4.3 Scenario 3 - congestion management

We conclude the case studies with the congestion management scenario. We
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add additional line flow constraints on all the lines downstream of branch between
node 6 and node 37 (see Fig. 4.7) in such a way that a thermal limit of 4 MW2

applies to the respective area in the feeder. The squared line flow profile is shown
in Fig. 4.11 considering the P2P energy transfer and the existing base load, wherein
the thermal limit violation for all lines between node 6 and node 42 can be observed.
By procuring additional FL capacity from node 74 and generation from node 42, one
can observe from Fig. 4.8 that the system has two marginal prices, i.e., the nodes
in the downstream of node 37 share a common marginal cost at 20 $/MW, whereas
the rest of the system has a different marginal cost at 17 $/MW (PSP). Compared
to the voltage violation scenario, the line flow is rather affected by local injections
(see Fig. 4.8).

When comparing the DLMP results in Fig. 4.8, the proposed P2P trade im-
proves social welfare by obtaining lower DLMPs. For the trade price decomposition
in Fig. 4.9, the P2P trade price between buyer 1 (node 43) and seller 3 (node 52)
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Fig. 4.12: Energy trade price decomposition for seller 3 in scenario 3.

in the congested area converges to the cost with the highest cost reduction from
GUP, whereas the GUP for alternative sellers is similar to scenario 1. This is be-
cause only the injection from seller 1 can be utilized to reduce the congestion level
on the branch flow between node 37 to 42 compared to scenario 2. To further
reflect on this, the price decomposition for seller 3 in this scenario is depicted in
Fig. 4.12, where a clear tendency for GUP to encourage the reverse power flow
between non-congested area and congested area can be observed.

4.4.4 Computational performance

Finally, the convergence of the ADMM-based solution methodology is shown in
Figure 4.13 together with alternative scenarios. The convergence indicator r ∈ R
is given as the sum of primal residuals [83]

r = 1ᵀ
s · ||E−E+||22 · 1b. (4.30)

The simulations are performed on a personal computer with Intel i5 2.4Ghz and
8 GB RAM. In terms of computation time, the solver time for GUROBI to solve
ADMM subproblems varies from 0.3 ms to 3.4 ms. Assuming the subproblem are
solved in parallel, the maximal solver time determines the computation time per
ADMM iteration, denoted as Tadmm. The computation time for AS market to update
GUP with the adopted trust-region AC-OPF solver varies from 0.29 s to 1.31 s,
which is denoted as Tas. The total compuation time for the proposed simultaneous
market-clearing (as depicted in Fig. 4.6) can be estimated as nitr · (Tas + Tadmm),
where nitr is the iteration number (300 in all test scenarios).

To test the scalability of the proposed market-clearing model, we extend the
test case by modifying the network size to a 564-bus network while preserving the
location of PSP as reported in [34]. The number of P2P participants also is quadru-
pled. As a result, the solution time of AS market clearing Tas has increased to the
range between 1.23 s and 3.31 s. The solution time of the ADMM subproblems
Tadmm remains very small in the range of 0.3 ms to 6 ms. The norms of residual
versus iteration is plotted in Fig. 4.13 for the 564-bus network case with 52 P2P
market participants, where with the same iteration number similar accuracy has
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been reached compared to the 141-bus network case. Hence, this shows that the
proposed market-clearing model scales well with the increase in the size of the
network and the number of market participants.

4.5 Summary

This chapter proposed a coordinated market design comprising a AS market and
P2P market, where the DSO procures the necessary ASs to safeguard the P2P
trade in distribution grids without grid constraint violations. By integrating the grid
operational objectives into grid usage costs for the P2P trade, the fully distributed
P2P matching process has shown to effectively converge to operating points that
are beneficial for grid operation. Since the existence of multiple markets at the
distribution grid level has been assumed in this work, a direct extension of the pro-
posal is to consider the strategic-bidding behavior of DERs while achieving a stable
market-clearing outcome. Another important extension of the work is to include
market coordination between different time scales, which is essential to incorpo-
rate the time-coupling features of DERs and their preferences.





Chapter 5

Multi-regional Market Operation

In this chapter, we propose a method for distributed DLMP implementation in distri-
bution grids, which provides a framework for forming multi-regional real-time mar-
kets. We adopt a similar regional concept from the transmission grid level [120, 22,
23] and apply it to the distribution grids. The proposed framework is novel in the
sense that it allows the parallelization of clearing the distribution grid market while
preserving solution accuracy and operation autonomy.

The key contributions of this chapter are outlined as follows. The proposed
framework comes with a parallel regulation and computation architecture to over-
come the computational burdens caused by the large node number in distribution
grids. Furthermore, the proposed CAST algorithm possesses many other favored
features, like a tractable solution and formulation to enable online implementation.
The DLMP calculation has been fully distributed into each region while only limited
information exchange is required. We derive the multi-regional injection sensitivity
to describe the influence between regions to achieve the distributed DLMP compu-
tation. The main results in this chapter are published in work [44].

5.1 Multi-regional operation concept in distribution grids

We now envision the distribution grid to be operated by multiple regional DSOs
with the market structure presented in Fig. 5.1. The goal of this framework is to co-
ordinate the in such a way DSOs that they can maximize the overall social welfare
of the distribution grid while maximizing their individual surplus. Moreover, each re-
gional DSO must be independent in making its decision and only share physically
coupled information with the neighboring regions’ DSOs. Similar to the social wel-
fare problem in 3.16, DERs (such as DGs, FLs) are assumed to be price takers and
receive rewards from the associated regional DSO for power generations and load
curtailments. In order to achieve the proposed distributed framework of Fig. 5.1
along with the price structure of (3.17), two research questions exist, which are an-
swered in this chapter. First, we solve the AC-OPF problem imposed by (3.16) in
a distributed way, preserving private information of the regional DSO. Second, we
obtain DLMP for each region in a distributed manner with the similar decomposition
structure of (3.17) and optimality of (3.16), as when solved centrally.

73
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Fig. 5.1: Proposed market framework and information flow diagram.

5.2 Consensus alternating direction method of multiplier
Structured Trust-Region (CAST) Algorithm

5.2.1 Network partitioning technique and consensus definition

The distribution network is partitioned into r regions where the set of regions is
denoted byR = {1, 2, ..., r}. Similarly, the overall PQ bus set L gets partitioned into
r subsets, Li := {1i, 2i, ..., ni}, where i ∈ R. To enforce feasibility with respect to
the overall grid, each region i places a reference bus (slack bus) at its physically
connected neighbor. Hence, we get Ni = Li ∪ {0} total nodes in the region. With
this, each region i can now be represented with its local Yi ∈ C(ni+1)×(ni+1) and
individual objective function fi(p

g
Li ,q

g
Li), which are the respective local versions of

the overall objective function f(pg,qg) and system admittance matrix Y.
The interconnection between regions is established by overlapping areas in

which the power flow equations of each region can be interlinked. If region i is
a neighbor of region j, then Ni ∩ Nj 6= ∅, ∀i, j ∈ R, such that Ni ∩ Nj gives a set
of coupled buses that interconnects region i and region j. The set Cij := {ci1 =
cj1 , . . . , cik = cjk} denotes the set of k coupled buses from regions i and j (where
k < max{ni, nj}). In Fig. 5.2 (left), an example of a coupled bus of three regions
is illustrated. The bus c := c1 = c2 = c3 is part of region 1 (c1), region 2 (c2) and
region 3 (c3). Hence, C12 = {c1 = c2}, C13 = {c1 = c3} and C23 = {c2 = c3}.

In order to decouple the constraints for the optimization problem in (3.16) and
to solve it in a distributed way, the objective and constraints are decoupled with
the help of local copies of the coupled buses created for each region. To do so, we
define the set of the local copies of the coupled buses in region i as Ci := ∩rj=1Cij ⊂
Ni. For any local copy ci ∈ Ci, the number of connected neighboring regions is
specified by nci . For example, in Fig. 5.2, three local copies of the coupled bus c
are created and denoted by c1, c2, c3 which gives C1 = {c1, c2, c3} and nc1 = 3. To
enforce the agreement on the power flow on the coupled buses among regions, the
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Fig. 5.2: Network-partitioning technique and consensus definition for multiple re-
gions (dashed lines are the regions’ boundary).

following consensus constraints are introduced for region i ∈ R as

vc1 = vc2 = ... = vcnci
ci ∈ Ci (5.1a)

θc1 = θc2 = ... = θcnci
ci ∈ Ci (5.1b)

nci∑
i=1

pci = 0 ci ∈ Ci (5.1c)

nci∑
i=1

qci = 0 ci ∈ Ci. (5.1d)

5.2.2 Consensus optimal power flow (Consensus OPF)

Along with the network partition, problem (3.16) is decomposed into regional sub-
problems (excluding the congestion constraints). For a region i ∈ R, the following
consensus optimization problem is defined

max. fi(p
g
Li ,q

g
Li) (5.2a)

s.t.
p0,i + 1ᵀ

ni
p

g
Li − 1ᵀ

ni
psl
Li = ploss

i : µpl
i (5.2b)

q0,i + 1ᵀ
ni

q
g
Li − 1ᵀ

ni
qsl
Li = qloss

i : µql
i (5.2c)

pLi
≤ p

g
Li ≤ pLi : µp

i
,µp

i (5.2d)

qLi
≤ q

g
Li ≤ qLi : µq

i
,µq

i (5.2e)

vLi ≤ vLi ≤ vLi : µv
i
,µv

i (5.2f)

and (5.1a) to (5.1d),

where the constraints (5.2b) to (5.2f) are regional representation of constraints
(3.16b) to (3.16f). Consensus constraints (5.1a) to (5.1d) ensure that the power
flow still holds for the global optimization problem and require each region to take
into account binding its power injection at coupled buses with respect to its global
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values provided from other regions. In the next section, we elaborate how to solve
the consensus OPF and tackle the power flow nonlinearity in the proposed CAST
algorithm.

5.2.3 Distributed solver with CAST algorithm

The proposed CAST algorithm possesses a ADMM structure with trust region (TR)
algorithm embedded at each ADMM iteration as the local optimization solver. Note
that each local optimization solver handles a regional subproblem with nonlinear AC
power flow constraint (2.4) which is tackled by TR algorithm. The fundamental idea
of the trust region algorithm is to create an approximate model (linear model) for the
initial operating point within a feasible region (trust region). Then the minimization
step helps to find the steepest descent direction along the objective function within
the trust region. In a new iteration, the linearized model is then updated using the
new operating point found in the steepest descent direction. The algorithm repeats
the steps until no further improvement can be found within the next minimization
step. Note that the trust region is adjusted from iteration to iteration, i.e., the trust
region will be enlarged if the approximate model represents the original problem
well and vice versa.

ADMM is a distributed solver mainly for convex optimization problems [83]. In
principle, ADMM relies on the augmented Lagrangian to reduce the mismatch of the
coupled constraints (5.1a) to (5.1d) iteratively when each local optimization solver
solves the subproblem. ADMM has been proven to work well for solving AC-OPF
as well as other nonlinear problems despite nonconvexity [121]. Interested readers
may refer to [122] for alternative distributed AC-OPF algorithms. In this work, the
proposed CAST algorithm can be considered as a variant of the distributed AC-
OPF solver in [123, 121] with the main distinction of being the use of a trust-region
method instead of an interior point method (IPM) as the local minimization solver.
This, however, does not change the convergence guarantee nor the optimality con-
ditions. The convergence speed of the CAST algorithm is furthermore improved
by using the varying penalty (VP) method [83, 124] i.e., during the ADMM param-
eter update stage, by utilizing the primal/dual residual information that measures
the local and global minimization progress respectively, the penalty factor will be
changed accordingly at each iteration, and hence convergence performance is im-
proved. We provide the validation of the VP method in the numerical experiment.
Consider the augmented Lagrangian of a region i ∈ R as:

LADMM
i (χ̃Li) = fi(p̃

g
Li , q̃

g
Li) + λᵀ

i (χ̃Ci − χ̃
+
Ci) +

1

2
ρi(χ̃Ci − χ̃

+
Ci)

ᵀ(χ̃Ci − χ̃
+
Ci)

with decision variables for node i defined by χi := [pi, qi, vi] ∈ R3, Lagrange mul-
tiplier λi ∈ R3nci and the penalty factor ρi ∈ R. We consider injection and voltage
magnitudes as the coupling variables here, because angles for each region are im-
plicitly updated locally with respect to the given coupled bus ci, serving as its slack
bus (see Sec. III-A on assumptions in network partitioning). Moreover, χ̃+

Ci ∈ R
2nci

denotes the global variable to be updated based on the local optimization results
at each ADMM iteration. The nonlinearity in (5.2) are approximated by using (local)
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linear estimates

ṽLi = v̂Li + Mvp
Li∆pLi + Mvq

Li∆qLi + mvv
Li∆v0,i (5.3)

θ̃Li = θ̂Li + Mθp
Li∆pLi + Mθq

Li∆qLi + mθv
Li∆v0,i (5.4)

p̃0,i = p̂0,i + mpp
Li∆pLi + mpq

Li∆qLi +mpv∆v0,i (5.5)

q̃0,i = q̂0,i + mqp
Li∆pLi + mqq

Li∆qLi +mqv∆v0,i (5.6)

ṽ0,i = v̂0,i + ∆v0,i, (5.7)

where a new operating point (ṽLi , θ̃Li , p̃0,i, q̃0,i, ṽ0,i) is approximated by the given
(old) operating point (v̂Li , θ̂Li , p̂0,i, q̂0,i, v̂0,i) using the linearization coefficient ma-
trices or vectors denoted by Mvp

Li ,M
vq
Li ,M

θp
Li ,M

θq
Li ∈ R

ni×ni ,mpp
Li ,m

pq
Li ,m

qp
Li ,m

qq
Li ∈

R1×ni , mvv
Li ,m

θv
Li ∈ R

ni×1, mpv,mqv ∈ R.
The derivation of the coefficients are provided in 2.2.2. As the linearization of

distribution-grid power flows is only accurate at the chosen operating point, we in-
corporate a trust-region algorithm to tackle the related nonlinearities [2]. Algorithm
6 explains the proposed CAST algorithm, where all computations are performed
locally, except for step 2, which requires an update on the algorithm’s global vari-
ables. The global variables update is followed by the averaging step of using local
optimization results of the coupled variable. Interested readers may refer to [83,
ch. 7] for the derivation of averaging steps in the ADMM algorithm. This update
makes intuitive sense, i.e., upon convergence of CAST, the consensus power flow
constraints (5.1a) to (5.1d) will be binding. Note that the parameter tuning steps
for TR (step 1.4 - 1.5) and for ADMM (step 3.1 - 3.2) are carried out locally by its
regional DSO. However, there are other variants of ADMM which require a cen-
tral entity to update the information and coordinate the parameter tuning (see e.g.,
[124, 122]).
Remark (Convergence of CAST algorithm). Under the condition that the sequence
of the penalties ρi for all i ∈ R is bounded, the convergence of the CAST algorithm
can be proved using [123, Theorem 4]. In addition, upon the convergence of the
CAST algorithm, the triplets (λi, ρi,χLi) converge to KKT stationary points [123,
Theorem 1] (i.e., local minimum for non-convex scenarios and global minimum for
convex scenarios). In practice, the first two steps of CAST algorithm can take place
in either order without affecting the convergence. This kind of asynchronous update
has proved advantageous in dealing with communication delays and packet loss in
recent expositions [125, 126].
Remark (Tractable solution and formulation to enable the online implementation).
The trust region ensures a feasible load flow solution to be found at each ADMM
iteration, which provides a tractable OPF solution along with the price signal in
each region. This feature is favored by many online applications and can be further
exploited in the provision of real-time control (see e.g., [127, 128]).

5.3 Distributed DLMP scheme

5.3.1 Regional DLMP formulation

After obtaining the optimal solution through CAST algorithm, the regional DLMP is
calculated by the distributed DLMP scheme in algorithm 7. With regard to classifi-
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Algorithm 6 CAST algorithm (parallelized in all regions)
Input: χ̂Li

(0) - initial feasible state variable, fi(χ̂Li
(0)) - initial local objective value

Parameters: ε - termination tolerance, ϕi(k) - trust-region radius; ϕmax - maximal trust-region radius;
η,β,γ ∈ (0, 1) - trust-region constants; τ ,κ - ADMM constants;

ADMM loop:

Step 1. (Local minimization with trust-region algorithm)

1.1 Choice of linearized model: to construct/update the sensitivity matrix for linearized power flow model at
operating point (ûLi

(k), ŝ0(k)), i.e., (5.3) to (5.6).

1.2 Trust region minimization with LADMM
i :

χ̃∗Li
(k + 1) := argmin

χ̃Li

LADMM
i (5.8a)

s.t. (5.2d) to (5.2f) and (5.3) to (5.6) (5.8b)

||χ̃Li
(k + 1)− χ̂Li

(k)|| < ϕi (5.8c)

1.3 Feasible power flow projection: the next operating point χ̂Li
(k+1) is obtained by projecting the optimiza-

tion results χ̃∗Li
(k+1) to the feasible power flow solution, e.g. by using a Newton–Raphson algorithm [67].

1.4 With the previous operating point χ̂Li
(k), the approximate point χ̃Li

(k + 1) and the current operating
point χ̂Li

(k + 1), the following ratio is computed:

σi(k + 1) =
LADMM
i (χ̂Li

(k + 1))− LADMM
i (χ̂Li

(k))

LADMM
i (χ̃∗Li

(k + 1))− LADMM
i (χ̂Li

(k))
(5.9)

which represents the ratio between actual objective reduction and predicted reduction.

1.5 Trust region radii evaluation and update:

ϕi(k + 1) =


γϕi(k) σi(k + 1) ≤ η
min{ϕmax, 2ϕi(k)} σi(k + 1) ≥ (1− η)
ϕi(k) otherwise

1.6 Trust region solution evaluation:
If σi(k + 1) > β, solution of χ̂Li

(k + 1) is accepted, otherwise rejected with χ̂Li
(k + 1) = χ̂Li

(k) being
set.

1.7 Termination criteria check: ||χ̃Li
(k + 1)− χ̂Li

(k + 1)|| < ε.

Step 2. (Global variable update)

For the coupled buses ci ∈ Ci, we have

χ̃+
ci
(k + 1) =

nci∑
i=1

χ̃∗ci (k + 1), (5.10)

where the global variables are updated using the average value of the local optimization results. The step
requires information exchange between regions, i.e., passing the local optimization results χ̃∗ci (k + 1) to
connected regions.

Step 3. (ADMM parameter update)

3.1 Primal and dual residual update:
For each region i ∈ R, the squared primal residual ri ∈ R and dual residual si ∈ R are updated as follows

r2i (k + 1) = ‖χ̃∗Ci (k + 1)− χ̃+
Ci (k + 1)‖22 (5.11)

s2i (k + 1) = ‖χ̃+
Ci (k + 1)− χ̃+

Ci (k)‖
2
2. (5.12)

3.2 Penalty factor update:

ρi(k + 1) =


ρi(k) · (1 + τ) ri(k + 1) > κsi(k + 1)

ρi(k) · (1 + τ)−1 ri(k + 1) < κsi(k + 1)

ρi(k) otherwise,
where ρi ∈ R is the penalty factor associated to each region i ∈ R which is changed at each iteration
depending on the local and global consensus progress measured by primal and dual residuals.

3.3 Lagrangian multiplier update step:
λi(k + 1) = λi(k) + ρi

(
χ̂Ci (k + 1)− χ̃+

Ci (k + 1)
)
. (5.13)
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cation of parent and children region in the distributed DLMP scheme, the following
explanation holds. Starting from the region connected to PSP, the regions can be
arranged in a sequential order. The region which has a connected downstream
region serves as the parent region with its downstream region as the children re-
gion. Moreover, the children region might serve as a parent region for its further
connected neighbors (children). This kind of classification generally follows the
structure of the radial network nature of the distribution grid.

Algorithm 7 Distributed DLMP scheme

1.1 For any children region, the root-node price is obtained as the cleared DLMP at
the respective parent region’s connected node

1.2 For any parent region i, the active power regional DLMPs πp
i are given as:

πp
i = πp,e

i + πp,l
i + πp,v

i + πp,ADMM
i (5.14)

with πp,ADMM
i = −(

∂pCi
∂pLi

,
∂qCi
∂pLi

,
∂vCi
∂pLi

)λᵀ
i and πp,e

i ,πp,l
i , πp,v

i formulated in the same

way as in (3.17),
∂pCi
∂pLi

,
∂qCi
∂pLi

,
∂vCi
∂pLi

as the cross-region injection sensitivities (Def-
inition 1).

The proposed distributed DLMP scheme adapts to the structural changes re-
sulted from network partitioning and the derivation is provided in the following. The
Lagrangian function associated to sub-optimization problem in region i is given as

Li = fi + (λp
i )

ᵀ(pCi − p+
Ci) + (λq

i )
ᵀ(qCi − q+

Ci)

+ (λv
i )

ᵀ(vCi − v+
Ci) +

1

2
ρi(p̃Ci − p̃+

Ci)
ᵀ(p̃Ci − p̃+

Ci)

+
1

2
ρi(q̃Ci − q̃+

Ci)
ᵀ(q̃Ci − q̃+

Ci) +
1

2
ρi(ṽCi − ṽ+

Ci)
ᵀ(ṽCi − ṽ+

Ci)

+ µpl
i (−p0,i − 1ᵀ

ni
p

g
Li + 1ᵀ

ni
psl
Li + ploss

i )

+ µql
i (−q0,i − 1ᵀ

ni
q

g
Li + 1ᵀ

ni
qsl
Li + qloss

i )

+ (µp
i )

ᵀ(p
g
Li − pLi)− (µp

i
)ᵀ(p

g
Li − pLi

)

+ (µq
i )

ᵀ(q
g
Li − qLi)− (µq

i
)ᵀ(q

g
Li − qLi

)

+ (µv
i )

ᵀ(vLi − vLi)− (µv
i
)ᵀ(vLi − vLi), (5.15)

where the Lagrangian multiplier λi = [λp
i ,λ

q
i ,λ

v
i ] consisting of three parts for cou-

pled active power and reactive power. Where b∗Li ,d
∗
Li represent the regional DLMPs

for active power and reactive power respectively, the KKT conditions comprise of
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first-order optimality conditions:

b∗Li + µpl
i (mpl,p

Li )ᵀ + µql
i (mql,p

Li )ᵀ + (λp
i )

ᵀ ∂pCi
∂pLi

+ (λq
i )

ᵀ ∂qCi
∂pLi

+ (λv
i )

ᵀ ∂vCi
∂pLi

+ ρi(pCi − p+
Ci)

∂pCi
∂pLi

+ ρi(qCi − q+
Ci)

∂qCi
∂pLi

+ µpl
i + (Mvp

Li)
ᵀ(−µv

i
+ µv

i ) = 0 (5.16)

b0,i + µpl
i = 0 (5.17)

d∗Li + µpl
i (mpl,q

Li )ᵀ + µql
i (mql,q

Li )ᵀ + (λp
i )

ᵀ ∂pCi
∂qLi

+ (λq
i )

ᵀ ∂qCi
∂qLi

+ (λv
i )

ᵀ ∂vCi
∂qLi

+ ρi(pCi − p+
Ci)
∂pCi
∂qLi

+ ρi(qCi − q+
Ci)

∂qCi
∂qLi

+ µpl
i + (Mvq

Li)
ᵀ(−µv

i
+ µv

i ) = 0 (5.18)

d0,i + µql
i = 0 (5.19)

together with complementary slackness and positive duals. Based upon the con-
vergence of CAST, we have pCi −p+

Ci = 0 and qCi −q+
Ci = 0 . By substituting (5.17)

and (5.19) into (5.16) and (5.18), resp., we obtain the DLMPs for active power b∗Li
as in the distributed DLMP scheme, i.e.

b∗Li = b0,i − b0,i(mpl,p
Li )ᵀ − d0,i(mql,p

Li )ᵀ + (Mvp
Li)

ᵀ(µv
i
− µv

i )

− (λp
i )

ᵀ ∂pCi
∂pLi

− (λq
i )

ᵀ ∂qCi
∂pLi

− (λv
i )

ᵀ ∂vCi
∂pLi

. (5.20)

Definition 1: Cross-region injection sensitivities

Note that the sensitivities
∂pCi
∂pLi

and
∂qCi
∂pLi

capture the effect on the coupled injection
change pCi ,qCi , due to the local power injection change pLi ,qLi . This couples
the behavior of neighboring regions into local DLMP calculations. Hence, we term
this as cross-region injection sensitivities. In region i, for a coupled bus ci ∈ Ci
connected to nci neighboring regions, the cross-region injection sensitivity can be
calculated as

∂pci
∂pLi

:=
∂pci
∂vci

∂vci
∂pLi

=
( nci∑
k 6=i

∂pck
∂vck

) ∂vci
∂pLi

. (5.21)

Some observations regarding the above definition of ∂pci
∂pLi

follow. In (5.21): (i) only
voltage magnitudes are considered, as the angle differences across distribution
lines are considerably smaller [5]; (ii) we incorporate information from both local
∂vci
∂pLi

and neighboring regions ∂pck
∂vck

; and (iii) the local sensitivities ∂vci
∂pLi

are obtained

from Mvp
Li , whereas the neighboring information ∂pck

∂vck
is obtained with the explicit

power flow linearization in chapter 2.

The proposed market framework requires a two-way communication network
for all market participants. However, the type of information to be exchanged within
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a framework varies. For any regional DSO, Fig. 5.3 provides an overview of the
information to be shared by a regional DSO. The communication traffic in the dis-
tributed DLMP scheme is comparably smaller than in the CAST loop since it merely
requires one-time communication of passing the cleared price and cross-region in-
jection sensitivity between regional DSOs. Note that all information except on its
physically coupled buses is kept local by a regional DSO. This means that a re-
gional DSO only needs to share information with its physically connected neighbor-
ing regional DSOs. The information needed to be revealed by any regional DSO
includes physical parameters of active/reactive injections and a root-node price for
its children regional DSO (only if it serves as a parent regional DSO, see Sec. IV-A
for more information). This proposed information exchange framework of a regional
DSO resembles a power system where multiple RTOs exist [22, 23]. Hence, the
proposed framework of this paper has a high practical realization.

Global Variable Update

Local Minimization

ADMM Parameter Update

Regional DLMP Calculation

Distributed DLMP Scheme

CAST Loop

*It only applies when  is in the children region of  

Regional DSO  

      

       
       

    
    

        
   
   

*

        

          

Receive Send

Fig. 5.3: Flowchart of the information exchange between regional DSOs.

5.3.2 Three-bus network example

We use the 3-bus network to elaborate the distributed DLMP scheme. First, con-
sider centralized active power DLMPs (3.17) for the exemplary 3 bus system of
Fig. 5.4, only with loss terms:

b1 = b0 −
∂ploss

∂p1
b0 −

∂qloss

∂p1
d0 (5.22)

b2 = b0 −
∂ploss

∂p2
b0 −

∂qloss

∂p2
d0. (5.23)

Now consider the network partitioned as shown in Fig. 5.4. The following two rea-
sons prevent the adoption of the above mentioned price structure: (i) With the par-
titioning, note that b0, originally the marginal price at the slack bus, is now local to
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𝑦01

𝑠0 𝑠2

𝑦12

𝑠1

𝑦12 𝑦23

𝑠0 𝑠2𝑠𝑐1 𝑠𝑐2

Region 1 Region 2

Regional Decomposition

Fig. 5.4: Three-bus network example.

region 1. Moreover, region 2 has a new root-bus, i.e., bus 1. Hence, the formulation
needs to be adjusted to account for these structural changes. (ii) Each region only
computes local losses through local linearized terms mpl,p

L1 ,m
ql,p
L1 ,m

pl,p
L2 ,m

ql,p
L2 . How-

ever, the losses in the each region is coupled to its neigbouring region’s injection
through the local copy. Hence, if not accounted, this effect might induce errors in
the local loss calculations and its representation in DLMPs. Hence, we derive the
below pricing scheme to account for these changes and obtain a similar structure
and optimality in the final price as the central method (3.17).

Region 1

The Lagrangian function associated to sub-optimization problem in region 1 is given
as

L1 = f1 + λp1(pc1 − p
+
c1) + λq1(qc1 − q

+
c1)

+
1

2
ρ1(pc1 − p+c1)2 +

1

2
ρ1(qc1 − q+c1)2 + µpl

1 (p0 + p1 − ploss
1 )

+ µql
1 (q0 + q1 − qloss

1 ), (5.24)

where λp1, λ
q
1 are the augmented Lagrangian multipliers. Note that due to the net-

work partition, the losses are automatically separated into 2 parts: ploss
1 and ploss

2

for region 1 and 2, respectively. They are related to the total loss in a way that

ploss = ploss
1 + ploss

2 . (5.25)
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Let b∗1, d
∗
1 represent the distributed DLMPs in region 1, then the associated KKT

conditions for region 1 are

b∗1 − µpl∂p
loss
1

∂p1
− µql∂q

loss
1

∂p1
+ λp1

∂pc1
∂p1

+ λq1
∂qc1
∂p1

+ ρi(pc1 − p+c1)
∂qloss

1

∂p1
+ ρi(qc1 − q+c1)

∂qc1
∂p1

+ µpl = 0, (5.26)

b0 + µpl = 0, (5.27)

d∗1 − µpl∂p
loss
1

∂q1
− µql∂q

loss
1

∂q1
+ λp1

∂pc1
∂q1

+ λq1
∂qc1
∂q1

+ ρi(pc1 − p+c1)
∂qloss

1

∂q1
+ ρi(qc1 − q+c1)

∂qc1
∂q1

+ µql = 0, (5.28)

d0 + µql = 0, (5.29)

together with the complementary slackness and positive duals. We have pc1−p+c1 =
0, qc1 − q+c1 = 0 based upon the convergence of CAST, giving us DLMPs for node
1 in region 1 as

b∗1 = b0 − b0
∂ploss

1

∂p1
− d0

∂qloss
1

∂p1
− λp1

∂pc1
∂p1

− λq1
∂qc1
∂p1

,

d∗1 = d0 − c0
∂ploss

1

∂q1
− d0

∂qloss
1

∂q1
− λp1

∂pc1
∂q1
− λq1

∂qc1
∂q1

.

Note that the sensitivity ∂pc1
∂p1

, represents the effect on the coupled injection change
pc1 , due to the local power injection change p1. This captures the actions of neigh-
boring regions into local DLMP calculations. Hence, we call this term cross-region
injection sensitivity. In region 1, for a coupled bus c1 ∈ C1 connected to 1 neigh-
boring regions, the cross-region injection sensitivity is defined by ∂pc1

∂pL1
and can be

calculated as

∂pc1
∂p1

:=
∂pc2
∂vc2

∂vc1
∂p1

. (5.30)

The above sensitivity only includes voltage magnitude to calculate coupled loss
sensitivities, as angle difference are considerably small across lines [5]. Moreover,
each part relies on the local information ∂vc1

∂p1
and neighbor information ∂pc2

∂vck2
. Note

that ∂vc1
∂pL1

is part of mPQ
L1 and ∂pc2

∂vc2
can be either numerically or analytically calculated

(refer to chapter 2).

Region 2

Recall algorithm 7, where for any children region, the root node price is obtained
as the DLMP from the parent region. DLMPs for children regions are calculated in
the same way as in the central scheme. To provide the derivation on the three-bus
example, we first recapture the loss sensitivity decomposition chapter 2 as follows.
Loss linearization can be related to slack bus injection linearization by the power
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balance equations, i.e., p0 + 1ᵀ
npL = ploss. By taking first-order derivative on both

sides of the equation, we obtain

∂p0
∂pL

+ 1n =
∂ploss

∂pL
. (5.31)

Intuitively, for small-scale networks, by increasing/reducing of power injections at
PQ buses, similar amount of power will be reduced/increased at the slack bus, i.e.,
∂p0
∂pL
≈ −1n and consequently, ∂p

loss

∂pL
is close to 0n.

Using the loss decomposition in (5.25), we obtain the following sensitivity de-
composition:

∂ploss

∂p2
=
∂ploss

∂p1
+
∂ploss

2

∂p2
(5.32)

∂qloss

∂p2
=
∂qloss

∂p1
+
∂qloss

2

∂p2
(5.33)

The derivation is given as follows:

∂ploss

∂p2
− ∂ploss

∂p1
=
∂ploss

1

∂p2
+
∂ploss

2

∂p2
− ∂ploss

1

∂p1
− ∂ploss

2

∂p1(
with ploss

1 is linked to p2 by pc1 and pc2 ,where pc1 = −pc2
)

= −∂p
loss
1

∂pc1

∂pc2
∂p2

+
∂ploss

2

∂p2
− ∂ploss

1

∂p1
− ∂ploss

2

∂p1(
Since c2 is the slack bus, from (2.30) we have

∂pc2
∂p2

=
∂ploss

2

∂p2
− 1.

)
= −∂p

loss
1

∂pc1
(
∂ploss

2

∂p2
− 1) +

∂ploss
2

∂p2
− ∂ploss

1

∂p1
− ∂ploss

2

∂p1

=
∂ploss

1

∂pc1

∂ploss
2

∂p2
+
∂ploss

2

∂p2
− ∂ploss

2

∂p1
(5.34)

Note that ∂ploss
1

∂pc1
,
∂ploss

2
∂p2

is close to 0 such that the second-order terms ∂ploss
1

∂pc1

∂ploss
2

∂p2

and ∂ploss
2

∂p1
= −∂ploss

2
∂pc2

∂pc1
∂p1

can be neglected. The sensitivity decomposition (5.32)
and (5.33) is then obtained.

Now consider setting the root node price for region 2 using nodal price from bus
1 and calculate the DLMP locally, i.e., distributed DLMP b∗2 is calculated as

b∗2 = b1 −
∂ploss

2

∂p2
b1 −

∂qloss
2

∂p2
d1. (5.35)

Substitute (5.22) and d1 = d0 − ∂qloss

∂q1
d0 − ∂ploss

∂q1
b0, we obtain1

b∗2 = b0 − (
∂ploss

∂p1
+
∂ploss

2

∂p2
)b0 − (

∂qloss

∂p1
+
∂qloss

2

∂p2
)d0 (5.36)

using (5.32) and (5.33), we have

b∗2 = b2 (5.37)
1For the sake of brevity, the step of neglecting the second-order terms is skipped in the derivation
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5.4 Numerical Example

We test the proposed CAST algorithm on an IEEE 33-bus system [118] with three
regions as illustrated in Fig. 5.5 (see Scenario 1 & 2) and on a 144-bus network
(see Scenario 3). Each region includes a DG operating locally. The test net-
work has a total fixed load of 3.66 MW and 2.28 Mvar. In order to demonstrate
the efficiency of the proposed method, we provide comparison against IPM of
MATPOWER [74] for two realistic scenarios. For scenarios 1 and 2: the energy
price at the PSP is kept at 30 $/ MWh and 3 $/ Mvar h whereas for all DGs as
20 $/ MWh and 3 $/ Mvar h; voltage constraints are kept as [0.95, 1.05]; and the
ADMM and trust-region parameters are set as: η = 0.1, β = 0.9, γ = 0.5, τ = 0.1,
κ = 10, ρi(0) = 7 × 102, λi(0) = 7, i ∈ R. For scenario 3, the TR parameters
are kept the same while the ADMM parameters are set as: τ = 0.1, κ = 10,
ρi(0) = 1.2 × 105, λi(0) = 0.5, i ∈ R. The simulations are performed on a personal
computer with Intel i5 2.4Ghz and 8 GB RAM.

PSP    1       2        3            4         5         6        26       27

DG1

   19       20       21       22 

   23       24       25 

Region 1

28      29        30       31          32    33
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7         8         9         10       11       12       13       14       15       16       17       18

DG2 Region 3

Coupled bus

PSP    1       2        3            4         5         6        26       27

DG1

   19       20       21       22 

   23       24       25 

28      29        30       31          32    33
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7         8         9         10       11       12       13       14       15       16       17       18

DG2

Fig. 5.5: 33-bus system with three regions.

5.4.1 Scenario 1 - lossy DLMPs

Scenario 1 considers three DGs with identical 500 kW and ±100 kvar capacity,
i.e., with modest renewable energy penetration. The convergence of the CAST
algorithm with the optimal solution is illustrated in Fig. 5.6 with respect to total
cost, primal gap and active/reactive power dispatch. The primal gap is defined
as the sum of primal residuals in eq. (5.11) which is a measure of disagreement
on the power flow parameters of the coupled buses. In order to demonstrate the
VP method in the improvement of the convergence performance, we compared the
situation including/excluding the varying penalty update in closing the primal gap
for all three scenarios. Note that the proposed CAST algorithm achieves the exact
optimal solution as the central AC-OPF (MATPOWER).

The DLMP results can be found in Fig. 5.7 and Table 5.1. Since the energy sup-
ply from DGs is cheaper than the PSP, all DGs are fully dispatched (see Table 5.2).
Meanwhile, no overvoltages are caused by DGs because of the modest penetration
level, keeping voltage support part of DLMP πp,v at 0. Hence, the only contribution
to the overall price calculation comes from the loss component of DLMPs, penal-
izing nodes based on their contribution to the overall losses in the distribution grid.
Regarding the coupled loss component πp,ADMM, its value is comparatively small
in contrast to local region losses πp,l. This shows that the effect of neighboring
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Fig. 5.6: Scenario 1: Convergence of CAST.
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Fig. 5.7: Scenario 1: DLMP with ACOPF as benchmark.

regions in contributing to local losses is not as great. Similar to the dispatch val-
ues, the multi-regional DLMPs are also found to be similar to the central AC-OPF
solution (MATPOWER).

5.4.2 Scenario 2 - binding voltage constraint

In scenario 2, a high renewables-penetration level is considered by assuming 3× 3
MW DG with the nominal power factor of 0.9. As a consequence, local voltages at
DG buses become binding. First, we present the convergence of CAST in Fig. 5.8



5.4. NUMERICAL EXAMPLE 87

Table 5.1: Active power DLMPs for both scenarios

i πp,e πp,l πp,v πp,ADMM πp (CAST) πp(AC-OPF)
3

case 1
30 0.35 0 2.8e-3 30.39 30.39

15 31.02 -0.07 0 - 30.95 30.95
32 31.02 0.35 0 - 31.36 31.36
3

case 2
24.21 -0.064 -4.15 1.2e-3 20.00 20.00

15 20.27 -0.11 -0.159 - 20.00 20.00
32 20.27 -0.062 -0.238 - 20.00 20.00

Table 5.2: Power dispatch comparison of CAST and AC-OPF

Node P dispatch [MW] Q dispatch [Mvar] Total cost [$]
CAST AC-OPF CAST AC-OPF CAST AC-OPF

PSP

case 1

2.23 2.23 2.03 2.03

103.44 103.44DG1 0.5 0.5 0.1 0.1
DG2 0.6 0.6 0.3 0.3
DG3 0.45 0.45 0.25 0.25
PSP

case 2

0 0 0.95 0.95

77.302 77.302DG1 2.34 2.34 -0.02 -0.03
DG2 0.66 0.65 0.41 0.42
DG3 0.69 0.69 0.94 0.94

and dispatch values in Table 5.2. One can also observe that VP method has im-
proved the convergence in both scenarios despite the same initial parameters.
Binding voltage constraints in different regions generate more oscillations to ob-
tain consensus among the coupled buses. The CAST settles down at a total cost
of $ 77.302 which is identical to the optimal value obtained from AC-OPF.

In terms of DLMP, as compared to scenario 1, the voltage support part πv is
relatively high compared to other components of the DLMP that in turn reduces the
DLMP at DG nodes. This penalizes DGs and reduces the local generations while
maintaining the local voltage under the upper bound. Note that as nodes 15 and
32 are completely supplied by their local DGs, their cleared price πp is equal to the
marginal cost of supplying power from their respective DGs, which has been set
at 20 $/MWh. The dispatch results are given in Fig. 5.9, where it can be seen that
the proposed distributed method achieves a similar quality to the central solution.

5.4.3 144-bus Network

In scenario 3, we extend the test case to a larger network with 144 buses [75].
The scenario considers 5 regions (R = {1, 2, ..., 5}) with 7 DGs in total. The network
partition is illustrated in Fig. 5.10. The price vectors for the power procurement from
PSP and DGs are presented in Table 5.3. The base load of the test scenario is 11.9
MW and 7.36 Mvar. The convergence of the CAST algorithm to the optimal solution
is illustrated in Fig. 5.12 with respect to total cost, primal gap and active/reactive
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Fig. 5.8: Scenario 2: Convergence of CAST.
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Fig. 5.9: Scenario 2: DLMP with ACOPF as benchmark.
Table 5.3: Test scenario 144-bus network: DG cost and constraints

Price vector DG0(PSP) DG1 DG2 DG3 DG4 DG5 DG6

P [$/MWh] 20 10 10 10 7 10 10
Q [$/Mvarh] 3 2 3 2 2.9 1.9 3.1

P Max [MWh] - 1.5 1.5 1.9 1.2 2.3 1.5
Q Max [Mvarh] - +/-0.3 +/-0.3 +/-0.4 +/-0.6 +/-0.7 +/-0.9
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Fig. 5.10: 144-bus test case with 5 regions [75].

power dispatch. It can be seen that CAST has converged towards the same opti-
mal solution as in ACOPF. Moreover, due to the earlier settlement for the optimal
solution, one can also conclude the convergence performance is improved by VP
method as well.

The test scenario considers a modest DG penetration degree, i.e., the PSP
remains the primary source for the energy supply. The DLMP results for the 144-
bus network can be found in Fig. 5.11. Since the PSP serves as the primary source
for the energy supply, the DLMP is dominated by the root-node price accordingly.
In general, one can observe the marginal price downstream of Region 1 is the
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Fig. 5.12: Scenario 3: Convergence of CAST.

highest due to the higher losses. On the other hand, the distributed DLMP scheme
has achieved the same price accuracy as the centralized ACOPF solution, despite
multiple regions and highly coupled loss terms between the regions.

5.4.4 Computational aspects

In terms of the computation efficiency and results interpretability of the proposed
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Table 5.4: Computation comparison

TR IPM SDP relaxation

Global solution X X X

Computation time (144-bus network) 2.9 s 1.3 s 12.3 s
Implicit calculation of DLMP X × ×
Tractable formulation X × ×

method, we present the computational comparison of the local optimizer using TR,
IPM and semi-definite-programing (SDP) relaxation methods in Table 5.4. The TR
optimizer is implemented with YALMIP [119] and Gurobi [129]. The IPM and SDP
are implemented with the MATPOWER interior point solver and SeDuMi [130], re-
spectively. Note that all three solvers produce the same global solution. IPM re-
quires less computational time than needed in TR, whereas the computational bur-
den for SDP is the heaviest. We also notice that the computation time of TR is
implementation-dependent, i.e., YALMIP consumes substantially more time in cre-
ating the model than the solver time with Gurobi. Furthermore, the DLMPs can be
calculated during each iteration for the TR method, whereas it can only be recov-
ered after finding the optimal solution for the SDP-based ACOPF and IPM-ACOPF.
In this respect, a tractable formulation (i.e. a feasible power flow solution and the
decomposable price signals at each iteration) can also only be provided by TR.

Since in the field deployment of CAST, each regional DSO solves the local prob-
lem in parallel, without extending the discussion of the inclusion of communication
network, the overall solving time can be estimated by multiplying the iteration num-
ber by the local solver time. Recent works have reported a reasonable speedup of
ADMM-based algorithm in a local simulation when a parallel computing technique
is adopted [131].

5.5 Summary

In this chapter, a decentralized market framework at the distribution grid level is
proposed. The main ingredients of the framework are: (i) Consensus-Alternating
direction method of multipliers Structured Trust-region (CAST) solution algorithm
to capture the nonconvex AC power flow in a fully distributed way and (ii) a multi-
regional DLMP decomposable pricing scheme. To demonstrate the efficiency of the
proposed method, three simulation scenarios are investigated on benchmark sys-
tems, and comparisons are made to the MATPOWER state-of-the-art solver. Note
that the distributed DLMP scheme is only proven for the distribution grid with radial-
network topology. The extension and validity to meshed network and the exact cost
allocation through cross-region injection sensitivity for unbalanced network remains
an open research question. On the other side, having proposed an efficient algo-
rithm for decomposed pricing schemes, the reorganization of the existing power
system in order to achieve both planning and operational efficiency still needs to be
addressed in future works.





Chapter 6

Discussions and Outlook

6.1 Discussions

Building on the promise of smart distribution grid, the work at hand discusses the
market frameworks to allow for greater economic efficiency, as well as continued
satisfactory operation of distribution system in a decentralized fashion. This de-
centralized fashion is reflected in various aspects including i) reorganizing the grid
and market operation to be fulfilled by collaborative regional DSOs, and ii) creating
incentive-based indirect control schemes to regulate the bilateral energy exchange
between prosumers at the distribution grid level.

Fundamentally, the derived pricing scheme is obtained from the Lagrangian
dual of optimal power flow. Dual prices support optimal dispatch behavior of market
participants if the primal problem is convex. To this end, we adopt the nonlinear pro-
gramming technique to solve the optimal power flow problem and derive incentive
price signals, both in centralized and decentralized fashion for the respective mar-
ket environment. The electricity market and ancillary service market is supposed
to be operated by the regional DSOs. At a higher level, it entails the region-to-
region coordination and multi-regional market-clearing scheme that is realized by
the ADMM-based solution methodology. Since the regional systems are physically
coupled, the cost allocations and market settlement are in line with their physical
interconnection between these regions and the cost allocations are determined by
the optimal energy exchange prices and cross-region sensitivities. Specific to each
regional distribution grid, the options for DERs integration exist in the participation
in the centralized DSO market as well as P2P market. Both markets rely on DLMP
as a common tool to derive the “grid-friendly” behavior of DERs, where GUPs are
imposed for each P2P transaction.

The proposed market framework is validated by duality analysis and numerical
experiments. It shows that both DLMPs and their derivative GUPs have a decom-
posable structure that represent incentive price signals to regulate DERs to con-
tribute towards the grid operations. Aside from these major observations in the nu-
merical analysis, we would like to underline the following interesting notes that may
be taken into account in the market design. In algorithm 7, the energy exchange
prices between regional operators revealed by ADMM include three parts: active
power, reactive power and voltage. Specifically to the voltage part, it provides an
economical value for not only maintaining voltages locally, but also globally. Hence,

93
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voltage can be treated as commodities between entities like operators and pro-
sumers. We have conducted some preliminary studies to discuss the possibility to
trade voltage between interconnected microgrids by assigning voltage penalty cost
in the social welfare function of the underlying system in [47]. Practically, pricing
voltages is still an emerging topic, where the cost for maintaining voltages are usu-
ally considered rather as an investment problem than an operation problem. This
may be subject to change as if an AC-OPF model is to be adopted by DSO. This
enables a market design to be dedicated to the voltage stability on the distribu-
tion grid side, which can be potentially beneficial for obtaining short- and long-run
price signals to mitigate the voltage problem in view of the integration of renewable
generations.

At the time of writing, for the adoption of nonlinear programming technique the
strong duality can not be guaranteed. However, it is worth mentioning that for all
the radial network that have been tested in this work the global optimal solutions
are obtained for different test scenarios. Mathematical insight for this phenomenon
is difficult, despite the fact that some intuition can be provided from the convex-
ity analysis for optimal power flow problem applying alternative approaches like
semidefinite programming as in [80]. On the other hand, special attention should
be paid to meshed network cases, which have been excluded from the discussion
in this dissertation. In the practice of some countries, low-voltage radial feeders are
usually interconnected to form a ring network, e.g., [132]. Meshed network gener-
ally yield multiple local optima. Hence, the convergence property and the sensitivity
analysis of the proposed distributed DLMP scheme should be investigated for this
context accordingly.

6.2 Future works

6.2.1 Market design considering uncertainty

We limit the majority of our discussion in this dissertation to a single-market inter-
val. Consider of extending the bilateral programming model for DSO market and
P2P market in Chapter 4 to a multi-period model, how to incorporate the stochastic
nature of renewable resources in a market design determines whether the electric-
ity market outcome is sustainable. For the practice at transmission grid level, the
market are organized in a way to include multiple time scales, including day-ahead
market (forward market), intra-day market (adjustment market) and real-time mar-
ket (balancing market), which are viewed by many to be essential to capture the
stochastic nature for the renewable integration [133]. The wholesale market gen-
erally follows the setup “supply-follows-demand" as many conventional generator
types are considered dispatchable. At the distribution grid level, where the demand
side is most likely to be managed, the market design can be organized in a sim-
ilar way to enable a market in a “demand-follow-supply” manner, focusing on the
demand-side management. To this end, the incorporating of detailed thermal load
modeling, e.g., [134], further development of probabilistic DLMP and multi-period
P2P market–clearing models are the essential ingredients to accommodate the un-
certain nature of generations and loads in a market design.
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6.2.2 Game-theoretical analysis for distribution grid market

As one of the assumptions on market participants in this work is that the DERs
are price takers. It means that, there is significant competition between prosumers
to prevent the market participants to improve their position through strategic price-
setting behavior. However, the condition to exclude the strategic behavior are not
always true and the regulation paradigm may need to take into account the pro-
sumers that have market power. A potential solution for this is to incorporate game-
theoretical approaches (e.g., [135]) to model the P2P market clearing process,
where the impact on the prosumer behavior from GUP can be treated accordingly.
On the other side, distribution grid market, based on some studies, are regarded
as markets with lower liquidity. Hence, it is essential to design incentives to form a
competitive markets that support the competitive-market assumptions of this work.
In this scope, a direct extension of this work is to analyze the coordinated market
design in Chapter 4 with game theoretical approach considering prosumer’s spatial
and temporal arbitrage as well as strategic-bidding behavior.

6.2.3 Prosumer attitudes and preferences

In line with the consideration of strategic prosumer behavior, the prosumers may
have other distinguished attitudes towards risk and heterogeneous preferences. It
is very common in the literature to assume that that the prosumers have identical
attitudes towards risk. Therefore, the preferences for some players who are willing
to accept a greater payoff volatility and risk than others are not accommodated
in the market design. This may lead to conservative forward market designs and
impact the market liquidity. In light of this, some existing work, e.g., [136, 137]
discusses about the risk trading in the electricity market design and provides ways
to develop financial hedging products for the distribution grid market context. By
using historical data and long-term forecast model of the grid, hedging rights can be
calculated to recover both the operating cost and investment cost. Prosumers can
procure the rights beforehand to hedge against price volatility. Through this way,
social welfare loss of the conservative market decision making can be avoided.

The proposal of GUP scheme requires the evaluation of the DLMP constantly
for each new P2P transaction request. This is computationally expensive and the
resulted GUP is volatile. Inspired by the concept of financial transmission right in
transmission grid market, the solution for this is to define the financial product that
can help prosumers in a P2P trade to hedge against the price volatility of GUP.
This concept can be developed by using historical and forecast data of DLMP,
whereby it allows for the redistribution of the merchandising surplus (MS) gathered
by the DSO, who operates the coordinated market, in the form of voltage support,
congestion and loss surcharge from the prosumers.

6.2.4 Further development of DLMPs

Towards the vision that the distribution grid becomes an active market place for
generation and demand-side management, the DLMP scheme needs to be devel-
oped further to accommodate not only the stochastic nature of renewables but also
different grid technologies, e.g., AC/DC grids. Another factor to be taken into ac-
count is the grid topology (meshed/ring topology). It is important to be aware of
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that, for DLMPs calculation, the adoption of the nonlinear programming technique
in combination with distributed optimization in this work requires the global optimal-
ity and strong duality that can only be shown empirically for the tested cases of
radial networks. For the meshed network, the optimality can not be guaranteed.
Alternative solution methodologies, such as convexified optimal power flow also
face difficulty for these cases due to the lack of strong duality. Hence, designing a
suitable pricing scheme for this grid setting remains as important future task.
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