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Abstract

In the frame of this bachelor thesis, density estimation with the sparse grid combination
technique was implemented and integrated into the sparseSpACE framework. The sparse
grid combination technique is used to compute a sparse grid, whereby a specific sequence of
small anisotropic full grids is combined linearly, to tackle the curse of dimensionality. The
usage of mass lumping in the density estimation process is also explored, which still achieves
relatively good results compared to the standard combination method. The density function
is estimated for different data sets using the combination technique and compared with the
full grid solution in regards to different error norms. The test results show that we achieve
a good estimate of the density function while simultaneously reducing the number of grid
points used.
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Kurzfassung

Im Rahmen dieser Bachelorarbeit wurde die Dichteschätzung mit der Dünngitter Kombi-
nationstechnik implementiert und in das sparseSpACE-Framework integriert. Die Kombi-
nationstechnik wird zur Berechnung eines Dünngitters verwendet, wobei eine bestimmte
Folge kleiner anisotroper Vollgitter linear kombiniert werden, um den sogenannten Fluch der
Dimensionalität zu umgehen. Auch die Verwendung von einer konzentrierte Massenmatrix
bei der Dichteschätzung wird untersucht, die im Vergleich zur Standardkombinationstechnik
immer noch relativ gute Ergebnisse erzielt. Die Dichtefunktion wird für verschiedene Daten-
sätze mit Hilfe der Dünngitter Kombinationstechnik geschätzt und mit der Vollgitterlösung
im Hinblick auf verschiedene Fehlernormen verglichen. Die Testergebnisse zeigen, dass
wir eine gute Schätzung der Dichtefunktion bei gleichzeitiger Reduzierung der Anzahl der
verwendeten Gitterpunkte erreichen.
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1. Introduction

Nowadays data mining tools become increasingly important due to the steady increase in
the amount of data that is generated. This makes methods to extract knowledge from the
constantly growing data sets necessary.
In this thesis the sparse grid combination technique is used to analyze the density of data
as common full grids suffer from the curse of dimensionality, i.e. that the number of grid
points grows exponentially with the number of dimensions. To overcome the curse of
dimensionality, sparse grids are used, since full grids with more than three dimensions
are not feasible. The basic idea of sparse grids is to omit some points of a full grid while
retaining the subspaces that contribute most to the overall solution without compromising the
overall accuracy. These sparse grids can be constructed by using the standard combination
technique. The combination technique is a simpler method for calculating the surpluses of
basis functions centered on grid points, rather than working directly on sparse grids based
on the hierarchical basis, by linearly combining a certain sequence of small anisotropic full
grids. This also enables us to individually evaluate each full grid in parallel as they are
computed independently from each other. While we can achieve more accurate estimations
of the density function by using a finer mesh, this also results in sparse grid with more grid
points.
In future extensions of the implemented functionality, the number of grid points can be
reduced further by using spatially adaptive sparse grids. Here, a coarse sparse grid is refined
in several steps by adding points in areas of the domain where many points are located.
Furthermore, the dimensional adaptive version of the combination technique, in which
additional component grids can be included in the combination scheme, can also increase the
accuracy and reduce the amount of grid points.
These estimated density functions could then be used for machine learning tasks, such as
classification, i.e. training systems with data samples to classify previously unseen samples
into classes, and clustering, i.e. dividing similar data into groups.

The chapter Theoretical Background provides, as the name suggests, an introduction to the
theoretical background needed for sparse grid density estimation. It explains the common
nodal basis and the hierarchical basis for grid based function interpolation. Then, the concept
of sparse grids and the the standard combination technique is explained. This is followed by
an introduction to density estimation use cases, using the examples of the machine learning
tasks of classification and clustering, followed by an explanation of how a density function
can be estimated on a grid.
The chapter Implementation explains the structure and functionalities of the sparseSpACE1

1https://github.com/obersteiner/sparseSpACE
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1. Introduction

framework and the implementation and integration process of the implemented sparse grid
density estimation with the combination technique.
Then follows the chapter Evaluation, which contains comparisons of our implemented method
on different data sets and for a variety of grid configurations in respect to three error norms.
In addition, the results are compared with the density estimates performed with the SG++2

framework developed mainly by Dirk Pflüger, which computes the density function directly
on a sparse grid in the hierarchical basis.

2https://sgpp.sparsegrids.org/
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2. Theoretical Background

This chapter describes the theoretical background of the implementation of the sparse
grid density estimation using the combination technique. First, it explains how function
approximation works on grids and how sparse grids can help to overcome the curse of
dimensionality that occurs when using full grids. An introduction to the field of data mining
and the machine learning tasks classification and clustering is then given, for which the use
of density estimation is examined. On this basis, the standard combination technique and
density estimation with the sparse grid combination technique are explained.

2.1. Grid Based Function Interpolation

A function f ∈ V is usually represented as a linear combination of kernels associated with
data points, e.g. in kernel density estimation. In a grid-based approach, on the other hand,
the function is constructed as a sum of weighted basis functions placed on a grid. With this
approach, unlike with the kernel-based approach, the number of basis functions does not
increase with the number of data points. This makes grid based function interpolation a
good method to approximate a function such as the density function. This section gives a
brief introduction to the approximation of functions on a grid, the curse of dimensionality
that arises, and how to use sparse grids and the combination technique to overcome it. For a
detailed coverage of these topics please refer to the sources [1] and [2].

2.1.1. Interpolation on a Full Grid

In the following we will restrict our domain to the d-dimensional unit-hypercube Ωd := [0, 1]d

when interpolating a function f : Ωd → R. In addition, we confine ourselves to functions that
are zero on the boundary of Ωd.
In order to construct an interpolation u of function f , we discretize Ωd into (2l)d grid points
xl,i, with l ∈ N0 being the discretization level. The grid points are equally spaced with a
distance (meshsize) of 2−l between two adjacent points in each dimension. On these grid
points we place suitable basis function ϕl,i(~x), which in this thesis is the standard hat function
ϕ : [0, 1] → R. However, there are numerous other possible choices for a basis function
instead of the selected piecewise d-linear basis functions, such as d-polynomial, Mexican hat
or B-spline basis functions. The interpolant u can therefore be constructed as a sum of basis
functions ϕl,i(~x) weighted with the coefficients αl,i.

f (~x) ≈ u(~x) := ∑
i

αl,i ϕl,i(~x) (2.1)

3



2. Theoretical Background

2.1.2. Nodal Basis

In this thesis we work primarily with small anisotropic full grids, which are represented in
the conventional nodal basis, since they are utilized in the standard combination technique.
This section first describes the nodal basis for the one-dimensional case, followed by the
extended d-dimensional case.[2]

Nodal Basis in one dimension

In the one-dimensional space we work with functions defined on the unit interval [0, 1]. This
range Ω is divided into 2l segments of equal size, where l ∈N0 is the level of refinement. We
get a total number of grid points xl,i of 2l + 1, including points on the border, and 2l − 1 grid
points without boundary points. In the following we use grids without boundary points. The
grid points are defined by

xl,i := i · hl , i = 1, ..., 2l − 1 . (2.2)

Here i denotes the index and hl := 2−l is the distance or mesh size between the individual
points. On each of the 2l + 1 grid points we place a basis function ϕl,i : [0, 1] → R. In our
case we use the standard hat function

ϕl,i(x) := max
(

1− | x
hl
− i|, 0

)
. (2.3)

Individual one-dimensional hat base functions can be obtained by scaling and translation
depending on the level l and the index i. We can see that the basis functions on one level have
disjunctive pairwise supports and cover the entire domain. For the level l the node space Vl
is defined as the linear span of all basis functions ϕl,i:

Vl := span
{

ϕl,i(x) : i = 1, ..., 2l − 1
}

. (2.4)

We can then formulate the interpolant u of a function f : [0, 1] → R as sum of basis hat
functions ϕl,i weighted with some αl,i ∈ R:

u(x) =
2l

∑
i=1

αl,i ϕl,i(x) . (2.5)

Figure 2.1 shows basis hat functions ϕl,i and grid points xl,i and an example function
interpolant u ∈ V3 as a weighted sum of basis functions in the nodal basis with points on the
boundary. In the later Section 2.1.5 we only consider anisotropic full grids without points on
the boundary for the combination technique.

Nodal Basis in d-dimensions

We extend the nodal basis to the d ∈N dimension by applying the tensor product approach.
The domain now becomes Ωd = [0, 1]d and the level l = (l1, ..., ld) and the index i =

4



2. Theoretical Background

Figure 2.1.: Basis functions ϕl,i and grid points xl,i of level 3 (left) and a function u ∈ V3 as a
weighted sum of hat functions in the nodal basis.

(i1, ..., id) turn into the vectors~l and~i respectively. Ωd is partitionable into 2‖l‖1 equal-sized
hyperrectangles, where ‖l‖1 := ∑d

t=1 |lt| is the l1-norm of the level vector. The grid points
coordinates are given by

x~l,~i =~i · h~l = (i1hl1 , ..., idhld) (2.6)

where h~l := (hl1 , ..., hld) is the d-dimensional mesh size. In the following, addition, multiplica-
tion and exponentiation are performed element-wise when dealing with vectors. We define a
nodal index set I~l to define the indices for each level:

I~l :=
{
~i : ij = 1, ..., 2lj − 1, j = 1, ..., d

}
. (2.7)

It is important to note that this definition of the index set means that we have no points at the
boundary of the grid. A basis hat function is again placed on each grid point. The tensor
product approach extends the basis function to the d-dimensional case by multiplying the
respective one-dimensional basis functions:

ϕ~l,~i : [~0,~1]→ R, ϕ~l,~i(~x) :=
d

∏
j=1

ϕlj,ij(xj) . (2.8)

Here~0 and~1 are defined as the vectors (0, ..., 0) and (1, ..., 1). Figure 2.2 shows the basis hat
function ϕ(2,1),(1,1) on the grid for~l = (2, 1).
The d-dimensional nodal space V~l is defined in the same manner as the one dimensional case:

V~l := span
{

ϕ~l,~i(~x) :~i ∈ I~l

}
. (2.9)

The interpolant is also defined analogously to the one dimensional case:

u(~x) = ∑
~i∈I~l

α~l,~i ϕ~l,~i(~x) . (2.10)

5



2. Theoretical Background

Figure 2.2.: Hat function ϕ(2,1),(1,1).[3]

2.1.3. Hierarchical Basis

Sparse Grids are based on a one-dimensional hierarchical system of basis functions, which
can then be extended to the d-dimensional case using a tensor product approach. In this
section the one directional case is first explained, followed by the extended d-dimensional
case.

Hierarchical decomposition in one dimension

First we define the standard hat function as the basis function that is used.

ϕ(x) = max(1− |x|, 0) (2.11)

Individual one-dimensional hat basis functions, that are centered at grid points xl,i = i · hl ,
where hl = 2−l denotes the mesh size of the grid and i ∈ N the index, can be obtained by
scaling and translation depending on the level l and an index i = 0, ..., 2l :

ϕl,i(x) := ϕ

(
x
hl
− i
)

(2.12)

Furthermore we define a hierarchical index set Il to define which level contains which indices:

Il :=
{

i = 1, ..., 2l − 1, i odd
}

. (2.13)

The set of the resulting hierarchical subspaces Wl ∈ Ω is defined by

Wl := span
{

ϕl,i(x) : i ∈ Il

}
. (2.14)

The Figure 2.3 shows an illustration of Wl for 1 ≤ l ≤ 3.
The space of the functions Vn can then be formulated on a full grid for a given level n as the

6



2. Theoretical Background

direct sum of Wl ,
Vn =

⊕
l≤n

Wl , (2.15)

resulting in the interpolant

u(x) = ∑
l≤n, i∈Il

αl,i ϕl,i(x) . (2.16)

Figure 2.4 shows u(x) ∈ V3, a weighted sum of the hierarchical basis hat functions, and the
corresponding weighted basis functions.

Figure 2.3.: Hat basis functions ϕl,i centered on the respective grid points xl,i in the hierarchical
basis for l ≤ 3 (left) and in the nodal basis (right).

Hierarchical decomposition in d-dimensions

In the d-dimensional case the level l = (l1, ..., ld) and index i = (i1, ..., id) become the vectors~l
and~i respectively. Furthermore we define the l∞-norm for this chapter.

|~l|∞ := max
i≤j≤d

|lj| (2.17)

A tensor product approach extends the basis functions to the d-dimensional case by multiply-
ing the respective one-dimensional basis functions.

ϕ~l,~i(~x) :=
d

∏
j=1

ϕlj,ij(xj) (2.18)

7



2. Theoretical Background

Figure 2.4.: An interpolant u(x) ∈ V3 (left) and its corresponding weighted basis functions
(right) in the hierarchical basis.

Moreover, the index set Il becomes

I~l :=
{
~i : ij = 1, ..., 2lj − 1, ij odd, j = 1, ..., d

}
, (2.19)

and the subspace W~l follows accordingly

W~l := span
{

ϕ~l,~i(~x) :~i ∈ I~l

}
. (2.20)

Figure 2.5 shows two dimensional examples of W~l for li ≤ 3. The space of the functions Vn

with refinement level n is again accordingly the direct sum of W~l .

Vn =
⊕
|~l|∞≤n

W~l (2.21)

This leads to the interpolant u(~x) ∈ Vn,

u(~x) = ∑
|~l∞|≤n,~i∈I~l

α~l,~i ϕ~l,~i(~x) . (2.22)

2.1.4. Sparse Grids

Sparse grids are a numerical discretization technique used to accelerate the solution of a
variety of computational problems, such as interpolation, classification, clustering or density
estimation. Nowadays we often have to deal with an increased dimensionality and overall
complexity of the data. This leads to the fact that we encounter the curse of dimensionality,
i.e. the exponentially increased computing effort at higher dimensions. For instance, this is
the case with conventional full grid interpolation schemes. We use sparse grids to overcome
the curse of dimensionality to some extent, as they require a much smaller number of grid
points than a full grid.

8



2. Theoretical Background

Figure 2.5.: Basis hat functions in two dimensions of the subspaces W~l for lj ≤ 3. [1]

9



2. Theoretical Background

The basic idea of sparse grids is to omit some points of a full grid and to keep the subspaces
that contribute most to the overall solution without compromising the accuracy of the solved
problem based on the information of the grid points. For a standard full grid, also called
regular grid, the number of grid points is in the order of O(nd), while for a sparse grid it is
in O(n · log2(n)

d−1), where n specifies the number of grid points per dimension in the full
grid. We see that the number of points is greatly reduced while at the same time the L2-error
‖u− f ‖L2 increases only slightly from O(n−2) to O(n−2 · log2(n)

d−1).[3]
We start by defining the |~l|1-norm:

|~l|1 :=
d

∑
j=1
|lj| . (2.23)

When constructing a sparse grid, we omit certain subspaces W~l whose level sum ‖~l‖1 exceeds
a certain value, resulting in a reduction of points. A d-dimensional sparse grid of the plane n
is thus defined as

V(1)
n :=

⊕
|~l|1≤n+d−1

W~l . (2.24)

The sparse grid interpolant u(~x) ∈ V(1)
n of level n is defined as

u(~x) = ∑
|~l|1≤n+d−1,~i∈I~l

α~l,~i ϕ~l,~i(~x) . (2.25)

Figure 2.6 shows the two-dimensional construction of V(1)
n . There is no difference between

the full grid and the sparse grid for the one-dimensional case. The selection of subspaces that
make up the sparse grid of level n = 3 on the right are shown in black while the omitted
subspaces are gray. Adding the gray subspaces to the selection would result in the full grid
again.

With the help of spatial adaptivity the number of grid points can be further reduced. Since
in this thesis, spatial adaptive sparse grids are not used in the implementation part, the
concept of spatial adaptivity is only briefly introduced. By starting with a rather coarse sparse
grid and adding points in those areas of the domain that are most important. This allows us
to improve the accuracy in the regions of interest while keeping the number of grid points at
an acceptable level. To decide where the most important area lays in the domain and where
a new point should be added we need a certain criteria for adaptive refinement. One such
criterion is the selection of refinement candidates on the basis of the highest absolute values
of their coefficient αl,i weighted with the functional value at the corresponding grid point.[4]
Figure 2.7 shows an example of the spatial adaptive refinement process, in which additional
grid points are added to high density areas in each step. Figure 2.8 shows examples of all the
level 3 grid types mentioned in this section.

10



2. Theoretical Background

Figure 2.6.: The two-dimensional sparse grid space V(1)
n and its subspaces W~l up to level

n = 3 (left) and the resulting sparse grid space (right).[1]

Figure 2.7.: Example of spatial adaptive refinement process.[4]

Figure 2.8.: An example full grid of level 3 without points on the boundary on the left, a
regular sparse grid of leven 3 in the middle and a spatial adaptive sparse grid on
the right.

11



2. Theoretical Background

2.1.5. Sparse Grid Combination Technique

When dealing with sparse grids, the most popular approach to calculate the surpluses of
the basis functions centered on the grid points is the so called combination technique. In
addition to working directly in the hierarchical base, the combination technique can be used
to compute a sparse grid representation of a function, whereby a specific sequence of small
anisotropic full grids represented in the conventional nodal basis, which are also called
component grids, is combined linearly. The combination technique is widely used because
it is much easier to implement compared to working directly with the hierarchical sparse
grid basis, due to the fact that full grids are widely used in many applications. There is also
a dimensionally adaptive variation of the standard sparse grid combination technique, in
which arbitrary component grids are added gradually while an admissibility condition is
satisfied until a global criterion is met. This approach can result in sparse grids with different
degrees of discretization in each dimension, which can increase accuracy in the dimensions
with a higher degree of discretization. [1]
Figure 2.9 shows the combination technique in two dimensions for a level 4 grid on the
left and for a dimensionally adaptive sparse grid on the right. The component grids with
|~l|1 = 5 (blue) are added, while the component grids with |~l|1 = 4 (red) are subtracted. The
Figure 2.10 shows the output of the implementation for the standard combination technique
of level 4 in two dimensions for the funnychess data set.

An anisotropic grid is a grid with uniform mesh sizes ht = 2(−lt) in each of the t-dimensions,
so each grid usually has a different mesh size for the respective coordinate direction. To
evaluate the sparse grid function, the component grid functions are calculated individually
and independently of each other and then added together. This enables the calculation to be
performed in parallel. The combination technique exploits that a sparse grid interpolant u(~x)
of a d-dimensional function f can be represented as the sum

u(~x) :=
d−1

∑
q=0

(−1)q
(

d− 1
k

)
∑

|~l|1=n+(d−1)−q

u~l(~x) , (2.26)

where u~l are the different partial functions from the different grids. This combined represen-
tation of the sparse grid interpolant is identical with the hierarchical sparse grid interpolant.
[3]

12



2. Theoretical Background

Figure 2.9.: Combination technique in two dimensions with points on the boundary. By
adding the blue subspaces and subtracting the red ones, we obtain a level 4 sparse
grid on the left and dimensionally adaptive sparse grid on the right. [1]

(a) Combination technique of level 4 in two dimensions
with densities of each component grid for the funny-
chess data set.

(b) The funnychess data set from the SG++ li-
brary.

Figure 2.10.: Example of the standard combination technique for the funnychess data set.
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2. Theoretical Background

2.2. Data Mining

Nowadays Data Mining plays an important role in many sciences because the amount of data
is increasing rapidly and it is no longer possible to analyse this huge amount of data with
traditional methods. You are confronted with huge amounts of data in almost all areas today,
but we are just now actively trying to convert them into valuable information and knowledge
with the help of data mining.
This section gives an introduction to the data mining tasks classification and clustering and
then illustrates the use of density estimation for these tasks. There are three phases to the
data mining process: Data pre-processing, data modeling, and data post-processing. In the
context of this work, we are only interested in the data modeling part of the data mining
process that for example deals with training systems with data samples in order to generalize
unseen samples, i.e. classification, and dividing similar data into groups, i.e. clustering.
In this thesis we use density estimation to provide visualization and retrieval of information
from data, but it can also be a tool that can be used for other commonly used data mining
tasks such as clustering and classification.

2.2.1. Classification

Classification is used to predict the labels of objects so that you can distinguish between them.
Prediction methods are used to estimate the future value of an object in terms of patterns in
the data. Classification is a case of supervised learning. Supervised algorithms take already
labeled data as input and then try to predict the output.
Suppose we have a function p : Rd → K that assigns class labels from the the set of classes
K = {1, ..., k} ⊂N to data points in the d-dimensional space Rd. Furthermore, we have a data
sample {x1, ..., xM} ⊂ Rd, which can be expressed as a vector ~x. The goal would then be to
find a function p̂ : Rd → K which approximates the function p so that it correctly assigns the
correct class y ∈ K to every sample x ∈ Rd. Since supervised algorithms take already labelled
data as input, we get the training data set S using the data samples and the corresponding
classes: [5]

S = {(~x, y)|~x ∈ Rd, y ∈ K, f (~x) = y} . (2.27)

For classification based on the sparse grid density estimation, the density function must first
be obtained separately for each class of the data set by dividing the data set into classes and
then estimating the respective density functions on the sparse grids. A new data point’s class
is identified by the value of the density functions at the given point. The class label associated
with the density function that returns the highest value for the given data point is also the
class label for that point. The confidence in this class assignment is high if the selected density
function has a significantly higher value than the other density functions, and low if several
density functions yield approximately the same value, because this means that the classes
overlap at this point. [6]
Figure 2.11 shows an illustration of the classification process based on density estimation for
the two moon data set.

14



2. Theoretical Background

2.2.2. Clustering

Broadly speaking, clustering is used to divide similar objects into groups. Clustering is
the corresponding unsupervised process to classification, meaning that it works only with
unlabeled input data and then tries to find similarities in the data.
Suppose we have a specific training data set S = {x1, ..., xM} ⊂ Rd, then clustering divides S
into groups of similar data points with respect to a defined similarity measure. Note that
the training data set here does not include any target values like in Section 2.2.1, as it is a
unsupervised method. [5]

In clustering based on the sparse grid density estimation, a cluster is defined as a region
with a high number of data points (high density) surrounded by a region with relatively
few data points (low density). A similarity graph is first constructed from the data and then
the density estimation method described in Section 2.3 is used to approximate the density
function. Then all vertices of the similarity graph that have a density below a certain threshold
are deleted, resulting in the similarity graph being split into several components representing
the cluster centers. [7]
Figure 2.12 shows an illustration of the clustering process based on density estimation for the
two moon data set.

Figure 2.11.: Example of the classification process based on density estimation for the two
moon data set. [5]
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Figure 2.12.: Example of the clustering process based on density estimation for the two moon
data set. [5]

2.3. Density Estimation on Sparse Grids

The task of density estimation is to construct an estimated density function f̂ of f based
on a data set S = {x1, ...., xM} ⊂ Rd. Density estimation methods are split into parametric
and nonparametric methods. A method of estimating parametric density assumes that the
underlying distribution form is known and only a very limited number of parameters need
to be estimated. In contrast, nonparametric density estimation uses only the available data
samples for density estimation and does not rely on additional information about the data.
[1]

2.3.1. Kernel Based Density Estimation

The estimated density function f̂ can for example be a kernel density function. We construct
it by placing the non-negative kernel function K onto the data points xi:

f̂ (x) =
1
M

M

∑
i=1

K(
x− xi

h
) . (2.28)

The parameter h is the so called smoothing coefficient, also called the bandwidth. The
performance of the kernel density estimator is influenced by the choice of the kernel function
K and the bandwidth h. Furthermore, the evaluation of f̂ depends on the number of data
points M in the data set S, so all M kernel functions on the data points xi have to be evaluated
in order to evaluate the function f̂ in contrast to sparse grid based density estimation where
the estimated density function is only evaluated at the basis functions centered at the grid
points. A commonly chosen kernel function is the Gaussian kernel [4]

K(x) = (2π)−1/2e−x2/2 . (2.29)

2.3.2. Grid Based Density Estimation

In grid based density estimation, we begin with a initial estimate fε of the density function of
the data set S, which is then gradually smoothed with a spline smoothing approach until we
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obtain an approximated density function f̂ such that

f̂ = arg min
f∈V

∫
Ω
( f (x)− fε(x))2dx + λ ‖Λ f ‖2

L2 . (2.30)

Here the regularization term ‖Λ f ‖2
L2 is used to control the smoothness of the resulting

density function, while the coefficient λ > 0 controls the balance between accuracy and
smoothness. Λ represents a differential operator. For the initial guess of the density function
fε the approach that places a Dirac delta function δxi at at every data point xi ∈ S is used:

fε :=
1
M

M

∑
i=1

δxi . (2.31)

Furthermore, let W(1) be the set of basis functions of the sparse grid space V(1). We are then
looking for f (x) ∈ V(1) such that

∫
Ω

f (x)ϕ(x)dx + λ
∫

Ω
Λ f (x) ·Λϕ(x)dx =

1
M

M

∑
i=1

ϕ(xi) (2.32)

holds for all ϕ ∈W(1). This equation can be expressed as the system of linear equations

(R + λC)~α =~b , (2.33)

with Rij = (ϕi, ϕj)L2 , Cij = (Λϕi, Λϕj)L2 and bi =
1
M ∑M

j=1 ϕi(xj). With (·, ·)L2 we denote the
standard L2-inner product of two basis function on the domain Ωd:

(ϕ~l,~i, ϕ~l′,~i′)L2 =
∫

Ωd
ϕ~l,~i(~x)ϕ~l′,~i′(~x)d~x . (2.34)

The system of linear equations can further be simplified by replacing the matrix C with the
identity matrix I:

(R + λI)~α =~b . (2.35)

This is done by choosing a simpler and computationally more efficient regularization operator
Λ, which greatly simplifies the optimization problem in Equation 2.3.2. This regularization
operator no longer preserves moments, but these properties are not needed for estimating
density functions. [4]
By solving this system we obtain the vector~α which contains the coefficients of the correspond-
ing basis functions which together form the sparse grid interpolant, seen in Equation 2.1.4.
Since the calculation of the R-matrix depends solely on the sparse grid and is independent of
the data set, Offline/Online splitting was proposed as a method to considerably accelerate
the calculation of the system in Equation 2.35 by splitting it into an Offline and an Online
phase. In the offline phase, the matrix R + λI is precalculated and stored for a variety of
grids. It can then be loaded in the Online phase to solve the linear system of equations in
Equation 2.35 in O(N2) instead of O(N3). [5]
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This chapter first explains the structure of the sparseSpACE framework, whose offered
functionalities are extensively used in our implementation. Subsequently, the second section
deals with the implementation of the sparse grid density estimation with the combination
technique and the integration into the framework.

3.1. The sparseSpACE Framework

The sparse grid density estimation is implemented in an existing sparse grid framework called
sparseSpACE. The Sparse Grid Spatially Adaptive Combination Environment (sparseSpACE),
created by Michael Obersteiner, offers a variety of spatially adaptive combination methods
and supports the implementation of arbitrary grid operations. For instance, the Extend-Split
strategy is implemented, which is a variant of the Sparse Grid Combination Technique that
provides a new method for spatially fitting a full grid to a function with very local behavior
[8]. In this thesis only the standard combination technique is used, which is employed for
the calculation of the set of level vectors and their respective coefficients, as described in
Section 2.1.5. The framework supports several different grid types like TrapezoidalGrids,
ClenshawCurtisGrids or GaussLegendreGrids. These grid implementations provide useful
methods that we can use when implementing density estimation, such as checking whether
a point lies on the boundary of the grid or obtaining the coordinates of a point. In the
implementation, a trapezoidal grid without grid points on the boundary is utilised to make
use of these methods.

The classes in GridOperation define possible operations on sparse grids. For instance,
UncertaintyQuantification implements a single-dimension spatially adaptive sparse grid
refinement strategy for uncertainty quantification and Interpolation provides functionality
to interpolate a grid at a given list of evaluation points using bilinear interpolation.
The Standard Combination Technique is implemented in StandardCombi and provides func-
tionalities for interpolating points using the Combination Technique and to display the
resulting combination scheme and sparse grid. The method perform_operation performs
the standard combination technique for the specified GridOperation.

3.2. Integration into the framework

To support density estimation in sparseSpACE, the new GridOperation class DensityEstimation
was added.
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3.2.1. DensityEstimation Grid Operation

In order to use the new grid operation, the user must pass a DensityEstimation object to the
StandardCombi constructor. It is possible to pass either a path to a .csv file to specify the data
set used for density estimation, or to pass a NumPy array directly when the grid operation is
created. Different data sets can be created with the scikit-learn package sklearn.datasets
or with the NumPy package random, which provides random sampling of various different
distributions. The data is scaled to the range (0, 1) in the initialize() function that is called
when the grid operation is performed. This has to be done because the implementation can
only handle values between zero and one.

The user can also specify a λ value that controls the smoothness of the density estimation
and helps prevent overfitting when an appropriate value is chosen for the specific data set.
In addition, the user can specify whether mass lumping should be used in the R-matrix
calculation in the Equation 2.35. Here we omit all cases where the basis functions only
partially overlap, resulting in R being a diagonal matrix. This is feasible because we use
the nodal basis for the component grids of the combination scheme, for which the linear
system seen in Equation 2.35 is solved, where the R matrix is already sparse because we
have less overlapping basis functions compared to the hierarchical basis. This speeds up the
calculation because only the diagonal values of the matrix are calculated and since the values
on the diagonal are all the same, only one value on the diagonal needs to be evaluated. This
accelerates the solution of the linear system (R + λI)~α =~b, since R becomes a scalar matrix
but also decreases the accuracy as seen in chapter 4.

After performing the density estimation operation by calling the perform_operation
method of the StandardCombi object, the surpluses of each component grid are calculated
and stored in a dictionary. These calculated surpluses can then be used to interpolate the
density function or when plotting the resulting density estimation in 3D or as a contour plot.
In Figure 3.1 you can see the resulting density estimation and its contour plot for the data set
for a regular sparse grid of level 5 and λ = 0.001.

In Figure 3.2 you can see an example of the output of the implementation for the the
combination scheme with the contour plot of each component grid.

The Figure 3.3 shows the basic use case of the implemented density estimation method,
where the class StandardCombi uses several functions of the new GridOperation class
DensityEstimation. The function plot_dataset() of the GridOperation can be used di-
rectly by the user. There is also a Python script for comparing the result with the SG++
toolbox and plotting the differences between the two if one has a .csv file containing the
SG++ evaluations for the data set.

For estimating the density function, the main effort is the solution of the linear system
(R + λI)~α =~b from the Equation 2.35. The R matrix is obtained by calculating the L2-inner
product of pairs of hat basis function ϕi and ϕj:

Rij = (ϕi, ϕj)L2 . (3.1)

For the nodal basis, which is used in the standard combination technique for each full grid,
there are three different cases when the L2-scalar product is calculated of two hat basis
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Figure 3.1.: The density estimation (left) and corresponding contour representation (right) for
the circle data set for a regular sparse grid of level 5 and coefficient λ = 0.001.

functions. The support of these two hats can either completely or partially overlap or they
do not overlap at all. In fact, many entries of R will be zero due to the non-overlapping
support of the hat functions. We would have many more non-zero entries in the R matrix if
we had used the hierarchical base, since there are many more overlapping functions. For the
1-dimensional case the L2-inner product can be calculated directly:

∫ 1

0
ϕl,i(x)ϕl′,i′(x)dx =


2
3 hl full overlap,
2

12 hl partial overlap,

0 no overlap.

(3.2)

The explicit calculation of each of these three cases and the construction of the R-matrix is
also shown in algorithm 1. In the implementation, only the upper right part of the matrix and
a value on the diagonal must be calculated. This is possible because the matrix of size n× n,
where n is the number of grid points of the grid, is symmetrical and positive definite. We
only need to calculate one of the values on the diagonal, because these values are all the same,
because in these cases two identical hats overlap completely. When using mass lumping, only
one diagonal value needs to be calculated. This speeds up the construction of the matrix
considerably, but the accuracy decreases, as can be seen in chapter 4. The construction of the
vector~b of the linear system from Equation 2.35 is shown in algorithm 2.
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Figure 3.2.: The combination scheme of level 4 in two dimensions and λ = 0.001 with contour
plot of the density of each component grid for the circle data set.

21



3. Implementation

The~b-vector is constructed by summing all evaluations of the standard hat basis function
at every data point xj of the data set of size M and scaling it by 1

M :

bi =
1
M

M

∑
j=1

ϕi(xj) . (3.3)

This process is accelerated in the implementation seen in algorithm 2 by evaluating only those
hat functions in whose support the data point xj lies. To obtain these specific hat functions,
another function seen in algorithm 3 is used.
The idea is that given a data point ~x and the d-dimensional mesh size h~l := (hl1 , ..., hld) we
can calculate all hat functions in whose support the data point lies. To do this, we iterate
through each dimension and create a list of indices of the lower and upper index of the hat
functions for this data point. We obtain the lower and upper indexes by dividing the data
point coordinate in the specific dimension by the mesh size in that dimension and using the
floor function for the lower index and the ceiling function for the upper index. We then need
to filter out the indices that are on the boundary of the grid. Then we build the cartesian
product with itself of the constructed list of indices, to get all indices of the hat functions
in whose support the data point ~x lies. In the end we only have to filter out the duplicates,
which can be done efficiently, for example, by using a set when calculating the cartesian
product.

Figure 3.3.: Diagram of density estimation execution.
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input : A level vector lvec of size dim
output : The R-matrix for the component grid specified by the level vector

1 grid_size← get_num_points(lvec);
2 index_list← get_indexlist(lvec);
3 diag_val← ∏dim

k=0 2−(lvec[k]−1) · 3−1;
4 if masslumping = false then
5 for i← 0 to grid_size −1 do
6 for j← i + 1 to grid_size do
7 result← 1 for k← 0 to dim do
8 hat_i← index_list[i][k];
9 hat_j← index_list[j][k];

10 // hat_i and hat_j overlap fully
11 if hat_i = hat_j then
12 result← result · (2−(lvec[k]−1) · 3−1);
13 else // hat_i and hat_j do not overlap
14 left_index← max((hat_i− 1) · 2lvec[k]−1)), (hat_j− 1) · 2lvec[k]−1));
15 right_index← min((hat_i+ 1) · 2lvec[k]−1)), (hat_j+ 1) · 2lvec[k]−1));
16 if left_index ≥ right_index then
17 result← 0;
18 break;
19 else // hat_i and hat_j overlap partly
20 result← result · (2−(lvec[k]−1) · 12−1);
21 end
22 end
23 end
24 if result 6= 0 then
25 R[i, j]← result;
26 R[j, i]← result;
27 end
28 end
29 end
30 end
31 return R

Algorithm 1: Construction of the R-matrix of the linear system (R + λI)~α =~b.
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input : A level vector lvec of size dim and a data set data of size M.
output : The~b-vector for the component grid specified by the level vector

1 grid_size← get_num_points(lvec);
2 index_list← get_indexlist(lvec);
3 for i← 0 to M do
4 // Only evaluate at the basis functions in whose support the current

data point lies
5 hat_functions← get_hat_functions(lvec,data[i]);
6 for j← 0 to len(hat_functions) do
7 b[index(hat_functions [j])]← b[index(hat_functions [j])] +

evaluate_hat_function(hat_functions [j],lvec,data[i]);
8 end
9 end

10 // Scale the b-vector by 1
M

11 b← b ·M−1;
12 return b

Algorithm 2: Construction of the~b-vector of the linear system (R + λI)~α =~b.
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input : A level vector lvec of size dim and a data point x of size dim.
output : All the hat functions in whose support the data point x of size dim lies.

1 if point_not_zero(x) then
2 numb_points← get_num_points_per_dim(lvec);
3 meshsize← foreach element l of lvec do 2−l ;
4 indices← [];
5 for i← 0 to dim do
6 lower ←

⌊
x[i]

meshsize[i]

⌋
;

7 upper ←
⌈

x[i]
meshsize[i]

⌉
;

8 if
(lower > 0∧ lower ≤ numb_points[i]) ∧ (upper > 0∧ upper ≤ numb_points[i])
then

9 indices[i]← (lower, upper);
10 else if lower < 1∨ lower > numb_points[i] then
11 indices[i]← (upper, );
12 else if upper < 1∨ upper > numb_points[i] then
13 indices[i]← (lower, );
14 remove_duplicates(indices);
15 return indices× indices;
16 end
17 else
18 return [];
19 end
Algorithm 3: Returns all the hat functions in whose support the data point x of size
dim lies.
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In this chapter, the implementation is evaluated using various data sets. Two data sets were
generated using scikit-learn and one using NumPy. The generated data sets are the circle
data set, the two moon data set, for which the results can be found in the Apendix, and
a multivariate Gaussian distribution. The other data set contains data gathered in the real
world, from eruptions of the old faithful geyser in the Yellowstone National Park.
The solution of the density estimation for the full grid is compared with the sparse grid
toolbox SG++, the implemented combination technique with and without mass lumping and
with the best component grid of the combination scheme. It is compared with respect to
the l1, l2 and l∞ norm of the difference between the values at all grid points of the full grid
and the values of the other methods at these points. Additionally, different combinations for
the minimum and maximum level of the combination scheme are compared in terms of the
number of grid points used as well as the error norms in relation to the full grid solution.
For the multidimensional Gaussian distribution, the output of the probability density function
is used as a reference, since the use of the density estimation as the reference is not feasible
with a 5-dimensional full grid. These values are then also compared with the density
function estimates of SG++ and the implemented sparse grid combination technique with and
without mass lumping. The comparison between different combinations of minimum and
maximum values for the combination scheme is omitted here, since we then have to deal with
combinations with a high minimum value with anisotropic full grids with a high number of
grid points in each dimension that come close to the full grid, which means that we are faced
with the curse of dimensionality. This chapter first explains the Sparse Grid Toolbox SG++
and its data mining pipeline, which was used for the evaluation, followed by the evaluation
of the different data sets.

4.1. The General Sparse Grid Toolbox SG++

The General Sparse Grid Toolbox is a open-source toolbox that offers a variety of methods for
spatially adaptive sparse grids and the combination technique. It was created by Dirk Pflüger
as part of his dissertation [1] and is written in C++. In this thesis the module for data-driven
tasks is used as one way to compare the estimation of a density function in the SG++ and
sparseSpACE framework. The module provides an easy way to use the implemented machine
learning methods by implementing a data mining pipeline.
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4.1.1. The Data Mining Pipeline

The data mining pipeline provides an easy and uncomplicated way of using the implemented
algorithms of the data-driven module and requires only a minimal setup in C++. JSON
configuration files are used to configure the data mining pipeline.
The main attributes of the JSON configuration file is a data source, a scorer and a model fitter.
The data source attribute contains a JSON dictionary that specifies the input data, manages
which columns of the data should be considered, or what size each batch should have. The
scorer attribute specifies the metric that should be used during training. The scorer then
evaluates the model in relation to the metric specified in this attribute. In addition, the fitter
configuration specifies the data mining task to be performed and the way it is to be carried
out. Currently SG++ supports least square regression, density estimation and classification.
Furthermore, this JSON attribute can include a grid configuration dictionary that specifies
parameters such as grid type and grid level, a density estimation configuration that specifies
parameters such as whether the conjugate gradient method or matrix decomposition should
be used and, if so, what type of matrix decomposition, as well as a regularization configura-
tion in which the regularization parameter λ can be specified.
The data mining pipeline offers many more configuration options than mentioned, which
will be ignored in this paper because they are not relevant for our use of the density
estimation method. One such JSON configuration file can be found in the appendix
A.1. The JSON file is then used when creating a SparseGridMiner by passing it to a
DensityEstimationMinerFactory. This miner factory builds the miner. Then all that has to
be done is calling miner.learn(). We get the trained model by calling miner.getModel().
The model can then be evaluated at one or more data points with the method evaluate().

4.2. The Circles Data Set

The circles data set was generated using scikit-learn. It contains 500 two-dimensional data
points. Please refer to the appendix A.2 for a code snippet of the generation of this data set.
Figure 4.1 shows the visualization of the circle data set. This data set was selected to illustrate
that because we use piecewise linear basis functions, we get sharp edges and corners as a
result of the density estimation. This can be mitigated, for example, by using B-Splines as
basis functions [1]. The tests were performed with different values of λ. For λ values smaller
than 0.01 we were overfitting to the data so the errors increased. Since λ = 0.01 had the
smallest errors in the tests, we use this lambda for our evaluations. Results for other λ values
can be found in the Apendix.

From Table 4.1 we can see that the errors of SG++ with respect to the full grid solution are
usually the largest. This could be due to the fact that SG++ evaluates directly on the sparse
grid based on the hierarchical basis and not with the combination technique. In addition,
SG++ performs a number of optimizations by default. Overall, the standard combination
technique achieves the best results in comparison to the full grid solution. When mass
lumping is used, we get an improvement in speed, but also have an error about 50% higher
for all three norms when compared to the combination technique without mass lumping.
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Figure 4.1.: Visualization of the circles data set generated with scikit-learn, containing
M = 500 data points.

Level l1-norm l2-norm l∞-norm

SG++
3 46.06 7.82 2.19
4 203.45 15.97 2.46
5 914.44 36.81 3.28

Combination technique
3 16.18 3.08 1.11
4 78.41 6.31 1.09
5 223.13 9.09 0.99

Mass lumping
3 33.77 5.28 1.28
4 152.66 11.52 1.70
5 349.68 13.59 1.05

Best combination component
3 (3,1): 30.12 (1,3): 5.20 (2,2): 1.28
4 (4,1): 101.76 (4,1): 8.11 (3,2): 1.53
5 (5,1): 325.19 (5,1): 14.39 (4,2): 1.47

Table 4.1.: Comparison for the circle data set with λ = 0.01.
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It is interesting to note that in most cases the best component grid of the combination
scheme for each level outperforms the mass lumping approach. Furthermore, the component
grids that minimize the l1-norm and the l2-norm of the difference to the full grid solution for
λ = 0.01 are mostly those where one of the level vector components is one. These anisotropic
full grids have a very fine mesh size in one dimension and a mesh size in the other dimension
that spans the entire domain. The smallest maximum absolute difference is achieved with
grids that have a more balanced number of points in both dimensions.

Table 4.2 shows a comparison of regular sparse grids with varying combinations of mini-
mum and maximum levels of the combination technique. The combinations are compared
to the solution of the density estimation for the full grid of their respective maximum level.
If we invest more points by choosing a higher minimum level for the combination scheme,
we obviously reduce the difference to the full grid since we are getting increasingly closer to
the full grid. The N column contains the number of grid points of the regular sparse grid
resulting from the combination scheme where a total of C points were used. For example, by
using a (2, 5) sparse grid instead of a (1, 5) sparse grid, we roughly double the grid points
used in the combination scheme, which also results in a sparse grid that has about twice as
many grid points. This reduces the three errors by about 20% for this case.

max-level combi C N l1-norm l2-norm l∞-norm

3
(1,3) 29 17 16.18 3.08 1.11
(2,3) 51 33 8.71 1.99 0.79

4
(1,4) 95 49 78.42 6.31 1.09
(2,4) 181 97 41.28 3.57 0.72
(3,4) 259 161 18.46 1.69 0.40

5

(1,5) 273 129 223.13 9.09 0.99
(2,5) 535 257 179.79 7.20 0.80
(3,5) 869 449 128.95 5.72 0.63
(4,5) 1155 705 49.72 2.36 0.28

Table 4.2.: Comparison of different combinations of the minimum and maximum level for the
combination scheme for the circle data set with λ = 0.01.

Figure 4.2 shows the logarithmic-linear plot of the error norms decreasing by increasing
the number of grid points.

4.3. The Old Faithful Data Set

The Old Faithful data set1 is a well known data set on geyser eruptions, where each line
represents an observed eruption of the Old Faithful Geyser in Yellowstone National Park. It
contains 272 observations with 2 variables (dimensions). The data set visualization can be
seen in Figure 4.3.

1https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
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Figure 4.2.: Comparison of the error norms with the number of grid points used for the
density estimation for the circle data set with λ = 0.01.

Figure 4.3.: Visualization of the old faithful geyser data set, containing M = 272 data points.
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This data set was selected to show that the implementation can handle real world data
besides generated data. For this data set the best results were also achieved by λ = 0.01. For
λ values smaller than this value, the errors increased because we have fitted the data too
much. Results for other λ values can be found in the Apendix.
Table 4.3 shows the result of the comparison with the full grid for the old faithful data set
for λ = 0.01. Here it is interesting to note that some component grids of the combination
scheme actually have a lower error than the combination technique for this level. If we look
at the visualization of the data set in Figure 4.3, we see that we have a group of points in the
upper right corner and another group of points in the lower left corner with some outliers
in between. Because for the sparse grid we have more grid points along the axis, on which
there are fewer data points for this data set, than is the case for the component grids, the
error for the density calculated with the sparse grid combination technique increases. As a
result, for example, the component grid for the level vector (2, 2) has a smaller total error
than the sparse grid combination technique for the level 3 case, and the anisotropic full grid
component (1, 5) of the level 5 combination scheme yields better results for all three norms
compared to the level 5 sparse grid resulting from the combination scheme.

Level l1-norm l2-norm l∞-norm

SG++
3 66.09 13.70 6.68
4 253.47 26.23 5.86
5 971.57 54.41 7.36

Combination technique
3 30.69 5.94 2.49
4 92.26 9.67 2.68
5 298.03 14.84 3.43

Mass lumping
3 40.88 7.99 2.73
4 151.41 15.69 3.61
5 511.14 22.12 3.92

Best combination component
3 (2,2): 28.64 (2,2): 6.56 (2,2): 2.92
4 (2,3): 104.36 (1,4): 10.34 (1,4): 2.62
5 (1,5): 283.19 (1,5): 13.30 (1,5): 1.86

Table 4.3.: Comparison for the old faithful geyser data set with λ = 0.01.

Table 4.4 again shows of the trade off between investing more points and higher accuracy.
The effect of investing more points by increasing the minimum level of the combination
scheme on the l1, l2 and l∞ norm errors decreases as the component grid approaches the full
grid.

Figure 4.4 shows the logarithmic-linear representation of the error norms corresponding to
Table 4.4, which decrease with a decreasing number of grid points.
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max-level combi C N l1-norm l2-norm l∞-norm

3
(1,3) 29 17 30.69 5.94 2.49
(2,3) 51 33 9.11 2.09 1.07

4
(1,4) 95 49 92.26 9.67 2.68
(2,4) 181 97 36.89 4.51 2.13
(3,4) 259 161 17.73 2.49 1.19

5

(1,5) 273 129 298.03 14.84 3.43
(2,5) 535 257 194.27 10.60 1.89
(3,5) 869 449 127.59 7.94 1.39
(4,5) 1155 705 49.33 3.18 0.60

Table 4.4.: Comparison of different combinations of the minimum and maximum level for the
combination scheme for the old faithful geyser data set with λ = 0.01.

Figure 4.4.: Comparison of the error norms with the number of grid points used for the
density estimation for the old faithful geyser data set with λ = 0.01.
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4.4. A Multivariate Gaussian Distribution

The multivariate Gaussian distribution was generated using NumPy. A 3-dimensional and
5-dimensional data set was generated where 10000 and 100000 random data samples where
drawn from the probability density function

f (x) =
1√

(2π)k det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (4.1)

where µ is the mean, Σ the covariance matrix and k is the dimension. A code snipped of the
data set generation with the used parameters can be found in the appendix A.7. Since full
grids for the dimensions ≥ 3 are not really feasible, in this section we take the output of the
density function in Equation 4.4, which was sampled at all grid points of the sparse grid, as
the reference. The regularization coefficient is set to 0.01. Table 4.5 shows the results for the
comparison of a 3-dimensional Gaussian distribution with 10000 data points.

Level l1-norm l2-norm l∞-norm

SG++
3 64.51 12.66 4.09
4 197.89 21.44 3.96
5 558.87 35.17 4.04

Combination technique
3 59.85 11.29 3.51
4 423.21 48.02 11.11
5 1519.02 106.69 16.15

Mass lumping
3 47.85 9.29 3.02
4 604.85 65.91 13.86
5 2064.22 143.91 21.28

Table 4.5.: Comparison for a multivariate Gaussian distribution of dimension 3 with λ = 0.01.

Table 4.6 shows the results for the comparison of a 5-dimensional Gaussian distribution
with 100000 data points. The errors are generally higher than in the previous 2-dimensional
data sets, as we are working with more data points and more grid points due to the larger
dimension. The SG++ toolbox achieves the best results in estimating the probability density
function. We see that we need to increase the level of the sparse grid for this increased
dimension and amount of data points in order to increase the number of grid points and the
mesh size so that we can estimate the probability density function more accurately. What is
interesting here is that the errors that occur in the combination technique of the sparse grid of
level 4 with and without mass lumping are much higher than those of the sparse grid of level
5, which was never the case in the previous results. This means that the individual differences
at the grid points must be much higher for the level 4 sparse grid, since the differences should
decrease with a higher number of grid points. Furthermore, the mass lumping approach
surprisingly achieves lower errors for level 5 than the combination technique.
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Level l1-norm l2-norm l∞-norm

SG++
3 172.57 26.98 7.47
4 799.81 57.81 9.26
5 3138.47 112.82 9.63

Combination technique
3 1206.95 159.79 42.92
4 3747.47 278.44 52.16
5 3498.66 181.28 24.15

Mass lumping
3 1370.37 178.11 45.45
4 3989.12 298.32 55.91
5 2682.55 152.50 22.28

Table 4.6.: Comparison for a multivariate Gaussian distribution of dimension 5 with λ = 0.01.
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5. Conclusion and Future Work

Density estimation with the combination technique was implemented and successfully in-
tegrated into the sparseSpACE framework. A new grid operation class was implemented
that performs the density estimation on a sequence of small anisotropic full grids in the
conventional nodal basis and combines them linearly. The evaluation showed that in order to
accurately estimate density functions of higher dimensions, we have to invest more points
by increasing the level. For some specific cases a component grid achieved better results in
respect to a certain error norm than the sparse grid. The use of mass lumping in the density
estimation process still achieves relatively good results compared to the standard combination
method.
There are a number of things where the implemented density estimation method has a lot
of potential for improvement. A later version utilizing spatially adaptive refinement or the
dimensional adaptive combination technique can further increase the accuracy and reduce the
number of grid points used. In addition, future implementations could use Offline/Online
splitting to significantly speed up the calculation of the linear system in Equation 2.35 by
precalculating the left side of the equation for a large number of grids, so that in the online
phase only the right side needs to be solved. This could make the implementation more
practical for higher dimensions. A further potential improvement is the parallelization of the
calculation of the individual component grid solutions.
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A. Apendix

A.1. Configurations and Test Results

A.1.1. SG++ configuration

1 {
2 "dataSource": {
3 "filePath": "Datasets/twomoons.arff",
4 "hasTargets": false,
5 "readinColumns": [0,1]
6 },
7 "scorer": {
8 "metric": "mse"
9 },

10 "fitter": {
11 "type": "densityEstimation",
12 "gridConfig": {
13 "gridType": "linear",
14 "level": 4
15 },
16 "regularizationConfig": {
17 "lambda": 0
18 },
19 "densityEstimationConfig": {
20 "densityEstimationType": "decomposition",
21 "matrixDecompositionType": "orthoadapt"
22 }
23 }
24 }

Figure A.1.: An example for a JSON data mining pipeline configuration file.
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A. Apendix

A.1.2. The Circle Data Set

1 from sklearn import datasets
2 data = datasets.make_circles(500, noise=0.1)

Figure A.2.: Generation of the circle data set using scikit-learn.

Level l1-norm l2-norm l∞-norm

SG++
3 71.16 12.19 3.56
4 261.40 21.35 3.77
5 1073.55 45.33 4.91

Combination technique
3 25.72 4.81 1.69
4 134.67 11.49 2.53
5 570.64 26.01 3.31

Mass lumping
3 45.05 8.04 2.22
4 276.43 22.52 4.07
5 1266.58 52.24 4.64

Best combination component
3 (1,3): 48.37 (1,3): 9.10 (2,2): 2.76
4 (3,2): 179.02 (2,3): 15.13 (1,4): 2.87
5 (3,3): 623.73 (3,3): 28.30 (3,3): 2.99

Table A.1.: Comparison for the circle data set with λ = 0.001.

A.1.3. The Old Faithful Data Set

Figure A.3.: The density estimation (left) and corresponding contour representation (right)
for the old faithful data set for a regular sparse grid of level 4 and coefficient
λ = 0.01.
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Level l1-norm l2-norm l∞-norm

SG++
3 96.63 20.87 8.83
4 391.74 40.88 10.03
5 1437.15 74.83 10.22

Combination technique
3 51.40 10.79 5.46
4 146.44 16.57 6.97
5 647.67 34.86 8.86

Mass lumping
3 68.29 13.42 5.45
4 285.02 29.81 6.93
5 1246.76 72.92 11.83

Best combination component
3 (2,2): 56.92 (2,2): 11.69 (2,2): 6.05
4 (3,2): 148.35 (3,2): 18.34 (3,2): 7.33
5 (3,3): 605.81 (4,2): 37.86 (3,3): 6.91

Table A.2.: Comparison for the old faithful data set with λ = 0.001.

A.1.4. The Two Moons Data Set

Level l1-norm l2-norm l∞-norm

SG++
3 98.87 17.44 6.91
4 380.96 34.28 7.78
5 2094.89 97.38 20.09

Combination technique
3 60.42 11.29 4.42
4 252.15 23.87 5.51
5 1403.85 72.37 16.09

Mass lumping
3 76.63 13.99 5.58
4 375.08 30.99 6.18
5 1897.60 86.61 15.28

Best combination component
3 (3,1): 70.51 (3,1): 13.25 (1,3): 4.03
4 (3,2): 297.02 (3,2): 27.80 (1,4): 6.67
5 (3,3): 1455.83 (3,3): 77.08 (4,2): 17.05

Table A.3.: Comparison for the two moons data set with λ = 0.0.
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Figure A.4.: Visualization of the two moons data set generated with scikit-learn, containing
M = 500 data points.

1 from sklearn import datasets
2 data = datasets.make_moons(500, noise=0.1)

Figure A.5.: Generation of the two moons data set using scikit-learn.

Level l1-norm l2-norm l∞-norm

SG++
3 48.18 8.36 2.69
4 201.68 16.30 2.75
5 920.76 37.48 3.10

Combination technique
3 25.09 4.69 1.84
4 87.36 7.39 1.38
5 296.99 12.05 1.41

Mass lumping
3 34.38 6.28 2.51
4 126.08 10.49 1.74
5 461.57 18.04 1.66

Best combination component
3 (3,1): 32.25 (1,3): 5.64 (1,3): 1.76
4 (1,4): 109.28 (1,4): 8.92 (4,1): 1.58
5 (3,3): 1455.83 (3,3): 77.08 (4,2): 17.05

Table A.4.: Comparison for the two moons data set with λ = 0.01.
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max-level combi C N l1-norm l2-norm l∞-norm

3
(1,3) 29 17 25.09 4.69 1.84
(2,3) 51 33 12.44 2.67 1.27

4
(1,4) 95 49 87.36 7.39 1.38
(2,4) 181 97 50.12 4.43 1.01
(3,4) 259 161 21.51 1.96 0.43

5

(1,5) 273 129 296.99 12.05 1.41
(2,5) 535 257 189.65 8.03 0.86
(3,5) 869 449 130.41 5.79 0.63
(4,5) 1155 705 49.57 2.45 0.32

Table A.5.: Comparison of different combinations of the minimum and maximum level for
the combination scheme for the two moon data set with λ = 0.01.

Figure A.6.: Comparison of the error norms with the number of grid points used for the
density estimation for the two moons data set with λ = 0.01.
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A.1.5. A Multivariate Gaussian Distribution

1 import numpy as np
2 dim = 5
3 size = 100000
4 mean = np.array([0.5] * dim)
5 sigma = np.array([0.25]*dim)
6 cov = np.diag(sigma**2)
7 data = np.random.multivariate_normal(mean, cov, size)

Figure A.7.: Generation of the multivariate Gaussian data set using NumPy.

Figure A.8.: Example of a 2-dimensional Gaussian distribution being sampled at the grid
points of a sparse grid of level 6.
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Level l1-norm l2-norm l∞-norm

SG++
3 11.00 3.33 1.45
4 34.95 6.19 1.89
5 101.15 10.89 2.27

Combination technique
3 16.55 4.65 2.47
4 37.42 5.82 1.56
5 170.95 16.97 3.18

Mass lumping
3 25.78 9.27 5.34
4 45.01 7.05 2.19
5 233.04 22.84 3.84

Table A.6.: Comparison for a 2-dimensional Gaussian distribution 2 with λ = 0.01.
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