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Abstract

Control systems are increasingly applied in domains where an analytic descrip-

tion of the system dynamics does not exist or is difficult to obtain. Example

applications include autonomous robots in unstructured environments, human

behavior modeling for prediction and action recognition in human-machine-

interaction, and chemical process industry. In many of these cases, classical

system identification is challenging, because a parametric model structure is

unknown. Data-driven nonparametric models such as Gaussian process state-

space models (GPSSMs) offer a suitable alternative: GPSSMs are known for

their data-efficiency and rely on Bayesian principles to include prior knowledge.

However, properties like stability or boundedness are often known a priori, but

rarely exploited during modeling. We therefore propose a novel approach for

learning GPSSMs subject to stability constraints. Our approach enforces the

convergence using control Lyapunov functions which are also obtained in a data-

driven fashion. We analyze the resulting dynamics with respect to convergence

radius and data collection. In simulation, we illustrate the precision of the

identified model on a real-world dataset of goal-directed motions.1 .
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1. INTRODUCTION

Model-based control techniques gain further importance as computational

power is constantly becoming cheaper, not just in classical model predictive

control schemes, but also in model-based reinforcement learning [51]. However,

as the complexity of the dynamical systems is also becoming more evolved, the

techniques known from classical system identification are often not sufficient to

obtain precise models. For example, for control system applications including

human behavior (such as social networks, human-robot interaction), it is evi-

dent, that parametric models may reach their limit because first order principles

cannot be applied and the model structure is largely unknown. In general, for

highly complex systems without analytic description, model structures with fi-

nite expressiveness are prone to fail. Fortunately, the collection and processing

of data becomes also faster and cheaper and therefore data-driven models, which

are considered to have infinite expressive power, are on the rise.

These data-driven models allow for very high flexibility, but are not neces-

sarily coherent with physical principles, because no model structure is assumed.

For example, energy dissipation is a fundamental property which holds for many

physical system, but data-driven models do not necessarily adhere to this prop-

erty. The dissipation of energy is closely entangled with stability of a dynamical

system. Other examples are physical conversation laws [3] or convergence to-

wards to fix point in case of modeling human goal-directed motions. In order

to guarantee consistency of a model with the corresponding real system, it is

essential to enforce these known properties into data-driven models. Incorpo-

rating this high-level prior knowledge is not only important for precise modeling

but also absolutely necessary as without making prior assumptions, a general-

ization outside of the training points can not be expected as known from the

no-free-lunch theorems [63].

This article will specifically focus on Gaussian processes (GPs) as underly-

ing modeling paradigm. It is a kernel based method which allows to set the
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smoothness characteristics of the model by a suitable kernel choice. It also han-

dles noisy data intrinsically due to its stochastic nature and implicitly trades

off bias and variance [44]. Most prominent advantage over other machine learn-

ing based identification techniques, e.g. neural networks, is its capability to

quantify the model fidelity in a systematic way [24]. Additionally, its Bayesian

background allows to inject prior knowledge based on a strong mathematical

foundation. However, there exists no general approach how prior knowledge

of the convergence behavior of a dynamical system is taken into account for

a GPSSM. This is essential to ensure the model shows the same fundamental

properties as the true system.

1.1. Related work

Classical system identification relies on a parametric model structure, e.g.

autoregressive–moving-average (ARMA) models in the linear case, for which

subspace methods turn out to be effective [59], [17]. Guarantees for the sta-

bility of the identified linear system are provided in [31] and [12]. For solving

the deconvolution problem of finding the impulse response given the training

data, regularization techniques are introduced in [40] and recent overviews are

provided in [16] and [23]. As this problem also gained attention in the field

of machine learning, kernel based techniques became prominent to identify the

impulse response of linear systems, see [41] and [42].

For the nonlinear case, system identification techniques exist for Volterra

series or Wiener-Hammerstein models [30], which consider a very limited struc-

ture of the model. Therefore, techniques from machine learning are alternatively

being used, e.g. neural networks [35] or Gaussian process state-space models

(GPSSMs), which this article focuses on. Using GPs for identification is first

considered in [60] and [25] and is recently applied in predictive control schemes,

e.g. [14]. A comprehensive overview on GP models for control is given in [24].

However, an analysis of the system stability is often missing in these studies.

Generally, the literature mainly utilizes two different interpretations of a

GP [55]: The deterministic view, which takes the most likely value (the mean
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function) as the output of the model and the stochastic view, which samples

from a normal distribution as output of the model using the most likely value

as the mean and the covariance function values as variance (which also serves as

uncertainty measure of the model) [29]. A stability analysis for both interpreta-

tions is first performed in [5] and [4], respectively. The work in [1] considers to

enforce linear operator constraints into GP models. Furthermore, [56] and [58]

utilize GPs in a feedback linearizing scheme and [8] and [9] consider safe explo-

ration of the state-space with an initially unknown dynamics. Nevertheless, it is

not investigated how the assumption of system stability can be enforced during

the learning of the model.

The dissipation of energy and the associated convergence of the dynamical

system are a constraint for the model, which is highly relevant for many prac-

tical tasks. The area of robotics is a popular application of such constrained

models, where autonomous dynamical system are employed to represent desired

motions in programming by demonstrations tasks. After collecting training data

of a goal-directed movement performed by a human, a stable nonlinear system

is learned for a robust and time-independent reproduction, see e.g. [46]. As

the convergence to the correct final position is important in goal-directed mo-

tions, enforcing stability to Gaussian mixture models (GMMs) is studied in [21]

and [33] and more general techniques are developed in [22], [11], [43] and [36].

Further applications, where stability of the learned model is essential includes

computer vision: Dynamics textures are learned from video data to generate

sequences on a modified time scale [49]. However, videos, which are synthesized

from a dynamic texture model are prone to degenerate due to instability of the

underlying model [12].

While all these approaches consider the stability of the model, none of them

faces the inherent challenge of data-driven approaches, that with finite data,

the model is necessarily imprecise. The uncertainty which is introduced due

to missing data is widely ignored. Therefore, this article develops a general

framework, to model these uncertainties as stochastic component of a dynam-

ical system and derives stability conditions for the model based on stochastic
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stability tools from [26] and [28].

1.2. Contribution and structure

In this work, we introduce a novel identification scheme to learn stable

GPSSMs. Using control Lyapunov functions, we augment the GPSSM to en-

force asymptotic stability for the deterministic interpretation of the GP for an

arbitrary dataset. For the stochastic interpretation, we derive conditions under

which asymptotic convergence is almost surely achieved and show how additional

training data can be used to ensure asymptotic stability if these conditions are

not met on the initial dataset. For the control Lyapunov function, we propose

a sum of squares (SOS) approach which learns the convergence behavior from

data and which allows a computational efficient estimation of multiple unknown

equilibria. We illustrate the proposed method in comparison to other Lyapunov

candidates.

Preliminary results have appeared in [57], which only shows the existence of

an ultimate bound for the stochastic interpretation of the GP. In contrast, this

article computes the size of the ultimate bound, shows under which conditions

asymptotic stability is achieved, and how many additional training points are

needed for asymptotic convergence. Furthermore, this article considers the es-

timation consistency of the model and multiple unknown equilibria, while [57]

only deals with a single known equilibrium. We also provide more extensive

simulation results.

The remainder of this paper is structured as follows: After formulating the

considered problem in Sec. 2, Sec. 3 reviews GPSSMs and explains how equilib-

rium points are enforced in GP models. The main results for the stabilization

of a GPSSM are shown in Sec. 4 including a derivation of the required number

of training points. Section 5 investigates how control Lyapunov functions are

learned from data to improve the identification, followed by numerical evalua-

tion in Sec. 6 and a conclusion.
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Figure 1: An overview of the proposed scheme for a data-driven stabilization of GPSSM.

1.3. Notation

Lower/upper case bold symbols denote vectors/matrices, R+,0/R+ all real

positive numbers with/without zero, N0/N all natural numbers with/without

zero, λmin(·),λmax(·) the minimal/maximal eigenvalue of a matrix and E[·]/V[·]
the expected value/variance of a random variable, respectively. In denotes

the n × n identity matrix, tr(·) the trace of a matrix, · � 0 the positive

definiteness of matrix or function and ‖ · ‖ the Euclidean norm if not state

otherwise.
√· applied to a matrix means is meant element-wise. The set

of positive definite symmetric n × n matrices is denoted by Sn+. The colon

in 1:N denotes all numbers 1, 2, . . . ,N . Accordingly, denotes x1:N the concate-

nation
[
xᵀ

1 · · · xᵀ
N

]ᵀ
and f(x1:N ) the concatenation of the function evalua-

tions
[
f(x1) · · · f(xN )

]ᵀ
.

2. PROBLEM FORMULATION

Consider a discrete-time system with a continuous-valued state x ∈ X ⊆ Rn,

with n ∈ N, driven by the equation

xκ+1 = f(xκ), (1)

with κ ∈ N, f : X → X and initial condition x0 ∈ X . We assume f(·) to be

unknown, while the following assumptions are made:
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Assumption 1. There exist N∗ unknown equilibria xi∗ ∈ Xi∗ ⊆ X ,
with i∗ = 1, . . . ,N∗ and f(xi∗) = xi∗ . Each of the equilibria is uniformly

asymptotically stable with corresponding known domain of attraction Xi∗ ⊆ X
for which holds

Xi∗ ∩ Xi′∗ = ∅, ∀i′∗ 6= i∗, (2)

X1 ∪ X2 ∪ · · · XN∗ = X . (3)

This holds for many real world applications. For example in physical sys-

tems, it is often known that energy is dissipated and therefore the system even-

tually reaches an equilibrium point. The domains of attraction are also rather

simple to classify e.g. consider a ball rolling to one or the other side of a hill.

But finding the exact position of equilibria through observations is tedious as

these are reached in general in infinite time. Therefore, we focus on the case

that the equilibria xi∗ are considered unknown and must be estimated from

data. Furthermore, the following assumptions for f(·) are made.

Assumption 2. The function f(·) is unknown, but assumed to be continuous.

Continuity is a nonrestrictive assumption as it holds for a large class of sys-

tems. It is also necessary because generalization outside of the training dataset

can not be expected for discontinuous dynamics [63].

Assumption 3. Consecutive measurements of the state are available, thus N

data pairs are given in the training set

D =
{(
x(i),y(i)

)}N
i=1

, (4)

where y(i) = x
(i)
κ+1 is the consecutive state to x(i)

κ .

The data do not need to stem from a single trajectory. Each pair of con-

secutive states is not necessarily related to any other pair. An illustration is

provided in Fig. 2
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Figure 2: Illustration of a possible training dataset D for the case of two equilibria x1∗ ,x2∗ .
Here the data stem from three different trajectories (1-2-3,4-5-6,7-8). Within one trajectory,
the end point of one step is the starting point of the next, e.g. y(1) = x(2), y(4) = x(5), etc.
But this is not the case across different trajectories.

The goal is to find a Gaussian process model f̂ : X → X for the unknown

true dynamics (1), denoted by

xκ+1 = f̂(xκ). (5)

Modeling the unknown system (1) with a Gaussian process has several advan-

tages: First, it allows to approximate any continuous function arbitrarily ex-

actly [48], which is the case here according to Assumption 2. Second, a GP

model provides, beside the most likely function value (the GP mean function),

an uncertainty measure (the GP variance function), which encodes the pre-

cision of the model for any state x ∈ X . This model fidelity allows to apply

risk-sensitive [34], uncertainty-aware [58] or path integral [53] control techniques.

Throughout the literature, different interpretations of GPs are considered

(see Sec. 3.3 for a discussion). This article will focus on the two most relevant

interpretations: The first here called the deterministic GP considers only the

most likely estimate of f(·), the GP mean function µ(·). For the second, the GP

is interpreted as stochastic process (probabilistic GP) for which the uncertainty

about the model, denoted by Σ(·), leads to Gaussian distributed process noise.

A detailed introduction to GPs are provided in Sec. 3.

For both interpretations, the prior knowledge in Assumption 1 regarding the
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stability is generally not fulfilled by GP models [5], [4]. Therefore, this article

proposes to augment the GPmodel by a virtual stabilizing command u : X → Rn.

This u(·) is not an external control input, but belongs internally to the model

f̂(xκ) := fGP(xκ) + u(xκ) (6)

with the goal to ensure the same asymptotic behavior of the real system (1)

and the model (5). In accordance with Assumption 1, this requires that the

system model f̂(xκ) has N∗ asymptotically stable equilibrium points to match

the asymptotic behavior of the real system. Since the equilibria xi∗ of the true

system in Assumption 1 are unknown, we consider estimated equilibria x̂i∗ for

which we show in Sec. 5 how they are determined from data.

For the deterministic GP, the goal is formulated as follows.

Objective 1. Find a virtual control u(·) such that the model

xκ+1 = µ(xκ) + u(xκ) =: f̄(xκ), (7)

has N∗ equilibria x̂i∗ ∈ Xi∗ , which are asymptotically stable for the respective

domain of attraction Xi∗ .

So we aim for a dynamical system model, which has the same convergence

properties as the true system (1). With the posterior mean function, we have

chosen the most likely function approximation the GP model provides. However,

since the training data is finite, we cannot expect a good model fit over the entire

state space. We therefore also consider an extension of this deterministic model

to a probabilistic GP model. Thus we introduce process noise into the model

(which is not present in the true system) to ensure, that the model does not

provide overconfident results in areas where training data is sparse. This leads

to a stochastic dynamical system for which the following objective is formulated.
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Objective 2. Find a virtual control u(·) such that the probabilistic model

xκ+1 = f̄(xκ) +
√

Σ(xκ)ωκ ωκ ∼ N (0, In), (8)

has N∗ equilibria x̂i∗ ∈ Xi∗ , which are almost surely asymptotically stable.

Thus, ∀x0 ∈ Xi∗ holds

lim
k→∞

P(‖xκ − x̂i∗‖ = 0) = 1, ∀i∗ = 1, . . . ,N∗ . (9)

The probability space (Ω,F ,P) associated with the independent and identi-

cally distributed random variable ωκ has the sample space Ω = Rn, the sigma-

algebra F of Borel sets on Ω and the probability measure P is a normal distri-

bution.

This article shows how these objectives are achieved with an augmented GP

model (6) by introducing an internal stabilizing command u(·) into the GPSSM.

3. GAUSSIAN PROCESS STATE SPACE MODELS

3.1. Gaussian process regression

A Gaussian process is a stochastic process which assigns a jointly Gaus-

sian distribution to any finite subset {x1, . . . ,xM} ⊂ Rn in a continuous input

domain [44]. It is often considered as a distribution over functions, denoted by

fGP(x) ∼ GP (m(x), k(x,x′)) . (10)

It is fully specified by its mean function m : X → R and covariance func-

tion k : X × X → R, which are parametrized through ψ, considered as hy-

perparameters. If no structural prior knowledge for f(·) is available, as it is the
case for our problem setting, the mean function is commonly set to zero without

loss of generality. A widely used covariance function is the squared exponential
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(SE) kernel with automatic relevance determination

kSE(x,x′) = ζ exp

− n∑
j=1

(xj − x′j)2

2l2j

 , (11)

where the hyperparametersψ=
[
l21 · · · l2n ζ

]ᵀ
are the signal variance ζ ∈ R+,0

and the lengthscales l21, . . . , l2n ∈ R+. The SE kernel (11) is universal and there-

fore it allows to conclude that any continuous function f(x) can be approximated

arbitrarily exactly with the GP given sufficiently many training data points.For

more details, we refer to the existing literature [2] and [45].

To model the dynamics (1) with a n-dimensional state space, n independent

GPs are concatenated, denoted by

fGP(·) ∼ GP (m(·), k(·, ·)) ≡


fGP,1(·) ∼ GP(m1(·), k1(·, ·))
...

...

fGP,n(·) ∼ GP(mn(·), kn(·, ·)),

where mj , kj are the mean and kernel functions with corresponding hyperpa-

rameters ψj , j = 1, . . . ,n . The optimal ones are obtained through, a likelihood

maximization based on Bayesian principles

max
ψj

log p
(
y

(1:N)
j |x(1:N),ψj

)
= (12)

max
ψj
−1

2

(
y

(1:N)
j

T
K−1
j y

(1:N)
j + log detKj +N log(2π)

)
,

where

Kj =


kj
(
x(1),x(1)

)
· · · kj

(
x(1),x(N)

)
...

. . .
...

kj
(
x(N),x(1)

)
· · · kj

(
x(N),x(N)

)
 ∈ RN×N ,

which defines the notation kj
(
x(1:N),x(1:N)

)
:= Kj . The optimization (12) is
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generally a non-convex problem, thus one cannot expect to obtain the optimal

parameters in practice. However, each local maximum of the likelihood is con-

sidered as valid interpretation of the data [44]. For an analysis of the error in a

GPSSM made by a suboptimal hyperparameter or kernel choice, we refer to [7].

To use the GPs for predictions at a test input x ∈ X , the dataset D is

used to infer the j-th component of the output fj(x), which is jointly Gaussian

distributed with the training datafj(x)

y
(1:N)
j

 ∼ N
 mj(x)

mj
(
x(1:N)

)
 ,

kj(x,x) kᵀj

kj Kj

 , (13)

where kj = kj
(
x(1:N),x

)
. Conditioning on the data D yields

fj(x)|D,x ∼ N
(
mj(x)+kᵀjK

−1
j

(
y

(1:N)
j −mj

(
x(1:N)

))
, kj(x,x)−kᵀjK−1

j kj

)
.

(14)

3.2. GP models with equilibria

We know from Assumption 1, that the true function f(·) has exactly N∗

equilibria at x(i)
∗ . Since the locations of these equilibria are unknown, we propose

an estimation procedure to obtain these from the training data in Sec. 5. Given

these estimates x̂i∗ , we must ensure the GP model has equilibria at these

locations, thus f̂(x̂i∗) = x̂i∗ ,∀i∗ = 1, . . . ,N∗ . Therefore, these equilibria are

added as training points D∗ = D ∪ ⋃N∗i∗=1(x̂i∗ , x̂i∗), which implicitly assumes

that m (x̂i∗) = x̂i∗ . This enforces, that every function described by the GP has

at least N∗ equilibria at x̂i∗ , thus fGP(x̂i∗) = x̂i∗ . With

ỹj =
[
y

(1:N)
j

ᵀ
−mj

(
x(1:N)

)
01×N∗

]ᵀ
∈ RN+N∗

K̃j =

 Kj kj
(
x(1:N), x̂1:N∗

)
kj
(
x(1:N), x̂1:N∗

)
kj (x̂1:N∗ , x̂1:N∗)

 ∈ R(N+N∗)×(N+N∗).
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and k̃j =
[
kᵀj kj (x, )

]ᵀ
∈ RN+N∗ , the updated mean and variance predictions

for the outputs f(x) are defined as follows

fj(x)|D∗,x ∼ N
(
mj(x) + k̃ᵀj K̃

−1
j ỹj︸ ︷︷ ︸

:=µj(x)

, kj(x,x)− k̃ᵀj K̃−1
j k̃j︸ ︷︷ ︸

:=σ2
j (x)

)
. (15)

for j = 1, . . . ,n . Concatenating them for the multiple dimensions leads to

µ(x) =


µ1(x)

...

µn(x)

 , Σ(x) =


σ2

1(x) 0

. . .

0 σ2
n(x)

 . (16)

Due to the absence of any observation noise, the following conclusion regarding

the mean and variance function of the GP are possible.

Lemma 1. Consider a Gaussian process with SE kernel (11). Then, the con-

catenation (16) of the GP mean function (15) has equilibria at x̂i∗ ,

thus µ(x̂i∗) = x̂i∗ , ∀i∗ = 1, . . . ,N∗ . Furthermore, the posterior variance func-

tions σ2
j , j = 1, . . . ,n defined in (15) is upper bounded by

σ2
j (x) ≤ ζ̄

(
1− exp

(−‖x− x̂i∗‖2
l2

)) ∀j = 1, . . . ,n

∀x ∈ X ,∀i∗,

where ζ̄ = maxj ζj is the largest of all signal variances of all GPs

and l2 = mini,j l
2
i,j is the smallest of all lengthscales l2i,j across all GPs i = 1, . . . ,n

and input dimensions j = 1, . . . ,n . This implies σ2
j (x̂i∗) = 0, ∀i∗.

Proof. The equilibria of the mean function follow from [58]. The variance func-

tion decreases point-wise globally with any additional training for the SE kernel

(given constant hyperparameters), according to [56]. Therefore, the GP vari-

ance function for a dataset which contains the point x̂i∗ can be upper bounded

by the GP variance function for a dataset which only contains the point x̂i∗ as
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a single training point

σ2
j (x) ≤ ζj

1− exp

(
−

n∑
i=1

(xi − x̂i∗,i)2

2l2i,j

)2


≤ ζ̄
(
1− exp

(
−‖x− x̂i∗‖2/l2

))
:= σ̄2(x),

for all j = 1, . . . ,n which shows the proposed upper bound.

From Lemma 1, it is known, that the GP model (15), has at least the N∗

equilibria at x̂i∗ . However, they might be unstable, their region of attraction

might not match Xi∗ or additionally attractors might exist. Therefore, Objec-

tives 1 and 2 are not fulfilled directly and Sec. 4 shows how they can be achieved.

But before we quickly discuss the chosen interpretations of the GP model

3.3. Interpretations of GPs for dynamical systems

Besides the two presented interpretations of GPs for modeling dynamical

system in (7) and (8), various other techniques exist. The overview in [55]

presents - in addition to the two shown here - also a robust interpretation and

the belief space view. The first is based on the analysis in [50] and is utilized

in [8] and [6], but is limited to compact state-spaces and the required precondi-

tions are difficult to verify. The latter is frequently employed in reinforcement

learning approaches, e.g. [15] and [37], but is based on an approximation in the

propagation to the next state and therefore not suitable for stability analysis.

Furthermore, [18] introduces a GPSSM where a single function is sampled from

the GP in a sequential fashion considering the covariance between the sample

path and the model as discussed in [32]. This allows to consistently draw sys-

tem with continuous deterministic transition functions. However, the resulting

sequence of random variables is not a Markov process and therefore an analysis

of its asymptotic behavior is more evolved. We therefore leave an analysis of

this view on GP models for future work and focus on the two introduced - the

deterministic and the probabilistic - interpretation.
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4. STABILIZING GPSSMs

We will now show, how the deterministic and the probabilistic GPSSM in (7)

and (8) are enforced to comply with the asymptotic stability requirement (Ob-

jectives 1 and 2) using a stabilizing command u ∈ Rn which is internal, thus

part of the model f̂(x).

Consider N∗ control Lyapunov functions V i∗θi∗ : X → R+,0 which are each

parameterized by θi∗ and the estimated equilibrium point x̂i∗ ∈ Xi∗ , for all of
which hold the following properties are defined

Assumption 4. The functions V i∗θi∗ (·) are continuous and positive definite, thus

V i∗θi∗
(x) > 0, ∀x ∈ X \{x̂i∗} and V i∗θi∗

(x̂i∗) = 0.

for all parameter choices θi∗ ∈ Θi∗ , ∀i∗ = 1, . . . ,N∗ .

Assumption 5. The functions V i∗θi∗ (·) are radially unbounded

lim
‖x‖→∞

V i∗θi∗
(x) =∞, ∀θi∗ ∈ Θi∗ .

These are the standard conditions making all V i∗θi∗ (·) Lyapunov candidates.

In Sec. 5 we will explain how the parameters θi∗ , x̂i∗ are obtained from data, but

first we discuss how the control Lyapunov functions V i∗θi∗ (·) is used to compute

the stabilizing command u(·) for the GP model.

4.1. Deterministic case

For this case, the proposed next state is given by xκ+1 = µ(xκ). Accord-

ing to Lemma 1, there are equilibria at x̂i∗ , but they can generally be stable

or unstable, and their domain of attractions is generally not Xi∗ . Therefore,

a correction u(·) is required in certain parts of the state-space as derived in

Theorem 1.
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Theorem 1. Consider the GP (16) with SE kernel (11) and the stabilizing

command u∗(·) obtained from the optimization

u∗(xκ) = arg min
u

1

2
uᵀu, (17a)

s.t. V i∗θi∗ (µ(xκ) + u)− V i∗θi∗ (xκ) < 0 if xκ 6= x̂i∗ ,

and u = 0 if xκ = x̂i∗ ,
(17b)

where V i∗θi∗
(·) is the i∗-th Lyapunov function with i∗ being chosen such

that x0 ∈ Xi∗ and V i∗θi∗ (·) fulfills Assumption 4. Then, the model

xκ+1 = f̄(xκ) = µ(xκ) + u∗(xκ), (18)

converges uniformly asymptotically to the equilibrium x̂i∗ , for all initial val-

ues x0 ∈ Xi∗ .

Proof. The function V i∗θi∗
(·) is a valid Lyapunov candidate by Assumption 4

and the optimization is designed such that the Lyapunov function decreases in

every step V i∗θi∗
(f̄(xκ)) − V i∗θi∗ (xκ) < 0, ∀xκ ∈ X \{x̂i∗}. The optimization is

feasible ∀xκ ∈ X , since the solution u = x̂i∗−µ(x̂i∗) is always in the constraint

set because V i∗θi∗ (x̂i∗)− V i∗θi∗ (xκ) = −V i∗θi∗ (xκ) ≺ 0.

This allows to conclude, that Objective 1 is achieved with the proposed aug-

ments GP model f̄(·). A visualization of the stabilization through the optimiza-

tion in (17) is shown in Fig. 3 on the left side.

Corollary 1. Let N∗ = 1, the Lyapunov function is Vθ radially unbounded

(Assumption 5), and X = Rn. Furthermore, consider a GP (16) with SE

kernel (11) and the stabilizing command u∗(·) obtained from the optimization

in (17). Then, the equilibrium x̂∗ of the model (18) is uniformly globally asymp-

totically stable.

Proof. Radial unboundedness (Assumption 5) is according to [20] the only

necessary additional criteria for global stability and therefore follows directly

from Theorem 1.
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We have chosen the optimization (17), because the the GPSSM represents the

data optimal (according to the likelihood optimization) and should be distorted

only minimal where necessary.

Furthermore, for an infinite number of training points on a compact state

space, consistency of the proposed model (18) and the true system can be shown.

Proposition 1. Consider the GP (16) on a compact set X̄ ⊂ Rn with SE ker-

nel (11) and Lyapunov functions V i∗θi∗
(·) which fulfill Assumption 4

and V i∗θi∗
(f(xκ)) − V i∗θi∗

(xκ) < 0, ∀x ∈ X̄ \{x̂i∗}, ∀i∗. Assuming f(·) being

a sample from the GP from which infinitely many training points are gener-

ated using a dense distribution on X̄ , then the model f̄(·) approaches the true

function almost surely

P
{

lim
N→∞

sup
x∈X̄

∥∥f(xκ)− f̄(xκ)
∥∥ = 0

}
= 1 (19)

for a stabilizing command u∗(xκ) = 0 ∀xκ ∈ X̄ .

Proof. Under the provided conditions, the difference between the mean func-

tion µ(·) and the true function f(·) becomes arbitrarily small almost surely. This

is a well established result from scattered data interpolation [47, Eq. 2.11], where

the error is bounded by a power function (which corresponds to the posterior

standard deviation of a GP [19, Sec. 5.2]), which tends to zero for N →∞ [27,

Corollary 3.2.]. Since V i∗θi∗ (·) is a continuous function the condition

V i∗θi∗
(µ(xκ))− V i∗θi∗ (xκ) < 0,

is fulfilled in the limit case ∀xκ ∈ X̄ \{x̂i∗}, thus u∗(xκ) = 0, ∀xκ ∈ X̄ , which
yields the provided result.

Thus, if the true stable system is perfectly learned by the GP, the stabilization

is not required and does also not distort the model as desired.

Additionally, for convex Lyapunov functions, it can be shown that the sta-

bilized GPSSM f̄(·) is never worse - in terms of prediction performance - than

17



the original, not stabilized GPSSM µ(·).

Proposition 2. Consider the GP (16) with SE kernel (11) and convex Lya-

punov functions V i∗θi∗
(·) which fulfill Assumption 4

and V i∗θi∗
(f(xκ)) − V i∗θi∗

(xκ) < 0, ∀x ∈ Xi∗ \ {x̂i∗}, ∀i∗. Then, the predic-

tion by the stabilized GPSSM f̄(·) is always closer (or equally close) to the true

function f(·) than the not stabilized GPSSM µ(·), thus

‖f̄(xκ)− f(xκ)‖ ≤ ‖µ(xκ)− f(xκ)‖, ∀xκ ∈ X . (20)

Proof. Since the true system (1) is asymptotically stable, the Lyapunov func-

tion V i∗θi∗
(·) is decreasing with every step. Thus, for any xκ ∈ X , the correct

(but unknown) next state lies within the set V =
{
x ∈ X

∣∣∣V i∗θi∗ (x) < V i∗θi∗
(xκ)

}
,

which is convex due to the convexity of V i∗θi∗ (·). For any xκ ∈ V, u(xκ) = 0 and

therefore f̄(xκ) = µ(xκ), which makes (20) hold with equality. For xκ /∈ V, the
stabilized GPSSM corresponds to a projection on the convex set V, thus

f̄(xκ) = arg min
xκ+1∈V

‖xκ+1 − µ(xκ)‖. (21)

This projection f̄(xκ) is closer to any point in the convex set V, than µ(xκ),

thus it is also closer to f(xκ), which concludes the proof.

The convexity of the Lyapunov functions also allows to conclude the following,

which is important from a computational point of view.

Proposition 3. The optimization problem (17) is convex if V i∗θi∗ (x) is convex.

Proof. In the constraint set (17b), µ(xκ) and V i∗θi∗
(xκ) are constants with

respect to u whose addition/subtraction is convexity preserving, thus the set is

convex if V i∗θi∗ (·) is convex [13].

For non-convex V i∗θi∗ (·) finding a global minimum cannot be expected. However,

this is not critical concerning the stability, because any u in the constraint set

leads to a stable system. Reaching a local minimum will only result in behavior
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Vθ(x)
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x̂∗

δV (xκ) < 0
xκ+1

u∗

δV (xκ) > 0

x̂∗β
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Figure 3: Illustration for the optimization (17) and (25) for the deterministic case and the
probabilistic case on the left and in the middle, respectively. On the right, the infeasible
situation for nζ̄ ≥ l2 in (25c) is visualized, thus xκ ∈ X̃i∗ . The striped area indicates, the
states xκ for which δV (xκ) > 0 for any u.

different from the training data, but convergence is guaranteed. Nevertheless,

for particular choices of the control Lyapunov function, the optimization (17) is

convex, an overview is provided in Table 1. In case that the stability condition is

already satisfied for the uncorrected GPSSM, the stabilizing command equals 0,

thus the optimization will not be performed.

4.2. Probabilistic case

For the probabilistic case, the next state, according to the non-stabilized GP

model, is given by xκ+1 = fGP(xκ) and is a Gaussian distributed vector. To

analyze the convergence behavior, we use tools of stochastic dynamical systems,

reviewed in the following

Lemma 2 (Stability of stochastic systems [28]). Consider a stochastic system

of the form (8) and a positive definite function V : X → R+,0. If there exists

a V (·) for which

E[V (xκ+1)|xκ]− V (xκ) < 0, ∀xκ ∈ X \ {x∗} (22)

holds, then the equilibrium x∗ is almost surely uniformly asymptotically stable.

If there exists a V (·) for which

E[V (xκ+1)|xκ]− V (xκ) < 0, ∀xκ ∈ X \ Bβ . (23)
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holds, then the system is almost surely uniformly ultimately bounded (UUB) to

the hyperball

Bβ = {x ∈ X |‖x− x∗‖ < β } (24)

with ultimate bound β > 0.

This allows to conclude the following for the probabilistic interpretation of

the GP model.

Theorem 2. Consider a GP (16) with SE kernel (11) and the stabilizing com-

mand u∗(·) obtained from the optimization,

u∗(xκ) = arg min
u

1

2
uᵀu, (25a)

s.t. δV (xκ) < 0 if xκ 6= x̂i∗ ,

δV (xκ) = 0 if xκ = x̂i∗ ,
(25b)

and u∗ = x̂i∗ − µ(xκ) if δV (xκ) > 0 ∀u, (25c)

where δV (xκ) = E
[
V i∗θi∗

(fGP(xκ) + u)|xκ
]
− V i∗θi∗ (xκ), and V i∗θi∗ (·) is the i∗-th

Lyapunov function with i∗ being chosen such that x0 ∈ Xi∗ and fulfills Assump-

tion 4. Then, the resulting model

xκ+1 = f̂(xκ) := fGP(xκ) + u∗(xκ), (26)

converges almost surely uniformly asymptotically to x̂i∗ , ∀x0 ∈ Xi∗ if nζ̄ < l2.

Otherwise, it converges almost surely uniformly to the hyperball

Bi∗β = {x ∈ X |‖x− x̂i∗‖ < β } (27)

with ultimate bound

β =

√
l2W0

(
nζ̄

−l2
e−nζ̄/l2

)
+ nζ̄, (28)
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where W0 : [−e−1 ∞) → [−1 ∞) is the principle branch of the Lambert W

function.

Proof. Similar to Theorem 1, V i∗θi∗ (·) is a valid Lyapunov candidate by As-

sumption 4 and the optimization (25) is designed such that the expected value

of the Lyapunov function decreases in every step δV (xκ) < 0, ∀xκ ∈ X \ {x̂i∗}.
However, the optimization is infeasible for some xκ, because V i∗θi∗ (xκ) → 0

for xκ → x̂i∗ and E[V i∗θi∗
(fGP(xκ) + u)|xκ] 6= 0 in general for any u. Thus, the

set X̃i∗ = {xκ ∈ Xi∗ |δV (xκ) > 0 ∀u} which denotes the states for which there

exists no stabilizing command and therefore the constraint set δV (xκ) < 0 is

empty. For all state outside of this set, x ∈ X \ X̃i∗ , the conditions in Lemma 2

are fulfilled and the system converges to X̃i∗ . The case xκ ∈ X̃i∗ is considered

in (25c) and results in the stochastic dynamics

xκ+1 ∼ N (x̂i∗ , Σ(xκ)). (29)

From now, we set xi∗ = 0 for notational convenience without loss of general-

ity and the quadratic Lyapunov function Vsq(x) = xᵀx is utilized for analysis.

Note, that the control Lyapunov function V i∗θi∗ (·) is only applied to ensure con-

vergence to the set X̃i∗ , but inside this set, it is no longer used, because -

according to (25c) - u∗ is chosen independently of V i∗θi∗ (·). Therefore, inside the
set X̃i∗ , the function Vsq(·) is utilized for analysis. The resulting δVsq(·) is given
by

δVsq(xκ) = E[Vsq(xκ+1)|xκ]− Vsq(xκ) = E[xᵀ
κ+1xκ+1]− xᵀ

κxκ

= Tr (Σ(xκ))− xᵀ
κxκ =

n∑
j=1

σ2
j (xκ)− xᵀ

κxκ

≤ nζ̄
(

1− exp

(−‖xκ‖2
l2

))
︸ ︷︷ ︸

:=V (‖xκ‖)

− ‖xκ‖2︸ ︷︷ ︸
:=V̄ (‖xκ‖)

using E[xκ+1] = 0 from (29) and the upper bound introduced in Lemma 1.
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Analyzing δVsq(·), we obtain the obvious root at the origin δVsq(0) = 0 and

lim
‖xκ‖→∞

δV (xκ) = −∞

due to the boundedness of V . Thus, if there are no further roots outside the

origin, we know the system is asymptotically stable (δV (xκ) is negative definite)

and if there are further roots, the outer most is the ultimate bound.

Comparing the derivatives of V̄ ,V

∂V (‖x‖)
∂‖x‖ =

2nζ̄

l2
exp

(
−‖x‖2

l2

)
‖x‖, ∂V̄ (‖x‖)

∂‖x‖ = 2‖x‖,

it is clear, that V̄ increases ∀x ∈ X faster than V for nζ̄/l2 < 1

(since exp
(
−‖x‖2/l2

)
≤ 1, ∀x ∈ X ). Thus, we conclude δV (x) < 0, ∀x ∈ X\{0}

for nζ̄ < l2, which shows that the equilibrium is almost surely uniformly asymp-

totically stable.

For the case nζ̄ > l2, we use the fact, that difference ∂V (‖x‖)
∂‖x‖ − ∂V̄ (‖x‖)

∂‖x‖

changes its sign at most once in the positive domain. Thus, we only need

to verify the proposed bound (28) as the single root of δV making use of

the Lambert W function, more specifically its principle branch W0. Defin-

ing z = nζ̄
−l2 e

−nζ̄/l2 and substituting ‖x‖ = β from (28) yields

V (β)− V̄ (β) = nζ̄
(

1− e−W0(z)−nζ̄/l2
)
− l2W0(z)− nζ̄

= −nζ̄e−W0(z)e−nζ̄/l
2 − l2W0(z)

=

(
nζ̄

−l2
e−nζ̄/l

2 −W0(z)eW0(z)

)
l2e−W0(z) = (z−z) l2e−W0(z) =0,

where the identity W0(z)eW0(z) = z known for the Lambert W function was

used in the last step. Thus, we have shown that

δV (x) < 0, ∀x ∈ {x ∈ X |‖x‖ > β } (30)

which, according to Lemma 2, shows that (29) is almost surely uniformly ulti-
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Figure 4: Comparing the functions V̄ (‖x‖) and V (‖x‖) for the two different cases of hyper-
parameters, resulting in almost sure UUB for l2 < nζ̄ and almost sure uniform asymptotic
stability for l2 > nζ̄.

mately bounded with the specified bound.

Corollary 2. Let N∗ = 1, the Lyapunov function Vθ radially unbounded (As-

sumption 5), and X = Rn. Furthermore, consider a GP (16) with SE ker-

nel (11) and the stabilizing command u∗(·) obtained from the optimization

in (25). Then, the equilibrium x̂∗ of the model (26) is almost surely globally

uniformly asymptotically stable if nζ̄ < l2. For nζ̄ ≥ l2 the system (26) is almost

surely globally uniformly ultimately bounded to the set Bβ.

Proof. Radial unboundedness (Assumption 5) is according to [28] the only

necessary additional criteria for the global convergence and therefore follows

directly from Theorem 2.

A visualization of the stabilization through the optimization in (25) is shown

in Fig. 3 in the center. The right side visualizes the non-feasible case in (29).

Remark 1. For any polynomial Lyapunov candidate, the moments of the ran-

dom variable Vθ(fGP(xκ) +u) are polynomial in the parameters of the normal

distributed random variable fGP(xκ). For the computation of the expected

value of such polynomials as required in (25b), see [54].

From Theorem 2 is concluded, that Objective 2 is only surely achieved if the

hyperparameters in the likelihood optimization (12) are constrained to nζ̄ < l2.
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However, limiting the search space of the hyperparameters results in a subop-

timal model choice if the likelihood attains its maximum for nζ̄ > l2. For this

case, Objective 2 is not achieved if the optimal hyperparameter choice is taken.

Therefore, the following section investigates how additional measurements from

the system must be taken to further to fulfill Objective 2.

4.3. Asymptotic convergence with additional data

Consider the hyperparameters are fixed and it holds nζ̄ > l2. Then, ad-

ditional training data Dadd is necessary to achieve asymptotic stability. We

therefore make the following additional assumption.

Assumption 6. An additional dataset of the system (1), denoted by

Dadd =
{(
x(i),y(i)

)}N+Nadd

i=N+1
, (31)

is obtained for arbitrary input locations x(i) ∈ Bβ. The hyperparameters ψj, for

all j = 1, . . . ,n of the GP model remain constant.

This section elaborates how many additional data points Nadd = |Dadd| are
necessary to fulfill Objective 2 without making assumptions regarding the initial

dataset D.
As the following derivations are equivalent for all equilibria x̂i∗ , we consider

only a single equilibrium at the origin x̂∗ = 0, without loss of generality.

Theorem 3. Consider a GP (16) with SE kernel (11) and the stabilizing com-

mand u∗(·) from (25). Then, there exists a set of additional training data

points Dadd of size

Nadd = (1 + 2β/ε)n + 1, (32)

where ε := −l2 log
(
1− r̃2/nζ̄

)
and

r̃ :=
l

3
√
nζ̄

√
−nζ̄W−1

(
e
l2

nζ̄
−1

(
l2

nζ̄
−1

))
+l2−nζ̄
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such that for any (fixed) hyperparameter set ψj, the system (26) is almost surely

asymptotically stable.

Proof. According to proof of Theorem 1, consider

δVsq(xκ) =

n∑
j=1

σ2
j (xκ)− xᵀ

κxκ ≤ nmax
j
σ2
j (xκ)− xᵀ

κxκ,

which is negative for ‖xκ‖ > β. We first investigate, where a single additional

data point must be placed to ensure δVsq(xκ) < 0 near the origin.

We first introduce the notation k(x,x′) = k(x − x′) (Since the SE kernel is

stationary and can therefore be expressed as the difference of its arguments.)

and σ2
D2

(·), which is used for the variance function with hyperparameters ζ̄, l2

and the dataset D2 =
{

(0, 0) ,
(
x(a),y(a)

)}
. This is used as an upper bound

for the variance function maxj σ
2
j (·) with dataset D2 ∪ D, because the variance

generally reduces with any additional data point [56].

First, we consider the one dimensional case n = 1 and compute the location

for an additional data point x(a) = r such that nσ2
D2

(x) < x2. The variance for

two data points x(0) = 0,x(a) = r is according to [61, Appendix A] given by

σ2
D2

(x) = ζ̄ − ζ̄
(
k(x)2 + k(r−x)2

)
− 2k(r)k(x)k(r−x)

ζ2 − k(r)2
, (33)

where k(0) = ζ̄ is used. Multiplication of ζ̄2− k(r)2 on both sides of the inequal-

ity σ2
D2

(x) < x2 leads to the functions

M(r,x) := ζ̄3 − ζ̄k(r)2 − ζ̄k(x)2 − ζ̄k(r − x)2 (34)

− 2k(r)k(x)k(r − x),

N(r,x) := (ζ̄2 − k(r)2)x2, (35)
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for the left and right side, respectively. Their derivatives are

∂M(r,x)

∂x
=

2

l2

(
r
(
k(r)k(x)k(r − x)− ζ̄k(r − x)2

)
+x
(
ζ̄k(x)2+ζ̄k(r−x)2−2k(r)k(x)k(r−x)

))
,

∂N(r,x)

∂x
= 2x

(
ζ̄2 − k(r)2

)
.

As both vanish at the origin, we further consider the second derivative evaluated

at x = 0

M̃(r) :=
∂2M(r, 0)

∂x2
=

2

l2

(
ζ̄3 − ζ̄k(r)2

(
1 +

r2

l2

))
,

Ñ(r) :=
∂2N(r, 0)

∂x2
= 2(ζ̄2 − k(r)2).

Using the lower branch of the Lambert-W function, denoted by W−1, one can

show according to [62] that

nM̃(r)− Ñ(r) =
2

l2

(
nζ̄3 − ζ̄2l2−k(r)2

(
nζ̄

(
1 +

r2

l2

)
− l2

))

has only one positive zero at

r =
l√
nζ̄

√
−nζ̄W−1

(
e
l2

nζ̄
−1

(
l2

nζ̄
−1

))
+l2−nζ̄.

This allows to conclude that nM(r,x) − N(r,x) < 0 and thereby δVsq(x) < 0

holds for all x ∈
(
0 x(a)

]
if x(a) < r.

Generalizing this result to multiple dimensions
∥∥x(a)

∥∥ < r allows only to

conclude, that δVsq(x) < 0 for all x = αx(a) with 0 < α ≤ 1. Thus, it only

holds on a line in the Rn, which is visualized in Fig. 6 on the left.

We therefore analyze the variance σ2
D2

(x) as x is moved on a sphere cen-

tered at the origin. Defining the constants c = k(‖x‖), d = k(
∥∥x(ã)

∥∥) and the
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variable τ =
∥∥x− x(ã)

∥∥, the derivative of σ2
D2

(τ) with respect to τ is given by

∂σ2
D2

(τ)

∂τ
=
∂k(τ)

∂τ

−ζ̄
ζ̄2 − d2

(2k(τ)− 2cd).

It shows, that the gradient is non-negative, because ∂k(τ)
∂τ ≤ 0 for the SE kernel

and k(τ) ≥ cd

exp

(−τ2

2l2

)
≥ exp

(
−‖x‖2

2l2

)
exp

(
−
∥∥x(ã)

∥∥2

2l2

)
∥∥∥x− x(ã)

∥∥∥2

≤ ‖x‖2 +
∥∥∥x(ã)

∥∥∥2

according to the triangle inequality. Thus, the point with the highest variance

on the sphere lies on the opposite side of the training point

σ2
D2

(
−x(ã)

)
= max
‖x‖=‖x(ã)‖

σ2
D2

(x),

which is illustrated in Fig. 6 in the center. Thus, x(ã) must be close enough

to the origin, such that there exists a r̃ for which all points ‖x‖ < r̃ are closer

to x(ã), then to x(a),

∥∥∥x(ã)+ x
∥∥∥ ≤ ∥∥∥x(ã)

∥∥∥+ ‖x‖ ≤
∥∥∥x(a)− x

∥∥∥ =
∥∥∥x(a)

∥∥∥− ‖x‖∥∥∥x(ã)
∥∥∥+ 2‖x‖ ≤

∥∥∥x(ã)
∥∥∥ ⇒

∥∥∥x(ã)
∥∥∥ ≤ 1

3

∥∥∥x(a)
∥∥∥

accordingly, r̃ := r/3. Extending the result from the one dimensional case, it is

shown that nσ2
D2

(x) < ‖x‖2 for all x with 0 < ‖x‖ < r̃ if
∥∥x(ã)

∥∥ ≤ r̃. Thus we
set x(N+1) = x(ã) according to Assumption 6.

In general, r̃ < β, thus for x with r̃ ≤ ‖x‖ ≤ β, it was not shown so far,

that nσ2
D2

(x) < ‖x‖2 holds. Nevertheless, it is known, that ‖x‖2 ≤ r̃2 holds

in this region. Thus, we next show how nσ2
D2

(x) < r̃2 is ensured for ‖x‖ < β.

Using the derived bound in Lemma 1, we can show, that every additional data

point x(i), i ∈ [N+2 N+Nadd] upper bounds the variance function in a radius ε
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Figure 5: Numerical illustration for r as derived in the proof of Theorem 3 in the one dimen-
sional case. For ζ̄ = 2, l2 = 1, it can be seen that x2>σ2

D2
(x) holds ∀x only for x(ã) = 0.3 < r̃

(green). For x(ã) = 1 (orange) this is only ensured for 0 < x < 1, for x(ã) = 1.6, this is nowhere
guaranteed.

as given by

r̃2 > nζ̄

(
1− exp

(
−
∥∥x− x(i)

∥∥2

l2

))
⇒
∥∥∥x− x(i)

∥∥∥2

< ε. (36)

The covering number, which indicates how many spheres with radius ε are

required to cover a sphere with radius β is upper bounded according to [52]

by (1 + 2β/ε)n. Thus at most (1 + 2β/ε)n + 1 data points are required to en-

sure δVsq(xκ) < 0 ∀x \ {0} which concludes the proof for almost surely asymp-

totic stability.

Example 1. For illustration, we consider three different cases of the system (29)

simulated in two dimensions (n = 2) with l2 = 1: i) We set ζ̄ = 1/3, which

yields nζ̄ ≤ l2 and thereby - according to Theorem 1 - leads to almost sure

uniform asymptotic stability. ii) We choose ζ̄ = 1, which results in nζ̄ > l2 and

therefore almost sure UUB. iii) For the choice, ζ̄ = 1, we add additional data

points according to Assumption 6 and thereby establish asymptotic convergence.

The simulations start from the same 10 randomly sampled (uniformly from

the interval [−3 3]2) initial points and draw in each step from an unbiased

normal distribution with state dependent variance of a GP (15) with the only
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Figure 6: The illustrations show the steps of the proof for Theorem 3. Blue crosses indicate
training data in Dadd and red areas the sets of x for which δVsq(xκ) < 0 is shown. The left
drawing illustrates the one dimensional case. The middle drawing shows the extension from
one dimension to multiple dimension, by choosing a

∥∥x(ã)
∥∥ = r̃ < r/3. The point −x(ã) is

the most critical point, as the variance σ2
D2

is constantly decreasing along the circle as shown
by the arrows. The right drawing illustrates a possible covering using an additional training
points.

training point (0, 0), thus

xκ+1 ∼ N

0

0

 ,

σ2
2(xκ) 0

0 σ2
1(xκ)

 ,

where σ2
j (·) is the GP posterior variance function.

Figure 7 shows that trajectories for case i) quickly converge, while the states

in case ii) drop close to the ultimate bound β quickly, but do not decrease

further. The ultimate bound is exceeded irregularly, which is valid since the

bound holds with probability 1 only for κ → ∞. In case iii), where additional

data points have been added to reduce the uncertainty σ2(xκ) the trajectories

converge to zero again.

The hyperparameters lead to r̃ ≈ 0.37, r ≈ 1.12 and ε ≈ 0.0724 from

Theorem 3. This results in 1290 additional data points which we distributed

randomly on the disk ‖x‖ < β, since finding the particular covering is not a

trivial problems. But, because the derivation includes conservatism, we can

verify, that the random covering is sufficient to ensure nσ2(x) < ‖x‖2 for all x

also for this randomized covering.
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Figure 7: Illustration of Example 1 showing the norm of 10 trajectories for case i) asymp-
totic stability without any additional data points nζ̄ < l2 (left) case ii) ultimate bounded-
ness nζ̄ ≥ l2 (middle) and case iii) asymptotic stability for nζ̄ ≥ l2 with 1290 additional data
points (right) according to Theorem 3.

5. LEARNING LYAPUNOV FUNCTIONS FROM DATA

To stabilize the GPSSM as just explained, an arbitrary control Lyapunov

function, which fulfills Assumptions 4 and 5 can be utilized to compute the

stabilization command u(·). However, we want to avoid distorting the GPSSM

whenever possible, because the GPSSM fGP(·) is fitted to the data and is there-

fore the best available estimate to the true system. The following section derives

a technique to adapt the control Lyapunov function V i∗θi∗ (·) properly - based on

the available data.

5.1. General formulation

For fitting the Lyapunov functions V i∗θi∗ (·) to the training set D by varying

its parameters θi∗ ∈ Θi∗ and x̂i∗ ∈ Xi∗ the following is concluded.

Proposition 4. Consider the N∗ Lyapunov candidates V i∗θi∗ (·) under Assump-

tions 4 and 5, the dataset in Assumption 3 and the model f̄(·) from Theorem 1.

If the optimization

ηi∗ := min
θi∗∈Θi∗
x̂i∗∈Xi∗

∑
i∈Ii∗

g
(
V i∗θi∗

(
y(i)

)
− V i∗θi∗

(
x(i)

))
, (37)
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where Ii∗ =
{
i = 1, . . . ,N

∣∣x(i) ∈ Xi∗
}
and where g : R→ R is any function of

the form

g(ξ) =

0 for ξ ≤ 0

g̃(ξ) for ξ > 0

with g̃(ξ) > 0 ∀ξ. (38)

results in ηi∗ = 0, then the GP model f̄(x), obtained from the stabilization in

Theorem 1, is exact at the training data in the i∗-th region of attraction Xi∗ ,
thus

∥∥∥f̄ (x(i)
)
− y(i)

∥∥∥ = 0, ∀i ∈ Ii∗ . (39)

Proof. With g(·) defined in (38), it is clear that ηi∗ = 0 holds if and only if

V i∗θi∗

(
y(i)

)
− V i∗θi∗

(
x(i)

)
≤ 0, ∀i ∈ Ii∗ . (40)

According to Lemma 1, µ
(
x(i)

)
= y(i). Therefore, at the training points x(i),

the constraint (17b) is fulfilled for u = 0, which results in

f̄
(
x(i)

)
= µ

(
x(i)

)
= y(i), ∀i = 1, . . . ,N

and concludes the proof.

Since the data points are recorded from a stable system (Assumption 1), there

always exists a positive definite function V : Xi∗ → R+,0 for which ηi∗ as defined

in (37) is zero. However, the parameterization V i∗θi∗
(·) might not be chosen

properly and therefore (40) might not hold for all data points. Nevertheless,

the convergence properties as shown in Theorems 1 and 2 hold irrespectively,

since they are based on Assumptions 4 and 5, which holds ∀θ ∈ Θ. The sub-

optimality rather affects the accuracy of the identification, due to a non-zero

distortion of the GP model as shown in Proposition 4.

The general definition of g(ξ) ensures that any violation of condition (40),
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Figure 8: Illustration of the optimization (37) to search for a suitable Lyapunov function
where x̂∗∗ and θ∗ denote the optimal values for x̂∗ and θ, respectively. The solid/dashed
black/blue lines are boundaries of the level sets of the Lyapunov candidate, red arrows indicate
violation of condition (40), green arrows accordance to condition (40).

which results in ξ > 0 is penalized, while any data point which is consistent

with (40) will not contribute to the objective function. The particular form of

the function g̃(·) can be chosen by the designer, however some choices allow

to solve (37) efficiently, as shown later. A visualization of this optimization is

shown in Fig. 8.

5.2. Specific Lyapunov candidates

To be more specific, we review some possible Lyapunov candidates. For

notational convenience, we write Vθ for V i∗θi∗ (·), x̂∗ for x̂i∗ , θ for θi∗ and Θ

for Θi∗ .

Quadratic Lyapunov function. The first Lyapunov candidate is defined by

VSq(x) = (x− x̂∗)ᵀP (x− x̂∗), P � 0, (41)

thus θ = P and Θ = Sn+. The following holds.

Proposition 5. Given a quadratic Lyapunov candidate (41), a convex set X
and a non-decreasing convex function g(·), the optimization (37) is a biconvex

optimization problem, thus convex in θ for constant x̂∗ and convex in x̂∗ for

constant θ.
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Proof. For constant x̂∗, VSq is linear in θ. As the difference of two linear

function is again linear, the argument of g(·) is linear in θ. For constant θ, VSq

is quadratic in x̂∗, but the difference cancels the squared terms and thus the

argument of g(·) is linear in x̂∗. The composition of a linear function and the

non-decreasing convex function g(·) is again convex [13]. Since the sum of convex

functions is convex and so are the constraint sets, the optimization problem is

biconvex.

Therefore, the parameters of VSq can be determined efficiently. However, due

to the limited flexibility of quadratic Lyapunov functions with very few param-

eters, η in (37) is generally larger for the quadratic Lyapunov function then for

Lyapunov functions with more parameters, which are considered in the follow-

ing.

Sum of squares Lyapunov functions. Sum of squares (SOS) [38] considers more

general polynomial Lyapunov candidates defined as follows:

Definition 1. For x ∈ Rn, a multivariate polynomial p(x) is a sum of squares

if there exist some polynomials rm(x), m = 1 . . .M such that

p(x) =

M∑
m=1

r2
m(x). (42)

An equivalent characterization of SOS is given as follows [39].

Property 1. A polynomial p(x) of degree 2M is a SOS if and only if there exists

a positive semidefinite matrix Q � 0 and a vector of monomials2 m(x) ∈ RMn

containing monomials of degree greater zero and less or equalM, such that

p(x) = m(x)ᵀQm(x). (43)

2A monomial of degreeM in x ∈ Rn is a scalar function
∏n
j=1 x

αj
j where αj are nonneg-

ative integers with
∑n
j=1 αj = M. The number of all possible monomials of degree ≤ M

and > 0 is Mn =
(n+M)!
n!M!

− 1.
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This property reduces the construction of a SOS to finding the elements of

theMn×Mn dimensional matrixQ. In order to make the SOS a valid Lyapunov

candidate, we restrict the matrix to be positive definite and symmetricQ ∈ SMn
+

, thus

VSOS(x) = m(x− x̂∗)ᵀQm(x− x̂∗), Q � 0, (44)

thus θ = Q and Θ = SMn
+ . The following holds.

Proposition 6. Given a sum of squares Lyapunov candidate (44) and a non-

decreasing convex function g(·), the optimization (37) is convex in θ for a

fixed x̂∗.

Proof. The proof is analog to Proposition 5.

Thus by gaining more flexibility in the Lyapunov candidate, we have lost the

computational efficiency to estimate the equilibrium point x̂∗.

Weighted sum of asymmetric quadratic functions (WSAQF). The WSAQF Lya-

punov function, proposed in [22] as

VWSAQF(x) = (x−x̂∗)ᵀP 0(x−x̂∗)+

L∑
l=1

βl(x−x̂∗) ((x−x̂∗)ᵀP l(x−x̂∗−ξl))2
,

with βl(x) =

 1 if xᵀP l(x− ξl) ≥ 0

0 otherwise,
(45)

has continuous first order partial derivatives and is positive definite

for P 0, . . .PL ∈ Sn+. Its parameters are accordingly θ = {P 0, . . . ,PL, ξ1, . . . ξL},
with ξl ∈ X . Due to a high number of parameters, it is also flexible, however

the parameters θ cannot be determined as efficiently as for SOS because (37) is

biconvex as stated in the following.

Proposition 7. Given the WSAQF Lyapunov candidate in (45) and a non-

decreasing convex function g(·), the optimization (37) is a biconvex problem

in θ for fixed x̂∗.
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Proof. The proof is analogous to Proposition 5.

This comparison shows, that sum of square is the most suitable, because it allows

a high degree of flexibility (compared to the quadratic Lyapunov function) and

a more efficient computation of its parameters than the WSAQF Lyapunov

function.

5.3. Numerical considerations

From a numerical perspective, the optimization (37) achieves better results

if the parameter set Θ includes a lower bound on the eigenvalues of the pos-

itive definite matrices Q,P ,P 0, . . .PL [22]. Otherwise the objective function

is minimized by setting all entries close to zero, which is not the goal of the

optimization (37). Therefore, we define the set

Smε =
{
A ∈ Sm+ |λmin(A) ≥ ελ

}
, m ∈ N (46)

and use it instead of Sm+ to define the constraint set Θ. This will not affect the

statements in Propositions 5, 6 and 7 because the constraint ελ−λmin(A) < 0 is

convex (the eigenvalue operation is linear and the minimum of a linear functions

is concave, its negative is convex).

For many practical applications, the equilibrium point of the unknown sys-

tem (1) might be known a priori. In this case, the Lyapunov function search

is simplified as the optimization is only over θ and therefore convex for VSq(·)
and VSOS(·).

6. NUMERICAL EVALUATION

6.1. Evaluation setup

For the numerical evaluation, we consider a programming by demonstration

task, whose general goal is to mimic motion primitives from human experts
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using a robotic system [10]. As demonstrations, we use recorded human hand-

writing movements3 and use a dynamical system for the trajectory generation

of the primitives. The dataset contains 24 goal-directed motions in two dimen-

sions (n = 2). There are multiple (3 - 15) repetitions for each motion and all

movements terminate at the same final location. Due to the generation by hu-

mans, it is difficult to design a suitable parametric model, and therefore, our

data-driven nonparametric approach is well suited to model and generalize the

given motions using a dynamical system. The common property of all motions

is their convergence to a single goal point and to preserve this key feature,

the dynamical system model must be stable. Therefore, our idea to stabilize a

GPSSM is applicable here for this dataset.

We will assume that all trajectories are generated by a system of the form (1)

which is asymptotically stable (Assumption 1) with the final location being the

single equilibrium point x∗ = 0 (N∗ = 1, X = R2). The task is to identify a

model of the form (7), which shows a high similarity to the true (but unknown)

system (1) and also converges to (the estimated) equilibrium asymptotically

(Objective 1). Additionally, we set up a probabilistic model (8), where the

noise indicates the uncertainty for which we can also guarantee the convergence

to an ultimate bound (Theorem 2) using the proposed techniques.

First, we focus on the estimation of an unknown equilibrium based on the

optimization (37) for a single motion in Sec. 6.3. Second, in Sec. 6.4, we consider

the equilibrium point to be known (x∗ = x̂∗ = 0) to perform a quantitative

comparison for the deterministic GP model on the full dataset (24 motions)

among the different Lyapunov candidates. Finally, in Sec. 6.5 we will illustrate

the almost sure ultimate boundedness in the probabilistic case from Theorem 2.

6.2. Implementation

Before presenting the results, we first provide an algorithmic overview of the

proposed approach in Algorithm 1 and details regarding the implementation:4

3Available for download at https://bitbucket.org/khansari/seds
4Code for MATLAB is provided: https://gitlab.lrz.de/ga68car/stablegps.git
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Algorithm 1 The proposed stable identification and prediction using GPSSMs.
1: take measurements D at arbitrary locations (Assumption 3)
2: optimize hyperparameters ψj , ∀j according to (12)
3: if nζ̄ > l2 then
4: take further measurements Dadd at specific locations (Assumption 6)
5: end if
6: select region of attraction i∗ s.t. x0 ∈ Xi∗
7: optimize θi∗ of the Lyapunov function V i∗θi∗

(·) and estimate the equilib-
rium x̂i∗ using (37)

8: initialize κ = 0 to utilize model in simulation
9: while number of desired simulation steps not exceeded do

10: if deterministic case then
11: find optimal u(xκ) based on (17)
12: xκ+1 = µ(xκ) + u(xκ)
13: else
14: find optimal u(xκ) based on (25)
15: sample ωκ ∼ N (0, In)
16: xκ+1 = µ(xκ) + u(xκ) +

√
Σ(xκ)ωκ

17: end if
18: κ← κ+ 1
19: end while

As already mention, the measurements acquired in Line 1 are taken from

the LASA dataset. In the first step of the proposed approach, the GPs are

trained (line 2) based on the training data using a quasi-Newton method to

perform the optimization (12). In the second major step, the optimal Lyapunov

function based on (37) is determined using an interior-point method (Line 7).

Because we want a fair comparison of all proposed Lyapunov candidates, we

do not explicitly exploit the (bi) convexity with a well-suited algorithm. But,

of course, finding the global optimum is simplified for the SOS and quadratic

Lyapunov function. According to Propositions 5 and 6, we chose g̃(ξ) = ξ as it

results in a non-decreasing monotone function g(·).
For efficient implementation, we perform a Cholesky decomposition for all

positive definite matrices and optimize over the nonzero entries of the lower

triangular matrix. This avoids to explicitly impose the symmetry constraint. To

enforce strict positive definiteness of the matrices Q,P ,P 0...L their eigenvalues

are enforced to be larger than 0.01 by adding this as a constraint to the numerical
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optimization as stated in Sec. 5.3.

The simulation is initialized once at each starting point of the training trajec-

tories and runs until the state reaches proximity of the (estimated) equilibrium

point ‖x− x̂∗‖ < 5 (or a limit of 1000 steps). The optimization (17) and (25)

(in Line 11 and Line 14, respectively) are performed at each step by the inter-

point algorithm, initialized with u = x̂∗ − µ(x). The constraints (17b) (25b)

are rewritten to

V (µ(xκ) + u)− V (xκ) ≤ −ρV (xκ)

δV (xκ) ≤ −ρV (xκ)

with ρ = 0.02 for the deterministic and probabilistic case, respectively to avoid

the strict inequalities.

The Lyapunov functions presented in Sec. 5.2 are utilized as follows.

• A quadratic Lyapunov function VSq(·) defined in (41) with n(n+1)/2 = 3

free parameters (the elements of the Cholesky decomposition of P ).

• The SOS Lyapunov function defined in (44) with degree 2M = 4, resulting

inMn = 5 monomials and thereforeMn(Mn + 1)/2 = 15 free parameters

(Cholesky decomposition of Q).

• The WSAQF Lyapunov function defined in (45) with L = 3 resulting

in (L + 1)n(n + 1)/2 + nL = 18 free parameters for the Cholesky de-

compositions of P 0...L and ξ1...L.

6.3. Estimating the equilibrium

For this first example, we assume the true equilibrium point x∗ = 0 to be

unknown and only consider the SOS Lyapunov function. Thus, for the opti-

mization (37) a total of 17 (15 for SOS, 2 for the equilibrium point) variables

are optimized. We utilized the motion called Multi-Model 1 from the LASA

dataset in this example.
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The result for the simulation of the deterministic case (7) is shown Fig. 9.

The equilibrium is identified to x̂∗ ≈ [7.2 − 12.5]ᵀ, which is sufficiently close

to the origin (considered as equilibrium in data generation) as the simulation is

terminated for ‖xκ − x̂∗‖ < 5.

Unfortunately, there are currently no guarantees how far the estimated equi-

libria are from the true equilibria. However, the simulation suggested that for

sufficiently many data points, which approach the equilibrium from different

directions, the proposed approach leads to proper estimates. The theoretical

investigations are left to future work.

It should also be considered, that the stabilization might lead to less smooth

trajectories (compare Fig. 9 at x ≈ [−60 70]ᵀ) which might be undesirable for

human movement primitives. However, this varies from case to case and no

general conclusion is possible.

6.4. Quantitative comparison

To enable a quantitative comparison of the Lyapunov functions presented in

Sec. 5.2, we define the following measures for the precision of the learned model.

• The total area between the curve connecting the training points and the

curve connecting the simulated trajectories.

• The average correction effort Ecor defined as Ecor =
∑
κ
‖uκ‖

/∑
κ
‖xκ‖ as

sum over all steps and trajectories.

The results are shown in Table 1. Regarding flexibility, SOS outperforms the

quadratic and WSAQF Lyapunov function on the employed dataset as shown

in Table 1 which leads to higher precision in adherence to training data. Re-

garding the computational complexity, the search of the quadratic and the SOS

Lyapunov function (37) are convex problems, and therefore have significant ad-

vantages, over the WSAQF. Computing the stabilizing command for the SOS

has a disadvantage compared to WSAQF and quadratic Lyapunov functions

as (17) is not convex. However, this drawback is inherent to flexible Lyapunov
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Figure 9: The non-stabilized GPSSM xκ+1 = µ(xκ) (top) and the stabilized
model xκ+1 = µ(xκ) + u(xκ) (bottom,) are visualized as streamlines (blue) along with the
training data (black arrows) for the motion Multi-Model 1. The contour lines of the Lyapunov
function are shown in orange. Without stabilizing command u(·), there is a spurious attractor
near [−200 80]ᵀ, which is eliminate through the stabilization. The trajectories (red), initial-
ized at the starting state of each training trajectory, converge asymptotically to the identified
equilibrium. The contour lines for the SOS control Lyapunov function are plotted in green.
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V (xκ) min Ecor max min Area Error max (37) convex (17) convex
Quadratic 0 0.224 1.1 165 8.1·103

3.5·104 yes yes
SOS 0 0.038 0.46 103 3.3·103

1.2·104 yes no
WSAQF 0 0.074 0.64 103 4.0·103

1.7·104 no yes

Table 1: Average, minimum and maximum performance
of quadratic, SOS and WSAQF Lyapunov functions across the different

motions in the LASA handwriting dataset. The convexity refers to the case for
which x∗ is known.

candidates: If only convex Lyapunov candidates are permitted, more complex

systems cannot be captured.

6.5. Probabilistic simulation

To evaluate the probabilistic setting (8), we simulate as follows.

• GPSSM without stabilization: Realizations of the trajectories are gener-

ated by drawing in each step from

xκ+1 ∼ N (µ(xκ), Σ(xκ)), (47)

using the definitions in (16).

• GPSSM with stabilization through the SOS Lyapunov function: At each

step u(·) is computed according to (25) and the next step is drawn from

xκ+1 ∼ N (µ(xκ) + u(xκ), Σ(xκ)) , (48)

which is equivalent to (8). The stabilizing command is independent of

the realization of xκ+1 which is unknown when u is computed. It only

depends on µ(xκ), Σ(xκ).

For both cases, the system is initialized twice with x0 = [−150 − 120]ᵀ as

shown in Fig. 10. For the GPSSM without stabilization both trajectories do

not converge in contrast to the trajectories of the stabilized model. Based on

Theorem 1 only ultimate boundedness can be guaranteed because nζ̄ > l2 for

the hyperparameters obtain from the optimization (12).
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Figure 10: The GPSSM without stabilization (top) and the stochastic simulations (bottom)
along with the training data (black arrows) for the N-Shape motion. The contour lines of the
Lyapunov function are shown in orange. The trajectories (red with stabilization u(·), green
without stabilization u(·)) are initialized twice at [−150 − 120]ᵀ.
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7. CONCLUSION

In this article, we propose a novel approach for learning stable Gaussian pro-

cess state-space models with multiple equilibria using control Lyapunov func-

tions. For the augmented GP model (5) we show, that the deterministic inter-

pretation allows to model arbitrarily complex continuous functions f(·) consis-

tently and that for infinite data, the model approaches the true function (for a

properly chosen control Lyapunov function) as derived in Proposition 1. The

resulting model is uniformly globally asymptotically stable according to Theo-

rem 1. In the probabilistic case, we derive conditions for almost sure uniform

asymptotic stability and uniform ultimate boundedness of the model and com-

pute the ultimate bound (Theorem 2). Furthermore, we derive the number

of additional training points required to guarantee asymptotic stability almost

surely in Theorem 3. Theses results are derived for the squared exponential

kernel only, because it is the most commonly employed kernel for GP regres-

sion. However, Theorem 1 and Corollary 1 can directly be extended to arbitrary

kernel choices. We leave it to future work to extend the results on Theorem 2

and Theorem 3 to other classes of kernels.

Additionally, we show how parametric Lyapunov functions are efficiently

learned from data. The approach allows the estimation of a finite number of

stable equilibria (as long as their domain of attraction is provided). We show

that the required optimization is (bi-) convex for particular choices of Lyapunov

candidates and that the GPSSM is only minimal distorted. For future work, it is

desired to utilize nonparametric Lyapunov function to allow a pure data-driven

model. Furthermore, is is important to provide theoretical error bounds on how

far the estimated equilibria are from the true equilibria and to estimate the

regions of attraction from data. In the simulation, we show that the proposed

framework allows precise identification based on a real world dataset.
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