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A B S T R A C T

Recent modeling and empirical studies support the hypothesis that large-scale brain networks function near a
critical state. Similar functional connectivity patterns derived from resting state empirical data and brain network
models at criticality provide further support. However, despite the strong implication of a relationship, there has
been no principled explanation of how criticality shapes the characteristic functional connectivity in large-scale
brain networks. Here, we hypothesized that the network science concept of partial phase locking is the underlying
mechanism of optimal functional connectivity in the resting state. We further hypothesized that the characteristic
connectivity of the critical state provides a theoretical boundary to quantify how far pharmacologically or
pathologically perturbed brain connectivity deviates from its critical state, which could enable the differentiation
of various states of consciousness with a theory-based metric.

To test the hypothesis, we used a neuroanatomically informed brain network model with the resulting source
signals projected to electroencephalogram (EEG)-like sensor signals with a forward model. Phase lag entropy
(PLE), a measure of phase relation diversity, was estimated and the topography of PLE was analyzed. To measure
the distance from criticality, the PLE topography at a critical state was compared with those of the EEG data from
baseline consciousness, isoflurane anesthesia, ketamine anesthesia, vegetative state/unresponsive wakefulness
syndrome, and minimally conscious state.

We demonstrate that the partial phase locking at criticality shapes the functional connectivity and asymmetric
anterior-posterior PLE topography, with low (high) PLE for high (low) degree nodes. The topographical similarity
and the strength of PLE differentiates various pharmacologic and pathologic states of consciousness. Moreover,
this model-based EEG network analysis provides a novel metric to quantify how far a pharmacologically or
pathologically perturbed brain network is away from critical state, rather than merely determining whether it is in
a critical or non-critical state.
1. Introduction

Criticality, the state of a system at the boundary between order and
disorder, has long been proposed to play an important role in neural
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level (Beggs and Plenz, 2003; Friedman et al., 2012), but also at the
large-scale or global network level (Eguíluz et al., 2005; Hahn et al.,
2017; Haimovici et al., 2013). Until now, most studies have focused on
scale-free behavior, showing power law distribution of empirically
observed variables as the evidence of criticality. Recent studies have
revealed that the functional connectivity of spontaneous dynamics is
highly correlated to the structural connectivity when the system is at
criticality, and less correlated when the system is at sub- or
super-criticality (Kim et al., 2017; Stam et al., 2016; Tagliazucchi et al.,
2016). However, despite the obvious implication of a relationship be-
tween network structure, connectivity, and criticality, there has been no
principled explanation of how a correlation between functional and
structural networks emerges at a critical state.

Here, we hypothesized that the network science concept of partial
phase locking is the underlying mechanism of the emergence of func-
tional connectivity from a structural brain network. In a coupled oscil-
lator model, the partially locked state emerges at an intermediate level of
coupling strength, in which phases of some nodes are locked with each
other while those of others drift (Ko and Ermentrout, 2008; Kuramoto,
1984). Therefore, the extent to which the phase locking shows hetero-
geneity in the brain network is thought to be closely associated with the
global pattern of functional connectivity. Moon, Lee and colleagues
identified a mathematical relationship between the phase locking and
node degree of a structural network but the relationship with criticality
was not explicitly tested (Moon et al., 2015). Considering the computa-
tional and empirical evidence that pharmacologically perturbed brains
significantly deviate from the critical state, it may be useful to develop a
metric to quantify the distance of a perturbed brain from criticality
(Hudetz et al., 2014; Tagliazucchi et al., 2016). Thus, we hypothesized
that the distance from the critical state of a functional brain connectivity
configuration of a second order phase transition provides a theory-based
metric quantifying how far a pharmacologically or pathologically per-
turbed brain is away from critical state, which allows the comparison of
various brain perturbations with the same theoretical reference.

To test the hypothesis, we used the Kuramoto model to simulate the
Fig. 1. Schematic illustration of analysis 78 time series simulated by the Kuram
signals of 78 cortical regions. The source signals were then projected onto the scalp s
signals were collected from three different experiments; (1) baseline (BL) vs. isofl
minimally conscious state (MCS) vs. unresponsive wakefulness syndrome (UWS). PLE
patterns of PLE were compared.
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functional connectivity in an anatomically informed human brain
network model. To compare predictions from the model with empirical
EEG data, we first projected the source signals of the 3-dimensional
network model onto the scalp to generate EEG-like sensor signals using
a forward model. By changing the control parameter, we studied the
relationship between functional connectivity based on EEG and criti-
cality. According to network science, the partially locked network at a
critical state modulates both synchronization and frequency in a network
heterogeneously; the higher the degree of the node, the more synchro-
nous and slow the frequency (Moon et al., 2015). To capture these
characteristic changes, we used phase lag entropy (PLE), a measure of
phase relation diversity (Lee et al., 2017), and constructed the topogra-
phies of PLE from both the model and empirical data. The PLE topog-
raphy of the model at the critical state was compared with that derived
from the EEG data acquired during baseline consciousness (n¼ 73),
isoflurane anesthesia (n¼ 29), ketamine anesthesia (n¼ 15), vegetative
state/unresponsive wakefulness syndrome (n¼ 29), and minimally
conscious state (n¼ 16); we then measured the distance of each state
from the critical state. This model-based EEG network analysis revealed a
novel metric that quantifies how far a pharmacologically or pathologi-
cally perturbed brain is away from criticality, which enabled us to define
different states of consciousness with a common theoretical reference
point. The overall analytical scheme of this study is summarized in Fig. 1.

2. Material and methods

2.1. Criticality, partial locking, and connectivity

In this study, the critical state of the brain network was determined
using two measures: (1) the large variance of order parameters (global
phase synchronization) measured by the pair correlation function and (2)
the large correlation between functional (EEG) and structural (anatom-
ically informed) brain networks. The large variance of order parameter
originates from metastability at a critical state (Cabral et al., 2014;
Shanahan, 2010). However, the reason for a large correlation between
oto model in an anatomically informed human brain network represent source
urface using a forward model to generate EEG-like sensor signals. Empirical EEG
urane anesthesia (ISO), (2) baseline (BL) vs. ketamine anesthesia (KET), (3)
was measured from both simulated and experimental signals, and topographic
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functional and structural network has yet to be clarified. Here, we argued
that the partial phase locking in network synchronization is a mechanism
to shape the functional connectivity similar to the anatomical brain
network at a critical state. Thus, the terminology ‘partial locking’ is used
to reflect the underlying mechanism to explain the relationships between
the functional network, structural network, and critical state, rather than
just a mixed state of synchronized and incoherent connectivity. During a
partial locking state, the synchronization of a node is determined by its
node degree (i.e., number of connections) and local network structure; a
larger degree node in the structural network has a higher synchronization
with the neighboring oscillators. However, theoretically, the opposite
relationship (i.e., larger node degree, lower synchrony) is also possible
depending on the type of interaction function between oscillators (Ko
and Ermentrout, 2008). In previous studies, we found that the relation-
ship of larger node degree/higher synchrony holds for diverse brain
networks such as human, monkey, and mouse (Moon et al., 2017). The
analytic and computational approaches revealed that the relationship of
larger node degree/higher synchrony/slower frequency holds for a
coarse-grained spatiotemporal scale (>seconds in time, and ~64 or 128
EEG channels in space) (Moon et al., 2015). In this study, we focused on
large temporal and spatial scales (10-s and 21-channel EEG) that can be
applied to EEG data analysis and fits well with the standard Kuramoto
model. We will show how the relationship between the functional and
structural networks changes as the brain networks deviate from the
critical state with various perturbations such as general anesthesia and
traumatic injuries.
2.2. Source signal simulation: Kuramoto model on human brain network

The Kuramoto model was implemented on a structural brain network
based upon the data of (Gong et al., 2009). The study employed diffusion
tensor imaging tractography to construct a macroscale anatomical
network capturing the underlying common connectivity pattern of ce-
rebral cortex among 80 healthy subjects. The 78 nodes of structural brain
network were defined by 78 AAL (automated anatomical labeling
(Tzourio-Mazoyer et al., 2002);) template. For each subject, cortical
connection between two nodes was deemed to exist if a white matter
fiber bundle existed between the two brain regions. The consistent
cortical connections (a binary network) across subjects were then ob-
tained by employing a nonparametric one-tailed sign test. Thus, the
connection matrix has 78 by 78 elements; the connection between node i
and j, or an element aij of the connection matrix is 1 if two nodes are
connected and 0 if disconnected.

Next, we used a Kuramoto-type model with time delay as follows
(Jeong et al., 2002; Yeung and Strogatz, 1999; Zanette, 2000),

_θjðtÞ ¼ ωj þ K
XN

i 6¼j

aij sin
�
θi
�
t � τi;j

�� θjðtÞ
�
; (1)

where, θj and ωj are phase (angle) and natural frequency of jth oscillator.
N is the number of oscillators (nodes), and K is coupling strength, which
serves as a control parameter in the model. In the simulation, the time
delay (τi;j) between node i and j was given proportional to the physical
distance between two nodes, with propagation speed of 9m/s. The signal
of the jth oscillator (xj) was obtained by taking the sin function of the
phase θj. The 78 signals of the model represent cortical source signals.

Frequency of node j, fj ¼ ωj=2π was randomly assigned with normal
distribution (Mean� SD: 10 Hz� 1.5 Hz), and initial values of θs were
generated from uniform random distribution ½ � π; π�. We changed K
from 0 to 16 with an interval of 0.1. For each K (total 161 number of Ks),
100 trials were generated with different initial values of θ andω. For each
coupling strength and for each trial, time series of 15,000 samples were
simulated with sampling rate 1000Hz. The first 5000 iterations were
discarded in order to exclude a non-stationary state. The ordinary dif-
ferential equations were solved by using the Runge-Kutta 2nd order
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method.

2.3. Sensor signal simulation via forward model

The signals generated from the Kuramoto model and structural brain
network represent source activities of the brain, which are under the
surface of where EEG signals are measured. In reality, the electrical po-
tentials generated by the neural activity in the brain conduct outwards
through brain tissue, the skull and finally appear at the scalp surface. In
order to compare experimental EEG and the model signals, we generated
surface level signals from the simulated source signals. More specifically,
the 78 oscillator time series representing the source activity were con-
verted into 21 EEG sensor level signals, which overlapped with experi-
mental EEG channels analyzed empirically.

We used three concentric spherical head models; the three layers
consist of the brain, skull, and scalp. The conductivity of the three layers
was set to be 0.33, 0.0042, and 0.33 S/m, respectively (Wen and Li,
2006). The source activity was represented as a dipole moment. The
coordinate of the dipole moment in the brain was determined by the
region's standard coordinates and the orientation of the dipole moment
was randomly assigned. We also tested the radially oriented dipoles; the
results are almost the same with the random orientation of the dipole
moment (Fig. S1). The forwardmodel simulation was conducted by using
the Field Trip Toolboox (Oostenveld et al., 2011).

2.4. Experimental protocol and EEG acquisition

Experiment 1: Isoflurane anesthesia The isoflurane study included
60 healthy volunteers (20–40 yrs) with body mass index less than 30. The
study has been reviewed in accordance with the recommendations of the
Institutional Review Boards specializing in human subject research at the
University of Michigan, Ann Arbor (Protocol #HUM0071578, n¼ 20),
University of Pennsylvania (Protocol #818401, n¼ 20), and Washington
University in St. Louis (Protocol #201308073, n¼ 20). Written informed
consent in accordance with the Declaration of Helsinki was obtained
from all participants. The data have been analyzed with different hy-
potheses and analyses (Blain-Moraes et al., 2017; Kim et al., 2018; Maier
et al., 2017).

Among 20 participants at each institution, 10 of them underwent
general anesthesia and 10 did not. Thus, a total of 30 participants across
the three institutions were anesthetized, initially receiving propofol at
increasing infusion rates over three consecutive 5-min blocks (block 1:
100 μg/kg/min, block 2: 200 μg/kg/min, block 3: 300 μg/kg/min). Loss
of consciousness was measured by response to the verbal command
(“Squeeze your left/right hand twice” with left/right randomized) every
30 s. Isoflurane anesthesia was then administered with air and 40% ox-
ygen at 1.3 age-adjusted minimum alveolar concentration. Ondansetron
4mg was administered 30-min prior to cessation of anesthesia for nausea
and vomiting prophylaxis. After 3 h of isoflurane administration, the
anesthetic was discontinued and responsiveness to the same verbal
command was assessed every 30 s until recovery of consciousness; EEG
acquired during the recovery period was not used for the current study.
Considering the hypothesis, EEG data from only two states, baseline
consciousness (2-min of eye-closed resting period before anesthesia) and
isoflurane-induced unconsciousness (2-min of unconscious period during
isoflurane administration) were used for the analysis. Because this study
considers the phase relationship among oscillations, periods showing
isoelectric or burst-suppression pattern were excluded from the epoch
selection.

All EEG data was acquired with 32, 64, or 128-channel HydroCel nets,
Net Amps 400 amplifiers (Electrical Geodesic, Inc., USA). Sampling fre-
quency was 500 Hz and referenced to a vertex. The number of EEG
channels used in the University of Michigan was 128 (n¼ 28) or 64
(n¼ 2), while the other two institutions used 32-channels with the same
EEG Montage. We attempted to identify 21 common channels for the
analysis. If there were no overlapping channels, the closest channel was
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chosen instead. If two electrodes were equally close, we took the average
of the signals from the two (Fig. S2).

Experiment 2: Ketamine anesthesia The ketamine study included 15
healthy volunteers (20–40 yrs) with a body mass index less than 30. This
study was approved by the University of Michigan Medical School
Institutional Review Board, Ann Arbor, Michigan (HUM00061087), and
written informed consent was obtained from all participants. All study
procedures were conducted at the University of Michigan Medical
School, Ann Arbor, Michigan. The data have been published with
different hypotheses and analyses (Vlisides et al., 2018, 2017).

EEG data was collected during (1) 5-min eye-closed resting period
before ketamine administration, (2) subanesthetic ketamine infusion
(0.5mg/kg) over 40min with eye-closed, followed by 8mg ondansetron,
(3) break for completion of questionnaire, (4) anesthetic (1.5mg/kg)
bolus dose with eyes closed, (5) recovery period with eyes closed.
Considering the hypothesis of the current study, EEG data from only two
states, baseline consciousness (2-min of eye-closed resting period before
ketamine administration from (1)) and ketamine-induced unconscious-
ness (2-min of unconscious period from epoch (4)) were used for the
analysis.

The EEG data were acquired with 128-channel HydroCel nets, Net
Amps 400 amplifiers (Electrical Geodesic, Inc., USA). The EEG was
sampled at 500Hz with the vertex reference. As with experiment 1, the
21 overlapping channels among 128-channels were chosen for the
analysis to maximize comparison with the structural/EEG brain model.

Experiment 3: Disorders of consciousness EEG data from 80 patients
suffering from disorders of consciousness due to subarachnoid hemor-
rhage, intracerebral hemorrhage, subdural hematoma, ischemic stroke,
traumatic brain injury, meningitis or hyperglycemic brain injury were
recorded on two systems. The patients were classified as either minimally
conscious or in the vegetative state/unresponsive wakefulness syndrome
(UWS) according to the Coma Recovery Scale Revised (Giacino et al.,
2004). 17 patients (the Munich cohort) were recorded with a 64-elec-
trode system with ring-type sintered, nonmagnetic Ag/AgCl electrodes
(Easycap, Herrsching, Germany) and two 32-channel, nonmagnetic,
battery-operated electroencephalographic amplifiers (BrainAmp MR,
Brain Products, Gilching, Germany). The signals were recorded at 5 kHz
sampling rate (BrainVision Recorder, Brain Products). 63 patients (the
Burgau cohort) were recorded with a 256 channel high-density geodesic
sensor net, a Net Amps 300 amplifier and Net Station 4.5. software
(Electrical Geodesic Inc., Eugene, OR, USA). The signals were recorded at
1 kHz. EEG with suppression pattern gives rise to a high PLE value, which
clearly results from an increased randomness of neural dynamics, not
from a complex phase lead-lag relation (Lee et al., 2017). Therefore, we
excluded data of 22 patients whose EEG shows the suppression pattern;
all 22 patients were from UWS group. As with experiment 1 and 2, the 21
overlapping channels were chosen for the analysis to maximize com-
parison with the structural/EEG brain model (Fig. S2).

2.5. EEG preprocessing

We gathered EEG from five different states of consciousness from
three experiments. Total number of data after artifact rejection was:
baseline consciousness (BL, n¼ 73), isoflurane-induced unconsciousness
(ISO, n¼ 30), ketamine-induced unconsciousness (KET, n¼ 15), mini-
mally conscious state (MCS, n¼ 15), and unresponsive wakefulness
syndrome (UWS, n¼ 27). The baseline state was obtained from iso-
flurane (n¼ 58) and ketamine experiments (n¼ 15), separately. EEG
from two subjects in BL state in the 1st experiment, and EEG epochs from
16 subjects in the 3rd experiment were excluded due to severe noise
based on visual inspection and automatic epoch rejection.

EEG data were visually inspected and noisy periods were excluded
from the epoch selection. Epochs containing amplitudes larger than
250 μVwere also rejected. Data were down-sampled to 250 Hz regardless
of original sampling rate, and re-referenced to the average of 21 EEG
signals. For theMCS and UWS data, independent component analysis was
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employed such that the ocular artifacts were removed. For each state, 2-
min of clean data (by visual inspection) were collected, and the data
subdivided into 10-s small epochs; thus, 12 epochs per each state per
each subject were gathered for the PLE analysis. We applied relatively
wide bandpass filtering because both pharmacologically- and
pathologically-altered states are characterized by strong oscillations at
relatively low frequency regime (delta ~ beta) and show dynamic tran-
sitions in the spectrogram. To capture the dominant oscillations of brain
activities across different states, and to avoid contamination of electro-
myogram and electrocardiogram artifacts, we chose a frequency range,
2–25 Hz; Zero-phase bandpass filtering with FIR filter of order 1000 was
conducted. Results with 2–40Hz (broader) and 4–20Hz (narrower)
showed qualitatively similar results.
2.6. Analytic measures

Phase lag index We applied phase lag index (PLI) (Stam et al., 2007)
to quantify phase-locking between two signals. Distinct from common
measures of phase synchronization (Lachaux et al., 1999; Mormann et al.,
2000), PLI considers only the phase lead-lag relationship of two signals.
That is, its value does not depend on the real part of the cross spectrum,
mitigating the effect of volume conduction in EEG recording. For large
coupling strengths, consistent phase locking among signals results in a
high value of PLI. On the other hand, small coupling strengths as well as
independent or poorly-correlated signals result in a low PLI. The PLI
between two signals can be estimated by

PLI ¼ 1
T

�����
XN

t¼1

signðΔθtÞ
�����; (2)

where T is the number of time points within a given epoch, Δθt is the
phase difference between the two signals. By definition, PLI has a high
(or low) value if the sign of Δθt is consistent (or variable) within an
epoch; e.g. asymmetric distribution of Δθt results in a high value of PLI.
The state or the phase of the system is indicated by global mean PLI; it
indicates whether the total system is in a locked state (synchronization)
or in a drift state (desynchronization). Global mean PLI is an average of
PLI values from all connection pairs, i.e., for source model, a total of 3003
(¼ 78� 77/2) values of PLI are obtained. The global mean PLI was used
as a surrogate measure of the Kuramoto order parameter < r>t ; here r is

defined, zðtÞ ¼ rðtÞe�iψðtÞ ¼ 1
N

PN

j¼1
e�iθjðtÞ, where ψðtÞ is the average

global phase. The modulus rðtÞ ¼ jzðtÞj or so-called order parameter
represents the degree of synchronization, being equal to 0 when the os-
cillators' phases are uniformly distributed in [0, 2π) and 1 when oscil-
lators have the same phase. The level of phase synchronization is
determined by a time average of the order parameter after a transient
period. N is total number of signals (nodes), and j is a signal index.

Pair correlation function Critical point, or critical state, is deter-
mined by a point on the control parameter in which the divergence of the
correlation length or a maximal susceptibility to an external field ap-
pears. In the Kuramoto model, a pair correlation function (Cp) measures
the variance of the order parameters calculated during a time interval t,
which is used as a surrogate measure of susceptibility and shows a bell-
shaped peak near the critical point (Yoon et al., 2015). Cp in Kuramoto
model is defined as

Cp ¼ N
�
Re2½zðtÞ�t � Re½zðtÞ�2t

�
; (3)

where zðtÞ is defined in a rotating frame. Cp measures the variance of
cross-correlation coefficients among all EEG signals. Because the real part
of zðtÞ is extremely vulnerable to volume conduction, Cp cannot predict
the critical point in the sensor signals and experimental EEGs. Thus, we
identified the critical point by maximum of Cp averaged across 100 trials
in the source model.
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Phase lag entropy Phase lag entropy (PLE) measures the diversity of
phase lead-lag patterns among two signals (Lee et al., 2017). Unlike
time-averaging measures of phase synchronization (e.g., PLI), PLE in-
corporates the temporal dynamics of the instantaneous phase time series
into the phase synchronization analysis. More specifically, PLE extracts
consecutive temporal patterns of the phase relationship, which span tens
of milliseconds.

To calculate PLE between two signals, the phase difference is first
symbolized in a binary fashion; the symbol st ¼ 1 if Δθt > 0 (first signal
is phase leading the second signal), and st ¼ 0 if Δθt < 0 (first signal is
phase lagging the second signal). Then, the vector St representing the
temporal pattern of the phase relationship is given by:

St ¼ �
st; stþτ; …stþðm�1Þl

�
; t ¼ 1; 2; …; T � ðm� 1Þl; (4)

where m and l represent pattern size and time lag, respectively. For
instance, withm¼ 3, eight patterns (’000‘, ‘001‘,’ 010‘, ‘100‘, ‘011‘, ‘101‘,
‘110‘, and ‘111‘) can be generated. Finally, by applying the standard
Shannon entropy formula to the distribution of the phase patterns, PLE is
calculated,

PLE ¼ � 1
logð2mÞ

X

k

pk logpk; (5)

where 0 � pk � 1 is the probability of the kth phase lead-lag pattern, as
estimated by calculating the fraction of time each pattern occurs relative
to the total time length of a given epoch. The denominator scales PLE to
the range [0 1]. PLE �0, if a few patterns are dominant over other
possible patterns, while PLE �1, if all patterns are almost equally prob-
able. In this study, we chose a parameter set m ¼ 5 and l ¼ 2 considering
the time-lagged mutual information of phase lead-lag time series
(Fig. S3). Testing various parameter sets did not change the PLE topog-
raphy qualitatively.

2.7. Source level analysis

First, we investigated the influence of the structural nodal degree on
the PLI and frequencies of 78 nodes. Specifically, we focused on the
difference between hub and non-hub nodes. The hub nodes were defined
as the top nine ranked nodes (node degree cutoff¼ 13) in node degree of
the structural network, and the remaining nodes were denoted as the
non-hub nodes. For the PLI analysis, 78 by 78 PLI matrix was converted
into a 78 by 1 PLI vector, i.e., a nodal PLI of each node was obtained by
averaging all 77 PLI values. Then, PLIhubs (or PLInon-hubs) was obtained by
averaging the nodal PLI values of nine hub nodes (69 non-hub nodes).
The difference between PLIhubs and PLInon-hubs was tested at three
representative Ks (K¼ 0.2, 2.4, and 10) with a Wilcoxon rank sum test,
under a null hypothesis that the difference comes from a distribution
symmetry of about zero; the distribution is made of 100 data points (100
simulations) for each K. The difference between the two was also
compared across three representative Ks, under a null hypothesis that
there are no changes in difference across two different Ks. The same
statistical analysis was conducted for frequency difference. Because the
variances of PLI and of frequency were different across the three repre-
sentative Ks, we used a non-parametric Wilcoxon signed rank test instead
of a parametric paired t-test. Next, we compared PLE topography and the
structural node degree. As in PLI, 78 by 78 PLEmatrix was converted into
a 78 by 1 PLE vector. Then, an averaged topography of PLE was obtained
by averaging the PLE topographies over 100 trials. Finally, Pearson
correlation between the average PLE topography and node degree of
structural network were estimated. This procedure was repeated for all K
values. In all hypothesis tests, Bonferroni corrected p-values with values
less than 0.05 was considered to represent significant difference across
the states (*p < 0.05; **p < 0.01; ***p < 0.001).
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2.8. Comparison of sensor signals and empirical data

The PLE topographies of the sensor model data and empirical data
were compared with a method similar to that used for the source model
analysis. In both the sensor model and the empirical data, a 21 by 21 PLE
matrix was converted into a 21 by 1 PLE vector as in the source model.
For the empirical data, the PLE topography per each 10-s window in each
subject in each state was obtained. Then, Spearman correlation was used
to evaluate the similarity between the PLE topography of the sensor
model and that of the empirical data. The correlation coefficient was
averaged across windows. This procedure was repeated for all K values of
the sensor model and for all empirical data.

To investigate different states of consciousness, a similarity
(Spearman correlation) between PLE topography of each conscious state
in the empirical data and a reference PLE topography was calculated. The
reference PLE topography represents a PLE vector from the sensor model
at the critical point (K¼ 2.4). Thus, high (or low) correlation value
represents a state being close to (or far away from) the critical state, in
terms of coupling strength, K. The similarity values of different states
were compared to each other by usingWilcoxon signed rank test. We also
calculated a mean PLI to evaluate the complexity of the brain connec-
tivity for each state. The same procedure was conducted for mean PLE.
The mean PLE for each subject for each state was obtained by averaging
210 (¼ 21 � 20/2) PLE values across all 10-s epochs. The statistical test
was conducted only among the same datasets (experiment), e.g., baseline
consciousness (n ¼ 58) vs. isoflurane anesthesia (n ¼ 30), in the first
experiment. In all hypothesis testing, Bonferroni-corrected p-values less
than 0.05 were considered to represent significant difference across the
states (*p < 0.05; **p < 0.01; ***p < 0.001).

3. Results

3.1. Strong correlation between functional and structural brain
connectivity near the critical point

In the brain network model, PLI increased and the mean frequency
decreased monotonically as K increased (Fig. 2A and B). We compared
the PLIs of hub and non-hub nodes. At the intermediate level of K, the PLI
of hubs is larger than that of non-hubs, meaning that hubs are more easily
phase-locked than non-hub nodes, especially at intermediate values of K
(Fig. 2A, C). In this brain network model, we used PLI because it is robust
with respect to the volume conduction problem of EEG. However, we also
tested a local order parameter, a conventional measure for the Kuramoto
model study, and obtained consistent results (Fig. S4). Fig. 2C describes
the PLI differences at three representative K values (K¼ 0.2, 2.4, and 10,
respectively). The PLI differences significantly deviated from zero at
K¼ 2.4 and 10 (#: Bonferroni corrected p< 0.05). Also, the PLI differ-
ence at K¼ 2.4 was significantly higher than that at K ¼ 0.2 and 10 (***:
Bonferroni corrected p < 0.001).

Frequencies also showed disparity between hubs and non-hubs
(Fig. 2B and C). The mean frequencies of hubs and non-hubs were
comparable at small and large Ks, whereas the frequency of hubs was
lower than that of non-hubs at an intermediate K. This indicates slower
dynamics of hub nodes compared to the non-hub nodes. Fig. 2D describes
the frequency differences at three representative K values (K¼ 0.2, 2.4,
and 10, respectively). The frequency differences significantly deviated
from zero at K¼ 2.4 and 10 (#: Bonferroni corrected p< 0.05; number of
hypotheses¼ 5). Also, the frequency difference at K¼ 2.4 was signifi-
cantly higher than that at K ¼ 0.2 and 10 (***: Bonferroni corrected
p < 0.001; number of hypotheses ¼ 5).

These findings are consistent with analytic results in our previous
studies (Moon et al., 2017, 2015). The two characteristic features of a
critical state, i.e., stronger phase locking and reduced frequencies at hub
nodes, can be captured with PLE, a measure of phase relation diversity.
Thus, we expected that the PLE of hubs would be lower than that of other
nodes near the critical point.



Fig. 2. A strong negative correlation between PLE and node degree is observed near the critical point. (A) As K increases, both PLI of hubs and non-hubs
increase. The PLI of hubs increases faster than that of non-hubs, resulting in a disparity at intermediate K. (B) As K increases, the frequency (f) of both hubs and
non-hubs decreases. The f of hubs decreases faster than that of non-hubs, resulting in a disparity at intermediate K. (C) The disparity in PLI is significantly larger at
K¼ 2.4 than K¼ 0.2 and K¼ 10. (D) The disparity in f is significantly larger at K¼ 2.4 than K¼ 0.2 and K¼ 10. (E) Representative signals of hub and non-hub nodes at
three different Ks. At K¼ 2.4, signals of low degree regions change their phase lead and lag relationship frequently, whereas signals of high degree regions are locked
with each other. (F) Correlation between PLE and node degree at three different Ks. A strong correlation is seen at K¼ 2.4, due to the disparity between hub and non-
hub nodes in PLI and frequency near the critical point (B–C). (G) Mean PLE, Cp, and absolute value of correlation between PLE and node degree is shown as a function
of K. When Cp is maximized, i.e., near the critical point, the correlation between PLE and node degree is maximized.
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Fig. 2E demonstrates the examples of source signals at small, inter-
mediate (critical), and high K values. At small K (¼ 0.2), both the pe-
ripheral and hub nodes are incoherent, such that most signals drift
(Fig. 2E left). At a critical point (K¼ 2.4), hubs tend to be locked in terms
of phases while non-hub nodes drift (Fig. 2E middle). When K is suffi-
ciently high (K¼ 10), both hub and non-hub nodes are locked and the
system becomes globally synchronized (Fig. 2E, right).

We calculated the PLE of each node by averaging 77 PLE values; that
is, a 78 by 78 PLE matrix was reduced to 1 by 78 PLE vector. Fig. 2F
depicts the relationship between node degree and PLE. At low or high K,
the correlation between PLE and node degree was relatively low (Pearson
correlation coefficient, R¼�0.187, p¼ 0.101 for K¼ 0.2 and �0.358,
p< 0.01 for K¼ 10). However, at the critical point, a strong negative
correlation was seen; hubs showed low PLE and peripheral nodes showed
relatively higher PLE (R¼�0.806, p< 10�18). Fig. 2G describes the
change of mean PLE (averaged over all 3003 pairs) and correlation be-
tween nodal PLE and node degree as a function of K. The mean PLE
decreased monotonically as K increased due to the phase-locking and
frequency reduction effects. Cp, a surrogate measure of network suscep-
tibility, showed a bell-shaped curve as a function of K and was maximized
at K¼ 2.4. Here, we determined the coupling strength (K¼ 2.4) as the
critical point of the brain network model. The strong correlation between
nodal PLE and node degree was seen near the critical point.
3.2. Anterior-posterior asymmetry observed at criticality in the model and
EEG in resting state

The nodal PLE values of 78 regions of interest were used to construct a
topographic pattern, i.e., the PLE values were represented in color on the
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surface of the brain (Fig. 3A). In Fig. 3A, the PLE topographies from three
representative Ks are shown. For each topographic map, color was scaled
such that minimum (mean - 2SD) and maximum values (mean þ 2SD)
were determined. Among the three different Ks, a notable topographic
pattern was observed at criticality. At the critical point, the topography of
PLE showed an anterior-posterior asymmetry; PLE is higher in frontal
regions and lower in posterior regions (Fig. 3A, middle). This is because
of the spatial distribution of node degree of the human brain network
(Gong et al., 2009). The human brain network has many strong hub
nodes in posterior regions and many peripheral nodes in anterior regions
(Fig. 3B) so that the strong negative correlation between node degree and
PLE at the critical point (Fig. 2E and F) leads to the anterior-posterior
asymmetry.

We further investigated whether the sensor model and experimental
EEG can exhibit anterior-posterior PLE asymmetry. Fig. 3C shows PLE
topography of the sensor signals from K¼ 0.2, 2.4, and 10, respectively.
The asymmetric anterior-posterior PLE was clearly seen at K¼ 2.4, but
not at K¼ 0.2 or 10, as in the source model (Fig. 3A).

Experimental EEG recorded during the baseline conscious state also
exhibited the asymmetric anterior-posterior PLE topography. Mean PLE
topography is shown in Fig. 3D (n¼ 73). We quantified the similarity
between the sensor model and experimental EEG. The Spearman corre-
lation was calculated between PLE of EEG data and that of the sensor
models from different Ks. Fig. 3E shows that the Spearman correlation is
higher near the critical point than low or high K values. Fig. S5 describes
the same analysis result based on PLI topography. The Spearman corre-
lation between PLI topography of EEG data and that of the sensor model
was maximal near the critical point as well, but the Spearman correlation
values were substantially lower than that of PLE (Maximum



Fig. 3. The anterior-posterior PLE asymmetry is
seen in the source model, sensor model, and
experimental EEG. (A) PLE topography of the source
model simulation at three different Ks. (B) Node de-
gree of structural network. (C) PLE topography of the
sensor model simulation at three different Ks. (D) PLE
topography of experimental EEG (n¼ 73). Strong
anterior-posterior asymmetry is shown as in the
source/sensor model at K¼ 2.4. (E) Spearman corre-
lation between experimental PLE topography and
sensor model PLE topography. Experimental PLE
shows a strong agreement with PLE topography of the
sensor model near the critical point. Shaded area in-
dicates SEM (n¼ 73). In (A, C, and D), color bar
presents a relative scale (; the mean �2SD of
21channels for each K) was applied.
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correlation¼ 0.240 and 0.541 for PLI and PLE, respectively). PLE better
reflects the disparity of hub-parietal activities at the critical point than
does PLI. The topoplots of PLE and PLI with absolute scale are depicted in
Fig. S6.

3.3. Disrupted partial phase locking in pharmacologically and
pathologically perturbed brains

We tested how pharmacological and pathological perturbations of the
human brain network alter the topographical pattern of PLE, with com-
parison to the model brain network. The topographic patterns of PLE for
the five states of consciousness (BL, ISO, KET, UWS, and MCS) are pre-
sented in Fig. 4 (A). The topographical similarity curve was generated by
comparing the topographical pattern of PLE from empirical EEG and all
topographical patterns generated from the model brain network as
changing the coupling strength K (from 0 to 16) (Fig. 4B); this procedure
was performed for each epoch in each subject in each state. The BL states
of consciousness in the two anesthetic experiments had a bell-shape
curve with the maximum topographical similarity with the topograph-
ical patterns around K¼ 2.4 (which is considered to be the critical point
in the model brain network). By contrast, the two anesthetics showed
similarity curves that were distinct from those of the baseline states. In
both ISO and KET states, the overall topographical similarity was lower,
especially without an obvious maximum peak in the similarity curve. In
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the topographical pattern, the frontal PLEs were very low (Fig. 4A),
which is distinct from the baseline conscious state. Of note, the topo-
graphical pattern of MCS and UWS patients had a bell-shape curve,
although both similarity levels were lower. The topographical similarity
of both the UWS and MCS patients were not significantly different from
each other. The different similarity curves between the two anesthetics,
UWS, and MCS may imply distinctive effects of pharmacological and
pathological perturbations on the topographical pattern of PLE. For the
UWS and MCS patients, a few primary structures of the topographical
pattern (for instance, the asymmetric anterior-posterior PLE) are pre-
served, but the secondary structures are altered, whereas the two anes-
thetics perturb the overall structure.

Fig. 4C presents a 2-dimensional parameter space that consists of
topographic similarity of PLE referenced to the model brain network at a
critical point and mean PLE. The topographical similarity of PLE distin-
guished the BL state from all other perturbed networks. By contrast, the
mean PLE differentiated the BL and MCS from two anesthetized states
and UWS, respectively. In other words, the topographic similarity dis-
tinguishes the normal and the perturbed brains, whereas the mean PLE
distinguishes conscious (baseline and MCS) and unconscious states
(anesthetized and UWS). Both ISO and KET states showed a reduction of
similarity and of mean PLE, compared to the baseline (Spearman corre-
lation: ###p < 0.001 for isoflurane and ketamine; for mean PLE:
***p < 0.001 for isoflurane, *p < 0.05 for ketamine). The mean PLE of



Fig. 4. Mean PLE and topographic pattern distinguish different states of consciousness (A) PLE topography for five states of consciousness. (B) Similarity
(Spearman correlation) between PLE topography of experiments and those of the sensor model simulations. BL vs. ISO (left panel, experiment 1), BL vs. KET (middle
panel, experiment 2), and MCS vs. VS (right panel, experiment 3). Shaded area represents SEM. (C) Mean PLE and Spearman correlation distinguish different states of
consciousness. Spearman correlation was calculated between PLE topography of experiments and that of sensor model at the critical point (K ¼ 2.4). Different colors
represent different states of consciousness and different marker shapes represent the three different experiments. Error bar represents SEM. The characters ‘*’ and ‘#’
represent statistical significance in mean PLE and Spearman correlation, respectively. The statistical test was performed within the same experimental dataset; p-values
were adjusted by Bonferroni correction (* or #: p < 0.05, ** or ##: p < 0.01, and *** or ###: p < 0.001).
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MCS was significantly higher than that of UWS (**: p < 0.01). However,
the topographical similarity of the UWS and MCS patients were not
significantly different from each other (Bonferroni unadjusted p-
value ¼ 0.834). The p-values were Bonferroni corrected across the
number of hypotheses (¼ 6).
3.4. Scale dependent behavior of PLE topography

We varied the window size for the PLE calculations from 200-ms to
15-s and assessed whether there is a scale dependence of PLE topography.
In this analysis, Spearman correlation between nodal PLE of the sensor
model at critical point and that of the empirical data was calculated per
each window and then averaged across windows.

The correlation between the reference PLE vector and nodal PLE of
empirical data at the baseline states increased as a function of window
size (Fig. 5). An abrupt increase of the correlation was observed in 200-
ms to 5-s. However, in the four altered states of consciousness, the cor-
relation values stayed low and did not increase abruptly as in the baseline
states. The baselines demonstrate more significant correlations for all
window sizes and apparent scale dependence of the correlation that
Fig. 5. Scale dependent behavior of PLE topography Topographic similarity
(Spearman correlation) between PLE of empirical data and that of the sensor
model at the critical point with different window sizes (200-ms to 15-s). Shaded
area represents SEM across subjects.
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differentiates the baseline state from the four altered states of con-
sciousness. A smaller (or larger) correlation implies that the PLE patterns
are different from (or similar to) the reference PLE pattern. The results
indicate that there is a window size that is able to associate the PLE
topography with the structural connectivity in the baseline state. By
contrast, the PLE topographies of the perturbed brains are not con-
strained by the structural connectivity at any temporal scale.

4. Discussion

4.1. Brain networks at criticality shape functional brain connectivity

Modeling and empirical studies have provided evidence that the
resting-state brain is characterized by criticality. Power law distribution,
large variability, and slowing dynamics of neurophysiological data sup-
port this hypothesis (Beggs and Plenz, 2003; Deco et al., 2017; Eguíluz
et al., 2005; Miller et al., 2009; Tagliazucchi et al., 2012). In particular,
the maximal correlation between the functional connectivity of the
empirical data and the brain network model at criticality is direct evi-
dence suggesting that the resting-state brain functions at criticality (Deco
and Jirsa, 2012). fMRI studies demonstrated that the correlation is state
specific, with higher values in the conscious state and lower values in the
unconscious state (Tagliazucchi et al., 2016). Although these modeling
and empirical studies suggest a relationship between network connec-
tivity, state, and criticality, the nature of this relationship had not been
identified. In this study, we provide evidence that partial phase locking is
the network mechanism that defines functional connectivity patterns
within the scaffold of structural connectivity. Furthermore, we demon-
strate for the first time that the resting-state functional connectivity of the
EEG, a modality distinct from fMRI, also has a large correlation with the
model data at a critical state. Because of the limitations of localizing
source-level signals, EEG has not been used to study the relationship
between functional and structural connectivity in the brain. In this study,
by using the forward model, we projected the source signals onto the
scalp to generate EEG-like sensor signals, such that direct investigation of
the structure-function relationship with EEG was possible. We then
compared directly the PLE topographies of both the EEG and the simu-
lation of the sensor level, and showed that the characteristic connectivity
pattern, asymmetric anterior-posterior PLE, during the conscious state
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was only observed when the model dynamics were near the critical point.
We also demonstrated that pharmacologically or pathologically per-
turbed states (ketamine anesthesia, isoflurane anesthesia, UWS, and
MCS) were separated by the topographic similarity of PLE and the mean
PLE, which yielded distinct information for a perturbed brain network.
The topographic similarity distinguishes the normal and the perturbed
brains, whereas the mean PLE distinguishes conscious and unconscious
states, enabling us to distinguish among diverse brain states with EEG.
The model-based EEG connectivity at criticality can potentially be used
as a theoretical reference point to define a perturbed brain state, which
might be better than comparison to a baseline EEG that cannot always be
guaranteed as the optimal brain state. The topographic similarity of PLE
across subjects in each state (Baseline, ISO, KET, UWS, and MCS) also
supports our hypothesis that the brain network structure at criticality
shapes the PLE topography (Fig. S7). BL has higher topographic simi-
larities of PLE across subjects within and between the baselines of two
anesthesia experiments (Spearman correlation: 0.601� 0.185 and
0.571� 0.179 within 1st and 2nd experiment, respectively;
0.557� 0.197 between 1st and 2nd experiments). By contrast, the per-
turbed brain states have low or no topographic similarities of PLE across
subjects (Spearman correlations, ISO: 0.356� 0.266, KET:
0.395� 0.349, MCS: 0.054� 0.364, UWS: 0.188� 0.265). The phar-
macologic and pathologic perturbations significantly disrupt a common
topographic structure of PLE among the subjects.

4.2. Scale dependency of the similarity of functional-structural connectivity

It is noteworthy that there is a discrepancy among fMRI studies
regarding the similarity of functional-structural connectivity during
conscious and anesthetized states. Several studies reported that func-
tional connectivity of anesthetic-induced unconscious state is closer to
the structural connectivity than that of conscious resting state (Barttfeld
et al., 2015; Ma et al., 2017; Mashour, 2018; Uhrig et al., 2018). On the
contrary (Tagliazucchi et al., 2016), demonstrated a larger similarity of
functional and structural connectivity in consciousness, with the simi-
larity diminishing in an anesthetized state. (Barttfeld et al., 2015; Uhrig
et al., 2018) and (Ma et al., 2017) focused on the dynamics of functional
connectivity of fMRI in a relatively small window size (<¼ 3min), sug-
gesting that a diverse repertoire in the resting state is a signature of
consciousness to be differentiated from anesthetic-induced uncon-
sciousness. On the other hand (Tagliazucchi et al., 2016), highlighted the
similarity of functional and structural connectivity that requires a whole
fMRI dataset without windowing to contain the characteristic brain dy-
namics, i.e., slowing frequency and long range temporal correlation, at
the critical state. The discrepancy among the previous fMRI data may
result from the different time scales the studies were focused on: one in a
relatively short time window for dynamic repertoires and the other in a
large time window for comparison of functional-structural connectivity.

In our EEG study, the similarity between PLE of empirical data and of
the model was pronounced in large windows, but diminished in small
windows (<5 s). Importantly, the scale-dependency appears only in the
baseline conscious state, not in the altered states of consciousness. This
result implies that the conscious brain is characterized by diverse rep-
ertoires of global functional connectivity on a short time scale. When
combining all repertoires of small windows in a large window, the
functional connectivity reflects the constraints of the structural connec-
tivity, showing a large correlation of functional and structural connec-
tivity. Pharmacological or pathological perturbation of brain networks
may reduce the diverse repertoires of functional connectivity, with the
few patterns that remain reconfiguring the PLE.

4.3. Partial phase locking as a mechanism of flexible brain connectivity

At an intermediate level of coupling strength in our model, the system
is in between order (synchronization) and disorder (desynchronization).
The critical state, which is characterized by a partially locked state in a
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coupled oscillator model, consists of phase-locked subpopulations and
phase-drifting subpopulations (Ko and Ermentrout, 2008; Kuramoto,
1984). For some nodes (i.e., the phase locked subpopulation), the
coupling strength is strong enough to promote synchronization, but for
the rest of the nodes, it is not strong enough and the phases incoherently
drift with reference to each other. Studies of coupled oscillator models
have shown that the partially locked state can emerge from a heteroge-
neity of intrinsic frequencies or the heterogeneity of node degree
(Acebr�on et al., 2005; Ko and Ermentrout, 2008; Strogatz, 2000). In our
study, the partially locked state resulted from a disparity in node degree,
giving rise to hub nodes in a synchronized state and non-hub nodes in an
incoherent state. In addition, a transition from drift (incoherent) to
locked (synchronous) state accompanies the slowing-down of fre-
quencies (Fig. 2A–C) (Moon et al., 2015). That is, when nodes become
synchronous, they oscillate with slower frequencies compared to their
intrinsic frequencies. Therefore, hubs have a higher probability of being
in a locked state with slower frequencies, whereas non-hub nodes are
likely in a drift state with relatively faster frequencies. PLE is inherently
sensitive to changes in both phase-locking and frequencies of oscillators
(Lee et al., 2017), thereby showing a pronounced negative correlation
between nodal PLE and node degree at the intermediate coupling
strength. We defined the intermediate coupling strength as the critical
point. In the human brain network, the partially locked state maximizes
the influence of the structural connectivity on the functional connectiv-
ity, and the broad ranges of functional connectivity, frequency, and
power at the critical point induce susceptibility to perturbation in the
network. If a system deviates from the critical point, it begins to be biased
toward an incoherent or synchronized state, with loss of variability and
loss of susceptibility.

4.4. Criticality and altered states of consciousness

If the conscious brain operates near the critical point, what happens in
pharmacologically or pathologically perturbed brains? What about other
altered states of consciousness such as sleep or epileptic seizures? Hudetz
et al. used a spin-glass model to test whether anesthesia or epileptic
seizure would move the brain away from the critical point and reduce the
diversity of connectivity patterns (Hudetz et al., 2014). A recent EEG
study reported that the conscious state is characterized by a high dy-
namic complexity, implying a balanced state between order and disorder
(Wang et al., 2017). Disruption of scale-free organization of neural ac-
tivity has been observed in various altered states of consciousness with
different sources of data from different species. In nonhuman primates,
both propofol- and ketamine/medetomidine-induced loss of conscious-
ness were associated with stabilization of cortical dynamics (Solovey
et al., 2015). During epileptic seizures, neuronal activity patterns deviate
from power law distribution (Meisel et al., 2012). During emergence
from pentobarbital anesthesia in mice, scale-invariant spatiotemporal
patterns of neural activity gradually emerged based on voltage imaging
(Scott et al., 2014). Tagliazucchi et al. revealed that the correlation be-
tween structural connectivity and functional connectivity of fMRI data
was significantly reduced in propofol-induced unconsciousness, and
argued that anesthetic-induced unconsciousness is associated with a
departure from critical dynamics (Tagliazucchi et al., 2016). In our study,
the unconscious brain, either induced by anesthesia or a disorder of
consciousness, also showed distinct PLE topography compared to that of
the conscious brain. However, the different PLE patterns cannot
completely rule out the possibility that the unconscious brain might still
operate near the critical point. For instance, anesthesia may reconfigure
the brain network (Lee et al., 2013; Schroter et al., 2012), and, as a result,
a different connectivity pattern may arise that is still governed by critical
dynamics despite a perturbed condition. Additionally, there were
empirical studies that observed a preservation of scale-free organization
of EEG-derived functional connectivity during propofol-induced uncon-
sciousness (Hahn et al., 2017; Lee et al., 2010). Furthermore, neural
avalanche distributions from human local field potential recordings
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followed a power law during rapid and non-rapid eye movement sleep as
well as wakefulness (Priesemann et al., 2013). Liu et al. found that the
scale-free distributions of node size and node degree in fMRI were pre-
served across wakefulness, propofol sedation, and recovery. However,
the scale-free distribution was notably absent in UWS patients (Liu et al.,
2014). The results imply that general anesthesia does not seem to be a
complete network failure but rather that the brain undergoes an adaptive
reconfiguration to maintain an optimized state of global brain network
organization.

4.5. Application to altered states of consciousness

PLE measures the entropy of phase lead-lag patterns between two
EEG signals (Lee et al., 2017). Higher PLE reflects more complex in-
teractions between brain regions, which correspond to expanded reper-
toires in inter-areal communication. In contrast, the topographical
similarity of PLE measures how close the global communication structure
derived from empirical data is to that of the theoretically estimated
critical state. In the 2-dimensional state space (Fig. 4C), we observed that
the mean PLE separates the baseline conscious states and MCS from
anesthetized states and UWS, and the topographic similarity of PLE dif-
ferentiates the baseline conscious states from all other perturbed brains
(anesthetized states, MCS, and UWS). The baseline showed a larger mean
PLE and higher topological similarity compared to the theoretically
optimal topographic pattern. Two anesthetized states and UWS had
smaller mean PLE and lower topological similarity. Notably, MCS has a
lower topological similarity but a higher mean PLE. The results suggest
that the overall communication complexity of the MCS brain is at a
similar level with the baseline, but the communication structure is
inefficient and far from the critical state, thus reducing sensitivity to
external stimuli. These PLE based measurements are consistent with the
perturbational complexity index (PCI), which quantifies the complexity
(algorithmic compressibility) of the EEG response to a direct cortical
perturbation with transcranial magnetic stimulation (Casali et al., 2013;
Sarasso et al., 2015). PCI has been proposed as the most promising index
for quantifying the level of consciousness and shows high accuracy in
detecting consciousness in a large population of subjects. However, PCI
requires external magnetic stimulation to the brain and is a data driven
index; thus, it does not have a theoretical boundary. By definition, PCI as
well as PLE measure the randomness of a system but this does not allow
the estimation of the criticality of a system, i.e., how far the given system
deviates from its optimal state. As such, the 2-dimensional state space
described in this study could be useful to define various states of normal
and perturbed brain networks with a theoretical reference point.

4.6. Limitations

The study has notable limitations. First, it was a population study and
thus not appropriate for individual assessment that would be more
clinically relevant. However, as shown in Fig. S8, we conducted a
regression analysis assessing the similarity of PLE, mean PLE, and the
CRS-R (Coma Recovery Scale-Revised) scores of UWS/MCS patients
(Table S1). The topographic similarity of PLE did not correlate with the
CRS-R scores (R¼ 0.082, p> 0.05), whereas the mean PLE (less affected
by the network structure) was significantly correlated (R¼ 0.461,
p¼ 0.002). Since the PLE topography of the model network was con-
structed based on the brain network structure of a healthy young subject
population (18–31yrs), it was not appropriate to compare topographical
similarities with heterogeneous individuals in the UWS/MCS group with
a broad range of ages (53.27� 15.83 yrs; 19–90 yrs), different etiologies,
and varying lesions in the brain networks. We predict that matching in-
dividual brain network structure with the same individual's functional/
neurophysiological data will improve the reliability of regression
analysis.

Second, we did not examine the temporal evolution of the topo-
graphic similarity of PLE, which could enable us to test its potential as a
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metric. We added two examples of the temporal evolutions of both the
topographic similarity of PLE and the mean PLE during general anes-
thesia (Fig. S9). They correlated well with state transitions during the loss
and recovery of consciousness. Further work is required to associate both
indices with the anesthetic depth of an individual.

Third, in order to compare the multi-institutional EEG data, we used
only 21 common EEG channels, which limits spatial resolution. In the
forward model, the projection of source signals (N¼ 78) to sensor signals
(N¼ 21) may constrain the performance.

Finally, when applying time delay (τi;j) to the Kuramoto model, we
used Euclidean distances between two areas instead of the actual length
of the streamlines. In the additional analysis, we applied a fixed time
delay, which did not change the results qualitatively as long as the time
delay is less than a quarter cycle (<25ms) of the natural frequency.
4.7. Conclusion

The modeling results and empirical EEG data from normal and per-
turbed brain networks demonstrated that the optimal functional con-
nectivity emerges near the critical point. The model brain network
revealed that partial phase locking is a mechanism of optimal functional
brain connectivity. The functional connectivity emerging from the
partially locked state at criticality can be used as a theoretical reference
to define a perturbed brain state, which allows the quantification of how
far a perturbed brain network is from its optimal functional connectivity.
Our approach based on EEG and modeling may provide a novel method
to monitor brain state transitions and further understand the relationship
of criticality, connectivity, and states of consciousness.
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