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Abstract— The paper addresses the problem of passivation
of a class of nonlinear systems where the dynamics are
unknown. For this purpose, we use the highly flexible, data-
driven Gaussian process regression for the identification of
the unknown dynamics for feed-forward compensation. The
closed loop system of the nonlinear system, the Gaussian process
model and a feedback control law is guaranteed to be semi-
passive with a specific probability. The predicted variance of the
Gaussian process regression is used to bound the model error
which additionally allows to specify the state space region where
the closed-loop system behaves passive. Finally, the theoretical
results are illustrated by a simulation.

I. INTRODUCTION

Passivity-based techniques allow the analysis and
synthesis of large and complex systems because of the
particular composition properties, e.g. the parallel and
feedback interconnection of passive sub-systems gives
a passive overall system. The passivity property is also
helpful for the interconnection with other systems which
are mostly unknown but assumed to be passive such as
in telepresence systems [1], robot manipulation [2] or
physical human-robot interaction (pHRI) [3]. Hence, passive
systems possess very useful and beneficial properties which
make them so interesting in control theory and also in
real-world applications. However, many modern engineering
systems are not inherently passive or even stable, e.g.
high-performance aircraft. Thus, to take advantage of the
passivity properties, these systems need to be rendered
passive by control, e.g. with suitable state feedback or using
passivity-based control (PBC) [4].
The arising problem is that these techniques require a
suitable storage function or, at least, knowledge about
the system dynamics and structure [5], [6]. However,
the underlying dynamics are often hard to obtain using
first-order principles because of the complexity of the
system or the unacceptable time exposure of the modeling
process. Especially in modern control applications such
as autonomous robotics or human-centered control, the
modeling process is very challenging or even unfeasible.
A promising approach to avoid these issues is provided by
data-driven Gaussian process regression (GPR) [7]. GPR
is a supervised learning technique which combines several
advantages. It requires only a minimum of prior knowledge
for the regression of arbitrary complex functions since the
complexity of the model scales with the amount of training
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data [8]. Additionally, it generalizes well even for small
training data sets and it has a precise trade-off between
fitting the data and smoothing. In comparison to neural
networks, GPR provides not only a mean function but also
a predicted variance, and therefore a measure of the model
fidelity based on the distance to the training data. This is
a significant benefit since this information can be used for
stability considerations [9].

On the context of classical parametric dynamic system
models, approaches for the passivation of linear and non-
linear systems are proposed in [10], [11]. However, both
approaches assume that the underlying system dynamics
and structure is known. The identification of dynamical
systems with Gaussian processes is performed in [12] but
without considering stability or passivity. The stability of
Gaussian process based systems is numerically evaluated
in [13]. Recently, also analytical results about the stability
are provided [9], [14]. However, all these approaches do not
investigate the passivity of the closed loop system.
The contribution of the paper is the passivation of a class
of nonlinear systems where the dynamics of the system is
unknown. For this purpose, a Gaussian process regression is
used to learn the unknown dynamics. The mean of the GPR
is exploited for the feed-forward compensation of the dynam-
ics. We show that the closed loop of the unknown dynamics,
the GPR and a feedback control law is semi-passive with
a specific probability. Additionally, we explicitly determine
the state space region in which the systems behaves passive.
The remainder of the paper starts with Section II where the
class of systems and GPR are introduced. Section III describe
the computation of the model error and the proof of semi-
passivity. The method is validated in Section III-B.

II. PRELIMINARIES

A. Considered class of systems

In this paper, we consider the class of nonlinear systems
which are described by1

ẋ =

[
ẋ1

ẋ2

]
=

[
x2

f(x,u)

]
yex = cx1 + x2, c ∈ R>0 (1)

with the measurable state x ∈ X 2 ⊆ R2n where x1,x2 ∈ X
and the input u ∈ Rn with n ∈ N. The continuous vector
field f : X 2 × Rn → Rn is assumed to be unknown.

Remark 1. This class of systems contains for example many
electrical and mechanical systems which fulfill the Euler-



Lagrange equation, e.g. robot manipulators. The systems do
not need to be control affine. The output yex ∈ Rn is often
used in interconnection scenarios of mechanical systems
where it represents a velocity plus scaled position feedback.

The problem is to find an input u such that the system (1)
becomes passive.

B. Semi-passivity

The concept of passivity is well known whereas the theory
of semi-passive system is less frequently used so that we
recall the definition.

Definition 1. Following [15], the system (1) is called
1. semi-passive in Dx if there exists a nonnegative func-

tion V : Dx → R≥0 where V (0) = 0 such that

V̇ (x) =
∂V

∂x1
x2 +

∂V

∂x2
f(x,uex)

≤ y>exuex − h(x).

The passive output yex ∈ Rn is state-dependent and
the function h : Dx → R is nonnegative outside the
ball Br ⊂ Dx with radius r, i.e.

∃r > 0, ‖x‖ ≥ r ⇒ h(x) ≥ 0.

2. strictly semi-passiv in Dx if the system is semi-passive
and the function h(x) is positive outside some ball Br.

Hence, the behavior of semi-passive systems is compa-
rable to passive systems outside the ball Br, see Fig. 1.
Additionally, a feedback interconnection with another pas-
sive system has an ultimately bounded solution [15] so that
every trajectory of the closed-loop systems enters a compact
set in finite time and remains there.

C. Gaussian Process Regression

Assume a vector-valued, nonlinear function y = fGP (x)
with fGP : Rn → Rn and y ∈ Rn. The measurement
values ỹ ∈ Rn of the function are corrupted by Gaussian
noise η ∈ Rn, i.e.

ỹ = fGP (x) + η

η ∼ N (0,diag(σ2
1 , . . . , σ

2
n))

with the standard deviation σ1, . . . , σn ∈ R≥0. For
the regression, the function is evaluated at m input
values {x{j}}mj=1. Together with the resulting measure-
ments {ỹ{j}}mj=1, the whole training data set is described
by D = {X,Y } with the input training matrix X =
[x{1},x{2}, . . . ,x{m}] ∈ Rn×m and the output training
matrix Y = [ỹ{1}, ỹ{2}, . . . , ỹ{m}]> ∈ Rm×n. Now, the
objective is to predict the output of the function y∗ at a test
input x∗ ∈ Rn.
The underlying assumption of Gaussian process regression is

1Notation: Matrices are described with capital letters while vectors are
denoted with bold characters. The term M:,i denotes the i-th column of the
matrix M . The expression N (µ,Σ) is the normal distribution with mean µ
and covariance Σ. The Euclidean norm is given by ‖ · ‖ and the largest
eigenvalue of a matrix by λ̄ and the smallest by λ.

Br

Dx

V̇ ≤ y>
exuex

Fig. 1. Concept of semi-passivity. The system behaves passive in Dx\Br .

that the data can be represented as a sample of a multivari-
ate Gaussian distribution. The joint distribution of the i-th
component of y∗ is[

Y:,i

y∗i

]
∼ N

(
m(x),

[
Kϕi(X,X) kϕi(x

∗, X)

kϕi
(x∗, X)

>
kϕi

(x∗,x∗)

])
(2)

with the covariance function kϕi
(x,x′) : Rn × Rn → R

as a measure of the correlation of two points (x,x′). The
function Kϕi(X,X) : Rn×m × Rn×m → Rm×m is called
the covariance or Gram matrix

Kj,l = kϕi
(X:,l, X:,j)

with j, l ∈ {1, . . . ,m} where each element of the ma-
trix represents the covariance between two elements of
the training data X . The vector-valued covariance func-
tion kϕi(x, X) : Rn × Rn×m → Rm calculates the covari-
ance between the test input x∗ and the training data X

kϕi
(x∗, X) with kϕi,j = kϕi

(x∗, X:,j)

for all j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. These functions
depend on a set of hyperparameters ϕi whose number of
parameters depends on the function used. The choice of the
covariance function and the corresponding hyperparameters
can be seen as degrees of freedom of the regression. A
comparison for the characteristics of the different covariance
functions can be found in [16]
The prediction of each component of y∗ is derived from the
joint distribution (2) and therefore it is a Gaussian distributed
variable. The conditional probability distribution is defined
by the mean

µ(y∗i |x∗,D) = kϕi
(x∗, X)

>
(Kϕi

+ Iσ2
i )−1Y:,i,

where I is the identity matrix, and the variance

var(y∗i |x∗,D) = kϕi(x
∗,x∗)− kϕi(x

∗, X)
>

(Kϕi
+ Iσ2

i )−1kϕi
(x∗, X).

For the multi-variable Gaussian distribution, the n normally
distributed components of y∗|x∗,D are concatenated such
that

y∗|x∗,D ∼ N (µ(·),Σ(·))
µ(y∗|x∗,D) = [µ(y∗1 |x∗,D), . . . , µ(y∗n|x∗,D)]

>

Σ(y∗|x∗,D) = diag(var(y∗1 |x∗,D), . . . , var(y∗n|x∗,D)),
(3)

where the hyperparameters ϕi are optimized by means of the
marginal likelihood function [8]. For this purpose, a gradient



based algorithm is often used to find a (local) maximum of
the marginal log-likelihood function

ϕ∗i = arg max
ϕi

logP (Y:,i|X,ϕi), ∀i = 1, . . . , n

to achieve suitable hyperparameters.

III. MAIN RESULT

For the passivation of the system (1), a closed loop
with a GPR and a feedback control law is proposed. The
GPR is used as feed-forward compensation of the unknown
dynamics so that the drift function of the closed-loop is
bounded. Based on this, a feedback control law is exploited
to render the system strictly semi-passive. For this purpose,
the input u of the system (1)

u = uc + ugp − uex, (4)

is decomposed into a feed-forward component ugp ∈ Rn, a
feedback control law uc ∈ Rn, and an additional external
input uex ∈ U ⊂ Rn, as shown in Fig. 2. The control law
is given by

uc = Kdx2 +Kpx1 (5)

with positive definite, symmetric matrices Kp,Kd ∈ Rn×n.

Remark 2. For (1) with output y = x1, the control law (5)
is equivalent to a PD control law.

For the rest of the paper, we assume the following prop-
erties for the passivation.

Assumption 1. Consider the closed sets Dx ⊆ X 2 together
with Dẋ ⊂ Rn in the neighborhood of 0 such that

{z ∈ Rn|‖z‖ < k̄p‖x1‖+ k̄d‖x2‖+ ‖uex‖} ⊆ Dẋ,

holds for all x ∈ Dx,uex ∈ U and the positive con-
stants k̄d > c and k̄p > max{ck̄2

d/(4k̄d − 4c), c2}.
This assumption guarantees that ẋ2 of the closed loop

system is always element of Dẋ which is required for the
computation of the model error. The size of the set Dẋ can
be computed by Dx, U and c.

Assumption 2. For all x ∈ Dx, ẋ2 ∈ Dẋ the mapping
between x, ẋ2 and the input u must be unique, so that there
exists a function f−1 : Dx ×Dẋ → Rn with

(x, ẋ2) 7→ f−1(x, ẋ2) = u

Thus, (1) is restricted to systems which are explicitly
solvable to the input u = f−1(x, ẋ2) on Dx × Dẋ. This
assumption holds for a large class of dynamical systems such
as control affine systems with fully-ranked input matrix, e.g.
many Lagrangian systems. With Assumptions 1 and 2, the
system (1) with input (4) can be rewritten as

ẋ1 = x2

ẋ2 = f̃(x, ẋ2)−Kdx2 −Kpx1 − ugp + uex (6)

for all x ∈ Dx. The function f̃ : Dx ×Dẋ → Rn is defined
as f̃(x, ẋ2) = f−1(x, ẋ2)+ ẋ2. The output of the GPR ugp

PD
unknown
dynamics

GP modelTraining set D

uex

yex

uc

x

ugp x, ẋ2

Fig. 2. Semi-passively rendered w.r.t. uex and yex.

is produced with the predicted mean of the unknown function
values y = f̃(x, ẋ2),y ∈ Rn, i.e.

ugp = µ(y |x, ẋ2,D)

computed with (3) and based on a the current state x and ẋ2

of the system. For this purpose, the training data D set of the
Gaussian process model is based on m training data pairs

D =

{[
ẋ2

x

]{i}
, ỹ{i}

}m

i=1

(7)

where the training data ỹ = u− ẋ2 + ε of the system (1) is
corrupted by Gaussian noise ε ∼ N (0,diag(σ2

1 , . . . , σ
2
n)).

The data can be generated by using any controller that
behaves well-enough to produce a finite set of training points.

A. Model error

After the learning procedure, it is possible to compute
an upper bound for the error between the mean predic-
tion ugp = µ(y |x, ẋ2,D) of the Gaussian process model
and the function f̃ of (6). For this purpose, the covariance
function must be selected in such a way that the function f̃
is an element of the associated RKHS.

Assumption 3. The function f̃(x,x2) has a bounded repro-
ducing kernel Hilbert space (RKHS) norm in respect to the
covariance function k(·, ·), so that

∥∥∥f̃∥∥∥
k
<∞ on Dx×Dẋ.

This seems to be paradoxical since the function is as-
sumed to be unknown. However, there exist some covariance
functions, so called universal kernel functions, which can
approximate any continuous function arbitrary precisely on
a compact set [17, Lemma 4.55], e.g. the squared expo-
nential covariance function. Therefore, many dynamics can
be covered by the universal covariance function so that
this assumption is not at all restrictive. A more detailed
discussion about RKHS norms and covariance functions is
given by [18]
A variance dependent bound for the scalar case is presented
in [19] and is here extended to an absolute bound for
multidimensional predictions in the following lemma.

Lemma 1. Consider the system (1) satisfying Assumptions 1
to 3 and a Gaussian process model based on (7). The model



error is bounded with a ∆ ∈ Rn
≥0, ∆̄ ∈ R≥0 by2

P
{∥∥∥µ(y)− f̃(x, ẋ2)

∥∥∥ ≤ ∥∥∥∆>Σ
1
2 (y)

∥∥∥} ≥ δ∥∥∥∆>Σ
1
2 (y)

∥∥∥ ≤ ∆̄

for all x ∈ Dx, ẋ2 ∈ Dẋ with δ ∈ (0, 1).

Proof. Following [19, Theorem 6], the elements of ∆ are
defined by

∆j =

√
2
∥∥∥f̃j∥∥∥2

k
+ 300γj ln3

(
m+ 1

δ

)
where γj ∈ R is the maximum information gain, i.e.

γj = max
X

1

2
log |I + σ−2

i Kϕj (X,X)|

X =

[[
ẋ2

x

]{1}
, . . . ,

[
ẋ2

x

]{m+1}
]

, where

[
ẋ2

x

]{i}
∈ Dx ×Dẋ

for i = 1, . . . ,m+1. With Assumptions 1 and 3 and the fact
that ε is uncorrelated, the model error of a multidimensional
prediction for all (x, ẋ2) ∈ Dx ×Dẋ is given by

P

⋂
j=1,...,n

|µ(yj)− f̃j(x, ẋ2)| ≤ |∆j var
1
2 (yj)|

 ≥ (1− δsc)n

⇒ P
{
‖µ(y)− f(x, ẋ2)‖ ≤

∥∥∥∆>Σ
1
2 (y)

∥∥∥} ≥ (1− δsc)n
(8)

with δsc ∈ (0, 1). Since ∆ is finite and the variance is also
bounded on a closed set [20], it exists a constant ∆̄ ∈ R>0

which bounds
∥∥∥∆>Σ1/2(y)

∥∥∥ ≤ ∆̄ in (8). Thus, the model
error is bounded with a probability of at least δ := (1−δsc)n
by ∆̄.

Remark 3. The information capacity γ has a sub-linear
dependency on the number of training points for many
commonly used covariance functions, e.g. the squared ex-
ponential covariance function, and can be bounded by a
constant [19]. Therefore, even though ‖∆‖ is increasing with
the number of training data, it is possible to learn the true
function f̃(x, ẋ2) arbitrarily exactly [14].

The result of Lemma 1 is a an upper bound for the model
error. The stochastic nature of the bound is due to the fact
that just a finite number of noisy training points are available
and thus, the true function cannot be known exactly. If exact
knowledge of the model was available, the variance of the
GPR would be zero and thus, the upper bound for the model
error would also be zero. With an increasing number of
training points or decreasing noise σ of the training data,
the bound becomes tighter [21]. Since the model is used for
a feed-forward compensation of the unknown dynamics of

2For notational reasons, we suppress the conditional part of the predicted
mean and variance

the systems, the model error directly effects the size of the
set where the system behaves passive as shown in the next
section.

B. Passivation

Before we present the main theorem about the passivity of
the closed loop system, the following definition and lemmas
are introduced.

Definition 2. Let Λ be a matrix-valued function which maps
from Rn×n × Rn×n × R>0 → R2n×2n with

Λ(Kd,Kp, c) :=

[
Kd − cI c

2Kd
c
2Kd cKp

]
.

Lemma 2. For any c, λd ∈ R>0, there exist positive definite
and symmetric matrices Kd,Kp ∈ Rn×n, so that

λ (Λ(Kd,Kp, c)) ≥ λd.

Proof. Assuming the positive definite, symmetric matri-
ces K̃d, K̃p ∈ Rn×n. The matrix Λ̃M ∈ R2n×2n with

Λ̃M =

[
K̃d

c
2K̃d

c
2K̃d cK̃p

]
is positive definite, if cK̃p � 0 and

K̃d − c
K̃dK̃

−1
p K̃d

4︸ ︷︷ ︸
Λ̃S∈Rn×n

� 0

using the property of the Schur complement. The eigenvalues
of Λ̃S are lower bounded by

λi(Λ̃S) ≥ λ(K̃d)− c λ̄
2(K̃d)

4λ(K̃p)

and thus, it is always possible to select a K̃p, such that the
matrix Λ̃S � 0 and, consequently, Λ̃M � 0. Now, assume
a scaling factor γ ∈ R≥0. The eigenvalues of the overall
sum Λ̃ ∈ Rn×n of the two symmetric matrices

Λ̃ = γ

[
K̃d

c
2K̃d

c
2K̃d cK̃p

]
+

[
−cI 0

0 0

]
are lower bounded by

λ(Λ̃) ≥ −c+ γλ(Λ̃M ).

Since Λ̃M � 0, for any c, λd there exist a γ such that
the eigenvalue λ(Λ̃) ≥ λd. Finally, defining Kd = γK̃d

and Kp = γK̃p concludes the proof.

Lemma 3. For all c ∈ R>0, there exist positive definite and
symmetric matrices Kd,Kp ∈ Rn×n with

λ̄(Kd) ≤ k̄d ∈ R>0, k̄d > c

λ̄(Kp) ≤ k̄p ∈ R>0, k̄p >
c

4

k̄2
d

k̄d − c
,

such that Λ(Kd,Kp, c) � 0.



Proof. The matrix Λ(Kd,Kp, c) is positive definite,
iff cKp � 0 that is fulfilled by definition, and

K̃d − cI − c
KdK

−1
p Kd

4︸ ︷︷ ︸
ΛS∈Rn×n

� 0.

Analogous to the proof of Lemma 2, the eigenvalues of ΛS

are lower bounded by

λi(ΛS) ≥ λ(Kd − cI)− c λ̄
2(Kd)

4λ(Kp)
,

so that is is possible to achieve λ(ΛS) > 0 with matri-
ces Kd,Kp which satisfy λ̄(Kd) ≤ k̄d and λ̄(Kp) ≤ k̄p.

Theorem 1. Given Assumptions 1 to 3 and the closed loop
system (4). Then, there exist positive definite, symmetric
matrices Kp,Kd and a maximal model error ∆̄, so that (1)
is rendered strictly semi-passive with

Br =

√
(1 + c)∆̄

λ (Λ(Kd,Kp, c))

on the set Dx with a given probability δ ∈ (0, 1).

Proof. We assume the storage function

V (x) =
1

2
x>1 Kpx1 +

1

2
x>2 x2 + cx>2 x1,

that is positive for λ(Kp) > c2 for all x2,x1 ∈ Rn and zero
for x2 = x1 = 0. With (6) the derivative of V is given by

V̇ (x) = −
[
x>2 x>1

]
Λ(Kd,Kp, c)

[
x2

x1

]
+ (x2 + cx1)>(f̃(x, ẋ2)− µ(y) + uex). (9)

The first term of the equation depends on the feedback
gains whereas the second term depends on the model error.
Following Lemma 2, for any c there exist two matrices Kd

and Kp, so that the matrix Λ is positive definite. The error
between the true dynamics and the mean of the GPR in (9)
is bounded by a constant ∆̄ ∈ R>0 with the probability δ
using Lemma 1. Thus, the drift of the Lyapunov function is
bounded by a function h : Dx → R with

V̇ (x2,x1) ≤ y>exuex − h(x2,x1)

h(x2,x1) = λ(Λ)

∥∥∥∥x2

x1

∥∥∥∥2

− ∆̄‖x2‖ − c∆̄‖x1‖.

The function h is positive for∥∥∥∥x2

x1

∥∥∥∥ >
√

(1 + c)∆̄

λ(Λ)
= r, (10)

i.e. outside a ball Br with the radius r ∈ R>0. Finally,
it must be guaranteed that a) the state x, once in Dx,
remains inside Dx while b) ẋ2 ∈ Dẋ, so that the conditions
of Lemma 1 are not violated. The inequality (10) shows that
for any positive definite matrix Λ(Kd,Kp, c), it is possible
to find a ∆̄ so that r is arbitrary small. As consequence,
there exists a ∆̄, so that the ball Br is a subset of Dx and
thus, the state x remains in ∈ Dx.

To guarantee that ẋ2 ∈ Dẋ, we use the closed loop
dynamics (6) with the maximum model error ∆̄ to compute
an upper bound for ‖ẋ2‖ which is given by

‖ẋ2‖ ≤
∥∥∆̄−Kdx2 −Kpx1 + uex

∥∥
≤
∥∥∆̄
∥∥+ λ̄(Kd)‖x2‖+ λ̄(Kp)‖x1‖+ ‖uex‖.

With Lemma 3 and Assumption 1, there exist a Kp,Kd

so that Λ(Kd,Kp, c) is positive definite and ẋ2 ∈ Dẋ

for all x ∈ Dx. Therefore, the system (1) is rendered
strictly semi-passive with the probability δ in respect to uex

and yex.

Remark 4. The radius of the Ball Br can be set arbitrary
small by either decreasing the maximum model error ∆̄ or
increasing the feedback gains λ(Λ).

SIMULATION

For the simulation, we use a modified Duffing oscillator

ẋ1 = x2

ẋ2 = u1/3 − γx2 − αx1 − βx3
1 + 1

as sample system where not only the parameters are unknown
but also the entire parametric form of the dynamics is
assumed to be unknown. This nonlinear, second-order system
describes the motion of a damped oscillator with a more
complex potential than in simple harmonic motion. The pa-
rameters are set to α = −0.1, β = −0.1, γ = 0.1, such that
the system’s equilibrium point is unstable, see Fig. 3. The
control input is chosen to be not input affine to demonstrate
the efficiency of the proposed method. Now, the passivation
approach of Theorem 1 is applied. We set c = 0.5 for the
passive output and max(|uex|) = 0.1 for the passive input.
Additionally, we set

k̄d := 0.9 > 0.5 = c

k̄p := 0.254 > 0.253 = max{ck̄2
d/4(k̄d − c), c2},

so that Dẋ = [−2.55, 4.55] fulfills Assumption 1. Since the
drift function of the oscillator is continuous, the squared
exponential covariance function for the Gaussian process
regression is used to learn f̃ . For this purpose, we generate
720 pairs of inputs {ẋ2, x1, x2} and outputs {u − ẋ2} as
training data on x ∈ [−2, 2]2 = Dx and ẋ2 ∈ Dẋ.
The hyperparameters of the squared exponential covariance
function are optimized by a descent gradient algorithm.
The feedback gains are set to Kd = 0.9 and Kp = 1. In
combination with the maximum model error ∆̄ = 0.045 on
the set Dx × Dẋ, the state’s derivative ẋ2 of the passive
system is element of Dẋ, see Fig. 4. In addition, the ball Br

is a subset of Dx which is visualize in Fig. 5 together with the
phase plane of the Duffing oscillator that is rendered strictly
semi-passive. The result is that inside the set Dx\Br, the
closed loop system is behaves passive.
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Fig. 3. Phase plane portrait of the uncontrolled Duffing oscillator.
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Fig. 4. The figure demonstrates that with the selected Kp, Kd and ∆̄, the
state’s derivative ẋ2 is element of Dẋ on Dx

CONCLUSION

In this paper, we present a data-driven method to render a
class of nonlinear systems with unknown dynamics strictly
semi-passive. As consequence, the closed-loop system be-
haves passive outside a ball Br on a set Dx. For this purpose,
we use Gaussian process regression for the feed-forward
compensation of the unknown dynamics and a feedback
control law to render the closed loop system semi-passive. It
is shown, that the radius of the ball Br can be set arbitrary
small depending on the model error and the feedback gains.
Finally, a simulation demonstrates the presented theory.
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