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Abstract
The environmental perception of an autonomous vehicle is limited by its physical
sensor ranges and algorithmic performance, as well as by occlusions that degrade
its understanding of an ongoing traffic situation. This not only poses a significant
threat to safety and limits driving speeds, but it can also lead to inconvenient ma-
neuvers. Intelligent Infrastructure Systems can help to alleviate these problems.
An Intelligent Infrastructure System can fill in the gaps in a vehicle’s perception
and extend its field of view by providing additional detailed information about its
surroundings, in the form of a digital model of the current traffic situation, i.e. a dig-
ital twin. However, detailed descriptions of such systems and working prototypes
demonstrating their feasibility are scarce. In this paper, we propose a hardware and
software architecture that enables such a reliable Intelligent Infrastructure System
to be built. We have implemented this system in the real world and demonstrate
its ability to create an accurate digital twin of an extended highway stretch, thus
enhancing an autonomous vehicle’s perception beyond the limits of its on-board
sensors. Furthermore, we evaluate the accuracy and reliability of the digital twin
by using aerial images and earth observation methods for generating ground truth
data.

∗These authors contributed equally to this work.
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Figure 1: One of the Providentia measurement points on the A9 highway. The two radars directed
towards the north are installed on the other side of the gantry bridge and are therefore not visible
from this perspective.

1 Introduction

The environmental perception and resulting scene and situation understanding of an autonomous
vehicle are limited by the available sensor ranges and object detection performance. Even in the
vicinity of the vehicle, the existence of occlusions leads to incomplete information about its en-
vironment. The resulting uncertainties pose a safety threat not only to the autonomous vehicle
itself but also to other road users. To enable it to operate safely, it is necessary to reduce its driv-
ing speed, which in turn slows down traffic. Furthermore, this incomplete information results in
impaired driving comfort, as the vehicle must spontaneously react to unforeseen scenarios.

Intelligent Infrastructure Systems (IIS) can alleviate these problems by providing autonomous ve-
hicles – as well as conventional vehicles and drivers – at operating time with complementing
information about each road user and the overall traffic situation (Qureshi and Abdullah, 2013;
Menouar et al., 2017), thereby greatly extending their perception range as well. In particular, an
IIS can observe and detect all road users from multiple superior perspectives, with extended cover-
age compared to that of an individual vehicle. Providing a vehicle with this additional information
gives it a better and spatially extended understanding of its surrounding scene and enables it to
plan its maneuvers more safely and proactively. Furthermore, an IIS with the described capabili-
ties enables a multitude of services that further support decision making.

However, actually building such a system involves a number of challenges, such as the right choice
of hardware and sensors, and their optimal deployment and utilization in a complex software stack.
Its perception must remain reliable and robust in a wide variety of weather, light and traffic condi-
tions. Ensuring such reliability necessitates a combination of multimodal sensors, redundant road



coverage with overlapping field of views (FoV), accurate calibration (Schöller et al., 2019), and
robust detection and data fusion algorithms.

Since we sketched ideas about how such a system could be designed in previous work (Hinz et al.,
2017), in this paper we propose a concrete, scalable architecture. This architecture is the result of
the experience we made with the real world build-up of the IIS Providentia (see Fig. 1). It includes
the system’s hardware as well as the software to operate it. In terms of hardware, we discuss
the choice of sensors, the network architecture and the deployment of edge computing devices to
enable fast and distributed processing of heavy sensor loads. We outline our software stack and the
detection and fusion algorithms used to generate an accurate and consistent model of the world,
which we call the digital twin. The digital twin includes information such as position, velocity,
vehicle type and a unique identifier for every observed vehicle. By providing this digital twin to
an autonomous driving research vehicle, we demonstrate that it can be used to extend the limits of
the vehicle’s perception far beyond its on-board sensors.

For autonomous vehicles to trust the digital twin for maneuver planning, its accuracy and reliability
must be known. However, a thorough evaluation requires precise ground truth about the traffic
situation. This is non-trivial to obtain. To solve this issue, we took aerial images of the traffic
in our testbed to generate an approximate ground truth and use it to evaluate our system. While
we explained the underlying idea in Krämmer et al. (2020), in this paper we describe in detail the
methods used for this evaluation. We present the results of our evaluation of the Providentia system
and analyze the system’s performance in real world applications. Our evaluation methodology is
not specific to our system and can serve as a general framework for the evaluation of IIS.

2 Related Work

First ideas for assisting vehicles, as well as monitoring and controlling traffic with an IIS have
already been developed in the PATH (Shladover, 1992) and PROMETHEUS (Braess and Reichart,
1995) projects. Recently, with the growing efforts of industry and research to realize autonomous
driving, the need for IIS that are able to support autonomous vehicles has further increased. Sev-
eral new projects have therefore been initiated, with the goal of developing and researching on
prototypical IIS. However, their focuses differ widely and few detailed system descriptions are
available.

Communication. Some IIS projects primarily focus on the communication aspects between the
vehicle and infrastructure, and sometimes additionally vehicle-to-vehicle communication. The re-
search project DIGINETPS (2017) focuses in particular on the communication of traffic signal
information, parking space occupancy, traffic density and road conditions to vehicles. Similarly,
the VERONIKA (2017) project provides traffic signal information with the goal of reducing emis-
sions and energy consumption. The Antwerp Smart Highway (2018) test site is built along a 4 km
highway strip and equipped with road side communication units on gantry bridges. In contrast to
our work, its research focus is on vehicle-to-everything communication and distributed edge com-
puting. Similarly, the goal of the NYC Connected Vehicle Project (2015) is to improve safety and
reduce the number of crashes by providing drivers with alerts via Dedicated Short-Range Com-



munication. The Mcity (2015) project built an artificial test facility to evaluate the performance of
connected and automated vehicles. Research that uses this test facility is primarily on communi-
cation, but also partially covers roadside perception.

Roadside Perception. The primary goal of roadside perception systems is the enhancement of
autonomous vehicle safety. The system in the Test Area Autonomous Driving Baden-Württemberg
(Fleck et al., 2018) is perceiving a cross-road with two cameras and creates a digital twin. It
also provides functionality to evaluate autonomous driving functions in a realistic environment.
However, this system is much smaller than Providentia, and cannot operate at night as it only uses
cameras. In the MEC-View project, an IIS consisting of cameras and lidars mounted on streetlights
creates a real-time environment model of an urban intersection that is amongst others fused into a
vehicle’s on-board perception system (Gabb et al., 2019). Furthermore, the local highway operator
in Austria is transforming its existing road operator system into an IIS (Seebacher et al., 2019). It
is aiming at actively supporting autonomous vehicles and at enabling the validation of autonomous
vehicle perception.

IIS Algorithms. Instead of the IIS itself, many research contributions propose methods of making
algorithmic use of the information provided by an IIS, or optimizing their function. With regard
to communication networks, Miller (2008) proposes an architecture for efficient vehicle-to-vehicle
and vehicle-to-infrastructure communication, while Kabashkin (2015) analyses the reliability of
bidirectional vehicle-to-infrastructure communication. In the project KoRA9 (2017), Geissler and
Gräfe (2019) formulate an optimization problem that maximizes sensor coverage to locate suitable
sensor placements in an IIS. Popular areas of research in the field of computer vision that are related
to IIS include traffic density prediction (Zhang et al., 2017a,b) and vehicle re-identification (Shen
et al., 2017; Zhou and Shao, 2018). Other topics involving information provided by an IIS include
danger recognition (Yu et al., 2018) and vehicle motion prediction (Diehl et al., 2019; Liu et al.,
2019).

In this paper, we focus on the overall system architecture and implementation of a large-scale IIS
that generates a digital twin of the current traffic. The aim of our system is to complete and extend
a vehicle’s perception and to provide information that enables the implementation of various algo-
rithms and applications based on the digital twin. In the literature, detailed technical descriptions
of systems with similar size and capabilities like ours are not publicly available to the best of our
knowledge.

Furthermore, to ensure our system’s performance is suited for the intended purposes, we conduct
a thorough evaluation by considering the overall traffic, rather than trajectories from a single test
vehicle. Thereby we account for a broad variety of vehicle types, colors and driving behaviors.
In particular, we evaluate the spatial accuracy as well as the detection rate, i.e. the system’s per-
formance with respect to missing vehicles and false detections. To the best of our knowledge, our
work is the first to provide such quantitative results on the performance of a large-scale IIS for
fine-grained vehicle perception.



Figure 2: Schematic illustration of the Providentia sensor setup, with overlapping FoVs for redun-
dancy.

3 Providentia System Architecture

In this section, we describe the design of the Providentia system, including the hardware and
software setup and the algorithms used for detection, calibration, fusion and position refinement.

Providentia is a large-scale distributed sensor system consisting of multimodal sensors, multiple
edge computing units, a complex software architecture, and a broad range of state-of-the-art al-
gorithms. It is built along the A9 highway close to Munich. Its primary purpose is to provide a
real-time and reliable digital twin of the current road traffic at any given time or day of the year,
for use in a variety of applications.

3.1 Hardware and Software Setup

At the time of writing, two gantry bridges – separated by a distance of approximately 440 m – have
been equipped with sensors and computing hardware. Each of these gantry bridges represents one
measurement point in our system as illustrated in Fig. 1. To achieve high perception robustness,
we use sensors of different measurement modalities that cover the entire stretch between our mea-
surement points redundantly. Fig. 2 illustrates the overall setting of the system with the redundant
coverage of the highway.

Each measurement point comprises eight sensors with two cameras and two radars per viewing
direction. In each direction, one radar covers the right-hand side while the other covers the left-
hand side of the highway. The cameras have focal lengths of 16 mm and 50 mm to enable them to
capture both the far and near ranges, while covering the entire width of the highway. By combining
sensors with different measuring principles, our system is able to operate in varying traffic, light
and weather conditions. Besides having redundant coverage with the sensors on each measurement
point, we also selected the positions of the two measurement points in such a way that their overall
FoVs overlap. This further increases redundancy and thus robustness, and allows smooth transi-
tions while tracking vehicles as they move from one measurement point to the other. In addition,



Figure 3: Platform architecture of the Providentia system.

covering the highway stretch from different viewing directions helps to resolve detection errors
and occlusions.

The system employs specialized 24 GHz traffic monitoring radars from SmartMicro, of the gen-
eration UMRR-0C, with a type 40 antenna. They provide detections at an average frequency of
13.2 Hz. They are specifically designed for stationary traffic monitoring and have a good object
separation capability, even of closely spaced objects. Furthermore, they have a high detection range
of up to 350 m – 450 m, depending on the object size and driving direction. Each radar covers up
to 256 objects on up to 7 lanes for the side of the highway it specializes on. All of these properties
are necessary for traffic detection on high throughput highways.

The cameras are Basler acA1920-50gc, taking color images at an average frequency of 25 Hz.
After testing various other cameras, we selected this model especially because it can provide raw
images with a very short processing time and hence very short latency, which is necessary for
creating a real-time digital twin. The raw images allow us to define the image compression level
ourselves, such that artifacts are minimized and our detection algorithms become as accurate as
possible.

All the sensors at a single measurement point are connected to a Data Fusion Unit (DFU), which
serves as a local edge computing unit and runs with Ubuntu 16.04 Server. It is equipped with two
INTEL Xeon E5-2630v4 2.2 GHz CPUs with 64 GB RAM and two NVIDIA Tesla V100 SXM2
GPUs. All sensor measurements from the cameras and radars are fed into the detection and data
fusion toolchain running on this edge computing unit. This results in object lists containing all the
road users tracked in the FoV of that measurement point. Each DFU transmits this object list to a
backend machine via a fibre optic network, where they are finally fused into the digital twin that
covers the entire observed highway stretch.

The full architecture is shown in Fig. 3. We use ROS (Quigley et al., 2009) on all computing
units to ensure seamless connectivity. The final digital twin is communicated either to autonomous
vehicles or to a frontend, where it can be visualized as required for drivers or operators.



3.2 Object Detection

The first step towards creating the digital twin of the highway is to detect and classify the vehicles
on the highway. Our traffic radars are capable ex-factory of detecting objects and providing time-
stamped positions and velocities in their respective local sensor coordinate systems on street level.
We transform this output of each radar into our system’s global Cartesian coordinate system using
the radar calibration parameters in preparation for data fusion.

Detection and classification of objects in the camera images are performed by the DFU edge de-
vices next to the highway. The system’s cameras publish time-stamped images that are tagged with
a unique camera identifier. To ensure scalability and safety even in the event of camera failures, our
modular object detection pipelines subscribe to each image stream separately. The object detection
pipelines are constantly monitored to supervise and analyze detection performance. The modular
services are automatically restarted in the event of any failures. Not only are the multiple camera
streams processed in parallel, the object detection can also work with various detection networks.
This allows us to configure the object detection to optimally balance between low computation
time and high accuracy, depending on the requirements that the application of our system poses.
To this end, we performed extensive research on state-of-the-art detection algorithms, based on
neural networks (Altenberger and Lenz, 2018).

At the time of writing, we have been using the YOLOv4 (Bochkovskiy et al., 2020) architecture as
our detection network in the object detection pipelines. In addition to regressing two-dimensional
bounding boxes with a confidence score, this network classifies the detected vehicles into types as
car, truck, bus or motorcycle. The output is then published prior to transformation.

To compute the three-dimensional positions of the vehicles from the camera detections in the
images, it is unfavorable to use stereo vision techniques in our system. Our cameras that look
in the same driving direction are placed close together, significantly differ in their focal length,
and their FoVs overlap only partially. Instead, we use the vehicles’ bounding boxes to cast a ray
through their lower-edge midpoint and intersect it with the street-level ground plane that we know
from our camera calibration. We transform the resulting vehicle positions into our system’s global
Cartesian coordinate system in the same manner as the detections of the radars. All of the resulting
measurements are then ready to be fused into a consistent world model and are fed into the data
fusion pipeline, starting with a tracking module.

3.3 Calibration

Precise calibration of each sensor and measurement point is necessary to enable the transforma-
tion of all sensor measurements from their respective local system to a common global coordinate
system. Only then we can perform data fusion and ultimately generate the digital twin. As the first
step, we intrinsically calibrated all cameras individually prior to their installation using a common
checkerboard calibration target and the camera calibration package provided by ROS. In particular,
the function we used is minimizing reprojection errors with the Levenberg-Marquardt optimization
algorithm. During build-up of the system, all radars were calibrated with their ex-factory supplied



(a) Initial Calibration (b) Improved Calibration

Figure 4: After our initial calibration with physical measurements (a), we refine the inter-sensor
calibration by projecting the radar detections in the camera image and optimize the alignment with
the observed vehicles (b).

calibration software. This software assists in ensuring that each radar is mounted with ideal orien-
tation at its perfect operating point, such that the radar optimally covers the part of the highway it
specializes on. To determine these parameters, the software requires the radar’s mounting height
and a local map as input. As a result, the radar is enabled to internally transform all measurements
and to output them in a Cartesian coordinate system with its origin placed directly underneath the
radar on street level. The XY -plane of this coordinate system approximates the street.

The overall extrinsic calibration of the system after having installed all sensors is non-trivial. Not
only does our system possess a high number of sensors and degrees of freedom, but it also makes
use of sensors with heterogeneous measurement principles. Once we calibrated and know all the
sensors’ positions and orientations on each gantry bridge, we can transform their measurements in a
common global coordinate system. Our system can then provide the digital twin in a standardized
reference frame to the outside world, as we know the measurement points’ orientation towards
north and the GPS coordinates of reference points on the gantry bridges from official surveying
and a HD map.

To obtain approximate starting points for each sensor for our extrinsic calibration algorithms, we
manually measure the relative translation of all sensors and the reference point on each gantry
bridge separately using modern laser distance meters. Thereby, we measure orthogonal respec-
tively parallel to the gantry bridge as well as the street plane for reference. Note that the gantry
bridges are accessible with a walking corridor on top (see Fig. 1), which allows taking manual
measurements. While the radars’ orientations are already approximately known from set-up, we
determine all cameras’ yaw angles relative to the driving direction with a compass, and their pitch
and roll angles relative to the horizontal street plane with a digital angle finder with spirit levels.

We then refine the camera poses using vanishing point methods that utilize parallel road markings
to find vanishing points (Kanhere and Birchfield, 2010). To fine-tune the inter-sensor calibration,
we manually minimize the projection and re-projection errors for all sensor pairs, both in the image
planes (see Fig. 4) and on street level in the three-dimensional coordinate system. Furthermore, we
incorporate the lane information from the HD map as an additional reference. The final calibration



step is to refine the alignment of the measurement points with each other. By transforming the
detections of both measurement points into the same coordinate system, we are able to manually
associate them and minimize their distance to find an optimal overall calibration. This results in a
global coordinate system for our IIS, where all sensor detections can be transformed into. In this
coordinate system, the digital twin can be created and then transformed to GPS coordinates.

3.4 Data Fusion

When it comes to the sensor data fusion, a large-scale system such as ours poses many challenges.
On the highway, we can observe a very large number of vehicles that have to be tracked in real time.
Therefore, the data fusion system has to scale for hundreds of vehicles. In addition, the number of
targets is not known in advance and our fusion must be robust with respect to clutter and detection
failures. Conventional filtering methods that handle each observed vehicle separately, such as mul-
tiple Kalman filters or multiple hypotheses tracking (Blackman, 2004), require to explicitly solve
a complex association problem between the system’s sensor detections and tracked vehicles. This
severely limits scalability. For this reason, we use the random finite set (RFS) framework (Mahler,
2007, 2014), specifically the Gaussian mixture probability hypothesis density (GM-PHD) filter (Vo
and Ma, 2006). This filter avoids the explicit data association step and has proven to balance our
runtime and scalability constraints well. Additionally, it handles time-varying target numbers,
clutter and detection uncertainty within the filtering recursion.

We add tracking capabilities to our GM-PHD filter by extending it with ideas taken from Panta
et al. (2009). In particular, we make use of the tree structure that naturally arises in the GM-
PHD filter recursion and appropriate track management methods. With the resulting tracker we
track the measurements of each sensor in parallel. For sensor and motion models, we use a zero-
mean Gaussian white noise observation model and a standard constant velocity kinematic model,
respectively. The constant velocity model is still a competitive prediction model, while being fast
to evaluate (Schöller et al., 2020). All parameters for our sensor and scenario specifications were
tuned empirically.

To fuse the tracked data from different sensors and measurement points, we adapt the method from
Vasic and Martinoli (2015) that is based on generalized covariance intersection (Mahler, 2000).
In order to ensure scalability and easy extension of our system setup, we implement a hierarchical
data fusion concept, in which we first perform independent local sensor fusion at each measurement
point leading to vehicle tracklets. Second-level fusion of all measurement points is then performed
on the backend. This step generates the consistent model of the whole highway scene covered by
our system, that we refer to as the digital twin.

Switching between different fusion set-ups is possible, depending on the sensors that should be
used. Apart from fusing all sensors, there are the possibilities to only fuse the cameras or to only
fuse the radars. With this, the system can be adapted to different situations like changing lighting
conditions, where the different sensor types complement each other in different proportions. At
night for example, our system switches to only using the radars.



(a) Camera Image (b) Digital Twin

Figure 5: Qualitative example of how our system captures the real world (a) in a digital twin (b).
We recreate the scene with generalized models for different vehicle types for visualization pur-
poses. During operation, all information is sent to the autonomous vehicle in form of a sparse
object list.

3.5 Position Refinement

After the data fusion, the detection positions of the vehicles in the digital twin tend to be placed
either towards the front or the rear of the vehicles. This is due to the camera detections being two-
dimensional bounding boxes and our method for obtaining vehicle positions in world coordinates
by casting rays through them and intersecting them with the street plane (see Sec. 3.2). The exact
placement is dependent on the cameras’ perspectives. Other systematic positioning errors our
system is affected by are calibration inaccuracies and approximation errors of the street geometry.

To address these problems jointly, we apply a regression-based position refinement using a feed
forward neural network after our data fusion. It receives the position of a vehicle in the digital
twin and predicts the systematic offset to its actual center position, based on its current location on
the highway. By adding this offset to the input position, we get a better estimate of the vehicle’s
true position and reduce the systematic positioning errors that we described. We have trained
the neural network using a randomly split part of our ground truth data, which we associate with
vehicle detections from our fusion to obtain a training dataset (see Sec. 5.1 and Sec. 5.2 for more
details). We train one network for operation during the day and one for the night. The networks
share the same architecture and have five hidden layers with 32 neurons each. We train them with
the Adam optimizer (Kingma and Ba, 2015), batch size 16, learning rate 0.001, and 0.1 weighted
L2 regularization for 1000 epochs.

4 Digital Twin and Extension of Vehicular Perception

The digital twin represents the main output of the Providentia system. It consists of the position,
velocity, and type of every vehicle observed, with each one assigned a unique tracking identifier.
The contained positions can be transformed to GPS coordinates, depending on the application the
digital twin is communicated to. It can be used by vehicles on the highway stretch to improve their



Figure 6: An autonomous driving research vehicle driving through our testbed. The dots visualize
the vehicle’s lidar measurements and the purple cubes represent the vehicles perceived by the
Providentia system. While the vehicle’s own lidar range is severely limited, its perception and
resulting scene understanding are extended into the far distance using information from our system.

decision making and to implement additional services that can be provided by the infrastructure
itself. Such services might include motion prediction for each vehicle, congestion recognition,
lane recommendations, and collision warnings. In this section, we illustrate our system’s ability to
capture the traffic and demonstrate its potential for extending an autonomous vehicle’s perception
of the scene.

Our qualitative examples were captured in our testbed under real-world conditions. Currently, our
system redundantly covers a stretch of about 440 m of the road, which corresponds to the distance
between the two measurement points. Fig. 5 shows an example of a digital twin of current traffic
on the highway as computed by our system. It is a visualization of the information that is also
sent to autonomous vehicles to extend their perception. Our system is able to reliably detect the
vehicles passing through the testbed. This is only possible by fusing multiple sensor perspectives.
The update rate for the digital twin depends on the fusion-setup and the type of the used object
detection network. It varies between 13.1 Hz when only using the radars at night and 24.6 Hz
when using the cameras with the YOLOv4 architecture.

We transmitted this digital twin to our autonomous driving research vehicle fortuna (Kessler et al.,
2019) for the purpose of extending its environmental perception and situation understanding. Ve-
hicles perceive their environment by means of lidars, which have limited measurement ranges and
the point cloud density in the distance becomes increasingly sparse. Vehicular cameras can capture
a more distant environment than lidars are able to, but objects that are too far away appear small
on the image and cannot be reliably detected. Furthermore, the vehicle’s low perspective is prone
to severe occlusions. Fig. 6 illustrates how an autonomous vehicle driving through our system per-
ceives its environment. The violet cubes represent vehicles detected by our system. We observed
that the point cloud density of our vehicle’s lidars drops significantly at a distance of approximately
80 m, but our system’s digital twin extends the vehicle’s environmental perception to up to 400 m.



In principle, a system such as ours is able to extend the perception of a vehicle even further, since
we designed it with scalability in mind. The maximum distance is only limited by the existing
number of built-up measurement points.

5 Evaluation of the Digital Twin

To decide what applications can be realized with our system, it is crucial to know the accuracy and
detection rate of the digital twin that it generates. For example, using the digital twin for maneuver
planning in autonomous vehicles requires high position accuracy, whereas position accuracy is less
important for the detection of traffic jams. Knowing the statistical certainty and uncertainty of the
system’s measurements also makes it possible to define safety margins that vehicles have to take
into account when using the provided information.

However, the evaluation of the system’s digital twin is a challenging task (Krämmer et al., 2020).
To merely evaluate the detection performance of individual sensors is insufficient to judge the
system’s performance, as the calibration between the sensors and the fusion algorithms are of
paramount importance for the quality of the digital twin and must therefore also be included in the
evaluation. End-to-end evaluation of the system requires ground truth information of the traffic
on the testbed over an extended period of time. This implies having the exact positions of all the
vehicles on the observed stretch of the highway. Labeling the images from the cameras within the
system is not sufficient, as it would only provide ground truth information in image coordinates
but not in the real world. Using a single, localized test vehicle also has limits, as the system must
be able to handle a wide variety of vehicle colors and shapes. Furthermore, the usefulness of
simulations is limited as well. In reality, the system is subject not only to various lighting and
vibration effects, but also to the decisions of drivers, which are hard to model.

That is why we approximate the required ground truth by recording aerial images of the testbed.
These have an ideal – almost orthogonal – top-down perspective of the highway. This perspective
avoids all inter-vehicle occlusions, and due to their regular contours, vehicles are easy to detect
and distinguish. In this section, we will describe how we captured and processed these images to
generate ground truth data suitable for evaluating our system. We also explain the evaluation itself
in detail and discuss the results together with their implications for the performance of our system.

5.1 Ground Truth Generation

As previously outlined in Krämmer et al. (2020), to generate such an aerial view ground truth,
the Providentia testbed was recorded using a 4k camera system mounted on a H135 helicopter.
Both the camera system and the Providentia system were synchronized with GPS time. The 4k
camera system consists of three Canon EOS 1D-X Mark II cameras oriented in different viewing
directions, each recording images at a resolution of 20.2 megapixels. The cameras to the left and
right covered the northern and southern parts of the testbed respectively with an overlapping FoV.
The third, nadir-looking camera of the system was not used. The cameras captured images simul-
taneously at a rate of one image per second at a flight altitude of 450 m above ground, covering an



Figure 7: Crop of an aerial image including vehicle detections, taken with the helicopter’s left-hand
camera that captures part of our testbed.

area of 600 m× 250 m. With a focal length of 50 mm, each image pixel corresponds to 6 cm on the
ground. In addition, an IGI Compact MEMS GNSS/IMU system was used to estimate the position
and orientation of the sensors during flight to enable georeferencing of the images captured. To
optimize the georeferencing accuracy, bundle adjustment with tie points and ground control points
was performed.

We use a neural network that has been trained and evaluated with the EAGLE dataset (Azimi et al.,
2021) for the object detection in all aerial images. To compute the positions of the detected vehicles
on the road, we cast rays through all four bounding box corner positions in the aerial image and
intersect them with a lidar terrain model of the highway surface to compute local UTM coordinates.
To obtain the final ground truth data that we use in our evaluation, we compute the center position
of each vehicle. We filter out all vehicles that are detected outside of the Providentia system’s field
of view or are detected twice in the overlap of the two camera FoVs.

The quality of the obtained ground truth depends on the accuracy of the object detections in the
aerial images and the positioning accuracy. The detection quality is the subject of on-going re-
search (Azimi et al., 2019) and not entirely perfect yet. The network we used occasionally missed
vehicles, especially trucks, slightly misplaced bounding boxes or detected false positives. We man-
ually corrected all of these errors by re-labeling the concerned bounding boxes to obtain a perfect
ground truth. The positioning accuracy in world coordinates depends on the georeferencing accu-
racy of the images. Specifically, it depends on the calibration accuracy of the 4k system, the quality
of the tie and ground control points used for bundle adjustment, and the accuracy of the underlying
terrain model. The overall absolute accuracy on the present dataset lies in the centimeter range.
The accuracy of this georeferencing is demonstrated in Kurz et al. (2019).

The recording of the ground truth data was performed during the day with a medium traffic vol-
ume. Fig. 7 shows a captured aerial image with vehicle detections. Even though the testbed was
not always fully covered by the helicopters’ cameras, we captured enough vehicles to perform a re-
liable and statistically significant evaluation. In total, we generated over 2 minutes of ground truth
data containing 2125 valid vehicle observations within our testbed. Additionally, each detection
contains a classification that distinguishes between cars and trucks. In total, our dataset contains
95 % cars and 5 % trucks.



Figure 8: Associations between detections from our system and ground truth data. Only detections
within the displayed ellipses around each vehicle in the ground truth data are associated. Actual
associations are marked with a line between corresponding detections. Note the different size of
the ellipses depending on the ground truth vehicle size.

5.2 Evaluation Methodology

To compare our digital twin with the ground truth data, we first transform the aerial detections
from UTM into the Cartesian world coordinate system used by Providentia, in which the digital
twin is defined. In the next step, we match all ground truth frames, i.e. all detections in each
pair of left-hand and right-hand camera images, with those frames of the digital twin with the
closest corresponding timestamp. Note that the digital twin has a higher frequency than the ground
truth with 1 Hz, and they are slightly offset with respect to each other. We account for the time
difference between matched frames by extrapolating the Providentia detections with a constant
velocity prediction.

To assess the overall performance of our system, we evaluate the classification accuracy, the spatial
accuracy and the detection rate of the digital twin. For computing these metrics, it is necessary to
establish associations between the detected vehicles in the digital twin and the ground truth. For
this purpose we use the Hungarian algorithm (Munkres, 1957), which guarantees an optimal one-
to-one assignment. We use a weighted Euclidean distance for computing the cost matrix, putting
more emphasis on the longitudinal distance between vehicles than on their lateral distance. This
accounts for the fact that the estimates in the digital twin have a greater variance in the driving
direction because of their shape and kinematics (see also the RMSE results in Sec. 5.3). While
vehicles driving on nearby lanes can be close, but the estimate of one should not be associated
to the ground truth of the other. Furthermore, we make the weights dependent on the vehicles’
dimensions, because the detection of a larger vehicle is more likely to be placed further away
from its center. In particular, we define the longitudinal weight as the vehicle length plus 8 m and
the lateral weight as its width plus 1.7 m. We determined these additive components empirically.
Thresholding this weighted distance represents an ellipse around the ground truth object, with the
major axis aligned with the driving direction (see Fig. 8). Based on these ellipses, we also perform
a gating with threshold 1, in which all associations outside of the respective ellipse are rejected
to avoid wrong associations between pairs of false negatives and false positives. Overall, these
parameters lead to accurate and reasonable associations.



With the correctly established associations, we can compute our system’s classification accuracy.
This is the percentage of vehicles that our system assigned the correct class label to. We differenti-
ate between cars and trucks as these are the class labels of the objects contained in our ground truth
data. Besides an overall classification accuracy, we also report our system’s classification accuracy
for both classes individually. Furthermore, we also use such a class-dependent evaluation in the
following metrics.

To evaluate the spatial accuracy of the digital twin, we compute the root-mean-square error
(RMSE). It represents the standard deviation of the error between the vehicle positions in the
digital twin and the ground truth positions in meters, and is therefore a good summary measure of
the positioning errors in the digital twin. In particular, for computing the RMSE we split the estab-
lished associations into a 75 % testset and 25 % training dataset. We use the split training dataset
for training our position refinement network (see Sec. 3.5), and use 2 % of the training dataset for
validation. We make sure that the smaller subset of trucks is split with equal percentages. This
helps to avoid skewed outcomes of the random splitting, like the testset containing no trucks.

In addition to its classification and spatial accuracy, the detection rate of our system is important
for evaluating its overall performance. Appropriate metrics for this are precision and recall. The
precision of our system states which percentage of vehicles detected by our system were actually
present. Its recall refers to the percentage of vehicles in the testbed that were successfully detected
by our system. To evaluate these detection metrics consistently with each other and the RMSE
computation, we compute the true positives, false positives and false negatives based on all es-
tablished associations. In particular, we first associate all ground truth detections with the digital
twin. Then we determine the FoV of our Providentia system and count all associated ground truth
vehicles within this FoV as true positives. Those ground truth detections within this FoV that got
not associated are false negatives. To compute the false positives, we have to consider that the heli-
copter was moving and occasionally only covered parts of our testbed to not count correct vehicle
detections in our digital twin as false positives because they could not be captured by the ground
truth. Hence, we project the current camera FoV of the ground truth data for each frame on the
Providentia testbed and intersect it with the Providentia FoV. Then, we take all Providentia detec-
tions within this resulting intersected FoV that have not been associated to a ground truth detection
as false positives.

We evaluate the performance of the Providentia system at day as well as at night by evaluating the
digital twin it creates with either only using camera detections as inputs, or with only using radar
detections, respectively. Using only radars is a valid method for simulating night measurements,
since radar performance is independent of lighting conditions. Hence, the radar-only based digital
twin performs the same way at day and at night, given the same traffic. Like this we can use the
same traffic scenes that we recorded during the day for our day and for our night evaluation. In
both types of evaluation, we consider the area enclosed by the two measurement points that we
cover redundantly.



Table 1: Results of the Evaluation of the Providentia Digital Twin

Mode Class Classification RMSE RMSEx RMSEy Precision Recall

Day
Total 96.2 % 1.88 m 1.81 m 0.49 m 99.5 % 98.4 %

Car 96.0 % 1.79 m 1.72 m 0.48 m 99.6 % 98.5 %

Truck 100.0 % 3.12 m 3.05 m 0.66 m 97.2 % 96.4 %

Night
Total 95.6 % 2.00 m 1.82 m 0.83 m 99.0 % 94.1 %

Car 98.2 % 1.54 m 1.31 m 0.81 m 99.0 % 93.9 %

Truck 50.5 % 5.64 m 5.55 m 1.01 m 98.0 % 97.1 %

5.3 Results

All results of the our evaluation are summarized in Table 1, separated by day and night as well as
by vehicle classes. In the following, we discuss the performance of our system for all evaluated
metrics in detail.

Classification Accuracy. Our system classifies 96.2 % of the vehicles correctly during the day
and 95.6 % during the night. At day, trucks are perfectly classified, while the accuracy for cars
is 96.0 %. Most classification errors stem from vans, that are assigned to the car class in our
ground truth, but get easily confused with trucks by our camera detection network. When such
misclassifications in the camera detections happen consistently to a vehicle, our tracker cannot
compensate the error. However, these errors could be reduced by retraining our detection network
with an additional van class, such that it learns to better differentiate. At night, using our radars,
our system has a high classification accuracy of 98.2 % for cars, but struggles at classifying trucks.
They are mistaken for cars half of the time. However, this is expected, because the classification
of the radars is only based on reflection characteristics and coarse length estimates, but no visual
clues can be used.

Spatial Accuracy. Concerning the spatial accuracy of the digital twin, we achieve an overall
RMSE of 1.88 m during the day and 2.00 m at night (see Table 1). In both cases, the major com-
ponent of the RMSE stems from the longitudinal direction and is 1.82 m and 1.81 m, respectively.
In the lateral direction, our system is very precise with an error of 0.49 m during the day. At night,
this error component increases to 0.83 m because the radars’ lateral position estimates are subject
to greater noise, especially at larger distances. In both cases, the high lateral accuracy allows us to
reliably determine the lane for each vehicle.

A large component of both the longitudinal and lateral positioning errors is due to the current
lack of information about the actual extents of the objects in our system. Because our camera
detections are two-dimensional bounding boxes in the image plane, the vehicles’ lengths are not
explicitly taken into account for estimating their position, and their widths can only be approx-
imated with perspective errors. The radars on the other hand provide estimates of the vehicles’
centers, that result from the detection point which is corrected by average vehicle extents. These



(a) Errors at Day (b) Errors at Night

Figure 9: Distribution of positioning errors in the digital twin compared to the aerial ground truth.
Our system is very accurate in most cases. The errors are within the average vehicle length in
98.0 % of the cases at day and in 99.6 % of the cases at night. In 50 % of the cases the error is less
than 1.02 m at day and less than 1.26 m at night.

average extents are associated with the corresponding vehicle class that is inferred from its re-
flection characteristics. We partially compensate this source of systematic errors for both sensor
types with our position refinement regression, but cannot eliminate it completely without knowing
the vehicles’ exact extents. Therefore, our system has difficulties handling vehicles which extents
deviate from the average of their respective vehicle classes. As a result, our system has bias that
tends to place detections more towards the rears or towards the fronts of the vehicles, depending
on the perspective. However, in the ground truth the position of an object is specified at its center.
As the ground truth vehicles driving through the testbed over the course of our evaluation have an
average length of approximately 5.18 m, the extreme placement of a detection at the rear or front
would already cause a displacement of 2.6 m to the center. Taking this into account, our spatial
accuracy is very promising at both day and night.

Fig. 9 shows the distributions of our overall positioning errors from which we computed the RMSE.
During the day, in 50 % of the cases our error is less than 1.10 m and at night less than 1.23 m.
Furthermore, in 98.0 % respectively 99.6 % of cases the errors of our detections are within the
average vehicle length. For trucks the error is in all cases within the average truck length. This
indicates that by incorporating the vehicles’ extents from the sensors, e.g. by computing three-
dimensional bounding boxes, our positioning errors could be further reduced.

In general, by separating the the positioning errors for both vehicle classes, in Table 1 it can be
seen that the RMSE for cars is smaller than for trucks at day as well as at night. Based on our
previous analysis, this is expected, since trucks have greater extents that lead to larger estimation
errors for the vehicle centers. For trucks, our system performs significantly better at day than at
night. This can be explained by the radar’s high misclassification rate for trucks. A consistently
false classification of a truck as a car leads to an underestimation of the vehicle’s center offset



(a) Errors at Day

(b) Errors at Night

Figure 10: Positioning errors in the digital twin for each ground truth vehicle on the highway, along
with the schematic measurement point positions. The FoV differences between day and night are
a result of the changing sensor setups. Both during the day and at night severe errors are rare, and
mostly due to oblique perspectives and greater vehicle extents.

from the detection point. For cars, our system performs slightly better at night because of smaller
longitudinal errors in the radar detections and the radars’ center correction performing well for
cars.

To see how the positioning errors are distributed over our testbed, in Fig. 10 we plotted the errors
to each corresponding ground truth detection. At day and at night, large positioning errors over
5 m are rare and often belong to large vehicles. Additionally, larger positioning errors mostly
occur on the top and bottom lanes. There, the sensors have more oblique perspectives on the
vehicles and the raycasting through the lower-edge midpoints of the bounding boxes deviates more
from the actual middle of the vehicles in the camera detections. The radars are more accurate at
measuring the positions of vehicles that drive closely to their viewing direction, as their angular
resolution deteriorates towards lager angles. Furthermore, the road is only approximately a plane
and deviates the most from it towards the outer lanes. Hence, there the projection errors for both
the camera detections and the radar detections are the greatest.

A large number of systematic positioning errors are corrected by our position refinement module.
Even though small errors caused by oblique camera perspectives remain, they were significantly
reduced. Without the regression we also had an accumulation of errors for the camera positioning



towards the middle of the testbed. In this area, the vehicles are far from all cameras and their
resolution in the images is the smallest, which results in higher uncertainty in the bounding box es-
timates. The way we compute the vehicle positions from the camera detections, i.e. by intersecting
rays with the road (see Sec. 3.2), is sensitive to such inaccuracies over large distances, because the
rays intersect the ground plane at a flatter angle. Our radars had the largest errors for the vehicles
on lanes of the opposite driving direction of where they were installed, which the regression also
addressed well. In total, the position refinement module reduced the RMSE during the day from
3.47 m to 1.88 m and at night from 2.64 m to 2.00 m. While the data-driven correction has a sig-
nificant effect on errors at both day and night, the camera detections benefit stronger from it. This
shows that the cameras suffer more from systematic errors, for example caused by unfavourable
perspectives in some areas of the road. Furthermore, the smaller error reduction for the radars
can be explained by their correction of the center offset with average vehicle extents, and it shows
the need for this correction in the camera detections. Despite the significant improvements, some
random error sources could not be fully corrected in both the data fusion and regression, for ex-
ample measurement noise and sensor vibrations that make the detections susceptible to calibration
inaccuracies.

Detection Rate. Lastly, evaluating the detection rate, our system achieves an overall precision of
99.5 % during the day and 99.0 % at night (see Table 1). This means that we have very few false
positives and almost all vehicles detected by our system do actually exist and are correct. The few
false positives during night can be explained with the radars tending to split larger trucks in two
detections that are classified as truck or car. In most cases, this splitting is compensated by our
tracker, but it is not always possible. Quite similarly, larger trucks are sometimes split into towing
vehicle and trailer by the camera detections explaining the slightly lower precision for the truck
class. As for the recall, our system achieves 98.4 % during the day. Hence, we detect 98.4 % of all
ground truth vehicles on the highway and only miss 1.6 % of them. At night, our recall is 94.1 %
which is not as high as during the day, but the vast majority of the vehicles is still detected. The
reason for this decrease can be seen when differentiating between cars and trucks. The recall for
trucks with 97.1 % compared to 93.9 % for cars is significantly higher. Trucks have a larger surface
to reflect radar signals and thus the likelihood of missing a truck is smaller than for a car. During
the day, our system is slightly more accurate at detecting cars. Most likely, because cars are more
frequent than trucks in the training data of our object detection networks.

It is important to note that we analyzed precision and recall of our system on a frame-by-frame ba-
sis. Hence, when we do not detect a vehicle, it does not imply that it is passing through the testbed
completely undetected. This did not happen. Rather, at specific moments in time, certain vehicles
may be briefly lost due to occlusions caused by larger vehicles. This indicates that incorporating
an occlusion handling mechanism in the tracking can further optimize the overall performance.

Overall, our system achieves a high degree of reliability, both in terms of spatial accuracy and de-
tection rate, as well as in classification accuracy. The accurate positioning of our system also allows
us to estimate the vehicles’ motion directions and speeds with high precision. Our results further
show that it is highly beneficial to use cameras during the day instead of a radar-only system. Their
detection rate and classification accuracy are higher than that of radars. Furthermore, their update
frequency is almost twice as high, along with similar overall spatial accuracy. However, also our



radars show good performance that makes our system reliable even at night. Hence, both sensor
types complement each other and enable our system to run at any time of the day. By incorporating
methods to determine spatial vehicle extents, our system’s positioning accuracy could be further
improved and a more balanced and larger training dataset could lead to even higher detection and
classification performance, thus further increase the system’s reliability.

6 Lessons Learned

Only technological advances in recent years made it possible to develop a system like Providentia.
This especially concerns computing power, artificial intelligence and data fusion algorithms. How-
ever, despite these advances it is a complex task to build a functional IIS for fine-grained vehicle
perception such as our system.

Prior to building up the actual IIS, we recommend conducting many different field tests to gather
a good understanding of the challenges involved. This is necessary due to the diverse nature of
problems posed by every region or road. To name a few examples, the selection of appropriate
sensors and their mounting locations heavily depend on the length of the road segment, its curva-
ture and the direction of observation. For our research testbed, one important aspect was to ensure
that it is as diverse as possible. To achieve this, we chose a highway section at one of Germany’s
traffic hot-spots that leads into a highway interchange and in addition is equipped with ramps that
lead towards a close by city. Therefore, many interesting driving maneuvers take place, for exam-
ple various lane changes, vehicle interactions, and even accidents sometimes. And our testbed is
exposed to various traffic conditions, from light traffic to heavy traffic jams. But also mixtures of
light traffic and traffic jams occur, for example at moments when the two lanes that are branching
off towards the intersecting highway get congested, while on the inner lanes vehicles are passing
with high speeds.

Based on our experiences, building up the hardware for such a system is technically demanding and
requires a team with a wide skillset. Not only was it necessary to design tailored brackets to equip
the gantry bridges with our sensors, deploy the sensors and computing units in a weather resistant
manner, install cabling to get a high-speed internet connection at the highway, but also legal and
safety questions had to be answered. However, we perceive the ongoing trend to technologically
modernize roads and highways to observe and actively optimize traffic in many countries. In future,
this will synergize with systems like Providentia and significantly reduce both costs and effort to
build such a system.

After the initial construction, our system has been running for over two years at the time of writing
and its hardware required only little maintenance. What is more difficult is the system’s calibration,
because the high number of multimodal sensors results in many degrees of freedom. Furthermore,
even after a precise initial calibration, the system gradually decalibrates itself over time. This is pri-
marily caused by temperature changes and oscillations of the measurement points due to wind and
vibrations caused by passing vehicles, especially trucks and buses. All these effects slightly change
the sensors’ positions with respect to the road over time. Hence, the calibration must be regularly
adjusted to avoid performance deterioration. In practice, during our project we re-calibrated our



Figure 11: Detections of our system in a blizzard. Camera detections are marked with bounding
boxes and the detections of our radars with cubes. Our radars detect distant vehicles more reliably
under this weather conditions.

system when inaccuracies became visually apparent. Even though these are only small readjust-
ments once the system has been thoroughly calibrated initially, for future applications we recom-
mend to use suitable auto-calibration methods to reduce maintenance efforts. As the oscillations
also cause the gantry bridges to slightly swing around their equilibrium, auto-calibration meth-
ods that run online and compensate all immediate oscillations would further improve the system’s
performance and reliability in the future.

In this work we extensively evaluated our system with a recorded ground truth. We covered a wide
variety of different vehicle types, movement patterns and interactions. This is necessary to answer
research questions and to develop our system, such that it achieves high positioning precision and
detection rates. However, during long-term operation it would be beneficial to frequently monitor
the quality of the system’s digital twin, where using a helicopter can get costly. Therefore, meth-
ods that trade test coverage and precision for cheaper cost must be developed. Ways to achieve
this could be the use of drones or several localized test vehicles, and in future even autonomous
vehicles driving through the system’s FoV. During our research project, we were able to qualita-
tively assess the performance of our system in harsh weathers. As shown in Fig. 11, even in snow
storms our system is able to reliably detect the vehicles passing through our testbed. However, to
quantitatively evaluate the system’s performance under such conditions and to identify cross-over
points at which it is ideal to switch between different fusion modes, in future the development of
evaluation methods that do not rely on aerial observation are required additionally. Furthermore,
self-diagnosis could instantly detect sensor failures or faults within the fusion system, for example
caused by a deteriorated calibration. For this purpose, approaches like the one from Geissler et al.
(2020) could be applied and extended.

Regarding future extension, we have built our system such that it is scalable (see Sec. 3). Many
of our developed concepts and algorithms can be transferred when increasing the number of mea-



surement points. However, some further developments are necessary for a distributed system with
many measurement points. For example, scaling down the computing units towards being em-
bedded in the sensors could reduce hardware costs. Furthermore, the selection of an appropriate
middleware must be given considerable thought and attention. While popular open-source solu-
tions like ROS present a convenient platform and enable a short development time, aspects related
to the communication architecture and message transport need to be assessed carefully for delays
and bottlenecks that may affect the real-time performance of the scaled system. Typical sources of
bottlenecks are the transfer of images through TCP based serialized transport. Another downside
is the missing backwards compatibility of ROS messages. Once data has been recorded in an old
message format, there are problems replaying it with adapted new messages.

The quality of the entire system depends upon a precise knowledge about the time at which various
events occur. We found an appropriate strategy for time synchronization based on a dependable
master clock to be essential. While working with off-the-shelf sensors, in future it would be bene-
ficial to choose those which support synchronization with an external master clock.

We see a great potential in not only extending the system on the highway but also in cities. One
interesting question to be answered in this context is the density of measurement points needed
to support autonomous vehicles. Perhaps, full coverage is not necessary, but the density of mea-
surement points should be increased in dangerous traffic areas, while thinning out in areas with
permanent light traffic density.

7 Conclusion

To improve the safety and comfort of autonomous vehicles, one should not rely solely on on-board
sensors, but their perception and scene understanding should be extended by adding information
available from a modern IIS. With its superior sensor perspectives and spatial distribution, an IIS
can provide information far beyond the perception range of an individual vehicle. This can resolve
occlusions and lead to better long-term planning of the vehicle.

While there is much research currently being done on specific components and use-cases of IIS,
information on building up an entire system is sparse. In this paper we described how a modern
IIS can be successfully designed and built. This includes the hardware and sensor setup, detection
algorithms, calibration, data fusion and position refinement. We have shown that our system is
able to achieve good results at capturing the traffic of the observed highway stretch and that it can
generate a reliable digital twin in near real-time. We have further demonstrated that it is possible to
integrate the information captured by our system into the environmental model of an autonomous
vehicle to extend its limited perception range.

Our extensive quantitative evaluation has shown that our system is characterized by both a high
classification and spatial accuracy, as well as a high detection rate, at day and night. The primary
purpose of our system is to enhance the perception of autonomous vehicles in the testbed. But
based on the results of our evaluation, it is also evident that a system like ours could be used for
applications such as traffic prediction, the detection of emerging traffic jams, wrong-way drivers



and immobile vehicles. Traffic flow management with lane and speed recommendations could be
another possible application. Beyond this, the system could be used as a reference for testing, eval-
uating and developing autonomous driving functions. And it is a huge data source for developing
data-driven algorithms.

We described our experiences with building the Providentia system and outlined some possible
improvements, especially regarding its scalability, like adding automatic online calibration and
methods for continuous quality monitoring. Furthermore, taking into account the vehicles’ spa-
tial extents would improve its positioning accuracy and further reduce errors caused by different
camera perspectives. Besides this, in future we plan to make our system more robust in adverse
weather conditions as well as during traffic jams with severe occlusions.
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