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Identifying the sources of natural variation underlyingmetabolic differences between plants will enable a better understand-

ing of plant metabolism and provide insights into the regulatory networks that govern plant growth andmorphology. So far,

however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we

utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation

on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to

growth andmorphology. In an effort to identify causal candidate genes in theQTLepi regions and their putative trans-targets,
we performed in silico small RNAand qPCR analyses. Differentially expressed genes were further studied by phenotypic and

metabolic analyses of knockoutmutants. Three geneswere detected that recapitulated the detectedQTLepi effects, providing

evidence for epigenetic regulation in cis and in trans. These results indicate that epigeneticmechanisms impactmetabolic diver-

sity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map.

[Supplemental material is available for this article.]

Due to their sessile nature, plants have developed an incredible
chemical arsenal to fight disease and stress, attract pollinators,
and interact with all kinds of organisms above and below ground
(Allwood et al. 2008; Kegge and Pierik 2010). This diverse array
of chemicals ismanifestedmostly in secondarymetabolites, which
are, compared to primary metabolites, more diverse, more tissue-
and development-specific, and more involved in response to
changes in the biotic and abiotic environment (Kooke and Keur-
entjes 2012). The plant secondarymetabolic profile is easily adjust-
able and highly plastic, which is one of the reasons why plants can
thrive in nearly all terrestrial habitats.

The accumulation of secondary metabolites in specific plant
tissues enables a balanced division of resources that contributes
to increased fitness and competitive ability (Kliebenstein et al.
2005). Flowers form the basis of the sexual reproductive organs,
and as such they are important organs for the plant to protect
from herbivores and pathogens. Moreover, they serve very special-
ized functions, such as attractingpollinators and securing anthesis,
further strengthening the need for specific chemical compounds.
In this respect, it is not surprising that flowers have a much more
complexmetabolic profile than vegetative tissues and that defense
compounds are most concentrated in the reproductive organs of
plants (Brown et al. 2003; Smallegange et al. 2007; Matsuda et al.
2010).

Because of adaptation to various biotic and abiotic environ-
ments, extensive natural variation in phytochemical profiles exists
between and within species, which can be investigated to unravel
the underlying regulation of secondary metabolism (Keurentjes
2009). The combination of genetic mapping populations with
the (un)targeted analysis of large numbers of metabolites has re-
vealed strong genetic regulation, both qualitatively and quantita-
tively (Kliebenstein et al. 2001b; Keurentjes et al. 2006; Chan
et al. 2010, 2011; Schilmiller et al. 2010). Different metabolites
within the same pathway can be regulated simultaneously by reg-
ulatory genes in trans or in cis by specific quantitative trait loci
(QTL) (Kliebenstein et al. 2001a,b; Keurentjes et al. 2006).

Although the genetic basis of secondary metabolite variation
is becomingbetter understood, the role of epigenetics in secondary
metabolismhas so farbeen largelyoverlooked. Epigeneticvariation
that causes phenotypic diversity has been identified in plants and
canbe successfully transmitted to offspring for several generations,
providing evidence for epigenetic inheritance (Cubas et al. 1999;
Manning et al. 2006; Johannes et al. 2009; Martin et al. 2009;
Reinders et al. 2009; Cortijo et al. 2014; Kooke et al. 2015).
Epigenetic variation is widespread and heritable in nature where
it maintains independently of or in dependence onDNA sequence
variation (Vaughn et al. 2007; Schmitz et al. 2013; Kawakatsu et al.
2016; Taudt et al. 2016). Only epigenetic variation that is main-
tained independently of genetic variation may be called pure
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epigenetic variation, but examples of such inheritance are scarce
(e.g., Cubas et al. 1999; Manning et al. 2006; Silveira et al. 2013).
Nonetheless, spontaneous epi-mutations are frequently observed
in Arabidopsis and, if fixed, may alter gene transcription or other
cellular phenotypes (Becker et al. 2011; Schmitz et al. 2011; Van
derGraaf et al. 2015). It is thusbecoming increasingly clear that epi-
genetic mechanisms play an important role in developmental pro-
cesses and that they may be of evolutionary significance (Vidalis
et al. 2016). Anumberof studies have reported a role for epigenetics
in the regulationof secondarymetabolism. InArabidopsis,mutants
dysfunctional in small RNA biosynthesis have significantly re-
duced amounts of glucosinolates in their leaves both in controlled
conditions and upon caterpillar feeding compared to thewild-type
Col-0, and it is suggested that small interfering RNAs can alter gene
expression through DNA methylation variation that is inherited
overmultiple generations (Rasmannet al. 2012). In addition, flavo-
noid biosynthesis gene transcription is induced or repressed de-
pending on the methylation state in methylation mutants and F1
hybrids (Kurihara et al. 2008; Shen et al. 2012).

Epigenetic recombinant inbred lines (epiRILs) in Arabidopsis
were especially designed to study the impact of heritable epigenetic
variation on complex traits (Johannes et al. 2009), and epigenetic
QTL mapping approaches have shown that specific differentially
methylated regions (DMRs) in the epiRILs can affect complex traits
(Cortijo et al. 2014; Kooke et al. 2015). However, little is known
about the regulatory mechanisms that govern changes from the
molecular epigenotypic level up to the plant phenotypic level.
Shedding light on the epigenetic regulation of plant metabolism
might aid in better understanding the role of epigenetics in regulat-
ing plant growth and development on
the molecular level.

Therefore, we analyzed the meta-
bolic profile of 96 epiRILs using untar-
geted LC-MS metabolomics of both
rosette leaves and flower heads and asso-
ciated the observed variation to epige-
netic variation in DNA methylation. To
gain further insight into the epigeno-
type-phenotype map, we explored the
epigenetic mechanisms underlying the
detected QTLepi effects and tested two
possible hypotheses: (1) Methylation
variation proximal to genes is involved
in secondary metabolite regulation in
cis; and (2) methylation variation in the
QTLepi interval modifies the production
of small RNAs that target genes in trans,
leading to altered regulation ofmetabolic
and morphological phenotypes. Sup-
porting evidence for both hypotheses
was obtained.

Results

Tissue-specific epigenetic variation

in plant secondary metabolism

To evaluate the effect of epigenetic varia-
tion on plant secondary metabolism, ro-
sette leaves and flower heads from 96
epiRILs and their parents, Col-0 and
ddm1-2, were analyzed by an LC-QTOF-

MS-based metabolomics approach. In both tissues, qualitative
and quantitative variation in metabolite accumulation could be
observed among the epiRILs (Supplemental Tables S1, S2). In the
leaves, 203 reconstructed metabolites could be retrieved. The ob-
served variation in leaf metabolites was substantial (Fig. 1A) and
very similar to the variation in conventional RIL populations
(Supplemental Fig. S1; Keurentjes et al. 2006). The vast majority
of leaf metabolites were detected in both parents and their derived
epiRILs. However, a number of leaf metabolites were only detected
in either one of the parents and a subset of the epiRILs (Fig. 1B).
Besides qualitative and quantitative differences between the par-
ents, 18 metabolites were identified that were solely detected in
(a part of) the epiRIL population while being absent in both par-
ents (Fig. 1B). These differences are either the result of epi-allelic
transgressive segregation (Johannes and Colomé-Tatché 2011)
that gives rise to the accumulation of novel metabolite structures,
or alternatively, de novo epigenetic or genetic variation accumu-
lated during the development of the epiRIL population.

In the flowers, 149 metabolites displaying substantial varia-
tion could be detected (Fig. 1A). As was the case for leaf tissue,
themajority ofmetabolites in flowers was detected in both parents
and their derived epiRILs, whereas a minority was, in addition to a
limited number of epiRILs, only detected in Col-0 or ddm1-2 flow-
ers (Fig. 1C). Four metabolites were only detected in a portion of
the epiRILs and not in the parents, suggesting that epi-allelic trans-
gressive segregation has resulted in the accumulation of these me-
tabolites. These findings indicate that epi-allelic variation can
impact metabolic variation in a quantitative and qualitative man-
ner in both flowers and leaves.

A

B C

Figure 1. Metabolite variation in leaves and flowers of epiRIL population. (A) Frequency distribution of
coefficient of variation (%) for all 203 leaf (light gray) and 149 flower (dark gray) metabolites detected in
the Col-0 × ddm1-2 epiRIL population using untargeted LC-QTOF-MS-based metabolomics. (B) Number
of metabolites that were detected in the leaves of the parents of the population, Col-0 and ddm1-2, and
the epiRILs. (C) Number ofmetabolites that were detected in the flowers of the parents of the population,
Col-0 and ddm1-2, and the epiRILs.
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Strong correlations between metabolites across all epiRILs
weredetectedwithin the same tissue, butmuchweaker correlations
occurred betweenmetabolites in different tissues (Fig. 2). Although
the total number of correlating metabolites was quite similar in
leaves and flowers (55%over 53%, respectively; ρ> 0.2), thepropor-
tionofnegative correlations betweenmetaboliteswasmuchhigher
in leaves than in flowers (46% over 8%, respectively) (Fig. 2), sug-
gesting a stronger competition for resources in the leaves than in
the flowers, possibly because of the dual role of leaves as both
sink and source tissue. The high proportion of positive correlations
in the flowers indicates that flowers showamuchmore coordinated
regulation of metabolite accumulation, which might be caused by
the tightdevelopmental control and specific functionof this tissue.

Although the leaf and flower tissues were not harvested from
the same plant, some significant correlations (P<0.05) between
leaf and flower metabolites (10%, |ρ| > 0.2) could be observed,
with the majority of them being negative (8.3%, ρ<−0.2) (Fig.
2). This illustrates the metabolic separation in tissue types and
their functionally different roles in the plant’s life cycle demand-
ing distinct phytochemical profiles. Thewide range of quantitative
variation in metabolites between the WT Col-0 and ddm1-2 par-
ents of the population as well as between epiRIL individuals fur-
ther suggests that the methylation status might be important for
tissue-specific metabolic control.

Site-specific differential methylation explains qualitative

and quantitative metabolic variation

To gain deeper insight into the regulation of plant metabolism
within the epiRIL population, QTLepi analysis was performed on
all metabolites using a geneticmap based on differentiallymethyl-
ated regions as physical markers (Colome-Tatche et al. 2012). To
verify that these DMRs were stably inherited to the generation of
epiRILs used in our study, we subjected four randomly selected
epiRILs to whole-genome bisulphite sequencing (Supplemental
Fig. S2; Lauss et al. 2018). The detected methylation patterns in
these four lines was remarkably similar to those reported earlier

(Johannes et al. 2009; Colome-Tatche et al. 2012; Cortijo et al.
2014), demonstrating once more the stable inheritance of epige-
netic marks over many generations.

In total, 34 QTLepi were identified for 30 differentmetabolites
(Fig. 3; Supplemental Table S3). The widespread quantitative and
qualitative variation that was detected in the epiRILs was reflected
in the detectedQTLepi. For example, QTLepi were identified forme-
tabolites that showed qualitative or quantitative variation between
the parents of the epiRIL population. In addition, QTLepi could be
detected for metabolites with similar abundance in the two par-
ents, indicating that transgressive segregation of the epigenetic
markers within the population is probably responsible for the
mapped metabolic variation in these epiRILs.

Out of the 34 QTLepi, 10 QTLepi were detected in the leaves
and 24 in the flowers. The epigenetic variation resulted in in-
creased or decreased metabolite content depending on the metab-
olite and the tissue. Sixteen of the 34 QTLepi displayed a negative
effect sign, representing an increase in metabolite content be-
tween 4% and 41% in the ddm1-2-inherited epigenotypes. This
was true for nine of the 10 QTLepi detected for leaf metabolites,
while this was the case for only eight of the 24 QTLepi detected
in the flowers. Overall, the detection of QTLepi suggests that the
observedmetabolic variation among the epiRILs can at least partly
be explained by methylation variation at DMRs.

Epigenetic variation exerts pleiotropic effects on molecular

and morphological traits

Twenty-one different QTLepi regions could be assigned, divided
over the five chromosomes, with many coinciding QTLepi (Fig. 3;
Supplemental Table S3). One QTLepi region was shared between
leaf and flower metabolites, while five regions were specific for
leaf metabolites and 15 for flower metabolites. For most of the an-
notated compounds, QTLepi could only be detected in one specific
tissue, predominantly in flowers. However, for a limited number of
metabolites, different QTLepi were identified in leaves and flowers,
indicating differential metabolic regulation between tissues
(Supplemental Table S3). Altogether, these QTLepi analyses suggest
that epigenetics might play a significant role in regulating the tis-
sue-specific accumulation of secondary metabolites.

Themetabolic QTLepi identified in this study overlappedwith
the morphological QTLepi that were analyzed in the same experi-
ment (Kooke et al. 2015) and with morphological QTLepi detected
in a previous study (Fig. 3; Cortijo et al. 2014). Twelve pleiotropic
QTLepi regions were detected, divided over the five chromosomes
but with especially strong pleiotropic loci in the middle of Chr 1
and 4, the start of Chr 4, and the middle and lower arm of Chr
5. Themajority ofmetabolites for which anQTLepi could be detect-
ed significantly correlated with the morphological traits that
mapped to the same regions (P[χ2] < 0.01). The highest correlation
was detected between flowering time and kaempferol-deoxyhexo-
side (r=−0.43), while both mapped to the same DMR on Chr 1
(Fig. 3; Supplemental Table S4). This suggests that metabolites
are connected to morphological traits and that they might be reg-
ulated by the same epigenetic mechanisms.

Alternatively, the variation in metabolites might be a pleio-
tropic effect of differences in flowering time, although the sam-
pling of flowers for metabolic profiling was such that each
individual flower head was harvested at the time when the first
flower opened. Nonetheless, variation in a number of flower and
leaf metabolites that significantly associated with a DMR demon-
strated a significant correlation (P<0.001) with flowering time

Figure 2. Correlation matrix of detected metabolites in the epiRIL pop-
ulation. Pearson’s correlation betweenmetabolites within and between tis-
sues is indicated by color intensity from −1 (red) to 1 (blue). Variation in
metabolites correlates within the same tissue, but correlation between dif-
ferent tissues is much weaker.
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(Supplemental Table S4). Therefore, the QTLepi analysis was also
applied with metabolic values corrected for variation in flowering
time. This analysis revealed a very similar pattern with only slight
differences in the number of detected QTLepi, mostly due to
threshold effects (Supplemental Table S5). Only two metabolites
had amarkedly changedQTLepi profile upon correction for flower-
ing time (Supplemental Fig. S3). It thus appears that for only a lim-
ited number of cases flowering time has a significant effect on the
QTLepi profile but that the majority of detected metabolic QTLepi

are not due to pleiotropic effects of the variation in flowering time.

Regulation of secondary metabolism in cis by epigenetic variation

in biosynthesis genes

To investigate epigenetically regulated candidate genes involved
in secondary metabolism, we focused our attention on variation
in glucosinolate and flavonoid content of the flowers. Sixty-seven
candidate genes were selected within the 1.5 LOD QTLepi confi-
dence intervals, based on their involvement in glucosinolate
and/or flavonoid metabolism according to the TAIR, ARACYC,
and KEGG databases (Berardini et al. 2015; Kanehisa et al. 2017;
Schläpfer et al. 2017). We next submitted each gene to a series of
strict selection criteria. For all 67 genes, differentially methylated
regions in the promoter, gene body, and 1 kb downstream from
the candidate gene in the epiRILs were associated to their metabol-

ic trait values. For 27 out of 67 genes, significant (P< 0.05) associ-
ations were detected between methylation state and metabolic
level. Because methylation states can be gained and lost, indepen-
dent of the crossing scheme, it was investigated whether themeth-
ylation state at the DMR cosegregated with the most significant
marker from the QTLepi study to determine whether the DMR of
the candidate gene can explain the QTLepi (P<0.05). This was
the case for 17 of the 27 remaining genes. From these 17 genes,
we selected nine candidates based on the relationship between
gene function andmetabolite pathway, positionof theDMRs (pro-
moter > gene body>downstream), presence of TEs close to DMRs,
and gene expression variation between Col-0 and ddm1-2 in pub-
licly available data (Supplemental Table S6; McCue et al. 2013;
Stroud et al. 2013).

To determinewhether the epigenetic variationwas associated
with variation in gene expression, qPCRs were performed on these
nine genes in all epiRILs. Only one gene, AT1G50740, displayed a
significant effect of both the DMR marker and the methylation
levels around the gene on the gene expression levels (P<0.05)
(Fig. 4A,B). Specifically, nine DMRs in the promoter region of
AT1G50740 were significantly associated with variation in gene
expression and themetabolic levels of two flavonoids that were as-
sociated with the QTLepi (Fig. 4C). In addition, expression QTLepi

(eQTLepi) analyses suggest that the expression of AT1G50740
might be affected by the methylation state at different loci

Figure 3. QTLepi heat map for metabolic and morphological traits. QTLepi heat map showing the positions of the QTLepi and the overlap with QTLepi for
morphological traits divided over the five chromosomes. The morphological traits were described previously (Kooke et al. 2015). The thin black lines in the
second row indicate the marker positions in cM. (Trait) Metabolite number or morphological trait, (P) phenotype group, (L) leaf, (F) flower, (M) morphol-
ogy. The legend on the right indicates the QTL LOD score between −5 (red) and 5 (blue).
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(Fig. 4D). AT1G50740 is a transmembrane protein possibly in-
volved in defense responses and in the regulation of flavonoid
biosynthetic processes (Heyndrickx and Vandepoele 2012).
Epigenetic variation in the gene body and promotor of this gene
was also observed in natural accessions of Arabidopsis (http://
neomorph.salk.edu/1001.aj.php) (Supplemental Fig. S4), indicat-
ing that epigenetic variation in this gene is not just an experimen-
tal artifact but might also contribute to natural variation.

To further elucidate the involvement of AT1G50740 in
secondary metabolism, a knock-out mutant was analyzed using
deep phytochemical phenotyping (Supplemental Table S7;
Supplemental Fig. S5). Indeed, the comparison of the knock-out
mutant of AT1G50740 with the Col-0 WT revealed strong effects

of this gene on the levels of several flavonoids (P< 0.05) (Supple-
mental Table S7; Fig. 4E). These findings indicate thatmethylation
in the promoter ofAT1G50740might regulate gene expression and
flavonoid content.

Regulation of secondary metabolism and plant morphology

in trans by epigenetic variation in putative small RNAs

Exploratory analyses revealed that QTLsepi are also associated with
DNA methylation states at promoter regions of 324 genes in trans
(Supplemental Table S8). Onemolecular model that could explain
these associations is that TEs or repeat-associated DMRs in QTLepi

intervals lead to the differential production of small RNAs that

A

B

C

D

E

Figure 4. Confirmation analyses for AT1G50740.Methylation variation in the promoter of AT1G50740 is associatedwith variation in gene expression and
metabolite content. (A) Scatterplot indicating the correlation betweenmethylation at promoter and gene expression ofAT1G50740 in all epiRILs. Red circles
indicate epiRILs with wild-type allele at the DMR MM123; black circles indicate epiRILs with ddm1-2 allele at DMR MM123. (B) Histograms indicating the
association of the methylation level at the promoter of AT1G50740 (light gray) and DMR MM123 (dark gray) with the relative gene expression of
AT1G50740. (C) Histograms indicating the association of the methylation level at promoter of AT1G50740with the relative metabolite content of kaemp-
ferol-deoxyhexoside (light gray) and kaempferide-3-glucoside (dark gray).Hypomethylated indicates amethylation level between−1 and−0.3;methylated
indicates amethylation level between−0.3 and 1. (D) eQTLepi analysis for AT1G50740 in epiRILs. (E) Variation inmetabolite content of kaempferol-3-O-glu-
coside andkaempferol deoxyhexoside inwild-typeCol-0 andAT1G50740 knock-outmutant (designatedSALK1here; see SupplementalMaterial for details).
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affect DNA methylation maintenance at loci in cis but also possi-
bly in trans via the canonical or noncanonical RNA-directed
DNA-methylation (RdDM) pathways (Matzke and Mosher 2014).
Differential targeting of sRNA to loci in trans could induce DNA
methylation changes either directly by altering the recruitment
of components of the RdDM pathway, or indirectly by post-tran-
scriptional silencing of genes flanking the trans-target loci (Fig. 5).

Although this hypothetical mechanism is difficult to validate
experimentally, a key requirement is that regions in the QTLepi in-
tervals have sequence similarity with their putative trans-targets
and that these target sequences match functional sRNA. To evalu-
ate this, we searched the promoters of the 324 genes for segments
sharing perfect similarity with their associated QTLepi. The homol-
ogous regions were then decomposed, in silico, into sets of artifi-
cial sRNAs (artsRNAs). Selected artsRNAs were then submitted to
the SAILS computational framework (Morgado et al. 2017) to pre-
dict loading into ARGONAUTE (AGO) proteins 4/6/9, which are
known to be involved in transcriptional silencing in plants (Fang
and Qi 2016). ArtsRNA with high probability for AGO-loading
were matched to true sRNAs from wild-type (WT) and ddm1
sRNA libraries (Slotkin et al. 2009) to obtain further evidence to
support these segments as real sRNAs (Supplemental Table S9).

Thirteen of the potential artsRNA target genes were further
analysed for gene expression variation in the flower heads of the
epiRIL population using qPCR and subsequent eQTLepi analysis.
Three of the 13 genes were significantly associated with one or
multiple eQTLepi. For AT3G24360 and MED8, the detected
eQTLepi colocated with the trans-QTLepi interval that contains
artsRNAs predicted to mediate transcriptional silencing (Fig. 6A,
B; Supplemental Table S9). In addition, MED8 and AT3G24360
contain TEs in their promoters and all artsRNAs originating from

the QTLepi interval are complementary to these TEs or their flank-
ing sequences (<1000 bp). In the case of AT3G24360, TEs from
VANDAL families are found in all candidate regions targeted by
artsRNAs. VANDAL transposons from the MuDR superfamily in
maize have been shown to modulate the expression of genes
through epigenetic mechanisms (Kinoshita et al. 2004). Following
this approach,we thus established a link betweenmethylation var-
iation in small RNAs and trans genes and their level of expression.

To illustrate that loss of expression affects metabolic and
morphological traits, the metabolite profiles of KO mutants for
the genes AT3G24360 and MED8 were compared with the Col-0
wild type. Both knock-out mutants displayed a significant reduc-
tion or complete loss of expression (Supplemental Fig. S5). The
functional MED8 mutant was significantly altered in the levels of
70 metabolites, including various glucosinolates and flavonoids
(P<0.05) (Supplemental Table S7; Fig. 7A). These findings coincide
well with the function of MED8 in mediating cross-talk between
glucosinolate and phenylpropanoid biosynthesis pathways (Kim
et al. 2015). Several morphological features were significantly al-
tered in the mutant as well (Fig. 7B). The function of the Mediator
complex in plant metabolism suggests that MED8 is directly in-
volved in regulating glucosinolate variation, which, in turn, may
also alter flowering time, as indicated by a number of independent
studies (Atwell et al. 2010; Kerwin et al. 2011; Jensen et al. 2015),
although flowering time variationmay also alter glucosinolate lev-
els (Mohammadin et al. 2017). Likewise, the functional knock-out
mutant ofAT3G24360 significantly altered the levels of severalme-
tabolites (P<0.05) (Fig. 7C; Supplemental Table S7).

In addition, using the methylation data from the 1001
Genomes Consortium (Kawakatsu et al. 2016), variation could be
observed in the level of methylation in the promoters of the can-
didate genes in natural accessions (Supplemental Fig. S4). Compar-
ison of these methylation data with mRNA expression data in a
public methylation browser (neomorph.salk.edu/1001.aj.php) re-
vealed that de-methylation of the promoter correlates with altered
gene expression (Supplemental Fig. 6A–C). These findings again
indicate that variation in the level of methylation might play a
role in natural settings as well.

Discussion

Epigenetic regulation of plant secondary metabolism

The findings presented here indicate that epigenetics is at least
partly involved in the regulation of plant secondary metabolism
in both leaves and flowers of Arabidopsis. It must be noted, howev-
er, that, given the large variation among the epiRILs, the number
and strength of QTLepi was considerably lower than the strength
and number of metabolic QTL in genetic studies on classical RILs
(Keurentjes et al. 2006; Rowe et al. 2008). Although the popula-
tions that were used in those studies were substantially larger,
the results indicate that genetic variation is a much larger source
for metabolic variation than epigenetic variation in Arabidopsis.
On the onehand, this is not surprising given the long evolutionary
history of Arabidopsis and its genetic adjustment to different envi-
ronments (Weigel 2012). On the other hand, different studies on
morphological traits claim that epigenetic variation can have an
almost as large effect on morphological variation as genetic varia-
tion (Johannes et al. 2009; Zhang et al. 2013; Cortijo et al. 2014;
Kooke et al. 2015). Given the understanding of plant metabolism
as a blueprint for plant morphology and development (Kooke and
Keurentjes 2012), the low number of QTLepi is counterintuitive.

Figure 5. Theoretical model for the regulation of DNA methylation by
differential targeting of sRNA to loci in trans. Changes in DNAmethylation
can be induced directly by differential recruitment of components of
the RdDM pathway, or indirectly by post-transcriptional silencing of
genes. (DCL) Dicer, (M) methylated, (Pol) RNA polymerase, (RDR) RNA-
dependent RNA polymerase, (U) unmethylated.
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It might be that the epigenetic effects on a metabolic scale are too
small to be identified inQTLepi analyses. On a higher level, howev-
er, e.g., in the case of morphological changes that are the outcome
of canonical changes in a large set of metabolites, epigenetic ef-
fects may play a role.

The epigenetic control of secondary metabolite content in
termsofnumber and strength ofQTLepiwasmuch stronger in flow-
ers than in leaves. Flowers, as reproductive organs, are important
plant tissues in terms of fitness and should thus be well protected
(McCall and Irwin 2006). Given the high unpredictability of path-
ogen and herbivore attack, plastic, epigenetic responses might be
an additional line of defense for adequate responses to a broad
range of attackers in the highly specialized flowers. Indeed, metab-
olites such as glucosinolates and flavonoids that are involved in de-
fense against biotic and abiotic stress (Shirley 1996; Graham 1998;
Wentzell and Kliebenstein 2008) were detected to be under epige-
netic control in flowers. Epigenetic variation is thought to be espe-
cially important in fluctuating environments because epigenetic
variants, in contrast to DNA sequence variants, can be reversed
(RandoandVerstrepen2007). Epigeneticmodifications canunlock
phenotypic plasticity and, as such, can enhance adaptation in such
environments (Zhang et al. 2013; Kooke et al. 2015).

Moreover, somemetaboliteswere not present in theCol-0WT
but were present in a number of epiRILs and the ddm1-2 mutant.
Two of these metabolites were significantly associated to DMRs,
and epigenetic regulation can thus initiate the production of
additional metabolites. Although the methylation differences

were artificially induced in the epiRILs,
the production of other metabolites
through epigeneticmeans could be an ef-
fective weapon against herbivore attack
innature, especially under changing con-
ditions. The control of secondary metab-
olism inplants is thus partly regulated via
epigenetic mechanisms, possibly as an
adaptation to respond to different levels
of abiotic and biotic stresses, enhancing
phenotypic plasticity.

Epigenetic regulation in cis and in trans

DNA methylation variation is evidently
the most likely reason for the observed
phenotypic variation in the epiRILs.
Indeed, qPCR analysis of cis-regulated
genes revealed that hypomethylation of
the promoter increases the expression of
the gene, and knock-outmutant analyses
confirmed that those genes are involved
in regulating the accumulation ofmetab-
olites. In addition, sets of high-confi-
dence artsRNAs were found to map to
both the QTLepi interval and the promot-
er of trans genes targeting the methyla-
tion state of the loci. We further
observed that, both in the QTLepi and
the gene promoters, the artsRNAs often
mapped to TEs/repeats or to their vicinity
in DMRs. This is a relevant observation,
since TE/repeat rich regions are known
to influence changes in DNA methyla-
tion not only at a local level but also in
distant genomic loci exactly through

the production of sRNAs (Lewsey et al. 2016). Moreover, some
artsRNAs map in QTLepi intervals to DMRs that show a tendency
of reversion to WT-like methylation levels. More specifically, the
loss of methylation in multiple loci is accompanied by a decrease
in the production of heterochromatic small interfering RNA (hc-
siRNA) that in some plants reach such low levels that the feedback
loop that sustains themethylationmarksmust be disrupted, affect-
ing the capacity of the plants to recover and thus keeping the QTL
source region and the trans target gene promoter depleted of DNA
methylation. qPCR confirmed that the expression of these genes is
increased if their methylation is reduced. We further confirmed
with knock-out mutants of such genes that a loss of expression
causes significant variation in plantmetabolism. These results con-
firm the findings of a studywhich reported onmutants impaired in
small RNA biogenesis that have significantly reduced levels of var-
ious aliphatic and indole glucosinolates (Rasmann et al. 2012).

Finally, we were able to show that variation in the level of
methylation exists in the promoters of candidate genes in natural
accessions, which correlates well with gene expression variation.
The methylation variation observed in the epiRIL population
might thus be relevant in natural settings as well.

Pleiotropy

It is intriguing that themajority of QTLepi detected formorpholog-
ical traits in control and stress conditions, phenotypic plasticity,
and secondarymetabolism can be collapsed into 12QTLepi regions

A

B

Figure 6. Expression QTL analysis in epiRILs. (A) AT2G03070 and (B) AT3G24360. RNA was extracted
for 93 epiRILs, reverse-transcribed to cDNA, and quantified by SYBR Green qPCR. Gene expression was
normalized against the reference gene TIP41 and subjected to eQTLepi analyses. Green line indicates LOD
significance threshold that was calculated using 1000 random permutations with α 0.05 as the genome-
wide type 1 error level. Markers positions are indicated on the bottom of the graph.
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(Cortijo et al. 2014; Kooke et al. 2015). It appears that the epigenet-
ic variants underlying the QTLepi affect many phenotypic traits in
parallel. Although the number of phenotypes measured in these
studies is much smaller than the number of traits analyzed in
the genetically diverse Cvi x Ler population, it seems that the ef-
fects are similar in terms of pleiotropy and robustness (Fu et al.
2009). The master epigenetic regulators are most likely sRNAs
that became inactive through hypomethylation in the F1 and
have contributed to the alteration of the methylation state at var-
ious loci in trans which have maintained that state through meio-
sis. Indeed, independent knock-out mutants of two small RNA
target candidate genes were shown to have significant effects on
plant metabolism and morphology. For instance, we detected
strong differences in the content of so-called Arabidopsides, which
contain esterified oxylipins that are precursors for the plant de-
fense hormone jasmonic acid (Glauser et al. 2008; Göbel and
Feussner 2009). Oxylipins are derived from the oxidation of poly-
unsaturated fatty acids, and the levels of these compounds in a
knock-out mutant of a gene encoding fatty acid beta oxidation ac-
tivity were up to 11 times higher compared to the wild type. The
detected epigenetic regulation of this gene (AT3G24360) through
small RNAs had a direct effect on the levels of oxylipin compounds
in our study, and given that there is natural methylation variation
at the promoter of this gene, the epigenetic effects can have impor-
tant implications for plant defense in nature.

Methods

Plant growth conditions

Seventeen replicate plants per epiRIL and parent were completely
randomly grown in a climate chamber. At 21 d after germination

(DAG), six randomly selected replicates were harvested for leaf tis-
sue. At the time of flowering, the flower head was harvested for six
other randomly selected replicates (see Supplemental Material for
details on growth conditions).

KO analysis

Homozygous mutants were grown in a completely randomized
design in the same conditions as the epiRILs. Flowering time was
recorded at the opening of the first flower. For 15 replicates, flower
heads were harvested. For the 12 remaining replicates, main stem
branching (MSB), rosette branching, plant height at first silique
(PH1S), total plant height (TPH), and average internode length
(AIL) were measured 2 wk after flowering. Gene expression of KO
lines was analyzed using qPCR (see Supplemental Material for de-
tails on phenotyping methods).

LC-QTOF-MS analysis of leaf and flower tissue

For both leaves and flowers, three replicates were pooled to make
one representative sample. Leaves and flower tissueswere subjected
to aqueous methanol metabolite extraction. Metabolic profiles
were obtained using reverse phase liquid chromatography com-
bined with a quadrupole time of flight mass spectrometer
(LC-QTOF-MS) (De Vos et al. 2007). Metabolite profiles obtain-
ed were processed using MetAlign software (Lommen 2009).
MSClust software (Tikunov et al. 2012)was used for clusteringmas-
ses that originate from the same parent ion. Qualitative variation
between the parents and the epiRILs was assessed using the select-
ed-ionmonitoring chromatogram.Quantitative variationwas ana-
lyzed using the total ion count (see Supplemental Material for
details on extraction methods and run parameters).

A

B

C

Figure 7. Metabolic andmorphological trait analyses inmutants andwild type. (A)Metabolic values for three different glucosinolates (4-methylthiobutyl
glucosinolate, 5-methylthiopentyl glucosinolate, and 8-methylthiooctyl glucosinolate) in Col-0 wild type and themed-8mutant. (B) Phenotypic trait values
for flowering time (FT), total plant height (TPH), main stem branching (MSB), and average internode length (AIL) in col-0 wild type and themed-8mutant.
(C) Metabolic values for kaempferol deoxyhexoside in Col-0 wild type and the AT3G24360 knock-out mutant (designated SALK2 here; see Supplemental
Material for details). (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001.
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KO analysis by UPLC-Orbitrap-FTMS

The mutant samples were analyzed on a Waters UPLC-PDA con-
nected to an LTQ Orbitrap-FTMS hybrid system (Van Duynhoven
et al. 2014). Five times three pooled samples of flower heads were
analysed per line. Aqueous-methanol extracts from KO and WT
control plantswere analyzedusing the same chromatographic con-
ditions as in theLC-QTOFMS analyses described above.Metabolite
profiles obtained were processed using the same MetAlign-
MSClust-based workflow as described above. Identification of me-
tabolites was based on matching the retention time and accurate
masses of parent ions and their (in-source) fragments with an in-
house experiment-based database of previously reported Arabidop-
sis metabolites, detected under the same chromatographic
conditions (Van Der Hooft et al. 2012). Compounds not present
in this in-house database werematchedwithmolecular ionmasses
of compounds present in other open databases such as the
Dictionary of Natural Products (http://dnp.chemnetbase.com),
HMDB (http://www.hmdb.ca), and KNApSAcK (http://kanaya
.naist.jp/knapsack_jsp/top.html). Compounds were given a me-
tabolite identification level according to theMetabolomics Society
Initiative (MSI) (Summer et al. 2007). Before statistical analysis,
metabolite intensities were log10-transformed (see Supplemental
Material for details on extraction methods and run parameters).

Epigenetic QTL mapping with R/QTL

Quantitative variation in metabolite accumulation was assessed
using the total ion count, and mass clusters were batch-corrected
by dividing the metabolite sample intensity by the metabolite in-
tensity batch average. The batch-corrected values for the epiRILs
were used for QTLepi mapping. To control for the effect of flower-
ing time on the metabolic trait values, a parallel analysis was run
where the metabolic trait values were divided by flowering time
for each specific epiRIL. Epigenetic QTL mapping was performed
with multiple QTL mapping (MQM) implemented in the R/QTL
software (Arends et al. 2010; Joosen et al. 2012). Cofactors were as-
signed to 42 of the 126 markers based on their physical cM posi-
tion and preliminary composite interval mapping (CIM) on the
data. Backward elimination was used to remove cofactors that
did not contribute to the fit of themodel. MQMmapping was per-
formed on each trait and each treatment separately, and the results
were compared to standard interval mapping, using Haley Knott
regression (Haley and Knott 1992). One thousand random permu-
tations were generated for each phenotype to determine the LOD
significance threshold with α=0.05 as the genome-wide type I er-
ror level (see Supplemental Material for software settings).

Calculation of methylation scores

Probe-level methylation data were obtained for 89 epiRILs of this
study from the MeDIP tiling arrays as in Cortijo et al. (2014). The
methylation calls were previously determined for each probe on
these arrays using a Hidden Markov Model (Colome-Tatche et al.
2012). Based on these results, posterior probability for probe i to
be unmethylated or methylated was calculated by post(Pi=U)
and post(Pi=M), respectively. Using this, the methylation level
of probe I was defined as ML –post(Pi=U )∗(−1) + post(Pi=M)∗1
(for further details, see Cortijo et al. 2014). Scores between −1
and −0.3 were counted as hypomethylated; scores between −0.3
and 1 were counted as methylated.

Small RNA target gene selection

To account for the possibility of RdDM activity, a set of methyl-
omes captured with MeDIP-ChIP technology for a population of

123 epiRILs and their parental lines (Cortijo et al. 2014) were uti-
lized in a search for genomic loci containing probes that meet
the following criteria: (1) They fall inside a gene promoter; (2)
the variance for the methylation calls across the population of
epiRILs is >0; (3) parental lines are polymorphic in terms of DNA
methylation; (4) they have at least two consecutive probes that
correlate with a metabolite-associated QTLepi peak marker; and
(5) the genes are located outside the QTL interval with which sig-
nificant correlation was determined. The promoters of such genes
were further subjected to a search for segments sharing perfect sim-
ilarity with DNA regions inside the related QTLepi. These regions
were then decomposed, in silico, into sets of artificial sRNAs,
which were then submitted to the SAILS framework to predict
the loading to AGO4/6/9 proteins. Finally, the artsRNAs were
matched to true sRNAs fromwild-type (WT) and ddm1 sRNA librar-
ies (Slotkin et al. 2009; see Supplemental Material for details on se-
lection criteria and the SAILs framework).

Quantitative real-time PCR

RNA was extracted for 93 epiRILs using the Direct-zol RNA
MiniPrep Kit from Zymo Research. Remaining DNA was removed
using RQ1 RNase-free DNase (Promega). cDNA synthesis was per-
formed using the iScript cDNA Synthesis Kit (Bio-Rad). The RT-
PCR was performed on the CFX96 (Bio-Rad). The primers used
are listed in Supplemental Table S10. Genes were normalized
against the reference genes SAND and TIP41 (see Supplemental
Material for details on PCR settings).

Whole-genome bisulphite sequencing (WGBS)

WGBS data for four epiRILs (epiRIL92, epiRIL150, epiRIL193, and
epiRIL232) were obtained from Lauss et al. (2018) and reanalyzed
for theearlier reportedDMRmarkers (Cortijo et al. 2014) toconfirm
the stability of the epiRILs. In brief, aerial rosette tissue at 21/22
DAS (days after sowing)was harvested and snap-frozen immediate-
ly in liquid nitrogen.Material was stored at−80°Cuntil processing.
GenomicDNA fromtwobiological replicates (2 × 6 rosettes)was ex-
tracted using a standard CTAB-based extraction protocol followed
by an RNase digest. Five micrograms of DNA per sample was sub-
mitted to BGI for bisulphite treatment, library construction (insert
size of 200 bp), and sequencing. Sequencing (whole-genome bisul-
phite sequencing) was performed on an Illumina HiSeq 4000 in-
strument, generating 150-bp paired-end reads.

Data access

Mass spectrometry data of epiRILs and knockoutmutants are avail-
able from the DRYAD Digital Repository (https://doi.org/10.5061/
dryad.ph37b2q). Bisulphite sequencing data of epiRILs from this
study have been submitted to the Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE122398.
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