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Summary

Acetic acid bacteria (AAB) are associated with plants
and insects. Determinants for the targeting and occu-
pation of these widely different environments are
unknown. However, most of these natural habitats
share plant-derived sucrose, which can be metabolized
by some AAB via polyfructose building levansucrases
(LS) known to be involved in biofilm formation. Here,
we propose two LS types (T) encoded by AAB as deter-
minants for habitat selection, which emerged from ver-
tical (T1) and horizontal (T2) lines of evolution and
differ in their genetic organization, structural features
and secretion mechanism, as well as their occurrence
in proteobacteria. T1-LS are secreted by plant-
pathogenic α- and γ-proteobacteria, while T2-LS genes
are common in diazotrophic, plant-growth-promoting
α-, β- and γ-proteobacteria. This knowledge may be
exploited for a better understanding of microbial ecol-
ogy, plant health and biofilm formation by sucrase-
secreting proteobacteria in eukaryotic hosts.

Introduction

Acetic acid bacteria (AAB) are Gram-negative, aerobic
rods, which belong to the class of α-proteobacteria. They
are currently subdivided into 17 genera, which constitute
the acetous group of Acetobacteraceae (Yamada, 2016).
The genera with the highest numbers of described species
are Acetobacter, Komagataeibacter, Gluconobacter, Glu-
conacetobacter and Asaia. The main characteristic of
AAB is their oxidative metabolism enabling them to oxidize
diverse alcohols and sugars to the corresponding acids
via membrane-bound dehydrogenases, which are part of
the respiratory chain and whose active centres are ori-
ented into the periplasm (Matsushita et al., 1994;
Deppenmeier and Ehrenreich, 2009). For most oxidation
reactions, substrates are taken up into the periplasm, oxi-
dized and subsequently released into the environment
resulting in the acidification of the extracellular space.
Most AAB can, in this way, cope with high alcohol or sugar
concentrations, as energy can be generated without
uptake of the respective osmolytes into the cytoplasm
(Deppenmeier et al., 2002). Because of their acid and
alcohol tolerance (Mullins et al., 2008) some AAB are
commonly found coexisting with lactic acid bacteria and
yeasts, for example, in traditionally fermented foods like
kefir (Gulitz et al., 2011; Laureys and De Vuyst, 2014),
kombucha, cocoa beans or coffee (De Roos and De
Vuyst, 2018). Acetobacter and Komagataeibacter spp.
are specialized on ethanol conversion to acetic acid via
two successive oxidative steps and are thus used for vine-
gar manufacture (Gullo and Giudici, 2008; Raspor and
Goranovi�c, 2008; Yakushi and Matsushita, 2010). By con-
trast, Gluconobacter spp. preferably oxidize glucose to glu-
conic acid(s) and usually occur in sugary environments
(Prust et al., 2005). Most species of Gluconacetobacter
are N2-fixing, endophytic symbionts of plants like sugar
cane and coffee (Cavalcante and Dobereiner, 1988;
Pedraza, 2008), while Asaia spp. are beverage spoilers
(Moore et al., 2002; Kregiel et al., 2012) and symbionts of
malaria-transmitting mosquitoes (Favia et al., 2007;
Damiani et al., 2010; Chouaia et al., 2012). The remaining
AAB genera mostly comprise one single species being
distinctly less frequently isolated from natural sources
than strains of the five main genera. These more rarely
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occurring species have been mostly isolated from sugary
plants (Urakami et al., 1989; Lisdiyanti et al., 2002; Jojima
et al., 2004; Loganathan and Nair, 2004; Yukphan et al.,
2005; Yukphan et al., 2008; Yukphan et al., 2009; Yukphan
et al., 2011; Ramírez-Bahena et al., 2013; Vu et al., 2013),
at which the recently described genera Bombella and
Parasaccharibacter appear to be symbiotically associated
with honey bees (Corby-Harris et al., 2014; Li et al., 2015;
Corby-Harris et al., 2016; Yun et al., 2017; Corby-Harris
and Anderson, 2018). AAB are hence predominantly found
on or in plants and their temporary visiting, sugar-feeding
insects, which can be considered as conveyers of AAB
(Crotti et al., 2010).
While the conversion of monosaccharides by AAB is

well understood (Deppenmeier and Ehrenreich, 2009),
the consumption of sucrose being the most abundant
carbohydrate in photosynthetic plants (Avigad, 1982) has
not been systematically described in AAB. In general,
sucrose can be utilized by bacteria either in phosphory-
lated form by sucrose-6-phosphate hydrolases or non-
phosphorylated form by β-fructosidases (invertases) or
exo-fructanases (Reid and Abratt, 2005; Prechtl et al.,
2018), all of them belonging to the glycoside hydrolase
(GH) 32 family defined in the CAZy database (http://
www.cazy.org/). Sucrose is also the natural substrate of
secreted fructansucrases (GH68) and glucansucrases
(GH70), responsible for the synthesis of fructan- and
glucan-type homopolymers respectively (van Hijum et al.,
2006). While the β-(2 ! 6) linked polyfructan levan and
the α-(1 ! 6) linked polyglucan dextran are components of
biofilms (Dogsa et al., 2013; Fels et al., 2018), the released
monosaccharide (glucose by GH68 and fructose by GH70)
is directly used for metabolic purposes. Besides their respec-
tive transfructosylation or transglucosylation, GH68 and
GH70 enzymes also hydrolyze sucrose, as water often acts
as the acceptor molecule (van Hijum et al., 2006). While
dextransucrase (EC 2.4.1.5) is exclusively expressed by lac-
tic acid bacteria (Lactobacillales), GH68 encoding genes are
present among Gram-positive/-negative bacteria, archaea,
fungi and plants (Öner et al., 2016). Diverse previous works
revealed AAB from the genera Gluconobacter, Glu-
conacetobacter, Komagataeibacter, Asaia, Neoasaia and
Kozakia as producers of active levansucrases (LS; EC
2.4.1.10) (Tajima et al., 1997; Arrieta et al., 2004; Kato et al.,
2007; Jakob, 2014; Semjonovs et al., 2016).
Here, we provide a systematic overview about the

diversity, genetic background, evolutionary connections,
distinctive distribution, and modular properties of LSs
from AAB based on own previous works and comparative
genomics. We further summarize the presence of puta-
tive sucrose/fructan-hydrolyzing GH32 enzymes among
AAB. In this way, we highlight the ecological and evolu-
tionary relationship of AAB to other saccharolytic prote-
obacteria of diverse habitats.

Results and discussion

Two types of levansucrases are distinguishable in AAB
and other proteobacteria

To get an overview about LSs from AAB, public available
LS protein sequences were collected and used for calcula-
tion of a phylogenetic tree (Fig. 1A). Our database search
revealed that LSs are especially abundant in the genera
Gluconobacter, Kozakia, Neoasaia, Asaia, Tanticharoenia
and Gluconacetobacter and that with few exceptions
solely one levansucrase gene is encoded in these AAB.
On the contrary, LSs are sporadically or not found in
Komagataeibacter, Acetobacter and other AAB (Fig. 1B).

LSs encoded by a chromosomal gene from Acetobacter
aceti,Kozakiabaliensisand several species ofGluconobacter
are phylogenetically next related to those of Zymomonas
mobilis (α-proteobacteria, Sphingomonadaceae) and certain
γ-proteobacteria, inter alia to the proven levan-producing spe-
cies Pseudomonas (P.) syringae and Erwinia (E.) amylovora.
By contrast, LSs from Gluconacetobacter and Asaia are next
related to those of Beijerinckia indica (α-proteobacteria,
Beijerinckiaceae), Burkholderia/Paraburkholderia/
Caballeronia/Cupriavidus spp. (β-proteobacteria, Burkholde-
riaceae) and Azotobacter (γ-proteobacteria, Pseudomona-
daceae). Considering that LSs from AAB are positioned in
two separate phylogenetic clades (see also Supplemen-
tary File S1), they were termed as ‘Type 1 (T1)’ and ‘Type
2 (T2)’ LSs.

For further differentiation of T1- and T2-LS from AAB,
we used the existing literature about intrinsic LS proper-
ties and levan production in/by AAB. While there are no
reports about the activity of isolated T1-LS from AAB,
strains carrying T1-LS genes produce considerable
amounts of levan exhibiting very high molecular weight
(>109 g mol−1) (Jakob et al., 2013; Ua-Arak et al., 2017).
On the contrary, T2-LS from the sugar cane endophyte
Gluconacetobacter (Ga.) diazotrophicus yield high
amounts of short-chain fructooligosaccharides and a
lower level of polymerized levan (Trujillo et al., 2001).
Furthermore, T2-LSs are most commonly synthesized as
precursor proteins with a cleavable N-terminal sequence
(Fig. 2, Supplementary File S2). The predicted 30-aa sig-
nal peptide of T2-LS from Ga. diazotrophicus was demon-
strated to be cleaved off during the protein transport to the
periplasmic space, where the N-terminal Gln is converted
into cyclic pyroglutamate (pGlu) conferring protection
against proteolytic degradation (Hernández et al., 1999).
In a second step, the folded mature enzyme is transported
across the outer membrane by the type-II secretory
machinery (Arrieta et al., 2004).

Contrary, all T1-LSs are devoid of a predictable signal
peptide (Fig. 2, Supplementary File S2), suggesting that
their release to the external medium does not involve pro-
teolytic cleavage. For instance, secretion of the entire
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coding region of T1-LS from Gluconobacter (G.) albidus
TMW 2.1191 was demonstrated by Jakob (2014) via pep-
tide sequencing of the extracellularly recovered enzyme.
The signature motif W-T-R/I-A-D/N-A, which is part of the
mature region of cleaved T2-LSs, is placed only few amino
acids downstream of the initiating Met in T1-LSs (Fig. 2A),
supporting the idea of a general lack of proteolytic processing
in T1-LSs. The signal-peptide independent secretion mecha-
nism of T1-LSs from AAB or the functionally characterized
T1-LSs from other proteobacteria as P. syringae or E.
amylovora has not been identified yet.
Further differences between T1- and T2-LS are derived

from their intrinsic properties. T1-LSs from AAB have a
lower molecular mass range (46–49 kDa) than proteolyti-
cally processed T2-LSs (56–62 kDa), due to the shorter

length of some of the loops connecting the β-strands. The
calculated isoelectric point ranges 4.7–5.3 for T1-LSs and
5.2–6.9 for mature T2-LSs (Supplementary File S2).

The most distinctive structural feature differentiating
the two LS types in AAB is the formation of a unique
intramolecular disulfide bridge in T2-LSs, which is absent
in T1-LSs (Fig. 2B, Supplementary File S2). The
Cys339─Cys395 bond in the crystal structure of T2-LS
from Ga. diazotrophicus (PDB:1W18) stabilizes the protein
fold by connecting the extended loop between β-strands IIIB
and IIIC with the insertion located between blades III and IV
(Fig. 3A) (Betancourt et al., 1999; Martínez-Fleites et al.,
2005). An equivalent pair of Cys residues is strictly con-
served in all T2-LSs from different origins (Fig. 2B, Supple-
mentary File S2). The intramolecular disulfide bond in

T1-LSs
Psyr 01 -------------------------------MSNSSSAVIQHKNSPLVGNIKYAPTVWSRADALKVNENDP
Eamy 01 -----------------------------------------------MSDYNYKPTLWTRADALKVHEDDP
Zmob 01 ---------------------------------------------MLNKAGIAEPSLWTRADAMKVHTDDP
Galb 01 ---------------------------------------------------MRQTSRWTIADALKVHADDP
Kbal 01 ----------------------------------------MNLGISAKNQDVRTPSHWTIADAMKVHADDP

T2-LSs
Achr 28 -------------------------------ASLEPGPEPTVHTQEAFAPEGNFTAKWTRADARQIKRMSD
Gdia 31 QGNFSRQEAARMAHRPGVMPRGGPLFPGRSLAGVPGFPLPSIHTQQAYDPQSDFTARWTRADALQIKAHSD
Bind  29 ---------------------------------QSGYPIPTPHSGQAYDPFADFTAKWTRANARQIKAQSH
Bvie 32 --------------------------------QTAGAPAPTPHTQQAHDPESNFTMRWTRADIRQIVAQSH
Pgra 36 ------------------------------QSSAAGFPAPTPHTQQAYDPDSSFTMRWTRADVRQIKAQSH

*: *:  ::   .

T1-LSs
Psyr 248 VGSVELGPVPPG-------YEDVGGARFQVGCIGLAVAKD-------LTGEEWEILPPLVTAVGVNDQTERPH
Eamy 232 ITQAEMGNVPPG-------YEDVGGAKYQAGCVGLAVAKD-------LSGSEWQILPPLITAVGVNDQTERPH
Zmob 223 VGEEEIGPVPPK-------TETPDGARYCAAAIGIAQALN-------EARTEWKLLPPLVTAFGVNDQTERPH
Galb 228 IGANETGPIPPS-------YTVDPGAGYGAASIGLAILDDGAYEAGDFSRARWTQLGPIVSALGVNDQTERPH
Kbal 233 LHDTEIGAVPPG-------YTPAAGAQYGAAAIGIARLTDGAYEKGDFSRHNWTLLPALVTALGVNDQTERPH

T2-LSs
Achr 302 CTAEDLGYREGDPYAETVEQVNASGATYQIGNIGLAKAKN-------ADLTEWEFLPPILSANCVTDQTERPQ
Gdia 339 CTEADLGFRPNDPNAETLQEVLDSGAYYQKANIGLAIATD-------STLSKWKFLSPLISANCVNDQTERPQ
Bind  315 CTEADLGYSPNDPNKEDLNAVMDSGAIYQMANVGLAVATN-------DELTQWKFLPPILSGNCVNDQTERPQ
Bvie 306 CTEADLGYAPNDPYREDLNAVMNAGAVYQKANVGLAVATN-------PQLTEWKFLPPILSANCVDDQTERPQ
Pgra 313 CTEADLGYASNDPYKEDLNAVMNSGATYQKANVGLAVATN-------KQLTEWKFLPPLLSANCVNDQTERPQ

: *                 ** :  . :*:*   :           .*  *  :::.  * ******:
S – S

A

B

Fig. 2. Partial sequence alignment of representative T1- and T2-levansucrases (LSs). A. N-terminal region of predicted mature proteins.
B. Position of Cys residues forming the fold-stabilizing disulfide bond in T2-LSs. Numbers correspond to the precursor proteins. Sequences
starting at Met 01 lack signal peptide. The non-catalytic signature motif W-T/S-R/I-A-D/N-A is boxed. Enzyme source and Protein IDs correspond
to: Psyr, Pseudomonas syringae (WP_046266212); Eamy, Erwinia amylovora (WP_004161222); Zmob, Zymomonas mobilis (WP_011240294);
Galb, Gluconobacter albidus (WP_082780180); Kbal, Kozakia baliensis (WP_083301879); Achr, Azotobacter chroococcum (WP_052264013);
Gdia, Gluconacetobacter diazotrophicus (WP_012222901); Bind, Beijerinckia indica (WP_012384999); Bvie, Burkholderia vietnamiensis
(WP_011882121); Pgra, Paraburkholderia graminis (WP_006050632). Symbols represent (*) identity, (:.) conservative changes.
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T2-LS from Ga. diazotrophicus, which is preserved in
β-fructofuranosidase (GH68) from Microbacterium
saccharophilum K-1 (PDB:3VSR), is structurally com-
plementary to the Ca2+-cofactor binding site of the Cys-
lacking LS from Bacillus subtilis (PDB:1OYG) (Meng
and Fütterer, 2003) (Fig. 3B) and inulosucrase from Lac-
tobacillus johnsonii (PDB:2YFR) (Pijning et al., 2011).
Hence, it can be assumed that the disulphide bond for-
mation in T2-LS from Proteobacteria and Actinobacteria
and the cofactor binding in GH68 enzymes from
Firmicutes have evolved at similar topological regions
for a common function of fold stabilization.

A different scenario is observed in T1-type LSs that often
contain several Cys residues but not at conserved positions.
None of the four cysteines (positions 64, 103, 150, 256) in the
crystal structure of T1-LS from E. amylovora (PDB:4D47)
(Wuerges et al., 2015) are implicated in a disulfide bond
(Fig. 3C). Similarly, the three cysteines (positions 142, 201,
213) of T1-LS from G. albidus (Seq Id. WP_082780180)
reside at non-interacting distances in the constructed 3D
structural model (Fig. 3D). LSs are released to the external
medium as folded active enzymes. Differences in the fold sta-
bilizationmechanismbetweenT1- andT2-LSsmay thus have
evolved during adaptation to the different natural environ-
ments of the host bacteria.

Analyses of gene sequence similarity and genomic
organization suggest vertical T1-LS and horizontal T2-LS
evolution in AAB

In Fig. 4 phylogenetic trees are depicted, which were cal-
culated from multiple alignments based on T1-LS
(Fig. 4A) and 16S rRNA gene sequences (Fig. 4B).
Each available genome of Gluconobacter, Kozakia
and Zymomonas harbours one T1-LS locus at a con-
served region (Fig. 5A). Accordingly, PCR-screenings
targeting on the T1-LS gene of Gluconobacter isolates
from different habitats such as kefir or spoiled beer
generally revealed positive amplicons (Fig. 4A). The syn-
thesis of functional T1-LS proteins is supported by findings
of Jakob et al. (2012a), in which each of the 12 tested Glu-
conobacter strains originating from diverse habitats pro-
duced levan from sucrose. In the study, a different extent
of levan production was observed indicating a strain-
specific regulation of levan biosynthesis.

Independently of the gene used for the tree construc-
tion (T1-LS vs. 16S rRNA), Gluconobacter strains can be
subdivided into the known taxonomic Gluconobacter oxy-
dans and Gluconobacter cerinus groups (Yamada and
Yukphan, 2008), while Gluconobacter morbifer G707
retains its outstanding position (Fig. 4A and B). Moreover,

Fig. 3. Mapping of the fold-stabilizing disulfide bond (Cys339-Cys395) (A) T2-LS from Gluconacetobacter diazotrophicus (PDB:1W18) and the
functionally/topologically complementary calcium binding site in (B) LS from Bacillus subtilis (PDB:1OYG). The Cys residues in the T1-LSs from
(C) Erwinia amylovora (PDB:4D47), and (D) Gluconobacter albidus (WP_082780180) are not interacting with each other. The catalytic triad
(Asp/Asp/Glu) at the bottom of the active site pocket is shown for each protein. The ribbon diagram of the determined or modelled 3D structures
was prepared with PyMOL (http://www.pymol.org). [Color figure can be viewed at wileyonlinelibrary.com]
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T1-LS genes of Gluconobacter are located in a con-
served genomic region, which slightly differs among the
main groups G. cerinus, G. frateurii, G. oxydans and G.
morbifer (Fig. 5A). Comparison of partial T1-LS genes
(850 bp) allows a better Gluconobacter strain differentia-
tion than obtained from partial 16S rRNA genes
(1,350 bp) (see e.g., the subclusters comprising G. spe-
cies TMW 2.155/2.1555/2.1558, G. cerinus DSM 9533T
and G. oxydans NL71) (Fig. 4). T1-LS genes have thus
evolved vertically within this genus and could be used as
additional phylogenetic markers for differentiation of Glu-
conobacter strains.

Contrasting to the wide representation of T1-LS in the
genus Gluconobacter, LS genes are scarcely found in
species of Acetobacter and Komagataeibacter (Fig. 1B).
The varied distribution of T1-LS among these three genera
comprising the highest number of described AAB species
clearly implies a diverse evolutionary adaptation in regard
to the ability and way of metabolizing exogenous sucrose.
Gluconobacter is in contrast to the preferably alcohol oxi-
dizing genera Acetobacter and Komagataeibacter usually
abundant in sugar-rich environments and generates
most ATP via oxidation of glucose to (keto)-gluconate(s)
by membrane-bound glucose/gluconate dehydrogenases

A

B

Fig. 5. Schematic overview of the genetic organization of T1- (A) and T2-LS (B) in AAB and related proteobacteria. ‘X’ indicate non-present,
homologous genes. hemH, ferrochelatase; h, hypothetical protein; SP26, signal peptidase 26; ETF, electron transfer flavoprotein; AsnC, tran-
scriptional regulator AsnC family; SP; signal peptidase; LT/BfpH, lytic transglycosylase; GntR, transcriptional regulator GntR family; LacI, tran-
scriptional regulator LacI family. [Color figure can be viewed at wileyonlinelibrary.com]
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(Deppenmeier and Ehrenreich, 2009; Peters et al., 2013).
The ability of Gluconobacter to synthesize levan while
releasing glucose from sucrose by secreted T1-LS could
thus be interpreted as an essential metabolic adaptation
for the occupation of sucrose-rich niches, for instance
plant and fruit surfaces from where Gluconobacter can
usually be isolated (Barata et al., 2012; Komagata et al.,
2014). The ecological abundance of K. baliensis is more
unclear, because only few strains have been isolated from
natural sources so far. The T1-LS locus is found at a con-
served position in K. baliensis, which differs from that one
of Gluconobacter (Fig. 5A). Moreover, some previous
studies revealed that K. baliensis strains DSM 14400 and
NBRC 16680 produce acetan-like heteropolysaccharides,
whose structural features and biosynthesis are related to
that of xanthan and amylovoran due to their biosynthesis
via gum-like proteins (Brandt et al., 2016, 2017, 2018).
These heteropolysaccharides are considered as virulence
factors during colonization of plants in their producing spe-
cies Xanthomonas campestris (Katzen et al., 1998) and E.
amylovora (Koczan et al., 2009) respectively. Levan pro-
duction via T1-LS as well as heteropolysaccharide produc-
tion via gum-like proteins by AAB (Meneses et al., 2011) is
thus related to that of plant-interactive species phylogeneti-
cally positioned in the γ-proteobacteria. The evolutionary
relatedness of AAB (α-proteobacteria) to γ-proteobacteria is
generally reflected by Frateuria aurantia, which was ini-
tially termed ‘Acetobacter aurantius’ and is still consid-
ered as bispecific AAB due to its AAB-typical oxidative
metabolism despite its phylogenetic position within the
family Xanthomonadaceae (γ-proteobacteria) (Swings
et al., 1980).
While the biological interactions between T1-LS

expressing AAB and plants are still not understood, most
of the T2-LS expressing Gluconacetobacter species are
known N2-fixing endophytes in host plants such as sugar
cane, sugar beet, coffee, pineapple, maize, rice, sorghum
and wheat, among others (Fuentes-Ramírez et al., 2001;
Saravanan et al., 2008). Coincidentally, all eight PCR-
screened isolates of Ga. diazotrophicus (strains CFN-Cf52
and CFN-Cf53), Ga. azotocaptans (strains CFN-Ca54T,
UAP-Ca97 and UAP-Ca99) and Ga. johannae (strains
CFN-Cf55T, CFN-Cf75 and UAP-Cf76) recovered from the
rhizosphere or root tissue of coffee plants (Jimenez-
Salgado et al., 1997; Fuentes-Ramírez et al., 2001) were
found to carry the typical two-gene cluster encoding a
T2-LS and an exolevanase (SacC; EC 3.2.1.65) (Fig. 5B,
Supplementary File S3 and File S4). This operon organiza-
tion (T2LS-SacC) was first identified in the sugarcane iso-
late Ga. diazotrophicus SRT4 (Arrieta et al., 1996) and
then proven to be responsible for sucrose utilization and
fructan metabolism in 14 Ga. diazotrophicus strains recov-
ered from different host plants in diverse geographical
regions (Hernández et al., 2000; Menéndez et al., 2002). In

Ga. diazotrophicus the T2LS-SacC operon is functionally
associated to the immediate downstream 12-gene cluster
(G,O,E,F,H,I,J,L,M,N,D,K) encoding the components of the
type-II general secretory pathway (Gsp) responsible for the
transfer of both levansucrase and exolevanase across
the outer membrane (Fig. 5B) (Arrieta et al., 2004). The
two neighbour operons (T2LS-SacC and Gsp) are con-
served in the chromosome of Ga. liquefaciens and
some few strains of the genus Asaia (A. bogorensis, A.
platycodi). Sequenced strains of at least four species of
the genus Komagataeibacter (K. oboediens, K. cocois,
K. saccharivorans, and K. xylinus) contain a chromo-
somal T2LS-SacC operon, but the Gsp components are
encoded by two gene-clusters in opposite transcriptional
directions placed upstream to T2LS-SacC (Supplementary
File S4). A partial Gsp operon is found downstream of the
T2-LS gene in sequenced plasmids of K. baliensis DSM
14400 and G. frateurii NBRC 103465 (Supplementary File
S4). In both cases, the SacC gene is missing. In K.
baliensis DSM 14400, T2-LS is not active due to a trans-
poson insertion in the plasmid-encoded gene (Jakob,
2014; Brandt et al., 2016). The partial T2-LS/SacC and
Gsp sequences on plasmids provide evidence of the hori-
zontal acquisition and rearrangement of these genetic ele-
ments in some AAB. On the contrary, T1-LS encoding
sequences have so far not been detected on plasmids in
AAB, which again supports their vertical and ancient evo-
lution within Gluconobacter and Kozakia as described
above. To date, T1-LS genes have not been detected on
plasmids, except for P. syringae pv. glycinea PG4180, a
strain carrying three almost identical T1-LS genes (two on
chromosome and one on an indigenous plasmid) (Li and
Ullrich, 2001).

On nucleotide level, the components of the T2LS-SacC
operon encoded by various AAB (Fig. 5B) are next related
to those of the corresponding operon present in at least
24 strains of the taxonomically distant genera Burkholderia
and Paraburkholderia (β-proteobacteria, Burkholderiaceae)
(Supplementary File S3), some of which are also described
as plant-interactive diazotrophs (Supplementary File S2)
(Estrada-De Los Santos et al., 2001).

In Ga. diazotrophicus, the expression of the T2LS-
SacC (lsdA-lsdB) operon is finely regulated allowing that
levan synthesis and degradation are not excluding but
complementing habitat-related processes. The T2-LS
(lsdA) gene is transcribed in a constitutive manner, while
SacC (lsdB) transcription is induced by fructose at low
concentrations and repressed by glucose (Menéndez
et al., 2009). The attained ability to express the T2-LS-
SacC operon must contribute to plant infection by Ga.
diazotrophicus and likely other N2-fixing, plant-interactive
AAB, as they are inevitably faced with exogenous
sucrose during colonization of their host plants. In this
sense, adaptation to the more favoured endophytic
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habitat may have functioned as the selective force driving
retention of the horizontally acquired T2LS-SacC operon.
All sequenced strains from plant-interactive species of
Burkholderia (vietnamiensis) and Paraburkholderia
(graminis, phymatum, diazotrophica, silvatlantica) con-
tain a conserved type II secretion (Gsp) operon in the
chromosome but with a gene organization (D,E,F,C,G,H,
I,J,K,L,M,N) differing from that of Gluconacetobacter and
Asaia species, and located distantly from the T2LS-SacC
operon (Fig. 5B, Supplementary File S4). A Gsp operon
next to the T2-LS gene is also absent in the sequenced
genomes of the plant-associated diazotrophs Beijerinckia
indica (Becking, 2006) and Azotobacter chroococcum
P204 (Kumar et al., 2001) (Fig. 5B). The T2-LS and SacC
genes are positioned in opposite transcriptional direction
in Beijerinckia indica and A. chroococcum, while in the
latter strain a GH 32 protein exhibiting low homology to
SacC is located next to its T2-LS (Fig. 5B). The role of
T2-LS in Asaia, which comprises strains found as com-
mensals of malaria-transmitting Anopheles sp. (Asaia
species SF 2.1, Fig. 5B) or spoilers of beverages (Favia
et al., 2007; Kregiel et al., 2012), can actually not be
interpreted due to limited knowledge about their specific
natural habitats and to the non-conserved distribution of
T2-LS among species of this AAB genus. The fact that at
least some Asaia strains are described as N2-fixing
organisms (Samaddar et al., 2011) could, however, point
at a similar adaptation to the plant environment. Notice-
ably, in Zymomonas (Z.) mobilis, which is also capable of
N2-fixation (Kremer et al., 2015), a two-gene operon
(Fig. 1A/5A) encoding T1-LS proteins with sequence sim-
ilarity above 68% resembles the organization of the
T2LS-SacC operon of Ga. diazotrophicus. In Z. mobilis,
the first T1-LS gene is fully responsible for levan produc-
tion (Fig. 1A), while the second T1-LS gene encodes a
sucrose-hydrolysing enzyme unable to synthesize levan
(Gunasekaran et al., 1995). Taken into account that
T1-LS evolved vertically within Gluconobacter (Matsutani
et al., 2011) and Zymomonas (Fig. 1A) and both genera
are supposed to have evolved from a common, α-prote-
obacteria-like ancestor due to their highly similar intracellu-
lar sugar metabolism (Swings and De Ley, 1977), the
‘primitive’ levansucrase-invertase organization found in
facultative anaerobic Z. mobilis could be considered as an
ancient operon version adapted for the colonization of
sucrose-rich environments under more anoxic conditions.
The close ecological and evolutionary connection between
Gluconobacter and Zymomonas is substantiated by their
reported co-occurrence in sucrose-rich environments like
plant saps or honey (Ruiz-Argueso and Rodriguez-
Navarro, 1975). However, as observed for Gluconobacter
(Fig. 5A), related T1-LS genes are not organized in LS-
SacC operons in plant-pathogenic E. amylovora and P.
syringae, which also strictly encode T1-LS and commonly

invade plants from oxic surfaces such as damaged leaves
or fruits (Osman et al., 1986; Gross and Rudolph, 1987;
Gross et al., 1992; Kasapis et al., 1994; Hettwer et al.,
1995; Bereswill et al., 1997; Zhang and Geider, 1999; Du
and Geider, 2002; Laue et al., 2006; Koczan et al., 2009).
Gluconobacter is supposed to be the causative agent of
the pineapple pink disease (Swings and De Ley, 1981).
Recent studies confirmed the plant-pathogenicity of
Gluconobacter cerinus CDF1 (He et al., 2017), which fas-
tens the rottening of bananas while being beneficial for
the development of its transmitting fruit fly Bactrocera
dorsalis. Any specific involvements of T1-LS from
Gluconobacter in plant pathogenicity or animal interac-
tions, however, still need to be demonstrated. The func-
tional role of LS in the interaction between LS expressing
microbes and sucrose-feeding animal hosts has so far
exclusively been shown for cariogenic Streptococcus
mutans strains, which build up levan and dextran containing
biofilms on human teeth (Mukasa and Slade, 1973).

The active expression and functional role of GH32 genes
in the sucrose/fructan metabolism of AAB remains
unclear

Our database search further revealed that many AAB
genomes contain one or more genes encoding putative
GH32 enzymes, most likely exo-β-fructosidases. GH32
genes are strictly present in the generaGluconobacter, Sac-
charibacter,Parasaccharibacter andBombella (Fig. 1B). On
the contrary, other AAB contain GH32 encoding genes at
non-conserved genomic positions, at which these genes are
more frequently found in genomes ofKozakia andAsaia than
in Acetobacter and Komagataeibacter, similarly to the distri-
bution of LS (Fig. 1B). Noticeably, the bispecific AAB
Frateuria aurantia (γ-proteobacteria, Xanthomonadaceae)
harbours a closely related GH32 encoding sequence in its
genome (Fig. 6) again indicating the ecological relatedness
of certain AAB to γ-proteobacteria. Because of the strict
abundance of putative GH32 proteins in sugar-tolerant Glu-
conobacter and Saccharibacter (Jojima et al., 2004), their
expression under certain growth conditions seems likely,
while their specific function as sucrose or fructan hydrolases
still has to be proven.

In total, three clades are distinguishable in the phyloge-
netic tree of GH32 proteins from AAB (Fig. 6). Regardless
their source, all enzymes encoded by the second gene of
the horizontally acquired T2LS-SacC operon are grouped in
clade 3, including SacC (LsdB) from Ga. diazotrophicus
SRT4 that was experimentally proven to be an exolevanase
(Menéndez et al., 2002, 2004). A predicted signal-peptide
containing GH32 enzyme (GenBank: ACI52355) with pre-
sumably vertical evolution in Ga. diazotrophicus PAl5T is
positioned in clade 1 together, among others, with the
unique GH32 protein encoded by T1-LS containing strains
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of Acetobacter aceti and some species of Gluconobacter
(G. oxydans, G. roseus, G. thailandicus). The functional
expression of the intrinsic GH32 gene in Ga. diazotrophicus
PAl5T is uncertain, as the bacterium lost the ability to grow
on sucrose as the sole carbon source after insertional dis-
ruption of the T2LS-SacC (lsdA-lsdB) operon (Hernández
et al., 2000).

Concluding remarks

Our study reveals that AAB encode two clearly distin-
guishable LS types. The differences in these extracellu-
larly active LS and their encoding genes can be
considered as evolutionary driven adaptations, which are
used by many α-, β- and γ-proteobacteria for the

Fig. 6. Phylogenetic clustering of GH32 proteins identified in AAB carrying levansucrase genes. Entries are named as species, strain and sequence
ID. Clades are shown with different branch colours and numbered in the outer ring. Clustal Omega (https://www.ebi.ac.uk/clustalo/) and Simple Phylog-
eny (https://www.ebi.ac.uk/Tools/phylogeny/simple_phylogeny/) were used for sequence alignment and tree generation respectively. Genera in the spe-
cies names are abbreviated as follows: A, Acetobacter; As, Asaia; B, Beijerinckia; Bo; Bombella; Bu, Burkholderia; E, Erwinia; F, Frateuria; Ga,
Gluconacetobacter; G, Gluconobacter; H, Halomonas; K, Komagataeibacter; Ko, Kozakia; Ne, Neoasaia; N, Neokomagataea; Pa, Paraburkholderia;
Ps, Pseudomonas; S, Saccharibacter; T, Tanticharoenia; Z, Zymomonas. [Color figure can be viewed at wileyonlinelibrary.com]
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occupation of specific sucrose containing habitats.
Accordingly, T1-LS are secreted by proteobacteria known
to be plant-pathogenic, while T2-LS genes are common
in endophytic diazotrophs. LS could thus be regarded as
useful ecological determinants for predictions of the role
and host specificity of AAB and other (so far non-charac-
terized) fructan producers in nature. This finding is a key
step towards studying the underlying mechanisms of
microbial biofilm formation via evolutionary adapted
sucrases in plant environments and sucrose-feeding ani-
mal hosts.

Methods

Strains, media and cultivation conditions

Gluconobacter strains were cultivated aerobically at 30�C
in/on sodium gluconate (NaG) media (20 g/l sodium gluco-
nate, 3 g/l yeast extract, 2 g/l peptone, 3 g/l glycerol, 10 g/l
mannitol, optional 80 g/l sucrose for levan production and
20 g/l agar). Gluconobacter strains marked by ‘TMW’

(Technical Microbiology Weihenstephan) were isolated on
solid NaG media from water kefir (TMW 2.1191, TMW
2.767) or spoiled beer samples (TMW 2.1085, TMW 2.155,
TMW 2.1555, TMW 2.1556, TMW 2.1557, TMW 2.1558,
TMW 2.339). Gluconacetobacter strains were cultivated
aerobically at 30�C in/on SYP medium modified by increas-
ing the amount of yeast extract to 0.3% (w/v) (Caballero-
Mellado and Martinez-Romero, 1994).

Genetic screening for AAB levansucrases and strain
identifications

AAB strains marked by ‘TMW’ were identified via 16S
rRNA gene amplification/sequencing (primers 07 Forward:
AGA GTT TGA TCC TGG CTC AG + 1507 Reverse:
TAC CTT GTT ACG ACT TCA C; Lane, 1991). Glu-
conobacter and Gluconacetobacter isolates from beer,
kefir and plant were investigated regarding the presence
of GH68 gene sequences. DNA was isolated from these
strains following the instructions of the E.Z.N.A. Bacterial
DNA Kit (Omega Biotek, Norcross) and used as template
for PCR amplification of the respective (partial) target
genes. Two primer sets were deduced from multiple
nucleotide alignments of known levansucrase genes from
AAB (Jakob et al., 2012b), targeting either against the
T1- or T2-like levansucrase types (T1: GAT CCG ACR
ACG ACV ATG CC (forward)/TAB GGR CCG AAA ATN
CCS TT (reverse) and T2: TAT AAY GGN TGG GAD
GTB AT (forward)/GGC ATG ACR TAR TGC GAR TA
(reverse). PCR conditions were as follows: initial denatur-
ation (3 min, 94�C); 35 cycles: denaturation (30 s, 94�C),
annealing (1 min, 52�C), extension (1 min, 72�C), final

elongation (10 min, 72�C). Reaction mixtures generally
were prepared according to the suppliers’ instructions
(Taq-DNA-Polymerase-Kit, Qbiogene). Clear bands of
the expected size (16S: ~1500 bp; T1: ~900 bp; T2:
~1000 bp) were cut out of the gels, following preparative
DNA extraction (peqGOLD Gel extraction Kit, peqlab,
Germany) and subsequent sequencing (GATC Biotech,
Konstanz, Germany).

Data analysis and processing

Public available gene sequences were collected from
NCBI either by manual search for the respective sequence
types or by nucleotide and protein BLAST search (using
complete GH 68/32 sequences from AAB as template)
against deposited genomes of AAB or proteobacteria,
which share similar nucleotide sequences coding for puta-
tive GH 68/32 proteins. Dendrograms were generated on
the basis of multiple alignments using BioNumerics 6.50
software (Applied Maths, Belgium).

The SignalP 5.0 server (http://www.cbs.dtu.dk/services/
SignalP) was used to predict the presence of signal pep-
tides and the location of their cleavage sites in proteins.
The molecular weight and isoelectric point of the predicted
mature proteins were determined using PROTEIN CAL-
CULATOR v3.4 (http://protcalc.sourceforge.net). Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) was
used for multiple sequence alignments. Simple Phylogeny
(https://www.ebi.ac.uk/Tools/phylogeny/simple_phylogeny/)
was used for generating phylogenetic trees in a radial for-
mat. The available crystal structures of T1-LS from Erwinia
amylovora (PDB code: 4D47) were used as template for
molecular modelling of T1-LS from Gluconobacter albidus
(Protein Id. WP_082780180). The 3D structure model was
constructed using the SWISS-MODEL tools (Biasini
et al., 2014).
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File S1. Phylogenetic clustering of GH68 proteins from AAB
and other proteobacteria. Levansucrase (LS) sequences
were retrieved from the NCBI non-redundant protein data-
base. Colours in entries (species name and sequence ID)
represent the proteobacteria classes alpha (green), beta
(blue) and gamma (yellow). T1-LSs and T2-LSs are clus-
tered in two separate clades as defined in the outer ring.
Clustal Omega (https://www.ebi.ac.uk/clustalo/) and Simple
Phylogeny (https://www.ebi.ac.uk/Tools/phylogeny/simple_
phylogeny/) were used for sequence alignment and radial
tree generation, respectively.
File S2. Distinctive traits between T1- and T2-LSs from AAB
and other proteobacteria. The SignalP 5.0 server (http://www.
cbs.dtu.dk/services/SignalP) was used to predict the presence
of signal peptides and the location of their cleavage sites in
proteins. The molecular weight and isoelectric point of the
predicted mature proteins were determined using PROTEIN
CALCULATOR v3.4 (http://protcalc.sourceforge.net).
File S3. Phylogenetic trees calculated on the basis of partial
T2-LS gene (1000 bp) (A) and SacC gene sequences
(900 bp) (B) using the neighbour-joining method. Scale-bars
indicate numbers of changes per nucleotide. Numbers fol-
lowing species names represent the accession numbers of
the corresponding T2-LS and SacC genes as deposited in
GenBank. The T1-LS and GH 32 encoding genes of G. oxy-
dans 621 H were used as outgroups, respectively.
File S4. Schematic overview of the genetic organization of
LS in AAB and related proteobacteria (supplement to Fig. 5).
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