
Combustion and Flame 204 (2019) 397–413 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

A split random time-stepping method for stiff and nonstiff detonation 

capturing 

Jian-Hang Wang, Shucheng Pan 

∗, Xiangyu Y. Hu 

∗, Nikolaus A. Adams 

Chair of Aerodynamics and Fluid Mechanics, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany 

a r t i c l e i n f o 

Article history: 

Received 28 May 2018 

Revised 30 January 2019 

Accepted 22 March 2019 

Keywords: 

Chemically reacting flows 

Stiff source terms 

Nonequilibrium kinetics 

Operator splitting 

Wrong propagation speed of discontinuities 

a b s t r a c t 

In this paper, a new operator splitting method is proposed for capturing stiff and nonstiff detonation 

waves. In stiff cases, an incorrect propagation of discontinuities might be observed for general shock- 

capturing methods due to under-resolution in space and time. Previous random projection methods have 

been applied successfully for stiff detonation capturing at under-resolved conditions. Not relying on ran- 

dom projection of the intermediate state onto two presumed equilibrium states (completely burnt or 

unburnt) as with the random projection method, the present approach randomly advances or interrupts 

the reaction process. Each one-way reaction is decoupled from the multi-reaction kinetics by operator 

splitting. The local temperature is compared with a random temperature within a temperature interval 

to control the random reaction. Random activation or deactivation in the reaction step serves to reduce 

the accumulated error of discontinuity propagation. Extensive numerical experiments demonstrate the ef- 

fectiveness and robustness of the method. For nonstiff problems, the proposed random method recovers 

the accuracy of general operator splitting methods by adding a drift term. 

© 2019 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

One of the main challenges for numerical computation of chem-

cally reacting flows are widely varying time scales of chemical

inetics, which may be orders of magnitude faster than the fluid

ow time scale [1–3] . Such cases exhibit numerical stiffness due

o the source terms representing chemical reactions [4] . When the

hemical scales are not resolved numerically in time and space,

 spurious solution may occur exhibiting incorrect propagation of

iscontinuities and nonphysical states. 

This problem is well-known and has been an active area of

esearch during the past three decades. It was first observed by

olella et al. [5] and by analysis of a scalar problem. LeVeque

nd Yee [6] found that the propagation error is mainly due to

umerical dissipation contained in the scheme, which smears

he discontinuity front and activates the source term in a non-

hysical manner. To overcome this difficulty, one may reduce

umerical dissipation [3,7,8] or use a sufficiently fine mesh.

ront-tracking approaches [9–11] or local grid/timestep refinement

12,13] may obtain the correct propagation of the reactive front.

owever, generally full resolution of all fine scales cannot always

e afforded. Since numerical dissipation is practically inevitable,
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nother approach focuses on establishing corrected tempera-

ures from the artificially diffused solution [14–16] . Tosatto and

igevano [17] proposed a threshold method based on a vari-

ble reconstruction within bounds determined from the local

ell neighbors. Difficulties with such methods are encountered

n the extension to either spatially high-dimensional or multi-

pecies/multi-reaction kinetics based reacting flows. Wang et al.

18,19] proposed a high-order finite-difference method utilizing

he Harten ENO subcell resolution method for stiff source terms.

n [4] , many different methods with or without operator split-

ing/subcell resolution/nonlinear filters are tested, showing that

he degree of propagation speed mismatch of discontinuities

s highly dependent on the accuracy of the numerical method,

ime step and grid spacing. Kotov et al. [20] further presented a

ealistic hypersonic non-equilibrium flow that mimics the spuri-

us behavior and some important numerical challenges affecting

he accuracy in such simulations. Zhang et al. [7] proposed the

quilibrium state method where the cell average is replaced by a

ocal two-equilibrium-state reconstruction, making its extension to

igh dimensions straightforward. They also extended the method

o multi-reaction systems by treating the two one-way reactions

ndependently. Methods applicable for realistic nonequilibrium

hemical kinetics with multiple finite-rate reversible reactions, to

ur best knowledge, have not been reported in literature so far. 

Bao and Jin [1–3] introduced a random projection method for

he reaction step by replacing the ignition temperature with a
stitute. This is an open access article under the CC BY license. 
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uniformly distributed random variable. Although the random pro-

jection method cannot avoid the introduction of numerical dissi-

pation by shock-capturing schemes, it can eliminate its effect. The

method was established for scalar problems and successfully ap-

plied to model problems of 1D/2D reactive Euler equations. With

the presumption of two time-independent equilibrium states of to-

tally burnt and unburnt gases (regardless of the detailed reaction

process), the method is only suitable for under-resolved stiff cases.

In this paper, we develop a split random time-stepping method

for chemically reacting flows with general nonequilibrium chem-

istry in a unified manner, regardless of stiff or nonstiff source

terms and under- or well-resolved conditions in space and time.

Unlike Bao and Jin’s random projection method, the activation and

deactivation of chemical reactions in the reaction step is not pro-

jected onto two prescribed equilibrium states, but onto two time-

dependent states corresponding to advancing the reaction by one

timestep forward and interrupting the reaction, respectively. The

criterion to activate a reaction follows from comparison of the local

computed temperature with a randomized temperature depending

on the states of the forward step and its adjoint. To randomize

each reaction process, the multi-reaction system is split reaction

by reaction [21,22] . By adding a drift term into the random tem-

perature sampling, the proposed method recovers the solution of a

deterministic fractional step method in nonstiff cases with increas-

ing resolution. 

The paper is organized as follows. In Section 2 , we introduce

the reactive Euler equations with chemical reaction source terms.

A standard fractional step method is outlined by operator splitting

into the convection step and reaction step. In the reaction step, a

reaction-split ODE solver is developed to approximate the exact so-

lution for general chemical kinetics, based on which random time-

stepping of each reaction is performed. In Section 3 , we examine

the pure ODE solver and the split random time-stepping method

by extensive model examples and realistic reacting flows in both

1D and 2D. Conclusions are drawn in the last section. More infor-

mation about the ODE solver are provided in the appendix. 

2. Formulation 

Assuming the flow is compressible, inviscid and in two dimen-

sions for simplicity, the multi-species Euler equations coupled with

reaction source terms take the form 

U t + F (U) x + G (U ) y = S(U ) , (1)

where 

U = 

(
ρ, ρu, ρv , ρe t , ρy 1 , ρy 2 , . . . , ρy N s −1 

)T 
, 

F (U) = 

(
ρu, ρu 

2 + p, ρu v , (ρe t + p) u, ρuy 1 , ρuy 2 , . . . , ρuy N s −1 

)T 
,

G (U) = 

(
ρv , ρu v , ρv 2 + p, (ρe t + p) v , ρv y 1 , ρv y 2 , . . . , ρv y N s −1 

)T 
, 

S(U) = 

(
0 , 0 , 0 , 0 , ˙ ω 1 , ˙ ω 2 , . . . , ˙ ω N s −1 

T 
)

(2)

are vectors of the conserved variables, convective flux in the x -

or y -direction and source terms, respectively, with ˙ ω i representing

rate of change of the i th species concentration in the reactive gas

mixture due to the chemical kinetics consisting of N r reactions and

N s species. Furthermore, e t = e + 

1 
2 (u 2 + v 2 ) is the specific total en-

ergy including the specific internal energy e . To close the system,

an equation of state (EoS) of the form 

p = ρ
N s ∑ 

i =1 

y i 
R u 

W i 

T (3)

is used, with y i and W i denoting the mass fraction and molecular

weight of the i th species, respectively, and R u being the universal

gas constant. 
The above conservation laws of mass, momentums and energy

ith source terms are usually solved by operator splitting. The first

tep is flow convection 

S c : U t + F (U) x + G (U) y = 0 (4)

ssuming no chemical reactions and passive transport of all

pecies. The second step solves the system of ODEs of chemical

inetics 

S r : 
dy i 
dt 

= 

˙ ω i 

ρ
, i = 1 , . . . , N s , (5)

nder adiabatic and constant-volume conditions with fixed total

ensity and constant specific internal energy. The first-order ac-

urate Lie–Trotter splitting scheme [23] or the second-order Strang

plitting [24] can be employed to approximate the solution from

he discrete time level n to n + 1 with a timestep �t , i.e. 

U 

n +1 = S (�t) 
r ◦ S (�t) 

c U 

n or U 

n +1 = S 
( �t 

2 ) 
c ◦ S (�t) 

r ◦ S 
( �t 

2 ) 
c U 

n , (6)

ith symbol ‘ ◦’ to separate each operator and to indicate that an

perator is applied to the following arguments. For the convection

perator S c , a shock-capturing scheme [25–28] can be adopted. For

he reaction step S r , an ODE solver such as VODE [29] , CHEMEQ2

30] and MTS/HMTS [31] can be used with or without adaptive er-

or control. 

We first utilize operator splitting upon the nonequilibrium

hemical kinetics so that a multi-reaction system can be decou-

led into a series of single reaction steps. Then we introduce the

stablished concept of random projection into the ODE solver in

rder to realize random ignition of reactions. Each reaction pro-

ess is randomly advanced one timestep forward (activation) or

nterrupted (deactivation) instead of being projected onto two pre-

cribed equilibrium states. In the following, we term the random-

zed and reaction-by-reaction ODE solver for nonequilibrium chem-

stry as Split Random Time-Stepping method (SPRANTS). 

.1. Split reaction-by-reaction ODE solver for chemical kinetics 

For common nonequilibrium chemical kinetics, chemical pro-

uction rates in Eq. (5) are derived from a reaction mechanism that

onsists of N s species and N r reactions 

N s 
 

i =1 

ν f 
ji 
X i ⇐⇒ 

N s ∑ 

i =1 

νb 
ji X i , j = 1 , . . . , N r , (7)

here ν f 
ji 

and νb 
ji 

are the stoichiometric coefficients of species i

ith description X i appearing as a reactant and as a product in

eaction j . The total production rate of species i in Eqs. (2) and

5) is the sum of the production rate from each single elementary

eaction as 

˙  i = W i 

N r ∑ 

j=1 

(
νb 

ji − ν f 
ji 

)[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl − k b j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] νb 
jl 

] 

, (8)

ith k 
f 
j 

and k b 
j 

denoting the forward and backward reaction rates

f each chemical reaction, and ρl = y l ρ . 

By operator splitting [21,22] , we can decouple the multi-

eaction system, e.g., by Lie–Trotter splitting, as 

S r : R 

(�t) 
1 st 

= R 

(�t) 
N r 

◦ R 

(�t) 
N r −1 

◦ · · · ◦ R 

(�t) 
2 

◦ R 

(�t) 
1 

, (9)

here the operator R j corresponds to a single reaction j and is

ndependent of all other reactions. The reaction-by-reaction idea

esembles a meso-scale model of microscopic kinetics where one

olecule/atom can only experience one reaction at a time instance.

his is also the case with stochastic simulation of chemical kinet-

cs [32] . At macroscopic scale, reactions involving large numbers of
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pecies molecules/atoms are considered as simultaneously occur-

ing processes. In [21] the second-order accurate Strang splitting

s adopted, starting with the fastest reaction and ending with the

lowest for half a timestep and then backwards for another half

imestep. In our approach we simply take the traversal order not

ccording to reaction rates but to the reaction-mechanism index

equence 

S r : R 

(�t) 
2 nd 

= R 

( �t 
2 ) 

1 
◦ R 

( �t 
2 ) 

2 
◦ · · · ◦ R 

( �t 
2 ) 

N r 
◦ R 

( �t 
2 ) 

N r 
◦ R 

( �t 
2 ) 

N r −1 
◦ · · · ◦ R 

( �t 
2 ) 

1 

= R 

( �t 
2 ) 

1 st 
◦ R 

( �t 
2 ) 

1 st 
, 

(10) 

here R 1 st is the reverse operator of R 1 st . Accordingly, for each R j ,

e have 

R j : 

N s ∑ 

i =1 

ν f 
ji 
X i ⇐⇒ 

N s ∑ 

i =1 

νb 
ji X i , 

dy i 
dt 

= 

˙ ω i 
j 

ρ
, i = 1 , . . . , N s , 

˙ ω i 
j = W i 

(
νb 

ji − ν f 
ji 

)[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl − k b j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] νb 
jl 

] 

. 

(11) 

e now rewrite the ODE in Eq. (11) in the following form [30] 

dy i 
dt 

= q j 
i 
− p j 

i 
y i , i = 1 , . . . , N s , (12)

here q 
j 
i 

≥ 0 is the production rate and p 
j 
i 
y i ≥ 0 is the loss rate for

he i th species through reaction j . 

Following the operator splitting of reactions, we continue to

plit each reaction j into a forward reaction and a backward re-

ction (for an irreversible reaction, it can be interpreted as a re-

ersible reaction with zero backward reaction rate) 

 

(�t) 
j 

= R 

(�t) 
j,b 

◦ R 

(�t) 
j, f 

(13) 

uch that the species involved will either gain mass or lose mass

hrough the one-way forward/backward reaction from Eq. (12) , i.e.

mass gain : q j 
i 
≥ 0 , p j 

i 
y i = 0 or mass loss : q j 

i 
= 0 , p j 

i 
y i ≥ 0 , 

(14) 

ith the simplified 

q j, f 
i 

= 

W i 

ρ
νb 

ji 

[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl 

] 

, p j, f 
i 

y i = 0 for product species , 

q j, f 
i 

= 0 , p j, f 
i 

y i = 

W i 

ρ
ν f 

ji 

[ 

k f 
j 

N s ∏ 

l=1 

[ 
ρl 

W l 

] ν f 

jl 

] 

for reactant species 

(15) 

or the forward reaction of Eq. (11) . The backward reaction can

e determined accordingly upon exchanging its reactants and

roducts. 

Since each elementary reaction is decoupled from the others

nd each reaction again is split into two opposite unidirectional

eactions, finally only a single reaction equation of the type 

A + bB + · · · −→ xX + yY + · · · (16)

s considered in each operation. Mass conservation and positivity

f mass fractions can be properly treated. 

For the simple cases of Eq. (16) , one may find analytical so-

utions, see Appendix A . However, for the general form of Eq.

16) whose analytical solution is not explicitly known or difficult

o derive, a more convenient alternative is to use quasi-steady-

tate (QSS) methods to obtain the approximate exact solution. QSS
ethods are based on the exact solution of Eq. (12) for constant p 
j 
i 

nd q 
j 
i 

[33,34] , i.e. 

 

n +1 
i 

= y n i e 
−p j 

i 
�t + 

q j 
i 

p j 
i 

(1 − e −p j 
i 
�t ) , for all νb 

ji − ν f 
ji 

� = 0 . (17)

s generally p 
j 
i 

and q 
j 
i 

depend on { y 1 , . . . , y N s } in Eq. (14) or

15) , Eq. (17) provides a linear approximation. For the QSS-based

PRANTS method, the stable timestep size is not limited to the

haracteristic time scales of the chemical species and thus a larger

imestep implying less computational efforts is possible [21] . 

emark 1. The QSS approximation adopted here in SPRANTS is

rst-order accurate. For application to reacting flows the achiev-

bly absolute error magnitude generally is sufficient [30] . 

.1.1. Treatment for mass conservation 

Employing QSS in Eq. (17) for all the species participating in

eaction j (with νb 
ji 

− ν f 
ji 

� = 0 ), 

∑ 

i 

y n +1 
i 

= 

∑ 

i 

(
y n i e 

−p j 
i 
�t + 

q j 
i 

p j 
i 

(
1 − e −p j 

i 
�t 

))
(18) 

ay not necessarily be unity so that mass may be not exactly con-

erved. To cure this problem, one may only advance y n 
k 

to y n +1 
k 

f a reactant k by Eq. (17) and update all other { y i,i =1 , ... ,N s ,i � = k } n +1 

y mass conservation of a single reaction equation in Eq. (11) .

his merit of knowing the exact net gain or loss of mass of other

pecies originates from the fact that each reaction in Eq. (11) is

ecoupled from others. Therefore, for the reactant k , combining

qs. (17) and (15) we have 

 

n +1 
k 

= y n k e 
−p j 

k 
�t (19) 

nd for the other species i � = k , including other reactants and all the

roducts in reaction j , the change of mass fraction �y i = y n +1 
i 

− y n 
i 

hould obey 

�y i /W i 

νb 
ji 

− ν f 
ji 

= 

�y k /W k 

νb 
jk 

− ν f 

jk 

, (20) 

iving the update 

y n +1 
i 

= y n i + �y i = y n i + 

νb 
ji 

− ν f 
ji 

νb 
jk 

− ν f 

jk 

W i 

W k 

�y k . (21) 

t is easy to see that 
∑ N s 

i =1 
�y i = 0 , which is equivalent to 

∑ N s 
i =1 

y i =
 for mass conservation. 

.1.2. Positivity-preserving treatment 

Without loss of generality, we consider the forward reaction

 and assume that reactant species k has νb 
jk 

= 0 in Eq. (19) , as

f 

jk 
> 0 is prescribed for reactants. Similarly assuming that an-

ther reactant species i also has ν f 
ji 

> 0 and νb 
ji 

= 0 , we combine

qs. (19) and (21) to obtain 

y n +1 
i 

= y n i −
ν f 

ji 

ν f 

jk 

W i 

W k 

y n k + 

ν f 
ji 

ν f 

jk 

W i 

W k 

y n k e 
−p j 

k 
�t . (22) 

ecalling Eq. (15) for reactants i and k , we have 

p j 
i 
y i 

p j 
k 
y k 

= 

ν f 
ji 

ν f 

jk 

W i 

W k 

. (23) 

pon rearranging Eq. (23) and substitution into Eq. (22) we obtain

y n +1 
i 

= y n i 

p j 
k 
− p j 

i 

p j 
k 

+ 

ν f 
ji 

ν f 

jk 

W i 

W k 

y n k e 
−p j 

k 
�t . (24) 
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Table 1 

Convergence rates for S 1 and S 4 using Lie–Trotter and Strang splittings. 

S 1 S 4 

�t L 1 error Rate L ∞ error Rate L 1 error Rate L ∞ error Rate 

Lie–Trotter 6.25E −03 3.47E −15 – 5.01E −15 – 1.47E −12 – 2.27E −12 –

1.25E −02 7.30E −15 1.0709 1.05E −14 1.07166 2.94E −12 0.999772 4.53E −12 0.999815 

2.50E −02 1.60E −14 1.13228 2.32E −14 1.13699 5.89E −12 0.999544 9.07E −12 0.999631 

5.00E −02 3.76E −14 1.23291 5.51E −14 1.24985 1.18E −11 0.999088 1.81E −11 0.999261 

1.00E −01 9.76E −14 1.37647 1.47E −13 1.41746 2.35E −11 0.998174 3.62E −11 0.99852 

Strang 6.25E −03 3.14E −17 – 1.00E −16 – 5.25E −17 – 8.32E −17 –

1.25E −02 1.24E −16 1.97793 4.00E −16 1.99959 2.10E −16 1.99745 3.34E −16 2.00663 

2.50E −02 4.94E −16 1.99949 1.60E −15 2.0 0 01 8.39E −16 1.99996 1.34E −15 2.0 0 0 02 

5.00E −02 1.98E −15 2.0 0 021 6.40E −15 1.99999 3.36E −15 1.99999 5.35E −15 1.9999 

1.00E −01 7.91E −15 1.99997 2.56E −14 2 1.34E −14 1.99999 2.14E −14 2 

Fig. 1. Ignition delay times with different initial temperatures (left) and time histories of mass fractions of H and H 2 O with T 0 = 10 0 0 K (right). 
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With the aid of Eq. (24) , it is readily seen that positivity of y n +1 
i 

,

i.e. y n +1 
i 

≥ 0 , is achieved when p 
j 

k 
≥ p 

j 
i 

since the third term is al-

ways non-negative. Therefore, in order to preserve the positivity of

species mass fractions, reactant species k using the QSS approxi-

mation should satisfy 

p j 
k 

= max { p j 
i 
} for all the reactant species in reaction j. (25)

Regarding the positivity for the choosen reactant k , according to

Eq. (19) , it is inherently satisfied through positivity of the exponen-

tial function. Eq. (19) implies that 0 ≤ y n +1 
k 

< 1 due to the negative

exponent such that mass fractions of all species through reaction j

are bounded within [0,1] as a result of mass conservation. 

Remark 2. The present reaction-split method using analytical or

approximate solutions can perform sufficiently well, as a stand-

alone solver, for the ODE system in chemical kinetics. Its following

randomization is not motivated for integrating the ODE accurately,

but primarily aimed at alleviating the effect of numerical dissipa-

tion introduced by S c through shock-capturing schemes into S r . 

2.2. Finite randomization of chemical reactions 

Bao and Jin [1–3] first proposed the idea of random projection

into the ODE solver in place of the deterministic projection. They

also proved that the random projection method gives first-order

convergence for scalar problems. For scalar problems and Euler

equations with stiff source terms, the random projection method

shows excellent performance in obtaining correct shocks and react-

ing fronts for under-resolved spatial and temporal discretizations. 

Through operation splitting of the ODE system in S r , we merely

need to consider the randomization of a single one-way reaction

from time t n to t n +1 . In Bao and Jin’s formulation, temperature

is randomized and compared with a pre-set ignition temperature,

T ign . Upper and lower temperature limits are needed, i.e. T u and
 b (corresponding to the two equilibrium states of the initial com-

ustible gas mixture being completely burnt and unburnt). 

Here we advance the current state vector { y 1 , . . . , y N s } through

 single one-way reaction with subscript j , as in Eq. (16) , 

{ y 1 , . . . , y N s } + = R 

(�t) 
j 

{ y 1 , . . . , y N s } , (26)

here { y 1 , . . . , y N s } + represents the advance in time by operation

 j (for reversible reactions R 
f 
j 

or R b 
j 
). The change of mass fractions

or the species involved in this reaction is 

{ �y 1 , . . . , �y N s } j = { y 1 , . . . , y N s } + − { y 1 , . . . , y N s } . (27)

he reverse operation from time level n is 

{ y 1 , . . . , y N s } − = { y 1 , . . . , y N s } − { �y 1 , . . . , �y N s } j . (28)

ince mass fractions of species involved are constrained in [0,1],

ll mass fractions have to be rescaled if necessary according to

q. (20) . For the two states with superscripts + and −, two limit

emperatures T + and T − can be implicitly obtained according to

q. (3) with the thermodynamic relation 

h (y 1 , . . . , y N s , T ) − e = 

p(y 1 , . . . , y N s , T ) 

ρ
, (29)

here ρ and e are fixed during a constant-volume adiabatic reac-

ion and h represents the specific enthalpy. If we assume that the

resent reaction is exothermal, we have T − < T < T + . The converse

pplies to endothermal reactions. T + corresponds to T b in the orig-

nal random projection method while T − corresponds to T u . Given

he two limit temperatures, we can assemble a local random tem-

erature by 

T ∗ = T − + θn (T + − T −) , (30)

here θn is a uniformly distributed random real number be-

ween 0 and 1, and T ∗ is the randomized local temperature with

in { T −, T + } < T ∗ < max { T −, T + } and T ∗ � = T in general. Regarding
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Fig. 2. CPU times with different initial temperatures. 

Fig. 3. Time histories of the sum of mass fractions with ‘10 0 0’: T 0 = 10 0 0 K and 

‘1200’: T 0 = 1200 K. 
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he generation of random number θn , Bao and Jin suggested the

an der Corput sampling scheme [35] . 

Given the random temperature T ∗, the unidirectional reaction j

s performed as 

P (�t) 
j 

: { y 1 , . . . , y N s } j = 

{{ y 1 , . . . , y N s } + , if T > T ∗, 
{ y 1 , . . . , y N s } , otherwise . 

(31) 
Fig. 4. Temperature histories using different timesteps (left) and L ∞ error norms of
he updated state solution { y 1 , . . . , y N s } j is taken as the initial state

or the next reaction j + 1 . 

emark 3. As the random temperature T ∗ is uniformly distributed

etween the two temperature limits, the mean propagation of the

eaction front recovers the physically correct position [1] . With de-

erministic ODE solvers, accumulation of errors may lead to non-

hysical reacting front propagation, see the detailed explanation in

7,36] . 

Inserting Eq. (31) into the split ODE solver in Eqs. (9) and (10) ,

he present SPRANTS method can be written as 

P (�t) 
1 st 

= P (�t) 
N r 

◦ P (�t) 
N r −1 

◦ · · · ◦ P (�t) 
2 

◦ P (�t) 
1 

(32) 

orresponding to the Lie–Trotter splitting or as 

P (�t) 
2 nd 

= P 
( �t 

2 ) 

1 
◦ P 

( �t 
2 ) 

2 
◦ · · · ◦ P 

( �t 
2 ) 

N r 
◦ P 

( �t 
2 ) 

N r 
◦ P 

( �t 
2 ) 

N r −1 
◦ · · · ◦ P 

( �t 
2 ) 

1 
(33) 

orresponding to Strang splitting. 

emark 4. Not requiring either the flow information at each cell

nd its neighbors [17] or an additional procedure to locate the re-

cting front in the computational domain [1] , the proposed method

olves the source terms at each cell locally as a 0D problem, such

hat its extension to 3D reacting flows is straightforward. 

For nonstiff cases when the reaction zone is well-resolved in

pace and time, the present SPRANTS method gradually degener-

tes to a deterministic ODE solver upon modification of the sam-

ling interval in Eq. (30) as 

T ∗∗ = 

{
T ∗ − 1 

2 
(T + − T −) f, if f < 1 , 

T ∗, otherwise , 
(34) 

here 

f = N 

∣∣∣∣ T + − T −

T ++ − T −− + ε

∣∣∣∣. (35) 

 

++ is an estimated upper bound of the temperature after N time

teps (e.g., N = 5 ) and T −− corresponding to its reverse state ac-

ording to Eqs. (27) and (28) , and ε is a small positive number.

hus f represents a dynamic measure for the time resolution of the

espective reaction. One can see that, when the resolution is fine

nd linear approximation applies to temperature evolution, f → 1

nd Eq. (34) gives 

lim 

f→ 1 
E(T ∗∗) = E(T ∗) − 1 

2 

(T + − T −) = T − < T (36) 

or a uniformly distributed θn in Eq. (30) . The random time-

tepping of reactions therefore reduces to a deterministic process

ccording to Eq. (31) in non-stiff cases. 
 temperature and mass fraction y H 2 (right); T 0 = 10 0 0 K and dt 0 = 5 × 10 −8 s. 
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Fig. 5. Example 1 one reaction, CJ detonation at t = 1 . 5 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; black solid 

line: reference solution; left column: �x = 0 . 25 , �t = 0 . 01 ; right column: �x = 0 . 025 , �t = 0 . 001 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

3

 

Remark 5. Due to the reduced randomness between activation

and deactivation, the proposed SPRANTS method can also cope

with nonstiff problems while the original random projection
method is suitable for under-resolved stiff cases [7] . m  

s  
. Numerical results and discussion 

In this section, we consider three types of numerical experi-

ents. The first serves to assess the split reaction-by-reaction ODE

olver based on either analytical solutions or QSS approximation
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Fig. 6. Example 1 SPRANTS results at t = 1 . 5 with varying resolutions. The timestep for the �x = 0 . 6 grid is equally scaled from �x = 0 . 25 , �t = 0 . 01 . 

Fig. 7. Example 1 temperature profiles at t = 1 . 5 by SPRANTS with or without the 

drift term using the resolved grid and timestep of �x = 0 . 0025 , �t = 0 . 0001 . Pur- 

ple line: SPRANTS solution without drift term; red circle line: SPRANTS solution 

with drift term; black cross line: reference solution. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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s  
or the zero-dimensional reaction operator, ignoring fluid transport.

he following two types consider the coupled fluid dynamics with

hemical kinetics by using simplified model kinetics and realistic

nite-rate kinetics, respectively, in 1D or 2D. 

.1. Reaction-split ODE solver for chemical kinetics 

.1.1. Michaelis–Menten test 

The first case is the Michaelis–Menten system [37] , i.e. S 1 +
 2 

k 1 −→ S 3 , S 3 
k 2 −→ S 1 + S 2 , S 3 

k 3 −→ S 2 + S 4 , where the rate constants

 1 = 10 6 , k 2 = 10 −4 and k 3 = 10 −1 . The initial concentrations are

 × 10 −7 for S 1 and 2 × 10 −7 for S 2 with S 3 = 0 and S 4 = 0 [37,38] .

or this case, analytical solutions are provided for each reaction,

ee Appendix A . Reactions are simulated until t = 50 . In Table 1 ,

he L 1 and L ∞ 

error norms of species S 1 and S 4 are detailed, show-

ng the expected convergence rates, i.e. 1st order for Lie–Trotter

plitting and 2nd order for Strang splitting. 

.1.2. Hydrogen–air ignition delay test 

Hydrogen ignition in air considers not only temperature-

ependent reversible reactions but also third-body reactions, mak-

ng the approximate solution to each reaction is practically pre-

erred. The mechanism of H 2 –air combustion follows O’Conaire

t al. [39] , consisting of 9 species (including the inert N ) with
2 
3 reversible reactions (equivalent to 46 one-way reactions). This

echanism has exhibited good prediction for the ignition delay

ime in [40] . All temperature-dependent reaction rates are calcu-

ated using the Arrhenius law 

 r = AT B exp (−T ign /T ) , (37)

here the subscript r is f for forward reactions or b for backward

eactions and T is the temperature. Parameters A, B and T ign for the

orward rate of each reaction are often given in the mechanism.

ackward rates often need to be calculated from the equilibrium

onstant K eq and k f by assuming the corresponding reaction to be

n chemical equilibrium, i.e. K eq = k f /k b [41] . The third-body effect

s accounted for by the summation of third-body collision efficien-

ies times the corresponding molar densities of species. 

Initially the reactive H 2 -air mixture is at a pressure of 1 atm,

nd has molar ratio 2: 1: 3.76 for H 2 : O 2 : N 2 . Nitrogen is inert. All

imulations end at t = 1 × 10 −3 s. First we vary the initial temper-

ture T 0 from 950 K to 1400 K in steps of 50 K. A fixed timestep

f 1 × 10 −8 s and Lie–Trotter splitting are applied. We compare the

gnition delay times predicted by the present solver with the ex-

erimental data and CHEMKIN [42] results from Ref. [40] (see its

ig. 3 ) in Fig. 1 (left). The present QSS-based reaction-split method

or abbreviated as QRS) exhibits good predictions for the ignition

nduction of hydrogen using the present mechanism, especially in

he high initial temperature range. In Fig. 1 (right), we compare

he computed mass fractions with CHEMEQ2 at an initial temper-

ture of 10 0 0 K, and good agreement is achieved especially for the

gnition time. For either QRS or CHEMEQ2, there is little differ-

nce between CPU times with different initial temperatures. QRS,

owever, exhibits better efficiency than CHEMEQ2 for the 9-species

3-reaction mechanism at a fixed timestep, as shown in Fig. 2 . By

hoosing the initial temperatures at 10 0 0 K and 1200 K, respec-

ively, we consider the mass conservation of QRS and CHEMEQ2 in

ig. 3 . It is readily to see that QRS can always preserve the mass,

hereas for the CHEMEQ2 results some total mass loss or gain oc-

urs around the ignition time. 

We continue to consider the accuracy of QRS by adjusting the

imestep from 5 × 10 −8 s to 8 × 10 −7 s with an amplifying factor of

. The initial temperature is fixed at 10 0 0 K. Figure 4 (left) shows

hat the temperature profiles converge with decreasing timesteps.

y assessing the error norms of temperature and mass fraction of

 in Fig. 4 (right), it can be seen that QRS is 1st-order convergent

hen Lie–Trotter splitting is applied. 

.2. Reactive Euler equations with simplified model kinetics 

In this part, we consider reactive Euler equations coupled with

implified model kinetics in several stiff detonation problems. In
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Fig. 8. Example 2 one reaction, strong detonation at t = 1 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; green 

cross line: deterministic solution with Heaviside kinetics; black solid line: reference solution; left column: �x = 0 . 25 , �t = 0 . 01 ; right column: �x = 0 . 025 , �t = 0 . 001 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 T

a  

m  

c  
such cases, the Arrhenius form of reaction rates in Eq. (37) also

can be written as Heaviside form 

k r = 

{
AT B , T ≥ T ign , 

0 , T < T ign . 

M  
he EoS in Eq. (3) for the model problems is simplified by 

p = (γ − 1) ( ρe − q 1 ρy 1 − q 2 ρy 2 − · · · − q N s ρy N s ) 

nd T = p/ρ . Numerical experiments cover single reaction to

ulti-reaction system in 1D and 2D detonation problems. In our

omputation, the AUSM+ scheme [28] is employed together with

USCL reconstruction using a TVD Minmod limiter [43] in the
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Fig. 9. Example 3 two reactions, strong detonation at t = 3 . Purple square line: SPRANTS solution; red triangle line: deterministic solution with Arrhenius kinetics; green 

cross line: deterministic solution with Heaviside kinetics; black solid line: reference solution ( �x = 0 . 0025 , �t = 0 . 0001 ); left column: �x = 0 . 25 , �t = 0 . 01 ; right column: 

�x = 0 . 025 , �t = 0 . 001 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

c  

m

E  

s  

w

w  

a

y

onvection step. The reaction step adopts the proposed SPRANTS

ethod or QRS as a deterministic method. 

xample 1 (Chapman–Jouguet (CJ) detonation) . The first case con-

iders the simplest reacting model, which has been studied in [7] ,
ith only one reaction and two mutually dependent species 

A −→ B, 

here A represents the fuel being burnt by the one-way reaction

nd mass fraction of the product can be given directly by y B = 1 −
 . 
A 
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Fig. 10. Example 4 2D case, one infinite-rate reaction, CJ detonation. Left: deterministic solution; right: SPRANTS solution. Locations of the CJ detonation wave at three times 

are marked by y A = 0 . 5 with black solid line (low resolution) and white dashed line (high resolution). 
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Parameters for the reaction model and species properties are 

( γ , q A , q B ) = ( 1 . 4 , 25 , 0 ) , (
A, B, T ign 

)
= ( 16418 , 0 . 1 , 15 ) . 

(38)

Note that the ignition temperature T ign is only used by the deter-

ministic method. The initial condition to generate the detonation

wave consists of two parts in only one spatial dimension, with

piecewise constants given by 

( p, T , u, y A , y B ) = 

{
( 21 . 435 , 12 . 75134 , 2 . 899 , 0 , 1 ) , x < 10 , 

( 1 , 1 , 0 , 1 , 0 ) , x ≥ 10 . 

The left part gas is at the burnt equilibrium state and moves at a

speed u CJ relative to the stationary unburnt gas of the right part.

The initial CJ state on the left can be obtained in theory [1,4,7] .

This problem is solved on the interval [0, 30]. The left-end bound-

ary condition is the inflow condition with fixed identical constants

as the initial data on the left. Boundary condition for the right end

is extrapolation from the mirror image points inside the domain. 

The exact solution is simply a CJ detonation wave moving to

the right and we obtain the reference ‘exact’ solution by the de-

terministic method (QRS) using a well-resolved grid ( �x = 0 . 0025 )

and a timestep of �t = 0 . 0 0 01 . We compare the under-resolved

results by SPRANTS and QRS, respectively, using two sets of grid

( �x = 0 . 25 , 0 . 025 ) and timestep ( �t = 0 . 01 , 0 . 001 ) with the same

kinetics. Figure 5 shows the computed pressure, density, temper-

ature and mass fraction. The proposed random method can cap-

ture the correct propagation of the detonation wave with both

coarse and fine grids, while the deterministic method produces

the spurious solutions in the same under-resolved conditions, i.e. a

weak detonation wave propagates faster than the theoretical deto-

nation speed of D CJ = 7 . 124 in this case. Since a coarser grid with
 larger timestep renders the stiffness more severe, the determin-

stic method produces far more nonphysical weak detonation wave

ompared to the SPRANTS or the reference solution. The location

f the reacting front on the coarse grid may be shifted from the

xact location due to randomization, but the shift amplitude does

ot grow in time [1] , whereas the error accumulates with the de-

erministic method. 

In Fig. 6 , the SPRANTS result based on a very coarse grid ( �x =
 . 6 corresponding to 50 grid points) is compared with the afore-

entioned under-resolved solutions by SPRANTS in terms of pres-

ure and temperature at t = 1 . 5 . Correct location of the detonation

ave is captured despite the smeared discontinuity. Convergence

f pressure and temperature profiles with an increasing resolution

an be seen towards the reference solution, demonstrating the ac-

uracy of the proposed SPRANTS method in capturing the correct

ropagation speed of discontinuities at under-resolved conditions.

e also notice that a grid of 300 nodes is employed to obtain the

orrect wave propagation in [7] and 50 grid points are used by

 high-order finite difference scheme (WENO5/SR) in [18] for this

ase. 

In Fig. 7 , we demonstrate that with the drift term the SPRANTS

olution captures not only the correct location of reacting front but

lso the resolved reaction zone, in good agreement with the refer-

nce solution obtained by the deterministic method. Without the

rift term, although the random method can still give the correct

hock propagation, it fails to capture details of the resolved post-

hock reaction zone by overshooting the temperature magnitude. 

xample 2 (Strong detonation) . This example considers a reacting

odel, which has been studied in [7] , with one reaction and three
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Fig. 11. Example 5 2D case, two reactions, strong detonation at t = 0 . 1 . Top: reference solution; middle: deterministic solution with Arrhenius kinetics; bottom: SPRANTS 

solution; in the mass fraction contour, locations of the detonation front at t = 0 . 1 , 0 . 2 , 0 . 3 are additionally marked by setting y O 2 = 0 . 5 in white solid lines. 
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2 H 2 + O 2 −→ 2 H 2 O . 

Parameters for the reaction kinetics and species properties are (
γ , q H 2 , q O 2 , q H 2 O , W H 2 , W O 2 , W H 2 O 

)
= ( 1 . 4 , 300 , 0 , 0 , 2 , 32 , 18 ) , (

A, B, T ign 

)
= 

(
10 

6 , 0 , 2 

)
. 

he initial condition of piecewise constants is given by 

(
p, T , u, y H 2 , y O 2 , y H 2 O 

)
= 

{ 

( 20 , 10 , 8 , 0 , 0 , 1 ) , x < 2 . 5 , (
1 , 1 , 0 , 1 

9 
, 8 

9 
, 0 

)
, x ≥ 2 . 5 . 

he left part gas is at the burnt equilibrium state and it is moving

t a speed larger than u CJ relative to the stationary unburnt gas of

he right part so that a strong detonation wave is to occur. This

roblem is solved on the interval [0, 50]. 

The exact solution consists of a detonation wave, followed by a

ontact discontinuity and a shock, all moving to the right. Again,
e obtain the reference solution by QRS using a resolved grid

 �x = 0 . 0025 ) and a very small timestep ( �t = 0 . 0001 ). We com-

are the results by SPRANTS and the deterministic method using a

oarse grid and a finer grid with stable timesteps, as explained in

ig. 8 . Note that in the deterministic method, we adopt both the

rrhenius model and the Heaviside model for the chemical kinet-

cs. The proposed SPRANTS method can capture all discontinuities

ffectively, while the deterministic method produces spurious so-

utions at the same under-resolved conditions. In particular, using

he Heaviside model, the deterministic method produces a less ac-

urate solution due to the stronger stiffness compared to the Ar-

henius model (see the right column of Fig. 8 ). 

xample 3 (Strong detonation) . This case considers a multi-step

eaction mechanism with two one-way reactions and five species 

1) H 2 + O 2 −→ 2 OH , 

2) 2 OH + H 2 −→ 2 H 2 O , 
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Fig. 12. Example 6 hydrogen–air CJ detonation at t = 1 . 2 × 10 −3 s. Purple square line: SPRANTS solution; red triangle line: deterministic solution by CHEMEQ2; black solid 

line: reference solution; left column: �x = 0 . 08 m , �t = 1 × 10 −6 s ; right column: �x = 0 . 02 m , �t = 2 . 5 × 10 −7 s . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Initial condition for hydrogen–air CJ detonation in 

Example 6. 

Post-shock gas Pre-shock gas 

Pressure (Pa) 1481999.362037 101,325 

Temperature (K) 2941.677242 298 

Velocity (m/s) 800 ( ≈ u CJ ) 0 

Mass fraction 

y H 0.0 0 0247 0 

y O 0.001617 0 

y H 2 O 0.225404 0 

y OH 0.014915 0 

y O 2 0.013336 0.226362 

y H 2 0.002429 2.852103E −2 

y H 2 O 2 2.601600E −6 0 

y HO 2 1.857550E −5 0 

y N 2 0.742031 0.745117 

 

Fig. 13. Example 6 hydrogen–air CJ detonation at t = 0 . 4 , 0 . 8 , 1 . 2 × 10 −3 s. Pur- 

ple square line: SPRANTS solution; red triangle line: deterministic solution by 

CHEMEQ2; black solid line: reference solution; both solutions use �x = 0 . 02 m , 

�t = 2 . 5 × 10 −7 s . (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 
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c

with N 2 as a dilute catalyst. Similar examples have been studied in

Example 5.4 [3] . 

Parameters for the reaction model and species properties are (
γ , q H 2 , q O 2 , q OH , q H 2 O , q N 2 

)
= ( 1 . 4 , 0 , 0 , −20 , −100 , 0 ) , (

W H 2 , W O 2 , W OH , W H 2 O , W N 2 

)
= ( 2 , 32 , 17 , 18 , 28 ) , (

A 

1 , B 

1 , T 1 ign 

)
= 

(
10 

5 , 0 , 2 

)
, (

A 

2 , B 

2 , T 2 ign 

)
= 

(
2 × 10 

4 , 0 , 10 

)
. 

The initial condition of piecewise constants is given by (
p, T , u, y H 2 , y O 2 , y OH , y H 2 O , y N 2 

)
= 

{
( 40 , 20 , 10 , 0 , 0 , 0 . 17 , 0 . 63 , 0 . 2 ) , x < 2 . 5 , 

( 1 , 1 , 0 , 0 . 08 , 0 . 72 , 0 , 0 , 0 . 2 ) , x ≥ 2 . 5 . 

This problem is solved on the interval [0, 50]. 
Figure 9 presents different computational conditions and re-

ults obtained accordingly. All waves are captured with the cor-

ect speeds by the SPRANTS method, in good agreement with the

eference solution. However, the deterministic method obviously

annot handle the Heaviside model with the same under-resolved

rids and timesteps. Although the slower propagation of the re-

cting front is captured by the Arrhenius model, the determinis-

ic method still results in spurious weak detonation, refer to the

ransit points around x ≈ 40 especially in the profiles at the right

olumn of Fig. 9 . 
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Fig. 14. Example 6 hydrogen–air CJ detonation at t = 1 . 2 × 10 −3 s by the deterministic method with CHEMEQ2 using different grids (left) and CPU times (s) compared to 

SPRANTS on two coarser grids (right). 
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Table 3 

CPU times (s) by SPRANTS and the deterministic method with CHEMEQ2 

in Example 6. 

N c 50 200 3200 6400 10 0 0 0 

� � 

SPRANTS 418.523 3235.12 

✕ ✕ � � � 

CHEMEQ2 52.9419 214.142 6788.82 13592.8 21356.0 

N c represents the number of grid points and symbol � or ✕ indicates 

the correct or incorrect wave propagation being captured. 
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xample 4 (CJ detonation in 2D) . This 2D case extends EXAM-

LE 1 to a radially symmetric point-source explosion, where A in

q. (38) is amplified by a factor of 10 , 0 0 0 to approximate the in-

nitely fast reaction with extreme stiffness. Similar tests have been

tudied in [3,16] . 

A quarter domain is considered exploiting sectorial symme-

ry on [0, 50] × [0, 50]. The hot-spot area of the initial high-

emperature high-pressure burnt gas is a circle with radius 10 and

he reactive unburnt gas takes the outside. Initial condition is the

ame as in Example 1 except the initial velocity of the circle area

s adjusted to along the radial direction, i.e. 

( u, v ) = 

{
( 2 . 899 x/r, 2 . 899 y/r ) , r < 10 , 

( 0 , 0 ) , r ≥ 10 , 

here r = 

√ 

x 2 + y 2 . 

In our computations, a coarse grid (200 × 200) and a finer grid

20 0 0 × 20 0 0) are employed referring to Example 1. Corresponding

imesteps are �t = 1 × 10 −2 and 1 × 10 −3 , respectively. With the

ner grid, the deterministic method still produces a spurious solu-

ion at t = 1 . 5 , see the left column of Fig. 10 , in that a nonphysical

eak detonation wave is generated and the reacting front is no

ore circular. In contrast, the SPRANTS method can capture shape

nd location of the CJ detonation front accurately, see the right col-

mn of the figure, by observing the radial velocity vector in the

ressure contour even in the low resolution and the self-similarly

ircular outwards-developing detonation fronts in black/white lines

f two resolutions at different times. The line-marked locations

alculated by the random method in two resolutions agree excel-

ently with each other and thus a grid convergence to the exact so-

ution is reasonable to expect for the proposed SPRANTS method.

ith negligible curvature effects [44,45] and the under-resolved

eaction zone being infinitesimal, the calculated speed of the det-

nation front approaches the 1D theoretical speed of D CJ = 7 . 1247

s in Example 1. 

xample 5 (Strong detonation in 2D) . The present case considers

he same multi-step reaction mechanism as in Example 3 except

hat q OH in Eq. (38) changes into −50 . This is a 2D case used to

rove the dimension-independent nature of the proposed method,

nlike the original random projection method which requires a

imension-by-dimension scanning for local projection. Geometry 

nd initial condition of piecewise constants in the 2D domain can

e referred to [7] . 

A uniformly distributed coarse grid (300 × 100) and a refined

rid (30 0 0 × 10 0 0) are employed. Corresponding timesteps are

t = 5 × 10 −4 and 5 × 10 −5 , respectively. The reference solution is

btained by the deterministic method using the fine grid and tiny
imestep. The comparison of the SPRANTS method and determin-

stic method on capturing stiff detonation waves is based on the

nder-resolved grid and timestep. In Fig. 11 , at t = 0 . 1 the spurious

olution given by the deterministic method on the coarse grid con-

ains a too fast weak detonation wave, which has passed half of the

omain. However, the correct detonation waves from the SPRANTS

ethod on the same resolution and the deterministic method on a

ne grid agree with each other excellently. Good agreement of the

elf-similar propagation of the detonation wave from t = 0 . 1 to 0.3

lso can be seen in the mass fraction contour given by the ref-

rence solution and the under-resolved SPRANTS solution, respec-

ively. The slight difference between the two solutions lies in some

mall near-shock statistical fluctuations due to the random nature

f the method [1] . 

.3. Reactive Euler equations with realistic nonequilibrium kinetics 

In this subsection, we validate the SPRANTS method for captur-

ng stiff detonation waves governed by the reactive Euler equations

oupled with realistic chemical nonequilibrium kinetics which in-

roduces multiple temperature-dependent reactions with distinct 

imescales. To our knowledge, both the two test cases below

re reported for the first time, taking into account the detailed

ydrogen–air combustion mechanism as in Section 3.1.2 . Two dif-

erent scenarios with a CJ detonation and strong detonation wave,

espectively, are simulated in 1D or 2D domain. The convection op-

rator adopts an ordinary shock capturing scheme as in the for-

er subsection, and the reaction step is solved by the proposed

PRANTS method and CHEMEQ2 as the deterministic method to

ake a comparison. Reaction splitting in the SPRANTS method em-

loys the 2nd-order Strang scheme to reduce splitting errors. 

xample 6 (Realistic CJ detonation) . The setup consists of two

arts divided by a shock moving to the right in a 1D domain of

ength L = 4 m, as in Table 2 . The theoretical CJ detonation states

or the unburnt gas can be generated using the NASA Chemical
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Fig. 15. Example 7 the density distribution and the detonation front location at different times. Left: reference solution; middle: deterministic solution by CHEMEQ2; right: 

SPRANTS solution; the location of the reacting front is marked by the white solid line with y H 2 O = 0 . 1 . 
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m

quilibrium Analysis (CEA) program [46] , and according to the CJ

ondition [1,4,7] , i.e. 

 CJ = u CJ + (γ p b /ρb ) 
1 / 2 , 

e adopt u b = 800 m/s ≈ u CJ for the initial velocity of the burnt

as, to generate a CJ detonation wave sweeping the stationary un-

urnt gas. The shock is initially located at x = 0 . 4 m. Boundary

ondition for the left/right end is simply extrapolation from the

irror image points inside the domain. All simulations are termi-

ated at t = 1 . 2 × 10 −3 s and use the same mechanism [39] . 

The exact solution is a steady self-similar CJ detonation wave

raveling from left to right. We obtain the reference exact so-

ution by the deterministic method using a very fine grid with

0,0 0 0 points and a fixed tiny timestep of �t = 5 × 10 −8 s.

wo sets of under-resolved grid and timestep are considered, i.e.

x = 0 . 08 m , �t = 1 × 10 −6 s and �x = 0 . 02 m , �t = 2 . 5 × 10 −7 s ,

espectively. 

In Fig. 12 at the given time: although the resolution of the

rid and timestep is far lower than the resolved solution, the

PRANTS method predicts the properties of the flowfield in quite

ood agreement with the reference solution, including the location

f the detonation wave and profiles of the mixture pressure and

ensity. The obtained profiles tend to converge to the reference so-

ution with increasing resolution (and decreasing stiffness). In con-

rast, using the same under-resolved grid and timestep, the deter-

inistic method yields the spurious nonphysical weak detonation

head of the shock and the flowfield profiles are totally changed

n an incorrect way. In Fig. 13 , wave propagation at different times

s presented by looking into the pressure distribution. Despite the

eviation by few grid points, SPRANTS can always capture the cor-

ect wave location while the error in the location of reaction front

y the deterministic method deteriorates by showing a too fast

eak detonation wave. Note that the von Neumann spike inside

he reaction zone of the reference solution can be calculated only

y very fine resolution both in space and time. 

In Fig. 14 (left), we additionally obtain several solutions by

he deterministic method with CHEMEQ2 using N c = 40 0 , 80 0 up

o 6400 grids with linearly decreasing global timesteps (lower to

t = 5 × 10 −8 s as the reference solution with N c = 10 , 0 0 0 ). It can

e seen that the pressure profiles converge to the reference solu-

ion (with 10,0 0 0 grid points) including the spurious weak detona-

ion waves with N c = 400 to 1600. When the number of grid points

ncreases to 3200 or more, the weak detonation wave disappears

nd the correct location of the reacting front is captured. We com-

are the CPU times for the reaction step of two methods based on

ifferent grids, listed in Table 3 and plotted in Fig. 14 (right), as

he computational cost of integrating the ODE system dominates

n reacting flow simulations. With the same mechanism, SPRANTS

onsumes more CPU time in the reaction step than the determinis-

ic method using the same resolution, since each random reaction

eeds to assume a forward state or backward state to determine

he random temperature, invoking a costly iterative root-finding

peration. The deterministic method requires a much higher res-

lution in both space and time to reach the same prediction ac-

uracy so that its overall computational efficiency dramatically

ecreases. 

xample 7 (Realistic strong detonation in 2D) . The setup consists

f two parts divided by a shock traveling to the right in a rectan-

ular domain of [0 , 3] m × [0 , 1] m . The post-shock burnt gas part

s given by 

| y − 0 . 5 | > 0 . 25 , x < 0 . 5 } ∪ {| y − 0 . 5 | ≤ 0 . 25 , x − 0 . 25 < y < 1 . 25 − x } ,
nd the unburnt gas occupies the remaining domain in front of

he initial shock. Initial states are identical with those in Ex-

mple 6 except for the x -velocity of the post-shock part being

ncreased to u b = 20 0 0 m/s > u CJ , to create a strong detonation
ave. The boundary condition for the left/right end is simply ex-

rapolation from the mirror image points inside the domain and

he top/bottom boundary is considered as a slip wall. All simula-

ions are finished at t = 1 × 10 −3 s and still use the 9-species 23-

eaction mechanism [39] . 

With the previous 1D example, it was shown that the deter-

inistic solution based on a grid of 3200 points in the 4 m long

omain recovers the correct shock position in Fig. 14 (left). There-

ore, we generate a reference solution in 2D by the deterministic

ethod using a fine grid with 30 0 0 × 10 0 0 points and a fixed tiny

imestep of �t = 2 . 5 × 10 −8 s. A set of under-resolved uniform grid

nd timestep is also considered, i.e. 150 × 50 , �t = 2 . 5 × 10 −7 s.

igure 15 displays the density distributions along with locations

f the detonation wave at different times in three solutions. In

omparison with the reference solution, the SPRANTS method gives

easonable locations of the reacting front at all times. Due to the

ow resolution used in SPRANTS, detailed characteristics presented

n the reference solution such as the triple points, slip lines, small

ortices and peak values of density are diffused while the overall

owfield including the profile of reacting front has been correctly

aptured. For the deterministic method with the same resolution, a

purious weak detonation wave can be observed with a maximum

rror of nearly 10% of the domain length within only 1 ms. 

. Conclusions 

A new operator splitting method for simulating chemically re-

cting flows, especially for capturing stiff detonation waves in

nder-resolved conditions has been developed. Two procedures

ased on operator splitting are included: for the convection step,

ny shock-capturing scheme can be used; for the reaction step,

he multi-species multi-reaction ODE system in the source terms

s further split in a reaction-by-reaction manner. Each reaction ei-

her proceeds a timestep forward or is interrupted according to

 local random temperature rather than a deterministic process

ith growing error accumulation. A wide range of numerical ex-

eriments including not only simple model kinetics but also real-

stic nonequilibrium chemistry such as the temperature-dependent

nite-rate hydrogen–air combustion are considered in 1D and 2D

ows, demonstrating the following properties: 

1. Mass conservation and positivity of species concentration can

be guaranteed by the reaction-split ODE solver, which is almost

unconditionally stable due to its using either analytical or ap-

proximate exact solutions. 

2. The proposed SPRANTS method can effectively predict the cor-

rect propagation of discontinuities as well as the overall flow-

field information in under-resolved conditions, for both model

kinetics and realistic finite-rate nonequilibrium kinetics. 

3. Compared with the deterministic method using CHEMEQ2, the

present SPRANTS method exhibits better computational effi-

ciency as it can correctly capture the detonation wave with

a larger timestep on coarse grids for nonequilibrium reactive

flows. 

4. By adding a drift term into the random temperature sampling,

SPRANTS can recover the deterministic solution as the resolu-

tion improves with decreasing stiffness. 

5. The dimension-independent algorithm for the source terms

makes further 3D extension of the proposed method straight-

forward. 

Employing high-order low-dissipation schemes for the present

ethod is a subject of future research. 
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Appendix A. Analytical solutions to some simple forms of a 

one-way reaction equation 

For the simplest form of a reaction such as A −→ products ,

we have an ODE for the molar concentration [ A ], as 
d [ A ] 
dt 

= −k [ A ] ,

with k being the rate constant and initial value of [ A ] 0 at t = t 0 .

This ODE written in terms of molar concentration is equivalent to

Eq. (11) using density and mass fraction since [ A ] = 

ρA 
W A 

= 

ρy A 
W A 

. Its

solution by separation of variables is [ A ] = [ A ] 0 e 
−k (t−t 0 ) . 

For the reaction form 

A + B −→ products , (A.1)

we have the ODE system as 

d [ A ] 

dt 
= 

d [ B ] 

dt 
= −k [ A ] [ B ] . (A.2)

This means that d [ A ] = d [ B ] holds for any time interval dt and thus

[ A ] − [ A ] 0 = [ B ] − [ B ] 0 . (A.3)

Substituting relation (A.3) into Eq. (A.2) , we have 
d [ A ] 
dt 

=
−k [ A ] ( [ A ] + �AB ) , where �AB = [ B ] 0 − [ A ] 0 , leading to the solution

of [ A ] as 

[ A ] = 

{ �AB 
[ B ] 0 
[ A ] 0 

e �AB k (t−t 0 ) −1 
, if �AB � = 0 , 

1 

k (t−t 0 )+ 1 
[ A ] 0 

, otherwise . 

Reaction 2 A −→ products is a special case of reaction (A.1) and

the solution is [ A ] = 

1 

k (t−t 0 )+ 1 
[ A ] 0 

. 

For a third-order reaction A + B + C −→ products , we also

utilize the relations [ A ] − [ A ] 0 = [ B ] − [ B ] 0 = [ C ] − [ C ] 0 and per-

form separation of variables to obtain an implicit solution for

[ A ] 0 � = [ B ] 0 � = [ C ] 0 , i.e. (
[ A ] 

[ A ] + �AC 

[ C ] 0 
[ A ] 0 

) 1 
�CB �AC 

−
(

[ A ] 

[ A ] + �AB 

[ B ] 0 
[ A ] 0 

) 1 
�CB �AB 

= e −k (t−t 0 ) . 

Only for [ A ] 0 = [ B ] 0 = [ C ] 0 or for the special reaction

3 A −→ products , an explicit analytical solution exists, i.e.

[ A ] = 

√ 

1 
1 

[ A ] 2 
0 

+2 k (t−t 0 ) 
. 

After the determination of the new state of the reactant species

[ A ], states of the remaining species including all the products and

other reactants can be updated by mass conservation in Eq. (20) . 

References 

[1] W. Bao , S. Jin , The random projection method for hyperbolic conservation laws

with stiff reaction terms, J. Comput. Phys. 163 (1) (20 0 0) 216–248 . 
[2] W. Bao , S. Jin , The random projection method for stiff detonation capturing,

SIAM J. Sci. Comput. 23 (3) (2001) 1000–1026 . 
[3] W. Bao , S. Jin , The random projection method for stiff multispecies detonation

capturing, J. Comput. Phys. 178 (1) (2002) 37–57 . 
[4] H.C. Yee , D.V. Kotov , W. Wang , C.-W. Shu , Spurious behavior of shock-captur-

ing methods by the fractional step approach: problems containing stiff source

terms and discontinuities, J. Comput. Phys. 241 (2013) 266–291 . 
[5] P. Colella , A. Majda , V. Roytburd , Theoretical and numerical structure for react-

ing shock waves, SIAM J. Sci. Stat. Comput. 7 (4) (1986) 1059–1080 . 
[6] R.J. LeVeque , H.C. Yee , A study of numerical methods for hyperbolic conserva-

tion laws with stiff source terms, J. Comput. Phys. 86 (1) (1990) 187–210 . 
[7] B. Zhang , H. Liu , F. Chen , J.H. Wang , The equilibrium state method for hyper-
bolic conservation laws with stiff reaction terms, J. Comput. Phys. 263 (2014)

151–176 . 
[8] X. Deng, H. Teng, B. Xie, F. Xiao, A new shock-capturing scheme for stiff deto-

nation waves problems, arXiv: 1708.010 0 0 (2017). 
[9] D. Nguyen , F. Gibou , R. Fedkiw , A fully conservative ghost fluid method and

stiff detonation waves, 12th International Detonation Symposium, San Diego,
CA, 2002 . 

[10] A . Bourlioux , A .J. Majda , V. Roytburd , Theoretical and numerical structure

for unstable one-dimensional detonations, SIAM J. Appl. Math. 51 (2) (1991)
303–343 . 

[11] A . Bourlioux , A .J. Majda , Theoretical and numerical structure for unstable
two-dimensional detonations, Combust. Flame 90 (3–4) (1992) 211–229 . 

[12] R. Jeltsch , P. Klingenstein , Error estimators for the position of discontinuities
in hyperbolic conservation laws with source terms which are solved using op-

erator splitting, Comput. Vis. Sci. 1 (4) (1999) 231–249 . 

[13] B.L. Bihari , D. Schwendeman , Multiresolution schemes for the reactive euler
equations, J. Comput. Phys. 154 (1) (1999) 197–230 . 

[14] B. Engquist , B. Sjögreen , Robust difference approximations of stiff inviscid det-
onation waves, Department of Mathematics, University of California, Los Ange-

les, 1991 . 
[15] A. Berkenbosch , E. Kaasschieter , R. Klein , Detonation capturing for stiff com-

bustion chemistry, Combust. Theory Model. 2 (3) (1998) 313–348 . 

[16] C. Helzel , R.J. Leveque , G. Warnecke , A modified fractional step method for
the accurate approximation of detonation waves, SIAM J. Sci. Comput. 22 (4)

(20 0 0) 1489–1510 . 
[17] L. Tosatto , L. Vigevano , Numerical solution of under-resolved detonations, J.

Comput. Phys. 227 (4) (2008) 2317–2343 . 
[18] W. Wang , C.-W. Shu , H.C. Yee , B. Sjögreen , High order finite difference meth-

ods with subcell resolution for advection equations with stiff source terms, J.

Comput. Phys. 231 (1) (2012) 190–214 . 
[19] W. Wang , C.-W. Shu , H.C. Yee , D.V. Kotov , B. Sjögreen , High order finite differ-

ence methods with subcell resolution for stiff multispecies discontinuity cap-
turing, Commun. Comput. Phys. 17 (2) (2015) 317–336 . 

[20] D.V. Kotov , H.C. Yee , M. Panesi , D.K. Prabhu , A .A . Wray , Computational chal-
lenges for simulations related to the nasa electric arc shock tube (East) exper-

iments, J. Comput. Phys. 269 (2014) 215–233 . 

[21] K. Nguyen , A. Caboussat , D. Dabdub , Mass conservative, positive definite in-
tegrator for atmospheric chemical dynamics, Atmos. Environ. 43 (40) (2009)

6287–6295 . 
[22] S. Pan, J. Wang, X. Hu, N.A. Adams, A network partition method for solving

large-scale complex nonlinear processes, arXiv: 1801.06207 (2018). 
[23] R.I. McLachlan , G.R.W. Quispel , Splitting methods, Acta Numer. 11 (2002)

341–434 . 

[24] G. Strang , On the construction and comparison of difference schemes, SIAM J.
Numer. Anal. 5 (3) (1968) 506–517 . 

[25] A. Harten , High resolution schemes for hyperbolic conservation laws, J. Com-
put. Phys. 49 (3) (1983) 357–393 . 

[26] A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order ac-
curate essentially non-oscillatory schemes, III, J. Comput. Phys. 71 (2) (1987)

231–303, doi: 10.1016/0 021-9991(87)90 031-3 . 
[27] G.-S. Jiang , C.-W. Shu , Efficient implementation of weighted ENO schemes, J.

Comput. Phys. 126 (1) (1996) 202–228 . 

[28] M.-S. Liou , A sequel to AUSM: AUSM+, J. Comput. Phys. 129 (2) (1996)
364–382 . 

[29] P.N. Brown , G.D. Byrne , A.C. Hindmarsh , VODE: a variable-coefficient ODE
solver, SIAM J. Sci. Stat. Comput. 10 (5) (1989) 1038–1051 . 

[30] D.R. Mott , E.S. Oran , CHEMEQ2: a solver for the stiff ordinary differential equa-
tions of chemical kinetics, Technical Report, Naval Research Lab, Washington

DC, 2001 . 

[31] X. Gou , W. Sun , Z. Chen , Y. Ju , A dynamic multi-timescale method for combus-
tion modeling with detailed and reduced chemical kinetic mechanisms, Com-

bust. Flame 157 (6) (2010) 1111–1121 . 
[32] M.A. Gibson , J. Bruck , Efficient exact stochastic simulation of chemical sys-

tems with many species and many channels, J. Phys. Chem. A 104 (9) (20 0 0)
1876–1889 . 

[33] L.O. Jay , A. Sandu , F.A. Potra , G.R. Carmichael , Improved quasi-steady-state-ap-

proximation methods for atmospheric chemistry integration, SIAM J. Sci. Com-
put. 18 (1) (1997) 182–202 . 

[34] J.G. Verwer , D. Simpson , Explicit methods for stiff odes from atmospheric
chemistry, Appl. Numer. Math. 18 (1–3) (1995) 413–430 . 

[35] J. Hammersley , Monte Carlo methods, Springer Science & Business Media,
2013 . 

[36] B. Zhang , J.-H. Wang , A short note on the counter-intuitive spurious behaviors

in stiff reacting flow, J. Comput. Phys. 291 (2015) 52–59 . 
[37] D.J. Higham , Modeling and simulating chemical reactions, SIAM Rev. 50 (2)

(2008) 347–368 . 
[38] D.J. Wilkinson , Stochastic modelling for systems biology, CRC Press, 2011 . 

[39] M. Ó Conaire , H.J. Curran , J.M. Simmie , W.J. Pitz , C.K. Westbrook , A comprehen-
sive modeling study of hydrogen oxidation, Int. J. Chem. Kinet. 36 (11) (2004)

603–622 . 

[40] V.P. Zhukov , Verification, validation, and testing of kinetic mechanisms of
hydrogen combustion in fluid-dynamic computations, ISRN Mech. Eng. 2012

(2012) 1–11 . 
[41] F. Diegelmann , S. Hickel , N.A. Adams , Three-dimensional reacting shock–bub-

ble interaction, Combust. Flame 181 (2017) 300–314 . 

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0001
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0001
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0001
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0002
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0002
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0002
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0003
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0003
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0003
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0004
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0004
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0004
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0004
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0004
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0005
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0005
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0005
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0005
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0006
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0006
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0006
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0007
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0007
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0007
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0007
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0007
arxiv:/1708.01000
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0008
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0008
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0008
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0008
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0009
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0009
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0009
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0009
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0010
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0010
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0010
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0011
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0011
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0011
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0012
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0012
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0012
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0013
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0013
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0013
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0014
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0014
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0014
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0014
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0015
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0015
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0015
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0015
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0016
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0016
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0016
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0017
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0017
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0017
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0017
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0017
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0018
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0019
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0020
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0020
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0020
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0020
arxiv:/1801.06207
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0021
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0021
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0021
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0022
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0022
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0023
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0023
https://doi.org/10.1016/0021-9991(87)90031-3
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0025
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0025
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0025
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0026
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0026
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0027
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0027
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0027
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0027
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0028
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0028
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0028
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0029
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0029
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0029
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0029
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0029
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0030
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0030
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0030
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0031
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0031
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0031
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0031
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0031
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0032
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0032
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0032
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0033
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0033
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0034
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0034
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0034
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0035
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0035
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0036
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0036
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0037
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0038
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0038
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0039
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0039
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0039
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0039


J.-H. Wang, S. Pan and X.Y. Hu et al. / Combustion and Flame 204 (2019) 397–413 413 

[  

 

[  

[  

[  

 

[  

 

 

42] R.J. Kee , F.M. Rupley , J.A. Miller , Chemkin-II: a Fortran chemical kinetics pack-
age for the analysis of gas-phase chemical kinetics, Technical Report, Sandia

National Labs, Livermore, CA (USA), 1989 . 
43] R.J. LeVeque , R.J. Leveque , Numerical methods for conservation laws, 132,

Springer, 1992 . 
44] T.D. Aslam , D.S. Stewart , Detonation shock dynamics and comparisons with

direct numerical simulation, Combust. Theory Model. 3 (1) (1999) 77–
101 . 
45] M. Short , J.J. Quirk , C.D. Meyer , C. Chiquete , Steady detonation propagation in
a circular arc: a detonation shock dynamics model, J. Fluid Mech. 807 (2016)

87–134 . 
46] S. Gordon , B.J. McBride , Computer program for calculation of complex chem-

ical equilibrium compositions and applications, 1, National Aeronautics and
Space Administration, Office of Management, Scientific and Technical Informa-

tion Program, 1994 . 

http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040a
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040a
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0040a
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0041
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0041
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0041
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0042
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0042
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0042
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0042
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0042
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0043
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0043
http://refhub.elsevier.com/S0010-2180(19)30136-1/sbref0043

	A split random time-stepping method for stiff and nonstiff detonation capturing
	1 Introduction
	2 Formulation
	2.1 Split reaction-by-reaction ODE solver for chemical kinetics
	2.1.1 Treatment for mass conservation
	2.1.2 Positivity-preserving treatment

	2.2 Finite randomization of chemical reactions

	3 Numerical results and discussion
	3.1 Reaction-split ODE solver for chemical kinetics
	3.1.1 Michaelis-Menten test
	3.1.2 Hydrogen-air ignition delay test

	3.2 Reactive Euler equations with simplified model kinetics
	3.3 Reactive Euler equations with realistic nonequilibrium kinetics

	4 Conclusions
	Acknowledgments
	Appendix A Analytical solutions to some simple forms of a one-way reaction equation
	References


