
Technische Universität München
Ingenieurfakultät Bau Geo Umwelt

Professur für Computational Mechanics

Optimizing Flexibility for Component Design in
Systems Engineering under Epistemic Uncertainty

Marco Daub

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Kai-Uwe Bletzinger

Prüfende der Dissertation: 1. Prof. Dr.-Ing. habil. Fabian Duddeck

2. Prof. Dr. ir. David Moens

3. apl. Prof. Dr.-Ing. habil. Michael Hanss

Die Dissertation wurde am 18.02.2020 bei der Technischen Universität München
eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 29.06.2020
angenommen.



ABSTRACT

English
In systems engineering, complexity can be reduced by a decomposition of the design pro-

cess. This includes the decoupling of design decisions for which this thesis presents a new

framework. Innovative methods that take both a system’s hierarchical structure and epistemic

uncertainty in the early design phase into account are proposed. These methods provide

optimal flexibility for decision making at the component level and yield robustness at the system

level. The effectiveness of the overall approach is demonstrated via test-bed problems for

crashworthiness.

German
Im Systems Engineering kann Komplexität durch eine Zerlegung des Entwicklungsprozesses

reduziert werden. Dies beinhaltet die Entkopplung von Entscheidungen hinsichtlich der Ent-

wicklung, für welche diese Doktorarbeit einen neuen Ansatz vorstellt. Es werden innovative

Methoden vorgeschlagen, die sowohl die hierarchische Struktur eines Systems als auch

epistemische Unschärfe in der frühen Entwicklungsphase berücksichtigen. Diese Metho-

den gewähren optimale Flexibilität für den Entscheidungsprozess auf Komponentenebene

und erzielen Robustheit auf Systemebene. Die Wirksamkeit des Gesamtansatzes wird an

Testproblemen für Crashsicherheit demonstriert.
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NOTATIONS

The following list provides an overview of the major symbols used in this thesis. Symbols that

are mathematical conventions are not included here:

A transformation matrix for linear f

Ak transformation matrix for linear gk

ac critical acceleration threshold

aj row of A

akj row of Ak

b system performance threshold for linear f

bj entry of b

bkj component performance threshold for linear gk

c system cost function

ck component cost function

d number of design variables of x

dk number of design variables of xk

Eadd
cf energy correction factor of the additional load path

Ekcf energy correction factor of a component

Ektot total internal energy of a component

f vector of all fj
F vector of all Fj , or force

F add(s) plastic deformation force of the additional load path at s

F k(s) plastic deformation force of a component at s

F l,k vector of all F l,k
i

F u,k vector of all F u,k
i

F l,k
b,θ vector of all lower bounds of an intermediate box

F u,k
b,θ vector of all upper bounds of an intermediate box

fc vector of all fc,j

fc,j system performance threshold

F l,k
ds minimum plastic deformation force of a component

F u,k
ds maximum plastic deformation force of a component

Fi design variable for constant force level

F̌i target design variable for constant force level

F ki designable constant force level of a component

F l,k
i lower component solution space bound of F ki
F u,k
i upper component solution space bound of F ki
F l,k

ib vector of all lower bounds of maximum volume inner box

F u,k
ib vector of all upper bounds of maximum volume inner box

fj system performance function

Fj constraint function
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F l,k
ob vector of all lower bounds of minimum volume outer box

F u,k
ob vector of all upper bounds of minimum volume outer box

gk vector of all gkj
gkc s vector of all gkc,j
gkc,j component performance threshold

gkj component performance function

L̄ average edge length

m number of zj
m∗(s) active mass at s

mk number of yj , or mass at the end of a component

ml discrete mass

n number of components

nlp number of load paths

nhl number of hierarchical system levels

nm number of ml

ns number of sections

p vector of all pl
p̌ vector of all p̌l
P fuzzy uncertainty set of p

pl uncontrollable parameter

p̌l nominal value of pl
q number of pl
rkb,θ metrics for [F l,k

b,θ, F
u,k
b,θ ]

rkCSS,θ metrics for [F l,k
b,θ, F

u,k
b,θ ]

s deformation position

s̄k deformation length of a component

s0 start of deformation of the vehicle

sk0 start of deformation of a component

send end of deformation of the vehicle

skend end of deformation of a component

si start and end of sections

s̄i section length

tCPU CPU time

v0 initial velocity

V Volume

x system design

x̌ system target design

X(x̌) fuzzy uncertainty set of x with respect to x̌

xk component design

x̌k component target design

xl vector of all xl
i

xl,k vector of all xl,k
i
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xu vector of all xu
i

xu,k vector of all xl,k
i

xr,k vector of all component designs but xk

xkcp,ι corner point of [xl,k, xu,k]

xl
ds vector of all xl

ds,i

xu
ds vector of allxu

ds,i

xl,k
ds vector of all xl,k

ds,i

xu,k
ds vector of all xu,k

ds,i

xl
ds,i lower design space bound of xi
xu

ds,i upper design space bound of xi
xl,k

ds,i lower design space bound of xki
xu,k

ds,i upper design space bound of xki
xi design variable

x̌i target design variable

Xi(x̌i) fuzzy uncertainty set of xi with respect to x̌i
xki entry of xk

xl
i lower system solution space bound of xi
xu
i upper system solution space bound of xi
xl,k
i lower component solution space bound of xki
xu,k
i upper component solution space bound of xki
y vector of all yj
yj component response

z vector of all zj
zj system response

α degree of membership

γ vector of all γl
γl uncertainty magnitude of p̌l for interval-type uncertainty

γα vector of all γα,l
γα,l uncertainty magnitude of p̌l for fuzzy-type uncertainty

δ vector of all δi
δ̄ vector of all δ̄i
δ′ optimization quantity for maximized uncertainty magnitudes

δk vector of all δki
δ̄k vector of all upper estimates of δki
δi uncertainty magnitude of x̌i for interval-type uncertainty

δ̄i upper estimate of δi
δki uncertainty magnitude of x̌ki for interval-type uncertainty

δα vector of all δα,i
δα,i uncertainty magnitude of x̌i for fuzzy-type uncertainty

ε perturbation parameter

µP membership function of P
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µX(x̌) membership function of X(x̌)

µXi(x̌i) membership function of Xi(x̌i)

ν vector of all νi
νi constant weight for maximized uncertainty magnitudes

ω vector of all ωi
ωi weighting factor for maximized uncertainty magnitudes

Ω system solution space

Ωk component solution space

Ωc complete system solution space

Ωc,bc best-case complete system solution space

Ω̌c,bc best-case complete system solution space of target designs

Ωc,nec,α necessity-α complete system solution space

Ω̌c,nec,α necessity-α complete system solution space of target designs

Ωc,pos,α possibility-α complete system solution space

Ω̌c,pos,α possibility-α complete system solution space of target designs

Ωc,wc worst-case complete system solution space

Ω̌c,wc worst-case complete system solution space of target designs

Ωds system design space

Ωk
ds component design space

Ωk
bc best-case component solution space

Ω̌k
bc best-case component solution space of target designs

Ωk
nec,α necessity-α component solution space

Ω̌k
nec,α necessity-α component solution space of target designs

Ωk
poc,α possibility-α component solution space

Ω̌k
poc,α possibility-α component solution space of target designs

Ωk
wc worst-case component solution space

Ω̌k
wc worst-case component solution space of target designs

UP (p̌, γ) uncertainty set of p

UPα (p̌, γα=0, γα=1) α-cut of P

UP0 (p̌, γα=0, γα=1) support of P

UX(x̌, δ) uncertainty set of x with respect to x̌

UXα (x̌, δα=0, δα=1) α-cut of X with respect to x̌

UX0 (x̌, δα=0, δα=1) support of X with respect to x̌

vol(Ω) volume of Ω

projk(Ωc) projection of Ωc onto the coordinate space of xk

proji(Ωc) projection of Ωc onto the coordinate space of xi
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1. INTRODUCTION

Systems engineering deals with the development and management of complex products, i.e.,

it guides their engineering, cf. [77]. Elementary in systems engineering is its perspective on

systems thinking, see, e.g., [60, 130] for more information. In systems thinking, a system

is considered as a set of components that operate together. Based on inputs, the system

including its components perform tasks that are reflected in outputs. Every component has

its specific properties and functions. Furthermore, the single components are interconnected

by relations and can be seen as systems themselves. This leads to a hierarchical system

structure. In this manner, even the original system can be viewed as a component of a larger

system. The concept of a system can be applied to many engineering objects like vehicles or

airplanes. Even smaller objects such as printers or screwdrivers are conceivable as systems.

Further examples can be found in [127].

Because of their general complexity, only abstractions of systems can be analyzed in prac-

tice, see [106]. The point of view on a system depends on the observer and on the type of

analysis that is conducted. Often, only a particular behavior of the system is of interest, like

the performance of a vehicle in a crash scenario. This motivates a model-based framework

for system engineering. Here, models are used as simplifications of real physical systems

to represent particular aspects of them. In systems engineering, a distinction is made, for

example, between physical and mathematical models, see [77]. Physical models represent the

physical characteristics of systems and are usually physical constructs, e.g., scale models. In

contrast, mathematical models use mathematical equations to describe systems. Fundamental

mathematical models are based on engineering science principles and depict the input-output

relations of systems.

The discipline of systems engineering that concerns with designing the system is also re-

ferred to as systems design. By assuming the structure of a system including its relations

as given, the design of this system can be defined by characteristic quantities like geometric

or material properties. Once values are assigned to these quantities, the design is modeled

mathematically. The values can then be integrated as design variables into the equations

describing specific performances of the system. This yields a design model, see [106] for more

information. Design alternatives are represented by different values of the design variables.

Using a design model, predictions about the performances of these alternatives can be made.

Here, the design variables serve as controllable inputs for the design models that might be

complemented by uncontrollable inputs mapping on the outputs of the system, see [107].

Clearly, design models are not unique. They are problem-oriented and depend on a designer’s

view on the system, including which design variables he wants to consider.

For a set of design alternatives that fulfill the essential system requirements, a decision is

required in which one of the designs is selected. Hence, designing can be seen as a decision-

making process, cf. [106]. In order to select an optimal design, the design alternatives must
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be evaluated and ranked regarding an objective such as minimum costs. Again, this objective

is subjective and may change over the design process.

There are various approaches that guide the engineering of a system yielding its design, see

[60] for an overview. Some of them propose the decomposition of the design process, which

allows different design teams to work on different components. An example is the V-model

approach that decomposes system requirements into component requirements, enabling a

decoupled development of the components in the early design phase. In doing so, decision

making regarding the design becomes more flexible and agile. Here, the single components

are modifiable to fulfill particular needs, which occur, for example, during their development.

By breaking down complexity, the overall design process can also be simplified and sped up,

cf. [108]. However, process models like the V-model are usually hypothetical and specific

instructions on how to apply them, for instance, to mathematical system models are lacking,

see [35].

In general, decomposition to yield a design is applied in different areas. In [80], it is differ-

entiated between product, problem, and process decomposition. Approaches that involve

mathematical system models usually belong to the category of problem decomposition. This

category can be further subdivided into requirement decomposition, constraint-parameter

decomposition, and decomposition-based design optimization, see [80] for more details and

an overview of available methods. Requirement decomposition, see [81], and constraint-

parameter decomposition, see [82], aim at decomposing a design problem into subproblems

by not assigning values to the design variables. This allows designers to select their preferred

procedure to solve the subproblems and provides flexibility for design decisions. In contrast,

in decomposition-based design optimization, a system problem is broken into subproblems,

which are then solved separately and coordinated to suit the original problem. Approaches

that provide a hierarchical system decomposition are proposed, for example, in [79], and

methods that coordinate the solutions of the subproblems, for example, in [2]. A further

approach worth mentioning is analytical target cascading, cf. [75]. Here, system targets

are cascaded iteratively to the subsystems, which are then designed to fulfill these targets.

Theoretically, all methods are capable of finding an optimal design for the original system, i.e.,

to solve the original problem. Nevertheless, iterations are always required to coordinate the

subproblem solution for the original system. This even holds for the mentioned approaches

from requirement decomposition and constraint-parameter decomposition.

A method that abandons to find the most optimal design in favor of removing iterations for

integrating the subproblem solutions is proposed in [140]. It can be affiliated with the cate-

gory of constraint-parameter decomposition and computes permissible intervals for all design

variables. Afterward, designers can select the values of the design variables independently

within these intervals. In doing so, flexibility in selecting design variables for a system design

that fulfills all requirements can be guaranteed, assuming the mathematical model is accurate

enough. As the intervals are maximized with respect to an optimality criterion here, this ap-

proach provides optimal flexibility for design decisions which are decoupled and independent

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 8



between all design variables. Furthermore, the intervals provide an easy visualization of design

alternatives, and uncertainties in the controllable design variables can be circumvented best

if the designers target their centers. However, due to the complete decoupling, the intervals

might become very small and exclude a lot of permissible designs, see [141]. This limits

the flexibility for designing. First approaches to improve this drawback, by applying different

decoupling schemes, are proposed in [38, 129].

Although a decomposition of the design process usually relates to the early phase in which

uncertainty is omnipresent, cf. [48], uncertainty is not treated at all or only deficiently in the

decomposition approaches. Hence, a design may deteriorate, for example, because of the use

of an inaccurate model and violate the system requirements. That causes delays in the design

process. In general, uncertainty in the early design phase can be characterized as epistemic

uncertainty due to lack of knowledge. Approaches to model this type of uncertainty use, for

example, interval analysis or possibility theory, see [124]. In contrast, aleatoric uncertainty

caused by irreducible, intrinsic randomness is commonly modeled with probability distributions.

Further ways to classify uncertainty that occur during the design process of a system can be

found, for example, in [11, 94, 114, 126].

For different types of uncertainty, a survey of various approaches yielding an optimal design

for the system can be found, e.g., in [10, 11, 49]. As the design becomes optimal under

uncertainty, it is also called a robust design. However, a decomposition of the design process

is not considered in these approaches, which is yet another drawback for the early phase

of systems design. Still, a method for robust design proposed by [66] has similarities with

the method of [140] in which permissible intervals for all design variables are computed. It

maximizes the distance from a robust design to all alternative designs that violate the system

requirements. Therefore, it can tolerate maximum uncertainties in the controllable design

variables. Using the maximum metric for distance computation, a maximum box is spanned

around the center comprising also intervals for the design variables. This motivates targeting

the center of these intervals to circumvent negative effects of uncertainties in design variables.

Summarized, efficient methods that decompose the design process under appropriate con-

sideration of uncertainty are lacking in the literature. Hence, the scope of this thesis is to

provide an applicable methodology for decoupled design decisions in systems engineering

under epistemic uncertainty. The methodology shall

• deploy a general framework to classify decoupled design decisions,

• provide flexibility for decoupled design decisions,

• decouple the decisions based on the hierarchical structure of the system,

• incorporate the treatment of epistemic uncertainty,
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• provide algorithms for the numerical computation of the methods,

• be applicable to realistic problems in systems engineering.

In this regard, a framework based on [104], which differentiates between independent-

decoupled decisions and dependent-decoupled decisions, is used and the existing approaches

of [38, 129, 140] are embedded. As these approaches do not decouple decisions according to

the structure of a system, the framework is geared towards decoupled design decisions for

components. New methods are proposed that compute component solution spaces, which

provide optimal flexibility for decisions regarding component designs. In order to circumvent

also epistemic uncertainties in controllable variables and uncontrollable parameters in the

early design phase, they are integrated into the methodology as interval- and fuzzy-type

uncertainty. Here, fuzzy-type uncertainty is treated in the framework of possibility-theory, cf.

[31]. This yields component solution spaces which account for different realizations of these

uncertainties. To compute them, simplifications of the underlying problem statements are

considered for specific performance functions, and required numerical tools are investigated.

Similar to the method of [140], the new methodology is applied to crash design problems

proposed by [43]. Furthermore, the existing crash models are enhanced to provide better

results for the early design phase and a MATLAB app, comprising the complete methodology

for crash design, is introduced. Note that even though the methodology is intended for the early

phase of systems design, it can be transferred to further problems in systems engineering or

different areas with the same problem structure.

Outline

This thesis is organized as follows:

Chapter 2 gives an introduction to systems design using mathematical models. Further-

more, a framework for design decisions is proposed, considering coupled and decoupled

decisions, and uncertainties in systems design are classified. After discussing interval- and

fuzz-type uncertainty as epistemic uncertainty models, existing approaches for coupled

design decisions under these uncertainty types are reviewed and complemented. Subse-

quently, existing approaches for decoupled design decisions are integrated into the proposed

framework, and research gaps in both the methodology and treatment of uncertainty are

identified.

Chapter 3 proposes a new methodology for decoupled design decisions that is geared

towards the component structure of a system. Therefore, the hierarchical levels of a system

are investigated in more detail and it is described how flexibility for component design can be

provided. For optimal flexibility, optimal component solution spaces are proposed for which

different problem statements for an independent and dependent decoupling are considered.

Moreover, the methodology is extended by integrating interval- and fuzzy type uncertainties

in controllable variables and uncontrollable parameters into the framework.
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Chapter 4 provides mathematical basics that are necessary to compute component solution

spaces within the proposed framework. First, properties of the underlying problem state-

ments are derived in order to check if an optimal solution exists. Then, they are simplified

for specific system performance functions to enable their numerical computation. To further

support this computation, useful numerical tools are provided.

Chapter 5 applies the methodology to crash design. Therefore, existing crash design models

are reviewed and enhanced, and two test-bed problems are proposed. Using these problems,

the different approaches of this thesis to compute component solution spaces are considered

and compared. For this, epistemic uncertainty is taken into account as well. In addition, a

MATLAB app is introduced that computes component solution spaces for enhanced crash

design models. With this app, these crash design models can be built, too.

Chapter 6 discusses the results of this thesis for providing optimal flexibility for component

design under epistemic uncertainty. Furthermore, recommendations for further research are

suggested and the major results of this thesis are summarized.
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2. BASICS: Design Decisions in Systems
Engineering

This chapter discusses decision making in systems engineering using mathematical models.

First, the basic ideas, which include the classification of design decisions and uncertainties in

systems design, are investigated. Then, epistemic uncertainty models considering interval-

and fuzzy-type uncertainty are reviewed and existing approaches for coupled and decoupled

design decisions under these uncertainty types are considered. Furthermore, research gaps in

the methodology and the treatment of uncertainty for decoupled design decisions are identified.

2.1. Systems Design

The first section gives an introduction to systems design with mathematical design models.

Here, a general type of mathematical design model which incorporates continuous design

variables is defined and is used throughout this thesis. Based on this type, a framework for

different design decisions is proposed and occurring uncertainties are classified.

2.1.1. Design Model Definitions
Here, a vector x ∈ Rd is called a system design. It quantifies the design of the system using

continuous variables in real coordinate space. More precisely, it consists of d independent

design variables xi ∈ R, i = 1, . . . , d, i.e., x = (x1, . . . , xd). Typical design variables include,

for example, numerical representations of geometric or material properties. Their values can

be selected by one or multiple designers, which can be viewed as decision-makers in this

regard. Thus, the design variables are also called controllable variables.

Besides the controllable variables, there are q uncontrollable parameters pl ∈ R, l = 1, . . . , q,

which are also assumed to be continuous. These cannot be controlled by designers in general,

or at least not in the considered design phase. It holds p ∈ Rq with p = (p1, . . . , pq). Note that

the assignment of uncontrollable parameters and controllable variables to system quantities

is not uniquely determined and depends on the considered design problem, see Chapter 1.

Usually, the controllable variables and uncontrollable parameters are also restricted to subsets

of R.

In addition, there are m system responses zj ∈ R, j = 1, . . . ,m, which are assumed to be

uniquely determined for a given design model by the design variables and the uncontrollable

parameters. It is z ∈ Rm with z = (z1, . . . , zm). Similar to the controllable variables and

uncontrollable parameters, the system responses might be also restricted to subsets of

R. The functions that map the design variables and the uncontrollable parameters to the

responses are called system performance functions and are denoted by fj , j = 1, . . . ,m, and

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 12



f = (f1, . . . , fm). It holds

f : Rd × Rq → Rm, (x, p) 7→ z = f(x, p). (2.1)

This relationship is visualized in Figure 1. In this thesis, only system performance functions that

consist of known analytic equations, i.e., white-box functions are considered. Alternatively, e.g.,

black-box functions or differential equations can be taken into account, too. If uncontrollable

parameters are not considered explicitly in a problem statement, the corresponding argument

in the system performance functions is often neglected. Thus, it is written z = f(x), i.e.,

f = f(·, p) for p ∈ Rq.

inputs outputs

design
variables

xi, i = 1, . . . , d

system
performance

functions
fj , j = 1, . . . ,m

system
responses

zj , j = 1, . . . ,m

uncontrollable
parameters

pl, l = 1, . . . , q

Figure 1 Diagram of a system design model.

In systems design, several constraints must be fulfilled. In this thesis, constraints on (a) design

variables and (b) responses are considered:

(a)Constraints on design variables: Here, the design variables are bounded by lower bounds

xl
ds,i ∈ R and upper bounds xu

ds,i ∈ R, i.e., xl
ds,i ≤ xi ≤ xu

ds,i or xi ∈ [xl
ds,i, x

u
ds,i], i =

1, . . . , d, where the subscript ds stands for design space, see below. Note that this assumes

that the bounds are independent between the single variables, which may not always be

the case in general. In vector notation, it is xl
ds = (xl

ds,1, . . . , x
l
ds,d), x

u
ds = (xu

ds,1, . . . , x
u
ds,d)

with xl
ds ≤ x ≤ xu

ds component-wise or x ∈ [xl
ds, x

u
ds]. The d-dimensional interval [xl

ds, x
u
ds]

is also called system design space Ωds, i.e.,

Ωds = [xl
ds, x

u
ds] (2.2)

or Ωds = [xl
ds,1, x

u
ds,1]×· · ·× [xl

ds,d, x
u
ds,d]. The general definition of a d-dimensional interval

is provided in Section A.1.

(b)Constraints on system responses: The responses of the system must not exceed given

system performance thresholds, which are denoted by fc,j(p) if they depend on the
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uncontrollable parameters pl, l = 1, . . . , q, and by fc,j otherwise, j = 1, . . . ,m. In vector

notation, it is fc(p) = (fc,1(p), . . . , fc,m(p)) or fc = (fc,1, . . . , fc,m). Furthermore, the

argument p is also neglected if uncontrollable parameters are not considered explicitly in

a problem statement and it is written fc = fc(p) for p ∈ Rq. Assuming a dependency on

p ∈ Rq, the constraints for x ∈ Rd can be expressed mathematically as fj(x, p) ≤ fc,j(p),

j = 1, . . . ,m, or in vector notation as

f(x, p) ≤ fc(p) (2.3)

which must hold component-wise. These inequalities are also called system performance

requirements. Here, only upper thresholds are considered as any lower threshold could be

transformed into an upper one by multiplication of both the threshold and the performance

function with −1.

A design that satisfies both constraint types is defined as permissible, otherwise, it is said to

be non-permissible. The set of all permissible system designs is named complete system

solution space Ωc in [140] with

Ωc = {x ∈ Ωds | f(x, p) ≤ fc(p)}, (2.4)

Ωc ⊂ Rd. In [95], Ωc is also called feasible solution set, and in [57], permissible design space.

A two- and a three-dimensional example of a complete system solution space are illustrated

below. They are used for further investigations in the following.

Example 1. Given the system design space Ωds = [0, 2]× [0, 1.5] and a system performance

function f : R2 × R2 → R, (x, p) 7→ p1x1 + p2x2. The uncontrollable parameters are p1 = 1

and p2 = 2, i.e., f(x) = x1 + 2x2 for x ∈ R2. Furthermore, a system performance threshold is

given by fc = 2. Thus, the corresponding complete system solution space is

Ωc = {x ∈ [0, 2]× [0, 1.5] | x1 + 2x2 ≤ 2}. (2.5)

It is visualized in Figure 2.

Example 2. Given the system design space Ωds = [0, 1.5]3 and a performance function

f : R3 → R, x 7→ −3x1 − 2x2 − 3x3 with threshold fc = −9. The corresponding complete

system solution space is

Ωc = {x ∈ [0, 1.5]3 | − 3x1 − 2x2 − 3x3 ≤ −9}. (2.6)

It is visualized in Figure 3.
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Figure 2 Two-dimensional complete system solution space Ωc and system design space Ωds of Example 1. Note that their
geometric shapes overlap due to their definitions. Similar findings can be observed in the following figures.
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Figure 3 Three-dimensional complete system solution space Ωc and system design space Ωds of Example 2.

2.1.2. Design Decisions Classification
In systems design, a permissible design is required. Therefore, decisions regarding the design

variables are necessary, i.e., there must be decisions which values of the design variables

xi, i = 1, . . . , d, shall be selected to obtain x ∈ Ωc. As Ωc contains all permissible system

designs, i.e., design alternatives, it provides flexibility for system design decisions. These

decisions are made by up to d designers. In general, there are several approaches to obtain

a permissible system design. Subsequently, a categorization of possible approaches which

uses perceptions of [36, 104] is proposed.

When selecting the value of one design variable, the values of the other variables must be

usually considered, too, in order to obtain a permissible system design. This two-way flow of

information implicates coupled design decisions. For coupled design decisions incorporating

d designers, the designers must interact until a permissible system design x ∈ Ωc is found.

This idea is visualized in Figure 4. Moreover, it is also possible that less than d designers
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are involved in coupled design decisions if designers are allowed to select the values of

multiple design variables. The extreme case is only one designer who selects the values of

all design variables of the system together. He is then referred to as a system designer. This

is also visualized in Figure 4. Still, a system designer must select the value of each design

variable depending on the values of the other variables for a permissible system design x ∈ Ωc.

Representatively, one designer is assumed for coupled design decisions in the following.

DM

Designer 1
selects x1 ∈ [xl

ds,1, x
u
ds,1]

...

DM

Designer d
selects xd ∈ [xl

ds,d, x
u
ds,d]

x
= (x1, . . . , xd)
∈ Ωc ?

yes design
x ∈ Ωc

(a)

DM

System designer
selects x ∈ Ωc

(b)

Figure 4 Coupled design decisions made by (a) d designers and (b) one system designer.

In contrast to coupled design decisions for the single design variables, there are decoupled

design decisions. In this case, there is not only one overall decision for a system design

but d decisions resulting from one decision for each design variable xi, i = 1, . . . , d. Rep-

resentatively, these decisions are made by d designers, each responsible for selecting the

values of a single design variable. Altogether, this procedure also results in a system design

x = (x1, . . . , xd).

In order to provide flexibility for decoupled design decisions, each design variable value must
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be selected individually from a corresponding one-dimensional set. For reasons of simplicity,

these sets are assumed to be intervals which are defined by lower bounds xl
i ∈ R and upper

bounds xu
i ∈ R with xl

i ≤ xu
i , i.e., [xl

i, x
u
i ], i = 1, . . . , d, holds. Hence, designer i selects

xi ∈ [xl
i, x

u
i ]. Given the complete system solution space Ωc, it is a priori not clear, how the

bounds of the intervals [xl
i, x

u
i ], i = 1, . . . , d, must be defined to guarantee x ∈ Ωc. This is

addressed in Section 2.4.

In order to allow independent-decoupled design decisions, i.e., to select xi ∈ [xl
i, x

u
i ] for

i ∈ {1, . . . , d} without taking other design decisions into account, the intervals [xl
i, x

u
i ],

i = 1, . . . , d, must be independent of each other. Thus, there is no flow of information

between the single design decisions. This can be understood as a concurrent engineering

approach. The idea is visualized in Figure 5.

DM

Designer 1
selects x1 ∈ [xl

1, x
u
1 ]

...

DM

Designer d
selects xd ∈ [xl

d, x
u
d]

design
x = (x1, . . . , xd) ∈ Ωc

time

Figure 5 Independent-decoupled design decisions by d designers.

Classified between coupled design decisions and independent-decoupled design decisions,

there are dependent-decoupled design decisions which correspond to a one-way flow of

information. Here, the design decisions are made sequentially, i.e., one after the other. The

intervals [xl
i, x

u
i ], i = 1, . . . , d, are dependent of each other. More precisely, the ijth interval,

which corresponds to the jth decision, made for the ith design variable, always depends on

the first j − 1 design decisions, j ∈ {2, . . . , d}. This can be understood as a traditional or

over-the-wall engineering approach. The idea is visualized in Figure 6.

Note that mixed approaches for selecting the single design variables are also conceivable. For

example, there are dependent-decoupled design decisions to differentiate between early and
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design
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time

Figure 6 Dependent-decoupled design decisions by d designers.

late design variables mixed with independent-decoupled design decisions for the early decision

variables, compare Section 2.4. Before addressing this further, fundamental classification

schemes for uncertainties in systems design are discussed.

2.1.3. Uncertainty Classification
In general, there are many ways to classify uncertainties that occur during the design process

of a system, see, e.g., [11, 94, 114, 126]. First, uncertainty is considered by means of a

system’s point of view, which is based on the above definitions.

So far, this section creates the impression that for any selected system design x ∈ Ωds and

given uncontrollable parameters pl, l = 1, . . . , q, there is a certain response of the system

yielding precise statements about its permissibility. In realistic systems, however, the results

are often inaccurate due to uncertainty. Uncertainties can occur in (a) controllable variables,

(b) uncontrollable parameters, and (c) constraints. The following list gives an overview of

plausible reasons and consequences of the occurrence of these uncertainties in systems

design:

(a)Uncertainties in controllable variables: In the case of uncertainty in the controllable variables,

the selected design variables cannot be realized exactly. Designers can only select nominal

values expressed by x̌i ∈ R, i = 1, . . . , d, which are called target design variables.

However, the realized values of the design variables xi, i = 1, . . . , d, show deviations from

the nominal values because of uncertainty. Note that xi, i = 1, . . . , d, are allowed to take

different values for different realizations. Here, each xi refers to one particular realization

of the design variables, i = 1, . . . , d.

Uncertainties in controllable variables mainly arise when the design is manufactured, i.e., in

the late design phase, see [107]. If design variables represent geometric quantities, there

can be, for example, manufacturing tolerances from imprecise machinery. Nevertheless,

uncertainties in controllable variables can be already considered in the early design phase,

e.g., when design variables are defined as responses of subsystems, cf. Section 3.1. Then,

uncertainties are propagated from these subsystems. In the worst case, the subsystems

are not defined in an early phase of systems design, see [34]. Thus, only the type of

subsystem responses is known, but nothing about their lower-level design variables and

corresponding functions, which is further discussed in Section 2.2. In addition, uncertainties
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in controllable parameters can also account for non-realizable system designs within the

system design space or for numerical errors that arise because of the quantification of the

design.

(b)Uncertainties in uncontrollable parameters: Similar to uncertainties in controllable variables,

the actual values of the parameters pl are often unknown and only nominal values p̌l are

given or can be assumed for l = 1, . . . , q. Note again that each pl refers to only one

particular realization of the uncontrollable parameters, l = 1, . . . , q.

As uncontrollable parameters can be, for example, former controllable variables whose

values have been already selected, all examples of uncertainties in controllable variables

are also possible for uncontrollable parameters. Furthermore, the uncontrollable parameters

can address physical quantities, operational conditions, or parameter requirements, cf. [11].

Then, uncertainties due to natural variations, perturbations, or manual changes are present.

Note that although each pl represents only one realization, multiple realizations can be

taken into account by considering sets of realizations, l ∈ {1, . . . , q}. In particular, this

is important for changing environmental, physical quantities, or system parameters that

change during the system’s life cycle. The latter circumstance may also affect controllable

variables.

(c) Uncertainties in constraints: Although uncertainties in controllable variables and uncon-

trollable parameters have a direct impact on the outputs of the constraints as they are

propagated through the system performance function, they are not considered as part of

the uncertainties in the constraints. Despite that, the system performance functions of the

constraints might be of the wrong mathematical structure, e.g., they are assumed to be

linear instead of quadratic, or they consider the wrong variables and parameters as inputs.

The typical representative for uncertainties in the performance functions, and therefore

in the constraints, is model uncertainty due to the use of imprecise or inaccurate models,

instead of real physical objects. This may also incorporate uncertainties in model param-

eters which are not considered as part of the uncontrollable parameters, compare [134].

Moreover, model errors due to the use of numerical approximations can be considered

as uncertainty here, too, cf. [11]. The same considerations hold for the thresholds fc,j ,

j = 1, . . . ,m, if they depend on uncontrollable parameters.

Furthermore, it is also possible that wrong system performances and thresholds are taken

into account, some constraints are not required, and required ones are not considered. In

addition, constraints may also change during the design process.

Note that this list neither claims completeness nor to be the only classification of uncertainty

from a system’s point of view. In this thesis, it is assumed that system performance functions

are provided and there is no possibility to assess the underlying model uncertainty. This is

typically accepted for the early phase in systems design. Thus, the focus of this thesis is put

on uncertainties in the controllable variables and uncontrollable parameters.

In engineering applications, there is a complementary classification scheme to the one pre-
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sented, which is often used and which distinguishes between aleatoric and epistemic uncer-

tainty. This classification scheme motivates building mathematical models for parameters or

variables describing these uncertainties.

Uncertainty caused by intrinsic randomness is called aleatoric uncertainty. Because of its

stochastic nature, this randomness is considered as being irreducible, and aleatoric uncertainty

is commonly modeled with probability distributions, compare [11, 124]. Thus, a probability can

be assigned to finding a realization of a variable or parameter in a specific region, for example.

Typical examples for aleatoric uncertainty include variations of physical nature, e.g., in wind

load, humidity, and material properties.

Uncertainty due to lack of knowledge is called epistemic uncertainty. In principle, this lack

of knowledge could be reduced by more research or collecting more specific data, see [65].

Examples include model uncertainty from inaccurate or imprecise models, which may be of

mathematical or physical nature, statistical uncertainty from too little data, or non-investigated

errors from applied numerical solution methods like discretization errors. In literature, there are

various approaches how to model epistemic uncertainty. Amongst others, popular approaches

use interval analysis [74, 96], fuzzy sets [136], possibility theory [31, 138], evidence theory

[28, 118], and imprecise probabilities [131].

Furthermore, uncertainty that involves both aleatoric and epistemic characteristics can be

treated in a common framework which is referred to as polymorphic uncertainty modeling

in [55, 56]. Here, different approaches from aleatoric and epistemic modeling are usually

combined, see e.g., [54, 105]. However, it shall be mentioned that sometimes, it is difficult

or even not possible to distinguish whether a particular uncertainty is aleatoric, epistemic, or

a combination of both, compare [76]. Thus, no model which can be considered as the most

appropriate in these cases exists and it has to be decided based on the available knowledge,

which model to choose.

As stated above, the epistemic uncertainty modeling can be improved theoretically by more

research or gathering more specific data. However, in systems engineering, there are often

deadlines that hinder gathering more knowledge about uncertainty in time. The state in which

designers cannot get new information before the deadline is called a no-more-knowledge state

in [42]. The other extreme is a complete-knowledge state in which all information is revealed

before the deadline.

In this thesis, a no-more-knowledge state is considered in which only little knowledge about

uncertainties is available. This is usually the case during the early design phase of a system.

To comply with this, epistemic uncertainty is modeled as intervals and fuzzy sets. Here,

interval-type uncertainty is regarded in an interval analysis context and fuzzy-type uncertainty

in the framework of possibility theory. These epistemic uncertainty models have amongst

others the advantage that multiple sources of uncertainties like unknown variations, numerical

errors, and propagated uncertainty from subsystems can be directly embedded. For reasons of
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simplicity, it is assumed that the uncertainties are uncorrelated between the single parameters

and variables. More details on this modeling are provided below.

2.2. Epistemic Uncertainty Models

This section presents how epistemic uncertainties are modeled as intervals and fuzzy sets

in this thesis. First, interval-type uncertainty is considered in the context of interval analysis.

Then, an extension of the modeling is proposed yielding fuzzy-type uncertainty, which is

treated in the framework of possibility theory.

2.2.1. Interval-Type Uncertainty
To begin with, the considerations of interval-type uncertainty are limited to controllable design

variables. When the values of the target design variables x̌i are selected, the actual values

of the design variables xi can be only found within intervals because of uncertainty for

i = 1, . . . , d. In this thesis, it is assumed that the actual values are uncorrelated, symmetrically

distributed, and bounded around these nominal values. The distances from the nominal values

x̌i to the bounds of the actual values of the controllable variables are stated as δi ∈ R+
0 ,

i = 1, . . . , d, which are also referred to as uncertainty magnitudes in the following. Note that

each δi, i ∈ {1, . . . , d}, can address multiple sources of uncertainties like stated above. For

now, the uncertainty magnitudes δi, i = 1, . . . , d, are assumed to be given and it holds

xi ∈ [x̌i − δi, x̌i + δi], (2.7)

i = 1, . . . , d. This means that the realized system design x is always an element of the

d-dimensional interval

UX(x̌, δ) = {x ∈ Rd | xi ∈ [x̌i − δi, x̌i + δi], i = 1, . . . , d}, (2.8)

which depends on x̌ = (x̌1, . . . , x̌d) and δ = (δ1, . . . , δd), where X refers to the controllable

variables. Hence, the set UX(x̌, δ) is the uncertainty set of the controllable variables with

respect to x̌ ∈ Rd.
Note that this framework for interval-type uncertainty has parallels to the conceptual approach

in, e.g., [141] in which designers aim to realize arbitrary values within target intervals. In

the above context, the smallest target intervals for which there is a guarantee that the actual

values of the design variables can be found within, have size 2δi, i = 1, . . . , d. Hence, tar-

geting x̌i can always be considered as targeting [x̌i−δi, x̌i+δi] for i = 1, . . . , d and vice versa.

Similar to interval-type uncertainties in controllable variables, interval-type uncertainties in

uncontrollable parameters can be defined. It is assumed that the actual values of the uncontrol-
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lable parameters, expressed by pl are symmetrically distributed and bounded around nominal

values, expressed by p̌l ∈ R, l = 1, . . . , q. In contrast to x̌i, i = 1, . . . , d, the values of p̌l,

l = 1, . . . , q, cannot be controlled by designers and are assumed to be given. The uncertainty

magnitudes of the uncontrollable parameters are stated as γl ∈ R+
0 and are assumed to be

given. It holds

pl ∈ [p̌l − γl, p̌l + γl], (2.9)

l = 1, . . . , q. Thus, the actual values of p are always an element of the q-dimensional interval

UP (p̌, γ) = {p ∈ Rq | pl ∈ [p̌l − γl, p̌l + γl], l = 1, . . . , q}, (2.10)

which depends on p̌ = (p̌1, . . . , p̌q) and γ = (γ1, . . . , γq), where P refers to the uncontrollable

parameters. The set UP (p̌, γ) is the uncertainty set of the uncontrollable parameters.

For interval-type uncertainties in controllable variables and uncontrollable parameters, it is

necessary to establish how the constraints on the design variables and the responses are

interpreted. Approaches that interpret constraints for interval-type uncertainty can be found,

for example, in [45, 119]. Similar to distinguishing between strong and weak solutions, this

thesis differentiates between a worst- and a best-case scenario.

In order to account for the worst-case, the constraints must be fulfilled for all possible uncer-

tainty realizations. Given x̌, δ, p̌, and γ, the constraints x ∈ Ωds and f(x, p) ≤ fc(p) are met

if they hold for all p ∈ UP (p̌, γ) and all x ∈ UX(x̌, δ). The set of designs x ∈ Ωds that fulfill

f(x, p) ≤ fc(p) for all p ∈ UP (p̌, γ) is called worst-case complete system solution space and

is denoted by Ωc,wc, i.e.,

Ωc,wc = {x ∈ Ωds | ∀p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}. (2.11)

Furthermore, the set of all system target designs x̌ ∈ Rd that fulfill the constraints x ∈ Ωds

and f(x, p) ≤ fc(p) in the worst-case is

Ω̌c,wc = {x̌ ∈ Rd | ∀x ∈ UX(x̌, δ) : x ∈ Ωc,wc} (2.12)

and is named worst-case complete system solution space of target designs.

Opposite to the worst-case, there is the best-case in which the constraints must be only fulfilled

for at least one uncertainty realization. Given x̌, δ, p̌, and γ, the constraints are met if they hold

for at least one x ∈ UX(x̌, δ) and one p ∈ UP (p̌, γ). The set of all designs x ∈ Ωds that fulfill

f(x, p) ≤ fc(p) for at least one p ∈ UP (p̌, γ) is called best-case complete system solution

space and is denoted by Ωc,bc, i.e.,

Ωc,bc = {x ∈ Ωds | ∃p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}. (2.13)

Moreover, the set of all system target designs x̌ ∈ Rd that fulfill the constraints x ∈ Ωds and
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f(x, p) ≤ fc(p) in the best-case is

Ω̌c,bc = {x̌ ∈ Rd | ∃x ∈ UX(x̌, δ) : x ∈ Ωc,bc} (2.14)

and is named best-case complete system solution space of target designs. Note that in

Definition (2.14), the system target designs are not restricted to the system design space

Ωds. Such a restriction could be done by adding system target design space constraints.

Subsequently, examples of complete system solution spaces of designs and target designs for

both scenarios are illustrated.

Example 3. Given the system design space Ωds = [0, 2] × [0, 1.5] and the performance

function f : R2 × R2 → R, (x, p) 7→ p1x1 + p2x2 with threshold fc = 2 from Example

1. There are interval-type uncertainties in the controllable variables and the uncontrollable

parameters. The nominal values of the uncontrollable parameters are given by p̌1 = 1 and

p̌2 = 2. Regarding uncertainty, the different combinations of (a) δ1, δ2 = 0, (a’) δ1 = 0.3,

δ2 = 0.1, and (b) γ1, γ2 = 0, (b’) γ1 = γ2 = 0.2 are considered. The corresponding worst-

and best-case complete system solution spaces for the designs and target designs can be

obtained from Equations (2.11)-(2.14) and are visualized in Figure 7.
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Figure 7 Worst- and best-case complete system solution spaces for the designs and target designs for different interval-type
uncertainties of Example 3.

The case with δi = 0, i = 1, . . . , d, γl = 0, l = 1, . . . , q, is equivalent to the case in which

no uncertainties in controllable variables and uncontrollable parameters exist. Hence, the

absence of uncertainty can be always considered as a special case of interval-type uncertainty

in which Ωc = Ω̌c,bc = Ωc,bc = Ωc,wc = Ω̌c,wc holds. Furthermore, it is Ω̌c,bc = Ωc,bc and
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Ωc,wc = Ω̌c,wc if there are no uncertainties in controllable variables and Ωc = Ωc,bc = Ωc,wc if

there are no uncertainties in uncontrollable parameters, compare Figure 7.

Above, it is assumed that the values of δ and γ are always known. This might be reasonable

for γ. Because the nominal values of p̌ do not change, the chances to gather knowledge about

the associated uncertainty magnitudes might increase. For example, there can be knowledge

from previously considered, similar systems, or expert knowledge for specific uncontrollable

parameters. However, the assumption of fixed values for δ is often critical, cf. [25]. Possible

reasons are:

• As x̌i, i = 1, . . . , d, can assume different values, the assumption of a fixed δi for all x̌i
might be wrong, i.e., it is likely too small or too large for any x̌i, i = 1, . . . , d.

• If xi are responses of a subsystem, δi depend on propagated uncertainty from this sub-

system, i = 1, . . . , d. If the subsystem is not defined, which might be the case in the early

design phase, there is no knowledge about δ.

An approach that aims at circumventing these problems is proposed in Section 2.3.

2.2.2. Fuzzy-Type Uncertainty
Considering interval-type uncertainty, x ∈ Rd and p ∈ Rq either belong or do not belong to

the uncertainty sets UX(x̌, δ) and UP (p̌, γ) for given x̌, δ, p̌, and γ. In case there is further

knowledge on the uncertainty magnitudes of the controllable variables and uncontrollable

parameters, the uncertainties can also be modeled as fuzzy sets. In the following, a simple

extension of the definitions for interval-type uncertainty is conducted, yielding fuzzy-type

uncertainty that is parametrized by two uncertainty magnitudes. However, note that most of the

results of this thesis for fuzzy-type uncertainty are not restricted to this simplification. Instead,

the results can be transferred to more general fuzzy sets. A basic introduction to fuzzy sets

which provides the fundamental definitions for this thesis is given in Section A.2.

Similar to the case of interval-type uncertainty, the considerations for fuzzy-type uncertainty

are limited to controllable variables first. When the values of the target design variables x̌i are

selected, all values in R can be assigned with a degree of membership of belonging to the fuzzy

uncertainty sets of xi, i = 1, . . . , d. Here, the fuzzy uncertainty sets of xi with respect to x̌i are

denoted by Xi(x̌i) and the degrees of membership by α, reaching from zero to one. A degree

of α = 1 indicates that a design variable belongs for sure to Xi(x̌i) and a degree of α = 0

indicates that a design variable belongs for sure not to Xi(x̌i), i = 1, . . . , d, compare Section

A.2. Again, it is assumed that the actual values are uncorrelated, symmetrically distributed, and

bounded around the nominal values. In this thesis, the distances from the nominal values to the

bounds of the values with α = 1 are given by δα=1,i ∈ R+
0 and the distances from the nominal
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values to the bounds of the closest values with α = 0 by δα=0,i ∈ R+
0 where δα=0,i ≥ δα=1,i,

i = 1, . . . , d. In between these bounds, the degrees of membership of belonging to the fuzzy

uncertainty sets of xi with respect to x̌i are assumed to behave linearly, i = 1, . . . , d. Again,

the quantities δα,i, i = 1, . . . , d, α ∈ [0, 1], are referred to as uncertainty magnitudes. Overall,

the properties of this fuzzy-type uncertainty can be represented by membership functions,

defined as

µXi(x̌i)(xi) : R→ [0, 1], xi 7→



1 if |xi − x̌i| ≤ δα=1,i,

1− |xi−x̌i|−δα=1,i

δα=0,i−δα=1,i
if δα=1,i < |xi − x̌i| < δα=0,i,

0 otherwise

(2.15)

if δα=0,i > δα=1,i, and

µXi(x̌i)(xi) : R→ [0, 1], xi 7→


1 if |xi − x̌i| ≤ δα=1,i,

0 otherwise

(2.16)

if δα=0,i = δα=1,i, i = 1, . . . , d. As remarked above, the membership functions and hence

the fuzzy uncertainty sets of xi with respect to x̌i are each parametrized by two uncertainty

magnitudes, i.e., δα=0,i and δα=0,i for each i ∈ {1, . . . , d}. In Figure 8, examples of the graph

of µX(x̌),i are visualized for both δα=0,i > δα=1,i and δα=0,i = δα=1,i, i ∈ {1, . . . , d}.
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Figure 8 Examples of the graph of the membership function µX(x̌),i with (a) δα=0,i > δα=1,i and (b) δα=0,i = δα=1,i,
i ∈ {1, . . . , d}.

The fuzzy uncertainty set of the controllable variables with respect to the system target design

x̌ is denoted by X. For a system design x, the degree of membership of belonging to X is

defined as the minimum of all membership function values of the single design variables, see

Equation (A.12). For their joint membership function, it holds

µX(x̌)(x) = min{µX1(x̌1)(xd), . . . , µ
Xd(x̌d)(xd)}. (2.17)
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The α-cuts of X are denoted by UXα (x̌, δα=0, δα=1) for α ∈ (0, 1] and the support of X is

denoted by UX0 (x̌, δα=0, δα=1) where δα=0,i,δα=1,i, i = 1, . . . , d, are collected in δα=0, δα=1 ∈
Rd. It is

UXα (x̌, δα=0, δα=1) = {x ∈ Rd | µX(x̌)(x) ≥ α} (2.18)

for α ∈ (0, 1], and

UX0 (x̌, δα=0, δα=1) = {x ∈ Rd | µX(x̌)(x) > 0}. (2.19)

For the special case of δα=0 = δα=1, the uncertainty set is a crisp set with Uα(x̌, δα=0, δα=1) =

Uα′(x̌, δα=0, δα=1) for all α, α′ ∈ [0, 1]. This case corresponds to the case of interval-type

uncertainty, compare Equation (2.8), and shows the property of fuzzy-type uncertainty to gen-

eralize interval-type uncertainty. For δα=0,i > δα=1,i, i = 1, . . ., the support UX0 (x̌, δα=0, δα=1)

is an open set, see Section 4.1.

Similar to fuzzy-type uncertainties in controllable variables, fuzzy-type uncertainty in uncontrol-

lable parameters can be defined. The fuzzy uncertainty set of the uncontrollable parameters

is denoted by P and its membership function µP depends on γα=0,l,γα=1,l, l = 1, . . . , q,

collected in γα=0, γα=1 ∈ Rq. It is defined similarly to µX(x̌) via the single membership func-

tions from Definitions (2.15) and (2.16) where x is substituted by p, i by l, d by q, and δ by

γ. For the α-cuts of the fuzzy uncertainty set of the uncontrollable parameters, denoted by

UPα (p̌, γα=0, γα=1) for α ∈ (0, 1], and its support, denoted by UP0 (p̌, δγ=0, δγ=1), it holds

UPα (p̌, γα=0, γα=1) = {p ∈ Rq | µP (p) ≥ α} (2.20)

for α ∈ (0, 1] and

UP0 (p̌, γα=0, γα=1) = {p ∈ Rq | µP (p) > 0}. (2.21)

The properties of the fuzzy uncertainty set of the controllable variables transfer directly to the

fuzzy uncertainty set of the uncontrollable parameters. Still, the values of p̌l, l = 1, . . . , q,

cannot be controlled by designers.

Also for fuzzy-type uncertainty, it is necessary to establish how constraints on the design vari-

ables and the responses are interpreted. An overview of approaches that interpret constraints

for fuzzy-type uncertainty can be found, for example, in [132, 133]. Similar to [30], this thesis

uses possibility theory. In Section A.2, a basic introduction to possibility theory is given that

emphasizes its interrelation with fuzzy sets.

In possibility theory, a possibility and necessity can be assigned to the fulfillment of constraints,

which is similar to assigning a probability in probability theory. If thresholds are put on this

possibility or necessity, so-called chance constraints are obtained, cf. [90]. Descriptively

spoken, a possibility of zero means that it is absolutely not possible that the constraints are

fulfilled, a possibility of one means that it is entirely possible, but not necessary that the
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constraints are fulfilled, a necessity of zero means that it is not necessary, but possible that

the constraints are fulfilled, and a necessity of one means that it is absolutely necessary that

the constraints are fulfilled, compare [68]. Note that in general, possibility measures can also

be interpreted as upper probability measures and necessity measures as lower probability

measures, see [32], which is also discussed in Section A.2.

The set of all designs x ∈ Ωds for which the possibility of fulfilling f(x, p) ≤ fc(p) is greater

than or equal to α is called possibility-α complete system solution space and is denoted

by Ωc,pos,α, α ∈ (0, 1). The set of all designs x ∈ Ωds for which the necessity of fulfilling

f(x, p) ≤ fc(p) is greater than or equal to α is called necessity-α complete system solution

space and is denoted by Ωc,nec,α, α ∈ (0, 1). The set of all system target designs x̌ ∈ Rd

for which the possibility of fulfilling x ∈ Ωds and f(x, p) ≤ fc(p) is greater than or equal to

α is called possibility-α complete system solution space of target designs and is denoted by

Ω̌c,pos,α, α ∈ (0, 1). And the set of all system target designs x̌ ∈ Rd for which the necessity

of fulfilling x ∈ Ωds and f(x, p) ≤ fc(p) is greater than or equal to α is called necessity-α

complete system solution space of target designs and is denoted by Ω̌c,nec,α, α ∈ (0, 1). They

are all defined mathematically in Definition 2. For continuous system performance functions f

it holds

Ωc,nec,α = {x ∈ Ωds | ∀p ∈ UP1−α(p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}, (2.22)

Ωc,pos,α = {x ∈ Ωds | ∃p ∈ UPα (p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}, (2.23)

Ω̌c,nec,α = {x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δα=0, δα=1) : x ∈ Ωc,nec,α}, (2.24)

Ω̌c,pos,α = {x̌ ∈ Rd | ∃x ∈ UXα (x̌, δα=0, δα=1) : x ∈ Ωc,pos,α}, (2.25)

α ∈ (0, 1), see Theorem 5. For α ∈ {0, 1}, the corresponding possibility-α and necessity-

α solution spaces are defined by Equations (2.23)-(2.24). Note that for α ∈ (0, 1), these

equations are only properties of the possibility-α and necessity-α complete system solution

spaces which hold for continuous system performance functions. In Theorem 7, it is shown for

all system designs and system target designs of the possibility-α complete system solution

spaces that the possibility of fulfilling x ∈ Ωds and f(x, p) ≤ fc(p) is equal to one for α = 1

and strictly greater than zero for α = 0. For all system designs and system target designs

of the necessity-α complete system solution spaces, the necessity of fulfilling x ∈ Ωds and

f(x, p) ≤ fc(p) is equal to one for α = 1 and strictly greater than zero for α = 0 if δα=1 = δα=0

and γα=1 = γα=0, and only greater than or equals to zero otherwise. Also, note that possibility-

0 complete system solution spaces are usually non-closed sets, compare Section 4.1.

Further properties of the possibility-α and necessity-α complete system solution spaces

are: If γα=1 = 0 holds, it is Ωc,pos,1 = Ωc,nec,0, and if further δα=1 = 0 holds, it is also

Ω̌c,pos,1 = Ωc,pos,1 = Ωc,nec,0 = Ω̌c,nec,0. In the case of interval-type uncertainty, the Equations

(2.23) and (2.25) for possibility-α system solution spaces are consistent with the Equations

(2.13) and (2.14) for best-case system solution spaces and the Equations (2.22) and (2.24) for

necessity-α system solution spaces are consistent with the Equations (2.11) and (2.12) for

worst-case system solution spaces and all α ∈ [0, 1]. In the following, examples of possibility-α

and necessity-α complete system solution spaces are considered.
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Example 4. Given the system design space Ωds = [0, 2] × [0, 1.5] and the performance

function f : R2 × R2 → R, (x, p) 7→ p1x1 + p2x2 with threshold fc = 2 from Example 1.

Furthermore, the nominal values of p are given by p̌1 = 1, p̌2 = 2. Here, two different cases

are considered:

(a)There are fuzzy-type uncertainties in uncontrollable parameters for which γα=0,1 = γα=0,2 =

0.2 and γα=1,1 = γα=1,2 = 0.1 hold, and there is absence of uncertainties in controllable

variables.

(b)There are fuzzy-type uncertainties in the controllable variables for which δα=0,1 = 0.3,

δα=0,2 = 0.1 and δα=1,1 = 0.1, δα=1,2 = 0 hold, and there is absence of uncertainties in

uncontrollable parameters.

The corresponding possibility-α and necessity-α complete system solution spaces of designs

and target designs can be obtained from Equations (2.23)-(2.24) and are visualized in Figure

9 for α = 0 and α = 1.
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Figure 9 Possibility-α and necessity-α solution spaces with α ∈ {0, 1} for uncertainties in (a) uncontrollable parameters and
(b) controllable variables of Example 4. Note that in the legend, the solution spaces are listed according to their size, the
largest is on top.

Here, no explicit example for the case of both uncertainties in controllable variables and

uncontrollable parameters is given. However, it can also be thought of as a combination of the

results of Example 4.

Below, it is discussed how flexibility for both coupled and decoupled design decisions based

on the complete system solution spaces can be provided.

2.3. Coupled Design Decisions

This section considers coupled design decisions under absence of uncertainty, under interval-

type uncertainty, and under fuzzy-type uncertainty. It is based on the above framework in
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which one designer is responsible to select a system design from the corresponding complete

system solution space.

2.3.1. Coupled Design Decisions under Absence of Uncertainty
For coupled design decisions with a system designer, it is assumed that he has full knowledge

about the complete system solution space Ωc. Within Ωc, he can select any system design, as

any system target design is exactly realizable due to the absence of uncertainty, i.e., xi = x̌i,

i = 1, . . . , d. However, if Ωc is not a singleton, there are multiple choices to select x ∈ Ωc. As

no preferences exist between the designs of the complete system solution space a priori, a

ranking is desired in order to make a decision for a particular design.

Such a ranking can be provided by defining a system cost function c. This function measures

the "costs" of the system. This can be, for example, material or manufacturing costs but also

quantities like weight and rigidity. Similar to the performance functions, it is assumed that the

cost function is uniquely determined by the design variables and uncontrollable parameters. It

holds

c : Rd × Rq → R, (x, p) 7→ c(x, p). (2.26)

Note that similar to above, the costs might also be restricted to subsets of R. An intuitive

system cost function regarding the system’s performances can be, for example, a particular

system response, i.e., c = fj for j ∈ {1, . . . ,m}. Another example is the minimum distance of

all system responses to their thresholds, defined by

c(x, p) = min
j∈{1,...,m}

fj(x, p)− fc,j(p). (2.27)

for x ∈ Rd, p ∈ Rq. In general, also multiple system cost functions can exist where c has

multi-dimensional outputs. For reasons of simplicity, only one-dimensional outputs for system

cost functions are considered in this thesis. As for system performance functions, the second

argument in the system cost function is often neglected if uncontrollable parameters are not

considered explicitly in a problem statement, i.e., c = c(·, p) for p ∈ Rq. Furthermore, note

that cost functions often contain subjective criteria which depend on the designer. They might

be influenced by factors like the specific application, the time in the development process, or

personal judgments of designers, compare [106].

Given a system cost function c, a system design x ∈ Ωc with lower costs c(x) is preferred

against a system design x′ ∈ Ωc with higher costs c(x′) where c(x) < c(x′). Hence, often the

design associated with the lowest costs is sought. This can be expressed as a mathematical
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optimization problem

minimize
x

c(x)

subject to x ∈ Ωc.

(2.28)

where the cost function c is the objective function and x ∈ Ωc expresses the optimization con-

straints. A solution of problem (2.28) is called an optimal system design. Due to its optimization

constraints, problem (2.28) is also called a constraint optimization problem in mathematics. In

literature, there are many approaches on how to solve constraint optimization problems. They

mainly differ depending on the type of performance functions, which are included in Ωc, and

the type of cost function c. An overview can be found, for example, in [47, 100, 111]. Especially

in [111], an emphasis is put on the application to engineering systems. For further information

on optimization with multiple cost functions, read, e.g., [13]. Subsequently, an example of

a coupled design decision in which an optimal system design is sought is considered. As

the focus of this section is put on presenting different problem statements, a derivation of the

corresponding solution is not provided for this and the following examples.

Example 5. Given the system design space Ωds = [0, 2]× [0, 1.5] and a performance function

f : R2 → R, x 7→ x1 + 2x2 with threshold fc = 2 from Example 1. Furthermore, a system

cost function c : R2 → R, x 7→ 1.5− 0.25x1 − x2 exists. The optimal system design is unique

and can be computed as x = (0, 1) by solving problem (2.28). As this problem is linear here,

linear programming techniques can be applied to find the solution numerically, see, e.g., [100].

The optimal system design is visualized in Figure 10.
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Figure 10 Optimal system design x = (0, 1) (white dot) of Example 5.

If d = 1 holds for a system, a differentiation between coupled and decoupled design decision

is not necessary. Nevertheless, the design decision for this case can be made similarly to

the case of coupled design decisions for d > 1. Therefore, this case is also mentioned here.
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Below, an example for d = 1 is given in which an optimal system design is sought.

Example 6. Given the system design space Ωds = [0, 2] and a system performance function

f : R → R, x 7→ −x with threshold fc = −0.5. Furthermore, a system cost function

c : R → R, x 7→ max(3.5 − 3x, 0.5x) exists. The optimal system design is unique and

can be computed as x = 1 by solving problem (2.28). As the objective function is not

differentiable here, methods from non-differentiable optimization must be applied to find the

solution numerically, see, e.g., [120]. The optimal system design is visualized in Figure 11.
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Figure 11 Optimal system design x = 1 (white dot) for Example 6.

2.3.2. Coupled Design Decisions under Interval-Type Uncertainty
For interval-type uncertainty, decisions which are made regarding the target design variables

x̌i, i = 1, . . . , d, are considered. If no cost function is defined, any system target design within

the worst- or best-case complete system solution space of target designs can be selected,

depending on which case is taken into account. Again, there are no a-priori preferences

between the permissible target designs in this case.

If a cost function c is introduced, preferences exist. As for uncertainties in constraints, there

might be uncertainties in c due to considering a wrong mathematical structure, or the wrong

variables and parameters as inputs, i.e., there are model uncertainties or model errors in c. It

is also possible that the actual costs cannot be considered with the present cost function, as

different costs are addressed. In addition, the cost function can change over the development

process. In the following, uncertainties in the cost function are assumed to be unknown in the

early design phase, and similar to uncertainties in constraints, they are not considered further.

First, the focus is put on uncertainties in controllable variables. Here, the realized system

design x ∈ Ωds can have maximum costs of maxx∈UX(x̌,δ) c(x) for selected x̌ ∈ Rd. This cor-

responds to a worst-case scenario in terms of Section 2.2 and is named robust regularization

in [89]. Hence, a goal is to find a design x̌ ∈ Ω̌c,wc associated with a minimal maximum value
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of c(x) for x ∈ UX(x̌, δ). This is expressed in the mathematical optimization problem

minimize
x̌

max
x∈UX(x̌,δ)

c(x)

subject to x̌ ∈ Ω̌c,wc.

(2.29)

As an optimal solution of problem (2.29) is sought under uncertainty, the optimization problem

is called a robust optimization problem, and optimal solutions are named robust system target

designs. Furthermore, problem (2.29) is also a mathematical constraint optimization problem

that belongs to the class of minimax problems, see, e.g., [9, 17] in which approaches to solve

minimax problems are presented. Subsequently, an example for problem (2.29) is considered.

Example 7. Given the system design space Ωds = [0, 2], the performance function f :

R → R, x 7→ −x with threshold fc = −0.5, and the cost function c : R → R, x 7→
max(3.5− 3x, 0.5x) from Example 6. Furthermore, there are interval-type uncertainties in the

design variable with a magnitude of δ = 0.3. Thus, the robust system target design in terms of

problem (2.29) is unique and can be computed as x̌ = 1.2143. It is visualized in Figure 12.

In contrast to the optimal system design from Example 6, the robust system target design of

this example is shifted to the right to avoid large costs if the realized system design becomes

x = x̌− δ.
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Figure 12 Robust system design x̌ = 1.2143 (white dot) of Example 7.

In contrast to worst-case scenarios, best-case scenarios are usually not considered in robust

optimization. Furthermore, robust optimization is not only restricted to uncertainties in control-

lable variables. For uncertainties in uncontrollable parameter under absence of uncertainties

in controllable variables, the robust regularization can be formulated as maxp∈UP (p̌,γ) c(x, p)

for x ∈ Rd where xi = x̌i holds for i = 1, . . . , d. Here, the maximum costs of all possible

realizations of p ∈ UP (p̌, γ) are considered. The goal is to find a robust system design

x ∈ Ωc,wc associated with a minimal maximum value of c(x, p) for p ∈ UP (p̌, γ), which is
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expressed in the minimax robust optimization problem

minimize
x

max
p∈UP (p̌,γ)

c(x, p)

subject to x ∈ Ωc,wc.

(2.30)

Problem (2.30) is considered particularly in [7, 8] in which the problem statement is simplified

in order to solve it with standard methods from mathematical optimization. This is also known

as the robust counterpart approach. Subsequently, an example for problem (2.30) is given.

Example 8. Given the system design space Ωds = [0, 2], a performance function f : R×R→
R, (x, p) 7→ p − x with threshold fc = −0.5, and a cost function c : R × R → R, (x, p) 7→
max((3.5− 2p)− (3 + 2p)x, p+ 0.5x) similarly to Example 6. Furthermore, there are interval-

type uncertainties in the uncontrollable parameters for which the nominal value of p is given by

p̌ = 0 and the uncertainty magnitude by γ = 0.2. Thus, the robust system design in terms of

problem (2.30) is unique and can be computed as x = 1.1935. It is visualized in Figure 13.

In contrast to the optimal system design from Example 6, the robust system design of this

example is shifted to the right to avoid large costs if the uncontrollable parameter becomes

p = p̌− γ. Note that this result is independent of the result from Example 7.
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Figure 13 Robust system design x = 1.1935 (white dot) for Example 8.

From a mathematical point of view, the distinction between uncertainties in controllable

variables and uncontrollable parameters is not absolutely necessary. Hence, approaches

to solve Problems (2.29) and (2.30) can be sometimes transferred or they compensate for

both types of uncertainty, depending on the given system cost and performance functions.

Moreover, both can be combined in one robust optimization problem, i.e.,

minimize
x̌

max
x∈UX(x̌,δ)

max
p∈UP (p̌,γ)

c(x, p)

subject to x̌ ∈ Ω̌c,wc.

(2.31)
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In [121], a neutral problem formulation is chosen in which both uncertainties in controllable

variables and uncontrollable parameters can be incorporated. If no robust solution exists

because of large uncertainty, the distance from the nominal values to the nearest realization

that violates the constraints is proposed as a measure for the robustness of the design. This

measure is called radius of stability in [121]. Then, the system target design with the largest

radius of stability can be found via optimization.

A similar approach, limited to uncertainties in controllable variables, is proposed in [66]. Here,

it is assumed that there is no information about the values of δi, i = 1, . . . , d. The system

target design that allows the largest deviation such that the realized system design fulfills all

constraints is defined as robust system target design, i.e., the target design with the largest

radius of stability. If the maximum metric is used for distance computation, the corresponding

optimization problem reads

maximize
x̌,δ′

δ′

subject to UX(x̌, δ̄) ⊆ Ωc

(2.32)

where δ′ is the radius of stability with δ̄ = (δ′, . . . , δ′). Note that all entries of δ̄ are chosen to

be the same to account for all system designs x with maxi∈{1,...,d} |xi − x̌i| = δ′. In contrast

to the values of x̌, the value of δ′ is unique. Problem (2.32) belongs to the class of design

centering problems, as a system target design is centered in the complete system solution

space Ωc, see [64]. In [23], this is extended by also taking uncertainties in uncontrollable

parameters with unknown γ into account and balancing them by solving a multi-objective

optimization problem. Note that a system cost function c is not incorporated in the computation

of robust system target designs with unknown δi, i = 1, . . . , d, in general. In the following, two

examples are considered.

Example 9. (a)Given the system design space Ωds = [0, 2]× [0, 1.5] and the performance

function f : R2 → R, x 7→ x1 + 2x2 with threshold fc = 2 from Example 1.

(b)Given the system design space Ωds = [0, 2] and the performance function f : R→ R, x 7→
−x with threshold fc = −0.5 from Example 6.

Furthermore, there are interval-type uncertainties in design variables with unknown δ. Hence,

unique robust system target designs can be computed in terms of problem (2.32). For (a),

it holds x̌ = (0.3334, 0.3334) with δ̄ = (0.3334, 0.3334) and for (b), it holds x̌ = 1.25 with

δ̄ = 0.75. The robust system target designs are visualized in Figure 14.

Note that there are also approaches that use the volume of UX(x̌, δ) as a measure to find

a robust system target design if δi, i = 1, . . . , d, are unknown, see, e.g., [64]. This can be

examined critically because some δi might become very small in order to enlarge others, see
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Figure 14 Robust system target designs (a) x̌ = (0.3334, 0.3334) and (b) x̌ = 1.25 (white dots) of Example 9.

[43] for a discussion.

2.3.3. Coupled Design Decision under Fuzzy-Type Uncertainty
For fuzzy-type uncertainty, decisions which are made regarding the target design variables

x̌i, i = 1, . . . , d, are considered again. Similar to above, any system target design within the

possibility-α or necessity-α complete system solution space of target designs can be selected,

depending on which case is taken into account, if no cost function is defined.

This changes again if a cost function is introduced. In the following, robust optimization prob-

lems for fuzzy-type uncertainty are proposed, which generalize the problems for interval-type

uncertainty. According to the interpretation of the constraints, the system cost function is

interpreted with the same measures from possibility theory here. This yields a consistent

framework for optimization. Note that in general there are various approaches on how to

compute a robust system design under fuzzy-type uncertainty, see, e.g., [91, 139]. The

discussion on which approach to choose continues the above discussion on the interpretation

of constraints under fuzzy-type uncertainty.

For a cost function c and fuzzy-type uncertainties in both controllable variables and uncon-

trollable parameters, a realized design x ∈ Ωds from selected x̌ ∈ Rd can have maximum

costs of supx∈U0(x̌,δα=0,δα=1) supp∈U0(p̌,γα=0,γα=1) c(x, p). This means that the necessity that

the realized costs are smaller than or equal to the maximum costs is one, which can be shown

similarly to the results of Section 4.1. If a necessity greater than or equals to α for α ∈ (0, 1) is

sufficient, costs of supx∈U1−α(x̌,δα=0,δα=1) supp∈U1−α(p̌,γα=0,γα=1) c(x, p) can be considered for

selected x̌ ∈ Rd. Note that also the operator max instead of sup could be used for α ∈ (0, 1)

as the α-cuts of the fuzzy uncertainty sets for the controllable variables and uncontrollable

parameters are closed. These considerations can be extended to the case α = 1, like done in

Section 2.2, in which the results of Section 4.1 hold.

Compatible with these perceptions is selecting a system target design from the necessity-α

complete system solution space of target designs. Hence, the goal becomes finding a design

x̌ ∈ Ω̌c,nec,α associated with a minimal maximum value of c(x, p) for x ∈ U1−α(x̌, δα=0, δα=1)
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and p ∈ U1−α(p̌, γα=0, γα=1). This is expressed in the robust optimization problem

minimize
x̌

sup
x∈U1−α(x̌,δα=0,δα=1)

sup
p∈U1−α(p̌,γα=0,γα=1)

c(x, p)

subject to x̌ ∈ Ω̌c,nec,α.

(2.33)

for α ∈ [0, 1] for which an optimal solution is a robust system design. Like problems (2.29)-

(2.31), problem (2.33) is a mathematical constraint optimization problem that belongs to the

class of minimax problems. In the following, two examples for problem (2.33) are considered,

one with uncertainties in controllable variables and one with uncertainties in uncontrollable

parameters.

Example 10. Given the system design space Ωds = [0, 2], the performance function f :

R → R, x 7→ −x with threshold fc = −0.5, and the cost function c : R → R, x 7→
max(3.5 − 3x, 0.5x) from Example 6. Furthermore, there are fuzzy-type uncertainties in

design variables given by Equation (2.17) with δα=0 = 0.3 and δα=1 = 0. Thus, robust

system designs in terms of problem (2.33) for α ∈ [0, 1] are unique and can be computed as

xα = 1 + 0.2143α. Here, the robust system designs for α = 0 correspond to the case of no

uncertainty from Example 6 and for α = 1 to the case of no uncertainty from Example 7. They

are visualized in Figure 15 for α ∈ {0, 0.5, 1}.
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Figure 15 Robust system designs for α ∈ {0, 0.5, 1} (white dots) of Example 10. Note that in the legend, the solution spaces
are listed according to their size, the largest is on top.

Example 11. Given the system design space Ωds = [0, 2], a performance function f : R×R→
R, (x, p) 7→ p − x with threshold fc = −0.5, and a cost function c : R × R → R, (x, p) 7→
max((3.5− 2p) − (3 + 2p)x, p+ 0.5x) from Example 8. Furthermore, there are fuzzy-type

uncertainties in uncontrollable parameters given by Equation (2.17) with p̌ = 0, γα=0 = 0.2,

and γα=1 = 0. Thus, robust system designs in terms of problem (2.33) for α ∈ [0, 1] are

unique and can be computed as xα = 1+0.0571α
1−0.1143α . Here, the robust system design for α = 0
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corresponds to the case of no uncertainty from Example 6 and for α = 1 to the case of no

uncertainty from Example 8. They are visualized in Figure 16 for α ∈ {0, 0.5, 1}.
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Figure 16 Robust system design for α ∈ {0, 0.5, 1} (white dots) of Example 11.

Besides problem (2.33), similar robust optimization problems under fuzzy-type uncertainty in

literature use, for example, an objective function that measures the maximum possible error

between the actual costs and the minimum costs for realized p, see [67, 70], or use possibility

instead of necessity measures in the constraints, see, e.g., [29, 135]. Furthermore, a case

in which there is no information about the values of δα=0, δα=1, i = 1, . . . , d, can be handled

similarly to interval-type uncertainty. This is considered in Section 3.5.

In the following, decoupled design decisions are considered. Here, the focus is put on ap-

proaches that provide optimal flexibility for these decisions. The decoupled design decisions

themselves, e.g., for the single design variables, can then be made similarly to the coupled

design decisions discussed in this section.

2.4. Decoupled Design Decisions

This section provides mathematical problem statements that provide optimal flexibility for

decoupled design decisions under absence of uncertainty within the proposed framework.

In order to do so, state-of-the-art approaches from literature that can be used for decoupled

design decisions are reviewed and classified. Furthermore, existing research gaps are dis-

cussed, in particular regarding the consideration of epistemic uncertainty for decoupled design

decisions.
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2.4.1. Decoupled Design Decisions under Absence of Uncertainty
First, completely decoupled design decisions under absence of uncertainty are considered.

Here, there are d designers, each responsible for one design variable, see Section 2.1. In

order to provide flexibility for decoupled design decisions, intervals [xl
i, x

u
i ], i = 1, . . . , d, must

be specified. The selection of the values of the corresponding design variables xi, i = 1, . . . , d,

within these intervals can then be done similarly to the case of coupled design decisions for

d = 1. Note that for an optimization of the design variables in [xl
i, x

u
i ], i = 1, . . . , d, cost func-

tions for the single design variables must be provided. These could be deduced, for example,

from a given system cost function or could be directly defined for the single design variables.

However, as cost functions depend on the designers’ preferences in general, this aspect is

not considered in this thesis. Instead, the focus is put on specifying the intervals [xl
i, x

u
i ],

i = 1, . . . , d, given the complete system solution space Ωc. This is investigated in the following.

For independent-decoupled design decisions, the designers must be able to select the values

of the design variables independently of each other. As stated above, this also means that

the intervals [xl
i, x

u
i ], i = 1, . . . , d, must be independent of each other. In order to guarantee

a permissible system design x ∈ Ωc for xi ∈ [xl
i, x

u
i ], i = 1, . . . , d, a necessary and also

sufficient condition is that the Cartesian product of these intervals is a subset of Ωc. As this

Cartesian product defines a d-dimensional interval [xl, xu] ⊂ Rd, the condition for independent-

decoupled design decisions can be formulated as

[xl, xu] ⊆ Ωc. (2.34)

Multi-dimensional intervals that fulfill Condition (2.34) are called box-shaped system solution

spaces in [140] and are denoted by Ω, i.e., Ω = [xl, xu]. In general, there are many possibilities

to choose box-shaped system solution spaces. Among all these, an optimal box-shaped

system solution space that provides the most flexibility for independent-decoupled design

decisions is preferred. This flexibility can be quantified, for instance, by the volume of [xl, xu],

see [86], for which

vol([xl, xu]) =

d∏
i=1

(xu
i − xl

i) (2.35)

holds. The larger the volume of the box-shaped system solution space, the more options exist

for designers to select the values of the design variables for a system design x ∈ [xl, xu].

Furthermore, as Ω is only a subset of Ωc, usually only a fraction of permissible system designs

can be covered by Ω. This may exclude an optimal system design in terms of a system cost

function c. Hence, a box-shaped system solution space with maximum volume is helpful
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overall. By solving the mathematical optimization problem

maximize
xl,xu

d∏
i=1

(xu
i − xl

i)

subject to [xl, xu] ⊆ Ωc,

(2.36)

an optimal box-shaped system solution space Ω is obtained. Like optimization problem (2.32),

problem (2.36) is a design centering problem in terms of [64]. This becomes clear when for-

mulating a box-shaped system solution space with respect to its center and the distance to the

bounds xl and xu. Furthermore, such a formulation shows the intrinsic property of box-shaped

system solution spaces to provide also flexibility for design decisions under interval-type

uncertainty, which is discussed further below. Approaches to solve problem (2.36) for different

performance functions, which are incorporated in Ωc, are widely discussed in the literature,

see, for example, [58, 66, 95, 113, 140]. In [95, 113], optimal box-shaped system solution

spaces are called maximum volume inner boxes as they form the largest box in terms of

volume inside Ωc.

Note that in general also different flexibility measures for optimizing box-shaped system solu-

tion spaces are conceivable and the choice of a particular measure should depend on the use

case. For example, if the ratio of the single edge lengths shall be restricted, the minimum of

the edge lengths, weighted by different factors, can be optimized, like introduced in [44]. If

more weight shall be put on the size of a single edge length compared to another, Equation

(2.35) can be used as an objective for which the single edge lengths are weighted by different

exponents, see [37]. For reasons of simplicity, the considerations are limited to the volume

in this thesis. Subsequently, an example for computing optimal box-shaped system solution

space with maximum volume is considered. Similar to above, a detailed derivation of the

corresponding solution is not provided for this and the following examples.

Example 12. Given the system design space Ωds = [0, 2] × [0, 1.5] and the performance

function f : R2 → R, x 7→ x1 + 2x2 with threshold fc = 2 from Example 1. The optimal

box-shaped system solution space can be computed as [0, 1]× [0, 0.5] using methods from

Chapter 4. It is visualized in Figure 17.

For dependent-decoupled design decisions, the designers select the values of the design

variables dependently of each other, which is expressed in the dependence of the intervals

[xl
i, x

u
i ], i = 1, . . . , d. For the first decision, intervals can be provided for all design variables.

Then, any but only one designer, i.e., designer i1, i1 ∈ {1, . . . , d}, can select xi1 ∈ [xl
i1
, xu

i1
].

Based on his decision, the intervals for the remaining design variables are updated and

designer i2 can select xi2 ∈ [xl
i2
, xu

i2
] next, i2 ∈ {1, . . . , d}\{i1}. This is continued until a

system design x is yielded.

After the value of the first design variable was selected, it must be ensured that there exists

at least one combination of values of the remaining design variables xi2 , . . . , xid which can
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Figure 17 Optimal box-shaped system solution space [xl, xu] of Example 12.

result in a permissible system design. Thus, [xl
i1
, xu

i1
] must be a subset of the projection

onto the coordinate space of the i1th design variable, i1 ∈ {1, . . . , d}. Here, this projection is

denoted by proji, i = 1, . . . , d, for which a general definition is provided in Section A.1. As i1
can be any element from {1, . . . , d}, intervals [xl

i, x
u
i ], i = 1, . . . , d, can be computed for all

design variables. This means that i1 ∈ {1, . . . , d}, i.e., the design variable for which the first

decision shall be made can be selected afterward. Similar to discussed above, maximizing

these intervals can be used as a flexibility measure for dependent-decoupled design decisions.

Note that in general other measures are conceivable here, too. By solving the mathematical

optimization problems

maximize
xl
i,x

u
i

xu
i − xl

i

subject to [xl
i1
, xu

i1
] ⊆ proji(Ωc),

(2.37)

i = 1, . . . , d, optimal intervals are obtained that provide optimal flexibility for dependent-

decoupled design decisions. For convex Ωc, it holds [xl
i, x

u
i ] = proji(Ωc) with

proji(Ωc) =

[
min
x∈Ωc

xi,max
x∈Ωc

xi

]
, (2.38)

i = 1, . . . , d. Here, the Cartesian product of the intervals [xu
i − xl

i], i = 1, . . . , d forms box-

shaped outer bounds of the complete system solution space. These bounds correspond to the

minimum box that bounds the complete system solution space Ωc and [xl, xu] is called the

minimum volume outer box in [95]. Minimum volume outer boxes are considered in various

fields and approaches that compute solutions are presented, for example, in [62, 95, 102].

After [xl
i, x

u
i ], i = 1, . . . , d, are calculated and xi1 ∈ [xl

i1
, xu

i1
] is selected, this procedure can

be continued until a system design is obtained. In order to do so, the already selected design

variables must be eliminated from Ωc by treating their values as uncontrollable parameters.
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In the following, only the intervals for the first decision are considered. Below, an example to

compute these intervals for the first decision is given.

Example 13. Given the system design space Ωds = [0, 2] × [0, 1.5] and the performance

function f : R2 → R, x 7→ x1 + 2x2 with threshold fc = 2 from Example 1. The box-shaped

outer bounds of the complete system solution space for the first decision can be computed as

[0, 1]× [0, 0.5] using methods from Chapter 4. It is visualized in Figure 18.
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Figure 18 Box-shaped outer bounds of the complete system solution space [xl, xu] for the first decision of Example 13.

Note again that there are various applications of maximum volume inner boxes and maximum

volume outer boxes in literature. Here, they are used to decouple the design decisions. Besides

that, it is described in Section 2.3 how maximum volume inner boxes are used to find a robust

system design under interval-type uncertainty. Another possible application is, for example,

given in [95, 113], in which maximum volume inner boxes and maximum volume outer boxes

are used as an approximation of Ωc, which facilitates the description and visualization of Ωc.

This aspect is taken up again in Section 5.3.

2.4.2. Mixed Approaches for Design Decisions under Absence of Uncertainty
A major shortcoming of using box-shaped system solution spaces for independent-decoupled

design decisions is the loss of solution space, see, e.g., [141]. This states that box-shaped

system solution spaces Ω can get small compared to the complete system solution space

Ωc. In this case, a lot of permissible system designs are not contained in Ω. For dependent-

decoupled design decisions using box-shaped bounds of the complete system solution space,

it can be argued that the development process is protracted as d subsequent decision must be

made and hence, corresponding intervals must be computed d times. This motivates mixed

approaches for design decisions which use combinations of coupled, independent-decoupled,
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and dependent-decoupled approaches. As all mixed approaches still contain a decoupling of

the design decisions, they provide flexibility for decoupled design decisions, too.

In [38], an approach that mixes coupled and independent-decoupled decisions is presented.

If d is an even number, there are d
2 designers, each responsible for selecting two design

variables from a corresponding set, independent of the selection of the designers. Hence,

a coupled decision is required for the design variables xi and xi+1 for which (xi, xi+1) is

selected from a set Ωi,i+1 yielding (xi, xi+1) ∈ Ωi,i+1, i = 1, 3, 5, . . . , d− 1. In the case that d

is an odd number, there are d
2 + 1 designers and the design variable xd must be selected from

a one-dimensional set Ωd. Again, these coupled design decisions can be made according to

Section 2.3. In order to decouple the decisions between the single design variable pairs, the

condition Ω1,2 × · · · × Ωd−1,d ⊆ Ωc must be always ensured to obtain a permissible system

design x ∈ Ωc for even d. Then, Ω1,2 × · · · × Ωd−1,d is a system solution space inside the

complete system solution space. Similar to box-shaped system solution spaces, the flexibility

for decoupled design decisions is optimized by maximizing the volume of Ω1,2 × · · · × Ωd−1,d.

The corresponding optimization problem reads

maximize
Ω1,2,...,Ωd−1,d

vol(Ω1,2 × · · · × Ωd−1,d)

subject to Ω1,2 × · · · × Ωd−1,d ⊆ Ωc.

(2.39)

for even d. Approaches that solve problem (2.39) numerically are presented in [37, 38, 63] and

an example is given below. In [21], this concept is extended by allowing couplings of arbitrary

numbers of design variables.

Example 14. Given the system design space Ωds = [0, 1.5]3 and the performance function

f : R3 → R, x 7→ −3x1 − 2x2 − 3x3 with threshold fc = −9 from Example 2. The optimal

system solution space Ω1,2 ×Ω3 can be computed using the methods mentioned above or the

corresponding methods from Chapter 4. It is visualized in Figure 19.

In [129], an approach that mixes independent-decoupled and dependent-decoupled decisions

is presented. Here, the design variables are divided into early decision variables collected in

xa and late decision variables collected in xb, where x = (xa, xb) holds. First, the values of

the early decision variables are selected independently of each other. In order to ensure that

there is at least one permissible system design after the values of the early decision variables

are selected, xa must be located in the projection of the complete system solution space Ωc

onto the coordinate space of the early decision variables. This projection is denoted by proja.

Within proja(Ωc), any box [xl
a, x

u
a ], called box-shaped solution-compensation space in [129],

provides flexibility for independent-decoupled design decisions regarding the early decision

variables. In order to optimize flexibility for these decisions, a maximum volume box-shaped
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Figure 19 Optimal system solution space Ω1,2 × Ω3 for Example 14.

solution-compensation space is sought. The corresponding optimization problem reads

maximize
xl

a,x
u
a

vol([xl
a, x

u
a ])

subject to [xl
a, x

u
a ] ⊆ proja(Ωc).

(2.40)

Approaches that solve problem (2.40) numerically are presented in [128, 129] and an example

is given in the following. Compared to dependent-decoupled design decisions presented in

Section 2.4, this approach fixes a priori, which design variables must be specified first, i.e., the

design variables collected in xa. Thus, the design variables in xb can be neglected for the first

decision.

Example 15. Given the system design space Ωds = [0, 1.5]3 and the performance function

f : R3 → R, x 7→ −3x1 − 2x2 − 3x3 with threshold fc = −9 from Example 2. The two

design variables x1 and x2 are chosen to be the early decision variables, i.e., xa = (x1, x2),

and x3 is chosen to be the late decision variable, i.e., xb = x3. The optimal box-shaped

solution-compensation space of the early decision variables [xl
a, x

u
a ] can be computed using

the methods mentioned above or the corresponding methods from Chapter 4. It is visualized

in Figure 20.

Furthermore, there are also mixed approaches in literature which do not use optimization

strategies to provide flexibility for decoupled design decisions. In [82], for example, an analysis

of the system performance functions is used to define early decision variables, collected in xa.

When being fixed, these provide automatically a mix of coupled and independent-decoupled
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Figure 20 Optimal box-shaped solution-compensation space [xl
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a ] of Example 15.

design decisions for late decision variables, collected in xb. By selecting the values of the

design variables in xa, the design decisions for the values of the variables in xb become

partially decoupled. Note that because of selecting the values of the early decision variables a

priori, dependent-decoupled design decisions are involved here as well.

Overall, the grouping of design variables between which the design decisions shall be de-

coupled cannot generally be prearranged in the presented mixed approaches. In particular,

this is the case for the approach of [82]. However, such a grouping of design variables is

often desired in systems design as a system is usually composed of components, which

comprise specific design variables, enabling the deployment of component designers. Hence,

extensions of the mixed approaches from [38] and [129] which incorporate the composition of

the underlying system are proposed in the next chapter. This allows component designers to

make design decisions that are both decoupled between the single components and coupled

for each component itself.

2.4.3. Decoupled Design Decisions under Uncertainty
The approaches for decoupled design decisions of this section can also be used for design

decisions under uncertainty. The following considerations refer to those approaches which

completely decouple the decisions for the single design variables, i.e., in which intervals

[xl
i, x

u
i ], i = 1, . . . , d, are computed. Nevertheless, the considerations can also be transferred

one-to-one to the mixed approaches for decoupled design decisions.

First, uncertainties in controllable variables are considered, assuming there is complete

knowledge about the uncertainty magnitudes. In the case of independent-decoupled design

decisions, the values of the target design variables x̌i can be selected such that the realized

values of the design variables xi are contained in [xl
i, x

u
i ] if the uncertainty magnitudes are

small enough for i = 1, . . . , d. For interval-type uncertainty, this can be ensured in the worst-
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or best-case and for fuzzy-type uncertainty, this can be ensured with a particular necessity or

possibility. The same holds for the target design variable x̌i1 , i1 ∈ {1, . . . , d} in the case of

dependent-decoupled design decisions. The decision to select the value of a target design

variable can be made according to the approach for coupled design decisions, presented in

Section 2.3. Note however that this is not always guaranteed for the subsequently selected

design variable xi2 , i2 ∈ {1, . . . , d}\{i1}.
The larger the uncertainty magnitudes in controllable variables for worst-case scenarios or

large necessities, the more centered in [xl
i, x

u
i ], i = 1, . . . , d, must the values of the target

design variables be chosen for independent-decoupled design decisions to ensure a permis-

sible design. The centers of [xl
i, x

u
i ] are the target design variables in [xl

i, x
u
i ] which tolerate

the largest uncertainties in controllable variables, compare Section 2.3, i = 1, . . . , d. Thus,

the values of these centers should always be chosen for the target design variables in case

of independent-decoupled design decisions under unknown uncertainty. However, if only the

uncertainty magnitude of one design variable is large enough such that the realized values of

the design variable is outside the corresponding interval, i.e., x /∈ [xl
i, x

u
i ] for i ∈ {1, . . . , d}, the

whole system design is located outside the box-shaped system solution space, i.e., x /∈ [xl, xu].

This means that there is a chance that the system design is non-permissible. Especially, if one

of the intervals forming the box-shaped system solution space is small compared to the others,

the chance of obtaining a non-permissible system design increases, when there are compa-

rably large uncertainty magnitudes in the design variables. This was already discussed in

Section 2.3. This problem could be avoided when using problem (2.32) to compute box-shaped

system solution spaces as proposed in [43]. For small uncertainty magnitudes, however, this

would lead to minor flexibility for decoupled design decisions. Similar arguments can be

presented for dependent-decoupled design decisions in which the target design variables are

selected one after the other.

Uncertainties in uncontrollable parameters are more difficult to handle with the presented

approaches than uncertainties in controllable variables as the intervals [xl
i, x

u
i ], i = 1, . . . , d,

do not incorporate any information about the uncontrollable parameters in p. Furthermore,

the intervals are computed for fixed p ∈ Rd, i.e., for nominal values p̌ ∈ Rd if uncertainty is

present. If p is uncertain, the realized system design might be non-permissible, although it is

within the complete system solution space Ωc computed with p̌ ∈ Rd. It might be assumed that

the design variables near the center of [xl
i, x

u
i ] tolerate larger uncertainties in uncontrollable

parameters than design variables near the bounds of [xl
i, x

u
i ], i = 1, . . . , d. However, there is

no guarantee for this, as the effects of uncertain p on Ωc are not a priori clear.

Besides being able to treat uncertainties in controllable variables, uncertainties in the con-

straints and also the system cost function which are not due to uncertainties in controllable

variables or uncontrollable parameters can be efficiently treated a posteriori if the corre-

sponding uncertain function depends on only one design variable, e.g., fj(x) = fj(xi) or

c(x) = c(xi) for i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}. For a change in such a constraint which only

depends on xi, i ∈ {1, . . . , d}, the corresponding interval [xl
i, x

u
i ] can be updated immedi-
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ately for both independent-decoupled and dependent-decoupled design decisions and so the

selection of the corresponding design variable. The same holds for the introduction of new

constraints or the cancellation of old constraints. Note that in these cases, also uncertainties

in uncontrollable parameters can be treated efficiently.

As stated above, uncertainties in the cost function and the constraints are not further con-

sidered in this thesis. Hence, the considerations are limited to uncertainties in controllable

variables or uncontrollable parameters in the following. In order to establish an uncertainty

consideration in uncontrollable parameters and to balance uncertainty and flexibility, new

strategies to provide optimal flexibility for decoupled design decisions which include a-priori

uncertainty considerations are presented in the next chapter.
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3. METHODOLOGY: Component Solution Spaces
(CSS)

This chapter proposes a new methodology for decoupled design decisions in systems engineer-

ing that is geared towards the component structure. For this purpose, the hierarchical levels of

a system are investigated in more detail and it is discussed how flexibility for decoupled design

decisions, i.e., component design can be provided. In order to obtain optimal flexibility for

component design, optimal component solution spaces are proposed for which different prob-

lem statements for an independent and dependent decoupling are considered. Furthermore,

it is distinguished between box-shaped and arbitrarily-shaped component solution spaces

which comprise different geometric shapes for the component solution spaces. Moreover, the

methodology is extended by integrating interval- and fuzzy type uncertainties in controllable

variables and uncontrollable parameters.

3.1. Definitions and Assumptions

This section shows how the definitions of mathematical design models can be extended for

systems that are composed of components, i.e., two-level systems. Furthermore, extensions

to multi-level systems are considered, and it is discussed, how flexibility for decoupled design

decisions between the components can be provided using the proposed definitions and as-

sumptions. Note that all system examples of the previous chapter may be understood as a

two- or a multi-level system, using the proposed extensions.

3.1.1. Two-Level Systems
In this thesis, systems which are composed of n components are considered, n ≤ d. The

following definitions are extensions of the definitions for systems design given in Section

2.1. Recall that there is a system design x ∈ Rd. It is assumed that each design variable

xi, i = 1, . . . , d, belongs to one of the components, i.e., there is no design variable that is

shared between two components. In general, a component can, for example, be a structural

component or anything else that can be described by a comprehensible grouping of design

variables.

The kth component comprises dk design variables xki ∈ R, i = 1, . . . , dk. Note here that

the superscript k states an upper index instead of an exponent. This is used throughout this

thesis. The design variables xki ∈ R, i = 1, . . . , dk, are collected in a vector xk ∈ Rdk named

component design of the kth component and it holds
∑n

k=1 d
k = d. Thus, the kth component

has dk degrees of freedom which sum up to the d degrees of freedom of the system. When

all component designs are specified, a system design is obtained. For the system design, it
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holds

x = (x1, . . . , xn) (3.1)

where the entries of x can be expressed by the entries of xk via

x(d1+···+dk−1+i) = xki , (3.2)

i = 1, . . . , dk, k = 1, . . . , n. In Figure 21, such a system is visualized.

system
x = (x1, . . . , xn)

1st component
x1

· · · nth component
xn

Figure 21 A system composed of n components. The design variables are grouped as system design at the system level and
as component designs at the component level.

This two-level hierarchy, consisting of a system and component level, is the reason why the

system is also called a two-level system. In Figure 21, these different levels are emphasized.

The following example shows how component designs form a system design and vice versa.

Example 16. Given a system composed of two components. The component design of the

first component contains two design variables, i.e., d1 = 2, and is selected as x1 = (2, 1).

The component design of the second component contains one design variable, i.e., d2 = 1,

and is selected as x2 = 1.5. Therefore, the system design is x = (2, 1, 1.5) with d = 3. The

component designs are visualized together with the corresponding system design in Figure

22.

As all component designs together form a system design, the system performance functions

can be used to map the component designs to the system responses. Besides the m system

performance functions, mk component performance functions gkj , j = 1, . . . ,mk can be

defined additionally for every component, k = 1, . . . , n. They map each component design to

component responses ykj ∈ R, j = 1, . . . ,mk, via

gk : Rd
k × Rq 7→ Rm

k
, (xk, p) 7→ yk = gk(xk, p) (3.3)

where gk = (gk1 , . . . g
k
mk

) and yk = (yk1 , . . . , y
k
mk

) holds. Their hierarchy within the system is

visualized in Figure 23.

Similar to the system responses, the component responses might also be restricted to subsets
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2nd component

x3
0 0.5 1 1.5 2

Figure 22 Component designs and corresponding system design of Example 16.

system
z = f(x, p)

1st component
y1 = g1(x1, p)

· · · nth component
yn = gn(xn, p)

Figure 23 Hierarchy of the responses and performance functions with system responses and system performance functions at
the system level and component responses and component performance functions at the component level.

of R. Moreover, gk, k = 1, . . . , n, are defined such that they may depend on all uncontrollable

parameters pl, l = 1, . . . , q, defined in Section 2.1. However, this does not need to be the

case and corresponding uncontrollable parameters can also be excluded in the definition of

component performance functions. If uncontrollable parameters are not considered explicitly

in a problem statement, the corresponding argument in the component performance functions

is neglected and it is written yk = gk(xk), i.e., gk = gk(·, p) for p ∈ Rq.
In contrast to system performance functions, which are given by the system design model and

usually have a physical meaning, component performance functions are not always predefined.

In this thesis, they are mainly used as a helpful theoretical construct that may lack a physical

meaning. Thus, the relation between yk, k = 1, . . . , n, and z is not a priori clear. Nevertheless,
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a simple relation like z = y1 + · · ·+ yn can be established in some cases, i.e.,

f(x, p) = g1(x1, p) + · · ·+ gn(xn, p) (3.4)

with mk = m, k = 1, . . . ,m. This can be done, for example, for linear system performance

functions. In general, however, a property like Equation (3.4) cannot be assumed.

The same holds for component cost functions ck, which can be defined as

ck : Rd
k × Rq → R, (xk, p) 7→ ck(xk, p), (3.5)

k = 1, . . . , n. Again, if uncontrollable parameters are not considered explicitly in a problem

statement, the corresponding argument in the component cost functions is neglected and

it is ck = ck(·, p) for p ∈ Rq. As discussed in Section 2.4, however, cost functions are not

considered explicitly in the following as they are not required to decouple the design decisions.

Rather, component cost functions help to optimize component designs after the decoupling.

Due to constraints on design variables, the design variables are bounded by lower and

upper bounds. At the component level, it holds xl,k
ds,i ≤ xki ≤ xu,k

ds,i or xki ∈ [xl,k
ds,i, x

u,k
ds,i],

i = 1, . . . , dk, k = 1, . . . , n. Therefore, it is in vector notation xl,k
ds ≤ xk ≤ xu,k

ds component-

wise or xk ∈ [xl,k
ds , x

u,k
ds ]. Each dk-dimensional interval [xl,k

ds , x
u,k
ds ] is also called component

design space of the kth component and is denoted by Ωk
ds, i.e.,

Ωk
ds = [xl,k

ds , x
u,k
ds ], (3.6)

k = 1, . . . , n. The Cartesian product of the component design spaces forms the system design

space.

In contrast to system performance thresholds fc(p) ∈ Rm, which are given for the system

responses z ∈ Rm, it is assumed that there are no a-priori component performance thresholds

gkc (p) ∈ Rmk for the component responses, p ∈ Rq. Nevertheless, requirements affecting

single components can always be formulated as system requirements for which the system

performance functions only depend on the design variables of the corresponding component.

3.1.2. Multi-Level Systems
As discussed in Chapter 1, each component can be considered as a system itself. Thus, the

component designs of the two-level system may depend on further variables, i.e., lower-level

design variables. Again, these lower-level design variables can be assigned to lower-level

components for which it is assumed that no lower-level design variable belongs to more than

one lower-level component. The lower-level component designs can be collected in lower-level

system designs which are mapped to the original component designs by lower-level system
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performance functions. Hence, the original component designs form the system responses of

the corresponding subsystems.

This can be extended arbitrarily yielding a multi-level system with nhl hierarchical levels.

The structure of this multi-level system can be described by a rooted tree, see, e.g., [115]

for more information on rooted trees. An example of a multi-level system can be found in

Section 5.1. In the following, the relations between the single entities of multi-level systems

are considered mathematically for which a notation scheme is introduced. Furthermore, it

is discussed how flexibility for decoupled design decisions for a particular level can be provided.

First, the structure of a multi-level system is investigated further. The uppermost system

is located at level nhl, their components at level nhl − 1 forming systems themselves, the

components of these systems at level nhl − 2, and so on. There is a unique path along the

associated rooted tree from the system at level nhl to each component of a system at level ihl

which can be described by the vector (knhl
, . . . , kihl

) ∈ Nnhl−ihl+1, ihl ∈ {2, . . . , nhl}. Here,

the first entry refers to the knhl
th component of the system at level nhl, the second entry to

the knhl−1
th component of the system at level nhl − 1 which belongs to the knhl

th component

of the system at level nhl, and so on. Then, a component design of a system at level ihl

can be denoted as x(knhl
,...,kihl

) where the index states the mentioned path. Accordingly, the

system performance functions of this system are denoted by f (knhl
,...,kihl+1) and their system

responses by z(knhl
,...,kihl+1), ihl ∈ {2, . . . , nhl − 1}. For ihl = nhl, no upper index is used.

Neglecting uncontrollable parameters for ihl ∈ {2, . . . , nhl − 1}, it holds

z(knhl
,...,kihl+1) = f(knhl

,...,kihl+1)
(
x(knhl

,...,kihl+1,1), . . . , x(knhl
,...,kihl+1,nnhl)

)
. (3.7)

and furthermore

x(knhl
,...,kihl+1) = z(knhl

,...,kihl+1) (3.8)

where the lower-level responses correspond to the component designs of the consecutive level

like discussed above. Note that the entire multi-level system is defined without component

performance functions. These could be additionally introduced for every component. In Figure

24, the defined relations are visualized.

Moreover, note that the multi-level system presented here is a simplified multi-level system. At

each level, only interactions between components belonging to one subsystem are assumed.

Interactions between different levels are also not defined directly but could be established if

there is a common path along the rooted tree to the responses of interest.

Furthermore, the following further assumptions are made for multi-level systems here:

• The multi-level system model is built up from the top to the bottom, i.e., the system model

of the system at level nhl is defined before lower-level system models are considered.

Besides assigning design variables, system performance functions, and system responses
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system
at level nhl(
x1, . . . , xn

)

1st component
at level nhl − 1

x1 = f1
(
x(1,1), . . . , x(1,n′)

)
system

at level nhl − 1(
x(1,1), . . . , x(1,n′)

)

1st component
at level nhl − 2

x(1,1)

· · ·

· · ·

· · ·

n′
th component

at level nhl − 2

x(1,n′) = f (1,n′)
(
x(1,n′,1), . . . , x(1,n′,n′′)

)
system

at level nhl − 2(
x(1,n′,1), . . . , x(1,n′,n′′)

)

1st component
at level nhl − 3

x(1,n′,1)

· · ·

· · ·

· · ·

n′′
th component

at level nhl − 3

x(1,n′,n′′)

· · ·

· · ·

· · ·

nth component
at level nhl − 1

xn

· · ·

· · ·

Figure 24 A multi-level system described by a rooted tree with corresponding component designs, system designs, system
performance functions, and system responses. Here, n denotes the number of components of the system at level nhl, n′ the
number of components of the system at level nhl − 1 with the path 1, and n′′ the number of components of the system at level
nhl − 2 with the path (1, n′). Note that the notations n′ and n′′ are chosen for reasons of simplicity. In general, notations for
the number of components that indicate the path to their corresponding system could be used, too.

to system quantities, this includes the decomposition of the system into components which

are located at the next lower level.

• System performance requirements are only defined for the system at level nhl. Recall

that possible system performance requirements for lower-level systems can always be

expressed in terms of system performance requirements for the system at level nhl.

• It is not necessary that all levels of the multi-level system are completely defined in the

early design phase. Here, only the system models of the upper levels might be defined,

and lower-level system models might be lacking.
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• For every defined system model, system and component design spaces are available. If

these design spaces are not known a priori and lower-level system models exist, they can

be derived from the range of the corresponding system performance functions. If lower-level

system models do not exist, they must be assumed.

• All system and component designs within their design spaces can be designed, i.e., re-

alized. Furthermore, the system responses of a lower-level system are assumed to be

approximately equally distributed in the corresponding component design space. This

avoids an a-priori preference for any component design at the corresponding level.

As it is assumed that the system performance requirements and the system design space

are given for level nhl, the complete system solution space for level nhl can be stated. Then,

different types of design decisions are conceivable to obtain a permissible system design

at level nhl, i.e., a system design within the corresponding complete system solution space.

For example, coupled design decisions can be made at level nhl yielding component designs

at level nhl − 1. As these component designs depend on lower-level design variables, the

values of the lower-level design variables must be selected such that they are mapped onto

the component designs by their corresponding system performance functions. In doing so,

usually no flexibility in selecting the values of the lower-level design variables remains. Fur-

thermore, coupled design decisions can be made directly for lower-level design variables at

level ihl + 1, ihl ∈ {1, . . . , nhl − 1}. For this purpose, system performance functions that map

these lower-level design variables to the system responses at the level nhl are required. These

can be obtained by a function composition of the corresponding upper system performance

functions if their system models are defined. In this context, all upper-level systems are

reduced to a two-level system. Note that the total number of components at level ihl remains

here, ihl ∈ {1, . . . , nhl − 1}.
Accordingly, the design decisions could be either decoupled between the components at level

nhl − 1 first or decoupled between the components at level ihl, ihl ∈ {1, . . . , nhl − 1} imme-

diately. If flexibility for component design at level (nhl − 1) is provided, the design decisions

can also be made for components at level (nhl − 2) as the component designs at level nhl − 1

form responses of the design variables at level nhl − 2. This decoupling can be continued

until level ihl which yields flexibility in component design at this level, ihl ∈ {1, . . . , nhl − 1}.
Moreover, by reducing the upper-level systems as described above, flexibility for component

design at level ihl can also be directly provided, ihl ∈ {1, . . . , nhl − 1}. Note again that all

relevant system models must be defined here.

In the following, decoupled design decisions between components are further investigated.

As the focus on a multi-level system can always be put temporarily on two levels when con-

sidering design decisions, two-level systems are taken into account exclusively for which the

corresponding notations from above are used.
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3.1.3. Decoupled Designs Decision between Components
Instead of having one system designer who makes design decisions for a system design

x ∈ Rd, there are n component designers for decoupled design decisions between the

components. Here, the component designers select their corresponding component designs

xk ∈ Rdk , k = 1, . . . , n. Regarding the classification presented in Section 2.1, decoupled

design decisions between the components correspond to a mixed approach of decoupled and

coupled design decisions. In contrast to this, the mixed approaches presented in Section 2.4

are not geared towards the component structure of the system. For an efficient approach,

however, the design process must be decomposed by enabling separate teams to design

components with maximum flexibility, see [127]. The decomposition methodology proposed in

this thesis can also be viewed as a hybrid approach for decoupled design decisions, as it takes

the hierarchical structure of the system into account. Note that there are two extreme cases:

one with n = 1 for which the design decisions for the system are made completely coupled,

see Section 2.3, and one with n = d for which the design decisions are made completely

decoupled, see Section 2.4.

For coupled design decisions, the system designer selects x from the complete system so-

lution space Ωc ⊂ Rd in order to obtain a permissible design. After decomposing these

coupled design decisions into decoupled design decisions between components, each of the

n component designers is responsible for selecting xk from a set Ωk ⊂ Rdk for k = 1, . . . , n.

The sets Ωk, k = 1, . . . , n, are called component solution spaces, subsequently also abbre-

viated as CSS. The goal of the remaining thesis is to consider optimal CSS which provide

optimal flexibility for decoupled design decisions at the component level The idea of decou-

pling the design decision from the system level to the component level is illustrated in Figure 25.

DM

System designer
selects x ∈ Ωc

DM

Component designer 1
selects x1 ∈ Ω1

...

DM

Component designer n
selects xn ∈ Ωn

Figure 25 Decoupling of the design decisions from the system level with one system designer (left) to the component level
with n component designers (right).

If xk ∈ Ωk holds, xk is said to be permissible, otherwise, it is said to be non-permissible. The

simplest way to obtain component solution spaces is to define lower bounds xl,k
i and upper

bounds xu,k
i for the design variables of each component, i = 1, . . . , dk, k = 1, . . . , n. In vector
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notation, it is xl,k = (xl,k
1 , . . . , xl,k

dk
) and xu,k = (xu,k

1 , . . . , xu,k
dk

). Then, Ωk is formed by the

dk-dimensional interval [xl,k, xu,k], i.e.,

Ωk = [xl,k, xu,k] (3.9)

where Ωk ⊆ Ωk
ds must be guaranteed for k = 1, . . . , n. This type of component solution spaces

is also referred to as box-shaped CSS in the following. Note that this approach completely

decouples the design decisions for each component, yielding independent-decoupled instead

of coupled design decisions for the single components.

Another approach to obtain component solution spaces Ωk, k = 1, . . . , n, is to define com-

ponent performance requirements for each component by selecting performance thresholds

gkc,j(p) for component performance functions gkj , j = 1, . . . ,mk, which can be either given

or defined, p ∈ Rq. This means gkj (xk, p) ≤ gkc,j(p), j = 1, . . . ,mk, or in vector notation

gk(xk, p) ≤ gkc (p), p ∈ Rq, k = 1, . . . , n. Thus, it is

Ωk = {xk ∈ Ωk
ds | gk(x, p) ≤ gkc (p)} (3.10)

for p ∈ Rq and k = 1, . . . , n. If uncontrollable parameters are not considered explicitly in a

problem statement, the corresponding argument in the system performance functions is often

neglected, i.e., gkc = gkc (p) for p ∈ Rq. Note that the definition for CSS given in Equation (3.9)

is a special case of the definition given in Equation (3.10) with

gk(xk) =



−1 0

. . .

0 −1

1 0

. . .

0 1



xk ≤

 −x
l,k

xu,k

 = gkc . (3.11)

The question, how to choose xl,k and xu,k for Equation (3.9) or gkc (p), including gk(·, p),
for Equation (3.10), p ∈ Rq, k = 1, . . . , n, is addressed in the next sections. For variable

gk(·, p), p ∈ Rq, k = 1, . . . , n, the type of CSS is also referred to as arbitrarily-shaped

CSS. Furthermore, it is distinguished between independent CSS that provide flexibility

for independent-decoupled design decisions and dependent CSS that provide flexibility for

dependent-decoupled design decisions. Note that the subsequent investigations are made for

fixed p ∈ Rq first. An overview of where the corresponding problem statements are introduced

is given in Table1.
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Table 1 Overview of the proposed methodology for CSS under absence of uncertainty.

CSS independent dependent

box-shaped Subsection 3.2.2 Subsection 3.3.2

arbitrarily-shaped Subsection 3.2.3 Subsection 3.3.3

3.2. Independent CSS

This section considers mathematical problem statements for computing independent compo-

nent solution spaces that provide optimal flexibility for independent-decoupled design decisions

between the components. It is distinguished between box-shaped and arbitrarily-shaped in-

dependent CSS which comprise different geometric shapes. The corresponding problem

statements were already published in [27] by the author of this thesis.

3.2.1. Problem Statement
In order to provide flexibility for independent-decoupled design decisions between the compo-

nents, component solution spaces Ωk, k = 1, . . . , n are required for which every component

designer can select a permissible component design independently of the other component

designers. Thus, for any selected component designs xk ∈ Ωk, k = 1, . . . , n, it must be

guaranteed that the resulting system design is contained within the complete system solution

space, i.e., (x1, . . . , xn) ∈ Ωc. The set of all system designs that can be realized by selecting

only permissible component designs is built by the Cartesian product of the component solution

spaces. It is denoted by Ω ⊂ Rd with

Ω = Ω1 × · · · × Ωn. (3.12)

If Ω is a subset of Ωc, i.e.,

Ω ⊆ Ωc, (3.13)

the resulting system design for any selected combination of permissible component designs is

a permissible system design. In this case, Ω is also called a system solution space. Condition

(3.13) is a necessary and sufficient condition to obtain flexibility for independent-decoupled

design decisions between the components. Therefore, the sets Ωk, k = 1, . . . , n, are called

independent component solution spaces. In Figure 26, their relationship is shown from a

system perspective.

In general, there are multiple combinations of sets for independent CSS that fulfill condition

(3.13). Among these, optimal component solution spaces which provide the most flexibility for

independent-decoupled design decisions are preferred. Following up the discussion in Section

2.4, this flexibility for component design can be quantified by the volume of Ω1 × · · · × Ωn, i.e.,
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system
Ω1 × · · · × Ωn ⊆ Ωc

1st component
Ω1

· · · nth component
Ωn

Figure 26 Independent component solution spaces at the component level and their corresponding system solution space at
the system level.

vol(Ω1 × · · · × Ωn). Thus, optimal independent CSS can be computed by searching for the

CSS with maximum volume for which condition (3.13) is ensured. This can be expressed as a

mathematical optimization problem which reads

maximize
Ω1,...,Ωn

vol(Ω1 × · · · × Ωn)

subject to Ω1 × · · · × Ωn ⊆ Ωc.

(3.14)

Note again that in general other measures to optimize independent CSS are conceivable as

well. Following up the discussion in Section 2.4, it would be also possible to optimize the

minimum volume of Ωk, weighted by a factor for k = 1, . . . , n, or
∏n
k=1 vol(Ωk), where the

single volumes are weighted by different exponents, for example.

In order to calculate the volume of Ω1 × · · · × Ωn, it must be guaranteed that Ωk ⊂ Rdk ,

k = 1, . . . , n, are Borel sets, compare [21]. If no restrictions on the geometric shapes of the

component solution spaces are put, the CSS can take arbitrary shapes. As discussed above,

they are therefore called arbitrarily-shaped CSS. Opposite to that, the geometric shapes of

the component solution spaces may be predefined. In this case, an additional optimization

constraint for the geometric shape must be introduced in problem (3.14).

Overall, the main challenge for solving problem (3.14) is that the optimization variables are

sets instead of elements in real coordinate space. An approach to tackle this problem can

be to transform or simplify the problem to a problem with real-valued optimization variables.

This is discussed subsequently, and further simplifications are given in Section 4.2. Then, the

obtained optimization problem belongs to the class of design centering problems, defined in

[64].

After optimal independent CSS are computed, every component designer can select a compo-

nent design within the corresponding CSS independently of the others. The design decision for

a particular xk ∈ Ωk can be made as discussed in Section 2.3 using component cost functions.

The associated workflow is visualized in Figure 27.

An important property of independent CSS is that after obtaining a system design, changes

in the single component designs are still allowed as long as xk ∈ Ωk can be guaranteed
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START

CSS
Ω1, . . . ,Ωn

DM

Comp. designer 1
selects x1 ∈ Ω1

...

DM

Comp. designer n
selects xn ∈ Ωn

END

system design
(x1, . . . , xn) ∈ Ωc

time

Figure 27 Workflow to obtain a system design based on independent CSS.

for k = 1, . . . , n. This helps, for example, to treat efficiently uncertainties in the component

performance functions or the component cost function that may occur later in the design

process or if new requirements which affect only single components are introduced. Thus, a

new component design can be selected by the corresponding component designer using the

new component cost function and including the new constraints into the component solution

spaces. The uncertainties that occur in the mentioned cases all belong to the class of model

uncertainties, compare Section 2.2. Uncertainties concerning the system performance func-

tions or possible system cost functions are more difficult to treat with CSS.

Due to the flexibility achieved by maximizing the volume of the system solution space Ω dealing

with uncertainties in controllable design variables and to some extent also with uncertainties in

uncontrollable parameters is possible, like discussed in Section 2.4. The larger the volume of

Ω, the more possibilities exist that the realized component designs xk, k = 1, . . . , n, form a

system design x ∈ Ω which fulfills all constraints. However, there are more efficient strategies

to treat these kinds of uncertainties with CSS. These are discussed in Sections 3.4 and 3.5.

Below, independent box-shaped and arbitrarily-shaped CSS are considered.

3.2.2. Box-Shaped CSS
Box-shaped CSS, which are represented by Equation (3.9), are CSS with predefined geometric

shapes. In general, CSS with predefined geometric shapes can be described using Equation

(3.10) for Ωk and predefining the component performance functions gk, possibly up to some

parametrization, k = 1, . . . , n. The definition of box-shaped CSS can be seen as a special

case of this approach, compare Equation (3.11). In [22], CSS with predefined shape are
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discussed using the example of ellipsoid-shaped CSS and compared to box-shaped CSS

by the author of this thesis. Subsequently, the focus is only put on box-shaped component

solution spaces.

Recall that box-shaped CSS Ωk are dk-dimensional-intervals [xl,k, xu,k], k = 1, . . . , n. They

can be uniquely described by their lower bounds xl,k and their upper bounds xu,k. The volume

of each [xl,k, xu,k] is the product of the dk-dimensional interval’s edge lengths xu,k
i − xl,k

i ,

i = 1, . . . , dk, i.e.,

vol([xl,k, xu,k]) =

dk∏
i=1

xu,k
i − x

l,k
i . (3.15)

Multiplication of the volumes of Ωk, k = 1, . . . , n, yields the volume of the Cartesian product

Ω1 × · · · × Ωn. Based on problem (3.14), the mathematical optimization problem to compute

optimal box-shaped independent CSS then reads

maximize
xl,1,xu,1,...,xl,n,xu,n

n∏
k=1

dk∏
i=1

(xu,k
i − x

l,k
i )

subject to [xl,1, xu,1]× · · · × [xl,n, xu,n] ⊆ Ωc

(3.16)

where the optimization variables are in real coordinate space. Note again that using box-

shaped independent CSS corresponds to a fully independent-decoupled design decision

approach, as also the decisions for each component design are decoupled independently.

This becomes clear when noticing that the Cartesian product of the dk-dimensional intervals is

a d-dimensional interval. As further the objective function of problem (3.16) is the product of

the edge lengths of this d-dimensional interval, problem (3.16) is equivalent to problem (2.36).

As stated in Section 2.4, there are different approaches in the literature to solve this problem.

In general, each of these approaches is useful for specific types of system performance

functions which are used to describe the complete system solution space Ωc. In Section 4.2,

a simplification of problem (3.16) is presented for linear performance functions. Below, an

example of optimal box-shaped independent CSS is regarded. As the focus of this chapter is

put on presenting different problem statements, a derivation of the corresponding solution is

not provided for this and the following examples. Nevertheless, all subsequent solutions can

be derived using the methods of Chapter 4.

Example 17. Given a system composed of two components. The component design of the

first component contains two design variables, i.e., d1 = 2, and the component design of

the second component contains one design variable, i.e., d2 = 1, compare Example 16.

Furthermore, the system design space is given by Ωds = [0, 1.5]3 and a performance function

by f : R3 → R, x 7→ −3x1 − 2x2 − 3x3 with threshold fc = −9, known from Example 2.
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Optimal box-shaped independent CSS can be computed as Ω1 = [1.1667, 1.5]× [1, 1.5] and

Ω2 = [1.1667, 1.5], see Example 12. They are visualized in Figure 28.
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Figure 28 Optimal box-shaped independent CSS of Example 17 at the component level and their Cartesian product within the
complete system solution space at the system level.

Using dk-dimensional intervals to compute optimal independent CSS bears some advantages.

One advantage is that the computation of their volume is simple, compare Equation (3.15).

This is useful for solving problem (3.16) efficiently. Another advantage is that box-shaped CSS

can easily be visualized by showing the one-dimensional intervals that build up the box-shaped

CSS. This is even possible for high dimensions. However, a major drawback of box-shaped

solution spaces is that their volume can be very small compared to the volume of Ωc, like

discussed above. This drawback can be improved by using arbitrarily-shaped CSS.

3.2.3. Arbitrarily-Shaped CSS
Equation (3.10) can also be used to describe arbitrarily-shaped CSS. In contrast to CSS with a

predefined geometric shape, the component performance functions gk, which are used for the

definition of Ωk, are not predefined but optimized together with the component performance

thresholds gkc , k = 1, . . . , n. Here, the optimization variables for gk are usually not in real

coordinate space. This makes the computation of arbitrarily-shaped CSS more complex than

the computation of CSS with a predefined geometric shape.
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Nevertheless, there are some cases for which optimal component performance functions can

be deduced directly. This applies, for example, to cases for which Equation (3.4) holds for the

system performance functions f , compare [21]. The following considerations will be limited to

this case. Though, more complex cases are conceivable in general.

Equation (3.4) characterizes system performance functions fj that can be decomposed into a

sum of component performance functions gkj , k = 1, . . . , n, j = 1, . . . ,m. These component

performance functions are optimal, and the remaining optimization variables are the entries of

the component performance thresholds, cf. Section 4.2. To express the dependency of Ωk on

gkc then, the notation Ωk(gkc ) is used for k = 1, . . . , n. The sum of the optimization variables

must be smaller than or equal to the system performance threshold fc to ensure that condition

(3.13) is fulfilled, i.e.,

n∑
k=1

gkc ≤ fc. (3.17)

Hence, if the system performance functions f are a sum of component performance functions

gk, k = 1, . . . , n, problem (3.14) is equivalent to

maximize
g1
c ,...,g

n
c

vol(Ω1(g1
c )× · · · × Ωn(gnc ))

subject to
n∑
k=1

gkc ≤ fc.

(3.18)

In problem (3.18), the optimization variables are in real coordinate space. Strategies to solve

the problem numerically, which extend the ones proposed in [21] by the author of this thesis,

are presented in Section 4.3. In general, the major difficulty for solving problem (3.18) is the

computation of the volume of Ω1(g1
c )× · · · × Ωn(gnc ). Further properties of problem (3.18) are

investigated for linear performance functions in Section 4.2. In the following, an example of

optimal arbitrarily-shaped independent CSS is provided.

Example 18. Given the situation from Example 17. There is a system that is composed of two

components. The component design of the first component contains two design variables, and

the component design of the second component contains one design variable. The system

design space is given by Ωds = [0, 1.5]3 and the performance function by f : R3 → R, x 7→
−3x1 − 2x2 − 3x3 with threshold fc = −9.

Therefore, optimal component performance functions are g1 : R2 → R, (x1, x2) 7→ −3x1−2x2

and g2 : R → R, x3 7→ −3x3, and the optimal component performance thresholds can be

computed as g1
c = −5.5 and g2

c = −3.5. Then, optimal arbitrarily-shaped independent CSS

are Ω1 = {(x1, x2) ∈ [0, 1.5]2 | −3x1−2x2 ≤ −5.5} and Ω2 = {x3 ∈ [0, 1.5] | −3x3 ≤ −3.5}.
For this case, the result matches the results from Example 14. The corresponding CSS are

visualized in Figure 29.
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Figure 29 Optimal arbitrarily-shaped independent CSS of Example 18 at the component level and their Cartesian product
within the complete system solution space at the system level.

The visualization of non-box-shaped CSS Ωk is problematic for dk > 3. One way to overcome

this problem, which is related to parallel coordinate plots, is proposed in Section5.3. Nev-

ertheless, more flexibility for component design is obtained by using arbitrarily-shaped CSS

compared to box-shaped solution spaces. Also in Section 5.3, arbitrarily-shaped CSS are

compared to box-shaped CSS in this regard and in terms of computation time. Before doing

so, similar investigations are done for dependent CSS in the following.

3.3. Dependent CSS

This section considers mathematical problem statements for computing dependent component

solution spaces that provide optimal flexibility for dependent-decoupled design decisions

between the components. Here, it is distinguished between box- and arbitrarily-shaped depen-

dent CSS again.
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3.3.1. Problem Statement
In order to provide flexibility for dependent-decoupled design decisions between the compo-

nents, component solution spaces Ωk, k = 1, . . . , n, are required for which any but only one

of the n component designers, denoted by k1 with k1 ∈ {1, . . . , n}, can select a permissible

component design first. Based on this decision, the component solution spaces for the re-

maining component designs are updated and another component designer, denoted by k2

with k2 ∈ {1, . . . , n}\{k1}, can select a permissible component design next. This is continued

until the last decision for a permissible component design was made and hence, a system

design is yielded. As the CSS for any component always depends on previous decisions, the

CSS provide flexibility for dependent-decoupled design decisions between the components

and are called dependent component solution spaces.

After the first component design xk
1 ∈ Ωk1

was selected, it must be guaranteed that there are

component designs xk
2
, . . . , xk

n
of the remaining components which can result in a permissi-

ble system design. Thus, Ωk1
must be a subset of the projection of Ωc onto the coordinate

space of the k1 th component, i.e. Ωk1 ⊆ projk
1
(Ωc). As k1 can take any value in {1, . . . , n},

the condition

Ωk ⊆ projk(Ωc) (3.19)

is a necessary and sufficient condition for the CSS Ωk, k = 1, . . . , n, of the first decision. Note

that the Cartesian product Ω1 × · · · × Ωn is usually no system solution space here. In Figure

30, the relationship of the CSS is shown from a system perspective.

system
Ωc

1st component
Ω1 ⊆ proj1(Ωc)

· · · nth component
Ωn ⊆ projn(Ωc)

Figure 30 Dependent component solution spaces at the component level and their complete system solution space at the
system level for the first decision.

In general, there are multiple sets for dependent CSS for the first decision that fulfill condition

(3.19). Among these, optimal component solution spaces which offer the most flexibility for

dependent-decoupled design decisions are preferred. In contrast to above, this flexibility

for component design is not quantified by the Cartesian product Ω1 × · · · × Ωn here as this

Cartesian product is usually no system solution space. Thus, the volumes of the single Ωk, k =

1, . . . , n, are used as a flexibility measure to optimize dependent CSS. However, other flexibility

measures to optimize dependent CSS are conceivable, too. Optimizing dependent CSS for

each component by ensuring condition (3.19) can be stated as mathematical optimization
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problems. It reads

maximize
Ωk

vol(Ωk)

subject to Ωk ⊆ projk(Ωc)

(3.20)

for k = 1, . . . , n. Similar to problem (3.14), Ωk ⊂ Rdk must be Borel sets to enable the

calculation of the volume of Ωk, k = 1, . . . , n. If no restrictions on the geometric shapes of

the CSS are put, the unique solutions to problem (3.20) are given by Ωk = projk(Ωc) as

they form the largest set within projk(Ωc) in terms of volume, k = 1, . . . , n. Here, the CSS

take arbitrary geometric shapes, depending on the projection of Ωc, and are therefore called

arbitrarily-shaped CSS. Opposite to that, the geometric shapes of the CSS can be predefined

again. In this case, additional optimization constraints for the shapes must be introduced in

problem (3.20).

For arbitrarily-shaped CSS, the main challenge is to calculate the projection of Ωc onto the

coordinate space of the kth component. For CSS with predefined shape, this challenge

usually occurs together with the problem of maximizing the volume of Ωk, k = 1, . . . , n. In the

following, both cases are discussed.

As soon as dependent CSS are computed, the first component designer k1 can choose a com-

ponent design within the corresponding CSS, like proposed in Section 2.3 using a component

cost function. Afterward, Ωc is updated by fixing xk
1

to its selected values, which results in a

(d−dk1
)-dimensional set, and is used to compute the CSS for the remaining components. The

problem statement to compute the updated CSS is similar to problem (3.20). Thus, only the

CSS that provide flexibility for the first decision for a component design are considered and

visualized in this thesis. The associated workflow is shown in Figure 31.

START

CSS

Ω1, . . . ,Ωn

DM

Comp. designer k1

selects xk
1

∈ Ωk
1

UPDATE

remaining CSS

· · ·
DM

Comp. designer kn

selects xk
n

∈ Ωk
n

END

system design

(x1, . . . , xn) ∈ Ωc

time

Figure 31 Workflow to obtain a system design based on dependent CSS.

Changing a single component design after the system design was composed of the component

designs is also possible when using dependent CSS. However, it is more expensive than in

the case of independent CSS. If the design of the kth component shall be changed using
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dependent CSS, the complete system solution space must be updated by fixing the values of

the selected designs of the other components. The resulting dk-dimensional set is a subset of

the coordinate space of the kth component and therefore corresponds to the projection onto

this space. It can be used in problem (3.20) to compute a new CSS Ωk for the kth component,

k ∈ {1, . . . , n}. Then, a new decision for xk ∈ Ωk can be made. Again, this helps to treat

uncertainties in the component performance functions or the component cost function that

belong to the class of model uncertainty.

Due to the flexibility obtained from maximizing the volume of component solution spaces it is

also possible to deal with uncertainties in design variables and to some extent with uncertain-

ties in uncontrollable parameters, as discussed for independent CSS in Sections 2.4. However,

there are also more efficient strategies to treat these uncertainties, which are discussed in

Sections 3.4 and 3.5. Subsequently, box-shaped and arbitrarily-shaped dependent CSS are

considered.

3.3.2. Box-Shaped CSS
Recall that box-shaped CSS represented by Equation (3.9) are a special type of CSS with

predefined geometric shapes. They are dk-dimensional-intervals [xl,k, xu,k] and can be

uniquely described by their lower bounds xl,k and their upper bounds xu,k for k = 1, . . . , n.

Their volume is the product of their edge lengths, compare Equation (3.15). Based on problem

(3.20), the mathematical optimization problem to compute optimal box-shaped dependent CSS

reads

maximize
xl,k,xu,k

dk∏
i=1

(xu,k
i − x

l,k
i )

subject to [xl,k, xu,k] ⊆ projk(Ωc),

(3.21)

k = 1, . . . , n, where the optimization variables are in real coordinate space. If only one

k ∈ {1, . . . , n} is considered, problem (3.21) is similar to problem (2.40). Approaches that

solve this problem are mentioned in Section 2.3. Moreover, a new approach to simplify problem

(3.16) for linear performance functions is presented in Section 4.2. Note that using box-shaped

dependent CSS corresponds to dependent-decoupled design decisions between components

and independent-decoupled design decisions for each component. Below, an example for

optimal box-shaped dependent CSS is considered.

Example 19. Given the situation from Example 17. There is a system that is composed of two

components. The component design of the first component contains two design variables, and

the component design of the second component contains one design variable. The system

design space is given by Ωds = [0, 1.5]3 and the performance function by f : R3 → R, x 7→
−3x1 − 2x2 − 3x3 with threshold fc = −9.

Optimal box-shaped dependent CSS can be computed as Ω1 = [1, 1.5]× [0.75, 1.5], compare
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Example 15, and Ω2 = [0.5, 1.5]. The CSS are visualized in Figure 32.
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Figure 32 Optimal box-shaped dependent CSS of Example 19 at the component level and their Cartesian product within the
system design space at the system level.

The properties of box-shaped dependent CSS are similar to box-shaped independent CSS.

The computation of their volume is simple compared to other CSS with predefined geometric

shapes, which is useful for solving problem (3.21) efficiently. Furthermore, simple visualizations

as one-dimensional intervals that build up the box-shaped CSS are possible. Though, the

volume of Ωk can be small compared to the volume of projk(Ωc) for k = 1, . . . , n. By using

arbitrarily-shaped CSS, this problem can be improved.

3.3.3. Arbitrarily-Shaped CSS
When considering arbitrarily-shaped CSS Ωk, k = 1, . . . , n, no constraints on their geometric

shapes are put. Hence, the optimal solutions of problem (3.21) are

Ωk = projk(Ωc), (3.22)

k = 1, . . . , n. Any other Ωk ⊆ projk(Ωc) has a smaller volume than projk(Ωc), which means

that there is less flexibility for component design in a non-optimal case. Problem (3.21) is

then reduced to compute the projection of the d-dimensional set Ωc onto the dk-dimensional

coordinate space of the kth component for k = 1, . . . , n. The projected set can be represented

by Equation (3.10) again, in which gk are the component performance functions and gkc are
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the component performance thresholds.

If the system performance functions are linear, there are multiple options to compute this

projection, compare [71]. From these options, an enhanced Fourier-Motzkin method, which is

based on an elimination of variables from the inequality system that describes Ωc, is presented

in Section 4.3. This can be extended to nonlinear cases, see, e.g., [4, 50]. In the following, an

example for optimal arbitrarily-shaped dependent CSS is presented.

Example 20. Given the situation from Example 17. There is a system that is composed of two

components. The component design of the first component contains two design variables, and

the component design of the second component contains one design variable. The system

design space is given by Ωds = [0, 1.5]3 and the performance function by f : R3 → R, x 7→
−3x1 − 2x2 − 3x3 with threshold fc = −9.

Optimal arbitrarily-shaped dependent CSS can be computed as Ω1 = proj1(Ωc) = {(x1, x2) ∈
[0, 1.5]2 | − 3x1 − 2x2 ≤ −4.5} and Ω2 = proj2(Ωc) = {x3 ∈ [0, 1.5] | − x3 ≤ −0.5}. Here,

−x3 ≤ 0 is a redundant constraint and therefore, it holds Ω2 = [0, 1.5]. The optimal CSS are

visualized in Figure 33.
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Figure 33 Optimal arbitrarily-shaped dependent CSS of Example 20 at the component level and their Cartesian product within
the system design space at the system level.

Here, the properties of arbitrarily-shaped dependent CSS are similar to arbitrarily-shaped

independent CSS. The visualization of non-box-shaped CSS Ωk is problematic for dk > 3.
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Nevertheless, more flexibility for component design compared to box-shaped solution spaces

is obtained. In Section 5.3, arbitrarily-shaped dependent CSS are compared to box-shaped

dependent CSS regarding their volume and computation time together with independent

CSS. In the subsequent sections, optimal CSS are computed for uncertainties in controllable

variables and uncontrollable parameters.

3.4. CSS under Interval-Type Uncertainty

This section presents how epistemic uncertainty, modeled as interval-type uncertainty, can be

considered in the problem statements for independent and dependent CSS. First, uncertainties

in controllable variables for which it is distinguished between knowledge-based and maximized

magnitudes are considered. Then, uncertainties in uncontrollable parameters are taken into

account as well. This yields a complete methodology for computing CSS under interval-type

uncertainty.

3.4.1. Uncertainties in Controllable Variables with Knowledge-Based
Magnitudes

If uncertainties in controllable variables are present and component target designs are selected

from their corresponding CSS, computed like above, the resulting realized system design

might be non-permissible due to these uncertainties. As stated above, an a-priori uncertainty

consideration can help to avoid this problem by computing appropriate component solution

spaces.

To begin with, uncertainties in uncontrollable parameters are neglected. Recall that for interval-

type uncertainties in controllable variables, designers can only select the values of the target

design variables x̌i, i = 1, . . . , d, for which the realized values of the design variables can

be found within the intervals [x̌i − δi, x̌i + δi] for given magnitudes δi ∈ R+
0 , i = 1, . . . , d.

This means that component designers can select the values of the target design variables

x̌k, k = 1, . . . , n, for which the realized component designs can be found within the dk-

dimensional intervals [x̌k − δk, x̌k + δk]. Here, δk have entries δki ∈ R+
0 , i = 1, . . . , dk,

k = 1, . . . , n, which are obtained from δi, i = 1, . . . , d, similarly to Equation (3.2). As stated

in Section 2.2 the assumption of fixed values for δi, i = 1, . . . , d, is often crucial. Thus, the

values of δi, i = 1, . . . , d, are only assumed in this thesis. They are denoted by δ̄i ∈ R+
0 ,

i = 1, . . . , d. These magnitudes are collected in the d-dimensional vector δ̄ at the system level

and in the dk-dimensional vectors δ̄k, k = 1, . . . , n, at the component level. In the following,

it is distinguished between knowledge-based magnitudes and maximized magnitudes. The

corresponding problem statements for box-shaped CSS in a worst-case scenario were already

published in [25] by the author of this thesis.

First, knowledge-based uncertainty magnitudes are considered. Here, the values of δ̄i are
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estimated based on the available knowledge about δi, i = 1, . . . , d. For example, this can be

the case if the uncertainties can be experimentally evaluated or if there is expert knowledge,

e.g., on manufacturing tolerances about variations in material or geometry properties, which

shall be already considered in the early design phase. If the design variables are responses of

lower-level systems, δ̄i, i = 1, . . . , d, can be estimated from knowledge about the uncertain-

ties of the lower-level systems. Note that all these cases may represent lack-of-knowledge

situations in the early design phase for which epistemic uncertainty is present and precise

uncertainty quantification of the uncertainties in the controllable variables is not available.

An extreme case of knowledge-based δ̄i is δ̄i = 0 for which no uncertainties are assumed,

i = 1, . . . , d. In order to avoid a non-permissible system design in a worst-case scenario, δ̄i
must be chosen as upper bounds of δi, i.e., δi ≤ δ̄i, i = 1, . . . , d.

For knowledge-based δ̄i, i = 1, . . . , d, the set of all system target designs can be determined.

Their corresponding uncertainty sets are subsets of the complete system solution space Ωc.

This set is the worst-case complete system solution space of target designs, see Equation

(2.12), and it holds

Ω̌c,wc = {x̌ ∈ Rd | ∀x ∈ UX(x̌, δ̄) : x ∈ Ωc}. (3.23)

Then, the design decisions to select a target design within Ω̌c,wc can be decoupled between

the components using the approaches from Sections 3.2 and 3.3. This yields worst-case CSS

of target designs Ω̌k
wc, k = 1, . . . , n. If all component designers select permissible component

target designs, i.e., x̌k ∈ Ω̌k, any realized system design is permissible if δi ≤ δ̄i, i = 1, . . . , d,

holds. In doing so, uncertainties in controllable variables are treated efficiently. In order to

provide optimal flexibility for component design under interval-uncertainty, the volume of the

CSS of target designs is maximized. If Ω̌c,wc is a non-empty set with a positive volume, the

optimization problem to obtain worst-case independent CSS of target designs reads

maximize
Ω̌1

wc,...,Ω̌
n
wc

vol(Ω̌1
wc × · · · × Ω̌n

wc)

subject to Ω̌1
wc × · · · × Ω̌n

wc ⊆ Ω̌c,wc

(3.24)

and the optimization problems to obtain worst-case dependent CSS of target designs read

maximize
Ω̌kwc

vol(Ω̌k
wc)

subject to Ω̌k
wc ⊆ projk(Ω̌c,wc),

(3.25)

k = 1, . . . , n. The corresponding problems to compute CSS under absence of uncertainty are

stated in problems (3.14) and (3.20). In Section 4.2, it is presented how solutions of problems

(3.24) and (3.25) can be solved according to problems (3.14) and (3.20) for linear performance

functions.
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When worst-case CSS of target designs Ω̌k
wc are available, CSS Ωk and best-case CSS of

target designs Ω̌k
bc can be deduced, k = 1, . . . , n. Here, the corresponding properties of the

worst- and best-case complete system solution spaces must be ensured, i.e.,

Ω̌k
wc = {x̌k ∈ Rd

k | ∀xk ∈ UX(x̌k, δ̄k) : xk ∈ Ωk}, (3.26)

for worst-case CSS of target designs and

Ω̌k
bc = {x̌k ∈ Rd

k | ∃xk ∈ UX(x̌k, δ̄k) : xk ∈ Ωk}, (3.27)

for best-case CSS of target designs, k = 1, . . . , n. The sets UX(x̌k, δ̄k) are the uncertainty

sets of the component designs with respect to x̌k ∈ Rdk , k = 1, . . . , n, similar to Equation

(2.8).

Thus, an inverse scheme must be applied to obtain CSS Ωk from Ω̌k
wc. For both independent

and dependent CSS,

Ωk = {xk ∈ Ωk
ds | ∃x̌k ∈ [xk − δ̄k, xk + δ̄k] : x̌k ∈ Ω̌k

wc}, (3.28)

k = 1, . . . , n, can be used. However, for arbitrarily-shaped independent CSS Ωk, k = 1, . . . , n,

obtained from Equation (3.28), there might be CSS Ω′ k, k = 1, . . . , n, with Ω′ 1×· · ·×Ω′n ⊆ Ωc

and vol(Ω′ 1 × · · · × Ω′n) > vol(Ω1 × · · · × Ωn). In this case, the flexibility of the CSS can be

further optimized by solving problem (3.14) and using the CSS obtained from Equation (3.28)

as sets which must be subsets of the optimal CSS. Similarly, the flexibility of arbitrarily-shaped

dependent CSS can be optimized for each Ωk by solving problem (3.25) and using a modified

Ω̌wc with δ̄k = 0 and k ∈ {1, . . . , n}. Note that dependent CSS which are computed from

the worst-case dependent CSS of target designs are aligned with the worst-case, i.e., for all

xk
1 ∈ Ωk1

there is at least one (x̌k
2
, . . . , x̌k

n
) within the updated worst-case complete system

solution space, see Example 21.

Then, best-case CSS of target designs Ω̌k
bc can be computed from the CSS Ωk using Equa-

tion (3.27), k = 1, . . . , n. Similar to Ωk, the best-case CSS of target designs are aligned

with the worst-case, i.e., for all x̌k
1 ∈ Ω̌k1

bc there is at least one xk
1 ∈ Ωk1

for that at least

one (x̌k
2
, . . . , x̌k

n
) exists within the updated worst-case complete system solution space,

see Example 21. Note however that in the case of δi < δ̄i, there are target designs within

Ω̌1
bc × · · · × Ω̌n

bc for which no x ∈ Ωc exists. Thus, the convention to use upper bounds δ̄i for

δi can be regarded critically for best-case scenarios for which lower bounds of δi should be

taken into account instead, i = 1, . . . , d.

In general, the optimization of flexibility can also be done with respect to the best-case

complete system solution space of target designs. Here, best-case CSS of target designs

can be obtained by replacing Ω̌c,wc with Ω̌c,bc in problems (3.24) and (3.25). Note that this

procedure usually yields different results. In order to obtain CSS Ωk from Ω̌k
bc, an inverse
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scheme must be applied again. For both independent and dependent CSS,

Ωk = {xk ∈ Ωk
ds | ∀x̌k ∈ [xk − δ̄k, xk + δ̄k] : x̌k ∈ Ω̌k

bc}, (3.29)

k = 1, . . . , n, can be used. However, if worst-case CSS of target designs are computed

from best-case CSS of target designs, it is not necessarily guaranteed that the worst-case

CSS of target designs are non-empty sets. This may even hold if the worst-case complete

system solution space is a non-empty set. The same circumstances can occur for the CSS Ωk,

k = 1, . . . , n. Note that dependent CSS which are computed from best-case dependent CSS

of target designs are aligned with the best-case, i.e., for all xk
1 ∈ Ωk1

there is at least one

(x̌k
2
, . . . , x̌k

n
) within the updated best-case complete system solution space. Similar results

hold if worst-case CSS of target designs are computed from best-case CSS of target designs.

In the following, an example is given in which both worst-case independent and dependent

CSS of target designs Ω̌k
wc are optimized and corresponding CSS Ωk and best-case CSS of

target designs Ω̌k
bc are deduced using Equations (3.27) and (3.28), k = 1, . . . , n.

Example 21. Given a system composed of two components. The component designs of both

the first and the second component consist of one design variable each, i.e., d1 = d2 = 1,

which means that box- and arbitrarily-shaped CSS coincide. Furthermore, the system design

space is given by Ωds = [0, 2] × [0, 1.5] and a performance function by f : R2 → R, x 7→
x1 + 2x2 with threshold fc = 2. There are interval-type uncertainties in the controllable

variables with δ̄1 = 0.3, δ̄2 = 0.1, compare Example 3.

Optimal worst-case independent CSS of target designs can be computed as Ω̌1
wc = [0.3, 0.8]

and Ω̌2
wc = [0.1, 0.35] and optimal worst-case dependent CSS of target designs as Ω̌1

wc =

[0.3, 1.9] and Ω̌2
wc = [0.1, 0.6]. They are visualized together with their corresponding CSS Ωk

and best-case CSS of target designs Ω̌k
bc in Figure 34, k = 1, 2.

The worst-case CSS from Example 21 provide optimal flexibility for component design under

interval-type uncertainties in controllable variables. As the corresponding complete system

solution spaces are identical to the ones of Examples 12 and 13, and all approaches fully

decouple the design decisions for the single design variables, the Cartesian product of the CSS

of Example 21 can be compared with the CSS of Examples 12 and 13. For the independent

CSS of Example 21, the interval for x1 is larger and the interval for x2 is smaller compared

to those of Example 12. As δ̄1 > δ̄2 holds, this property provides increased flexibility for

decoupled decisions regarding the component target designs. For different δ̄1 and δ̄2, the size

of these intervals would change. Regarding the dependent CSS of Example 21, the intervals

for x1 and x2 are smaller in comparison with those of Example 13. The system designs of

the complete system solution space which are excluded here cannot be realized by system

target designs within the worst-case complete system solution space of target designs. As

discussed above, this is reasonable, because only values of target design variables within

Ω̌k1

wc, k1 ∈ {1, 2}, can be selected then. For these, it can be ensured that a target design
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Figure 34 Optimal worst-case (a) independent and (b) dependent CSS of target designs and corresponding CSS and
best-case CSS of target designs of Example 21 at the component level and their Cartesian product at the system level. Note
that in the legend, the solution spaces are listed according to their size where the largest is on top.

variable exists in Ω̌k2

wc, k2 ∈ {1, 2}\{k1}, such that the realized system design is permissible.

In Section 5.4, the comparison of CSS obtained from worst-case CSS of target designs with

CSS that do not incorporate uncertainty is further investigated.

3.4.2. Uncertainties in Controllable Variables with Maximized Magnitudes
If there is no or very limited knowledge about the magnitude of δi or if the complete system

solution space of target designs is empty, maximum magnitudes δ̄i can be computed for any
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system target design x̌ ∈ Ωc. This is done in a way such that all system designs x with

xi ∈ UX(x̌, δ̄), i.e., xi ∈ [x̌i − δ̄i, x̌i + δ̄i], i = 1, . . . , d, are permissible. In general, the single

magnitudes δ̄i, i = 1, . . . , d, must be coupled in order to maximize them. One way of doing

so is to assess the relation between the magnitudes of δ̄i, i = 1, . . . , d, which reduces the

optimization quantities to one variable, denoted by δ′ ∈ R+
0 . For example, this can be done by

expert knowledge. In the case of linear relations, it holds

δ̄i = ωiδ
′ + νi (3.30)

with ωi ∈ R+
0 , νi ∈ R+

0 , i = 1, . . . , d. Then, the variable δ′ ∈ R+
0 can be maximized such that

all system designs within the uncertainty set UX(x̌, δ̄) are permissible. The parameter νi can

help to include partially known uncertainty, e.g., if multiple uncertainties are addressed in δ̄i
and some of them are already known. The special case ωi = 0 and νi ≥ 0 corresponds to the

situation of knowledge-based δ̄, i = 1, . . . , d. Typical cases for ωi > 0, i = 1, . . . , d include:

(a)ωi = 1, νi ≥ 0: Here, all δ̄i are weighted the same. This can be the case if no information

on the relation between the magnitudes of δ̄i is available. For νi = 0, it then holds δ̄i = δ′.

(b)ωi =
xu

ds,i−x
l
ds,i

2 , νi = 0: Here, the length of the resulting intervals [x̌i −
xu

ds,i−x
l
ds,i

2 δ′, x̌i +
xu

ds,i−x
l
ds,i

2 δ′] is proportional to the length of the intervals [xl
ds,i, x

u
ds,i] of the design space.

For δ′ = 1, the length of these two types of intervals are the same.

(c)ωi = x̌i, νi = 0: With this property, the resulting intervals are [(1− δ′)x̌i, (1 + δ′)x̌i] which

account for relative magnitudes of the target design variable x̌i. For δ′ = 1, these intervals

become [0, 2x̌i].

In order to maximize δ̄i, i = 1, . . . , d, for given ωi and νi, a target design x̌ with maximum δ′ is

sought. The corresponding optimization problem reads

maximize
x̌,δ′

δ′

subject to UX(x̌, δ′ω + ν) ⊆ Ωc,

(3.31)

δ′ ≥ 0, where ω = (ω1, . . . , ωd), ν = (ν1, . . . , νd), and

UX(x̌, δ′ω + ν) = {x ∈ Rd | xi ∈ [x̌i − (ωiδ
′ + νi), x̌i + (ωiδ

′ + νi)], i = 1, . . . d}, (3.32)

compare Equation (2.8). For νi = 0, i = 1, . . . , d, problem (3.31) is similar to the problem

statement considered in [44]. If further ωi = 1 holds for i = 1, . . . , d, problem (3.31) corre-

sponds to problem (2.32). The system target design of the solution of problem (3.31) is a

robust system target design which allows maximum uncertainties in the design variables, i.e.,

maximum magnitudes of δ̄i, i = 1, . . . , d.

Note that maximized δ̄i, i = 1, . . . , d, can be calculated using Equation (3.30) with the maxi-

mized δ′. Thus, the situation corresponds to the situation with knowledge-based magnitudes
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for which δ̄i, i = 1, . . . , d, are assumed. Then, the worst-case complete system solution space

of target designs Ω̌c,wc can be computed like above. If Ω̌c,wc is a singleton here, the robust

target design is unique. Furthermore, the d-dimensional volume of Ω̌c,wc is always zero, as

otherwise, δ′ would not be optimal.

Nevertheless, flexibility in component target design can also be expressed using lower-

dimensional volumes as a measure. To account for this, the objective function of problem (3.24)

to obtain worst-case independent CSS of target designs must be perturbed for maximized δ̄.

This can be done by replacing

vol(Ω̌1
wc × · · · × Ω̌n

wc) by
n∏
k=1

(vol(Ω̌k
wc) + ε), (3.33)

where ε ≥ 0 is a perturbation parameter. The greater ε, the more weight is put on the

lower-dimensional volumes, built by the Cartesian product of only parts of the CSS of target

designs. Note however that Ω̌k
wc 6= ∅ must be ensured here. Otherwise, no permissible system

design exists within the Cartesian product of the CSS. If Ω̌k
wc, k = 1, . . . , n, are box-shaped,

the replacement

vol(Ω̌1
wc × · · · × Ω̌d

wc) by
d∏
i=1

(x̌u
wc,i − x̌l

wc,i + ε) (3.34)

is preferred. In Equation (3.34), the single edge lengths of Ω̌k
wc, k = 1, . . . , n, i.e., one-

dimensional volumes are weighted. Here, x̌l
wc,i denote the lower bounds and x̌u

wc,i the upper

bounds of Ω̌k
wc, k = i, i = 1, . . . , d. For ε = 0, the real volume of the Cartesian product

of CSS of target designs is computed in Equation (3.34). Similarly, the objective function

to compute box-shaped worst-case dependent CSS of target designs can be replaced. For

arbitrarily-shaped worst-case dependent CSS this is not necessary, as no optimization is

required.

After computing the worst-case CSS of target designs, the CSS Ωk, k = 1, . . . , n, can be

calculated using Equation (3.28). Note that for maximized δ̄, best-case CSS of target designs

are usually not reasonable, as maximized δ̄ contains maximum upper bounds for uncertainties.

However, they could be computed accordingly using Equation (3.27). In the following, an

example of maximized δ̄ is considered.

Example 22. Given a system composed of two components. The component designs of both

the first and the second component consist of one design variable each, i.e., d1 = d2 = 1,

which means that box-shaped and arbitrarily-shaped CSS coincide, known from Example 21.

Furthermore, the system design space is given by Ωds = [0, 2]× [0, 1.5] and a performance

function by f : R2 → R, x 7→ x1 + 2x2 with threshold fc = 2. There are interval-type

uncertainties in the controllable variables with unknown δ. Here, δ̄ is maximized with ω1 =

ω2 = 1 and ν1 = ν2 = 0 by solving Equation (3.31), compare Example 9.
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The worst-case complete system solution space is the singleton Ω̌c,wc = {(0.3333, 0.3333)}.
Thus the worst-case independent and worst-case dependent CSS coincide and are given by

Ω̌1
wc = {0.3333} and Ω̌2

wc = {0.3333}. They are visualized together with their corresponding

CSS in Figure 35.
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Figure 35 Optimal worst-case CSS of target designs and corresponding CSS of Example 22 at the component level and their
Cartesian product at the system level.

3.4.3. Uncertainties in Uncontrollable Parameters
If uncertainties in uncontrollable parameters are present and the CSS are computed for

nominal values p̌ ∈ Rd, a realized system design might be non-permissible due to these un-

certainties, although it is within the complete system solution space Ωc computed with p̌ ∈ Rd.
In the following, uncertainties in uncontrollable parameters are considered and uncertainties

in controllable variables are neglected at first. Recall that for interval-type uncertainties in

uncontrollable variables, the true values of pl can be found within intervals [p̌l − γl, p̌l + γl]

for which fixed values are assumed for p̌l ∈ R and γl ∈ R+
0 , l = 1, . . . , q. The subsequent re-

sults regarding box-shaped solution spaces under interval-type uncertainties in uncontrollable

parameters were already published in [24] for worst-case scenarios and extended in [26] for

best-case scenarios by the author of this thesis.

Due to the absence of uncertainties in controllable variables, any designs within the worst-case

complete system solution space Ωc,wc and the best-case complete system solution space

Ωc,bc, given by Equations (2.11) and (2.13), can be realized exactly. Within Ωc,wc, every

system design is permissible regardless of which values the entries of p assume in UP (p̌, γ).

For Ωc,bc, at least one p ∈ UP (p̌, γ) exists for every selected system design such that it is

permissible, i.e., within the resulting complete system solution space for this p ∈ Rq.
Again, the decisions to select a system design within Ωc,wc or Ωc,bc can be decoupled with

the approaches from Sections 3.2 and 3.3 yielding worst-case CSS Ωk
wc and best-case CSS
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Ωk
bc, k = 1, . . . , n. This procedure ensures that uncertainties in uncontrollable parameters

are considered in CSS and can be treated efficiently. The optimization problem to obtain

worst-case independent CSS reads

maximize
Ω1

wc,...,Ω
n
wc

vol(Ω1
wc × · · · × Ωn

wc)

subject to Ω1
wc × · · · × Ωn

wc ⊆ Ωc,wc.

(3.35)

where Ωc,wc can be replaced by Ωc,bc to obtain best-case independent CSS Ωk
bc, k = 1, . . . , n.

The optimization problem to obtain worst-case dependent CSS reads

maximize
Ωkwc

vol(Ωk
wc)

subject to Ωk
wc ⊆ projk(Ωc,wc)

(3.36)

where again Ωc,wc can be replaced by Ωc,bc in order to obtain best-case dependent CSS Ωk
bc,

k = 1, . . . , n. Given the worst-case and best-case complete system solution spaces, problems

(3.35) and (3.36) can be solved similarly to problems (3.14) and (3.20) for linear performance

functions which is presented in Section 4.2.

Using Problems (3.35) and (3.36) to compute worst-case and best-case CSS, it might be the

case that Ωk
wc 6⊆ Ωk

bc holds for one or more k ∈ {1, . . . , n}, although Ωc,wc ⊆ Ωc,bc always

holds. This arises from the fact that flexibility for component design is optimized independently

for both worst-case and best-case CSS. One possibility to overcome this problem is to force

Ωk
wc ⊆ Ωk

bc, (3.37)

k = 1, . . . , n, by additional optimization constraints for the best-case CSS after computing

worst-case CSS. The same could be done the other way around. Note that in this case, it is not

necessarily guaranteed that the worst-case CSS are non-empty sets, even if the worst-case

complete system solution space is a non-empty set. Similar results were obtained above for

worst- and best-case CSS of target designs. In the following, an example is given in which

both worst- and best-case, independent and dependent CSS are optimized.

Example 23. Given a system composed of two components. The component designs of both

the first and the second component consist of one design variable each, i.e., d1 = d2 = 1,

which means that box-shaped and arbitrarily-shaped CSS coincide, known from Example 21.

Furthermore, the system design space is given by Ωds = [0, 2]× [0, 1.5] and a performance

function by f : R2 ×R2 → R, x 7→ p1x1 + p2x2 with threshold fc = 2. There are interval-type

uncertainties in the uncontrollable parameters. Their nominal values are given by p̌1 = 1 and

p̌2 = 2 and it holds γ1 = γ2 = 0.2, compare Example 3.

Optimal worst-case independent CSS can be computed as Ω1
wc = [0, 0.8333] and Ω2

wc =
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[0, 0.4545], optimal best-case independent CSS as Ω1
bc = [0, 1.25] and Ω2

bc = [0, 0.5556],

optimal worst-case dependent CSS as Ω1
wc = [0, 1.6667] and Ω2

wc = [0, 0.9091], and optimal

best-case dependent CSS as Ω1
bc = [0, 2] and Ω2

bc = [0, 1.1111]. They are visualized in Figure

36.
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Figure 36 Optimal worst- and best-case (a) independent and (b) dependent CSS of Example 23 at the component level and
their Cartesian product at the system level.

The worst-case and best-case CSS from Example 23 provide optimal flexibility for compo-

nent design under interval-type uncertainties in uncontrollable parameters. In Figure 36, it is

shown in which region flexibility can be added to worst-case CSS by computing best-case

CSS. Outside the best-case CSS, no permissible component design exists. In particular, for

independent CSS, it can be seen that the flexibility which is added to the first component
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has a larger impact on the overall flexibility than the flexibility which is added to the second

component.

3.4.4. Extensions and Summary of the General Approach
Furthermore, both uncertainties in controllable variables and uncertainties in uncontrollable

parameters can be considered together, which was already published for box-shaped indepen-

dent CSS in [26] by the author of this thesis. This can be accomplished by using the best- and

worst-case complete system solution spaces of target designs for which both uncertainties

in controllable variables and uncertainties in uncontrollable parameters are considered, i.e.,

by using Equations (2.12) and (2.14). In the case of knowledge-based magnitudes, the best-

and worst-case CSS of target designs can be obtained by solving problems (3.24) and (3.25).

Here, condition (3.37) must be fulfilled with

Ωk
wc = {xk ∈ Ωk

ds | ∃x̌k ∈ [xk − δ̄k, xk + δ̄k] : x̌k ∈ Ω̌k
wc}, (3.38)

and

Ωk
bc = {xk ∈ Ωk

ds | ∀x̌k ∈ [xk − δ̄k, xk + δ̄k] : x̌k ∈ Ω̌k
bc}, (3.39)

k = 1, . . . , n, where the notes from above for inverse schemes must be considered. Further-

more, note that in doing so, the best-case is no longer aligned with the worst-case or vice

versa for dependent CSS, compare Section 5.4.

In the case of maximized δ̄, problem (3.31) must be solved in which Ωc is replaced by Ωc,wc.

Then, problems (3.24) and (3.25) can be solved by replacing the objective function according

to (3.33) or (3.34).

In this section, no explicit example for the case of both uncertainties in controllable variables

and uncontrollable parameters is given. Nevertheless, corresponding results are shown in

Section 5.4. They merge the results of Examples 21 and 23.

After the worst- and best-case CSS of target designs are computed for δ̄k, k = 1, . . . , n,

coupled design decisions under interval-type uncertainty for component target designs can be

made similarly to the approaches shown in Section 2.3 by using component cost functions. If

no further knowledge about the true values of δi, i = 1, . . . , d is available, component target

designs x̌k should be always selected within Ω̌k
wc for k = 1, . . . , n. Moreover, if the realized

component designs xk for the selected x̌k can be found within Ωk
wc for k = 1, . . . , n, they can

be considered as permissible.

If further knowledge on δi becomes available after computing the worst- and best-case CSS

of target designs, three different cases can be distinguished for selecting component target

designs x̌k, k = 1, . . . , n:

(a) δ̄i > δi: The worst- and best-case CSS of target designs can be updated without computing

new CSS. The volume of the corresponding worst-case CSS of target designs increases,
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and so does the overall flexibility for component design in the worst-case. The volume of

the corresponding best-case CSS of target designs decreases, and so does the overall

flexibility for component design in the best-case. However, note that the updated flexibility

is usually not optimal for the whole system.

(b) δ̄i < δi: The worst- and best-case CSS of target designs can be updated without computing

new CSS of target designs if the updated worst-case CSS of target designs is non-empty.

Otherwise, new CSS of target designs must be computed. Here, the volume of the

corresponding worst-case CSS of target designs decreases, and so does the overall

flexibility for component design in the worst-case. The volume of the corresponding best-

case CSS of target designs increases, and so does the overall flexibility for component

design in the best-case.

(c) δ̄i = δi: The worst- and best-case CSS of target designs remain the same and so does the

overall flexibility for component design in both the worst- and best-case.

Note that these cases are only relevant for uncertainties in controllable variables. They are

visualized in Figure 37 for dk = 1, k ∈ {1, . . . , n}, without taking uncertainties in uncontrol-

lable parameters into account. Here, x̌l
wc,i denote again the lower bounds and x̌u

wc,i the upper

bounds of Ω̌k
wc, and x̌l

bc,i denote the lower bounds and x̌u
bc,i the upper bounds of Ω̌k

bc, k = i,

i = 1, . . . , d.
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Figure 37 Changes in flexibility for component design with dk = 1, k ∈ {1, . . . , n}, due to gained knowledge about δi, i = k,
with (a) δ̄i > δi (b) δ̄i < δi (c) δ̄i = δi. Note that in the legends, the corresponding CSS are listed according to their size, the
largest is on top.
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After updating the worst- and best-case CSS of target designs, coupled design decisions for

component target designs can be made similarly to the approaches shown in Section 2.3.

The overall procedure to obtain worst- and best-case CSS of designs and target designs for

independent and dependent-decoupled design decisions under interval-type uncertainty is

visualized in Figure 38.

In the following section, it is shown how the above perceptions must be adapted if fuzzy-type

instead of interval-type uncertainty is considered for computing CSS.

start

δ̄
type

knowledge-based maximized

compute δ′ and δ̄ by prob.
(3.31) and Eq. (3.30)

compute Ωc,wc, Ω̌c,wc, Ωc,bc,
and Ω̌c,bc by Eq. (2.11)-(2.14)

compute Ω̌k
wc, Ωk

wc, k = 1, . . . , n,
by prob. (3.24) and Eq. (3.38)

compute Ω̌k
bc, Ωk

bc, k = 1, . . . , n,
by prob. (3.24) with Cond.

(3.37) and Eq. (3.39)

δ
known?

yesno

update Ω̌k
wc, Ω̌k

bc, k = 1, . . . , n

end

Figure 38 Flowchart to obtain worst- and best-case, independent and dependent CSS of designs and target designs. Note
that dependent CSS are only computed for the first decision here.

3.5. CSS under Fuzzy-Type Uncertainty

Similar to the previous section, this section presents how epistemic uncertainty modeled as

fuzzy-type uncertainty can be considered in the problem statements for independent and

dependent CSS. Again, uncertainties in controllable variables are considered first. Then,
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uncertainties in uncontrollable parameters are taken into account yielding a complete method-

ology for computing CSS under fuzzy-type uncertainty.

3.5.1. Uncertainties in Controllable Variables
As described above, the considerations are limited to uncertainties in controllable variables at

first. Also, recall that for fuzzy-type uncertainties in controllable variables, the designers can

only select the values of the target design variables x̌i, i = 1, . . . , d. Thus, a value α, given

by Equation (2.15) or (2.16) with α ∈ [0, 1], can be assigned to any xi ∈ R. This indicates a

degree of membership of belonging to the fuzzy uncertainty set of the controllable variable with

respect to x̌i, i = 1, . . . , d. The membership functions are characterized by δα=0,i and δα=1,i,

which are only assumed here and denoted by δ̄α=0,i and δ̄α=1,i, similar to δi for interval-type

uncertainty, i = 1, . . . , d. These magnitudes are collected in the d-dimensional vectors δ̄α=0

and δ̄α=1. Again, it is distinguished between knowledge-based and maximized magnitudes.

For knowledge-based δ̄α=0,i, δ̄α=0,i, i = 1, . . . , d, the necessity-α complete system solution

space of target designs is

Ω̌c,nec,α = {x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δ̄α=0, δ̄α=1) : x ∈ Ωc}, (3.40)

α ∈ [0, 1], see Equation (2.24). Then, the design decisions for selecting a target design

within Ω̌c,nec,α can be decoupled yielding necessity-α CSS of target designs Ω̌k
nec,α, α ∈ [0, 1],

k = 1, . . . , n. If Ω̌c,nec,α is a non-empty set with a positive volume, the optimization problem to

obtain necessity-α independent CSS of target designs reads

maximize
Ω̌1

nec,α,...,Ω̌
n
nec,α

vol(Ω̌1
nec,α × · · · × Ω̌n

nec,α)

subject to Ω̌1
nec,α × · · · × Ω̌n

nec,α ⊆ Ω̌c,nec,α

(3.41)

and the optimization problems to obtain necessity-α dependent CSS of target designs read

maximize
Ω̌knec,α

vol(Ω̌k
nec,α)

subject to Ω̌k
nec,α ⊆ projk(Ω̌c,nec,α),

(3.42)

k = 1, . . . , n, for α ∈ [0, 1]. In Section 4.2, it is discussed how Problems (3.41) and (3.42) can

be solved according to Problems (3.14) and (3.20) for linear performance functions. Overall,

a similar procedure as proposed for CSS under interval-type uncertainty can be applied to

compute CSS under fuzzy-type uncertainty. Here, CSS Ωk can be derived from Ω̌k
nec,α similarly

to Equation (3.28), for which the flexibility for component design in the case of arbitrary-shaped

CSS can be extended accordingly. Note that solving Problems (3.41) and (3.42) for different
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α ∈ [0, 1] does not necessarily yield the same deduced CSS Ωk, k = 1, . . . , n. However,

this can be guaranteed by choosing a reference α ∈ [0, 1], computing the corresponding

Ω̌k
nec,α and CSS Ωk, k = 1, . . . , n, and deducing further necessity-α CSS of target designs for

another α from these Ωk, k = 1, . . . , n. Similarly, possibility-α CSS of target designs Ω̌k
pos,α

can be obtained.

The necessity-1 case must be set as the reference to guarantee that the necessity-1 CSS of

target designs are non-empty sets if the necessity-1 complete system solution space is a non-

empty set. Then, all other necessity-α and possibility-α CSS of target designs are non-empty

sets, too. In the following, an example which computes necessity-α and possibility-α CSS of

target designs is given, α ∈ [0, 1].

Example 24. Given a system composed of two components. The component designs of both

the first and the second component consist of one design variable each, i.e., d1 = d2 = 1,

which means that box-shaped and arbitrarily-shaped CSS coincide. Furthermore, the system

design space is given by Ωds = [0, 2] × [0, 1.5] and a performance function by f : R2 →
R, x 7→ x1 + 2x2 with threshold fc = 2. There are fuzzy-type uncertainties in the controllable

variables with δ̄α=0,1 = 0.3, δ̄α=0,2 = 0.1 and δ̄α=1,1 = 0.1, δ̄α=1,2 = 0, compare Example 4.

Choosing the necessity-α=1 case as a reference, optimal necessity-1 independent CSS of

target designs can be computed as Ω̌1
nec,α=1 = [0.3, 0.8] and Ω̌2

nec,α=1 = [0.1, 0.35] and optimal

necessity-1 dependent CSS of target designs as Ω̌1
nec,α=1 = [0.3, 1.9] and Ω̌2

nec,α=1 = [0.1, 0.6].

They are visualized together with their corresponding CSS and necessity-0, possibility-1, and

possibility-0 CSS of target designs in Figure 39. Note that the possibility-0 CSS of target

designs must be modeled as open sets as Ω̌c,pos,α=0 is an open set here, compare Sections

2.2 and 4.1.

The results can be discussed similarly to Section 3.4. Furthermore, necessity-α and possibility-

α CSS of target designs with α ∈ [0, 1] are included in the follow-up discussion in Section 5.4.

For maximized δ̄α=0,i, δ̄α=1,i, i = 1, . . . , d, a maximum δ′ must be computed for every α ∈ [0, 1]

similarly to problem (3.31) in which interval-type uncertainty is present. As no uncertainties in

controllable parameters are considered here, the corresponding optimization problems are the

same for every α ∈ [0, 1] and so is δ′. Thus, for maximized δ̄α=0, δ̄α=1 without uncertainties in

uncontrollable parameters, it holds δ̄α=0 = δ̄α=1 which corresponds to the case of interval-type

uncertainty. Therefore, Example 22 can be directly transferred to computing CSS under

fuzzy-type uncertainty for which δ̄α=0,i, δ̄α=1,i, i = 1, . . . , d, are maximized.

3.5.2. Uncertainties in Uncontrollable Parameters
Next, the focus is put on uncertainties in uncontrollable parameters and uncertainties in

controllable variables are neglected. Recall that for fuzzy-type uncertainties in uncontrol-

lable variables, a value α ∈ [0, 1], is assigned to any pl ∈ R, l = 1, . . . , q, that indicates a
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Figure 39 Optimal necessity-1 (a) independent and (b) dependent CSS of target designs and corresponding CSS and
necessity-0, possibility-1, and possibility-0 CSS of target designs of Example 24 at the component level and their Cartesian
product at the system level. Note that in the legend, the solution spaces are listed according to their size, the largest is on top.

degree of membership of belonging to the fuzzy uncertainty set of the uncontrollable parameter.

Here, any design within the necessity-α and possibility-α complete system solution spaces

Ωc,nec,α and Ωc,pos,α, α ∈ [0, 1], given by Equations (2.22) and (2.23), can be realized exactly.

Again, the decisions to select a system design can be decoupled with the approaches from
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Sections 3.2 and 3.3 yielding necessity-α CSS Ωk
nec,α and possibility-α CSS Ωk

pos,α, α ∈ [0, 1],

k = 1, . . . , n. The optimization problem to obtain necessity-α independent CSS reads

maximize
Ω1

nec,α,...,Ω
n
nec,α

vol(Ω1
nec,α × · · · × Ωn

nec,α)

subject to Ω1
nec,α × · · · × Ωn

nec,α ⊆ Ωc,nec,α.

(3.43)

where Ωc,nec,α can be replaced by Ωc,pos,α in order to obtain possibility-α independent CSS

Ωk
c,pos,α, k = 1, . . . , n, for α ∈ [0, 1]. The optimization problems to obtain necessity-α

dependent CSS reads

maximize
Ωkwc

vol(Ωk
nec,α)

subject to Ωk
nec,α ⊆ projk(Ωc,nec,α)

(3.44)

where again Ωc,nec,α can be replaced by Ωc,pos,α in order to obtain possibility-α dependent

CSS Ωk
c,pos,α for k = 1, . . . , n and α ∈ [0, 1]. Given the necessity-α and possibility-α complete

system solution spaces, problems (3.43) and (3.44) can be solved similarly to problems (3.14)

and (3.20) for linear performance functions, see Section 4.2. To avoid Ωk
c,nec,α 6⊆ Ωk

c,nec,α′ and

Ωk
c,pos,α′ 6⊆ Ωk

c,pos,α, the conditions

Ωk
c,nec,α ⊆ Ωk

c,nec,α′ , (3.45)

and

Ωk
c,pos,α′ ⊆ Ωk

c,pos,α, (3.46)

can be introduced in problems (3.43) and (3.44) for 0 ≤ α′ ≤ α ≤ 1, k = 1, . . . , n. Similarly

Ωk
c,nec,α ⊆ Ωk

c,pos,α′ , (3.47)

can be introduced for all α, α′ ∈ [0, 1] to avoid Ωk
c,nec,α 6⊆ Ωk

c,pos,α′ , k = 1, . . . , n. Here, a

reference α and the type of CSS must be chosen again. Choosing α = 1 and necessity-α

CSS guarantees that the necessity-1 CSS are non-empty sets if the necessity-1 complete

system solution space is a non-empty set. Below, an example which computes necessity-α

and possibility-α CSS is given.

Example 25. Given a system composed of two components. The component designs of both

the first and the second component consist of one design variable each, i.e., d1 = d2 = 1,

which means that box-shaped and arbitrarily-shaped CSS coincides. Furthermore, the

system design space is given by Ωds = [0, 2] × [0, 1.5] and a performance function by

f : R2 × R2 → R, x 7→ p1x1 + p2x2 with threshold fc = 2. There is fuzzy-type uncertainties

in the uncontrollable parameters. Their nominal values are given by p̌1 = 1 and p̌2 = 2 and it

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 84



holds γα=0,1, γα=0,2 = 0.2 and γα=1,1, γα=1,2 = 0.1, compare Example 4.

Thus, optimal necessity-α independent CSS can be calculated as Ω1
c,nec,α=1 = [0, 0.8333],

Ω2
c,nec,α=1 = [0, 0.4545], Ω1

c,nec,α=0 = [0, 0.9091], Ω2
c,nec,α=0 = [0, 0.4762], optimal possibility-

α independent CSS as Ω1
c,pos,α=1 = [0, 1.1111], Ω2

c,pos,α=1 = [0, 0.5263], Ω1
c,pos,α=0 =

[0, 1.25), Ω2
c,pos,α=0 = [0, 0.5556), optimal necessity-α dependent CSS can be calculated

as Ω1
c,nec,α=1 = [0, 1.6667], Ω2

c,nec,α=1 = [0, 0.9091], Ω1
c,nec,α=0 = [0, 1.8182], Ω2

c,nec,α=0 =

[0, 0.9524], and optimal possibility-α dependent CSS as Ω1
c,pos,α=1 = [0, 2], Ω2

c,pos,α=1 =

[0, 1.0526], Ω1
c,pos,α=0 = [0, 2], Ω2

c,pos,α=0 = [0, 1.1111). They are visualized in Figure 40. Note

that the possibility-0 CSS are modeled as non-closed sets as Ω̌c,pos,α=0 is a non-closed set

here, compare Sections 2.2 and 4.1.

The results can be discussed similarly to Section 3.4. Furthermore, necessity-α and possibility-

α CSS with α ∈ [0, 1] are included in the follow-up discussion in Section 5.4.

3.5.3. Extensions and Summary of the General Approach
As done for interval-type uncertainty, uncertainties in controllable variables and uncertainties

in uncontrollable parameters can also be considered together for fuzzy-type uncertainty. This

is accomplished by using the necessity-α and possibility-α complete system solution spaces

of target designs for which both uncertainties in controllable variables and uncertainties in

uncontrollable parameters are considered, i.e., Equations (2.24) and (2.25).

In the case of knowledge-based δ̄α=0, δ̄α=1, the necessity-α and possibility-α CSS of target

designs can be obtained by solving problems (3.41) and (3.42). Here, the conditions (3.45) and

(3.46) must be taken into account if multiple α are considered and the condition (3.47) if both

necessity-α and possibility-α solution spaces are considered. If δ̄α=0, δ̄α=1 shall be maximized,

problem (3.31) must be solved in which Ωc is replaced by Ωc,nec,α, α ∈ [0, 1]. For fixed values

of α, Ω̌c,nec,α can be calculated using Equations (2.24) and (3.32). If multiple α ∈ [0, 1] are

considered, condition (3.45) must also be taken into account. Even then, Ω̌c,nec,α ⊆ Ω̌c,nec,α′

is not necessarily fulfilled for 0 ≤ α′ ≤ α ≤ 1. This could be introduced as an additional

condition. Finally, problems (3.41) and (3.42) can be solved by replacing the objective function

according to (3.33) or (3.34).

Again, no example for the case of both uncertainties in controllable variables and uncontrollable

parameters is given here. However, the corresponding results merge the results of Examples

24 and 25 similarly to Section 3.4.

After the necessity-α and possibility-α CSS of target designs with α ∈ [0, 1] are obtained,

coupled design decisions under fuzzy-type uncertainty for the component target design can

be made similarly to the approaches shown in Section 2.3 by using component cost functions.

If the realized component designs xk for the selected x̌k can found be within Ωk
nec,α=1 for

k = 1, . . . , n, they can be considered as permissible for all α ∈ [0, 1]. Otherwise, they might

be only permissible with a certain necessity or possibility α ∈ [0, 1]. If more knowledge on the
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Figure 40 Optimal necessity-α and possibility-α (a) independent and (b) dependent CSS of Example 25 at the component
level and their Cartesian product at the system level with α ∈ {0, 1}.

values of δα=0,i, δα=1,i becomes available, three different cases can be distinguished again

for selecting component target designs x̌k, k = 1, . . . , n. Let δ̄α,i = (1− α)δ̄α=0,i + αδ̄α=1,i,

δα,i = (1− α)δα=0,i + αδα=1,i hold in the following for i = 1, . . . , d:

(a) δ̄α,i > δα,i: The volume of the corresponding necessity-1−α CSS increases, and so does

the overall flexibility for component design in the necessity-1−α case. The volume of the

possibility-α CSS decreases, and so does the overall flexibility for component design in the

possibility-α case.
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(b) δ̄α,i < δα,i: The volume of the necessity-1−α CSS of target designs decreases, and so

does the overall flexibility for component design in the necessity-1−α case. The volume

of the possibility-α increases, and so does the overall flexibility for component design in

the possibility-α case. If the corresponding necessity-1−α CSS of target designs is empty,

new CSS of target designs must be computed.

(c) δ̄α,i = δα,i: The corresponding necessity-1−α and possibility-α CSS of target designs

remain the same and so does the overall flexibility for component design in both the

necessity-1−α and possibility-α case.

The three cases can be visualized similarly to Figure 37 for dk = 1, k ∈ {1, . . . , n}. Note that

the necessity-α and possibility-α CSS of target designs can both decrease and increase for

different α ∈ [0, 1]. After updating the necessity-α and possibility-α CSS of target designs with

α ∈ [0, 1], coupled design decisions for each component target design can be made similarly

as discussed in Section 2.3. As the overall procedure to obtain necessity-α and possibility-α

CSS of designs and target designs for independent- and dependent-decoupled design deci-

sions under fuzzy-type uncertainty with α ∈ [0, 1] is similar to interval-type uncertainty, see

Figure 38, it is not visualized explicitly here.

The next chapter investigates important properties of complete system solution spaces,

especially necessity-α and possibility-α complete system solution spaces with α ∈ [0, 1].

Furthermore, simplifications and algorithms that solve the problem statements of this chapter

are proposed. Note that no further methods related to systems engineering are presented

in the next chapter. Thus, if the reader is rather interested in the application than in these

mathematical considerations, the following chapter can be skipped.
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4. PROPERTIES & ALGORITHMS: CSS for Specific
Performance Functions

This chapter considers mathematical details that are relevant to compute component solution

spaces. First, properties of the corresponding complete system solution spaces are investi-

gated and the missing definitions for these solution spaces under fuzzy-type uncertainty are

stated. Then, the problem statements to compute component solution spaces are simplified for

specific system performance functions in order to enable their numerical computation. Further-

more, useful numerical tools are provided to obtain efficient algorithms for their computation.

4.1. Properties of Complete System Solution Spaces

This section shows that the complete system solution spaces under absence of uncertainty,

and interval- and fuzzy-type uncertainty are compact for continuous system performance

functions. This property can be transferred to component solution spaces. Furthermore, the

missing definitions for the complete system solution spaces under fuzzy-type uncertainty are

stated here.

4.1.1. Under Absence of Uncertainty
If the complete system solution space and component solution spaces defined by Equation

(3.10) can be shown to be compact, the problem statements to compute CSS have an optimal

solution. In Section A.1, the conditions for a compact set in Rd are stated. Otherwise, if

the complete system solution space was open for example and the CSS were defined as

compact sets, no optimal CSS would exist. Note that CSS defined by Equation (3.9) are always

compact. In the following, continuous system performance functions are assumed. Under

the absence of uncertainty, the complete system solution space Ωc is compact for continuous

system performance functions. This is shown in the subsequent theorem.

Theorem 1. Given the complete system solution space Ωc, defined by Equation (2.4), with

continuous system performance functions fj , j = 1, . . . ,m. Then, Ωc is compact.

Proof. For the set Ωc, it holds

Ωc = {x ∈ Ωds | f(x) ≤ fc}

= Ωds ∩ {x ∈ Rd | f(x) ≤ fc}. (4.1)
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The set Ωc is a subset of the compact set Ωds = [xl
ds, x

u
ds] and is therefore bounded. In

addition, it is closed as the inverse image f−1(−∞, fc] of the closed set (−∞, fc] is closed in

Rd for continuous f and the intersection of closed sets, i.e., Ωds and f−1(−∞, fc], is closed,

too.

This property transfers to CSS which are defined by Equation (3.10) for continuous component

performance functions as they have the same mathematical structure. Note that in general

more complex system performance functions could be taken into account for the complete

system solution space and component solution spaces as well. In order to obtain a simple and

more general mathematical formulation of the complete system solution space, the constraints

on the design variables and the constraints on the responses from Section 2.1 can be merged

using constraint functions.

Definition 1. Given the system design space Ωds = [xl
ds, x

u
ds] with performance functions in

f = (f1, . . . , fm) : Rd × Rq → Rm : (x, p) 7→ z = f(x, p) and thresholds in fc(p) ∈ Rm. The

constraint functions Fj , j = 1, . . . ,m+ 2d, with F = (F1, . . . , Fm+2d) are defined by

F : Rd × Rq → Rm+2d :

(x, p) 7→ (f(x, p)− fc(p),−x+ xl
ds, x− xu

ds). (4.2)

The constraint functions Fj , j = 1, . . . ,m+2d, have the property that they are continuous if the

system performance functions fj , j = 1, . . . ,m, are continuous. Furthermore, the constraint

function can be used to define the constraints on the design variables and the responses as

stated above.

Theorem 2. For (x, p) ∈ Rd × Rq, it is x ∈ Ωds and f(x, p) ≤ fc if and only if F (x, p) ≤ 0

holds component-wise.

Proof. This follows directly from the definition of the system design space for which

x ∈ Ωds ⇔ −x+ xl
ds ≤ 0 ∧ x− xu

ds ≤ 0 (4.3)

holds component-wise.

Thus, for fixed values of p ∈ Rq, the complete system solution space can be reformulated as

Ωc = {x ∈ Rd : F (x, p) ≤ 0}, which is helpful for the following investigations. Next, properties

of the complete system solution spaces under interval-type uncertainty are considered.
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4.1.2. Interval-Type Uncertainty
Under interval-type uncertainty, worst- and best-case complete system solution spaces of de-

signs and target designs are considered. These can also be reformulated using the constraint

functions as stated in Theorem 3.

Theorem 3. Given the worst- and best-case complete system solution spaces Ωc,wc and

Ωc,bc and the worst- and best-case complete system solution spaces of target designs Ω̌c,wc

and Ω̌c,bc, defined by Equations (2.11)-(2.14). Then, Ωc,wc, Ωc,bc, Ω̌c,wc, and Ω̌c,bc can be

reformulated as

(a)

Ωc,wc = {x ∈ Rd | ∀p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.4)

(b)

Ωc,bc = {x ∈ Rd | ∃p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.5)

(c)

Ω̌c,wc = {x̌ ∈ Rd | ∀x ∈ UX(x̌, δ) ∀p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.6)

(d)

Ω̌c,bc = {x̌ ∈ Rd | ∃x ∈ UX(x̌, δ) ∃p ∈ UP (p̌, γ) : F (x, p) ≤ 0}. (4.7)

Proof. With Theorem 2, it holds

Ωc,wc = {x ∈ Ωds | ∀p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}

= {x ∈ Rd | x ∈ Ωds ∧ ∀p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}

= {x ∈ Rd | ∀p ∈ UP (p̌, γ) : x ∈ Ωds ∧ f(x, p) ≤ fc(p)}

= {x ∈ Rd | ∀p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.8)

Ωc,bc = {x ∈ Ωds | ∃p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}

= {x ∈ Rd | x ∈ Ωds ∧ ∃p ∈ UP (p̌, γ) : f(x, p) ≤ fc(p)}

= {x ∈ Rd | ∃p ∈ UP (p̌, γ) : x ∈ Ωds ∧ f(x, p) ≤ fc(p)}

= {x ∈ Rd | ∃p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.9)
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Ω̌c,wc = {x̌ ∈ Rd | ∀x ∈ UX(x̌, δ) : x ∈ Ωc,wc}

= {x̌ ∈ Rd | ∀x ∈ UX(x̌, δ) ∀p ∈ UP (p̌, γ) : F (x, p) ≤ 0}, (4.10)

Ω̌c,bc = {x̌ ∈ Rd | ∃x ∈ UX(x̌, δ) : x ∈ Ωc,bc}

= {x̌ ∈ Rd | ∃x ∈ UX(x̌, δ) ∃p ∈ UP (p̌, γ) : F (x, p) ≤ 0} (4.11)

as UX(x̌, δ),UP (p̌, γ) 6= ∅.

These reformulations help to prove that the worst- and best-case complete system solution

spaces of designs and target designs are also compact for continuous system performance

functions. This is shown in the subsequent theorem.

Theorem 4. Given the worst- and best-case complete system solution spaces Ωc,wc and Ωc,bc

and the worst- and best-case complete system solution spaces of target designs Ω̌c,wc and

Ω̌c,bc, defined by Equations (2.11)-(2.14), with continuous system performance functions f .

Then, Ωc,wc, Ωc,bc, Ω̌c,wc, and Ω̌c,bc are compact.

Proof. The sets Ωc,wc, Ωc,bc, Ω̌c,wc, and Ω̌c,bc are subsets of the bounded d-dimensional

interval [xl
ds − δ, xu

ds + δ] and are therefore bounded.

First, assume that Ω̌c,wc is not closed. Then, there is a sequence (x̌n)n∈N ⊂ Ω̌c,wc with

limn→∞ x̌n = x̌ and x̌ ∈ Rd\Ω̌c,wc.

Let (x̌n)n∈N ⊂ Ω̌c,wc be such a sequence. Then, for x̌n ∈ Ω̌c,wc, n ∈ N, it holds

∀x ∈ UX(x̌n, δ) ∀p ∈ UP (p̌, γ) ∀j ∈ {1, . . . ,m+ 2d} : Fj(x, p) ≤ 0 (4.12)

and for x̌ ∈ Rd\Ω̌c,wc, it holds

∃x′ ∈ UX(x̌, δ) ∃p′ ∈ UP (p̌, γ) ∃j′ ∈ {1, . . . ,m+ 2d} : Fj′(x
′, p′) > 0. (4.13)

The vector x′ can be written as x′ = x̌ + δ′ where δ′ = (δ′1, . . . , δ
′
d). Hence, (x′n)n∈N is

a sequence defined by x′n = x̌n + δ′, n ∈ N, with limn→∞ x
′
n = x′. Furthermore, it is

Fj′(x
′
n, p
′) ≤ 0 for all n ∈ N and Fj′(x′, p′) > 0, which is a contradiction to the continuity of F .

Therefore, Ω̌c,wc is closed and so is Ωc,wc as a special case of Ω̌c,wc with γ = 0.
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Second, assume that Ω̌c,bc is not closed. Then, there is also a sequence (x̌n)n∈N ⊂ Ω̌c,bc

with limn→∞ x̌n = x̌ and x̌ ∈ Rd\Ω̌c,bc.

Let (x̌n)n∈N ⊂ Ω̌c,bc be such a sequence. Then, for x̌n ∈ Ω̌c,bc, n ∈ N, it holds

∃x ∈ UX(x̌n, δ) ∃p ∈ UP (p̌, γ) ∀j ∈ {1, . . . ,m+ 2d} : Fj(x, p) ≤ 0. (4.14)

and for x̌ ∈ Rd\Ω̌c,bc, it holds

∀x ∈ UX(x̌, δ) ∀p ∈ UP (p̌, γ) ∃j′ ∈ {1, . . . ,m+ 2d} : Fj′(x, p) > 0. (4.15)

Now, sequences (δn)n∈N ⊂ [−δ, δ] and (γn)n∈N ⊂ [−γ, γ] can be defined such that F (x̌n +

δn, p̌n + γn) ≤ 0 holds component-wise for all n ∈ N. As (δn)n∈N and (γn)n∈N are bounded

sequences, there are convergent subsequences (δnk)k∈N ⊂ [−δ, δ] with limk→∞ δnk = δ′,

δ′ ∈ [−δ, δ], and (γnk)k∈N ⊂ [−γ, γ] with limk→∞ γnk = γ′, γ′ ∈ [−γ, γ], after the Bolzano-

Weierstrass theorem, cf. [51]. With the continuity of F , it is also F (x̌+ δ′, p̌+ γ′) ≤ 0, which is

a contradiction to (4.15). Therefore, Ω̌c,bc is closed and so is Ωc,bc as a special case of Ω̌c,bc

with γ = 0.

In the following, properties of the complete system solution spaces under fuzzy-type uncer-

tainty are investigated.

4.1.3. Under Fuzzy-Type Uncertainty with α ∈ (0, 1)

Under fuzzy-type uncertainty, necessity-α and possibility-α complete system solution spaces

are considered, α ∈ [0, 1]. First, the case α ∈ (0, 1) is considered, followed by the case

α ∈ {0, 1} in the subsequent subsection. Note that in Section 2.2, only properties of necessity-

α and possibility-α complete system solution spaces for α ∈ (0, 1) were stated. Here, the

missing definitions are provided using also constraint functions.

Definition 2. Given the constraint functions F from Definition 1, fuzzy sets X(x̌) and P , both

defined with the membership functions from Equation (2.17), and α ∈ (0, 1). Then,

(a) the possibility-α complete system solution space is defined as

Ωc,pos,α = {x ∈ Rd | pos({P | F (x, P ) ≤ 0}) ≥ α}, (4.16)

(b) the necessity-α complete system solution space is defined as

Ωc,nec,α = {x ∈ Rd | nec({P | F (x, P ) ≤ 0}) ≥ α}, (4.17)
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(c) the possibility-α complete system solution space of target designs is defined as

Ω̌c,pos,α = {x̌ ∈ Rd | pos({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) ≥ α}, (4.18)

(d)and the necessity-α complete system solution space of target designs is defined as

Ω̌c,nec,α = {x̌ ∈ Rd | nec({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) ≥ α}. (4.19)

In order to obtain the equivalence of the definitions of the necessity-α and possibility-α com-

plete system solution spaces from Definition 2 and the properties, stated in Section 2.2, i.e.,

Equations (2.23)-(2.24), for α ∈ (0, 1), Lemma 1 can help.

Lemma 1. Given the system design space Ωds = [xl
ds, x

u
ds], the performance functions with

f = (f1, . . . , fm) : Rd × Rq → Rm : (x, p) 7→ z = f(x, p) and threshold fc(p) ∈ Rm

which together define the constraint functions F , see Definition 1. Furthermore, let the α-cuts

UXα (x̌, δα=0, δα=1) and UPα (p̌, γα=0, γα=1) of the fuzzy uncertainty sets be defined according

to Equations (2.18) and (2.20) with x̌i ∈ R, δα=0,i, δα=1,i ∈ R+
0 , i = 1 . . . , d, and p̌l ∈ R,

γα=0,l, γα=1,l ∈ R+
0 , l = 1, . . . , q, for α ∈ (0, 1). Then, it holds

(a)

{x̌ ∈ Rd | ∃x ∈ UXα (x̌, δα=0, δα=1) ∃p ∈ UPα (p̌, γα=0, γα=1) : F (x, p) ≤ 0}

= {x̌ ∈ Rd | ∃x ∈ UXα (x̌, δα=0, δα=1) :

x ∈ {x ∈ Ωds | ∃p ∈ UPα (p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}}.
(4.20)

(b)

{x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0}

= {x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δα=0, δα=1) :

x ∈ {x ∈ Ωds | ∀p ∈ UP1−α(p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}},
(4.21)

Proof. A proof can be done similarly to the proof of Theorem 3 for α ∈ (0, 1).

Finally, the above-mentioned equivalences for the necessity-α and possibility-α complete

system solution spaces, α ∈ (0, 1) can be proven. This is done in Theorem 5.

Theorem 5. Given the necessity-α and possibility-α complete system solution spaces from

Definition 2 and the corresponding α-cuts UXα (x̌, δα=0, δα=1) and UPα (p̌, γα=0, γα=1) of the
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fuzzy uncertainty sets from Equations (2.18) and (2.20) with x̌i ∈ R, δα=0,i, δα=1,i ∈ R+
0 ,

i = 1 . . . , d, and p̌l ∈ R, γα=0,l, γα=1,l ∈ R+
0 , l = 1, . . . , q, where x̌ is variable and p̌ is fixed.

Furthermore, let the system performance functions in f be continuous. Thus, it holds

(a)

Ωc,pos,α = {x ∈ Ωds | ∃p ∈ UPα (p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}, (4.22)

(b)

Ωc,nec,α = {x ∈ Ωds | ∀p ∈ UP1−α(p̌, γα=0, γα=1) : f(x, p) ≤ fc(p)}, (4.23)

(c)

Ω̌c,pos,α = {x̌ ∈ Rd | ∃x ∈ UXα (x̌, δα=0, δα=1) : x ∈ Ωc,pos,α}, (4.24)

(d)

Ω̌c,nec,α = {x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δα=0, δα=1) : x ∈ Ωc,nec,α} (4.25)

for α ∈ (0, 1).

Proof. Let X(x̌′), P , and Z be fuzzy sets. Here, Z is defined as Z = F (X,P ). Using

Definition 6, stated in Section A.2, the membership function of Z is

µZ(z) =


sup

(x,p)∈F−1(z)

min(µX(x̌′)(x), µP (p)) if F−1(z) 6= ∅

0 else,

(4.26)

z ∈ Rm+2d.

First,

Ω̌c,pos,α = {x̌ ∈ Rd | ∃x ∈ UXα (x̌, δα=0, δα=1) ∃p ∈ UPα (p̌, γα=0, γα=1) : F (x, p) ≤ 0}

is shown for α ∈ (0, 1).

"⊆": Let Ω̌c,pos,α 6= ∅ and x̌′ ∈ Ω̌c,pos,α. It holds

pos({(X,P ) : F (X,P ) ≤ 0}) ≥ α (4.27)

⇒ pos({Z : Z ≤ 0}) ≥ α (4.28)

⇒ sup
z≤0

µZ(z) ≥ α (4.29)

⇒ sup
z≤0

sup
(x,p)∈F−1(z)

min(µX(x̌′)(x), µP (p)) ≥ α (4.30)

⇒ sup
(x,p)∈F−1((−∞,0]m)

min(µX(x̌′)(x), µP (p)) ≥ α, (4.31)
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where (−∞, 0]m ⊂ Rm is a closed set, defined by the Cartesian product over m sets which

are all given by (−∞, 0] ⊂ R. As supp∈T min(µX(x̌′)(x), µP (p)) = 0 holds for (x, p) ∈
([p̌−γα=0, p̌+γα=0]×[x̌′−δα=0, x̌

′+δα=0])c, where the superscript c denotes the complement,

Equation (4.31) is equivalent to

sup
p∈T

min(µX(x̌′)(x), µP (p)) ≥ α (4.32)

for T = F−1((−∞, 0]m)∩ ([x̌′− δα=0, x̌
′+ δα=0]× [p̌− γα=0, p̌+ γα=0]), where T is a closed

set as an intersection of closed sets. Furthermore, min(µX(x̌′)(x), µP (p)) is continuous on

the set [x̌′ − δα=0, x̌
′ + δα=0]× [p̌− γα=0, p̌+ γα=0]. Thus, T has a maximum point and from

Equation (4.32) it follows

max
p∈T

min(µX(x̌′)(x), µP (p)) ≥ α (4.33)

⇒ ∃(x, p) ∈ T : min(µX(x̌′)(x), µP (p)) ≥ α (4.34)

⇒ ∃(x, p) ∈ T : µX(x̌′)(x) ≥ α ∧ µP (p) ≥ α (4.35)

⇒ ∃(x, p) ∈ T : x ∈ UXα (x̌′, δα=0, δα=1) ∧ p ∈ UPα (p̌, γα=0, γα=1) (4.36)

⇒ ∃x ∈ UXα (x̌′, δα=0, δα=1) ∃p ∈ UPα (p̌, γα=0, γα=1) : F (x, p) ≤ 0. (4.37)

Hence, it is x̌′ ∈ {x̌ ∈ Rd : ∃x ∈ UXα (x̌, δα=0, δα=1) ∃p ∈ UPα (p̌, γα=0, γα=1) : F (x, p) ≤ 0}
and Ω̌c,pos,α ⊆ {x̌ ∈ Rd : ∃x ∈ UXα (x̌, δα=0, δα=1) ∃p ∈ UPα (p̌, γα=0, γα=1) : F (x, p) ≤ 0}.
For Ω̌c,pos,α = ∅, "⊇" can be used.

"⊇": A proof can be done similarly to "⊆".

With Lemma 1, (a) and (c) follow.

Second,

Ω̌c,nec,α = {x̌ ∈ Rd | ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0}

is shown for α ∈ (0, 1).

"⊆": Let Ω̌c,nec,α 6= ∅ and x̌′ ∈ Ω̌c,nec,α. It holds,

nec({(X,P ) : F (X,P ) ≤ 0}) ≥ α (4.38)

⇒ nec({Z : Z ≤ 0}) ≥ α (4.39)

⇒ inf
z>0

(1− µZ(z)) ≥ α (4.40)

⇒ sup
z>0

µZ(z) ≤ 1− α (4.41)

⇒ sup
(x,p)∈F−1((0,∞)m)

min(µX(x̌′)(x), µP (p)) ≤ 1− α, (4.42)

where (0,∞)m ⊂ Rm is an open set, defined by the Cartesian product overm sets which are all

given by (0,∞) ⊂ R. Suppose there is a (x′, p′) ∈ F−1((0,∞)m) with min(µX(x̌′)(x′), µP (p′)) =

1− α. Without loss of generality, consider δα=0,i > δα=1,i, i = 1, . . . , d, and γα=0,l > γα=1,l,
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l = 1, . . . , q as for α ∈ (0, 1), there is no xi with µX(x̌′),i(xi) = 1 − α for δα=0,i = δα=1,i,

i ∈ {1, . . . , d}, or pl with µPl (pl) = 1−α for γα=0,l = γα=1,l, l ∈ {1, . . . , q}. It holds (x′, p′) ∈ U
with U = F−1((0,∞)m)∩((x̌′−δα=0, x̌

′+δα=0)×(p̌−γα=0, p̌+γα=0)). Furthermore, there is

a t ∈ R with (x′, p′)+t(x̌′−x′, p̌−p′) ∈ U with min(µX(x̌′)(x̌′+t(x̌′−x′)), µP (p̌+t(p̌−p′))) >
1 − α as U is open and min(µX(x̌′)(·), µP (·)) is monotonically increasing on U in direction

(x̌′ − x′, p̌− p′). This is a contradiction and it follows

∀x ∈ UX1−α(x̌′, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : (x, p) ∈ U c (4.43)

⇒ ∀x ∈ UX1−α(x̌′, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0, (4.44)

where the superscript c denotes the complement. Hence, it is

x̌′ ∈ {x̌ ∈ Rd : ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0} (4.45)

and

Ω̌c,nec,α ⊆ {x̌ ∈ Rd : ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) :

F (x, p) ≤ 0}. (4.46)

For Ω̌c,nec,α = ∅, "⊇" can be used.

"⊇": Let {x̌ ∈ Rd : ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0} 6= ∅
and x̌′ ∈ {x̌ ∈ Rd : ∀x ∈ UX1−α(x̌, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0}. It

holds,

∀x ∈ UX1−α(x̌′, δα=0, δα=1) ∀p ∈ UP1−α(p̌, γα=0, γα=1) : F (x, p) ≤ 0, (4.47)

i.e., UX1−α(x̌′, δα=0, δα=1)× UP1−α(p̌, γα=0, γα=1) ⊆ F−1((−∞, 0]m). Thus,

sup
(x,p)∈F−1((0,∞)m)

min(µX(x̌′)(x), µP (p)) ≤ 1− α, (4.48)

which is equal to Equation (4.42). The rest of this proof can be done similarly to the proof of

"⊆".

With Lemma 1, (b) and (d) follow.

Similar to the complete system solution spaces under absence of uncertainty and interval-type

uncertainty, it can be shown for the necessity-α and possibility-α complete system solution

spaces that they are compact if the system performance functions are continuous, α ∈ (0, 1).

Theorem 6. Given the necessity-α and possibility-α complete system solution spaces Ωc,nec,α

and Ωc,pos,α and the necessity-α and possibility-α complete system solution spaces of target

designs Ω̌c,nec,α and Ω̌c,pos,α, defined in Equations (4.16)-(4.19) for α ∈ (0, 1), with continuous

system performance functions in f , i.e., continuous constraint functions in F . Then, Ωc,nec,α,

Ωc,pos,α, Ω̌c,nec,α, and Ω̌c,pos,α are compact for α ∈ (0, 1).
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Proof. Using Theorem 5, a proof for α ∈ (0, 1) can be done similarly to the proof of Theorem

4.

Next, necessity-α and possibility-α complete system solution spaces are considered for

α ∈ {0, 1}.

4.1.4. Under Fuzzy-Type Uncertainty with α ∈ {0, 1}
As done in Section 2.2, the necessity-α and possibility-α complete system solution spaces for

α ∈ {0, 1} can be defined using Equations (2.23)-(2.24), i.e., Equations (4.22)-(4.25), and the

corresponding α-cuts of the fuzzy uncertainty sets from Equations (2.18)-(2.21). Then, the

properties stated in the following theorem hold.

Theorem 7. Let the necessity-α and possibility-α complete system solution spaces be defined

by Equations (4.22)-(4.25) with corresponding α-cuts of the fuzzy uncertainty sets from

Equations (2.18)-(2.21) for α ∈ {0, 1}. Furthermore, let the system performance functions in f

be continuous, P be the fuzzy set of the uncontrollable parameters, and X(x̌) be the fuzzy

set of the target designs x̌, both defined with the membership functions from Equation (2.17).

Then, it holds

(a)

pos({P | F (x, P ) ≤ 0}) > 0 (4.49)

for all x ∈ Ωc,pos,0 and

pos({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) > 0 (4.50)

or all x̌ ∈ Ω̌c,pos,0,

(b)

pos({P | F (x, P ) ≤ 0}) = 1 (4.51)

for all x ∈ Ωc,pos,1 and

pos({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) = 1; (4.52)

for all x̌ ∈ Ω̌c,pos,1,

(c)

nec({P | F (x, P ) ≤ 0}) = 1 (4.53)

for all x ∈ Ωc,nec,0 if γα=0 = γα=1 and

nec({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) = 1 (4.54)
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for all x̌ ∈ Ω̌c,nec,0 if additionally δα=0 = δα=1,

nec({P | F (x, P ) ≤ 0}) ≥ 0 (4.55)

for all x ∈ Ωc,nec,0 and

nec({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) ≥ 0 (4.56)

for all x̌ ∈ Ω̌c,nec,0 else, with

nec({P | F (x, P ) ≤ 0}) > 0 (4.57)

for all x ∈ Ωc,nec,0 with F (x, p) < 0 for all p ∈ UP1 (p̌, γα=0, γα=1) and

nec({(X(x̌), P ) | F (X(x̌), P ) ≤ 0}) > 0 (4.58)

for all x̌ ∈ Ω̌c,nec,0 with F (x, p) < 0 for all x ∈ UX1 (x̌, δα=0, δα=1), p ∈ UP1 (p̌, γα=0, γα=1),

(d)

nec({P | f(x, P ) ≤ 0}) = 1 (4.59)

for all x ∈ Ωc,nec,1 and

nec({(X(x̌), P ) : F (X(x̌), P ) ≤ 0}) = 1 (4.60)

for all x̌ ∈ Ω̌c,nec,1.

Proof. Properties (a) and (b) can be proven similarly to "⊇" of the first part of the proof of

Theorem 5. Equations (4.53) and (4.54) of Property (c) can be proven similarly to "⊇" of

the second part of the proof of Theorem 5 as UX1 (x̌, δα=0, δα=1) = UXα (x̌, δα=0, δα=1) and

UP1 (p̌, γα=0, γα=1) = UPα (p̌, γα=0, γα=1) for α ∈ [0, 1).

Let α = 0 and x̌ ∈ Ω̌c,nec,0 with

∀x ∈ UX1 (x̌, δα=0, δα=1) ∀p ∈ UP1 (p̌, γα=0, γα=1) : F (x, p) < 0, (4.61)

i.e., UX1 (x̌, δα=0, δα=1)× UP1 (p̌, γα=0, γα=1) ⊆ F−1((−∞, 0)m). Thus,

sup
(x,p)∈F−1([0,∞)m)

min(µX(x̌)(x), µP (p)) < 1 (4.62)

⇒ sup
(x,p)∈F−1((0,∞)m)

min(µX(x̌)(x), µP (p)) < 1 (4.63)

⇒ nec({(X(x̌), P ) : F (X(x̌), P ) ≤ 0}) > 0 (4.64)

holds similarly to "⊇" of the first part of the proof of Theorem 5. Hence, the Equations (4.57)

and (4.58) from Property (c) follow. Note that the Equations (4.55) and (4.56) are always
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fulfilled.

Now, let α = 1 and x̌ ∈ Ω̌c,nec,1. Then, it holds

∀x ∈ UX0 (x̌, δα=0, δα=1) ∀p ∈ UP0 (p̌, γα=0, γα=1) : F (x, p) ≤ 0, (4.65)

i.e., UX0 (x̌, δα=0, δα=1)× UP0 (p̌, γα=0, γα=1) ⊆ F−1((−∞, 0]m). Thus,

sup
(x,p)∈F−1((0,∞)m)

min(µX(x̌)(x), µP (p)) = 0 (4.66)

⇒ nec({(X(x̌), P ) : F (X(x̌), P ) ≤ 0}) = 1 (4.67)

holds similarly to "⊇" of the first part of the proof of Theorem 5. Hence, property (d) follows.

Like the complete system solution spaces considered before, it can be shown that the necessity-

α and possibility-α complete system solution spaces, α ∈ {0, 1}, are compact if the system

performance functions are continuous. However, this does not hold for the possibility-0 com-

plete system solution space and the possibility-0 complete system solution space of target

designs in general. The corresponding results are stated in the subsequent theorem.

Theorem 8. Given the necessity-α and possibility-α complete system solution spaces Ωc,nec,α

and Ωc,pos,α and the necessity-α and possibility-α complete system solution spaces of target

designs Ω̌c,nec,α and Ω̌c,pos,α, defined by (4.22)-(4.25) with α ∈ {0, 1}, with continuous system

performance functions f , i.e., continuous constraint functions F . Then, Ωc,nec,α and Ω̌c,nec,α

are compact for α ∈ {0, 1}, Ωc,pos,α and Ω̌c,pos,α are compact for α = 1 and if δα=0 = δα=1

and γα=0 = γα=1 also for α = 0.

Proof. A proof can be done similarly to the proof of Theorem 4.

Usually, the possibility-0 complete system solution space Ωc,pos,0 and the possibility-0 complete

system solution space of target designs Ω̌c,pos,0 are not compact as in general, there exists

a sequence (x̌n)n∈N ⊂ Ω̌c,pos,0 with limn→∞ x̌n = x̌ and x̌ ∈ Rd\Ω̌c,pos,0, which shows that

they are non-closed sets. In this case, the problem statements for computing possibility-0 CSS

of designs and target designs must be reformulated using non-closed sets for these CSS, see

Examples 24 and 25.

After checking the compactness of the complete system solution spaces under absence of

uncertainty, interval- and fuzzy type uncertainty, which guarantees the existence of optimal
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CSS, the underlying problem statements are investigated further in the following to enable an

efficient computation. In this regard, the problem statements to compute CSS are simplified

for specific continuous system performance functions. Furthermore, corresponding properties

of the resulting problem statements are investigated in order to apply suitable numerical

algorithms to solve them.

4.2. Simplification and Properties of CSS Problem Statements

This section simplifies the problem statements to compute box- and arbitrarily-shaped in-

dependent, and box- and arbitrarily-shaped dependent CSS under absence of uncertainty,

interval- and fuzzy type uncertainty. Here, system performance functions which are linear

in the controllable variables and monotonic in the uncontrollable parameters are taken into

account. For this case, it is shown that the problem statements are convex optimization

problems for which any local optimum is a global one.

4.2.1. Box-Shaped Independent CSS
First, the absence of uncertainty is considered for which uncontrollable parameters are not

taken into account in the system performance functions, i.e., f = f(·, p) for p ∈ Rq. The

following investigations are limited to linear system performance functions of the form

fj(x)− fc,j = aT
j x− bj (4.68)

with aj ∈ Rd, bj ∈ R, j = 1, . . . ,m. These are relevant in systems engineering, see Chapter

5. Note that for box-shaped independent CSS, more complex system performance functions

are considered in, e.g., [59]. In general, more complex considerations are lacking for other

types of CSS. Nevertheless, this thesis points out when the simplifications can be directly

transferred to more complex performance functions.

For reasons of simplicity, fj(x) = aT
j x and fc,j = bj , j = 1, . . . ,m are assumed. Thus, the

constraints f(x) ≤ fc build a system of linear inequalities, i.e., Ax ≤ b, where aj are the rows

of A ∈ Rm×d and bj the entries of b ∈ Rm for j = 1, . . . ,m. For linear system performance

functions, problem (3.16) reads

maximize
xl,xu

d∏
i=1

(xu
i − xl

i)

subject to xl − xu ≤ 0,

∀x ∈ [xl, xu] : −x ≤ −xl
ds, x ≤ xu

ds, Ax ≤ b.

(4.69)
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Defining log(0) = −∞, the problem can be reformulated as

minimize
xl,xu

− log

(
d∏
i=1

(xu
i − xl

i)

)
subject to xl − xu ≤ 0,

−xl ≤ −xl
ds, x

u ≤ xu
ds,

aT
j V

l
jx

l + aT
j V

u
j x

u ≤ bj , j = 1, . . . ,m,

(4.70)

where V l
j , V

u
j ∈ Rd×d are diagonal matrices for which the ith entries on the diagonals are

given by

vl
j,i =


1 if aj,i ≤ 0,

0 else,

vu
j,i =


0 if aj,i ≤ 0,

1 else,

(4.71)

i = 1, . . . , d, j = 1, . . . ,m. This is shown in Theorem 9. In problem (4.70), the m optimization

constraints in the condition ∀x ∈ [xl, xu]: −x ≤ −xl
ds, x ≤ xu

ds, Ax ≤ b of problem (4.69)

are simplified, which helps to solve the optimization problem numerically. Overall, problem

(4.70) has 2d optimization variables and 3d+m optimization constraints, for which each of

xl − xu ≤ 0, −xl ≤ −xl
ds, and xu ≤ xu

ds forms d optimization constraints.

Theorem 9. Problem (4.69) is equivalent to problem (4.70).

Proof. First, it is shown that the optimization constraints ∀x ∈ [xl, xu]: −x ≤ −xl
ds, x ≤ xu

ds,

Ax ≤ b from problem (4.69) and−xl ≤ −xl
ds, x

u ≤ xu
ds, a

T
j V

l
jx

l+aT
j V

u
j x

u ≤ bj , j = 1, . . . ,m,

from problem (4.70) are equivalent. For all x ∈ [xl, xu], it holds

−xi ≤ −xl
ds,i ⇔ max

xi∈[xl
i,x

u
i ]
−xi ≤ −xl

ds,i

⇔ − xl
i ≤ −xl

ds,i, (4.72)

xi ≤ xu
ds,i ⇔ max

xi∈[xl
i,x

u
i ]
xi ≤ xu

ds,i

⇔ xu
i ≤ xu

ds,i, (4.73)

i = 1, . . . , d, and

aT
j x ≤ bj ⇔ max

x∈[xl,xu]
aT
j x ≤ bj

⇔ aT
j V

l
jx

l + aT
j V

u
j x

u ≤ bj , (4.74)

where V l
j , V

u
j ∈ Rd×d are diagonal matrices with entries given by Equation (4.71), j =

1, . . . ,m. Therefore, the feasible sets of problems (4.69) and (4.70) are equivalent.
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Furthermore, the logarithm with log(0) = −∞ is monotonically increasing on [0,∞) and any

maximization problem can be reformulated as a minimization problem by changing the sign of

the objective function. Thus, any optimal solution of problem (4.70) is also an optimal solution

of problem (4.69) and vice versa, which means that the two problems are equivalent.

Equivalent simplifications of the optimization constraints of problem (4.69) for linear system

performance functions are, for example, considered in [6, 39, 64], too. Moreover, the above

simplification can be generalized to monotonic system performance functions, as the proof of

Theorem 9 only uses the monotony of linear system performance functions. A simplification for

specific convex system performance functions can be found in [21]. For more general system

performance functions, a simplification is more complex.

Using the objective function of problem (4.70), it can be shown that problem (4.70) is convex

and differentiable. This is stated in the subsequent theorem.

Theorem 10. The objective function of problem (4.70), defined by − log(
∏d
i=1(xu

i − xl
i)) for

xl, xu ∈ Rd, is convex and differentiable for xl < xu.

Proof. Using the monotony and concavity of the logarithm, it holds

− log

(
d∏
i=1

(θ(xu
i − xl

i)) + (1− θ)(x′ ui − x′ li ))

)

≤ − log

(
θ

d∏
i=1

(xu
i − xl

i) + (1− θ)
d∏
i=1

(x′ui − x′ li )

)

≤ θ

(
− log

(
d∏
i=1

(xu
i − xl

i)

))
+ (1− θ)

(
− log

(
d∏
i=1

(x′ ui − x′ li )

))
(4.75)

for all xl, xu, x′ l, x′u ∈ Rd, and θ ∈ (0, 1) with xl < xu and x′ l < x′u. Therefore, the

objective function of problem (4.70) is convex. By ordering the entries of xl, xu ∈ Rd as

xl
1, . . . , x

l
d, x

u
1 , . . . , x

u
d, the gradient of the objective function becomes

∇

(
− log

(
d∏
i=1

(xu
i − xl

i)

))
=

(
1

xu
1 − xl

1

, . . . ,
1

xu
d − xl

d

,− 1

xu
1 − xl

1

, . . . ,− 1

xu
d − xl

d

)
.

(4.76)

Hence, the objective function of problem (4.70) is differentiable for xl < xu.

Moreover, the feasible set of problem (4.70) is bounded due to the design space constraints

and is determined by a system of linear inequalities for xl and xu. Hence, problem (4.70) is

a convex optimization problem for and any local minimum is a global one. It can be solved
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numerically by using standard methods for differentiable convex optimization problems, see,

e.g. [12]. This is further discussed in Section 4.3. Next, simplifications for arbitrarily-shaped

independent CSS are considered.

4.2.2. Arbitrarily-Shaped Independent CSS
As discussed for Equation (3.4), linear system performance functions can be decomposed into

a sum of linear component performance functions, i.e.,

aT
j x =

n∑
k=1

(akj )
Txk (4.77)

for x ∈ Rd, where the corresponding entries of aj are collected in (akj ), k = 1, . . . , n,

j = 1, . . . ,m. In matrix notation, Equation (4.77) is equal to

Ax =

n∑
k=1

Akxk (4.78)

where (akj ), j = 1, . . . ,m, are the rows of Ak ∈ Rm×dk , k = 1, . . . , n. In the case of linear

system performance functions, it can be shown that the component performance functions

defined by gk(xk) = Akxk for xk ∈ Rk are the optimal component performance functions for

the definitions of the CSS Ωk, k = 1, . . . , n, that solve problem (3.14), see Theorem 11. Then,

these CSS have the mathematical structure

Ωk(bk) = {x ∈ Ωk
ds | Akxk ≤ bk}, (4.79)

where bk ∈ Rm are the component performance thresholds, which correspond to gkc , k =

1, . . . , n.

Theorem 11. For linear system performance functions, given by Equation (4.68), the optimal

CSS that solve problem (3.14) have the mathematical structure Ωk(bk) = {x ∈ Ωk
ds | Akxk ≤

bk}, k = 1, . . . , n, as stated in Equation (4.79).

Proof. Let Ωk(bk) be CSS of the mathematical structure given by Equation (4.79) that de-

pend on bk, k = 1, . . . , n. Suppose there exist component solution spaces Ω′ k = {x ∈
Ωk

ds | gk(xk) ≤ gkc }, k = 1, . . . , n, with Ω′ 1×· · ·×Ω′n ⊆ Ωc and Ω′ k 6= Ωk(bk) for all bk ∈ Rm

and at least one k ∈ {1, . . . , n}. Furthermore, suppose it holds vol(Ω′ 1 × · · · × Ω′n) ≥
vol(Ω1(b1)× · · · × Ωn(bn)) for all bk, k = 1, . . . , n, with

∑n
k=1 b

k ≤ b.
Because of Ω′ 1 × · · · × Ω′n ⊆ Ωc, it is

bj ≥ sup
x∈Ω′ 1×···×Ω′n

aT
j x =

n∑
k=1

sup
xk∈Ω′ k

(akj )
Txk, (4.80)
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j = 1, . . . ,m. Now, define b′ kj = supxk∈Ω′ k(a
k
j )

Txk for j = 1, . . . ,m, k = 1, . . . , n. Thus, it

holds that Ω′ k ⊆ Ωk(b′ k) and
∑n

k=1 b
′ k ≤ b. This is a contradiction to the assumption that

vol(Ω′ 1 × · · · × Ω′n) ≥ vol(Ω1(b1) × · · · × Ωn(bn)) for bk, k = 1, . . . , n, with
∑n

k=1 b
k ≤ b.

Hence, the optimal component performance functions gk, k = 1, . . . , n, must be linear and the

optimal CSS have the mathematical structure that is given in Equation (4.79).

Theorem 11, can be generalized to all system performance functions that can be decomposed

into a sum of component performance functions as described in Section 3.2, compare [21].

Overall, problem (3.14) simplifies to problem (3.18). Incorporating again the negative logarithm

of the objective function, the problem reads

minimize
b1,...,bn

− log(vol(Ω1(b1)× · · · × Ωn(bn)))

subject to
n∑
k=1

bk ≤ b.
(4.81)

for linear performance functions. The objective function of problem (4.81) is convex, see

the subsequent theorem. Problem (4.81) has mn optimization variables and m optimization

constraints stemming from bk ∈ Rm, k = 1, . . . , n. Note that the number of optimization vari-

ables might be reduced depending on the detailed structure of the linear system performance

functions.

Theorem 12. The objective function of problem (4.81) given by − log(vol(Ω1(b1) × · · · ×
Ωn(bn))) for bk ∈ Rdk , k = 1, . . . , n, is convex.

Proof. For bk ∈ Rdk , k = 1, . . . , n, it holds

vol(Ω1(b1)× · · · × Ωn(bn)) =

n∏
k=1

vol(Ωk(bk)). (4.82)

Thus, it is sufficient to show that vol(Ωk(bk)), k = 1, . . . , n is log-concave, because the product

of log-concave functions is log-concave, see Section A.1. Then, log(vol(Ω1(b1)×· · ·×Ωn(bn)))

is concave and − log(vol(Ω1(b1)× · · · × Ωn(bn))) is convex for bk ∈ Rdk , k = 1, . . . , n.

Let k ∈ {1, . . . , n} be arbitrary. The condition xk ∈ Ωk can be reformulated as a system of

linear inequalities, cf. Theorem 2, i.e.,

Ωk(bk) = {xk ∈ Rd
k | Akxk ≤ bk}. (4.83)
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Defining

χk : Rd
k × Rm → {0, 1}, (xk, bk) 7→ χk(xk, bk) =


1 if Akxk ≤ bk,

0 else,

(4.84)

it is

vol(Ωk(bk)) =

∫
xk∈Rdk

χk(xk, bk) dxk. (4.85)

Now, it will be shown that the function χk is log-concave, i.e.,

χk(θxk + (1− θ)x′ k, θbk + (1− θ)b′ k) ≥ χk(xkbk)θχk(x′ kb′ k)1−θ

= χk(xkbk)χk(x′ kb′ k) (4.86)

for all (xk, bk), (x′ k, b′ k) ∈ Rdk × Rm and θ ∈ (0, 1). Inequality (4.86) is always fulfilled for

either χk(xkbk) = 0 or χk(x′ kb′ k) = 0. Hence, let χk(xk, bk) = 1 and χk(x′ k, b′ k) = 1, i.e.,

Akxk ≤ bk and Akx′ k ≤ b′ k. Then, it holds

Ak(θxk + (1− θ)x′ k) = θAkxk + (1− θ)Akx′ k

= θbk + (1− θ)b′ k, (4.87)

i.e., χk(θxk + (1 − θ)x′ k, θbk + (1 − θ)b′ k) = 1 and inequality (4.86) is fulfilled for all

(xk, bk), (x′ k, b′ k) ∈ Rdk × Rm and θ ∈ (0, 1). As furthermore the integration of the log-

concave function χk remains log-concave, compare [109, 110], vol(Ωk(bk)) is log-concave.

This holds for all k = 1, . . . , n because k was selected arbitrarily.

The feasible set of problem (4.81) is defined by linear inequalities. There is a part of the

feasible set for which − log(vol(Ω1(b1) × · · · × Ωn(bn))) > −∞ holds for bk ∈ Rdk . It is

bounded by

min
xk∈Ωkds

Akxk ≤ bk ≤ b−
n∑

k′=1
k′ 6=k

min
xk′∈Ωk

′
ds

Ak
′
xk
′
, (4.88)

k = 1, . . . , n. As the objective function of problem (4.81) is convex, problem (4.81) is a convex

optimization problem for which again every local optimum is a global optimum.

Furthermore, from the convexity of the objective function, its continuity follows. However, it is

not necessarily differentiable as the following example shows.

Example 26. Given a system composed of two components. The component design of

component 1 contains two design variables and the component design of component 2

contains one design variable. The system design space is given by Ωds = [0, 1]3 and the

system performance functions by f : R3 → R2, x 7→ (x1 +x2 +x3, x1 +x2) with performance
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thresholds in fc = (2, 1).

According to Theorem 11, the optimal component performance functions are given by g1 :

R2 → R2, (x1, x2) 7→ (x1 + x2, x1 + x2) and g2 : R→ R2, x3 7→ (x3, 0). Thus, the optimal

CSS have the mathematical structure Ω1(b1) = {(x1, x2) ∈ [0, 1]2 | (x1 + x2, x1 + x2) ≤ b1}
and Ω2(b2) = {(x1, x2) ∈ [0, 1]2 | (x3, 0) ≤ b2}, and depend on b1, b2 ∈ R2. For b1 =

(1.5, 1)− t(1, 0), b2 = (0.5, 0) + t(1, 0) and t ∈ [0, 1] where b1 + b2 = (2, 1), it holds

− log(vol(Ω1(b1(t))× Ω2(b2(t))))

=


− log(0.5(0.5 + t)) if 0 ≤ t ≤ 0.5,

− log(0.5(1.5− t)2(0.5 + t)) else.

(4.89)

The corresponding graph is visualized in Figure 41. For t = 0.5 the derivative

d(− log(vol(Ω1(b1(t))× Ω2(b2(t)))))

dt
=


−1

0.5+t if 0 ≤ t ≤ 0.5,

−3t2+5t−0.75
(1.5−t)2(0.5+t)

else.

(4.90)

is not continuous at t = 0.5, which shows that the objective function of problem (4.81) is not

differentiable in general.

t

− log V

0.25 0.5 0.75 1

0.5

1

1.5

2

0

− log(vol(Ω1(b1(t))× Ω2(b2(t))))

Figure 41 Graph of the function defined by − log(vol(Ω1(b1(t))× Ω2(b2(t)))) over the domain [0, 1] for Example 26.

Hence, problem (4.81) can be solved numerically using techniques for non-differentiable

convex optimization problems, compare, e.g., [120]. If the two cases that a constraint appears

more than once, compare Example 26, and that there are redundant constraints can be

excluded, then Ωk(bk) can be shown to be differentiable at bk, k ∈ {1, . . . , n}, see [87]. Hence,

also − log(vol(Ω1(b1) × · · · × Ωn(bn))) becomes differentiable and problem (4.81) can be

solved numerically using techniques for differentiable convex optimization problems, see [12].

Furthermore, the objective function of problem (4.81) is monotonically decreasing in bk,
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k = 1, . . . , n, i.e., it holds

b′ kj ≤ b′′ kj , j = 1, . . . ,m, k = 1, . . . , n,

⇒ − log(vol(Ω1(b′ 1)× · · · × Ωn(b′n))) ≥ − log(vol(Ω1(b′′ 1)× · · · × Ωn(b′′n))). (4.91)

Thus, an optimal solution of problem (4.81) can always be found at
∑n

k=1 b
k = b and problem

(4.81) can be reformulated as an unconstrained optimization problem, which reads, for example,

minimize
b1,...,bn−1

− log

(
vol

(
Ω1(b1)× · · · × Ωn−1(bn−1)× Ωn

(
b−

n−1∑
k=1

bk

)))
. (4.92)

Problem (4.92) can be solved using methods for unconstrained optimization problems, see,

e.g., [100]. This is further discussed in Section 4.3.

For linear performance functions and dk = 1, box-shaped and arbitrarily-shaped independent

CSS coincide. Here, the CSS Ωk with vol(Ωk) > 0 are intervals due to their convexity, i.e.,

Ωk = [xl
i, x

u
i ] (4.93)

with i = k, k = 1, . . . , n, for which the constraints (4.72)-(4.74) hold. Next, simplifications for

dependent CSS are considered.

4.2.3. Dependent CSS
The problem of computing box-shaped dependent CSS, i.e., problem (3.21), can be tackled

in different ways. One approach is to first compute the projection projk(Ωc), which is a

convex polytope in the case of linear system performance functions that is described by linear

inequalities for all k ∈ {1, . . . , n}, compare Section A.1. Then, the resulting problem is similar

to problem (4.69) and can be solved by its reformulation, i.e., problem (4.69). This approach is,

for example, taken in [128].

Another approach is to reformulate problem (3.21) such that it can be solved directly. Using

the properties of projections, problem (3.21) reads

maximize
xl,k,xu,k

dk∏
i=1

(xu,k
i − x

l,k
i )

subject to xl,k − xu,k ≤ 0,

∀xk ∈ [xl,k, xu,k] ∃xk′ , k′ = 1, . . . , n, k′ 6= k :

−x ≤ −xl
ds, x ≤ xu

ds, Ax ≤ b

(4.94)

for linear performance functions where x is formed by xk and xk
′
, k′ = 1, . . . , n, k′ 6= k

for k = 1, . . . , n. For every k ∈ {1, . . . , n}, a solution of problem (4.94) can, for example,

be achieved by finding remaining component designs xk
′ ∈ Ωk′

ds, k
′ = 1, . . . , n, k′ 6= k, for
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all corner points of [xl,k, xu,k] such that all resulting system designs are permissible. Here,

each resulting system designs is denoted by xcp,ι and depends on the vectors xl,k and

xu,k, which form the ιth corner point of [xl,k, xu,k], and the remaining component designs

xk
′
, k′ = 1, . . . , n, k′ 6= k, collected in xr,k

cp,ι, ι = 1, . . . , 2d
k
. These dependencies can be

expressed as xcp,ι(x
l,k, xu,k, xr,k

cp,ι), ι = 1, . . . , 2d
k
. Then, problem (4.94) can be simplified

mathematically as

minimize
xl,k,xu,k,xr,k

cp,ι,ι=1,...,2dk
− log

(
dk∏
i=1

(xu,k
i − x

l,k
i )

)
,

subject to xl,k − xu,k ≤ 0,

−xl,k ≤ −xl,k
ds , x

u,k ≤ xu,k
ds ,

−xr,k
cp,ι ≤ −xl,r,k

ds , xr,k
cp,ι ≤ xu,r,k

ds , ι = 1, . . . , 2d
k

aT
j xcp,ι(x

l,k, xu,k, xr,k
cp,ι) ≤ bj , j = 1, . . . ,m, ι = 1, . . . , 2d

k
,

(4.95)

where the lower component design space bounds of the remaining component vectors

are collected in xl,r,k
ds ∈ Rd−dk and the upper design space bounds in xl,r,k

ds ∈ Rd−dk ,

k = 1, . . . , n. This is shown in Theorem 13. For every k ∈ {1, . . . , n}, problem (4.95)

has 2dk + 2d
k
(d − dk) optimization variables and 3dk + 2d

k
(2(d − dk) + m) optimization

constraints. Here, each of xl,k − xu,k ≤ 0, −xl,k ≤ −xl,k
ds , and xu,k ≤ xu,k

ds forms dk, each

of −xr,k
cp,ι ≤ −xl,r,k

ds , ι = 1, . . . , 2d
k
, and xr,k

cp,ι ≤ xu,r,k
ds , ι = 1, . . . , 2d

k
, form 2d

k
(d − dk),

and aT
j xcp,ι(x

l,k, xu,k, xr,k
cp,ι) ≤ bj , j = 1, . . . ,m, ι = 1, . . . , 2d

k
, form m2d

k
optimization con-

straints. As dk is an exponent for both the number of optimization variables and constraints,

problem (4.95) is in general only suitable for small dk, k ∈ {1, . . . , n}. However, the number of

optimization variables and constraints might be reduced depending on the detailed structure

of linear system performance functions.

Theorem 13. Problem (4.95) is equivalent to problem (4.94).

Proof. The optimization constraints −xl,k ≤ −xl,k
ds , xu,k ≤ xu,k

ds , −xr,k
cp,ι ≤ −xl,r,k

ds , xr,k
cp,ι ≤

xu,r,k
ds , aT

j xcp,ι(x
l,k, xu,k, xr,k

cp,ι) ≤ bj , j = 1, . . . ,m, ι = 1, . . . , 2d
k

of problem (4.95) corre-

spond to the optimization constraints of problem (4.94) for all corner points of [xl,k, xu,k] where

xk
′
, k′ = 1, . . . , n, k′ 6= k, must exist with −x ≤ −xl

ds, x ≤ xu
ds, and Ax ≤ b. Hence, it must

be shown that the optimization constraints of (4.94) are also fulfilled for all non-corner points if

the corner points fulfill them.

Let xk ∈ [xl,k, xu,k] be a non-corner point for k ∈ {1, . . . , n}. With the theorem of Carathéodory,
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cf. [52], there exist dk + 1 corner points of [xl,k, xu,k], i.e., xkcp,ι′ , ι
′ = 1, . . . , dk + 1, with

xk =
dk+1∑
ι′=1

λι
′
xkcp,ι′ (4.96)

where λι
′ ∈ (0, 1), ι′ = 1, . . . , dk + 1, and

∑dk+1
ι′=1 λι

′
= 1. With λι

′
of Equation (4.96), the

vectors xr,k
cp,ι′ , which contain the remaining component designs xk

′
, k′ = 1, . . . , n, k′ 6= k for

ι′ = 1, . . . , dk + 1, can be combined to

xr,k =

dk+1∑
ι′=1

λι
′
xr,k

cp,ι′ . (4.97)

Then, the vectors xk and xr,k define a system design x given by

x =

dk+1∑
ι′=1

λι
′
xcp,ι′(x

l,k, xu,k, xr,k
cp,ι′) (4.98)

where x ∈ Ωc. This holds due to the convexity of the complete system solution space Ωc.

Hence for every xk ∈ [xl,k, xu,k] that is not a corner point, there exist xk
′
, k′ = 1, . . . , n, k′ 6= k,

given by xr,k in Equation (4.97), with −x ≤ −xl
ds, x ≤ xu

ds, and Ax ≤ b.
Furthermore, the objective functions of problems (4.94) and (4.95) are consistent, which can

be shown similarly to the proof of Theorem 9. Therefore, the two problems are equivalent.

The above simplification can be generalized to convex system performance functions, as the

proof of Theorem 13 only uses the convex property of linear system performance functions.

The objective function of problem (4.95) is convex and differentiable, compare Theorem 10,

and its feasible set is bounded. Thus, problem (4.70) is also a convex optimization problem and

can be solved numerically by using standard methods for differentiable convex optimization

problems, which is further discussed in the next section.

For dk = 1, k ∈ {1, . . . , n}, the volume of [xl,k, xu,k] can be maximized by minimizing xl,k

and maximizing xu,k. In this case, problem (4.95) can be reformulated as two independent

optimization problems

minimize
xl,k,xr,k

xl,k

subject to −x(xl,k, xr,k) ≤ −xl
ds, x(xl,k, xr,k) ≤ xu

ds,

aT
j x(xl,k, xr,k) ≤ bj , j = 1, . . . ,m,

(4.99)

where x(xl,k, xr,k) ∈ Rd is the resulting system design of xl,k ∈ Rdk and xk
′ ∈ Rdk

′
, k′ =
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1, . . . , n, k′ 6= k, collected in xr,k ∈ Rd−dk , and

minimize
xu,k,xr,k

−xu,k

subject to −x(xu,k, xr,k) ≤ −xl
ds, x(xu,k, xr,k) ≤ xu

ds,

aT
j x(xu,k, xr,k) ≤ bj , j = 1, . . . ,m,

(4.100)

where x(xu,k, xr,k) ∈ Rd is the resulting system design of xu,k ∈ Rdk and xk
′ ∈ Rdk

′
,

k′ = 1, . . . , n, k′ 6= k, collected in xr,k ∈ Rd−dk again. Equivalent simplification for the

dk = 1, k ∈ {1, . . . , n}, can be found in [6]. Problems (4.99) and (4.100) have dk optimization

variables and 2dk + m optimization constraints each. Representatively for problem (4.99),

each of −x(xl,k, xr,k) ≤ −xl
ds and x(xl,k, xr,k) ≤ xu

ds forms dk and aT
j x(xl,k, xr,k) ≤ bj ,

j = 1, . . . ,m, form m optimization constraints. Both problems (4.99) and (4.100) are linear

optimization problems that can be solved by using standard methods for linear optimization,

cf., [100].

Furthermore, these problems can also be used to compute arbitrarily-shaped dependent CSS

for dk = 1, k ∈ {1, . . . , n}, as the CSS are intervals in this case. In general, no optimization

problem needs to be solved to compute arbitrarily-shaped dependent CSS because they are

the projection of the complete system solution space onto the corresponding dk-dimensional

coordinate space. This is discussed in Section 4.3 for linear system performance functions. In

the following, computing CSS under uncertainty is considered.

4.2.4. CSS under Uncertainty
First, problem statements under interval-type uncertainty with uncertainties in controllable

variables are investigated in which uncertainties in uncontrollable parameters are neglected.

In the case of linear system performance functions, problem (3.31), which accounts for

uncertainties in controllable variables with unknown magnitudes, can be reformulated as

maximize
x̌,δ′

δ′

subject to −δ′ ≤ 0,

−x̌+ (δ′ω + ν) ≤ −xl
ds, x̌+ (δ′ω + ν) ≤ xu

ds,

aT
j x̌+ aT

j Wj(δ
′ω + ν) ≤ bj , j = 1, . . . ,m,

(4.101)

where Wj ∈ Rd×d are diagonal matrices for that the ith entries on the diagonals are given by

wj,i =


−1 if aj,i ≤ 0,

1 else,

(4.102)
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i = 1, . . . , d, j = 1, . . . ,m. This is shown in Theorem 14. Overall, problem (4.101) has d+ 1

optimization variables and 1 + 2d+m optimization constraints. Here, −δ′ ≤ 0 forms one, each

of −x̌+ (δ′ω + ν) ≤ −xl
ds and x̌+ (δ′ω + ν) ≤ xu

ds forms d, and aT
j x̌+ aT

j Wj(δ
′ω + ν) ≤ bj ,

j = 1, . . . ,m, form m optimization constraints.

Theorem 14. Problem (3.31) is equivalent to problem (4.101) for linear system performance

functions.

Proof. For linear system performance functions, the optimization constraint UX(x̌, δ′ω + ν) ⊆
Ωc of problem (3.31), in which UX(x̌, δ′ω + ν) is given by equation (3.32), reads

∀x ∈ [x̌− (δ′ω + ν), x̌+ (δ′ω + ν)] : −x ≤ −xl
ds, x ≤ xu

ds, Ax ≤ b. (4.103)

Similar to the proof of Theorem 9, it can be shown that the optimization constraints given by

Equation (4.103) are equivalent to the −x̌+ (δ′ω + ν) ≤ −xl
ds, x̌+ (δ′ω + ν) ≤ xu

ds, a
T
j x̌+

aT
j Wj(δ

′ω+ν) ≤ bj , j = 1, . . . ,m, of problem (3.31). For all x ∈ [x̌− (δ′ω+ν), x̌+(δ′ω+ν)],

it holds

−xi ≤ −xl
ds,i ⇔ max

xi∈[x̌i−(δ′ωi+νi),x̌+(δ′ωi+νi)]
−xi ≤ −xl

ds,i

⇔ − x̌i + (δ′ωi + νi) ≤ −xl
ds,i, (4.104)

xi ≤ xu
ds,i ⇔ max

xi∈[x̌i−(δ′ωi+νi),x̌+(δ′ωi+νi)]
xi ≤ xu

ds,i

⇔ x̌i + (δ′ωi + νi) ≤ xu
ds,i, (4.105)

i = 1, . . . , d, and

aT
j x ≤ bj ⇔ max

x∈[x̌i−(δ′ωi+νi),x̌+(δ′ωi+νi)]
aT
j x ≤ bj

⇔ aT
j x̌+ aT

j Wj(δ
′ω + ν) ≤ bj , (4.106)

where Wj are diagonal matrices with entries given by Equation (4.102), j = 1, . . . ,m.

Therefore, the feasible sets of problems (4.69) and (4.70) are equivalent. As furthermore

δ′ ≥ 0 ⇔ −δ′ ≤ 0 and any maximization problem can be reformulated as a minimization

problem by changing the sign of the objective function., problems (3.31) and (4.101) are

equivalent for linear system performance functions.

Equivalent simplifications of problem (3.31) for linear system performance functions are, for

example, considered in [66]. Again, the above simplification can be generalized to monotonic

system performance functions, as the proof of Theorem 14 only uses the monotony of linear

system performance functions. For more complex system performance functions, a simplifica-

tion is more complex. Problem (4.101) is a linear optimization problem, which can be solved
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numerically by using standard methods for linear optimization problems as both the objective

function and the constraint functions are linear.

After solving problem (4.101), δ̄ can be computed by Equation (3.30) and the situation cor-

responds to the situation of uncertainty in controllable variables with known magnitudes, as

pointed out in Section 3.4. For known δ̄ and and linear system performance functions, the

worst-case solution space of target designs is equivalent to

Ω̌c,wc = {x̌ ∈ [xl
ds + δ̄, xu

ds − δ̄] | aT
j x̌ ≤ bj − aT

j Wj δ̄, j = 1, . . . ,m}, (4.107)

where Wj , j = 1, . . . ,m, are given by Equation (4.102). This can be shown similarly to the

proof of Theorem 14. Then, box- or arbitrarily-shaped worst-case CSS Ω̌k
wc, k = 1, . . . , n, can

be computed using the simplifications from above because Ω̌c,wc, given by Equation (4.107),

has the same structure as Ωc, given by Equation (2.4). Note that this does not change if a

perturbation parameter ε ≥ 0 is included in the objective function, see replacements (3.33)

and (3.34). In this subsection, the vectors of lower bounds for box-shaped worst-case CSS

are denoted by x̌l,k
wc, the vectors of their upper bounds by x̌u,k

wc , and the vectors of component

performance thresholds for arbitrarily-shaped worst-case CSS by bkwc, k = 1, . . . , n.

Box-shaped CSS Ωk can be calculated from box-shaped worst-case CSS Ω̌k
wc via

Ωk = [x̌l,k
wc − δ̄k, x̌u,k

wc + δ̄k], (4.108)

k = 1, . . . , n. Arbitrarily-shaped CSS Ωk can be calculated from arbitrarily-shaped worst-case

CSS Ω̌k
wc via

Ωk = {xk ∈ Ωk
ds | (akj )Txk ≤ bkwc,j + (akj )

TW k
j δ̄

k, j = 1, . . . ,m}, (4.109)

where W k
j ∈ Rdk×dk are diagonal matrices for that the ith entries on the diagonals are given

by

wkj,i =


−1 if akj,i ≤ 0,

1 else,

(4.110)

i = 1, . . . , dk, k = 1, . . . , n. Note that in doing so, the constraints for independent CSS,

expressed in Ω1× · · · ×Ωn ⊂ Ωc, are always fulfilled and dependent CSS are aligned with the

worst-case, as described in Section 3.4. Furthermore, an additional optimization to maximize

flexibility for component design in the case of arbitrarily-shaped CSS, like also described in

Section 3.4, is redundant if arbitrarily-shaped CSS are computed by Equation (4.109).

Similarly, best-case CSS Ω̌k
bc can be computed from CSS Ωk, k = 1, . . . , n. Note that for

arbitrarily-shaped CSS however, best-case CSS are sometimes only subsets of the resulting

sets, i.e.,

Ω̌k
bc ⊆ {x̌k ∈ [xl,k

ds − δ̄
k, xu,k

ds + δ̄k] | (akj )Tx̌k ≤ bkwc,j + 2(akj )
Tδ̄k, j = 1, . . . ,m}, (4.111)
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k = 1, . . . , n, compare Example 27.

Instead of deducing best-case CSS from worst-case CSS, also worst-case CSS can be

deduced from best-case CSS in general, compare Section 3.4. However, the same problem

as stated in Equation (4.111) occurs if the best-case complete system solution space of target

designs Ω̌c,bc is calculated from the complete system solution space Ωc. It is

Ω̌c,bc ⊆ {x̌ ∈ [xl
ds − δ̄, xu

ds + δ̄] | aT
j x̌ ≤ bj + aT

j Wj δ̄, j = 1, . . . ,m}, (4.112)

see Example 27, and the superset is denoted by Ω̌s,bc. Nevertheless, best-case CSS might

be computed using the simplifications from above in which Ω̌c,bc is replaced by the set Ω̌s,bc.

Then, Ω̌1
bc×· · ·× Ω̌n

bc ⊆ Ω̌s,bc must be fulfilled from which Ω̌1
bc×· · ·× Ω̌n

bc ⊆ Ω̌c,bc might follow.

However, in doing so, it must be tested whether the designs within Ω̌1
bc × · · · × Ω̌n

bc are within

Ω̌c,bc as well. If this is the case, CSS Ωk, and worst-case CSS Ωk
bc can be calculated from best-

case CSS Ωk
bc similarly to the inverse formulations of Equations (4.108) and (4.109). Note that

for an exact description of Ω̌c,bc, further constraints could be included. These would circumvent

this drawback. However, as the procedure to obtain these constraints is more complex in

the general case than the approach considered here, it is not taken into account in the following.

Example 27. Given a situation from Example 3 with the system design space Ωds = [0, 2]×
[0, 1.5], the performance function f : R2 × R2 → R, (x, p) 7→ x1 + 2x2 with threshold fc = 2,

and interval-type uncertainties in the controllable variables with δ̄1 = 0.3, δ̄2 = 0.1.

Using Equation (2.14), it holds

Ω̌c,bc = {(x̌1, x̌2) ∈ [−0.3, 2.3]× [−0.1, 1.6] |

∃(x1, x2) ∈ UX((x̌1, x̌2), (0.3, 0.1)) : x1 + 2x2 ≤ 2}

⊆ {(x̌1, x̌2) ∈ [−0.3, 2.3]× [−0.1, 1.6] | x̌1 + 2x̌2 ≤ 2.5} (4.113)

= Ω̌s,bc. (4.114)

Here, the subset relation with Ω̌c,bc 6= Ω̌s,bc holds as, for example, (−0.3, 1.4) ∈ Ω̌s,bc, but

also (−0.3, 1.4) /∈ Ω̌c,bc. This can be seen in Figure 7.

Next, interval uncertainty in uncontrollable parameters is considered. Therefore, uncontrollable

parameters must be included in the system performance functions and thresholds. In the

following, system performance functions which are linear in x, i.e.,

fj(x, p)− fc,j(p) = aj(p)
Tx− bj(p) (4.115)

with aj(p) ∈ Rd, bj(p) ∈ R for p ∈ Rq, j = 1, . . . ,m, are taken into account again. Then,

the constraints f(x, p) ≤ fc(p) build a system of linear inequalities in x, i.e., A(p)x ≤ b(p)
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where aj(p) are the rows of A(p) ∈ Rm×d and bj(p) the entries of b(p) ∈ Rm for j = 1, . . . ,m.

Furthermore, functions concerning f(x, p)− fc(p) which are monotonic in pl are considered,

i.e., they are either monotonically increasing in pl if

p′l ≤ p′′l ⇒ A(p′)x− b(p′) ≤ A(p′′)x− b(p′′) (4.116)

or monotonically decreasing in pl if

p′l ≤ p′′l ⇒ A(p′)x− b(p′) ≥ A(p′′)x− b(p′′) (4.117)

holds for all x ∈ Rd with l ∈ {1, . . . , q} where p′, p′′ ∈ [p̌− γ, p̌+ γ] only differ in the lth entry.

Then, it holds

Ωc,wc = {x ∈ Ωds | ∀p ∈ UP (p̌, γ) : A(p)x ≤ b(p)}

= {x ∈ Ωds | A(p̌+WP
wcγ) ≤ b(p̌+WP

wcγ)} (4.118)

and

Ωc,bc = {x ∈ Ωds | ∃p ∈ UP (p̌, γ) : A(p)x ≤ b(p)}

= {x ∈ Ωds | A(p̌+WP
bcγ) ≤ b(p̌+WP

bcγ)} (4.119)

where WP
wc,W

P
bc ∈ Rp×p are diagonal matrices for that the lth entries on the diagonals are

given by

wPwc,l =


1 if A(p)x− b(p) mon. increasing in pl,

−1 if A(p)x− b(p) mon. decreasing in pl,

(4.120)

wPbc,l =


−1 if A(p)x− b(p) mon. increasing in pl,

1 if A(p)x− b(p) mon. decreasing in pl,

(4.121)

l = 1, . . . , p. Hence, Ωc,wc and Ωc,bc have the same structure as Ωc and CSS can be com-

puted using the simplifications from above. Note that similar results are obtained for the

worst-case complete system solution space if the functions concerning f(x, p)−fc(p) are only

component-wise monotonic in p, i.e., aT
j (p′)x−bj(p′) ≤ aT

j (p′′)x−bj(p′′) or aT
j (p′)x−bj(p′) ≥

aT
j (p′′)x− bj(p′′) for p′l ≤ p′′l , j = 1, . . . ,m, where aT

j′(p
′)x− bj′(p′) ≤ aT

j′(p
′′)x− bj′(p′′) and

aT
j′′(p

′)x− bj′′(p′) ≥ aT
j′′(p

′′)x− bj′′(p′′) is possible for j′ 6= j′′, j′,′′ ∈ {1, . . . ,m}. However, in

doing so, only a superset might be yielded for the best-case complete system solution space

due to similar reasons as discussed for the calculation of the best-case complete system

solution space of target designs. Nevertheless, this superset can also be used for computing

CSS if the permissibility of the resulting system designs is tested a posteriori. This is taken up

again in Section 5.4. Furthermore, the methods to compute CSS under interval-uncertainty in

both controllable variables and uncontrollable parameters can be combined, as discussed in
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Section 3.4, using the corresponding simplifications of this section.

As the structures of the necessity-α and possibility-α complete system solution spaces are

similar to the ones of worst- and best-case complete system solution spaces, α ∈ [0, 1], similar

simplifications can be used if the system performance functions are linear in the controllable

variables and monotonic in the uncontrollable parameters. Furthermore, this holds for the

corresponding complete system solution spaces of target designs, too. The only exceptions

are the possibility-0 complete system solution space and the possibility-0 complete system

solution space of target design, which are usually non-closed sets, see Sections 2.2 and 4.1.

Hence, it is preferred to define the possibility-0 CSS as open sets in the corresponding problem

statements.

Although the simplification of the CSS problem statements for the specific system performance

functions considered in this section solves the main obstacles for their numerical computation,

there are still some open questions. These concern, for example, numerical tools for the

computation of volumes and projections. They are discussed along with suitable numerical

optimization algorithms to compute CSS in the next section.

4.3. Numerical Tools for Computing CSS

This section provides numerical tools for the computation of volumes and projections, which

are used to optimize CSS. Furthermore, suitable and efficient optimization algorithms for the

different CSS problem statements are presented.

4.3.1. Numerical Volume Computation
In the following, the numerical computation of the volume of CSS is addressed. For box-shaped

CSS, the volume can be calculated analytically by Equation (2.35). This calculation is more

complex for arbitrarily-shaped CSS. Here,

vol(Ω1(g1
c )× · · · × Ωn(gnc )) =

n∏
k=1

vol(Ωk(gkc )) (4.122)

holds, where Ωk(gkc ), k = 1, . . . , n, is given by Equation (3.10) for measurable component

performance functions. Then, the volume of Ωk(gkc ), k = 1, . . . , n, can be approximated or

computed analytically. As Ωk(gkc ), k = 1, . . . , n, have the same structure as Ωc, the numerical

volume computation is subsequently discussed for the complete system solution space, which

can then be directly transferred to CSS.

In [21], a grid approximation method is proposed. For this purpose, Ωds is divided into a
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uniform grid yielding Nt d-dimensional hyperrectangles. The function f is evaluated at the

center of each hyperrectangle. If f(x) ≤ fc holds, the hyperrectangle that corresponds to

the center x is considered as permissible and as part of the volume of Ωc. Finally, vol(Ωc) is

yielded by summing up the volumes of the permissible hyperrectangles. Denoting the amount

of permissible hyperrectangles by Np, it holds

vol(Ωc) =
Np

Nt

d∏
i=1

(xu
ds,i − xl

ds,i), (4.123)

see [21]. The smaller the grid step, the more precise is the approximation of this volume. In

general, this method gets computationally expensive for large d. Hence, it is only useful for the

computation of arbitrarily-shaped CSS if dk is small, e.g., dk ≤ 3, k = 1, . . . , n.

To avoid this curse of dimensionality, Monte Carlo integration, see [40], can be used for an

efficient approximation of the volume of Ωc. Here, Nt independent, uniformly distributed

sample points are generated in Ωds for which f is again evaluated at each sample point.

Similar to the grid approximation method, a sample point x is considered as permissible if

f(x) ≤ fc holds. Then, the volume of Ωc is computed by dividing the number of permissible

sample points Np by the total number of sample points Nt and multiplying it with the volume

of Ωds, which also yields Equation (4.123).

Nevertheless, optimizing the volume of CSS Ωk(gkc ) using the Monte Carlo method might still

be difficult because the objective function gets piece-wise constant as a possible increase

in the volume of Ωk(gkc ) for an increase in gkc depends on the number of permissible sample

points which are added, k = 1, . . . , n. In order to avoid a possible decrease in the volume

when increasing gkc , it can be useful to create the sample points for every component only once

during the optimization of CSS. If optimal CSS can be guaranteed in a neighborhood around

an initial Ωk
fkc,0

, k = 1, . . . , n, a local Monte Carlo sampling further enhances the optimization.

Besides methods that approximate the volume of Ωc, there are also exact methods to compute

the volume Ωc. In the following, the method presented in [87] that is suitable for linear system

performance functions, cf. Equation (4.68), is considered in which the complete system

solution space is a d-dimensional polytope. For reasons of simplicity, it is assumed in the

following that the design space constraints are already included or rather covered by the

system of linear inequalities Ax ≤ b, A ∈ Rm×d, b ∈ Rm, which describes the polytope Ωc,

i.e.,

Ωc = {x ∈ Rd | Ax ≤ b}. (4.124)

In [87], the volume of a d-dimensional polytope is computed via a recursion scheme which

is based on Euler’s theorem concerning homogeneous functions. Here, the volume of Ωc is

denoted by V (d,A, b), i.e., vol(Ωc) = V (d,A, b). It is shown that if V (d,A, b) is differentiable
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at b,

V (d,A, b) =
1

d

m∑
j=1

bj
‖aj‖

Vj(d− 1, A, b) (4.125)

holds where Vj(d − 1, A, b) is the volume of the jth face of Ωc, which is {x ∈ Rd | aT
j x =

bj , Ax ≤ b}, j ∈ {1, . . . ,m}. The algorithm to compute V (d,A, b) is presented in the following.

Let aj,i(j) 6= 0, j ∈ {1, . . . ,m}, i ∈ {1, . . . , d}. First, xi(j) is removed from the inequality

system Ax ≤ b using the equality aT
j x = bj which holds for x on the jth face, j ∈ {1, . . . ,m}.

Then, a new inequality system Ãi(j)x̃ ≤ b̃ is obtained with ãT
j′ x̃ ≤ b̃j′ , j′ = 1, . . . ,m, j′ 6= j,

where xi, i = 1, . . . , d, i 6= i(j), are collected in x̃ ∈ Rd−1. The inequality system Ãi(j)x̃ ≤
b̃ has d − 1 variables and m − 1 constraints and describes a convex polytope for which

V ′j (d− 1, Ãi(j), b̃) denotes its volume. It holds

Vj(d− 1, A, b) =
‖aj‖
|aj,i(j)|

V ′j (d− 1, Ãi(j), b̃), (4.126)

see [87] for a proof. With Equation (4.126), Equation (4.125) can be reformulated as

V (d,A, b) =
1

d

m∑
j=1

bj
|aj,i(j)|

V ′j (d− 1, Ãi(j), b̃), (4.127)

which is also valid if redundant constraints are incorporated in Ax ≤ b. Overall, a recursive

scheme to compute V (d,A, b) is obtained by Equation (4.127). After d− 1 eliminations, the

volume of the interval, defined by ãj′ x̃ ≤ b̃j′ , ãj′ , ãj′ ∈ R, j′ = 1, . . . ,m − d + 1, for x̃ ∈ R,

must be computed. This volume is given by

vol({x̃ ∈ R | ãj′ x̃ ≤ b̃j′ , j′ = 1, . . . ,m− d+ 1})

= max

0,

 min
ãj′∈R+,

j′∈{1,...,m−d+1}

b̃j′

ãj′
− max

ãj′∈R−,
j′∈{1,...,m−d+1}

b̃j′

ãj′


 . (4.128)

The computational effort of this algorithm depends on the number of design variables d as

well as on the number of constraints for which bj 6= 0, j = 1, . . . ,m, hold. Its efficiency is

compared to the volume approximation with the Monte Carlo method for the computation of

arbitrarily-shaped CSS in Section 5.3.

Other analytical methods to compute the volume of Ωc often require the values of its corner

points, see [14] for an overview. For non-linear functions f , an analytic calculation of Ωc is

more complex and not considered here. Subsequently, a method for the numerical projection

of Ωc is presented.

4.3.2. Numerical Projection
If Ωc is described by linear system performance functions, its projection onto the coordinate

space of the kth component, i.e., projk(Ωc), k ∈ {1, . . . , n}, is a convex polytope, see Section

A.1. As already discussed in Section 3.3, the projection of a linear polytope can be done

in several ways, compare [71]. In the following, the Fourier-Motzkin elimination method, cf.,
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[97], is discussed. It is an analytic method that computes a system of linear constraints.

Here, the idea is to remove design variables xi1 , . . . , xidk−k that are entries of the vectors xk
′
,

k′ = 1, . . . , n, k′ 6= k, successively from the inequality system Ax ≤ b such that Ak ∈ Rm̃×dk

and bk ∈ Rm̃ with

∃x ∈ Rd : Ax ≤ b ⇔ ∃xk ∈ Rd
k

: Akxk ≤ bk, (4.129)

k ∈ {1, . . . , n}, are obtained. Equivalence (4.129) motivates the primary intention of the

Fourier-Motzkin elimination to test if there exists at least one x ∈ Rd that fulfills the system

of linear inequalities Ax ≤ b, i.e., if Ωc given by Equation (4.124) is a non-empty set. The

algorithm to obtain Akxk ≤ bk, k ∈ {1, . . . , n}, is presented in the following.

First, xi1 is removed from the inequality system Ax ≤ b. Therefore, the rows of A and

the corresponding entries of b are multiplied by positive constants yielding A′, b′ such that

a′j,i1 ∈ {1,−1, 0} holds. Let J1 be the set of indices with a′j,i1 = 1, J−1 be the set of indices

with a′j,i1 = −1, and J0 be the set of indices with a′j,i1 = 0, j = 1, . . . ,m. For a′j,i collected in

ãj ∈ Rd−1 and xi collected in x̃ ∈ Rd−1, i = 1, . . . , d, i 6= i1, j = 1, . . . ,m, it is

xi1 ≤ −ãT
j′ x̃+ bj′ (4.130)

for all j′ ∈ J1 and

−xi1 ≤ −ãT
j′′ x̃+ bj′′ (4.131)

for all j′′ ∈ J−1. The inequalities (4.130) and (4.131) are equivalent to

max
j′∈J1

(ãT
j′ x̃− bj′) ≤ xi1 ≤ min

j′′∈J−1

(−ãT
j′′ x̃+ bj′′). (4.132)

Hence, xi1 can be removed and A′x ≤ b′ is equivalent to the system of linear inequalities

Ãx̃ ≤ b̃ given by

(ãT
j′ + ãT

j′′)x̃ ≤ bj′ + bj′′ , (4.133)

ãT
j′′′ x̃ ≤ bj′′′ (4.134)

for all j′ ∈ J1, j′′ ∈ J−1, and j′′′ ∈ J0, compare [116]. The inequality system Ãx̃ ≤ b̃ has

d − 1 variables and consists of m′(m′′ −m′) + m −m′′ inequalities where m′ denotes the

number of indices contained in J1 and m′′ denotes the number of indices contained in J−1. It

describes the convex polytope that is yielded when Ωc is projected along the i1th coordinate

axis. Thus, it holds that there exists at least one xi1 ∈ R that fulfills (4.132) for all x̃ ∈ Rd−1

that fulfill Ãx̃ ≤ b̃.
This procedure can be continued by a further, successive elimination of the design variables

xi2 , . . . , xid , which yields the projection of Ωc onto the coordinate space of the kth component,

i.e., projk(Ωc) for which Akxk ≤ bk holds for all xk ∈ projk(Ωc), k ∈ {1, . . . , n}.
The computational effort of this algorithm depends on d− dk, k ∈ {1, . . . , n}, as well as on
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the number of constraints. As the Fourier-Motzkin elimination produces redundant constraints

when eliminating a variable, it can be combined with a redundancy removal strategy to speed

up computation time. Here, the goal is to remove all the constraints from an inequality system

for which the set of solutions remains unchanged when the constraints are removed from the

system. As suggested in [128], the strategy proposed in [18] is useful here. It is presented for

Ωc given by Equation (4.124) in the following and can be directly transferred to any reduced

system Ãx̃ ≤ b̃, obtained during the Fourier-Motzkin elimination.

Assume that an interior design of Ωc exists, i.e., x0 ∈ Ωc with Ax0 < b. Such a design can, for

example, be found by solving the unconstrained optimization problem

minimize
x

max
j∈{1,...,m}

aT
j x− b, (4.135)

which is equivalent to the linear optimization problem

minimize
x,ζ

ζ

subject to aT
j x ≤ b+ ζ, j = 1, . . . ,m.

(4.136)

Problem (4.136) can be solved using standard methods for linear optimization, cf., [100]. If

ζ < 0 holds or max{aT
j x− b | j = 1, . . . ,m} < 0 in case of problem (4.135), an interior design

can be guaranteed.

Let Jnr be the set of indices for which the constraints aT
j x ≤ bj are non-redundant in Ax ≤ b,

and Jnt be the set of indices for which it is not tested yet whether the constraints aT
j x ≤ bj are

redundant or non-redundant in Ax ≤ b, j = 1, . . . ,m. Initially, it holds Jnt = {1, . . . ,m}, and

Jnr = ∅ is assumed. The set Jnr is updated by a recursive scheme.

Let j′ ∈ Jnt be an index for which it shall be tested whether the constraint aT
j′x ≤ bj′ is

redundant in the inequality system aT
j x ≤ bj , ∀j ∈ Jnr. Thus, the problem

minimize
x

−aT
j′x

subject to aT
j x ≤ bj , ∀j ∈ Jnr,

aT
j′x ≤ bj′ + 1

(4.137)

is considered, which is again a linear optimization problem. If −aT
j′x < −bj′ holds for an

optimal solution x ∈ Rd of problem (4.137), the constraint aT
j′x ≤ bj′ is non-redundant in

aT
j x ≤ bj , ∀j ∈ Jnr. In this case, also an index j′′ ∈ {1, . . . ,m} can be found for which

aT
j′′x ≤ bj′′ is non-redundant in Ax ≤ b. It is the index of the smallest tj > 0 for which

aT
j (x0 + tj(x− x0)) = bj , (4.138)
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j = 1, . . . ,m, holds, compare [125]. Then, Jnr is updated by its union with {j′′}, i.e., Jnr∪{j′′},
and Jnt is updated by subtracting {j′′}, i.e., Jnt\{j′′}. This procedure is continued further until

Jnt = ∅ is obtained. Then, the set Jnr contains all non-redundant constraints.

The efficiency of the Fourier-Motzkin algorithm for computing box-shaped dependent CSS with

the presented redundancy removal strategy, referred to as two-step method in the following,

is compared to the direct computation of box-shaped dependent CSS by solving problem

(4.95) in Section 5.3. Note that in general there are further redundancy removal strategies,

cf. [125]. Moreover, for non-linear functions f , the computation of the projection projk(Ωc),

k ∈ {1, . . . , n}, is more complex.

Overall, all prerequisites to solve numerically the CSS optimization problems for system

performance functions which are linear in the controllable variables and monotonic in the

uncontrollable parameters are met. Thus, suitable and efficient numerical optimization algo-

rithms, which can be used to solve the simplified problems of Section 4.2, are considered in

the following.

4.3.3. Optimization Algorithms to Compute CSS
The subsequent considerations provide an overview of numerical optimization algorithms

which can be used to compute CSS using the simplifications of Section 4.2 and the numerical

tool from above. Here, the focus is put on algorithms that are embedded in the software

MATLAB. As all simplified problem statements form convex optimization problems for which

every local optimum is also a global one, only local optimization methods are addressed.

Corresponding MATLAB algorithms that help in solving these problems are mentioned and

described briefly below. Furthermore, suitable initial values, which are usually required for the

numerical algorithms, are discussed.

Linear optimization problems can be solved using the MATLAB linprog command. Examples

of such problems are problems (4.99) and (4.100) to compute dependent CSS for dk = 1,

k ∈ {1, . . . , n}, problem (4.101) to determine maximum magnitudes for unknown uncertainty

magnitudes in controllable variables, problem (4.136) to find an interior design of Ωc, and

problem (4.137), which is used for redundancy removal.

The 'dual-simplex' algorithm of linprog performs a simplex algorithm on the dual problem.

Here, the constrained linear minimization problem that has to be solved is reduced to an

equality-constrained minimization problem, compare [100]. Then, its dual problem is consid-

ered for which the objective function is perturbed. First, a dual feasible point is sought by

solving an auxiliary linear optimization problem. Then, entering and leaving variables are

chosen iteratively until the solution to the perturbed optimization problem is both primal and

dual feasible, i.e., an optimal solution is found. See [93] for more details. Here, no initial values

are required.
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Differentiable convex optimization problems can be solved using the fmincon command.

Examples of such problems are problem (4.70) to compute box-shaped independent CSS,

problem (4.95) to compute box-shaped dependent CSS, and problem (4.81) to compute

arbitrarily-shaped independent CSS if the objective function is differentiable, as discussed in

Section 4.2.

The 'interior-point' algorithm of fmincon finds an optimal solution of a differentiable

constraint optimization problem by solving a sequence of approximate optimization problems

for which initial values must be provided. Each approximate problem uses slack variables to

transform inequality constraints into equality constraints and adds a barrier function to the

objective function. The barrier function is described by the sum of the logarithms of the slack

variables and a parameter which leads the optimal solution of an approximate problem towards

the solution of the original problem as it decreases to zero, compare [100]. In order to solve an

approximate problem, a direct step, using linear approximation, and a conjugate gradient step,

using a trust region, are performed at each iteration. See [93] for more details.

Initial values for problem (4.70) can be computed, for instance, by solving problem (4.135) or

(4.136) and setting xl
0,i = xi − εi, xu

0,i = xi + εi where xi form an optimal solution of problem

(4.135) and εi are small enough so that the optimization constraints of problem (4.70) are

fulfilled, i = 1, . . . , d. This can, for example, be achieved for

εi =
1

d
min

j∈{j′∈{1,...,m} | |aj′,i|6=0}

−aT
j x+ bj

|aj,i|
, (4.139)

where there exists at least one j ∈ {1, . . . ,m} with |aj,i| > 0, i = 1, . . . , d. This is due to the

fact that Ωc is bounded as

d∑
i=1

aj,iv
l
j,i(xi − εi) +

d∑
i=1

aj,iv
u
j,i(xi + εi) =

d∑
i=1

(aj,ixi + |aj,i|εi)

≤ aT
j x+

d∑
i=1

−aT
j x+ bj

d

= b, (4.140)

where vl
j,i, v

u
j,i are given by Equation (4.71), i = 1, . . . , d, j = 1, . . . ,m.

For problem (4.95), initial values can be computed similarly via xl,k
0,i = xki − εi, x

u,k
0,i = xki + εi

with, e.g.,

εi =
1

dk
min

j∈{j′∈{1,...,m} | |aj′,i|6=0}

−aT
j x+ bj

|aj,i|
, (4.141)

for which there is at least one j ∈ {1, . . . ,m} with |aj,i| > 0, i = 1, . . . , dk, and xr,k
cp,ι,0 = xr,k,

ι = 1, . . . , 2d
k
. The entries of x that do not belong to the kth component are collected in

xr,k, k ∈ {1, . . . , n}. Moreover, initial values for problem (4.95) can also be obtained by

solving problem (4.70) first and setting xl,k
0,i = xl,k

i , xu,k
0,i = xu,k

i , and xr,k
cp,ι,0 = (xl,r,k +xu,r,k)/2,

ι = 1, . . . , 2d
k
. Here, xl, xu are an optimal solution of problem (4.70) for which the entries that
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do not belong to the kth component are collected in xl,r,k and xu,r,k, k ∈ {1, . . . , n}.
For problem (4.81), initial values can be chosen as bk0,j = (akj )

Txk + εkj where x is again an

optimal solution of problem (4.135) or (4.136) and εjk are small enough so that the optimization

constraints of problem (4.81) are satisfied, e.g.,

εjk =
−aT

j x+ bj

n
, (4.142)

j = 1, . . . ,m, k = 1, . . . , n. Moreover, initial values for problem (4.81) can also be obtained

by solving problem (4.70) first and choosing bk0,j = (akj )
TV l,k

j xl,k + (akj )
TV u,k

j xu,k where

V l,k
j , V u,k

j ∈ Rdk×dk are diagonal matrices for that the ith entries on the diagonals are given

by

vl,k
j,i =


1 if akj,i ≤ 0,

0 else,

vu,k
j,i =


0 if akj,i ≤ 0,

1 else,

(4.143)

i = 1, . . . , d, j = 1, . . . ,m, k = 1, . . . , n.

Differentiable, unconstrained, convex optimization problems can be solved using the fminunc

command. An example of such a problem is problem (4.92) to compute arbitrarily-shaped

independent CSS if the objective function is computed analytically and is furthermore differen-

tiable, as discussed in Section 4.2.

The 'quasi-newton' algorithm of fminunc finds an optimal solution of a differentiable uncon-

strained optimization problem using the Broyden-Fletcher–Goldfarb-Shanno (BFGS) Quasi-

Newton method with a cubic line search procedure for which initial values must be provided.

The problem is approximated quadratically by incorporating curvature information at each

iteration. Here, the Hessian is updated by a formula that uses gradient information, compare

[100]. In order to find a new iterate, the line search algorithm uses a bracketing phase for

its range and a sectioning phase that divides the range and approximates the optimum us-

ing cubic interpolation. See [93] for more details. Initial values for problem (4.92) can be

computed similarly to initial values for problem (4.81) as described above, for which only bk0,j ,

j = 1, . . . ,m, k = 1, . . . , n− 1, are used.

Non-differentiable, unconstrained, convex optimization problems can be solved using the

fminsearch command. An example of such a problem is problem (4.92) to compute arbitrarily-

shaped independent CSS if the objective function is non-differentiable, e.g., when using the

Monte-Carlo method for volume computation.

The algorithm implemented in fminsearch attempts to find an optimal solution of an uncon-

strained optimization problem using the Nelder-Mead simplex search method described in

[83]. It is a direct search method that does not require gradient information. Here, a simplex is

spanned around the initial values and modified repeatedly afterward. Note that this algorithm

does not necessarily converge to a local minimum. See [93] for more details. Initial values for

problem (4.92) can be computed as described above.
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The optimization algorithms presented in this subsection complete the discussion on how to

compute the different types of CSS numerically. Note again that the results of this and the

previous section can only be used for system performance functions which are linear in the

controllable variables and monotonic in the uncontrollable parameters. For more complex

system performance functions, further investigations must be done to enable the computations

of CSS. In the next chapter, the methods proposed in this thesis are applied to crash design

by using the simplifications and numerical tools of this chapter.
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5. APPLICATION: CSS for Crash Design

This chapter applies the methods of this thesis to crash design. Therefore, existing crash

design models are reviewed and enhanced, and two test-bed problems are defined. For these

problems, box-shaped and arbitrarily-shaped CSS are compared and CSS under epistemic un-

certainty are computed. In addition, a MATLAB app is introduced that is capable of computing

the CSS of this thesis for enhanced crash design models, which can also be built with this app.

5.1. Crash Design Basics

This section gives an introduction to crash design. Here, the focus is put on deformation

space models for which details on their modeling are provided. Furthermore, a simple test-bed

problem is defined in order to evaluate the methods of this thesis in the subsequent sections.

5.1.1. Introduction to Crash Design
Designing a vehicle which must perform in a crash can be considered as a systems design

problem. In particular, the focus of this thesis is put on the early design phase of the vehicle’s

frontal structure and a frontal crash at full overlap against a rigid wall. A frontal crash can

be simulated, for example, by the finite element method (FEM), cf. [1]. In doing so, a finite

element (FE) model of the vehicle is required. In Figure 42, the results of a frontal crash

simulation at full overlap against a rigid wall are shown for a detailed HONDA ACCORD FE

model from [98].

However, the drawbacks of using the FEM for crash simulations are that it is computationally

very expensive and that detailed FE models are usually not available in the early design

phase. This gives rise to surrogate modeling. In general, surrogate models can be either

classified as physical surrogates, for which simplified physical characteristics are used to

obtain mathematical models, or mathematical surrogates, for which the system responses

are approximated by mathematical functions without taking physical characteristics for the

approximation into account. An overview of surrogate models for crash design can be found in,

e.g., [34] in which also a discussion concerning optimization and robustness is provided.

Mathematical surrogates are usually based on high-fidelity FE models. For example, there are

response surface methods (RSM) that approximate the system responses using samples that

are generated from high-fidelity models. These methods include polynomial models, Gaussian

processes or Kriging, support vector machines (SVM), and artificial neural networks (ANN),

see [46] for an overview. Besides, there is model order reduction (MOR) which aims at reduc-

ing the computational complexity of the mathematical models. Here, advanced approaches
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(a)

(b)

Figure 42 Example of an FEM frontal crash simulation at full overlap against a rigid using the software LS-DYNA and a
HONDA ACCORD FE model from [98] (a) before and (b) after the crash.

are, for example, system equivalent reduction expansion processes (SEREP), see [101] and

Krylov subspace methods, see [3, 5].

Low-fidelity physical surrogate models can be used to avoid high-fidelity models. Amongst oth-

ers, there are multi-body system approaches that use, for example, lumped masses connected

by dampers and springs, i.e., lumped mass-spring models (LMS), see [16, 73], or that model

parts of the simplified model by finite elements and the rest, for instance, by rigid bodies, i.e.,

hybrid FE approaches, see [19, 92]. Furthermore, there are substructure approaches in which

a part of the vehicle is cut out, cf. [41, 112]. This list is by far not complete, see [1, 34, 85] for

more information.

A type of model for which box-shaped solution spaces were computed in literature are de-

formation space models (DSM). These are models for the early design phase that can be

classified as a multi-body system approach. DSM were introduced in [43] and are considered

in, e.g., [44, 85] as well. In order to follow up this discussion, DSM are also taken into account

for decoupled design decisions in crash design here.

Deformation space models are crash design models for which the responses of the crash sys-

tem, like energy absorption and acceleration, depend on the force-deformation characteristics

of n ∈ N structural, crash-relevant components. For DSM, only forces and deformations in

the longitudinal direction are taken into account in accordance with the longitudinal impact

direction. Deformations in other directions and rotations are not considered. For other crash

load cases, this is taken into account in, e.g., [20, 122]. By neglecting the elastic deformation,
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it is assumed that for every point in the deformation space s ∈ [s0, send), there are forces

F k(s), k = 1, . . . , n, responsible for plastic deformation. Here, s0 ∈ R+
0 denotes the start

and send ∈ R+
0 the end of deformation of the vehicle. Thus, the force-deformation charac-

teristics are described by the graphs {(s, F k(s)) | s ∈ [s0, send)}, k = 1, . . . , n. Note that

force-deformation characteristics of the components usually depend on boundary conditions

like the initial velocity of the vehicle before the impact, cf. [117].

Using DSM for crash design, it is assumed that the forces F k(s) can be designed for every

s ∈ [s0, send), k = 1, . . . , n. This is in general not the case, as DSM only represent the

uppermost system performance functions of a multi-level crash system. Recall that multi-level

systems are considered Section 3.1. In this thesis, a three-level crash system is considered

with system performance functions at level 3, given by a DSM, and n structural components

at level 2 that form systems themselves, i.e., there are lower-level design variables at level 1.

Thus, the force-deformation characteristics are responses of the systems at level 2. Each of

the systems at level 2 is defined by a corresponding model and design variables, which are

grouped as components at level 1. These design variables relate, for example, to geometric

or material properties of the structural components. In Figure 43, such a crash system is

visualized.

system
at level 3

(F 1(s), . . . , F
1n(s)), s ∈ [s0, send)

1st component
at level 2

F 1(s) = f1(x1, s), s ∈ [s0, send)

system
at level 2

x1 = (x(1,1), . . . , x(1,n′))

1st component
at level 1

x(1,1)

· · ·
n′

th component
at level 1

x(1,n′)

· · ·

nth component
at level 2

Fn(s), s ∈ [s0, send)

· · ·

· · ·

Figure 43 Three-level crash system for which the design variables at each level are grouped as system designs at the
corresponding system level and as component designs at the corresponding component level. Note that the notation n′ is
chosen for reasons of simplicity.

Note that the design models for systems at level 2 might not be available in the early design

phase. Still, CSS can be computed for the force-deformation characteristics of the structural

components using DSM. The design models of the systems at level 2 must then follow in a

second step, which is further discussed in Chapter 6. In the following, only the system at level

3 with components at level 2 is regarded for which two-level system notations are used, see

Section 3.1.
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In order to compute CSS, requirements on the system responses of DSM must be formulated.

Here, requirements regarding the minimum energy absorption, maximum acceleration, and

progressive order of deformation are considered. They are motivated by crash test criteria

like considered in the US-NCAP crash load case to obtain a 5-star safety rating, see [99],

and are investigated below. Furthermore, the state-of-the-art of DSM is discussed in more

detail subsequently. Compared to previous work which limits its consideration to parametrized

force-deformation characteristics by modeling the forces as piece-wise constant, this thesis

discusses DSM for non-parametrized force-deformation characteristics as well.

5.1.2. Test Bed 1: Simple Crash Design Problem
At first, a simple crash design problem is investigated, for which the vehicle front structure is

divided into two sections, see Figure 44. This example is based on the model introduced in

[140] and is used as a test-bed problem for computing CSS for crash design later.

1st comp. 2nd comp.

F1(s) F2(s) m

s̄1 s̄2

s
s0 s1 s2

v0

Figure 44 Model of a vehicle front structure with two components and underlying vehicle chassis, after [140].

In a local vehicle coordinate system, section 1 starts deforming at s0 ∈ R+
0 and ends at

s1 ∈ R+ and section 2 starts deforming at s1 and ends at s2 ∈ R+, where s0 < s1 < s2 and

send = s2. In this example, the front structure of the vehicle in each section is modeled as

a component. This means there are two front end components here. At the end of these

components, i.e., at s2, the total vehicle mass m ∈ R+ is lumped. The lengths of the sections

are s̄1 = s1 − s0 and s̄2 = s2 − s1, which correspond to the deformation lengths of the

components in longitudinal impact direction here. As described above, the components can

be represented by force-deformation characteristics. For the first component, it is F 1(s) ∈ R+
0

if s ∈ [s0, s1) and F 1(s) = 0 kN otherwise, and for the second component, it is F 2(s) ∈ R+
0

if s ∈ [s1, s2) and F 2(s) = 0 kN otherwise. After hitting the barrier at full overlap with initial

velocity v0, the structure deforms. If F 1(s) < F 2(s1) holds for s ∈ [s0, s1), the first component

deforms completely before the second component starts deforming.
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For the early design stage, the vehicle mass and the deformation lengths are assumed. Thus,

the mass and the deformation lengths are uncontrollable parameters. The assumptions for

these uncontrollable parameters can be either made without deeper knowledge or based on

knowledge from similar vehicles that are already fully developed. Note that this is a source

of uncertainty, which is treated in the next section. In contrast to the vehicle mass and the

deformation lengths, the force-deformation characteristics of the components are controllable

by selecting the values of the lower-level design variables in a subsequent step. There are

minimum forces that F 1(s) can assume in [s0, s1) and F 2(s) can assume in [s1, s2). These

are F l,k
ds ∈ R+

0 , k = 1, 2, and represent the component design spaces. Similarly, there are

maximum forces F u,k
ds ∈ R+

0 with F l,k
ds ≤ F

u,k
ds , k = 1, 2.

Using the vehicle mass, the deformation lengths, and the force-deformation characteristics,

the requirements on the minimum energy absorption, the maximum acceleration, and the

progressive order of deformation, which are mentioned above, can be formulated mathemati-

cally as shown below. Here, the requirements which are stated in [140] are generalized for

non-parametrized force-deformation characteristics:

• Minimum energy absorption: The impact energy 1
2mv

2
0 must be completely absorbed in the

front structure, meaning

−
s1∫
s0

F 1(s) ds−
s2∫
s1

F 2(s) ds ≤ −1

2
mv2

0. (5.1)

Then, there is no intrusion into the occupant compartment.

• Maximum acceleration: The acceleration must be smaller than a critical acceleration

threshold ac, i.e.,

F 1(s) ≤ mac (5.2)

for all s ∈ [s0, s1) and

F 2(s) ≤ mac (5.3)

for all s ∈ [s1, s2). This requirement is also injury-related and regulated protection thresh-

olds for different parts of the human can be found in, e.g., [78]. As a conservative threshold,

ac = 0.3 mm
ms2 is used throughout this thesis.

• Progressive order of deformation: The ordered deformation of the vehicle must start at the

front, meaning

F 1(s) ≤ F 2(s1). (5.4)

for all s ∈ [s0, s1). In contrast to the other two requirements, this requirement is usually

intended for the reparability of the vehicle in a low-speed crash, see [88].
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The values of the design space parameters and the uncontrollable parameters which are used

for the requirements (5.1)-(5.4) in this test-bed problem are stated in Table 2 and 3. Without

loss of generality, s0 is always set to s0 = 0 mm for the remaining thesis.

Table 2 Design space parameters for test-bed problem 1

quantity F l,1
ds F l,2

ds F u,1
ds F u,2

ds

value 0 kN 0 kN 500 kN 500 kN

Table 3 Uncontrollable parameters for test-bed problem 1

quantity s̄1 s̄2 m v0 ac

value 350 mm 350 mm 1500 kg 15.6 mm
ms 0.3 mm

ms2

In general, the goal for the simple crash design problem is to provide optimal flexibility for

component design regarding the force-deformation characteristics of each component such

that a permissible system design can be obtained. To compute optimal CSS by applying

the concepts of this thesis, the considerations are limited to parametrized force-deformation

characteristics. Thus, their degrees of freedom can be used as design variables.

Force-deformation characteristics which are constant during the deformation of each compo-

nent are examples of characteristics with one degree of freedom. They can be defined as the

graphs that belong to F 1(s) = F 1
1 , F 1

1 ∈ [F l,1
ds , F

u,1
ds ] if s ∈ [s0, s1), and F 1(s) = 0 otherwise,

and F 2(s) = F 2
1 , F 2

1 ∈ [F l,2
ds , F

u,2
ds ] if s ∈ [s1, s2), and F 2(s) = 0 otherwise. Thus, there

are two design variables, which are F 1
1 and F 2

1 , overall. In this case, the test-bed problem

1 matches the crash design example from [140] in which no values for the uncontrollable

parameters are provided. The requirements (5.1)-(5.4) become a system of linear inequalities

of the form A1F 1
1 +A2F 2

1 ≤ b, i.e.,

−s̄1

1

0

1


︸ ︷︷ ︸

=A1

(
F 1

1

)
+



−s̄2

0

1

−1


.

︸ ︷︷ ︸
=A2

(
F 2

1

)
≤



− 1
2mv

2
0

mac

mac

0


︸ ︷︷ ︸

=b

(5.5)

where the first row of the inequality system (5.5) belongs to requirement (5.1), the second

row to (5.2), the third row to (5.3), and the last row to (5.4). Using the simplifications of

Section 4.2, optimal CSS Ω1 and Ω2 can be computed for F 1
1 and F 2

1 . Here, the CSS can

be visualized either as geometric shapes in force space or as regions of permissible force-

deformation characteristics in force-deformation space. This is investigated in more detail in

Section 5.3. Exemplary, the corresponding independent CSS are visualized in Figure 45 for

both visualization methods. Note that box- and arbitrarily-shaped CSS coincide in this example.
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Figure 45 Optimal independent CSS as (a) geometric shapes in force space and (b) regions of permissible force-deformation
characteristics for test-bed problem 1 with one degree of freedom per component and an example of a permissible design
(white dot).

In Figure 45(a), the CSS Ω1 = [F l,1, F u,1] and Ω2 = [F l,2, F u,2] are displayed as their

Cartesian product Ω = Ω1 × Ω2, i.e., [F l, F u] = [F l,1, F u,1] × [F l,2, F u,2], inside the com-

plete system solution space Ωc, which is defined by the requirements and the design space

constraints. It can be seen that the computed lower bound F l,1 is influenced by the minimum-

energy-absorption requirement, the computed upper bound F u,1 by the progressive-order-

of-deformation requirement, the computed lower bound F l,2 by both the minimum-energy-

absorption and the progressive-order-of-deformation requirement, and the computed upper

bound F u,1 by the maximum-acceleration requirement.

In the following, not only force-deformation characteristics with one degree of freedom per

component but two and more degrees of freedom are investigated. Corresponding box- and

arbitrarily-shaped CSS are compared in Section 5.3. Furthermore, test-bed problem 1 is used

to compute CSS under interval- and fuzzy-type uncertainty in Section 5.4.

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 130



5.1.3. Deformation Space Models
In order to model a vehicle front structure in more detail, more general DSM can be used.

In [43], DSM were introduced as an extension of the simple crash model from [140]. First,

n crash-relevant, structural components that shall be designed are determined. Amongst

others, examples may include front rails, crash boxes, aprons, the firewall, and the front

bumper. Here, the longitudinal lengths of the components must be selected a priori. It is

assumed that the components have certain deformation lengths s̄k ∈ R+, k = 1, . . . , n, under

impact and behave as if they were rigid afterward. This means that the longitudinal length

of every component can be represented by the sum of a deformable and a non-deformable

length. Like above, the assumption for s̄k, k = 1, . . . , n, in the early design stage can

be either made without deeper knowledge or based on knowledge from similar vehicles that

are already developed. A way to get knowledge-based assumptions is proposed in Section 5.2.

In order to obtain a DSM, a geometry space model (GSM) of the vehicle must be built first.

Whereas DSM show the deformation space of the components, GSM are based on their

geometric lengths. Therefore, the components are assigned to one of nlp ∈ N load paths

and positioned in the geometry space in longitudinal impact direction for GSM. This is done

in accordance with their positions within the vehicle’s front structure. If the right side of the

vehicle front structure is symmetrical to its left side, i.e., there are identical components which

exist twice at the same position in the geometry space, these components can be represented

by the same component in GSM and later in DSM. If the load paths contain further rigid parts

which do not deform and are not part of the components, these parts are also included in

GSM.

The mass of the rear vehicle is lumped behind the components across all load paths and

the mass of the vehicle front is lumped as nm − 1 ∈ N discrete mass points behind the

components on the load paths. The number of discrete mass points and their positions behind

one component are assumed as well as the values of the masses m1, . . . ,mnm , which are

uncontrollable parameters. An example of a GSM is visualized in Figure 46.

Using a GSM, the parts of the vehicle structure which deform simultaneously after hitting

the barrier at full overlap can be identified. Here, it is assumed that the components fulfill a

progressive order of deformation requirement and that the deformation rate is constant across

all load paths at any position in the deformation space. Hence, the parts which deform simulta-

neously can be aligned vertically in deformation space. By further removing non-deformable

parts and possible empty spaces from the load paths and stacking the deformable parts, a

DSM is yielded. The DSM that corresponds to the GSM in Figure 46 is shown in this Figure as

well.

The deformation space is divided into ns sections where a new section always starts at
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m1 m2
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(a)

1st component 2nd component
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F1(s) F2(s)

F3(s) F4(s) F5(s)m1 m2

m3

s
s0 s1 s2 s3 s4

(b)

Figure 46 Vehicle front structure models (a) GSM with underlying vehicle chassis and (b) corresponding DSM (stretched) with
five components, two load paths, and three discrete masses. There are deformable (gray) and non-deformable lengths (black).

the beginning of the deformation of each component. The last section ends when the front

structure has deformed. Hence, there are four sections in the DSM example in Figure 46. In

general, section 1 can be defined as the half-open interval [s0, s1), section 2 as the half-open

interval [s2, s3), and so on until section ns with [sns−1, sns). Like above, the position sns is also

referred to as send. The section lengths are s̄1, . . . , s̄ns . Representatively, these are considered

as the uncontrollable parameters for the deformation lengths of DSM in the following.

The position si, i ∈ {0, . . . , ns} where the deformation of the kth component, k ∈ {1, . . . , n},
starts is also denoted as sk0 . Similarly, the position si, i ∈ {0, . . . , ns} where the deformation

of the kth component ends is denoted as skend. For the deformation lengths of the components,

it holds s̄k = skend − sk0 , k = 1, . . . , n.

Using these definitions, the force-deformation characteristics of the components can be defined

via F k(s) ∈ [F l,k
ds , F

u,k
ds ] if s ∈ [sk0, s

k
end) and F k(s) = 0 kN otherwise, k = 1, . . . , n. Here,

F l,k
ds ∈ R+

0 is the minimum and F u,k
ds ∈ R+

0 the maximum force that F k(s) can assume in

[sk0, s
k
end) with F l,k

ds ≤ F
u,k
ds , k = 1, . . . , n. Furthermore, the sum of forces over all load paths,

i.e.,

F (s) =

n∑
k=1

F k(s) (5.6)

at a position s ∈ [s0, send) represents a joint force-deformation characteristic of all crash-
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relevant components.

During deformation, a discrete mass point ml, l ∈ {1, . . . , nm}, located at position si, i ∈
{0, . . . , ns − 1} in deformation space is only accelerated for s < si where it is called active.

For s ≥ si, the discrete mass point ml has hit the barrier and has been brought to an abrupt

halt. Note that an elastic rebound is not considered in the DSM approach. Thus, m∗l (s) = ml

for s < si and m∗l (s) = 0 kg otherwise indicates if ml is active at s ∈ [s0, sns). The total active

mass of the vehicle at s ∈ [s0, sns) can then be computed as

m∗(s) = mnm +

nm−1∑
l=1

m∗l (s). (5.7)

Moreover, a discrete mass point ml, l ∈ {1, . . . , nm − 1} that is located between the kth and

(k + 1)th component in the same load path is also denoted by mk, k ∈ {1, . . . , n− 1}.

Using these definitions, the requirements on the minimum energy absorption, the maximum

acceleration, and the progressive order of deformation can be formulated mathematically as

follows, see Section A.3, which generalizes the requirements (5.1)-(5.4) from above:

• Minimum energy absorption: The vehicle must be brought to halt during the deformation.

This means that its kinetic energy must be absorbed. Considering the change in active

mass, it must hold that the integral of the sum of deformation forces over all load paths

divided by the active mass from s = s0 to s = sns is smaller or equal to 1
2v

2
0 , i.e.,

−
send∫
s0

F (s)

m∗(s)
ds ≤ −1

2
v2

0. (5.8)

• Maximum acceleration: The acceleration must be smaller than the critical acceleration

threshold ac at any position in deformation space. Here, the acceleration is the sum of

deformation forces over all load paths divided by the active mass. Thus,

F (s)

m∗(s)
≤ ac (5.9)

must hold for all s ∈ [s0, send).

Progressive order of deformation: The ordered deformation of the vehicle must start at

the front. This means that the force which is necessary to deform the kth component is

smaller or equal to the deformation force which is necessary to start the deformation of the

(k + 1)th component for all s ∈ [sk0, s
k
end) in consideration of the local inertia force for mk.

Therefore,

F k(s)−mk F (s)

m∗(s)
≤ F k+1(sk+1

0 ) (5.10)
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must hold for all s ∈ [sk0, s
k
end) if the kth and (k+ 1)th component share the same load path,

k = 1, . . . , n− 1.

If piece-wise constant functions are considered as parametrized force-deformation charac-

teristics, the requirements (5.9)-(5.10) simplify to a system of linear inequalities similarly to

(5.5). In the following, an example of computing optimal box-shaped CSS for the components

is considered for which the complete system solution space is based on the above constraints.

Given the DSM of a vehicle front structure from Figure 46 with five components and three

discrete masses, two cases are regarded:

(a)The masses are given by m1 = 200 kg, m2 = 250 kg, and m3 = 1100 kg, the initial velocity

by v0 = 15.6 mm
ms and the critical acceleration by ac = 0.3 mm

ms2 . The deformation lengths of

the components are given by s̄1 = 300 mm, s̄2 = 250 mm, s̄3 = 150 mm, s̄4 = 250 mm,

and s̄5 = 300 mm, see Figure 46 in which the deformation lengths of components are

colored gray.

(b)The parameters are given similarly to (a) but s̄4 is increased by 50 mm to s̄4 = 300 mm.

Hence, it is sufficient to use s̄5 = 250 mm as the last 50 mm of the 5th component will not

deform then.

The force-deformation characteristics are modeled by piece-wise constant functions for which

a piece-wise constant segment has a length of 50 mm. Hence, there are 25 constant force

levels, i.e., 25 design variables, which are assigned to the components in lexicographical order

from left to right, starting at the upper load path. Furthermore, there are one linear inequality

for (5.8), 14 linear inequalities for (5.9), and 14 inequalities for (5.10) in case (a) and 15 in

case (b), i.e., 29 linear inequalities in total in case (a) and 30 in case (b). The box-shaped CSS

can be computed using the methods from Section 4.2 and the solutions for cases (a) and (b)

are visualized in Figure 47.

Although only the deformation length of the 4th component was increased by 50 mm, the

changes in the box-shaped CSS for the other components are significant. In particular, the

intervals of the design variables 7 and 21, are very different, both in size and location. As a

result, there are changes in the development of these components.

These circumstances give rise to use more realistic assumptions for building DSM. Further-

more, it is assumed for DSM that only the crash-relevant components, in particular their

force-deformation characteristics, determine the performance of the vehicle, which is in gen-

eral not the case. These drawbacks of DSM are improved in the subsequent section.
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Figure 47 Optimal independent box-shaped CSS visualized as regions of permissible force-deformation characteristics for
cases (a) and (b) in which the deformation lengths of the 4th component are different.

5.2. Enhanced Deformation-Space Models

This section derives enhanced deformation space models. First, knowledge-based DSM

models which are based on realistic data for deformation lengths and masses are considered.

As they do not represent the energy absorption and acceleration of the overall vehicle correctly,

energy- and acceleration-corrected DSM are introduced and a further test-bed problem is

defined. Furthermore, possible epistemic uncertainties for energy- and acceleration-corrected
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DSM are considered.

5.2.1. Knowledge-based DSM
For knowledge-based DSM, realistic information about the vehicle’s front structure, including

its mass distribution and deformation lengths of its components, is used. In this thesis, the

focus is put on building a knowledge-based DSM based on measured deformation lengths

and masses of a single vehicle that is already fully developed. Such a knowledge-based

DSM might help, for example, to improve the development and the crash performances of

the vehicle type’s next generation. Other than that, also realistic data from multiple vehicles

can be combined to get knowledge-based DSM for developing new vehicle types. Before a

knowledge-based DSM can be obtained, a corresponding GSM must be built. Therefore, the

following steps are proposed:

(a) Identification of crash-relevant components, load paths, and lumped masses: Crash-

relevant components are usually structural entities like crash boxes or front rails. Sometimes,

these entities can also be defined as several components, for example, due to changing

shapes or material properties in the longitudinal direction or because multiple designers

work on different parts of these entities. This might be the case for large front rails. Crash-

relevant components are usually arranged in distinct load paths. In these, the load is

passed through connected components. Components that connect different load paths

are not considered in this thesis. However, they are also conceivable in general, see [85].

Besides the components, lumped masses are assigned to the load paths, too. These

masses originate from heavy parts of the vehicle like the engine. Furthermore, the mass of

the rear vehicle is lumped behind all components.

(b)Measurement of lumped masses, the geometric lengths of the components, and their

deformation lengths in the longitudinal impact direction: In order to get the values for

the lumped masses, the corresponding parts are weighted. The longitudinal lengths

of the components are measured before and after the crash in the longitudinal impact

direction. Considering the loading and unloading of the components, it is assumed that the

differences between these lengths yield the lengths of plastic deformation. Note that the

measured longitudinal lengths after the crash depend on the impact velocity of the vehicle

as discussed above. Thus, these lengths must be considered as the non-deformable

lengths of the components for a certain impact velocity. Only if the velocity is large enough

and the lengths do not change for larger velocities, they can be considered as the maximum

non-deformable lengths of the components.

(c) Arrangement of further possible non-deformable lengths in the load paths (if applicable):

Besides the non-deformable lengths of the components that represent the non-deformable

parts in the GSM, there might be further non-deformable parts which do not belong to

the components. If these are part of the load paths, they must be included in the GSM

to obtain DSM for which parts of simultaneous deformation are aligned vertically. Like

non-deformable lengths of the components, these lengths can also be measured after the
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crash.

In this thesis, relevant crash properties are gathered from analyzing a HONDA ACCORD FE

model taken from [98] and running a crash simulation of this model in the software LS-DYNA

at full overlap with an initial velocity of v0 = 15.6 mm
ms like done in the US-NCAP crash test.

For this model, seven crash-relevant components are identified that shall be designed and that

share two load paths, compare Figure 48. Here, the vehicle front structure is symmetrical and

only components on the vehicle’s left side are considered. In order to take also the right side

into account, the force levels of the components on the left must be multiplied by two when

using the corresponding GSM or DSM, and divided by two the other way around. Note that the

front bumper as a crash-relevant component is not considered here as it spans transversely

across the vehicle. Furthermore, there are four relevant masses which are lumped and dis-

tributed on the load paths, compare Figure 48. The mass m1 represents the drivetrain, m2 the

radiator, m3 the engine, and m4 the remaining mass of the vehicle, which shall approximate

the mass of the rear vehicle.

The measurements in LS-DYNA can be done according to Section A.3 for which the measured

masses and deformation lengths for the HONDA ACCORD FE model are stated in Table 4.

Note that these values are non-deterministic, i.e., there is uncertainty in these values, which is

investigated later in this section.

Table 4 Measured deformation lengths in the longitudinal impact direction of the seven crash-relevant components and
measured masses of the HONDA ACCORD FE model.

quantity s̄1 s̄2 s̄3 s̄4 s̄5 s̄6 s̄7

value 313 mm 156 mm 78 mm 54 mm 101 mm 150 mm 270 mm

quantity m1 m2 m3 m4

value 104 kg 19 kg 277 kg 1250 kg

Besides the non-deformable lengths of the components, there is a further non-deformable

length in the second load path behind the seventh component which is considered in the GSM,

see Figure 48. From the GSM, the knowledge-based DSM for the HONDA ACCORD FE model

can be derived as before. It is visualized in Figure 48.

For knowledge-based DSM, the same system performance functions as for general DSM, i.e.,

the underlying performance functions of requirements (5.1)-(5.4), hold. However, when mea-

suring, for example, the acceleration or energy absorption of the overall HONDA ACCORD FE

model in the software LS-DYNA, significant differences with the computed system responses

from the force-deformation characteristics of the components exist. This is mainly because not

all components in the frontal vehicle structure are considered and that the DSM only considers

the longitudinal direction, which does not account for the real energy absorption in three
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(c)

Figure 48 The HONDA ACCORD FE model’s (a) crash-relevant components (b) GSM, and (c) DSM with deformable (gray)
and non-deformable lengths (black). Note that a different scale for GSM and DSM is used here.
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dimensions. In order to circumvent also these drawbacks, energy- and acceleration-corrected

DSM are introduced.

5.2.2. Energy- and Acceleration-Corrected DSM
For energy- and acceleration-corrected DSM, measured force-deformation characteristics

in the longitudinal impact direction are used for calibration. In Section A.3, an approach is

described, how they can be obtained from an FEM simulation of the full HONDA ACCORD

FE model using the software LS-DYNA. As an example, the corresponding force-deformation

characteristic of the fourth component is shown in Figure 50.

1st component 2nd component 3rd comp.

4th 5th comp. 6th component 7th component

Fadd(s)

F1(s) F2(s) F3(s)

F4(s) F5(s) F6(s) F7(s)

m1

m2 m3

m4 m5 m6 m7 m8 m9

m10

s
s0 s1 s2 s3 s4 s5 s6 s7

Figure 49 DSM of the HONDA ACCORD FE model with an additional load path and additional masses as a representation of
the remaining parts of its front structure.

The underlying assumption of DSM is that F (s), computed from Equation (5.6), over the active

mass m∗(s) is a good estimation for the acceleration of the rear vehicle at any deformation

position in deformation space. However, as usually more parts of the frontal structure than the

ones represented in the DSM are responsible for the acceleration of the vehicle, the estimated

acceleration is in general too low and must be corrected. This can be done by calibrating

a force-deformation characteristic that is integrated into an additional load path, see Figure

49. Its force values are denoted by F add(s) and represent the force in the longitudinal impact

direction on the remaining parts of the front structure which are not considered in the DSM for

s ∈ [s0, send). The force-deformation characteristic of the additional load path can be obtained

from calibration at the acceleration of the rear vehicle, as described in Section A.3.

Furthermore, the values of the active mass m∗(s) at s ∈ [s0, send) can be enhanced by

assigning the remaining masses of the frontal structure to the additional load path. They must

be lumped at s ∈ {s0, . . . , send} by considering Equation (5.7), which can be done according

to Section A.3. These masses are visualized in Figure 49 as well.

Using these perceptions, the requirement on the maximum acceleration, stated in Equation

(5.9), then reads
F (s) + F add(s)

m∗(s)
≤ ac (5.11)

for all s ∈ [s0, send). Note that the HONDA ACCORD FE model violates the progressive order

of deformation requirement. Thus, using F (s), computed by Equation (A.37), and F add(s),

calibrated as proposed in Section A.3, does not exactly represent the acceleration of the rear
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vehicle for s ∈ [s0, send). This changes when the progressive order requirement is fulfilled.

The corresponding requirement, previously given by Equation (5.10), can here be formulated

as

F k(s)−mkF (s) + F add(s)

m∗(s)
≤ F k+1(sk+1

0 ) (5.12)

for all s ∈ [sk0, s
k
end) if the kth and (k + 1)th component share the same load path, k =

1, . . . , n− 1.

A further assumption of DSM is that if the force-deformation characteristic which represents

all crash-relevant components is inserted into requirement (5.8), the left-hand side of (5.8)

approximates the right-hand side. This means that the sum of component forces integrated

over their deformation lengths is a good estimation of the total absorbed energy of the vehicle.

However, there is an error due because there are remaining parts of the vehicle which are not

considered in the DSM, i.e., their energy absorption is not included in requirement (5.8). This

can be circumvented by integrating the forces of the additional load path over the deformation

length of the load paths, too.

Moreover, there is a further error because the DSM only considers energy absorption in

the longitudinal direction. In order to take the real energy absorption in three dimensions

into account, energy-correction factors are introduced for all components, denoted by Ekcf ,

k = 1, . . . , n, and for the additional load path, denoted by Eadd
cf . Here, it is assumed that the

energy absorbed in three dimensions is proportional to the energy absorbed in the longitudinal

impact direction. Thus, Ekcf can be calibrated at the force-deformation characteristics of the

components and the total internal energy of the components Ektot, k = 1, . . . , n. It holds

Ekcf =
Ektot∫ skend

sk0
F k(s) ds

, (5.13)

k = 1, . . . , n. The natural condition Ektot ≥
∫ skend

sk0
F k(s) ds and therefore Ekcf ≥ 1 should

always be fulfilled, k = 1, . . . , n. Moreover, the energy-correction factor of the additional load

path is calibrated such that

Eadd
cf =

1
2v

2
0 −

∑n
k=1

(
Ekcf

∫ skend

sk0

Fk(s)
m∗(s) ds

)
∫ send

s0

F add(s)
m∗(s) ds

(5.14)

holds using the measured force-deformation characteristics of the components. Accordingly,

the requirement on the minimum energy absorption, previously stated in requirement (5.8),

then reads

−
n∑
k=1

Ekcf

skend∫
sk0

F k(s)

m∗(s)
ds

− Eadd
cf

send∫
s0

F add(s)

m∗(s)
ds ≤ −1

2
v2

0. (5.15)

This means that the calibration of Eadd
cf guarantees an equal sign in requirement (5.15) for

the measured force-deformation characteristics of the components of the HONDA ACCORD
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FE model. Summarized, the requirements for energy- and acceleration-corrected DSM are

the requirements on minimum energy absorption (5.15), maximum acceleration (5.11), and

progressive order of deformation (5.12).

In addition to the uncontrollable parameters in the requirements of non-corrected DSM v0,

ac, s̄i, i = 1, . . . , ns, and ml, l = 1, . . . , nm, uncontrollable parameters in the requirements

for energy- and acceleration-corrected DSM are additionally formed by the force-deformation

characteristic of the additional load path, i.e., F add(s) for s ∈ [s0, send) and the energy-

correction factors Ekcf , k = 1, . . . , n, and Eadd
cf . The constraint functions that belong to the

requirements are component-wise monotonic in the uncontrollable parameters pl, l = 1, . . . , q,

as it holds

d
(
−
∑n

k=1

(
Ekcf

∫ send

s0

Fk(s)
m∗(s) ds

)
− Eadd

cf

∫ send

s0

F add(s)
m∗(s) ds+ 1

2v
2
0

)
dpl

≥ 0 if pl ∈ {v0,m1, . . . ,mnm},

≤ 0 if pl ∈ {s1, . . . , send, E
1
cf , . . . , E

n
cf , E

add
cf } ∪ {F add(s) | s ∈ [s0, send)},

(5.16)

d
(
F (s)+F add(s)

m∗(s) − ac

)
dpl


≥ 0 if pl ∈ {F add(s)},

≤ 0 if pl ∈ {ac,m1, . . . ,mnm}
(5.17)

for all s ∈ [s0, send), and

d
(
F k(s)−mk F (s)+F add(s)

m∗(s) − F k+1(sk+1
0 )

)
dpl

≥ 0 if pl ∈ {m1, . . . ,mnm}\{mk},

≤ 0 if pl ∈ {mk, F add(s)}
(5.18)

for all s ∈ [sk0, s
k
end) if the kth and (k + 1)th component share the same load path, k =

1, . . . , n− 1, l ∈ {1, . . . , q}. However, they are not monotonic in the uncontrollable parameters

as they are, for example, both component-wise monotonically increasing and decreasing in ml,

l = 1, . . . ,mnm . These properties will be used for DSM under uncertainties in uncontrollable

parameters later. Moreover, they transfer immediately to non-corrected DSM including test-bed

problem 1 which are special cases of energy- and acceleration-corrected DSM.

Subsequently, a new test-bed problem representing the energy- and acceleration-corrected

DSM of the HONDA ACCORD FE model is defined.
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5.2.3. Test bed 2: Realistic Crash Design Problem
In general, the values of the uncontrollable parameters for the energy- and acceleration-

corrected DSM of the HONDA ACCORD FE model can be obtained by following the instruc-

tions above. In Table 5, the values of the section lengths and discrete mass points are stated.

The initial velocity of the HONDA ACCORD FE model in the LS-DYNA simulation was chosen

as 15.6 mm
ms . However, as there are parts of the frontal structure that deform and accelerate

the vehicle before the considered load paths start deforming, the velocity at the beginning of

the load paths’ deformation is chosen here. Its value is specified in Table 5. Furthermore, the

critical acceleration represents a threshold, i.e., a predetermined value, which shall not be

exceeded. Its value is chosen as above and is also stated in Table 5.

Table 5 Section lengths, discrete mass points, initial velocity, and critical acceleration for the DSM of the HONDA ACCORD FE
model.

quantity s̄1 s̄2 s̄3 s̄4 s̄5 s̄6 s̄7

value 28 mm 26 mm 101 mm 150 mm 36 mm 156 mm 78 mm

quantity m1 m2 m3 m4 m5 m6 m7

value 104 kg 19 kg 277 kg 18 kg 3 kg 26 kg 26 kg

quantity m8 m9 m10 v0 ac

value 17 kg 16 kg 1144 kg 15.0 mm
ms 0.3 mm

ms2

Before the uncontrollable parameters regarding the additional load path and the energy-

correction factors are considered in more detail, the lower and upper bounds for the component

design spaces are investigated. Here, the corresponding values are obtained by rounding up

the maximum force values of components’ associated load paths to the next 100 kN. They are

stated in Table 6.

Table 6 Design space parameters for the DSM of the HONDA ACCORD FE model.

quantity F l,1
ds F l,2

ds F l,3
ds F l,4

ds F l,5
ds F l,6

ds F l,7
ds

value 0 kN 0 kN 0 kN 0 kN 0 kN 0 kN 0 kN

quantity F u,1
ds F u,2

ds F u,3
ds F u,4

ds F u,5
ds F u,6

ds F u,7
ds

value 100 kN 100 kN 100 kN 200 kN 200 kN 200 kN 200 kN

In contrast to test-bed problem 1, test-bed problem 2 will be directly defined for parametrized

force-deformation characteristics. These characteristics are necessary to compute CSS Ωk,

k = 1, . . . , 7, for the components of the HONDA ACCORD FE model in this thesis. Again,

piece-wise constant force-deformation characteristics, which are constant in any segment,

are considered. The number of equidistant segments per section is defined in a way that all
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segments have approximately the same length. Hence, one segment is chosen for the first,

second, and fifth section, two for the seventh, three for the third, and four for the fourth and

sixth.

When designing the force-deformation characteristics of the components, the constant force

levels within these segments are their design variables. Their number corresponds to the de-

grees of freedom. Thus, there are two degrees of freedom for the third and fourth component,

three for the fifth, four for the second and sixth, seven for the seventh, and nine for the first,

which sums up to 31 degrees of freedom in total. Again, the design variables are denoted by

Fi, i = 1, . . . , 31, and are assigned to the components in lexicographical order that goes from

left to right and starts at the top, compare Figure 51. As an example, F16 = F 4
1 and F17 = F 4

2

with d4 = 2 hold and the piece-wise constant force-deformation characteristic of the fourth

component is given by the graph that belongs to F 4(s) = F16 for s ∈ [s0, s1), F 4(s) = F17 for

s ∈ [s1, s2), and F 4(s) = 0 otherwise. Here, (F16, F17) ∈ [0 kN, 200 kN]2 must hold in order

to fulfill the design space constraints.

However, when measuring, for example, the force-deformation characteristics of the compo-

nents with the methods from above, it can be recognized that they are not parametrized, see

Figure 50. Hence, two options are conceivable for incorporating measured force-deformation

characteristics into CSS: either the measured force-deformation characteristics must be para-

metrized a posteriori such that it can be tested if they are contained in the CSS or the CSS

must be transformed a posteriori such that they form constraints for the non-parametrized

force-deformation characteristics. Both options are briefly discussed in the following.

In general, there are various methods to obtain piece-wise constant force-deformation charac-

teristics from measured characteristics. In this thesis, a method that conserves the energy

which is absorbed in the longitudinal impact direction is chosen. This can be reached by

integrating the force over the deformation of a segment and dividing the integral by the seg-

ment length. Then, the resulting value is set as the constant force level for the corresponding

segment. This method is visualized for the fourth component of the HONDA ACCORD FE

model in Figure 50.

Note that the force-deformation characteristic in Figure 50 was measured at the left side of

the vehicle. In order to take also the right side into account, the forces must be multiplied

by two. Also, recall that the measured force-deformation characteristic represents only one

possible design of the corresponding component and that the force levels can be modified by

a designer. Other parametrization methods, which do not necessarily conserve the energy,

select, for example, the force value that belongs to the center of the segment or the maximum

or minimum force value to represent the constant force level of the segment.

All parametrization methods have in common that they usually involve errors which propagate

to the system responses. For example, an energy-conservative parametrized force-deformation

characteristic induces an error regarding acceleration as it does not represent the maximum

forces well enough. Furthermore, there is an error in the force values that are necessary to

start the components’ plastic deformation. These facts must be considered when evaluating
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parametrized force-deformation characteristics with the CSS. Thus, even a permissible force-

deformation characteristic regarding a CSS might cause a violation of the system constraints.

This problem can be circumvented by considering the deviations from the constant force levels

as uncertainties in the controllable variables, compare the following subsection.

0 20 40 60
0

25

50

75

100

s/mm

F/kN

Figure 50 Measured (continuous force levels) and parametrized (constant force levels with white dots) force-deformation
characteristic of the fourth component (left side only) of the HONDA ACCORD FE model for which the parametrization is done
with respect to the segments of the underlying DSM (dotted lines).

Besides parametrizing the force-deformation characteristics, the CSS can be transformed into

constraints for the non-parametrized characteristics as well. The intervals of box-shaped CSS

can be used as point-wise lower and upper bounds for the non-parametrized characteristics

within their corresponding segment, for example. Here, possible drawbacks are jumps for

which the lower bound of a certain segment is above the upper bound of the previous or

subsequent segment. This is, for example, the case for the CSS of the third component

of the HONDA ACCORD FE model, visualized in Figure 51. Ideas on how to overcome

these drawbacks are discussed in [43]. They can also be avoided by using piece-wise linear

parametrized force-deformation characteristics, see [27]. Furthermore, a non-parametrized

characteristic may violate the transformed lower bounds of CSS and still be permissible if the

integrated force over the deformation length of the component is greater than or equal to the

integrated lower bounds over the same length. Using arbitrarily-shaped CSS of the form (3.10)

and assigning the computed component threshold values bk to the component performance

functions for the non-parametrized force-deformation characteristics, transformed CSS which

circumvent this problem are obtained, k = 1, . . . , n.

All in all, both options to incorporate measured force-deformation characteristics into computed

CSS have their advantages and disadvantages, and it depends on the use-case to decide

which option to choose. Whereas only the second option is discussed in [43], the first option is

used in this thesis to focus on the property of CSS to provide optimal flexibility for component

design with a finite number of degrees of freedom, i.e., non-transformed CSS.
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In order to do so, also the force-deformation characteristic of the additional load path obtained

by Equation (A.37) must be parametrized accordingly with respect to the segments of the

section. Here, there are 16 segments, i.e., 16 constant force levels for the additional load

path. They are labeled from left to right and their computed values are stated in Table 7.

As the parametrized force-deformation characteristics are conservative regarding energy,

the computation of the energy-correction factor for the components and the additional load

path can be done using both the parametrized or the non-parametrized characteristics in

Equations (5.13) and (5.14). This is not the case for general parametrized force-deformation

characteristics. In Table 7, the corresponding values are stated.

Table 7 Force values of the additional load path and energy-correction factors of the HONDA ACCORD FE model.

quantity F add
1 F add

2 F add
3 F add

4 F add
5 F add

6 F add
7

value 2 kN 15 kN 71 kN 116 kN 184 kN 170 kN 161 kN

quantity F add
8 F add

9 F add
10 F add

11 F add
12 F add

13 F add
14

value 148 kN 127 kN 143 kN 75 kN 124 kN 182 kN 238 kN

quantity F add
15 F add

16 E1
cf E2

cf E3
cf E4

cf E5
cf

value 242 kN 287 kN 1.10 1.25 1.18 1.16 1.02

quantity E6
cf E7

cf Eadd
cf

value 1.23 1.00 1.26

Using the piece-wise constant force-deformation characteristics described above, the require-

ments (5.15), (5.11), and (5.12) for the energy- and acceleration-corrected DSM turn into linear

inequalities for the force levels Fi, i = 1, . . . , 31. There are one linear inequality for (5.15), 16

linear inequalities for (5.11), and 22 inequalities for (5.12), i.e., 39 linear inequalities in total.

For the DSM of the HONDA ACCORD FE model which is not energy- and acceleration-

corrected, the same number of constraints is yielded using the piece-wise constant force-

deformation characteristics described above. In Figure 51, both the optimal box-shaped

independent CSS for the non-corrected and corrected DSM of the HONDA ACCORD FE

model are faced and the parametrized force-deformation characteristics of the components

are included. Again, the box-shaped independent CSS are computed using the methods from

Section 4.2. Note that the upper design space constraints for the non-corrected DSM are

multiplied by two in order to compensate for the energy absorption of further parts in the frontal

structure that are not considered here.

Although both non-corrected and energy- and acceleration-corrected DSM shall describe the

same model, significant differences in the CSS are present, see Figure 51. Both the lower and

upper bounds of the non-corrected DSM are much higher than the corresponding bounds of

the corrected DSM. This is due to the significant influence of the additional load path in the
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Figure 51 Optimal box-shaped independent CSS visualized as regions of permissible force-deformation characteristics for the
non-corrected (a) and energy- and acceleration-corrected (b) DSM of the HONDA ACCORD FE model and parametrized
force-deformation characteristics of its components.

corrected model, which induces that the components must participate less in the acceleration

of the vehicle and absorb less energy. The effect on the lower bounds is even reinforced by

the energy-correction factors, which account for energy absorption in three dimensions. The

local influence of the additional load path on the upper bounds can especially be seen for the

sixth and seventh component.

Furthermore, it can be concluded from Figure 51 that the force levels of the parametrized

force-deformation characteristics from the components of the HONDA ACCORD FE model are
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generally too low for non-corrected DSM although the required energy absorption is fulfilled in

the simulation. This is different for energy- and acceleration-corrected DSM, which circumvent

this drawback. Hence, only energy- and acceleration-corrected DSM are considered in the

following to yield realistic CSS. Note that there are also force levels of the parametrized force-

deformation characteristics of the HONDA ACCORD FE model that are outside the bounds

of the CSS in Figure 51. Here, the progressive order of deformation requirement is violated.

Thus, the force levels can be improved for the vehicle’s next generation using the provided

box-shaped CSS or different CSS types of this thesis, for example. Furthermore, test-bed

problem 2, representing the energy- and acceleration-corrected DSM for the HONDA ACCORD

FE model, is used to compute various types of CSS including CSS under epistemic uncertainty.

In order to do so, epistemic uncertainty is considered for enhanced DSM subsequently.

5.2.4. Enhanced DSM under Epistemic Uncertainty
There are various reasons for uncertainty in crash design. This subsection focuses on

uncertainty that occurs when using DSM or rather energy- and acceleration-corrected DSM.

Here, uncertainty is classified from a system point of view, like done in Section 2.1. As DSM

provide only constraints but no cost function, it is only differentiated between uncertainties in

controllable variables, uncontrollable parameters, and constraints. The following list provides

an overview of possible reasons for the occurrence of these uncertainties:

(a)Uncertainties in controllable variables: The design variables for DSM describe the force-

deformation characteristics of the considered, crash-relevant components. These force-

deformation characteristics are responses at level 2 of a three-level system and are con-

trolled indirectly by modifying the components’ design models and their design variables

at level 1, compare Section 5.1. This means that the uncertainties at level 1 propagate to

the force-deformation characteristics, i.e., the controllable variables at level 2. In general,

these multiple sources of uncertainty complicates the uncertainty quantification for the

force-deformation characteristics. Moreover, DSM can be even used if the component

models are undefined in the early design phase. Thus, the result of the propagated un-

certainty to the force-deformation characteristics is not known and must be assumed in a

no-more-knowledge state, see Section 2.1. If in contrast a completely or almost completely

developed vehicle is considered, the corresponding uncertainty propagation can possibly

be reduced to the propagation of uncertainty in material or geometric properties.

Although it is assumed in this thesis that the component design models which map the

design variables at level 1 to the force-deformation characteristics at level 2 are surjec-

tive with respect to the design spaces of the force-deformation characteristics, this might

not always be the case in reality. Using the maximum metric, the distance of all target

force-deformation characteristics to their next realizable characteristics can be considered

as the uncertainty magnitudes of the controllable variables. Moreover, if parametrized

characteristics that shall represent measured characteristics are used, e.g., in an FEM

simulation like done above, there is usually an error which propagates to the responses of

the crash system. This error depends on the parametrization and can also be considered
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as uncertainty in controllable variables.

As discussed in Section 5.1, also different initial conditions of the vehicle before the impact

and different interaction modes with the remaining frontal vehicle structure can lead to

different force-deformation characteristics of the components, i.e., they depend on boundary

conditions. If these conditions are changed, different deformation modes of the compo-

nents, which imply a sustainable change in the force-deformation characteristics of the

components, may occur. This uncertainty occurs, for example, when there are variations

in these conditions or when measuring forces-deformation characteristics with simplified

boundary conditions, e.g., in a drop tower test.

(b)Uncertainties in uncontrollable parameters: The parameters that cannot be controlled by

designers using DSM are the section lengths, the lumped masses, the initial velocity, and

the critical acceleration for the non-corrected DSM. For energy- and acceleration-corrected

DSM, the force-deformation characteristic of the additional path and the energy-correction

factors add to these parameters. If the values for these parameters are gathered, for

example, from an FEM simulation, there are usually measurement errors, which can be

considered as uncertainties in uncontrollable parameters. If these parameters must be

assumed in the early phase, uncertainty in these parameters is also present. In both cases,

the uncertainty is hard to quantify and must often be assumed.

Like the controllable variables, the uncontrollable parameters also depend on the boundary

conditions. Here, this might directly affect the masses, and the initial velocity, and indirectly

affect deformation length, the additional load path, and the correction factors. In addition,

also the critical acceleration might be considered as uncertain, as it shall represent the

critical acceleration on specific occupant parts, which might be different.

(d)Uncertainties in constraints

In addition to the design space constraints, constraints for crash design using DSM are

the requirements on the energy absorption, the critical acceleration, and the progressive

order of deformation. When building enhanced DSM from realistic crash properties of a

completely developed vehicle, see test-bed problem 2, there are model errors that arise from

using DSM as a simplified, low-fidelity model instead of the high-fidelity model that supplied

the crash properties. Here, possible changes to the high-fidelity during development are

further sources of uncertainty. In addition, the model error also depends on the details of

the simplified model, like its assumed mass distribution and the alignment of simultaneously

deforming parts in different load paths. For DSM built from assumed crash properties,

high-fidelity models and therefore knowledge about model errors are not available. However,

when corresponding high-fidelity models are built a posteriori, these errors occur, too. Note

that in general, there is also uncertainty in higher-level models, e.g., when using FE models

for crash tests instead of real vehicles. Overall, the considered errors and uncertainties can

be conceived as model uncertainty, which is part of the uncertainty in the constraints.

Furthermore, it is also possible that requirements will be added, adapted, or removed

during the development of a system, which affects the set of permissible force-deformation

characteristics. Here, this is, for example, the case if new requirements are introduced for
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crash tests.

Note that this list does not claim completeness and can be extended by further examples of

uncertainty in controllable variables, uncontrollable parameters, and constraints. Like in the

previous sections, only uncertainties in controllable variables and uncontrollable parameters

are considered and uncertainties in constraints are neglected in the following.

According to the reasons above, the force-deformation characteristics as controllable variables

comprise severe epistemic uncertainty in the early phase of crash design. This motivates

the use of CSS, besides its property, to provide optimal flexibility for component design, as

discussed above. In order to further take this severity into account and allow multiple sources

of uncertainty for one parameter, epistemic uncertainty is modeled as intervals and fuzzy sets

like above. As the magnitudes of the uncertainties are hard to estimate, especially in the early

phase, these are assumed in this thesis, cf. Section 5.4. Before investigating the effects of

epistemic uncertainty on DSM and corresponding optimal CSS, box- and arbitrarily-shaped

CSS are compared for test-bed problems 1 and 2 without taking uncertainty into account.

5.3. Box-Shaped vs. Arbitrarily-Shaped CSS

This section compares box- and arbitrarily-shaped CSS for test-bed problems 1 and 2. Re-

garding test-bed problem 1, parametrized force-deformation characteristics are considered

starting with components with one degree of freedom. This degree is increased successively

and challenges in visualizing arbitrarily-shaped CSS are addressed.

5.3.1. Test Bed 1: Components with one degree of freedom
Similar to Section 5.1, the parametrization for test-bed problem 1 is done by dividing the

deformation lengths of the components into equidistant segments and modeling the force-

deformation characteristics as constant within these segments. Then, the number of segments

per component is equal to the number of its design variables and its degrees of freedom.

In the following, optimal box- and arbitrarily-shaped CSS are computed and compared for

both independent- and dependent-decoupled design decisions. An overview of the underlying

problem statements can be found in Table 1. The results of this section for independent CSS

were already published in [27] for piece-wise linear force-deformation characteristics by the

author of this thesis.

First, the simple crash design problem is considered for which each of the two components

has one degree of freedom. For force-deformation characteristics that are constant during the
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deformation of each component, it holds

F 1(s) =


F 1

1 ∈ [F l,1
ds,1, F

u,1
ds,1] if s ∈ [s0, s1),

0 else,

(5.19)

and

F 2(s) =


F 2

1 ∈ [F l,2
ds,1, F

u,2
ds,1] if s ∈ [s1, s2),

0 else,

(5.20)

where F l,1
ds,1 = F l,1

ds , F u,1
ds,1 = F u,1

ds , F l,2
ds,1 = F l,2

ds , and F u,2
ds,1 = F u,2

ds . This type of force-

deformation characteristic has already been considered in Section 5.1 and examples are shown

in Figures 45 and 56. For force-deformation characteristics with one degree of freedom per

component, the system performance functions become linear, i.e., f(x1, x2) = A1x1 +A2x2,

see Section 5.1. Thus, for F k1 , k = 1, 2, optimal independent CSS can be computed by solving

problem (4.70), and optimal dependent CSS by solving problems (4.99) and (4.100). Here, the

maximum acceleration requirement for the second component, i.e., the third row of the inequal-

ity system (5.5), and the design space constraints for the parameter values, given in Table 3,

are redundant and can be removed for computing optimal CSS. Note that box-shaped and

arbitrarily-shaped CSS coincide for components with one degree of freedom as the constraints

are linear and dk = 1, k = 1, 2, holds, compare Section 4.2. The corresponding optimal

independent CSS are visualized in Figure 52 and the corresponding optimal dependent CSS

are visualized in Figure 53 both as geometric shapes in force space.

system

F 1
1 /kN

F 2
1 /kN

125 250 375 500

125

250

375

500

0

Ωc

Ωds

Ω1 × Ω2

1st component

F/kN
0 125 250 375 500

Ω1
ds

Ω1

2nd component

F/kN
0 125 250 375 500

Ω2
ds

Ω2

Figure 52 Independent CSS: Optimal independent CSS as regions of permissible component designs for test-bed problem 1
with components with one degree of freedom
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Figure 53 Dependent CSS: Optimal dependent CSS as geometric shapes in force space for test-bed problem 1 with
components with one degree of freedom

5.3.2. Test Bed 1: Components with two degrees of freedom
Second, test-bed problem 1 is reconsidered for which each of the components has two

degrees of freedom. Here, two equidistant segments for each component are used in which

the corresponding force-deformation characteristic is modeled as constant. Therefore, it holds

F 1(s) =



F 1
1 ∈ [F l,1

ds,1, F
u,1
ds,1] if s ∈ [s0,

s̄1

2 + s0),

F 1
2 ∈ [F l,1

ds,2, F
u,1
ds,2] if s ∈ [ s̄

1

2 + s0, s1),

0 else,

(5.21)

and

F 2(s) =



F 2
1 ∈ [F l,2

ds,1, F
u,2
ds,1] if s ∈ [s1,

s̄2

2 + s1),

F 2
2 ∈ [F l,2

ds,2, F
u,2
ds,2] if s ∈ [ s̄

2

2 + s1, s2),

0 else,

(5.22)

where F l,1
ds,1 = F l,1

ds,2 = F l,1
ds , F u,1

ds,1 = F u,1
ds,2 = F u,1

ds , F l,2
ds,1 = F l,2

ds,2 = F l,2
ds , and F u,2

ds,1 = F u,2
ds,2 =

F u,2
ds . An example of this type of force-deformation characteristic is also shown in Figure 56.

Similar to force-deformation characteristics with one degree of freedom per component, the

system performance functions become linear, i.e., f(x1, x2) = A1x1 +A2x2. This means that
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the requirements simplify to

− s̄1

2 − s̄1

2

1 0

0 1

0 0

0 0

1 0

0 1


︸ ︷︷ ︸

=A1

 F 1
1

F 1
2

+



− s̄2

2 − s̄2

2

0 0

0 0

1 0

0 1

−1 0

−1 0


︸ ︷︷ ︸

=A2

 F 2
1

F 2
2

 ≤



−1
2mv

2
0

mac

mac

mac

mac

0

0



,

︸ ︷︷ ︸
=b

(5.23)

where the first row belongs to inequality (5.1), the second and third row to (5.2), the follow-

ing two rows to (5.3), and the last two rows to (5.4). Thus, for (F k1 , F
k
2 ), k = 1, 2, optimal

box-shaped independent CSS can be computed by solving problem (4.70), optimal arbitrarily-

shaped independent CSS by solving problem (4.92) and using the exact method for computing

the volume from Section 4.3, optimal box-shaped dependent CSS by solving problem (4.95),

and optimal arbitrarily-shaped dependent CSS by the projection method for polytopes from

Section 4.3. Here, the lower design space constraint for F 2
1 and all upper design space

constraints are redundant for the parameter values given in Table 3 and can be removed for

computing optimal CSS. Moreover, the optimization variables for problem (4.92), i.e., b1 and

b2, can be reduced to b11, i.e., the component performance thresholds of the first component

regarding the energy absorption, and b16, i.e., the component performance thresholds of the first

component regarding the order of deformation for its first segment, due to the detailed structure

of the linear system performance functions. In addition, it is b12 = b13 = mac, b14 = b15 = 0,

b17 = b16, and b2 = b− b1. For problem (4.95), the optimization variables, i.e., F l,k, F u,k, F r,k
cp,ι,

ι = 1, . . . , 4, can be reduced due to the detailed structure of the linear system performance

functions as well. For each k ∈ {1, 2}, finding remaining component designs collected in F r,k
cp,ι

for (F u,k
1 , F u,k

2 ) can be eliminated from the optimization problem as the corresponding system

design automatically fulfills the constraints if the corner points (F l,k
1 , F u,k

2 ) and (F u,k
1 , F l,k

2 ),

together with a corresponding F r,k
cp,ι for each of these two corner points, fulfill the constraints.

In Figure 54, the corresponding optimal independent CSS are visualized as geometric shapes

in force space. Accordingly, the corresponding optimal dependent CSS are visualized in Figure

55.

Regarding optimal flexibility for independent-decoupled design decisions, the volume of Ω1×Ω2

for arbitrarily-shaped CSS is about 2.333 times larger than the volume of Ω1×Ω2 for box-shaped
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Figure 54 Independent CSS: Optimal (a) box-shaped and (b) arbitrarily-shaped independent CSS as geometric shapes in
force space for test-bed problem 1 with components with two degrees of freedom

CSS. For dependent-decoupled design decisions, the volume of Ω1 for arbitrarily-shaped CSS

is about 1.342 times larger and the volume of Ω2 is about 1.671 times larger than the volumes

of Ω1 and Ω2 for box-shaped CSS. This increase in volume offers more flexibility for component

design in both cases. Note that the geometric shapes of box-shaped dependent CSS fit into

the shape of arbitrarily-shaped dependent CSS. In general, this does not hold for independent

CSS, which is, for example, the case in this example or the example in [27].
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system
Ωk ⊆ projk(Ωc), k = 1, 2
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Figure 55 Dependent CSS: Optimal (a) box-shaped and (b) arbitrarily-shaped dependent CSS as regions of permissible
component designs for test-bed problem 1 with components with two degrees of freedom

5.3.3. Test Bed 1: Components with arbitrary many degrees of freedom
Similar investigations can be done for components with arbitrary many degrees of freedom. If

dk, k = 1, 2, equidistant segments for the components are used in which the force-deformation

characteristics are modeled as constant, components with arbitrary many degrees of freedom

are obtained for test-bed problem 1. Here, the consideration are limited to d1 = d2 = d/2.
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Thus, it holds

F 1(s) =


F 1
i ∈ [F l,1

ds,i, F
u,1
ds,i] if s ∈ [(i− 1) s̄

1

d1 + s0, i
s̄1

d1 + s0), i = 1, . . . , d1

0 else,

(5.24)

and

F 2(s) =


F 2
i ∈ [F l,2

ds,i, F
u,2
ds,i] if s ∈ [(i− 1) s̄

2

d2 + s1, i
s̄2

d2 + s1), i = 1, . . . , d2

0 else,

(5.25)

where F l,1
ds,i = F l,1

ds , F u,1
ds,i = F u,1

ds , F l,2
ds,i = F l,2

ds , and F u,2
ds,i = F u,2

ds . Examples of this type of

force-deformation characteristics are also shown in Figure 56. Like for force-deformation

characteristics with one or two degrees of freedom per component, the system performance

functions for force-deformation characteristics with arbitrary many degrees of freedom per

component become linear and are of the form f(x1, x2) = A1x1 +A2x2 with

A1 =


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0 1
. . .
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. . . . . . 0
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

, A2 =


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

, (5.26)
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where the system performance thresholds in b must be adapted accordingly. The first row of

the corresponding system of inequalities Ax ≤ b belongs to inequality (5.1), the following d/2

rows to (5.2), the then following d/2 rows to (5.3), and the last d/2 rows to (5.4). Again, for

(F k1 , . . . , F
k
dk

), k = 1, 2, optimal box-shaped independent CSS can be computed by solving

problem (4.70), and optimal arbitrarily-shaped independent CSS by solving problem (4.92)

and using the exact method for computing the volume from Section 4.3. Optimal box-shaped

dependent CSS can be computed by solving problem (4.95), and optimal arbitrarily-shaped

dependent CSS by the projection method for polytopes from Section 4.3.

For components with arbitrary many degrees of freedom, all upper design space constraints are

redundant for the parameter values given in Table 3 and can be removed for computing optimal

CSS. Moreover, the optimization variables b1 and b2 for problem (4.92) can be reduced to the

component performance thresholds of the first component regarding the energy absorption

and regarding the order of deformation for its first segment. This holds due to the detailed

structure of the linear system performance functions. Hence, only two optimization variables

remain for problem (4.92). Also for problem (4.95), the optimization variables F l,k, F u,k, F r,k
cp,ι,

ι = 1, . . . , 2d
k

can be reduced due to the detailed structure of the linear system performance

functions. For corner points of a box-shaped CSS of the kth component that considers more

than one upper bound, i.e., more than one entry of (F u,k
1 , . . . , F u,k

dk
), k ∈ {1, 2}, finding a

remaining component design of the other component can be eliminated from the optimization

problem as the resulting system design automatically fulfills the constraints if the other corner

points, together with a corresponding remaining component design, fulfill the constraints. Thus,

d2/2 + 3d/2 optimization variables remain for problem (4.92).

However, the corresponding optimal arbitrarily-shaped independent and dependent CSS are

difficult to visualize as geometric shapes in force space for dk > 3, k = 1, . . . , n. This is

addressed in the following for piece-wise constant force-deformation-characteristics for which

the deformation lengths are divided into dk segments, k = 1, . . . , n.

5.3.4. Visualization of permissible force-deformation characteristics
To overcome the problem of visualizing CSS as geometric shapes in force space for dk > 3,

k = 1, . . . , n, regions of possibly permissible force-deformation characteristics can be used.

Recall that force-deformation characteristics, e.g., given by Equation (5.24) or (5.25) are said to

be permissible if their design variables are permissible, i.e., if (F k1 , . . . , F
k
dk

) ∈ Ωk, k = 1, . . . , n

holds. For every component, the region of all possibly permissible force-deformation char-

acteristics is the region between the two bounding characteristics defined by the design

variables F l,k
ob,i = min{F ki | (F k1 , . . . , F kdk) ∈ Ωk} and F u,k

ob,i = min{F ki | (F k1 , . . . , F kdk) ∈ Ωk}
for i = 1, . . . , dk, k = 1, . . . , n. Here, the subscript ob stands for "outer box" as the

dk-dimensional intervals [F l,k
ob , F

u,k
ob ] form minimum volume outer boxes of the CSS Ωk,

k = 1, . . . , n, which can be computed by solving problems (4.99) and (4.100). The pro-

jections projki ([F
l,k
ob , F

u,k
ob ]) = [F l,k

ob,i, F
u,k
ob,i] are not intended to obtain optimal flexibility for

component design but for the purpose of visualization of Ωk, k = 1, . . . , n, compare [6]. Note

however that it cannot be guaranteed that all force-deformation characteristics within these

regions are permissible.
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Also for the purpose of visualization, maximum volume inner boxes [F l,k
ib , F

u,k
ib ] can be com-

puted to define a region of only permissible force-deformation characteristics for every compo-

nent. Here, however, it cannot be guaranteed that all permissible characteristics are within

these regions. Similarly, boxes defined, e.g., by

[F l,k
b,θ, F

u,k
b,θ ] = [θF l,k

ib + (1− θ)F l,k
ob , θF

l,k
ib + (1− θ)F u,k

ob ], (5.27)

θ ∈ [0, 1], k = 1, . . . , n, can be used to visualize further regions of possibly permissible

force-deformation characteristics. For θ = 0, the minimum volume outer box and for θ = 1, the

maximum volume inner box is obtained.

Note that for box-shaped CSS, the regions of all possibly permissible characteristics and only

permissible characteristics, defined by the minimum volume outer and maximum volume inner

boxes, coincide as the CSS are dk -dimensional intervals, i.e., [F l,k
b,θ, F

u,k
b,θ ] = [F l,k

b,θ′ , F
u,k
b,θ′ ] for

θ, θ′ ∈ [0, 1], k = 1, . . . , n. Thus, there is only one region of force-deformation characteristics

for every component, which was already used in Sections 5.1 and 5.2 for the visualization of

box-shaped CSS as regions of permissible characteristics.

In order to get an idea about the quality of a region of possibly permissible characteristics for

arbitrarily-shaped CSS, the two key metrics

rkCSS,θ =
vol(Ωk ∩ [F l,k

b,θ, F
l,k
b,θ])

vol(Ωk)
, (5.28)

rkb,θ =
vol(Ωk ∩ [F l,k

b,θ, F
l,k
b,θ])

vol([F l,k
b,θ, F

l,k
b,θ])

(5.29)

are introduced, where 0 ≤ rkCSS,θ, r
k
b,θ ≤ 1, k = 1, . . . , n. The metrics rkCSS,θ represent the ra-

tio of permissible force-deformation characteristics within the corresponding region of possibly

permissible characteristics to all permissible characteristics and the metrics rkb,θ represent

the ratio of permissible characteristics within the corresponding region of possibly permissible

characteristics to all characteristics within the corresponding region of possibly permissible

characteristics, k = 1, . . . , n. For the region of all possibly permissible force-deformation

characteristics, it holds rkCSS,θ=0 = 1 and for a region of only permissible force-deformation

characteristics, it holds rkb,θ=1 = 1, k = 1, . . . , n. In the following, rkb,θ are used to assign

a grayscale value to [F l,k
b,θ, F

u,k
b,θ ] and to the corresponding regions of possibly permissible

force-deformation characteristics for θ ∈ [0, 1], k = 1, . . . , n. They are colored using a dot

pattern of the specified color. For rkb,θ = 0, the color black and for rkb,θ = 1, the color white

is assigned. In Figure 56, examples of Ωk are visualized for different degrees of freedom as

geometric shapes in force space together with [F l,k
b,θ, F

u,k
b,θ ], θ = 0, 0.5, 1, and the corresponding

regions of possibly permissible force-deformation characteristics, k ∈ {1, . . . , n}.

Whereas component designs within [F l,k
b,θ=0, F

u,k
b,θ=0] are always permissible, and so are
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geometric shapes in regions of possibly permissible
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Figure 56 Examples of Ωk with one, two, and arbitrary many degrees of freedom as geometric shapes in force space together
with [F l,k

b,θ, F
u,k
b,θ ] for θ = 0 (dark gray dot pattern), θ = 0.5 (light gray dot pattern), and θ = 1 (filled white) on the left-hand

side, k ∈ {1, . . . , n}. On the right-hand side, the corresponding regions of possibly permissible force-deformation
characteristics are shown for which the same coloring scheme is used. Within these regions, there are permissible component
designs or characteristics (large white dots) or non-permissible (large gray dots). Outside, they are always non-permissible
(large black dots).

the corresponding characteristics, it must always be tested whether component designs

within [F l,k
b,θ, F

u,k
b,θ ], θ ∈ (0, 1] or corresponding characteristics are permissible, i.e., whether

(F k1 , . . . , F
k
dk

) ∈ Ωk, k = 1, . . . , n holds. Subsequently, general properties of box- and
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arbitrarily-shaped CSS are compared as well as their volumes, average edge lengths, and

computation time. First, investigations are done for test-bed problem 1.

5.3.5. Test Bed 1: Comparison of box-shaped and arbitrarily-shaped CSS
Compared to arbitrarily-shaped CSS, box-shaped CSS are easy to visualize as regions of

permissible force-deformation characteristics due to the given lower and upper bounds for each

design variable, i.e., F l
i and F u

i , i = 1, . . . , d. Furthermore, regions of possibly permissible

characteristics are always regions of only permissible characteristics for box-shaped CSS

which do not contain non-permissible characteristics. For arbitrarily-shaped CSS, regions of

only possible characteristics can be computed along with further regions of possibly permissible

characteristics, as described above. These multiple regions of possibly permissible force-

deformation characteristics yield additional information for designing components.

In order to provide optimal flexibility for independent-decoupled design decisions in the case

of test-bed problem 1, the volume of Ω1 × Ω2 for arbitrarily-shaped CSS grows faster with the

degrees of freedom dk, k = 1, 2, than the volume of Ω1 × Ω2 for box-shaped CSS in test-bed

problem 1. This means the greater dk, k = 1, 2, the more flexibility for component design is

obtained when using independent arbitrarily-shaped instead of box-shaped independent CSS.

This difference can also be asserted in terms of the average edge length of Ω1 × Ω2, denoted

by L̄. For the simple crash design problem, it holds

L̄ = d
√

vol(Ω1 × · · · × Ωn) (5.30)

with n = 2. Similar results are obtained regarding optimal flexibility for dependent-decoupled

design decisions in terms of the volumes of Ω1 and Ω2. A comparison of the volumes of

Ω1 × Ω2 and their corresponding edge lengths is shown for independent CSS in Figure 57

and for dependent CSS in Figure 58. However, the computation times for box-shaped and

arbitrarily-shaped CSS differ. In Figure 59, a comparison is shown for independent CSS and

in Figure 60, a comparison for dependent CSS.

With increasing dk, computing arbitrarily-shaped independent CSS with the exact method from

Section 4.3 requires much more time than the computation of box-shaped solution spaces due

to the expensive volume computation. It increases exponentially on a logarithmic scale and is

therefore unsuitable for large dk, k = 1, 2. Hence, further approaches like the Monte Carlo

method for volume computation are also considered in the comparison for test-bed problem 2

below.

For dependent CSS, the difference in computation time between box-shaped and arbitrarily-

shaped CSS is not that significant. Although computing box-shaped CSS with the direct method

from Section 4.2 requires less time than computing arbitrarily-shaped CSS for 2 ≤ dk ≤, 10,

the difference gets smaller on the logarithmic scale with increasing dk, k = 1, 2. This means

that for crash design problems with a higher number of degrees of freedom, it is not a priori

clear if the direct method from Section 4.2 is faster than the two-step method from Section 4.3.
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Figure 57 Independent CSS: Volume of Ω1 × Ω2 (a) and average edge length (b) of optimal independent box-shaped (square
marks) and arbitrarily-shaped (triangle marks) CSS as a function of the components’ degrees of freedom for test-bed problem
1.
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Figure 58 Dependent CSS: Volume of Ω1 × Ω2 (a) and average edge length (b) of optimal box-shaped (square marks) and
arbitrarily-shaped (triangle marks) dependent CSS as a function of the components’ degrees of freedom for test-bed problem
1.
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Figure 59 Independent CSS: CPU time for Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20 GHz to compute optimal box-shaped
(square marks) and arbitrarily-shaped (triangle marks) independent CSS as a function of the components’ degrees of freedom
for test-bed problem 1 for which the exact method from Section 4.3 is used to compute arbitrarily-shaped CSS.
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Figure 60 Dependent CSS: CPU time for Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20 GHz to compute optimal box-shaped
(square marks) and arbitrarily-shaped (triangle marks) dependent CSS as a function of the components’ degrees of freedom
for test-bed problem 1 for which the direct method from Section 4.2 is used to compute box-shaped CSS.

5.3.6. Test Bed 2: Comparison of box-shaped and arbitrarily-shaped CSS
For test-bed problem 2, the system performance functions are also linear and hence, optimal

CSS can be computed like above. In Figure 61, optimal box- and arbitrarily-shaped indepen-

dent CSS are visualized, for which the exact method was used to compute arbitrarily-shaped

CSS. Note that for test-bed problem 2, the number of optimization variables to compute

arbitrarily-shaped CSS can be reduced, similar to above. The corresponding key metrics rkb,θ,

k = 1, . . . , 7, introduced in Equation (5.28), are stated in Table 8. In Figure 62, optimal box-

and arbitrarily-shaped dependent CSS are visualized, for which the direct method was used to

compute box-shaped CSS. The corresponding metrics rkb,θ, k = 1, . . . , 7 are stated in Table 9.

Table 8 Independent CSS: Ratio of permissible characteristics within the region of possibly permissible characteristics to all
characteristics within the region of possibly permissible characteristics for arbitrarily -shaped independent CSS of test-bed
problem 2.

quantity r1
CSS,θ=0.5 r2

CSS,θ=0.5 r3
CSS,θ=0.5 r4

CSS,θ=0.5 r5
CSS,θ=0.5 r6

CSS,θ=0.5 r7
CSS,θ=0.5

value 0.26 0.81 1.00 1.00 0.91 0.79 0.67

quantity r1
CSS,θ=1 r2

CSS,θ=1 r3
CSS,θ=1 r4

CSS,θ=1 r5
CSS,θ=1 r6

CSS,θ=1 r7
CSS,θ=1

value 0.05 0.65 1.00 0.99 0.82 0.61 0.41

Table 9 Dependent CSS: Ratio of permissible characteristics within the region of possibly permissible characteristics to all
characteristics within the region of possibly permissible characteristics for arbitrarily -shaped dependent CSS of test-bed
problem 2.

quantity r1
CSS,θ=0.5 r2

CSS,θ=0.5 r3
CSS,θ=0.5 r4

CSS,θ=0.5 r5
CSS,θ=0.5 r6

CSS,θ=0.5 r7
CSS,θ=0.5

value 1.00 1.00 1.00 1.00 1.00 1.00 0.87

quantity r1
CSS,θ=1 r2

CSS,θ=1 r3
CSS,θ=1 r4

CSS,θ=1 r5
CSS,θ=1 r6

CSS,θ=1 r7
CSS,θ=1

value 1.00 1.00 1.00 1.00 1.00 1.00 0.74

In general, the results for test-bed problem 2 are similar to those of test-bed problem 1. For
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Figure 61 Independent CSS: Optimal (a) box-shaped and (b) arbitrarily-shaped independent CSS visualized as regions of
possibly permissible force-deformation characteristics with θ = 0, 0.5, 1 for test-bed problem 2. Note the dot pattern for
θ = 0, 0.5 is not visible as the dots are almost white.

both independent and dependent CSS, the volume of Ω1× · · · ×Ω7 for arbitrarily-shaped CSS

is again greater than that for box-shaped CSS. This is also expressed in the average edge

length. The detailed values are stated in Tables 10 and 11. Nevertheless, it must be tested

whether a design within the regions of possibly permissible force-deformation characteristics

is permissible, i.e., whether it is in Ωk, k = 1, . . . , 7. Here, the different design regions defined

by [F l,k
b,θ, F

u,k
b,θ ], which are visualized for θ = 0, 0.5, 1 in Figures 61 and 62 support this testing

where the inner regions with θ = 1 comprise only permissible designs, k = 1, . . . , 7. The
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Figure 62 Dependent CSS: Optimal (a) box-shaped and (b) arbitrarily-shaped dependent CSS visualized as regions of
possibly permissible force-deformation characteristics with θ = 0, 0.5, 1 for test-bed problem 2. Note the dot pattern for
θ = 0, 0.5 is not visible as the dots are almost white.

dot patterns, which are used in these figures to visualize [F l,k
b,θ, F

u,k
b,θ ], are almost white and

therefore not visible, i.e., rkb,θ ≈ 1, k = 1, . . . , 7. Hence, the chances are high to obtain also

permissible designs when designing in these regions. Recall that for box-shaped CSS, these

regions do not exist or rather, they coincide with the region of only permissible characteristics.

Therefore, testing is redundant for box-shaped CSS.

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 163



Similar to test-bed problem 1, the computation time of arbitrarily-shaped CSS is greater than

the computation time of box-shaped CSS for test-bed problem 2. In Table 10, the results

for independent CSS are stated. Here, the exact method for computing arbitrarily-shaped

CSS is complemented by the Monte Carlo approach for which 104, 105, 106, and 107 local

sample points per component are used to compute the volume of each CSS Ωk, k = 1, . . . , 7.

Furthermore, details on the initial values for optimizing arbitrarily-shaped CSS obtained from

box-shaped solution spaces, see Section 4.3, are added, too. Besides their computation times,

also the 31-dimensional volume of Ω1 × · · · × Ω7 and the average edge length is stated using

these approaches. In order to compare the different approaches, the exact method is used to

determine the volume of the computed CSS Ωk, k = 1, . . . , 7, in Table 10. In Table 11, the

same results for dependent CSS are stated in which the direct method to compute box-shaped

CSS is complemented by the two-step method.

Table 10 Independent CSS: Results for vol(Ω1 × · · · × Ω7), average edge length L̄, and CPU time tCPU using different
methods to compute box-shaped and arbitrarily-shaped independent CSS for test-bed problem 2 (Intel(R) Xeon(R) CPU
E5-1660 v4 @ 3.20 GHz).

quantity vol(Ω1 × · · · × Ω7)/kN31 L̄/kN tCPU/s

box-shaped 3.42 · 1056 66.63 1.25

arbitrarily-shaped: initial values 1.84 · 1057 70.35 1.25

arbitrarily-shaped: Monte Carlo 104 2.35 · 1057 70.90 3.61 · 103

arbitrarily-shaped: Monte Carlo 105 2.64 · 1057 71.17 3.34 · 104

arbitrarily-shaped: Monte Carlo 106 2.71 · 1057 71.23 3.43 · 105

arbitrarily-shaped: Monte Carlo 107 2.82 · 1057 71.33 3.55 · 106

arbitrarily-shaped: exact 3.21 · 1057 71.62 3.66 · 105

Table 11 Dependent CSS: Results for vol(Ω1 × · · · × Ω7), average edge length L̄, and CPU time tCPU using different
methods to compute box-shaped and arbitrarily-shaped dependent CSS for test-bed problem 2 (Intel(R) Xeon(R) CPU
E5-1660 v4 @ 3.20 GHz).

quantity vol(Ω1 × · · · × · · · × Ω7)/kN31 L̄/kN tCPU/s

box-shaped: direct 2.70 · 1065 129.02 2.36 · 10

box-shaped: two-step 2.68 · 1065 128.99 1.29 · 102

arbitrarily-shaped 3.64 · 1065 130.27 1.28 · 102

For arbitrarily-shaped independent CSS, Ω1 × · · · × Ω7 comprises the largest volume if the

exact method is used, see Table 10. When using the Monte Carlo method for optimizing CSS,

the volume is smaller, although the same optimization problem is solved. The fewer sample

points are used, the more likely is an early termination of the optimization solver, which comes

along with a smaller volume of Ω1 × · · · × Ω7. Here, changes in the optimization variables are

not necessarily reflected in the value of the objective function because no new sample points
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are included or excluded in Ωk, k = 1, . . . , 7. However, it also holds that the computation time

is smaller, the fewer sample points are used. The computation time of box-shaped CSS and of

the initial values for optimizing arbitrarily-shaped CSS is the same because the initial values

are directly obtained from the box-shaped CSS. Still, the volume of Ω1 × · · · ×Ω7 for the initial

values is around five times larger than the corresponding volume for box-shaped CSS. Thus, it

is overall a trade-off between the volume and the CPU time when choosing an approach to

compute arbitrarily-shaped CSS. If the volume of box-shaped CSS is already sufficient for the

specific application, box-shaped CSS are more preferable.

For box-shaped dependent CSS, the direct method outperforms the two-step method for

test-bed problem 2 as both the volume of Ω1 × · · · × Ω7 is slightly larger and the computation

time is less. Here, the difference in volume is due to numerical errors, as both methods are

exact. In comparison to arbitrarily-shaped CSS, the difference in volume is small as the CSS

match the component design spaces for the first, second, fourth, fifth, and sixth component

and are very similar for the other components.

Note that in this section, optimal flexibility for component design was considered under ab-

sence of uncertainty. In the subsequent section, uncertainty is included in the considerations.

5.4. CSS under Epistemic Uncertainty

This section computes CSS using the DSM of test-bed problems 1 and 2 under epistemic

uncertainty. Both uncertainties in controllable variables and uncontrollable parameters are

investigated, for which uncertainty magnitudes are assumed. For a simpler visualization, the

considerations are limited to box-shaped CSS. Nevertheless, they could be done similarly for

arbitrarily-shaped CSS.

5.4.1. Test Bed 1: Uncertainties in Controllable Variables
First, interval-type uncertainty in controllable variables, i.e., in the force values of the force-

deformation characteristics, is taken into account for test-bed problem 1. Here, components

with one degree of freedom are considered for which box- and arbitrarily-shaped CSS coincide.

Like before, the values of Table 2 are used for the design space parameters and the values

of Table 3 for the uncontrollable parameters. For them, no uncertainty is assumed in this

subsection. It is distinguished between three cases of uncertainty in controllable variables,

which are stated in the following:

(a)No uncertainties: The uncertainty magnitudes are zero, which means there is also no

uncertainty in controllable variables. For this case, the CSS match the ones visualized in

Figures 52 and 53 and are only used for the purpose of comparison.

(b)Uncertainties with known magnitudes: The uncertainty magnitudes are assumed to be

δ̄1 = δ̄ = 25 kN for the forces F1 and F2, i.e., the uncertainty magnitudes are known.
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(c) Uncertainties with unknown magnitudes: The uncertainty magnitudes are assumed to

be unknown. Thus, maximum magnitudes are computed using the weighting factors

ω1 = ω2 = 1, for which the same uncertainty magnitudes will be obtained for the forces F1

and F2.

As the constraints are linear in the controllable variables, results from Section 4.2 can be used

to compute optimal CSS Ω1, Ω2 in case (a), optimal worst-case CSS Ω̌1
wc, Ω̌2

wc in case (b)

for which optimal CSS Ω1, Ω2 and optimal best-case CSS Ω̌1
bc, Ω̌2

bc are deduced from Ω̌1
wc,

Ω̌2
wc, and maximum uncertainty magnitudes δ̄1, δ̄2 and optimal worst-case CSS Ω̌1

wc, Ω̌2
wc in

case (c) for which optimal CSS Ω1, Ω2 are deduced. Note that in (c), no best-case CSS are

computed because its interpretation is critical, see Section 3.4. The corresponding maximum

uncertainty magnitudes are δ̄1 = δ̄2 = 63.09 kN and Ω̌1
wc × Ω̌2

wc is a singleton. All in all, the

optimal independent CSS are shown in Figure 63, and the optimal dependent CSS in Figure

64, both as geometric shapes in force space and regions of permissible force-deformation

characteristics.

The worst-case CSS of target designs Ω̌1
wc and Ω̌2

wc show the target designs which are permis-

sible for all uncertainty scenarios, and the best-case CSS of target designs Ω̌1
bc and Ω̌2

bc show

the designs which are permissible for at least one uncertainty scenario. In both Figures 63 and

64, it is visualized where the component designers can select their target design variables F̌1

and F̌2 in the worst- and the best-case by dashed lines. If there are uncertainties in controllable

variables which are neglected in the computation of optimal CSS, this can lead to the case

that a permissible design cannot be guaranteed. Hence, the intervals of the computed optimal

CSS Ω1 and Ω2 for test-bed problem 1 under interval-type uncertainty in controllable variables

have different sizes.

For independent CSS, this stems from the objective of optimizing flexibility for component

target design under uncertainties in controllable variables, compare Section 3.4. The smaller

δ̄2, the smaller intervals are computed for independent Ω2, see Figure 63. This result transfers

to the best-case CSS of target designs. Furthermore, the intervals of Ω̌1
wc and Ω̌2

wc become

smaller with increasing δ̄1 and δ̄2 which limits the flexibility of designers in selecting target

design variables F̌1 and F̌2 in the worst-case. However, the intervals of Ω̌1
bc and Ω̌2

bc become

larger which enlarges the flexibility in the best-case. In case (a), the worst- and best-case CSS

coincide with Ω1 and Ω2. In case (c), the best-case is not considered and there is no more

flexibility in selecting F̌1 and F̌2 in the worst-case if maximum uncertainty should be tolerable.

For dependent CSS, the decrease of the worst-case complete system solution space causes

also a decrease of the intervals of Ω̌1
wc and Ω̌2

wc, which implies a decrease of the intervals

of Ω1, Ω2, Ω̌1
bc, and Ω̌2

bc. This guarantees that a target design variable F̌i, i1 ∈ {1, 2}, is

selected for which a target design variable F̌i ∈ Ωi2 , i2 ∈ {1, 2}\{i1}, exists such that the

realized design is always permissible. If worst-case CSS were deduced from best-case CSS,

both would be larger but also the interpretation would change. In case (c), independent and

dependent CSS coincide.

The results for fuzzy-type uncertainty are similar, compare Section 3.5, and are not considered
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Figure 63 Independent CSS: Optimal independent CSS visualized as geometric shapes in force space (left) and permissible
force-deformation characteristics (right) for test-bed problem 1 for which the components have one degree of freedom and (a)
no uncertainties, (b) uncertainties with known magnitudes, and (c) uncertainties with unknown magnitudes in controllable
variables are considered.
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Figure 64 Dependent CSS: Optimal dependent CSS visualized as geometric shapes in force space (left) and permissible
force-deformation characteristics (right) for test-bed problem 1 for which the components have one degree of freedom and (a)
no uncertainties, (b) uncertainties with known magnitudes, and (c) uncertainties with unknown magnitudes in controllable
variables are considered.
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for test-bed problem 1 here. Nevertheless, they are investigated for test-bed problem 2 below.

5.4.2. Test Bed 1: Uncertainties in Uncontrollable Parameters
Next, interval-type uncertainty in uncontrollable parameters is taken into account for test-bed

problem 1, for which again components with one degree of freedom are considered. These

investigations were already published in [26] by the author of this thesis. In order to do so, the

values of Table 3 are used as nominal values for the uncontrollable parameters. For the design

space parameters given in Table 2, no uncertainty is assumed. In the following, uncertainties in

uncontrollable parameters are considered both with the presence and absence of uncertainties

in controllable variables. It is distinguished between two cases:

(a)Uncertainties in uncontrollable parameters only : There are only uncertainties in uncon-

trollable parameters. For p = (m, v0, ac), it is assumed that γl = (50 kg, 0.1 mm
ms , 0.01 mm

ms2 )

holds. Furthermore, the uncertainty magnitudes for the controllable variables, and the other

uncontrollable parameters are assumed to be zero.

(b)Uncertainties in both uncontrollable parameters and controllable variables: In addition to

the uncertainties in the uncontrollable parameters given in case (a), uncertainties in the

controllable variables are assumed with δ̄1 = δ̄2 = 25 kN.

As the constraints are component-wise monotonic in the uncontrollable parameters and linear

in the controllable variables, results from Section 4.2 can be used to compute optimal worst-

case CSS Ω1
wc, Ω2

wc in case (a) and optimal worst-case CSS of target designs Ω̌1
wc, Ω̌2

wc in

case (b). Then, optimal CSS Ω1, Ω2 and optimal best-case CSS Ω1
bc, Ω2

bc can be deduced

in (a), and optimal worst-case CSS Ω1
wc, Ω2

wc, optimal best-case CSS Ω1
bc, Ω2

bc, and optimal

best-case CSS of target designs Ω̌1
bc, Ω̌2

bc for independent CSS in (b). For dependent CSS in

case (b), optimal best-case CSS of target designs are computed independently as condition

(3.37), i.e., Ωk
wc ⊆ Ωk

bc, k = 1, . . . , 7, is fulfilled here. All in all, the optimal independent CSS

are shown in Figure 65, and the optimal dependent CSS in Figure 66, both as geometric

shapes in force space and regions of permissible force-deformation characteristics.

The worst-case CSS Ω1
wc and Ω2

wc show the permissible designs which are permissible for

all uncertainty scenarios, and the best-case CSS Ω1
bc and Ω2

bc show the designs which are

permissible for at least one uncertainty scenario. If there are uncertainties in uncontrollable

parameters and only the nominal values are used to model the uncertainties, this information

is missing, compare Figures 63 and 64.

If uncertainties in controllable variables are present as well, the intervals of Ω̌1
wc, Ω̌2

wc, Ω̌1
bc, and

Ω̌2
bc provide additional information where to select the target design variables and influence

the size of the intervals of the worst- and best-case CSS. Thus, for independent CSS, the

interval of Ω1
wc is smaller in case (a) than in case (b) and the interval of Ω2

wc is larger in (a)

than in (b). This transfers to the best-case CSS Ω1
bc and Ω2

bc. For dependent CSS, the optimal
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Figure 65 Independent CSS: Optimal independent CSS visualized as geometric shapes in force space (left) and permissible
force-deformation characteristics (right) for test-bed problem 1 for which the components have one degree of freedom and
uncertainties are considered in (a) uncontrollable parameters only and (b) both uncontrollable parameters and controllable
variables.

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 170



F1/kN

F2/kN

125 250 375 500

125

250

375

500

0

Ω1
bc × Ω2

bc

Ω1
wc × Ω2

wc

1st comp. 2nd comp.

s/mm

F/kN

s0 s1 s2

125

250

375

500

(a)

F1/kN

F2/kN

125 250 375 500

125

250

375

500

0

Ω1
bc × Ω2

bc

Ω̌1
bc × Ω̌2

bc

Ω1
wc × Ω2

wc

Ω̌1
wc × Ω̌2

wc

1st comp. 2nd comp.

s/mm

F/kN

s0 s1 s2

125

250

375

500

(b)

Figure 66 Dependent CSS: Optimal dependent CSS visualized as geometric shapes in force space (left) and permissible
force-deformation characteristics (right) for test-bed problem 1 for which the components have one degree of freedom and
uncertainties are considered in (a) uncontrollable parameters only and (b) both uncontrollable parameters and controllable
variables.
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best-case CSS can be computed independently of the optimal worst-case CSS and so can

best-case CSS of target designs Ω̌1
bc and Ω̌2

bc. Note that this was not the case above. Hence,

the interpretation of the best-case CSS of target designs is different here. It guarantees that a

target design variable F̌i1 , i1 ∈ {1, 2}, is selected for which a target design variable F̌i2 ∈ Ωi2 ,

i2 ∈ {1, 2}\{i1}, exists such that there is at least one uncertainty scenario for which the

realized design is permissible.

The effect of component-wise monotonic constraints in the uncontrollable parameters can be

seen in the upper left part of the best-case complete system solution space in Figures 63 and

64. For example, there is an additional constraint introduced that guarantees the existence of

a mass m ∈ [1450 kg, 1550 kg] for which both the constraints (5.1) and (5.3) can be fulfilled.

It is neglected in the computation of Ω1
bc, Ω2

bc, Ω̌1
bc, and Ω̌2

bc using the results of Section 4.2.

For independent CSS, this is reasonable here as the designs within Ω1
bc × Ω2

bc do not violate

these constraints. This is different for dependent CSS, for which the lower bound of Ω1
bc would

be lower than visualized in Figures 63 and 64 if the results of Section 4.2 are used.

Note that uncertainties in the uncontrollable section length are not considered here as the

integrated plots in Figures 63 and 64 for permissible force-deformation characteristics could not

be used in this case. However, there are no differences in the procedure if uncertainties in the

section lengths are also incorporated. Similar to above, the results for fuzzy-type uncertainty in

uncontrollable variables are not considered for test-bed problem 1 but investigated for test-bed

problem 2.

5.4.3. Test Bed 2: Uncertainties in Controllable Variables
In the following, interval- and fuzzy-type uncertainties in controllable variables and uncontrol-

lable parameters are taken into account for test-bed problem 2. The uncertainties in controllable

variables and uncontrollable parameters are investigated separately, however, their assembly

could be done like above. In addition to limiting the considerations to box-shaped CSS, they

are also limited to independent CSS in the following, as the optimal dependent CSS for

test-bed problem 2 completely or almost completely cover their corresponding component

design spaces, see Figure 62. Nevertheless, the corresponding investigations can be done

similarly for dependent CSS.

First, uncertainties in controllable variables are taken into account, and uncertainties in

uncontrollable parameters are neglected. Here, two cases are considered for which the

magnitudes are assumed to be known:

(a) Interval-type uncertainties: The magnitudes of the interval-type uncertainties of the control-

lable variable are given by δ̄i = 5 kN for the first load path, i.e., for the first until the third

component with i = 1, . . . , 15, and δ̄i = 10 kN for the second load path, i.e., for the fourth

until the seventh component with i = 16, . . . , 31.

(b)Fuzzy-type uncertainties: The magnitudes of the fuzzy-type uncertainties of the controllable
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variables are given by δ̄α=0,i = 5 kN and δ̄α=1,i = 3 kN for the first load path, i = 1, . . . , 15,

and δ̄α=0,i = 10 kN and δ̄α=1,i = 5 kN for the second load path, i = 16, . . . , 31.

Like for test-bed problem 1, the results from Section 4.2 can be used to compute optimal worst-

case CSS of target designs Ω̌k
wc in case (a), for which CSS Ωk and best-case CSS of target

designs Ω̌k
bc are deduced from Ω̌k

wc, k = 1, . . . , 7. Similarly, optimal necessity-α = 1 CSS of

target designs Ω̌k
nec,α=1 can be computed in case (b), for which necessity-α = 1 CSS of target

designs Ω̌k
nec,α=0, CSS Ωk, possibility-1 CSS of target designs Ω̌k

pos,α=1, and possibility-0 CSS

of target designs Ω̌k
pos,α=0 are deduced from Ω̌k

nec,α=1, k = 1, . . . , 7. The corresponding CSS

are shown in Figure 67 as regions of permissible force-deformation characteristics.

Furthermore, the case is considered in which the uncertainty magnitudes are unknown and

shall be maximized for the worst-case and the necessity-α case. Here, the weights ωi = 1

are used for i = 1, . . . , 31. Using the results from Section 4.2, the maximum uncertainty

magnitudes can be computed as δ̄i = δ̄α,i = 14.05 kN, α ∈ [0, 1], i.e., the worst-case complete

system solution space of target designs and all necessity-α complete system solution spaces

of target designs coincide. Note that these complete system solution spaces are not singletons

here. Thus, a perturbation parameter in the objective function, see (3.34), must be considered

when computing the corresponding optimal CSS of target designs with the results from Section

4.2. From them, CSS Ωk, k = 1, . . . , 7 are deduced. In Figure 67, the corresponding CSS are

shown as regions of permissible force-deformation characteristics.

In Figure 67, it can be seen that the CSS Ωk, k = 1, . . . , 7, coincide for interval- and fuzzy-

type uncertainty as well as that the worst-case CSS of target designs match the necessity-1

CSS of target designs, and that the best-case CSS of target designs match the closure of

the possibility-0 CSS of target designs. This is because the closures of the supports of the

corresponding uncertainty sets are the same, i.e., δi = δα=0,i for i = 1, . . . , 31, and interval-

type uncertainty can be interpreted as fuzzy-type uncertainty with δ̄α,i = δ̄i for all α ∈ [0, 1].

Moreover, the optimization of the corresponding box-shaped independent CSS is done for the

worst-case and the necessity-1 CSS of target designs and the remaining CSS are deduced for

which no further optimization is possible. For computed maximum magnitudes in the case of

unknown uncertainty magnitudes, the worst-case and the necessity-α CSS of target designs

coincide and as well as the CSS Ωk, k = 1, . . . , 7, which are deduced. This holds as the

computed uncertainty magnitudes are all the same, α ∈ [0, 1].

Overall, the interpretation of the results can be done similarly to test-bed problem 1. The CSS

of target designs under interval-type uncertainties provide additional information for component

design in the case of uncertainty in controllable variables, i.e., where to select target design

variables. This can be even extended to fuzzy-type uncertainty if more information on the

uncertainty is available. Depending on the uncertainty magnitudes, the sizes of the intervals

of Ωk, k = 1, . . . , 7, differ. However, there are no fundamental differences in their location.

Especially, the narrow intervals for the first design variables of the second and third component,
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Figure 67 Independent CSS: Optimal box-shaped (a) worst- and best-case and (b) necessity-1, and necessity-0, possibility-1,
and possibility-0 independent CSS of target designs visualized as regions of permissible force-deformation characteristics
(dashed lines).
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Figure 68 Independent CSS: Optimal box-shaped worst-case independent CSS of target designs visualized as regions of
permissible force-deformation characteristics (dashed lines), which corresponds to the optimal box-shaped necessity-α CSS
of target designs, α ∈ [0, 1].

i.e., of F10 and F14 in the case of no uncertainty, compare Figure 61, are enlarged for known

uncertainty magnitudes and even further enlarged for maximized uncertainty magnitudes.

Thus, in the case of large uncertainty magnitudes, non-permissible designs can be avoided

more efficiently. However, the volume Ω1 × · · · × Ω7, decreases in these cases and it should

be decided, based on the available information about the uncertainties, which case is taken

into account. Note that the bounds of best-case CSS and possibility-α CSS with α ∈ [0, 1]

violate the design space constraints here, see in Figure 67. This could be avoided by bounding

the target design variables additionally as discussed in Section 2.2.

Compared to the other examples of this thesis, there is flexibility for component target design

in the case of maximized uncertainty magnitudes. This is reflected in Ωk, k = 1, . . . , 7, by

using a perturbation parameter in the objective function for computing CSS as discussed in

Section 3.4. Therefore, the corresponding method of [43], in which no perturbation parameter

is considered, is extended.

5.4.4. Test Bed 2: Uncertainties in Uncontrollable Parameters
Next, uncertainties in uncontrollable parameters are considered for test-bed problem 2, and

uncertainties in controllable variables are neglected. Here, the provided values for the uncon-

trollable parameters from Tables 5 and 6 are used as nominal values. Again, it is distinguished

between two cases in which interval-type is considered in one of them and fuzzy-type uncer-

tainty in the other. Furthermore, it is γl = γα=0,l, l = 1, . . . , q, i.e., the closures of the supports

of the corresponding uncertainty sets are the same:

(a) Interval-type uncertainties: For for the magnitudes of the interval-type uncertainties in the
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uncontrollable parameters, it is assumed that γ = (0.05p1, . . . , 0.05p10, 0.1
mm
ms , 0.01 mm

ms2 ,

0.05p13, . . . ,0.05p28, 0.1(p29 − 1), . . . , 0.1(p36 − 1)) holds for p = (m1, . . . ,m10, v0, ac,

F add
1 , . . . , F add

16 , E1
cf , . . . , E

7
cf , E

add
cf ). In addition, their values are stated in Table 12 and the

magnitudes of the remaining uncontrollable parameters are assumed to be zero.

(b)Fuzzy-type uncertainties: The magnitudes of the fuzzy-type uncertainties in the uncontrol-

lable parameters in γα=0 are assumed to match those in γ of case (a). Furthermore, it is as-

sumed that γα=1 = (0.01p1, . . . , 0.01p10, 0.0
mm
ms , 0.00 mm

ms2 , 0.01p13, . . . , 0.01p28, 0.00 . . . ,

0.00) holds. In addition, their values are stated in Table 12 again.

As above, the results from Section 4.2 can be used to compute optimal worst-case CSS Ωk
wc

and optimal best-case CSS, Ωk
bc in case (a), in which condition (3.37) must be fulfilled. Simi-

larly, optimal necessity-α CSS Ωk
nec,α and optimal possibility-α CSS Ωk

pos,α, can be computed

in case (b) in which conditions (3.45)-(3.47) must be fulfilled for α ∈ [0, 1]. The corresponding

CSS are shown in Figure 69 as regions of permissible force-deformation characteristics.

Due to similar reasons as discussed for uncontrollable variables, the worst-case CSS coincide

with the necessity-1 CSS and the best-case CSS coincide with the possibility-1 CSS here,

see Figure 69. Furthermore, the interpretation of the results can be done similarly to test-bed

problem 1. Compared to standard CSS, CSS under interval-type uncertainty in uncontrollable

parameters provide additional information for component design, i.e., worst- and best-case

CSS. This is even further extended considering fuzzy-type uncertainty if more information

on the uncertainty is available. For that, necessity-α and possibility-α CSS are obtained.

Note that for all component designs within best-case and possibility-α CSS, it must be tested

whether at least one p ∈ [p̌− γ, p̌+ γ] exists such that all constraints are fulfilled when using

the approach of Section 4.2. As this is the case, this strategy to compute the corresponding

CSS is appropriate here.

In general, both uncertainties in controllable variables and controllable variables can be taken

into account at the same time, which is demonstrated, for example, in [26] and for the test-bed

problem 1 above. This yields an overall approach for crash design under epistemic uncertainty.

However, an example is skipped here as the results merge the previous results and the

visualization becomes more complicated.

In the final section, a MATLAB app for crash design which is capable of creating DSM account-

ing for epistemic uncertainty and of computing the CSS introduced in this thesis is presented.

5.5. MATLAB App: CSS Solver for Crash Design

This section presents a MATLAB app that computes CSS for crash design using DSM. It was

developed for MATLAB version R2019a. In this app, all methods of this thesis are included, i.e.,

the user can choose between computing box- and arbitrarily-shaped and between independent

and dependent CSS. In addition, enhanced DSM can be built using the integrated DSM Creator
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Figure 69 Independent CSS: Optimal box-shaped (a) worst- and best-case and (b) necessity-1, and necessity-0, possibility-1,
possibility-0, independent CSS visualized as regions of permissible force-deformation characteristics.
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Table 12 Values of the magnitudes γl for interval-type and γα=0,l and γα=1,l for fuzzy-type uncertainty of the HONDA
ACCORD FE model.

quantity m1 m2 m3 m4 m5 m6 m7

value of
γl, γα=0,l

5 kg 1 kg 14 kg 1 kg 0 kg 1 kg 1 kg

value of
γα=1,l

1 kg 0 kg 3 kg 0 kg 0 kg 0 kg 0 kg

quantity m8 m9 m10 v0 ac F add
1 F add

2

value of
γl, γα=0,l

1 kg 1 kg 57 kg 0.1 mm
ms 0.01 mm

ms2 0 kN 1 kN

value of
γα=1,l

0 kg 0 kg 11 kg 0.0 mm
ms 0.00 mm

ms2 0 kN 0 kN

quantity F add
3 F add

4 F add
5 F add

6 F add
7 F add

8 F add
9

value of
γl, γα=0,l

4 kN 6 kN 9 kN 9 kN 8 kN 7 kN 6 kN

value of
γα=1,l

0 kN 1 kN 2 kN 2 kN 2 kN 1 kN 1 kN

quantity F add
10 F add

11 F add
12 F add

13 F add
14 F add

15 F add
16

value of
γl, γα=0,l

7 kN 4 kN 6 kN 9 kN 12 kN 12 kN 14 kN

value of
γα=1,l

1 kN 0 kN 1 kN 2 kN 2 kN 2 kN 3 kN

quantity E1
cf E2

cf E3
cf E4

cf E5
cf E6

cf E7
cf

value of
γl, γα=0,l

0.01 0.03 0.02 0.02 0.00 0.02 0.00

value of
γα=1,l

0.00 0.00 0.00 0.00 0.00 0.00 0.00

quantity Eadd
cf

value of
γl, γα=0,l

0.03

value of
γα=1,l

0.00

which allows to consider epistemic uncertainty as interval- or fuzzy-type uncertainty. First, the

general features of the CSS Solver are explained before its advanced settings are discussed
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and details of the DSM Creator are provided.

5.5.1. The CSS Solver
The CSS Solver is a MATLAB app that was developed within the scope of this thesis which

computes CSS for crash design. Together with its integrated DSM Creator it consists of over

50 MATLAB files and more than 11,000 lines of source code. This is more than two times the

number of text lines of this thesis.

When starting the CSS Solver, the graphical user interface of the MATLAB app opens. Here,

the user can either select, edit, or create a new DSM. The ’New’ button opens the DSM Creator

in which a new DSM can be built and saved. It is presented below. The ’Select’ button opens

a list of all previously created DSM of which the user can select a DSM for that he wants to

compute CSS. The ’Edit’ button enables the user to edit existing DSM. Then, the DSM Creator

is opened with the previously saved model specifications.

The details on the selected DSM are provided on the right-hand side of the graphical user

interface. This includes the visualization of the DSM on the top, the selected constraints, the

type of parametrization of the force-deformation characteristic of the components, the type of

uncertainty of the controllable variables including their magnitudes, and the type of uncertainty

of the uncontrollable parameters including their magnitudes and nominal values. Furthermore,

the uncertainties can be visualized according to Section 2.2 by clicking on the corresponding

’Visualize’ buttons. In Figure 70, the graphical user interface of the CSS Solver with selected

test-bed problems 1 and 2 is shown.

After selecting a DSM, the user can specify which type of CSS he wants to compute. He can

choose between box- and arbitrarily-shaped and between independent and dependent CSS,

yielding four options in total. As there are multiple methods for computing CSS, compare

Section 4.3, the user’s preferred method can be selected after clicking the ’Advanced’ button.

Here, also the specifications for the visualization of the CSS can be selected. The advanced

settings are discussed in more detail below. If no specifications are selected, the default

settings are chosen.

Depending on the type of uncertainty in controllable variables and uncontrollable parameters,

the overall uncertainty approach is established. It states ’No uncertainty’ if there is neither

uncertainty in controllable variables nor uncontrollable parameters, ’Interval-type’ if there is

interval uncertainty in either controllable variables or uncontrollable parameters and interval-

type or no uncertainty in the others, and ’Fuzzy-type’ if there is fuzzy-type uncertainty in either

controllable variables or uncontrollable parameters. This is because the absence of uncertainty

can be treated in the framework of interval-type uncertainty and interval-type uncertainty in
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(a)

(b)

Figure 70 Graphical user interface of the CSS Solver with the selected DSM of (a) test-bed problem 1 with components with
one degree of freedom and (b) test-bed problem 2 under fuzzy-type uncertainties in uncontrollable parameters.
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the framework of fuzzy-type uncertainty, see Section 2.2.

For interval-uncertainty, the user can select if both worst- and best-case CSS shall be com-

puted. Moreover, a nominal-case can be selected in which all uncertainty magnitudes are set

to zero. For fuzzy-type uncertainty, the user can choose if both necessity-α and possibility-α

CSS shall be computed and can specify how many α-levels and which values of α shall be

taken into account, α ∈ [0, 1]. Here, a nominal-case can be selected, too.

When these user preferences are set, the corresponding CSS are computed by clicking on

the ’Run’ button. The results for test-bed problems 1 and 2 using the settings of Figure 70 are

visualized in Figure 71. In addition, the numerical values of the results are stored in an extra file.

5.5.2. Advanced Settings for the CSS Solver
As discussed above, the specifications for the methods for computing and visualizing CSS can

be selected in the advanced settings. The ’Advanced’ button opens a new window which is

customized regarding the type of CSS and the type of uncertainty. In Figures 72 and 73, the

advanced settings are visualized.

For arbitrarily-shaped independent CSS, the algorithm to compute CSS can be selected. The

default is "no optimization" for which arbitrarily-shaped CSS are computed directly from box-

shaped CSS, like described in Section 4.3. In Section 5.3, these arbitrarily-shaped CSS are

used as the initial values for optimization. For optimizing CSS, this setting for the initial values

is also possible besides obtaining them from solving problem (4.136) and using Equation

(4.142), compare Section 4.3. For computing the volume of the CSS, either the exact method

can be used, or it can be approximated using Monte Carlo sampling, see also Section 4.3 for

details. If the sampling method is selected, the number of sampling points per component can

be specified as well as if the sampling shall be done in the whole design space or locally in the

neighborhood of the current iteration. For the local option, the size of this neighborhood and

the number of optimization runs can be specified additionally. Note that the sampling is only

created once for each optimization run, as discussed in Section 4.3.

For box-shaped dependent CSS, the user can choose between the direct method and the

two-step method, see Section 4.3. Here, the default is the direct method. For box-shaped

independent and arbitrarily-shaped dependent CSS, no optimization settings can be selected.

For all types of CSS, the CSS of target designs can be visualized as dashed lines, as done

throughout this thesis. In the case of no uncertainty in controllable variables, the CSS of

target designs coincide with the CSS. Regarding the coloring of CSS, the user can either

select the coloring scheme of this thesis, for which the outside of CSS is colored, or select

to color their bounds, like done, for example, in [25, 26, 27]. Using the CSS Solver, the CSS

are always visualized as regions of permissible or possibly permissible force-deformation

characteristics. Their plots can be grouped in accordance with the DSM, like done in this
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(a)

(b)

Figure 71 Visualized CSS using the CSS Solver for (a) test-bed problem 1 with components with one degree of freedom and
(b) test-bed problem 2 under fuzzy-type uncertainty in uncontrollable parameters.
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(a) (b)

Figure 72 Independent CSS: Advanced settings for computing, visualizing, and testing (a) box-shaped and (b)
arbitrarily-shaped independent CSS

(a) (b)

Figure 73 Dependent CSS: Advanced settings for computing, visualizing, and testing (a) box-shaped and (b)
arbitrarily-shaped dependent CSS
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thesis, or separated into component plots, see [27]. Moreover, the user can select to include

dotted lines into the CSS plots to mark new segments, i.e., design variables. These describe

the parametrization of the force-deformation characteristics and can be labeled numerically by

selecting the corresponding option.

Besides the visualization of CSS, the user can also visualize the DSM model and the uncer-

tainties in controllable variables and uncontrollable parameters in separate figures, show the

CSS as geometrical shapes for one- or two-dimensional CSS, and save all figures as TikZ

pictures.

In the case of arbitrarily-shaped CSS, the number of boxes, i.e., regions of possibly permissible

characteristics, describing the CSS can be selected. Also, the key metrics, given by Equations

(5.28) and (5.29) can be displayed.

If uncertainties are present, worst- and best-case or necessity-α and possibility-α CSS can

be visualized in one plot, α ∈ [0, 1]. Here, the conditions (3.37) in the case of interval-type

uncertainty and conditions (3.45) - (3.47) in the case of fuzzy-type uncertainty are applied.

As best-case CSS and possibility-α CSS, are computed using the simplifications of Section

4.2, it can be tested whether they contain non-permissible designs, α ∈ [0, 1]. The windows

showing the advanced settings for the different types of CSS under fuzzy-type uncertainty are

visualized in Figures 72 and 73.

5.5.3. The DSM Creator
A DSM can be created by the DSM Creator, which uses again a graphical user interface. The

details of the models can be specified in the ’Geometry’, ’Model’, Contr.var.’, and ’Uncontr.par.’

tabs. It can be saved by clicking the ’Save as’ button, for which a name for the model can be

provided. If the ’Save as Temp’ button is clicked, the model is saved as a temporary model.

Furthermore, the details of the model are presented on the right-hand side of the graphical

interface similarly to the right-hand side of the CSS Solver. The ’Update’ button updates the

right-hand side if any changes are applied to the model. In case there is an error in defining

the DSM, there is an error message stating the specific error when clicking on any of the ’Save

as Temp’, ’Save’, or ’Update’ button.

After starting the DSM Creator, the ’Geometry’ tab is opened. Here, the number of load paths,

sections, components, and discretized masses must be provided. Furthermore, an additional

load path can be included for building an enhanced DSM. For the components, the user must

enter their associated load paths and the sections of their front and rear ends. Similarly, the

associated load path and the location must be provided for the discretized masses, too. The

layout of the ’Geometry’ tab of the DSM Creator is shown in Figure 74.

Next, the constraints that shall be considered can be selected in the ’Model’ tab. Here, the

constraints on the minimum energy absorption, the maximum acceleration, and the progres-
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Figure 74 The ’Geometry’ tab of the DSM Creator with specifications for test-bed problem 2 under fuzzy-type uncertainties in
uncontrollable parameters.

sive order of deformation can be activated. Furthermore, the user can decide to include

energy-correction factors to build an enhanced DSM. The layout of the ’Model’ tab of the DSM

Creator is shown in Figure 75.

The ’Contr.var.’ tab considers the controllable variables. Here, the user can select the type of

force-deformation characteristics for computing CSS, i.e., piece-wise constant or linear force-

deformation characteristics. Whereas only piece-wise constant characteristics are considered

in this thesis, piece-wise linear characteristics are considered, e.g., in [27]. For any section, it

can be specified how many design variables shall be taken into account, which defines the

number of equidistant segments per section.

Furthermore, the type of uncertainty can be specified by the user. Besides the option of

absence of uncertainty, there is the option of interval- and fuzzy-type uncertainty with known

magnitudes for which δk or δkα=0 and δkα=1, k = 1, . . . , n, must be provided. Furthermore,

there is also the option of unknown magnitudes for which weighting factors ωk, k = 1, . . . , n,

must be provided. Note that δk, δkα=0, δkα=1, and ωk, k = 1, . . . , n, assume the same values

for all design variables of one component. The layout of the ’Contr.var.’ tab of the DSM Creator

is shown in Figure 76.

The ’Uncontr.par.’ tab considers the uncontrollable parameters. The user must specify the

type of uncertainty first, i.e., no uncertainty, interval-type uncertainty, or fuzzy-type uncertainty.

Then, he must enter the nominal values for all uncontrollable parameters along with the

magnitudes γl for interval-type uncertainty and γα=0,l and γα=1,l for fuzzy-type uncertainty,
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Figure 75 The ’Model’ tab of the DSM Creator with specifications for test-bed problem 2 under fuzzy-type uncertainties in
uncontrollable parameters.

Figure 76 The ’Contr.var.’ tab of the DSM Creator with specifications for test-bed problem 2 under fuzzy-type uncertainties in
uncontrollable parameters.
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Figure 77 The ’Uncontr.par.’ tab of the DSM Creator with specifications for test-bed problem 2 under fuzzy-type uncertainties
in uncontrollable parameters.

l = 1, . . . , p. Here, also the values that bound the design space are included together with the

section lengths, the masses, the initial velocity, and the critical acceleration. Furthermore, the

force values of the additional path and the energy-correction factors must be defined when

considering enhanced DSM. The layout of the ’Uncontr.par.’ tab of the DSM Creator is shown

in Figure 77.
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6. CONCLUSIONS

This section discusses the outcome of this thesis which aims to provide a methodology for

decoupled design decisions in systems engineering under epistemic uncertainty. Therefore,

the proposed methodology is reviewed in terms of how far its demands are fulfilled, and its

limitations are addressed. Afterward, an outlook for further research is given and the major

results of this thesis are summarized.

Discussion

The main goal of this thesis was to provide a methodology for decoupled design decisions

in systems engineering that enables optimal flexibility for component design under epistemic

uncertainty. Based on mathematical design models, fundamentals for decoupled design

decisions were discussed, for which coupled design decisions were taken into account, too.

In Chapter 2, the state of the art incorporating the modeling of epistemic uncertainties as

intervals and fuzzy sets, robust optimization problems, and approaches for decoupled design

decisions were reviewed. In order to obtain a complete framework, the methods for robust

optimization were complemented and research gaps in the approaches for decoupled design

decisions were identified. In the following it is discussed, if the proposed methodology in

Chapter 3 including the algorithms of Chapter 4 are appropriate to fulfill the demands stated in

Chapter 1. First, the particular contributions to literature are considered after summarizing

how the proposed methodology...

... deploys a general framework to classify decoupled design decisions: In this thesis,

it is distinguished between independent-decoupled decisions and dependent-decoupled

decisions. In the case of independent-decoupled decisions, designers make decisions

independent on each other. There is no flow of information between the single design

decisions, which can be understood as a concurrent engineering approach. In the case

of dependent-decoupled decisions, designers make decisions dependent on each other

and one after the other. There is a one-way flow of information between the single design

decisions, which can be understood as a traditional engineering approach. This is delimited

from coupled design decisions for which there is a two-way flow of information between the

single design decisions.

This framework helps systems engineers to structure the development of a system. Depend-

ing on the problem and the possibilities to design, they can select if independent-decoupled,

dependent-decoupled, or coupled design decisions are preferred. These options were

missing in previous approaches for decoupled design decisions, and in this regard, they

enhance systems engineering.
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... provides flexibility for decoupled design decisions: Based on mathematical design

models and constraints on design variables and system responses, the complete system

solution space can be computed. This is the set of all permissible system designs which

fulfill the constraints. In order to provide flexibility for decoupled design decisions, sets for

the corresponding design variables containing design alternatives for one designer must be

provided. Independent-decoupled decisions are enabled if the Cartesian product of these

sets is a subset of the complete system solution space. Dependent-decoupled decisions

are enabled if the set for the first decision is a subset of the projection of the complete

system solution space. For the subsequent decisions, this procedure can be repeated with

the updated complete system solution space. In this thesis, flexibility for decoupled design

decisions is optimized by maximizing the volume of these subsets.

Flexibility for decoupled design decisions enables designers to choose between different

design alternatives, which helps to improve the overall design. Furthermore, uncertainties

can be circumvented by increased flexibility and the design decisions can also be changed a

posteriori. The quantification of flexibility in this thesis is consistent with previous approaches

from the literature and extends them to the proposed problem statements of this thesis.

... decouples the decisions based on the hierarchical structure of the system: It is as-

sumed that the system comprises several components which relate to the design variables.

Hence, the design variables can be grouped as component designs at the component level.

Furthermore, multi-level systems are defined for which the components form subsystems

themselves. As the multi-level systems regarded in this thesis can be reduced to two-level

systems, the focus is put on two-level systems, which consist of a system and a component

level. In order to enable decoupled design decisions between the components, sets for the

component design, which are called component solution spaces, must be provided. Here,

the geometric shapes of the sets can be predefined, e.g., as boxes yielding box-shaped com-

ponent solution spaces, or can be optimized yielding arbitrarily-shaped component solution

spaces. These two types are considered for both independent- and dependent-decoupled

design decisions in this thesis.

Taking the hierarchical structure of a system that consists of components for decoupled

design decisions into account allows the deployment of component designers. Thus, the

development of the system is aligned with its structure, which may yield a more efficient

and cost-saving design process than in previous approaches that completely decouple the

decisions for the single design variables. Box-shaped component solution spaces come

along with a relatively simple computation and an easy visualization of design alternatives.

As they often lack flexibility, arbitrarily-shaped component solution can improve this draw-

back. Hence, constraint relaxation strategies which are proposed in the literature to increase

flexibility for box-shaped solution spaces yielding also non-permissible designs, see, e.g.,

[84], may not be required. The testing, if a design is permissible or not, can always be done

at the component level for component solution spaces. For constraint relaxation strategies

this must be done at the system level.
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... incorporates the treatment of epistemic uncertainty: Epistemic uncertainties address-

ing the early design phase are modeled as either intervals, treated in the framework of

interval analysis, or fuzzy sets, treated in the framework of possibility theory. These types of

uncertainties can be incorporated into the mathematical design models as uncertainties in

controllable design variables or uncertainties in uncontrollable parameters. In the case of

interval-type uncertainty, worst-case complete system solution spaces which account for

all realizations of the uncertainties and best-case complete system solution spaces which

account for at least one realization of the uncertainties are yielded. In the case of fuzzy-type

uncertainty, necessity-α complete system solution spaces, for which the necessity that

a system design is permissible is at least α, and possibility-α complete system solution

spaces, for which the possibility that a system design is permissible is at least α, are yielded.

Without loss of generality, the considerations of the membership functions of the fuzzy

sets are limited to membership functions parametrized by two uncertainty magnitudes as a

simple extension of the interval modeling. From these different complete system solution

spaces, corresponding component solution spaces that provide flexibility for component

design under epistemic uncertainty can be computed.

Incorporating epistemic uncertainties into the proposed methodology, i.e., into the compu-

tation of component solution spaces, yield different design regions. Thus, designers can

base decisions on whether the design should be sufficient for all or at least one uncertainty

scenario in the case of interval-type uncertainty. In the case of fuzzy-type uncertainty, they

can base decisions on a minimum necessity or possibility for a design to be permissible.

This opportunity was missing in the previous approaches for decoupled design decisions

and enhances systems engineering under epistemic uncertainty.

... provides algorithms for the numerical computation of the methods: For a numerical

computation of component solution spaces under absence and presence of uncertainty,

the considerations in this thesis are limited to specific system performance functions of the

mathematical design models. These are linear in the controllable variables and monotonic in

the uncontrollable parameters for which the corresponding complete system solution spaces

form convex polytopes. It is shown that the optimization problems to compute component

solution spaces can be simplified and become convex optimization problems, which can be

solved using local numerical optimization solvers, e.g., provided by the software MATLAB,

in this case. As the problem statements include also the computation of the volumes of

the component solution spaces and the projection of the complete system solution space,

suitable algorithms from the literature for this regard are also presented.

The proposed algorithms enable the numerical computation of component solutions spaces

for system performance functions that are linear in the controllable variables and monotonic

in the uncontrollable parameters. It is demonstrated how complex problem statements

that use sets as optimization variables can be simplified to problem statements that use

optimization variables in real coordinate space. In the considered examples, the algorithms

outperform state-of-the-art algorithms for particular problem statements in terms of compu-

tation time and maximized flexibility.
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... is applicable to realistic problems in systems engineering: In this thesis, the method-

ology is applied to crash design problems. Here, deformation space models which provide

constraints for controllable force-deformation characteristics of the components are used.

The constraints incorporate system performance functions which are linear in the control-

lable variables and monotonic in the uncontrollable parameters and hence allow the use of

the considered numerical computation. In order to compare the different types of compo-

nent solution spaces, one simple and one realistic test-bed crash problem are proposed.

For the realistic test-bed problem, the existing deformation space modeling is enhanced

by introducing energy- and acceleration-corrected deformation space models which are

calibrated at results from a finite-element-method simulation in the software LS-DYNA.

By applying the methodology to realistic problems in crash design, the potential for a de-

composed design process in systems engineering is demonstrated. As the accuracy of

the results is always limited by the quality of the mathematical design model, the proposed,

enhanced deformation space models are used here. They yield more reasonable com-

ponent solution spaces for crash design compared to state-of-the-art deformation space

models and, therefore, enhance the design for crashworthiness. In general, the proposed

methodology is not limited to crash design and can be transferred to other problems in

systems engineering for which a component-based development and the incorporation of

epistemic uncertainty is appreciated.

Overall, the proposed methodology for decoupled design decisions, which provides optimal

flexibility for component design in systems engineering under epistemic uncertainties, com-

plies with its demands. It is able to close significant research gaps and enhances systems

engineering regarding the design of components. As all details of the numerical computation

of component solution spaces including parameter values are provided, all results of this thesis

can be reproduced. Furthermore, the methodology can be directly applied to engineering

problems which incorporate system performance functions that are linear in the controllable

variables and monotonic in the uncontrollable parameters by using the proposed algorithms.

For systems engineering problems with different performance functions, the problem state-

ments of the methodology in its general form can be used as well. However, appropriate

algorithms must be proposed, before component solution spaces can be computed. This leads

to the limitations of the methodology, which are addressed subsequently and guide to the

outlook of this thesis in the next section. Note that the demands of Chapter 1 for the proposed

methodology are not discussed here.

The methodology incorporates various simplifications to avoid unnecessary complexity. First

of all, it shall be mentioned that the proposed methodology is based on mathematical design

models which assume their inputs, controllable design variables and uncontrollable parameters,

to be continuous in real coordinate space. If this is not the case for a systems engineering
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problem, the methods of this thesis cannot be used in general or it must be investigated how

they can be transferred.

Regarding the framework of decoupled decisions for component design, only completely

independent- and dependent-decoupled decision approaches were considered. A different

sequencing of the decisions for component design is also reasonable for systems engineering,

i.e., mixed approaches that take both independent- and dependent-decoupled decisions be-

tween the components into account. This was only mentioned briefly in this thesis but could

be improved by merging the corresponding problem statements. Hence, this limitation is not

that crucial.

Moreover, only the volumes of the component solution spaces or the volumes of their Cartesian

product were used as flexibility measures in this thesis. Although it was discussed that the

choice of flexibility measures should depend on the use case and examples were provided,

embedding different measures into the methodology is lacking. Other measures may also

circumvent the long computation time for optimizing high-dimensional volumes of arbitrarily-

shaped component solution spaces.

In this thesis, it was assumed that a system consists of components, which are clearly separa-

ble from each other, and that each design variable can be assigned to one of them. In general,

this is not the case for all systems. Components might not be separable, or even identifiable

as such, and multiple components might share one design variable. This discussion can be

extended to the multi-level systems considered in this thesis. Furthermore, the assumption

of rectangular design spaces in which all design variables can be realized equally well can

be assessed critically. Hence, for each system design model, it must be analyzed first, if the

methodology of this thesis is applicable. If this is not the case, it must be investigated again

how the methods can be transferred.

The modeling of epistemic uncertainty was limited to intervals and fuzzy sets in this thesis. In

addition, further limitations were made like the assumption of fully uncorrelated uncertainties

and the limitation to uncertainties in controllable variables and uncontrollable parameters, and

to simple membership functions for fuzzy-type uncertainty. For a methodology that accounts

for further types of epistemic uncertainty, these limitations must be abolished. In particular,

model uncertainty should also be taken into account as the accuracy of a system design

depends on the underlying mathematical design model, for which uncertainties usually exist.

Nevertheless, the considered uncertainties can cover various uncertainty scenarios and pro-

vide first meaningful results for decoupled design decisions under epistemic uncertainty.

As discussed above, only algorithms to compute component solution spaces for system perfor-

mance functions that are linear in the controllable variables and monotonic in the uncontrollable

parameters were provided in this thesis. On the one hand, this limits the applicability of the

methodology to problems in systems engineering and new algorithms need to be proposed

for different performance functions. On the other hand, first-order approximations, i.e., linear

performance functions, are often used for engineering applications, and in doing so, they can

be incorporated, too. Moreover, the provided algorithms can be seen as the first tools to

compute component solution spaces.

For the application of the methodology to crash design, the considerations were limited to
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deformation space models. This approach could be critically discussed in general. However,

this criticism is not addressed here. In contrast to the enhanced modeling with calibrated

uncontrollable parameters, the uncertainty magnitudes were only assumed in this thesis.

Therefore, they might be inappropriate for the considered crash design problem. This limits

the validity of the results. For complete applicability of the proposed approach to crash design,

it must also be discussed how component designs for deformation space models can be

optimized after decoupling the decisions. This is addressed in the next section together with

further topics for future research.

Outlook

In the following, major topics for further research are proposed. First, topics that relate to

the proposed methodology for decoupled design decisions and may improve its discussed

drawbacks are considered. Then, fundamentals for the optimization of component designs for

crashworthiness, using enhanced deformation space models and component solution spaces,

are discussed.

Sequencing strategies for the decoupled decisions could be further investigated in combination

with different flexibility measures for component solution spaces. The sequencing strategy

determines when each component designer makes his decision. This can be simultaneous to

others or consecutive. Thereby, the applicability of the methodology in systems engineering,

for example, for large organizations, could be improved. The sequencing strategy and the

definition of a flexibility measure should be based on, e.g., the engineering problem, the

structure of the organization with its component designers, and economic and regulatory

factors. Overall, this can be considered as a complex optimization problem that requires a

deliberate framework for its general applicability.

Moreover, the complexity of the mathematical design model could be increased. This could fur-

ther help to improve the applicability of the methodology in systems engineering. As discussed,

more complex system performance functions could be incorporated for which appropriate algo-

rithms to compute component solution spaces must be proposed. Besides that, mathematical

design models could be extended to account for, e.g., discrete, time-dependent, or spatially

dependent variables. The force-deformation characteristics considered for deformation space

models are an example of such variables. In this thesis, they were parametrized, i.e., reduced

to continuous variables in real coordinate space. However, different approaches might be

investigated yielding component solution spaces for functional relations.

In addition, a more general modeling of epistemic uncertainty could be incorporated. Thus, the

methodology could also account for correlated uncertainties, model uncertainties, and more

complex membership functions of fuzzy sets, for instance. Further investigations may investi-

gate decoupled design decisions for other epistemic uncertainty models for which aleatoric

uncertainty could be taken into account as well. First investigations regarding independent-
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decoupled design decisions under pure aleatoric uncertainty were considered in [123]. Overall,

this could help to improve the applicability of the methodology in systems engineering under

polymorphic uncertainty.

Of course, this list is not complete and future research can follow up any question raised in this

thesis. In particular, there are various open, narrow questions, which were partially addressed

in the discussion of the limitations of this thesis, too. In the following, the optimization of

crash-relevant components is considered for which the constraints are provided by component

solution spaces.

In the modeling approach of this thesis, the optimization of crash-relevant components cor-

responds to coupled design decisions at the second level of a three-level crash system, see

Section 5.1. First, a design model for the crash-relevant component at level 2 must be provided,

e.g., a high-fidelity FE model, for which design variables, grouped as a subsystem design at

level 2 and as subsystem component designs at level 1, and potential uncontrollable parame-

ters need to be specified. Here, the design variables might be geometric or material properties,

and the subsystem responses of the component design model must be force-deformation

characteristics at level 2. Using component solution spaces which are based on an enhanced

deformation space model and which are intended for parametrized force-deformation char-

acteristics, performance thresholds on the force-deformation characteristics can be provided.

If they are transferred to the design variable of the component design model, a complete

subsystem solution space at level 2 defining all permissible design variables is yielded. In

order to make an optimal decision for the permissible design alternatives, an appropriate cost

function needs to be defined. Then, the optimal component design at level 2 can be sought.

What sounds to be simple here is rather complex in reality. For example, there are various

methodical questions that concern the boundary conditions for the FE model to obtain reason-

able results in combination with deformation space models. Furthermore, it must be discussed

how the constraints provided by the component solution spaces should be interpreted for

continuous force-deformation characteristics, which follows up the discussion from Section

5.2. In order to account for epistemic uncertainty, potential sources of uncertainty, including

the modeling of uncertainty magnitudes for controllable design variables and uncontrollable

parameters, must be investigated. For an efficient optimization for high-fidelity FE models,

suitable mathematical surrogate models must be considered as well.

Overall, extensive research is required for the optimization of crash-relevant components using

component solution spaces. A first approach that uses simplified boundary conditions and

neglects uncertainty can be found in [15]. Exemplary, the influence of varying the values of a

design variable of a component on its force-deformation characteristic is visualized in Figure

78. Here, the wall thickness of the left crash box of the HONDA ACCORD FE model from

[98] is diminished by 20-percent. Note that this is not an optimization. However, it is sufficient

to yield a permissible from a non-permissible parametrized force-deformation characteristic

in this special case. In general, making decoupled decisions at level 1 instead of coupled

decisions at level 2 for the design of crash-relevant components is also conceivable if more
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design variables are taken into account. In the remaining section, the major results of this

thesis are summarized.
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Figure 78 Measured (continuous force levels) and parametrized (constant force levels) force-deformation characteristic of the
fourth component of the HONDA ACCORD FE model in a full vehicle simulation (dashed lines) and a drop-tower test for the
component (solid line) with original (gray lines) and diminished (black lines) wall thicknesses. The parametrization is done with
respect to the segments of the underlying enhanced DSM (dotted vertical lines). The corresponding box-shaped component
solution space of Figure 51 is visualized (white region) inside the corresponding component design space (gray region). The
white dots for the constant force levels indicate a permissible and the black dots a non-permissible component design. Note
that the force-deformation characteristics were multiplied by two to account for the right crash box, too.

Main Results

This thesis provides a new methodology for decoupled design decisions in systems engineer-

ing that enables optimal flexibility for component design under epistemic uncertainty. The

main results are summarized below. Note that most of them were already addressed from a

different viewpoint in the discussion above. Here, the focus is put on the novel contributions of

this thesis to literature.

In this thesis, a framework that distinguishes between coupled, dependent-decoupled, and

independent-decoupled design decisions is introduced. Here, coupled decisions require a

two-way flow of information between the designers making design decisions, dependent-

decoupled require a one-way flow of information, and independent-decoupled require no flow

of information. In order to enable designing according to this framework with mathematical

design models by also providing flexibility for decoupled design decisions, fundamental prereq-

uisites are discussed. Furthermore, the consideration of epistemic uncertainties, accounting

for uncertainties in the early design phase and addressing controllable design variables and

uncontrollable parameters, is incorporated into the framework. These uncertainties are mod-

eled as intervals, treated in the framework of interval analysis, and fuzzy sets, treated in
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the framework of possibility theory. Previous approaches from literature are presented and

classified according to this framework. In order to obtain a complete framework for design

decisions under epistemic uncertainty modeled as intervals and fuzzy sets, the methods for

coupled design decisions are complemented directly and research gaps regarding decoupled

design decisions are identified. These gaps concern the alignment of decoupled design

decisions with the hierarchical structure of the system and the consideration of uncertainty.

The definitions of mathematical design models are extended such that they account for sys-

tems consisting of components, i.e., two-level systems. Additionally, it is discussed how

this can be generalized to multi-level systems. In accordance with these definitions and the

introduced framework, component solution spaces, as sets of permissible component designs

that provide flexibility for designing at the component level, are proposed. They complement

the complete system solution space for permissible system designs at the system level. It

is distinguished between independent component solution spaces that provide flexibility for

independent-decoupled design decisions and dependent component solution spaces that pro-

vide flexibility for independent-decoupled design decisions. Corresponding problem statements

are proposed to optimize the flexibility of these decisions. In this thesis, the geometric shapes

of component solution spaces are either predefined as boxes, yielding box-shaped component

solution spaces, or optimized, yielding arbitrarily-shaped component solution spaces. Box-

shaped component solution spaces have the advantage of a relatively simple computation

and an easy visualization and arbitrarily-shaped ones provide more flexibility. In order to

incorporate also epistemic uncertainty modeled as intervals, worst-case component solution

spaces that account for all realizations of the uncertainties and best-case component solution

spaces that account for at least one realization of the uncertainties are proposed. If they are

modeled as fuzzy sets, necessity-α component solution spaces, for which the necessity that a

component design is permissible is at least α, and possibility-α component solution spaces, for

which the possibility that a component design is permissible is at least α, are yielded. These

different types of component solution spaces provide multiple design regions for component

designers and support their decisions regarding the uncertainty scenario they intend to design

for. In this thesis, the uncertainties may address uncontrollable variables and uncontrollable

parameters. For the computation of component solution spaces, the corresponding uncertainty

magnitudes must be provided. Furthermore, the case of unknown uncertainty magnitudes in

controllable variables is taken into account in the case of more severe uncertainty in these

variables, stemming, for example, from undefined subsystems in the early design phase.

If the system performance functions incorporated in the mathematical design models are

continuous, the complete system solution spaces for the epistemic uncertainty modeling of this

thesis, besides the possibility-0 complete system solution space, are shown to be compact.

This justifies the modeling of component solution spaces as compact sets. Moreover, it is

demonstrated how the problem statements to compute component solution spaces can be

simplified for performance functions which are linear in the controllable variables and mono-

tonic in the uncontrollable parameters yielding convex optimization problems. For these, every

local optimum is a global optimum and the problems can be solved by using local optimization

solvers. As in particular the problem statements for arbitrarily-shaped component solution
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spaces include a complex computation of the volumes of the component solution spaces and

the projection of the complete system solution space, suitable algorithms from literature are

reviewed and incorporated for this regard.

In this thesis, the methodology is applied to crash design problems. Here, deformation

space models as mathematical design models which provide constraints for controllable force-

deformation characteristics of the crash-relevant components are used. They are enhanced

to knowledge-based deformation space models for which system-related parameters are

obtained from realistic crash tests or simulations. Furthermore, energy- and acceleration-

corrected deformation space models using additional load paths and energy-correction factors

to calibrate energy and acceleration responses on results from finite-element-method simula-

tions are introduced. In order to compare the different types of component solution spaces,

two test-bed examples are proposed, a simple one, based on a simple deformation space

model, and a realistic one based on an energy- and acceleration-corrected deformation space

model. The computations can be done using the corresponding MATLAB app that was created

within the scope of this thesis. It covers all methods for decoupled design decisions under epis-

temic uncertainty presented in this thesis. Furthermore, energy- and acceleration-corrected

deformation space models can be created using this app. Overall, the application of the

methodology to crash design illustrates its full potential for decoupled design decisions under

epistemic uncertainty in systems engineering. This motivates transferring the approach to

further problems in systems engineering for which decoupled design decisions under epistemic

uncertainty shall be addressed.
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A. APPENDIX

A.1. Important Classes of Sets and Functions

In this thesis, the underlying sets for the controllable variables, uncontrollable parameters, and

responses together with the standard scalar products form Euclidean spaces. The subsequent

considerations are made representatively for Rd for which the standard scalar product is

〈x, y〉 =
d∑
i=1

xiyi, (A.1)

x, y ∈ Rd. The scalar product 〈·, ·〉 from Equation (A.1) induces a norm on Rd, i.e., ‖x‖ =√
〈x, x〉 for x ∈ Rd, which is called the Euclidean norm. In general, there are more norms on

Rd which are all equivalent, see [53]. In Rd, open and closed sets can be defined using open

balls.

Definition 3. Let ‖ · ‖ be a norm on Rd.

(a)An open ball with center x0 ∈ Rd of radius δ, δ ∈ R+ is defined as

B(x0, δ) = {x ∈ Rd | ‖x− x0‖ < δ}. (A.2)

(b)A set U ⊆ Rd is open in Rd if for every x ∈ Rd there exists a ball B(x, δ) such that

B(x, δ) ⊆ U .

(c) A set U ⊆ Rd is closed in Rd if Rd\U is open in Rd.

Moreover, it holds that a set U ⊆ Rd is closed in Rd if and only if every convergent sequence

with values in U converges to a point in U . The union of arbitrarily many open sets and the

intersection of finitely many open sets is open in Rd. The union of finitely many closed sets

and the intersection of arbitrarily many closed sets is closed in Rd. Moreover, a set U ⊂ Rd is

bounded if it is contained in some open ball and a set U ⊂ Rd is compact if it is bounded and

closed in Rd. [51]

An example for an open set is the open interval (xl, xu) ⊂ R and an example for a closed set,

which is also compact, is the closed interval [xl, xu] ⊂ R where xl, xu ∈ R with xl < xu. This

can be directly transferred to d-dimensional intervals, which are defined as

(xl, xu) = {x ∈ Rd | xl
i < x < xu

i , i = 1, . . . , d}, (A.3)

[xl, xu] = {x ∈ Rd | xl
i ≤ x ≤ xu

i , i = 1, . . . , d}, (A.4)
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with xl = (xl
1, . . . , x

l
d) ∈ Rd and xu = (xu

1 , . . . , x
u
d) ∈ Rd. The d-dimensional intervals

can be also represented by Cartesian products of one-dimensional intervals, i.e.,(xl, xu) =

(xl
1, x

u
1)× · · · × (xl

d, x
u
d) and [xl, xu] = [xl

1, x
u
1 ]× · · · × [xl

d, x
u
d].

Furthermore, all open and closed sets, including compact sets, belong to the Borel σ-algebra

of Rd, i.e., they are Borel sets for which the d-dimensional volume can be calculated using the

Lebesgue measure, see [52]. Another class of sets that is important in this thesis are convex

sets in Rd.

Definition 4. A set U ⊆ Rd is convex if either U = ∅ or if for all θ ∈ [0, 1] and all x, x′ ∈ U , it

holds

θx+ (1− θ)x′ ∈ U. (A.5)

This means that if any segment that connects two points of a set is entirely contained in the

set, the set is convex. The intersection of convex sets is convex. For example, all intervals

and all polytopes of the mathematical structure {x ∈ Rd | Ax ≤ b}, A ∈ Rm×d, b ∈ Rm, are

convex. [12]

Subsequently, important classes of functions are considered for f : Rd → Rm. This gener-

alizes to system or component performance functions that map controllable variables and

uncontrollable parameters to responses.

Continuous functions can be defined as in [103], for which Theorem 15 holds.

Theorem 15. Let f : Rd → Rm. The following statements are equivalent:

(a)At every point of Rd, f is continuous

(b)For every open subset V ⊆ Rm, the inverse image f−1(V ) is open in Rd.

(c) For every closed subset V ⊆ Rm, the inverse image f−1(V ) is closed in Rd.

(d)For every sequence (xn)n∈N that converges to x ∈ Rd, the sequence (f(xn))n∈N con-

verges to f(x) ∈ Rm.

Proof. Compare [103].

Furthermore, f : Rd → Rm is continuous if and only if fj : Rd → Rm, j = 1, . . . ,m, are

continuous. Next, convex and concave functions of the form f : Rd → R are considered.
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Definition 5. A function f : Rd → R is convex if for all θ ∈ [0, 1] and all x, x′ ∈ U , it holds

f(θx+ (1− θ)x′) ≤ θf(x) + (1− θ)f(x′). (A.6)

If −f is convex, f is concave.

Definition 5 can be generalized to functions of the form f : Rd → Rm. They are said to be

convex if and only if fj : Rd → Rm, j = 1, . . . ,m, are convex. A convex function f : Rd → Rm

is also continuous and the set f−1((−∞, fc]) = {x ∈ Rd | f(x) ≤ fc}, fc ∈ Rm, is convex,

see [12].

Moreover, a function f : Rd → R with f(x) > 0 for all x ∈ Rd is said to be logarithmically

convex if log f is convex and logarithmically concave if log f is concave. Here, f(x) = 0

can be allowed by defining log(0) = −∞. Logarithmic concavity of a function f can also be

expressed without the logarithm, i.e. f is logarithmically concave if and only if for all θ ∈ [0, 1]

and all x, x′ ∈ U , it holds

f(θx+ (1− θ)x′) ≥ f(x)θf(x′)1−θ. (A.7)

Furthermore, the product of logarithmically concave functions is logarithmically concave and

in some special cases, the logarithmic concavity is also preserved by integration. [12]

A component design xk ∈ Rdk can be considered as the projection of the system design

x ∈ Rd onto the coordinate space of the kth component. Here, the projection is denoted by

projk with

projk : Rd → Rd
k
, x 7→ xk, (A.8)

k ∈ {1, . . . , n}. The projections projk, k = 1, . . . , n, are continuous. For the projection

projk(U) of a set U ⊆ Rd, it holds

projk(U) = {xk ∈ Rd
k | ∃xr,k : x ∈ U}, (A.9)

where xr,k is a vector that contains the remaining component designs xk
′
, k′ = 1, . . . , n,

k′ 6= k, and x is formed by xk and xr,k for k = 1, . . . , n. Furthermore, the projection of a

convex polytope is convex, see [72].

A.2. Fuzzy Sets and Possibility Theory

Fuzzy sets, as introduced in [136], are one method to model epistemic uncertainty, see

Section 2.1. In fuzzy set theory, the elements of a reference set have degrees of membership

of belonging to a fuzzy set compared to classical set theory, in which the elements of a

reference set either belong or do not belong to a set. This gradual membership is expressed

by membership functions. For the reference set R, a membership function for the fuzzy set X

Optimizing Flexibility for Component Design in Systems Engineering under Epistemic Uncertainty 200



is defined by

µX : R→ [0, 1], x 7→ µX(x). (A.10)

Moreover, the fuzzy set X itself is defined as the pair (R, µX) where x ∈ R is called fully

included in X if µX(x) = 1, partially included in X if 0 < µX(x) < 1, and not included in X if

µX(x) = 0. Examples of membership functions for the reference set R are given in Equations

(2.15) and (2.16). The membership function from Equation (2.16) only takes the values 0 and

1 and therefore corresponds to a characteristic function of a classical set. Note that there are

also more general reference sets.

The set of all elements whose membership grade is at least α is {x ∈ R | µX(x) ≥ α}, which

is a crisp set, i.e., a classical set, and also called α-cut for α ∈ [0, 1]. In addition, the set

{x ∈ R | µX(x) > 0} is called the support and {x ∈ R | µX(x) = 1} is called the core of X.

They are also crisp sets.

In order to perform arithmetic operations on fuzzy sets X1, . . . , Xd, the extension principle,

introduced in [137], can be used.

Definition 6. Let X1, . . . , Xd be fuzzy sets, for which R is the reference set for each of these

fuzzy sets and µXi , i = 1, . . . , d, are their membership functions. Furthermore, let f be of the

form f : Rd → Rm. Then, Z = f(X1, . . . , Xd) is a fuzzy set with reference set Rm and its

membership function can be defined as

µZ : Rm → [0, 1],

z 7→ µZ(z) =


sup

x∈f−1(z)

min{µX1(x1), . . . , µXd(xd)} if f−1(z), 6= ∅,

0 else,

(A.11)

see [137].

Note that other extension principles are also conceivable, cf. [33]. For multi-dimensional fuzzy

sets, the supports, cores, and α-cuts, α ∈ [0, 1], can be defined similarly to above. Further

details on fuzzy arithmetic using Definition 6 are, for example, given in [61].

From Definition 6, a membership function for the fuzzy number X = (X1, . . . , Xd) with

reference set Rd is defined implicitly. It reads

µX : Rd → [0, 1], x 7→ µX(x) = min{µX1(x1), . . . , µXd(xd)}. (A.12)

If a fuzzy set X is normalized, i.e., there exists at least one x within the reference set with

µX(x) = 1, its membership function can be considered as a possibility distribution, see [31,

138].
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Possibility theory can be viewed as a framework to treat epistemic uncertainty by imprecise

probabilities, cf. [131]. Its mathematical basics were mainly introduced in [31, 33]. In possibility

theory, a possibility distribution π is used to represent a state of knowledge. In this thesis,

π : Rd → [0, 1], x 7→ π(x) is considered, where π can be identified mathematically with µX .

Similar to the interpretation of fuzzy sets, a state x ∈ Rd is totally possible if π(x) = 1 and is

impossible if π(x) = 0, see [31].

Degrees of possibilities and necessities that an element of the set U ⊂ Rd occurs can be

computed by the possibility measure Pos and the necessity measure Nec via

Pos(U) = sup
x∈U

π(x), (A.13)

Nec(U) = inf
x∈Rd\U

(1− π(x)). (A.14)

The two measures are dual, which is expressed by

Nec(U) = 1− Pos(Rd\U) (A.15)

for U ⊆ Rd. More general, possibility and necessity measures are mappings from the power

set of Rd to [0, 1] with

Pos(∅) = 0, (A.16)

Pos(Rd) = 1, (A.17)

Pos(U ∪ V ) = max(Pos(U),Pos(V )), (A.18)

and

Nec(∅) = 0, (A.19)

Nec(Rd) = 1, (A.20)

Nec(U ∩ V ) = min(Nec(U),Nec(V )), (A.21)

for all U, V ⊆ Rd, cf. [31]. Here, the duality from Equation (A.15) can be used to derive

Equations (A.19)-(A.21) from Equations (A.16)-(A.18) and vice versa. From these equations

follows that Pos(U) < 1 implies Nec(U) = 0 and Nec(U) > 0 implies Pos(U) = 1 for U ⊆ Rd.
Furthermore, it is argued in [32] that possibility measures can also be considered as upper

probability measures and necessity measures as lower probability measures, i.e., they form

bounds for imprecise probabilities. However, note that the propagation of these bounds

generally does not yield bounds for propagated probabilistic uncertainty if the extension

principle defined in Definition 6 is used. Approaches to circumvent this problem are proposed

in [67].

For a given possibility distribution π, the possibility and necessity measures of, e.g., the set

(−∞, xu] ⊂ Rd can be interpreted as the degrees of possibility and necessity that the elements
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of the corresponding fuzzy set X are smaller than or equal to upper thresholds xu ∈ Rd.
Without loss of generality, let the elements of the zero vector be these upper thresholds. Using

Equations (A.13) and (A.14), it holds

Pos({X | X ≤ 0}) = Pos((−∞, 0]) (A.22)

= sup
x≤0

µX(x) (A.23)

Nec({X | X ≤ 0}) = Nec((−∞, 0]) (A.24)

= inf
x>0

(1− µX(x)), (A.25)

(A.26)

compare [69].

A.3. Requirements and FE Measurements for Crash Design

In the following, the requirements for deformation space models, which are stated in Section

5.1 and proposed in [43], are derived. Here, the notations introduced in Section 5.1 are used:

• Maximum acceleration: If the vehicle deforms in deformation space, the active mass m∗(s)

is accelerated by the sum of deformation forces of all components F (s) at any position

s ∈ [s0, send). Thus, the resulting acceleration a(s) is determined by the ratio of F (s) to

m∗(s), i.e.,

a(s) =
F (s)

m∗(s)
(A.27)

for s ∈ [s0, send). As the acceleration must not exceed the critical acceleration ac, it must

hold a(s) ≤ ac or
F (s)

m∗(s)
≤ ac (A.28)

for all s ∈ [s0, send), see inequality (5.9).

Progressive order of deformation: In order to ensure that there is a deformation front in

deformation space that starts at the front of the vehicle and moves in longitudinal impact

direction, the deformation of the component must be ordered progressively, starting at

the front. Hence, the force which is responsible for the deformation of the kth component

F k(s) must be smaller than the force that is necessary to start the deformation of the

(k + 1)th component F k+1(sk+1
0 ), for which additionally the inertia force Fmk(s) for the

mass mk must be considered, at any position s ∈ [sk0, s
k
end). If F k(s) is greater than the

sum of F k+1(sk+1
0 ) and Fmk(s), the (k + 1)th component starts to deform before the kth

component has completely deformed, i.e., the requirement for a progressively ordered
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deformation can be formulated as

F k(s) ≤ F k+1(sk+1
0 ) +mka(s) (A.29)

for s ∈ [sk0, s
k
end). Note that this must only hold if the kth and (k + 1)th component share

the same load path, k = 1, . . . , n− 1. Using equation (A.27), inequality (A.29) can also be

formulated as

F k(s)−mk F (s)

m∗(s)
≤ F k+1(sk+1

0 ) (A.30)

for all s ∈ [sk0, s
k
end) if the kth and (k + 1)th component share the same load path, k =

1, . . . , n− 1, see inequality (5.10).

• Minimum energy absorption: If the progressive order of deformation requirement is fulfilled,

the first section of the vehicle completely deforms in a vehicle crash before the other

sections start to deform. At the start of the deformation of section 1 at s0, the vehicle has

the velocity v0 ∈ R+
0 and the velocity v1 ∈ R+

0 at the end of the deformation of section

1 at s1. As the active mass does not change during the deformation of section 1, i.e.,

m∗(s) = m∗(s0) for s ∈ [s0, s1), see Equation (5.7), it holds

s1∫
s0

F (s) ds =
1

2
m∗(s0)(v2

0 − v2
1) (A.31)

for the absorbed kinetic energy, i.e.,

s1∫
s0

F (s)

m∗(s)
ds =

1

2
(v2

0 − v2
1). (A.32)

Then, it is assumed that the masses located at s1 are brought to an abrupt halt and

that the remaining kinetic energy of these masses is not absorbed by the components

of the vehicle structure. An elastic rebound of the vehicle is neglected. The sum of the

masses located at s1 is represented by the difference in the active mass (m∗(s0)−m∗(s1)).

Thus, the corresponding kinetic energy which is not absorbed by the components is
1
2(m∗(s0)−m∗(s1))v2

1 .

Afterward, section 2 starts deforming at s1, where the vehicle has still the velocity v1, and

ends deforming at s2 with velocity v2 ∈ R+
0 . Similar to above, it holds

s2∫
s1

F (s)

m∗(s)
ds =

1

2
(v2

1 − v2
2). (A.33)

Then, the masses located at s2 are brought to an abrupt halt, too. This is continued and for

an arbitrary position s′ ∈ [s0, send) in deformation space with velocity v(s′) ∈ R+
0 , it is

s′∫
s0

F (s)

m∗(s)
ds =

1

2
(v2

0 − v(s′)2). (A.34)
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If all components of the vehicle deform completely and v(send) > 0 holds, the initial kinetic

energy of the vehicle is not fully absorbed. Hence, to absorb this minimum required energy

and to bring the vehicle to a halt at s ∈ [s0, send), it must hold that

send∫
s0

F (s)

m∗(s)
ds ≥ 1

2
v2

0, (A.35)

i.e.,

−
send∫
s0

F (s)

m∗(s)
ds ≤ −1

2
v2

0, (A.36)

see inequality (5.8).

Furthermore, it is proposed how measurements in FEM simulations for frontal crash at full

overlap against a rigid wall can be done in order to obtain properties like force-deformation

characteristics, energies, and masses which are required for enhanced DSM. This is applied

in Section 5.2 for the HONDA ACCORD FE using the software LS-DYNA.

Part masses of an FE model can be measured directly in an FEM simulation by considering the

corresponding parts. The longitudinal lengths of the components can be computed, for exam-

ple, by the average distances between four different nodes at the front and four different nodes

at the back of each component. From measuring these lengths over time, a deformation-time

graph can be deduced. The deformation lengths of the components can then be set as the

deformation values at the end time of the simulation, or as the difference of the deformation

values at the end and beginning of plastic deformation.

Similarly, forces can be measured over time and combined with the deformation measurements

over time to force-deformation characteristics afterward. In order to account only for plastic

deformation, both the deformation-time graph and force-time graph are considered in the time

interval of plastic deformation here. In doing so, the deformation-time graph is measured as

described above. In theory, the force-time graph of a component can be measured at an

arbitrary cross-section of the component, see [43]. Moreover, the force-time graph should also

not be dependent on the position of the cross-section on a load path if the active mass does

not change.

However, as each considered component is usually in contact with other parts of the structure

during deformation, i.e., there is load transmission along the component, this no longer holds.

Therefore, a procedure to obtain a force-time graph that considers especially the forces mea-

sured at deforming segments of the components is proposed and used in this thesis: First,

each component is divided into several segments of approximately the same length. At the

beginning and end of each segment, four nodes are placed to measure the deformation of the
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segment over time. In between, force-over-time in longitudinal impact direction is measured

by also taking self-contact of the load paths into account. For each segment, the force is

integrated over the deformation of the segment and transformed back into time-space. Thus,

an energy-time graph of the segment that accounts for the energy absorbed in the longitudinal

direction is obtained. Then, the energies of all segments are summed up to get the total energy

of the component absorbed in the longitudinal direction over time. By taking the derivative

with respect to the deformation of the component, a force-deformation characteristic with the

desired properties is yielded. A natural upper bound of this force-deformation characteristic is

the derivative of the total internal energy of the component, which accounts for the absorbed

energy in all directions, with respect to the deformation of the component. Due to uncertainties

in deformation and force measurements, this is not always an upper-bounding force. Hence,

the point-wise minimum of these two force-deformation characteristics can be chosen to get

a force-deformation characteristic of the component that is conservative regarding energy

absorption and acceleration.

If the crash relevant components deform progressively, a force-deformation characteristic that

represents all considered components can be computed from Equation (5.6). If this is not the

case, a procedure similar to the computation of force-deformation characteristics of the single

components can be used here: From the force-deformation characteristics of the components,

energy-time graphs for the components are computed and summed up. Its derivative with

respect to the deformation of the load paths provides a force-deformation characteristic for all

components represented in the DSM. Here, it is used that the deformation rate is approximately

the same across all load paths. The corresponding force at deformation position s ∈ [s0, send)

is denoted by F ′(s).

For calibrating the force F add(s) for the additional load path of an enhanced DSM, the equation

F add(s) = m∗(s)arv(s)− F ′(s), (A.37)

where arv(s) denotes the acceleration of the rear vehicle at deformation position s ∈ [s0, send),

can be used. Thus, the corresponding acceleration-deformation and active-mass-deformation

graphs must be computed first. The acceleration-deformation graph of the rear vehicle is

obtained in an FEM simulation by measuring the acceleration of an associated node over time

and performing a geometric transformation of the domain from time into deformation of the

load paths. Furthermore, the active mass m∗(s) of the vehicle is estimated here by removing

the parts with zero velocity at deformation position s ∈ [s0, send) and measuring the remaining

mass in an FEM simulation. This is done for s ∈ {s0, . . . , send}. In between, the active mass

is set as constant for the DSM approach.

Alternatively, it is also conceivable to estimate the active mass of the vehicle, for example, by

m∗(s) = 2Ekin(s)
vrv(s)2 where Ekin(s) denotes its remaining kinetic energy and vrv(s) the velocity of

the rear vehicle at deformation position s ∈ [s0, send).

The energies of the components Ektot, k = 1, . . . , n, in an FEM simulation can be measured

as the difference in internal energy in the time interval of plastic deformation, for example.
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