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ABSTRACT

The spectral width and sharpness of unfolded, observed gamma-ray burst (GRB) spectra have been presented as a new tool to infer
physical properties about GRB emission via spectral fitting of empirical models. Following the tradition of the “line-of-death”, the
spectral width has been used to rule out synchrotron emission in a majority of GRBs. This claim is investigated via reexamination
of previously reported width measures. Then, a sample of peak-flux GRB spectra are fit with an idealized, physical synchrotron
model. It is found that many spectra can be adequately fit by this model even when the width measures would reject it. Thus, the
results advocate for fitting a physical model to be the sole tool for testing that model. Finally, a smoothly-broken power law is fit
to these spectra allowing for the spectral curvature to vary during the fitting process in order to understand why the previous width
measures poorly predict the spectra. It is found that the failing of previous width measures is due to a combination of inferring physical
parameters from unfolded spectra as well as the presence of multiple widths in the data beyond what the Band function can model.
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1. Introduction

Catalogs of gamma-ray burst (GRB) observations contain spec-
tra fit to the canonical Band function (Band et al. 1993) which
consists of two power laws that are exponentially connected
(Greiner et al. 1995; Briggs et al. 1999; Goldstein et al. 2012;
Gruber et al. 2014; Yu et al. 2016). They are additionally fit with
other empirical photon models when the Band function does
not provide an acceptable fit. Historically, empirical approaches
to characterizing GRB spectra have focused on the Band fit-
ted low-energy power law slope, α, from which conclusions
are drawn about the physical process producing the observed
emission (Crider et al. 1997; Preece et al. 1998). These studies
find that a fraction, ∼1/3, of GRB spectra cannot be explained
by the simplest so-called slow-cooled synchrotron emission
models and disfavor the more preferred (on account of radia-
tive efficiency) fast-cooled synchrotron models (Sari et al. 1998;
Beniamini & Piran 2013). This has often been referred to as the
“line-of-death” problem.

Further investigation of the spectra, aided by fitting physical
synchrotron models to the data (Burgess et al. 2014), confirmed
that many GRB spectra cannot be fit by fast-cooled electron syn-
chrotron spectrum because the spectral width of the data was
too narrow for this model (see however Uhm & Zhang 2014;
Zhang et al. 2016). Yet, it was found that some GRBs whose
spectra violated the line-of-death were able to be fit with slow-
cooled synchrotron models directly. This hinted that using the
empirical Band function to characterize the physical origin of
GRB spectra can be misleading.

Recently, new empirical tools have been introduced in an
attempt to characterize the observed, prompt gamma-ray spectra
of GRBs (Axelsson & Borgonovo 2015; Yu et al. 2015). Moti-
vated by the claims of Beloborodov (2013) that synchrotron
emission is too broad for the observed data, these works take
the unfolded empirical spectra from the GRB catalogs and

characterized them by an auxiliary quantity, the spectral width,
in an attempt to measure the broadness of the observed spectra.
Both Axelsson & Borgonovo (2015) and Yu et al. (2015), then
compare these observed widths with the widths of physical spec-
tra and arrive at the conclusion that a large fraction of GRB spec-
tra are inconsistent with synchrotron emission.

Such empirical procedures are powerful tools in astronomy.
Without much effort or the need for computationally expensive
physical models, the community can quickly categorize thou-
sands of observations and provide tests for theoretical predic-
tions from which models can be rejected. For this reason, many
studies have begun adopting the width as a tool to advocate for
photospheric emission (Ahlgren et al. 2015; Iyyani et al. 2015,
2016; Vurm & Beloborodov 2016; Bharali et al. 2017). There-
fore, these empirical tools must fully incorporate the properties
of the observed data. The typical approach of post-processing
unfolded, fitted GRB spectra introduces a bias; the inferred prop-
erties of the post-processing are influenced by properties of the
functional form of the already-fitted model, and lose information
that was contained in the raw count data. This is to say, that mea-
suring the width of fitted Band functions does not directly mea-
sure the width inherent in the data. Herein, a different approach
is taken to measuring the width of GRB spectra in order to incor-
porate properties of the folded data into empirical inferences. By
modeling the width directly in the data during the fitting pro-
cess, any bias introduced by the Band function’s natural width is
reduced.

Even with the use of more predictive physical measures, the
process is simply a substitute for the growing field of physi-
cal model fitting (e.g. Burgess et al. 2014; Ahlgren et al. 2015;
Zhang et al. 2016). Thus it is now possible to evaluate the
physical predictions of empirical measures directly. If an
observed GRB can be fit with a physical model that would have
been rejected by an empirical measure, then this empirical mea-
sure must be disregarded. The current paradigm of GRB spectral
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Table 1. Derived physical widths.

Width measure Planck SPS MS PLS (−4) PLS (−2)

θ (degrees) 43 97 135 128 170
W (dex) 0.54 0.93 1.4 1.4 1.6

data modeling allows us to fit physical models directly to data,
reject those models when necessary, and develop better theoret-
ical predictions.

This article is organized into three main sections. First a
review of the approaches to measuring the width developed in
Axelsson & Borgonovo (2015) and Yu et al. (2015) (Sect. 2).
Next, a sample of GRB spectra are fit with a physical syn-
chrotron spectrum and an evaluation of the quality of the fit
compared to the predictions of the empirical approaches is made
(Sect. 3). Finally, a method for measuring the width of the spec-
tra directly in the data by fitting a sample of GRB peak-flux spec-
tra is employed (Sect. 4).

2. A review of GRB spectral widths

Two different approaches to measuring the width or sharp-
ness of GRB data were undertaken by Axelsson & Borgonovo
(2015) and Yu et al. (2015). Following Beloborodov (2013),
Axelsson & Borgonovo (2015) define the width as the loga-
rithmic ratio of the energies at the full width half maximum
(FWHM) spectra:

W = log10

(
E2

E1

)
(1)

and Yu et al. (2015) defined a sharpness angle (θ) at the νFν

peak between two normalized fluxes at their respective normal-
ized energies. With these definitions, both works define limits of
different emission mechanisms in their respective measurement
spaces as shown in Table 1. These mechanisms include a Planck
function, single-particle synchrotron (SPS), synchrotron from
a Maxwellian distribution of electrons (MS), and synchrotron
from a power law distribution of electrons (PLS) with electron
indices of either p = 2 or p = 4. In each approach, it was found
that a majority of the data cannot be explained by synchrotron
emission.

The sample selection in Axelsson & Borgonovo (2015)
included GRBs from the Gamma-ray Burst Monitor (GBM)
onboard the Fermi Gamma-ray Space Telescope (Meegan et al.
2009). The authors used all Band fits from the GBM catalog
peak-flux spectral catalog regardless of which photon model
best-fit the spectrum or if the Band function resulted in a failed
maximum-likelihood fit. A cut was applied to the data requiring
the low- and high-energy power laws of the Band function (α and
β respectively) be α > −1.9 and β < −2.1. Herein, this analysis
is replicated and then a further cut requiring that the best fitting
spectrum as determined in the catalog be either the Band func-
tion or a smoothly-broken power law (SBPL) is applied. This
eliminates spectra that may include Band parameters from failed
fits due to a simpler function such as the exponentially-cutoff
power law (CPL) or power law (PL) having been recorded as the
best-fit. The width and the sharpness angle are computed from
each observation in both the full and best-fit samples. The soft-
ware used to compute the width and sharpness angle is released
for the purpose of replication1.

1 https://github.com/grburgess/width_calculator
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Fig. 1. Distributions of W (top) and θ (bottom) for the entire sample and
the best-fit sample.

Figure 1 shows that that when the cuts for best-fit spectrum
are applied, the distributions shift to broader spectra or away
from thermal spectra and towards optically-thin synchrotron
spectra. Goldstein et al. (2012) note that with increasing signal-
to-noise in the peak-flux spectra, the photon models shift from
simple models such as the PL and CPL to more complex mod-
els such as the Band function or SBPL. This tentatively indi-
cates that spectra are best fit by these simpler functions due to
lack of photon statistics and not due to intrinsic physical rea-
sons. The simpler functions are intrinsically narrower than the
Band function and SBPL. Therefore, including spectra that were
best fit by simpler (narrower) functions and not the Band func-
tion in the sample artificially leads to a bias towards narrower
spectra. It is noted that Yu et al. (2015) computed the spectral
sharpness on time-resolved spectra using the best-fitting model
of each observed spectrum of the GBM time-resolved catalog
(Yu et al. 2016).

The two width measures differ in their prediction for what
types of spectra are viable. Figure 2 gives a toy example of how
the measures look in νFν-space. Examining the W − θ plane,
Figure 3 shows the full sample against the GBM best-fit sam-
ple as well as the regions allowed for different models. Over-
plotted are the relation between W and θ with β = −2.25 and α ∈
{−1.5, 0} as well as α = −0.8 and β ∈ {−2.25,−4}. Interestingly,
the best-fit sample follows a different trend than the full sample
corresponding to the fixed-α curve. There is also a tentative cor-
respondence of α and width with softer α values corresponding
to larger width. It is clear that when a cut is not applied to the
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Fig. 2. Left: illustration of how W (green lines) and θ (via the red triangles) are realized on two different toy Band functions. Right: example of
how the SBPL varies with ∆. For comparison, a Band function is superimposed in black dashed lines.
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Fig. 3. W − θ plane from the full GBM catalog (teal) and the subsample
of GRBs best fit by the Band function or a SBPL (purple-yellow). The
boxes are the allowed regions for the corresponding physical emission
mechanisms. The color of the subsample corresponds to the low-energy
index (α) of the spectral fit. The two black dashed lines demonstrate
how the W − θ plain evolves for fixed β (big dashes) and fixed α (small
dashes).

catalog fits to ensure that no failed fits are included, the width
measures move away from the a clustering at “non-synchrotron”
allowed values. Nevertheless, as pointed out in each work, the
standard synchrotron models are strongly rejected by the width
measures.

3. Synchrotron emission

Instead of employing empirical measures to infer if synchrotron
can fit the data, let us now fit the data with a synchrotron model.
A power law synchrotron model has been implemented into
3ML via astromodels2 following the method of Burgess et al.
(2014) and described in Appendix A except that the Maxwellian
part of the electron distribution is not included. In the spirit
of open software, the model is made publicly available for use
with 3ML3. The model has three free parameters: a normaliza-
tion, the electron spectral index, and an energy scaling parame-
ter (the magnetic field strength) proportional to the peak of the
νFν spectrum. While it is numerically expensive to compute, it is

2 https://github.com/giacomov/astromodels
3 https://github.com/grburgess/powerlaw_synchrotron

functionally less complex than the four parameter Band function
and five parameter SBPL thus making it less flexible.

3.1. Sample selection

The GBM has observed over 2000 GRBs with cataloged spec-
tral parameters readily available online4. However, we must re-
fit these data for this work. All spectral data used consist of 128
channel, time-tagged event (TTE) data obtained from the Fermi
Science Support Center (FSSC). GRBs with cataloged parame-
ters that were detected before 2017 and with best-fit peak-flux
spectra of either Band or SBPL are used. These criteria result in
a sample of 91 GRBs. Some catalog entries in the FSSC database
had invalid response matrices and were discarded from the sam-
ple as it is important to use the exact responses that were used
to compute the cataloged spectra5. Next, a cut on significance
over background of 30σ was introduced to have a bright sam-
ple. A requirement that at least two Sodium Iodide (NaI) detec-
tors in addition to one Bismuth Germinate (BGO) detector have
acceptable viewing geometry of the GRB as denoted in the cat-
alog further reduces the sample size. No selection on previously
fitted spectral parameters was made to eliminate biasing the sam-
ple. Additionally, GRBs with Fermi Large Area Telescope (LAT)
data are cut as they may include additional spectral features such
as high-energy cutoffs. The final selections resulted in a sample
of 44 GRBs.

Using the information provided in the GBM catalog, detec-
tors, background and peak-flux intervals are selected to appro-
priately match with the selections used to produce the catalog. It
was required that some background selections be modified as the
ones specified in the online catalog occasionally contained on-
source intervals. With these selections, the backgrounds were fit-
ted with a series of polynomials of varying order via an unbinned
Poisson likelihood and the best one was chosen via a likelihood
ratio test (LRT). The modeled background count estimation
and Gaussian error were extrapolated into the source interval
as described in Greiner et al. (2016). For source intervals, the
1.024 s peak-flux intervals denoted in the catalog were selected
to minimize the effects of spectral evolution as well as to keep

4 https://heasarc.gsfc.nasa.gov/W3Browse/fermi/
fermigbrst.html
5 These errors involved RSP2 files that did not have valid time cover-
age intervals appropriate for the published peak-flux intervals.
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the properties of the sample close to those which were used in
Sect. 2.

3.2. Spectral fitting procedure

For spectral analysis, the Multi-Mission Maximum Likelihood
framework6 (3ML Vianello et al. 2015) is used. The likelihood
for the data is a Poisson-Gaussian likelihood to account for the
Poisson nature of the total counts and the Gaussian nature of the
modeled background (Arnaud 1996). 3ML allows for both maxi-
mum likelihood (MLE) and Bayesian posterior simulation (BPS)
via a variety of optimization or sampling algorithms. For this
study, BPS was chosen via the emcee (Foreman-Mackey et al.
2013) algorithm to fit the data in the sample. The fitting pro-
cedure involves two steps. First, MLE is used to find a starting
point for the BPS. For MLE, the MINUIT (James & Roos 1975)
optimization algorithm is used. With the MLE starting point,
the posterior is sampled using flat, uninformative priors on all
parameters7 To account for systematics in the GBM response
matrices, the total effective area of all detectors is scaled to
the brightest NaI detector by multiplicative constants. Instead
of uninformative priors, informative Cauchy priors centered at
unity, i.e., no correction, and width set to reflect the assumed
10% systematics in the GBM responses (Bissaldi et al. 2009) are
used. The use of a Cauchy prior rather than a Gaussian is due to
its wider shape around the mean reflecting the lack of knowledge
about the systematics within 10%, but the belief that they are not
too extreme.

Model comparison between the empirical functions used in
Sect. 4 and synchrotron is not attempted because an empiri-
cal function can always be designed to fit the data with more
predictability than a physical model. Moreover, it is invalid to
treat the Band function as a null hypothesis against synchrotron
emission as it is not a hypothesis, a special case of synchrotron
(a so-called nested model), or part of a closed set of models
which are known to include the true data-generating process8. In
fact, this is the goal of empirical models. Instead, model check-
ing of the synchrotron fits is performed via posterior predictive
checks (PPC) which allows us to see if the observed data look
plausible under the posterior predictive distribution. The details
of the procedure are discussed in Appendix D.

3.3. Synchrotron results

In order to directly compare a success fit of the synchrotron
model to the inference of the width measure, all data were also
fitted by the Band function allowing for the Band derived width
to be computed. This allows the fits to synchrotron to be dis-
played in the W − θ plane with their PPC values in Fig. 4a. Both
width measures are computed from the Band function fit of the
data. There are some spectra that lie in the excluded regions that
have extremely poor PPC values as indicated by the blue X’s;
however, several fits lie in the excluded region that can be well
described by synchrotron. We demonstrate two of these fits in
Fig. 5 which had similar PPC values as those fitted with the
Band function. This explicitly demonstrates that models with

6 https://github.com/giacomov/3ML
7 Log uniform priors are used on scale parameters and uniform priors
for spectral indices for all fitting in this work.
8 This is known as the M-closed model comparison scenario
(Vehtari & Ojanen 2012) under which LRTs and Bayes factors are a
valid statistical test. This is explicitly not the case herein.
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Fig. 4. W − θ plane with synchrotron PPCs (top) and Band PPCs (bot-
tom). Blue X’s indicate extreme poor fits and color indicate deviation
from 0.5, i.e., darker colors indicate better fits. The grey shaded regions
are regions that would be excluded by synchrotron for an electron dis-
tribution of p = −4.

very different shapes in photon space can be statistically similar
in detector count space thus making empirically derived model
assessment procedures very uninformative. Similar results were
recently shown in Vianello et al. (2018). This is likely due to the
Band function not properly modeling the inherent shape of the
data and hence resulting in an misleading W or θ value. There-
fore, empirical width measures fail to accurately predict if syn-
chrotron is a viable spectral model for the data and hence cannot
be used with the purpose for which they were designed. Syn-
chrotron fit parameters are displayed in Appendix B. Figure 6
shows fits to both synchrotron and the Band function where the
PPC for synchrotron was very bad and for the Band function
acceptable. The pattern in the residuals for the synchrotron fit
is not dissimilar to that of Fig. 5a. Naively, this would indi-
cate that both fits should have bad PPCs. This is precisely why
visual inspection of residuals which measures only a single
point in the posterior can be misleading. PPCs have the advan-
tage of measuring the deviation from the data across the entire
posterior.

Goodness of fit via any method should be regarded with cau-
tion because one never has access to the true model. Moreover,
it is preferable to compare physically motivated models to each
other and chose the one which provides the best predictability of
the data similar to what we have done with the empirical models.
Nevertheless, PPCs for the Band function fits are computed and
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Fig. 5. Folded count spectra of two synchrotron fits (GRB 100131730 (left) and GRB 160101030 (right)) that had acceptable PPCs but would have
been rejected via spectral width and sharpness angle as indicated in Fig. 4. The solid lines are the folded model through each GBM detector in the
fit while the grey points indicate the raw count data.
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Fig. 6. Fit of synchrotron (left) and Band (right) to one of the detectors from GRB 160521385. Here, the PPC tail probability indicates that the
synchrotron fit is very poor while the Band function accurately fits the data. A pattern can be seen in the residuals of the synchrotron fit.

displayed in Fig. 4b. We can see that many of the Band func-
tion fits also do not accurately model the data according to the
chosen PPC criterion, though the number of poor Band fits was
smaller than poor synchrotron fits. The poor Band fits can be
due to any number of issues such as unmodeled detector sys-

tematics like the K-edge non-linearity at ∼32 keV (Bissaldi et al.
2009; Goldstein et al. 2012). Therefore, I conclude that while
synchrotron nor the Band function provide universally adequate
fits, synchrotron does fit some spectra which would be ruled out
by the width measures.
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Fig. 7. νFν spectra and 1σ contours of the SBPL (left) and Band (right) fits. The color corresponds to the 10 keV–4 MeV integrated energy flux
(FE). The SBPL fits result in broader or smoother curvature around the νFν peak.

4. Fitting for the width

It is important to understand why the previous empirical width
measures too conservatively reject synchrotron emission as
shown in Sect. 3.3. Thus, the data are fitted with an SBPL of
the form:

Fγ(ε) = A
(
ε

εpiv

)b

10(a−apiv) (2)

where

a = m∆ log
(

eq + e−q

2

)
, apiv = m∆ log

(
eqpiv + e−qpiv

2

)
(3)

q =
log10(ε/εbreak)

∆
, qpiv =

log10(εpiv/εbreak)
∆

(4)

m =
β − α

2
, b =

β + α

2
· (5)

Here, εbreak is the break energy in keV, εpiv is the pivot energy, α
and β are the low- and high-energy spectral indices respectively,
and ∆ is the break scale in decades of energy (for a similar use of
a SBPL, see Ryde 1999). The proxy for the width of the spectral
data will be ∆ as it is a measure that is optimized during the
fitting process and thus contains information about the width of
the folded data. Figure 2 demonstrates how the function changes
as a function of ∆ for a range covering the distribution found
from fitting the data. The intent of this fitting is not to introduce
a new measure of width in the literature, but rather to see if the
Band function is adequately modeling all features present in the
data.

4.1. Fit results and model selection

Every GRB spectrum is fit to both the SBPL and Band func-
tion so that a comparison between the models can be made.
The complexity of the SBPL function can result in local min-
ima regardless of the optimization scheme; therefore, optimizing
on a logarithmic grid of ∆ and spectral normalizations results
in a more robust result. Figure 7 illustrates the results of the
fits to the two different functions. It can be seen that the SBPL
allows for more posterior variance below the νFν peak due to
its freedom to vary its width during the fit. Model selection via
the likelihood ratio test (LRT) between the Band function an
SBPL is not possible due to the fact that they are not nested func-
tions. Additionally, for the empirical functions used, the aim is

to assess whether a richer model is required to describe the data.
The deviance information criteria (DIC) can be used to judge
which model provides the best predictability of the data (see
Appendix C). Table 2 details the results of the fits. Of the spectra
fit, all but one are best described by the SBPL, i.e., positive δDIC
in Table 2.

The ability to fit a width parameter in the data indicates that
the spectra have a variety of inherent widths rather than a single
natural width of the Band function. Any change in the empiri-
cally measured width of the Band function is related to a change
in spectral indices only. This variety is not captured by the Band
function and hence, widths derived from the Band function can
be systematically biased. It is noted that in GBM spectral cata-
logs, an SBPL is also fit to the spectra but its ∆ is always fixed
to 0.3 for historical reasons related to the bandpass of BATSE
(Kaneko et al. 2006).

Another interesting feature of the SBPL fits is the different
values of the measured α values. The distribution of α from
the SBPL is shifted to softer values with a tail extending to
hard values (see Fig. 8). Noticeably larger uncertainty on SBPL
α’s is due to the additional freedom in the curvature. Physical
inferences coming from empirical models are dependent on the
spectral shape from which they are derived. The long standing
paradigm that the Band function’s α should be used to infer
physical spectra as well as the newly proposed limits of width
measures do not hold if the Band function is not the best-fit to
the data.

4.2. The smoothly-broken power law and synchrotron

Let us now examine the proxy for the width in the data, ∆, and
its relation to synchrotron emission. To incorporate the uncer-
tainty on ∆ into the full sample distribution, the full marginal
distributions from all fits are combined into a single distribution
in Fig. 9. The distribution is unimodal with a tail extending to
narrow widths. Hints of substructure are visually apparent in the
distribution, but are likely an artifact of small sample size.

A simple power law synchrotron model from Baring & Braby
(2004), Burgess et al. (2014) was used to create synthetic count
spectra using the GBM response matrices from a GRB in the sam-
ple. These synthetic spectra were then fit via BPS to a SBPL to
estimate the values of ∆ for different electron power law distri-
butions. However, several factors influence the value of ∆ beyond
the shape of the electron distribution alone; most notably, the num-
ber of counts at high-energy in the synthetic spectra. This makes
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Table 2. Spectral fitting results.

GRB αBand αSBPL ∆SBPL δDIC pBand
eff

pSBPL
eff

pBand
B psynch

B

080817161 −0.78+0.08
−0.08 −0.79+0.26

−0.22 0.53+0.35
−0.53 9.01 5.79 −1.51 0.184 0.144

080906212 −0.33+0.07
−0.07 −0.60+0.10

−0.13 0.35+0.14
−0.14 6.10 6.52 5.43 0.196 0.004

080925775 −0.63+0.08
−0.10 −0.77+0.15

−0.23 0.44+0.21
−0.27 5.27 5.62 2.92 0.172 0.150

081215784 −0.58+0.02
−0.02 −0.46+0.06

−0.09 0.83+0.12
−0.16 19.71 6.91 5.14 <10−3 <10−3

090131090 −0.55+0.12
−0.16 0.37+0.78

−1.26 0.76+0.23
−0.44 1.88 −6.96 −5.12 0.046 0.026

090620400 0.14+0.10
−0.10 −0.03+0.20

−0.30 0.51+0.15
−0.24 9.40 5.99 1.55 0.042 <10−3

090626189 −0.35+0.09
−0.10 0.15+0.48

−0.86 0.90+0.37
−0.52 24.69 4.53 −20.26 0.712 0.310

090809978 −0.50+0.08
−0.08 −0.74+0.10

−0.15 0.28+0.12
−0.28 6.62 5.98 3.38 0.658 0.384

090820027 −0.53+0.03
−0.03 −0.66+0.06

−0.06 0.45+0.07
−0.12 25.51 5.91 −2.66 0.004 <10−3

090829672 −1.13+0.04
−0.04 −1.26+0.03

−0.04 0.21+0.13
−0.12 9.58 5.90 5.90 0.004 <10−3

091003191 −0.56+0.06
−0.06 −0.49+0.14

−0.24 0.79+0.22
−0.41 24.86 5.45 −14.41 0.412 0.318

091127976 −1.13+0.05
−0.05 −0.70+0.27

−0.35 1.28+0.28
−0.37 24.09 5.95 −18.80 0.260 0.226

100131730 −0.28+0.09
−0.10 −0.53+0.15

−0.21 0.35+0.18
−0.23 6.67 5.76 4.03 0.790 0.426

100701490 −0.61+0.04
−0.04 −0.58+0.08

−0.11 0.71+0.22
−0.27 8.83 5.83 −2.53 0.338 0.156

100719989 −0.57+0.04
−0.04 −0.21+0.19

−0.23 1.10+0.27
−0.32 33.40 5.90 −11.16 0.004 <10−3

101014175 −0.90+0.04
−0.04 0.16+0.40

−0.71 2.63+0.76
−1.05 83.79 5.27 −46.02 0.096 0.092

110301214 −0.95+0.03
−0.03 −1.11+0.05

−0.07 0.43+0.11
−0.09 11.69 6.80 1.73 <10−3 <10−3

110625881 −0.53+0.04
−0.03 −0.36+0.19

−0.27 0.80+0.23
−0.30 25.06 6.97 −9.94 0.128 0.006

110921912 −0.64+0.05
−0.06 0.49+0.46

−0.74 2.10+0.65
−0.63 34.57 5.32 −14.51 0.066 0.084

120102095 −1.06+0.08
−0.09 −1.08+0.21

−0.19 0.60+0.45
−0.60 9.97 3.38 −4.15 0.902 0.900

120217904 −0.78+0.06
−0.07 −0.91+0.07

−0.11 0.37+0.18
−0.20 8.73 6.45 3.91 0.566 0.606

120707800 −0.90+0.10
−0.11 −0.59+0.44

−0.66 0.84+0.45
−0.70 14.31 4.86 −9.81 0.176 0.158

120711115 −0.86+0.04
−0.04 −0.88+0.08

−0.12 0.59+0.37
−0.42 18.55 5.76 −14.57 0.562 0.422

120921877 0.73+0.24
−0.29 1.21+0.79

−0.31 0.69+0.23
−0.22 −5.04 −3.63 4.71 0.042 <10−3

130606497 −1.06+0.01
−0.02 −0.95+0.05

−0.06 1.20+0.21
−0.23 20.49 5.92 −1.13 0.040 <10−3

130704560 −0.90+0.05
−0.04 −0.90+0.13

−0.15 0.63+0.11
−0.14 3.14 4.60 5.47 <10−3 <10−3

130815660 −0.63+0.07
−0.07 −0.92+0.07

−0.10 0.25+0.09
−0.11 7.52 6.41 5.34 0.002 0.002

131028076 −0.33+0.78
−0.24 −0.60+0.03

−0.03 0.55+0.06
−0.06 1955.85 −169.51 6.02 <10−3 <10−3

131127592 −0.77+0.05
−0.04 −0.99+0.08

−0.10 0.38+0.12
−0.15 16.32 6.60 −4.45 0.024 0.022

140206304 0.49+0.19
−0.24 1.24+0.74

−0.32 0.73+0.20
−0.16 2.58 −3.03 2.96 0.506 0.002

140209313 −0.00+0.14
−0.14 0.23+0.49

−0.77 0.77+0.30
−0.51 11.28 3.47 −4.71 0.162 0.026

150105257 −0.87+0.11
−0.13 −0.90+0.54

−0.43 0.44+0.34
−0.44 5.47 2.67 −1.37 0.314 0.288

150201574 −0.67+0.04
−0.03 −0.97+0.05

−0.05 0.26+0.06
−0.06 12.53 5.93 6.92 <10−3 <10−3

150213001 −1.22+0.02
−0.02 −1.51+0.02

−0.02 0.20+0.04
−0.04 52.70 7.03 6.62 <10−3 <10−3

150314205 −0.33+0.04
−0.04 −0.36+0.10

−0.13 0.56+0.11
−0.15 15.87 5.81 1.90 <10−3 <10−3

150330828 −0.88+0.03
−0.03 −1.02+0.03

−0.04 0.27+0.12
−0.11 13.57 6.76 4.64 0.002 <10−3

150627183 −0.79+0.04
−0.03 −0.99+0.04

−0.05 0.27+0.08
−0.10 12.08 5.84 5.40 0.136 0.104

150824079 −0.42+0.07
−0.06 −0.11+0.28

−0.35 1.10+0.35
−0.40 24.03 6.44 −8.87 0.290 0.108

160101030 −0.80+0.05
−0.04 −0.89+0.11

−0.18 0.55+0.14
−0.21 6.46 6.73 −1.25 0.342 0.306

160118060 −0.54+0.13
−0.16 −0.79+0.15

−0.19 0.22+0.17
−0.22 9.30 1.41 −4.00 0.844 0.834

160215773 −0.92+0.06
−0.07 0.06+0.57

−0.69 2.96+1.05
−1.29 19.55 4.46 −7.91 0.862 0.880

160422499 −0.82+0.02
−0.02 −0.79+0.06

−0.08 0.72+0.14
−0.16 50.64 6.80 −17.48 <10−3 <10−3

160521385 −0.38+0.04
−0.05 −0.47+0.09

−0.13 0.58+0.12
−0.12 20.82 6.76 −4.74 0.700 0.034

160530667 −0.54+0.03
−0.03 −0.69+0.04

−0.05 0.42+0.06
−0.07 17.84 6.97 6.47 <10−3 <10−3

it difficult to set a hard limit on which values of ∆ correspond
to various synchrotron scenarios9. Nevertheless, examining the
distribution of ∆ expected from synchrotron with electron power

9 Both Axelsson & Borgonovo (2015) and Yu et al. (2015) calculate
their respective limits in photon space rather than count space. Both
works use Monte Carlo methods to calculate reportedly small errors on
their respective measures.

law indices p = 2, 4 is necessary to follow the previous inves-
tigations into the spectral width. These limits are displayed in
Fig. 9 both as the full marginal distribution from the BPS and as
their respective 0.68 credible regions. The peak of the observed
∆ distribution coincides with the SBPL-fitted ∆’s of the synthetic
synchrotron spectra when p = 4. Thus, the distribution of widths
from real data are marginally consistent with the limits derived
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Fig. 8. Distributions of the low-energy index (α) from the Band and
SBPL fits. The error bars represent the 0.68 highest posterior density
intervals. There are systematic differences between the values of α due
to the free curvature of the SBPL. The lower histograms are produced
from the combined marginal distributions of the fits to fully incorporate
the uncertainty in the fits.

from pure synchrotron emission. This is notably in contrast to
the conclusions derived in previous studies providing further evi-
dence that the natural width of the (less predictive) Band func-
tion is biasing the previously derived widths.

While these results are promising for synchrotron emission,
it is worth examining their weaknesses. The difficulties of rec-
onciling empirical models with physical spectra presents us with
problems even when the more flexible SBPL is used to fit and
characterize the spectra. Consider Fig. 10 which shows the fitted
Band and SBPL functions to simulated synchrotron spectra. In
the first case (Fig. 10a) the SBPL accurately models the spec-
tra, in the second case (Fig. 10b) the SBPL overestimates the
peak energy of the synthetic model and poorly models the non
power law behavior of spectrum at low energies. In each case,
the Band function fails to accurately model the synthetic spec-
trum. For these reasons, even though ∆ serves as a better proxy
for the width due to its ability to model the width directly in the
data, it should not be used to set quantitative limits or inferences
for the true underlying emission mechanisms in the data.

5. Discussion

It has been demonstrated that the empirical width measures
derived in Axelsson & Borgonovo (2015) and Yu et al. (2015)
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Fig. 9. Distribution of ∆ from the fitted GRB spectra (top). Uncertainty
on ∆ is included via the marginal posteriors of each fit. Lower panel:
marginal distributions of ∆ for simulated synchrotron spectra with p =
2, 4. The 68% credible regions for these fits are superimposed on the
full distribution. This demonstrates that the theoretical widths from pure
synchrotron emission are consistent with the widths derived from the
sample.

fail to predict when GRB data cannot be fit with a synchrotron
spectra. Many of the spectra could be adequately fit with this
model in regardless of the value of the spectral width derived
from the Band function. These measures are derived from an
empirical models that can poorly represent synchrotron emis-
sion. This was previously highlighted in Lloyd & Petrosian
(2000) where parameterized synchrotron models were fit directly
to the data and their asymptotic low-energy power law behav-
ior was compared to that of the Band function. Only a small
subset of GBM peak-flux spectra were examined and hence no
physical conclusions about the validity of the synchrotron model
used herein can be drawn. Such conclusions require examining
the time-resolved spectra of individual GRBs. Instead, it was
assessed whether empirical width measures which would have
rejected synchrotron failed when synchrotron was actually fit
to the same spectra. Furthermore, the question of whether syn-
chrotron emission can be rejected when compared to other phys-
ical models has not been posed in this work as there are no
other publicly available physical models to compare against. In
reality, an emission model like synchrotron possesses multiple
widths which may change non-linearly with the model param-
eters. This further exaggerates the issues with using secondary
inference methods in fitted model space. This was not addressed
directly in this study because the fact that the width fails to accu-
rately predict the underlying model in the simple case is enough
to demonstrate that fitting physical spectra is the proper way for-
ward in GRB emission studies.

In an attempt to understand the spectral width by including
the width of the data rather than the unfolded model, a sam-
ple of GRBs was re-fit with a SBPL and the distribution of its
break scale parameter (∆) was examined. With this measure,
GRBs exhibit a variety of inherent data widths and the majority
of these widths are not inconsistent with synchrotron emission.
While this approach is a more appropriate empirical measure
of the spectral width, it too suffers from the problem that the
SBPL does not always model the shape of synchrotron emission
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Fig. 10. Two examples of how the SBPL (blue) and Band (red) function
fit a synthetic synchrotron spectrum (green). Top: an example where
the SBPL models the synchrotron (W = −1.4, θ = 128) emission ade-
quately while the Band function is too narrow and artificially softens
β to compensate. Bottom: both the SBPL and Band functions are poor
approximations of the true synchrotron spectrum (W = −1.6, θ = 170)
and hence would result in poor empirical inference about the true under-
lying mechanism.

properly. It is not entirely surprising that these empirical mea-
sures do not serve as quantitative inferences for physical mod-
els. Burgess et al. (2014, 2015) showed that synchrotron emis-
sion can fit GRBs that violate the “line-of-death” and that Band
α values provide little insight into the presence of blackbodies
in GRB spectra. Thus, it is strongly suggested that the fitting
of physical models be performed to ascertain which model best
represents the data.

While model checking can provide a qualitative guide to the
validity of a spectra fit, other information should be used to fully
justify the use of a model. These information can include physi-
cally motivated priors and predictions from time-evolving mod-
els such as those used in Dermer et al. (1999), Pe’er (2008),
Bošnjak & Daigne (2014). For example, Burgess et al. (2016)
used temporal predictions from Dermer et al. (1999) combined
with synchrotron spectral fits to argue for an external shock
interpretation of GRB 141028A. Therefore, without temporal or
other information, it is important to not stress the physical impli-
cations of this work. Empirical models provide no such insight to
physics other than assessing general features about the data e.g.,
the total flux, peak νFν energy and the existence of high-energy
power laws. Deeper physical inferences from these empirical
models should be regarded with caution until verified by com-
plimentary analysis with physical emission models.

Supporting material

All processed GBM data files for use with XSPEC or 3ML as
well as the analysis files containing the parameter marginals
(readable by 3ML) are released for the purposes of replication.
In addition, sample code for constructing the models used is also
released10.
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Appendix A: Synchrotron modeling

In order to fit synchrotron emission directly to the data, we
assume a simple and pragmatic parameterization. More impor-
tantly, we assume the parameterization which captures the
assumptions used to derive the rejection criteria for the various
width measures adopted in previous works. The observed emis-
sion is assumed to come from a power law distribution of elec-
trons that have been accelerated by an unspecified mechanism.
Thus,

ne(γ) ∝ γ−p ∀γ ≥ γinj (A.1)

where γ is dimensionless electron energy, γinj the energy at
which electrons are injected with spectral index p. The elec-
trons are assumed to not cool via their radiation of synchrotron
photons within a dynamical time. Therefore, we simply com-
pute the synchrotron emission of this power law distribution
by convolving it with the standard synchrotron emission kernel
(Blumenthal & Gould 1970). Therefore,

nγ
(
ε; N, B, γinj, γmax, p

)
= N

∫ γmax

γinj

dγ ne (γ; p) Φ

(
ε

εcrit(γ; B)

)
(A.2)

where

Φ (w) =

∫ ∞

w

dx K5/3 (x) (A.3)

and

εcrit (γ; B) =
3
2

B
Bcrit

γ2· (A.4)

Here, N is an arbitrary spectral normalization constant, B is the
magnetic field strength, Bcrit = 4 × 1014 G, and γmax is the max-
imum electron energy which is set to have the spectral cutoff of
the photon model above the GBM energy range.

With this simple parameterization, B and γinj are multiplica-
tively degenerate in setting the νFν peak of the spectrum, thus,
the choice is made to fix γinj = 105 which is an arbitrary choice.
This implies that the value of B found during fits is scaled and
cannot be interpreted physically other than setting the location
of the νFν peak. Therefore, there are three fitting parameters: B,
p, and the arbitrary spectral normalization N. The high-energy
shape of the photon spectrum is set by p while the low-energy
shape is that of the synchrotron kernel. Note that this is the same
functional form of synchrotron that is used to derive the condi-
tions for rejecting synchrotron emission via the width or the line
of death.

Appendix B: Synchrotron fit parameters

Here I include parameter plots for the synchrotron fits for ref-
erence. The synchrotron model in this work contains only two
shape parameters and a normalization. Figure B.1 display the
magnetic field strength and power law electron injection index
from the fits. The plots are ranked and display the 68% high-
est density posterior intervals obtained from the fit. The electron
spectral index is often found to be quite steep. This is not in
conflict with expectations from relativistic, oblique shock accel-
eration theory (Baring 2006).

It is stressed that the value of the magnetic field strength
value has no scale unless assumptions about the emission region
(emission radius, time scale, etc.) are assumed as noted in
Appenidx A. For further discussion see Burgess et al. (2014).

−0.5 0.0 0.5 1.0 1.5

log10(B/G)

(a)

2 3 4 5 6 7

electron spectral index

(b)

Fig. B.1. Parameter distributions of B and p from the synchrotron fits
along with their 68% credible regions.

Appendix C: Deviance information criteria

Model selection is one of the most difficult procedures in spec-
tral analysis. The use of reduced χ2 as a model rejection criterion
is not applicable to photon counting problems though it has pre-
viously been employed in GBM spectral catalogs. The lack of
Gaussian likelihoods, generally non-linear models, unattained
asymptotics of Wilk’s theorem (Wilks 1938) and the generally
non-nested models employed (Protassov et al. 2002) violate a
host of regularity conditions required to apply simple hypothe-
sis testing. Additionally, the effective number of free parameters
in a model is not necessarily equal to the number of fitted func-
tional parameters. Therefore, rather than likelihood ratio tests,
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information criteria which seek to quantify the predictive accu-
racy of a model can be more useful for the current situation (see
however the technique of Algeri et al. 2016, for an approach to
assessing non-nested likelihood ratio tests)11.

The Akaike information criteria (AIC; Akaike 1977) has
recently become common in X-ray spectral analysis as a model
comparison tool (Zhang et al. 2011; Buchner et al. 2014); how-
ever, it relies of point estimates, an assumption of large num-
ber statistics, and only penalizes model complexity by the num-
ber of free model parameters. The deviance information criteria
(DIC), uses the posterior mean, rather than a point estimate and
penalizes model complexity with the effective number of free
parameters which are a function of both the data and the model
(Spiegelhalter et al. 2002).

DIC = −2 log π(y | θ̂) + 2peff (C.1)

where y are the data, θ̂ is the posterior mean and peff is the
effective number of free parameters. The effective number of
free parameters is a function of both the model and the data
and can be negative if the posterior mean is far from the mode
(Gelman et al. 2014). This allows for a model and data sensitive
measure of a model’s data predictability.

Appendix D: Posterior predictive checks

Assessment of a model’s fit to data via posterior predictive
checks (PPCs) allows for incorporating information in the

11 While Bayes factors and marginal likelihoods can also avoid the typ-
ical problems of the LRT, they are sensitive to the chosen prior distribu-
tions.

posterior into a quantitative goodness of fit measure for future
observations. The usefulness of PPCs in X-ray spectral analysis
has been demonstrated in van Dyk & Kang (2004). PPCs offer
a guide to model assessment but are simply a self-consistency
check. In the current situation we lack other physical models
with which to check against. The posterior predictive distribu-
tion is defined as

π(yrep | y) =

∫
dθπ(yrep | θ)π(θ | y) (D.1)

where y are the data and yrep are data replicated from a the pos-
terior and θ are the parameters. One way to assess the lack of fit
of data to this distribution is a tail-area probability known as the
posterior p-value:

pB = π(T (yrep, θ) ≥ T (y, θ) | y). (D.2)

Here, T is a test statistic. For this work, 500 replicated spectra are
produced from the simulated posterior and T (y, θ) is defined as
the likelihood value for the given parameter. We compare these
test statistics to that of the actual data to arrive at a measure of
goodness of fit. A fit that adequately models the data should have
pB ∼ 0.5 (Gelman 2013). Thus, we define a so-called good fit as
being |pB − 0.5| ∼ 0.

Model assessment and comparison is an ongoing and active
part of statistical research. Further details can be found in
Vehtari & Ojanen (2012).
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