

Present-day surface deformation of the Alpine Region inferred from geodetic techniques

Laura Sánchez¹, Christof Völksen², Alexandr Sokolov^{1,2}, Herbert Arenz¹, Florian Seitz¹

¹Technische Universität München, Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Germany ²Bayerische Akademie der Wissenschaften, Erdmessung und Glaziologie, Germany

IUGG General Assembly 2019 Montreal, Canada, July 15, 2019

(Simplified) Tectonic framework in the Alps

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Motivation

- The EU INTERREG III-B Alpine Space Programme established in 2004 the project ALPS GPSQUAKENET with the objective of installing the GPS array GAIN (Geodetic Alpine Integrated Network): duration Jan 2004 to Mar 2007, budget 2,424,638 €.
- ALPS GPSQUAKENET was supported by partners from
 - France (2): Institut Physique du Globe de Strasbourg and Laboratoire de Géophysique Interne et Tectonophysique (Grenoble)
 - Italy (7): Regional Authorities from Piedmont, Veneto, Bolzano, Liguria, Lombardy, Trento, and the Fondazione Montagna Sicura, Dipartimento di Scienze della Terra (UniversityTrieste)
 - Germany (2): Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) and Bayerische Akademie der Wissenschaften (BAdW)
 - Slovenia (1): Environmental Agency of the Republic of Slovenia
 - Switzerland and Austria did not participate in the project.

GPS array GAIN: Geodetic Alpine Integrated Network

- Supervised and the second seco
- About 30 continuously operating GNSS stations were installed between 2004 and 2006.
- The data collection still continues.
- Since 2007, DGFI-TUM and BAdW regularly computed positions and velocities of some stations of this network.
- The uncertainty of the results was larger than the deformation signals to be detected.
- Solution: A longer period of observations to become uncertainty values very much less that deformation signals.
- In 2016, it was possible to obtain a first suitable solution.

Geodetic surface deformation modelling

- High-level data processing of GNSS observations collected over 12 years along the Alpine Region → Precise station positions and velocities
- 2) Removal of the Eurasia plate motion from the (observed) station velocities → Deformation vectors
- Interpolation of the deformation vectors to a regular grid using a geodetic Least Squares Collocation approach (LSC) → Deformation model
- 4) Estimation of deformation gradients and computation of strain components → Strain field (Horizontal projection of the surface deformation)

GNSS stations processed for the estimation of the surface deformation in the Alps

GAIN stations plus stations provided by

- International GNSS Service IGS
- Reference Frame Sub-Commission for Europe of the International Association of Geodesy – EUREF
- Federal Agency for Cartography and Geodesy of Germany (BKG) – Germany
- Space Research Institute of the Austrian Academy of Sciences – Austria
- Centro Ricerche Sismologiche (CRS) of the Istituto Nazionale di Oceanografia e di
- Geofisica Sperimentale (OGS) Italy
- Réseau National GPS France
- Orpheon network France
- Automated GNSS Network for Switzerland AGNES (coordinate solution from swisstopo)

Station positions and velocities

- Time span: 2004-01-01 to 2016-05-30
- Bernese GNSS Software V.5.2 (Dach et al. 2015)
- GPS + GLONASS
- Reference frame IGS08/IGb08
- Reference epoch 2010.0
- 306 occupations

Mean precision of station positions at the reference epoch

 $N - E = \pm 1.1 \text{ mm}$; $h = \pm 2.3 \text{ mm}$

Mean precision of the station velocities $V_N - V_E = \pm 0.2 \text{ mm/a}$; $V_h = \pm 0.4 \text{ mm/a}$

Horizontal deformation vectors

after removing the Eurasian plate motion from the station velocities

Modelling of deformations based on the geodetic Least Squares Collocation approach (LSC)

Vector prediction:

$$\mathbf{v}_{pred} = \mathbf{C}_{new}^{T} \left(\mathbf{C}_{obs} + \mathbf{C}_{nn} \right)^{-1} \mathbf{v}_{obs}$$

 \mathbf{v}_{pred} = predicted velocities in a regular grid

 \mathbf{v}_{obs} = (observed) velocities in geodetic stations

 C_{new} = correlation matrix between predicted and observed vectors

 C_{obs} = correlation matrix between observed vectors

 C_{nn} = noise covariance matrix (uncertainty of the station velocities)

 $C_{\rm obs}$ and $C_{\rm new}$ are built from empirical isotropic, stationary covariance functions

- d = maximum correlation distance:
 - $d \leq 100 \ \text{km}$ for the horizontal deformation model
 - $d \leq 300$ km for the vertical deformation model

 0_{6-7}

 $c = E(\underline{x}_i \cdot \underline{x}_i)$

 $\mathbf{c} = \mathbf{c}_0 \cdot e^{-\mathbf{b} \cdot \mathbf{d}^2}$

9

after predicting the point-wise deformation vectors into a regular grid (25 km x 25 km)

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

ТΠ

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

ТΠ

ТШ

Strain field

inferred from the horizontal deformation model

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Strain field

ПΠ

Strain field

Strain field

•

•

ПΠ

Vertical deformation model (Uplift model)

Vertical deformation model (Uplift model)

Vertical deformation model (Uplift model)

Vertical deformation model (subsidence regimes)

Closing remarks

- Computations were performed in the IGS08/IGb08 reference frame. To extend the time span of the GNSS station position time series, a reprocessing based on the IGS14 reference frame is necessary.
- A larger number of GNSS stations along the Po Basin should be considered to improve the resolution of the deformation model in the southern margin of the Alps.
- Methods and results are published in Earth System Science Data ESSD:

Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., and Seitz, F.: Present-day surface deformation of the Alpine region inferred from geodetic techniques, Earth Syst. Sci. Data, 10, 1503-1526, https://doi.org/10.5194/essd-10-1503-2018, 2018

 Station coordinates, deformation models, and strain rate field are available at the long-term data repository Pangaea

https://doi.pangaea.de/10.1594/PANGAEA.886889

