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From Dissipativity Theory to Compositional
Abstractions of Interconnected Stochastic Hybrid

Systems
Asad Ullah Awan and Majid Zamani, Senior Member, IEEE

Abstract—In this work, we derive conditions under which com-
positional abstractions of networks of stochastic hybrid systems
can be constructed using the interconnection topology and joint
dissipativity-type properties of subsystems and their abstractions.
In the proposed framework, the abstraction, itself a stochastic
hybrid system (possibly with a lower dimension), can be used
as a substitute of the original system in the controller design
process. Moreover, we derive conditions for the construction of
abstractions for a class of stochastic hybrid systems involving
nonlinearities satisfying an incremental quadratic inequality. In
this work, unlike existing results, the stochastic noises and jumps
in the concrete subsystem and its abstraction need not to be
the same. We provide examples with numerical simulations
to illustrate the effectiveness of the proposed dissipativity-type
compositional reasoning for interconnected stochastic hybrid
systems.

Index Terms—Compositional Abstraction, Jump Diffusions, Dis-
sipativity, Interconnected Systems

I. INTRODUCTION

Abstraction based controller synthesis is becoming a promis-
ing approach to design controllers for enforcing complex
specifications over large interconnected control systems in a
reliable and cost effective way. In this approach, one synthe-
sizes a controller to enforce the complex specifications over
the abstraction instead of the original (concrete) system, and
refines the controller (using a so-called interface map) to that
of the concrete system. Since the error between the output of
the concrete system and that of its abstraction is quantified,
one can ensure that the concrete system also satisfies the
specifications (within a priori known error bounds).
Constructing abstractions for a complex system when viewed
monolithically is a challenging task in itself. One approach
to deal with this is to leverage the fact that many large-
scale complex systems can be regarded as interconnected
systems consisting of smaller subsystems. This motivates a
compositional approach for the construction of the abstrac-
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tions wherein abstractions of the concrete systems can be
constructed by using the abstractions of smaller subsystems.
Recently, there have been several results on the compositional
construction of (in)finite abstractions of deterministic control
systems including [1], [2], [3], and of a class of stochastic
hybrid systems [4]. These results employ a small-gain type
condition for the compositional construction of abstractions.
However, as shown in [5], this type of condition is a function
of the size of the network and can be violated as the number of
subsystems grows. Recently in [6], a compositional framework
for the construction of infinite abstractions of networks of
control systems has been proposed using dissipativity theory.
In this result a notion of storage function is proposed which
describes joint dissipativity properties of control systems and
their abstractions. This notion is used to derive compositional
conditions under which a network of abstractions approximate
a network of the concrete subsystems. Those conditions can be
independent of the number or gains of the subsystems under
some properties for the interconnection topologies.
In this work, we extend this approach to a class of stochastic
hybrid systems, namely, jump-diffusions. Stochastic hybrid
systems are a general class of systems consisting of continuous
and discrete dynamics subject to probabilistic noise and events.
In jump-diffusions, the continuous dynamics are modelled by
stochastic differential equations and switches are modelled as
Poisson processes. We introduce a notion of so-called stochas-
tic storage functions describing joint dissipativity properties of
stochastic hybrid subsystems and their abstractions. Given a
network of stochastic hybrid subsystems and the stochastic
storage functions between subsystems and their abstractions,
we derive conditions based on the interconnection topology,
guaranteeing that a network of abstractions quantitatively
approximate the network of concrete subsystems. For a class
of stochastic hybrid subsystems and using the incremental
quadratic inequality for the nonlinearity, we derive a set
of matrix (in)equalities facilitating the construction of their
abstractions together with the corresponding stochastic storage
functions. We illustrate the effectiveness of the proposed re-
sults in two examples in which compositionality conditions are
satisfied independent of the number or gains of the subsystems.

A. Related work

Compositional abstraction for (deterministic) interconnected
control systems using dissipativity was introduced in [6]. In a
preliminary version of this paper, which appeared in [7], this
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technique was extended to a class of stochastic hybrid systems.
In both works, the joint dissipativity properties are defined
with respect to a static map whose input is the (internal)
inputs and outputs of the subsystems and their abstractions.
In contrast to this, in this paper we employ a dynamic map
based on a similar notion introduced in [8]. This allows for a
broader class of (stochastic hybrid) subsystems for which one
can find (stochastic) storage functions between them and their
abstractions (cf. the second case study). Furthermore, in this
work we derive constructive conditions for computing abstrac-
tions for a class of stochastic hybrid systems by considering
nonlinearities which are more general than the ones considered
in [6] and [7].
Compositional abstractions for jump-diffusions are also intro-
duced in [4]. However, in [4] it is assumed that the stochastic
noises in a subsystem and its abstraction are the same. This
assumption is not realistic in practice, as it requires access to
the realization of the noises in the original subsystem in order
to refine the constructed controllers for the abstractions to the
original subsystems. On the other hand, in this paper concrete
subsystems and their abstractions do not share the same
stochastic noises. In addition, the results in [4] use small-gain
type conditions for the main compostionality result whereas
the proposed approach here uses dissipativity-type conditions
which can potentially provide scale-free results under some
properties over the interconnection topologies. Although the
results in [4] derive conditions for constructing abstractions
for just linear jump-diffusions, here we provide constructive
conditions for a class of nonlinear jump-diffusions.

II. STOCHASTIC HYBRID SYSTEMS

A. Notation

The sets of non-negative integer and real numbers are denoted
by N and R, respectively. Those symbols are footnoted with
subscripts to restrict them in the usual way, e.g. R>0 denotes
the positive real numbers. The symbol Rn×m denotes the
vector space of real matrices with n rows and m columns.
The symbols ~1n,~0n, In, 0n×m denote the vector with all its el-
ements to be one, the zero vector, identity and zero matrices in
Rn,Rn,Rn×n,Rn×m, respectively. For a, b ∈ R with a ≤ b,
the closed, open, and half-open intervals in R are denoted
by [a, b], ]a, b[, [a, b[, and ]a, b], respectively. For a, b ∈ N
and a ≤ b, we use [a; b], ]a; b[, [a; b[, and ]a; b] to denote
the corresponding intervals in N. Given N ∈ N≥1, vectors
xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use x = [x1; . . . ;xN ]

to denote the concatenated vector in Rn with n =
∑N
i=1 ni.

Similarly, we use X = [X1; . . . ;XN ] to denote the matrix in
Rn×m with n =

∑N
i=1 ni, given N ∈ N≥1, matrices Xi ∈

Rni×m, ni ∈ N≥1, and i ∈ [1;N ]. Given a vector x ∈ Rn,
we denote by ‖x‖ the Euclidean norm of x. Given a matrix
M = {mij} ∈ Rn×m, we denote by ‖M‖ the induced 2 norm
of M , and the trace of M by Tr(M), where Tr(P ) =

∑n
i=1 pii

for any P = {pij} ∈ Rn×n.Given matrices M1, . . . ,Mn, the
notation diag(M1, . . . ,Mn) represents a block diagonal matrix
with diagonal matrix entries M1, . . . ,Mn. Given a symmetric
matrix A, λmin(A) and λmax(A) denote the minimum and
maximum eigenvalues of A, respectively. Given a function

f : R≥0 → Rn, the (essential) supremum of f is denoted by
‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. Measurability throughout
this paper refers to Borel measurability. A continuous function
γ : R≥0 → R≥0, is said to belong to class K if it is strictly
increasing and γ(0) = 0; γ is said to belong to class K∞ if
γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function
β : R≥0 × R≥0 → R≥0 is said to belong to class KL if, for
each fixed t, the map β(r, t) belongs to class K with respect to
r, and for each fixed nonzero r, the map β(r, t) is decreasing
with respect to t and β(r, t) → 0 as t → ∞. Given a matrix
B, we use the usual symbols im B and ker B to denote the
image and kernel of B, respectively.

B. Stochastic hybrid systems

Let (Ω,F ,P) denote a probability space endowed with a
filtration F = (Fs)s≥0 satisfying the usual conditions of
completeness and right continuity. The expected value of a
measurable function g(X), where X is a random variable
defined on a probability space (Ω,F ,P), is defined by the
Lebesgue integral E[g(X)] :=

∫
Ω
g(X(ω))dP(ω), where ω ∈

Ω. Let (Ws)s≥0 be a b-dimensional F-Brownian motion and
(Ps)s≥0 be an r-dimensional F-Poisson process. We assume
that the Poisson process and Brownian motion are independent
of each other. The Poisson process Ps = [P 1

s ; . . . ;P r
s] models

r kinds of events whose occurrences are assumed to be
independent of each other.

Definition II.1. The class of stochastic hybrid systems studied
in this paper is a tuple

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2),

where
• Rn, Rm, Rp, Rq1 , and Rq2 are the state, external in-

put, internal input, external output, and internal output
spaces, respectively;

• U and W are subsets of sets of all F-progressively
measurable processes taking values in Rm and Rp,
respectively;

• f : Rn × Rm × Rp → Rn is the drift term which
is globally Lipschitz continuous: there exist Lipschitz
constants Lx, Lu, Lw ∈ R≥0 such that ‖f(x, u, w) −
f(x′, u′, w′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖+Lw‖w−w′‖
for all x, x′ ∈ Rn, all u, u′ ∈ Rm, and all w,w′ ∈ Rp;

• σ : Rn → Rn×b is the diffusion term which is globally
Lipschitz continuous with the Lipschitz constant Lσ;

• ρ : Rn → Rn×r is the reset term which is globally
Lipschitz continuous with the Lipschitz constant Lρ;

• h1 : Rn → Rq1 is the external output map;
• h2 : Rn → Rq2 is the internal output map.

A stochastic hybrid system Σ satisfies

Σ :


dξ(t)=f(ξ(t), υ(t), ω(t))dt+σ(ξ(t))dWt+ρ(ξ(t))dPt,

ζ1(t)=h1(ξ(t)),

ζ2(t)=h2(ξ(t)),

(1)

P-almost surely (P-a.s.) for any υ ∈ U and any ω ∈ W ,
where stochastic process ξ : Ω × R≥0 → Rn is called a
solution process of Σ, stochastic process ζ1 : Ω×R≥0 → Rq1
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Fig. 1: Stochastic hybrid system defined in Definition II.1.

is called an external output trajectory of Σ, and stochastic
process ζ2 : Ω × R≥0 → Rq2 is called an internal output
trajectory of Σ. We also write ξaυω(t) to denote the value of
the solution process at time t ∈ R≥0 under input trajectories
υ and ω from initial condition ξaυω(0) = a P-a.s., where
a is a random variable that is F0-measurable. We denote by
ζ1aυω and ζ2aυω the external and internal output trajectories
corresponding to solution process ξaυω . Here, we assume that
the Poisson processes P is , for any i ∈ [1; r], have the rates λi.
We emphasize that the postulated assumptions on f, σ, and ρ
ensure existence, uniqueness, and strong Markov property of
the solution process [9], [10].

Remark II.2. If the stochastic hybrid system Σ does not
have internal inputs and outputs, the system defined in Defi-
nition II.1 reduces to Σ = (Rn,Rm,U , f, σ, ρ,Rq, h), where
f : Rn×Rm → Rn. Correspondingly, equation (1) describing
the evolution of solution processes reduces to:

Σ :

{
dξ(t)=f(ξ(t), υ(t))dt+σ(ξ(t))dWt+ρ(ξ(t))dPt,

ζ(t)=h(ξ(t)).
(2)

We use the notion of stochastic hybrid system as in (2) later
to refer to interconnected systems.

Remark II.3. In our description of stochastic hybrid subsys-
tems in Definition II.1, we distinguish between external and
internal inputs and outputs (as illustrated in Figure 1). We
use internal inputs and outputs to define the interconnection
between subsystems, whereas the external ones are those which
are available after the interconnection and can be used to
control the interconnected system (defined later in Definition
IV.1).

In the next section, we introduce two notions which we use to
formally relate a stochastic hybrid system and its abstraction.
The first notion, namely stochastic storage functions, relates a
stochastic hybrid system introduced in Definition II.1 and its
abstraction. The second notion, namely stochastic simulation
functions, relates a stochastic hybrid system without internal
inputs and outputs (see Remark II.2) and its abstraction.

III. STOCHASTIC STORAGE FUNCTION

In this section, we introduce a notion of so-called stochastic
storage functions, adapted from the notion of storage functions
from dissipativity theory [11]. Before introducing the notion
of stochastic storage functions, we introduce a linear control
system which is given by:

ξ̇θ(t) = Aθξθ(t) +Bθυθ(t) (3)
ζθ(t) = Cθξθ(t) +Dθυθ(t),

where Aθ ∈ Rlθ×lθ , Bθ ∈ Rlθ×mθ , Cθ ∈ Rqθ×lθ , and Dθ ∈
Rqθ×mθ , where Bθ, and Dθ have the conformal partitions

Bθ =
[
B1 B2

]
, Dθ =

[
D1 D2

]
, (4)

respectively. These conformal partitions will be used later
in the paper. We use the tuple Σθ = (Aθ, Bθ, Cθ, Dθ) to
represent such a linear control system. Now we define the
infinitesimal generator of a stochastic process which will be
used later to define a notion of stochastic storage functions.

Definition III.1. Consider two stochastic hybrid sys-
tems Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2) and
Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2) with so-
lution processes ξ and ξ̂, respectively. Consider a linear
control system Σθ = (Aθ, Bθ, Cθ, Dθ) satisfying (3) with state
trajectory ξθ. Consider a twice continuously differentiable
function V : Rn × Rn̂ × Rlθ → R≥0. The infinitesimal
generator of the stochastic process Ξ = [ξ; ξ̂; ξθ], denoted by
L, acting on function V is defined as [9]:

LV (x, x̂, θ) :=
[
∂xV ∂x̂V ∂θV

]  f(x, u, w)

f̂(x̂, û, ŵ)
Aθθ +Bθuθ


+

1

2
Tr
(
σ(x)σT (x)∂x,xV

)
+

1

2
Tr
(
σ̂(x̂)σ̂T (x̂)∂x̂,x̂V

)
+

r∑
j=1

λj(V (x+ ρ(x)erj , x̂)− V (x, x̂))

+

r̂∑
j=1

λ̂j(V (x, x̂+ ρ̂(x̂)er̂j)− V (x, x̂)),

where erj denotes an r-dimensional vector with 1 on the j-th
entry and 0 elsewhere.

Now we have all the ingredients to introduce a notion of
stochastic storage functions.

Definition III.2. Consider two stochastic hybrid sys-
tems Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2) and
Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2) with the
same external output space dimension and let Σθ =
(Aθ, Bθ, Cθ, Dθ) be a linear control system as in (3). A twice
continuously differentiable function V : Rn×Rn̂×Rlθ → R≥0

is called a stochastic storage function from Σ̂ to Σ, with
respect to Σθ, in the k-th moment (SStF-Mk), where k ≥ 1, if
it has polynomial growth rate and there exist convex functions
α, η ∈ K∞, concave function ψext ∈ K∞∪{0}, some constant
c ∈ R≥0, some matrices W, Ŵ , and H , and some symmetric
matrix X of appropriate dimension such that

DT
2 XD2 � 0, (5)

where D2 is given in (4), and ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and ∀θ ∈
Rlθ one has

α(‖h1(x)− ĥ1(x̂)‖k) ≤ V (x, x̂, θ), (6)

and ∀û ∈ Rm̂ ∃u ∈ Rm, such that ∀ŵ ∈ Rp̂ ∀w ∈ Rp, one
obtains

LV (x, x̂, θ) ≤ −η(V (x, x̂, θ)) + ψext(‖û‖k)

+ zTXz + c, (7)
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where z = Cθθ +Dθuθ and

uθ =

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

We use notation Σ̂ � Σ if there exists an SStF-Mk V from Σ̂
to Σ. The stochastic hybrid system Σ̂ (possibly with n̂ < n)
is called an abstraction of Σ.

Remark III.3. If Cθ is the zero matrix, and Dθ is the identity
matrix, then the quadratic term in (7) reduces to the one in
[6], [7], with

z =

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

Remark III.4. Condition (5) has also appeared in various
forms in the literatures as a necessary condition for deriving
asymptotic stability from dissipativity properties of a system.
See for example [8].

Now, we recall a slightly adapted version of the notion of
stochastic simulation function introduced in [4]. This notion
is appropriate for relating interconnected systems without
internal inputs and outputs.

Definition III.5. Let Σ = (Rn,Rm,U , f, σ, ρ,Rq, h) and Σ̂ =
(Rn̂,Rm̂, Û , f̂ , σ̂, ρ̂,Rq, ĥ) be two stochastic hybrid systems. A
twice continuously differentiable function V : Rn×Rn̂×Rlθ →
R≥0 is called a stochastic simulation function from Σ̂ to Σ in
the k-th moment (SSF-Mk), where k ≥ 1, if there exist convex
functions α, η ∈ K∞, concave function ψext ∈ K∞ ∪{0}, and
some constant c ∈ R≥0, such that ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and
∀θ ∈ Rlθ , one has

α(‖h(x)− ĥ(x̂)‖k) ≤ V (x, x̂, θ), (8)

and ∀û ∈ Rm̂ ∃u ∈ Rm such that

LV (x, x̂, θ) ≤ −η(V (x, x̂, θ)) + ψext(‖û‖k) + c. (9)

We say that a stochastic hybrid system Σ̂ is approximately
simulated by a stochastic hybrid system Σ, denoted by Σ̂ �AS
Σ, if there exists an SSF-Mk function V from Σ̂ to Σ. We call
Σ̂ (possibly with lower dimension n̂ < n) an abstraction of Σ.
The next theorem shows the important of the existence of an
SSF-Mk by quantifying the error between the output behaviors
of Σ and the ones of its abstractions Σ̂.

Theorem III.6. Let Σ = (Rn,Rm,U , f, σ, ρ,Rq, h) and Σ̂ =
(Rn̂,Rm̂, Û , f̂ , σ̂, ρ̂,Rq, ĥ) be two stochastic hybrid systems.
Suppose V is an SSF-Mk from Σ̂ to Σ. Then, there exists a KL
function β, a K∞ function γext, and some constant c′ ∈ R≥0

such that for any υ̂ ∈ Û , any random variable a and â that
are F0-measurable, and any θ0 ∈ Rlθ , there exists υ ∈ U such
that the following inequality holds for any t ∈ R≥0:

E[‖ζaυ(t)− ζ̂âυ̂(t)‖k] ≤ β(E[V (a, â, θ0)], t)

+ γext(E[‖υ̂‖k∞]) + c′. (10)

Proof. The proof is similar to the one of Theorem 3.5 in [4]
and is omitted here due to lack of space.

In the next section we first provide a definition of intercon-
nected stochastic hybrid systems. We then provide conditions
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Fig. 2: Interconnected stochastic hybrid system defined in
Definition IV.1

under which we can construct abstractions of interconnected
stochastic hybrid systems in a compositional way.

IV. INTERCONNECTED STOCHASTIC HYBRID SYSTEMS

Next definition provides a notion of interconnection for
stochastic hybrid subsystems investigated in this paper.

Definition IV.1. Consider N ∈ N≥1 stochastic hybrid subsys-
tems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ], and a matrix M (the interconnection matrix)
of an appropriate dimension defining the coupling of these
subsystems. The interconnected stochastic hybrid system

Σ = (Rn,Rm,U , f, σ, ρ,Rq, h),

denoted by I(Σ1, . . . ,ΣN ), follows by n =
∑N
i=1 ni,m =∑N

i=1mi, q =
∑N
i=1 q1i, and the functions

f(x, u) := [f1(x1, u1, w1); . . . ; fN (xN , uN , wN )],

σ(x) := [σ1(x1); . . . ;σN (xN )],

ρ(x) := [ρ1(x1); . . . ; ρN (xN )],

h(x) := [h11(x1); . . . ;h1N (xN )],

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ] and with internal
variables constrained by

[w1; . . . ;wN ] = M [h21(x1); . . . ;h2N (xN )].

Assume we are given N stochastic hybrid subsystems
Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i)
together with their corresponding abstractions
Σ̂i = (Rn̂i ,Rm̂i ,Rp̂i , Ûi, Ŵi, f̂i, σ̂i, ρ̂i,Rq1i ,Rq̂2i , ĥ1i, ĥ2i)
and with SStF-Mk Vi from Σ̂i to Σi. We use αi, ηi, ψiext,
Aθi , Bθi , Cθi , Dθi , Hi, Wi, Ŵi, and Xi to denote the
corresponding functions, matrices, and their corresponding
conformal block partitions appearing in Definition III.2.
The next theorem provides a compositional approach on the
construction of abstractions of networks of stochastic hybrid
systems.

Theorem IV.2. Consider an interconnected system Σ =
I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1 stochastic hybrid sub-
systems Σi and the interconnection matrix M . Suppose each
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subsystem Σi admits an abstraction Σ̂i with the corresponding
SStF-Mk Vi with respect to Σθi = (Aθi , Bθi , Cθi , Dθi),
i ∈ [1;N ]. Suppose there exists µi > 0, i ∈ [1;N ], symmetric
matrix Q̃ � 0, and matrix M̂ of appropriate dimension such
that the matrix (in)equalities (11) and (12) are satisfied, where
q̃ =

∑N
i=1 q2i, and

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ),

AD = diag(Aθ1 , . . . , AθN ), BD = diag(Bθ1 , . . . , BθN ),

CD = diag(Cθ1 , . . . , CθN ), DD = diag(Dθ1 , . . . , DθN ),

and S is the following permutation matrix:

S =



IrW1
0rW2

. . . 0rWN 0rH1
0rH2

. . . 0rHN
0rW1

0rW2
. . . 0rWN IrH1

0rH2
. . . 0rHN

0rW1
IrW2

. . . 0rWN 0rH1
0rH2

. . . 0rHN
0rW1

0rW2
. . . 0rWN 0rH1

IrH2
. . . 0rHN

...
. . .

...
...

. . .
...

0rW1
0rW2

. . . IrWN 0rH1
0rH2

. . . 0rHN
0rW1

0rW2
. . . 0rWN 0rH1

0rH2
. . . IrHN


,

where, for each i ∈ [1;N ], rWi and rHi denote the number
of rows in Wi and Hi, respectively. Then

V (x, x̂, θ) :=

N∑
i=1

µiVi(xi, x̂i, θi) + θT Q̃θ,

where θ := [θ1; . . . ; θN ] ∈ Rlθ , lθ =
∑N
i=1 lθi , is an SSF-Mk

from the interconnected system Σ̂ := I(Σ̂1, . . . , Σ̂N ), with the
coupling matrix M̂ , to Σ.

Proof. The proof is inspired by that of Theorem 4.2 in [6].
First we show that the inequality (8) holds for some convex
K∞ function α. As also argued in the proof of Theorem 4.2 in
[4], for any x = [x1; . . . ;xN ] ∈ Rn, any x̂ = [x̂1; . . . ; x̂N ] ∈
Rn̂, and any θ := [θ1; . . . ; θN ] ∈ Rlθ , one gets:

‖h(x)− ĥ(x̂)‖k ≤ Nmax{ k
2
,1}−1

N∑
i=1

‖h1i(xi)− ĥ1i(x̂i)‖k

≤ Nmax{ k
2
,1}−1

N∑
i=1

α−1
i (Vi(xi, x̂i, θi))

≤ α(V (x, x̂, θ)),

for any k ≥ 1, where α is a K∞ function defined as

α(s) :=

max
~s≥0

Nmax{ k2 ,1}−1
N∑
i=1

α−1
i (si)

s.t. µT~s = s,

where ~s = [s1; . . . ; sN ] ∈ RN and µ = [µ1; . . . ;µN ]. The
function α is a concave function as argued in [4]. By defining
the convex function1 α(s) = α−1(s),∀s ∈ R≥0, one obtains

α(‖h1(x)− ĥ1(x̂)‖k) ≤ V (x, x̂, θ),

satisfying inequality (8). Now we prove the inequality (9).
Consider any x = [x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈

1The inverse of a strictly increasing concave (resp. convex) function is a
strictly increasing convex (resp. concave) function.

Rn̂, and û = [û1; . . . ; ûN ] ∈ Rm̂. For any i ∈
[1;N ], there exists ui ∈ Rmi , consequently, a vec-
tor u = [u1; . . . ;uN ] ∈ Rm, satisfying (7) for each
pair of subsystems Σi and Σ̂i with the internal inputs
given by [w1; . . . ;wN ] = M [h21(x1); . . . ;h2N (xN )] and
[ŵ1; . . . ; ŵN ] = M̂ [ĥ21(x̂1); . . . ; ĥ2N (x̂N )], respectively. The
dynamics of Σθi , i ∈ [1;N ], can be lumped together into a
single auxiliary system as the following:

θ̇(t) = ADθ(t) +BDS



W1w1 − Ŵ1ŵ1

...
WNwN − ŴN ŵN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )



= ADθ(t) +BDS

[
WM
Iq̃

] h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )

 ,

z(t) = CDθ(t) +DDS



W1w1 − Ŵ1ŵ1

...
WNwN − ŴN ŵN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )



= CDθ(t) +DDS

[
WM
Iq̃

] h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )

 ,
where z = [z1; . . . ; zN ]. We now consider the infinitesimal
generator of the function V , and employ the previous auxiliary
system and conditions (11) and (12) to derive the chain of
inequalities given in (13), where c′ =

∑N
i=1 µici,

Θ(x, θ) :=



θ1
...
θN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


,

and the functions η ∈ K∞ and ψext ∈ K∞ ∪ {0} are defined
as

η(s) :=

min
~s≥0

∑N
i=1 µiηi(si)

s.t. µT~s = s,

ψext(s) :=

max
~s≥0

∑N
i=1 µiψiext(si)

s.t. ‖~s‖ ≤ s.

It remains to show that η is a convex function and ψext is
a concave one. Let us recall that by assumption functions
ηi, ∀i ∈ [1;N ], are convex functions. Thus the function
η above defines a perturbation function which is a convex
one; see [12] for further details. Again, by assumption ψiext,
∀i ∈ [1;N ], are concave functions. By similar reasoning, we
conclude that ψext is a concave function. Hence, we conclude
V is an SSF-Mk function from Σ̂ to Σ.
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 ATDQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBTDQ̃ 0

+

[
CD DDS

[
WM
Iq̃

]]T µ1X1

. . .
µNXN

[CD DDS

[
WM
Iq̃

]]
� 0, (11)

WMH = ŴM̂, (12)

LV (x, x̂, θ) =

N∑
i=1

µiLVi(xi, x̂i, θi) + θ̇T Q̃θ + θT Q̃θ̇ ≤
N∑
i=1

µi

(
− ηi(Vi(xi, x̂i, θi)) + ψiext(‖ûi‖k) + zTi Xizi + ci

)
+θ̇T Q̃θ+θT Q̃θ̇

= −
N∑
i=1

µiηi(Vi(xi, x̂i, θi)) +

N∑
i=1

µiψiext(‖ûi‖k) +

 z1...
zN


T µ1X1

. . .
µNXN


 z1...
zN


︸ ︷︷ ︸
z

+ Θ(x, θ)T

 ATDQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBTDQ̃ 0

Θ(x, θ) + c′

= −
N∑
i=1

µiηi(Vi(xi, x̂i, θi)) +
N∑
i=1

µiψiext(‖ûi‖k) + Θ(x, θ)T

 ATDQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBTDQ̃ 0

Θ(x, θ)

+ Θ(x, θ)T
[
CD DDS

[
WM
Iq̃

]]T µ1X1

. . .
µNXN

[CD DDS

[
WM
Iq̃

]]
Θ(x, θ) + c′

≤ −η(V (x, x̂, θ)) + ψext(‖û‖k) + c′, (13)

Remark IV.3. If Cθi is the zero matrix and Dθi is the
identity matrix (i.e. Σθi is a static map), ∀i ∈ [1;N ], then
matrix inequality (11) reduces to matrix inequality (15) in
[7, Theorem 7] (which is a stochastic counterpart of matrix
inequality (IV.1) in [6, Theorem 4.2]).

Remark IV.4. The matrix inequality (11) is linear with respect
to the decision variables Q̃ and µ = [µ1; . . . ;µN ] , and matrix
equality (12) is linear with respect to the decision variable
M̂ , which can be solved by using readily available software
packages such as [13].

In the next section, we consider a specific class of stochastic
hybrid systems Σ, and a specific candidate SStF-M2 function
V . We derive conditions facilitating the construction of Σ̂ as
an abstraction of Σ and such that V is an SStF-M2 from Σ̂ to
Σ.

V. A CLASS OF STOCHASTIC HYBRID SYSTEMS

We consider a specific class of stochastic hybrid systems with
the drift, diffusion, reset, and output functions given by

dξ(t) = (Aξ(t) +Bυ(t) + Eϕ(t, F ξ)

+Dω(t))dt+GdWt +

r∑
i=1

RidP
i
t ,

ζ1(t) = C1ξ(t),

ζ2(t) = C2ξ(t), (14)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, E ∈ Rn×lk , F ∈
Rlk×n, G ∈ Rn×1, Ri ∈ Rn,∀i ∈ [1; r], C1 ∈ Rq1×n,
and C2 ∈ Rq2×n. The vector Ri and scalar λi > 0 (rate
of the Poisson process), ∀i ∈ [1; r], parametrize the jumps
associated with events i. The time-varying non-linearity is
the one considered in [14], which satisfies an incremental
quadratic inequality: for all M̃ ∈ M, where M is the set
of symmetric matrices referred to as incremental multiplier
matrices, the following incremental quadratic constraint holds
for all t ∈ R≥0, and k1, k2 ∈ Rlk :[

k2 − k1

ϕ(t, k2)− ϕ(t, k1)

]T
M̃

[
k2 − k1

ϕ(t, k2)− ϕ(t, k1)

]
≥ 0.

To facilitate subsequent analysis, we write matrix M̃ in the
following conformal partitioned form

M̃ =

[
M11 M12

MT
12 M22

]
.

We use the tuple

Σ = (A,B,C1, C2, D,E, F,G,R, ϕ, λ),

where R = {R1, . . . , Rr} and λ = {λ1, . . . , λr}, to refer to the
class of system of the form (14). We now consider a specific
candidate function and derive conditions under which it is an
SStF-M2 from Σ̂ to Σ.
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A. Stochastic storage function

Here, we consider a candidate SStF-M2 of the form

V (x, x̂, θ) = (x− Px̂)T M̂(x− Px̂) + θTΛθ, (15)

where P , M̂T = M̂ � 0, and Λ = ΛT � 0 are matrices
of appropriate dimensions. In order to show that V (x, x̂, θ)
in (15) is an SStF-M2 from an abstraction Σ̂ to the concrete
system Σ, with respect to Σθ = (Aθ, Bθ, Cθ, Dθ), where Bθ =[
B1 B2

]
and Dθ =

[
D1 D2

]
, we require the following

assumptions on the concrete system Σ and on Σθ.

Assumption V.1. Let Σ = (A,B,C1, C2, D,E, F,G,R, ϕ, λ).
There exist matrices M̂ � 0, K, X , L1, Z, W , Λ, Aθ, Cθ,
Bθ := [B1 B2], Dθ := [D1 D2], and positive constants κ̂ and
κ̄, such that

DT
2 XD2 � 0,

and the (in)equalities given in (16) and (17) hold, where

∆ = (A+BK)T M̂ + M̂(A+BK).

An equivalent geometric characterization of (16) is given by
the following lemma.

Lemma V.2. Given D and Z, the condition (16) is satisfied
for some matrix W if and only if

im D ⊆ im Z. (18)

Remark V.3. Remark that when the non-linearity in (14)
reduces to the one described in [6, Section V] and Σθ is
a static map, matrix inequality (17) reduces to (V.5) in [6,
Theorem 5.5]. Note also that in the absence of the non-
linearity in (14), matrix inequality (17) is feasible if the pair
(A,B) is stabilizable and Aθ is Hurwitz.

Now, we provide one of the main results of this section
showing under which conditions V in (15) is an SStF-M2.

Theorem V.4. Let Σ = (A,B,C1, C2, D,E, F,G,R, ϕ, λ),
and Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, ϕ, λ̂) with the same
external output dimension. Suppose Assumption V.1 holds and
there exist matrices P , Q, H , Ŵ and L2 of appropriate
dimensions such that:

AP = PÂ−BQ (19a)

C1P = Ĉ1 (19b)

C2P = HĈ2 (19c)

FP = F̂ (19d)

E = PÊ +B(L2 − L1) (19e)

PD̂ = ZŴ . (19f)

Then, function V defined in (15) is an SStF-M2 from Σ̂ to Σ,
with respect to Σθ = (Aθ, Bθ, Cθ, Dθ).

Proof. We note that from (19b), ∀x ∈ Rn and ∀x̂ ∈ Rn̂, we
have ‖C1x − Ĉ1x̂‖2 = (x − Px̂)TCT1 C1(x − Px̂). It can be
readily verified that λmin(M̂)

λmax(CT1 C1)
‖C1x − Ĉ1x̂‖2 ≤ V (x, x̂, θ)

for all θ ∈ Rlθ , implying that inequality (6) holds with α(r) =
λmin(M̂)

λmax(CT1 C1)
r for any r ∈ R≥0, which is a convex function.

We proceed to prove inequality (7). By the definition of V ,
one has

∂xV = 2(x− Px̂)T M̂, ∂x̂V = −2(x− Px̂)T M̂P,

∂x,xV = 2M̂, ∂x̂,x̂V = 2PT M̂P.

Following the definition of L, for any x ∈ Rn, x̂ ∈ Rn̂, θ ∈
Rlθ , one obtains:

LV (x, x̂, θ) = 2(x− Px̂)T M̂(Ax+ Eϕ(Fx) +Bu+Dw)

− 2(x− Px̂)T M̂P (Âx̂+ Êϕ(F̂ x̂) + B̂û+ D̂ŵ) +GT M̂G

+ ĜTPT M̂PĜ+ 2(x− Px̂)T M̂

r∑
i=1

λiRi +

r∑
i=1

λiR
T
i M̂Ri

− 2(x− Px̂)T M̂

r̂∑
i=1

λ̂iPR̂+

r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i

+ 2θTΛ
(
Aθθ +

[
B1 B2

] [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])
.

Given any x ∈ Rn, x̂ ∈ Rn̂, and û ∈ Rm̂, we use the following
interface function to choose u ∈ Rm:

u = K(x− P x̂) +Qx̂+ R̃û+ L1ϕ(t, Fx)− L2ϕ(t, F̂ x̂), (20)

where L2, Q, and R̃ are matrices of appropriate dimension.
Using the interface function in (20), and the conditions (16),
(19a), (19d), (19e), and (19f), one obtains:

LV (x, x̂, θ) = 2(x− P x̂)T M̂
(
A(x− P x̂) +BK(x− P x̂)

+ ZWw − ZŴŵ + (BR̃− PB̂)û+ (BL1 + E)δϕ
)

+GT M̂G+ ĜTPT M̂PĜ+

r∑
i=1

λiR
T
i M̂Ri +

r̂∑
i=1

λ̂iR̂
T
i PM̂PR̂i

+ 2(x− P x̂)T M̂(

r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i) + 2θTΛAθθ

+ 2θTΛB1(Ww − Ŵ ŵ) + 2θTΛB2(C2x−HĈ2x̂),

where δϕ = ϕ(t, Fx) − ϕ(t, F̂ x̂). Using Young’s inequality,
Cauchy-Schwarz inequality, (17), and (19c), one obtains the
upper bound for LV (x, x̂, θ) as given in (21), where π, π′ ∈
R>0 satisfy π + π′ < κ̂, κ̃ = min{κ̂− π − π′, κ̄}, and

c̃=GT M̂G+ĜTPT M̂PĜ+

r∑
i=1

λiR
T
i M̂Ri+

r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i,

c′ =

‖
√
M̂

(
r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i

)
‖2

π′
.

Here, we have used the fact that for any x ∈ Rn and any
x̂ ∈ Rn̂, one has [14],[

x− Px̂
δϕ

]T [
F 0lk
0lk Ilk

]T
M̃

[
F 0lk
0lk Ilk

] [
x− Px̂
δϕ

]
≥ 0.

Using the upper bound (21), the inequality (7) is satisfied,
implying that V is an SStF-M2 from Σ̂ to Σ, with respect
to Σθ = (Aθ, Bθ, Cθ, Dθ), with the convex function η(s) =

κ̃s, concave function ψext(s) = ‖
√
M̂(BR̃−PB̂)‖2

π s,∀s ∈ R≥0,
matrix X , and c = c̃ + c′.
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D = ZW, (16)
∆ M̂Z M̂(BL1 + E) CT2 B

T
2 Λ

ZT M̂ 0 0 BT1 Λ

(BL1 + E)T M̂ 0 0 0
ΛB2C2 ΛB1 0 Aθ

TΛ + ΛAθ

�

−κ̂M̂ + CT2 D

T
2 XD2C2 − FTM11F CT2 D

T
2 XD1 −FTM12 CT2 D

T
2 XCθ

DT1 XD2C2 DT1 XD1 0 DT1 XCθ
−MT

12F 0 −M22 0
CTθ XD2C2 CTθ XD1 0 Cθ

TXCθ − κ̄Λ

 ,
(17)

LV (x, x̂, θ) =


x− P x̂

Ww − Ŵ ŵ
δϕ
θ


T 

∆ M̂Z M̂(BL1 + E) CT2 B
T
2 Λ

ZT M̂ 0 0 BT1 Λ

(BL1 + E)T M̂ 0 0 0
ΛB2C2 ΛB1 0 Aθ

TΛ + ΛAθ




x− P x̂
Ww − Ŵ ŵ

δϕ
θ


+ 2(x− P x̂)T M̂(BR̃− PB̂)û+ 2(x− P x̂)T M̂

(
r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i

)
+ c̃

≤


x− P x̂

Ww − Ŵ ŵ
δϕ
θ


T 
−κ̂M̂ + CT2 D

T
2 XD2C2 − FTM11F CT2 D

T
2 XD1 −FTM12 CT2 D

T
2 XCθ

DT1 XD2C2 DT1 XD1 0 DT1 XCθ
−MT

12F 0 −M22 0
CTθ XD2C2 CTθ XD1 0 Cθ

TXCθ − κ̄Λ




x− P x̂
Ww − Ŵ ŵ

δϕ
θ


+ 2(x− P x̂)T M̂(BR̃− PB̂)û+ 2(x− P x̂)T M̂

(
r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i

)
+ c̃

≤ −(κ̂− π − π′)(x− P x̂)T M̂(x− P x̂) +
‖
√
M̂(BR̃− PB̂)‖2

π
‖û‖2 − κ̄θTΛθ

− 2

[
x− P x̂
δϕ

]T [
F 0lk

0lk Ilk

]T
M̃

[
F 0lk

0lk Ilk

] [
x− P x̂
δϕ

]

+

(
Cθθ +

[
D1 D2

]T [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])T
X

(
Cθθ +

[
D1 D2

] [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])
+ c̃ +

‖
√
M̂

(
r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i

)
‖2

π′

≤ −(κ̂− π − π′)(x− P x̂)T M̂(x− P x̂)− κ̄θTΛθ +
‖
√
M̂(BR̃− PB̂)‖2

π
‖û‖2 + zTXz + c̃ + c′

≤ −κ̃V (x, x̂, θ) +
‖
√
M̂(BR̃− PB̂)‖2

π
‖û‖2 + zTXz + c̃ + c′ (21)

Remark V.5. Note that matrix R̃ is a free design parameter in
the interface function. As explained in [6] and [15], one can
choose R̃ to minimize the function ψext for V and, hence, lower
the upper bound on the error between the output behaviors of
Σ and Σ̂. The choice of R̃ minimizing ψext is given by

R̃ = (BT M̂B)−1BT M̂PB̂. (22)

Remark V.6. The constant c, can be also minimized, thereby
lowering the upper bound on the error between the output
behaviours of Σ and Σ̂. One can choose Ĝ to be the zero
matrix and choose λ̂ and R̂ to solve the following optimization
problem:

arg min
R̂,λ̂>0

r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i

−
2(

r∑
i=0

λiR
T
i )M̂P (

r̂∑
i=0

λ̂iR̂i)

π′
+

(
r̂∑
i=1

λ̂iR̂
T
i )PT M̂P (

r̂∑
i=1

λ̂iR̂i)

π′
,

(23)

where λ̂ = {λ̂1, . . . , λ̂r̂} and R̂ = {R̂1, . . . , R̂r̂}. This opti-
mization problem is, in general, a non-convex one.

Remark V.7. The matrix inequality (17) is bi-linear in
M̂,K,L1, Z, and linear in X and Λ if we fix κ̂, κ̄, and the
matrices Aθ, Bθ, Cθ, and Dθ.

In the following theorem we show that conditions (19a),
(19b), (19c), (19d), and (19e) are not only sufficient, but also
necessary for (15) to be an SStF-M2 from Σ̂ to Σ, provided
that the interface function is as in (20) for some matrices
K,Q, R̃, L1, and L2, of appropriate dimensions.

Theorem V.8. Let Σ = (A,B,C1, C2, D,E, F,G,R, ϕ, λ)
and Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, ϕ, λ̂) with the same
external output space dimension. Assume that G = Ĝ = 0,
and Ri = R̂i = 0 ∀i ∈ [1; r̂], where 0 represents the
zero matrices of appropriate dimensions. Suppose that V ,
defined in (15), is an SStF-M2 from Σ̂ to Σ, with respect to
Σθ = (Aθ, Bθ, Cθ, Dθ), with the interface function given in
(20). Then equations (19a), (19b), (19c), (19d), and (19e) hold.

Proof. Since V is an SStF-M2 from Σ̂ to Σ, there exists a K∞
function α such that ‖C1x−Ĉ1x̂‖2 ≤ α−1(V (x, x̂, θ)) for any
x ∈ Rn, any x̂ ∈ Rn̂, and any θ ∈ Rlθ . From (15), it follows
that ‖C1Px̂ − Ĉ1x̂‖2 ≤ α−1(V (Px̂, x̂, 0)) = 0 holds for all
x̂ ∈ Rn̂ which implies (19b). Let us assume that DT

2 XD2 6= 0.
To prove (19c), we consider the inputs w ≡ 0, ŵ ≡ 0, û ≡ 0,
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and choose x = Px̂ and θ = 0 in (7). One has:

0 ≤ (C2Px̂−HĈ2x̂)TDT
2 XD2(C2Px̂−HĈ2x̂),

for all x̂ ∈ Rn̂. Since DT
2 XD2 � 0, and DT

2 XD2 6= 0 by
assumption, one obtains C2P−HĈ2 = 0, which implies (19c).
Consider the input signals υ̂ ≡ 0, ω ≡ 0, ω̂ ≡ 0. It can be
easily seen that the subspace {(x, x̂, θ) : x = Px̂, θ = 0} ⊆
Rn × Rn̂ × Rlθ is invariant [16], which implies that when
ξ(0) = P ξ̂(0) and ξθ(0) = 0, one has:

ξ(t) = P ξ̂(t), ξθ(t) = 0, dξ(t) = Pdξ̂(t),

for all t ∈ R≥0, from which we derive that

(AP ξ̂(t) +BQξ̂(t) +BL1ϕ(t, F ξ(t))

−BL2ϕ(t, F̂ ξ̂(t)) + Eϕ(t, FP ξ̂(t)))dt

= (PÂξ̂(t) + PÊϕ(t, F̂ ξ̂(t)))dt,

for all t ∈ R≥0, thus implying (19a), (19d), and (19e).

B. Geometric interpretation of different conditions
In this section, we provide geometric conditions on matrices
appearing on the definition of Σ̂, of stochastic storage function
and its corresponding interface function. The geometric con-
ditions facilitate the construction of the abstraction. First, we
recall the following result from [15], providing necessary and
sufficient conditions for the existence of Â and Q satisfying
(19a).

Lemma V.9. Consider matrices A, B, and P . There exist
matrices Â and Q satisfying (19a) if and only if

im AP ⊆ im P + im B. (24)

Similarly, we provide necessary and sufficient conditions for
the existence of Ĉ2 and Ê, L2 satisfying (19c) and (19e),
respectively.

Lemma V.10. Given P and C2, there exists matrix Ĉ2

satisfying (19c) if and only if

im C2P ⊆ im H (25)

for some matrix H of appropriate dimension.

Lemma V.11. Given P , B, and L1, there exist matrices Ê
and L2 satisfying (19e) if and only if

im E ⊆ im B + im P. (26)

Lemmas V.9, V.10, and V.11 provide sufficient and necessary
conditions on P and H , resulting in the construction of
matrices Â, Ĉ2, and Ê and matrices Q and L2 appearing in the
interface function (20). The next lemma provides a sufficient
and necessary condition on the existence of D̂ satisfying (19f).

Lemma V.12. Given Z, there exists matrix D̂ satisfying (19f)
if and only if

im ZŴ ⊆ im P, (27)

for some matrix Ŵ of appropriate dimension.

Although condition (27) is readily satisfied by choosing Ŵ =
0, one should preferably aim at finding a nonzero Ŵ with
the highest possible rank to facilitate later the satisfaction of
compositionality condition (12).

TABLE I: Construction of Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, ϕ, λ̂)

together with the corresponding stochastic storage function V in (15),
with Σθ = (Aθ, Bθ, Cθ, Dθ), and interface function in (20) for a
given Σ = (A,B,C1, C2, D,E, F,G,R, ϕ, λ).

1) Choose matrix Z such that (18) is satisfied;
2) Choose W such that D = ZW ;
3) Choose matrices M̂,K,L1,Λ, X,Aθ, Cθ, Bθ = [B1 B2], Dθ =

[D1 D2], and constants κ̂, κ̄ such that (17) is satisfied (see Remark
V.13);

4) Determine matrix P of lowest rank with kerP = 0 that satisfies
(24), (25), (26), and (27) (see Remark V.14);

5) Choose Â and Q according to (19a);
6) Choose L2 and Ê according to (19e);
7) Compute F̂ = FP ;
8) Compute Ĉ1 = C1P ;
9) Choose Ĝ = 0. Choose R̂ = {R̂1, . . . , R̂r̂} and λ̂ =
{λ̂1, . . . , λ̂r̂} according to (23);

10) Choose Ĉ2 satisfying HĈ2 = C2P for some H;
11) Choose D̂ satisfying PD̂ = ZŴ for some Ŵ with the highest

possible rank;
12) Choose B̂ freely (e.g. B̂ = In̂ making Σ̂ fully actuated);
13) Compute R̃, appearing in (20), according to (22);

C. Construction of abstraction

We summarize the construction of abstraction Σ̂, stochastic
storage function V in (15), and its corresponding interface
function in (20) in Table I.

Remark V.13. One way to solve the matrix inequality (17) is
as follows: First, we select arbitrary Cθ and Dθ =

[
D1 D2

]
,

and solve the following bilinear matrix inequality for κ̂, X ,
M̂ , and L1: ∆ M̂Z M̂(BL1 + E)

ZT M̂ 0 0

(BL1 + E)T M̂ 0 0


�

−κ̂M̂ + CT2 D
T
2 XD2C2 − FTM11F CT2 D

T
2 XD1 −FM12

DT1 XD2C2 DT1 XD1 0
−MT

12F 0 −M22

 .

We then solve the following bilinear matrix equation for κ̄, Λ,
and Aθ:

ATθ Λ + ΛAθ = CTθ XCθ − κ̄Λ.

Finally, we solve the following linear equations for Bθ =[
B1 B2

]
:

ΛB1 = CTθ XD
T
1 ,

ΛB2 = CTθ XD2.

Remark V.14. One way to satisfy the geometric conditions
(24)-(27) is to start with a scalar abstraction (i.e. n̂ = 1) and
pick P to be an arbitrary column vector, and check if (24)-
(27) hold. If not, then increase the state-space dimension of
the abstraction by one (i.e. n̂ = 2), add a linearly independent
column vector to P , and check again if (24)-(27) hold. Repeat
this process until (24)-(27) are satisfied. Note that in the
worst-case scenario, this process will terminate when n̂ = n
(i.e. the state-space dimension of the concrete subsystem and
abstraction are equal).
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In the next section, we provide two examples for composi-
tional construction of abstractions of a network of stochastic
hybrid systems using the technique presented in the paper.
First, in a physically motivated example, we construct a
compositional abstraction of a network of resistor-capacitor
(R-C) circuits affected by stochastic noise. In the second
example, we illustrate the advantage of using a linear control
system Σθ over just a static map (which was used in [6],
[7]) to conclude the joint dissipativity property of a concrete
subsystem and its abstraction.

VI. EXAMPLES

A. Network of RC Circuits
Consider an interconnection of n first order R-C circuits. The
i-th R-C circuit has a dynamic given by:

dvci =

(
− 1

RiCi
vci +

1

RiCi
vsi +

1

Ci
w̃i

)
dt+$dWt (28)

+ τdPt,

where $ ∈ R>0, τ ∈ R>0, i ∈ [1;n], vsi ∈ R represents the
input source voltage (external input), vci ∈ R is the voltage
across capacitor, Ci is the capacitance, Ri is the resistance,
and w̃i ∈ R is the total current inflow from other R-C circuits
in the network. The continuous noise and jump terms represent
the thermal noise (also known as Johnson-Nyquist noise) and
the so-called Shot noise [17], respectively. Assume the rate
of the Poisson process Pt is λ. For illustration purposes,
in this example we fix Ri = 1 Ohm, and Ci = 1 Farad
∀i ∈ [1;N ]. We consider the above interconnected system as
an interconnection of N concrete subsystems Σi, i ∈ [1;N ],
wherein each subsystem Σi is formed by clustering ni R-C
circuits (ni ≤ n). We also add a non-linearity belonging to
the class of nonlinearities presented in this paper. Each sub-
system, Σi = (Ai, Bi, C1i, Ini, Di,~1ni,~1

T
ni, $~1ni, τ~1ni, ϕ, λ),

generates a scalar external output:

Σi :


dξi = (Aiξi +Biui +Diwi +~1niϕ(~1Tniξi))dt

+$~1nidWt + τ~1nidPt,

ζ1i = C1iξi,

ζ2i = ξi,

where ξi = Liv, v = [vc1 ; . . . ; vcn ], Li := [ei1; . . . ; eini ], eij ∈
R1×n is a row vector whose k-th element is defined as

e
(k)
ij =

{
1 if k-th R-C circuit is part of the i-th cluster
0 otherwise,

Ai, Bi, Di ∈ Rni×ni are readily obtained from (28), C1i ∈
R1×ni , ui = Livs, vs = [vs1 ; . . . ; vsn ], wi = Liw̃ , w̃ =
[w̃1; . . . ; w̃n], and ϕ : R→ R is defined as

ϕ(x) = sin(x).

The interconnection topology in this example is given by

M = −


n− 1 −1 . . . . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1

...
. . . . . .

...
−1 . . . . . . −1 n− 1

 .

The interconnection topology represents a fully-connected in-
terconnection topology. We aggregate each Σi into a scalar de-
terministic abstraction Σ̂i = (Âi, B̂i, Ĉ1i, 1, 1, 1, 1, 0, 0, ϕ, 0)
given by the following dynamics

Σ̂i :


dξ̂i = (Âiξ̂i + B̂iûi + ŵi + ϕ(ξ̂i))dt

ζ̂1i = Ĉ1iξ̂i,

ζ̂2i = ξ̂i,

where Âi satisfies Ai~1ni = ~1niÂi, B̂i is chosen arbitrarily (in
this example we choose B̂i = 1), Ĉ1i = C1i

~1ni . The function
Vi(xi, x̂i) = (xi − ~1ni x̂i)T (xi − ~1ni x̂i) (i.e. M̂i = Ini , Pi =
~1ni ,Λi = 0) is a SStF-M2 function from Σ̂i to Σi, with the
following parameters

Ki = −χIni , Zi = Ini ,Wi = Ini , Xi =

[
0ni Ini
Ini 0ni

]
,

κ̂i = 2χ− 2λτ −$2 − λτ2, Qi = 0ni , Hi = Ŵi = ~1ni ,

L1i = −~1ni , Aθi = 0, Bθi = 0, Cθi = 0, Dθi = I2ni , κ̄ = 0,

where χ > λτ + $2

2 + λτ2

2 , and with αi(r) = 1
λmax(CT1iC1i)

r,
ηi(r) = (2χ − 2λτ − $2 − λτ2)r, ψiext(r) = 0, ∀r ∈ R≥0,
and ci = τ2 +$2. Inputs ui ∈ Rni is given via the interface
function in (20) as (i.e. R̃i = ~1ni , L2i = ~1ni)

ui=−χ(xi −~1ni x̂i)+~1ni ûi−~1niϕ(~1Tnixi)+
~1niϕ(x̂i). (29)

By selecting µ1 = . . . = µN = 1, the function V (x, x̂, θ) =∑N
i=1 µiVi(xi, x̂i, θi) is an SSF-M2 function from Σ̂ to Σ,

where Σ̂ is the interconnection of the abstract subsystems
Σ̂ = I(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ , satisfying
condition (12) as the following

Mdiag(~1n1
, . . . ,~1nN ) = diag(~1n1

, . . . ,~1nN )M̂. (30)

A matrix M̂ exists satisfying (30) if there exist N equitable
partitions of the graph described by the Laplacian matrix L =
−M , which is always true here because L represents a fully
connected graphs, as explained in [18].
It can be easily seen that condition (11) reduces to[

−L
In

]T [
0 In
In 0

] [
−L
In

]
= −(L+ LT ) � 0,

which always holds since L = LT � 0, which is always true
for Laplacian matrices of undirected graphs [18].
1) Controller synthesis: Now, we synthesize a controller for
the abstract interconnected system Σ̂ = I(Σ̂1, . . . , Σ̂N ) to
enforce a specification, and then refine the designed controller
to the one for the concrete interconnected system. We fix n =
9, N = 3, τ = 0.2, $ = 0.4, λ = 1, χ = 10 and

C11 =
[
1 0 0

]
, C12 =

[
0 1 0

]
, C13 =

[
0 0 1

]
.

We synthesize a controller using toolbox SCOTS [19] to
enforce the following linear temporal logic specification [20]
over the outputs of Σ̂:

Ψ = �S ∧

(
5∧
i=1

�(¬Oi)

)
∧�♦T1 ∧�♦T2,
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Fig. 3: The figure shows the output trajectories of the abstract (red)
and one realization of the concrete (black) interconnected systems.
The initial point of the trajectories is represented by the diamond.

which can be interpreted as follows: the output trajectory of
the closed loop system evolves inside the set S, avoids regions
Oi, i ∈ [1; 5], indicated with blue boxes in Figure 3, and visits
Ti, i ∈ [1; 2] infinitely often, indicated with red boxes in Figure
3. We use (29) to generate the corresponding input enforcing
this specification over the original system Σ.

B. Example 2
In this part, we provide compositional abstractions of a net-
work of subsystems wherein the joint dissipativity property of
each concrete subsystem and its abstraction is only concluded
with respect to a linear control system Σθ rather than a
static map. Consider an interconnection of N second order
subsystems Σi, where each Σi is given by

Σi :


dξi(t) = (Aiξi(t) +Biυi(t) +Diωi(t))dt,

ζ1i(t) = C1iξi(t),

ζ2i(t) = ξi(t),

where

Ai =

[
0ni Ini
−Ini −0.5Ini

]
, Bi = Di =

[
0ni
Ini

]
, C1i =

[
0ni
eni

]T
,

vector eni represents a column vector whose first element is
1 and remaining elements are zero. For the sake of simulation
we choose N = 3, ni = 10, ∀i ∈ [1;N ]. We consider the
following abstract system Σ̂i,

Σ̂i :


dξ̂i(t) =

([
0 1
−1 −0.5

]
ξ̂i(t) +

[
0
1

]
υ̂i(t) +

[
0
1

]
ω̂i(t)

)
dt,

ζ̂1i(t) =
[
0 1

]
ξ̂i(t),

ζ̂2i(t) = ξ̂i(t).

We restrict Ki for each i ∈ [1;N ] appearing in (20) such
that the last ni columns are identically zero. This restriction
can appear in practice when for example only some state
variables are available to be measured. With this restriction
on the structure of Ki, one cannot find a storage function
with Cθi = 0 in this example. Using the guidelines shown in

Table I and the solver package Yalmip [13], it can be shown
that the function

Vi(xi, x̂i, θi) = (xi − Px̂i)T M̂(xi − Px̂i) + θTi Λθi

is an SStF-M2 from Σ̂i to Σi, with respect to Σθi =
(Aθi , Bθi , Cθi , Dθi), ∀i ∈ [1;N ], with the following parame-
ters

M̂i =

[
2Ini Ini
Ini Ini

]
, Pi =

[
~1ni ~0ni
~0ni ~1ni

]
,Ki =

[
−0.5Ini 0ni

]
,

κ̂i = 0.1,Wi = Ini , Qi = 0, Hi = Ŵi = ~1ni , L1i = 0,Λ = I2ni ,

Aθi = −5I2ni , Bθi =

[
0ni 0.207Ini
0ni −0.573Ini

]
, Cθi = 0.1I2ni ,

Dθi =

[
0ni Ini
0ni Ini

]
, Xi =

[
9.47785Ini −7.4055Ini
−7.4055Ini 1.6526Ini

]
, κ̄i = 1,

with αi(r) = λmin(M̂i)

λmax(CT1iC1i)
r, ηi(r) = 0.1r, ψiext = 0,∀r ∈

R≥0, and ci = 0. Functions ui ∈ Rni are given via the
interface function:

ui = −Ki(xi − Pix̂i) +~1ni ûi,

(i.e. R̃i = ~1ni , L2i = 0). With the interconnection matrix M
given by

M =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


.

and by selecting µ1 = · · · = µN = 1, it can be verified

that the function V =
N∑
i=1

µiVi(xi, x̂i, θi) + θT θ, where

θ = [θi; . . . ; θN ], is an SSF-M2 from Σ̂ to Σ, where Σ̂ is the in-
terconnection of the abstract subsystems Σ̂ = I(Σ̂1, . . . , Σ̂N )
with the coupling matrix M̂ given by

M̂ =

−2 1 1
1 −2 1
1 1 −2

 ,
satisfying conditions (11) and (12). In the simulation, the
input signal to the abstract system is chosen arbitrarily as
υ̂(t) = [sin(t); 0.1e−t;−t]. Figure 4 shows the evolution of
the absolute value of the error between the output trajectories
of the concrete interconnected system and its abstraction. One
can readily verify that the error is always bounded by the
computed error bound in Theorem III.6.

VII. CONCLUSION

In this work, using tools from stochastic calculus and dissipa-
tivity theory, we derived conditions under which abstractions
of interconnected stochastic hybrid systems can be constructed
compositionally. In future work, we will look at deriving
constructive conditions which facilitate the construction of
abstractions for classes of non-linear stochastic hybrid systems
broader than the one considered in this paper, together with
the corresponding stochastic storage functions and interface
maps.
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Fig. 4: The evolution of ‖ζ(t)− ζ̂(t)‖2, where ζ(t) =

[ζ11(t); . . . ; ζ1N (t)], and ζ̂(t) = [ζ̂11(t); . . . ; ζ̂1N (t)], and the the-
oretical upper bound obtained for this example according to (10).

.
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