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Abstract

Whenever a runner strikes the ground, the muscles and tendons deflect like springs and
reuse the stored energy to push the athlete off the ground, thereby saving up to 84 % of
the muscular energy consumption. In bionic research, roboticists increasingly replicate the
elastic properties underlying the human motor performance. But the control of efficient
elastic movements in changing environments is largely unknown in both robotics and neu-
roscience. Bionic approaches to this open question suffer from the difficult identification
of functionally distinct circuits within the network of our 86 billion entangled neurons.

The present dissertation fully reverses the bionic approach to explain how the human
brain optimizes muscular forces under fast-changing conditions. For this endeavor, the
highly interdisciplinary research first answers how the elastic dynamics of robots can be
optimally harnessed and then discovers an analogous brain circuit in humans.

Robotic simulations demonstrated that a fast, model-free controller coordinates multiple
elastic joints as energy-efficiently as a slow, model-based optimal controller. In robotic
experiments, the controller increased the amplitude of jumping by up to 67 %. While an
analogous functionality would give the brain a substantial evolutionary benefit, it requires
a neuronal mechanism that violates a fundamental neuroscientific consensus: that synapses
can only adapt to information that is locally encoded by the pre- or postsynaptic neuron.

Here, the consensus is refuted by a novel, experimentally verified model of a non-local
adaptation mechanism. For its development, the robotic controller was used as a blueprint
to rigorously unite scattered findings from experimental neuroscience and machine learn-
ing. In the resulting model, sensory input triggers the release of serotonin onto motor
neurons. The serotonin modulates the output forces according to the same algorithm as
the robotic controller. In the simple example of a runner whose knee is blocked by a splint,
the model predicts that serotonin specifically suppresses knee muscles, contradicting the
generally accepted idea that serotonin affects all limb muscles equally. To test this pre-
diction, human subjects performed fast and strong motions under the precise guidance
of a robotic device. The resulting serotonergic effect was quantified and confirmed that
serotonin scales the forces of individual muscles to maximize the motion amplitude.

The presented results provide roboticists with a modular controller to boost the energy
efficiency of cutting-edge elastic robots. For neuroscientists, the new understanding of
serotonergic effects may enhance the rehabilitation of paraplegics. While state-of-the-
art therapies substitute serotonin in diffuse ways, the discovered precise effects can be
mimicked by electric stimulation and exoskeletons to speed up the gait of patients. These
far-reaching implications reveal the large potential of reverse-bionics to predict and explain
new neuronal mechanisms. The numerous controllers of biomimetic robots can thereby
reduce the frequently raised problem that neuroscience is data rich but theory poor.






Zusammenfassung

Unsere Muskeln und Sehnen wirken wie elastische Federn, die beim Laufen Energie speich-
ern und zum Absprung wiederverwenden, um bis zu 84% ihres Energieverbrauchs einzus-
paren. Im Bereich der Bionik replizieren Robotiker zunehmend diese elastischen Mecha-
nismen in effizienten Robotern. Die optimale Steuerung elastischer Bewegungen ist jedoch
sowohl in der Neurowissenschaft, als auch in der Robotik eine ungeltste Frage. Bionische
Antworten scheitern zumeist an der Schwierigkeit, im Gehirns innerhalb der 86 Milliarden
verflochtenen Neuronen Schaltkreise mit abgegrenzten Motorfunktionen zu bestimmen.

Die vorliegende Dissertation dreht die bionische Vorgehensweise um und zeigt dadurch,
wie das menschliche Gehirn verschiedene Muskelkréfte an verédnderliche Bedingungen an-
passt. Hierzu wurde nachgewiesen, wie die Dynamik von elastischen Robotern optimal ges-
teuert werden kann, um mit dem optimalen Regler als Vorlage einen neuronalen Schaltkreis
im Gehirn mit gleicher Funktion zu ermitteln.

In Robotersimulationen wurde ein modellfreier Regler aufgezeigt, der aus Sensordaten
schnell lernt, gekoppelte elastische Gelenke energieoptimal zu steuern. Auch im Experiment
steigerte die Adaption die robotische Sprunghche um 67 %. Ein analoger neuronaler Mecha-
nismus ware fiir den Menschen evolutiondr von Vorteil. Aber er widerspriache einem
derzeitigen Grundprinzip der Neurowissenschaft, da er einzelne Synapsen adaptieren miisste
an Sensordaten, welche nicht lokal vom pra- oder postsynaptischen Neuron kodiert werden.

Die vorliegende Forschung beweist, dass das menschliche Riickenmark nicht-lokale Adap-
tion beherrscht und Bewegungen algorithmisch wie der robotische Regler an verénderliche
Umgebungen adaptiert. Demnach bewirkt sensorischer Input, dass Serotonin an Motorneu-
ronen ausgeschiittet wird und deren Synapsen moduliert. Die Modulation gleicht funktional
der robotischen Adaption, wie durch ein mathematisches Modell vorhergesagt und exper-
imentell verifiziert wurde. In den Experimenten gab ein Roboter Probanden prézise vor,
welche Trajektorien effiziente elastische Bewegungen ermdoglichten. Messungen bestéatigten,
dass Serotonin — anders als allgemein angenommen — einzelne Muskeln unabhéngig mod-
ulierte, um deren Zusammenspiel optimimal an die vorgegebenen Trajektorien anzupassen.

Die Ergebnisse zeigen Robotikern einen universellen Regler auf, der die Energieeffizienz
modernster elastischer Roboter maximiert. Zudem kénnen Neurowissenschaftler die neue
Beschreibung muskelspezifischer serotonerger Effekte nutzen, um nach Riickenmarksver-
letzungen die verlorenene Wirkung von Serotonin z.B. durch Elektrostimulation oder Ex-
oskelette nachzubilden. Hierdurch kann die Ganggeschwindigkeit von Patienten gegeniiber
aktuellen Therapien beschleunigt werden. Diese weitreichenden Erkenntnisse belegen das
grofle Potenzial von robotischen Reglern, neuronale Mechanismen vorherzusagen. Zusétz-
lich erkldren die Regler die Funktion neuronaler Schaltkreise und vermindern so das viel-
geduferte Problem, dass die Neurowissenschaft reich an Daten aber arm an Theorien ist.
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Introduction

“What I cannot create I do not understand”
— Feyman [1]

1.1 Motivation

Natural selection has equipped us with the central nervous system (CNS) which generates
versatile and yet efficient movements in ever-changing environments. The field of bionics
replicates the human-like motor performance in robotic systems. In return, neuroscien-
tists have partly reversed the bionic knowledge transfer and have developed the field of
robotics-inspired biology. The neuroscientists thereby apply tools developed for the analy-
sis of robotic systems to investigate biological motor control and replicate it in biomimetic
robotic systems to detect where our understanding is incomplete (cf. Ijspeert [2], Floreano
et al. [3], and Gravish et al. [4] for recent reviews). The paradigm can be summarized by
a weaker formulation of Feynman’s quote: “What I cannot replicate I do not understand”.
But Feynman’s original quote adds an important statement: We understand an approach
more thoroughly by its creation than we ever could by its mere replication. And indeed,
the highest-performing robotic controllers are traditionally not a result of replication, but
are based primarily on considerations about the dynamics of mechanical systems.

This PhD dissertation fully reverses the bionic pathway, which uses biological knowledge
to find engineering solutions. Instead, the underlying work uses the powerful engineering
solutions created to control robotic movement as blueprints to understand the neuronal
motor circuitry. This proposed enginic approach is motivated by the common view that all
CNS functions have ultimately been shaped by the evolutionary need to control efficient
and versatile body movement in order to find food, evade threats, and mate [5, 6].

The enginic research project that led to the present dissertation focused on the scarcely
unraveled [7] neuronal control of highly dynamic motions because it is a particularly
promising field of research for an enginic knowledge transfer. The underlying circuits are
subject to only limited cortical influence in order to react timely to rapid perturbations
[8], which narrows down the search for a neuronal counterpart of a given robotic control
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algorithm. Furthermore, highly dynamic movements show particularly high energy de-
mands and thus provide a clear benchmark to evaluate if a given robotic controller offers
a promising hypothesis for neuronal motor control: its energy efficiency. When a walker
starts to run, the energy expenditure required to maintain the gait increases 7-fold [9].
Mechanically, individual muscles and tendons reduce their dissipated energy by up to 84 %
[10] as they deflect like springs when the runner strikes the ground and reuse the stored
energy to push the foot off the ground [11-13]. Robotic systems increasingly incorpo-
rate springs to mimic this beneficial behavior, as illustrated by Boston Dynamics’ BigDog
[14], EPFL’s Cheetah-Cub [15], and DLR’s Bert [16]. A control algorithm that harnesses
the compliance of these biomimetic robots and minimizes their energy consumption is a
promising hypothesis to explain also how our CNS controls the locomotor systems.
Specifically, the dissertation demonstrates that a state-of-the-art autoencoder developed
to induce energy-efficient motions in such compliant robots links various loose neurophysi-
ological threads into a coherent anatomical and functional description of a neuronal motor
circuit. While Lakatos et al. [17, 18] had developed this autoencoder without bionic
influence, a comparison revealed that each of its algorithmic components, illustrated in
Figure 1.1, is mirrored by a corresponding neuronal circuit or mechanism [19]—with one
remarkable exception: As the autoencoder forwards a single motor signal to drive all mo-
tors, sensory signals adjust the amplitude of this common signal for specific motors when
the mechanical conditions have changed. An equivalent neuronal mechanism would dis-
parately scale the recruitment of individual motorpools that are driven by the same motor
signal, a common neuronal circuitry that is known as motor synergy. The CNS requires
this functionality to reduce, for example, the recruitment of a single muscle from a synergy
when the environment blocks its actuated joint (Figure 1.2). But the required proprio-
ceptive information is locally encoded neither within the presynaptic synergy interneurons
nor within the postsynaptic motorpools. The adaptation rule would thus violate the fun-
damental neuroscientific principle that learning depends solely on local information [20—
22]. The research summarized here proved that the serotonergic innervation of the spinal
cord overcomes this neuroscientific constraint and performs the non-local motor adapta-
tion predicted by the robotic learning algorithm. It demonstrated in human subjects that
the serotonergic circuitry receives proprioceptive signals and adapts how individual mo-
torpools react to incoming motor signals. A mathematical analysis demonstrated that the
circuitry minimizes a non-local error function by gradient descent, a fundamental tech-
nique of machine learning that had not been known in CNS circuitry. According to robotic
experiments, this serotonergic motor feedback loop harnesses the compliant properties of
muscles and tendons and minimizes the high metabolic demands of fast periodic motions.

1.2 Related work

Robotics engineers have recently started to replicate compliant and other mechanical fea-
tures that underlie the superior movement performance of animals [23-26].

1.2.1 Compliant control in robotics

For the new biomimetic robots, novel algorithms are required that excite the versatile and
energy-efficient natural modes. Their development is a challenging task, since the complex
robots comprise multiple degrees of freedom (DOF), are subject to continuously changing
environments, and switch between continuous states such as standing and flying.
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Figure 1.1: Block diagram of the robotic autoencoder that underlies the present research project.
Sensory inputs signaling the joint torques 7 are mapped from the joint space onto a one-dimensional
sub-manifold along multiplicative weights w. The transformed input entrains a timing unit which
produces a bang-bang output 6., which is reversely transformed into motor signals 8. The input
and output weights continuously adapt to sensory information on the joint deflections g to account
for changing mechanical conditions. Figure modified, with permission, from Stratmann et al. [27].

Several research groups have developed control algorithms to induce stable and energy-
efficient limit cycles in compliant robots based on their dynamics. But these algorithms
often suffer from effects which limit their use in robots and make them unsuitable as enginic
blueprints of animal motor control. Most approaches rely on a precise dynamic model of
the robot and a fixed set of considered initial model parameters [28], such as algorithms
based on Poincaré maps [29], transverse linearization [30], or optimal control [31]. They
cannot adjust to unexpected conditions and therefore fail to explain how the CNS adapts
to fast mechanical changes of the animal body and its environment. In general, the
neuronal control of compliant movements is unlikely to rely on precise dynamic models
because the compliant properties of musculoskeletal systems critically depend on many
complex effects such as nonlinear muscle elasticities, hysteresis effects, and the changing
3D structure of the compliant elements [32]. Algorithms based on van der Pol oscillators
often use a nonlinear, sign-changing damping term to enforce a pre-defined limit cycle [33].
Imposing van der Pol oscillator dynamics on a multi-body system substantially modifies
the intended natural dynamics of the robot and artificially dissipates energy.

The autoencoder considered here has been developed to excite the natural resonance
modes of a compliant system instead of to impose artificial dynamics onto the system by
control [17, 18]. It simplifies the control of the robot during highly dynamic movements as
it empowers a single signal to control several compliant joints. As illustrated in Figure 1.1,
the autoencoder is organized in three subsequent stages: The encoder maps sensory input
from the multi-dimensional joint space onto a one-dimensional controller manifold by an
affine transformation. In this intermediate latent space, the sensory signal entrains a bang-
bang unit. The decoder stage reversely maps the latent motor signal onto the joint space
where it synchronously drives all actuators involved in the movement. The bang-bang
control guarantees that the controlled robotic motion converges to an attractive periodic
limit cycle within few oscillation periods because it injects the same energy in each periodic
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cycle while the energy dissipated by damping increases with the movement amplitude [17,
19, 34]. Once a movement is excited, sensory signals continuously adapt the transformation
weights at the encoder and decoder stage to changing mechanical resonance conditions.
For this purpose, Lakatos et al. [17] derived an adaptation rule that aligns the weights
with the least-square optimal, linear approximation of the dominant oscillation mode of the
mechanical system [35]. The control approach requires only prior knowledge on the DOF
of the mechanical system and continuous sensory information on a given movement. But
it remained unclear if the autoencoder can excite energy-efficient resonance movements in
complex robots or even in biologically plausible mechanical systems.

1.2.2 Compliant control in neuroscience

The robotic autoencoder shows a distinct resemblance to known neuronal structures and
functions [19, 36]. In particular, the sensory encoder [37, 38] and the latent control
manifold [39, 40] are mirrored by corresponding CNS circuits.

Like the robotic encoder, also the CNS of cats converges sensory signals from different
joints to entrain the frequency of all muscles involved in a movement [41, 42]. The robotic
controller suggests that the transformation weights adjust according to Oja’s rule, a math-
ematical model of Hebbian learning that underlies many forms of synaptic plasticity in
the CNS [35, 38]. And indeed, the efficacy of individual nerves to entrain motor signals in
the cat changes according to this plasticity rule [37].

The one-dimensional latent layer is the control-theoretic equivalent of a synergy [43—
45]. Synergies are neuronal structures prevalent throughout the spinal cord [46-48] which
solve the problem that the biological locomotor system offers more DOF than required
for a specific task [49]. The majority of spinal interneurons receive signals from different
modalities and thus form sensory synergies [39]. They thereby filter out information which
is unnecessary for a specific task. In turn, groups of interneurons elicit synchronous motor
signals to a hard-coded group of muscles—the above-mentioned motor synergies [40, 50—
54]. A motor synergy chooses among the large number of movement patterns that even
a single leg offers due to its more than 50 muscles [43]. Descending commands link the
individual synergies into the complex movement patterns observed in humans [55-59].

Given these striking analogies, it is remarkable that there is no known neuronal coun-
terpart for the adaptation rule of the decoder. A neuronal mechanism that adjusts motor
synergies in a similar way would provide the CNS with a fundamental function: it can
adjust the relative forces of different muscles when their activation is timed by a common
ionotropic synergy signal (Figure 1.2). An equivalent neuronal mechanism must receive
sensory input and accordingly adjust the synaptic weights between the synergic interneu-
rons and individual motorpools. But the function violates a fundamental principle of
neuronal learning: locality. The synaptic weight between two neurons is thought to be
shaped exclusively by the local information encoded by the pre- and postsynaptic cell [20].
The proposed new mechanism, in contrast, would perform non-local learning since nei-
ther the common interneurons nor the motorpools encode the sensory information which
guides the adaptation process. Previous theoretical studies have accordingly focused on
properties of synergic motor signals that the CNS can adjust without non-local learning,
such as their phase [60, 61] and frequency [62-64], but not on a disparate amplification as
the common signal is forwarded to different muscles. This dissertation solves the paradox
that the CNS is, according to state-of-the-art knowledge, unable to scale an individual
motor signal from a motor synergy despite the large evolutionary benefit of this skill.
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Figure 1.2: Cycling can illustrate why it is essential to disparately scale the forces of different
muscles when the mechanical conditions change. For this purpose, assume that cycling is controlled
by a pool of M1 neurons that elicit a common motor command 6, [65]. The synergy signal is
transformed along synaptic gains w into signals @ that drive the spinal motorpools of several
muscles [55-57]. (a) When the person sits on the saddle, both knee and ankle extensors need to be
actuated. (b) When the subject stands up to accelerate, the knee extensors cannot exert a force
along the pedal trajectory and their motor signal should be scaled down. In contrast, the ankle
extensors need to receive an amplified signal to maintain the movement speed. Ankle and knee
extensors must thus be scaled in opposite directions to adjust to the new mechanical conditions.
Also mechanical conditions that restrain the movement less strictly than the pedal show preferred
or resonant movement directions that allow excitation of large movement amplitudes with small
consumption of metabolic energy. Figure modified, with permission, from Stratmann et al. [27].

1.3 Problem statement

So does the robotic autoencoder explain how the CNS controls compliant movement? This
question poses many challenges that justify why the neuroscientific community has not
harnessed the diverse control approaches developed for biomimetic robots, yet. As detailed
below, the associated enginic knowledge transfer needs to overcome four main problems:

1. It is unclear if the robotic autoencoder shows functional benefits, in particular energy

efficiency, which make it a promising hypothesis for neuronal motor control.

2. The CNS seems incapable of the non-local learning predicted by the robotic decoder.

3. Given a predicted functionality, it is difficult to detect a specific neuronal mechanism

that performs it due to the complex and intertwined nature of the CNS.

4. The neuronal hypotheses must be verified during fast and strong motions in vivo.
In order to solve these four scientific problems, a large range of scientific fields and meth-
ods must be mastered, ranging from robotics control theory and experimental robotics,
through computational neuroscience, to human-subject experiments. Besides the scien-
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tific challenges, the associated interdisciplinary work must also overcome many mental
and infrastructural barriers that separate researchers working in these fields.

The quest for control algorithms that achieve the high energy efficiency of animal lo-
comotion is “one of the biggest challenges in robotics research today” [66]. While an
individual robotic actuator can already outperform the energy efficiency of a mammalian
muscle, complex robots require several times more energy for a specific task than their
animal counterparts [67]. Mechanical engineers therefore increasingly mimic the mechan-
ical features underlying the mammalian motor performance. A lower-limb exoskeleton is
an extreme result of this approach because its dynamics is predominantly determined by
the human locomotor system supported by it. These robots are often built to increase the
walking efficiency of a human. But exoskeletons controlled by traditional algorithms sub-
stantially change the human movement pattern and thus often even increase the human’s
metabolic energy expenditure [68]. In order to unleash the potential of biomimetic robots,
a new controller design is thus needed which harnesses their beneficial intrinsic dynamics.
Such a controller needs to continuously adapt online when the robot, for example, steps
from solid onto soft ground or lifts a load. While humans can solve this task intuitively,
the Moravec’s paradoz states that it is much more challenging for a computer algorithm
to learn such a sensorimotor skill than to solve reasoning tasks, such as excelling in chess,
that pose severe challenges to the human CNS [69].

The search for a neuronal counterpart of the robotic decoder seems impossible at first
sight because its learning rule violates the paradigm of locality that constrains neuronal
learning as discussed above. But as illustrated in Figure 1.2, the disparate amplification
of different motorpools to non-local information is not only advantageous but even crucial
when a motor synergy must control movements that are mechanically constrained, such
as pedaling. Also beyond the specific context of motor synergies, the lack of computation-
ally potent non-local learning mechanisms is a key issue for computational neuroscience.
For a long time already, this lack has been a “core objection to the biological plausibility
of backpropagation”, one of the most fundamental learning principles of artificial neural
networks [22]. Detecting such a mechanism in the CNS would remove a major barrier
between neuroscience and machine learning and open a new path for a mutual knowledge
exchange that goes far beyond locomotor control.

If we assume that the CNS performs the non-local learning predicted by the robotic
decoder, it will still be challenging to discover the specific underlying neuronal mechanism
or circuit due to the sheer complexity of this organ. The CNS consists of roughly 86 billion
neurons [70] that are connected to each other via about 100 trillion synapses [71] and
exchange far over 100 different neurotransmitters [72]. These billions of cells may in
theory calculate a predicted set of equations in myriad different ways.

Even spotting the correct brain counterpart of the robotic controller will only provide a
neuronal model. Such a model must be experimentally verified because “in theory, there
is no difference between theory and practice. But, in practice, there is” [73]. Ajemian
and Hogan [74] recently attested that the “temptation of building elegant models that
can never be tested” is a major problem of motor neuroscience due to the complexity
and entanglement of brain circuits. Traditional neuroscientific methods furthermore face
specific limitations when analyzing how the CNS controls highly dynamic movements.
Invasive recordings that could directly disentangle the underlying low-level motor circuitry
are obstructed in animals because the spinal cord shows profound movement within the
vertebral column [75]. Well-designed experiments may test neuronal hypotheses non-
invasively, but they still require a mechanical test bed that fulfills conflicting requirements.
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It must at the same time simulate a desired environment with high precision, allow high
forces and velocities, and guarantee the participant’s safety.

In addition to the four research challenges, the proposed enginic project poses also
communication challenges due to its interdisciplinary nature. Engineers and biologists do
not speak the same language—Iliterally: While mathematics lies at the heart of engineering,
each additional equation per page reduces the citations a biology paper receives by 28 %
[76]. Even between computational and experimental neuroscientists there is a large gap,
and experimentalists “are skeptical of claims based on simulated data, feeling that such
efforts are too far removed from biology to be informative” [77]. An enginic project must
overcome these barriers in order to build up an interdisciplinary collaboration team and
get its output published to both the robotics and the neuroscience community. Such an
endeavor is needed more than ever at the present stage because the cooperation between
engineers and neuroscientists have seen a sharp decline during the last years [22].

1.4 Overview and contributions of this dissertation

The research presented in this cumulative dissertation addressed the problems stated in the
previous section. Step by step, it transferred the original robotic autoencoder into knowl-
edge on neuronal motor circuitry. The results of the enginic path contribute theoretical
and experimental insights to both robotic control and neuroscience. The following four
chapters sequentially summarize the obtained four key findings and the methods applied
to obtain them:
1. The decoder excites motions in biomimetic robots that are energy optimal under
changing conditions. It is therefore a promising blueprint for human motor control.
2. The serotonergic innervation of the spinal cord implements a motor feedback loop,
as it receives proprioceptive information and accordingly releases serotonin which
modulates the activity of spinal motoneurons. This non-local learning shows close
algorithmic resemblance to the learning rule of the robotic decoder.
3. Serotoninergic neuromodulation is the only known substrate for non-local learning
in lower motor circuitry, making it a unique basis for the learning rule.
4. In human subjects who perform highly dynamic motions, serotonin modulates mo-
toneuron activity as predicted by the learning rule of our robotic decoder.
For more details, the reader is referred to the four journal articles in the appendix.
Chapter 2 demonstrates that the robotic autoencoder harnesses the compliant elements
of a biomimetic robot. It thereby induces periodic movements with minimum energy
consumption even in systems subject to hybrid nonlinear dynamics. This result establishes
the learning rule proposed by Lakatos et al. [17] as a tool for engineers who can apply it
to multi-joint compliant robots. The algorithm will autonomously acquire the resonance
frequency of the motor signals and the relative torques of the actuators that increase the
overall movement amplitude for constant energy input, in some cases to a value multiple
times higher than before adaptation. The rule advances the state of the art in energy-
efficient control by an algorithm that features a unique mix of characteristics, as it is
highly modular and adapts online to changes of the robot and its environment without
prior model knowledge of their dynamics. While the results were obtained by numerical
optimization, they were validated in robotic experiments.
Chapter 3 shows that the human CNS may, in theory, perform the same arithmetic
operations as the robotic autoencoder to induce fast periodic movement with minimum
metabolic requirements. The simulation results show that the high performance of the
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robotic autoencoder is thereby determined solely by the decoder, which determines the
torque that individual joints contribute to the overall movement. Its adaptation algo-
rithm resembles the effect of neurons in the medullary raphe nuclei, which release the
neuromodulator serotonin onto spinal motoneurons. As compared in Figure 6.1, both the
robotic adaptation rule and the raphe neurons receive sensory information on an ongoing
movement and multiplicatively scale the response, i.e., the excitability, of several actua-
tors to a common motor signal. Analytic reasoning demonstrated that the dynamics of
the serotonergic neuromodulation yields the same multiplicative weights as the adaptation
rule of the decoder. Previous research has not considered serotonin as basis of neuronal
learning because it is presumed to be only a diffuse metabotropic neuromodulator of the
topographically precise ionotropic circuitry which dominates CNS functions. In the spinal
cord, serotonin is generally accepted to equally scale the response of actuators driving
different joints even across limbs [78, 79]. The present model, in contrast, assumes that
serotonin predominantly amplifies the actuators of the joints which show particularly large
movements in comparison to other joints of the same limb.

The review in chapter 4 attests that previous experimental findings are compatible with
the assumption that serotonin disparately multiplies the activity of individual motorpools.
While this precision scaling could theoretically also originate in ionotropic effects, alterna-
tive, non-metabotropic circuits in the spinal cord were found to be computationally limited
and show a purely linear processing of sensory signals. The raphe nuclei thus form the
only neuronal circuitry that may, according to current data, perform the motor adaptation
proposed by the robotic decoder. In a broader context, these findings demonstrate that
serotonergic neuromodulation will extend the linear ionotropic circuitry in the spinal cord
by the ability to calculate general nonlinear functions if it acts with topographic precision.

Experiments presented in chapter 5 proved that the serotonergic system of human sub-
jects acts with the precision predicted by the robotic output transformation. The CNS
specifically increases the excitability of motorpools when their innervated joint, rather
than another joint of the same limb, performs highly dynamic movement. As a spin-off
of these experiments, a safe controller is developed for a robotic device that guides the
arm of human subjects with forces of up to 1.5kN. This peak force is unrivaled by similar
devices [80], prompting that the new controller provides neuroscientists with a tool that
shows unmatched acceleration and precision.

In summary, the research presented here has shown that the serotonergic raphe nuclei
implement non-local learning and adapt the spinal ionotropic circuitry to sensory input.
The serotoninergic system thereby acts not by diffuse neuromodulation as generally as-
sumed. Instead, it forms a topographically precise computational skipping network to
the network formed by the ionotropic circuitry. Serotonin thereby adjusts the relative
forces of individual joints and harnesses the compliant properties of the whole limb for
energy-efficient movement. The functional benefits of this mechanism emphasize it as a
versatile and powerful effect that neuroprosthetic systems and exoskeletons can mimic to
extend their battery life and the motor performance of injured and healthy people. The
results on serotonin in lower motor circuitry furthermore suggest that monoamines may
provide topographically precise effects also in other CNS circuits, where their malfunction
is tightly linked to neuropsychiatric disorders such as depression, obsessive compulsive
disorders, and generalized anxiety disorder [81]. The proposed concept that the underly-
ing monoaminergic systems show topographic precision offers an explanation for the poor
and unpredictable treatment outcomes of the psychopharmacological drugs that act on
them by diffuse mechanisms. To test its impact for Parkinson’s disease, an in-vivo study
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is currently being prepared at Lund University (Sweden). Besides the new knowledge, the
success of the enginic project reveals also a new methodology for neuroscientific research.
Accordingly, robotic control algorithms have become an efficient source of well-analyzed
models that identify unknown neuronal mechanisms, frame individual known neuronal
circuits into an overarching framework, and explain their functions.

1.5 Publications underlying this dissertation

The impact of the present project demonstrates that its research successfully attracted
an interdisciplinary project team and overcame the mental barriers between the involved
scientific fields. Each of the four key findings presented in the last section resulted in a sep-
arate paper which was published in, or in one case is being prepared for, a leading journal
in the field of either robotics, computational neuroscience, or experimental neuroscience.
To present the findings, a workshop was organized at a major neuroscience conference and
a talk was delivered at a major conference in the field of robotics. A patent is currently
under review, illustrating also the industrial impact. The results gave rise to two followup
doctoral projects that are being carried out at the Technical University of Munich / the
German Aerospace Center and an in vivo study that is being prepared at Lund University.

1.5.1 Journal publications & patents

Philipp Stratmann, Hannes Héppner, David Franklin, Patrick van der Smagt, and Alin
Albu-Schéffer. “Focused neuromodulation of individual motorpools: confirmation of pre-
dictions from the efficient control of biomimetic robots”. Nature Communications Biol-
ogy (2020, to be submitted).

Philipp Stratmann, Dominic Lakatos, and Alin Albu-Schéffer. “Medizinisches System zur
Laufunterstiitzung durch Muskelstimulation sowie Verfahren zur Regelung eines medi-
zinischen Systems zur Laufunterstiitzung durch Muskelstimulation”. German patent
application no. 10 2020 120 164.8 (2020, under review).

Philipp Stratmann, Dominic Lakatos, Annika Schmidt, and Alin Albu-Schéffer. “Medi-
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ches System zur Laufunterstiitzung”. German patent application no. 10 2020 120 161.3
(2020, under review).

Philipp Stratmann and Alexander Dietrich. “Objekt mit variabler Steifigkeit”. German
patent application no. 10 2018 103 893.3 (2018, under review).

Philipp Stratmann, Alin Albu-Schéffer, and Henrik Jorntell. “Scaling Our World View:
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science 12 (2018), p. 506. 1SSN: 1662-5102. DOI: 10.3389/fncel.2018.00506.

Philipp Stratmann, Dominic Lakatos, Mehmet Can Ozparpucu, and Alin Albu-Schiffer.
“Legged Elastic Multibody Systems: Adjusting Limit Cycles to Close-to-Optimal Energy
Efficiency”. IEEE Robotics and Automation Letters 2.2 (Apr. 2017), pp. 436-443. DOTI:
10.1109/LRA.2016.2633580.

Philipp Stratmann, Dominic Lakatos, and Alin Albu-Schéffer. “Neuromodulation and
Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in
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Locomotion Control. Conference workshop, Bernstein Conference. Sept. 2016.
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CHAPTER 2

A controller for energy optimal motion in biomimetic robots

A robotic control algorithm provides a promising hypothesis for animal motor control if it
shows such substantial functional advantages that the neuronal circuitry is likely to have
evolved to fulfill an analog functionality. The benefit of control approaches developed for
compliant robots can primarily be assessed according to their ability to harness the passive
compliant elements for energy-efficient movement because the ability to minimize the mus-
cular energy expenditure is seen as a major—if not the most important—factor underlying
the evolution of compliant motor control [5, 6, 11]. Particularly during highly dynamic lo-
comotion, passive compliant elements can substantially lower the high metabolic demands
of motion [11], a fact that forms a driving force behind the increasing incorporation of
compliant elements in bionic robots [24]. But as summarized in the introduction, previous
robotic approaches to compliant control fail as blueprints for brain circuits because they
either dissipate energy by artificial damping or require precise models of the mechanical
system that can hardly be provided in ever-changing mechanical contexts.

In the present project, numerical optimal control and robotic experiments were applied
to check whether the novel modal robotic controller induces energy-optimal movement [82].
“Energy-optimal” hereby means that the control law maximizes the movement amplitude
for a pre-defined energy input. The considerations were based on a periodically jumping
biomimetic leg, since locomotion bears a particularly high potential for optimization by
compliant structures due to its high energy consumption and high occurring impact forces.
Its control is challenging, as it shows nonlinear hybrid dynamics.

2.1 The robotic autoencoder

The modal adaptive controller that Lakatos et al. [17, 18] developed for the control of
compliant robots is illustrated in Figure 1.1. When considering it in detail, it shows three
characteristics that shape the energy efficiency of the resulting movement. The study
summarized here subsequently checked the efficiency of each of them.

First, the controller induces periodic movement. It thus converges the ongoing move-
ment of a multi-body system driven by series elastic actuators (SEAs) to a stable limit
cycle. The movement can be initiated by deflecting the system from its static equilibrium
position and is then iteratively adjusted by the controller.
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2 A controller for energy optimal motion in biomimetic robots

Second, the controller reduces the control of a robot with n joints to a one-dimensional
task by modal transformation weights w € R". These weights remain constant throughout
the movement cycle as long as the robot and its environment remain unchanged. The
algorithm sets the motor coordinates 8 € R™ according to sensory information on the
joint coordinates ¢ € R™ and the joint torques 7 € R™. Since the study considered SEAs,
the torques were a function of the difference between joint and motor coordinates,

T=71(0—-q). (2.1)

The controller transforms these torques from the joint space onto a one-dimensional control
sub-manifold along the modal weights,

,wT

= mT . (2.2)

Tz
When this signal crosses a constant threshold e, € Ry, the controller triggers a one-
dimensional controller output of constant amplitude 6, € R,

—|—t§z if 7, > e
0,=30 if —er <7 <e . (2.3)
—éz if 7, < —e;

The output is transformed back onto the high-dimensional joint space and the motor
torques are accordingly updated to

w

0=0 (2.4)

“wll
The following considerations focus on a bionic robot with n = 2 joints for reasons detailed
below, which implies that the normalized weight can be characterized in polar coordinates

by the scalar angle «,
w sin(a)
— = . 2.5
o] <c0s<a>> 29

As a third characteristic, the controller autonomously models the dynamics of a robot
and adapts when the robot itself or its mechanical environment changes. For this purpose,
the controller observes the joint trajectories q and iteratively adapts the linear transfor-
mation weights according to Oja’s rule [38],

w =y(w'q) (g — (wgw) . (2.6)

The adjustment time constant 1/y = 10s is chosen larger than the periodic time of the
movement to capture the dynamics of the system during the whole movement cycle. Oja’s
rule can intuitively be understood as an approach to linearize the mechanical system. If
one of the joints shows an extensive movement amplitude g;, the first term in the squared
bracket will increase the associated weight w; relative to the other weights. The negative
second term will not alter the weights relative to each other, but will keep the overall weight
vector bounded and will thus prevent its amplitude from infinite growth. In mathematical
terms, Oja’s rule extracts the dominant principal component of g, corresponding to the
physical eigenmode that shows the maximum amplitude for simple mechanical systems [35,
83]. In particular, the modal weights allow resonant movement in compliant systems which

12



2.2 The compliant biomimetic robot

show continuous linear dynamics, can be described by a constant diagonal inertia matrix,
and are subject to modal damping and white noise. For more realistic nonlinear mechanical
systems with hybrid dynamics, as considered here, Oja’s rule extracts the least-square-
optimal linear approximation to the joint trajectories which describe the dynamics. The
robotic experiments focused on the performance of this learning rule due to its importance
for the present dissertation, which considers if Oja’s rule describes how the CNS adapts
motor output to changing mechanical conditions.

The described three characteristics of the control approach formed the research hypothe-
ses tested here: First, an energy-optimal solution is periodic. A control law that optimizes
particularly a specific jump in a sequence should thus lead to a periodic trajectory in the
preceding jumps. Second, a linear transformation is the optimal transformation between
the joint-space and the modal control space without the need to adjust the transformation
weights w to different stages of the movement cycle. Third, Oja’s rule iteratively extracts
the optimal transformation weights from sensory information on an ongoing controlled
motion. This study consistently applies a bang-bang unit in the one-dimensional control
sub-manifold as this controller type guarantees movement stability [34].

2.2 The compliant biomimetic robot

The robotic test bed for the energy considerations was given by the simulation model of a
passive-compliant leg and the original leg, which are illustrated in Figure 2.1a and Figure
2.2a, respectively. The successors of this leg now propel the quadrupedal DLR robot Bert
[84]. The robotic leg allowed to test the energy efficiency of the overall control algorithm,
while the simulation model allowed numerical in-depth answers to the individual research
hypotheses raised above.

The robot consists of a trunk that is attached to a two-compartmental leg comprising
an upper thigh and a shank. The trunk and the thigh are linked by a hip joint, while
the thigh is serially connected to the shank by a knee joint [84]. This robot with n = 2
joints was used in order to avoid redundancy during the considered running motions on
a flat surface along the sagittal plane. This agrees with animal walking and running,
which is mainly powered by two joints, while the third joint is predominantly used for
functions that are not considered here, such as modulating the stiffness of the limb [85].
Two SEAs actuated the hip and knee joint, respectively, of the robot by deflecting two
torsional springs of constant and equal stiffness by an angle 8 € R™. To guarantee that
each SEA can independently actuate either of the joints, the second SEA was connected
to the knee joint via belt drives. The robot was free to jump vertically, while a boom
mounted to the trunk both kept it on a circular horizontal path and prevented rotation of
the trunk. The trunk rotation was locked since both animals and advanced robots have a
high trunk inertia and can adjust their rotation independently from the jumping motion
due to redundant DOF. A sensor at the ground fixation point of the boom recorded the
vertical height and circular horizontal position, denoted x,; € R and zpo € R, respectively.
Sensors in the SEAs filed the joint positions g € R™.

For the numerical investigations of the proposed control algorithm, the robotic system
was modeled as a floating base with one leg. The floating base was able to freely translate in
a vertical plane, described by the coordinates &1, = (21,1, 2p2)? € R?, while its rotation was
locked. Joint and floating base coordinates were summarized as = = (z{,q7)T € R*™™.
The two SEAs independently actuated either the knee or the hip joint as they deviated
their torsional springs of stiffness k and damping cq by angles 8 € R™. The overall system
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can be modeled by

0

M(x)& + C(x, &) + g(x) = <k(9 —q) - cad

> + Tcontact (27)

The symmetric, positive definite inertia matrix is denoted by M (x), C(x, &) represents
the generalized Coriolis and centrifugal matrix, g(x) gravitational forces, and Teontact the
generalized external force. During the jumping movement, the leg formed a hybrid model
and alternatively switched between a standing and flying phase. During the standing
phase, the leg was in contact with either a rigid or a more realistic compliant ground
model depending on the analysis technique applied for numerical optimization. In order
to apply hp-adaptive Gaussian quadrature collocation, the well-tested software package
GPOPS-II [86] was used whose differential equation solver imposed a rigid ground model
that forced a fixed unilateral contact point with the leg. The later Monte Carlo analyses
were compatible with a more realistic compliant model that fixed the leg by friction.

2.3 Numerical energy optimization

The following sections summarize the methods applied to test three aspects of energy
efficiency as mentioned above:

1. Is each individual jump optimized during a periodic limit cycle?

2. Are the energy-optimal modal transformation weights time-invariant?

3. Does a bang-bang controller in combination with Oja’s rule extract the optimal

transformation weights from sensory information?
“Optimal” hereby means that the final jumping height, which is used as the objective
function in Mayer form, is maximized for a fixed energy input. The energy is inserted into
the system by the SEAs, which switch their torque,
w

Tw=k(—q) > 1=k ( [£0,] — q) ,

[[wll

and thereby perform the work (see original paper [82] for derivation)
A 1.4
AE = e.0, + §k9§ . (2.8)

The energy inserted into the mechanical system is therefore determined by the controller
threshold e, and amplitude 6,. In contrast, the energy input is independent of the polar
coordinate o that represents the normalized transformation weights.

2.3.1 Optimality of the periodic limit cycle

The study aims at maximizing all jumps of the robot simultaneously. The goal may be self-
contradictory because a high performance of one jump may theoretically induce adverse
effects on other jumps of the sequence. It must therefore be tested whether it is sufficient
to maximize only the final jumping height and thereby induce a converging limit cycle
movement where also all prior jumps are optimal. To answer this question, it is necessary
to find the optimal parameter a* and piece-wise continuous control é;“ (t) that maximize
the final jumping height after a sequence of eight consecutive jumps. For the analysis,
numerical hp-adaptive Gaussian quadrature collocation was applied as implemented in the
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software GPOPS-II [86]. Accordingly, the state of the mechanical system was described

T
by (7, a'zT)T and the state equation f = (:i:T, :ET) was derived from equation (2.7). The

software divided the time interval of interest into specific mesh points and discretized the
state at these points. The optimal control problem was then transformed into a nonlinear
programming problem and solved using the IPOPT software library [87]. States were
estimated using Lagrange polynomials, and both the number of mesh points and the degree
of the polynomial were dynamically adjusted. The controller was constrained to show
bang-bang behavior and the maximum energy inserted into the system was fixed during
the eight jumps. The tested hypothesis states that the optimal controller switches after
periodic intervals and that the induced leg trajectory showed exponential convergence,
which would imply that the optimal movement is compatible with a stable limit cycle.

2.3.2 Optimality of the modal transformation

The focus was then turned to the second hypothesis, namely, that the weights of the
mapping from the sensory/actuation space and the one-dimensional control sub-manifold
may remain constant throughout the movement cycle. While the calculations repeated
the optimization described in the last section, they alleviated the constraint that the
weights must be fixed throughout the movement. The algorithm implemented in GPOPS-
IT therefore searched for the parameters 6% (¢) and o*(¢) that maximized the final jumping
height.

The obtained optimal weights did vary with time, which raised the question whether
this deviation from constant weights is functionally relevant. The question was answered
by comparing the improvement gained by allowing time-varying weights a*(t) to the im-
provement that can be obtained by optimizing the time-invariant weights «. For this
purpose, « was fixed to different equally-spaced values across its full range, GPOPS-II
was run for each value, and the maximum achievable jumping height was recorded.

2.3.3 Optimality of the transformation adaptation

Under realistic conditions, the optimal transformation weights of the robot are initially
unknown and must be adapted to the ever-changing dynamics of the robot and its en-
vironment. The robotic controller extracts an approximation of the optimal weights by
applying Oja’s rule to the sensory signals. Monte Carlo simulations evaluated whether the
learning rule performs this task successfully and reliably given random initial weights and
different target jumping heights.

Each simulation trial randomly picked the energy amplitude AFE and the initial value
for v which determine the jumping height and the transformation weights, respectively.
It then quantified the performance improvement that the proposed controller gained by
applying Oja’s rule. Hereby, the mentioned parameters were chosen from an interval of
values that we empirically found to induce stable jumping by a prior parameter screen-
ing. The simulation modeled how the algorithm controls the movement and adapts the
weights according to the sensory feedback. Once the weights and the robotic trajectory
had converged to a periodic trajectory, the simulation stopped and recorded the final
weights. To quantify the performance improvement induced by Oja’s rule, the simulations
were repeated with transformation weights that were fixed to either their initial or their
adapted values. The jumping height of the converged limit cycle quantified the controller
performance. This procedure was repeated 40 times to see if Oja’s rule reliably improved
the controller performance.
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2.4 Confirmation in robotic experiments

Experiments on the robotic leg confirmed that the theoretical results hold under real-
istic conditions. As mentioned before, the experiments focused on the third hypothesis
raised in this chapter, namely, that Oja’s rule leads to relative actuator forces that induce
energy-optimal movement. If the hypothesis holds, the learning rule must adapt initial
transformation weights to values that maximize the jumping height.

The experiments first determined the weights that Oja’s rule extracts. For this purpose,
the polar coordinate o was screened to detect an interval of possible initial values that
allowed persistent leg movement. In two experimental trials, the initial weights were then
set first to the lowest and then to the highest value of « in this interval. In each of
the two trials, the leg movement was initiated by a standardized delta-stimulus and then
controlled by the robotic controller. Oja’s rule continuously adapted the transformation
weights throughout the movement until convergence was detected and the final weights
were recorded.

The experiments next determined if the final weights represented the optimal param-
eters for the considered robotic system. In subsequent trials, the weights were set to
ten different, equally-spaced « values from the full interval of possible values determined
above. In two further trial, the weights were initiated as the converged weights obtained
by Oja’s rule. The weights remained fixed to these values throughout the respective trial.
Once the leg movement had converged to a limit cycle, the jumping height was averaged
for each value of a to obtain a resonance curve as a point of comparison to assess the
weights obtained by Oja’s rule.

To exclude perturbing effects, action were taken before, during, and after the exper-
iments. First, the height profile of the ground was characterized at different horizontal
positions. The vertical position of the robot measured during the trials were corrected
for this bias. Second, the motors were ensured to remain within their normal operating
temperature throughout the trials. To heat the motors up, the leg jumped initially us-
ing a bang-bang controller with constant weights until the movement had converged. To
prevent overheating, trials were subdivided into motion sequences of 45s each, which were
interrupted by cooling phases lasting 120s. Third, it was excluded that the mechanics of
the robot had changed during the experiments. For this purpose, the motors were set to
pre-defined default positions and the resulting standing height of the robot was measured
prior to and after the experiments. Furthermore, a reference trial was performed with the
same fixed transformation weights after each trial to ensure that the jumping height of
the robot remained constant for constant conditions.

2.5 Summary of the Results

The robotic controller considered in this dissertation was developed to induce highly-
dynamic resonance movements in realistic compliant robots. These robots have multiple
compliant joints with nonlinear coupling and show hybrid dynamics. The controller sim-
plifies their control by three assumptions: First, it should periodically exert the same
output at the same point along the jumping cycle and thereby induce a periodic move-
ment. Second, the motor signal can be generated from within a one-dimensional control
manifold, and linear transformation weights can transform between the multi-dimensional
joint space and the control manifold without the need to adapt these weights during the
jumping cycle. Third, Oja’s rule can extract the optimal weights for a given robot from
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Figure 2.1: Results of the Monte Carlo simulations demonstrate how well Oja’s rule approximates
the resonance mode of the compliant robot. a) The simulations modeled a compliant leg that
consisted of a base that was serially connected to two links by a hip and a knee joint. The base
coordinates (zp1, Zn2) were measured at the middle of the hip joint, as indicated by a x. The joint
coordinates (g1, g2) were measured clockwise relative to vertically extended links. b) A parameter
screening shows the jumping height as a function of the two free parameters of the bang-bang
controller, namely, the energy AFE injected into the system in each jump and the polar angle «
describing the transformation weight vector. The jumping height was normalized for each value
AF and the background represents parameter ranges where jumping fell silent. The simulations
randomly choose initial tuples of these parameters, initiated jumping of the leg, and waited for
Oja’s rule to adapt the weights. They converged to values close to the peak line. ¢) A zoom
into the parameter space shows that the converged weights differed least from the peak line at
particularly low and high energy input. d) For each energy input, the graph shows by how much
the jumping height can be improved by adjusting the transformation weights from their worst to
their optimum values. Hereby, conditions were excluded that caused movement decay.

sensory information without the need for error-prone prior models. The numerical opti-
mization and robotic experiments presented in this chapter show that these assumptions
are compatible with energy-optimal resonance movement in compliant robots, as described
in detail in the original paper [82] and summarized in the following.

In agreement with the first assumption, the optimal controller switched always at the
same point along the 0.41s long jumping cycle with an uncertainty that was below the
numerical resolution of 0.01s. The optimal controller thus inserts the same maximum
possible energy into the system during each jump of the sequence, even though its op-
timization goal was to optimize only the last jump. The resulting jumping motion was
periodic and its peak height converged exponentially. These findings indicate that the
optimization of a specific jump requires that each preceding jumps must be driven by the
same controller, which results in a periodic limit cycle movement. The proposed periodic
controller is thus compatible with optimal control.

In contrast to the second assumption, the optimal transformation weights varied through-
out the jumping cycle. Directly after landing and before take-off, the weights were aligned
with the eigenmode of the system that can be obtained by linearizing it around its equilib-
rium position. But when the joints increasingly deviated from their equilibrium position,
the optimal weights also deviated from the eigenmode. These deviations increased the fi-
nal jumping height from 4.8 cm, as obtained for time-invariant weights, by 1.9 % or 0.1 cm.
This is more than a magnitude smaller than the performance increase of up to 263 % or
3.0 cm obtained by optimizing the time-invariant transformation weights. It is thus func-
tionally reasonable that the controller ignores any variations of the weights throughout
the movement cycle and only adapts them to changing mechanical contexts.

Oja’s rule performs this task well according to both the Monte Carlo simulations and
the experiment. In the simulated leg illustrated in Figure 2.1a, Oja’s rule closely aligned
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Figure 2.2: Results of the experiment. a) The experiments were conducted on a compliant
leg that is pictured here. b) The robotic controller induced jumping motions with different peak
height. The parameter screening found a maximum peak height for values of « € [1.68,1.787].
Values of a below the illustrated region lead to a movement decay. Each trial was followed by a
control trial with o« = 1.757, which showed highly consistent behavior throughout the experiment.
Error bars denote the standard deviation over several jumps. c¢) The standard deviation denoted
the fluctuations of the movement amplitude as illustrated here by one exemplary base trajectory.
The dotted line indicates the onset of the controller. d) Oja’s rule aligned the transformation
weights with the same value for both initial weights tested here. The converged weights yielded a
peak jumping height according to the curve shown in the second panel of this figure.

random initial weights with the optimum weights (Figure 2.1b) and the option that this
occurred by chance can be rejected at p < 1075, Upon increasing the energy input and
thus the movement speed, Oja’s rule approximated the linear resonance weights better and
better (Figure 2.1c) because the influence of the nonlinear switching phase decreases with
a longer flying phase. At the same time, the performance of badly and perfectly tuned
weights monotonously diverged with higher energy input and thus the proper adaptation
became increasingly important (Figure 2.1d). In the physical leg illustrated in Figure
2.2a, a small range of weights induced maximum energy efficiency (Figure 2.2b). Within
this plateau region, different weights led to jumping heights that mutually differed by
less than one standard deviation. Any performance difference within this interval was
thus smaller than the inherent fluctuations of the jumping motion exemplified in Figure
2.2c. The weights that Oja’s rule extracts from the sensory input lay within this plateau
region independently of their initial values (Figure 2.2d). Hereby, Oja’s rule increased the
jumping height by up to 1.4cm or 67%. The proposed robotic controller thus substantially
improves the energy efficiency of compliant movement without the need for error-prone
internal models, while the performance difference between the proposed algorithm and an
optimal controller are obscured by the inherent noise of the robot. The robotic algorithm
can thus effectively induce energy-optimal motion in complex nonlinear compliant robots.
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CHAPTER 3

A neuromodulation model resembling the robotic controller

As shown in the last chapter, the robotic autoencoder harnesses the compliant springs of
biomimetic robots to induce energy-optimal motion just like animals harness the elastic
properties of their tendons and muscles [11, 88, 89]. The modal control algorithm is thus
a promising hypothesis for neuronal motor control, because an animal that can minimize
the high metabolic demands of highly dynamic periodic motions [9] has a substantial evo-
lutionary advantage [5, 6]. It is indeed known that the spinal cord implements neuronal
structures that resemble the proposed autoencoder. In resemblance to the encoder, the
proprioceptive information from multiple joints often converge onto a common pool of
interneurons within a sensory synergy [39]. Conversely, single pools of interneurons of-
ten drive all motorpools involved in a movement with the same phase and frequency and
thereby form a motor synergy that resembles the decoder [40, 50-54]. At a first glance, it
also seems plausible that the spinal cord adjusts the synaptic weights of sensory synergies
as predicted by the robotic encoder [19]. Hebbian learning, a well-known principle of neu-
ronal adaptation, would accordingly adjust how the signals from different joints influence
the overall phase of the synergic motor signal. But the decoder adaptation violates the
fundamental constraint that neuronal learning is local [20] because it predicts that the
gains of the synapses between the synergic interneurons and the motoneurons must be
adjusted to proprioceptive information that is not locally encoded within either of these
neuron pools. Such a non-local learning mechanism would be required to reduce, for ex-
ample, the recruitment of a single muscle from a synergy when the environment blocks its
actuated joint (Figure 1.2).

This chapter and the underlying paper [36] demonstrates that in theory serotonergic
neuromodulation adapts motor synergies as predicted by the non-local learning rule of
the robotic decoder. In contrast, realistic forms of Hebbian learning that may operate
at a sensory synergy are too slow to react to changing environments as predicted by the
robotic encoder. But the results further show that the sensory synergy has in general little
influence on the performance of fast periodic motions once a movement has converged,
while the decoder, and thus serotonergic neuromodulation, strongly shapes its energy
efficiency.

In the following section 3.1, the robotic learning rule links several electrophysiological
findings on the spinal serotonergic circuitry into a novel model of a motor feedback loop.
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3 A neuromodulation model resembling the robotic controller

This feedback loop receives proprioceptive information on a movement and metabotropi-
cally scales the response of individual motorpools independently of their ionotropic motor
signal. This effect was evaluated both analytically (section 3.2.1) and in numerical sim-
ulations that model a spiking neuronal equivalent of the proposed robotic autoencoder
which controls different locomotor systems (section 3.3). The results, which are briefly
summarized in section 3.4, prove that neuromodulation quickly adjusts motor synergies
to generate the same relative motor signals as the adaptation rule of the robotic decoder.
For sensory synergies, the same simulations showed that biologically realistic forms of
Hebbian learning would require hours to react to mechanical changes. But the controlled
movement converged already within few step cycle to its final energy-efficient limit cycle.
These results emphasize spinal neuromodulation, and in parallel the decoder adaptation
of the robotic autoencoder, as the main determinant to minimize the energy requirements
of fast compliant movement.

3.1 Qualitative review of serotonergic neuromodulation

In order to adapt the forces of different actuators, the robotic autoencoder applies an
adaptation rule that shows a remarkable functional similarity with the serotonergic neu-
romodulation of spinal motoneurons. About 90% of the spinal serotonin (5-HT') originates
in the raphe nuclei in the medulla [90]. In the ventral spinal cord, 5-HT is specifically
released by the nucleus raphe obscurus (NRO) and pallidus (NRP), which in turn project
almost exclusively to this motor circuitry [91-94]. They thereby implement a metabotropic
motor feedback loop that parallels the ionotropic spinal circuitry which drives the mus-
cles. Their function resembles the decoder adaptation as demonstrated by the following
comparison and illustrated in Figure 6.1.

As detailed in section 2.1, the decoder learning rule (2.6) receives sensory information
q € R" on the deflections of the n joints involved in a movement. Also the serotonergic
neurons within the NRO and the NRP receive proprioceptive inputs and increase the firing
rate of their serotonergic neurons accordingly [95-97]. These sensory signals are relayed
to the NRP and NRO within a short delay of 20 ms [95], which indicates a monosynaptic
or a strong oligosynaptic pathway.

Based on its sensory input, the robotic autoencoder adjusts the transformation weights
w of its decoder, i.e., the relative force of actuators that drive different joints. Since the
sensory information is neither encoded within the latent control signal nor within the final
motor output, the CNS cannot rely on the known local learning mechanisms to imple-
ment such an algorithm. But the raphe nuclei cause a similar effect when their sensory
input triggers them to release 5-HT onto motoneurons [91-94]. Once released, 5-HT stim-
ulates the metabotropic 5-HT5 receptors, which start a chain of biochemical mechanisms
as extensively reviewed previously [98, 99]. As a result, serotonin does not change the
baseline excitation of the motoneurons like ionotropic currents, but multiplicatively scales
the response of the motoneurons to ionotropic inputs from other neurons [79, 100]. In-
creasing serotonin concentrations scale up the firing rate of spinal neurons monotonously
and multiplicatively by a factor of up to ten [79]. While the ionotropic spinal circuitry can
calculate their motor signal without disturbance, the serotonergic motor feedback loop
thus scales the effective synaptic weights between the interneurons and the motoneurons
according to sensory information that is not encoded by either of them.

The weights of the robotic decoder are adjusted with a time constant of few seconds.
This time scale is sufficiently long to collect information on the overall movement cycle and
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maintain constant weights under constant conditions. At the same time, it is sufficiently
short to quickly react when, for example, the robot steps from a stiff onto a compliant
ground. Also the multiplicative effect of serotonergic neuromodulation builds up and
returns back to baseline within a few seconds in turtles [101], rats [102], cats [103], and
humans [78]. This time scale might impede rapid neuronal calculations within the brain.
But it matches the time scale relevant to various motor behaviors.

In summary, the robotic controller links individual experimental findings on the sero-
tonergic innervation of the spinal cord into a coherent motor feedback loop. In agreement
with the prediction, the strong activation of proprioceptors can increase the excitability
of motoneurons for several seconds [103], an effect that can be enhanced by serotonin
agonists and diminished by antagonists [78]. It is plausible that the serotonergic motor
loop, like its robotic counterpart, tunes the relative forces of different muscles to harness
the compliant properties of the locomotor system.

3.2 Mathematical analysis of serotonergic neuromodulation

For a qualitative comparison between the learning rule (2.6) of the robotic decoder and
serotonergic neuromodulation, the serotonergic motor feedback loop can be modeled as
illustrated in Figure 3.1 and described in the following. This section also simplifies the
model to evaluate it analytically. The subsequent section 3.3 extends this work by numer-
ical simulations that extensively compare the detailed model of the serotonergic circuitry
with the behavior of the robotic autoencoder.

3.2.1 Attractive fixed points of neuromodulation

The new model makes one assumptions on the topographic precision of the NRO and
NRP. In specific, it requires that their effects are at least joint-specific. For each joint 4
of the locomotor system, the NRO and NRP accordingly comprise a subgroup of seroton-
ergic neurons that primarily receive proprioceptive input v,; from this joint. Conversely,
this subgroup increases the serotonin concentration [5-HT]; within the motorpool that
innervates the same joint. Apart from this assumption, the mathematical model on the
serotonergic motor loop is strictly grounded on previous electrophysiological findings.

The multiplicative gain of the motorpools that innervate a single joint increases propor-
tionally with the serotonin concentration,

wnm, = enm[5-HT]; . (3.1)

The serotonin concentration increases with the sensory input v, ; to the NRO and the NRP
[102, 104]. It’s depletion occurs due to reuptake into the cytosol of the cell by the serotonin
transporter (SERT'; depletion velocity denoted by Vsgrr), due to catabolism mainly by
monoamine oxidase and aldehyde dehydrogenase (denoted by Veat), or by removal due to
glia or diffusion (denoted by Viem) [104]. In summary, the serotonin concentration changes

according to
d[5-HT c
[ dt ] - 4 Vq — VSERT - Vcat - Vrem ) (32)
CNM

where ¢4 is a constant. While 5-HT diffusion plays a negligible effect in the spinal cord
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Figure 3.1: Illustrated here is the serotonergic motor feedback loop that is modelled in this chap-
ter. In the medullary raphe nuclei, different pools of neurons receive proprioceptive signals vq
from the joints ¢ of the animal’s locomotor system. Their spikes increase the concentration [5-HT];
of serotonin within the spinal motorpools, which acts on metabotropic receptors and increases the
motoneuron excitability. These serotonergic raphe projections collectively change the relative mul-
tiplicative weights w1, which describe how ionotropic signals are transformed into musculotopic
motor force Fj. The serotonergic feedback loop acts in parallel to the ionotropic motor circuitry
that excites the muscles. This ionotropic circuitry could implement an independent synergy circuit
that sends a common motor signal v, to all motorpools. Figure modified, with permission, from
Stratmann et al. [27, 36].

[105], the other depletion mechanisms follow Michaelis-Menten kinetics [104],

Vmax n
Vo= o (3.3)

5-HT +1

The maximum depletion rates Vinax, and the Michaelis-constants K, , of the depletion
mechanisms n are summarized in the original paper [36].

For an analytic chain of thoughts, equation (3.3) can be simplified by the observation
that
[5-HT] < K (3.4)

even after high-frequency stimulation of the NRO and NRP in vivo [102]. The simulations
described below test this assumption since K, is set to the smallest literature value [104,
106-108]. A Taylor approximation therefore reduces equation (3.3) to

depl
Vien ~ 225 [5-HT] (3.5)

depl
m
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All the depletion mechanisms can then be summarized by an effective time constant

SERT
Km

Kcat Jrem
7_depl — + m m_
1/ SERT 1/ cat }/rem

max max max

(3.6)
With this definition, the time evolution of the motoneuronal gains can be described by a
simplified version of equation (3.2),

dwNM 1
qt = CqVq — mwNM . (37)

The simplified model allowed an analytic comparison between the convergence of the
motoneuronal gains wnw,; and the output weights w; of the robotic decoder under the
influence of neuromodulation and Oja’s rule (2.6), respectively. Their strong qualitative
similarity suggests that the two learning rules will lead to aligned weights, wnm || w, if
they are provided with the same sensory signals. The amplitude of the weight vectors
was thereby neglected because it changes only the overall motor signal and can be coun-
teracted by the latent signal 6, in the robotic controller or the functionally equivalent
synergic ionotropic motor signal v, in its neuronal interpretation (Figure 3.1). In order to
show that the weight vectors align, Oja’s rule was first transformed and the neuromod-
ulation dynamics were simplified into state equations w;/wy and wsrpp,1/WsTpP,2 that
describe how the ratio of weights for the two different joints evolve over time. The chain of
thoughts then derived the fixed points of these state equations and proved their stability by
linearizing the state equations around these points. According to present hypothesis, the
attractive fixed points should be aligned and thus serotonergic neuromodulation should
induce the same effect as the learning rule of the robotic decoder.

3.2.2 A gradient descent interpretation of neuromodulation

While the serotonergic effect on motoneurons obtains the same actuator gains as Oja’s rule,
it has a different mathematical form and will thus converge towards the attractive fixed
points along a different path. In particular, the following currently unpublished analysis
demonstrates that its convergence behavior can, in contrast to Oja’s rule, be interpreted
as a gradient descent of errors.

During an ongoing movement, the CNS creates ionotropic training signals and for-
wards them via the synaptic weights wnyr to all muscle groups involved in the movement.
The following derivation will show that serotonergic neuromodulation aims at aligning
the synaptic weights with target signals which are represented by the sensory input v
describing the resulting movement. In particular, the claim is that it minimizes the cost
function presented by the squared Euclidean norm of the error between the sensory signals

and the synaptic weights,
1

1 2
T =5lve - WwNMHQ : (3.8)

If the gradient descent hypothesis is true, serotonin will descent along the negative gradient
of the cost function with a learning rate =,

dw

dw o 3.9

= WV (3.9)
ol 1

- Cquepl Vq — chdepl WNM | - (310)
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And indeed, for the particular choice
v = céTdepl , (3.11)

the gradient descent rule (3.10) is mathematically equivalent to the equation (3.7) which
describes the serotonergic effects as derived above. Serotonergic effects therefore adjust
motoneuronal gains according to the gradient descent of the error function (3.8).

The fact that the serotonergic neuromodulation can be described as the gradient descent
of a cost function forms an important difference to Oja’s rule (2.6), which adjusts the
robotic decoder. QOja’s rule is, in mathematical terms, a non-conservative vector field,
because its curl does not vanish,

V x d;i—qf =V x ['y(qu) (q - (’qu)wﬂ (3.12)

£0. (3.13)

Non-conservative vector fields like Oja’s rule share the property that they cannot be rep-

resented in the form of
dw

VW, 14
¥ YWVl (3.14)

i.e., as the gradient of any scalar cost function J.

For these reasons, the convergence behavior of serotonergic neuromodulation resembles
rather the delta rule, a specific machine learning algorithm [109, 110]. The delta rule
works on an artificial neural network such as the robotic decoder, where a single neuron
forwards its signal directly to multiple output neurons (Figure 1.1). To adjust the weights
of the network, the scalar training input 6, is created and forwarded via synaptic weights
w. The output 6,w of the linear network is compared with a target output v,. The
quality of the output, or the cost function, is quantified as the squared Euclidean norm of
the error,

1
T = 5lva — 6wl (3.15)

and the delta rule descents along the negative gradient of the cost function. When com-
paring the cost function of the delta rule and of serotonergic neuromodulation (3.8), the
only difference is that the neuromodulation compares the target signals with the weight
vector and not with the vector of network outputs. But these two quantities differ only
by a multiplicative scalar for the present network topology that drives all output neurons
by the same input. Therefore, both adaptation mechanisms align the network output
with the vector of target signals and perform this task according to the gradient descent
method.

3.3 Simulations of the neuronal circuitry

So far, this chapter considered simple models of neuronal learning to evaluate them by
analytic methods. The numerical simulations described next examined if more realistic
models of Hebbian learning and serotonergic neuromodulation obtain the same weights as
the learning rule (2.6) of the robotic encoder and decoder, respectively.
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3.3.1 Study design

The simulations modeled a spiking neuronal network that controlled different mechanical
systems with two compliant joints 1.

The study comprised three sets of simulations which sequentially increased the com-
plexity of their connected mechanical system (section 3.3.2). The three sets analyzed the
performance of the neuronal controller, first, as it received feed-forward input from a linear
mechanical system, second, as it controlled a linear mechanical system in a closed-loop
and, third, in a closed loop with a nonlinear compliant leg.

The simulated neuronal network was formed of spiking neurons (section 3.3.3) and
combined a sensory and a motor synergy as illustrated in Figure 3.1 to form the simplest
neuronal implementation of the robotic autoencoder. In the sensory synergy, two pools
of proprioceptive neurons within the joints sent spikes with a frequency v,; onto a com-
mon pool of excitatory interneurons in resemblance to the robotic encoder. In the motor
synergy, the output spikes of these interneurons were forwarded to all motorpools in re-
semblance to the robotic decoder. The synaptic weights wsTpp; of the sensory synergy
were subject to spike-timing-dependent plasticity (STDP; section 3.3.4), which is typically
assumed to be the neuronal basis of Hebbian learning [20]. The raphe nuclei adjusted
the motoneuronal gains wnn,; of the motor synergy. For this purpose, the proprioceptors
from each joint projected their spikes onto an individual pool of raphe neurons. The re-
sulting spikes of the raphe neurons increased the serotonin concentration [5-HT]; within
the motorpool that innervated the same joint (section 3.3.5).

To quantify the performance of STDP and neuromodulation, each simulations was run
until all the neuromodulatory and the synaptic weights had converged. After convergence,
it was tested if the values were aligned with the linearized eigenmode of the controlled
mechanical system. The converged weights and their standard deviation were recorded
over several movement cycles, varying initial conditions, and different levels of sensory
noise to verify the robustness of the results.

3.3.2 Mechanical systems

In the feed-forward simulations, the neuronal network received its proprioceptive signals
from two joints that oscillated with both a dominant eigenmode a € R? of unit amplitude
and a minor eigenmode. The proprioceptors thus spiked at frequencies of

(qu> =40 [(Z;) sin(2t) + (8:82) sin(87rt)] Hz . (3.16)

Negative firing rates were considered as zero. The weights wgrpp and wny were supposed
to align with the dominant eigenmode of the system. To test this prediction, sequential
simulations varied the ratio aj/as. A weighted linear regression compared the ratios
U}STDPJ/’U)STDP’Q and wNMJ/wNM’Q with increasing ratios al/ag.

In the first closed-loop simulation, the output of the neuronal network was fed back
to drive a linear mechanical system with analytically known resonance properties. This
system consisted of two equal masses that were mutually connected by a spring and each
was connected to an individual muscle via a further spring. The muscles excited the
system by forces of

F = WNMVz (317)

that were determined by the firing rate v, of the synergic motor signal and by the neu-
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romodulatory gains wyy of the motorpools. In resonance, the two masses oscillate along
the two analytic eigenmodes (41,1)”. Damping stabilized the system and facilitated the
decay of the minor eigenmode. The trajectory of each mass was signaled to the synergy
interneurons and the raphe neurons by a separate pool of proprioceptors. Over time, the
weights wgrpp and wyy were predicted to align with the dominant eigenmode of the sys-
tem. For the given system, both the synaptic weights and the serotonergic concentrations
should thus converge to the same value for both DOF.

In the second feedback simulation, the neuronal network controlled a preliminary version
of the jumping leg described in chapter 2. This leg comprised two joints ¢ with angular
deflections g; that were driven by series elastic actuators and subject to nonlinear coupling.
It periodically jumped and thus switched between a flying phase and a standing phase
in contact with a compliant ground [111]. In contrast to the leg described in the last
chapter, the present system did not comprise the mechanical decoupling that allowed the
actuators to drive each joint separately and therefore had a different linearized eigenmode.
The eigenmode was approximated by calculating the dominant principal component of the
limit cycle trajectory of the joints. Like the robotic autoencoder, also the synaptic weights
and the motorpool gains should align with this dominant principal component under the
influence of STDP and neuromodulation, respectively.

3.3.3 Neuron models

The cells that formed the spiking neuronal network were modeled by different neuronal
models depending on their role. The proprioceptors that drove the spinal interneurons
and the raphe neurons were modeled as Poisson neurons to translate the joint coordinates
into neuronal spikes. The post-synaptic synergic interneurons were, in contrast, formed
by leaky integrate-and-fire (LIF) neurons. At the output stage, the motorpools low-
pass filtered the discrete spikes of the interneurons to combine them with the serotonin
concentration and both signals into continuous muscular forces.

At the input stage of the network, Poisson neurons j fired with rates v, ; that increased
linearly with the coordinate ¢; of its associated joint [112-116]. In every simulation time
step dt, the neuron spiked by chance according to a Poisson distribution with mean v, ;dt.
It thus emitted a train S; of spikes s at time points ¢7,

Sj=>_68(t—t3). (3.18)

The pool of spinal interneurons were simulated as LIF neurons. While the differential
equations were adopted from Zenke et al. [117], the constants for their brain circuitry
models were here adjusted to match the in vivo conditions observed in spinal circuitry.
As a further difference, the present simulated neurons showed an absolute rather than a
relative refractory period. While both of these models delay the next spike by a comparable
duration, the model applied here fixed the membrane voltage after a spike and thus reduced
the required computational power. Over time, the membrane voltage U; of the LIF neuron
[ evolved according to

mem dUl

L vl (U™ =) + g (U™ = ) (3.19)

with membrane time constant 7™°™, resting potential U™, reversal potential U™ of

the excitatory synapses, and membrane conductance g;. The LIF neurons were driven by
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the proprioceptive input S;, which was relayed via synapses that had a synaptic strength
wsTpp,j; and which changed the postsynaptic conductance according to

1 m d
9 =5 (g? Ptg™ a) , (3.20)
dgampa gampa
iit =~ ampa T > wstppji (3.21)
J
dglnmda glnmda g?mpa
dt = 77-nmda + Tnmda' (322)

The time evolution of conductances thus differentiated between the different time constants
7202 and 7md2 of the AMPA and NMDA channels, respectively. Once the membrane
voltage crossed a threshold, the membrane voltage was reset to its resting value and the
neuron outputted a spike to all motoneurons.

The motorpool innervating joint ¢ smoothed the spike train of all interneurons by a low-
pass filter to calculate their average firing rate v,. The serotonin concentration [5-HT];
within the two motorpools multiplicatively increased the resulting muscle force to

F = const - (E:E%;) vy . (3.23)

3.3.4 Synaptic plasticity model

The synapses that linked the proprioceptors j with the synergic interneurons k£ changed
their strength according to a state-of-the-art STDP model developed by Zenke et al. [117]
and Pfister and Gerstner [118]. While traditional STDP models adjust synaptic weights
according to the time difference between pairs of spikes, the model implemented here
considers the overall spike history of the pre- and postsynaptic neuron j and [, respectively.
Each spike of a spike train S leaves synaptic traces z*'°%, 2=, and 2zt that decay over time,

dz" z"
=——+4S5 3.24
dt TN Tt ( )
with time constants 79°%, 7=, and 7, respectively. The next spike then adapts the
synaptic weights by
dwsTpp,ji — AT NG AT+ dwscal ji (3.25)
dt o dt

Since this STDP rule leads to diverging weights, a homeostatic mechanism was included,

dwscal,jl 1 Up
it = e (e () 320

tar

This synaptic scaling rule is characterized by the time constant 75, It pushes the average
firing rate v; of the postsynaptic neuron, as represented by its low-pass-filtered spike train
[117, 119], towards a target firing rate vga,. The STDP rule used an adjusted learning rate
A' and A~ of long-term potentiation and long-term depression, respectively, to match
the observations in the spinal cord of behaving monkeys [120]. After convergence, the
simulation calculated the average synaptic strength wstpp; of all proprioceptors that
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innervated the two joints i. According to the robotic encoder, STDP should align these
two average weights with the linearized eigenmode of the controlled mechanical system.

3.3.5 Serotonergic neuromodulation model

The output of the network was modulated by the concentration of serotonin within the
motorpools. Each serotonergic raphe neuron r received sensory input from a joint ¢ and as
a result outputted a spike train S,. Each of these spikes released serotonin into the motor-
pool innervating the same joint and increased its concentration by a fixed amount [5-HT].
[102]. The concentration subsequently decayed again according to Michaelis-Menten ki-
netics as summarized in section 3.2.1. The serotonin concentration within each joint thus
evolved according to

d|5-HT|; Vinax
[d] — [5-HT]. Y 5, — —e . (3.27)
L rei By, L

Previous experiments determined [5-HT]., the maximum rate Vi ax of serotonin depletion,
and the Michaelis constant K, [102, 104, 106-108]. The serotonin concentration within
each of the two motorpools linearly scaled the motoneuronal gain [79, 121],

wnm,i = enwm - [5-HT]; (3.28)

According to the robotic decoder, serotonergic neuromodulation should align these two
weights with the linearized eigenmode of the controlled mechanical system.

3.4 Summary of the results

The present study tested whether the CNS of animals can in theory adapt fast periodic
movements like the robotic autoencoder. For this purpose, it modeled a spiking neu-
ronal network that converged sensory information from all joints onto a common pool of
interneurons within a sensory synergy. In return, their synergic motor signal was dis-
tributed to all motorpools within a motor synergy. According to the robotic autoencoder,
the CNS should align the synaptic weights within the sensory and the motor synergy with
the dominant principal component of the controlled mechanical system.

For the sensory synergy, the simulations showed that a state-of-the-art model of STDP
adapts the synaptic weights to the expected values. But this adaptation acts too slowly for
fast changing mechanical environments and has little functional effect on the performance
of a converged motion.

For the motor synergy, the analytic and numerical results suggest a novel motor feed-
back loop implemented by the raphe nuclei in the medulla. These nuclei receive sensory
information and accordingly release serotonin into spinal motorpools to adapt their gains.
The adaptation they perform is a neuronal counterpart of a gradient descent algorithm.
Due to this mechanism, the relative joint forces align with the normal mode of the loco-
motor system like the learning rule of the robotic decoder. Upon mechanical changes, the
feedback loop quickly adapts these joint torques to the new resonance conditions.

The simulations verified the stated results on a range of different mechanical systems.
The neuronal network either only received feed-forward sensory information from the
system or was placed in a full feedback loop. The obtained results were stable against a
secondary eigenmode, noise, and different initial conditions.
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Figure 3.2: The simulations evaluated whether STDP and serotonergic neuromodulation align
the synaptic weights wgrpp of a sensory synergy and the gain wyny of motoneurons, respectively,
with the dominant eigenmode a of a given locomotor system. a) After convergence, these neuronal
weights linearly varied with the changing eigenmode of the mechanical system that provided feed-
forward input to the neuronal network. b) The slope m and the intercept b of a linear regression to
the last panel deviated from their expectation value of 1and 0, respectively, when noise was added
to its sensory input. But this deviation was below 10 % for STDP and neuromodulation even when
the standard deviation o of the noise amounted to 20 % and 13 % of the signal amplitude, respec-
tively. ¢,d) When the neuronal circuit controlled a linear mechanical system in closed loop, both
STDP and neuromodulation aligned their relative weights with the eigenmode a = (1,1)7. STDP
and the neuromodulatory effect converged with regressed exponential time constants of 2.9s and
2.7 x 103 s, respectively. Therefore, only neuromodulation reacted quickly to changing mechanical
environments. e) In closed-loop with the nonlinear leg, the synaptic weights of the sensory input
from the knee and the leg converged to constant values, but also required hours for their conver-
gence. f) The neuromodulatory gains converged to the same ration as STDP, but showed its final
effect size already after few seconds. Figure modified, with permission, from Stratmann et al. [36].

3.4.1 Synaptic plasticity is too slow to adapt the encoder

In the sensory synergy, STDP consistently aligned the synaptic weights wgrpp between
the proprioceptors and the interneurons with the dominant eigenmode a of the considered
mechanical systems. The feedforward simulations varied the eigenmode of the mechanical
system. The converged synaptic weights adjusted to the varying conditions according to
the linear regression illustrated in panel a and b of Figure 3.2,

@:m-@+b, (3.29)
WSTDP 2 a2
m = 0.979 + 0.010 (3.30)
b = 0.016 % 0.002 . (3.31)

When the motor signals of the neuronal circuit was fed back to control a compliant loco-
motor system, STDP aligned the synaptic weights with the dominant eigenmode of the
linear mechanical system and of the nonlinear leg to an accuracy of

WSTOPL M 0 005 + 0.011 (3.32)

WSTDP,2 (2

29



3 A neuromodulation model resembling the robotic controller

| Expectation Regression Joint 1/ Hip —— Joint2/Knee
a) 20 c) '® . €) 100
° 80
10 ]
1 P ARNOLLILR PGP L LA
= <3 .\,!\}'e'a — 60
S0 ~ .a —
o S sl ewee S 40
10 o?
s® 0 20
L)
20g 20 5 50 % 70 20 30 20 50 09 7 3 78 45 50
Time [s] Time [s] Time [s]

Figure 3.3: The performance of the proposed neuronal motor circuit was evaluated in closed
loop with a linear and a nonlinear compliant locomotor system. a) The linear system consisted
of two masses that were coupled by a spring. An individual series elastic actuator deflected each
mass by a distance ¢ from its equilibrium positions. The neuronal network excited only the phasic
eigenmode a = (1,1)T of the system and thus induced a synchronous resonance motion over time.
b) The alignment of the masses’ trajectories can be illustrated by their deflection ratios. The data
set presented here was recorded at peak positions of the first mass and converged with a regressed
exponential time constant of 6.2s. ¢) Also the hip and the knee motion of the nonlinear leg showed
a quick convergence to a periodic limit cycle within few seconds. Figure modified, with permission,
from Stratmann et al. [36].

as shown in Figure 3.2c and

WSTDP.L 91 _ 043 + 0.034 (3.33)

WSTDP,2 a2

as shown in Figure 3.2e, respectively.

While STDP successfully extracted the eigenmodes of the mechanical systems, it ad-
justed the synaptic weights very slowly both in the feed forward and in the feedback sim-
ulations. An exponential regression quantified that the ratio wsrpp,1/wsrpp,2 converged
towards the eigenmode of the linear mechanical system with an exponential time constant
of 2.7 x 103 s (Figure 3.2c). This long time scale agrees with previous measurements in the
cat, which determined how the efficacy of proprioceptor pathways to motoneurons changed
after the nerve had been cut. Under free behavior, changes in the motoneuronal response
to an artificial stimulation occurred only days after a nerve was severed [37]. Plasticity
in the spinal cord thus acts substantially slower than the robotic adaptation rule, which
adapts to new conditions within few seconds (section 2.1). STDP therefore cannot adapt
the sensory synergy to the rapid mechanical changes that the animal’s locomotor system
faces during fast periodic motion.

3.4.2 Encoder adaptation has minor influence on motor performance

The simulated neuronal network induced a movement pattern that converged to a limit
cycle well before the weights of the sensory synergy had converged. In the linear mechanical
system, the trajectories of the two masses started as a superposition of the system’s two
eigenmodes as illustrated in Figure 3.3a. They converged to a synchronous resonance
motion along the eigenmode (1,1)” over time with a time constant of 6.2s according to
the exponential regression shown in Figure 3.3b. Also the nonlinear leg obtained its peak
jumping height within few seconds (Figure 3.3c) and thus about two to three orders of
magnitude earlier than the plastic weights of the sensory synergy.

This discrepancy can be explained by the functional role of the robotic encoder. Its
transformation weights determine how strongly sensory input from individual joints entrain
the phase of all all motor signals. But during fast periodic motion, the proprioceptive
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3.4 Summary of the results

signals from different joints are in phase because the joints move very synchronously [122,
123]. The simulation results thus indicate that the sensory synergy, and the encoder in
the robotic autoencoder, have only a minor influence on the motor performance. They
need to adjust only to long-lasting and severe conditions occurring, for example, when the
proprioceptive nerve in a human or the cable in the robot is severed.

3.4.3 Serotonergic neuromodulation can adapt the decoder

The serotonergic neuromodulation reliably aligned the gains wyy of motorpools with the
dominant eigenmode a of the mechanical system. In contrast to STDP, the neuromodu-
latory effects acted on just the right time-scale to react to mechanical changes occurring
when, for example, the muscles warm up or the stiffness of the running track changes.

Analytic reasoning evaluated a simplified model of serotonergic neuromodulation, sum-
marized by equation (3.7). On this basis, the gains of motorneurons were proven to have
the same stable attractor as Oja’s rule, which adjusts the transformation weights of the
robotic decoder. They thus converge to the same relative values.

The simulations confirmed this behavior for a more complex neuromodulation model
described by equation (3.27). The results of the feedforward simulation, which are illus-
trated in Figure 3.2a, showed that the converged weights wny vary with the eigenmode
a of the mechanical system according to

M:m-@-kb’ (3.34)
WNM,2 as
m = 0.957 + 0.031 (3.35)
b = 0.005+ 0.023 . (3.36)

When the sensory signals were contaminated with increasing levels of white noise, the slope
and y-intercept increasingly deviated from their expected value of 1 and 0, respectively.
But this deviation amounted to less than 10 % (Figure 3.2b) even with a noise level of
0 =0.13 - ||a|| that was added to the intrinsic noise of the Poisson neurons. The algorith-
mic function of serotonergic neuromodulation is thus very resistant against different kinds
and levels of noise. In feedback with the linear mechanical system, neuromodulation also
extracted the eigenmode of the linear mechanical system (Figure 3.2d) with an accuracy
of

WNM,1 a1

= 0.004 + 0.032 . (3.37)
WNM,2 @2

Also in closed loop with the nonlinear mechanical leg, STDP approximated the linearized
eigenmode (Figure 3.2f) with an accuracy of
WNM,1 a1

2 _0.064 + 0.068 . (3.38)
WNM,2 G2

The uncertainty resulted from fluctuations of the gain throughout the movement cycle, due
to different initial conditions, and, for the nonlinear system, due to the numeric quantifica-
tion of the eigenmode. The difference of the converged motorpool gains and the dominant
eigenmode of the system was smaller than these intrinsic uncertainty. The serotonergic
feedback loop can therefore, in theory, reliably extract the dominant eigenmode of the
animal’s locomotor system.

The effect of serotonin converged within few seconds in all simulations. In the linear
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3 A neuromodulation model resembling the robotic controller

mechanical system, the gains converged with a time constant of 2.9s, as quantified in an
exponential regression shown in Figure 3.2d. This time scale matches the convergence
time scale of the movement and of the robotic learning rule (2.6). Unlike ionotropic neu-
ronal mechanisms, neuromodulation thus acts slowly enough to maintain stable weights
throughout a movement cycle under constant mechanical conditions. At the same time,
serotonin can quickly adapt the motor output when the locomotor system or its environ-
ment change.

While serotoninergic neuromodulation and Oja’s rule lead to the same actuator forces,
they converge along a different path in the parameter space. The CNS accordingly sends
out training motor signals to the motorpools. Serotonin subsequently adjusts the neu-
romodulatory gains. Like a gradient descent algorithm, it mathematically compares the
network output with a target output, namely, the motor signals that actuate the joints
with the sensory signals that describe the resulting joint movements. The difference be-
tween the two signals represents the cost function and the neuromodulatory gains descent
along its gradient.

In summary, the present simulations suggest that serotonin neuromodulation performs
a non-local gradient descent adaption that obtains the same motoneuronal gains as the
learning rule of the robotic decoder. While the weights of the sensory synergy may vary
under the influence of STDP without relevant loss in motor performance, the neuromod-
ulatory effect strongly shapes the energy efficiency of an ongoing motion. If, for example,
the mechanical environment blocks one joint, the gain of the corresponding motorpools
will decay and the muscles will waste no metabolic energy by pressing against the bar-
rier. These conclusions are based on one currently unproven model assumption, namely,
that the serotonergic neurons that receive proprioceptive information from an individual
joint also project with topographic precision to the motorpools actuating the respective
joint. Under this assumption, serotonin will adapt the relative forces of different actua-
tors just like the robotic decoder to minimize the metabolic requirements of fast periodic
movements.
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CHAPTER 4

Review on the unique algorithmic properties of serotonin

The previous chapter revealed that metabotropic neuromodulation is a promising candi-
date for the non-local adaptation of ionotropic motor subcircuits. Whereas the ionotropic
subcircuits collectively encode predictive models of the locomotor system and its environ-
ment based on life-long learning, the disparate metabotropic scaling of their activity can
quickly adjust these models to changing mechanical conditions. The robotic decoder shows
that this precision scaling is an effective and resource-efficient solution to adapt the acti-
vation of individual muscle groups to sensory input. While also noradrenaline contributes
substantially to the neuromodulation in the ventral spinal cord, only serotonergic neurons
receive the proprioceptive information required for motor adaptation [79]. But previous
research has not considered serotonin as substrate of non-local learning for two reasons:
The first caveat is the common concept that ionotropic effects alone are sufficient to adjust
the motor output to arbitrary conditions [124]. This idea has been promoted by the prove
that artificial neural networks can approximate every continuous function, a property that
relies on their model of neurons as nonlinear integrators of incoming signals [125, 126].
The second caveat is the scientific consensus that monoamines like serotonin are slow and
diffuse modulators of the spatially and temporally precise ionotropic connectome [127]. In
the spinal cord, serotonin is presumed to equally modulate motorpools innervating several
joints even across limbs [78, 79].

The review [27] summarized in this chapter showed that the previous experimental
findings on serotonin in spinal circuitry are fully consistent with multiplicative precision
scaling. In contrast to the current consensus, it is plausible that serotoninergic neuromod-
ulation, like the robotic decoder, disparately affects individual joints of the same limb and
acts on the same time scale as many motor behaviors (section 4.1). It therefore provides
the CNS with a unique functionality because recent electrophysiological findings prompt
that the spinal ionotropic circuitry is limited to purely linear signal processing, unlike their
counterparts in artificial neural networks. Section 4.2 explains this limitation by demon-
strating why the special properties of spinal neurons and signals counteract and typically
even exclude ionotropic mechanisms proposed for the nonlinear signal integration in other
CNS regions.
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4 Review on the unique algorithmic properties of serotonin

4.1 Precision of non-local serotonergic motor adaptation

The adaptation rule of the robotic decoder states a clear prediction on the precision of the
serotonergic raphe nuclei obscurus (NRO) and pallidus (NRP). They must disparately scale
the gains of motorpools that innervate different joints, and their effect must decay on a
time scale of hundreds of milliseconds to few seconds. With these characteristics, the NRO
and NRP would induce the relative muscle forces that minimize the metabolic demands of
fast periodic motion and thus offer a substantial functionality that they cannot provide by
diffuse neuromodulation. As detailed below, this precision agrees well with experimental
findings on their anatomy and function.

Previous studies show that along the serotonergic feedback pathway each processing
step allows for a topographically focused signal transduction. Sensory signals are relayed
to the NRP and NRO within 20ms [95]. This short delay indicates a monosynaptic or
a strong oligosynaptic input from the peripheral sensors to the NRO and NRP. A likely
candidate is disynaptically mediated input via spinal interneurons that typically targets
the cerebellum [59] but that may also mediate peripheral inputs to brainstem nuclei [128].
In turn, the approximately 19,000 serotonergic neurons comprised within the human NRP
and NRO [129] project almost exclusively to the ventral spinal cord [91-94]. These sero-
tonergic projections show a degree of collateralization that quantitatively resembles that
of corticospinal axons. In a previous study, more than 40% of 156 corticospinal neurons
responded antidromically to electric stimulation of several segments of the spinal cord in
monkeys [130]. Tracers inserted into the spinal cord showed that also the location of the
labeled serotonergic cells varied markedly with the region of injection, contrasting the
more homogeneous labeling of non-serotonergic cells within the raphe nuclei [131]. Dual
retrograde tracers injected into different regions of the ventral horn of rats double-labelled
about 50% of cells within the NRP [132]. These serotoninergic projections predominantly
terminate in synaptic contacts in the ventral spinal cord and their released 5-HT shows
effects of high spatial precision [98, 105, 133]. It is thus plausible that the serotonergic
spinal projections, like corticospinal ionotronic projections, comprise not only an anatom-
ically diffuse component [78] but also a separate topographically specific component. In
support of this hypothesis, the depletion of 5-HT and the blockage of 5-HT5 receptors
in rats slackens locomotion due to adjustments in the motor signals which disparately
affect muscles actuating different joints of the same limb or even the same joint [134-136].
The diffuse projections equally scale the activity of multiple muscles like the amplitude
of the proposed robotic autoencoder, denoted 0, in equation (2.3). In addition, they may
increase the overall leg stiffness by co-contraction of antagonistic muscles. Animals use
these two strategies to increase their movement speed [137, 138]. The topographically spe-
cific serotonergic projections can, in contrast, scale the relative forces of different muscles,
represented by the vector @ in equation (2.4), and thereby increase the energy efficiency of
the movement. The joint-specific precision required for this precision scaling is consistent
with the experimental insights on the spinal serotonergic system summarized here.

The time scale of metabotropic effects is slow in comparison to ionotropic signal trans-
mission. Following sensory stimulation, the onset of the serotonergic gain scaling is delayed
by tens of milliseconds after stimulus cessation in cats [103]. It returns back to baseline
within a few seconds in turtles [101], cats [103], and humans [78]. This long time scale
might impede fast neuronal calculations within the brain and may also have detrimental
effects for motor control under rapidly changing conditions. For example, it may underlie
the Kohnstam effect, where the arm involuntarily lifts following the abrupt end of a strong
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voluntary contraction of the deltoid. The Kohnstamm effect originates in a persistent ac-
tivation of the deltoid muscle, which is accompanied by upscaled motor evoked potentials
[139, 140]. This excessive activity may be caused by serotonin that is released during the
strong contraction of the deltoid and increases the gain of deltoid motoneurons for several
seconds after the abrupt end of the contraction. Ongoing movements encountered in ev-
eryday life show less-abrupt and extreme switching between conditions. For such natural
movements, the time scale of serotonergic effects matches the time scale of the robotic
adaptation rule, which is relevant to various motor behaviors.

4.2 Limitations of ionotropic circuitry

The nonlinear scaling renders the metabotropic system functionally unique in the spinal
cord. In theory, a similar effect could also be performed by a neuronal network using
solely ionotropic synaptic currents. Several ionotropic mechanisms have previously been
proposed for such a nonlinear, particularly multiplicative, signal interaction in other CNS
regions [141, 142]. But the rapid kinetics of ionotropic receptors [143-145] are ill-suited
for a spinal equivalent of the robotic adaptation rule, which accumulates information over
the whole movement cycle and induces changes of the motor signals that last for several
seconds. In addition, recent studies show that the ionotropic circuitry in the spinal cord
is limited to a purely linear integration of their motor commands and sensory signals.

This purely linear behavior has been observed both in spinal interneurons [146-149] and
motoneurons [150-154] under physiological conditions in vivo. The neurons are active well
before overt movement starts and do not saturate [146], implying that they are in their
linear regime during a movement. A linear neuron receives ionotropic inputs x; from the
n neurons that converge onto it via synaptic gains w;. As a result, its output firing rate y
linearly increases with the summated input, subtracted by a firing threshold 6,

n

y(z1,22,...) = Zwi~xi—9 . (4.1)
i=1

An additional ionotropic signal x,11 will increase the output by an additive constant,

n

y(z1,T2,...) = Wnt1 - Tnp1 + Zwi-xifH . (4.2)

i=1

The serotonin concentration [5-HT] induced by a metabotropic signal will, in contrast,
multiplicatively alter the response of the postsynaptic cell to its ionotropic input,

y(z1,x2,...) = const - [5-HT] - Zwi sz — 0. (4.3)

=1

Artificial neural networks have, with the enormous scientific and economical success
of artificial intelligence, strongly facilitated the view that also CNS circuits of multiple
biological neurons can adjust their output to arbitrarily changing conditions [124]. In
mathematical terms, these networks are said to perform universal function approximation,
a property that relies on the model of neurons as nonlinear integrators of incoming signals
[125, 126]. But when linear neurons synapse together, the resulting spinal circuit is still
limited to perform the linear function described by equation (4.1). Neither additional
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a) Coordinate transformation implemented by multiple layers of linear neurons
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Figure 4.1: A network consisting of linear neurons is restricted to implement a linear function of
the form y(x) = wyyax —6y. (a) This relationship is independent of the number of hidden neuronal
feedforward layers. Additional layers only alter the linear gains W and y-intercepts 6. (b) To
confirm this limitation in a recurrent neuronal networks as illustrated on the right hand side, it
is advantageous to unfold the performed calculations. This procedure deduces the hypothetical
feedforward network on the left hand side, which computes the same output. When either network
receives an input signal « released at tg, it will produce an output signal y like a simple feedforward
network at ty + 1, i.e. after a short unitary transduction delay. At the next computational step
to + 2, the output signal Y is determined by the input signal X from time step tg + 1 and the
previous output signal y. The previous output signal is thereby fed back by recurrent synapses
with weights W,,,. Further calculation steps ty + 3,%9 +4,...,t of the recurrent network can be
modeled by iteratively adding layers to the feedforward network that receive the external input at
these time steps from an additional pool of input neurons. Thus, the output y of the recurrent
network after ¢ time steps is mathematically equivalent to the output produced by a hypothetical
feedforward network with ¢t —1 hidden and one output layers. During each individual time step, the
recurrent network can thus only output a linear function of its input like a feedforward network.
Figure modified, with permission, from Stratmann et al. [27].

feedforward layers, nor recurrent synaptic connections remove this functional limitation.
If, on the one hand, the neuronal network is extended by intercalating additional layers of
linear neurons between the input and output layer, only the effective linear gains w and
the threshold 6 will change. But the output firing rate will remain a linear function of the
network input as illustrated in Figure 4.1a. If, on the other hand, the network is extended
by recurrent synaptic connections, it can memorize input and process time-series of data.
Thereby, its output may vary nonlinearly with time and, for example, oscillate or converge
to a steady state [155]. But Figure 4.1b demonstrates that at each time step the outputs
y of the recurrent neuronal network remain a linear function of its previous inputs x.

At first glance, the observed linear behavior seems at odds with the scientific consensus
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that the ionotropic connectome implements most of the nonlinear functions required for
the complex behavioral repertoire of the CNS [127, 156]. But a closer look reveals that
the specific characteristics of spinal neurons and signals suppress the mechanisms that
multiply ionotropic signals in other CNS regions. These mechanisms can be split into two
groups [141]: Some of them work at low firing rates in neurons which show time-sparse
encoding, i.e. which encode data in the correlations of spikes. These mechanisms are
mainly based on synaptic noise [157-160] and shunting inhibition [161, 162]. They are
unlikely to cause gain scaling in the early sensory processing and motor signals of the
spinal cord, which is dominated by rate-coded signals [147, 163—-167].

Other mechanisms apply to neurons which harness a large range of firing rates to encode
information. For neurons which work within this rate-coded regime, like spinal neurons,
nonlinear signal interaction can occur due to the short-term synaptic depression (STD)
of synaptic efficacy. If a neuron transmits the sum of two excitatory signals, the second
signal may push the firing rate into a regime where STD occurs and may therefore di-
visively scale the circuit response to the first signal [142, 168-170]. This mechanism is
metabolically unfavorable compared to other possible nonlinear mechanisms because the
neuronal network would transmit a particularly high number of metabolically expensive
action and synaptic potentials [171]. In addition, recent recordings on neurons which carry
sensory and motor signals show that STD only takes place at the onset of a stimulation
train. During sustained firing, STD was found to saturate and remain constant for a wide
range of firing rates [172]. Thus, STD is unlikely to occur in spinal calculations during
ongoing behavior. A second hypothesis originates from the mathematical fact that the
multiplication of two signals turns into a pure addition when the logarithms of the signals
are considered,

log(z1 - 22) = log(z1) + log(x2) . (4.4)

Multiplication thus becomes trivial for signals which are encoded logarithmically [173],
such as specific quantities in the visual system [173, 174]. However, many mechanical
stimuli are known to be linearly encoded by sensory firing rates [112-116]. Furthermore,
a neuronal network which implements this strategy would be restricted to implement ex-
clusively either multiplicative or additive operations on its inputs. To implement both,
it would need to implement an additional exponential function to extract the actual co-
ordinates. The third possible nonlinear mechanism uses dendritic properties. Voltage-
dependent Nat and Ca?* channels, NMDA receptors, and the passive properties of den-
drites can individually induce supralinear and sublinear interaction of ionotropic signals
[175-182]. The combined effect is strongly determined by the clustering properties of the
synaptic inputs that converge onto a dendritic tree. In vivo mappings of dendrites from
different early sensory systems demonstrated that these inputs are not clustered according
to functional similarity [183, 184]. This observation supports a linear signal summation
because the concerted nonlinear effects of unclustered inputs typically balance each other
out [185]. Indeed, in vivo recordings showed that the individual nonlinear effects of active
dendrites collectively induce a linear relationship between input current and output firing
[186, 187]. The same balance was found for spinal motorneurons in simulations [153] and
experiments [154] when any metabotropic input was removed. In vivo experiments on the
summation of input from both eyes found that sensory systems even use active dendritic
properties as a linearizing agent instead of a nonlinear operation. The nonlinear summa-
tion of individual signals was found to ensure that the output to binocular stimulation
equals the linear summation of input during monocular stimulation [188].
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4.3 Summary of the results

The linear behavior that the present review discovers in spinal ionotropic signals offers an
attractive explanation of how metabotropic signal processing complements the ionotropic
connectome: By nonlinearly adjusting ionotropic motor signals to sensory information,
serotonin can provide a functionality that is powerful, resource-efficient, and unique in
the spinal circuitry. Metabotropic neuromodulation is the ideal candidate to bridge the
fast ionotropic signals and slowly changing behavioral context because its time scale co-
incides with the time scale of many motor behaviors, including the fast periodic motions
considered in this dissertation. Previous studies on the serotonergic neuromodulation are
consistent with the proposed hypothesis that their metabotropic effects are, averaged over
all serotonergic projections to the ventral spinal cord, at least joint-specific. This finding
contradicts the current consensus on serotonergic effects [78, 79] and motivates novel ex-
periments in vivo to elucidate how the human CNS applies the unique functionality of the
serotonergic spinal circuitry for motor control. The adaptation rule of the robotic decoder
offered a clear hypothesis for these experiments, which were performed as described in the
next chapter.
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CHAPTER 5

Experimental proof in the human central nervous system

The theoretical work in the previous chapters laid the foundation to experimentally test
the fundamental question of this dissertation: Does the serotonergic system adapt move-
ment according to the same algorithm as the robotic decoder? So far, it is generally
accepted that the spinal serotonergic system acts purely by diffuse modulation of mo-
toneurons innervating several joints, even on other extremities [78, 79]. In contrast, the
results presented so far predict that the serotonergic system disparately scales the gain of
motorpools acting on different joints of the same limb. In particular, the excitability of
motorpools should be higher following highly-dynamic rotations of their innervated joints
than after rotations of adjacent joints [27, 36]. The precise details on the experimental
validation outlined in the following can be found in the original paper [189].

5.1 Human subject study

To test the stated hypothesis, sixteen healthy, right-handed human subjects (aged 17-30
years, mean 26(4) (s.d.); 12 male) performed motion experiments guided by a manipu-
landum, i.e., a machine as described in the next section that guides the motion of the
subjects’ hand by translational forces. In the experiments (section 5.1.2), subjects first
repeatedly rotated either their right elbow or shoulder joint with high speed and force.
After the movement, the protocol non-invasively quantified the resulting excitability of
the motorpools actuating these joints by their monosynaptic reflex response to a rapid
joint stretch.

In order to guide the rotation and the stretch with high precision, the human arm
was characterized in preliminary experiments (section 5.1.3). A new control architecture
was developed for the manipulandum (section 5.1.4) that acted with the high precision
required to characterize and constrain the hand movement to involve exclusively rotation
of a single joint. At the same time, the controller allowed high forces and speeds during
the rotations and subsequently excited the stretch reflex by a rapid joint perturbation.
It guaranteed the safe interaction of the subjects with the manipulandum during a total
interaction time of more than 70 h despite a potential peak force of more than 1.5 kN [80].

In the analysis, electromyograpy (EMG) quantified the stretch reflex response of the
brachioradialis, which actuates the elbow, and of the posterior deltoid, which actuates the
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Figure 5.1: Experimental setup. During the experiments, the subjects rotated either their elbow
or shoulder joint in a horizontal plane, as guided by a manipulandum. The wrist was immobilized
throughout the trials by a stiff splint. After stopping the rotation at the intersection point of the
elbow and shoulder rotations, the arm was rapidly perturbed to excite a monosynaptic stretch reflex
in either the brachioradialis or the posterior deltoid. The reflex response was measured by EMG
electrodes (gray circles). To determine software-based constraints that the manipulandum applies
for the guidance of motion, the trajectories of the pure elbow and shoulder rotation were determined
prior to the main experiments. For this purpose, the shoulder and elbow were consecutively
immobilized by a second splint and the subject rotated the free joint back and forth for 300s. The
resulting hand position was continuously recorded and fitted by a circle to determine the center
and radius of rotation of the target trajectory. The schematic shows the exemplary recorded hand
positions of one subject.

shoulder (section 5.1.5). The hypothesis of this study predicts an enhanced monosynaptic
reflex response of the brachioradialis following elbow rotation, whereas the deltoid should
show a higher reflex response following shoulder rotation in the statistical analysis (section
5.1.6). As analyzed mathematically in section 5.1.7, these findings would be incompatible
with the diffuse effects that the research community generally attributes to serotonin.
The study was approved by the Ethics Committee of the Technical University of Munich.

5.1.1 Experimental apparatus and setting

Throughout the experiments, the subjects were tightly restrained by seat belts to an
adjustable chair and faced the manipulandum. Their right arms were mechanically con-
strained to form a system with two DOF, resembling the mechanical system in the previous
chapters. Subjects could accordingly horizontally flex and extend their elbow and shoulder
joint. The manipulandum mechanically blocked any undesired vertical movement of the
hand, while a stiff splint prevented wrist movement. This splint also firmly attached the
subjects’ hands to the endpoint of the manipulandum with their palms facing downwards.
To prevent exhaustion, the lower and upper arm were supported against gravity.

For the analysis, electrodes recorded the surface EMG of the brachioradialis and the
posterior deltoid. Goniometers and accelerometers additionally measured the angular
trajectory and acceleration, respectively, of the elbow and shoulder joint. The manipu-
landum controller based its control on feedback on the motor positions and forces, the
above-mentioned EMG, and the endpoint forces exerted by the subjects.
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5.1.2 Main experiments

Each subject performed 120 experimental trials. In an individual trial, the manipulandum
first guided the subject to repeatedly perform strong and fast rotations of either their right
elbow or shoulder joint (Figure 5.1). After 30s, the manipulandum stopped the movement
in a default arm posture following which the motoneuron excitability was measured in
either the brachioradialis or the posterior deltoid muscle. Specifically, the protocol waited
until the EMG of the respective muscle had decayed to its resting value and then quantified
the motoneuron excitability of either muscle by its EMG response to the monosynaptic
stretch reflex. To elicit the reflex, the manipulandum either extended the elbow or flexed
the shoulder joint by 10° within 60 ms.

5.1.3 Preliminary experiments

Prior to the experiment, each subject underwent a set of preliminary experiments lasting
2h in total. The main goal of these experiments was to characterize the subject’s arm to
ensure that the manipulandum guided the rotations and the perturbations of an individual
joint with high precision. In addition, the subjects were habituated to perturbations and
the EMG was recorded at maximum voluntary contraction (MVC) to normalize subsequent
recordings.

To characterize the elbow and shoulder joint, the subject repeatedly flexed and extended
the respective joint for 300s while the handle position was recorded as shown in Figure
5.1. The other joint was fixed by a splint that had been custom-designed to provide a
tight joint fixation but detach if the manipulandum force exceeded a threshold to prevent
injuries. This design task was challenging because the skin and muscles of the upper arm
allowed for substantial movement of a splint. Circles were fitted [190] to the recordings
and showed a high characterization accuracy across all subjects with a standard error
in the positions of the rotary axes and in the circular radii of below 5mm and 6 mm,
respectively. As detailed in the original paper [189], the resulting rotary movements were
clearly divisible into pure rotations of either the elbow or of the shoulder joint.

5.1.4 Manipulandum control guiding the subjects’ motion

The controller of the manipulandum guided pure rotations of either of the two joints
by imposing a virtual environment with a clear resonance trajectory. In addition, the
controller also artificially compensated three interfering effects originating from the me-
chanical manipulandum design: the high friction that typifies strong linear motors, the
high mass m = 12.9kg of the manipulandum arms and motors which must be moved by
the participants, and the coupled dynamics of the manipulandum arms. After compensa-
tion, the handle attached to the subject reacted like a frictionless point mass to the forces
exerted by the virtual environment and the subject, denoted by F, and Fj, respectively:

¢m-m-I&=F,+F, . (5.1)

Here, I denotes the 2 x 2 identity matrix and « € R? is the handle position in the subject’s
coordinate system. The mass was artificially downscaled by a factor of ¢,;,, = 0.4.

To enforce the circular movement either along the elbow or shoulder trajectory, the
controller exerted the sum of two forces on the subject’s arm:

Fe:Frad+Fang . (52)
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The first force Fr.q simulated an almost rigid spring which pushed the handle back to
its circular resonance trajectory when its distance from the center of the considered joint
deviated from the desired radius. The second force F,,, simulated a slack spring which
pushed the handle back to its equilibrium position along the circular trajectory. Both
forces included an artificial damping term to prevent friction overcompensation, ensuring
that the subjects needed to repeatedly push the system to sustain the movement.

Without compensation for the interfering effects, the manipulandum dynamics follows
M(q)i+C(q,4)§ =T +J" (@) Fs + 71 . (5:3)

The off-diagonal entries in the symmetric, positive-definite inertia matrix M (q), along
with the generalized Coriolis and the centrifugal matrix C(q, q), imply a mechanical sys-
tem with coupled dynamics. The manipulandum is driven by the motor force Tyt and
the force Fs exerted by the subject on the handle while it shows a friction force 7¢. The
equation of motion is stated in the coordinate system spanned by the motor positions q,

= (\/ZQ_x%—JIQ) ’ (5.4)

where [ denotes the length of the manipulandum arms. The Jacobian J(q) transforms
the positions and forces from the subject coordinate system onto the motor coordinate
system, in which the forces are denoted by 7.

To decouple the dynamics and scale the mass, the commanded force 1, was adjusted
to

1

Cm - M

7~'mot : JTA(:E> [Fe +Fs] - JT(Q)FS +/J'(w7"t):i7 ) (5'5)

where

Alx) =T "M(q)J '(q),
p(z, &) =C(q,q)J (q) — M(q)J '(q)J(q.9)T ' (q) . (5.6)

For motors exerting the adjusted force Ty0t, the manipulandum dynamics in equation
(5.3) can be reformulated as

cm-m-Ifc':Fe+Fs+cm~m-JTA(as)Tf. (5.7)

Under the adjusted motor force, the manipulandum therefore behaves like a point mass
that is downscaled by a factor of s. As a beneficial side effect, also the effective friction
experienced by the subject was downscaled by the same factor.

The remaining uncompensated friction of the device was compensated by a friction
observer based on the theoretical work by Luca et al. [191]. The manipulandum observes
the commanded motor force 7,04 and measures the force Fy exerted by the subject at the
handle. The expected resulting movement of a frictionless manipulandum was compared
to the actual movement observed by the position sensors in the motors. As shown in the
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original paper [189], their deviation allows to estimate the friction by the time integral

r(t) = K [p(t) — p(0) — /O t (CT4+ 7+ T () F) ds] , (5.8)

where the initial condition is 7(0) = 0, the gain is denoted by K7, and the generalized
momentum is given by

p(t) = M(q)q . (5.9)

To compensate for the observed friction, the commanded motor force must be reduced by
r(t). Therefore, the motor force commanded throughout the experiments was

Tm = Tmot — ’I“(t) : (510)

The resulting manipulandum dynamics is then described by plugging T, computed by
equation (5.10), into the general equation of motion (5.3):

cm-m-I% =Fo+ Fo+cp-m-J Alx) 17 — 7] . (5.11)

From the subject’s viewpoint, this compensated mechanical system resembled a point
mass s -m = 5.2kg acted upon by forces from the virtual environment and the subject.
Extensive experiments confirmed the derived control approach and its implementation on
the manipulandum, as summarized in the paper that underlies the present chapter [189].

5.1.5 Electromyography processing

The EMG data were processed first to ensure that the EMG of the observed muscle was
at rest prior to its reflex perturbation, and second to quantify the monosynaptic reflex re-
sponse to mechanical perturbations. Prior to that, all EMG signals were bandpass-filtered
between 20 Hz—450 Hz, demeaned, rectified, and normalized to the MVC measurement.

Muscles were ensured to be at rest by measures taken during the experiment and in the
data anlysis: During the experiments, the controller delayed the perturbation until the
EMG signal had decayed to its resting state and repeated the trial if this did not happen
within 3s after movement cessation. In the post-experimental data analysis, trials were
neglected if muscle activity was detected between initiation of a perturbation and onset
of the reflex EMG response. This step considered both the recording delay of the EMG
electrodes and the neuronal reflex transduction delay. To exclude that any undetected
motor activity distorted the results, the pre-reflex activity was matched between different
conditions before their comparison.

The analysis quantified the monosynaptic reflex responses of the brachioradialis and
deltoid muscles based on their EMG response to the perturbation of their corresponding
joint (panel g and h of Figure 5.2). The reflex response occurred after a time delay
composed of both the mechanical delay until the accelerometers detected joint movement
after onset of the manipulandum perturbation and of the neuronal transduction delay
as quantified in previous studies [192, 193]. The EMG reflex was averaged over a time
window of 25 ms and normalized by subtracting its resting EMG. As EMG signals were
restricted to positive values, the reflex response was defined as the natural logarithm of
the EMG response in the statistical analysis to ensure a Gaussian distribution of the data.
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5.1.6 Statistical analysis

This study investigated the prediction that the gain increase of motoneurons innervating
the brachioradialis is higher after the elbow than shoulder movement and vice versa for
the posterior deltoid. To test this hypothesis, a linear mixed-effects model was fitted to
the observed reflex responses 7; of these two muscles. The model is given by

ri = Po + B1 - roti + bon + b1 - Ot + €y - (5.12)

Here, 3y and 1 denote the fixed-effect regression coefficients, by , and by ,, are the random-
effect regression coefficients, and €, denotes the residuals. The subjects were denoted by n
and differences between them were considered as random effects. The fixed effect rot; is a
binary variable that amounted to 1 when in trial number i the rotating movement recruited
mainly the subsequently perturbed and —1 when it recruited the non-perturbed joint. The
assumption states that the reflex response in either of the two muscles is higher after its
innervated joint has moved. This implies that $; > 0. The corresponding null hypothesis
51 = 0 was tested by a two-tailed t-test. Since the hypothesis predicts that the effect must
be significant in both muscles simultaneously, the linear fixed-effects model described in
equation (5.12) was individually fitted to the brachioradialis and deltoid measurements,
and no correction for multiple comparisons was required.

5.1.7 Analysis of interpretations based on diffuse neuromodulation

It is non-intuitive to see if the predicted changes of motoneuron excitability necessarily
rule out diffuse neuromodulation as origin. This is due to the study design, which applied
both non-invasive recording techniques and different delays between rotation movement
and subsequent excitability measurements to allow motoneurons to come to rest. As sum-
marized here and detailed in the original paper, a mathematical analysis thus tested if the
predicted results are theoretically compatible with diffuse neuromodulation of motoneuron
excitability.

The present observations may, in principle, also arise from the time delay between each
rotation and the subsequent excitability measurement in the face of diffuse neuromodu-
lation. Over the delay interval, the effect underlying increased motoneuron excitability
potentially decayed. The delay, which accounted for the time that motoneuron activity
required to return to rest, varied from trial to trial. Lower observed motoneuron excitabil-
ity may thus be caused by a higher delay before the excitability measurement. For this
reason, the analysis tested if under conditions of higher motoneuron excitability the delay
was lengthened or shortened. This test applied the linear mixed-effect model (5.12) and
used the observed time delays as response variable 7;.

The proprioceptive input that triggered the raphe nuclei and the resulting motoneu-
ron gains were quantified in the experiments only by indirect recording methods. These
measurements provide only relative statements on these two parameters and prevent deter-
mination of their precise units or amplitudes. Given these limitations, the study analyzed
if diffuse neuromodulatory mechanisms may explain the observed joint-specific increase of
reflex responses following the different rotation conditions or if this finding necessitates
topographically precise neuromodulation [189]. This analytic reasoning was based on two
assumptions that are supported by previous studies. First, during the present experiments,
the sensory input of the elbow muscles to the raphe nuclei was higher during an elbow
rotation than during shoulder rotation and vice versa for the shoulder muscles [114-116].

44



5.2 Summary of the results

=2
-~

-

N

a) Averaging window Averaging window Rotation: — Elbow  ==*=== Shoulder
— — —— . .
o Muscle : Brachiorad. ==x==+ Deltoid
Q
2 o C
a S ¥ ) 60 ’_rH—‘_‘
o© ? i 8 a0 1| (-
N J: c -
z o £ 32 1
u‘;|) 5 g 6 O , 1 T
s w 2 -1 0 1 2
® 2 Residual
k] 3 1
£ 3 d) 60 "
o *2 40 s
@ I
0 . o . § 20 , ' ~
20 0 20 40 60 80 20 0 20 40 60 80 0= » o p >
Time [ms] Time [ms] Residual
e) ¢ f) 15 9) Mechanical delay h) Mechanical delay
g © —~ o —_——
— [ S 2 i
g S i <z | <z ;
oy s i T ol b F=Sa L EE
(59 £ 10 o S ! ] I
wo, 0) J .o T
2 = : D — 1 D — [ I
e w I g 2 0 g B o
g ;163 5 ¢ < 2 : < 2 :
Q ] H 1 1
S [a} : O 201 ! [Neuronal delay o 201! Neuronal delay
@ A ® 1 0] 1
© H > —— S b~ -
@ 4 &9 = i =s |! H
NPT e . v e L VAL ws ! Ay o
% o 20 a0 20 0 20 40 20 0 2 40 60 80 20 0 20 40 60 80
Time [ms] Time [ms] Time [ms] Time [ms]
Figure 5.2: Monosynaptic reflex responses after movement of the shoulder or elbow joint.

a) Averaged over all subjects, the right brachioradialis showed a higher monosynaptic EMG re-
sponse to stretching after rotating the right elbow than after rotating the right shoulder. b) The
opposite effect was observed for the right posterior deltoid. Vertical solid lines indicate the onset
of the joint perturbation. The shaded areas indicate the standard errors in the EMG signals at
each time step. Statistical significance was determined by fitting a linear mixed-effects model to
the reflex response, averaged over the indicated window, of the respective muscle. As required
for linear mixed-effects models, the residuals for both ¢) the brachioradialis and d) the posterior
deltoid were well fitted by a normal distribution (dashed curves). Reflex responses of e) the right
brachioradialis and f) the posterior deltoid of an individual subject resembled the subject-averaged
responses. Individual reflex responses in g) the brachioradialis or h) the deltoid were elicited by
mechanically perturbing the subject’s hand along the elbow or shoulder joint, respectively. The an-
gle of the other joint remained comparatively constant. After a mechanical delay, the perturbation
accelerated the lower arm for the brachioradialis or the upper arm for the deltoid, as measured by
accelerometers that recorded the horizontal movement of the respective arm segment. Following
a neuronal transduction delay, the EMG electrodes recorded the monosynaptic reflex response in
the perturbed muscle, while the other muscle remained silent.

Second, the serotonin released by the raphe nuclei onto motoneurons monotonically in-
creases with increasing proprioceptive input [95, 194] and multiplicatively scales the gain
of motoneurons [79].

5.2 Summary of the results

In resemblance to the robotic autoencoder, the brachioradialis and the deltoid showed
a significantly enhanced monosynaptic reflex response after rotation of their respective
actuated joint. Averaging over all subjects, the reflex response of the brachioradialis was
significantly higher after elbow than after shoulder rotation at p = 1.0 x 10~* (Figure
5.2a; linear mixed-effects models and two-tailed t-test: df = 379, t = 3.8). Conversely,
the reflex response of the deltoid was significantly higher after shoulder than after elbow
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rotation at p = 1.7 x 10~* (Figure 5.2b; df = 338, t = 3.9). The validity of the underlying
statistics was emphasized by the fact that the residuals of the linear mixed-effect models
fitted to the reflex recordings were normally distributed (panels ¢ and d of Figure 5.2).
The predicted reflex behavior was also observed in individual subjects, as illustrated for
an exemplary subject in panel e and f of Figure 5.2. For the brachioradialis, the present
findings were based on a large set of n, = 172 individual reflex recordings with prior elbow
rotation (Figure 5.2g) and ng = 209 reflex responses with prior shoulder rotation which
had passed the exclusion criteria stated above. For the deltoid, the respective number of
considered reflex responses amounted to ne = 203 and ns = 137 (Figure 5.2h).

While these findings may in theory be caused by non-serotonergic mechanisms, the re-
view in the previous chapter 4 shows that neither known ionotropic nor non-serotonergic
metabotropic circuitry provides an alternative explanation for the observed spinal ex-
citability and its time scale. The protocol of the present study suppressed non-serotonergic
effects that are known to change motoneuron gain, namely, different joint positions [195],
pre-activation of motoneurons [196], and synaptic plasticity [197]. For this purpose, the
perturbation parameters, such as the initial position as well as the stretch duration and
distance, were kept constant. Additionally, the muscles were at rest prior to perturbation,
and the trials under the different conditions were equally distributed over time. Wei et
al. [78] reported that the reflex amplification observed several hundred milliseconds after
strong proprioceptive input is elevated by serotonin agonists and blocked by its antago-
nists. Thus, all the evidence suggests that the changes in motoneuron excitability observed
here are governed by serotonergic neuromodulation.

The present study proved the topographic precision of gain scaling non-invasively. The
study was designed to overcome the specific limitations of the applied indirect recording
techniques. In particular, the design overcame the limitation that the joint movement
and the muscle EMG is only an indirect measure of the proprioceptive information during
the rotatory movements, and that the EMG response to a stretch reflex is an indirect
measure of the motorpool gain. These measures yielded only relative values for individual
joints or muscles. The recordings demonstrated that the movement and the EMG of the
muscles were significantly and substantially more pronounced during rotation than during
quiescence of the associated muscle. As both parameters are known to monotonically
increase the proprioceptive signals [114-116], it can be deduced that the raphe nuclei
received more input from elbow proprioceptors during elbow rotation than during shoulder
movement, and vice versa for the shoulder. The resulting excitability of the brachioradialis
was higher after elbow movement than after shoulder movement, and vice versa for the
deltoid. Mathematically, these findings were sufficient to prove the topographic precision
of both the proprioceptive input to the raphe neurons and their projections to motorpools.
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CHAPTER O

Discussion and implications

Science Robotics recently ranked the development of robots that mimic the energy-efficient
compliant dynamics of animals as primary challenge to generate “major breakthroughs,
significant research, and/or socioeconomic impact in the next 5 to 10 years” [198]. But
the control of efficient elastic movements in changing environments is largely unknown in
both robotics and neuroscience. Bionic approaches to this open question suffer from the
difficult identification of functionally distinct circuits within the network of our 86 billion
entangled neurons. The present dissertation fully reverses the bionic approach to explain
how the human brain controls the compliant body (Figure 6.1). For this endeavor, the
highly interdisciplinary research first answered how the dynamics of biomimetic robots
can be optimally exploited during fast motions such as jumping.

The simulations and experiments described in chapter 2 demonstrated that a fast,
model-free controller induces energy-optimal movement in multiple compliant joints. The
algorithm forwards a common signal to drive multiple joints and observes the resulting
movement. When the robot or its environment change, the algorithm adapts the common
signal for individual motors (Figure 1.1). In the experiments, the algorithm increased the
movement amplitude of a jumping robot by up to 67 % without additional energy input.

Motivated by the high performance of the robotic algorithm, chapter 3 used it as a
blueprint to develop a comprehensive mathematical model of an analogous brain mecha-
nism (Figure 6.1). The algorithm thereby unites scattered experimental findings on the
raphe nuclei in the brain stem. The resulting model describes a motor feedback loop that
receives proprioceptive input and releases the monoamine serotonin to metabotropically
modulate the gains of motorpools. The loop acts on motor synergies, neuronal circuits
which send a common signal to multiple motorpools. Mathematical reasoning and simu-
lations demonstrate that the neuromodulation adjust this common signal to produce the
same forces as the adaptive robotic controller. The current consensus in neuroscience as-
sumes that this neuromodulation is diffuse and equally affects muscles even across limbs
[78, 79]. In contrast, the new model predicts that the raphe nuclei show topographic
precision and predominantly boost the muscles of joints that can be moved with small
metabolic expenditure (Figure 1.2). This effect is here denoted as precision scaling.

Chapter 4 summarizes a review on the spinal serotonergic system that revealed the
plausibility and the unique function of highly precise neuromodulation. The proposed
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Figure 6.1: Schematic analogy between the robotic controller (left, chapter 2) and the projections
from the raphe nuclei in the medulla oblongata to spinal motoneurons (right, chapter 3). The
robotic control diagram illustrates that the controller receives sensory information on the position
of the elbow, denoted ., and the shoulder. In the exemplary setup illustrated here, the shoulder is
mechanically blocked. The controller identifies the joints with particularly strong sensory signals
(nerve with high density of yellow arrows) and specifically amplifies their motor signals (green
arrows). The amplification decays with a time constant of a few 100 ms. The resulting movement
is dominated by joints that optimally harness their elastic elements and show optimal energy
efficiency even in quickly changing environments. The raphe nuclei similarly receive sensory input
from the elbow, sens, and shoulder, senss. Accordingly, they modulate the motor signals by
releasing serotonin that scales the gains w, and ws of motorpools driving the elbow and shoulder,
respectively. In contrast to the current neuroscientific consensus, human-subject experiments show
that serotonin specifically increases the gain of a motorpool during movement of its innervated
joint (chapter 5). This effect drastically simplifies the motor control, because all actuators can be
driven by an ionotropic signal from the same synergy circuit p. Hlustration by Tilo Wiisthoff.
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precise effect of serotonin is fully in line with the experimental state of the art and may
extend the purely diffuse effects described by previous reviews [78, 79]. A comparison with
other known spinal circuits demonstrated that the serotonergic feedback loop is, according
to current data, the only candidate to perform precision scaling in the spinal cord.
Human-subject experiments proved precision scaling, as described in chapter 5. The
subjects repeated fast and strong arm motions in environments with clear resonance con-
ditions. After movement of either the elbow or the shoulder joint, the excitability of
motoneurons was quantified using a monosynaptic stretch reflex. The electromyographic
response to the reflex was increased for motorpools that innervate the moving joint, while
motorpools of the resting joint showed a smaller excitability. The increase outlasted the
movement that triggered it. Biochemically, this persistent excitability was predicted by
the slow decay of serotoninergic neuromodulation. Functionally, the robotic algorithm
explains that this slow effect accumulates information over the full movement cycle. The
serotonergic system therefore provides a precise adaptation network within the network of
the spinal ionotropic motor circuitry and optimizes the controlled highly dynamic motion.
As will be elaborated in this discussion, the summarized findings have important impli-
cations for robotics (chapter 6.1), neuroscience (chapter 6.2), and the knowledge exchange
between the two fields (chapter 6.3). Roboticists are provided with a modular, compu-
tationally cheap controller that maximizes the energy efficiency of multi-joint compliant
robots under changing conditions. The algorithm is particularly promising for exoskeletons
that support the human locomotor system because the human CNS uses the same control
approach. For neuroscientists, serotonergic precision scaling complements the previously
observed synaptic plasticity rules which depend solely on local information encoded either
within the pre- or postsynaptic neuron [20, 199]. These known, local rules alone make it
“difficult (if not impossible) to learn global functions like [...] motor control” [200]. Pre-
cision scaling adds a spinal mechanism that changes the synaptic strength according to
non-local information. Beyond the spinal cord, precision scaling potentially applies also to
the other monoaminergic systems, whose malfunction is involved in most neuropsychiatric
and neurological disorders [201]. Precision scaling provides an early-level interpretation
of the mechanisms of the psychopharmacological drugs administered against the diseases.
These far-reaching implications combined reveal that robotic control theory is a promising
technique for “the development of efficient predictive tools [...J[to] characterize the path-
ways between specific types of neuron”. It therefore boosts an endeavor that Markram [202]
denoted as one of the “fundamental challenges |[...] of twenty-first century neuroscience”.

6.1 Energy-optimal control of compliant biomimetic robots

This project simplifies the powerful controller that Lakatos et al. [17, 18] developed for
periodic motions in compliant multi-joint robots. The simplified algorithm is a modular
extension for future controllers that learns energy-efficient motions in changing conditions.

The original robotic controller forms an autoencoder as illustrated in Figure 1.1. Its
encoder linearly transforms sensory input from the multi-dimensional joint space onto
a latent space where it sets the phase of a single timing signal. Its decoder reversely
transforms the common timing signal to drive all joints. While the autoencoder was
designed based on theoretical considerations, chapters 2 and 3 demonstrate empirically
that the encoder can be be neglected without relevant loss in motor performance. In
contrast, the results show that the proposed decoder automatically extracts the actuator
forces which achieve optimal energy efficiency under changing conditions.
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We may gain an intuition for these empirical findings when we reflect how the encoder
and decoder contribute to exciting the energy efficient normal modes of a mechanical
system. Normal modes are movement cycles where all positions have a constant ratio in
linear systems. While complex robots are nonlinear mechanical systems, also they show
normal modes either globally [203] or at least locally around their equilibrium position [204,
205]. Once the autoencoder has started a movement, its adaptation algorithm receives
information on the motion and adapts the encoder and decoder weights. The adaptation
rule stops when the vector of weights is aligned with the joint positions throughout the
cycle, implying normal mode movement. Since all joints move in phase, the encoder stage
can be left out as it only determines how much impact each of the joints has on the phase
and frequency of the timing signal. The decoder adaptation, in contrast, determines how
much torque each joint exerts. In a simple example, it will suppress the recruitment of a
joint if the joint is dampened by the environment. For this purpose, the decoder adaptation
forms a positive feedback loop that increasingly excites the normal mode which yields
the largest movement amplitude for a given energy input. The decoder initially exerts an
untuned combination of joint forces, exciting multiple normal modes at once. The resulting
movement is dominated by the most attractive normal mode that shows particularly low
damping and, in nonlinear systems, receives net energy transfers from other modes. The
adaptation aligns the output torques with the observed movement and the controller will
excite the attractive mode more specifically. In experiments on a complex robotic leg,
the model-free decoder adaptation thereby achieved a movement that was identical to the
optimal trajectory with an error smaller than the intrinsic fluctuations of the system.

When roboticists extend their controllers by the decoder, they are relieved of the task
to generate an individual timing signal for each joint. Instead, the controller needs only
a one-dimensional timing signal that is forwarded to all joints. In the one-dimensional
latent space, it is particularly simple to combine commands designed to fulfill disparate
functions, such as motion stability and path planning, or rely on different sources of infor-
mation, including sensory input and internal models. The interplay of different commands
also becomes accessible to a large range of analysis methods that are well-tested to deter-
mine the limit cycle stability, convergence time, and energy efficiency of one-dimensional
systems. These include Poincaré maps [206], Lyapunov analysis [207, 208], and analysis
of hybrid dynamic systems [209, 210]. During motions that need more than one timing
signal because different limbs show out out-of-phase trajectories, the joints of each in-
dividual limb will still move with high phase coupling during normal mode oscillations.
The decoder will then require a single timing signal per limb. It will thus simplify the
generation of energy efficient movement for each limb individually.

Frameworks that reduce the complexity of controllers will be evermore important for
robots and exoskeletons that increasingly mimic and support the versatility of biological
locomotor systems. Due to the finding that the CNS adapts movements like the decoder
(chapter 5), it is likely that the proposed decoder will continuously simplify the control of
future robots along their path towards animal-like motor performance.

6.2 Robotics reveals how the brain controls compliant motions

Motivated by the benefits of the decoder adaptation for biomimetic robots, human-subject
experiments revealed that the CNS performs a similar function. The results demonstrated
that the raphe nuclei in the brain stem react to a movement by releasing serotonin that
modulates individual motorpools. According to the known dynamics of serotonin [104],
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the detected feedback loop yields the same motor signals as the robotic adaptation rule
and thus selects an energy efficient movement pattern from the infinite options of the
redundant locomotor system [49]. Since the effect works on spinal motorpools, it simplifies
the control performed by all motor circuitry that ultimately projects to the motoneurons.
The following reasoning will substantiate that this precision scaling applies to all spinal
motor networks. Precision scaling thereby closes a long accepted gap between known
plasticity mechanisms and machine learning: like machine learning rules, it can train an
ionotropic network according to error signals that are not locally processed by the network.
The concept potentially applies also to monoaminergic systems beyond the raphe nuclei
and may explain the effects of many psychopharmacological drugs.

6.2.1 Precise serotonergic neuromodulation across spinal motor circuits

While the in vivo experiments in this dissertation focus on arm movement, the serotoner-
gic modulation of motoneurons is also essential for locomotion. When a spinal cord injury
cuts off descending pathways, therapies must supply serotonin agonists to restore locomo-
tion. For this purpose, the agonists facilitate artificial ionotropic input onto motoneurons,
such as input provided by epidural electric stimulation [211-215]. In the healthy spinal
cord, the present findings for arm circuitry make it likely that serotonin is distributed with
high precision also to the leg circuitry. This owes to the fact that the raphe feedback loop
acts very similarly across limbs and motor conditions [78, 216-219]. In addition, serotonin
is already known to disparately increase the firing of different muscles in individual legs of
lobsters [220]. In the phylogeny from invertebrates [221, 222] up to cats [103] and humans
[78], the raphe feedback loop has strikingly maintained its features. It can therefore be
expected that precision scaling has been conserved also for locomotion. The ability of
precision scaling to utilize compliant elements bears particular benefits for locomotion be-
cause the compliant elements are strongly stretched by the high tread forces. The elements
thus reuse a large fraction of the high impact energy to boost the next step [9, 11-13].
However, current experimental therapies developed for locomotion rehabilitation replace
serotonin in a diffuse way by administering agonists that affect all muscles simultaneously
[212-214]. The present research provides a functional and anatomical description of the
precise serotonergic motor effects. Future therapies may mimic these discovered effects to
substantially enhance the gait amplitude and speed of paraplegic patients.

6.2.2 Adjusting forces by non-local gradient descent

The serotonergic feedback loop extends the neuronal adaptation of synaptic weights, which
is largely governed by spike-timing-dependent plasticity [20, 199], by two fundamental
functional properties: Its adaptation relies on a continuous firing rate rather than discrete
spikes, and it performs non-local learning. The first property results from the fact that the
slow neuromodulation smooths the discrete spikes of the raphe neurons to a continuous
signal. Chapter 3 demonstrates that the property allows serotonin to minimize the output
error of the spinal motor circuitry by descending along the error gradient. In contrast to
discrete functions that lack a well-defined gradient, a continuous error function enables
the fast and reliable gradient descent approach to adapt a circuit [223]. The second
property, non-local learning, solves the long-standing problem that neuronal circuits often
need different information for learning than for normal functioning [22]. Local learning
alone would rule out some essential adaptation skills. As an example, consider the above-
mentioned synergy pool of neurons that forwards a common signal to several motorpools.
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6 Discussion and implications

The single pool forms a bottleneck that cannot encode muscle-specific sensory information.
But this information is required to individually adapt the downstream motorpools when
changing mechanical conditions require a different pattern of muscular forces (Figure 1.2).
The present findings imply that the raphe nuclei skip this bottleneck and provide non-local
sensory information to adapt individual motorpools by gradient descent.

By non-local gradient descent, serotonin closes a fundamental gap between previous
models of biological adaptation and machine learning algorithms such as backpropagation
[22, 199, 223, 224]. Chapter 3 points out the similarity by a comparison with the delta rule
[109], a backpropagation rule for single-layered artificial neural networks [110, 225]. Both
serotonin and the delta rule act on networks with a single layered decoder topology (Figure
6.1). The network processes training signals to start the learning process. Subsequently,
the raphe nuclei and the delta rule receive target signals, compare them with the actual
network output, and then descent the network weights along the gradient of a similar error
function. An important distinction is that the CNS does not define the target output in
advance. Instead, the musculoskeletal system continuously provides an up-to-date target
signal by its response to the network output. General backpropagation algorithms show a
further distinction as they propagate the output error backwards through multiple layers
of an artificial neural network and read out all synaptic weights to determine the impact
of an individual synapse. To read out its synaptic weights, the CNS would need to run
designated signals through the neuronal network and thereby block its normal functioning
during a special training phase [226]. The serotonergic feedback loop instead forms skip
connections that train only one layer without interrupting the normal signal processing.
This property prevents severe injuries when serotonin trains motor networks that must
continuously perform safety-critical tasks such as balancing.

With its ability to perform non-local gradient descent, serotonin is not the first monoamine
that has been linked to principles from machine learning. Wide evidence suggests that
midbrain dopaminergic neurons guide a biological form of reinforcement learning as they
signal the error between the reward that an animal expects and the reward it receives
[227]. The research presented here characterizes the biochemical and mathematical effects
of such a monoaminergic error signal on a neuronal level. The extraordinary level of detail
was facilitated by the fact that the raphe neurons are connected to spinal circuitry and
not higher-level circuitry like the midbrain dopaminergic neurons. Accordingly, it was
possible to quantify the sensory input and motor output of the raphe neurons in human-
subject experiments without opening the skull or the vertebral column. In addition, it
was comparatively straight-forward to interpret how the recorded signals encoded infor-
mation because they were directly related to physical quantities like muscle forces [228].
In general, monoamines are ideally suited to perform mechanisms that resemble machine
learning algorithms: They can adapt the ionotropic connectome while the connectome
continuously performs its normal, often safety-critical, signal processing.

6.2.3 An explanation for monoaminergic actions throughout the CNS

Going beyond the spinal cord, monoaminergic systems are in general assumed to show
“extensive branching terminals and diffuse release” [229] which is “thought to globally
affect all brain areas they project to” [230]. The present findings question this assumption
specifically for serotonin in the spinal cord. Moreover, precision scaling offers a promising
big picture for the monoaminergic neuromodulation in all parts of the CNS.

An example for another monoamine whose effects can be modelled by precision scaling
comes from the dopaminergic innervation of the retina [156]. The output of the retina
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6.3 Reverse-bionics as generic tool to disentangle CNS circuitry

is dominated by cone photoreceptors under bright conditions and by rod photoreceptors
under dark conditions. Cone bipolar cells (CBs) form their point of convergence as they
receive direct input from cones and indirect input from rods relayed by AIl amacrine cells.
At increasing light levels, the output of the CBs increasingly drives dopaminergic neurons
[231]. In turn, the released dopamine modulates the amacrine cells [232] and disrupts the
indirect input of rods onto the CBs [233]. Therefore, dopamine scales the relative impact of
cones and rods in order to adjust the overall retinal output under changing light conditions
[156, 233, 234]. Dopamine thereby acts analogously to serotonin, which scales the relative
muscle signals to optimize the overall force output under changing mechanical conditions.
While serotonin achieves its topographic precision by the distribution of terminals on
chemical synapses, dopamin performs this effect by actions on gap junctions. This reflects
that gap junctions play a minor role in the spinal cord [235] but a major role in the retina
[236]. It thus seems that precision scaling has independently evolved in different CNS
regions based on the biochemical mechanisms that dominate the local signal processing.

The dopaminergic system illustrates the fact that most monoaminergic systems share
the essential features of the serotonergic motor loop. In particular, the systems project pre-
dominantly to ionotropic circuitry and typically act by metabotropic effects which change
the gain of their target neurons [237-241]. For many projections, preliminary evidence
supports topographically specific effects [156, 220, 242, 243]. In turn, the monoaminergic
neurons receive feedback on their actions by sensory input or recurrent connections from
their targeted circuits [242, 244-246]. In resemblance to the multiple motorpools in the
spinal cord, we may assume that also the neocortex comprises multiple ionotropic sub-
circuits which emit coordinated signals to deal with mental or social situations. Mono-
aminergic neuromodulation may scale the individual subcircuits to react to unexpected
changes, just as serotonin scales different muscle groups depending on the terrain. Since
the monoaminergic systems receive feedback on their action, their modulation of individual
subcircuits will converge to different set points that suit changing situations.

The model presented in this dissertation offers an early-level explanation for the effects
of psychopharmacological drugs that act on the monoaminergic systems. Malfunction of
these systems have been “identified in most, if not all, neuropsychiatric and neurological
diseases” [201]. But the administered drugs often show unpredictable outcomes and,
for some of the patients, even no curative effect at all [247-252]. According to the new
model, the diseases can arise when the relative scaling of different subcircuits encoding
mental models is out of order. As a consequence, the responses to a changing environment
would become inadequate, which may start a self-amplifying feedback loop that pushes
the relative scaling factors further away from their physiological set points. When a drug
diffusely influences the monoaminergic systems, it will push the set points of all subcircuits
to new ranges. Even though the new range may turn out to be functionally operative, the
doses need to be accurately tuned for each individual and the treatment will not work for
some patients irrespective of dose, in line with the clinical observations. Motivated by the
research presented here, an in vivo study is currently being prepared in the Department
of Experimental Medical Science at Lund University (Sweden). The study will evaluate
the new model for drugs that replace dopamine in Parkinson’s disease.

6.3 Reverse-bionics as generic tool to disentangle CNS circuitry

In addition to the numerous scientific findings, the present project reveals a new method-
ology for neuroscientific research. In previous research, robotics has provided neuroscience
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with analysis tools to investigate biological motions and with biomimetic robots to imple-
ment and test the obtained control principles [2-4]. Here, the potential benefit of robotics
for neuroscience is fundamentally extended. This dissertation reverses the popular bionic
knowledge transfer that applies biological insights as blueprints to create engineering so-
lutions. Instead, the applied enginic knowledge transfer applies engineering solutions as
blueprints to create biological knowledge.

The enginic transfer of robotic knowledge into neuroscientific insights is a new avenue
that is promising, in particular because of recent fundamental changes in the field of
robotics. Although many of the early robots already looked like animals, robotics engineers
have just recently started to replicate the mechanical foundations for the remarkable
biological motor performance. During the last years, an especially promising example of
this endeavor has been the incorporation of passive compliant elements in multi-segment
robots [23, 24]. The compliant elements have led to robots with intrinsic, stable, energy
efficient oscillation modes that can be exploited for versatile gaits [23, 24, 67, 253, 254].
The bionic trend has fundamentally aligned robotic control theory with neuroscience.
While conventional robotic algorithms enforce the desired dynamics on a given mechanical
system [255-257], roboticists are now also increasingly designing controllers that identify
and harness the beneficial intrinsic dynamics of the novel biomimetic robots [18, 258-261].
The resulting algorithms can induce motions that have little energy consumption, are
stable and adaptive, and show large movement amplitudes and velocities. The success of
the present project shows that these controllers are promising blueprints for analogous,
unknown CNS functions as long as the algorithms bear a basic similarity to neuronal
arithmetics. This conclusion is in line with the common view that the CNS has primarily
been shaped by the evolutionary need for versatile, stable, and efficient movements [5, 6].

The numerous far-reaching results of the present dissertation strongly incentivize future
enginic projects. The present findings provide roboticists with a modular framework to
minimize the energy consumption of the “new generation of robots that are multifunctional,
power-efficient [and] compliant” [198]. At the same time, they offer neuroscientists a
neuron-level understanding of the strategies that humans apply to exploit their compliant
muscles and tendons for energy-efficient and yet powerful movements, with implications
for exoskeletons, motor rehabilitation, and even cognitive diseases. As biomimetic robots
catch up on the superior motor performance of animals, roboticists design an increasing
number of high-performing and well-characterized controllers. Currently, the resulting
algorithms are not being explored for their biological plausibility. Future enginic projects
can harness this plethora of models to discover the unknown characteristics of neuronal
motor circuitry. The algorithms thus diminish the common problem that “neuroscience
is data rich and theory poor” [262].
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Legged Elastic Multibody Systems:
Adjusting Limit Cycles to Close-to-Optimal Energy
Efficiency

Philipp Stratmann’2?, Dominic Lakatos?, Mehmet C. Ozparpucu?, Alin Albu-Schiffer!-?

Abstract—Compliant elements in robotic systems can strongly
increase the energy efficiency of highly dynamic periodic motions
with large energy consumption such as jumping. Their control
is a challenging task for multi-joint systems. Typical control
algorithms are model-based and thus fail to adjust to unexpected
mechanical environments or make limited use of mechanical
resonance properties. Here, we apply numerical optimal con-
trol theory to demonstrate that close-to-optimal energy-efficient
movements can be induced from a one-dimensional sub-manifold
in jumping systems that show nonlinear hybrid dynamics. Linear
weights transform sensory information into this one-dimensional
controller space and reverse transform one-dimensional motor
signals back into the multi-dimensional joint space. In Monte-
Carlo-based simulations and experiments, we show that an
algorithm that we derived previously can extract these weights
online from sensory information about joint positions of a moving
system. The algorithm is computationally cheap, modular, and
adjusts to varying mechanical conditions. Qur results demon-
strate that it reduces the problem of energy-efficient control of
multiple compliant joints that move with high synchronicity to
a low-dimensional task.

Index Terms—Compliance and impedance control, redundant
robots, Optimization and Optimal Control.

I. INTRODUCTION

OBOTIC platforms are increasingly equipped with com-

pliance in their actuators, which allow to store energy
and release it at a later time to increase the energy efficiency
of a given movement. These elastic properties significantly in-
fluence the dynamics of an actuator at high velocity and force
during highly dynamic cyclic movements such as jumping.
Different strategies have been proposed to control robots that
comprise compliant actuators and multiple degrees of freedom.
Most approaches rely on a model and a fixed set of considered
initial conditions [1], such as algorithms based on Poincaré-
maps [2], transverse linearization [3] or optimal control [4].
They lack the ability to adjust to unexpected conditions and
environments. Algorithms based on van der Pol oscillators
often use a nonlinear damping term to enforce a pre-defined
limit cycle [5], [6]. This term artificially introduces energy
losses and changes the dynamics of the system, which reduces
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the movement efficiency. An approach to overcome these
problems are central pattern generators (CPGs) that mimic
animal locomotion control by outputting a default motor signal
which adapts according to sensory input. Typically, all joints
are driven by individual CPGs that are coupled among each
other [7], [8], [9]. These studies focus on the phase relation
of the CPGs, but neglect tuning of the relative motor strength,
which has a strong influence on the energy efficiency [10].

We have recently demonstrated that under specific intrinsic
damping properties of the actuators, the stable control of
robotic platforms with several joints may be reduced to
a one-dimensional control problem during highly dynamic
movements [11], [12]. The algorithm linearly transforms
sensory input from the multi-dimensional joint space into
a one-dimensional controller space. We analytically derived
a learning rule to extract transformation weights which are
the optimal, local, linear approximation of the mode of the
system in a least-squared sense [11]. The obtained formula
is mathematically equivalent to the well-analyzed Oja’s rule
[13], [14]. The input entrains a bang-bang unit, and its motor
output is reversely transformed into the joint space. The binary
nature of the bang-bang control guarantees convergence to a
stable limit cycle within few oscillation periods, as extensively
validated both analytically [15] and experimentally [11], [16].
Our approach extends the previous literature by an algo-
rithm that requires neither a priori knowledge of model pa-
rameters nor artificial damping. The performed calculations
are computationally simple and require to store only the
modal transformation weights during execution. The sensory
requirements are limited to information about joint forces and
positions. Additionally, the chosen modal coordinate transfor-
mation is analytically known to allow for resonant relative
motor strengths in certain ideal mechanical systems, where it
thus achieves a highly energy efficient actuation [11]. We will
hereby denote a control law as energy-efficient if it maximizes
the amplitude of a movement for an energy input of pre-
defined magnitude. In particular, the modal weights allow
resonant movement in undamped linear mechanical systems
which are formed of n elastically coupled bodies, that can
be described by a constant diagonal inertia matrix, and which
are subject to modal damping and white noise. Such a system
has n eigenfrequencies and associated normal modes. If we
repeatedly excite the system by deviating all springs simultane-
ously along any of the eigenmodes, all masses will oscillate in
phase with the corresponding eigenfrequency, i.e. mechanical
resonance occurs. Oja’s rule derives the dominant principal
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component, corresponding to the physical eigenmode that
shows the maximum amplitude for the described mechanical
system [17], [18]. For a random initial excitation, this is
most likely the least damped eigenmode. The performance of
Oja’s rule is improved by the fact that the bang-bang control
inserts energy along the iteratively extracted modal weights,
thereby forming a positive feedback loop that enhances the
amplitude of the particular mode. In the controller space
formed by transformation weights that are extracted by Oja’s
rule, a one-dimensional timing signal can thus excite all
bodies along the least-damped resonant mode. We expect that
the modal transformation also allows the control of energy-
efficient movement in systems with more general nonlinear
dynamics. This is due to the fact that the dominant principle
component is the least-square-optimal linear approximation to
a data set describing the dynamics [19], which implies that
the modal excitation enables close-to-optimal control during
the short phase of energy insertion by the bang-bang law.
The present study focuses on the energy optimality of the
proposed modal transformation for hybrid compliant mechani-
cal systems subject to nonlinear dynamics. The considerations
are based on a periodically jumping leg with two joints,
since locomotion bears particular potential for optimization
by compliant structures due to its high energy consumption
and high occurring impact forces. The hypothesis that our
controller induces energy-optimal movement can be divided
into three aspects that will be tested individually: Firstly,
optimized jumping height is obtained in a stable limit cycle
for a modal control approach. A control law that optimizes
particularly the last jump in a sequence leads to a periodic
trajectory in the preceding jumps and implicitly optimizes each
preceding jump individually. Secondly, the optimal transfor-
mation weights are constant in time under fixed mechanical
conditions. Thirdly, Oja’s rule can extract the optimal weights
during modally driven jumping movement. We validate the
first two assumptions by numerically deriving an optimal
control using a Legendre-Gauss-Radau quadrature orthogonal
collocation method as implemented in GPOPS-II [20]. In a
second step, we use a Monte Carlo method to verify that Oja’s
rule extracts the energy-optimal transformation weights online
from sensory signals. We concentrate on a bang-bang control
in the controller space as this is the key to the previously
observed high movement stability.
In combination with our previous work, we conclude that Oja’s
rule allows to reduce the generation of stable, adaptable, and
energy-efficient movement in multiple compliant joints to a
low-dimensional problem. The algorithm may be used in the
control of robotic platforms with multiple actuated links as
a simple module that adjusts the intra-limb coordination to
mechanical changes. Hereby, it optimizes the energy efficiency
both of the mechanical actuators and the hardware required to
calculate the control law.

II. THE CONTROL ALGORITHM

The modally adaptive bang-bang controller that we recently
described [11], [12] controls a multi-body system with n joints
driven by series elastic actuators (SEAs). A movement is
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initiated by deflecting the system from its equilibrium position.
The controller observes the movement and adjusts it iteratively
until it converges to a stable limit cycle. For this purpose, the
controller receives information about the joint torques 7 € R”,
which are a function of the difference between link and motor
coordinates q, 0 € R", respectively,

T=71(0-q). (1)
The torque is transformed from the joint space into a one-

dimensional sub-manifold along the modal weights w € R",
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The output is transformed back into the joint space and the
motor positions are accordingly updated to
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The linear transformation weights are recursively extracted
from the joint trajectories according to the learning rule,

w(t) = y(w(t)q(t)) [¢(t) — (wt) qO)w(t)] . )
which is mathematically equivalent to Oja’s rule [13]. The
adjustment rate v is chosen smaller than the period frequency
of the movement to capture the dynamics of the system during
the whole movement cycle.

This study extends the previous description and analysis
of the presented control law by energetic considerations. We
restrict our simulations to mechanical systems where each ac-
tuator comprises a torsional spring with same constant stiffness
k € R. Crossing the threshold *e, switches the torque,

m=k(-a) > n—k (e 0] -q)

The performed work equals the change of potential energy,
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Equation (7) illustrates that the controller amplitude 6, and
threshold e, define the energy inserted into the mechanical sys-
tem. They determine whether the actuated system converges
to a limit cycle or falls silent. The latter happens when the
modal torque fails to reach the switching threshold.

III. OPTIMALITY OF THE LIMIT CYCLE

In the following sections, we test three aspects of energy
efficiency: Here, we check whether optimization of individual
jumps is achieved during a limit cycle. Subsequently, whether
the energy-optimal modal transformation weights are time-
invariant. Finally, whether a bang-bang controller in com-
bination with Oja’s rule extracts the optimal transformation
weights from sensory information.
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Fig. 1. (A) The mechanical test bed consists of a base that is serially connected to two links by a hip and a knee joint. The base coordinates (zp1,Zp2)
are measured at the middle of the hip joint, as indicated by an @ in the illustration. Joint coordinates (q1,g2) are measured clockwise relative to vertically
extended links. (B) Illustration of movement induced by the optimal controller obtained under the constraint of time-independent transformation weights
represented by the weight angle «. Plotted here are the joint coordinates. (C) A plot of the resulting trunk trajectory indicates that after eight jumps the
trajectory of the leg has approximately converged to a limit cycle. We extracted the peak heights of the jumping movement and plotted them together with
a line showing an exponential fit against the second, right y-axis with higher resolution. (D) The derived controller is plotted for the whole simulated time.
While it is artificially fixed to zero during flying phases, we find clear bang-bang behavior during the standing phase.

A. Methods

Mechanical System: As example system for our con-
siderations, we simulate a floating base with one leg (cf.
Fig. 1A) that models the robotic system used for the exper-
imental validation in Sect. V. The floating base can freely
translate in a vertical plane and we describe its position by
xy, = (b1, 7p2)T € RZ A trunk of mass 0.49kg is attached
by a hip joint to a leg. The leg comprises an upper and
lower thigh that have respective masses of 0.059kg and
0.038kg, equal length of 8cm, and are connected serially
by one knee joint. Parameters describing the inertia are ob-
tained from the CAD model of the robot. The respective
joint coordinates g; and g2 of the hip and knee joint are
measured relative to a vertical orientation of the upper and
lower link. We summarize joint and floating base coordi-
nates as « = (z{,q")”T € R%. The joints are driven by se-
ries elastic actuators (SEAs) comprising torsional springs of
constant stiffness & = 1.46N mrad~! and damping coefficient
¢ =0.0219Nmsrad~!. The actuators deviate the springs by
an angle 6 from their equilibrium position. One SEA directly
actuates the hip joint, while the second is connected to the knee
via a belt drive. The resulting kinematic coupling allows for an
independent influence of the SEAs on either joint coordinate
[21]. Thus, we can describe the system by

M ()& + C(x, &) + g(x) =

0
(k(B _ q) _ cq) +Tcontact

The symmetric, positive definite inertia matrix is denoted
by M(xz), C(x,&) represents the generalized Coriolis and
centrifugal matrix, g(x) gravitational forces, and Tcontact the
generalized external force. We describe the controller

()

cos(«)
by its Euclidean norm, e R>¢, and the angle of the trans-
formation weights, « € [, 27]. The constraint on « prevents
ambiguity, since a change of o by 7 corresponds to a change
of sign in 6. During jumping movement, the leg forms a hybrid
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model and alternatively switches between a standing and flying
phase. During the contact phase, the foot and the ground form
a fixed, unilateral contact point. We apply a rigid ground model
because the differential equation solver restricts the use of
stiff differential equations. Base rotation is locked, since in
the long run we are interested in multi-legged systems. These
systems have a high trunk inertia and can adjust their rotation
independently from the jumping due to redundant degrees of
freedom. Our choice results in fully actuated system dynamics
during the stance phase, i.e. the number of actuators equals
the number of degrees of freedom of the system. The initial
position is defined by a vertical alignment of base and foot.
While the foot is initially attached to the ground, we choose the
height of the base that prevents any initial vertical acceleration
on the trunk. Lift-off occurs when the vertical projection of
the force constraining the foot to the ground switches its sign,
whereas landing takes place upon ground contact.

Numerical Extraction of Optimal Controller: To find the
optimal control law in the modal sub-manifold, we search for
the optimal parameter o™ and piece-wise continuous control
0*(t). By optimal we hereby imply that for time-constant «
the objective function is minimized, which is given in Mayer
form by the negative jumping height

j(a’ é(t)) = 7wb2(tend) .

For this purpose, we use a numerical approach for the optimal
control of time-continuous multiple-phase dynamical systems
as implemented in GPOPS-II [20]. The state of the mechan-
ical system is described by (x,%7) and the state equation
f= (iT,{v'T)T is obtained from (8). According to the hp-
adaptive Gaussian quadrature collocation method, GPOPS-II
divides the time interval of interest into specific mesh points
and discretizes the state at these points. The optimal control
problem is then transformed into a nonlinear programming
problem and is solved using IPOPT [22]. States are estimated
using Lagrange polynomials, and both the number of mesh
points and the degree of the polynomial are dynamically
adjusted. We allow for a maximal simulated time of 6s and
8 consecutive jumps, which we empirically found to be the
maximum number supported by GPOPS-II. The control is only

(10)
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active during the standing phase and the control set is given by
« € |m,27] as described before and 6 € [—0.15rad, 0.15rad)].
The latter constraint restricts the spring deflections that the
controller can induce equivalently to the bang-bang amplitude
in (3). The energy inserted during a controller switching de-
creases linearly with w7 q. Tt is therefore maximized when the
joint positions g and the weights w have opposite directions
and g has maximum amplitude. A given spring deflection
of amplitude 0, thus inserts the maximum energy at peak
positions of g, which means that for a given maximum value
for 0, we induce the maximum energy when deflecting the
springs instantaneously at the according point in time. The
constraint accordingly renders it likely that the derived optimal
controller amplitude é*(t) will show bang-bang behavior.

B. Results

The derived optimal trajectory requires less than 6s to reach
its peak jumping height, which indicates that time does not
limit the performance of the derived controller.

As illustrated in Fig. 1B and 1C, the jumping trajec-
tory approximately converges to a limit cycle with dura-
tion T" =~ 0.41s. The difference between two successive peak
heights of the trajectory decreases monotonically. An exponen-
tial fit, plotted in the same figure, indicates that the jumping
height converges to a final value of 4.77cm. Convergence takes
place with a time constant of approximately 2.19s. The optimal
transformation weights are represented by o* = 1.757, which
corresponds to (1,—1)T as represented in the spanning set
formed by the joint coordinates. This can be considered as
a linear eigenvector of the nonlinear system. The orthogonal
second eigenvector of the two-dimensional system would be
described by agye = 0.257. The controller 6 shows clear
bang-bang-behavior and switches instantly from the minimum
to maximum value of the controller set, as demonstrated in
Fig. 1D. The switching occurs when the trunk crosses its
lowest position with a time difference of At < 9.4ms =~ 0027
(restricted by the numerical resolution). According to (7), the
optimal controller thus inserts the same maximum possible
energy into the system during each jump and not just during
the final one. All of these findings indicate that the optimal
controller, which maximizes the movement amplitude of the
final jump, follows the same law during each of the preceding
jumps. The goal of optimizing the height of an individual jump
therefore requires to optimize each of the preceding jumps,
which is achieved in a periodic movement. If only the final
standing phase had an influence on the final jumping height,
we would expect the controller to insert arbitrary amounts
of energy during the earlier phases. All of these findings
in summary indicate that a series of equivalently actuated
preceding jumps induces maximum movement amplitude and
an optimal controller leads to periodic movement.

The results furthermore emphasize the intrinsic stability of
our control approach. For a given maximal amplitude 6,,
the obtained controller represents a version of our suggested
algorithm where « and e, are chosen to insert the maximum
energy in the most energy-efficient way. Under this extreme
condition, the trajectory still converges.
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IV. OPTIMALITY OF THE MODAL
TRANSFORMATION

We turn the focus to the linear weights of the mapping
between the sensory/actuation and controller space. We will
first investigate the influence that deviations from the optimal
weights have on the controller performance and then test the
second assumption of our approach, i.e. that the weights can
be assumed constant during the movement cycle.

A. Methods

Deviations from Optimal Value: Using the same mechan-
ical system as described in Sect. III-A, we fix a to 18 equally
spaced values within [1.1rad, 1.95rad] and leave the remaining
parameters of the optimal control problem unchanged. For
each trial, the final jumping height is recorded.

Influence of Time Independency: To check whether the
optimal transformation weights are time-independent, we al-
low for a = a(t) and use GPOPS-II to search for 6*(t) and
o*(t) that maximize the jumping height. All other conditions
remain unchanged. Resonance in a linear two-dimensional
system would require to drive the system along a constant
eigenmode. In an additional trial, we test if a potentially ob-
served deviation from the linearized expectation a*(¢) = amv1
results from coupling between the linearized eigenmodes ei-
ther in the inertia matrix M (x) or the Coriolis and centrifugal
matrix C'(x,&). For this purpose, we reduce the masses of
the links to zero. Since the numerically obtained eigenmode
(1, —1)T induces a straight vertical jumping movement of the
base in this system, a deviation would be due to coupling in
the Coriolis and centrifugal force.

B. Results

Deviations from Optimal Value: When the transformation
angle is fixed to different values, the optimal amplitude 6* (t)
remains bang-bang (not illustrated). Figure 2A demonstrates
that the maximum jumping height varies between 1.82cm and
4.78cm for different angles. For the current mechanical con-
figuration, weight variations thus allow performance increases
in terms of jumping height of up to 263%.

Influence of Time Independency: The optimal controller
é*(t) continues to show bang-bang-like behavior also under
time-varying transformation weights, as illustrated in Fig. 2B.
While o*(t) remains equal to agyy directly after landing
and before take-off for a major proportion of the trajectory,
a*(t) deviates from the linear eigenvector when the joints
are increasingly deviated from their equilibrium position. At
the point of maximum deviation, i.e. the minimum trunk
height, both a*(t) and 6*(t) are discontinuous. Expressed
in Cartesian coordinates as represented by 0(¢) in (9), the
controller describes a continuous semicircle during the stand-
ing phase before it is switched off at onset of the flying
phase. The time-variation in transformation weights leads to
an increase of the final jumping height of 1.9% in comparison
to constant weights. The trajectory of the base, shown in Fig.
2C, is a loop. When the link masses are reduced to zero, this
behavior remains (cf. same figure). For both systems, it is
thus advantageous to insert some energy via the empirically
derived eigenmode (1,1)7 at larger joint deflections, although
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Fig. 2. (A) When the optimal control is subject to a pre-defined fixed «, the maximum jumping height varies strongly with the weight angle. The minimum
jumping heights are consistently found for o < 1.57. This range qualitatively differs from o > 1.5, since in the former range both joints share the same
sign and one of them will thus always counteract the jumping movement. (B) We test the influence of time independency of the transformation weights by
allowing for time-dependent weights and search for the controller that maximize the jumping height. The derived control is plotted for one jumping period.
Since the control is fixed during the flying phase, only the standing phase is illustrated. The x-axis shows the time that has passed since the onset of the
standing phase, not the total simulated time. In agreement with Fig. 1, the controller magnitude € follows a bang-bang law. The angle «(t) varies continuously
with one discontinuous jump from 27 to 7, which occurs simultaneously with the sign switch of 6. The included reference line shows that the optimal angle
agrees with the numerically derived value of o« = 1.757 at the beginning and the end of the standing phase. (C) The trajectory of the base under time-varying
weights follows a loop. The dashed line illustrates that it qualitatively remains a loop for massless links, despite quantitative changes.

only (1,—1)7 relates to vertical movement. This agrees with
analytic findings by Lakatos et al. [23] who derived the system
dynamics with these globally constant eigenvectors of the leg
with two mass-less limbs. Based on their derivations, one can
transform the damping matrix into the eigenspace and finds
that the damping associated to the eigemode (1,1)T falls
below that associated to (1,—1)7 for high deflections. The
energy injected into the mode (1,1)7 is transferred into the
eigenmode (1,—1)7 via coupling. A significant part of this
coupling results from the Coriolis/centrifugal and gravitational
force, since the effect qualitatively remains when the masses
of the limbs are removed, i.e. the inertia matrix is decoupled
in modal coordinates.

V. OPTIMALITY OF OJA’S RULE

Under realistic conditions, the linearized eigenmode of a
system is analytically unknown and changes with intrinsic and
environmental conditions. In order to maximize the jumping
height with minimum energy requirements, our algorithm uses
Oja’s rule in combination with the modal bang-bang controller
to extract an adaptable approximation of the eigenmode from
sensory information. In the following, we will evaluate its per-
formance in a simulation and an experiment using parameter
screening in combination with a Monte Carlo approach.

A. Methods

Simulation: Our mechanical test bed remains the leg
described in Sect. III-A. While the differential equation solver
used by GPOPS-II restricted us to a rigid ground model, we
here use a more realistic ground model with a stiffness of
105N m~!, a damping coefficient of 2 x 103Nsm™!, and a
friction coefficient of 1. We set the bang-bang threshold in
(3) to e, = 0.5N m, which we found to prevent decay of the
movement for a large parameter range. The time constant of
Oja’s rule is chosen as v = 0.1s~!. To start the movement, we
drop the leg with a vertical distance of 0.02m between foot
and ground while the joints are at their equilibrium positions.

For the Monte Carlo approach, we assign 40 random 2-tuples
to the two remaining free parameters of the model, namely
the energy c_; injected by the controller and the initial angle
ag of the transformation weights. The energy c_; is drawn
from the interval [0.057N m, 0.563N m], which we found to
induce stable jumping. For each randomly chosen value c 4
we empirically derive an interval of values for « that prevent
movement decay. An initial angle « is randomly drawn from
this interval. During the movement, the weights adjust accord-
ing to (5). After convergence of the trajectory and weights, the
final weight is recorded. We hereby define that the trajectory
is converged when the states (Zp2,q1,q2,q1,¢2)7 at two
consecutive peak positions differ by less than 1073 x(10cm,
7 rad, m rad, m rads™!, m rads~')T. To verify that our
algorithm obtains the dominant principal component of the
motion, we perform a reference principal component analysis
(PCA) of the joint trajectories using the according Matlab
function for example trials.

The performance of Oja’s rule is validated by parameter
screening using 40 additional trials with constant weights
described by regularly spaced « € [1.57,27] for each value
of c_4. After convergence of the trajectory, we record the
respective jumping height. In order to find the peak angle,
associated with the peak jumping height, with high accuracy
for each value of c_j, we run 20 additional trials for the sub-
interval between the three values of « associated with the
maximum height. This procedure is repeated for a regularly
spaced set of ¢ _; € [0.057N m, 0.563N m].

Experiment: The robotic leg used as experimental setup
corresponds to the simulation model, is illustrated in Fig. 4A,
and has been previously described by [21]. Two servo units are
serially coupled via torsional springs with constant stiffness
k ~ 2Nmrad~! to a hip and a knee joint, respectively. Stiff-
ness was determined using force-deflection measurements. The
connection of the second SEA to the knee joint is established
via belt drives, resulting in kinematic coupling of the joints.
The trunk is mounted to a boom which prevents rotation of
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Fig. 3. Simulation results demonstrating the performance of Oja’s rule in approximating the local linear eigenmode. (A) A parameter screening shows the
Jjumping height as a function of the two free parameters of the bang-bang controller, i.e. the energy c_; injected into the system in each jump and the angle
« representing the transformation weight vector. The jumping height is normalized for each value c_; and the background represents parameter ranges where
jumping falls silent. We randomly choose initial tuples (Csév ap) and initiate jumping of the leg, while the transformation weights adjust according to Oja’s
rule. The weights converge to values close to the peak line. For values c_; 2 0.12J, the range of « that causes stable jumping decreases abruptly, coincident
with the transition from oscillations fixed to the ground to a jumping movement. The reason for the abrupt decrease is explained in the text by the two marked
exemplary tuples. (B) A zoom into the parameter space shows where the converged weights, as obtained by Oja’s rule, deviate most from the peak line. We
find a minimum deviation for small and large energy input, corresponding to small oscillations without lift-off and large jumping heights. (C) For each energy
¢4 Within our chosen interval, we show the maximum improvement in jumping height that can be gained by adjusting the transformation weights. Values
are given relative to the minimum jumping height when conditions are excluded that cause decay of the movement. (D) The trajectory of the knee joint at the
beginning of the movement shows qualitative differences for the exemplary tuples marked in sub-figure (A). For larger energy input c_g, the joint coordinate
is not differentiable with respect to time at the marked moment when the leg touches down, indicating removal of kinetic energy. For smaller energy input,

the leg remains attached to the ground and thus the joint coordinate remains differentiable.

the trunk while allowing circular horizontal movement around
a fixed center and vertical jumping motion. A sensor at the
ground fixation point of the boom measures jumping height
and horizontal position.

With the motors switched off, we measure the height profile
of the ground to correct the jumping height for variations at
different horizontal positions. In the beginning, we run the
leg using a bang-bang controller with constant weights and
wait for the jumping height to converge exponentially while
the servo units reach their operating temperature. To prevent
overheating, runs lasting 45s are followed by a cooling phase
of 120s. At the beginning of each recording sequence, we
measure the trunk height while the servos are at rest, 8 = 0,
and define jumping height relative to this value. An additional
height measurement at the end of a recording sequence checks
for occurring static hysteresis. We initiate each movement by
applying a standardized delta-stimulus and maintain jumping
using a bang-bang controller with 0, = 0.2rad.

In a first recording sequence, we record the trajectory for
10 values of « € [1.537,1.987]. Each run is followed by a
reference run with o = 1757 to check for repeatability. After
convergence of the trajectory, which reliably takes place during
the first 10 jumps (cf. example trajectory in Fig. 4B), we
average the jumping height for each a.

In a second recording sequence, we initiate «g with the
minimum and maximum value, & min and a max, that allow
persistent movement and adapt « according to Oja’s rule over
several subsequent runs of 45s each. To detect convergence, we
average « over each run individually. Convergence is declared
when this averaged value is smaller than in the preceding run
for trials started with ag = ag,min or larger for trials started
with ag = ag,max. We measure the respective jumping height
that is associated with the initial and final transformation
weights twice in an alternating fashion.
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B. Results

Simulation: An illustrating overview of the results ob-
tained by the parameter screening and the Monte Carlo
approach can be found in Fig. 3A. In Fig. 3B, we zoom
into the parameter space to evaluate where the converged
weight deviates from the conditions associated with maximum
jumping height. We find that the peak angle averaged over the
full range of c_; amounts to (1.772 £ 0.006)7 (mean = std),
which significantly deviates from the expectation of 1.750 7.
The peak angle varies slightly as a function of c_4.

Oja’s rule reliably extracts the dominant principal component,
as verified in comparison to the PCA performed by Matlab.
It closely aligns the randomly chosen initial weights with
the peak angle (cf. Fig. 3A). In 36 out of 40 trials, our
algorithm improves the transformation weights and leads to
an angle that is associated with an increased jumping height.
If improvement was purely based on chance, we would expect
to find 20 successful trials, distributed according to a binomial
distribution. This assumption can be rejected by p < 1076.
Thus, Oja’s rule significantly improves the energy efficiency
of the movement. The closest match between the peak angle
and the converged weights are found for small and large
input energy levels (cf. Fig. 3B). These energy domains are
least affected by the nonlinear switching phase of the hybrid
model and can hence be best described by linear dynamics,
i.e. the assumption that underlies our controller design. For
small energy levels, the system shows only minor deviations
from its equilibrium position and stays attached to the ground,
indicating that the dynamics can be well approximated by a
continuous, linear differential equation. At high energy levels,
the dynamics are mostly determined by the flight phase, where
the effect of the nonlinear coupling is reduced.

To quantify the improvement that adjustments of the transfor-
mation weight yield, we derive the relative difference between
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Fig. 4. Results of the experiment. (A) The experiments were conducted on a compliant leg that is pictured here. (B) An example trunk trajectory. The
dotted line indicates the onset of the controller. Fluctuations before this time point illustrate the accuracy of the height sensor. We consistently found that the
trajectory converges for less than 10 jumps. (C) The average jumping height is plotted as a function of the transformation weights with its peak occurring
between o € [1.687,1.787]. Values of « below the illustrated region lead to a decay of the movement. The parameter space represented in this graph is
equivalent to a vertical cross section through Fig. 3A. Each trial is followed by a control recording with o = 1.757. The multiple close data points for this
value demonstrate that the results are well repeatable throughout the sequence. We averaged them to obtain an additional data point in the screening-curve.
Error bars denote the standard deviation over several jumps. (D) The transformation weight aligns with the same value under the influence of Oja’s rule,
independently of the starting conditions. The converged weight lies at the peak of the curve in figure C.

the peak jumping height and the minimum jumping height at
each energy value c_;. Conditions where the leg falls silent are
excluded. Figure 3C demonstrates that this difference increases
monotonically with c_s. Within our parameter range, tuning of
the transformation weights can lead to relative improvements
of more than 15% or 2.6cm.

As a final point that may be noticed in Fig. 3A, the range
of transformation weights that lead to periodic movement
decreases abruptly for values of c_; exceeding approximately
0.12J. This matches the energy required for lift-off, whereas
for smaller energies the leg oscillates with the foot attached to
the ground. As shown in in Fig. 3D, the touchdown removes
kinetic energy from the system, thereby restricting the range
of parameters that prevent decay of the movement.

Experiment: In the physical leg, we find that a small
range of weights is related to maximum energy efficiency
which cannot sensibly be further divided due to natural fluc-
tuations. Our algorithm extracts weights that lie at this plateau
and are independent of the initial conditions, as long as these
conditions do not directly lead to movement decay. These
results are also illustrated in a supplementary video.

In particular, persistent jumping occurs for « € [1.587, 1.987].
In agreement with the simulation results in Fig. 2A, Fig. 4C
demonstrates that the jumping height as averaged over several
jumps shows a peak for « € [1.687, 1.787]. In the experimen-
tal setup, jumping heights associated with this interval differ
by less than one standard deviation from the peak height. Thus,
a more accurate peak identification is here prevented due to
non-periodicity in the limit cycle, sensor noise, and mistakes in
the determination of the height profile of the ground. No static
hysteresis is found throughout the recordings and the jumping
height of the reference measurements at a = 1.757 show no
obvious tendency over time and as illustrated in Fig. 4C are
consistent throughout the recording sequence. Starting from
the weights o min = 1.587 and @ max = 1.987, Oja’s rule
adjusts the weights t0 Qfinal.min = (1.7950 £ 0.0002)7 and
Offinal,max = (1.7920 & 0.0002)7, respectively (cf. Fig. 4D).
These values lie exactly at the border of the peak area of

Fig. 4C, and the associated jumping heights still differ by less
than one standard deviation from the peak height. Whereas
the simulation results identify a small but significant deviation
between converged and optimal weights, the higher noise
therefore renders the differences irrelevant in the experiment.
Our trials with initial and converged weights quantify the
relative improvement of the jumping height to 31% and 67%,
respectively. The latter corresponds to an absolute improve-
ment of 1.4cm.

VI. DISCUSSION

We recently suggested a computationally simple control
approach that induces stable periodic movement in elastic
multibody systems. The present paper concentrates on the
proposed system-specific time-independent linear transforma-
tion between the joint space and a one-dimensional controller
space. While a modal transformation is analytically known
to be optimal in terms of energy efficiency for mechanical
systems with continuous linear dynamics, we here investigate
its performance in the control of resonance in hybrid dynam-
ical systems with nonlinear coupling between the joints. We
show that a previously proposed algorithm can use sensory
information about joint deflections to extract transformation
weights that induce limit cycles of energy efficiency which is
indistinguishable from an optimal trajectory for noisy physical
systems. This finding is independent of the initial weights.
The simulation results show two shortcomings of our al-
gorithm: Firstly, optimal transformation weights vary during
the movement cycle, which improves the performance in
the single-digit percentage area. This small increase can be
expected to be irrelevant for applications in experimental
systems, where model-based optimal control laws suffer from
deficits in the underlying model. Furthermore, the difference
has minor influence on the jumping height in comparison to
adaptations by our (model-free) adaptation law, since the latter
can increase the height by several magnitudes. Secondly, our
Monte Carlo approach demonstrates that Oja’s rule does not
precisely extract the optimal linear weights. However, our ex-
tracted weights lie on a peak plateau of weights whose mutual
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difference in jumping height is obscured by fluctuations due
to intrinsic noise of the system.

In accordance with earlier research, the present study fo-
cuses on bang-bang controllers. This choice is due to their
previously demonstrated robustness properties and the ability
to generate asymptotically stable limit cycles. Our algorithm
leads to higher relative improvements for a smaller bang-
bang threshold, as this decreases the minimum energy required
for persistent movement, which lowers the minimum, i.e.
reference, jumping height. Thus, we find a smaller relative,
but similar absolute, increase in the jumping height in the
simulations in comparison to the experiments with smaller
threshold. Our experiments show high performance increases
of up to 68% and potentially more for higher energy input.

We concentrate on a jumping leg since highly dynamical
locomotion is a promising beneficiary of compliant structures
due to the high power demands and occurring peak forces.
Two findings render our algorithm especially advantageous
for this motion type: On the one hand, the optimization of
constant weights yields higher improvements here, presumably
because higher forces allow elastic elements to store more
energy. On the other hand, Oja’s rule extracts optimal weights
with increasing accuracy at higher motion amplitude.

Oja’s rule is widely known as description for calculations
performed by the animal nervous system [10], [13]. Further-
more, the presented control approach leads to highly stable
motion. Based on these aspects, we previously suggested
that the approach may describe aspects of the sophisticated
movement control of animals [10], [16]. The obtained strong
and reliable increase in jumping performance the we find here
emphasizes our hypothesis that it describes neural calculations
as shaped by evolutionary constraints.

Our present focus lies on the energy used for mechanical ac-
tuation. Our algorithm is additionally energy-efficient in terms
of computational power requirements and sensing hardware.
While other previously suggested adaptable controllers spend
a significant amount of energy for these purposes [24], the
calculations of our algorithm are computationally simple and
require to store only the modal transformation weights during
execution, while information about joint forces and deflections
suffice as sensory input.

Future work on the control of elastic multibody systems may
use the modular nature of our coordinate transformation, which
adjusts a low-dimensional control signal to yield an energy-
efficient movement of several joints without constraints on the
signal. In the controller sub-manifold, a modular controller
may combine commands for non-energetic purposes that have
different origins, such as sensory and internally generated
signals. Such a controller may also produce two-dimensional
commands that target different limbs in anti-phasic gaits like
running without considerations about individual joints.
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There are multiple indications that the nervous system of animals tunes muscle output to
exploit natural dynamics of the elastic locomotor system and the environment. This is an
advantageous strategy especially in fast periodic movements, since the elastic elements
store energy and increase energy efficiency and movement speed. Experimental
evidence suggests that coordination among joints involves proprioceptive input and
neuromodulatory influence originating in the brain stem. However, the neural strategies
underlying the coordination of fast periodic movements remain poorly understood. Based
on robotics control theory, we suggest that the nervous system implements a mechanism
to accomplish coordination between joints by a linear coordinate transformation from
the multi-dimensional space representing proprioceptive input at the joint level into a
one-dimensional controller space. In this one-dimensional subspace, the movements
of a whole limb can be driven by a single oscillating unit as simple as a reflex
interneuron. The output of the oscillating unit is transformed back to joint space via the
same transformation. The transformation weights correspond to the dominant principal
component of the movement. In this study, we propose a biologically plausible neural
network to exemplify that the central nervous system (CNS) may encode our controller
design. Using theoretical considerations and computer simulations, we demonstrate
that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic
neuromodulation for the output mapping can extract the dominant principal component
of sensory signals. Our simulations show that our network can reliably control mechanical
systems of different complexity and increase the energy efficiency of ongoing cyclic
movements. The proposed network is simple and consistent with previous biologic
experiments. Thus, our controller could serve as a candidate to describe the neural
control of fast, energy-efficient, periodic movements involving multiple coupled joints.

Keywords: movement generation, compliant actuators, control theory, spike-timing-dependent plasticity,
neuromodaulation, principal component analysis
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1. INTRODUCTION

During fast periodic motions, such as jumping or drumming,
animals exploit the natural dynamics of their elastic locomotor
systems to achieve high velocity in an energy-efficient manner
(Bar-Cohen, 2011, p. 514). Their central nervous systems (CNSs)
are able to quickly adjust the control of periodic movements
that involve several joints to face changes of their environment
or intrinsic body properties (Hatsopoulos and Warren, 1996;
Zondervan et al., 2014). The underlying control problem is highly
complex, as the locomotor systems have multiple joints that
have non-linear compliances and are dynamically coupled. For
a controller algorithm to replicate the CNS’s locomotion control,
it must be able to induce stable movement and quickly tune it
to high energy efliciency under varying mechanical conditions,
while being consistent with biological experiments.

Fast, or explosive, movements such as jumping are typically
compound movements that involve synchronous trajectories
of several joints in a single or several limbs (Freund and
Biidingen, 1978; Morasso, 1981). The synchronicity enables
high maximum force and thereby allows to take advantage of
elastic dynamics. This can increase the resulting energy efficiency
and thereby movement speed. Energy efficiency implies that
for constant energy input a controller increases the energy
within a mechanical system, as e.g., represented by an increased
jump height (cf. Section 4.7.3). In systems with one degree of
freedom, maximum energy efficiency implies correct timing of
the controller output. In natural explosive movements involving
several joints, it also requires the adjustment of the relative
amplitude of motor signals at different joints. For the remainder
of this article, the latter mechanism shall be denoted as intra-limb
coordination.

In neuroscience, both theoretical and experimental studies
have described neural mechanisms that can induce stable
movements in an elastic locomotor system via central pattern
generators (CPGs) or reflex arcs (cf. Buschmann et al., 2015
for a review). Theoretical research has extensively analyzed
the question on how compliant systems can be tuned to
yield energy-efficient movements on artificial models with a
single joint (Brambilla et al., 2006; Righetti et al., 2006; Pelc
et al., 2008; Barikhan et al.,, 2014; Huang et al., 2014). Studies
considering multiple joints showed that frequency adjustment
can be achieved by multiple coupled CPGs, one for each joint
involved, that are entrained to proprioceptive input. Multiple
CPGs are especially beneficial in non-synchronous movements
of the joints, where phase-tuning between different joints is
required and where different joints in a limb could execute
functionally different tasks, such as forward/backward movement
vs. elevation/depression in insect gaits (Nachstedt et al., 2012;
Xiong et al., 2015). Buchli and Ijspeert (2008) demonstrate that
multiple coupled CPGs, one for each actuated joint, can also be
used to find the resonance frequency of fast compound periodic
movements. However, the use of multiple CPGs neglects the
described synchronicity in joint trajectories. Furthermore, tuning
for higher energy efficiency also requires intra-limb tuning, i.e.,
to adjust the relative amplitude of motor signals at different
joints.
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Previous experimental research has considered both
frequency and intra-limb tuning. Measurements on decerebrate
cats demonstrated that signals from individual group I nerves
converge in spinal pathways to entrain the frequency of all
muscles involved (Whelan et al., 1995a; Hiebert et al., 1996). The
efficacy of individual nerves to cause entrainment is dependent
on their activity. The influence of a silenced nerve decreases
with time, whereas an increased influence is found for nerves
originating from muscles that assist in the same movement as
the silenced one (Whelan et al., 1995b). Intra-limb coordination
of explosive movements was found to be controlled by circuits in
the brain stem and cerebellum (MacKay-Lyons, 2002; Shemmell
et al., 2009). Furthermore, Animal studies found a disruption
of intra-limb coordination after administration of a serotonin-
antagonist (Pearlstein et al., 2005; Harris-Warrick, 2011).
Serotonin (5-HT) metabotropically increases the excitability of
motoneurons (Heckmann et al., 2005; Heckman et al., 2008;
Perrier et al., 2013). It is released into the spinal cord by the raphe
nucleus obscurus, pallidus and medianus (Jacobs et al., 2002),
which reside in the brain stem. Since they receive proprioceptive
input (Springfield and Moolenaar, 1983), the raphe neurons may
be part of a motor feedback loop. The resulting absolute strength
of motor signals during ballistic periodic movements can largely
exceed the signal during maximum voluntary contractions
(Dietz et al., 1979). Despite these experimental findings, neural
pathways underlying the control of stable and energy-efficient
explosive movements are poorly understood (Taube et al,
2012). In summary, current knowledge about the algorithm
that the CNS encodes to tune ballistic periodic movements
does not explain how the CNS maintains stable movement
while tuning the frequency and inter-joint coordination to high
energy efficiency. A physically motivated theoretical control
approach would allow to link the experimental knowledge into a
comprehensive framework.

Roboticists increasingly mimic the non-linear compliances of
muscles and tendons in joints of mechanical robotic systems
such as BigDog by Boston Dynamics (Raibert et al., 2008) or the
Hand Arm System from the German Aerospace Center (DLR;
Grebenstein et al., 2011). The control approaches developed
by robot designers for controlling these bio-inspired robots
can be a valuable source of hypotheses for neuroscientists.
Several control algorithms have been suggested to induce stable
and energy-eflicient limit-cycle movements in compliant hybrid
systems. However, their characteristics disqualify most designs as
hypothesis for neural movement control. Van-der-Pol oscillators
(Stramigioli and van Dijk, 2008) artificially damp systems and
thereby reduce the energy efficiency of the movement. Poincaré-
map based algorithms (Sreenath et al., 2010) cannot adequately
adjust to different environments due to their dependence on
a prior model and a fixed set of considered initial conditions.
The same point argues against optimal-control algorithms,
which additionally require numerical approaches and thus
high computational power for multiple joints (Braun et al,
2011).

In this study, we propose an algorithm that was purely derived
by engineering considerations on the control of biomechanically
inspired robotic systems, to describe how the CNS may



tune ballistic periodic movements to energy efficiency. We
have previously shown that under specific intrinsic damping
properties of muscles, tendons, and joints, the control of
fast periodic movements can be reduced to exciting the local
linear approximation of the non-linear mode of the system
(Lakatos and Albu-Schiffer, 2014a; Lakatos et al., 2014). The
corresponding algorithm linearly transforms sensory input
from the multi-dimensional joint space into a one-dimensional
controller space. The input entrains a driving unit, and the
driving motor output is reversely transformed into the joint
space. Multiplicative transformation weights are recurrently
adapted and a driving unit as simple as a single reflex interneuron
can adjust movements to unknown oscillatory patterns within
few step cycles (Lakatos et al., 2013a,b).

Our algorithm does not share the adverse characteristics with
the previous robotic control approaches mentioned above. It
requires no prior model but needs only sensory information
about joint deflections or forces. Additionally, the algorithm
performs only linear calculations. This agrees with the recent
findings from calculations performed by spinal interneurons
(Spanne et al,, 2014). In our previous work, we analytically
proved stability of controlled mechanical systems with a
single degree of freedom (Lakatos and Albu-Schiffer, 2014b).
We numerically demonstrated stability in simulations for a
controlled quadruped with 12 hinge joints (Lakatos and Albu-
Schiffer, 2014a) and in a real robotic platform with four joints
(Lakatos et al., 2013b).

For the remainder of this paper, we propose an exemplary
neural network implementation of this algorithm in Section 2.
By theoretical considerations and simulations of this network in
Sections 2.2 and 2.3, respectively, we justify that the algorithm
proposed by Lakatos et al. (2013b) may be implemented by the
CNS to control fast periodic movements that involve several
synchronously moving joints. At the input stage, we suggest
that proprioceptive input converges from all muscles involved
in a movement onto a single interneuron. Synaptic weights can
align with the appropriate linear transformation weights under
the influence of spike-timing-dependent plasticity (STDP). At
the output stage, we show that serotonergic amplification of
motoneuron output can produce the reverse transformation via
the described motor feedback of medullary raphe nuclei. Our
simulations substantiate that the proposed network can induce
highly energy-efficient, stable, periodic movements in mechanical
systems of different complexity. While we demonstrate in
Section 3.2.2 that our neural sub-networks are consistent
with previous experiments, we emphasize that our general
controller design may be implemented by alternative circuits.
Therefore, we discuss general mathematical requirements set
by the controller and provide experimentalists with a checklist
of necessary characteristics of a neural implementation in
Section 3.3.

Our proposed transformation provides a functional unit that
drives several joints with a sensory entrainment signal. The
reverse transformation applied to the driving signal leads to
correct intra-limb coordination. We argue in the discussion that
the driving unit itself can be a pool of reflex interneurons, a CPG
or a combination of both.

2. RESULTS

Following an overview on the controller introduced by Lakatos
et al. (2013b) and illustrated in Figure 1A (cf. Section 2.1.1),
we present models of two neural sub-networks that we propose
based on previous animal experiments (cf. Sections 2.2.1 and
2.2.2, Figure 1B). We theoretically demonstrate that the network
performs the proposed coordinate transformations.

In Section 2.3, we simulate our sub-networks in closed-
loop simulations to verify that they can reliably excite stable,
energy-efficient periodic movement. Detailed methodological
descriptions of the simulations can be found in Section 4.

2.1. Controller Theory

2.1.1. Basic Controller Concept

We consider fast periodic movements with high synchronicity
in the joint trajectories. The mathematical controller receives
sensory information describing the observed movement,
represented by the deflections ¢;(t) of joints i from their
respective zero position. Using the joint-specific weight vector
with entries w;, sensory signals are linearly combined to obtain a
single controller coordinate

0.(t) = wl (1) (t). (1)

All motor units receive the same timing signal f,(¢) that initiates
force production when ¢, crosses a threshold,

£ = {Ef oD = ®)

0 otherwise,

where ¢; and c, are positive constants. Equation (2) functionally
describes both the timing and driving unit as illustrated in
Figure 1B. It is transformed back into a change of force, fi(t),
in the individual joints i by multiplication with the same weight
vector w,

) = wt)f(0). 3)

Exerting these forces on the joints induces stable energy-efficient
movements due to correct timing and relative force amplitude
(Lakatos et al., 2013b,a).

2.1.2. Transformation Weights

In this study, we focus on the adaptation of the weight vector w.
It is recursively updated and supposed to converge toward the
dominant principal component of the data covariance matrix of
the movement, which we denote the principal oscillation mode
of the system. This can be achieved using

d
w0 =y 0p)] (9() — W (e@Iw®). (@

where y <1 (Oja, 1992). The formula keeps weights bounded and
generally increases the relative magnitude of weights for joints
that are heavily involved in a movement.

It is assume that neuroscientific quantities representing
weights w; and sensory input ¢; are positive. We prove in
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FIGURE 1 | (A) In the mathematical controller design as proposed by Lakatos et al. (2013b), sensory input from each joint / is transformed into a one-dimensional
coordinate space. For this purpose, the sensory inputs are multiplied by weights w;. The input entrains a thresholding bang-bang unit, which produces a motor signal.
The driving signal is transformed back into the original joint space via the same respective weights. The output transformation accomplishes correct relative force
weighting of the individual joints (Figure based on Lakatos and Albu-Schéffer, 2014a). (B) In our hypothetical neural controller implementation, sensory input from the
joints also converges. The synaptic weights wsrpp ; change according to spike-timing-dependent plasticity. We emphasize that the bang-bang controller can be
separated into two functionally distinct unit: A timing unit entrains a driving unit, which sends motor signals to muscles innervating all joints involved in a given periodic
movement. While functionally distinct, these units do not have to be spatially separated in general. In our model, a single pool of reflex interneurons represents both
units and outputs correctly timed motor signals. A parallel, joint-specific, sensory feedback pathway via raphe nuclei releases serotonin into motorpools. This amplifies
the common motor output by wyy, ; @nd increases the relative strength of muscles that are more involved in the movement.

. Motoneurons - Raphe Neurons
Entrainment Signal - —: Neuromodulation

the Presentation 1 that under this assumption the simplified
formula

L 1) = cuplt) = ——wlt). 5)
dt Teff

where ¢, and .t denote arbitrary positive constants, aligns

weights w with the result of Equation (4). Using either learning

rule, the system will be excited along the principal oscillation

mode of the observed movement.

2.2. Neural Implementation of Coordinate

Transformations

2.2.1. Input Transformation: Plasticity

For the input transformation, we suggest a simple neural timing
network, where proprioceptive input v, ; from all synchronously
acting muscles converges on a single postsynaptic timing neuron
via synapses with weight wstpp,; (cf. timing unit in Figure 1B).
This single neuron could in nature correspond to a pool of
postsynaptic neurons. Our network is based on the findings from
previous experiments, which have shown that proprioceptors
innervating single muscles involved in a periodic movement can
adjust the timing of the motor signal that drives all muscles
(Whelan et al., 1995a). Under the approximation of linear input
summation, the firing rate vpos of the postsynaptic neuron
amounts to

Vpost(t) = Werpp(£)ve (D). (6)

The efficacy of individual muscles to change the timing was
found to be subject to plasticity (Whelan et al., 1995b). Assuming
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that the weights are subject to Hebbian plasticity combined with
synaptic scaling, Oja (1982) demonstrated that the weight change
of our network can be described by

d
3 WsToR(t) = YWl pp (B, (1))

x (o) = WErpp(Ov, OwsoR(®) . (7)

In case that vy; o ¢;, Ojas rule equals Equation (4), and
our neural network would transform the input signals from
the multi-dimensional joint space into the controller space, i.e.,
would implement Equation (1).

STDP extends the idea of Hebbian plasticity. It considers both
the case of a causally related and unrelated firing of the pre-
and postsynaptic neurons. In later simulations, we numerically
address the question if also biologically more realistic STDP rules
extract the dominant principal component of the motion.

2.2.2. Output Transformation: Neuromodulation
For the output transformation, we model a motor feedback loop
via the raphe nucleus medianus, obscurus and pallidus, which
release serotonin (5-HT) into the spinal cord. The released 5-
HT leads to metabotropic enhancement of motoneuron output
(Heckman et al., 2008; Perrier et al., 2013). The feedback loop
is based on the fact that the same nuclei receive proprioceptive
information and quickly increase their firing rates with sensory
input (Springfield and Moolenaar, 1983; Jacobs et al., 2002).

We assume that for each joint i involved in the periodic
movement there is a group of serotonergic medullary neurons



that receives proprioceptive input v, ; via proprioceptors from a
joint and project back to the motoneurons innervating this joint
exclusively. Their firing rate is thus v, ; = vy, ; (cf. raphe neurons
in Figure 1B).

The concentration of 5-HT in the extracellular space, denoted
[5-HT], increases proportionally to the firing rate of the releasing
raphe neurons, ve, (Hentall et al., 2006; Best et al, 2010).
Depletion of 5-HT can occur by reuptake into the cytosol of
the cell by the serotonin transporter (SERT; denoted by Vsgrr),
due to catabolism mainly by monoamine oxidase and aldehyde
dehydrogenase (denoted by Vu), or by removal due to glia or
diffusion (denoted by Viep,) (Best et al., 2010). The rate of change
thus amounts to

d[5-HT]

dr = CserVser — VSERT — Veat — Viem, (8)

where cger is a constant.

Diffusion of 5-HT can be neglected in the spinal cord
(Brumley et al, 2007). The remaining mechanisms of
disappearance of 5-HT follow Michaelis-Menten kinetics,

Vx
Vo= g ©)
o 1
Vinax :
~ E[S—HT] if [5-HT] < Ky, (10)
where vy, denotes the maximal rate of disappearance and kj, the

respective Michaelis-constant of mechanism x (Best et al., 2010).
The Michaelis constant for depletion due to reuptake by SERTs
ranges between 170 and 410nM (Verleysdonk et al., 2004; Best
etal., 2010), is larger than 94,000nM for catabolism (Molodtsova,
1983; Best et al., 2010), and around 400nM for glia cells (Katz and
Kimelberg, 1985).

After high-frequency stimulation of raphe nuclei in vivo,
[5-HT] < k},, in the spinal cord (Hentall et al., 2006). Therefore,
the approximation in Equation (10) is valid and Equation (8)
reduces to

d[5-HT) WERT e
—— 7 ™ CserVser — + +—)[5-HT] (11)
dr KSERT © fecat © ferem
1
= CserVser — — [5-HT]. (12)
Teff
Extracellular ~serotonin concentration in a motorpool

monotonically and linearly increases the slope of the input-
output function of the motoneurons (Heckman et al., 2003).
Therefore, we can define multiplicative neuromodulatory
weights that describe the amplification of ionotropic input as

wam,i = enm[5-HT]; (13)
Equation (12) can thus be reformulated to
dwam,i . 1
dr = CserVg,i — %WNM,L (14)

Since this is equivalent to Equation (5), our network will lead to
an output transformation equivalent to Equation (3).

We suggest that both neural sub-systems finally converge
on motorpools. The ionotropic input represented by vpos is
proportionally transformed into a motor signal by multiplication
with a constant my,

fz(t) = mfvpost(t) (15)
and the motoneurons exert a force (sliding joint) or torque
(rotatory joint) on the joints i they innervate of

Jil®) = wi,i(0)fz(0). (16)
2.3. Simulations
We test the neural implementation of our algorithm using three
different simulations. The first one is a simple feed-forward
implementation to show that the sub-networks are able to extract
the dominant mode from a large variety of sensory input. In
the second closed-loop implementation, the neural network
receives sensory input from and control the motor output to a
linear mechanical system with known resonance behavior. This
mechanical system is finally replaced by a more realistic system
approximating a hopping leg. The feedback systems show that the
neural network is able to induce energy-efficient movements in
biomechanical systems with multiple joints and realistic ground
contact situations.

2.3.1. Open-Loop Implementation

The open-loop feed-forward implementation is comprised of
two sensory neurons which are connected to a postysnaptic
timing neuron and to the parallel serotonergic feedback system
(cf. Figure2). Each sensory neuron represents the pool of
proprioceptive neurons responsible for one joint i. The individual
neurons fire according to Poisson statistics with mean firing rates
vy,i which oscillate in phase with different amplitudes a; (cf.
Figure 3A). To test if the system is robust against disturbances,
we add Gaussian white noise n(o) with standard deviation o =
0.1 to the sensory input. An additional sinusoidal contribution b
of Euclidean vector norm smaller than a simulates a secondary
eigenmode of the biomechanical system. The firing rates thus
amount to

(EZ;E;;) = 4OHZ[<Z;> sin(27rt) + bsin(8xt) + n(o)]. (17)

In the timing sub-network, the sensory neurons are directly
connected to a third Poisson-neuron that represents the timing
unit. This postsynaptic neuron fires with a rate of
Vpost(£) = Werpp(t)v (1) (18)
The synaptic weights are subject to an STDP rule that is based
on previous experiments (Pfister and Gerstner, 2006) which
considered the effect of spike triplets (e.g., two pre- and one
postsynaptic spike). We stabilize the weights using synaptic
scaling as homeostatic mechanism (cf. Section 4.2).
Each sensory neuron is connected to a corresponding raphe
neuron. Spikes of each raphe neuron increase the serotonin
concentration in a respective pool. The concentrations [5-HT];
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FIGURE 2 | In the first experiment, we verify the possibility to use STDP
and serotonin dynamics to obtain the dominant principle component
of input signals, by simulating two sensory Poisson neurons. Shown
here are their firing rates that evolve according to sinus functions v, 1 and vy, »
with different amplitude and underlying white noise (noise not illustrated in the
picture). The neurons drive a third Poisson neuron (center left). Synaptic
weights wgtpp ; are subject to STDP and their ratio is expected to converge
toward the amplitude ratio of the input sinus functions. Additionally, the input
neurons drive two raphe neurons (center right), which release serotonin into
separate pools. The serotonin concentration decreases according to
Michaelis-Menten dynamics. The ratio of serotonin concentrations is
proportional to the ratio of the neuromodulatory weights, w1 /Wnm, 2, and
is also expected to converge toward the amplitude ratio of the input signals.

in the two pools i decrease according to Michaelis-Menten
kinetics. Our derivation, which shows that serotonergic dynamics
can extract the dominant principle component, assumes
that [5-HT] < k, (cf. Equation 10). Therefore, simulations
implementing a small value for the Michaelis constant represent
the strongest validation of our derivation. We choose the smallest
Michaelis constant suggested by the literature mentioned in
Section 2.2.2: k;,, = 170nM.

The vector of input weights wsrpp and output weights
wnm should converge toward (al, a,)T. We simulate the neural
network with 19 different ratios 2 ! ranging between 0.05 and 0.95

and set ||a|| = 1. Both wyyr = enm([5-HT]1, [5-HT]»)T and
wsTpp are supposed to align with the eigenmode. This implies

w wsT w
NM.L-— ISIDRL — 41 We hence fit the converged ratio —~~tl
WNM,2 WSTDP,2 aZ WNM,2
WSTDP,1 ay
and %1 g, 2L
WSTDP,2 az
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Figures 3B-E illustrate the convergence of weights. The ratio
of input weights are best fit by a line described by

wstpP1 _ 41 +b, (19)
WSTDP,2 az

m = 0.952 = 0.005 (20)

b = 0.040 + 0.003 (21)

RZy; = 0.999. (22)

Ri 4 denotes the adjusted R?-value. We obtain similar findings for
the neuromodulatory weights,

L % b, (23)
WNM,2 a

m = 0.945 £ 0.033 (24)

b =0.015+0.019 (25)

RZy; = 0.979. (26)

To test the influence of the initial conditions, we run nine
additional trials with random initial synaptic weights and
serotonin concentrations. Averaging the parameters over all ten
trials yields

m = 0.979 £ 0.010 (27)
b =0.016 £ 0.002 (28)

for synaptic weights while we obtain for neuromodulatory
weights

m = 0.957 + 0.031 (29)
b = 0.005 % 0.023. (30)

Our theoretical considerations predict a slope of m = 1 and
an intercept of b = 0. The slope representing both synaptic
and neuromodulatory weights and the intercept of synaptic
weights deviate from the expectation values by several standard
deviations. The deviations are thus small, but significant. Under
the influence of white noise, Ojas rule, Equation (4), converges
toward the dominant principal component of input data (Oja,
1982), which is equivalent to the dominant eigenmode in a linear
system (Feeny and Kappagantu, 1998). Hence, the deviations
of the slope and intercept from their expectation values derive
on the one hand from the minor eigenmode and the Poisson
noise underlying the neural firing statistics, and on the other
hand from the deviations between calculations performed by the
implementation of STDP and Michaelis-Menten kinetics from
Oja’s rule.

To show robustness against sensory noise, we vary the
standard deviation of the Gaussian white noise in the sensory
input. We sweep through a range of o between 0.01 and 1.0.
Figures 3F-H illustrate the slope, y-intercept and adjusted R?
value for each noise level. We see that the linear approximation
remains valid for high noise levels, as represented by a Ri 4

close to unity at ¢ = 1. The slope and y-intercept increasingly
deviate from the expectation for higher noise levels. However, the
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FIGURE 3 | lllustrated here are the results of the feed-forward neural network. (A) The firing rate of the sensory input neurons from joint 1 and 2 for one
example run with an underlying eigenmode described by the ratio a4 /ao = 0.3. Both input and output weights are supposed to align with the dominant principal
component, i.e., eigenmode. (B) The evolution of the synaptic input weights under the influence of STDP for the two neuron pools. The expected ratio
wsTpp,1/WsTpP,2 = 0.3 and the converged synaptic strength corresponding to joint 2, wgrpp 2, determine the expectation value for wgpp 1. The expectation value
is indicated as dashed line. (C) Same illustration for the serotonin concentration, which corresponds to output weighting. (D) The ratio of plastic input weights linearly
increases with the expected ratio, i.e., a1 /a». (E) demonstrates the same behavior for the neuromodulatory output weights. Theoretically predicted is a line of unit
slope and zero y-intercept. (F,G) When the noise in the sensory input increases, the slope and intercept of the linear fit increasingly deviate from the expectation. (H)
Even for large noise levels, we find an adjusted R? value close to 1. This indicates that our linear fits, and hence the obtained values for the slope and y-intercept,

remain reasonable.

slope and intercept representing synaptic and neuromodulatory
weights deviate by less than 10% from the expected value for
noise levels 0 < 0.2 and 0 < 0.13, respectively. Since the
dominant eigenmode a is normalized, a value of o = 0.1 implies
that the firing frequency of any sensory or the postsynaptic
neuron is influenced by noise by more than 10% on average.
Thus, within a given time step, the probability that either an
occurring neural spike is due to noise or that a neural spike
is inhibited because of noise is higher than 10%. These results
suggest a strong robustness of neural calculations performed by
our network against noise.

2.3.2. Closed-Loop Implementation

In order to test the ability of our neural controller to drive a
mechanical system with multiple degrees of freedom, we simulate
the complete neural network in a closed-loop feedback system (cf.
Figure4) .

We implement the two neural sub-systems in parallel, each
receiving proprioceptive input. The deflection of each joint is
signaled by a pool of Poisson neurons firing with an average
rate proportional to the deflection. The sensory neurons are
connected to a pool of leaky integrate-and-fire (LIF) neurons.
Synaptic weights are subject to the same STDP rule as described
above. Since the instantaneous pool-averaged firing rate of
the LIF neurons, Dpost, serves as ionotropic input to the
motoneurons, the neuron pool functionally represents the timing
and the driving unit (cf. Figure 1B).

The sensory neurons of each individual joint are additionally
connected to a respective pool of serotonergic raphe nuclei.
The raphe nuclei are also composed of Poisson neurons. Every
spike of a raphe neuron releases 5-HT into the corresponding
motorpool. Within an individual motorpool, the release is
spatially uniform. Depletion takes place according to Michaelis-
Menten kinetics. Once again, we choose the smallest suggested
Michaelis constant. The resulting [5-HT] is here given in
units of mol/l= M. The motoneuron firing rate is amplified
proportionally to [5-HT] (Heckman et al., 2003).

We consider two mechanical systems; one is simple and
analytically solvable (cf. Figure 5A), the other more complex and
biologically realistic (cf. Figure 6A).

The first system consists of two masses, each representing one
joint, that are serially coupled by a spring. Each mass is connected
to muscles by further springs of equal stiffness. The system is
driven by forces f; of the muscles, which stretch and squeeze
the springs. As illustrated in Figure 5B, the system is analytically
known to follow the eigenmodes (1, nTt (phasic oscillation) and
(1, —=1)7 (anti-phasic oscillation).

Figures 5D,E shows that the weights of both joints converge
toward the same values. This corresponds to phasic resonance
movements of the two joints. Fitting exponential functions to
the ratio of “SP%L(s) and “MM.L(#) shows that the input and

WSTDP,2 WNM,2
output weights converge toward unity with exponential time
constants of tgrpp = 2.65 x 10%s and oy = 2.93s (cf.

Figures 5G,H). These time constants differ by three orders of

7
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FIGURE 5 | The neural network as described in Figure 4 is initially supposed to control a simple mechanical system. (A) Two masses m are connected by
springs of stiffness kg and k4 and driven by muscles that can stretch the springs. Zero positions are given by the equilibrium positions when no force is applied. The
deviations of the masses from their zero positions are used as joint deflections ¢;. The neural network as described in Figure 4 controls the muscles’ forces. (B) The
system has analytically known resonance modes of (1, 1)T and (-1, 1)T, i.e., the masses either oscillate in phase or anti-phasic. The task of our controller is to excite
the system along any of the two eigenmodes with corresponding respective eigenfrequency. The other eigenmode decays due to friction. The final movement is thus
resonant. (C) The deflection trajectories of both joints align and show phasic resonant movement after few seconds. (D) shows that the input weights, which are
subject to STDP, converge toward the same value within hours. They therefore also align with the phasic resonance mode (1, 1)7 of the mechanical system. (E) shows
that the 5-HT concentration within both motoneuron pools, and hence the output weights, converge toward the same value within seconds. (F) The alignment of the
trajectories is illustrated by the deflection ratio o /¢4 at peak positions of mass m4. Shown here is the time evolution of this ratio and an exponential fit. (G,H) The ratio
of the synaptic and neuromodulatory weights converge to unity with different time scales, as illustrated by respective exponential fits. (All results illustrate the
simulation with non-random initial weights).

magnitude and we refer to Section 3.1.1 for a discussion of the its eigenmodes, showing no obvious relationship in phase or
different time scales. As shown in Figure 5C, the resulting motion ~ amplitude between the two masses. The trajectories of the two
trajectory of the mechanical system starts as a superposition of =~ masses converge to synchronous resonant movements over time.
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the fluctuations. (All results illustrate the simulation with non-random initial weights).

A B (]
L —
-= 120 [ P2
20 100
() — __ &0
P1 T g =
0 % § 60
N 40
‘p \\ 20
2 »
S’ ) 1 2 48 49
Time|s]
D E oor S
! 0.06 —— -, ' g
’ ——[5-HT],) i 0.2 ! 185
__ o8 0.05 A '-% l
= S 004 - ' D o
g * 23. . o O | T 175
& - 0.03 G ' % D
0.4
8 T 002 T o X § 7
: \ | &
0.2 — Wstpp,1 0 o1 | g 165
— ’ -0.1 L S
o Wstpp,2 0 0 0 0.5 1 15 ~ 16
0 2000 4000 6000 8000 10000 0 10 20 30 40 50 Em 30 35 40 45 50
Timels] Time|s] Wo Timels]

FIGURE 6 | (A) In the final simulation, the neural network as described in Figure 4 is designed to control a more biologically realistic trunk model that has a jumping
leg with two joints influenced by gravity. The neural network gets sensory input about joint deflections and controls the torque within these joints. The jump height is
taken as indicator for energy efficiency. It is measured as height of the trunk relative to its position when both joints are fully extended. (B) The jump height of the leg
increases as a result of the weight adjustment by the neural network. (C) The joint deflections are linearly converted to firing rates of the sensory neurons and therefore
also represent the sensory input to the neural network. (D) The synaptic weights from proprioceptors innervating muscles of joint 1 and 2 to the pool of postsynaptic
LIF neuron converge on a time scale of hours. (E) Neuromodulatory weights are proportional to the serotonin concentration. They converge faster than the synaptic
weights, and the serotonergic concentration within the two motoneuron pools starts to fluctuate around its final value after seconds. (F) To find conditions for energy
efficiency of the controller numerically, we fix the Euclidean norm of the weight vectors describing the synaptic input and neuromodulatory output weights. We vary the
ratio w1 /wo both for input and output weights, run a separate simulation for each ratio and record the respective jump height. As illustrated, the jump height has a
maximum plateau for ratios between 0.4 and 0.75. This ratio is in agreement with the weight ratios obtained by STDP and serotonin dynamics. (G) Even after
convergence, the jump height, illustrated as maximum height above the ground here, shows fluctuations with time. We suggest that this is due to noise and the small
number of leaky integrate-and-fire neurons that is intrinsic to the controller network. Accordingly, increasing the network size from small to large significantly decreases

Fitting an exponential function to the ratio of joint deflections
%(t) at peaks of the first joint deflection, we find that this
synchronization takes place with a time constant 7yj = 6.24s
(cf. Figure 5F).

To test the dependence of our results on the initial conditions,
we randomly vary the initial synaptic weights and serotonin
concentrations in nine additional trials. As an average over all ten
trials, we find

w

ISTOPL _ 4 005 +0.011 (31)
WSTDP,2

w

INML 004 + 0.032. (32)
WNM,2

These values agree with our expectation of unit weight ratios.
The second mechanical system represents a vertically jumping
leg consisting of a trunk, a thigh, and a shank, which are
connected by rotatory hip and knee joints. When the leg touches
down, the joints are deflected, which leads to a stretching of the
elastic elements. This stretching triggers the firing of the sensory
neurons and activates the reflex arc. The respective torque f; is

exerted on the joint i according to Equation (16) and the leg
pushes off the ground.

Figures 6D,E demonstrate for one run that the input and
output weights converge on a time scale of seconds and hours,
respectively. A video illustrating this simulation can be found
in Video 1. Again, we perform nine additional runs to test for
stability against changes of the initial conditions. As an average
over all 10 simulations, we obtain

WSTDP.L _ 0,724 + 0.021 (33)
WSTDP,Z
w
INML _ 0,703 4 0.062. (34)
WNM,2

The jump height increases with time and reaches its maximum
within seconds (cf. Figures 6B,C). The increasing jump height
indicates that the movement is tuned to yield higher energy
efficiency. To validate that the network increases the energy
efficiency of the movement, we run the simulation with different
fixed input and output weights. In each trial, we set the norm of
the weight vectors equal to the converged norm as obtained in
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the trial illustrated in Figures 6B-E. We only vary the ratio of
the weights, i.e., the orientation of the weight vector. Figure 6F
illustrates that the final jump height has a maximum plateau for
weight ratios % between 0.4 and 0.75.

We analyze the alignment of our weights with the dominant
principal component of the movement. For this analysis, we
extract the dominant principal component a of the joint
trajectory @(t) for each of the ten runs. The average ratio amounts
to % = 0.767 £ 0.027. In comparison to the initial synaptic
weights, the converged synaptic weights are closer to the ratio of
the principal dominant component in 9 out of 10 trials. Assuming
that this alignment happens by chance, we would expect to
see alignment on average in 50% of the runs. This hypothesis
can be rejected by a probability p < 0.05. For the serotonin
concentration in the two motorpools, we find alignment in 10
out of 10 runs, indicating p < 0.001.

As shown in Figure 6B, the peak jump height does not
converge but shows fluctuations. Considering the average in
the window of 30-50 s of simulated time, the jump height
shows a standard deviation of 5.8mm. A possible reason for the
fluctuations is the intrinsic (Poisson) noise in the system and a
relatively small number of only six LIF controller neurons which
is chosen due to computational restrictions. To test the influence
of noise and the network size, we increase the number of sensory
input neurons by a factor of 3 and the number of LIF neurons by
a factor of 2. For reasons of comparison, we keep the strength
of the input to the LIF neurons as well as the motor signal
approximately equal. As a result, we decrease the initial synaptic
weights and the neuromodulatory amplification factor cxy by
the same respective factors. The standard deviation of the jump
height decreases to 2.7mm (cf. Figure 6G). The 76 measurement
points of jump height recorded for either network do not show
any outliers, are not significantly correlated with time, and do not
significantly deviate from a normal distribution. They therefore
fulfill the requirements to test for different standard deviations
using an F-test. The test shows that the standard deviation in the
jump height controlled by the large and small network deviate by
p < 0.001. Therefore, a larger network size and reduced sensory
noise decreases fluctuations in the joint trajectories.

3. DISCUSSION

In this study, we consider how the CNS may coordinate
fast periodic movements involving several joints. We propose
a simple algorithm for this task and confirm that a neural
implementation, which is consistent with previous experiments,
may explain the correct inter-joint coordination between joints
that act with high phase synchronicity as observed for explosive
movements. The controller excites the mechanical system along
the dominant local eigenmode by a coordinate transformation
of proprioceptive inputs from the joint space into a one-
dimensional controller space and an inverse transformation of
driving controller output. The eigenmode is recursively extracted
from the proprioceptive input describing the movement.

We demonstrate that this weighting can be performed by a
small network of sensory afferents that converge onto a common
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pool of spinal interneurons via plastic synapses. Similarly,
we reason that a motor feedback loop from proprioceptors
via medullary serotonergic neurons may approximate the
appropriate output weighting.

3.1. Advantages of the Controller Design
3.1.1. Stability and Energy Efficiency

Our controller design generates stable and energy-efficient
periodic movement. In previous research, we have demonstrated
that the basic controller design can induce stable movements
in robotic platforms (Lakatos et al., 2013b; Lakatos and Albu-
Schiffer, 2014a,b). In our simulations, the neural implementation
can also induce stable movements in two mechanical systems
of different complexity. The induced movement is stable over
hours for both the linear and the non-linear mechanical system,
as tested for a large range of initial conditions. Our results
emphasize that the two neural sub-networks reliably extract
the dominant principle component of sensory input signals
even in the presence of different disturbances. In particular,
we tested stability against noise and perturbations resulting
from excitation of a second eigenmode. The converged weights
did not fully align with the dominant principle components
since their calculations deviate from the mathematical controller
design due to different biological features. These firstly include
signal transduction durations as included by delays of sensory
signals in the network driving the mechanical leg (cf. Section
4.4.2). Second, the mathematical descriptions of STDP and
neuromdoulation are based on experimental measurements and
deviate strongly from Oja’s rule, which underlies the robotic
controller design. This deviation is increased by the fact that
the spiking of sensory and the postsynaptic neurons in the feed-
forward simulation bear Poisson noise. Third, the input-output
function of spiking LIF neurons deviate from the basic bang-
bang controller (defined by Equation 2) as described in the
discussion in Section 4.4.2. Another reason for the deviation in
the feed-forward simulation comes from the fact that we added a
secondary minor eigenmode to the sensory firing rates to test for
stability against disturbances. Despite these constraints, the feed-
forward simulations show that a strong alignment of weights with
the dominant principal component does take place. Extending
the sample size of simulations with different initial conditions,
levels of noise and disturbances would quantify more precisely
the level of alignment. But a value quantifying the alignment
of weights in a feed-forward simulation under a limited variety
of disturbances results only indirectly in a statement about the
ability of the neural network to control biomechanical systems,
which may show an arbitrary variation of disturbances, in
a feedback loop. Thus, a more precise quantification of the
alignment, i.e., more trials, would only yield little advantage.
In the feedback system where the neural network controls the
simple mechanical system, the weights seem to align even more
reliably with the theoretical expectation. Here, an increased
number of neurons decreases the relative influence of Poisson
noise in the sensory input. Additionally, the final movement can
be fully described by a single eigenmode of the system. Therefore,
the sensory signals are not disturbed by a secondary eigenmode
in the end of the simulation. With the biological constraints



still in place, these factors lead to a better agreement between
expectation and theory in the simple feedback simulation.

Tuning of the movements to increase energy efficiency by
our controller design is strongly linked to linearization of the
mechanical system. The dominant principle component of a
movement is equivalent to the eigenmode of a linear mechanical
system associated with the largest eigenvalue of the covariance
matrix (Feeny and Kappagantu, 1998), ie., the eigenmode
that best describes the observed movement trajectories. An
eigenmode that is e.g., only lightly damped and close to the
initial weights is likely to dominate the overall movement and
the controller will favor to excite this eigenmode over others. Our
controller hence aligns the transformation weights with one of
the eigenmodes, (1, 1)7 in our simulations, and thereby obtains
resonance tuning for systems such as our simple mechanical
model.

For non-linear systems such as our leg, this is not necessarily
the case. However, our controller design assumes that energy is
only inserted into the system by the bang-bang controller during
a relatively short period of the movement cycle. It is therefore
reasonable in practice to compute the control action based on
the linearization of the non-linear system at the current state.
Our simulation of the mechanical leg emphasizes this point.
The synaptic input and neuromodulatory output weights start
from random initial values in the range of 0.67-1.5 for relative

: WSTDP, 1 WNM, 1 : :
weights P and 0.1-10 for 2 respectively. The weight

ratio reliably converges toward a value of about 0.7. Figure 6F

illustrates the jump height as a function of the ratio —o1PPL —
WSTDP,2
WNM.1

rreveel shows that the value of 0.7 is clearly in the range
of ratios that maximize the jump height. In Section 4.7.3, we
explain that this finding implies tuning to energy efficiency. These
results suggest our controller design and our neural models in
particular as a candidate to explain how the CNS may excite stable
and energy-efficient fast periodic movements. We are currently
conducting further testing to analyze in detail the conditions that
allow our controller to increase energy efficiency.

Our neural sub-networks show that the control algorithm
may be implemented by two spatially separated units. One
unit consists of the ionotropic sensory neurons and spinal
interneurons and acts at the sensory input level of the spinal
cord. A second unit performs individual amplification of the
motor signal for each joint. We consider the role of each unit
individually.

The output amplification, i.e., the second unit, is necessary
for energy-efficient control. If the two masses of our linear
mechanical system were excited with forces of different
amplitude, the mass trajectories would never converge to
resonant movement. This agrees with the fact that the output
weights and joint trajectories in our feedback simulations
converge on a similar time scale.

The weights in the input network in contrast converge on
a slower time scale of hours. They can therefore not react to
quick changes of the environment, but to slow biomechanical
changes. We intentionally set this slow time scale in agreement
with experiments on STDP in vivo (e.g., Nishimura et al., 2013;
cf. Section 4.2). The discrepancy between this time scale and the

fast convergence of joint trajectories as found in our simulations
can be explained by the mentioned high synchronicity of joint
motions in the considered fast periodic movements. The input
weighting determines how strongly sensory input from each joint
participates in the entrainment of motor output. If all joints
would move in phase, the motor output could be entrained to
an arbitrary linear combination of the sensory input. Therefore,
the input weighting is not strictly necessary for energy-optimal
tuning. In contrast to an approach where motor output is
entrained to the signal of only a single nerve, our input network
would have three features better suited for animals. First, the
motion of joints in biomechanical systems will not be exactly
in phase. In this case, our controller gives higher priority to the
timing of muscles that are more important. Second, our network
gives higher efficacy to nerve fibers that fire more strongly. Under
the influence of additive noise, higher activity is connected to a
better signal to noise ratio. Thus, entrainment is mainly affected
by nerves that show the highest signal to noise ratio. Third,
considering all sensory inputs reduces the risk to failure, e.g.,
when individual nerve fibers are damaged.

To summarize, output weighting by the CNS is required
for energy-optimized movement. The fast time scale of
neuromodulation may thus allow animals to quickly adjust their
movements to changes in the environment. In contrast, the CNS
must not necessarily implement the input stage of our controller.
However, since the input transformation is advantageous, it is
plausible that the neural timing network that we propose may
adjust weighting on a longer time scale to compensate for slow
mechanical changes.

3.1.2. Dimensionality Reduction
The design of our proposed neural network implies characteristic
features of the functional driving unit of considered movements
(cf. Figure 1B). In our simulations, the pool of timing neurons
functionally represents also the driving unit and form a reflex arc.
The driving unit is effectively one dimensional. It receives
input from all joints and sends the same motor signal
to all motorpools. This single signal is weighted by the
neuromodulatory weights to project the one dimensional
controller signal back into joint space. At the stage of the timing
unit, the input and output weights have thus transformed the
control of the mechanical systems to a one-dimensional problem.
This is obvious for the control of the simple mechanical
system, which only comprises a single reflex interneuron to create
the motor signal to all joints. However, the neural controller of
the mechanical leg has six timing neurons. Nonetheless, they act
as a single functional unit. The reason is that each timing neuron
receives input from a large pool of sensory neurons from each
joint. Each sensory neuron has the same probability to connect to
any of the six timing neurons, and the pools of sensory neurons
projecting to the individual timing neurons largely overlap. The
motor signal is furthermore averaged over all six timing neurons,
and the same signal is transferred to both motorpools, where it
is amplified by neuromodulation. Therefore, the control is still
transformed to a functionally one-dimensional problem despite
the existence of the six timing neurons. There are three reasons
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why we decided for a neuron pool instead of a single timing
neuron: First, it makes the model more realistic. Second, it
reduces the influence that Poisson noise in the sensory neurons
has on synaptic weights. Third, it smooths the output signal of
the pool of LIF neurons.

3.1.3. Interplay of Reflexes and CPGs

Although not considered in our simulations, the timing and
driving unit may be spatially separated. The driving unit must
produce rhythmic output that is phase-coupled to the output
of the timing unit. For example, Xiong et al. (2015) and Buchli
and Ijspeert (2008) proposed CPG models that fulfill a task
similar to our driving unit. It is alternatively possible that the
one-dimensional task is achieved by a parallel combination of a
CPG and reflex arcs that are both entrained by the timing signal
and converge onto or prior to the motoneurons. The CNS may
tune the relative contribution of our proposed reflex arc and a
parallel CPG according to a secondary task. For example, in the
beginning of a periodic movement, the reflex arc may be more
active in order to react to unforeseen perturbations. When the
periodic movement remains unperturbed for a longer period of
time, the contribution of the CPG may increase. The serotonergic
feedback network acts on the motorneurons and could thus
adjust the relative strength of the motor signal without affecting
the driving unit itself.

3.2. Biological Considerations

3.2.1. From Joint to Muscular Level

Our neural controller design acts on a joint level due to its
origin in robotics control theory. In animals, proprioceptive
input originates from individual muscles, and the motor signal
also exerts force on a muscular level. We assume that in the
CNS the neural implementation of our controller would adjust
weights of individual muscles and not joints. If two muscles of
the control loop need to equally assist in a given movement to
tune it to yield high energy efficiency, e.g., because the joints
that they actuate are equally important for a given movement,
they would be assigned similar weights. Antagonistic muscles
would be assigned weights of opposite sign. In our simulations,
weights are adjusted according to sensory signals representing
joint deflections. Corresponding signals on a muscular level,
which would represent muscle length, may originate in type II
nerve fibers.

3.2.2. Model Validity
Although the CNS may use different mechanisms for the
implementation of our proposed control algorithm, our neural
models are based on substantiated experimental observations.
Our sub-network for input weighting is based on the finding
that proprioceptive nerve fibers from leg muscles converge in
the spinal cord (Jankowska, 1992), and that the stimulation of
individual fibers in decerebrate cats can change the timing of all
muscles involved in a movement (Whelan et al., 1995a; Hiebert
et al., 1996; Rossignol et al., 2006). Circuits underlying this
behavior seem to reside fully in the spinal cord (Conway et al.,
1987; Hiebert et al., 1996). The efficacy of fibers from individual
muscles to cause entrainment undergoes use-dependent plastic
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changes. The efficacy of the fibers positively corresponds to the
level of their participation in the entrainment (Whelan et al,
1995b). This agrees with Oja’s rule, which underlies our controller
design. We suggest to link these findings with STDP, which
has been reported in the spinal cord of animals at various
ages (Kim et al., 2003; Schouenborg, 2004; Nishimura et al,,
2013).

Our hypothesis about the serotonergic sub-network
performing output weighting is comprised of a motor feedback
loop via the raphe obscurus, pallidus and potentially medianus.
We propose this feedback loop in Section 1 based on a large
range of experimental evidence (Veasey et al., 1995; Bennett
et al., 1998; Hultborn, 1999; Jacobs et al., 2002; Heckman et al.,
2008; p. 46f). Using theoretical considerations, we demonstrate
that serotonin dynamics can be approximated by Equation
(5) and show that this equation is equivalent to Ojas rule
under physiologically reasonable conditions. Therefore, it is
plausible that 5-HT dynamics extract the dominant principle
component of sensory input onto serotonergic neurons. Our
simulations emphasize that 5-HT produces enhancement of the
motoneuron output along the dominant principal component
of the movement. In agreement with our simulation results,
the time scale of motoneuron excitability following raphe
stimulation is of the order of several seconds (Perrier and
Delgado-Lezama, 2005).

The precision of sensory input to the raphe nuclei and
serotonergic output onto motoneurons is a matter of current
debates (Hyngstrom et al., 2007; Heckman et al., 2008; Johnson
and Heckman, 2014). Our proposed serotonergic network would
require the topography of the feedback arc to be at least joint-
specific. This is reasonable for somatosensory input to the
raphe nuclei obscurus, pallidus and medianus, since it has a
delay of about 20 ms (Springfield and Moolenaar, 1983). Such a
short delay favors a neural pathway with few synapses, maybe
bypassing the cerebellum as has previously been described for
somatosensory input to other brain stem nuclei (Landgren and
Silfvenius, 1971; Johansson and Silfvenius, 1977). There are
different indications for topography in spinal projections of the
raphe nucleus (Skagerberg and Bjorklund, 1985; Bacon et al,
1990; Cope, 2001; Brumley et al., 2007; Perrier et al., 2013;
p- 53). Sufficient topographic precision is plausible; whereas other
raphe nuclei project to areas throughout the whole brain and
release serotonin in a paracrine manner, projections from the
considered raphe nuclei project primarily to the spinal cord
(Jacobs et al., 2002; Nieuwenhuys et al., 2007, p. 896) and form
well-defined synaptic connections on motoneurons (Perrier et al.,
2013).

Furthermore, experiments on the level of neural networks
agree with our hypothesis for the functional consequence of
serotonergic modulation of motoneuron excitability. Cats show
walking patterns which lack refinement after their spinal cord
is transected, but not if only influence from the cerebral cortex
is cut off (MacKay-Lyons, 2002). The lack of cortical influence
in humans was shown for reflex modulation during explosive
movements, i.e., those that benefit from the elastic dynamics,
in contrast to precision tasks (Shemmell et al., 2009). Our
proposed algorithm observes arbitrary movements and tunes



inter-muscular coordination accordingly. In Section 3.2.1, we
suggest that the PCA algorithm of our basic controller principle
would assign weights of opposite sign to antagonistic muscles.
The antagonistic muscles would be excited with a phase shift
of 180°. In biological terms, this means that the motor signal
of these two muscles (measured by EMG) would become anti-
correlated over time. Our hypothesis suggests that blockade
of 5-HT, receptors, which are assumed to be responsible
for enhanced motoneuron excitability upon 5-HT application
(Stawinska et al., 2014), will disrupt this tuning. Pearlstein et al.
(2005) observed exactly this behavior in rats when measuring
the ventral root activity of antagonistic muscles acting on the
same limb. Upon addition of a 5-HT, antagonist, the cyclic
movement continued while the correlation coefficient of motor
signals in the ventral roots of antagonistic muscles changed
highly significantly from a negative to a positive value (Pearlstein
et al,, 2005, Figure 5).

3.2.3. Movement Initiation

Since our controller design represents a reflex arc, it can only
shape an ongoing but not initiate a new periodic movement.
In our simulations, the mechanical systems move because they
start from an imbalanced initial position. In nature, the CNS
must initiate the movement with an intrinsically produced motor
signal that is sent to all motor neurons. In our simulations, the
relative strength of the first motor signals produced by the reflex
arc are randomly chosen. Therefore, a motor signal that initiates
the periodic movement does not need to be specifically tuned,
either. It is sufficient to send an appropriately strong motor signal
to all joints involved in the movement. This motor signal may
originate in cortical areas. A CPG that may functionally replace
or support the reflex interneurons at intermediate spinal levels,
as proposed in Section 3.1.3, is an alternative explanation for
movement initiation.

3.3. Implications for Research

Our proposed neural sub-networks link different experimental
findings into a coherent framework. Their validation would
require to show that the repeated passive movement of a single
joint increases the motoneuron excitability of corresponding
muscles exclusively. The change in excitability must be due to
5-HT.

Our simulation results show that the presented concept of an
adaptive coordinate transformation between joint and controller
space is a promising hypothesis for neural calculations. While our
sub-networks are plausible, we must emphasize that alternative
neural implementations of our algorithm may exist and we
encourage other ideas for neural interpretations. The controller
design provides experimenters with guidelines for a neural circuit
to search for. In the following, we provide a check list of
characteristics that circuits must provide in order to tune periodic
movements according to our algorithm. The circuits must

e adjust motor output for the whole limb during fast periodic
movements based on proprioceptive signals.

e scale the output of motor signals to individual motoneuron
pools. The relative strength of muscles must be amplified

when the joint they act on shows larger deflections during the
movement.

e average sensory input representing joint deflections on a time
scale of seconds. This time scale must be sufficiently fast to
react to environmental changes, but significantly longer than
the cycle duration of the movement to prevent substantial
variations during the cycle.

e include a function that keeps the strength amplification
bounded. In addition, the mechanism itself must not alter
relative amplifications between the muscles.

e not alter the frequency of the motor signal.

As discussed in Section 3.1.1, adjustment of the input
transformation is not strictly necessary, but advantageous
from viewpoint of convergence to energy-efficient fast periodic
movements. A circuit that implements the input transformation
must

e receive sensory information from several joints that converge
onto a single functional unit. This unit must influence muscles
in the whole limb.

e entrain the output frequency of this driving unit to
proprioceptive signals. Hereby, the relative entrainment
efficacy of a signal must be amplified when the corresponding
joint shows larger deflections during the movement.

e change the relative efficacy of a signal based on the sensory
information about the joint deflections as averaged on a time
scale of at least seconds. This lower boundary on the time scale
is in contrast e.g., to the typically short time scale of influences
by a single ionotropic input. It prevents substantial variations
of the weights during the movement cycle. As discussed in
Section 3.1.1, there is no strict upper boundary for this time
scale.

e include a mechanism that keeps the efficacy bounded, i.e.,
prevent runaway behavior. The mechanism must not alter the
relative efficacy between the muscles.

In contrast to these requirements on the sensory input and
motor output stage of the spinal cord, our algorithm and
the proposed neural implementations place minimal restriction
on circuits generating the ionotropic motor signal of a whole
limb. Our controller design provides a driving circuit with
an entrainment signal that is continuously optimized for local
eigenmodes of the controlled mechanical system under changing
environmental and biomechanical conditions. Similarly, it
achieves correct inter-joint coordination of the motor output.
Since the eigenmode is determined by the mechanical system,
our controller effectively adjusts movements to biomechanical
and environmental properties. As discussed in Section 3.1.3, our
proposed controller and network may thus effectively simplify
the dynamical interplay of CPGs and reflexes in explosive
periodic movements to a one-dimensional problem.

Our results emphasize the benefits of control strategies
for bio-mimicking robotic systems derived by engineering
considerations, which can be well verified experimentally.
We suggest that neuroscientific research can use these
strategies as source for promising hypothesis about neural
calculations.
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4. MATERIAL AND METHODS

We test our proposed neural implementation of the discussed
controller using three different systems of increasing complexity.
In the beginning, we model the neural network in a simple feed-
forward simulation to test its ability to extract the dominant
principal component of the movement. Using the feedback of
a simple, analytically solvable, mechanical system, we test the
network’s ability to induce stable energy-efficient movement.
Finally, we demonstrate that the neural network is able to control
a more realistic mechanical model of a leg with two joints that
provides sensory feedback.

4.1. Neuron Models
We model spiking neural networks, in which cells are represented
either by Poisson or leaky integrate-and-fire (LIF) neurons. In
every time step dt, the probability for a Poisson neuron to fire
is given by a Poisson distribution with mean v(t)dt, where v(t)
represents the instantaneous firing rate. The spike train of neuron
n is described by S,(t) = >_8(t — tﬁ), where t’; are the spiking
k

times and § denotes the delta distribution.

Where not otherwise stated, differential equations describing
LIF neurons are taken from Zenke et al. (2013). Constants that
have been changed in comparison to their paper are given in
Table 1. Each LIF neuron has an associated membrane voltage
U, which changes as

AU,
dt

T — (Urest _ Un) + gZXC(t)(UeXC _ Un)

+ g U™t — Uy, (35)
with membrane time scale 7" and membrane conductances g*.
As soon as the voltage crosses the threshold 9™, a spike is
triggered and U, is reset to U™". Our model deviates in the
form of the subsequent refractory period. Zenke et al. (2013)
implemented the refractory period by a time-dependent spiking

TABLE 1 | Parameters of the neuron models and the structure of the
neural network.

Feed-Forward Feedback

Simple Complex
Tthr 5ms 5ms 5ms
Nsens 1 290 130
Ninh 0 0 100
Ntim 0 1 6
Msens / 10 Hz m~1 9 Hz rad~!
Pcon 1 1 0.7
Wext / 0.1 0.1
Vext / 3 Hz 3 Hz
Tdel,STDP 0ms 0Oms 30 ms
Tdel,NM Oms 0oms 200 ms

The feedback model is subdivided according to the simple and complex mechanical
system that it controls. We state only those parameters that deviate from the original
implementation as described by Zenke et al. (2013).
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threshold following a neural spike. This implementation does not
consider the effect of channel inactivation on the time course
of the membrane voltage, and hence its primary function is to
delay the next spike. We implement a refractory period by fixing
the membrane voltage of the neuron to its resting level for a
time period typ,,. Our approach more closely models the absolute
refractory time. It introduces a delay of same time scale between
two spikes and therefore has the same functional consequence.
However, it saves computational power, since the membrane
and synaptic dynamics do not need to be updated during the
refractory period.

The synaptic conductances of neuron n are updated following
a spike of the upstream neurons m according to

1
a0 =3 (@™ O +gm0). (36)
where
d ampa ampa
g:;t = —gampa + ) WSTDP.mnSm (37)
T m
dgnmda gnmda gzmpa
n __é&n
dt =~ 7nmda + gnmda (38)

The weight of the synapse connecting neuron m to n is given
by wstpp,mn. The time evolution of conductances differentiates
between a component due to AMPA and NMDA to account
for different time constants of the corresponding channels. We
modified Equation (37) to align units.

4.2, Plasticity

We also adapt our plasticity model from Zenke et al. (2013), who
described a triplet-based STDP model based on experimental
observations performed by Pfister and Gerstner (2006) and
Sjostrom et al. (2001). Zenke et al. defined synaptic traces z3°V,
z,,and z,' of neuron n by

iz
S B S ().
T

dt (39)

with time constants 78°%, 7~
weights change according to

, and t7, respectively. Synaptic

7dwszl’tp’”’” = 0 (AT 2502 (= OSu(t) = A72 (05,0

+Awscal,nm(t)’ (40)
where € is a small time constant and Awgc,] nm @ homeostatic
weight change as described below. Zenke et al. introduced the
learning rate 7 as conversion factor between their plasticity model
and the true biological scale, which we set to unity to match
model and biological scale. They additionally scaled the rate of
weight change by the initial synaptic weights. Since we consider
this to be an arbitrary choice, we omit the factor. Additionally,
we decrease the amplitude of long term potentiation (LTP), AT,



and long term depression (LTD), A~, by two orders of magnitude
(cf. Table 2). Due to the high firing rates of our neural network,
we found a fast convergence of weights to their final values
within tens of seconds up to minutes. Such a fast convergence
would be advantageous for our consideration (cf. Section 3.1.1).
However, measurements by Nishimura et al. (2013) in behaving
monkeys suggest that STDP in vivo is more likely to act on a
time scale of hours, which we account for by the decrease in
amplitude. Weights in our model are altered following both pre-
and postsynaptic spikes and weights of sensory neurons from
joint i are initialized to wsTpp,in,0-

To introduce stability, we use synaptic scaling as homeostatic
mechanism as described by Zenke et al. (2013), who adapted it
from van Rossum et al. (2000). Scaling adjusts Equation (40) by

1 vy
Var — | 5~ s
TsVtar Viar

where 7, is a time constant, vy, the target firing rate, and v, the
average firing rate of the postsynaptic neuron # as represented by
the low-pass-filtered spike train to arrive at

AWscal,nm(t) = (41)

dv _
TrsT: = —Vy + Su(t).

(42)
4.3. Neuromodulation

The motoneuron pool innvervating joint i starts with a
serotonergic concentration of [5-HT];o. Upon spiking of
a raphe neuron, a fixed amount of 5-HT is released into
the corresponding motoneuron pool, which subsequently
diminishes according to Michaelis-Menten kinetics. The
resulting concentration in motoneuron pool i due to the
corresponding neurons 7 is described by

d[5-HT]; v
Tl = Cser an(t) - k&’
" oI T 1

(43)

as derived in Section 2.2.2. Since we use spike-based neural
networks, the firing rate in Equation (8) is replaced with the
spike train. The serotonin concentration increases proportionally

TABLE 2 | Parameters of the synaptic plasticity model.

Feed-Forward Feedback

Simple Complex
WSTDP,LO 0.5 0.7 1
WSTDP,Z,O 0.5 0.4 1
At 6.5d-5 6.5d-5 6.5d-5
A~ 1.1d-5 1.1d-5 1.1d-5
s 50s 50s 15,000 s
Trs 5s 5s 300 s
Vtar 8 Hz 30 Hz 15 Hz

The feedback model is subdivided according to the simple and complex mechanical
system that it controls. We state only those parameters that deviate from the original
implementation as described by Zenke et al. (2013).

to the firing rate. Hence, it can be approximated that each
spike releases the same quantity of serotonin. We choose vyax
according to Hentall et al. (2006) and k, as the smallest
value suggested by the literature (Molodtsova, 1983; Katz and
Kimelberg, 1985; Verleysdonk et al., 2004; Best et al., 2010). We
set cser appropriately to yield [5-HT] between 0.01 and 0.1uM
(Hentall et al., 2006) (cf. Table 3).

4.4. Neural Network

As mentioned, we test our neural network in three simulations.
The computational implementation of the neural network differs
for each. We use a simple computational neural model for the
feed-forward simulation. A more detailed second model is used
as controller for the two mechanical systems in the second and
third (feedback) simulations.

4.4.1. Simulation 1: Feed-Forward

The feed-forward network receives sensory input from two
sensory Poisson neurons. They fire with mean firing rates that
show a sinusoidal oscillation along a dominant eigenmode a plus
a small sinusoidal component from a minor eigenmode,

Vo1 (8) _ ar\ . 0.05) .
<v:2(t)> — 40 Hz[(a2> sin(2wt) + <0.05> sin(87t)
n(o = 0.1)
+ (n(a - 0.1))]'

The last term represents Gaussian noise with zero mean and
standard deviation o. Negative firing rates are considered as zero.
These presynaptic neurons are connected via plastic synapses to
a third postsynaptic Poisson neuron that fires with a rate of

(44)

Vpost = Y WSTDP,iVyi- (45)

1

The neuromodulator system consists of two serotonergic Poisson
neurons that fire according to Equation (44) and release 5-HT
into two separate motoneuron pools i.

4.4.2. Simulation 2 and 3: Feedback
The feedback neural network controlling the two mechanical
systems is illustrated in Figure 4. It receives input from #ngens

TABLE 3 | Parameters of the serotonergic dynamics model.

Feed-Forward Feedback
Simple Complex
[5-HT}4 o 17 nM 50 nM 18 nM
[5-HT]p o 17 nM 20 nM 6 nM
Cser 300 pM 40 pM 5pM
Vimax 011 0.11 0.1l
km 170 nM 170 nM 170 nM

The feedback model is subdivided according to the simple and complex mechanical
system that it controls.
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Poisson neurons per joint that fire with rates proportionally
related to the respective joint deflection ¢;,

msens(pi(t) if(p,'(t) >0

. (46)
0 otherwise

V(p,i(t) =

Sensory neurons from joint i are randomly connected with a
probability pcon to each of nyy LIF neurons via plastic synapses.
In the network controlling the complex mechanical system, the
information about spikes from the sensory neurons reaches the
LIF neurons with a delay of 74 stpp. We choose the delay in
agreement with experiments on reflex arcs in the human leg
(Friemert et al., 2005). Additionally, the LIF neurons receive
input from n;,, external inhibitory Poisson neurons firing with
a constant rate of vey. The external neurons allowed us to
quickly scale the resting excitability of LIF neurons. This scaling
was required due to the small number of neurons in the
network. The LIF neurons accumulate synaptic input and fire as
described in Section 4.1, which results in adaptation of the plastic
synapses as described in Section 4.2. The spike trains of the LIF
neurons are low-pass-filtered according to Equation (42) with
time constant 7y and averaged over the LIF neuron pool. This
instantaneous average firing rate o5t is proportionally converted
to a generalized muscle force,

fz(t) = mf‘_)post- (47)
In the mathematical controller algorithm, converged synaptic
input is transformed into an output motor signal by a step
function, Equation (2). The input-output function of the LIF
neurons is a smoothed approximation of this signal. The
neurons are silent for small synaptic input due to the firing
threshold and their firing rates saturate at high input due to
the refractory period. The saturation, together with velocity
dependent damping of the mechanical system as described below,
ensures mechanical stability since it prevents possible positive
feedback loops. For intermediate input strengths, the firing rates
increase with synaptic input. The low-pass-filter, Equation (42),
furthermore smooths the firing rate over time.

A number of ng, serotonergic Poisson neurons fire with a rate
that is linearly related to the joint coordinates,

bser. 1
Mger,1

bser + mgeri(t)  if @i(t) > —
Vser,i(t) =

(48)
0 otherwise
Resulting spikes are delayed by 74 v in the complex model.
Our proposed serotonergic motor feedback loop has not
been described previously and the signal delay is hence not
experimentally determined. It can be assumed that the function
of the network improves with shorter delays. As a safe estimation,
we choose a relatively long delay which is larger than the
measured delay between proprioceptive input and activity of
serotonergic neurons (Springfield and Moolenaar, 1983) by one
order of magnitude. Each spike increases [5-HT]; according to
Equation (43). The serotonin concentration in the motoneuron
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pool of the individual joints amplify the force/torque exerted on
this joint proportionally, i.e., increase it by weights

waa®Y _ . (1SHTh()

wNM,2(1) (5-HT]2(8) )
The chosen value for ey guarantees an amplification ranging
between 1 and 3 (Heckman et al., 2008).

4.5. Mechanical Models

We test our neural feedback controller on two mechanical
systems. The first consists of two masses m that represent the
joints and are connected by a spring of stiffness k; (cf. Figure 5A).
Both masses are connected to muscles via a spring kg. The
muscles exert forces on the masses according to

(49)

F(&) = wam(D)f(2). (50)
The deflections ¢ € R? of the masses represent the joint
coordinates and are measured relative to their resting positions
in the absence of any force. They follow

42 do d kotky ki 1

where dj is a damping constant. The solution for constant muscle
force is the sum of two sinusoidal oscillations with eigenvectors
(1, 1) and (—1, 1). Additionally, a small damping term causes
decay of minor eigenmodes. The mechanical parameters have
not been specifically tuned and can be found in Table 4. Zero
positions ¢ = 0 are defined as equilibrium positions. We excite
oscillations by initially deviating the system to @(t = 0s) =
(0m, 0.1m)T. This is a linear combination of the eigenmodes.
Hence, we initially excite both eigenmodes simultaneously.

The second mechanical system consists of a trunk of mass g
connected to one rod-like thigh of mass m; and length [ via a
rotatory hip joint (cf. Figure 6A). The shank of same mass and
length is connected to the thigh via a rotatory knee joint. The
joint angles define the coordinates ¢ € R? and are measured

TABLE 4 | Parameters of the mechanical models.

Simple Complex
T 100 ms 5ms
ms 10 mN Hz ™" 525 pN'm Hz~!
CNM 15/uM 65/uM
Mser 9Hzm™1 1 kHz rad—1
bser 900 mHz 0OHz
ko 8N m-1 0.75N'm rad™"
kq 15N m—1 0.75Nmrad~!
m 500 g mo 5009
do 300 MN s m™~" m+4 1009
do 11,250 uN m s rad~"
dy 11,250 uN m s rad ™"

Subdivided into the simple and complex model.



relative to a fully extended leg. The trunk is constrained to a
one-dimensional vertical jumping movement. We set its zero-
position & = 0 to its height when both hip and knee are fully
extended, i.e., ¢ = 0. Gravity pulls the system down. The joints
are each driven by one motor, which exerts force via a torsional
spring. These springs have a torsion coeflicient of kg and k; and
an angular damping coefficient of dy and d; for the hip and knee
joint, respectively. The equilibrium positions of the springs are
defined by joint angles of ¢, = (én’, %n)T. The values of these
parameters, as given in Table 4, are adjusted according to an
existing prototype of a legged robot at our institute. The muscles
exert forces on the joints by stretching the springs. The resulting
torque amounts to

d
fi) = (ﬁf) (mam(O£(0) — 9(6) + 0) - (jf) S, (2

After touch down, contact with the ground is modeled by
forces acting on the contact point of the foot via a compliant
ground model as described by Azad and Featherstone (2010) and
implemented in Spatial_v2 (Featherstone, 2012).

We define the generalized velocity v = (%h, %(p)T. Then, the
movement can be described by

d
M(g) v +plo. V) =f+) Julh @) Fe.  (53)
k

The inertia matrix is denoted by M € R3*3 and the Coriolis,
centrifugal and gravity forces are summarized by p. The ground
contact wrench Fj is mapped to the generalized forces by the
transposed Jacobian matrix Ji. To initiate the movement, we drop
the leg from h = Om, while the joints are at ¢,.

4.6. Parameters of the Numerical

Simulations

We simulate our network using Matlab and Simulink. Differential
equations are integrated using simple Euler integration with time
steps of dt = 1073 s in the feed-forward simulation and 10~ s
in the simulation comprising the simple mechanical model. To
speed up the complex model, we use d¢ = 10~* s only for the
plasticity model and the LIF neurons, 1072 s for the serotonergic
dynamics, and variable time steps for the mechanical model.

4.7. Analysis of Simulations

4.7.1. Simulation 1: Feed-Forward

We run the feed-forward model for ten different ratios % €
[0.05, 0.95]. Each run takes 60,000 s of simulated time. Synaptic
weights are initiated as described in Table 2 and recorded each
1s during the whole simulation, serotonin concentrations are
initiated as described in Table 3 and monitored in each time step
during the first 500 s. During the last 50 s of the recordings,
we average the ratio both of serotonergic amplification weights,

WNM, 1 . . WSTDP, 1 .
2 and of the synaptic weights, Wsiop2® for each ratio

Z—; separately. Standard deviations of these values represent
the fluctuation of weight ratios during the 50 s. We fit the

. % W . . .
converged ratios ;=% and [F0% vs. 2L using a weighted linear

WSTDP,2 az

least-square fit.

To verify robustness of our network against noise as stated
in Equation (44), we vary the standard deviation, o, in 10
logarithmically spaced steps between 1072 and 10°. The trial for
each noise level is analyzed as described in the last paragraph. We
plot the slope and intercept of the linear fit as a function of o.

In nine additional simulations with random initial weights,
we test the robustness against changes in the initial conditions.
Therefore, we allocate a random weight in the interval [0.1, 1.0]
to wstpp,1 and wnmM, 1 and another random weight to wstpp, 2 and
wNM,2 in each trial. We run the simulations as described above
and calculate a linear fit for each of these runs. The average and
standard deviation of the slope and intercept are derived over all
of these nine trials plus the initial simulation.

4.7.2. Simulation 2: Feedback, Simple Mechanical
Model

The simulation including the simple mechanical model runs
for 10,000 s of simulated time. Synaptic and neuromodulatory
weights are recorded each 0.1 s only, which is due to
computational restrictions. We average the weight ratios over
the last 50 s of simulated time. Their respective initial values are
stated in Tables 2, 3.

In nine additional trials, we verify the reliability of the results
against changing initial conditions. For this test, we choose
random initial concentrations [5-HT];o € [6nM, 60nM] and
random initial synaptic weights wstpp ;o € [0.8, 1.2] for each
run. We average the ratios of synaptic and neuromodulatory
weights over the last 50s of all ten trials.

4.7.3. Simulation 3: Feedback, Complex Mechanical
Model

We run the simulation of the neural feedback network that
controls the mechanical leg for 10,000s of simulated time.
Synaptic and neuromodulatory weights are recorded each 0.25 s.
Their respective initial values are given in Tables 2, 3. Joint
coordinates and the height of the leg are recorded for the
last 70,000 time steps and for all numerical time steps during
the first 50 s. Sampling of more data was not possible due to
memory restrictions. We average the weight ratios during the
last 50 s.

We would like to verify that the converged weight ratios
maximize the energy efficiency of the movement. Therefore, we
record the Euclidean vector norm of the converged synaptic and
neuromodulatory weight vector of the first trial. We subsequently
implement the other simulations with weight vectors that are
constant over time and share the vector norm with the converged

WSTDP. 1

network. We vary the ratio -220l = ZNML between 0.05 and
STDP,2 WNM,2

1.5 in steps of 0.03 and run each simulation for 20 s of simulated
time. In each trial, we average the jump height over the last 20
jumps.

The jump height as function of the weight ratio is taken
as a measure for the energy efficiency of the neural control.
At the peak of the jumping movement, the energy within the
system is given by the potential energy. Since most of the mass
of the system is confined to the trunk, the potential energy is
approximately linearly related to the jump height. In the original
bang-bang controller, switching of the bang-bang controller leads
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to a force f; = w;¢s in joint i (Equation 3). The energy inserted
into the system in each jump is thus given by

_lo(wi oW

We choose equal spring constants kg = k; for the joints. Hence,
the Euclidean vector norm of the weight vector determines the
energy inserted into the system. Since we fix the vector norm for
each trial, the energy inserted into the system is constant. We
define energy efficiency as energy within the system divided by
the energy that we insert. According to our argumentation, jump
height can thus be assumed to represent this quantity.

In addition, we once again perform nine trials with randomly
initialized weights. The range of initial weights is the same as for
the simple mechanical system described in the last section. We
average the weight ratio over the last 50 s of these nine trials plus
the trial described in the beginning of the present section.

To show if our neural network extracts the dominant principle
component of their sensory input, we use the same ten trials with
different initial conditions. As described above, we record the
joint coordinates for each time step during the first 50 s of the
runs. Using the Matlab-function pca, we extract the dominant
principle component of the joint coordinates for each trial.

In a final simulation, we elucidate how the network size
influences fluctuations in the jump height of the leg. We therefore
increase the number of sensory input neurons to the LIF neurons
by a factor of 3 and the number of LIF neurons by 2. We
decrease the initial synaptic weights and the amplification factor
of neuromodulation, cnMm, by the same respective factors and
run the simulation for 50 s. During the last 20 s, we calculate
the standard deviation of the jump height over all jumps as a
measure for the fluctuation level. Using a one-sided F-test, we
compare this value to the standard deviation obtained for the
initial simulation. The p-value indicates whether increasing the
network size decreases fluctuations in the jumping trajectories.
We use three approaches to test the assumptions underlying an
F-test: First, we visually inspect a plot of jump height vs. time
for obvious outliers for the small and large network individually.
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Second, we test for a significant correlation between jump height
and time. Finally, we test either sample for normality using a Lillie
test.
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Video 1 | An illustration of the controller behavior. We show here the
controlled movement of our complex mechanical system, i.e., a trunk with an
attached leg. An included graph shows how the serotonin concentration within the
motoneuron pools of muscles innervating joint 1 (hip) and 2 (knee) converge with
time. We created the animation using Showmotion, which is a part of Spatial_v2
Featherstone (2012).

Presentation 1 | Proof of the convergence of our simplified version of
Oja’s rule, Equation (5).
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P1 PROOF OF THE CONVERGENCE OF OUR SIMPLIFIED VERSION OF OJA’S
RULE

In the following, we want to show that the update rule, eq. (5) in the article,

d’w(t) 1
el = Cpp —
dt ® Teff

w,

leads to a weight vector that is aligned with the result of Oja’s rule, eq. (4) in the article, despite having
a different magnitude. We claim that this is true as long as the weights and sensory signals are positive.
We consider the case of two joints, a higher-dimensional consideration of Oja’s rule (but not its simplified
form) has been performed by Miller and MacKay (1994). The controller assumes that the dynamics of the
oscillating mechanical system can be linearized and described by a linear second order system (Lakatos
et al., 2013),

@+ By =0. (1)

Using orthogonal eigenmodes ay, its trajectories are given by

@(t) = agsin(wt + o) 2)
k

and the dominant principal component corresponds to the dominant eigenmode a; (Feeny and Kappagantu,
1998).

P1.1 Finding Fixed Points

We are only interested in the relative magnitude of weights corresponding to joints 7, 7 and hence define

wj

Wiy = w; 3)
i/ = % 4)
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to rearrange Oja’s rule, eq. (4) in the article, to

d
acili = Y(w; 501 + ©5)p; [‘Pi/j - wi/j} )

and the simplified update rule, eq. (5) in the article, to

d ©j
e ili = wa—j. 175 — wiy;] 6)

The relative magnitude of weights is a fixed point when %(wi /j) = 0. For ¢y, wj, wj, i, @; > 0, both
derivations imply the same fixed point

wi _ i

wi P

= const. @)

This term is constant when all summands except for one have decayed in eq. (2).
P1.2 Stability

In order to prove stability, we linearize eq. (5) and eq. (6) around the fixed points. For Oja’s rule we find

d ,d
dw; (pwirs) = veipi [igi = wigs] = 1(wiggpi + 05)¢; (8)
= =¥} +¢3) <. 9)
For the simplified rule we find
d d ;) o
—dwi/j (awi/j) = Cwpj [%‘/]’ - wz'/j] —dwi/]’ - wa—j (10)
1 2]
cwpj [@isj — wiy;] w5 Cw w; (11)
= —Cwﬁ, (12)
W

which is < 0 as long as weights and sensory signals are strictly positive. Therefore, both update rules
converge towards the same relative weights, 1.e. the weight vectors subject to either plasticity rule align.
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Monoamines are presumed to be diffuse metabotropic neuromodulators of the
topographically and temporally precise ionotropic circuitry which dominates CNS
functions. Their malfunction is strongly implicated in motor and cognitive disorders,
but their function in behavioral and cognitive processing is scarcely understood. In this
paper, the principles of such a monoaminergic function are conceptualized for locomotor
control. We find that the serotonergic system in the ventral spinal cord scales ionotropic
signals and shows topographic order that agrees with differential gain modulation of
ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models
of the world based on life-long learning, their differential scaling continuously adjusts
these models to changing mechanical contexts based on sensory input on a fast
time scale of a few 100 ms. The control theory of biomimetic robots demonstrates
that this precision scaling is an effective and resource-efficient solution to adapt the
activation of individual muscle groups during locomotion to changing conditions such
as ground compliance and carried load. Although it is not unconceivable that spinal
ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize
that this is a unique functionality of metabotropic effects since recent recordings in
sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other
CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main
functional principle for many monoaminergic projections throughout the CNS, implying
that the monoaminergic circuitry forms a network within the network composed of the
ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms
of psychopharmacological drugs that interfere with the monoaminergic systems.

Keywords: monoamine neurotransmitter disorders, motor control, motor learning, neuromodulation, principal
component analysis, raphe nuclei, serotonin, spinal cord

1. INTRODUCTION

Metabotropic neuromodulators are ubiquitous in the CNS. Together with acetylcholine (Picciotto
et al., 2012), the four monoamines serotonin (5-HT), dopamine, noradrenaline, and histamine
dominate neuromodulatory effects in the CNS (Cools et al., 2011; O’Donnell et al., 2012; Yu
et al., 2015). These molecules are strongly implicated in mood and affective state, while their
malfunction is tightly linked to cognitive disorders (Kurian et al., 2011; Howell and Cunningham,
2015; Ng et al,, 2015; Mather and Harley, 2016). A common view is that brain function emanates
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from signal processing of the ionotropic functional and
anatomical connectome of the brain, which occurs with
high topographic and temporal precision. In contrast to
ionotropic neurotransmission, neuromodulation produces no
direct excitatory or inhibitory effects mediated by the activation
of the fast-acting ionotropic glutamate or GABA receptors.
Instead, neuromodulation acts on G protein-coupled receptors
and thereby changes the surface expression or efficacy of
potassium, calcium, or sodium channels. This scales the general
excitability, or gain, of the neuron (Haas et al., 2008; Rosenbaum
et al., 2009; Beaulieu and Gainetdinov, 2011; Bargmann, 2012;
Picciotto et al., 2012; Perrier et al., 2013; Husch et al., 2015;
Perrier and Cotel, 2015). So far, monoamines are presumed to
provide a diffuse general modulation of large connectome circuits
(Fuxe et al., 2010). But knowledge of the specific functional
contributions of monoaminergic neuromodulators to neuronal
processing and the resulting integrative behavior is scarce.

In this paper, a novel functional principle is deduced
for monoamines as temporal- and subcircuit-precise gain
modulators. Whereas the ionotropic subcircuits can collectively
signal predictive models of the world based on life-long
learning, monoamines are shown to scale the influence of
functionally distinct neuronal subcircuits individually. Hereby,
their effects show just the right time constant to adjust the
models to quickly changing contexts. By this precision scaling,
monoamines provide an operation which may overcome
functional limitations of ionotropic networks that apply under
physiological conditions. The principle emerges from an analysis
of monoaminergic effects in the specific context of locomotion,
which integrates control theory of biomimetic robots, motor
control neuroscience, and neurobiological findings on
monoamine systems. Accordingly, serotonin must be assumed to
scale motorpools of an individual joint when it shows particularly
large movement, because this implies that the respective joint can
be moved with smaller metabolic requirements. This precision
scaling dramatically simplifies motor control adaptation
in the face of gradually changing mechanical conditions
which, for example, take place as one steps from a solid to
a soft ground or lifts a load. But the principle of precision
scaling is also tentatively applicable to general computational
interactions between neuronal populations throughout the
CNS and may thus support various high- and low-level
functions.

Here we focus on the spinal motor circuitry to deduce if the
CNS applies precision scaling. This focus has two reasons: First,
it is comparatively easy to interpret how information is encoded
and reconstruct how information is processed, because the spinal
circuitry is the final motor output stage and the entry stage
of low-level sensory feedback signals (Franklin et al., 2016). In
contrast, higher-level systems operate by using more abstracted
information that can be hard to interpret. Second, the control
of body movement is widely assumed to be a major, if not the
most important, factor for the evolution of the CNS (Wise and
Shadmehr, 2002; Babic et al., 2016). This implies that cognitive
levels evolved while being constrained by the spinal motor
output and sensory input circuitry. Motor control can therefore
be regarded as a basis to understand such higher integrative
circuits.
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In order to understand the spinal motor control, modern
robotics control theory, which has been developed for robots
with increasing functional similarity to biological locomotor
systems, offers multiple advantages: Robotic control theory can
provide comprehensive and well-tested analytical tools. If the
major constraints of the CNS are taken into account, it further
offers highly specific interpretational frames for understanding
observations of sensorimotor control in the CNS. It goes without
saying that early-stage testing of concepts for biological motor
control is easier in robots than in biological systems.

In the present paper, we suggest that the mode of operation of
various monoaminergic systems in the CNS is precision scaling,
i.e., a topographically and temporally specific gain control of local
neuronal operation. In the chain of argumentation that leads
up to this prediction, we start out by comparing the functional
operations within monoamine-driven metabotropic systems with
those observed in ionotropic circuitry. Accordingly, the spinal
ionotropic circuitry integrates descending motor commands and
sensory signals and linearly processes them into muscle signals.
By this function, it dominates the spinal generation of motor
patterns, which has further contributions from gap junctions
and diffuse metabotropic effects. Mathematically, the ionotropic
circuitry transforms between the different representations, or
the different “views,” of the world as they are encoded by
the individual processing stages (section 2). Nonlinear signal
processing is required to adjust these transformations to
changing contexts. Based on neurophysiological findings, these
non-linear adjustments are ideally solved by neuromodulatory
scaling of the ionotropic signals due to the properties of the
serotonergic system (section 3). The scaling effect renders the
metabotropic system functionally unique, given that ionotropic
effects proposed for non-linear signal processing in other
CNS areas are unlikely to apply to spinal circuitry conditions
in vivo according to recent experimental studies (section 4).
Subsequently, the spatial and temporal precision of the spinal
serotonergic system is evaluated to see if it may perform
tasks that cannot be obtained by ionotropic circuitry under
the influence of exclusively diffuse neuromodulation. Insights
from robotic control and motor neuroscience are combined to
identify such a task and deduce how focused serotonin must act,
both anatomically and temporally, in order to solve it (sections
5, 6). This functionally required precision is demonstrated to
coincide with the neuroscientifically observed topographic and
temporal precision of serotonergic effects in the spinal cord
(section 7). Monoamines must therefore be considered, at least
partly, subcircuit- and temporally-specific gain modulators of
ionotropic circuitry, motivating the term precision scaling. As will
be shown toward the end of this paper, precision scaling can
potentially apply to multiple levels of CNS function and may
explain the effects of psychopharmacological drugs that act on
monoamine systems in the brain (section 8).

2. THE SPINAL CORD AS TRANSFORMER
OF WORLD VIEWS

The function of the CNS emanates from the neurophysiological
nrocesses in the individual neurons and the bprecise network



of connections between them. In order to understand how
monoaminergic neuromodulatory influences neuronal circuitry,
it is important to first understand how functions arise in networks
of ionotropic circuitry.

2.1. Linear Signal Processing Transforms

How Spinal Neurons Encode the World

An individual neuron primarily works by integrating
information in the form of the electrical signals it receives
from other neurons by synaptic transmission. In response to
the summated effect of those inputs, it issues electrical signals
that reach other neurons. Hence, it can be said to process
information. In the spinal cord, recent electrophysiological
findings suggest that the neurons are hereby limited to linear
processing of information encoded by ionotropic signals: Spinal
interneurons which are subject to increasing single or multiple
synaptic inputs respond linearly under physiological conditions
in vivo (Prut and Perlmutter, 2003; Shalit et al., 2012; Spanne
et al., 2014; Zelenin et al.,, 2015). In particular, they are active
well before overt movement starts and do not saturate (Prut
and Perlmutter, 2003), implying that they are in their linear
regime during a movement. Investigations assign the same linear
response to spinal motorneurons in anesthetized animals and
in vitro (Powers and Binder, 1995, 2000; Hultborn et al., 2003;
Cushing et al., 2005; Hyngstrom et al., 2008).

As the CNS forwards information from one group of neurons
to another, it filters out irrelevant aspects, combines data of
different origin, and adjusts the way the information is encoded.
All CNS functions can be traced back to such basal neuronal
circuitry mechanisms. These basal mechanisms can be cascaded
and integrated to create interesting local functions. The local
functions can to a large extent be shaped by learning and can
be regarded as partial, often predictive, models of the world, e.g.,
describing how photoreceptors are distributed across the retina
or what motor signals must be elicited to perform a particular
task (Brown and Briine, 2012; Bhanpuri et al., 2013). What
model of the world a neuronal circuit contains is determined
by an associated coordinate space. For motor control, illustrative
examples of coordinate spaces are found in visual reaching tasks:
The target position is initially encoded as a pixelated image
mapped in a retinotopic reference frame (Heed et al., 2015). To
reach the target, the incoming visual signal requires neuronal
processing and merging with additional information represented
in non-retinotopic reference frames (cf. Figure 1). Processing
generates an appropriate movement intention and an according
signal in a musculotopic coordinate space at the level of the spinal
motorneurons (Graziano, 2006; Yanai et al., 2008). Describing
how a neuronal circuit encodes its associated coordinate space
requires knowledge of the set of qualitatively relevant categories
of encoded information. The categories may in principle be
directly linked to physical quantities (Franklin et al., 2016), such
as the activation of different muscles. But at integrative stages,
they may also be linked to more high-level quantities like the
social status and familiarity that an animal takes into account
before approaching a potential partner. They may even be linked
to highly abstract quantities with no direct counterpart in the

physical world. Given appropriate coordinates, it is convenient
to describe the information encoded in a group of neurons as a
vector,

X2, (1)

Each coordinate xj, x2, ... would in the mentioned examples
describe the motor signal driving a single muscle or a component
of a higher-level quantity encoded by the CNS. It can be
represented by the signal of individual, or groups of, neurons
(Cunningham and Yu, 2014).

Between coordinate spaces, linear neurons as found in
the spinal cord perform affine transformations. Affine
transformations, which are exemplified in Figurel, are
heavily used by engineers since they often approximate general
transformations involving arbitrary mathematical functions very
well for a limited range of input values around an operating
point (Cohen and Tan, 2012). In a network consisting of linear
neurons, each neuron j receives sensory inputs from presynaptic
neurons i, which is represented by a firing rate x; for rate-coding
neurons. The inputs are weighted by synaptic weights w;; and
subject to a neuron-specific firing threshold ¢;. In summary, the
output firing rate y; in neuron j can be described by the linear
function

yi(x,x2,...) = ZWU - xi — 0. (2)

1

Equation (2) can be represented in vector notation as

y(x) = Wyy - x — 0y, (3)
It defines the affine transformation between two coordinate
spaces in which the signal can be represented by coordinates x
and y, respectively.

A spinal ionotropic network consisting of linear neurons
is limited to implement an affine transformation which can
be described by Equation (3). Neither additional feedforward
layers, nor recurrent synaptic connections can change this
functional property. If the neuronal network is extended by
intercalating further layers of linear neurons between the input
and output layer, only the effective transformation weights Wyy
and threshold 6y of the transformation will change. As shown in
Figure 2A, the output firing rate will remain a linear function
of the network input. If the network is extended by recurrent
synaptic connections, it can memorize input and process time-
series of data. Thereby, its output may vary non-linearly with
time and, for example, converge to a steady state or oscillate
(Dayan and Abbott, 2001). But at each time step, the network
output y remains a linear function of its previous input x at
previous time steps, as illustrated in Figure 2B.

2.2. Non-linear Signal Processing Is
Required When the World Changes

Artificial neural networks have, with the enormous scientific
and economical success of deep learning in particular and
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FIGURE 1 | Two examples of affine transformations and their simplest neuronal circuitry connectivity solution. Each transformation is made from a coordinate space
represented by neuronal states (x4, xo) or x to a space represented by (v1, y»), respectively. For rate-coded models, these neuronal states would be equivalent to firing
rates of neurons or neuron pools. Sketches of neuronal networks show the simplest possible way by which the CNS might implement each transformation. As
illustrated for each panel, the networks in effect re-calculate individual signals encoded by the neuronal states into new individual neuronal states, where the
re-calculation is the specific transformation made and is illustrated by arrows in the leftmost graph. (A) A rotation is assumed to occur when neurons transform
retinotopic neuronal signals occurring at early visual processing stages to a head-centered representation at later stages (Heed et al., 2015). (B) Shown here is the
transformation underlying a motor synergy, i.e., a spinal circuit which emits common ionotropic signals to actuate muscles that the neuronal synergy models as
agonists (Santello et al., 2016). The low-dimensional synergy signal x is thereby transformed into the high-dimensional musculotopic space represented by
coordinates (y4, y»). Signals (Y4, Y»), such as sensory signals, can be transformed into this low-dimensional synergistic subspace by orthogonal projections.

of artificial intelligence in general, strongly facilitated the
view that also biological neuronal networks can approximate
general transformations which adjust the output of the
network to arbitrarily changing conditions (Chen et al., 2015).
In mathematical terms, they are said to perform universal
classification and function approximation. This view relies on
the model of neurons as non-linear integrators of incoming
signals (Cybenko, 1989; Hornik, 1991). While this contrasts the
observed linear interaction of ionotropic signals for the specific
example of the spinal circuitry, it must be assumed that also
the spinal cord needs mechanisms which non-linearly combine
external signals with the ionotropic inputs that the neuronal
network processes. This becomes particularly obvious under
quickly changing mechanical conditions of the environment
and the locomotor system. Hereby, the changing context often
requires that the CNS reacts differently to the same inputs.
The multiplicative transformation weights of Equation (2) must
therefore be context-dependent and change with a signal s which
encodes the external cue,

yj(xler’--ws):Zwij(s)'xl'—ej. (4)

This implies a non-linear integration of the signals s and x;. In
contrast, adding the signal s as an additional linear input, e.g., by
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a reflex loop that signals s and also converges onto the neurons
j, would only additively increase the output of the network. In
effect, it would only change its firing threshold 6;.

By adjusting individual transformation weights independently
from each other, the motor circuitry can gain a unique
functionality. Figure 3 illustrates this functionality based on
the transformation of context-dependent motor signals from
M1 onto the musculotopic motor output within spinal circuits.
Hereby, pools of M1 neurons typically elicit a common motor
command which is transformed into musculotopic signals as it
is transmitted to spinal motorneurons either directly or through
spinal interneurons (Yanai et al., 2008). The transformed motor
command activates the spinal motorneuron pools of several
muscles to produce a meaningful pattern of muscle contraction
(Graziano, 2006; Overduin et al., 2012; Gallego et al., 2017). In
this circuit, the transformation weights along the path between
M1 and the motorneuron pools will need to be scaled in a pool-
specific manner if a new mechanical condition necessitates that
the involved muscles change their force output relative to each
other. Similar examples for neuronal operations that require
changing transformation weights can be found in integrative
circuits such as the ventral intraparietal area. This area encodes
an abstract representation of vestibular self-motion signals that
is independent of head and eye position (Chen et al., 2013). To
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FIGURE 2 | lllustration demonstrating that a network of linear neurons is restricted to implement an affine coordinate transformation of the form y(x) = Wxyx — .

(A) This relationship is independent of the number of incorporated neuronal feedforward layers. Adding additional layers of neurons changes the input-independent
transformation weight W and the shift @ of the basis, but the mathematical form remains. (B) Neuronal networks with recurrent connections are subject to the same
limitation. To confirm this, it is advantageous to unfold the calculations performed by the recurrent network shown on the right hand side and deduce a hypothetical
feedforward network that computes the same output. When the recurrent network receives an input signal x released at tq, it will produce an output signal y like a
simple feedforward network at tg + 1, i.e., after a short unitary transduction delay. At the next computational step tq + 2, the output signal Y is determined by the input
signal X from time step ¢y 4 1 and the previous output signal y. The previous output signal is thereby feed back by recurrent synapses with weights Wyy. To model
this recurrent calculation, one may extend the hypothetical feedforward network by a further layer of linear neurons as shown on the left hand side. These neurons
receive the previous output y via synaptic weights Wyy. They also receive the further input signal X from time step tg + 1 from an additional pool of input neurons
which synapse via synaptic weights Wxy. Further calculation steps tg + 3,19 + 4, ..., t of the recurrent network can be modeled in the feedforward network by
iteratively adding layers with the same properties. Thus, the output y of the recurrent network after ¢ time steps is mathematically equivalent to the output produced by
a hypothetical feedforward network with t — 1 intermediate and one output layers. According to the argument in the beginning of this caption, this multi-layered
feedforward network implements an affine coordinate transformation. During each individual time step, also the recurrent network can thus only perform an affine

coordinate transformation on its input.

decouple vestibular signals from head and eye movement, the
transformation of vestibular signals onto intraparietal neurons
must be adjusted according to time-varying signals encoding
the motion (Salinas and Sejnowski, 2001). While the ionotropic
signal processing is shaped by synaptic plasticity, it is important
to notice that its non-linear adjustment during ongoing motor
control inherently differs from synaptic plasticity rules in two
ways. First, synaptic plasticity acts on a time scale of minutes to
hours in motor circuitry (Nishimura et al., 2013), which is too
slow for adjustments to changing mechanical contexts. Second,
synaptic plasticity is typically local (Gerstner, 2016), whereas the
external signal s modulates the transformation weights between
multiple pre- and postsynaptic neurons that encode input signals
x; but not the signal s itself. The spinal cord needs to implement
such a mechanism which non-linearly integrates signals in
order to adjust transformations between neuronal information

at different stages of processing, or abstraction, according to
changing context.

3. MONOAMINES SCALE SIGNALS IN
SPINAL MOTOR CIRCUITS

How would such a non-linear signal integration occur?
Functional and anatomical evidence suggests that, in contrast
to ionotropic receptors, metabotropic neuromodulation enables
non-linear signal integration within spinal motor circuits. A
serotonergic signal s is thereby a promising candidate for
adjusting the spinal signal processing in line with Equation (4),
as it can encode the changing context.

Serotonin (5-HT) released within the ventral spinal cord
increases the gain or response of both spinal motorneurons
(Hochman et al., 2001; Heckman et al., 2008) and ventral spinal
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FIGURE 3 | Cycling can illustrate why a hypothetical coordinate transformation requires topographically precise non-linear scaling under varying conditions. The pedal
forms a mechanical environment that constrains the movement and the muscular forces required to excite it in a particularly strict way. In the hypothetical neuronal
circuit, a group of neurons carries a motor signal x that triggers several groups of muscles. As the motor signal is forwarded to spinal interneurons and motorneurons,
it is transformed according to the transformation weights w;. The resulting musculotopic signals y; simultaneously actuate muscles involved in pushing the pedal, e.g.,
extensor muscles of the knee and ankle. Increasing the movement speed can be performed by an overall increase of the common motor signal. (A) When the person
sits on the saddle, both knee and ankle extensors need to be actuated simultaneously. The weights of the synapses transferring the hypothetical motor signal x to the
respective motorneuron pools are hereby chosen accordingly to achieve the required respective muscular signals. (B) When the mechanical properties of the
environment changes during an ongoing movement, e.g., because the subject stands up to accelerate, the same muscle groups need to alter their output during the
same phase of locomotion. In the standing position, knee actuation cannot exert force along the pedal trajectory. Thus, knee extensors should receive aimost no
muscle signal, while ankle extensors need to be activated more in order to keep up a given movement speed. Ankle and knee extensors thus need a scaling of different
polarity, as illustrated by the upwards and downwards arrow in the graph. Under changing mechanical conditions, all motorneuron pools can thus still be actuated by

the same abstract ionotropic motor signal from the hypothetical neuronal synergy, which just needs to be scaled differentially according to sensory information.

interneurons (Abbinanti and Harris-Warrick, 2012; Abbinanti
et al., 2012; Husch et al., 2015; Perrier and Cotel, 2015) to
ionotropic input, without affecting their baseline excitation.
This effect is functionally equivalent to an increase of the
transformation weights onto motorneurons. It results from
a stimulation of 5-HT, receptors, which triggers a range of
biochemical mechanisms as extensively reviewed previously
(Abbinanti and Harris-Warrick, 2012; Perrier et al., 2013).
Stimulating 5-HT, receptors by descending 5-HT is crucial in
particular for the generation of rhythmic movement in mammals,
such as whisking in rats (Hattox et al, 2003) and weight-
supported locomotion (Slawinska et al,, 2014). By activating
5-HT A receptors, the CNS can in turn divisively scale down the
transformation weights of ionotropic circuitry converging onto
motorneurons. The underlying decrease of motorneuronal gain
has been suggested to occur during muscle fatigue, when 5-HT
spills over its synaptic release site after prolonged release and
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diffuses to the axon initial segment (Cotel et al., 2013). Before
fatigue occurs, the CNS can scale up the firing rate of spinal
neurons monotonously and multiplicatively by a factor of up to
10 by increasing the concentrations of 5-HT (Heckman et al.,
2008).

In the ventral spinal cord, neuromodulatory effects are
dominated not only by 5-HT, but also by noradrenaline
(Heckman et al., 2008) and neuropeptides (Thorn Pérez et al.,
2015). Neuropeptides are co-released with monoamines and
partly trigger similar biomechanic mechanisms (Thorn Pérez
et al, 2015), but their predominant trophic effects are very
slow (Svensson et al., 2001). In contrast to noradrenaline, 5-HT
particularly stands out as candidate for multiplicative operations
governed by a mechanical context, as serotonergic neurons
receive proprioceptive information on a given movement and
implement a distinct motor feedback loop as illustrated in
Figure 4. About 90% of the 5-HT present within the spinal cord



Medulla

O Raphe Neuron
....... < Metabotropic Signal

——1—< Sensory Input
O - —da Motor Output

FIGURE 4 | The raphe nuclei obscurus and pallidus form a motor feedback loop. They receive proprioceptive signals and accordingly release serotonin into the
ventral spinal cord. The resulting higher serotonin concentration metabotropically increases the excitability of spinal motorneurons as well as associated interneurons
at the motor output stage. Collectively, these serotonergic raphe projections change the relative multiplicative weights wj, which describe how ionotropic signals are
transformed into musculotopic motor output. The serotonergic feedback loop acts in parallel to the ionotropic processing of sensory signals. lonotropic circuitry could
operate independently of the metabotropic weight adjustments at the motor output stage and could implement, for example, a low-dimensional control circuit as
illustrated here and in Figure 1B. Those projections of the raphe nuclei obscurus and pallidus which target interneurons within the low-dimensional circuit will scale
the overall spinal ionotropic motor signal without affecting the relative strength w; of the signals actuating different muscles. In this figure, the ionotropic circuit and
each motorneuron pool are represented by several neurons, which appear to be functionally redundant. However, neurons within a subcircuit may have dissimilar
connections that assign them to different subcircuits during other tasks. Figure modified, with permission, from Stratmann et al. (2016).

——4 lonotropic
Circuit Signal

lonotropic
Circuit

originates from the raphe nuclei (ElBasiouny et al., 2010). In the
ventral spinal cord, 5-HT originates primarily from the nucleus
raphe obscurus (NRO) and pallidus (NRP), which in turn project
almost exclusively to the ventral spinal motor circuitry (Martin
etal., 1978; Loewy, 1981; Nieuwenhuys et al., 2008; Watson et al.,
2012). These medullary nuclei receive proprioceptive inputs,
potentially including inputs from cutaneous mechanoreceptors,
and increase the firing rate of their serotonergic neurons
accordingly (Springfield and Moolenaar, 1983; Veasey et al.,
1995; Fornal et al., 1996). In agreement with the concept of a
motor feedback loop, ionotropic motor output is functionally
facilitated by 5-HT as an after-effect following strong muscle
contraction (Crone et al., 1988; Wei et al., 2014).

There is one pivotal caveat to the presented concept of
serotonin as the modulator of individual transformation weights
in the ionotropic processing of information: Monoamines are
typically considered to be slow and diffuse modulators of a
spatially and temporally precise ionotropic circuitry. In fact, the
ventral spinal serotonergic system will have a topographically
diffuse effect on motor output for the reason that it partly
projects to spinal interneurons, which often target several
groups of muscles simultaneously (Santello and Lang, 2015;
Pérez-Nombela et al., 2017; Takei et al, 2017). The diffuse
component will scale the overall Spinal ionotropic motor signal
without affecting the relative strength of signals actuating
different muscles. But as will be detailed below, recent work
suggests that the ventral spinal projections of the NRO and
NRP have also a topographically specific component which

performs precision scaling (Stratmann et al,, 2016). In the
following sections, the chain of argumentation will demonstrate
that previous findings on the described serotonergic motor
feedback loop are consistent with a role as a functionally specific
multiplicative operator. By this precision scaling, the raphe nuclei
accordingly overcome the limitations of ionotropic circuitry. The
arguments run along three lines: First, metabotropic systems
are shown to offer a unique functionality in the spinal cord,
since ionotropic mechanisms cannot implement non-linear
interaction of signals in this CNS region. Second, a fundamental
motor control task is considered to define what spatial and
temporal precision the serotonergic system needs in order to
offer a meaningful functionality that cannot be obtained by
diffuse neuromodulation. For this purpose, the particular affine
transformation involved in synergy control is chosen as the
system of study, as it is both likely implemented by spinal
ionotropic circuits and solves motor tasks that would benefit
from a subcircuit-specific gain-scaling mechanism. Third, the
functionally required spatial and temporal precision will be
compared with the experimentally observed precision of the
serotonergic feedback loop.

4. LIMITATIONS OF IONOTROPIC SIGNAL
INTERACTION IN VIVO

The adjustment of coordinate transformations to external signals
could theoretically be performed by a neuronal network using
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solely ionotropic synaptic currents. Based on neurophysiological
findings, several mechanisms have previously been proposed for
non-linear, particularly multiplicative, interactions of ionotropic
signals. They are typically linked to specific respective CNS
regions, have recently been reviewed in detail (Silver, 2010;
Carandini and Heeger, 2012) and are summarized in Table 1. As
mentioned before, the spinal interaction of ionotropic signals is
known to be highly linear. This can be attributed to the properties
of spinal neurons and signals, which make mechanisms suggested
for other CNS regions physically implausible and typically even
impossible.

Mechanisms of multiplicative signal interactions can be split
into two groups (Silver, 2010): Some mechanisms work in
neurons which show time-sparse encoding, i.e., which encode
data in the correlations of spikes. Other mechanisms apply
to neurons which show a rate-based encoding of information,
implying that the neurons process information by exploiting a
large range of firing rates.

For neuronal networks working in temporally sparse coding
regimes with low firing rates, two main mechanisms for non-
linear interaction have been proposed. The first is based on
changing levels of synaptic noise emerging from balanced
excitatory and inhibitory input (Berg et al., 2007), which can
change the gain of the input-output function for neurons
operating around their spiking threshold (Chance et al., 2002;
Mitchell and Silver, 2003; Higgs et al., 2006). The second is based
on shunting inhibition produced by inhibitory input in spatial
proximity to the soma (Sherman and Koch, 1986; Isaacson and
Scanziani, 2011). These mechanisms are unlikely to cause gain
scaling in spinal circuitry, where the early sensory processing
and motor output are dominated by rate-coded signals under
normal behavior (Ahissar, 1998; Maier et al., 1998; Perlmutter
et al., 1998; van Rossum et al., 2002; Stein et al., 2005; Shalit et al.,
2012).

For neurons that work within a rate-coded regime, non-
linear signal interaction can occur due to the short-term synaptic
depression (STD) of synaptic efficacy. If a neuron transmits the
sum of two excitatory signals, the second signal may push the
firing rate into a regime where STD occurs and may therefore
divisively scale the circuit response to the first signal (Carandini
et al,, 2002; Ozeki et al., 2009; Rothman et al., 2009; Carandini
and Heeger, 2012). Using this mechanism is metabolically
unfavorable compared to other possible non-linear mechanisms,
as the neuronal network would transmit a particularly high
number of metabolically expensive action and synaptic potentials
(Magistretti and Allaman, 2015). In addition, recent recordings
on rate-coding neurons which carry sensor and motor signals
show that STD only takes place at the onset of a stimulation
train (McElvain et al., 2015). During sustained firing, STD was
found to saturate and remain constant for a wide range of
firing rates. Thus, STD is unlikely to occur in spinal calculations
during ongoing behavior. A second hypothesis originates from
the mathematical fact that the multiplication of two signals turns
into a pure addition when the logarithms of the signals are
considered,

log(x; - x2) = log(x1) + log(xz) . (5)
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For signals which are encoded logarithmically, such as specific
quantities in the visual systems (Gabbiani et al., 2002; Jones
and Gabbiani, 2012), multiplication thus becomes trivial (Jones
and Gabbiani, 2012). However, many mechanical stimuli are
known to be linearly encoded by sensory firing rates (Hensel,
1973; Davis, 1975; Rothwell, 1987; Muniak et al., 2007; Bensmaia,
2008). Furthermore, a neuronal network which implements this
strategy would be restricted to implement exclusively either
multiplicative or additive operations on its inputs. To implement
both, it would need to implement an additional exponential
function to extract the actual coordinates. The third possible non-
linear mechanism uses active properties of dendrites. Voltage-
dependent Nat and Ca?* channels as well as NMDA receptors
can individually induce supralinear and sublinear interaction
of ionotropic signals (Oviedo and Reyes, 2002; Williams and
Stuart, 2002; Mehaffey et al., 2005; Losonczy and Magee, 2006;
Rhodes, 2006; Remy et al., 2009; Major et al., 2013). In concert,
the non-linear effects can counteract the sublinear integration of
signals caused either by passive dendritic properties (Segev et al.,
1994) or by other voltage-dependent channels (Mehaffey et al.,
2005; Rhodes, 2006; Palmer, 2014). The resulting overall effect is
strongly determined by the clustering properties of converging
synaptic inputs. Individual non-linear effects of unclustered
inputs typically balance out to a linear signal summation (Priebe
and Ferster, 2010). And indeed, in vivo mappings of the full
dendritic tree of neurons at early sensory stages demonstrated
that synaptic input is not clustered according to functional
similarity, a finding which is consistent across different sensory
systems (Jia et al., 2010; Varga et al., 2011). In agreement, other
in vivo recordings showed that the individual non-linear effects
of active dendrites are highly balanced and in effect facilitate
a linear relationship between input current and output firing
(Cash and Yuste, 1998, 1999). The same balance was found for
spinal motorneurons in simulations (Cushing et al., 2005) and
experiments (Hyngstrom et al., 2008) when neuromodulatory
metabotropic input was removed. In vivo experiments on
non-linear input summation of input from both eyes further
emphasized that the CNS uses active dendritic properties not
as a non-linear operation, but as a linearizing agent in sensory
systems. The non-linear summation of individual signals was
found to ensure that the output to binocular stimulation equals
the linear summation of input during monocular stimulation
(Longordo et al., 2013).

In conclusion, the specific physiological conditions of the
spinal cord explain and emphasize that spinal neurons are linear
integrators of incoming ionotropic signals. Therefore, the spinal
cord needs to take advantage of the metabotropic serotonergic
system in order to implement a non-linear interaction of signals.

5. LIGHTENING THE BURDEN OF
FREEDOM

5.1. Synergies Simplify the Control of
Redundant Locomotor Systems

In order to understand how serotonergic precision scaling can
improve motor behavior, it is necessary to consider a typical



TABLE 1 | Overview of various mechanisms proposed for multiplicative interaction of neuronal signals.

Coding regime
mechanism

Explanation

References

Time-sparse encoding

Synaptic noise from balanced
excitatory and inhibitory input

spiking threshold.
Shunting inhibition

postsynaptic potentials
Rate-based encoding

Short-term synaptic
depression

Logarithmic signals

Noise triggers membrane voltage to cross threshold by
chance and thus smooths input-output function around

Inhibitory input in proximity to the soma increases the
membrane conductance, which divisively scales the

Divisively scales input when a further signal is added.

Multiplication of signals x; turns into a summation upon their

Pyramidal neurons from somatosensory cortex: Chance et al. (2002);
Higgs et al. (2006). Motoneurons from spinal cord: Berg et al. (2007).

Theoretical explanation: Isaacson and Scanziani (2011). Neurons from
lateral geniculate nucleus: Sherman and Koch (1986). Granule neurons
from cerebellum: Mitchell and Silver (2003).

Neurons from V1: Carandini et al. (2002); Ozeki et al. (2009); Carandini
and Heeger (2012). Granule cells from cerebellum: Rothman et al.
(2009).

Locust lobula giant motion detector: Jones and Gabbiani (2012).

logarithmic transformation: log(xq - xo) = log(xq) + log(xo) .

Active dendrites
signal interaction.

Monoaminergic

neuromodulation excitability.

Voltage dependent channels can induce sub- or supralinear

Activation of G protein-coupled receptors changes neuronal
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coordinate transformations implemented by ionotropic spinal
circuitry.

Synergies are an example of spinal transformations which
neuroscientists have analyzed in detail. They are formed
by interneurons that either receive many input signals or
project to motoneurons of several muscles. As illustrated
in Figure 1B, the CNS thereby transforms high-dimensional
sensory information into the low-dimensional synergy space and
transforms the motor output from the synergistic circuitry into
the high-dimensional musculotopic space (Lacquaniti et al., 2012;
Alessandro et al., 2013; Santello et al., 2016). The input sensory
synergy filters out information which is unnecessary for a specific
motor task. It therefore chooses a particular combination of
sensory information from the infinite combinatorial possibilities
of sensory signals. The output motor synergy predetermines
coordinated activation of a group of muscles elicited by a single
circuit. It allows the CNS to choose from an infinite number of
possible movement patterns in a locomotor system with more
degrees of freedom than is required for a specific task (Bernstein,
1967). The human hand is the most obvious example for such a
redundant mechanical system (Santello et al., 2016). But also each
lower human limb comprises more than 50 muscles which are
to a major extent recruited together for locomotion (Lacquaniti
et al, 2012). This redundancy provides a high versatility of
possible movements.

Behaviorally, neuronal synergies become detectable as a
spatiotemporal pattern of EMG signals emanating from different
muscles. They can be extracted mathematically by linear source
decomposition methods like principal component analysis (Naik
et al., 2016). Human locomotion shows four to five basic

patterns (Lacquaniti et al., 2012), which are reproducible when
locomotion is perturbed (Chvatal and Ting, 2012). To change
locomotion speed, their relative recruitment is shifted gradually
(Hagio et al., 2015).

Neurophysiological analysis indicates that the spinal cord is
an important basis for synergy control (Santello et al., 2013;
Jorntell, 2016; Kiehn, 2016). The majority of spinal interneurons
combine signals from different modalities into sensory synergies
(Jankowska, 1992). In turn, groups of interneurons elicit a
synergistic pattern of muscle activations (Clark et al., 2010;
Levine et al., 2014; Danner et al., 2015; Santello and Lang, 2015;
Pérez-Nombela et al., 2017; Takei et al., 2017). Synergy output
is thereby transformed into the high-dimensional musculotopic
space and may be further routed through a separate neuronal
layer before it reaches the motoneurons (Zhong et al., 2012).
The cerebellum links the individual synergies into more elaborate
synergies or into sequential patterns (Bengtsson and Jorntell,
2014; Jorntell, 2017). Descending cortical motor commands may
accordingly excite individual synergies to produce meaningful,
complex behavior (Graziano, 2006; Overduin et al., 2012; Gallego
etal., 2017). These commands may in fact be partly transferred by
diffuse neuromodulation, which is known to activate movement
patterns or increase the movement frequency (Jing et al.,
2009; Harris-Warrick, 2011). In summary, the evidence implies
that spinal interneurons often combine information in a low-
dimensional synergy space, and the synergistic muscle output is
transformed and forwarded to the redundant locomotor system.

Understanding synergies is essential for studies on integrative
motor circuits. They can be regarded as a library of re-usable
modular building blocks, which the brain combines in order to
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construct a large range of complex learned and new movements
from basic old ones. In the low-dimensional synergy space,
the brain can integrate descending pathways, reflexes, and
central pattern generators, i.e., neuronal circuits which produce
rhythmic movement without rhythmic input (Ijspeert, 2008;
Guertin, 2013; Ijspeert et al., 2013; Dzeladini et al., 2014; Kiehn,
2016; Minassian et al., 2017).

5.2. Robotics Control Theory Explains

Synergistic Motor Control

Functional insights on the use of synergies can be obtained
from robotics control theory. In recent work, an artificial
neural network, which formed a similar network structure as a
sensorimotor synergy, was trained to encode meaningful motor
primitives within the intermediate synergy layer (Chen et al,
2015). The underlying type of artificial neural networks is called
autoencoder and is typically used in in the field of deep learning
to reduce the dimensionality of data (Hinton and Salakhutdinov,
2006). But while autoencoders in general deploy non-linear
quasi-ionotropic mechanisms in the simulated neurons, also the
use of more biologically plausible linear synergy spaces have been
functionally well-examined for the control of biomimetic robotic
hands (Bicchi et al., 2011; Santello et al., 2016) and legged systems
(Aoi et al., 2017; Lakatos et al., 2017). The tools that have been
developed in this endeavor are mathematically advanced and
well-tested. Neuroscientists can thus use them to functionally
explain or even predict a specific synergistic behavior.

For low movement speeds, the robotic control strategy of
null space projections explains how several tasks, which are
individually solved by a respective synergy, can be executed
simultaneously (Dietrich et al., 2015). The top-priority command
is executed using the full capability of the locomotor system,
such as a synergy responsible to keep balance. If the locomotor
system is redundant for that specific task, a lower-priority task,
e.g., defined by a secondary synergy, can be executed to the
greatest possible extent as long as it does not interfere with
the top-priority task. For this purpose, an affine transformation
projects the secondary task into a space formed by the redundant
degrees of freedom, and the resulting motor signal is added to the
signal of the top-priority command. The transformation weights
depend on the current positions of the actuators, and their
adjustments requires a precise model of the locomotor system
and its environment (Featherstone and Khatib, 1997). The need
for precise models applies to most strategies devised to control
low movement speed (Braun et al.,, 2011). To adjust complex
movements at low movement speed to changing conditions, it
is therefore likely that human neuronal control circuits also
require precise models of their locomotor system. Accordingly,
the underlying circuits require high topographic precision. Since
the fine-control of complex slow movements strongly relies
on the supraspinal circuitry (MacKay-Lyons, 2002; Shemmell
et al, 2009), it is reasonable to assume that the required
precise models are encoded in the more sophisticated supraspinal
neuronal networks. The slow movement speed allows for a
heavy recruitment of these networks despite their long feedback
delays.
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5.3. Synergies for the Control of Highly

Dynamic Movement

Here, we want to define a minimal precision that serotonergic
effects need to show in order to perform a task that cannot be
explained by diffuse neuromodulation. This suggests considering
control strategies that require little model precision. It is likely
that the CNS recruits such strategies more during fast and
strong movements like running. These are strongly shaped by
the inertia and elasticity of the system, ie., quantities which
can only be modeled with high inaccuracies and change over
time (Nakanishi et al., 2008; Peters et al., 2008; Dietrich et al.,
2015). Biomechanical locomotor systems are substantially more
complex than robotic systems, as their dynamics critically depend
on a particularly large range of parameters such as non-linear
muscle elasticities, hysteresis effects, and the changing muscular
3D structure (Siebert and Rode, 2014). This emphasizes that
control strategies which require a minimal model precision can
control highly dynamic movements in biomechanical locomotor
systems much more robustly than model-dependent strategies. A
second advantage of considering the control of highly dynamic
movement is the associated high consumption of metabolic
energy within muscles. The metabolic demands can be drastically
lowered by a control strategy utilizing elastic elements within
tendons and muscles, as these elastic elements store kinetic
energy during a ground impact and release it for recoil (Holmes
et al., 2006; Sawicki et al., 2009; Lai et al.,, 2014). During the
evolutionary development of the CNS, strategies for the energy-
efficient control of this movement type were thus most likely a
critical selection factor. For these reasons, control strategies for
highly dynamic movements are likely to be implemented by the
CNS. They require a minimum of model knowledge and are thus
promising to estimate the minimum precision that serotonergic
effects need to show.

For highly dynamic motion, robot control theory showed
that a simple synergy controller can generate movement
which is stable (Lakatos et al, 2013; Lakatos and Albu-
Schiffer, 2014a,b) and makes optimal use of elastic elements
in the locomotor system to minimize the consumption of
metabolic energy (Stratmann et al., 2017). According to this
control strategy, sensory information is linearly transformed
into the one-dimensional synergy coordinate space, where it
periodically drives a synergy controller (cf. Figure 5). Its output
is reversely transformed into the musculotopic space using
the transformation weights w to drive the joint actuators.
Functionally, precise output weights are critical, whereas the
input weights may strongly vary without relevant loss in
movement performance (Stratmann et al, 2016). Within the
synergy space, a circuit as simple as a pool of excitatory reflex
interneurons can control the movement (Stratmann et al., 2016).
This control law is a promising hypothesis for neuronal motor
control for three reasons: First, it requires information about
the number of degrees of freedom prior to movement onset
and thus minimum model knowledge. Second, it requires only
information about muscular deflections and forces during an
ongoing movement, as provided by proprioceptive fibers. Third,
a linear jonotropic synergy circuit can implement this controller
for unchanging environments. To adjust the control law to
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FIGURE 5 | The robotic controller, which was previously developed to maintain a stable, fast, and strong movement, is mathematically equivalent to a synergy
controller as illustrated in Figure 1B. Sensory input (Y4, Yo) signals the movement of individual degrees of freedom of the mechanical system. It is transformed into the
low-dimensional synergy space and adjusts the phase and frequency of a synergistic motor signal x. Since the different mechanical degrees of freedom move with
high synchrony during fast locomotion, the input weights can be chosen arbitrarily without loss in movement performance (Stratmann et al., 2016). The motor signal x
is reversely transformed along the weights (w4, wy) to drive the actuators of the same robot. These weights are functionally critical, as the relative forces (y1, yo) of
different actuators determine, among others, how well the robot can take advantage of its elastic elements to store energy upon ground impact and release it for
recoil. In robotic systems, springs typically dominate the elastic properties of the system, as shown on the right hand side of this figure in a cross-sectional illustration
of the exemplary robot. As detailed in section 6, the synergy controller can maintain an elastic movement with optimal energy efficiency under changing mechanical
conditions. For this purpose, the controller receives sensory inputs s1 and sp, which signal the deflections of the degrees of freedom such as joint angles. To adjust to
changing mechanical conditions, the controller needs to multiplicatively scale the output transformation weights w4 and w» according to these inputs s1 and s,
respectively (Stratmann et al., 2017). A common multiplicative factor ¢ determines the jumping height or distance. To keep the weights bounded, they need to decay
exponentially with a time constant . The ventral spinal serotonergic system forms a motor feedback loop, as illustrated in Figure 4, which functionally resembles the

loop of the multiplicative signals presented here.

changing environments, multiplicative scaling of the neuronal
gains w at the motor output stage is required, as will be explained
in the following section. Since the number of degrees of freedom
is the only required model knowledge, this control law is an
ideal example to determine what minimal topographic precision
serotonergic effects need at least in order to adjust synergies to
changing contexts.

6. MULTIPLICATIVE GAIN SCALING
MAINTAINS SYNERGIES IN CHANGING
CONTEXTS

6.1. Gain Scaling Offers Unique

Advantages to Neuronal Signal Processing
Mathematically, multiplicative gain scaling is a core principle
for the extension of affine transformations. As will be shown,
this principle can strongly enhance the presented robotic synergy
controller. Thereby, it is possible to derive the spatial and
temporal precision required by the serotonergic system to
adjust synergic signal processing to changing contexts. Prior to
that, it is important to consider how well multiplication can
fulfill this task for realistic locomotor systems under arbitrary
conditions. As will be shown, multiplication can in theory extend
linear neuronal networks to fulfill this task arbitrarily well,

because it allows them the implementation of arbitrary general
transformations. Multiplication is furthermore a straightforward,
functionally powerful operation for this task. These advantages
of gain scaling are so fundamental that they apply to affine
transformations in general, even beyond motor control. They
motivate and help understand why precision scaling may have
evolved during evolution.

Weierstrass and Stone (1948) have mathematically
demonstrated that arbitrary continuous transformations
y(x) can be approximated to any desired precision for a restricted
interval of possible input values x by the sum of exponentiation
powers in the input,

y(x) = +(=0y) + Wyx' +... . (6)

Each summand comprises a power of the input with increasing
exponent. Engineers often use this finding since this sum
can be used to approximate arbitrary transformations which
cannot be derived mathematically or are changing unpredictably
with time. An affine transformation implemented by a linear
neuronal network, as described by Equation (3), is a first-
order approximation. That means it includes a constant, i.e.,
a term proportional to the zeroth power x° = 1 in the
input, and a summand that is proportional to the first power

x! in the input. Taylors theorem, one of the basic theorems
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in mathematical analysis, states that adding summands of
higher exponent continuously improves the approximation. But
given an approximation with summands up to a particular
exponent, the benefit gained by adding further summands of
higher exponent becomes increasingly negligible (Cohen and
Tan, 2012). As affine transformations include terms up to the
first power of the input, a linear neuronal network offers a
general circuit scheme that captures a major portion of a
general transformation. Linear neurons which are further able to
multiply signals can be combined in several layers to calculate
arbitrary powers of its inputs. In contrast to a purely linear
neuronal network, such a network can implement Equation (6)
and therefore perform each possible transformation on its inputs
with arbitrary precision.

Deep learning shows that multiplication is only one out
of many arithmetic operations which a neuronal network
can implement in order to act as universal approximator
of general transformations (Stone, 1948; Cybenko, 1989;
Hornik, 1991; Chen et al, 2015). Hereby, the artificial
networks typically implement a single function which seemingly
resembles ionotropic signal processing, but may in fact represent
the collective effect of ionotropic, metabotropic, and other
mechanisms. While a multiplicative mechanism that parallels
the ionotropic circuitry is not the only mechanism that allows
implementing a universal approximator, it allows a particularly
powerful, straightforward, and resource-efficient adjustment of
an affine transformation to changing contexts. Adjusting an affine

transformation,
=D wiki =6,
i

according to the external signal s encoding the context implies
that individual transformation weights wy; must change with s.
If the CNS multiplies the inputs x; with the external signal, it
effectively performs an affine transformation with transformation
weights

wij(s) = Wi - S, (7)

which increase with the constant of proportionality wjjc. The
resulting affine transformation

yj = Z wij,cxis — 9j (8)
i

can be seen as a Taylor approximation which models the
interaction between inputs x; and context s up to second
order. As explained in the previous paragraph, such a second-
order approximation captures a large portion of an arbitrary
interaction, which eases the functional need for further
resource-consuming neuronal operations. In agreement with
this functional benefit, experiments typically link changing
coordinate transformations to gain modulation, as reviewed
by Salinas and Sejnowski (2001). For example, motor output
following stimulations of M1 is multiplicatively modulated by
proprioceptive information (Graziano et al., 2004), which can at
least partly be attributed to serotonergic gain scaling at the level
of spinal motorneurons (Wei et al., 2014).
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6.2. How Gain Scaling Can Enhance
Synergy Control

In the specific context of robotic synergies, it is possible to derive
the spatial and temporal precision that the spinal serotonergic
system needs for precision scaling. Scaling the gains of the output
transformation hereby leverages the above-described robotic
control law, as it decouples the synergy circuitry from changes
in the mechanical context of the movement (Lakatos et al., 2013).
The synergy itself is therefore unaffected, for example, when one
runs from a solid to a soft ground or changes body posture during
cycling (cf. Figure 3). The common synergistic motor signal can
be individually scaled by separate output gains wj to calculate the
respective motor signal for each functional group j of muscles
acting on a single degree of freedom. A degree of freedoms is
thereby typically formed by an individual joint (Lakatos et al.,
2013,2017). The index i of the synaptic weights wj; is neglected, as
the synergy circuit functionally outputs only a single ionotropic
signal x.

Robotic control theory predicts how the gains w; within
the biological neuronal network must be adjusted to changing
mechanical contexts in order to minimize metabolic demands
(Lakatos et al., 2013). To explore a given mechanical context,
the ionotropic synergy circuitry provides input to all involved
muscles and excites a non-optimal movement. As the controller
adapts to the mechanical context, it increasingly optimizes the
movement. The control approach derived for this purpose (cf.
Figure 5) resembles the function performed by the serotonergic
feedback loop (cf. Figure 4) in all of its three main characteristics:
First, the controller receives sensory input about the resulting
joint deflections, resembling the proprioceptive information
converging onto the raphe nuclei. Second, the controller uses
this information to update its model of the body and its
environment. For this purpose, it adjusts the transformation
weights from the motor synergy to groups of actuators driving
the involved joints. The updated transformation weights improve
the movement and recursively lead to updated sensory signals.
Also this characteristic resembles the function of the raphe
nuclei, which scale ionotropic synergy signals as they arrive
on motorpools. Third, the multiplicative transformation weights
w converge toward the dominant principal component of the
sensory signals s encoding the deflections of individual joints.
Based on work by Lakatos et al. (2013), Stratmann et al. (2016)
demonstrated that the alignment can be achieved by multiplying
the output of the synergy circuitry by weights that increase
with the sensory signals. In order to keep the weights within a
physiological regime, decay of the weights over time is required as
counteracting mechanism. These two effects can be summarized
as

%w:wc-s—%w. 9)
The constant factor w, scales the overall force output. The time
constant T describes the gain decay and must be of the same
order of magnitude as the typical cycle duration of biomechanical
movement. This time scale guarantees constant gains throughout
the movement cycle in a sustained context. Meanwhile, the
dominant changes of transformation weights, and thus most of



the functional impact on metabolic costs, occurs already during
the first step cycles, i.e., for quickly-changing contexts (Stratmann
et al,, 2017). Stratmann et al. (2016) demonstrated analytically
and in neuromechanical simulations that previous models of
the kinematics of released serotonin are fully consistent with
Equation (9). But it remained unclear if the serotonergic feedback
loops shows the same temporal and topographic precision as the
controller.

The resemblance between the serotonergic motor feedback
loop and the controller is remarkable, as the controller has been
derived based purely on considerations about the dynamics of
biomimetic systems. After controller convergence, the synergy
controller makes optimal use of the energy saving capacity offered
by the elastic elements within the mechanical locomotor system.
This result was consistently obtained under the influence of
physical noise, mechanical damping, and non-linear dynamics
(Stratmann et al., 2017). This means that the actuators require
a minimum of metabolic energy to sustain the highly dynamic
locomotion. Throughout the adaptation, the mechanical system
shows stable movement. This stability results from the weight
decay and from the friction within the mechanical system.
The friction implements a further negative feedback loop as it
increases with higher movement velocity, i.e., a stronger motor
signal (Lakatos and Albu-Schiffer, 2014b). Videos illustrating the
emerging movement have been published previously for elastic
robotic systems mimicking the leg of a small mammal (Stratmann
et al., 2017), human legs (Loffl et al., 2016), and a human arm
(Lakatos et al., 2013). Under the assumption that the raphe nuclei
show sufficient topographic and temporal precision, also the
simulated raphe nuclei optimized the energy efficiency of motion
induced in a leg which was either mechanically constraint,
resembling cycling as illustrated in Figure 3, or free to move
along a trail (Stratmann et al., 2016).

The robotics control approach explains the functional
advantage of a raphe motor feedback loop that shows precision
scaling rather than a diffuse neuromodulation of motorpools.
Thereby, it predicts that the serotonergic feedback loop must
show gain scaling which acts on a time scale of hundreds of
milliseconds to few seconds and which is at least joint-specific.
In particular, it must amplify motorpools driving joints that
show a large deflection throughout the movement and thus send
out large proprioceptive signals s;. With these characteristics,
the raphe nuclei would ensure that simple ionotropic synergies
can induce highly dynamic rhythmic movements with minimum
metabolic demands under changing context.

7. SEROTONIN PROVIDES
SUBCIRCUIT-SPECIFIC GAIN SCALING

The functional considerations offer a benchmark for the
anatomical and functional precision that the serotonergic
feedback loop requires to perform precision scaling.
Neuroscientific studies considering the topographic precision
suggest that along the serotonergic feedback pathway, each
processing step allows for a spatially focused signal transduction.
Sensory signals are relayed to the NRP and NRO within 20 ms

(Springfield and Moolenaar, 1983). This short delay indicates a
monosynaptic or a strong oligosynaptic input from the peripheral
sensors to the NRO and NRP. A likely candidate is disynaptically
mediated input via spinal interneurons that typically targets the
cerebellum (Jorntell, 2017) but that may also mediate peripheral
inputs to brainstem nuclei (Johansson and Silfvenius, 1977)
as illustrated in Figure 6. The efferent serotonergic projections
of the approximately 19,000 serotonergic neurons comprised
within the human NRP and NRO (Hornung, 2003) target
almost exclusively the ventral spinal cord (Martin et al., 1978;
Loewy, 1981; Nieuwenhuys et al., 2008; Watson et al., 2012).
These projections have been suggested to comprise both an
anatomically diffuse component and a separate topographically
specific component (Huisman et al, 2011). The diffuse
projections as well as projections to ventral interneurons within
a neuronal synergy affect the overall gain like the factor w,
in Equation (9) and may additionally increase the overall leg
stiffness by co-contraction of antagonistic muscles. Both effects
have been suggested to underlie increases of the movement speed
(Heglund and Taylor, 1988; Ferris et al., 1998). They explain
functional findings demonstrating that the 5-HT released by the
action of one limb amplifies motor signals that target the muscles
in other limbs as well (Wei et al., 2014). Previous anatomical
studies allow a quantification of the spatially focused projection
onto spinal motorneurons and interneurons associated with
specific motorneuron pools. Tracers inserted into the spinal
cord showed that the location of the labeled serotonergic cells
vary markedly with the region of injection, contrasting the
more homogeneous labeling of non-serotonergic cells within the
raphe nuclei (Skagerberg and Bjorklund, 1985). Dual retrograde
tracers injected into different regions of the ventral horn of
rats double-labeled about 50% of cells within the NRP (Cavada
et al., 1984). This degree of collateralization resembles that of
corticospinal axons, for which more than 40% of 156 neurons
could be activated antidromically from several segments of the
spinal cord in monkeys (Shinoda et al.,, 1979). In the ventral
spinal cord, serotoninergic projections predominantly terminate
in synaptic contacts and the release of 5-HT shows effects of
high spatial precision (Brumley et al., 2007; Cotel et al., 2013;
Perrier et al., 2013). In agreement with a topographically precise
spinal serotonergic system, depletion of 5-HT and blockage of
5-HT), receptors in rats slackens locomotion due to adjustments
in the motor signals which differentially affect muscles acting at
different joints of the same limb or even the same joint (Myoga
et al., 1995; Pflieger et al., 2002; Pearlstein et al., 2005). Evidence
therefore suggests that the serotonergic system is able to induce
effects which are at least joint-specific.

The time scale of metabotropic effects is slow in comparison
to ionotropic signal transmission. Following sensory stimulation,
the onset of the serotonergic multiplication effect was found
to be delayed by tens of milliseconds after stimulus cessation
in cats (Crone et al., 1988). It was shown to return back to
baseline within a few seconds in turtles (Perrier and Delgado-
Lezama, 2005), cats (Crone et al, 1988) and humans (Wei
et al., 2014). This long time scale might impede fast neuronal
calculations within the brain and may also have detrimental
effects for motor control under rapidly changing conditions.
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FIGURE 6 | Possible analogous organization of serotonergic function in the
spinal cord and the neocortex. In both CNS areas, populations of serotonergic
projections originating in the raphe nuclei can be assumed to multiplicatively
scale the output of individual ionotropic subcircuits. In turn, the projecting
raphe neurons receive feedback on the outcome of their effects, thus forming
feedback loops. The ionotropic signals in the spinal cord can be interpreted
relatively easily, as they are directly linked to physical muscles and sensors. As
in the case of the spinal circuitry, neocortical circuitry operations likely involve
integration of information from groups of neurons, which are innervated by
different combinations of serotonergic neurons. In contrast, the information
encoded in the neocortex can be expected to be more abstract and less
directly intelligible, and at present it is therefore less clear what coordinate
spaces the neocortex combines. Nevertheless, as a first-level descriptive
model of the functional mechanisms monoamines have in neocortical systems,
the functional principle presented here can help understand the principles of
the effects elicited by psychopharmacological drugs.

For example, it may underlie the Kohnstam effect, where
the arm involuntarily lifts following the abrupt end of a
strong voluntary contraction. The Kohnstamm effect lasts for
several seconds and originates in a persistent activation of
the deltoid muscle, which is accompanied by higher motor
evoked potentials. The underlying mechanisms are assumed
to have a dominant spinal origin (Mathis et al., 1996; Ghosh
et al., 2014). These properties are consistent with the idea
that the excessive activity observed during the Kohnstamm
effect is caused by serotonin that is released during a strong
muscle contraction and increases the motoneuron gain of
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the deltoid specifically. Ongoing movements encountered in
everyday life show less-abrupt and extreme switching between
conditions. For such non-artificial movements, the time scale of
serotonergic effects matches the time scale relevant to various
motor behaviors.

To summarize, a joint-specific multiplicative effect which
decreases on a time scale of seconds agrees well with the
functional requirements determined for the stable and energy-
efficient control of highly dynamic movement. The presented
control-theoretical framework therefore links the previous
experimental findings on monoamines into a new operational
principle of temporally- and subcircuit-specific gain modulators.
By this precision scaling, the serotoninergic projections to the
ventral spinal cord can be assumed to strongly simplify motor
control adaptation.

8. MONOAMINES SCALE SIGNALS
THROUGHOUT THE CNS

8.1. A Principle Common Across

Serotonergic Systems

The previous section considered the parts of the serotonergic
system that target the spinal cord. But the functional
interpretation developed so far may, in principle, also apply to
the serotonergic innervation of other parts of the central nervous
system. It may even apply to those CNS areas which may achieve
precision scaling using non-linear ionotropic mechanisms,
possibly by combining many non-linear neurons into a network
that approximates more general transformations mediated
by network effects. These CNS areas may take advantage of
the parallel, resource-efficient implementation of precision
scaling originating from monoaminergic systems. Serotonergic
innervation is present in practically all parts of the CNS,
including the striatum, amygdala, thalamus, and hippocampus
(Vertes and Linley, 2008; Daubert and Condron, 2010). But in
this paper, a specific interpretational example will be developed
for the frontal and cingulate areas of the neocortex, where
many researchers locate at least part of the effects caused by
psychopharmacological drugs interfering with the serotonergic
system.

The proposed framework suggests a generic function for 5-
HT as a subcircuit- and temporally specific non-linear gain
modulator which scales individual weights of transformations
between different processing stages by postsynaptic effects. An
important component of this framework is formed by the
feedback connections which evaluate the contextual conditions
to update the drive on the serotonergic gain modulation
(cf. Figure4). Because of the subcircuit-specificity, there is
differential gain scaling. This is useful if changes in conditions
require the transformation of different aspects of the overall
information to be multiplied with different factors to correctly
interact with the external world. For the 5-HT innervation of
the prefrontal cortex (PFC), most of these requirements seem to
be confirmed. First, there are topographically precise projections
with well-defined synapses from the nucleus raphe dorsalis
(NRD) to the PFC (Bang et al., 2012; Belmer et al., 2017). Second,



there is a topographically precise feedback inhibition from the
PFC to the NRD (Jankowski and Sesack, 2004) and the NRD
affects the neuronal gain in the layer V pyramidal cells of the
PFC (Zhang and Arsenault, 2005). Considering these apparent
functional homologies with the serotonergic innervation of the
spinal circuitry, Figure 6 illustrates a possible scenario for the
functional organization of the serotonergic innervation of the
PFC / cingulate areas.

In the spinal cord, the functional principle proposed for 5-HT
is the multiplicative scaling of individual transformation weights
in order to adjust transformations between different coordinate
spaces. Whereas for the spinal circuitry one can speak in relatively
concrete terms of what is being represented and on what bases
the coordinates exist, the coordinates relevant to integrative
neocortical systems are likely to have much more abstract bases
and are anyway not well-known at the moment. However, there
are studies of correlations between certain abstract measures and
the activity of the neurons, which can serve as approximations
of what kinds of representations are involved. Primate PFC
neurons can encode at least in part the monitored actions
(Yoshida et al., 2011) and the errors of action of other monkeys
(Yoshida et al.,, 2012). In the anterior cingulate cortex, neurons
strongly respond to rewards delivered to other monkeys, while
orbitofrontal neurons are more biased toward rewards delivered
to the recorded monkey (Chang et al., 2013). An effect of lesions
in the orbitofrontal cortex is abnormal social and emotional
judgements of facial expressions (Willis et al., 2010; Watson
and Platt, 2012) possibly associated with autism or sociopathy
(Chang et al., 2013). In rodents, an optogenetic stimulation of
PFC neurons that project to the NRD creates abnormal avoidance
behavior (Warden et al., 2012; Challis et al., 2014).

Consider the possibility that the neocortex, as we envisaged for
the spinal circuitry organization around synergy control, consists
of multiple subcircuits, or groups of neurons. Each subcircuit
carries representations of specific parameters which are directly
or indirectly relevant to dealing with situations arising mentally
or in the social world. Because the subcircuits interact, the
optimal weighting of each subcircuit will depend on context,
similar to the relative muscle forces needed for locomotion across
different terrains. In this case, the serotonergic system may scale
the relative contributions of different subcircuits so that their
contributions to the output become proportional to the required
contributions which are imposed by the situation (cf. Figure 6).

Attempts toward more holistic models of the functional role
of 5-HT have emerged from studies on lower animals, such as
the lobster (Kravitz, 2000). In the social life of the lobster, 5-
HT levels are assumed to gradually build up during encounters
with other lobsters. Encounters typically end up in a gradually
escalating demonstration of power in which the lobster with the
most imposing body language, or, more rarely, physically proven
superiority, will maintain high 5-HT levels and an imposing
body posture. Conversely, the individual losing the social tete-
a-tete will rapidly develop a subordinate body posture which is
assumed to be associated with a dramatic decline in 5-HT levels.
The subordinate will subsequently avoid engagement in social
fighting for a long time. This acquired unwillingness to engage
in fighting can be discharged, however, by an experimental

manipulation of the 5-HT levels (Kravitz, 2000). In this model
system with a low degree of behavioral diversification, 5-HT will
hence affect social interactions and the level of 5-HT will also
be a consequence of the behavioral outcome on the social stage.
In mammals, possessing a more highly developed neocortex
and hence a more diversified and richer understanding of the
external world, one would expect a more complex set of feedback
regulations of the serotonergic system. Still, the serotonergic
system may abide the same principle, i.e., the serotonin level is
a consequence of the actions we take and the effects we perceive
them to produce. A high or a low level of 5-HT is not necessarily
good or bad, but the level should rather be appropriate for how
we perceive our position with respect to the external world.
Applying this type of functional model of 5-HT actions also
to mental brain functions can offer a novel interpretational
framework for the action of psychopharmacological drugs
linked to malfunction of the monoaminergic system. Associated
disorders include depression, melancholia, social anxiety
disorder, obsessive compulsive disorders, panic disorders,
posttraumatic stress syndrome, and generalized anxiety disorder.
Drugs which are used against these disorders and interact with
serotonin and monoamine synaptic transmission are sometimes
viewed as pharmaceutical pushbuttons for specific emotional
qualities, even though there seems to be no good support
for assuming direct causality (Ruhe et al., 2007). However,
as portrayed above, the cortical systems that can be expected
to be ultimately responsible for the perception of our mood
appear to provide feedback projections permitting them to
regulate their own 5-HT release (Peyron et al., 1998). As in
every negative feedback system, a set point of activity that the
system strives toward will tend to arise. Temporary variations
around that set point can be triggered by novel estimates of
the prevailing conditions based on inputs from the ionotropic
circuitry. Hence, according to this view, psychiatric disorders
that are susceptible to treatment with drugs interfering with the
5-HT system may arise when the multiplicative coordination
of activity for different subcircuits have fallen outside their
normally functioning set points. If the scaling of the relative
contributions of different subcircuits carrying mental models is
out of order, the responses to a changing environment would
become inadequate, which may start a vicious circle in which
the system digresses further away from its functional set points.
In principle, this could occur as a consequence of behavior
and would thus be acquired, although internal predisposition
factors could exist as well. Interference with 5-HT transmission
by the clinical administration of seletive serotonin reuptake
inhibitors (SSRIs) could theoretically push the set points of 5-HT
in the different subcircuits to new ranges. In some patients,
these emerging ranges turn out to be functionally operative.
In many cases, however, the doses need to be individually
adjusted over a long time. And for some patients SSRI treatment
does not work irrespective of dose (Rush et al., 2006; Trivedi
et al.,, 2006). Another feature of SSRI treatment that seems to
indicate the existence of internal set points for 5-HT activity
is that the therapeutic effect of SSRI is often delayed by some
two weeks. One part of this delay has been hypothesized to be
due to the autoreceptors on the synaptic terminal that releases
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serotonin (Richardson-Jones et al, 2010). The autoreceptors
exert a negative feedback on the amount of serotonin released by
the terminal and thus forms another natural negative feedback
system. However, a negative feedback acting across such a short
diffusion range and with effects isolated to the own terminal
would seem unlikely to normally take two weeks to find a new set
point. But the long-range feedback connections back to the raphe
nuclei, involving subcircuits of ionotropic neurons, where each
neuron may be expected to have a differentially time-varying
activity across different conditions, could well result in feedback
systems with very long time constants. Hence, they seem to be
a more logical explanatory model for such extremely delayed
effects.

8.2. A Principle Common Across

Monoaminergic Systems

Other monoaminergic systems than the raphe nuclei also
function according to principles that strongly resemble the
precision scaling function that is proposed here for serotonin in
the spinal cord.

A beautiful and perhaps unexpected example comes from
the apparent function of the dopaminergic innervation of the
retina (Bargmann, 2012). Retinal processing is dominated by
cone photoreceptors in bright light and by rod photoreceptors in
low light. Both sensor types converge on cone bipolar cells, which
receive direct input from cones as well as indirect input from rods
relayed through intermediate rod bipolar cells and AIl amacrine
cells. When the light level is high, the responsible dopaminergic
neurons are activated (Brainard and Morgan, 1987) and the
gap junctions between AII amacrine cells and cone bipolar cells
are uncoupled. This uncoupling is triggered by the action of
dopamine at gates exclusively on the amacrine side, implying
that it does not interfere with the processing of inputs from the
cone photoreceptors (Xia and Mills, 2004). Uncoupling can be
considered to be a multiplicative effect, in which the aim is to
find the relative scaling that gives the best overall information for
the current light level (Mills and Massey, 1995; Xia and Mills,
2004; Bargmann, 2012). This function is akin to the proposed
effect of 5-HT in the ventral spinal cord, which scales the relative
motor signals actuating individual groups of muscles according
to sensory signals in order to optimize the overall force output.

In general, most monoaminergic systems share the principal
features that underlie the model of serotonergic precision scaling
presented in this paper. In particular, they are under the tight
control of the hypothalamus (Veazey et al,, 1982; Villalobos
and Ferssiwi, 1987). In some cases, they are even part of the
hypothalamic nuclear complex (Ugrumov, 1997), as for example
the tuberomammillary nucleus of the hypothalamus in case of
histaminergic neurons (Haas et al., 2008). The monoaminergic
systems send dense projections to each other, suggesting that
their respective activities are under mutual control (Ericson et al.,
1989; Nakamura, 2013). They all have widespread terminations in
most major structures of the CNS (Samuels and Szabadi, 2008;
Vertes and Linley, 2008; Daubert and Condron, 2010; Nestler
et al., 2015; Yu et al,, 2015). They receive feedback connections
from the structures they target and they have autoreceptors for
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the local feedback of their synaptic release (Douglas et al., 2001;
Garcia et al., 2004; Richardson-Jones et al., 2010; Ford, 2014). The
bulk of their projections go to the ionotropic circuitry where they
act primarily by changing conductances which modulate gains
(Foehring et al., 1989; Dong and White, 2003; Surmeier et al.,
2007; Yu et al,, 2015) in the targeted neurons. Among others,
targets include the neocortex, thalamus, striatum, cerebellum,
hippocampus, and amygdala. In many cases, there is support for
a subcircuit-specific regulation (Blandina et al.,, 2012).

8.3. A Principle Preserved Across
Phylogeny

The presented evidence suggests that precision scaling
fundamentally extends the functions of the ionotropic circuitry.
Therefore, it comes as no surprise that the monoaminergic
systems have emerged very early in phylogeny (Parent, 1984)
and that their effects have often been strikingly preserved
in the course of natural selection. The serotonergic motor
feedback loop, which we describe in detail for mammals, can for
example be traced back to invertebrates. Also in these animals,
serotonergic neurons strongly innervate motor circuits and
receive corresponding feedback (Gillette, 2006). Once serotonin
is released, motoneurons show equal reactions across species
boundaries and increase their gain in Aplysia (Mackey et al.,
1989) as well as in cats (Crone et al., 1988) and humans (Wei
et al.,, 2014). In the lobster, it is known that serotonin can act
with topographic precision and specifically increase the firing
of flexor muscles. This increased flexor excitation induces
the imposing body posture which was described above for
dominant lobsters (Kravitz, 2000). Similar to the serotonergic
motor feedback loop described here, the amacrine dopaminergic
system in the retina has been found also in cartilaginous
fishes and amphibians (Yamamoto and Vernier, 2011). A
difference from the spinal circuitry is that the topographic
precision of the population-integrated dopaminergic projection
to the retina is not achieved by the distribution of presynaptic
terminals and their amplification of ionotropic currents, but
by acting on gap junctions. This reflects that gap junctions
play a major role in retinal signal processing (Bloomfield and
Volgyi, 2009), whereas the influence of electrical coupling within
the spinal cord strongly decreases with developmental age (Li
and Rekling, 2017). Thus, it is likely that precision scaling has
independently emerged in different CNS regions based on the
biochemical mechanisms that dominate the respective signal
processing.

9. EXPERIMENTAL PREDICTIONS AND
CONCLUSIONS

In order to test if the CNS takes advantage of monoaminergic
precision scaling, it is most convenient to investigate the
serotonergic motor feedback loop implemented by the raphe
nuclei. For this circuit, the control of biomimetic robots
clearly predicts the hypothesis that must be evaluated: The
excitability of a motorpool actuating a specific joint must
increase primarily after subjects have moved the respective



joint rather than other joints of the same limb. As serotonergic
effects on motoneurons remain for several 100 ms, the
increased excitability must be observable also after cessation
of the movement and the motor signals that drive it. Given
this predicted topographic precision, the raphe nuclei can
adapt motor control to changing conditions and ensure
highly-dynamic locomotion under minimum metabolic
demands.

While  this  paper  elaborates  subcircuit-specific
neuromodulation mainly for spinal circuitry, precision
scaling presents a big picture which frames the ubiquitous
monoaminergic neuromodulation across the CNS. Accordingly,
monoaminergic systems represent a computational network
within the network formed by the ionotropic circuitry. While
subcircuits can collectively encode predictive models of
the world, monoamines adapt these models to contextual
changes by scaling the ionotropic output signals. This concept
offers an attractive explanation of how metabotropic signal
processing complements the ionotropic functional and
anatomical connectome: By scaling individual ionotropic
signals, monoamines can provide functionality that is powerful,
resource-efficient and, at least in the spinal circuitry, unique.
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Abstract

Serotonin is assumed to alter motoneuron excitability through diffuse neuromodulation that equally affects several
muscles, even across limbs. However, the control theory of biomimetic robots predicts that the serotonergic system
should disparately amplify the motorpools that supply different joints of the same limb in order to optimally adapt
strong periodic movements to changing environments. Here, we confirm that the human central nervous system
tunes the excitability of motorpools innervating different joints with the predicted specificity after a periodic motion.
Guided by a mechanical device, participants first repeatedly rotated either their right elbow or shoulder joint for
thirty seconds. The device then rapidly perturbed either joint to elicit a monosynaptic reflex which quantifies the
motoneuron excitability. Enhanced excitability was observable for several hundred milliseconds after movement
cessation. These observations assign serotonergic neuromodulation with the time scale necessary to accumulate
information across the movement cycle and yet react quickly to changing environments.

Introduction

During strong and fast periodic motions, humans rely on the passive compliant elements in their muscles and ten-
dons. These elastic elements store energy on impact with the environment and convert it back to kinetic energy for
acceleration, enabling fast and large movements with reduced expenditure of metabolic energy [1, 2, 3]. The neuronal
control of compliant movements must provide fast feedback, necessitating limited cortical influence [4]. Functionally,
the central nervous system (CNS) adapts to mechanical changes, such as the compliance of the environment or the
body posture, by changing the task-dependent excitability of the neuronal circuitry [5, 6]. Anatomically, the under-
lying mechanisms act at least partially at the motor output stage and amplify motoneuron responses to ionotropic
input [7, 8] up to several seconds after the motor signals have ceased [9]. Experiments applying serotonin antagonists
show that these effects are caused by serotonergic raphe nuclei in the medulla [9]. These raphe nuclei form a motor
feedback loop, because they receive proprioceptive input [10, 11, 12] and consequently release serotonin into the
spinal cord [13, 14], where it increases motoneuron excitability [15, 16, 17]. How the serotonergic neuromodulation
and other mechanisms in the spinal cord accomplish the highly skilled human control of compliant movement is
scarcely unraveled [18], because the fast motion induces pronounced movement of the spine within the vertebral
column, obstructing invasive recordings [19]. But based on the low precision of monoaminergic neuromodulation in
other CNS regions [20], it is generally accepted that also the spinal serotonergic system acts purely by the diffuse
modulation of motoneurons innervating several joints [9, 16].

However, recent research on the control of compliant biomimetic robots has challenged this concept based on
the dynamics of these mechanical systems. The resulting robotic controller shows a high functional similarity to the
raphe nuclei (Figure 1) but predicts that the serotonergic system should disparately scale the gains of motorpools
acting on different joints of the same limb [21]. If serotonin predominantly amplifies the actuators of the joints
showing particularly large movements, it will reduce, for example, recruitment of a muscle whose actuated joint is
mechanically blocked. Experiments on biomimetic robots have also shown that under less extreme changes in the
mechanical conditions, which just favors the movement of a particular joint, the energy consumption after joint-
specific gain scaling matches the performance of computing-intensive optimal control [22]. The raphe feedback loop
is the unique candidate for this functionality, as it forms the only known circuit that accumulates information on the
joint movement and accordingly scale the gains of the involved actuators [23].

The present paper experimentally demonstrates that the central nervous system (CNS) indeed applies spinal
neuromodulation with the predicted high topographic precision while it controls compliant motion. When subjects
perform large movements of an individual joint, the CNS specifically increases the excitability of the motoneurons
driving the respective joint. The same motoneurons are significantly less excitable after movement of other joints on
the same limb. The excitability change is observable long after the cessation of the motor signals and the movements
that triggered it.

These findings demonstrate that during changing mechanical conditions, serotonergic neuromodulation adapts
the relative muscle forces across an individual limb. The ionotropic motor circuits that drive the muscles are relieved
of this task and may even consist of a simple neuronal synergy circuit which sends a timing signal to all involved
actuators simultaneously. As the effect is observable for a few hundred milliseconds after cessation of the triggering
stimulus, neuromodulation can adjust the motoneuron gain to the information accumulated across the movement
cycle, while being fast enough to react to changing mechanical contexts. Robotic control theory thus leads to the
insight that the simple serotonergic motor feedback loop can maximize the amplitude of an ongoing highly dynamic
movement and reduce its metabolic demands.
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Figure 1: Schematic analogy between the robotic controller (left) that predicts topographically specific neuromodula-
tion and the projections from the raphe nuclei to spinal motoneurons (right). The robotic control diagram illustrates
that the controller receives sensory information on the position of the elbow, denoted «,, and the shoulder, which is
mechanically blocked in the exemplary setup illustrated here. The controller identifies the joints with particularly
strong sensory signals (paths with high arrow density), and specifically amplifies their motor signals. The amplifi-
cation decays with a time constant of few 100 ms. The resulting movement is dominated by joints that optimally
exploit their elastic elements and was demonstrated to show optimal energy efficiency even in quickly changing envi-
ronments. The raphe nuclei similarly receive sensory input from the elbow, sens,, and shoulder, senss. Accordingly,
they modulate the motor signals by releasing serotonin that scales the gains w, and wgs of motorpools driving the
elbow and shoulder, respectively. According to the present experiments, serotonin specifically increases the gain of a
motorpool during movement of its innervated joint. This effect drastically simplifies the motor control, because all
actuators can be driven by an ionotropic signal from the same synergy circuit p. Such a synergy signal may originate
from a single pool of reflex neurons, M1 neurons, or a central pattern generator. Figure by Tilo Wiisthoff.
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Figure 2: Experimental setup. During the experiments, the subjects rotated either their elbow or shoulder joint
in a horizontal plane, as guided by a manipulandum. The wrist was immobilized throughout the trials by a stiff
splint. After stopping the rotation at the intersection point of the elbow and shoulder rotations, the arm was rapidly
perturbed to excite a monosynaptic stretch reflex in either the brachioradialis or posterior deltoid. The reflex response
was measured by EMG electrodes (gray circles). To determine software-based constraints that the manipulandum
applies for the guidance of motion, the trajectories of the pure elbow and shoulder rotation were determined prior to
the main experiments. For this purpose, the shoulder and elbow were consecutively immobilized by a second splint
and the subject rotated the free joint back and forth for 300s. The resulting hand position was continuously recorded
and fitted by a circle to determine the center and radius of rotation of the target trajectory. The schematic shows
the exemplary recorded hand positions of one subject.

Results

The predicted topography of the raphe motor feedback loop was experimentally tested on human subjects. The
functional hypothesis predicts that the excitability of motorpools is higher following rotation of their innervated joint
than after rotations of other joints in the same limb [21, 23]. In each trial, the subject first repeated strong and fast
rotations of either the right elbow or right shoulder joint for 30s. The rotations were guided by a manipulandum,
i.e., a machine that applies translational forces to the arm based on its state (Figure 2). After 30s, the manipulan-
dum stopped the movement in a predefined default arm posture, and the motoneuron excitability was measured in
either the brachioradialis or posterior deltoid muscles. Specifically, after the electromyography (EMG) signal of the
respective muscle had decayed to its resting value, the motoneuron excitability of either muscle was quantified by its
EMG response to a monosynaptic stretch reflex. The reflex was elicited by mechanically perturbing the target joint.
According to the study hypothesis, rotating a joint should enhance the monosynaptic reflex response of its associated
muscle. Thus, the monosynaptic reflex response of the brachioradialis should be enhanced following elbow rotation,
whereas the deltoid should show a higher reflex response following shoulder rotation.

Topographically precise gain scaling

As predicted, the brachioradialis and the deltoid showed a significantly enhanced monosynaptic reflex response after
rotation of their respective actuated joint. Averaging over all subjects, the reflex response of the brachioradialis
was higher after elbow than after shoulder rotation at p = 1.0 x 10~* (Figure 3a; linear mixed-effects models and
two-tailed t-test: df = 379, t = 3.8). Conversely, the reflex response of the deltoid was higher after shoulder than
after elbow rotation at p = 1.7 x 10~* (Figure 3b; df = 338, t = 3.9). When fitting the linear mixed-effect models
to the reflex recordings, the residuals were normally distributed (panels ¢ and d of Figure 3). The predicted reflex
behavior was also observed in individual subjects, as illustrated for an exemplary subject in panel e and f of Figure 3.
The individual reflexes were elicited by the manipulandum, which rapidly moved the subject’s wrist. The response
EMG occurred after a delay, which consisted of a mechanical delay until accelerometers detected the stretch onset at
the perturbed joint, and of the neuronal transduction time (panel g and h of Figure 3). For the statistical analysis,
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Figure 3: Monosynaptic reflex responses after movement of the shoulder or elbow joint. a) Averaged over all subjects,
the right brachioradialis showed a higher monosynaptic EMG response to stretching after rotating the right elbow
than after rotating the right shoulder. b) The opposite effect was observed for the right posterior deltoid. Vertical
solid lines indicate the onset of the joint perturbation. The shaded areas indicate the standard errors in the EMG
signals at each time step. Statistical significance was determined by fitting a linear mixed-effects model to the reflex
response, averaged over the indicated window, of the respective muscle. As required for linear mixed-effects models,
the residuals for both c¢) the brachioradialis and d) the posterior deltoid were well fitted by a normal distribution
(dashed curves). Reflex responses of €) the right brachioradialis and f) the posterior deltoid of an individual subject
resembled the subject-averaged responses. Individual reflex responses in g) the brachioradialis or h) the deltoid
were elicited by mechanically perturbing the subject’s hand along the elbow or shoulder joint, respectively. The
angle of the other joint remained comparatively constant. After a mechanical delay, the perturbation accelerated the
lower arm for the brachioradialis or the upper arm for the deltoid, as measured by accelerometers that recorded the
horizontal movement of the respective arm segment. Following a neuronal transduction delay, the EMG electrodes
recorded the monosynaptic reflex response in the perturbed muscle, while the other muscle remained silent.

the EMG responses were averaged over the time window from 25 ms to 50 ms and from 20 ms to 45 ms after onset of
the joint stretch for the brachioradialis and the deltoid, respectively. These time windows are known to start after
the neuronal transduction delays and end before onset of the polysynaptic reflex responses [24, 25].

Verifying the assumptions on the joint movement

The study design imposes two assumptions on the rotatory movement that triggered the gain scaling: First, the two
movement conditions were assumed to be clearly divisible into rotation of the elbow and rotation of the shoulder
joint, respectively. Second, the subjects were assumed to perform strong and fast movements, which are known to
be shaped by compliant elements in the body. As the original robotic controller was designed to minimize the high
metabolic demands of these specific movements, its neuroscientific predictions must be tested in such highly dynamic
movement scenarios. The above assumptions were verified by recording rotatory movements of all subjects.

In agreement with the first assumption, the differentiation between elbow and shoulder rotation is evident from
the angular trajectory of the elbow and the shoulder joint, measured by goniometers, and from the EMG of the
bradioradialis and posterior deltoid. For one exemplary subject, these measures are presented in panel a and b of
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Figure 4: Quality of manipulandum-guided movement for one exemplary subject. Depending on the trial, the
subject was guided to perform a rotation involving either the a) elbow or b) shoulder. The angles of the joints, as
measured by goniometers, confirm that the two conditions could be clearly differentiated. The difference between
the two conditions is also evident from the EMG of the brachioradialis, which actuates the elbow, and the posterior
deltoid, which actuates the shoulder.

Figure 4 for elbow and shoulder rotation, respectively. When the subjects were guided to perform elbow rotations,
the peak angles were on average 7.0 & 2.8 (s.d.) times higher in the elbow than in the shoulder trajectory. Conversely,
when the subjects were guided to perform shoulder rotations, the peak angles were on average 3.5 = 0.9 (s.d.) times
higher in the shoulder than in the elbow trajectory. The EMG traces of the observed muscles further support
that subjects performed clean movements of individual joints. For each subject, both the peak and the average
brachioradialis EMG were higher during elbow than during shoulder movement and vice versa for the deltoid.

In agreement with the second assumption, all subjects performed strong and fast movements. In each movement
cycle, the peak forces exciting the elbow and shoulder rotation were (19 +2)N and (22 £ 6) N (s.d.), respectively.
This resulted in peak velocities of (74 4+ 8)cms™! and (72 +9)ecms™! (s.d.), respectively.

Excluding diffuse neuromodulation as cause of observed gain scaling

According to the study hypothesis, the different motoneuron excitabilities of the brachioradialis and deltoid arise
from topographically precise neuromodulation. The differences may, in principle, also arise from the time delay
between each rotation and the subsequent excitability measurement. Over the delay interval, the effect underlying
increased motoneuron excitability potentially decayed. The delay, which accounted for the time that motoneuron
activity required to return to rest, varied from trial to trial. In this alternative scenario, gain scaling is caused by
purely diffuse neuromodulation, and lower observed motoneuron excitability was caused by a higher delay before the
excitability measurement. However, under conditions of higher motoneuron excitability, the delay was lengthened.
Averaged over all trials of all subjects, the brachioradialis perturbations were delayed by (0.35 4+ 0.68) s (s.d.) after an
elbow rotation, longer than the delay of (0.23 £0.69)s after a shoulder rotation. This relationship was statistically
significant at p = 2.3 x 1077 across all subjects (linear mixed-effects model and two-tailed t-test; df = 379, t = 5.3)
and was observed in 15 out of 16 individual subjects. Meanwhile, the perturbations of the deltoid were delayed
by (0.33 £0.26)s (s.d.) after a shoulder rotation and by (0.22 4 0.69) s after an elbow rotation. This relationship
was also statistically significant at p = 3.9 x 1076 across all subjects (linear mixed-effects model and two-tailed
t-test; df = 338, t = 4.7) and was observed in 15 out of 16 subjects. Thus, the observed differences in motoneuron
excitability cannot be explained by the different delays between the rotations and the excitability measurements.
During the trials, the proprioceptive input that triggered the raphe nuclei and the resulting motoneuron gains
were quantified by indirect recording methods. Indirect measurements provide only relative statements on these
two parameters and prevent determination of their precise units or amplitudes. Furthermore, the proprioceptive
inputs to the raphe neurons originating from the elbow and shoulder muscles cannot be compared. Despite these
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limitations, the following analysis demonstrates that diffuse neuromodulation cannot explain the different motoneuron
excitabilities after elbow and shoulder motions. The only reasonable explanation is topographical precision in the
serotonergic system. Here, diffuse neuromodulation means that the raphe nuclei behave as a single pool of neurons,
where all neurons in the pool receive the same combination of proprioceptive input characterizing the movement of
individual joints and form the same projection pattern to the motorpools innervating the brachioradialis and the
deltoid.

This analysis requires two assumptions that are supported by previous studies. First, during the present experi-
ments, the sensory input sens, of the elbow muscles to the raphe nuclei was higher during an elbow rotation, denoted
Qte, than during shoulder rotation, denoted s (the major symbols are also explained in Figure 1). The opposite was
true for the shoulder muscles, whose sensory input is denoted by sens, [26, 27, 28|. That means,

sense(Ge) > sensq(ds) , (1)

senss (&) > senss(de) - (2)

Second, the serotonin released by the raphe nuclei onto motoneurons monotonically increases with increasing pro-
prioceptive input [10, 29]. The release multiplicatively scales the gain of motoneurons driving elbow flexors, w,, and
shoulder extensors, ws, from their initial gain we and wyp, respectively [16]. This process can be modeled as

We = Weo * (MeeSENSe + MgeSeNSs) (3)

Wy = Wyo - (MesSeNSe + Megsenss) . (4)

Here, the constant of proportionality m;; quantifies how the raphe nuclei affect the gain of motoneuron pool j when
they receive proprioceptive input sens;. Both i and j can refer to the elbow, e, or the shoulder, s. The higher-order
interaction terms of sens, and sensg are likely to be negligible, because the raphe feedback loop receives proprioceptive
inputs by a mono- or at most a disynaptic pathway [10] and monosynaptically releases serotonin into the motoneuron
pools [30]. Importantly, the two stated assumptions are independent of the precise amplitude of the sensory input
and of the ratio of the input from different muscles.

As illustrated in Figure 1, the raphe neurons are predicted to provide topographically precise neuromodulation
that predominantly amplifies the actuators of the joints delivering a large proprioceptive input. Topographic precision
means that at least one of the following holds:

Mee > Mege (5)

Mes > Mes - (6)

In contrast, the current literature suggests that the raphe nuclei act on the motoneurons by diffuse neuromodulation
alone, implying that

Mee = Mge (7)

Mes = Mg - (8)

To decide between these two options, recall that the measured gain of the elbow muscle was significantly higher after
an elbow movement than after a shoulder movement, and vice versa for the shoulder muscle. That is,

We(fre) > we(ds) 9)
ws(s) > wg(Ge) - (10)

Equations (3) to (10) can be rearranged to show that

1
—Mee > Mse (11)
~
YMgs > Mes - (12)

The factor ~y, obtained as

)= sensg (G ) — sensg (G ) (13)

sense (G, ) — sense(&s)

must be positive according to equations (1) and (2). Depending on how the proprioceptive input is quantified,
equations (11) and (12) distinguish the following three cases:
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0<y <1l = mgs > Mes (14)
Y=1 = Mee > Mge A Mg > Mg (15)
Y>1 = Mee > Mo - (16)

When v > 1, it is not logically necessary that also mg > mes, but possible depending on the unknown absolute
amplitude of the proprioceptive input. The same reasoning applies to v < 1 and the statement mee > mge. In
conclusion, equations (14) to (16) prove that, regardless of how the proprioceptive input is quantified, the serotonergic
feedback loop affects the motorpools not by a diffuse mechanism, but by topographically precise neuromodulation.

Discussion

The present study argues that serotonin amplifies the gain of motorpools with high topographical precision after
persistent motion of individual joints. This finding contradicts the widely held assumption that the serotonergic
system acts purely by diffuse neuromodulation in the spinal cord [9, 16]. More specifically, the motoneuron excitability
was increased for motorpools that innervate a moving joint, while motorpools of resting joints showed a smaller
excitability. To verify this, human subjects performed strong and fast periodic rotations primarily moving either
their elbow or their shoulder joint. After repeated rotations, a monosynaptic stretch reflex was elicited and its EMG
response quantified the motoneuron excitability. Rotation conditions that caused a higher motoneuron excitability
were thereby found to be associated with longer time delays between the end of the rotation and the excitability
measurements. As this delay gave the underlying effect time to decay, it can be expected that the observed difference
in motoneuron excitability was even more pronounced directly after a rotation than observed here. The increased
motoneuron excitability was observed several hundred milliseconds after cessation of the rotatory movement and the
corresponding muscle activity, meaning that the excitability change outlasted the action that triggered it.

According to wide-ranging evidence, the motoneuron gain is scaled by the raphe nucleus obscurus and pallidus,
as they receive proprioceptive input [10, 11, 12] and accordingly release serotonin into the spinal cord [13, 14]. This
motor feedback loop is responsible for approximately 90 % of the serotonin in this region of the central nervous system
[13]. In arecent review, Stratmann et al. [23] demonstrated that neither ionotropic nor non-serotonergic metabotropic
circuitry provides an alternative explanation for the observed spinal excitability and its time scale. The protocol of
the present study suppressed non-serotonergic effects that are known to change motoneuron gain, namely, different
joint positions [31], pre-activation of motoneurons [32], and synaptic plasticity [33]. For this purpose, the perturbation
parameters, such as the initial position as well as the stretch duration and distance, were kept constant. Additionally,
the muscles were at rest prior to perturbation, and the trials under the different conditions were equally distributed
over time. Wei et al. [9] reported that the reflex amplification observed several hundred milliseconds after strong
proprioceptive input is elevated by serotonin agonists and blocked by its antagonists. Thus, it must be governed by
serotonergic neuromodulation.

The present study was designed to non-invasively prove the topographic precision of gain scaling. It overcomes
the limitations inherent in non-invasive recordings, namely, that the joint movement and muscle EMG is only an
indirect measure of the proprioceptive information during rotatory movements, and that the EMG response to a
stretch reflex is an indirect measure of the motorpool gain. These measures yielded only relative values for individual
joints or muscles. In particular, the movement and the EMG of the muscles were substantially more pronounced
during rotation than during quiescence of the associated muscle. As both parameters are known to monotonically
increase the proprioceptive signals [26, 27, 28], it can be deduced that the raphe nuclei received more input from
elbow proprioceptors during elbow rotation than during shoulder movement, and vice versa for the shoulder. The
resulting excitability of the brachioradialis was higher after elbow movement than after shoulder movement, and vice
versa for the deltoid. Mathematically, these findings were sufficient to prove the topographic precision of both the
proprioceptive input to the raphe neurons and their projections to motorpools.

Topographically precise signal processing is compatible with previous anatomical studies on the individual steps
along the serotonergic motor feedback loop. Proprioceptive signals are forwarded to the raphe pallidus and obscurus
with a delay of 20 ms, implying a monosynaptic or a strong disynaptic transduction [10]. In turn, the nuclei project
exclusively to the spinal cord [34, 35], and release serotonin through well-defined synaptic connections [15]. The
collateralization degree of these projections [36] are comparable to that of pyramidal neurons, which induce joint-
specific effects [37].

Although the present study focuses on arm movement, topographically precise neuromodulation is also expected
during leg movement, because the raphe feedback loop acts similarly across limbs and conditions. Scaling of motorpool
gains has been observed in the upper limbs during movement [7] and static force exertion [9, 38], and in the legs
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during jumping [8], walking, and running [39]. In the lobster, it is even known that serotonin disparately increases
the firing of different muscles in the same leg [40]. In the phylogeny, the serotonergic motor feedback loop is in
general well-conserved from invertebrates to mammals [41], and also its topographic precision is still observable in
the human arm according to the present results. Thus, it is likely that the topographic precision of the serotonergic
system is also conserved in mammalian locomotion control.

The evolutionary advantage of topographically precise neuromodulation is revealed in the robotic control algo-
rithm that predicted it. Owing to its unique properties, precise serotonergic neuromodulation is ideally suited to
simplify the control of fast periodic movement and to minimize its energy consumption. This inference is supported by
our previous analytic derivations and computational simulations based on previous serotonin dynamics models [42].
In functional resemblance to the robotic controller [43], the topographically focused serotonergic neuromodulation
amplifies the motor signals along the optimal, local, linear approximation of the resonance mode of the mechani-
cal system in a least-squared sense [21]. Experiments in biomimetic robots demonstrated what this phenomenon
implies: It exploits the compliant properties of a locomotor system. Under mechanical conditions that are typical
for biological motions, such as nonlinear dynamics, physical noise, and damping [44], the energy efficiency of the
resulting motion matches the performance of computationally intense optimal controllers. To achieve the high motor
performance, a common motor signal was sufficient to drive all actuators involved in the movement simultaneously.
Such a signal can be created by a simple neuronal synergy, such as a single pool of excitatory reflex neurons, a central
pattern generator, or a pool of M1 neurons [21]. The serotonergic feedback loop parallels this ionotropic synergy
circuitry and can adjust the ionotropic signals by non-local learning, i.e., learning based on information that is not
processed by the premotor interneuron or the motorneuron. The raphe nuclei can thus adapt the ionotropic control,
for example, as a runner steps from a stiff to a compliant ground. To counteract the decreasing ground stiffness, the
runner increases his leg stiffness and thereby straightens his knee [45]. Still, he exerts the same ground contact force
to maintain his energy-efficient stride frequency [45]. For this purpose, the CNS scales up the activation of ankle
muscles relative to that of the knee muscles [46]. Serotonergic neuromodulation is the ideal candidate for this task,
because it acts sufficiently slow to adjust the motoneuron gain to information accumulated across the movement
cycle, while it decays quickly enough to react to the changing tracks [23, 43]. .

In addition to the neuroscientific findings, the present study reveals a new methodology for neuroscience to
generate promising research hypotheses. As exemplified in Figure 1, neuroscientists can apply the large set of
algorithms developed for the control of biomimetic robots as blueprints to identify functionally analogous neuronal
circuitry. This type of knowledge transfer fundamentally differs from the previous contributions of robotics to
neuroscience. According to recent reviews [47, 48|, neuroscientists have used robotics analysis tools only for analyzing
biological motor control and for replicating their obtained principles on biomimetic robotic systems in order to expose
incomplete knowledge. The newly proposed methodology fully reverses the existing bionic knowledge transfer, which
seeks engineering solutions from biological knowledge. Instead, the proposed enginic knowledge transfer seeks to
understand biological motor circuits from engineering solutions.

Enginics is a new avenue that is promising because of a recent fundamental change in the field of robotics. Al-
though many of the first robots already mimicked animals, the various mechanical features underlying the remarkable
biological movement performance, such as passive compliance, are only now being mimicked by robotics engineers
[49, 50]. This trend has markedly aligned robotic control theory with neuroscience. Conventionally, robotic control
enforces the desired dynamics on a given mechanical system by mechanisms such as feedback linearization [51], vir-
tual model control [52], or artificial damping [53]. Modern roboticists are increasingly designing control algorithms
that exploit the beneficial natural dynamics of novel biomimetic robots. Thereby, they can produce movement that
is stable [54] and minimizes the energy consumption in quickly changing environments [44]. These design principles
have such substantial benefits that neuronal structures in the CNS have likely evolved an analogous functionality
[565, 56]. Roboticists typically characterize the function of their algorithms in detail, but without considering their
biological plausibility. Therefore, the source of algorithms suitable for future enginic projects is large. Especially,
these algorithms can help to elucidate the neuronal control of highly dynamic movements, since traditional invasive
analysis methods are obstructed by the pronounced movement of the spinal cord in vivo [19].

In summary, the results of this study demonstrate that the serotonergic innervation of spinal circuitry provides
not merely the diffuse modulation of ionotropic circuitry, as is widely assumed. Rather, it forms a computationally
substantial network within the network of the ionotropic motor circuitry. By virtue of its topographic and temporal
precision, serotonin sustains metabolically efficient motions in changing environments. Future work should test
whether the serotonergic circuitry is similarly involved in higher brain functions requiring topographic precision,
which may mistakenly be attributed to ionotropic effects [23]. In addition, the present results demonstrate that
robotic control algorithms have become an efficient source of models that identify the unknown characteristics of
neuronal motor circuitry and challenge misconceptions about them. These algorithms can diminish the common
problem that neuroscience is data rich and theory poor [57].
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Methods

Subjects

Sixteen healthy, right-handed subjects (aged 17-30 years, mean 26 + 4 (s.d.); 12 male) participated in the experi-
ments. All subjects were naive to the purpose of the study and provided informed consent prior to participating.
The study was approved by the Ethics Committee of the Medical Faculty of the Technical University of Munich.

Experimental apparatus

Throughout the experiments, subjects wore a stiff splint on their right arm, which prevented wrist movement. The
subjects’ hands were firmly attached to the endpoint of a manipulandum by a magnetic clutch with their palms
facing downwards. The safety clutch allowed detachment when a predefined maximal force was exceeded. Subjects
were seated in an adjustable chair facing the manipulandum, with their trunk tightly restrained by seat belts. Their
lower and upper arm were supported against gravity by the manipulandum handle and an arm rest that hung freely
from the ceiling, respectively. The manipulandum is a custom-built apparatus that controls the arm movement in a
horizontal plane. Being particularly stiff, fast, and strong, it delivers a high force and precise movement [58]. The
endpoint position was calculated from the positions of the motors (Linmot PS01-48z360F-C, NTI AG, Switzerland)
and the endpoint forces were measured by a six-axis force-torque sensor (minif, ATI Industrial Automation, USA).
As the position sensors and the force-torque sensor have a very small relative delay, a force exerted on the end effector
causes a change in the position readings less than 1 ms after being detected by the force—torque sensor. To record the
surface EMG, wireless electrodes (Trigno Avanti, Delsys, USA) were attached to the skin above the brachioradialis
and posterior deltoid muscle according to the recommendations by the SENIAM project [59]. The electrode attached
to the brachioradialis, and a further electrode attached to the upper arm, also recorded their horizontal acceleration
and thus the acceleration of the lower and upper arm, respectively. The movement of the elbow and shoulder joints
were recorded by wireless goniometers (SG110 and SG150B, Biometrics, USA). The intrinsic recording delay was
48 ms in the EMG electrodes and 96 ms in the accelerometers and goniometers. All delays were considered in the
following analysis. All signals were sampled at 2kHz. A computer screen was placed in front of the subjects. It
signaled the beginning of an individual trial and provided visual feedback on the movement.

Experimental design

Each subject underwent a set of preliminary recordings and the main experiment, lasting approximately 4.5h in
total.

The experiment was subdivided into a sequence of individual trials. In each trial, the subject first performed
a rotatory movement of either the elbow or shoulder joint, which was predicted to increase predominantly the
excitability of motoneurons driving either elbow or shoulder muscles, respectively. After movement cessation, the
motoneuron excitability was measured using a perturbation for a muscle driving the target joint. Between trials, a
delay of 30s allowed restoration of motoneuron excitability.

During the rotation tasks, the manipulandum exerted forces that guaranteed the desired rotation, as verified in
preliminary recordings described below. From the subjects’ point of view, the controlled mechanical system resembled
a point mass acted on by two springs: an almost rigid spring which pushed the handle back to its rotatory trajectory
in case of deviations, and a slack spring which pushed the handle back to its predefined equilibrium position along
the rotatory trajectory. The underlying controller of the manipulandum is detailed in the Supplementary Methods.
Based on theoretical work by De Luca et al. [60], the controller was developed to ensure a well-defined environment
for the subjects. In particular, it prevented interference from the mechanical manipulandum design, as verified in
Supplementary Figure 1.

The subjects were requested to produce an oscillatory rotation around the equilibrium position. Visual feedback
stipulated an amplitude of 0.105rad m~! /ry and 0.15rad m~* /rg for elbow and shoulder rotation, respectively, where
7o is the circle radius. After 30 s, the controller smoothly stopped the handle at the equilibrium point by exponentially
increasing the virtual damping.

Once the rotation had stopped, the motoneuron excitability of the brachioradialis or posterior deltoid muscle,
which drive elbow flexion or shoulder extension, respectively, was measured. The controller waited until the EMG
of the respective muscle had remained below its resting value, measured prior to the rotation, for 100 ms. Once
this condition was fulfilled, the manipulandum either extended the elbow or horizontally flexed the shoulder by 10°
within 60 ms. This perturbation excited a monosynaptic stretch reflex in the respective muscle. The reflex EMG was
measured and quantified the motoneuron excitability as described below.
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Trials were divided into four groups, defined by four combinations of rotation direction and subsequent perturba-
tion direction. Every subject completed a randomized sequence of 120 trials, consisting of 15 trials of each trial group
and 50 % catch trials without perturbations. Across subjects, trials were distributed to exclude training- or time-
dependent effects on the measured motoneuron excitability. Accordingly, the sequence of trials was constrained such
that at every of the 120 steps, exactly two subjects completed a trial from each of the four groups. Therefore, at each
step, eight subjects performed a trial while another eight subjects performed a catch trial. This design determined
the chosen number of 16 subjects. Apart from this constraint, trials from the four groups were equally distributed
along the sequence for each subject. Subjects received no prior information about the perturbation direction or the
occurrence of catch trials.

Prior to the experiment, each subject underwent four sets of preliminary recordings. First, the subject’s arm
was characterized to allow manipulandum guidance of the pure elbow and shoulder rotations. Starting from a pre-
determined zero position, the subject was requested to rotate either the elbow or shoulder joint for 30s while the
other joint was fixed by a mechanical splint. This task was completed 10 times. The handle position was recorded
and circles were fitted [61] to the trials as shown in Figure 2. The crossing position of the circles around the elbow and
the shoulder was defined as both the equilibrium position of the rotation and the initial position of the perturbations.
The rotation trajectory of both the shoulder and elbow movements could be fully defined by the equilibrium position,
the radii of the lower and upper arm, and the position of the shoulder-joint axis. As the trunk of the subject was
fixed, the center of the shoulder joint was assumed constant. For each subject, the standard error in the center
position of the shoulder joint was below 5mm, and the standard error in the lower and upper arm radii were less
than 4 mm and 6 mm, respectively.

Second, the rotatory movement was characterized, i.e., the quality of the controller and the arm characterization.
The subjects performed two trials with no perturbation: a rotatory movement of the elbow and a rotatory movement
of the shoulder. These measurements were used to test whether subjects performed joint-specific rotations and to
evaluate their occurring peak forces and velocities.

Third, subjects were habituated to perturbations. For this purpose, the manipulandum alternately perturbed the
brachioradialis and the deltoid 15 times each. Between two successive perturbations, the manipulandum moved the
arm back to the equilibrium position and waited for a random duration between 5s and 10s.

Fourth, the EMG signals of the brachioradialis and posterior deltoid were measured at maximum voluntary
contraction (MVC). This measurement was repeated after the main experiment to ensure that the electrodes had
remained properly attached.

Analysis of EMG data

All data were analyzed in Matlab 2017. The EMG electrodes outputted signals with a bandwidth of 20 Hz—450 Hz.
The signals were demeaned, rectified, and normalized to the MVC measurement. The EMG data were further
processed first to determine the monosynaptic reflex response to mechanical perturbations, and second to ensure
that the EMG of the observed muscle was at rest prior to this response.

The monosynaptic reflex responses of the brachioradialis and deltoid muscles were quantified based on their
EMG signals after perturbing the corresponding joint. The reflex response occurred after a time delay composed of
the mechanical delay between the movement of the manipulandum handle and the movement of the joint, and of
the neuronal transduction delay, which is illustrated in Figure 3g and 3h for two exemplary reflex responses. The
neuronal transduction delays of the brachioradialis and deltoid were set to 25ms and 20ms [24, 25|, respectively.
The mechanical delays were determined from the accelerometers attached to the lower and upper arm for the elbow
and shoulder perturbations, respectively. The onset of a joint perturbation was detected when the accelerometer
readings had exceeded their resting value by three standard deviations. To account for interfering oscillations of the
accelerometers after movement of the corresponding joint, the mechanical delays for each subject were averaged over
all trials where perturbation and rotation direction differed. After the reflex delay, the EMG response was averaged
over a time window of 25ms and normalized by subtracting its resting EMG as averaged over the 25 ms preceding
the perturbation. As EMG signals were restricted to positive values, the reflex response was defined as the natural
logarithm of the EMG response in the statistical analysis.

Prior to perturbations, muscles were ensured to be delaying the perturbations until the EMG signal of the
considered muscle had decayed to its resting value and remained there for 100 ms, as mentioned before. If the muscle
remained active within 3s after movement cessation, the perturbation was omitted and the respective trial was
repeated. Any information that distinguished trials with omitted perturbation from the catch trials was withheld
from the subjects. The resting detection was based on 3 recordings of the mean and maximum unprocessed EMG
signals, termed EMGean and EMGy,.x, respectively, over a 1s period before an individual trial. The recording
with the smallest EMGy,,x was chosen to prevent any measurement artifacts resulting from brief unintended muscle
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contractions. The EMG recordings within the range EMGax — EMGean around EMG ean were defined as the
resting EMG. In addition to the actions taken during measurements, trials were neglected in the data analysis if
the EMG exceeded its resting value by more than 20 % over a time period which could not be checked during the
trials. This period started 48 ms prior to a perturbation, corresponding to the delay of the EMG electrodes. It ended
10 ms after the perturbation, since this is the minimal possible neuronal transduction delay of monosynaptic stretch
reflexes [62].

A further analysis step ensured that any observed changes in the motoneuron gain could not arise from a muscle
activation remaining after a movement. For this purpose, the pre-reflex activity was matched between the different
rotation conditions for each subject. Accordingly, the EMG signal of the brachioradialis was averaged within the
first 10ms after the onset of elbow perturbations, as determined by the accelerometer. Elbow-rotation trials were
sorted from highest to lowest remaining muscle activation and iteratively excluded until the average muscle activation
equaled at most the average muscle activation of shoulder-rotation trials. The converse procedure was applied to the
recordings of deltoid perturbations.

Panels a and b of Figure 3 illustrate the reflex responses of the brachioradialis and deltoid, respectively, after both
rotation types. The responses were averaged over all trials of all subjects. To make the EMG responses comparable
across subjects for these plots, the muscular responses of the individual subjects were first normalized to a z-score.
The z-scores for the brachioradialis and deltoid muscles were calculated from the EMG recordings over the first
50ms and 45ms after perturbation onset, respectively. The different durations account for the different neuronal
transduction delays between the two muscles. The normalized values were averaged across all subjects during each
0.5 ms time step.

Statistical analysis

The present study examined whether the increased gain of the motoneurons after limb movement is topographically
precise. The gain increase of motoneurons was predicted to be higher after the movement of a joint actuated by
muscles innervated by the motorneurons than after movement of other joints. For the brachioradialis, this hypothesis
was tested on n, = 172 trials with prior elbow rotation and ng = 209 trials with prior shoulder rotation which had
passed the exclusion criteria stated in the previous section. For the deltoid, the respective number of trials amounted
to ne = 203 and ng = 137. The hypothesis was tested by fitting a linear mixed-effects model to the observed reflex
responses 7; of the brachioradialis and deltoid muscles. The model is given by

r; = Bo + b1 - rot; + b07m + bl,m -rot; + €m - (17)

Here, By and /3, denote the fixed-effect regression coefficients, by, and by, are the random-effect regression coeffi-
cients, and €;,,, denotes the residuals. The subjects were denoted by m and differences between them were considered
as random effects. The fixed effect rot; describes whether in trial number i the rotating movement recruited mainly
the subsequently perturbed or the non-perturbed joint,

(18)

; {—I—l if rotation and perturbation involved same joint ,
rot; =

—1 if rotation and perturbation involved different joints .

The assumption states that the reflex response in either of the two muscles is higher after its innervated joint has
moved. This implies that $; > 0. The corresponding null hypothesis 81 = 0 was tested by a two-tailed t-test. Since
the hypothesis predicts that the effect must be significant in both muscles simultaneously, the linear fixed-effects
model described in equation (17) was individually fitted to the brachioradialis and deltoid measurements, and no
correction for multiple comparisons was required. The linear mixed-effects model assumes that the residuals €;,,, are
normally distributed, consistent with the histograms in Figure 3¢ and Figure 3d.

To test whether the perturbation delays after an elbow and shoulder rotation were significantly different, the
same linear mixed-effects model described in equation (17) was applied. Here, the dependent response variable r;
was chosen as the natural logarithm of the delay between the movement cessation and the perturbation onset. The
logarithm accounts for the fact that the delay is restricted to positive values. The linear mixed-effects model was
fitted to the measured delays of the above-described trials.

Data Availability Statement

The authors declare that the recorded data that support the results of this study are available on figshare under
the private link https://figshare.com/s/2a2633641854d2ffb21b. After publication, it will be available under
https://doi.org/10.6084/m9.figshare.7467023. A brief description of the provided data files is provided in the
supplementary information.
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Supplementary Methods

The Methods section describes the virtual mechanical environment of the subject’s arm. This environment enforced
the subject to move along a circular trajectory that involved either pure elbow or shoulder rotation. The following
two sections describe the controller of the manipulandum that guaranteed this well-defined environment.

Friction compensation, decoupling of the mass matrix, and mass scaling

The controller artificially compensated three interfering effects originating from the mechanical manipulandum design:
the high friction that typifies strong linear motors, the high mass m = 12.9 kg of the manipulandum arms and motors
which must be moved by the participants, and the coupled dynamics of the manipulandum arms. After reducing
the friction, scaling down the mass, and decoupling the manipulandum dynamics, the handle attached to the subject
reacted like a frictionless point mass to the forces exerted by the virtual environment and by the subject, denoted
by F, and Fj, respectively,

s m-I&=F,+ F; . (S1)

In equation (S1), I denotes the 2 x 2 identity matrix and x € R? is the handle position in the subject’s coordinate
system. The mass was artificially scaled down by a factor of s = 0.4.

The dynamics of the manipulandum, which experiences a friction force 7¢ and reacts to the motor force 1, as
well as the force F; exerted by the subject on the handle, are given by

M(q)§+C(q,4)q =Tm+ I (@) F+7¢ . (S2)

For convenience, this equation of motion is stated in the coordinate system spanned by the motor positions g,

12— 2% — x9
= S3
q ( E=wl ) (S3)
where [ = 1.0m is the length of the manipulandum arms. The Jacobian

81‘1

J

(S4)

transforms the positions and forces from the subject coordinate system into the motor coordinate system, in which
the forces are denoted by 7. Note that J(q) is a square matrix which is non-singular within the coordinate range
allowed by the motor end stops and is hence invertible. The off-diagonal entries in the symmetric, positive-definite
inertia matrix M (q), along with the generalized Coriolis plus centrifugal matrix C(q, §), imply a mechanical system
with coupled dynamics. For control purposes, these matrices were derived by approximating the manipulandum as
five point masses: one for each of the two motors moving along its slider, one at the center of each arm, and one at
the center of the handle. The mass distributions of the individual modules were neglected because the modules were
barely rotated throughout the experiments.

Without compensating for the interfering effects of the manipulandum mechanics, the commanded motor force
would amount to J7(q)F,. In the mechanical system with decoupled dynamics and a scaled mass, the commanded
motor force was instead adjusted to

F. = ﬁ - JTA(x) [F, + Fy) — J7(q)F, + p(w, &) , (55)

where
Alx) =T "M(q)J '(q),
p(z, &) = Clq,4)J " (q) - M(q)J ' (a)J(q,9)T ' (q) - (S6)
For motors exerting a force 7, the manipulandum dynamics in equation (S2) can be reformulated as
s-m-I&=F,+F+s-m-J Ax)rs . (S7)

Under the adjusted motor force, the manipulandum behaves like a point mass that is downscaled by a factor of s.
As a beneficial side effect, also the effective friction experienced by the subject was downscaled by the same factor.
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The remaining uncompensated friction 7¢ of the device was compensated by a friction observer. The manipu-
landum observes the commanded motor force 7,, and measures the force exerted by the subject Fy at the handle.
To compensate the remaining friction, the expected movement of a frictionless manipulandum was compared to the
actual movement observed by the position sensors in the motors. Any deviation between these two movements was
ascribed to friction. Mathematically, the friction was estimated by the time integral

r(t) = K; {p(w — p(0) - /0 (CTG+ 7+ I (q)F) ds | (8)

1
0.01s

p(t) = M(q)q - (59)

The time integral approximates the friction of the system,

where the initial condition is 7(0) = 0, the gain K; = I, and the generalized momentum is given by

lim 7(t) = 7¢(t) . (S10)

K]—)OO

To show this, equation (S2) can be combined with equation (S8) and with the fact that M(q) — 2C(q, §) is skew-
symmetric, resulting in .
M(q)=C"(q,9)¢+C(a.4)d - (S11)

The time integral is then given by
’i’(t) = K] . (Tf — 7‘) . (812)

To compensate for the observed friction, the commanded motor force must be reduced by 7(t). Therefore, the motor
force commanded throughout the experiments was

T = T — (1) . (513)

The resulting manipulandum dynamics are then described by plugging 7,,,, computed by equation (S13), into the
general equation of motion (S2):

s-m-I& =F,+F.+s-m-J ' Alx) [ty — 7] . (S14)

From the subject’s viewpoint, this compensated mechanical system resembled a point mass s-m = 5.2 kg acted upon
by forces from the virtual environment, the subject, and the scaled-down friction of the manipulandum dynamics.
To evaluate the controller performance, the manipulandum trajectory was recorded while pulling the handle
under a constant force Fy in the absence of an environmental force, i.e., F, = 0. In successive trials, the pull force
was increased from 1N to 10N by attaching different weights via a deflection pulley. Under gravity, the handle was
accelerated in the direction characterized by the equal movement of both motors. Since the effective sticking friction
is at a maximum along this direction, the controller will show even better performance along the other directions.
Without friction compensation, the friction of the manipulandum required forces higher than 20N to initiate a
movement. Under ideal friction compensation, the total distance traveled in time ¢, predicted by equation (S1), is
given by
IF|
s-m

Distance? (t) = - (t — to) = slope - (t — to) . (S15)
Supplementary Figure 1la illustrates this linear behavior. The repeatability was checked in 10 trials under a 5 N pulling
force. The standard deviation of the resulting movement (shaded regions in the figure) is barely visible. Between
trials, the distance traveled within the first second differed by less than 1.3%. In linear fits to trials with different
|Fy|, the adjusted R? was consistently above 0.994 and converged towards 1.0 with increasing weight (Supplementary
Figure 1c). As predicted by equation (S15), the slope? was proportional to |Fy| (Supplementary Figure 1c). The
delay t¢, defined as the time required for the friction observer to overcome the sticking friction, decreased with |Fy|
and eventually fell below 30 ms (Supplementary Figure le). As the subjects performed particularly strong movements
throughout the experiments, the manipulandum rapidly behaved like a frictionless system.

When the mass matrix was fully decoupled, the handle was expected to move along the pulling-force direction,
i.e., along a straight line in the subject coordinate system. This behavior is shown in Supplementary Figure 1b. The
slope differed from the pulling direction only under very low forces (Supplementary Figure 1c). The adjusted R?
values were above 0.996, indicating good fitting of the linear model (Supplementary Figure 1d).
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Supplementary Figure 1: Evaluation of friction compensation and decoupling of the mass matrix of the manipulan-
dum. a) When varying the force on the manipulandum handle, the distance traveled by the handle should increase
proportionally to the second power of time. Here, the y-axis is accordingly scaled quadratically, so that the plotted
distance is expected to trace a straight line. The standard deviation of 10 trials under a pulling force of 5N is
indicated as the shaded area around the purple line. b) As the mass matrix is decoupled, the corresponding handle
trajectories should trace a straight line in the subject coordinate space x—y. ¢) Adjusted R? values of the linear fits
to the graphs in the previous subfigures. d) The squared slope of the linear fit of the traveled distance versus time
plots was expected to increase proportionally to the pulling force. The slope of the straight line in the x—y coordinate
space should be constant, and indeed converged already under low forces. e) The delay between controller onset
and movement of the manipulandum quantifies the sticking friction felt by the subjects. The delay was obtained by
linearly fitting the distance versus time plot and defines the parameter ¢ in the main text.

Enforcing circular trajectory

The simulated environment of the trials enforced a circular movement around the subject’s elbow or shoulder joint.
For this purpose, the controller exerted the sum of two forces on the subject’s arm:

FCZFrad+Fang~ (816)

The first force simulated an almost rigid spring which pushed the handle back to its circular trajectory when its
current distance r from the joint center deviated from the desired radius rg. This force was given by

Frad = _(krad . (T - TO) + drad s 1ok T) * €rad - (817)

The stiffness and damping constant of the near-rigid spring were kyaq = 4000Nm~! and dyaq = 300 Ns/m?, respec-
tively. The force acted along the radial unit vector e,,q pointing from the handle position to the joint. The radial
velocity 7 was derived from 7 and filtered through a discrete 2nd-order Butterworth lowpass filter with a cutoff
frequency of 50 Hz.

The second force simulated a slack spring which pushed the handle back to its equilibrium position along the circular
trajectory:

Fong = —70 - (kang - 0+ dang - &) - €ang - (S18)
The angular stiffness of the slack spring was kang = 250 Nrad~!m™!, and its angular damping constant was dang =
32Nsrad ™ 'm™! and dang = 35Nsrad 'm™! for the shoulder and elbow movements, respectively. Under the

damping effect, the subjects needed to repeatedly push the system to sustain the movement, thus preventing friction
overcompensation. The force F,;,, acted along the clockwise tangential unit vector e,,, and increased with the
angular deviation from the equilibrium position, a € [—, 7).

142



Description of the Supplementary Data

For researchers wishing to reproduce the study findings, the data are available on figshare under the link https:
//doi.org/10.6084/m9.figshare.7467023. The data include the preliminary recordings and the main experimental
recordings for each subject, as described in the Methods section. The MVC recordings taken before and after the
main experiments are denoted as prior and post, respectively. The main experimental data of each subject are
provided in separate files. Each file also summarizes the general information of the preliminary experiments and
states the order of the individual trials performed by the subject. The four trial conditions are denoted by integers
as follows:

1: Rotation of the shoulder, followed by a perturbation of the shoulder.

2: Rotation of the elbow, followed by a perturbation of the shoulder.

3: Rotation of the shoulder, followed by a perturbation of the elbow.

4: Rotation of the elbow, followed by a perturbation of the elbow.
A minus sign denotes no perturbation, implying that the EMG of the respective muscle remained above its resting
level and the trial was repeated. A single data file is provided for each trial where a perturbation was applied. Two
additional files describe the resting EMG directly before and after each of these trials.
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