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Abstract: The location of the Earth’s principal axes of inertia is a foundation for all the theories and
solutions of its rotation, and thus has a broad effect on many fields, including astronomy, geodesy, and
satellite-based positioning and navigation systems. That location is determined by the second-degree
Stokes coefficients of the geopotential. Accurate solutions for those coefficients were limited to the
stationary case for many years, but the situation improved with the accomplishment of Gravity
Recovery and Climate Experiment (GRACE), and nowadays several solutions for the time-varying
geopotential have been derived based on gravity and satellite laser ranging data, with time resolutions
reaching one month or one week. Although those solutions are already accurate enough to compute
the evolution of the Earth’s axes of inertia along more than a decade, such an analysis has never been
performed. In this paper, we present the first analysis of this problem, taking advantage of previous
analytical derivations to simplify the computations and the estimation of the uncertainty of solutions.
The results are rather striking, since the axes of inertia do not move around some mean position fixed
to a given terrestrial reference frame in this period, but drift away from their initial location in a slow
but clear and not negligible manner.

Keywords: earth gravity mission; GRACE; Satellite Laser Ranging; principal axes of inertia;
earth rotation

1. Introduction

As for any extended body, the Earth’s general motion, i.e., its orbital translation and its rotation,
depends on a number of dynamical parameters associated to its mass distribution, particularly the
center of mass (COM) and the inertia matrix, as well as on the gravitational field that controls the
Earth’s interplay with external bodies, including either natural or artificial satellites. As the Earth
undergoes continuous changes at a large variety of time scales, from its inner to outer components,
all of those dynamical parameters do not have steady values, but vary with time [1]. Their variations
are so small compared to the constant reference values that they could not be observed until recent
years, triggered by many geodetic satellite missions and the development of the main space geodetic
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techniques. The most extended time series for such parameters are those providing the COM, to which
the satellite laser ranging (SLR) technique is the most sensitive. During many years, SLR was also the
main tool to determine the gravity field of the Earth, derived from an expansion of its gravitational
potential in terms of spherical harmonics (SH) [2]. The determination of the Earth’s gravity field
reduces to the determination of the coefficients of the spherical harmonics (SHC), also known as Stokes
coefficients, until certain attainable degree and order. SLR had a decisive contribution to infer the
early accurate, steady gravity field models, and also allowed determining the time variations of an
increasing number of lower degree SHC over the last decades [3–6]. If the COM, given by the three
first-degree SHC, plays a vital role for the Earth’s orbit in the solar system and the dynamics of all the
spacecrafts orbiting around the Earth, regarding the Earth’s rotation, the most relevant parameters
are the second-degree SHC, linearly related to the inertia matrix [7]. In most textbooks and treatises
on dynamics, rotations are studied after reducing the inertia matrix to diagonal form, i.e., theories
and solutions of rotational problems are usually referred to the system of principal axes of inertia
(PAI)—either with origin at the COM or at other point fixed with respect to the body, depending on the
case at hand. Theories of Earth rotation are not an exception, and they are traditionally developed with
respect to a reference system whose axes are aligned with the Earth’s PAI. However, space geodetic
techniques were unable to provide accurate solutions for the Earth’s PAI until recent years, due to the
level of uncertainty of the second-degree Stokes coefficients. For instance, according to the Groten 2004
“best” estimates [8] of fundamental parameters of interest in astronomy and geodesy, the Earth’s axis
of major inertia was aligned with the axis of figure (or pole-to-pole axis) and the other two laid on the
equatorial plane, with the minor axis pointing to the longitude 14.92910◦ ± 0.00012◦W. However, a few
earlier interesting studies addressing aspects of the PAI time evolution from satellite-based gravity
models had already been published, mainly related to the creation of a dynamical reference frame
(e.g., [9]).

The launch of the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission
in 2002, reinforced by other posterior geodetic missions, contributed remarkably to improving the
accuracy and spatial-temporal sampling of the Earth’s gravity field [10]. The geopotential models
with constant Stokes coefficients that integrate GRACE data were already capable of determining
the small deviations of the Earth’s PAI out of the equator or the polar axis, whose magnitude is
below 1 arcsecond (as). Table 2b of Chen and Shen’s work [11] gives a good picture of the situation
before and after GRACE concerning the location of the PAI, as well as a quick comparison of the
advances of models EGM2008 and EIGEN-05C relative to the 2004 status [12,13]. Besides, the GRACE
mission allowed detecting time variations of the Earth’s gravity field with at least monthly temporal
resolution [10,14,15], a main goal of the mission design. Therefore, at present, we can compute not only
highly accurate mean positions of the PAI but also their time variations with similar time resolution.
However, the time evolution of the PAI location has never been investigated since the GRACE launch,
despite its clear relation to the Earth’s rotational dynamics. The closest topic seems to be the deviation
between the figure and rotation axes, useful to estimate the so-called secular Love number, of which
only mean values were computed [11]. One plausible explanation may arise from the difficulty of
the numerical computation of the PAI, especially if the error analysis associated with it is considered.
Leaving aside speculations, after the completion of the GRACE mission, we consider it is the right
time to obtain this new information from its data and find the main features of the PAI evolution.

In this paper, we use an approximate analytical method introduced by Barkin and Ferrandiz
in 2000 [16] for deriving the PAI oscillations due to the Earth’s elasticity yielding to the Moon and
Sun attraction and its rotation. The changes of the Earth’s PAI due to tidal and centrifugal (pole
tide) deformations are included in the background models used to derive the Stokes coefficients and
thus are excluded from the solution obtained in this paper by applying the same method to the time
series providing the variation of the second-degree Stokes coefficients. Among the different data
series available, we have chosen two independent solutions to present the results derived from the
GRACE-based SHC monthly values provided by the Centre for Space Research (CSR), as well as those
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derived from a SLR-based SHC series computed at the Deutsches Geodätisches Forschungsinstitut
Technische Universität München (DGFI-TUM) [7], with weekly resolution, which are described in
more detail below.

2. Methods and Data

2.1. Basic Equations

The fundamental equations used in this approach are basically the same as those employed in [16].
Therefore, we present a short summary of them with identical notation and refer to that paper for
additional details. For a given reference frame, the unnormalized second-degree Stokes coefficients are
related to the elements of the Earth’s matrix of inertia through Equations (1)–(4):

J2 = −C20 =
2C− A− B

2mR2 , C22 =
B− A
4mR2 , (1)

S21 =
D

mR2 , C21 =
E

mR2 , S22 =
F

2mR2 ,

where A, B, and C are the inertia moments and D, E, and F are the products of inertia. The axes should
be principal, and the Stokes coefficients (denoted with superscript p) hold the relations

Jp
2 = −Cp

20 =
2Cp − Ap − Bp

2mR2 , Cp
22 =

Bp − Ap

4mR2 , (2)

Sp
21 =

Dp

mR2 = 0, Cp
21 =

Ep

mR2 = 0, Sp
22 =

Fp

2mR2 = 0.

In the general case, the moments and products of inertia can be computed from the principal ones
using the rotation matrix M = (aij), which relates the coordinates Xnp = (x, y, z) and Xp = (ξ, η, ζ) of
a point in an arbitrary, non-principal reference frame, and the principal one, respectively:

Xnp = MXp. (3)

The relations among them are

A = Ap + (Bp − Ap)a2
12 + (Cp − Ap)a2

13, B = Bp + (Ap − Bp)a2
21 + (Cp − Bp)a2

23, (4)

C = Cp + (Ap − Cp)a2
31 + (Bp − Cp)a2

32, D = (Ap − Bp)a22a32 + (Ap − Cp)a23a33,

E = (Bp − Ap)a31a11 + (Bp − Cp)a33a13, F = (Cp − Ap)a11a21 + (Cp − Bp)a12a22.

The computation of the principal moments of inertia and the rotation matrix can be performed by
solving a cubic equation whose roots are the principal moments. The main steps of the procedure are
presented in several references (e.g., [11,16,17]).

However, when the deviations between the non-principal and principal frames are small and
second-order terms can be neglected, a simple analytical approximation up to the first order can be
derived, which allows obtaining the rotation matrix in the form

M =

 a11
∼= 1 a21

∼= F
B0−A0

a31
∼= E

C0−A0

a12
∼= F

B0−A0
a22 ∼= 1 a32 ∼= D

C0−B0

a13
∼= E

A0−C0
a23 ∼= D

B0−C0
a33 ∼= 1

 (5)
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From those equations, it is straightforward to show that the poles of the principal axes of inertia
on a sphere of radius R are given up to the first order by

xξ
∼= R, yξ

∼=
RF

B0 − A0
, zξ

∼=
RE

C0 − A0
, (6)

xη
∼=

RF
B0 − A0

, yη
∼= R, zη

∼=
RD

C0 − B0
,

xζ
∼=

RE
A0 − C0

, yζ
∼=

RD
B0 − C0

, zζ
∼= R.

In the above equations, the superscript 0 indicates that the relevant parameter can be evaluated at
a fixed time even though the remaining parameters usually vary with time and their actual values
must be used.

2.2. Simplifying Computations: Introduction of an Auxiliary Terrestrial Reference Frame (ATRF)

The international terrestrial reference frame (ITRF) [18] or similar frames (such as JTRF, DTRF,
and others [19,20]) are not close to the PAI frame. However, they can be transformed into a system
close to it by merely performing a rotation of about 14.9◦ westwards around the third axis, similar to
Groten’s “best” Stokes coefficients [8]. The resulting frame is called here auxiliary terrestrial reference
frame (ATRF). The ATRF does not have to coincide with the PAI at any time, according to the above
equations. The deviations are small enough to obtain the rotation matrix by deriving an analytical
approximation up to the first order. The justification is the same as presented in [16] to relate the
PAI frame of the Earth in an ideal undeformed state to the instantaneous PAI frame after its tidal
deformation, where the following equations were derived:

xξ = 1, yξ =
1
2

∆S22

C0
22

, zξ =
∆C21

2C0
22 − C0

20
, (7)

xη = −1
2

∆S22

C0
22

, yη = 1, zη = − ∆S21

2C0
22 + C0

20
,

xζ = − ∆C21

2C0
22 − C0

20
, yζ =

∆S21

2C0
22 + C0

20
, zζ = 1.

Let us remark that those equations are valid up to first order of approximation relative to C2m, S2m,
provided that the Stokes coefficients are referred to the ATRF or any other frame close enough to the
actual PAI frame at the relevant time. In relation to Equation (6), the superscripts 0 correspond to chosen
reference values of the principal moments of inertia. For the sake of studying the time evolution of
them, any choice is feasible, for instance, their values at the initial or other chosen time, or an average.
Transforming the second-degree SHC through a rotation of angle α around the Oz axis (in the auxiliary
system Oxyz) is straightforward since the zonal term remains unchanged and the tesseral and sectorial
terms of each frame are related through

CATRF
21 = cos(α)CITRF

21 + sin(α)SITRF
21 , SATRF

21 = −sin(α)CITRF
21 + cos(α)SITRF

21 , (8)

CATRF
22 = cos(2α)CITRF

22 + sin(2α)SITRF
22 , SATRF

22 = −sin(2α)CITRF
22 + cos(2α)SITRF

22 .

In the precedent equations, each coefficient is identified with the superscript corresponding to
its reference frame. In such a way, we can derive time series of the PAI location from any time series
providing the second-degree Stokes coefficients. It is worth mentioning that, for the computation of
the uncertainties of the pole locations from the Stokes coefficients formal uncertainties, Equation (8)
can be applied as well, unlike when computing the PAI poles by numerical methods since the former
relations are linear.
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2.3. Rotations Providing the Principal Axes

We think it is more intuitive to express the transformation of the frames through three infinitesimal
rotations Rx, Ry, Rz, as done, e.g., by Belda et al. (2016) [21]. The differences (∆x, ∆y, ∆z) between the
coordinates (ξ, η, ζ) in the mean monthly principal axis frame Oξηζ and the coordinates (x, y, z) in the
auxiliary system Oxyz are related to those rotations by:∆x

∆y
∆z

 =

 0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0


x

y
z

 . (9)

The rotations transforming the quasi-principal ATRF into the PAI reference frame are

Rx = − ∆S21

2C0
22 + C0

20
, Ry = − ∆C21

2C0
22 − C0

20
, Rz =

1
2

∆S22

C0
22

, (10)

where superscripts 0 denote the chosen reference value of the relevant parameter, and the neglected
terms are of second order concerning the variations of the Stokes coefficients. Let us notice that each
rotation is simply related to one of the former pole coordinates, namely

Rx = −yζ , Ry = −zξ , Rz = yξ .

2.4. Input Data and Outline of the Analysis

Using the above equations, the time evolution of the Earth principal axes of inertia with respect to
ATRF, a westward rotated ITRF, together with their estimated uncertainties, can be computed from
any of the available, accurate geopotential solutions providing time-varying Stokes coefficients of
degree 2, i.e., C2m and S2m. In this paper, we use two of those series. First, the GRACE RL06 time
series of normalized second-degree SHC provided by CSR, which contain monthly mean estimates
of those coefficients referred to ITRF. The basic meaning of the coefficients can be found in [22–24].
For the purpose of this paper, it suffices to indicate that the background models used for the GRACE
RL06 data processing, e.g., solid Earth and ocean tides and ocean pole tide models, are not included
in the released SHC values; however, the monthly mean of the atmosphere–ocean de-aliasing model,
included in the GRACE background models, has been restored. Additional details can be found in the
UT/CSR RL06 processing standard technical document [25]. The data used in this paper span from
January 2002 to August 2018.

The second series is provided by the DGFI-TUM and the SHC are derived from SLR analysis of up
to ten geodetic SLR satellites. The processing standards of this solution follow the IERS Conventions
(2010) [26], as indicated in [7,15]. From this dataset, we use the degree-2 normalized Stokes coefficients
C̄2m and S̄2m with their corresponding time tags and uncertainties, with weekly resolution, along the
period from January 2000 to February 2018.

The outline of the computation flow is the following for each of the time series. First, we transform
from normalized to unnormalized Stokes coefficients, using the standard approach presented, e.g.,
in Equations 6.2b and 6.3 of [26]. Then, we obtain the SHC after performing a rotation of angle
α = −14.9286648815724558 degrees (corresponding to an initial value S22 = 0 of the CSR rotated SHC)
of the reference frame. That rotation angle defines the chosen ATRF, which is not principal since the
(2, 1) SHC do not vanish, but is close enough to the PAI to enable the application of the previous
equations. Then, the location of the PAI at each data point is found by computing the three infinitesimal
rotations given by Equation (10). These three rotation time series, for each of the mentioned input
datasets, are then analyzed with an emphasis on the identification of trends. All the statistics and the
linear fit functions are computed weighting the input data with their squared formal errors and using
the MAPLE 17 package of Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario [27] .
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3. Results

We present first the results corresponding to the RL06 CSR data. The rotations transforming the
ATRF into the PAI frame at each date are not expressed in angular units but in equivalent centimeters
on the Earth’s surface to give a quick picture of the magnitude of the pole axes evolution. The upper
part of Figure 1 displays the three rotations Rx, Ry, and Rz (in green) and the first degree polynomials
fit to them (in black); in the legend of each plot, there is a part that shows the WRMS (weighted root
mean squared) of the date before and after the fit. The lower panel is made of another three plots that
display the respective residuals. Notice that the vertical scales of the plots are different. The values of
the WRMS statistics after the fit and the coefficients of the linear regression line, together with their
formal errors (1σ), are shown in Table 1. The time origin is set to be the date JD 2000.0 (modified
Julian date 51,544.5). All coefficients apart from the Rx trend are larger than 3σ, thus significant.
The largest rotation is Rz, around the Oz axis of the ATRF, coincident with the ITRF Oz. Its trend
reaches 321.88± 86.78 cm/year on the Earth’s equator, and its direction is eastwards since it is positive
(counterclockwise rotation, bringing the instantaneous Ox closer to the ATRF Oy). The trends of the
other rotations are much smaller. The rotation Rx around the Ox axis is negative (clockwise), driving the
ATRF Oz axis towards the positive Oy axis, with the smallest velocity of roughly −0.26± 0.82 cm/year.
Finally, the Ry rotation is positive (counterclockwise), moving Ox and Oz southwards (Oz towards to
the ATRF Ox) by 10.40± 0.36 cm/year on the surface.

The first and third rotations also exhibit at first glance large, nearly seasonal variations. They might
be attributed to the seasonal variations visible in the GRACE gravity fields or to deficiencies of the
background models, at least to some extent. A preliminary Fourier analysis confirms that the main
period of all the rotations is annual, although it also detects power at many other frequencies, such as
those associated to the semi-annual, Chandler, and semi-Chandler periods, in general with noticeably
smaller amplitudes and correspondingly larger formal errors. Furthermore, the monthly spacing of
the data limits the temporal resolution attainable for the determination of periods and complicates the
interpretation of the potential source of those signals. Therefore, we do not display any periodogram
and leave the subject for further investigation.
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Figure 1. The results derived from the RL06 CSR Stokes coefficients with monthly resolution: (top)
equivalent rotations [cm] Rx, Ry, and Rz from ATRF to PAI frame (in green, from left to right) and fit
linear functions (in black); and (bottom) the residuals are also given in [cm].
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Table 1. The results derived from the RL06 CSR Stokes coefficients with monthly resolution. WRMS
after fitting a linear function to each, biases, and drifts of the equivalent rotations Rx, Ry, and Rz from
ATRF to PAI. Units are (cm) and (cm/year), time origin is 2000.0.

WRMS [cm] Bias [cm] Drift [cm/year]

Rx 56.66 999.12± 9.35 −0.26± 0.82

Ry 25.06 442.92± 4.13 10.40± 0.36

Rz 5955.06 −5029.83± 989.57 321.88± 86.78

Despite that, as the annual signal looks clear and prominent, we present also the results of fitting
a linear function jointly with an annual harmonic oscillation to the three rotations. Figure 2 (top) shows
the plots of Rx, Ry, and Rz displayed in green in analogy to Figure 1, as well as a linear function plus an
annual oscillation fitted to Rx, Ry, and Rz, in black color. Please mind again the different scales of the
axes. It can be seen that the residuals are smaller than in the previous case as shown in Table 2 (similar
to Table 1). It illustrates to what extent the inclusion of the annual oscillation in the fit decreases the
WRMS of Rx, Rz, and less the WRMS of Ry. Besides, the coefficients of the annual fit to the latter
rotation are much smaller than the other two, as shown in the last columns of Table 2. The trends of Rx

and Ry are almost indifferent to the ones in Table 1, whereas the Rz trend differs by about 6% between
the two fits.
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Figure 2. The results derived from the RL06 CSR Stokes coefficients with monthly resolution: (top)
equivalent rotations [cm] Rx, Ry, and Rz from ATRF to PAI frame (in green, from left to right) and fit
linear functions plus annual oscillations (in black); and (bottom) the residuals are also given in [cm].

Table 2. The results derived from the RL06 CSR Stokes coefficients with monthly resolution.WRMS
after fitting a linear function and an annual oscillation to each, biases, drifts, and annual amplitudes
of the equivalent rotations Rx, Ry, and Rz from ATRF to PAI. Units [cm] and [cm/year], time origin
2000.0, null phase at the origin.

WRMS [cm] Bias [cm] Drift [cm/year] Amp. cos [cm] A sin [cm]

Rx 35.81 998.32± 5.95 −0.26± 0.82 58.80± 3.58 −19.32± 3.64

Ry 24.43 442.67± 4.050 10.41± 0.35 7.86± 2.44 −0.21± 2.49

Rz 4211.05 −4747.51± 703.91 302.93± 61.70 3408.96± 420.54 −4924.77± 428.73

Next, we present the results obtained after performing the same computations using as input data
the weekly DGFI-TUM time series derived from SLR analysis [15]. Figure 3 is equivalent to Figure 1
for the former RL06 dataset and thus does not require description. Let us recall that the DGFI-TUM
series do not cover the same time interval as the CSR one: it starts in 2000, two years earlier, and ends
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a few months earlier in 2018. However, we prefer to use the whole length of each series since we are
specially interested in trends and the series are rather short, the CSR one being limited by the operation
period of the GRACE satellites. Again, the vertical scales of the plots are subject to change, as in the
previous cases.

The statistical results derived from the SLR DGFI-TUM Stokes coefficients with weekly resolution
are shown in Table 3. In this case, we do not include the results of fitting a straight line plus an annual
oscillation for the sake of brevity. To discard that the higher temporal resolution of the DGFI-TUM
input data might cause some distortion of the results, we have also analyzed a smoothed version of
them with a monthly resolution similar to the CSR data and found that there is no relevant difference in
the results. The resulting drifts are R′x = −1.96± 0.60, R′y = 11.42± 0.39, R′z = 120.55± 71.46 cm/year,
very close to the weekly ones.
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Figure 3. The results derived from the SLR DGFI-TUM Stokes coefficients with weekly resolution: (top)
equivalent rotations [cm] Rx, Ry, and Rz from ATRF to PAI frame (in green, from left to right) and fit
linear functions (in black); and (bottom) the residuals are also given in [cm].

Table 3. The results derived from the SLR DGFI-TUM Stokes coefficients with weekly resolution.
WRMS after fitting a linear function to each, biases, and drifts of the equivalent rotations Rx, Ry, and
Rz from ATRF to PAI. Units are [cm] and [cm/year], time origin is 2000.0.

WRMS [cm] Bias [cm] Drift [cm/year]

Rx 58.37 1005.23± 3.25 −2.15± 0.39

Ry 42.17 448.42± 2.78 11.78± 0.28

Rz 6550.04 −7474.45± 436.28 120.073± 43.61

4. Discussion

First, we want to point out that the values of the biases of the former fits are not meaningful
in our approach since the ATRF can be defined arbitrarily, with the only condition of having the
small departure from the time-varying PAI frames. Therefore, we focus on the remaining parameters,
particularly on the trends. It may be somehow striking that the trends of the Rz rotation are at least one
order of magnitude larger than the ones of the other two rotations. That is because the value is obtained
after a division by C22 according to Equation (10), while in the other two the denominators have the
order of magnitude of C20. Consequently, the motion of the first two axes of inertia along the equator
is expected to be much larger than the shift of the Oz axis. An analogous feature appeared in the tidal
periodic perturbations of the Earth’s PAI computed by Barkin and Ferrándiz [16], where the maximum
amplitude for the third axis (corresponding to the fortnightly perturbation) was about 19 km, whereas,
for the other axes, the oscillation at the same period is only of about 19 m, as displayed in Table 3, Row
11 of their work. In other words, when computing the Earth’s PAI from gravity observations, it is



Remote Sens. 2020, 12, 314 9 of 12

much more straightforward to determine the equator through the equatorial bulge (large C20 value)
than to discriminate between locations on the equator (smaller C22 value).

We proceed now to compare the results obtained from the two involved datasets, based on the
UT/CSR GRACE RL06 and the DGFI-TUM SLR solutions. The respective trends are rearranged in
Table 4, where the columns refer to the individual rotations. The values of the annual trends (“drifts”)
fit to the dataset are indicated in the first row (CSR or DGFI-TUM), and the 95% confidence intervals
(“CI95”) are displayed in the adjacent columns to the right. It can be seen that the values of the Ry

trends are very close, but the other two look quite different. However, the respective CI95 of the latter
two do overlap, and therefore we can conclude that the trends of Rx and Rz do not differ significantly.
As for Ry, their two CI95 do not overlap, but the distance between them is only of 1 mm over about
10 cm, and thus a slight increase of the level of significance would result in overlapping. In fact, when
the CSR based results are compared to the smoothed DGFI-TUM ones, the corresponding CI95 overlap.

Therefore, the results are robust enough to be significant and can be considered a physical feature
of the Earth change, not an artifact. The last column of Table 4 contains the mean value of the two
trends, which may be assumed to be a preliminary reference value of the linear trend associated with
each rotation, i.e., the annual drift of the relevant axis. Although some of the values are very small,
all of them are above the accuracy and stability requirements asked for by GGOS, the Global Geodetic
Observing System of the International Association of Geodesy (IAG), to the reference frames and
related parameters, namely 1 mm in position and 0.1 mm/year in velocity.

The small differences found between the two solutions may arise from some differences in
background models or processing strategies. As can be seen in Figures 1 and 3, there is a clear trend
in the Ry component in both solutions. Nevertheless, the trend seems to accelerate around the years
2005–2006 of the DGFI-TUM time series. The difference in the C21 and S21 derived rotation time series
might be caused by the different handling of the mean pole in the CSR RL06 and the DGFI-TUM
solution. Using different mean pole model could provoke a systematic long-term difference in the
C21 and S21 time series [28–31]. The CSR RL06 solution is processed based on the new linear mean
pole model, whereas the DGFI-TUM SLR time series is based on the conventional (cubic polynomial)
mean pole model [26]. Our results provide a further example of the relevance of the choice of a mean
pole model.

The magnitude of the Rz rotation, which drives the other two axes eastwards along the equator
at a velocity of about 2.2 m/year, is surprising since that motion has not been detected until now.
However, the satellite-derived time-varying gravity field solutions have been available for not too
many years and have never been examined for that purpose. If we consider other ways of identifying
that motion, the analysis of the evolution of the Earth orientation parameters (EOP) is not as suitable
as this approach (although the EOP may be affected by the PAI drift). In fact, most of the nutation
theories are based on a symmetric Earth model; therefore, they are not sensitive at all to the rotation of
the inertia axes A and B, lying almost on the equatorial plane. Similarly, most of the investigations on
polar motion and length of day (or UT1) also neglect the terms corresponding to the Earth’s triaxiality
and thus become insensitive to the motions of those inertia axes. An additional difficulty arises from
the aliasing between the diurnal rotation (for instance UT1) and the node of the satellite orbits.

As additional evidence in support of our finding of the agreement of the two solutions, we
complete this section with joint plots of the rotations computed from each dataset (displayed as a line)
together with their CI95 (displayed as a colored area around the line). It can be visualized easily in
Figure 4 that the solutions for each of the three rotations Rx, Ry, and Rz are very similar across the
entire time interval, which reinforces the hypothesis that the two solutions do not exhibit significant
differences.
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Table 4. Comparison of the linear trends of the rotations Rx, Ry, and Rz obtained from the monthly
CSR and weekly DGFI-TUM solutions. CI95 denotes the 95% confidence interval of the fit drift value.
Units are cm/year.

Drift (RL06) CI95 (RL06) Drift (DGFI-TUM) CI95 (DGFI-TUM) Mean Drift

Rx −0.26± 0.82 (−1.9, 1.4) −2.15± 0.39 (−2.9,−1.4) −1.21

Ry 10.40± 0.36 (9.7, 11.1) 11.78± 0.28 (11.2, 12.3) 11.09

Rz 321.88± 86.78 (150.8, 493.0) 120.07± 43.61 (34.5, 205.7) 220.97
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Figure 4. Joint plots of the rotations from ATRF to PAI frames derived from the RL06 CSR and SLR
DGFI-TUM Stokes coefficients with their respective 95% confidence regions: (left) Rx; (middle) Ry;
and (right) Rz. Color code: CSR, curve in blue, confidence region in light blue; DGFI-TUM, curve in
red, confidence region in light red. Units: cm (equivalent).

5. Conclusions and Outlook

The computation of the motion of the Earth’s principal axes of inertia using two different datasets
for the time-varying second-degree Stokes coefficients, derived from GRACE and SLR solutions,
shows a significant agreement, despite small differences in the processing standards and time interval
or range of each solution—monthly and weekly, respectively. The most remarkable feature is that
the determined principal axes of inertia of the Earth are clearly closely aligned to the ITRF axes
or oscillating around certain “mean” equilibrium position, but exhibit non-negligible drifts, with
magnitudes clearly exceeding the accuracy threshold of GGOS, the IAG Global Geodetic Observing
System. The most remarkable detected motion drives the two nearly equatorial inertia axes eastwards,
at a rate of 2.2 m/year. Besides, the axis of less inertia deviates away from the equator southwards
at 11 cm/year, and the medium axis also moves southwards out of that plane at a smaller rate of
1 cm/year. The axis of major inertia follows the drifts of the other two.

This paper is intentionally limited to quantifying observational facts, but the physical causes of
the drift of the Earth’s principal axes is still unknown, as well as its impact on other topics, e.g., Earth
rotation. Getting more insight into these topics seems to be not an easy task, but different ideas or
issues may emerge from future discussions about the topic, e.g. whether or not motion is due mainly
to a sole cause, concerning external mass transport, changes in the Earth’s inner layers, tectonics, or a
combination of processes. In this case, the geophysical budget could be closed to some extent. Another
open question is whether these variations of the Earth’s inertia tensor might affect other processes of
the Earth and could be related to, e.g., decadal or long-term EOP variations or other observed trends.
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