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Current strategies used to quantitatively describe the biologi-
cal diversity of lipids by mass spectrometry are often limited in
assessing the exact structural variability of individual molecular
species in detail. A major challenge is represented by the exten-
sive isobaric overlap present among lipids, hampering their
accurate identification. This is especially true for cardiolipins,
a mitochondria-specific class of phospholipids, which are function-
ally involved in many cellular functions, including energy metab-
olism, cristae structure, and apoptosis. Substituted with four fatty
acyl side chains, cardiolipins offer a particularly high potential to
achieve complex mixtures of molecular species. Here, we demon-
strate how systematically generated high-performance liquid
chromatography-mass spectral data can be utilized in a mathe-
matical structural modeling approach, to comprehensively analyze
and characterize the molecular diversity of mitochondrial cardio-
lipin compositions in cell culture and disease models, cardiolipin
modulation experiments, and a broad variety of frequently
studied model organisms.

cardiolipin | mitochondria | lipids | mass spectrometry |
mathematical modeling

Biological membranes contain highly diverse phospholipid
compositions (1). Beside a general categorization on basis of

their polar headgroups, it is especially the substitution with
different fatty acyl (FA) side chains that generates a vast va-
riety of molecular lipid species, a combinatorial multiplicity
that can be of regulated and stochastic origin. This is partic-
ularly true for cardiolipins (CL), a lipid class with four possi-
ble acyl side chains, rather than the two present in most other
phospholipids (2).
CLs are glycerol-bridged, dimeric phospholipids and represent

an essential component of mitochondrial membranes. Their
unique shape and charge state is responsible for a broad func-
tional spectrum. CLs directly interact with and stabilize re-
spiratory chain complexes (3, 4) and ATP synthase (5), thereby
impacting on ATP production (6). They further support mito-
chondrial cristae formation (7), protect mtDNA (8), and their
close association with cytochrome c functionally involves them
into mitophagy and apoptosis (9, 10). Postbiosynthetic matu-
ration and homeostasis of the CL side-chain substitution—
and therewith their structural diversity—is ensured by an
enzymatic remodeling process initiated by phospholipase
catalyzed side-chain hydrolysis to form monolyso-cardiolipins
(MLCL) (11). An acyltransferase activity, predominantly medi-
ated by the transacylase Tafazzin, is then required for reestablishing
functional CL molecules (12). Indicative for the importance of this
process is the X-linked genetic disorder Barth Syndrome (BTHS,
OMIM: #302060), in which Tafazzin activity is impaired, leading
to abnormal CL patterns (13) and CL instability (14). This causes
severe symptoms, such as cardiomyopathy, neutropenia, muscle
weakness, and 3-methylglutaconic aciduria (15).
Importantly, when assessing CL patterns in biological samples,

a detailed description of their structural diversity is often miss-
ing. A major problem is caused by the numerous possible

isobaric CL molecules exhibiting largely similar chromatographic
behaviors. Features measured in lipidomic experiments are often
attributed to their most plausible molecular species or (more
accurately) described in a collective term for multiple isobaric
possibilities (16–18). Furthermore, the problem is often cir-
cumvented by focusing only on some selected species (19, 20).
Even when using high-performance liquid chromatography–
tandem mass spectrometry (HPLC-MS/MS), where large
amounts of structural data can be recorded, these details are
typically lost during data extraction and analysis, or have to be
manually curated in a time-consuming and laborious process
(18, 19, 21).
In this study, we present a highly comprehensive analysis of

the molecular diversity of CLs in BTHS patient-derived cells,
mammalian cell culture models, CL composition modulation
experiments, as well as a broad variety of frequently studied
model organisms. Generating this detailed structural data was
made possible due to a mathematical structural modeling strat-
egy that, in combination with HPLC-MS/MS experiments, solves
the problem of structural data loss when analyzing lipidomic
datasets and allows to comprehensively characterize a broad
spectrum of CLs on the basis of fragment spectra recorded by
data-dependent acquisition.

Significance

Cardiolipins are a unique class of phospholipids in mitochon-
drial membranes that are crucial for cellular bioenergetics as
they stabilize respiratory chain complexes. In contrast to most
other phospholipids, cardiolipins are substituted with four,
rather than only two fatty acyl side chains. Consequently, this
opens up a vast number of different theoretically possible
molecular lipid species. Experimentally assessing the molecular
diversity of cardiolipin species is analytically challenging. In this
study we successfully combine tandemmass spectrometry with
a mathematical structural modeling approach, to achieve the
comprehensive characterization of complex biological cardiolipin
compositions.
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Results
Quantification of CLs by HPLC-MS/MS. Cellular lipids were extracted
from pellets of the murine RAW 264.7 cell line and used for
method development and validation. The optimized HPLC-MS/
MS method allowed clear chromatographic separation of up to
135 different CL mass-species within 12 min and their MS1-
based identification and quantitation as single charged ions in
the mass range of 1,000–1,600 m/z (Fig. 1A). Each of these
species can be characterized by its total carbon chain length and
double-bond count (Fig. 1B). The elution profiles of individual
peaks indicated the presence of several isobaric CL subspecies,
with only slightly differing chromatographic behavior (Fig. 1C).
These differences are caused by variable FA substitutions, gen-
erating different molecular CL species with the same total
carbon chain length and number of double bonds (For no-
menclature, see SI Appendix, Text S1). A detailed description of
analytic method development and validation can be found in SI
Appendix, Text S2, including linearity and detection limits (SI
Appendix, Fig. S1), as well as repeatability, precision, accuracy,
and recovery information (SI Appendix, Fig. S2).

Structural Characterization of CL Compositions by Mathematical
Modeling of MS/MS Data. In light of the broad structural CL di-
versity, even within individual isobaric CL peaks (Fig. 1C), we
established a data-dependent MS/MS fragmentation strategy
that allows recording fragment spectra for all relevant CL species
within a chromatographic run (SI Appendix, Fig. S3). These
spectra can be interpreted on basis of the backbone fragmenta-
tion behavior of CLs (Fig. 2A). Fig. 2B illustrates two exemplary
fragment spectra and their side-chain distribution annotation
according to the three major fragmentation paths and their re-
spective annotation (details in SI Appendix, Fig. S4).
A major problem was that manual and even semiautomatic

filtering and interpretation of up to 1,450 MS/MS spectra per
sample is not feasible within reasonable time frames. Therefore,
we developed a robust structural modeling approach that allows
us to perform such an analysis in an automated fashion. A major
challenge was the partial overlap of the fragment space of the
three major CL fragmentation paths (Fig. 2C), which hampers a
clear and distinct fragment mapping. Thus, deconvolution of the
fragment spectra into the contributions of the three fragmenta-
tion paths represents an important step for constructing quan-
titative CL fragment profiles. First, a fragmentation path
annotation matrix is constructed from all theoretically possible
CL side-chain combinations in a mass-resolution–dependent
manner (Methods). This allows applying this approach also on
instruments with limited mass resolution. Together with indi-
vidual fragmentation path efficiencies, a theoretical fragment
spectrum is constructed and the Euclidean distance to the
measured spectra is minimized using a box-constrained limited-
memory modification of the Broyden–Fletcher–Goldfarb–
Shanno quasi-Newton algorithm (22). The resultant profile ex-
plains the FA distribution along the individual phosphatidic acid
(PA) subunits of the CL molecules. This profile was then further
used, for example, to determine CL carbon side-chain and
double-bond distributions. Additionally, an individual FA profile

for each sample was mathematically modeled (in analogy to the
procedure described above) on the basis of the extracted PA data
and the theoretically available FA space. This approach follows
the principal logic of using MS1 data for CL quantification and
MS2 data for their structural characterization (SI Appendix, Fig.
S5). As quality control, the obtained FA and PA profiles were
used to predict the respective higher structural layers of the CL
molecules and were compared with measured profiles.
By applying this analysis strategy to fragment spectra data

recorded for lipid extracts of murine RAW 264.7 cells, it was
possible to obtain—additionally to a pure CL abundance profile
(Fig. 2D, Top)—detailed structural composition data for each
CL species. Projected onto the respective carbon chain length
and the double-bond count components (Fig. 2D, Middle and
Bottom), the results show that the CL composition in RAW
264.7 cells is highly symmetrical and utilizes mainly even-
numbered FAs. It becomes apparent that more saturated CLs
exhibit a highly symmetric double-bond distribution, while highly
unsaturated CLs are more likely to be asymmetric, possibly
due to one-sided substitution with a polyunsaturated fatty acid
(PUFA). The detailed quantitative and structural insights into
the CL compositions in cells can be expressed as cumulative
profiles of CLs, PAs, and FAs for each sample (Fig. 2D, Top, and
Fig. 2 E and F). Importantly, these results allow studying the
structural compositions of individual CL species and predicting
their underlying FA profiles. The cardiolipin CL72, for ex-
ample, consists of ∼80% of two PA36 subunits, while the
remaining CL72 mass is made up of mainly PA34/PA38, and to a
smaller degree, of other combinations as well (SI Appendix, Fig.
S6). This clearly impacts on estimations made for the FA pool
composition incorporated into CLs. To cross-validate the gen-
erated FA profiles, their predictability for previously obtained
PA profiles was tested. Pearson correlations of typically above
0.95 between the FA-predicted PA profile and the PA pattern
extracted from fragment spectra indicate a strong agreement (SI
Appendix, Fig. S7). Furthermore, the FA profiles were compared
with matching published datasets, which were in good accor-
dance with our results (SI Appendix, Fig. S8).

Impairment of CLs in Barth Syndrome. We used this method to
analyze the impairment of CL compositions caused by dysfunc-
tion of Tafazzin in cultured BTHS patient fibroblasts. Compared
with unaffected controls, we identified profoundly altered CL
patterns (Fig. 3A), a strong depletion of CL mass to about 22%
and a simultaneous 9.7-fold accumulation of MLCL species (Fig.
3B). A detailed species-specific structural analysis of CL profiles
revealed the preferential depletion of double-bond–rich CLs
(Fig. 3C), an effect that can also be observed on the PA level (SI
Appendix, Fig. S9) and on the FA level (Fig. 3D). Similarly, a
reduction of the CL carbon chain length, and their structural PA
and FA components was observed (Fig. 3 E and F).
To identify the main targets of this effect, we conducted a

principal component analysis on basis of the extracted FA
compositions (Fig. 3G). Component 1 explained 53.48% of total
variance and clearly separated controls from BTHS fibroblasts
(Fig. 3G, Inset). The factors mainly responsible for this separation
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Fig. 1. Quantifying CLs by HPLC-MS/MS. (A) A typical
mass-chromatogram obtained for a RAW 264.7 cell lipid
extract is shown. (B) Integrated CL peak areas projected
back onto their respective carbon chain length and dou-
ble-bond components. Circle sizes indicate the CL mass-
species peak areas, fill colors correspond to the respective
total number of side-chain carbons. The ISTD CL(14:0)4 is
shown in gray. (C) Representation of the monoisotopic
mass peak and the first three isotope peaks correspond-
ing to CL70:4 (Upper) and as sum of the mass range
1,428.1 ± 0.3 (Lower Left), which elutes at least as double
peak. (Lower Right) Hypothetical deconvolution of CL70:4
into contributions of individual molecular CL species.
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were identified as palmitic acid (FA16:0), oleic acid (FA18:1), and
linoleic acid (FA18:2). While a relative depletion of FA18:2 was
observed, FA16:0 was increased in the FA profiles (Fig. 3H).
Importantly, our methodology is not only able to capture alter-
ations of canonical CLs but also the fate of FAs in MLCL (SI
Appendix, Fig. S10), as well as in oxidized CL species (SI Appendix,
Fig. S11).

CL Heterogeneity and Reconfiguration in Human Cell Lines. Next, we
analyzed the CL composition in 16 different cultured human cell
lines, grown under recommended growth conditions. Cell lines
were of epithelial, lymphoblastic, endothelial, or myeloblastic
origin obtained from different tissues of female or male donors
(SI Appendix, Table S1). Interestingly, we observed clearly di-
verging CL profiles, which allowed grouping the cells lines into
three clusters (SI Appendix, Figs. S12 and S13A), ranging from a
group of cells with CLs harboring shorter FA side chains, over an
intermediate group, to a group of cells with increased side-chain
length. When analyzed for the influence of specific growth
conditions, the only significant enrichment was found for
DMEM-based high-glucose media in the intermediate cluster
(P = 0.0048) (SI Appendix, Table S2). However, A431 and SK-N-
SH were grown under similar conditions, but matched to the
other two clusters. The cell line heterogeneity becomes apparent
in view of the mean carbon chain length (SI Appendix, Fig.
S13B), ranging from 67.5 to 71.3 (mean = 69.4), and double-
bond count diverging between 3.9 and 5.5 per average CL (SI
Appendix, Fig. S13C). Cell lines with longer-chained CLs also
exhibited more double bonds. When comparing the FA profiles
of the two most-extreme cell lines, U937 and K562 (SI Appendix,
Fig. S13B), we found that the altered CL composition was not
caused by incorporation of a new set of FAs, but was to a large

extent the result of a shifted balance between palmitoleic acid
(FA16:1) and linoleic acid (FA18:2) (SI Appendix, Fig. S13D).
With the standard culture conditions described above, cells

were exposed to serum, which could impose its intrinsic lipid
compositions on the cellular phospholipid profiles and eventu-
ally impact their functions. Thus, we next studied the functional
consequences of modulated lipid availability. HeLa cells were
grown either in serum or lipid-free media. Cells were either
forced to form fatty acids via de novo biosynthesis (control) or
were supplemented with linoleic acid-rich pig heart lipid extracts
(heart) (Fig. 4A). We analyzed the CL compositions generated
by these treatments, which both showed to be highly different
from the standard growth media (DMEM/FCS) (Fig. 4A). While
CL profiles in the lipid-free control centered around CL68:4, the
heart lipid supplementation shifted the CL compositions to-
ward CL72:8. Our structural modeling analysis revealed that
under lipid-free conditions the CL side chains were dominated by
FA16:1 and FA18:1, whereas CLs of heart lipid-supplemented cells
exhibited a high linoleic acid (FA18:2) content, which was in-
dicative of a strong rearrangement of the mitochondrial phos-
pholipid composition (Fig. 4B). In a next step, to study possible
cooccurring alterations of core mitochondrial metabolic functions,
we conducted high-resolution respirometry experiments in intact
cells. Interestingly, tetralinoleoyl CL-rich cells had a significantly
lower respiration in the presence of endogenous substrates
(ROUTINE respiration), compared with controls (Fig. 4C). This
effect was independent of cell growth rates, which were unaffected
by the supplementation, arguing against a general inhibition of
ATP production (Fig. 4D). To examine the functional origin of a
potentially more-efficient respiration in cells supplemented by
heart lipid, we performed a respirometric analysis in permeabilized
cells and found that both conditions did not alter β-oxidation and
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complex IV activity. However, NADH-pathway capacity through
complex I tended to be increased in heart lipid–treated cells in the
presence of saturating substrate supply (SI Appendix, Fig. S14).
Hence, we investigated this part of mitochondrial metabolism in
more detail. Indeed the NADH-pathway capacity was significantly
increased in heart lipid–treated cells (Pcor = 0.01, n = 8) (Fig. 4 E
and F), in line with the reconfiguration of the mitochondrial CL
side-chain substitution (Fig. 4A).

CL Diversity in Model Organisms. We assessed the structural vari-
ability of CLs in a selection of widely used model organisms (SI
Appendix, Table S3). CLs were readily detectable with our ana-
lytical technique in all organisms tested. We observed highly
diverse CL compositions, varying in an organism-, tissue-, and
condition-dependent manner (SI Appendix, Fig. S15). The
number of CL species accounting for 95% of total CL mass
ranges between only 4 in Arabidopsis thaliana to 26 in Aspergillus
fumigatus (see nCL95% values in SI Appendix, Fig. S15) and is
indicative for this variability. Profiles were also highly diverse
in terms of carbon chain length and degree of saturation. While
in some bacteria only simple, short-chained, and completely
saturated CLs were detected (Micrococcus luteus, Pseudomonas
putida), zebrafish (Danio rerio) exhibited a complex pattern of
long-chain and highly unsaturated CLs. We conducted a partial

least-squares discriminant analysis (PLS-DA) that projected 19%
and 11% of the variance in this CL dataset onto components
1 and 2, respectively, clearly separating the individual sample
groups (Fig. 5A). Interestingly, some tissue and growth specific-
ities contributed more to this separation than organism-specific
differences.
An illustrative example for the conditional remodeling of CL

compositions was the tissue-specificity observed in mouse and
pig lipid extracts. Differences between these two species were
dwarfed by the large tissue-specific variation of CL and FA
profiles (SI Appendix, Text S3 and Fig. S16). In heart tissues,
linoleoyl-rich CL species dominated, as expected. Although also
in liver high FA18:2 levels were quantified, an increased
FA18:1 and FA16:1 to FA18:2 ratio resulted in a broadening of
the CL profile. This contrasts the FA profiles resolved for the
brain, where only a small fraction of FA18:2 was found, in ex-
change for increased levels of FA20:4 and FA 22:6. A second
example was that the Escherichia coli CL and FA patterns were
strongly altered, when comparing the same strain grown in LB
versus the minimal M9 medium (SI Appendix, Text S2 and Fig.
S17). Furthermore, we observed distinct reconfigurations of the
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CL species during different growth phases of Saccharomyces
cerevisiae (SI Appendix, Text S2 and Fig. S18). The underlying FA
profiles were mainly based on FA16:1 and FA18:1. During log-
arithmic growth, CL side chains also contained their saturated
counterparts, which, however, got depleted in later growth
phase, leading to sharpened profiles centering at fourfold un-
saturated CL species.
In general, the FA compositions incorporated into CLs

resulting from analysis of this set of model organisms clearly
followed the anticipated trend of an increased degree of unsa-
turation from bacteria toward higher eukaryotes (Fig. 5B). Pro-
caryotic CLs contained shorter chain FAs, also with odd carbon
chain length, and were typically highly saturated. The apparently
complex CL patterns observed in brains of Mus musculus, Sus
scrofa, and in different body regions of D. rerio was pre-
dominantly caused by high contents of the PUFAs FA20:4 and
FA22:6 (SI Appendix, Fig. S19 and Dataset S1). In contrast, the
highly unsaturated CL species in plants (A. thaliana, Oryza sativa)
were based on an enrichment of α-linolenic acid (FA18:3).

Discussion
The structural variability of CLs observed in our study clearly
demonstrates that the total CL mass alone, which is regularly
used as mitochondrial marker (23), does by far not provide an
accurate description of CL compositions. Even when utilizing
MS2 fragment spectra for identification of major molecular lipid
species, the results fall short of accurately describing the struc-
tural diversity of CL species, as demonstrated in SI Appendix,
Fig. S5, where up to 20% of the CL72 mass alone would be in-
correctly attributed to the tetraoleyl-CL molecular species.
However, in several studies the recorded raw data would already
contain the information required for structural characterization
with our new data analysis strategy (16, 18, 21).
In contrast to other approaches (18, 24), we focus on single

charged CL ions, which dominate under the present conditions.
Furthermore, we operate the mass spectrometer in full scan
mode with data-dependent acquisition of fragment spectra fol-
lowed by targeted data extraction of CL features, rather than
performing selected reaction monitoring-type experiments (24,
25). This comes along with the advantage of univocal identifi-
cation of CLs orienting along internal references. Importantly,
retrospect extraction of novel features is possible from previously
recorded data and prevents incomplete data by extracting
(baseline) information for lipids below the limit of detection.
Dealing with the challenge of isobaric lipid species and frag-
ments, our methodology solves a problem that persists also with
high-resolution mass spectrometers. Nevertheless, increased
sensitivities and reduced scan times allow recording additional
MS2 data and performing MS3 experiments for all major CL
species, which can connect the present FA profiles to an addi-
tional constraining experimental dataset (26).

The mechanisms that determine the exact molecular compo-
sition of CLs are so far only poorly understood. However, it is
clear that the BTHS-linked transacylase Tafazzin plays a major
role in the required remodeling process. In analogy to reports in
the literature (e.g., ref. 27), we observed a strong reduction of CL
mass in all BTHS patient cells. We further observed a prefer-
ential depletion of FA18:2 acyl chains compared with its more
saturated counterparts. This is in good agreement with the
augmented susceptibility of PUFAs to chemical (per)oxidation
(28), suggesting that cellular oxidative damage preferentially
targets double-bond–rich FA residues in CLs, while their satu-
rated counterparts are more robust. Oxidative damage could
therefore be a major driver behind CL depletion in BTHS pa-
tient fibroblasts and in CL homeostasis in general. In this con-
text, Tafazzin could represent an essential part of a CL repair
mechanism, after oxidized FAs are recognized and cleaved in a
phospholipase-dependent manner.
A broad structural diversity of CLs was observed in different

species and cell lines, where we also investigated the impact of
environmental factors, growth conditions, and growth phases
(Figs. 4 and 5 and SI Appendix, Fig. S13). These effects act in
interdependence with cellular regulatory components of CL
homeostasis, as for example shown by the cell lines U937 and
K562, which were grown under similar conditions but exhibited
different CL compositions with a mean carbon chain length
deviation of ∼3.8 carbons. Importantly, the strong discrepancy
between CL compositions in human cell lines and mammalian
tissues advises caution when generalizing findings, especially in
context of core CL functions in metabolism and apoptosis (9, 10,
29). This is also relevant when studying the connection between
oxidative damage and CL remodeling. Linoleic acid (FA18:2)
accounts for 10–20% of the CL mass in cultured cells (Figs. 3
and 4), whereas it constitutes a much larger fraction in heart and
liver tissues (SI Appendix, Fig. S16C).
Our experiments show that lipid availability is a crucial factor

for the emergence of specific CL compositions. When cells relied
only on fatty acid de novo biosynthesis, CL pools were mainly
composed of palmitoleic and oleic acid, whereas supplementa-
tion with heart lipid extracts generated a profile mimicking heart
tissue (Fig. 4A and SI Appendix, Fig. S16). Importantly, these
treatments did not only remodulate the mitochondrial lipid pool
composition, but also had functional consequences for mito-
chondrial metabolic processes. We show that heart lipid treatment
resulted in the activation of the NADH-linked mitochondrial
pathway in permeabilized cells, which could be causative for the
growth-independent reduction of ROUTINE oxygen consump-
tion in intact cells (Fig. 4 C and E). Although the exact mech-
anistic links are still elusive, these observations fall in line with
previous reports about the interplay between CL compositions
and mitochondrial function (30), potentially via specific CL
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interactions with respiratory protein complexes (14) or its role in
establishing efficient mitochondrial membrane structures (7, 31).
In summary, we comprehensively analyzed and structurally

characterized the molecular mitochondrial CL composition in:
(i) disease models, (ii) cell-culture models, (iii) CL modulation
experiments, and (iv) a set of 13 species, and all data are openly
available. By combining HPLC-MS/MS with a subsequent
mathematical structural modeling pipeline for recorded fragment
spectra, we were able to investigate CL variability in great molec-
ular detail (Fig. 2). This will thus greatly expand our ability to study
the underlying mechanistic principles responsible for establishing
the large diversity of CL patterns that are observed in different
species and under different conditions (SI Appendix, Fig. S15),
and to understand their functional consequences.

Methods
Materials and methods are described briefly. Details in SI Appendix.

Sample Material and Respirometry. The study was conducted in accordance
with the Helsinki Declaration of 1975, as revised in 2000, andwas approved as
part of the Biobank for Rare Diseases by the Ethics Committee of the Medical
University of Innsbruck, Austria (study no. UN4501), and experiments were
performed after obtaining informed consent. If not stated otherwise, cells
were grown under standard conditions (SI Appendix, Table S1) and biomass
was homogenized in PBS. For lipid supplementation, S. scrofa heart lipid
extracts were added to lipid-free Panserin 401 cell culture medium. High-
resolution respirometry was performed in intact and permeabilized cells
with the Oxygraph-2k (Oroboros Instruments).

Lipid Extraction and CL Analysis by LC-MS/MS. Sample material was homog-
enized in water and lipids were extracted following the Folch method with
CL(14:0)4 as internal standard (ISTD). Lipids were dissolved in HPLC starting
condition separated by reversed-phase HPLC on a Dionex Ultimate 3000
HPLC (Thermo Fisher) and quantified with a Thermo Velos Pro Dual-Pressure
Linear Ion Trap Mass Spectrometer.

Quantitative Data Analysis. Data were analyzed in MZMine2 (32) and R (www.
r-project.org/). Targeted peak integration was performed on baseline-cor-
rected data. Quantification was achieved by external calibration, accounting
for the ISTD response, and normalization to protein content.

MS/MS-Based Structural CL and FA Modeling. Mathematical structural mod-
eling was achieved by minimizing the Euclidean distance between a theo-
retical PA profile-dependent theoretical fragmentation model and the
measured MS2 spectrum (Dataset S2). This minimization was achieved by
using the box constraint, limited-memory modification of the BFGS quasi-
Newton method “L-BFGS-B” (22). For each MS2 scan a modeled PA profile
was obtained. To construct the final CL structural landscape, all PA profiles
referring to one CL species were summed proportionally to their MS2 in-
tensities and subsequently weighted them according to their respective
MS1 levels. FA side-chain distributions were modeled in an analog manner,
by linking and minimizing the analyzed PA compositions with theoretical PA
profiles based on dual FA combinations within the available FA space
(Dataset S3). FA profiles were either solved from cumulative PA profiles, or
for PA compositions of single CL species.

Data Analysis. Data visualization and statistical analysis was conducted
using R.
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