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Abstract

Obesity is a worldwide pandemic, which can be fatal for the most extremely affected 

individuals. Lifestyle interventions such as diet and exercise are largely ineffective 

and current anti-obesity medications offer little in the way of significant or sustained 

weight loss. Bariatric surgery is effective, but largely restricted to only a small subset 

of extremely obese patients. While the hormonal factors mediating sustained weight 

loss and remission of diabetes by bariatric surgery remain elusive, a new class of 

polypharmacological drugs shows potential to shrink the gap in efficacy between a 

surgery and pharmacology. In essence, this new class of drugs combines the beneficial 

effects of several independent hormones into a single entity, thereby combining their 

metabolic efficacy to improve systems metabolism. Such unimolecular drugs include 

single molecules with agonism at the receptors for glucagon, glucagon-like peptide 

1 and the glucose-dependent insulinotropic polypeptide. In preclinical studies, these 

specially tailored multiagonists outperform both their mono-agonist components 

and current best in class anti-obesity medications. While clinical trials and vigorous 

safety analyses are ongoing, these drugs are poised to have a transformative effect 

in anti-obesity therapy and might hopefully lead the way to a new era in weight-loss 

pharmacology.

Introduction

Obesity is a devastating condition of pandemic 
dimensions. In 2015, there were 107.7  million obese 
children and 603.7  million obese adults worldwide 
(Afshin et al. 2017), and this number is expected to rise. 
Overweight and obesity are associated with a number of 
comorbidities, most importantly type 2 diabetes (T2DM), 
cardiovascular disease, hypertension, dyslipidemia and 
several kinds of cancer, predominantly gastrointestinal 
(GI). In 2015, around 4 million deaths were attributed to 
overweight and obesity (Afshin et al. 2017).

Hypothetically speaking, obesity could be prevented 
simply by reducing food intake and increasing 
physical activity. However, adherence to lifestyle 
interventions such as regular exercise is poor. A number 
of psychological and economic factors are involved in 
such compliance, and humans might be evolutionarily 
predisposed to a positive energy balance (Wells 2006). 
Furthermore, once excess weight has been gained, 
human metabolism intrinsically defends against its loss 
(MacLean et al. 2015).
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Since lifestyle interventions have so far proven 
insufficient to combat our obesity pandemic, other 
interventions are needed. To date, the most effective 
and long-lasting intervention is bariatric surgery. Of the 
various types of bariatric surgeries available, Roux-en-Y 
gastric bypass and biliopancreatic diversion/duodenal 
switch surgeries are the most common and successful, with 
reported initial excess weight reduction of up to 68–70%, 
where excess weight is defined as the difference between 
total preoperative weight and ideal weight (Buchwald 
2002, Buchwald et  al. 2004). Despite unquestionable 
effectiveness, bariatric surgery is typically only available 
to a small subset of individuals, with inclusion criteria 
being a BMI greater than 40 or greater than 35 with a 
comorbidity such as diabetes or heart disease (1992). In 
addition, the surgery itself is costly and not without risk 
(Chang et al. 2014).

Notably, improvement of glycemic control by 
bariatric surgery is rapid and is often observed even before 
a clinically relevant weight loss (Pories et al. 1995, Peterli 
et al. 2009, Bayham et al. 2012). Despite intense scientific 
investigation, changes in metabolic rate or intestinal 
nutrients absorption do not seem to explain the efficacy 
and sustainability in weight reduction (Olbers et  al. 
2006, Odstrcil et al. 2010, Carswell et al. 2014, Munzberg 
et al. 2015, Schmidt et al. 2016). Changes in food intake 
are frequently reported after bariatric surgery and are 
commonly considered a causal factor for the weight loss 

(Brolin et al. 1994, Sjostrom et al. 2004, Laurenius et al. 
2012, Munzberg et al. 2015). Notably, such differences in 
food intake do not seem to rely on physical limitations 
of the GI tract (Ryan et  al. 2014), but rather result 
from changes in food preference, taste perception and 
modifications in the central food reward system (Scruggs 
et al. 1994, Burge et al. 1995, Miras & le Roux 2010, Shin 
& Berthoud 2011, Mathes & Spector 2012, Laurenius et al. 
2013). It seems fair to hypothesize that such changes 
are likely mediated via neuronal and/or humoral factors 
(Clemmensen et al. 2017). For example, following Roux-
en-Y gastric bypass, gastric banding or sleeve gastronomy, 
there is an increase in the secretion of glucagon-like 
peptide 1 (GLP-1) (Laferrere 2016, Meek et  al. 2016, 
Clemmensen et  al. 2017), which is known not only for 
its beneficial effects on glycemia but also for its ability to 
decrease body weight via CNS-induced inhibition of food 
intake (Sisley et al. 2014).

GLP-1 is secreted by the intestinal L-cells in response 
to nutrient stimuli. GLP-1 directly acts on the β-cells 
to increase glucose-stimulated insulin secretion and 
also through the central nervous system to decrease 
food intake (Fig. 1) (Muller et al. 2017). Native GLP-1 is 
rapidly degraded by dipeptidyl peptidase IV (DPP-IV), 
which cleaves native GLP-1 at the N-terminal alanine at 
the second position, resulting in the generation of the 
inactive GLP-19–36amide or GLP-19–37 (Mentlein et al. 1993, 
Deacon et  al. 1995, Kieffer et  al. 1995). Native GLP-1 

Figure 1
Schematic demonstrating the qualitative 
metabolic effects of GLP-1 (red arrows), glucagon 
(blue arrows) and GIP (green arrows) on systems 
metabolism, including key metabolic tissues. 
Arrows pointing upwards indicate an increase or 
improvement, while arrows pointing downwards 
indicate a decrease.
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accordingly has a circulating half-life of 1.5–5 min (Hui 
et al. 2002, Baggio & Drucker 2007). Modifications to the 
native GLP-1 sequence have overcome this limitation. 
Common modifications include the substitution of a 
d-Serine or aminoisobutyric acid (Aib) residue at position 
2 to increase resistance to peptidase degradation. Another 
common modification is extension of the peptide to 
include the nine amino acid C-terminal extension 
(CEX) of exendin-4, which stabilizes the secondary 
structure and can (depending on the peptide) improve 
glucagon receptor agonism (Neidigh et al. 2001, Li et al. 
2007, Chabenne et al. 2010, Finan et al. 2013, 2015a,b). 
Additional modifications such as site-specific acylation 
or conjugation with large biomolecules have resulted in 
a series of commercially available GLP-1 analogs, with 
varying efficacies (Finan et  al. 2015a,b). Despite the 
development of several iterations, these GLP-1 analogs 
only have modest weight-lowering efficacy, which, 
depending on dose and duration of treatment, typically 
fall in the range of 1–5 kg (Bush et al. 2009, Nauck et al. 
2009, 2016, Bergenstal et  al. 2010, Fonseca et  al. 2012, 
Meier 2012, Russell-Jones et  al. 2012, Rosenstock et  al. 
2013, Woodward & Anderson 2014, Davies et  al. 2015, 
Lau et al. 2015, Thompson & Trujillo 2015, Dungan et al. 
2016, Pratley et al. 2018). Side effects such as nausea and 
GI distress preclude higher doses to drive greater weight 
loss. Therefore, it is clear that while GLP-1 analogs are 
beneficial to improve glycemia, targeting solely the GLP-1 
receptor for the purpose of lowering body weight has 
limitations.

Serendipitously, native GLP-1 shows high sequence 
homology to glucagon and the glucose-dependent 
insulinotropic polypeptide (GIP). High sequence 
homology is also present in the receptors for GLP-1, 
glucagon and GIP, which together makes these peptides 
inherently prone to sequence hybridization for the 
purpose of simultaneously activating their receptors with 
only one molecule. Notably, glucagon can decrease body 
weight via inhibition of food intake and elevation of 
energy expenditure (Muller et  al. 2017). Consequently, 
it was believed that such a single molecule with dual 
agonism at the receptors for glucagon and GLP-1 
would lead to complementary (and ideally synergistic) 
pharmacological action, putatively driving greater weight 
loss and glycemic benefits through non-redundant 
signaling pathways. Any observed beneficial action 
would naturally create hope for the possibility of lower 
dosing schemes, thus potentially reducing the possibility 
of side effects, such as those typically seen at high doses 
of GLP-1.

The unimolecular formulation has several advantages 
compared to the loose adjunct administration of the 
single peptides. The key biological difference is that 
each independent peptide would have its specific and 
potentially unique pharmacokinetic profile. Accordingly, 
the peptides in such a loose combination would likely 
differ in their rates of absorption, distribution, metabolism 
and clearance. In contrast, a unimolecular multiagonist 
would have only one pharmacokinetic profile, which 
was hypothesized to result in superior metabolic benefits 
compared to a loose co-mixture of the single peptides. 
Furthermore, in terms of practicality, a single molecule 
polyagonist can more easily achieve regulatory approval.

GLP-1/glucagon co-agonism

The combination of GLP-1R and glucagon receptor 
(GCGR) agonism into a single entity seems, at first 
glance, counter-intuitive. Glucagon raises blood glucose 
levels by stimulating gluconeogenesis and glycogenolysis 
(Fig. 1) (Muller et al. 2017). In an obese patient, for whom 
diabetes is a liability or comorbidity, raising blood glucose 
would obviously be undesirable. Glucagon has indeed 
been postulated to play a key role in the development of 
type 2 diabetes (Unger & Cherrington 2012) and patients 
with T2DM are frequently reported to have postprandial 
hyperglucagonemia due to impaired glucose inhibition of 
glucagon secretion (Muller et al. 1970, Unger et al. 1970, 
Gerich et al. 1976, Felig et al. 1978, Butler & Rizza 1991, 
Kelley et al. 1994). However, glucagon also increases satiety 
after a meal and increases energy expenditure in rodents 
and humans (Muller et al. 2017). The logic behind a dual 
agonist targeting the receptors for GLP-1 and glucagon was 
thus that the insulinotropic effects of GLP-1 would buffer 
against any hyperglycemic liability of glucagon, while the 
anorectic effect of GLP-1 would synergize with glucagon’s 
anorectic and thermogenic effects to ultimately drive 
weight loss (Fig.  2). One can argue that mother nature 
developed the first of such GLP-1/glucagon dual-agonists 
with oxyntomodulin (OXM). Notably, however, despite 
having activity at both cognate receptors, OXM greatly 
favors GLP-1R over GCGR (Pocai 2014).

The first patented and preclinically evaluated GLP-1/
glucagon dual agonist was developed by the groups of 
Richard DiMarchi and Matthias Tschöp. The molecule is 
based on the glucagon sequence, with key GLP-1 residues 
introduced to impart GLP-1R agonism (Day et al. 2009). 
This dual agonist also includes an Aib residue at position 
2 to protect from DPP-IV cleavage. A 40 kDa PEGylation 
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was added on cysteine 24 to prolong in vivo action, and a 
lactam bridge between Glu16 and Lys20 was introduced 
to stabilize the secondary structure of the molecule and 
to boost GCGR activity (Day et  al. 2009). In DIO mice 
monitored for 7 days, a single injection of 325 nmol/kg 
resulted in a decrease in food intake and a body weight 
loss of 25%, primarily due to a loss of fat mass (Day et al. 
2009). In a more chronic setting, weekly administration 
of 70 nmol/kg of the co-agonist for 1 month resulted in 
a 28% decrease in body weight, primarily fat mass, as 
well as an improvement in glucose tolerance, an increase 
in energy expenditure and an increase in the utilization 
of lipids as energy substrates (Day et al. 2009). A 27-day 
study of the same dose revealed that the co-agonist 
decreases plasma triglycerides, LDL cholesterol and total 
cholesterol, decreased circulating leptin and normalized 
liver lipid content (Day et  al. 2009). These preclinical 
results demonstrated the multifaceted ‘approach’ of the 
co-agonist, which robustly corrects obesity and improves 
multiple aspects of metabolism simultaneously.

Another example of a GLP-1R/GCGR co-agonist was 
developed by the research group of Merck. This co-agonist 
was inspired by the native hormone OXM. In order to 
boost the activity and efficacy of OXM, d-Serine was 
substituted at position 2 and a cholesterol moiety was 
added to the C-terminus of the peptide (Pocai et al. 2009). 
The resulting DualAG peptide showed nearly balanced 
potency at the receptors for GLP-1 and glucagon (Pocai 
et al. 2009). In DIO mice, every-other-day subcutaneous 
injections of 1.9 µmol/kg of DualAG for 14 days resulted 

in a 30% reduction in food intake and a 25% body weight 
loss, primarily due to a loss of fat mass (Pocai et al. 2009). 
In addition, DualAG induced significant improvements 
in glucose tolerance and normalized blood glucose levels, 
benefits that are likely secondary to the loss of body 
weight (Pocai et al. 2009). These effects were blunted in 
either GLP-1R−/− or GCGR−/− mice (Pocai et  al. 2009), 
demonstrating the contribution of both receptors to the 
metabolic effects and emphasizing the importance of dual 
agonism for synergistic effects.

A third example of a GLP-1R/GCGR co-agonist has 
been developed by Sanofi. This peptide is based on the 
exendin-4 sequence with additional glucagon residues 
introduced to enhance activity at the GCGR (Evers et al. 
2017). Like many of the other dual-agonists, this peptide 
incorporated a d-Serine at position 2 to reduce peptidase 
degradation, and a palmitic acid at a Lys14 to extend the 
half-life, which was measured to be 3.2 h in healthy mice 
(Evers et al. 2017). In DIO mice, a twice-daily subcutaneous 
injection of 50 µg/kg of this dual agonist over the course 
of 33 days resulted in a 29.1% drop in body weight, greater 
than the 13.6% drop in body weight from a matched dose 
of liraglutide (Evers et al. 2017). Similarly, in db/db mice, 
twice-daily subcutaneous injections of 50 µg/kg of the 
dual agonist over the course of 32 days resulted in lower 
HbA1c levels than control animals (Evers et al. 2017).

A fourth GLP-1/GCGR co-agonist (MEDI0382) is 
under development by MedImmune. This peptide has 
balanced activity at both receptors and increased stability 
against peptide degradation (Henderson et  al. 2016). 

Figure 2
Schematic demonstrating the working principle, 
metabolic effects and key target tissues of the 
GLP-1/glucagon dual agonist, with the size of the 
text weighted to indicate the magnitude of the 
observed effect. Arrows pointing upwards 
indicate an increase or improvement, while 
arrows pointing downwards indicate a decrease. 
This dual agonist most prominently affects body 
weight.

This work is licensed under a Creative Commons 
Attribution 4.0 Unported License.https://doi.org/10.1530/JOE-18-0264

http://joe.endocrinology-journals.org © 2018 The authors
Published by Bioscientifica Ltd.

Printed in Great Britain Downloaded from Bioscientifica.com at 12/09/2019 09:37:14AM
via free access

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/JOE-18-0264


R113

Review

S J Brandt et al. Peptide multiagonists as a new 
class of drugs

238:2Journal of 
Endocrinology

The half-life of this dual agonist is further enhanced by 
palmitoylation at Lys10, which promotes binding to 
serum albumin. In DIO mice, acute administration of 
10 nmol/kg suppresses food intake and improves glucose 
tolerance, although these effects are absent in GLP-1R 
knockout mice (Henderson et al. 2016). In a more chronic 
setting, a daily dose of 30 nmol/kg of MEDI0382 results in 
a 30% decrease in body weight and suppression of food 
intake over the course of 4 weeks (Henderson et al. 2016). 
In a separate study, 3 weeks of 10 nmol/kg resulted in a 
greater weight loss than pair fed controls, and an increase 
in oxygen consumption and decrease in the respiration 
exchange ratio compared to vehicle controls, all without 
a difference in locomotor activity (Henderson et  al. 
2016), suggesting an energy expenditure component to 
the observed weight loss. Importantly, the weight-loss 
effects of MEDI0382 translate into cynomolgus monkeys. 
In a 29-day study with doses between 8 and 27 nmol/kg 
MEDI0382, cynomolgus monkeys dose dependently lost 
between 5 and 13% of their body weight (Henderson 
et  al. 2016). This weight loss was accompanied by a 
reduction in food intake (Henderson et  al. 2016). After 
treatment cessation, monkeys that had been treated 
with MEDI0382 stabilized at a lower body weight than 
the control monkeys (Henderson et  al. 2016), perhaps 
indicating that MEDI0382 induced a lower ‘set point’ for 
body weight maintenance. In a separate study, 29 days of 
administration of 4–27 nmol/kg in cynomolgus monkeys 
did not affect blood glucose (Henderson et al. 2016).

These are just some of the GLP-1R/GCGR coagonists 
currently in development, and several of these peptides 
have progressed to Phase I and Phase II clinical testing 

(Table 1). Undoubtedly, more information on the clinical 
effects of these drugs will be available soon.

GLP-1/GIP co-agonism

GIP is a 42 amino acid protein secreted by the 
enteroendocrine K-cells of the proximal small intestine 
in response to nutrient intake (Drucker 2006). As an 
incretin hormone, the primary role of GIP is to stimulate 
insulin secretion (Fig. 1). Treatment with GIP is reported 
to normalize blood glucose and to improve glucose 
tolerance (Hinke et al. 2002, Gault et al. 2011, Kim et al. 
2012), although its insulinotropic effects are blunted 
in some individuals with type 2 diabetes (Vilsboll et  al. 
2002). Despite its glycemic benefits, GIP was dismissed 
as a potential anti-obesity target due to some reports 
testifying GIP is obesogenic in nature in mice and certain 
cell lines (Eckel et  al. 1979, Oben et  al. 1991, Miyawaki 
et  al. 2002, McClean et  al. 2007, Althage et  al. 2008, 
Gogebakan et al. 2012, Finan et al. 2016). However, more 
recent studies demonstrate that chronic treatment with 
GIP can decrease body weight in rodents (Finan et  al. 
2016). Mice overexpressing GIP show improved glycemic 
control and resistance to diet-induced obesity (Kim et al. 
2012). Chronic GIPR agonism further improves glucose 
metabolism in DIO mice without signs of excess weight 
gain (Martin et  al. 2013). Transgenic pigs expressing a 
dominant negative GIP receptor in the pancreas also 
show impaired glucose tolerance due to delayed insulin 
secretion, impaired insulinotropic action of GIP, roughly 
60% reduced β-cell proliferation and reduced islet mass of 
up to 58% at the age of 1 year (Renner et al. 2010).

Table 1 Multiagonists in development.

Target receptors Drug Company Status

GLP-1R/GCGR HM12525A Hamni Pharmaceuticals Phase II
JNJ-54728518 Janssen Pharmaceuticals Phase I
MEDI0382 MedImmune Phase II
MK-8521 Merck Phase II
NN9277 Novo Nordisk Phase I
MOD-6030/1 Prolor/OPKO Biological Preclinical
SAR425899 Sanofi Phase II
VPD-107 Spitfire Pharma Preclinical
TT-401 Transition Therapeutics Phase II/not advancing
ZP2929 Zealand Phase I

GLP-1R/GIPR CPD86 Eli Lilly Preclinical
LY3298176 Eli Lilly Phase II
NN9709/MAR709/RG7697 Novo Nordisk/Marcadia Phase II
SAR438335 Sanofi Phase I
ZP-I-98 Zealand Preclinical
ZP-DI-70 Zealand Preclinical

GLP-1R/GCGR/GIPR HM15211 Hamni Pharmaceuticals Preclinical
MAR423 Novo Nordisk/Marcadia Phase I
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The rationale to combine the pharmacology of GLP-1 
and GIP in a single entity was based on the hypothesis 
that such a dual incretin hormone action would maximize 
the glycemic benefits while the anorexigenic effect of 
GLP-1 would restrain any obesogenic potential of GIP 
(Fig. 3). In support of this hypothesis, co-administration 
of GLP-1 and GIP in mice was a priori confirmed to 
improve glycemia and body weight loss in DIO mice 
(Finan et al. 2013).

Two unimolecular dual incretin (‘twincretin’) 
hormones were subsequently created based on the primary 
glucagon sequence. The dual-agonists incorporated key 
GLP-1 and GIP residues such that the peptide activated 
both the GLP-1R and GIPR with equal potency in vitro 
(Finan et al. 2013). Other modifications included an Aib 
residue at position 2 to increase resistance to DPP-IV 
cleavage. This peptide was either acylated with a C16:0 
fatty acid (acylated version) at Lys40 or PEGylated with 
40 kDa PEG at Cys24 (PEGylated version) to prolong  
in vivo action. The C-terminal ends of the peptides were 
further modified to carry the CEX tail from exendin-4. 
Daily administration of 30 nmol/kg of the unacylated 
version of the dual agonist in DIO mice over the course 
of 7 days resulted in a 14% drop in body weight, greater 
than a comparable dose of exendin-4 (Finan et al. 2013).  
A single 30 nmol/kg dose of the 16-carbon acylated 
version of the peptide resulted in an 18.8% body weight 
drop (Finan et  al. 2013). Both versions of the peptide 
decreased food intake, lowered body weight primarily 
through the loss of fat mass and decreased blood glucose 
levels (Finan et  al. 2013). The PEGylated version of the 

peptide yielded similar results with less frequent dosing 
(Finan et  al. 2013). Like the GLP-1R/GCGR co-agonist, 
this GLP-1R/GIPR co-agonist has the potential to be an 
effective weight-loss drug.

The acylated GLP-1R/GIPR co-agonist was also 
investigated in cynomolgus monkeys. Monkeys were 
given a single 10 nmol/kg injection of the acylated 
co-agonist, and 24 h later, a dextrose infusion, during 
which blood glucose and insulin were measured. The 
co-agonist lowered blood glucose and increased insulin, 
both to a greater extent than a matched dose of liraglutide 
(Finan et al. 2013).

The PEGylated co-agonist has even been investigated 
in humans. In a cohort of healthy, non-diabetic human 
subjects, a single injection of 4, 8 or 16 mg of the 
PEGylated co-agonist was followed by a dextrose infusion 
72 h later. The co-agonist decreased blood glucose and 
increased plasma insulin concentration (Finan et al. 2013). 
In more a chronic study, 53 patients with type 2 diabetes 
were given weekly injections of 4, 12, 20 and 30 mg of 
the PEGylated co-agonist, for 6  weeks. The co-agonist 
lowered HbA1c in a dose-dependent manner (Finan et al. 
2013). The co-agonist was well tolerated, with only mild-
to-moderate side effects (Finan et  al. 2013). A further 
13-week Phase II study investigated this compound 
in patients with type 2 diabetes, with comparisons to 
placebo and liraglutide treatment. Compared to placebo, 
treatment with once-daily subcutaneous injections of 
1.8 mg of the acylated co-agonist resulted in significant 
decreases in plasma HbA1c, significant decreases in both 
fasting and self-reported plasma glucose and a decrease 

Figure 3
Schematic demonstrating the working principle, 
metabolic effects and key target tissues of the 
GLP-1/GIP dual agonist. Arrows pointing upwards 
indicate an increase or improvement, while 
arrows pointing downwards indicate a decrease. 
The emphasis on glycemic control indicates the 
relative magnitude of the effect.
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in body weight that was significant at week 8 but not at 
week 12 (Frias et al. 2017). Furthermore, treatment with 
the acylated co-agonist resulted in a significant reduction 
in total cholesterol, along with a trend in reduction of 
LDL, triglycerides, free fatty acids and apolipoprotein 
B (Frias et al. 2017). In the same study, treatment with 
liraglutide did not result in a change in cholesterol (Frias 
et al. 2017). Decreases in plasma leptin (22% relative to 
placebo) were also observed (Frias et al. 2017), suggesting 
an increase in leptin sensitivity. In a meal tolerance test, 
treatment with the compound significantly reduced 
2 h post-prandial glucose (Frias et al. 2017). In terms of 
safety, there were no serious adverse effects related to 
treatment. Reported adverse effects were mostly mild to 
moderate, and the majority were GI-related events (Frias 
et al. 2017). In addition to these co-agonists, many other 
GLP-1R/GIPR coagonists are currently in development 
(Table  1). Whether the promising preclinical results 
translate into clinical weight-loss benefits remains to 
be seen.

GLP-1/GIP/glucagon tri-agonist

The preclinical results of the dual GLP-1-based agonists 
naturally suggest the combination of all three peptides 
as a potential unimolecular therapy. It was hypothesized 
that the dual insulinotropic effect of GLP-1 and GIP 
would optimally buffer against the diabetogenic liability 
of glucagon while combined agonism at the receptors 
for GLP-1 and glucagon would restrain any potential 
obesogenic effect of GIP. The ultimate result of such triple 

agonism was a profound ability to decrease body weight 
and to improve glycemic control (Fig. 4).

Beginning with a previously validated GLP-1/
glucagon dual agonist sequence, GIP residues were 
introduced stepwise to create a peptide with equal in vitro 
potency at all three receptors and with superior potency 
relative to all three native peptides (Finan et al. 2015a,b). 
This peptide also included an Aib residue at position 2 
to protect against DPP-IV cleavage and a C16:0 palmitic 
acid at the Lys10 position to prolong in vivo action 
(Finan et  al. 2015a,b). In DIO mice, a 20-day study of 
daily subcutaneous injections of as little as 3 nmol/kg  
of the triple agonist resulted in a 26.6% body weight 
reduction, which was primarily the result of a loss of fat 
mass (Finan et al. 2015a,b). In addition, the triple agonist 
lowered ad libitum blood glucose, improved glucose 
tolerance and lowered circulating insulin levels (Finan 
et  al. 2015a,b), suggesting improved insulin sensitivity. 
The triple agonist also lowered hepatic lipid content 
(Finan et  al. 2015a,b), which would be beneficial in a 
translational setting for patients with fatty liver disease 
and non-alcoholic steatohepatitis (NASH). Importantly, 
the metabolic benefits of the triple agonist are dependent 
on signaling at all three target receptors (Finan et  al. 
2015a,b), demonstrating that it is truly the triple agonism 
responsible for the observed benefits. The efficacy of the 
triple agonist has also been investigated in female mice. 
The triagonist was equally efficacious in lowering body 
weight in DIO female mice compared to fat mass matched 
male mice (Jall et  al. 2017). In addition, with a daily  
dose of 10 nmol/kg for 27  days, the triagonist largely 
resolved the hepatosteatosis observed in the female mice 

Figure 4
Schematic demonstrating the working principle, 
metabolic effects and key target tissues of the 
GLP-1/GIP/glucagon triple agonist, with the size 
of the text weighted to indicate the magnitude 
of the observed effect. Arrows pointing upwards 
indicate an increase or improvement, while 
arrows pointing downwards indicate a decrease. 
The triagonist most predominately affects body 
weight, glycemic control and liver cholesterol and 
hepatosteatosis.
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(Jall et al. 2017). Unsurprisingly, the triagonist had only mild 
effects on glucose tolerance in female mice, since female 
mice are inherently protected against the development 
of hyperglycemia and hyperinsulinemia. However, the 
triagonist did resolve the mild hyperinsulinemia observed 
in the female mice (Jall et  al. 2017). Taken together, 
these results suggest that the triagonist has translational 
potential in both sexes.

Other triple GLP-1R/GCGR/GIPR agonists are in 
development (Table  1). Hamni Pharmaceuticals has 
developed a glucagon-based triple agonist, HM15211, 
with equal potency at all three receptors in vitro (Choi 
et al. 2017, Kim et al. 2017). This triple agonist lowers body 
weight in DIO mice to a greater extent than liraglutide 
alone and also improves lipid metabolism and hepatic 
steatosis (Choi et al. 2017, Kim et al. 2017).

A third example, Syn-GIP-ZP, is a triple agonist created 
by fusing a GLP-1R/GCGR dual agonist and a GIP analog 
to the heavy and light chains of Synagis, an antibody with 
low immunogenicity in humans (Wang et al. 2016). This 
fusion peptide has agonism at all three receptors (Wang 
et  al. 2016) and demonstrates that multiagonism is not 
necessarily limited to structurally related peptides, but 
can be achieved through fusion to larger biomolecules. 
Naturally, the advantages of this approach are the increased 
synthetic flexibility and enhanced pharmacokinetics; 
however, these molecules must be carefully engineered 
for stability and carefully designed so that the ratio of 
agonism between components is metabolically beneficial.

Are multiagonist peptides the golden 
therapy for obesity?

Until now, most anti-obesity drugs have been focused 
either on singular molecular targets or their loose 
combination in a co-mixture. Unfortunately, none of 
these strategies has so far led to satisfactory results. 
While most historic pharmacotherapies are hampered by 
an unfavorable imbalance between efficacy and safety, 
this new class of multiagonist drugs has emerged with 
candidates that may finally close the gap between the 
efficacy seen with bariatric surgery and pharmacology. 
Whereas these multiagonist peptides outperform available 
best in class drugs to treat obesity, only time will tell if they 
really represent an appreciable step forward. The available 
preclinical data are encouraging. However, whether the 
efficacy and tolerability that has been demonstrated in 
rodents and monkeys also translates to humans remains 
to be seen. More long-term studies and outpatient trials 

are required to determine sustainability and safety. While 
a final judgment requires more long-term clinical studies, 
we can be carefully optimistic that this new class of 
specially engineered drugs is lighting the path to a new 
era in weight-loss pharmacology.
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