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We propose an approach to describe the Dþ → K−KþKþ decay amplitude, based on chiral effective
Lagrangians, which can be used to extract information about KK̄ scattering. It relies on factorization and its
main novel feature is the role played by multimeson interactions characteristic of chiral symmetry. Our trial
function is an alternative to the widely used isobar model and includes both nonresonant three-body
interactions and two-body rescattering amplitudes, based on coupled channels and resonances, for S- and
P-waves with isospin 0 and 1. The latter are unitarized in the K-matrix approximation and represent the
only source of complex phases in the problem. The nonresonant component, given by chiral symmetry as a
real polynomium, is an important prediction of the model, which goes beyond the (2þ 1) approximation.
Our approach allows one to disentangle the two-body scalar contributions with different isospins,
associated with the f0ð980Þ and a0ð980Þ channels. We show how the KK̄ amplitude can be obtained from
the decay Dþ → K−KþKþ and discuss extensions to other three-body final states.
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I. INTRODUCTION

Nonleptonic weak decays of heavy-flavored mesons are
extensively used in light meson spectroscopy. Owing to a
rich resonant structure, these decays provide a natural place
to study hadron-hadron interactions at low energies. In
particular, almost 20 years ago, three-body decays of
charmed mesons could confirm the existence of the con-
troversial scalar states f0ð600Þ (or sigma) [1] and K�

0ð800Þ
(or kappa) [2]. More comprehensive investigations can be
done nowadays, using the very large and pure samples
provided by the LHC experiments, and still more data is
expected in the near future, with Belle II experiments.
Three-body hadronic decays of heavy-flavored mesons

involve combinations of different classes of processes,
namely heavy-quark weak transitions, hadron formation
and final-state interactions (FSI), whereby the hadrons
produced in the primary vertex are allowed to interact in
many different ways before being detected. Final-state
processes include both proper three-body interactions
and a wide range of elastic and inelastic coupled channels

involving resonances. In this framework, a question arises
concerning how to obtain information about two-body
scattering amplitudes from the abundant data on three-
body systems.
The key issue of this program is the modeling of the

decay amplitudes. Most amplitude analyses have been
performed using the so-called isobar model, in which
the decay amplitude is represented by a coherent sum
of both nonresonant and resonant contributions. This
approach, albeit largely employed [3], has conceptual
limitations. The outcome of isobar model analyses are
resonance parameters such as fit fractions, masses and
widths, which are neither directly related to any underlying
dynamical theory nor provide clues to the identification of
two-body substructures. Thus, the systematic interpretation
of the isobar model results is rather difficult.
This situation motivated in the past decade efforts

towards building models that are based on more solid
theoretical grounds. Those models improve essentially the
two-meson interaction description in the FSI, with the use
of dispersion relations and chiral perturbation theory. Most
of them work in the quasi-two-body (2þ 1) approximation,
where interactions with the third particle are neglected.
Recently, a collection of parametrizations based on analytic
and unitary meson-meson form factors for D and B three-
body hadronic decays within the (2þ 1) approximation
was presented in Ref. [4]. Three-body FSIs were also
considered and, in particular, shown to play a significant
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role in the Dþ → K−πþπþ decay. In this process, three-
body unitarity was implemented in different ways, by
means of Faddeev-like decompositions [5–7], Khuri-
Treiman equation [8] or triangle diagrams [9]. Whilst
differing in methods and techniques, all these theoretical
efforts have in common the attempt to include, in a
systematic way, knowledge of two-body systems in the
description of the decay amplitudes.
This work departs from the same broad perspective, but

concentrates explicitly on the derivation of two-body
scattering amplitudes from three-body decays. With this
purpose in mind, we suggest an approach based on effective
Lagrangians, whose main new feature is the stress put on
multimeson interactions characteristic of chiral symmetry,
and apply it to the Dþ → K−KþKþ decay. This process
is interesting because there is very little information
available on kaon-kaon scattering, regarding both theory
and experiment. Concerning the latter, one only has
access to ππ elastic scattering data [10] and to the inelastic
channel ππ → KK̄ [10,11]. Information about KK̄ inter-
action can be estimated by imposing unitarity constraints
on the ππ data. On the theory side, KK̄ amplitudes
have been calculated in next-to-leading order chiral per-
turbation theory. Aiming at a full coupled-channel descrip-
tion, it was extended up to 1.2 GeV, using form factors [12]
to describe the ηπ → KK̄ contribution to η → πππ decay
[13], or unitarized resummation techniques [14], to include
ππ → KK̄ in the context of FSI of J=Ψ → ϕππðKK̄Þ
decays.
The main purpose of this work is disclose information

about the dynamics of KK̄ interactions by disentangling the
two-body contributions contained in the Dþ → K−KþKþ
amplitude. This decay has been studied by LHCb collabo-
ration within the scope of the Isobar Model [15]. The
preliminary results already shown limitations when disen-
tangling scalar broad resonances individual contributions,
such as f0ð980Þ and a0ð980Þ. In our model, the description
of the KK̄ interaction relies on a chiral Lagrangian with
resonances, including all possible coupled channels for
(spin J ¼ 0, 1; isospin I ¼ 0, 1) extended to nonperturba-
tive regimes by means of unitarization. A relevant feature of
the model is that the relative contribution and phase of each
component is fixed by theory, and this represents an
important difference with the isobar model. Although the
formalism is developed for a specific process it can be
useful in other decays into three kaons.
This paper extends and supersedes a previous version

[16] and is organized as follows. The motivation for
building the amplitude is discussed in Sec. II, whereas
the model is presented in Secs. III and IV. The suggested
amplitude for data fitting, together with a comparison
between scattering and decay amplitudes is discussed in
Sec. V. Some simulations and general remarks are given
in Sec. VI. Details of the calculations are given in the
appendices.

II. MOTIVATION FOR A NEW MODEL

The isobar model, widely used for describing heavy-
meson decays into three pseudoscalars, relies on the
assumption that these processes are dominated by inter-
mediate states involving a spectator plus a resonance, and
also includes nonresonant contributions. In the decay
H → P1P2P3, of a heavy mesonH into three pseudoscalars
Pi, the isobar model emphasizes the sequence H → RP3,
followed by R → P1P2.
The full H → P1P2P3 decay amplitude is denoted by T

and the isobar model employs a guess function to be fitted
to data in the form of the coherent sum

T ¼ cnrτnr þ
X
k

ckτk; ð1Þ

the subscript nr referring to the nonresonant term and the
label k associated with resonances, as many of them as
needed. The coefficients ck ¼ akeiθk are complex param-
eters, to be determined by data. The choice τnr ¼ 1 is usual
for the nonresonant term, whereas the sub amplitudes
τk depend on the invariant masses of the problem. For
each resonance considered, the function τk is given by
τk ¼ ½FF� × ½angular factor� × ½line shape�k, where FF
stands for form factors, the angular factor is associated
with angular momentum channels, and ½line shape�k rep-
resents a resonance line shape, described by either a Breit-
Wigner (BW) function such as ðBWÞk ¼ 1=½s −m2

k þ
imkΓk�, mk and Γk being the resonance mass and width,
or by variations, such as the Flatté or Gounaris-Sakurai
forms. The angular factor allows one to distinguish partial
wave contributions and to employ the decomposition
T ¼ TS þ TP þ � � �.
A good fit to decay data based on the structure given by

Eq. (1), would yield an empirical set of complex parameters
cnr and ck. However, a question arises regarding the
meaning of these parameters. Would they be useful to
shed light into yet unknown two-body substructures of the
problem? Can they provide reliable information about
scattering amplitudes? If we denote two-body scattering
amplitudes by A, this question may be restated as: can one
extract A directly from T? As we argue in the sequence,
answers to these questions do not favor the isobar model.
On general grounds, there is no direct connection

between a heavy-meson decay amplitude T and two-body
scattering amplitudes A, involving the same particles.
Their relationship involves several issues, which we discuss
below.

A. Dynamics

The dynamical contents of T and A are rather different,
since the former must include weak vertices, which cannot
be present in the latter. Specific features of W-meson inter-
actions are important to T and irrelevant to A. Therefore,
although scattering amplitudes A may be substructures of
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T, there is no reason whatsoever for assuming that these A’s
are either identical or proportional to T. This is supported
by case studies. For instance, some time ago, the FOCUS
collaboration [17] produced a partial-wave analysis of the
S-wave K−πþ amplitude from the decay Dþ → K−πþπþ.
Several groups then compared [18] the phase of this
empirical amplitude directly with that from the LASS
K−πþ scattering data [19] and the discrepancy found
was seen as a puzzle. The fact that the FOCUS phase
was negative at low energies was considered to be
especially odd. In the language of this discussion, this
kind of puzzle arose just because one was trying to compare
T and A directly. The difference between observed S-wave
decay and scattering phases was later explained by con-
sidering meson loops in the weak sector of the problem
[5,6]. These loops account for the extra phases observed.

B. Good quantum numbers

Isospin is broken by weak interactions and is a good
quantum number for A, but not for T. Scattering amplitudes
A depend both on the angular momentum J and on the
isospin I of the channel considered, whereas just a J
dependence can be extracted from an empirical decay
amplitude T. This point will be recast on more technical
grounds while we discuss our model. For the time being, it
suffices to stress that it is impossible to derive directly AðJ;IÞ

from TðJÞ simply because the former contains more struc-
ture than the latter. An extraction of AðJ;IÞ from TðJÞ would
amount to generating physical content about the isospin
structure.

C. Coupled channels

It is well known that scattering amplitudes include
important inelasticities due to couplings of intermediate
states. For instance, as Hyams et al. [10] point out, KK̄
intermediate states do influence elastic ππ scattering at
some energies. Since scattering amplitudes A are substruc-
tures of the decay amplitude T, coupled channels present in
the former must also show up in the latter. In general, guess
functions better suited for accommodating data should have
structures similar to those used in meson-meson scattering,
Refs. [10,12,20]. In the case of the isobar model, the simple
guess functions usually employed fail to incorporate these
intermediate couplings.

D. Unitarity

Good fits to Dalitz plots data may require several
resonances with the same quantum numbers. At present,
conceptual techniques are available which preserve unitarity
while incorporating several resonances into amplitudes [21].
This allows one to go beyond the isobar model, where the
amplitude is constructed as sums of individual line shapes
(Breit-Wigner), as in Eq. (1), a procedure known to violate
unitarity, even in the case of scattering amplitudes [22].

E. Nonresonant term

The nonresonant term may be important and involve less
known interactions. In the case of heavy meson decays and
some leptonic reactions, available energies can be large
enough for allowing the simultaneous production of several
pseudoscalars at a single vertex. Multimeson dynamics
then becomes relevant. For instance, the process e−eþ →
4π involves the matrix element hππππjJμγ j0i, Jμγ being the
electromagnetic current [23]. A similar matrix element,
with Jμγ replaced with the weak current ðV − AÞμ, describes
the decay τ → ν4π [23]. Interactions of this kind are also
present in the model for Dþ → K−KþKþ we discuss here.

F. Lagrangians

Although the point of departure of the isobar model may
be sound, the problems mentioned tend to corrode the
physical meaning of parameters it yields from fits. Thus,
even if these fits are precise, the relevance of the parameters
extracted remains restricted to specific processes. Moreover,
in particular, one cannot rely on them for obtaining scattering
information. The most conservative way of ensuring that the
physical meaning of parameters is preserved from process to
process is to employ Lagrangians, which rely on just masses
and coupling constants. Guess functions for heavy-meson
decays constructed from Lagrangians yield free parameters
which allow the straightforward derivation of scattering
amplitudes.

III. DYNAMICS

The fundamental QCD Lagrangian for strong inter-
actions is written in terms of gluons and quarks, the basic
degrees of freedom. As the theory allows for gluon self-
interactions, perturbative calculations hold at high energies
only. At present, intermediate-energy reactions cannot be
described in terms of quarks and gluons, and one is forced
to rely on hadronic descriptions. The Dþ decay into
KþK−Kþ is doubly Cabibbo suppressed and must be
described in terms of a weak c → d vertex, supplemented
by hadronic final state interactions. The description of the
weak vertex departs from the topological structures given
by Chau [24], which implement Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing for processes involving a
single W. The primary decay occurs in the midst of light
quark condensates, and the direct implementation of Chau’s
scheme into calculations is difficult. A possible way to
overcome this kind of problem is to rely on the factorization
ansatz, following the work of Bauer, Stich and Wirbel [25].
For applications of factorization to D decays, see Ref. [4].
In this work, the basic idea of factorization is implemented
in an equivalent way by means of chiral effective
Lagrangians, in which weak interactions are treated as
external sources. At low energies, chiral perturbation theory
(ChPT) [26–28] is highly successful. It is ideally suited for
describing interactions of pseudoscalar mesons in the
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SUð3Þ flavor sector, but can also encompass baryons. A
prominent feature of ChPT is that it realizes the hidden
symmetry of the QCD ground state, which manifests itself
as a vacuum filled with uū, dd̄, and ss̄ states. The lowest
energy excitations of this vacuum are the pseudoscalar
mesons, which are highly collective states. Another
remarkable feature of the theory is that it yields multimeson
contact interactions. For instance, depending on the energy,
reactions such as ππ → ππKK̄ may involve a single
interaction. On a more technical side, in ChPT, amplitudes
are systematically expanded in terms of polynomials,
involving both kinematic variables and quark masses.
The orders of these polynomials, assessed at a scale
Λ ∼ 1 GeV, determine a dynamical hierarchy and leading
order (LO) contributions correspond to multimeson contact
interactions, whereas resonance exchanges are next-to-
leading order (NLO). This understanding motivated an
extension of the original chiral perturbation theory formal-
ism, known as (ChPTR), in which resonances are explicitly
included [29]. At present, ChPT yields the most reliable
representation of the Standard Model at low energies.
Low-energy applications of ChPTare normally restricted

to regions below the ρ mass whereas, in D decays, energies
above 1.5 GeV are involved. Therefore, the description of
hadronic interactions at those higher energies requires
further extensions of the theory, which must include non-
perturbative effects in a controlled way. Awidely used and
rather successful approach consists in resumming a Dyson
series based on chiral interactions, so as to obtain unitary
scattering amplitudes [21]. In this work, we deal with the
process Dþ → K−KþKþ and, in principle, it should be
described by a properly unitarized three-body amplitude.
However, this is beyond present possibilities and, following
the usual practice, we work in the so-called (2þ 1)
approximation, in which two-body unitarized amplitudes
are coupled to spectator particles. Throughout the paper, we
use the notation and conventions of Ref. [29]. If needed,

another extension scheme for ChPT, based on the explicit
inclusion of heavy mesons [30], is also available.
The theoretical description of a heavy meson decay into

pseudoscalars involves two quite distinct sets of inter-
actions. The first one concerns the primary weak vertex, in
which a heavy quark, either c or b, emits aW and becomes
a SUð3Þ quark. As this process occurs inside the heavy
meson, it corresponds to the effective decay of a D or a B
into a first set of SUð3Þ mesons. ChPT is fully suited for
describing these effective processes. The primary weak
decay is then followed by purely hadronic final state
interactions (FSIs), in which the mesons produced initially
rescatter in many different ways, before being detected. The
decay Dþ → K−KþKþ is doubly-Cabibbo-suppressed and
any model describing it should involve a combination of
these two parts, as suggested by Fig. 1.
Three-kaon final states have already been considered in

Ref. [31] for the case of B decays, where the phase space is
much larger. Although the weak vertex for the decayDþ →
K−KþKþ might be scrutinized in similar terms, in this
work we stress the role of final state interactions produced
by the strong couplings of intermediate states. Within the
(2þ 1) approximation, these interactions are always asso-
ciated with loops describing two-meson propagators. This
provides a topological criterion for distinguishing the
primary weak vertex from FSIs, namely that the former
is represented by tree diagrams and the latter by a series
with any number of loops. Each of these loops is multiplied
by a tree-level scattering amplitude K and, schematically,
this allows the decay amplitude T to be written as

T ¼ ðweak treeÞ × ½1þ ðloop ×KÞ þ ðloop ×KÞ2
þ ðloop ×KÞ3 þ � � ��: ð2Þ

The term within square brackets involves strong inter-
actions only and represents a geometric series for the FSIs,

K
K
K

+

+

−

3

2

1

K
K
K

+

+

−

3

2

1

K
K
K

+

+

−

3

2

1

(a)

= + b

a

(b)

WWT

FIG. 1. Amplitude T for Dþ → K−KþKþ: (a) primary weak vertex; (b) weak vertex dressed by final state interactions; the full line is
the D, dashed lines are pseudoscalars.
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which can be summed. Denoting this sum by S, one has
S ¼ 1=½1 − ðloop ×KÞ�, which corresponds to the model
prediction for the resonance line shape.
The weak amplitude describes the process D →

ðPaPbÞKþ at tree level, where Pi corresponds to a
pseudoscalar with SUð3Þ label i. There are two competing
topologies representing it, given by Figs. 2 and 3 for
hadronic and quark level diagrams, respectively. A peculiar
feature of these vertices is that process (a) can yield
PaPb ¼ K−Kþ, whereas process (b) cannot. This can be
seen by inspecting the quark structure of the latter, given in
Fig. 3, which shows that just a dd̄ pair is available as a
source of the two outgoing mesons at the strong vertex.
Hence one could have PaPb ¼ π0π0, πþπ−, K0K̄0, but not
PaPb ¼ K−Kþ. The production of a K−Kþ final state by
mechanism (b) would thus require at least one FSI. In terms
of the scheme depicted in Eq. (2), this means that the first
factor within the square bracket would be absent and the
decay amplitude could be rewritten as

T ¼ ðweak treeÞ × ðloop ×KÞ × ½1þ ðloop ×KÞ
þ ðloop ×KÞ2 þ ðloop ×KÞ3 þ � � ��: ð3Þ

Mechanism (b) is therefore suppressed when compared
with mechanism (a). The multimeson model (Triple-M) for
the Dþ → K−KþKþ amplitude proposed here assumes the
dominance of process (a) of Fig. 2, whereby the decay
proceeds through the steps Dþ → Wþ → KþK−Kþ.

IV. MULTIMESON MODEL FOR D+ → K −K +K +

Our model is based on the assumption that the
weak sector of the doubly Cabibbo-suppressed decay
Dþ → K−KþKþ is dominated by the process shown in
Fig. 2(a), in which quarks c and d̄ in the Dþ annihilate into
a Wþ, which subsequently hadronizes. The primary weak
decay is followed by final state interactions, involving the

scattering amplitude A. This yields the decay amplitude T
given in Fig. 4, which includes the weak vertex and
indicates that the relationship with A is not straightforward.
This decay amplitude is given by

T ¼ −
�
GFffiffiffi
2

p sin2θC

�
hK−ðp1ÞKþðp2ÞKþðp3ÞjAμj0i

× h0jAμjDþðPÞi; ð4Þ

where GF is the Fermi decay constant, θC is the Cabibbo
angle, the Aμ are axial currents and P ¼ p1 þ p2 þ p3.
Throughout the paper, the label 1 refers to the K−, the
label 3 the spectator Kþ and kinematic relations are given
in Appendix A.
Denoting the Dþ decay constant by FD, we write

h0jAμjDþðPÞi ¼ −i
ffiffiffi
2

p
FDPμ and find a decay amplitude

proportional to the divergence of the remaining axial
current, given by

T ¼ i

�
GFffiffiffi
2

p sin2θC

� ffiffiffi
2

p
FD½PμhAμi�; ð5Þ

with hAμi ¼ hK−ðp1ÞKþðp2ÞKþðp3ÞjAμj0i. This result
is important because, if SUð3Þ were an exact symmetry,
the axial current would be conserved and the amplitude
T would vanish. As the symmetry is broken by the
meson masses, one has the partial conservation of the
axial current (PCAC) and T must be proportional toM2

K. In
the expressions below, this becomes a signature of the
correct implementation of the symmetry.
The rich dynamics of the decay amplitude T is incor-

porated in the current hAμi and displayed in Fig. 5.
Diagrams are evaluated using the techniques described
in Refs. [28,29]. In chiral perturbation theory, the primary
couplings of the Wþ to the K−KþKþ system always
involve a direct interaction, accompanied by a kaon-pole
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term, denoted by (A) and (B) in the figure. Only their
joint contribution is compatible with PCAC. Diagrams
(1Aþ 1B) are LO and describe a nonresonant term, a
proper three body interaction, which goes beyond the
(2þ 1) approximation, whereas diagrams (2Aþ 2B) allow
for the possibility that two of the mesons rescatter, after
being produced in the primary weak vertex. Diagrams
(3Aþ 3B) are NLO and describe the production of bare
resonances at the weak vertex, whereas final state rescatter-
ing processes (4Aþ 4B) endow them with widths.

A. Two-body unitarization and
resonance line shapes

In the description of the two-body subsystem, we
consider just S- and P- waves, corresponding to (J ¼ 1,
0, I ¼ 1, 0) spin-isospin channels. The associated reso-
nances are ρð770Þ, ϕð1020Þ, a0ð980Þ, and two SUð3Þ
scalar-isoscalar states, S1 and So, corresponding to a singlet
and to a member of an octet, respectively. The physical
f0ð980Þ, together with a higher mass f0 state, would be
linear combinations of S1 and So. Depending on the
channel, the intermediate two-meson propagators may

involve ππ, KK, ηη, and πη intermediate states, so there
is a large number of coupled channels to be considered.
The basic meson-meson intermediate interactions

PaPb → PcPd are described by kernels KðJ;IÞ
abjcd and their

simple dynamical structure is shown in Fig. 6, as LO four
point terms, typical of chiral symmetry, supplemented by
NLO resonance exchanges in the s-channel. Just in the
(J ¼ 0, I ¼ 0) channel two resonances, S1 and So, are
needed. In these diagrams, all vertices represent inter-
actions derived from chiral Lagrangians [29]. Kernels are
then functions depending on just masses and coupling
constants. The mathematical structure of these functions is
displayed in Appendix F. In the case of the ϕ-meson, the
kernel includes an effective coupling to the ðρπ þ πππÞ
channel, which accounts for about 15% of its width. This
effective interaction is discussed in Appendix C and
yields Eq. (F6).
All other resonance terms in the kernels contain bare

poles. However, the evaluation of amplitudes involves the
iteration of the basic kernels by means of two-meson
propagators, as in Fig. 6(b). The propagators, denoted
by Ω̄, are discussed in Appendix B and, in principle, have
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both real and imaginary components. The former contain
divergent contributions and their regularization brings
unknown parameters into the problem. In this work we
are concerned with the construction of a guess function to
be tested in fits to decay data and these unknown param-
eters would bring too much freedom to the model. We
avoid this problem by working in the K-matrix approxi-
mation, whereby just the imaginary parts of the two-meson
propagators are kept. In spite of its limitations, this
approximation has already proved to be useful in analyses
of scattering data. A more complete discussion of off-shell
effects will be considered in future improvements of this
model. The two-meson propagator gives rise to the struc-
ture sketched within the square bracket of Eq. (2), where

the terms ðloop ×KÞ are realized by the functions MðJ;IÞ
ij

given in Eqs. (G10)–(G13). The resummation of the geo-
metric series, indicated in Fig. 6(b), endows the s-channel
resonances with widths. Thus among other structures,
intermediate two-body amplitudes yield denominators
DðJ;IÞ, which are akin to those of the form DBW ¼ ½s −
m2 þ imΓ� employed in BW functions. These denomina-
tors, that correspond to the predictions of the model for the
resonance line shapes, are given in Appendix G and
reproduced below. Explicit expressions read

Dρ ¼ ½ð1 −Mð1;1Þ
11 Þð1 −Mð1;1Þ

22 Þ −Mð1;1Þ
12 Mð1;1Þ

21 �; ð6Þ

Dϕ ¼ f1 −Mð1;0Þg; ð7Þ

Da0 ¼ ½ð1 −Mð0;1Þ
11 Þð1 −Mð0;1Þ

22 Þ −Mð0;1Þ
12 Mð0;1Þ

21 �; ð8Þ

DS ¼ ½1 −Mð0;0Þ
11 �½1 −Mð0;0Þ

22 �½1 −Mð0;0Þ
33 �

− ½1 −Mð0;0Þ
11 �Mð0;0Þ

23 Mð0;0Þ
32

− ½1 −Mð0;0Þ
22 �Mð0;0Þ

13 Mð0;0Þ
31 − ½1 −Mð0;0Þ

33 �Mð0;0Þ
12 Mð0;0Þ

21

−Mð0;0Þ
12 Mð0;0Þ

23 Mð0;0Þ
31 −Mð0;0Þ

21 Mð0;0Þ
32 Mð0;0Þ

13 ; ð9Þ

where the functions MðJ;IÞ
ij read

Mð1;1Þ
11 ¼ −Kð1;1Þ

ππjππ½Ω̄P
ππ=2�; Mð1;1Þ

12 ¼ −Kð1;1Þ
ππjKK½Ω̄P

KK=2�;
Mð1;1Þ

21 ¼ −Kð1;1Þ
ππjKK½Ω̄P

ππ=2�; Mð1;1Þ
22 ¼ −Kð1;1Þ

KKjKK½Ω̄P
KK=2�.
ð10Þ

Mð1;0Þ ¼ −Kð1;0Þ
KKjKK½Ω̄P

KK=2�. ð11Þ

Mð0;1Þ
11 ¼ −Kð0;1Þ

π8jπ8½Ω̄S
π8=2�; Mð0;1Þ

12 ¼ −Kð0;1Þ
π8jKK½Ω̄S

KK=2�;
Mð0;1Þ

21 ¼ −Kð0;1Þ
π8jKK½Ω̄S

π8=2�; Mð0;1Þ
22 ¼ −Kð0;1Þ

KKjKK½Ω̄S
KK=2�.
ð12Þ

Mð0;0Þ
11 ¼ −Kð0;0Þ

ππjππ½Ω̄S
ππ=2�; Mð0;0Þ

12 ¼ −Kð0;0Þ
ππjKK½Ω̄S

KK=2�;
Mð0;0Þ

13 ¼ −Kð0;0Þ
ππj88½Ω̄S

88=2�; Mð0;0Þ
21 ¼ −Kð0;0Þ

ππjKK½Ω̄S
ππ=2�;

Mð0;0Þ
22 ¼ −Kð0;0Þ

KKjKK½Ω̄S
KK=2�; Mð0;0Þ

23 ¼ −Kð0;0Þ
KKj88½Ω̄S

88=2�;
Mð0;0Þ

31 ¼ −Kð0;0Þ
ππj88½Ω̄S

ππ=2�; Mð0;0Þ
32 ¼ −Kð0;0Þ

KKj88½Ω̄S
KK=2�;

Mð0;0Þ
33 ¼ −Kð0;0Þ

88j88½Ω̄S
88=2�; ð13Þ

with the KðJ;IÞ
abjcd of Appendix F, whereas the subscripts 8

refer to the member of the SUð3Þ octet with the quantum
numbers of the η. The factor 1=2 in these expressions
accounts for the symmetry of intermediate states and it is

also present in the functions Mð0;1Þ
11 and Mð0;1Þ

21 because one
is using the symmetrized π8 intermediate state given
by Eq. (D8).
The imaginary propagators Ω̄ of Appendix B are

given by

Ω̄S
ab ¼ −

i
8π

Qabffiffiffi
s

p θðs − ðMa þMbÞ2Þ; ð14Þ

Ω̄P
aa ¼ −

i
6π

Q3
aaffiffiffi
s

p θðs − 4M2
aÞ; ð15Þ

Qab ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 2ðM2

a þM2
bÞ þ ðM2

a −M2
bÞ2=s

q
; ð16Þ

θ being the Heaviside step function.
The dynamical meaning of the functions Ω̄J

ab and

MðJ;IÞ
ab is indicated in Fig. 6(b). The former represents

the two-body propagator for mesons a and b with angular
momentum J, indicated by the dashed lines between two
successive empty blobs, whereas the latter encompasses a

blob and a two-body propagator. The functions MðJ;IÞ
ab

correspond to the paces of the various geometric series
entangled by the coupling of intermediate channels.

B. KK̄ scattering amplitude

The KK̄ scattering amplitude, which is a prediction of
the model, is derived in Appendix H and is written in terms
of the denominators DðJ;IÞ as

Að1;1Þ
KKjKK ¼ 1

Dρðm2
12Þ

½Mð1;1Þ
21 Kð1;1Þ

ππjKK þ ð1 −Mð1;1Þ
11 ÞKð1;1Þ

KKjKK�;

ð17Þ

Að1;0Þ
KKjKK ¼ 1

Dϕðm2
12Þ

Kð1;0Þ
KKjKK; ð18Þ
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Að0;1Þ
KKjKK ¼ 1

Da0ðm2
12Þ

½Mð0;1Þ
21 Kð0;1Þ

π8jKK þ ð1 −Mð0;1Þ
11 ÞKð0;1Þ

KKjKK�;

ð19Þ

Að0;0Þ
KKjKK

¼ 1

DSðm2
12Þ

f½Mð0;0Þ
21 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
23 Mð0;0Þ

31 �Kð0;0Þ
ππjKK

þ ½ð1 −Mð0;0Þ
11 Þð1 −Mð0;0Þ

33 Þ −Mð0;0Þ
13 Mð0;0Þ

31 �Kð0;0Þ
KKjKK

þ ½Mð0;0Þ
23 ð1 −Mð0;0Þ

11 Þ þMð0;0Þ
13 Mð0;0Þ

21 �Kð0;0Þ
88jKKg: ð20Þ

C. Decay amplitude

The decay amplitude for the process Dþ → K−KþKþ,
given by Eq. (5), has the general structure

T ¼ TNR þ ½Tð1;1Þ þ Tð1;0Þ þ Tð0;1Þ þ Tð0;0Þ þ ð2 ↔ 3Þ�;
ð21Þ

where TNR is the nonresonant contribution from diagrams
(1Aþ 1B) of Fig. 5 and the TðJ;IÞ are the resonant con-
tributions from diagrams (2Aþ2Bþ3Aþ3Bþ4Aþ4B),
in the various spin and isospin channels.
Owing to chiral symmetry, all amplitudes are propor-

tional to M2
K , included in a common factor

C ¼
��

GFffiffiffi
2

p sin2θC

�
2FD

F
M2

K

ðM2
D −M2

KÞ
�
; ð22Þ

where F is the SUð3Þ pseudoscalar decay constant. Using
the kinematic variables m2

ij ¼ ðpi þ pjÞ2, the nonresonant
contribution is the real polynomial

TNR ¼ Cf½ðm2
12 −M2

KÞ þ ðm2
13 −M2

KÞ�g; ð23Þ

corresponding to a proper three-body interaction. The
amplitudes TðJ;IÞ read

Tð1;1Þ ¼ −
1

4
½Γ̄ð1;1Þ

KK − Γð1;1Þ
cjKK�ðm2

13 −m2
23Þ; ð24Þ

Γ̄ð1;1Þ
KK ¼ 1

Dρðm2
12Þ

½Mð1;1Þ
21 Γð1;1Þ

ð0Þππþð1−Mð1;1Þ
11 ÞΓð1;1Þ

ð0ÞKK�; ð25Þ

Tð1;0Þ ¼ −
1

4
½Γ̄ð1;0Þ

KK − Γð1;0Þ
cjKK�ðm2

13 −m2
23Þ; ð26Þ

Γ̄ð1;0Þ
KK ¼ 1

Dϕðm2
12Þ

Γð1;0Þ
ð0ÞKK; ð27Þ

Tð0;1Þ ¼ −
1

2
½Γ̄ð0;1Þ

KK − Γð0;1Þ
cjKK�; ð28Þ

Γ̄ð0;1Þ
KK ¼ 1

Da0ðm2
12Þ

½Mð0;1Þ
21 Γð0;1Þ

ð0Þπ8 þ ð1 −Mð0;1Þ
11 ÞΓð0;1Þ

ð0ÞKK�;

ð29Þ

Tð0;0Þ ¼ −
1

2
½Γ̄ð0;0Þ

KK − Γð0;0Þ
cjKK�; ð30Þ

Γ̄ð0;0Þ
KK ¼ 1

DSðm2
12Þ

f½Mð0;0Þ
21 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
23 Mð0;0Þ

31 �Γð0;0Þ
ð0Þππ

þ ½ð1 −Mð0;0Þ
11 Þð1 −Mð0;0Þ

33 Þ −Mð0;0Þ
13 Mð0;0Þ

31 �Γð0;0Þ
ð0ÞKK

þ ½Mð0;0Þ
23 ð1 −Mð0;0Þ

11 Þ þMð0;0Þ
13 Mð0;0Þ

21 �Γð0;0Þ
ð0Þ88g;

ð31Þ

where the various functions ΓðJ;IÞ, given in Appendix E, are
linear in the coefficient C. The dynamical meaning of the

functions ΓðJ;IÞ
ð0Þab can be inferred from Fig. 5(b). They cor-

respond to the tree diagrams (1Aþ 1B) and (3Aþ 3B)
with the indices ð1; 2Þ → ða; bÞ and represent the amplitude
for the production of pseudoscalar mesons PaPbKþ by
a Wþ.
Comparing results (24)–(31) and (17)–(20), it is easy to

see that the decay amplitudes TðJ;IÞ and the scattering
amplitudes AðJ;IÞ are quite different objects, since the for-
mer include the weak interaction, which is encoded into the

decay vertices Γ̄ðJ;IÞ
KK . Nevertheless, both AðJ;IÞ

KKjKK and Γ̄ðJ;IÞ
KK

share the same denominatorsDðJ;IÞ. The amplitude T, given
by Eq. (21) is our guess function, to be used in fits to data.
As it is a blend of spin and isospin channels, attempts to
compare it directly to the AðJ;IÞ are meaningless.

D. Free parameters

The free parameters of our function T derive from the
basic Lagrangian adopted [29] and consist basically of
masses and coupling constants. The former includemρ,mϕ,
ma0, mS1, mSo, whereas the latter involve F, the pseudo-
scalar decay constant, GV , the coupling constant of vector
mesons to pseudoscalars, an angle θ, associated with ω − ϕ
mixing, cd, cm, describing the couplings of both a0 and So
to pseudoscalars, and c̃d, c̃m, implementing the couplings
of S1 to pseudoscalars. These Lagrangian parameters first

enter the guess function through the functions ΓðJ;IÞ
ð0Þab and

KðJ;IÞ
abjcd in Appendices E and F.
In the strict framework of chiral perturbation theory, the

values of the Lagrangian parameters are extracted by
comparing results from field theoretical calculations per-
formed to a given order to observables. As the former
involve divergent loops, they are affected by renormaliza-
tion and values quoted in the literature depend on renorm-
alization scales. This kind of procedure is theoretically
consistent and yields a precise description of low-energy
phenomena.
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In the case of heavy meson decays, this level of
precision cannot be reached. The main reason is that the
problem involves necessarily a wide range of energies,
both below and above resonance poles, where perturba-
tion does not apply and nonperturbative techniques are
needed. An instance is the resummation of the infinite
series of diagrams indicated in Fig. 6, required by
unitarization, which yields the denominators DðJ;IÞ dis-
cussed in Sec. IVA. Therefore, in decay analyses, the
free parameters do not have the same meaning as their
low-energy counterparts, since they are designed to be
used in a mathematical structure which is different from
ChPT. The former correspond to effective parameters
describing the physics within the energy ranges defined
by Dalitz plots and should not be expected to have the
same values as the latter.

V. A TOY EXAMPLE: DECAY × SCATTERING
AMPLITUDES

The Triple-M is aimed at predicting scattering amplitudes
by using parameters obtained from fits to decay data. Even in
the want of such fitted parameters at present, we explore
the features of the Lagrangian by using those suited to
problems at low energies, which are: ½mρ;mϕ;ma0;mSo�¼
½0.776;1.019;0.960;0.980�GeV [32], F ¼ 0.093 GeV,
½GV;cd;cm;c̃d;c̃m�¼ ½0.067;0.032;0.042;0.018;0.025�GeV
[29], whereas the partial width Γϕ→KK̄ ∼ 3.54 MeV [32]
yields sin θ ¼ 0.605. In the large NC limit, mS1 ¼ mSo [29]
but, in order to perform the toy calculations, we choose
mS1 ¼ 1.370 GeV [32]. The discussion presented in the
sequence makes it clear that there is no simple relation
between the decay amplitude T and the scattering
amplitudes AðJ;IÞ.

FIG. 7. S-wave sector—top left: the continuous black curve (SW) is the modulus of the decay amplitude TS, Eq. (34), in arbitrary
units, whereas other curves are moduli of partial contributions; top right: moduli of the KK̄ scattering amplitudes Að0;1Þ, red curve, and
Að0;0Þ, blue curve; bottom: the continuous black curve (SW) is the phase of the decay amplitude TS, Eq. (34), and other continuous
curves are phases of partial contributions; the dashed curves represent the phases of the KK̄ scattering amplitudes Að0;1Þ (red) and
Að0;0Þ (blue).
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The nonresonant contribution to the decay amplitude,
Eq. (23), corresponds to a genuine three-body interaction
predicted by chiral symmetry. Nevertheless, in order to
assess its relative importance, it is convenient to project it
into the S- and P-waves suited to the other terms.
Therefore, we rewrite it as

TNR ¼
�
C
4
ðM2 −M2

K þm2
12Þþ

C
4
ðm2

13−m2
23Þþ ð2↔ 3Þ

�
;

ð32Þ
so that the amplitude (21) can then be expressed as

T ¼ ½TS þ TP þ ð2 ↔ 3Þ�; ð33Þ

TS ¼
�
C
4
ðM2

D −M2
K þm2

12Þ þ Tð0;1Þ þ Tð0;0Þ
�
; ð34Þ

TP ¼
�
C
4
ðm2

13 −m2
23Þ þ Tð1;1Þ þ Tð1;0Þ

�
: ð35Þ

In the sequence, we discuss some aspects of this
relationship, using the low-energy parameters of Ref. [29],
as if they could explain decay data. In Figs. 7 and 8, we
show the moduli and phases of the S- and P-wave decay
amplitudes TS, Eq. (34) and TP, Eq. (35), together with the
moduli and phases of the corresponding KK̄ scattering
amplitudes AðJ;IÞ. These figures illustrate the usefulness of
the Lagrangian approach. Without it, one would be able
to determine just the full decay amplitudes TS and TP,
represented by the continuous black curves in the figures,
and would not have access to partial contributions in
different isospin channels. Moreover, it is also clear that
one cannot guess the form of the KK̄ scattering amplitudes

FIG. 8. P-wave sector—top left: the continuous black curve (PW) is the modulus of the decay amplitude TP, Eq. (35), in arbitrary
units, whereas other curves are moduli of partial contributions; top right: moduli of the KK̄ scattering amplitudes Að1;1Þ, red curve, and
Að1;0Þ, blue curve; bottom: the continuous black curve (PW) is the phase of the decay amplitude TP, Eq. (35), and other continuous
curves are phases of partial contributions; the dashed curves represent the phases of the KK̄ scattering amplitudes Að1;1Þ (red) and
Að1;0Þ (blue).
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AðJ;IÞ, represented by the red and blue dotted lines, from the
decay components TS and TP.
In Fig. 9 we present the phase shifts and inelasticity

parameters associated with the scattering amplitudes AðJ;IÞ.
It important to stress that these figures correspond just to an
exercise, since they are based on low-energy parameters.
Nevertheless, they are instructive in showing the impor-
tance of the coupled channel structure, which is responsible
for the inelasticities displayed. In the case of the I ¼ 1
P-wave, this related with the ϕ → πππ channel, as
discussed in Appendix C. In all cases, the bound η ≤ 1
is satisfied.
The multimeson model we consider here yields scatter-

ing amplitudes involving dynamical features such as: (i) a
chiral contact interaction in the two-body kernel, indicated
in Fig. 6; (ii) the use of two resonances in the (J ¼ 0, I ¼ 0)
channel, preserving unitarity; (iii) inclusion of coupled
channels. In this model, just the ϕ and the S1 are within the
Dalitz plot of the D decay and the phase of the former
shows the typical sharp rise at low energies associated with
resonances. However, the presence of the S1 is more
difficult to be perceived, for it is the higher mass state
of a coupled pair, whereas just the tails of the remaining
resonances contribute to the decay amplitude. The piece-
meal relevance of dynamical effects, in the case of Að0;0Þ, is
discussed in the sequence.

VI. MODEL STRUCTURE

The multimeson model we consider in this work assem-
bles a number of aspects that appear scattered in many
calculations, but are normally absent in heavy meson decay
analyses. The main unusual dynamical effects included
into our model concern: (i) the presence of a LO contact
interaction in the two-body kernel, as indicated in Fig. 6;
(ii) the introduction of two resonances in the (J ¼ 0, I ¼ 0)
channel, preserving unitarity; (iii) consideration of coupled
channels. With the purpose of disclosing the role played by
these features in the results, in this section we focus on the
scattering amplitude Að0;0Þ and show its behavior in a
number of different scenarios. We begin by the simplest
one, in which just the f0ð980Þ is kept, and add the other

FIG. 9. Phase shifts δ and inelasticity parameter η forKK̄ scattering—top: S-waves; bottom: P-waves; blue and red curves correspond,
respectively, to isospin I ¼ 0 and I ¼ 1.

TABLE I. Systematic investigation of the relative importance of
Að0;0Þ components.

Scenario A B C D Triple-M

Octet resonance f0ð980Þ ON ON ON ON ON
Contact interaction ✗ ON ON ON ON
Singlet resonance f0ð1370Þ ✗ ✗ ON ON ON
ππ coupled channel ✗ ✗ ✗ ON ON
ηη coupled channel ✗ ✗ ✗ ✗ ON
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contributions gradually, as described in Table I. It indicates
when a particular contribution, that was previously absent,
has been turned ON.
We begin by considering the artificial situation in which

the kaon mass is lowered toMK ¼ 0.4 GeV, so as to allow

the f0ð980Þ to be above threshold. The amplitude is shown
in Fig. 10 and results are rather conventional. The vertical
black line indicates the position of the empirical KK̄
threshold and therefore, in actual scattering, one sees only
the postpeak part of the resonance, represented by the blue
curves, for scenario A, in Fig. 11. Phases in that figure
follow general theorems in quantum scattering theory. In
the absence of inelasticities, the phase of a generic
scattering amplitude A coincides with the usual phase shift
δ and, at low energies the latter → 0 as qð2Lþ1Þ, where L is
the angular momentum and q is the CM linear momentum.
Inspecting these figures, one learns that the inclusion of

the chiral contact term (A → B) and the second resonance
(B → C) produces a strong impact on results. The influence
of the coupling to the ππ intermediate channel (C → D) is
also rather large, especially at low energies, whereas ηη
coupling (D → Triple-M) is much less important. In Fig. 12
we show the inelasticity parameter η. One must have η ¼ 1

for elastic amplitudes, and we would like to draw attention
to the case of scenario C, that includes two resonances and

FIG. 10. Results for jAð0;0Þj: the kaon mass is artificially lowered toMK ¼ 0.4 GeV and the dynamics is implemented just by a single
f0ð980Þ; the black vertical line indicates the actual KK̄ threshold. Left: modulus; right: phase.

FIG. 11. Results for jAð0;0Þj: piecemeal construction of the amplitude, following steps given in Table I; the continuous blue line
(A) corresponds to the tail of the f0ð980Þ; the dashed blue curve (B) includes the contact chiral term; the red continuous curve
(C) represents the unitarized f0ð980Þ and f0ð1370Þ joint contributions; the dashed red curve accounts for the coupling to ππ
intermediate states; the continuous black curve (Triple-M) includes coupling to ηη intermediate states; top: modulus; bottom: phases; the
latter also includes conventional phase shifts δð0;0Þ, indicated by the dotted curves.

FIG. 12. Results for jAð0;0Þj inelasticities; conventions are the
same as in Fig. 11.
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no coupled channels. In this case, the result for η stresses
that our method for dealing with multiple resonances is
indeed consistent with unitarity. When the coupling to other
channels is allowed, η ≤ 1 and the dominance of ππ
intermediate states becomes clear.

VII. SUMMARY

We propose a multimeson model (Triple-M) to describe
the Dþ → K−KþKþ decay, as a tool to extract informa-
tion about KK̄ scattering amplitudes. We depart from the
dominance of the annihilation weak topology, which allows
one to describe the whole decay process within the SUð3Þ
chiral symmetry framework. The nonresonant component
is a proper three-body interaction that goes beyond the
(2þ 1) approximation and is given by chiral symmetry as a
real polynomium. Primary vertices describing the direct
production of mesons and of lowest SU(3) resonances, in
S- and P-waves, with isospin 0 and 1, are dressed by FSIs
involving coupled channels. The KK̄ scattering amplitudes
for each of the ðJ; IÞ considered are derived from the
ChPTR Lagrangian [29], unitarized by resummation tech-
niques in the K-matrix approximation, in which particle
propagators were kept on-shell, and include coupled
channels. They are the only source of imaginary terms
in the decay amplitude and fix the relative phase between
S- and P-waves in Triple-M. This represents an important
improvement over the isobar model, where this phase is a
fitting parameter.

The fittingparameters in theTriple-Mare resonancemasses
and coupling constants, which have a rather transparent
physical meaning. Although they entered the Triple-M
through the ChPTR Lagrangian, their meanings change so
as to accommodate nonperturbation effects of meson-meson
interactions. To obtain realistic values for these parameters,
they shouldbeextracted fromaTriple-Mfit todata.Asa lesser
alternative, here we employ the low-energy parameters [29]
values as if they resulted from data. In Fig. 13, we show a toy
Monte-Carlo Dalitz plot based on the Triple-M, where it is
possible to see a destructive interference between the S- and
P-waves on the low-energy sector of the ϕð1020Þ. One of
the ϕð1020Þ lobes is depleted with respect to the other,
resulting in a peak and a dip, a behavior similar to that
observed in LHCb preliminary data [15].
In our one-dimensional toy studies, Figs. 7–8, we show

that the Triple-M can track the hidden isospin signatures of
two-body interactions in three-body data, allowing one
to disentangle the relative contributions of resonances
a0ð980Þ and f0ð980Þ. By comparing results for the
three-body amplitudes TJ and the scattering amplitudes
AðJ;IÞ, it becomes clear that even though the latter are
present in the former, they cannot be extracted directly.
However, with a model departing from a Lagrangian that
includes a full two-body coupled channel dynamics, such
as our Triple-M, fits to decay data can give rise to
predictions for the KK̄ scattering amplitudes AðJ;IÞ.
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APPENDIX A: KINEMATICS

Momenta are defined by DðPÞ → K−ðp1ÞKþðp2Þ×
Kþðp3Þ, with P ¼ p1 þ p2 þ p3. The invariant masses
read

m2
12 ¼ ðp1 þ p2Þ2 ¼ ðP − p3Þ2; ðA1Þ

m2
13 ¼ ðp1 þ p3Þ2 ¼ ðP − p2Þ2; ðA2Þ

m2
23 ¼ ðp2 þ p3Þ2 ¼ ðP − p1Þ2; ðA3Þ

and satisfy the constraint

M2 ¼ m2
12 þm2

13 þm2
23 −m2

1 −m2
2 −m2

3: ðA4Þ

Their values are also limited by the boundaries of the Dalitz
plot, by

ðm1 þm2Þ2 ≤ m2
12 ≤ ðM −m3Þ2; ðA5Þ

ðm1 þm3Þ2 ≤ m2
13 ≤ ðM −m2Þ2; ðA6Þ
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FIG. 13. Toy Dalitz plot for Triple-M in Dþ → K−KþKþ
decay with arbitrary normalization.

φ φ
ab cd

FIG. 14. Intermediate πρ contribution to the ϕ self-energy.
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ðm2 þm3Þ2 ≤ m2
23 ≤ ðM −m1Þ2: ðA7Þ

APPENDIX B: TWO-MESON PROPAGATORS
AND FUNCTIONS Ω

Expressions presented here are conventional. They are
displayed for the sake of completeness and rely on the results
of Ref. [28]. These integrals do not include symmetry
factors, which are accounted for in the main text. One deals
with both S- and P-waves and the corresponding two-meson
propagators are associated with the integrals

fIab; Iμνabg ¼
Z

d4l
ð2πÞ4

f1;lμlνg
DaDb

; ðB1Þ

Da ¼ ðlþ p=2Þ2 −M2
a; Db ¼ ðl − p=2Þ2 −M2

b;

ðB2Þ

with p2 ¼ s. Both integrals Iab and Iμνab are evaluated using
dimensional techniques [28]. For s ≥ ðMa þMbÞ2, the
function Iab has the structure

Iab ¼ i
1

16π2
½Λab þ Πab�; ðB3Þ

where Λab is a divergent function of the renormalization
scale μ and of the number of dimensions n, which diverges in
the limit n → 4, whereas Π is regular component,
given by

ΠabðsÞ ¼ 1þm2
a þm2

b

m2
a −m2

b

ln
ma

mb
−
m2

a −m2
b

s
ln
ma

mb

−
ffiffiffi
λ

p

s
ln

�
s −m2

a −m2
b þ

ffiffiffi
λ

p

2mamb

�
þ iπ

ffiffiffi
λ

p

s
; ðB4Þ

λ ¼ s2 − 2sðm2
a þm2

bÞ þ ðm2
a −m2

bÞ2; ðB5Þ

which, for a ¼ b, reduces to

ΠaaðsÞ ¼ 2 −
ffiffiffi
λ

p

s
ln

�
s − 2m2

a þ
ffiffiffi
λ

p

2m2
a

�
þ iπ

ffiffiffi
λ

p

s
: ðB6Þ

The tensor integral is needed for a ¼ b only, and one has

Iμνaa ¼ i
1

16π2

�
pμpν

s

�
Λpp
aa þ 1

12
½s − 4m2

x�Πaa

�

− gμν
�
Λg
aa þ 1

12
½s − 4m2

a�Πaa

��
; ðB7Þ

where Λpp
aa and Λg

aa are divergent quantities.
In the K-matrix approximation, one keeps only the

imaginary parts of the loop integrals, which are contained
in the function Π and has

Iab → −
1

16π

ffiffiffi
λ

p

s
; ðB8Þ

Iμνaa →
1

192π

�
gμν −

pμpν

s

�
λ3=2

s2
: ðB9Þ

In the decay calculation, it is more convenient to use the
functions Ω̄, defined by

Πab → −Ω̄S
ab; ðB10Þ

Πμν
aa →

1

4

�
gμν −

pμpν

s

�
Ω̄P

aa: ðB11Þ

These results are related with CM momenta by

Ω̄S
ab ¼ −

i
8π

Qabffiffiffi
s

p θðs − ðMa þMbÞ2Þ; ðB12Þ

Ω̄P
aa ¼ −

i
6π

Q3
aaffiffiffi
s

p θðs − 4M2
aÞ; ðB13Þ

Qab ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 2ðM2

a þM2
bÞ þ ðM2

a −M2
bÞ2=s

q
; ðB14Þ

where θ is the Heaviside step function.

APPENDIX C: PARTIALLY DRESSED ϕ
PROPAGATOR

The bare ϕ propagator, Gαβγδ, is given by Eq. (A.10) of
Ref. [29]. It is dressed by both πρ and K̄K intermediate
states and the corresponding self-energies are denoted,
respectively, by Σπρ and ΣK̄K . In this section, we consider
just the contributions of the former kind, since they
correspond to next-to-next-to-leading order corrections
not accounted by our coupled channel formulation. The
latter is NLO and included by means of the functionMð1;0Þ,
Eq. (7). The full propagator is represented in Fig. 14 and
given by

iΔαβγδ ¼ iΔð0Þ
αβγδ þ iΔð1Þ

αβγδ þ iΔð2Þ
αβγδ þ iΔð3Þ

αβγδ þ � � � ðC1Þ

iΔð0Þ
αβγδ ¼ Gαβγδ ðC2Þ

iΔð1Þ
αβγδ ¼ Gαβab½−iΣabcd�Gcdγδ ðC3Þ

iΔð2Þ
αβγδ ¼ Gαβab½−iΣabef�Gefgh½−iΣghcd�Gcdγδ: ðC4Þ

The ϕπρ interaction is extracted from the Lagrangian

Lω1 ¼ ig1ϵμνρσ∂λω1λμ½∂νπ
−ρþρσ þ ∂νπ

þρ−ρσ þ ∂νπ
0ρ0ρσ�;

ðC5Þ
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where ω1 ¼ cos θϕ − sin θω is the singlet component. In
the sequence, we write gϵ ¼ g1 cos θ.
The self energy is given by

−iΣabcd
ρπ ¼ ðkagbμ − gaμkbÞ

2
½Hμλ�

ðkcgdλ − gcλkdÞ
2

; ðC6Þ

Hμλ ¼ ½−3g2ϵIμλ�; ðC7Þ

Iμλ ¼
1

i

Z
d4l
ð2πÞ4

pμpλ

p2 −M2
π
ϵμνχηGχηωζðqÞϵλξωζ; ðC8Þ

with p ¼ k=2 − l, q ¼ k=2þ l and k2 ¼ s. Using the
explicit form of Gχηωζ and the definitions Dπ ¼ p2 −M2

π ,
Dρ ¼ q2 −m2

ρ, we find

Iμλ →
4

m2
ρ

Z
d4l
ð2πÞ4

1

Dπ

1

Dρ
×

�
gμλ

�
−m2

ρðM2
π þDπÞ

þ 1

4
ðs −M2

π −m2
ρ −Dπ −DρÞ2

�
þ lμlλ½k2 −Dρ�

�
;

ðC9Þ

where we have used the fact that terms proportional to kμ
and kλ do not contribute to Eq. (C6). This integral is highly
divergent, but the part regarding the Kρ cut is not. Terms
containing factors Dπ and Dρ in the numerator do not
contribute to the cut function and the relevant integral is

Iμλ →
1

m2
ρ

Z
d4l
ð2πÞ4

1

DπDρ
f½s2 − 2sðM2

π þm2
ρÞ

þ ðM2
π −m2

ρÞ2�gμλ þ 4slμlλg: ðC10Þ

Using the definition

Iπρ ¼
Z

d4l
ð2πÞ4

1

DπDρ
ðC11Þ

and the result

Z
d4l
ð2πÞ4

lμlλ

DπDρ

¼ −
�

1

12k2
½s2 − 2sðM2

π þm2
ρÞ þ ðM2

π −m2
ρÞ2�Iπρ

�
gμλ

þ term proportional to kμkλ; ðC12Þ

the relevant component of Iμλ becomes

Iμλ →

�
2

3m2
ρ
½s2 − 2sðM2

π þm2
ρÞ þ ðM2

π −m2
ρÞ2�Iπρ

�
gμλ:

ðC13Þ

The on-shell contribution to Eq. (C11) is given by

Iπρ ¼ −
1

16π

ffiffiffiffiffiffi
λπρ

p
s

; ðC14Þ

with λπρ ¼ ½s2 − 2sðM2
π þm2

ρÞ þ ðM2
π −m2

ρÞ2� ¼ 4sQ2
πρ,

where Qπρ is the CM three-momentum. We then have

Hμλ ¼ gμλ
mϕ

s
Γπρ
ϕ ðsÞ; ðC15Þ

mϕΓ
πρ
ϕ ðsÞ ¼ g2ϵ

πm2
ρ
s3=2Q3

πρ: ðC16Þ

Numerically, Γπρ
ϕ ¼0.1532×Γϕ¼0.1532×0.004247GeV

[32]. Using this result into Eq. (C1) and resumming the
series, we get the partially dressed propagator

iΔπρ
αβγδ ¼ Gαβγδ þ

�
imϕΓ

πρ
ϕ ðsÞ=s

Dπρ
ϕ ðsÞ

�
1

2
½gdαkβkc þ gcβkαk

d

− gcαkβkd − gdβkαk
c�Gcdγδ; ðC17Þ

where the denominator Dπρ
ϕ ðsÞ is given by

Dπρ
ϕ ¼ s −m2

ϕ þ imϕΓ
πρ
ϕ ðsÞ: ðC18Þ

In the evaluation of amplitudes involving a K̄ðp1ÞKðp2Þ
vertex, one encounters the product

iΔαβγδðpγ
1p

δ
2 − pγ

2p
δ
1Þ ¼ −

2i
Dπρ

ϕ ðsÞ ðp1αp2β − p2αp1βÞ:

ðC19Þ

APPENDIX D: SU(3) INTERMEDIATE STATES

In the treatment of intermediate states, it is convenient to
work with Cartesian SUð3Þ states, which are related to
charged states by

jπþi ¼ −j1þ i2i=
ffiffiffi
2

p
; jπ−i ¼ j1 − i2i=

ffiffiffi
2

p
; ðD1Þ

jπ0i ¼ j3i; jη8i ¼ j8i; ðD2Þ

jKþi ¼ j4þ i5i=
ffiffiffi
2

p
; jK−i ¼ −j4 − i5i=

ffiffiffi
2

p
; ðD3Þ

jK0i ¼ j6þ i7i=
ffiffiffi
2

p
; jK̄0i ¼ j6 − i7i=

ffiffiffi
2

p
: ðD4Þ

We need just two-meson intermediate states jabi, with the
same quantum numbers as the K−Kþ system, which are
given by

jVππ
3 i ¼ð1=

ffiffiffi
2

p
Þj12 − 21i; ðD5Þ

jVKK
3 i ¼ ð1=2Þj45 − 54 − 67þ 76i; ðD6Þ

jVKK
8 i ¼ ð1=2Þj45 − 54þ 67 − 76i; ðD7Þ
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jUπ8
3 i ¼ ð1=

ffiffiffi
2

p
Þj38þ 83i; ðD8Þ

jUKK
3 i ¼ ð1=2Þj44þ 55 − 66 − 77i; ðD9Þ

jSππi ¼ ð1=
ffiffiffi
3

p
Þj11þ 22þ 33i; ðD10Þ

jSKKi ¼ ð1=2Þj44þ 55þ 66þ 77i; ðD11Þ

jS88i ¼ j88i: ðD12Þ

The state jK−Kþi includes a conventional phase and
reads

jK−Kþi ¼ −ð1=2Þjð4 − i5Þð4þ i5Þi
¼ −ð1=2Þj44þ 55i − ið1=2Þj45 − 54i; ðD13Þ

and, therefore,

hK−Kþj ¼ði=2ÞhVKK
3 þ VKK

8 j − ð1=2ÞhUKK
3 þ SKKj:

ðD14Þ

APPENDIX E: THREE-BODY DECAY SUB
AMPLITUDES

In the evaluation of intermediate state contributions
shown in diagrams of Fig. 5, we need tree level contribution
for the process D → abKþ, denoted by TðJ;IÞ

ð0Þ , for spin J
and isospin I. In the results displayed below, the first terms
correspond to resonances in diagrams (3Aþ 3B), whereas
those within square brackets, labeled by c, represent contact
interactions in the top vertices of diagrams 2A and 2B.
Using the constant C defined in Eq. (22), we have

½J; I ¼ 1; 1� → hVab
3 KþjTð1;1Þ

ð0Þ jDi ¼ i
2
ðm2

13 −m2
23ÞΓð1;1Þ

ð0Þab;

ðE1Þ

Γð1;1Þ
ð0Þππ ¼ C

�� ffiffiffi
2

p
G2

V

F2

�
m2

12

m2
12 −m2

ρ
þ
�
−

1ffiffiffi
2

p
�
c

�
; ðE2Þ

Γð1;1Þ
ð0ÞKK ¼ C

��
G2

V

F2

�
m2

12

m2
12 −m2

ρ
þ
�
−
1

2

�
c

�
; ðE3Þ

½J; I ¼ 1; 0� → hVKK
8 KþjTð1;0Þ

ð0Þ jDi ¼ i
2
ðm2

13 −m2
23ÞΓð1;0Þ

ð0ÞKK;

ðE4Þ

Γð1;0Þ
ð0ÞKK ¼ C

��
3G2

V

F2
sin2θ

�
m2

12

Dπρ
ϕ ðm2

12Þ
þ
�
−
3

2

�
c

�
: ðE5Þ

Here, the function Dπρ
ϕ is a partially dressed ϕ propagator,

discussed in Appendix C, Eq. (C18), associated with the
partial width of the decay ϕ → ðρπ þ πππÞ.

½J; I ¼ 0; 1� → hUab
3 KþjTð0;1Þ

ð0Þ jDi ¼ Γð0;1Þ
ð0Þab; ðE6Þ

Γð0;1Þ
ð0Þπ8 ¼ C

��
2

ffiffiffi
2

p
ffiffiffi
3

p
F2

� ½−cdP · p3 þ cmM2
D�

m2
12 −m2

a0

× ½cdðm2
12 −M2

π −M2
8Þ þ 2cmM2

π�

þ
�
−

ffiffiffi
3

p
ffiffiffi
2

p ½M2
D=3 − P · p3�

�
c

�
; ðE7Þ

Γð0;1Þ
ð0ÞKK ¼ C

��
2

F2

� ½−cdP · p3 þ cmM2
D�

m2
12 −m2

a0

× ½cdðm2
12 − 2M2

KÞ þ 2cmM2
K�

þ
�
−
1

2
½M2

D − P · p3�
�
c

�
; ðE8Þ

½J; I ¼ 0; 0� → hSabKþjTð0;0Þ
ð0Þ jDi ¼ Γð0;0Þ

ð0Þab; ðE9Þ

Γð0;0Þ
ð0Þππ ¼ C

��
8

ffiffiffi
3

p

F2

� ½−c̃dP · p3 þ c̃mM2
D�

m2
12 −m2

S1

× ½c̃dðm2
12 − 2M2

πÞ þ 2c̃mM2
π�

−
�

2ffiffiffi
3

p
F2

� ½−cdP · p3 þ cmM2
D�

m2
12 −m2

So

× ½cdðm2
12 − 2M2

πÞ þ 2cmM2
π�

þ
�
−

ffiffiffi
3

p

2
½M2

D − P · p3�
�
c

�
; ðE10Þ

Γð0;0Þ
ð0ÞKK ¼ C

��
16

F2

� ½−c̃dP · p3 þ c̃mM2
D�

m2
12 −m2

S1

× ½c̃dðm2
12 − 2M2

KÞ þ 2c̃mM2
K�

þ
�

2

3F2

� ½−cdP · p3 þ cmM2
D�

m2
12 −m2

So

× ½cdðm2
12 − 2M2

KÞ þ 2cmM2
K�

þ
�
−
3

2
½M2

D − P · p3�
�
c

�
; ðE11Þ

Γð0;0Þ
ð0Þ88 ¼ C

��
8

F2

� ½−c̃dP · p3 þ c̃mM2
D�

m2
12 −m2

S1

× ½c̃dðm2
12 − 2M2

8Þ þ 2c̃mM2
8�

þ
�

2

3F2

� ½−cdP · p3 þ cmM2
D�

m2
12 −m2

So

× ½cdðm2
12 − 2M2

8Þ þ cmð−10M2
π þ 16M2

KÞ=3�

þ
�
−
1

2
½5M2

D=3 − 3P · p3�
�
c

�
; ðE12Þ
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with

P · p3 ¼
1

2
½M2

D þM2
K −m2

12�: ðE13Þ

APPENDIX F: SCATTERING KERNELS

The intermediate scattering amplitudes depend on inter-
action kernels in the four channels considered, associated
with J; I ¼ 1, 0. The kernel matrix elements for the reaction
cd → ab are written as hcdjKJ;Ijabi, in terms of the states
defined in Appendix D, and displayed below. All kernels
are written as sums of NLO resonance contributions and
chiral polynomials, involving both LO and NLO terms. The
NLO polynomials are derived by assuming that the Low
Energy Constants (LECs) are saturated by intermediate
vector and scalar resonances, with masses MV and MS,
respectively. The kernel matrix elements read

½J; I ¼ 1; 1� → hVab
3 jKð1;1ÞjVcd

3 i ¼ ðt − uÞKð1;1Þ
ðabjcdÞ ðF1Þ

Kð1;1Þ
ðππjππÞ ¼ −2

�
G2

V

F4

�
s

s −m2
ρ
þ
�
1

F2

�
c

ðF2Þ

Kð1;1Þ
ðππjKKÞ ¼ −

ffiffiffi
2

p �
G2

V

F4

�
s

s −m2
ρ
þ
� ffiffiffi

2
p

2F2

�
c

ðF3Þ

Kð1;1Þ
ðKKjKKÞ ¼ −

�
G2

V

F4

�
s

s −m2
ρ
þ
�

1

2F2

�
c

ðF4Þ

½J; I ¼ 1; 0� → hVab
8 jKð1;0ÞjVcd

8 i ¼ ðt − uÞKð1;0Þ
ðabjcdÞ ðF5Þ

Kð1;0Þ
ðKKjKKÞ ¼ −3

�
G2

Vsin
2θ

F4

�
s

Dπρ
ϕ

þ
�

3

2F2

�
c
: ðF6Þ

The function Dπρ
ϕ in this expression represents a par-

tially dressed ϕ propagator, discussed in Appendix C,
Eq. (C18), and accounts for the partial width of the
decay ϕ → ðρπ þ πππÞ.

½J; I ¼ 0; 1� → hUab
3 jKð0;1ÞjUcd

3 i ¼ Kð0;1Þ
ðabjcdÞ ðF7Þ

Kð0;1Þ
ðπ8jπ8Þ ¼ −

1

s −m2
a0

�
4

3F4

�
½cdðs −M2

π −M2
8Þ þ cm2M2

π�2 þ
�
2M2

π

3F2

�
c

ðF8Þ

Kð0;1Þ
ðπ8jKKÞ ¼ −

1

s −m2
a0

�
2

ffiffiffi
2

p
ffiffiffi
3

p
F4

�
½cdðs −M2

π −M2
8Þ þ cm2M2

π�½cds − ðcd − cmÞ2M2
K� þ

�ð3s − 4M2
KÞffiffiffi

6
p

F2

�
c

ðF9Þ

Kð0;1Þ
ðKKjKKÞ ¼ −

1

s −m2
a0

�
2

F4

�
½cds − ðcd − cmÞ2M2

K�2 þ
�

s
2F2

�
c

ðF10Þ

½J; I ¼ 0; 0� → hSabjKð0;0ÞjScdi ¼ Kð0;0Þ
ðabjcdÞ ðF11Þ

Kð0;0Þ
ðππjππÞ ¼ −

1

s −m2
S1

�
12

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

π�2

−
1

s −m2
So

�
2

F4

�
½cds − ðcd − cmÞ2M2

π�2 þ
�
2s −M2

π

F2

�
c

ðF12Þ

Kð0;0Þ
ðππjKKÞ ¼ −

1

s −m2
S1

�
8

ffiffiffi
3

p

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

π�½c̃ds − ðc̃d − c̃mÞ2M2
K�

þ 1

s −m2
So

�
2ffiffiffi
3

p
F4

�
½cds − ðcd − cmÞ2M2

π�½cds − ðcd − cmÞ2M2
K� þ

� ffiffiffi
3

p
s

2F2

�
c

ðF13Þ

Kð0;0Þ
ðππj88Þ ¼ −

1

s −m2
S1

�
4

ffiffiffi
3

p

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

π�½c̃ds − ðc̃d − c̃mÞ2M2
8�

þ 1

s −m2
So

�
2ffiffiffi
3

p
F4

�
½cds − ðcd − cmÞ2M2

π�½cdðs − 2M2
8Þ þ cmð16M2

K − 10M2
πÞ=3� þ

� ffiffiffi
3

p
M2

π

3F2

�
c

ðF14Þ
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Kð0;0Þ
ðKKjKKÞ ¼ −

1

s −m2
S1

�
16

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

K�2

−
1

s −m2
So

�
2

3F4

�
½cds − ðcd − cmÞ2M2

K�2 þ
�
3s
2F2

�
c

ðF15Þ

Kð0;0Þ
ðKKj88Þ ¼ −

1

s −m2
S1

�
8

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

K�½c̃ds − ðc̃d − c̃mÞ2M2
8�

−
1

s −m2
So

�
2

3F4

�
½cds − ðcd − cmÞ2M2

K�½cdðs − 2M2
8Þ þ cmð16M2

K − 10M2
πÞ=3� þ

�
9s − 8M2

K

6F2

�
c

ðF16Þ

Kð0;0Þ
ð88j88Þ ¼ −

1

s −m2
S1

�
4

F4

�
½c̃ds − ðc̃d − c̃mÞ2M2

8�2

−
1

s −m2
So

�
2

3F4

�
½cdðs − 2M2

8Þ þ cmð16M2
K − 10M2

πÞ=3�2 þ
�
−7M2

π þ 16M2
K

9F2

�
c
: ðF17Þ

APPENDIX G: CHANNEL DEPENDENT DECAY
AMPLITUDES—FULL RESULTS

The tree level decay amplitudes for channel with spin J
and isospin I, given in Appendix E, are written as

hXabKþjTðJ;IÞ
ð0Þ jDi ¼ i

2
ðm2

13 −m2
23ÞΓð1;IÞ

ð0Þab → ðX ¼ V3; V8Þ

¼ Γð0;IÞ
ð0Þab → ðX ¼ U3; SÞ: ðG1Þ

The full amplitudes are obtained by including all
possible final state interactions, as indicated in Figs. 5
and 6. The terms involving a single meson-meson inter-
action read

hXabKþjTðJ;IÞ
ð1Þ jDi ¼ i

2
ðm2

13 −m2
23ÞΓð1;IÞ

ð1Þab → ðX ¼ V3; V8Þ

¼ Γð0;IÞ
ð1Þab → ðX ¼ U3; SÞ; ðG2Þ

with

ΓðJ;IÞ
ð1Þab ¼

X
cd

MðJ;IÞ
abjcdΓ

ðJ;IÞ
ð0Þcd; ðG3Þ

MðJ;IÞ
abjcd ¼ −KðJ;IÞ

abjcd½SFΩ̄J
cd�; ðG4Þ

where KðJ;IÞ
abjcd are the scattering kernels displayed in

Appendix F, Ω̄J
cd are the two-meson propagators given

in Appendix B, and the symmetry factor SF ¼ 1 → c ≠ d

and SF ¼ 1=2 → c ¼ d. The terms ΓðJ;IÞ
ð2Þab, containing two

meson-meson interactions are constructed in a similar way

from ΓðJ;IÞ
ð1Þab, and so on.

The inclusion of all possible meson-meson interactions
leads to the infinite geometric series

ΓðJ;IÞ
ab ¼ σðJ;IÞabjcdΓ

ðJ;IÞ
ð0Þcd; ðG5Þ

σðJ;IÞabjcd ¼ f1þMðJ;IÞ þ ½MðJ;IÞ�2 þ � � �gabjcd; ðG6Þ

where σðJ;IÞ is its sum, given by

σðJ;IÞ ¼ ½1 −MðJ;IÞ�−1: ðG7Þ

Thus, decay amplitude reads formally

ΓðJ;IÞ ¼ ½1 −MðJ;IÞ�−1ΓðJ;IÞ
ð0Þ ; ðG8Þ

and encompasses a coupled channel structure, which
depends on the spin-isospin considered.
In order to display the meaning of the indices used in this

structure, we label informally each ðJ; IÞ channel by its
most prominent resonance and recall that ρ-channel:

Γð1;1Þ
ð0Þ11¼Γð1;1Þ

ð0Þππ , Γ
ð1;1Þ
ð0Þ22¼Γð1;1Þ

ð0ÞKK; ϕ-channel: Γ
ð1;0Þ
ð0Þ ¼Γð1;0Þ

ð0ÞKK;

a0-cannel: Γð0;1Þ
ð0Þ11 ¼ Γð0;1Þ

ð0Þπ8, Γð0;1Þ
ð0Þ22 ¼ Γð0;1Þ

ð0ÞKK; f0-channel:

Γð0;0Þ
ð0Þ11 ¼ Γð0;0Þ

ð0Þππ , Γ
ð0;0Þ
ð0Þ22 ¼ Γð0;0Þ

ð0ÞKK , Γ
ð0;0Þ
ð0Þ33 ¼ Γð0;0Þ

ð0Þ88. The mean-

ings of the indices used in the matricesMðJ;IÞ, Eq. (G4), are
similar.
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In this work, we need at most three coupled channels, which corresponds to

σ ¼ 1

det½1 −M� ×

2
664
½1 −M22�½1 −M33� −M23M32 M12½1 −M33� þM13M32 M13½1 −M22� þM12M23

M21½1 −M33� þM23M31 ½1 −M11�½1 −M33� −M13M31 M23½1 −M11� þM13M21

M31½1 −M22� þM21M32 M32½1 −M11� þM12M31 ½1 −M11�½1 −M22� −M12M21

3
775

× detð1 −MÞ ¼ ½1 −M11�½1 −M22�½1 −M33� − ½1 −M11�M23M32 − ½1 −M22�M13M31

− ½1 −M33�M12M21 −M12M23M31 −M21M32M13: ðG9Þ

In the K-matrix approximation, the matrix elements M
are purely imaginary, owing to the presence of the two-
meson propagator. The explicit functions to be used in the
calculation are displayed below.

Mð1;1Þ
11 ¼ −Kð1;1Þ

ππjππ½Ω̄P
ππ=2�; Mð1;1Þ

12 ¼ −Kð1;1Þ
ππjKK½Ω̄P

KK=2�;
Mð1;1Þ

21 ¼ −Kð1;1Þ
ππjKK½Ω̄P

ππ=2�; Mð1;1Þ
22 ¼ −Kð1;1Þ

KKjKK½Ω̄P
KK=2�;
ðG10Þ

Mð1;0Þ ¼ −Kð1;0Þ
KKjKK½Ω̄P

KK=2�; ðG11Þ
Mð0;1Þ

11 ¼ −Kð0;1Þ
π8jπ8½Ω̄S

π8=2�; Mð0;1Þ
12 ¼ −Kð0;1Þ

π8jKK½Ω̄S
KK=2�;

Mð0;1Þ
21 ¼ −Kð0;1Þ

π8jKK½Ω̄S
π8=2�; Mð0;1Þ

22 ¼ −Kð0;1Þ
KKjKK½Ω̄S

KK=2�;
ðG12Þ

Mð0;0Þ
11 ¼ −Kð0;0Þ

ππjππ½Ω̄S
ππ=2�; Mð0;0Þ

12 ¼ −Kð0;0Þ
ππjKK½Ω̄S

KK=2�;
Mð0;0Þ

13 ¼ −Kð0;0Þ
ππj88½Ω̄S

88=2�; Mð0;0Þ
21 ¼ −Kð0;0Þ

ππjKK½Ω̄S
ππ=2�;

Mð0;0Þ
22 ¼ −Kð0;0Þ

KKjKK½Ω̄S
KK=2�; Mð0;0Þ

23 ¼ −Kð0;0Þ
KKj88½Ω̄S

88=2�;
Mð0;0Þ

31 ¼ −Kð0;0Þ
ππj88½Ω̄S

ππ=2�; Mð0;0Þ
32 ¼ −Kð0;0Þ

KKj88½Ω̄S
KK=2�;

Mð0;0Þ
33 ¼ −Kð0;0Þ

88j88½Ω̄S
88=2�: ðG13Þ

The factor 1=2 accounts for the symmetry of intermediate

states. It is also present in the functions Mð0;1Þ
11 and Mð0;1Þ

21

because one is using the symmetrized π8 intermediate state
given by Eq. (D8).
In the evaluation of the channel dependent decay

amplitudes, one subtracts contributions already included
in the nonresonant term, so as to avoid double counting.
These terms are denoted by ΓðJ;IÞ

cjKK and correspond to the
contributions denoted by ½� � ��c in Appendix E. Explicit
expressions for the vector channel read

Tð1;1Þ ¼ −
1

4
½Γ̄ð1;1Þ

KK − Γð1;1Þ
cjKK�ðm2

13 −m2
23Þ; ðG14Þ

Γ̄ð1;1Þ
KK ¼ 1

Dρðm2
12Þ

½Mð1;1Þ
21 Γð1;1Þ

ð0Þππ þ ð1 −Mð1;1Þ
11 ÞΓð1;1Þ

ð0ÞKK�;

ðG15Þ

Dρ ¼ ½ð1 −Mð1;1Þ
11 Þð1 −Mð1;1Þ

22 Þ −Mð1;1Þ
12 Mð1;1Þ

21 �; ðG16Þ

Tð1;0Þ ¼ −
1

4
½Γ̄ð1;0Þ

KK − Γð1;0Þ
cjKK�ðm2

13 −m2
23Þ; ðG17Þ

Γ̄ð1;0Þ
KK ¼ 1

Dϕðm2
12Þ

Γð1;0Þ
ð0ÞKK; ðG18Þ

Dϕ ¼ f1 −Mð1;0Þg: ðG19Þ

The function Dπρ
ϕ in these results is given by Eq. (C18) and

corresponds to the part of the ϕ propagator involving πρ
intermediate states.
The scalar sector yields

Tð0;1Þ ¼ −
1

2
½Γ̄ð0;1Þ

KK − Γð0;1Þ
cjKK�; ðG20Þ

Γ̄ð0;1Þ
KK ¼ 1

Da0ðm2
12Þ

½Mð0;1Þ
21 Γð0;1Þ

ð0Þπ8 þ ð1 −Mð0;1Þ
11 ÞΓð0;1Þ

ð0ÞKK�;

ðG21Þ

Da0 ¼ ½ð1 −Mð0;1Þ
11 Þð1 −Mð0;1Þ

22 Þ −Mð0;1Þ
12 Mð0;1Þ

21 �; ðG22Þ

Tð0;0Þ ¼ −
1

2
½Γ̄ð0;0Þ

KK − Γð0;0Þ
cjKK�; ðG23Þ

Γ̄ð0;0Þ
KK ¼ 1

DSðm2
12Þ

f½Mð0;0Þ
21 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
23 Mð0;0Þ

31 �Γð0;0Þ
ð0Þππ

þ ½ð1 −Mð0;0Þ
11 Þð1 −Mð0;0Þ

33 Þ −Mð0;0Þ
13 Mð0;0Þ

31 �Γð0;0Þ
ð0ÞKK

þ ½Mð0;0Þ
23 ð1 −Mð0;0Þ

11 Þ þMð0;0Þ
13 Mð0;0Þ

21 �Γð0;0Þ
ð0Þ88g;

ðG24Þ

DS ¼ det ½1 −Mð0;0Þ�: ðG25Þ
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APPENDIX H: CHANNEL DEPENDENT
SCATTERING AMPLITUDES—FULL RESULTS

The scattering amplitudes for channels with spin J and
isospin I are given by

hXabjAjXcdi ¼ ðt − uÞAð1;IÞ
abjcd → ðX ¼ V3; V8Þ;

hXabjAjXcdi ¼ Að0;IÞ
abjcd → ðX ¼ U3; SÞ; ðH1Þ

whereas the tree approximation reads

hXabjAð0ÞjXcdi ¼ ðt − uÞKð1;IÞ
abjcd → ðX ¼ V3; V8Þ;

hXabjAð0ÞjXcdi ¼ Kð0;IÞ
abjcd → ðX ¼ U3; SÞ; ðH2Þ

with the K given in Appendix F. The full amplitudes are
obtained by including all loop contributions, as indicated in
Fig. 6. The terms involving a single loop read

AðJ;IÞ
ð1Þabjcd ¼

X
ef

MðJ;IÞ
abjefA

ðJ;IÞ
ð0Þefjcd ðH3Þ

MðJ;IÞ
abjef ¼ −KðJ;IÞ

abjef½SFΩ̄J
ef�; ðH4Þ

where the Ω̄J
ef are the two-meson propagators given in

Appendix B, with the symmetry factor SF ¼ 1 → e ≠ f
and SF ¼ 1=2 → e ¼ f. The inclusion of all possible
intermediate loops gives rise to the infinite geometric series

AðJ;IÞ
abjcd ¼ σðJ;IÞabjefA

ðJ;IÞ
ð0Þefjcd; ðH5Þ

σðJ;IÞabjef ¼ f1þMðJ;IÞ þ ½MðJ;IÞ�2 þ � � �gabjef; ðH6Þ

which is very similar to that discussed in Eq. (G5). In

particular, the function σðJ;IÞabjef is the same as Eq. (G6) and

therefore we may rely on all the developments made in
Appendix G. Explicit expressions for the vector scattering
amplitudes read

Að1;1Þ
KKjKK ¼ 1

Dρðm2
12Þ

½Mð1;1Þ
21 Kð1;1Þ

ππjKK þ ð1 −Mð1;1Þ
11 ÞKð1;1Þ

KKjKK�;

ðH7Þ

Dρ ¼ ½ð1 −Mð1;1Þ
11 Þð1 −Mð1;1Þ

22 Þ −Mð1;1Þ
12 Mð1;1Þ

21 �; ðH8Þ

Að1;0Þ
KKjKK ¼ 1

Dϕðm2
12Þ

Kð1;0Þ
KKjKK; ðH9Þ

Dϕ ¼ f1 −Mð1;0Þg; ðH10Þ

where the function Dπρ
ϕ is given by Eq. (C18).

The scalar sector yields

Að0;1Þ
KKjKK ¼ 1

Da0ðm2
12Þ

½Mð0;1Þ
21 Kð0;1Þ

π8jKK þ ð1 −Mð0;1Þ
11 ÞKð0;1Þ

KKjKK�;

ðH11Þ
Da0 ¼ ½ð1 −Mð0;1Þ

11 Þð1 −Mð0;1Þ
22 Þ −Mð0;1Þ

12 Mð0;1Þ
21 �;

ðH12Þ
Að0;0Þ
KKjKK

¼ 1

DSðm2
12Þ

f½Mð0;0Þ
21 ð1 −Mð0;0Þ

33 Þ þMð0;0Þ
23 Mð0;0Þ

31 �Kð0;0Þ
ππjKK

þ ½ð1 −Mð0;0Þ
11 Þð1 −Mð0;0Þ

33 Þ −Mð0;0Þ
13 Mð0;0Þ

31 �Kð0;0Þ
KKjKK

þ ½Mð0;0Þ
23 ð1 −Mð0;0Þ

11 Þ þMð0;0Þ
13 Mð0;0Þ

21 �Kð0;0Þ
88jKKg; ðH13Þ

DS ¼ det ð1 −Mð0;0ÞÞ; ðH14Þ
with det ð1 −Mð0;0ÞÞ given by Eq. (G9).

APPENDIX I: PHASE SHIFTS

The partial wave expansion of the amplitude, for each
isospin channel, reads

AI
KKjKK ¼ 32π

ρ

X∞
J¼0

ð2J þ 1ÞPJðcos θÞfðJ;IÞKKjKKðsÞ; ðI1Þ

where fðJ;IÞKKjKK is the nonrelativistic scattering amplitude
and ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

K=s
p

. Our amplitudes are written as

AI
KKjKK ¼ Að0;IÞ

KKjKK þ ðt − uÞAð1;IÞ
KKjKK þ � � � : ðI2Þ

In the CM, one has ðt − uÞ ¼ ðs − 4M2
KÞ cos θ and writes

AI
KKjKK ¼ Að0;IÞ

KKjKK þ ½ðs − 4M2
KÞ cos θ�Að1;IÞ

KKjKK þ � � �

¼ 32π

ρ
½fð0;IÞKKjKKðsÞ þ 3 cos θfð1;IÞKKjKKðsÞ þ � � ��;

ðI3Þ
with

fð0;IÞKKjKK ¼ ρ

32π
Að0;IÞ
KKjKK; ðI4Þ

fð1;IÞKKjKK ¼ ρ3

96π
sAð1;IÞ

KKjKK: ðI5Þ

In nonrelativistic Quantum Mechanics, the amplitude f is
usually expressed [10] in terms of phase shifts δ and
inelasticity parameters η as

fðJ;IÞKKjKK ¼ 1

2i
½ηðJ;IÞKKjKKe

2iδðJ;IÞ
KKjKK − 1�: ðI6Þ
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In order to obtain ½δðJ;IÞKKjKK; η
ðJ;IÞ
KKjKK� from AðJ;IÞ

KKjKK ,
one drops all subscripts and superscripts and writes
f ¼ aþ ib, with a ¼ Re½f�, b ¼ Im½f�. Using Eq. (I6),
one has

1þ 2if ¼½1 − 2b� þ 2ia ¼ η½cos 2δþ i sin 2δ�; ðI7Þ

and thus

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − 2b�2 þ 4a2

q
ðI8Þ

tan δ ¼ 2a
1þ η − 2b

: ðI9Þ

As ð1þ η − 2bÞ ≥ 0, the sign of δ is determined by the
factor a.
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