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We propose an approach to describe the D™ — K~ KT K™ decay amplitude, based on chiral effective

Lagrangians, which can be used to extract information about KK scattering. It relies on factorization and its
main novel feature is the role played by multimeson interactions characteristic of chiral symmetry. Our trial
function is an alternative to the widely used isobar model and includes both nonresonant three-body
interactions and two-body rescattering amplitudes, based on coupled channels and resonances, for S- and
P-waves with isospin 0 and 1. The latter are unitarized in the K-matrix approximation and represent the
only source of complex phases in the problem. The nonresonant component, given by chiral symmetry as a
real polynomium, is an important prediction of the model, which goes beyond the (2 + 1) approximation.
Our approach allows one to disentangle the two-body scalar contributions with different isospins,
associated with the f,(980) and a,(980) channels. We show how the KK amplitude can be obtained from
the decay D™ — K~KTK™ and discuss extensions to other three-body final states.
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I. INTRODUCTION

Nonleptonic weak decays of heavy-flavored mesons are
extensively used in light meson spectroscopy. Owing to a
rich resonant structure, these decays provide a natural place
to study hadron-hadron interactions at low energies. In
particular, almost 20 years ago, three-body decays of
charmed mesons could confirm the existence of the con-
troversial scalar states f,(600) (or sigma) [1] and K(800)
(or kappa) [2]. More comprehensive investigations can be
done nowadays, using the very large and pure samples
provided by the LHC experiments, and still more data is
expected in the near future, with Belle II experiments.

Three-body hadronic decays of heavy-flavored mesons
involve combinations of different classes of processes,
namely heavy-quark weak transitions, hadron formation
and final-state interactions (FSI), whereby the hadrons
produced in the primary vertex are allowed to interact in
many different ways before being detected. Final-state
processes include both proper three-body interactions
and a wide range of elastic and inelastic coupled channels
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involving resonances. In this framework, a question arises
concerning how to obtain information about two-body
scattering amplitudes from the abundant data on three-
body systems.

The key issue of this program is the modeling of the
decay amplitudes. Most amplitude analyses have been
performed using the so-called isobar model, in which
the decay amplitude is represented by a coherent sum
of both nonresonant and resonant contributions. This
approach, albeit largely employed [3], has conceptual
limitations. The outcome of isobar model analyses are
resonance parameters such as fit fractions, masses and
widths, which are neither directly related to any underlying
dynamical theory nor provide clues to the identification of
two-body substructures. Thus, the systematic interpretation
of the isobar model results is rather difficult.

This situation motivated in the past decade efforts
towards building models that are based on more solid
theoretical grounds. Those models improve essentially the
two-meson interaction description in the FSI, with the use
of dispersion relations and chiral perturbation theory. Most
of them work in the quasi-two-body (2 4 1) approximation,
where interactions with the third particle are neglected.
Recently, a collection of parametrizations based on analytic
and unitary meson-meson form factors for D and B three-
body hadronic decays within the (2 + 1) approximation
was presented in Ref. [4]. Three-body FSIs were also
considered and, in particular, shown to play a significant
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role in the D™ — K~z z" decay. In this process, three-
body unitarity was implemented in different ways, by
means of Faddeev-like decompositions [5-7], Khuri-
Treiman equation [8] or triangle diagrams [9]. Whilst
differing in methods and techniques, all these theoretical
efforts have in common the attempt to include, in a
systematic way, knowledge of two-body systems in the
description of the decay amplitudes.

This work departs from the same broad perspective, but
concentrates explicitly on the derivation of two-body
scattering amplitudes from three-body decays. With this
purpose in mind, we suggest an approach based on effective
Lagrangians, whose main new feature is the stress put on
multimeson interactions characteristic of chiral symmetry,
and apply it to the DT — K~KTK™ decay. This process
is interesting because there is very little information
available on kaon-kaon scattering, regarding both theory
and experiment. Concerning the latter, one only has
access to 7z elastic scattering data [10] and to the inelastic
channel 7z — KK [10,11]. Information about KK inter-
action can be estimated by imposing unitarity constraints
on the zzw data. On the theory side, KK amplitudes
have been calculated in next-to-leading order chiral per-
turbation theory. Aiming at a full coupled-channel descrip-
tion, it was extended up to 1.2 GeV, using form factors [12]
to describe the yz — KK contribution to # — zzx decay
[13], or unitarized resummation techniques [14], to include
an — KK in the context of FSI of J/¥ — ¢an(KK)
decays.

The main purpose of this work is disclose information
about the dynamics of KK interactions by disentangling the
two-body contributions contained in the D™ — K"KTK*
amplitude. This decay has been studied by LHCb collabo-
ration within the scope of the Isobar Model [15]. The
preliminary results already shown limitations when disen-
tangling scalar broad resonances individual contributions,
such as f((980) and a((980). In our model, the description
of the KK interaction relies on a chiral Lagrangian with
resonances, including all possible coupled channels for
(spin J = 0, 1; isospin I = 0, 1) extended to nonperturba-
tive regimes by means of unitarization. A relevant feature of
the model is that the relative contribution and phase of each
component is fixed by theory, and this represents an
important difference with the isobar model. Although the
formalism is developed for a specific process it can be
useful in other decays into three kaons.

This paper extends and supersedes a previous version
[16] and is organized as follows. The motivation for
building the amplitude is discussed in Sec. II, whereas
the model is presented in Secs. III and IV. The suggested
amplitude for data fitting, together with a comparison
between scattering and decay amplitudes is discussed in
Sec. V. Some simulations and general remarks are given
in Sec. VI. Details of the calculations are given in the
appendices.

II. MOTIVATION FOR A NEW MODEL

The isobar model, widely used for describing heavy-
meson decays into three pseudoscalars, relies on the
assumption that these processes are dominated by inter-
mediate states involving a spectator plus a resonance, and
also includes nonresonant contributions. In the decay
H — PP, P5,of aheavy meson H into three pseudoscalars
P;, the isobar model emphasizes the sequence H — RPx5,
followed by R — P P,.

The full H — P, P,P5 decay amplitude is denoted by T
and the isobar model employs a guess function to be fitted
to data in the form of the coherent sum

T =c,t,+ chﬁw (1)
k

the subscript nr referring to the nonresonant term and the
label k associated with resonances, as many of them as
needed. The coefficients ¢, = aze® are complex param-
eters, to be determined by data. The choice 7, = 1 is usual
for the nonresonant term, whereas the sub amplitudes
7; depend on the invariant masses of the problem. For
each resonance considered, the function 7; is given by
7, = [FF] x [angular factor] X [line shape],, where FF
stands for form factors, the angular factor is associated
with angular momentum channels, and [line shape], rep-
resents a resonance line shape, described by either a Breit-
Wigner (BW) function such as (BW), = 1/[s — m} +
im '], m; and T'; being the resonance mass and width,
or by variations, such as the Flatté or Gounaris-Sakurai
forms. The angular factor allows one to distinguish partial
wave contributions and to employ the decomposition
T=T5+TF+---

A good fit to decay data based on the structure given by
Eq. (1), would yield an empirical set of complex parameters
¢, and c,. However, a question arises regarding the
meaning of these parameters. Would they be useful to
shed light into yet unknown two-body substructures of the
problem? Can they provide reliable information about
scattering amplitudes? If we denote two-body scattering
amplitudes by A, this question may be restated as: can one
extract A directly from 7?7 As we argue in the sequence,
answers to these questions do not favor the isobar model.

On general grounds, there is no direct connection
between a heavy-meson decay amplitude 7" and two-body
scattering amplitudes A, involving the same particles.
Their relationship involves several issues, which we discuss
below.

A. Dynamics

The dynamical contents of 7 and A are rather different,
since the former must include weak vertices, which cannot
be present in the latter. Specific features of W-meson inter-
actions are important to 7" and irrelevant to A. Therefore,
although scattering amplitudes A may be substructures of
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T, there is no reason whatsoever for assuming that these A’s
are either identical or proportional to 7. This is supported
by case studies. For instance, some time ago, the FOCUS
collaboration [17] produced a partial-wave analysis of the
S-wave K~z amplitude from the decay D* — K~z xn™.
Several groups then compared [18] the phase of this
empirical amplitude directly with that from the LASS
K~7n" scattering data [19] and the discrepancy found
was seen as a puzzle. The fact that the FOCUS phase
was negative at low energies was considered to be
especially odd. In the language of this discussion, this
kind of puzzle arose just because one was trying to compare
T and A directly. The difference between observed S-wave
decay and scattering phases was later explained by con-
sidering meson loops in the weak sector of the problem
[5,6]. These loops account for the extra phases observed.

B. Good quantum numbers

Isospin is broken by weak interactions and is a good
quantum number for A, but not for 7. Scattering amplitudes
A depend both on the angular momentum J and on the
isospin / of the channel considered, whereas just a J
dependence can be extracted from an empirical decay
amplitude 7. This point will be recast on more technical
grounds while we discuss our model. For the time being, it
suffices to stress that it is impossible to derive directly A-!)
from T/) simply because the former contains more struc-
ture than the latter. An extraction of AV-!) from T") would
amount to generating physical content about the isospin
structure.

C. Coupled channels

It is well known that scattering amplitudes include
important inelasticities due to couplings of intermediate
states. For instance, as Hyams et al. [10] point out, KK
intermediate states do influence elastic zz scattering at
some energies. Since scattering amplitudes A are substruc-
tures of the decay amplitude 7', coupled channels present in
the former must also show up in the latter. In general, guess
functions better suited for accommodating data should have
structures similar to those used in meson-meson scattering,
Refs. [10,12,20]. In the case of the isobar model, the simple
guess functions usually employed fail to incorporate these
intermediate couplings.

D. Unitarity

Good fits to Dalitz plots data may require several
resonances with the same quantum numbers. At present,
conceptual techniques are available which preserve unitarity
while incorporating several resonances into amplitudes [21].
This allows one to go beyond the isobar model, where the
amplitude is constructed as sums of individual line shapes
(Breit-Wigner), as in Eq. (1), a procedure known to violate
unitarity, even in the case of scattering amplitudes [22].

E. Nonresonant term

The nonresonant term may be important and involve less
known interactions. In the case of heavy meson decays and
some leptonic reactions, available energies can be large
enough for allowing the simultaneous production of several
pseudoscalars at a single vertex. Multimeson dynamics
then becomes relevant. For instance, the process e~ et —
4z involves the matrix element (zzzz|Jy|0), J; being the
electromagnetic current [23]. A similar matrix element,
with J% replaced with the weak current (V — A)¥, describes
the decay 7 — v4x [23]. Interactions of this kind are also
present in the model for D™ — K~KTK™ we discuss here.

F. Lagrangians

Although the point of departure of the isobar model may
be sound, the problems mentioned tend to corrode the
physical meaning of parameters it yields from fits. Thus,
even if these fits are precise, the relevance of the parameters
extracted remains restricted to specific processes. Moreover,
in particular, one cannot rely on them for obtaining scattering
information. The most conservative way of ensuring that the
physical meaning of parameters is preserved from process to
process is to employ Lagrangians, which rely on just masses
and coupling constants. Guess functions for heavy-meson
decays constructed from Lagrangians yield free parameters
which allow the straightforward derivation of scattering
amplitudes.

III. DYNAMICS

The fundamental QCD Lagrangian for strong inter-
actions is written in terms of gluons and quarks, the basic
degrees of freedom. As the theory allows for gluon self-
interactions, perturbative calculations hold at high energies
only. At present, intermediate-energy reactions cannot be
described in terms of quarks and gluons, and one is forced
to rely on hadronic descriptions. The D' decay into
KTK~K™" is doubly Cabibbo suppressed and must be
described in terms of a weak ¢ — d vertex, supplemented
by hadronic final state interactions. The description of the
weak vertex departs from the topological structures given
by Chau [24], which implement Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing for processes involving a
single W. The primary decay occurs in the midst of light
quark condensates, and the direct implementation of Chau’s
scheme into calculations is difficult. A possible way to
overcome this kind of problem is to rely on the factorization
ansatz, following the work of Bauer, Stich and Wirbel [25].
For applications of factorization to D decays, see Ref. [4].
In this work, the basic idea of factorization is implemented
in an equivalent way by means of chiral effective
Lagrangians, in which weak interactions are treated as
external sources. At low energies, chiral perturbation theory
(ChPT) [26-28] is highly successful. It is ideally suited for
describing interactions of pseudoscalar mesons in the
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FIG. 1.
the D, dashed lines are pseudoscalars.

SU(3) flavor sector, but can also encompass baryons. A
prominent feature of ChPT is that it realizes the hidden
symmetry of the QCD ground state, which manifests itself
as a vacuum filled with uii, dd, and s5 states. The lowest
energy excitations of this vacuum are the pseudoscalar
mesons, which are highly collective states. Another
remarkable feature of the theory is that it yields multimeson
contact interactions. For instance, depending on the energy,
reactions such as zzx — zzKK may involve a single
interaction. On a more technical side, in ChPT, amplitudes
are systematically expanded in terms of polynomials,
involving both kinematic variables and quark masses.
The orders of these polynomials, assessed at a scale
A ~1 GeV, determine a dynamical hierarchy and leading
order (LO) contributions correspond to multimeson contact
interactions, whereas resonance exchanges are next-to-
leading order (NLO). This understanding motivated an
extension of the original chiral perturbation theory formal-
ism, known as (ChPTR), in which resonances are explicitly
included [29]. At present, ChPT yields the most reliable
representation of the Standard Model at low energies.
Low-energy applications of ChPT are normally restricted
to regions below the p mass whereas, in D decays, energies
above 1.5 GeV are involved. Therefore, the description of
hadronic interactions at those higher energies requires
further extensions of the theory, which must include non-
perturbative effects in a controlled way. A widely used and
rather successful approach consists in resumming a Dyson
series based on chiral interactions, so as to obtain unitary
scattering amplitudes [21]. In this work, we deal with the
process DT — K~KTK™ and, in principle, it should be
described by a properly unitarized three-body amplitude.
However, this is beyond present possibilities and, following
the usual practice, we work in the so-called (2 + 1)
approximation, in which two-body unitarized amplitudes
are coupled to spectator particles. Throughout the paper, we
use the notation and conventions of Ref. [29]. If needed,

q= = =

_____ K+ _____________K+
%%
3 55 3
_____ K+ + )% __b __ _—— K+
2 YN 2
— sed @ —
_____ K atstecesetet EIEIEIEIEIC -—— K
1 R 1

(b)

Amplitude T for DT — K=K K™: (a) primary weak vertex; (b) weak vertex dressed by final state interactions; the full line is

another extension scheme for ChPT, based on the explicit
inclusion of heavy mesons [30], is also available.

The theoretical description of a heavy meson decay into
pseudoscalars involves two quite distinct sets of inter-
actions. The first one concerns the primary weak vertex, in
which a heavy quark, either ¢ or b, emits a W and becomes
a SU(3) quark. As this process occurs inside the heavy
meson, it corresponds to the effective decay of a D or a B
into a first set of SU(3) mesons. ChPT is fully suited for
describing these effective processes. The primary weak
decay is then followed by purely hadronic final state
interactions (FSIs), in which the mesons produced initially
rescatter in many different ways, before being detected. The
decay D™ — K~ KT K™ is doubly-Cabibbo-suppressed and
any model describing it should involve a combination of
these two parts, as suggested by Fig. 1.

Three-kaon final states have already been considered in
Ref. [31] for the case of B decays, where the phase space is
much larger. Although the weak vertex for the decay D™ —
K~K*tK*™ might be scrutinized in similar terms, in this
work we stress the role of final state interactions produced
by the strong couplings of intermediate states. Within the
(2 + 1) approximation, these interactions are always asso-
ciated with loops describing two-meson propagators. This
provides a topological criterion for distinguishing the
primary weak vertex from FSIs, namely that the former
is represented by tree diagrams and the latter by a series
with any number of loops. Each of these loops is multiplied
by a tree-level scattering amplitude K and, schematically,
this allows the decay amplitude 7 to be written as

T = (weak tree) x [1 + (loop x K) + (loop x K)?
+ (loop x K)3 + - --]. (2)

The term within square brackets involves strong inter-
actions only and represents a geometric series for the FSIs,

(@)

(b)

FIG. 2. Competing topologies for the process D™ — P,P,K7; the solid green lines are the D and dashed lines are SU(3)
pseudoscalars and the wavy line is the explicit W-boson; in (a) the K3 is produced in a multimeson process, and in (b) in isolation.
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FIG. 3.

which can be summed. Denoting this sum by S, one has
S = 1/[1 — (loop x K)], which corresponds to the model
prediction for the resonance line shape.

The weak amplitude describes the process D —
(P“P")K* at tree level, where P! corresponds to a
pseudoscalar with SU(3) label i. There are two competing
topologies representing it, given by Figs. 2 and 3 for
hadronic and quark level diagrams, respectively. A peculiar
feature of these vertices is that process (a) can yield
P“Pb = K=K, whereas process (b) cannot. This can be
seen by inspecting the quark structure of the latter, given in
Fig. 3, which shows that just a dd pair is available as a
source of the two outgoing mesons at the strong vertex.
Hence one could have P*P? = 797%, zt7z~, KYKY, but not
P¢P’ = K~K*. The production of a K~K* final state by
mechanism (b) would thus require at least one FSI. In terms
of the scheme depicted in Eq. (2), this means that the first
factor within the square bracket would be absent and the
decay amplitude could be rewritten as

T = (weak tree) x (loop x K) x [1 + (loop x K)
+ (loop x K)? + (loop x K)? + - --]. (3)

Mechanism (b) is therefore suppressed when compared
with mechanism (a). The multimeson model (Triple-M) for
the D™ — K~ KTK™ amplitude proposed here assumes the
dominance of process (a) of Fig. 2, whereby the decay
proceeds through the steps D™ - W+ - KTK~K™.

IV. MULTIMESON MODEL FOR D* — K- K*K*

Our model is based on the assumption that the
weak sector of the doubly Cabibbo-suppressed decay
D" — K~"KTK" is dominated by the process shown in
Fig. 2(a), in which quarks ¢ and d in the D™ annihilate into
a W, which subsequently hadronizes. The primary weak
decay is followed by final state interactions, involving the

o
= =

u

nl o
ol

et
d_‘ﬁi

(b)

2]
(9]

ol
ol Q9o

Quark content of topologies (a) and (b) in Fig. 2.

scattering amplitude A. This yields the decay amplitude T

given in Fig. 4, which includes the weak vertex and

indicates that the relationship with A is not straightforward.
This decay amplitude is given by

r—— {_F sinzec] (K= (p)K* (p2)K* (p3)|A#[0)
x (0|4, [D*(P)). (4)

where G is the Fermi decay constant, 8. is the Cabibbo
angle, the A* are axial currents and P = p; + p, + p3.
Throughout the paper, the label 1 refers to the K~, the
label 3 the spectator K and kinematic relations are given
in Appendix A.

Denoting the DT decay constant by Fp, we write
(0|A,|D*(P)) = —iV2F P, and find a decay amplitude
proportional to the divergence of the remaining axial
current, given by

T— {% sin29c] VIF [P, (AM)], (5)

with (A*) = (K~ (p;)K*(p2)K*(p3)|A#|0). This result
is important because, if SU(3) were an exact symmetry,
the axial current would be conserved and the amplitude
T would vanish. As the symmetry is broken by the
meson masses, one has the partial conservation of the
axial current (PCAC) and T must be proportional to M%. In
the expressions below, this becomes a signature of the
correct implementation of the symmetry.

The rich dynamics of the decay amplitude 7 is incor-
porated in the current (A*) and displayed in Fig. 5.
Diagrams are evaluated using the techniques described
in Refs. [28,29]. In chiral perturbation theory, the primary
couplings of the W to the K"KTK™ system always
involve a direct interaction, accompanied by a kaon-pole

FIG. 4. Decay amplitude for D™ — K~K1TK™; the weak vertex proceeds through the intermediate steps D™ — W™ and W+ —
K~K*tK™ and strong final state interactions are encompassed by the scattering amplitude A (full red blob).
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Dynamical structure of triangle vertices in Fig. 4; the wavy line is the W, dashed lines are mesons, continuous lines are

resonances and the full red blob represents meson-meson scattering amplitudes described in Fig. 6; all diagrams within square brackets

should be symmetrized by making 2 <> 3.

term, denoted by (A) and (B) in the figure. Only their
joint contribution is compatible with PCAC. Diagrams
(1A + 1B) are LO and describe a nonresonant term, a
proper three body interaction, which goes beyond the
(2 4+ 1) approximation, whereas diagrams (2A + 2B) allow
for the possibility that two of the mesons rescatter, after
being produced in the primary weak vertex. Diagrams
(3A + 3B) are NLO and describe the production of bare
resonances at the weak vertex, whereas final state rescatter-
ing processes (4A + 4B) endow them with widths.

A. Two-body unitarization and
resonance line shapes

In the description of the two-body subsystem, we
consider just S- and P- waves, corresponding to (J =1,
0, I =1, 0) spin-isospin channels. The associated reso-
nances are p(770), ¢(1020), a((980), and two SU(3)
scalar-isoscalar states, S; and S, corresponding to a singlet
and to a member of an octet, respectively. The physical
f0(980), together with a higher mass f, state, would be
linear combinations of §; and §,. Depending on the
channel, the intermediate two-meson propagators may

(a) O ’ = Ce—e’ +

N . ~ . N
N ‘ S ‘
.
. N

N .
(b) ~./ ~O’
. ~ . ~
. N . N
. N . N
. ~ . ~ .

FIG. 6. (/1)

unitarized scattering amplitude.

involve zz, KK, nn, and zn intermediate states, so there
is a large number of coupled channels to be considered.

The basic meson-meson intermediate interactions
P“Pb — P<P? are described by kernels ICEIJ,]"’L ) , and their
simple dynamical structure is shown in Fig. 6, as LO four
point terms, typical of chiral symmetry, supplemented by
NLO resonance exchanges in the s-channel. Just in the
(J =0, I =0) channel two resonances, S; and S,, are
needed. In these diagrams, all vertices represent inter-
actions derived from chiral Lagrangians [29]. Kernels are
then functions depending on just masses and coupling
constants. The mathematical structure of these functions is
displayed in Appendix F. In the case of the ¢-meson, the
kernel includes an effective coupling to the (pz + zzx)
channel, which accounts for about 15% of its width. This
effective interaction is discussed in Appendix C and
yields Eq. (F6).

All other resonance terms in the kernels contain bare
poles. However, the evaluation of amplitudes involves the
iteration of the basic kernels by means of two-meson
propagators, as in Fig. 6(b). The propagators, denoted
by Q, are discussed in Appendix B and, in principle, have

~ .

~ ‘ ~ g
~ P e ~ P P P
. . .
N ‘- ~ e N - ~ - ~ .
+ O O + O Q O + e
.
e ~ . s P ~ . ~ . ~
. .- . . - .- .
. . . N
.

. ~

(a) Tree-level two-body interaction kernel KC,~. ;. a NLO s-channel resonance added to a LO contact term. (b) Structure of the
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both real and imaginary components. The former contain
divergent contributions and their regularization brings
unknown parameters into the problem. In this work we
are concerned with the construction of a guess function to
be tested in fits to decay data and these unknown param-
eters would bring too much freedom to the model. We
avoid this problem by working in the K-matrix approxi-
mation, whereby just the imaginary parts of the two-meson
propagators are kept. In spite of its limitations, this
approximation has already proved to be useful in analyses
of scattering data. A more complete discussion of off-shell
effects will be considered in future improvements of this
model. The two-meson propagator gives rise to the struc-
ture sketched within the square bracket of Eq. (2), where

the terms (loop x K) are realized by the functions M ,(-jj-'l)

given in Egs. (G10)—(G13). The resummation of the geo-
metric series, indicated in Fig. 6(b), endows the s-channel
resonances with widths. Thus among other structures,
intermediate two-body amplitudes yield denominators
DU, which are akin to those of the form Dgy = [s —
m? + imI'] employed in BW functions. These denomina-
tors, that correspond to the predictions of the model for the
resonance line shapes, are given in Appendix G and
reproduced below. Explicit expressions read

=11 =m (1 =MDy —mEIMEYL (6)
D,={1- M0y, (7)
D, = [(1=M) (1= M5y = MM, (8)

D = [1 =M1 - M5O - M)
0,0 X X
—[1 - MM SO m G
0,0 0,0 0,0 0,0 0,0 0,0
— 1= MBI M O — (1 - MGV S0 M

0.0) 5 £(0.0) 5 (0.0 0,0) 5 £(0,0) 5 £(0.0
= MMM My M MY ()
where the functions M 5}{,1) read
1.1) (1.1) L1
Mgl = _Kﬂﬂ\nﬂ[QP /2]’ M§2 ) = - ICz(m|13K[Q§K/2}
L1 L1
Mél )= - Im\KK[ /2] M&Z '= ,CE(K|)KK[Q§K/2]
(10)
(1.0)
MU —}CKK‘KK[QQK/Z]. (11)
0.1) 0.1
M<11 - ]CﬂS\/TS[ 88/2]7 M(12 '= - K(S\;K[Q%K/z]

0,1 01
My = -k 195/2],

(0.1) _ 1)
78|KK M22 - ICKK\KK[Q%K/z]

(12)

MO0 = k00052 MY = K0 [65,/2)
Mg(;o _]Cm\ss[ggs/z]’ Mg1 ’sz\KK[Qﬁﬂ/z]’
M5 = K[ @kc/D. - MY = ~Kieus[/2).
Mg(io = _ICH(J)I%S[QIS;ﬂ/z]’ Mg(;.o) = KKK\SS[Qf(K/z]
M = ~Ki 98/, (13)
with the K b‘ d of Appendix F, whereas the subscripts 8

refer to the member of the SU(3) octet with the quantum
numbers of the n. The factor 1/2 in these expressions
accounts for the symmetry of intermediate states and it is
also present in the functions M g(i’l) and Mg(i’w because one
is using the symmetrized #8 intermediate state given
by Eq. (DS).

The imaginary propagators Q of Appendix B are
given by

i Qab

Qib = 871' \/— 9( (Ma +Mb)2)» (14)
of, = - - L anr), (15)

Ous = 5/~ 20M2 +M3) + (ME— M3/, (16)

0 being the Heaviside step function. )
The dynamical meaning of the functions Q/, and

Mz,’]) is indicated in Fig. 6(b). The former represents
the two-body propagator for mesons a and b with angular
momentum J, indicated by the dashed lines between two
successive empty blobs, whereas the latter encompasses a
blob and a two-body propagator. The functions M((ljb”)
correspond to the paces of the various geometric series
entangled by the coupling of intermediate channels.

B. KK scattering amplitude

The KK scattering amplitude, which is a prediction of
the model, is derived in Appendix H and is written in terms
of the denominators D-!) as

an 1 (11) 1-(1.1) (1 Dy 4~(1.1)
AKK\KK - Dp(m%Q) [MZI ]szua( (1- )ICKK\KK]’
(17)
A0 1 1(L0) (18)
KKIKK = D (m3y) KKIKK®
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A = By M K+ (1= MG )
(19)
Ak
= oy (A1 = M) ST ME
11 = M1 = M5”) = M MG I
+ M0 = M)+ MM Ik (20)

C. Decay amplitude

The decay amplitude for the process D™ — K~"KTK™,
given by Eq. (5), has the general structure

T — TNR + [T(ll) + T(IVO) 4 T(O,l) + T(0,0) + (2 < 3)]’

(21)

where TR is the nonresonant contribution from diagrams

(1A + 1B) of Fig. 5 and the TV are the resonant con-
tributions from diagrams (2A+2B +3A +3B+4A+4B),
in the various spin and isospin channels.

Owing to chiral symmetry, all amplitudes are propor-
tional to M%, included in a common factor

C= { LG/_E smzﬁc} 2?)&}, (22)

where F is the SU(3) pseudoscalar decay constant. Using
the kinematic variables m = (p; + p,)*, the nonresonant
contribution is the real polyn0m1a1

T'\g = C{[(m%z - M%() + (m%3 - M%()]}, (23)

corresponding to a proper three-body interaction. The
amplitudes 7V read

1 11 11
T = = [k = Ty = ). (24)
(i 1 (11 =(1.1) (LD (L)
i STl i —m ] (25)
Kk =p Gy M2 T i M okk
1 =0 1,0
T(10) — -1 Fo - FE\KI)(](’"% —m3),  (26)
-(10) 1 F(1,0) 27
K D)0 )
1 =01 0.1
TOD = —[FeY T80, (28)

=on 1 ©.1) MO
P = D, (mt) (M7 Tjas + (1= M1 )T e
(29)
1 = 0,0 0,0
700 = D) [F%K) - FE‘|KI)(]’ (30)

_ 00 1 0.0 0.0 0.0 5 ;(0.0)11-(0.0
Mk = Ds(m%z){[Mgl (1= MG”) + M5O M )]FEOVT)ﬂ
00 0.0 5 (0.0)11-(0.0
+[(1 - ( ))(1 —M§3 >) —M§3 )Mg1 )]Fgo)igk
0,0)17-(0.0
+ M5 (1= M) + MG MGV
(31)

where the various functions I'V!), given in Appendix E, are
linear in the coefficient C. The dynamical meaning of the

functions F%’Qb can be inferred from Fig. 5(b). They cor-

respond to the tree diagrams (1A + 1B) and (3A + 3B)
with the indices (1,2) — (a, b) and represent the amplitude
for the production of pseudoscalar mesons P*P’K* by
awt.

Comparing results (24)—(31) and (17)—(20), it is easy to
see that the decay amplitudes 7)) and the scattering
amplitudes AV-)) are quite different objects, since the for-
mer include the weak interaction, which is encoded into the

decay vertices F%K) Nevertheless, both AE( KI)K x and fgg,'g)

share the same denominators DV-/). The amplitude 7', given
by Eq. (21) is our guess function, to be used in fits to data.
As it is a blend of spin and isospin channels, attempts to
compare it directly to the AV) are meaningless.

D. Free parameters

The free parameters of our function 7 derive from the
basic Lagrangian adopted [29] and consist basically of
masses and coupling constants. The former include m,,, m,
mgg, Mgy, Mg,, Whereas the latter involve F, the pseudo-
scalar decay constant, Gy, the coupling constant of vector
mesons to pseudoscalars, an angle 6, associated with @ — ¢
mixing, ¢, ¢,,, describing the couplings of both a, and §,
to pseudoscalars, and ¢,, ¢,,, implementing the couplings
of S; to pseudoscalars. These Lagrangian parameters first

enter the guess function through the functions r' and

(0)ab
ICElJbll ) , in Appendices E and F.

In the strict framework of chiral perturbation theory, the
values of the Lagrangian parameters are extracted by
comparing results from field theoretical calculations per-
formed to a given order to observables. As the former
involve divergent loops, they are affected by renormaliza-
tion and values quoted in the literature depend on renorm-
alization scales. This kind of procedure is theoretically
consistent and yields a precise description of low-energy
phenomena.
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In the case of heavy meson decays, this level of
precision cannot be reached. The main reason is that the
problem involves necessarily a wide range of energies,
both below and above resonance poles, where perturba-
tion does not apply and nonperturbative techniques are
needed. An instance is the resummation of the infinite
series of diagrams indicated in Fig. 6, required by
unitarization, which yields the denominators D) dis-
cussed in Sec. IVA. Therefore, in decay analyses, the
free parameters do not have the same meaning as their
low-energy counterparts, since they are designed to be
used in a mathematical structure which is different from
ChPT. The former correspond to effective parameters
describing the physics within the energy ranges defined
by Dalitz plots and should not be expected to have the
same values as the latter.

V. A TOY EXAMPLE: DECAY x SCATTERING
AMPLITUDES

The Triple-M is aimed at predicting scattering amplitudes
by using parameters obtained from fits to decay data. Even in
the want of such fitted parameters at present, we explore
the features of the Lagrangian by using those suited to
problems at low energies, which are: [m,,m;,mg.mg,] =
[0.776,1.019,0.960,0.980] GeV  [32], F = 0.093 GeV,
[Gy, ¢y, Cm»CqsCm] =10.067,0.032,0.042,0.018,0.025] GeV
[29], whereas the partial width I'y_xg ~3.54 MeV [32]
yields sin @ = 0.605. In the large N limit, mg; = myg, [29]
but, in order to perform the toy calculations, we choose
mg; = 1.370 GeV [32]. The discussion presented in the
sequence makes it clear that there is no simple relation
between the decay amplitude 7 and the scattering
amplitudes AV,

8o == -

phases (degrees)

700} —— (0,0
| )]
I
\
\
500 —\\
b\
< [\
Lo
300F,
RN
N\
AN
\\
1001 \\"‘\'::_‘\ 777777 ——————— T
1 1 ~--~~I‘~-T --------- |——___ 1
1 1.2 1.4 1.6 1.8
s (GeV)?
TO1)
""""" TSwW

FIG. 7.

1.4
s (GeV)?

S-wave sector—top left: the continuous black curve (SW) is the modulus of the decay amplitude T°, Eq. (34), in arbitrary

units, whereas other curves are moduli of partial contributions; top right: moduli of the KK scattering amplitudes A1), red curve, and
A0 blue curve; bottom: the continuous black curve (SW) is the phase of the decay amplitude T, Eq. (34), and other continuous
curves are phases of partial contributions; the dashed curves represent the phases of the KK scattering amplitudes A1 (red) and

A0 (blue).
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The nonresonant contribution to the decay amplitude,
Eq. (23), corresponds to a genuine three-body interaction
predicted by chiral symmetry. Nevertheless, in order to
assess its relative importance, it is convenient to project it
into the S- and P-waves suited to the other terms.
Therefore, we rewrite it as

C C
Tg = {_(Mz - M% +mi,) “‘Z(m% -mi;)+ (2 < 3)}’

C
TP = |3 (mly = m3;) + TV - T0O

(35)

In the sequence, we discuss some aspects of this
relationship, using the low-energy parameters of Ref. [29],
as if they could explain decay data. In Figs. 7 and 8, we
show the moduli and phases of the S- and P-wave decay

1 amplitudes 75, Eq. (34) and T”, Eq. (35), together with the
moduli and phases of the corresponding KK scattering
(32) amplitudes AY-). These figures illustrate the usefulness of
so that the amplitude (21) can then be expressed as the Lagrangian approach. Without it, one would be able
to determine just the full decay amplitudes 75 and 77,
T=[T5+TF+ (2 < 3)], (33) represented by the continuous black curves in the figures,
and would not have access to partial contributions in
TS — [E (M3 — M% + m3,) + 70.1) 4 T(o,o)]’ (34) different isospin channels. Moreov§r, it is also clear that
4 one cannot guess the form of the KK scattering amplitudes
o B
2000 -I.' :. 1
= 41 \Pw z Co (1.0)
1000F ]
ol \
a1 NR (1,0) SO
ol B — ol Rl e =R R
1.0 1.5 2.0 1.0 1.5 2.0
s (GeV)? s (GeV)?
180} T(1,1) 1.0 -
0
o]
o
o)
9)
z \
g 90F [Tpw \A(1,0) 7
g ‘\
Q \
0 j i
1 1 L L L L
1.0 1.5 2.0

s (GeV)?

FIG. 8.

P-wave sector—top left: the continuous black curve (PW) is the modulus of the decay amplitude 77, Eq. (35), in arbitrary

units, whereas other curves are moduli of partial contributions; top right: moduli of the KK scattering amplitudes AV, red curve, and
A0 blue curve; bottom: the continuous black curve (PW) is the phase of the decay amplitude 77, Eq. (35), and other continuous
curves are phases of partial contributions; the dashed curves represent the phases of the KK scattering amplitudes A" (red) and

A1) (blue).
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FIG.9. Phase shifts § and inelasticity parameter 5 for KK scattering—top: S-waves; bottom: P-waves; blue and red curves correspond,

respectively, to isospin / =0 and [ = 1.

AVD represented by the red and blue dotted lines, from the
decay components 7% and T°.

In Fig. 9 we present the phase shifts and inelasticity
parameters associated with the scattering amplitudes A1),
It important to stress that these figures correspond just to an
exercise, since they are based on low-energy parameters.
Nevertheless, they are instructive in showing the impor-
tance of the coupled channel structure, which is responsible
for the inelasticities displayed. In the case of the I =1
P-wave, this related with the ¢ — zzz channel, as
discussed in Appendix C. In all cases, the bound n < 1
is satisfied.

The multimeson model we consider here yields scatter-
ing amplitudes involving dynamical features such as: (i) a
chiral contact interaction in the two-body kernel, indicated
in Fig. 6; (ii) the use of two resonances in the (J/ = 0,1 = 0)
channel, preserving unitarity; (iii) inclusion of coupled
channels. In this model, just the ¢ and the S; are within the
Dalitz plot of the D decay and the phase of the former
shows the typical sharp rise at low energies associated with
resonances. However, the presence of the §; is more
difficult to be perceived, for it is the higher mass state
of a coupled pair, whereas just the tails of the remaining
resonances contribute to the decay amplitude. The piece-
meal relevance of dynamical effects, in the case of A00) g
discussed in the sequence.

VI. MODEL STRUCTURE

The multimeson model we consider in this work assem-
bles a number of aspects that appear scattered in many
calculations, but are normally absent in heavy meson decay
analyses. The main unusual dynamical effects included
into our model concern: (i) the presence of a LO contact
interaction in the two-body kernel, as indicated in Fig. 6;
(i1) the introduction of two resonances in the (J = 0, I = 0)
channel, preserving unitarity; (iii) consideration of coupled
channels. With the purpose of disclosing the role played by
these features in the results, in this section we focus on the
scattering amplitude A% and show its behavior in a
number of different scenarios. We begin by the simplest
one, in which just the f,(980) is kept, and add the other

TABLEI. Systematic investigation of the relative importance of
A9 components.

Scenario A B C D Triple-M

ON ON ON ON ON
Contact interaction X ON ON ON ON
Singlet resonance f,(1370) X X ON ON ON
iz coupled channel X X X ON ON
nn coupled channel X X X X ON

Octet resonance f(980)
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FIG. 10. Results for |[A(%9)|: the kaon mass is artificially lowered to M = 0.4 GeV and the dynamics is implemented just by a single
£0(980); the black vertical line indicates the actual KK threshold. Left: modulus; right: phase.
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FIG. 11. Results for |A(0’0>|: piecemeal construction of the amplitude, following steps given in Table I; the continuous blue line
(A) corresponds to the tail of the f,(980); the dashed blue curve (B) includes the contact chiral term; the red continuous curve
(C) represents the unitarized f,(980) and f,(1370) joint contributions; the dashed red curve accounts for the coupling to zz
intermediate states; the continuous black curve (Triple-M) includes coupling to #x intermediate states; top: modulus; bottom: phases; the
latter also includes conventional phase shifts 69, indicated by the dotted curves.

contributions gradually, as described in Table I. It indicates
when a particular contribution, that was previously absent,
has been turned ON.

We begin by considering the artificial situation in which
the kaon mass is lowered to Mg = 0.4 GeV, so as to allow

1.0

0.8

0.6

eta

0.4

0.2

0.0k .
1.0 1.5 2.0

s (GeV)?

FIG. 12. Results for [A(0)] inelasticities; conventions are the
same as in Fig. 11.

the £(980) to be above threshold. The amplitude is shown
in Fig. 10 and results are rather conventional. The vertical
black line indicates the position of the empirical KK
threshold and therefore, in actual scattering, one sees only
the postpeak part of the resonance, represented by the blue
curves, for scenario A, in Fig. 11. Phases in that figure
follow general theorems in quantum scattering theory. In
the absence of inelasticities, the phase of a generic
scattering amplitude A coincides with the usual phase shift
& and, at low energies the latter — 0 as g(2:*1), where L is
the angular momentum and ¢ is the CM linear momentum.

Inspecting these figures, one learns that the inclusion of
the chiral contact term (A — B) and the second resonance
(B — C) produces a strong impact on results. The influence
of the coupling to the zz intermediate channel (C — D) is
also rather large, especially at low energies, whereas nn
coupling (D — Triple-M) is much less important. In Fig. 12
we show the inelasticity parameter . One must have = 1
for elastic amplitudes, and we would like to draw attention
to the case of scenario C, that includes two resonances and
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FIG. 13. Toy Dalitz plot for Triple-M in D" — K- K*K*
decay with arbitrary normalization.

no coupled channels. In this case, the result for 5 stresses
that our method for dealing with multiple resonances is
indeed consistent with unitarity. When the coupling to other
channels is allowed, # <1 and the dominance of zx
intermediate states becomes clear.

VII. SUMMARY

We propose a multimeson model (Triple-M) to describe
the DT - K~KTK™ decay, as a tool to extract informa-
tion about KK scattering amplitudes. We depart from the
dominance of the annihilation weak topology, which allows
one to describe the whole decay process within the SU(3)
chiral symmetry framework. The nonresonant component
is a proper three-body interaction that goes beyond the
(2 + 1) approximation and is given by chiral symmetry as a
real polynomium. Primary vertices describing the direct
production of mesons and of lowest SU(3) resonances, in
S- and P-waves, with isospin 0 and 1, are dressed by FSIs
involving coupled channels. The KK scattering amplitudes
for each of the (J,1) considered are derived from the
ChPTR Lagrangian [29], unitarized by resummation tech-
niques in the K-matrix approximation, in which particle
propagators were kept on-shell, and include coupled
channels. They are the only source of imaginary terms
in the decay amplitude and fix the relative phase between
S- and P-waves in Triple-M. This represents an important
improvement over the isobar model, where this phase is a
fitting parameter.

ab cd

S

~o P

FIG. 14. Intermediate zp contribution to the ¢ self-energy.

The fitting parameters in the Triple-M are resonance masses
and coupling constants, which have a rather transparent
physical meaning. Although they entered the Triple-M
through the ChPTR Lagrangian, their meanings change so
as to accommodate nonperturbation effects of meson-meson
interactions. To obtain realistic values for these parameters,
they should be extracted from a Triple-M fit to data. As a lesser
alternative, here we employ the low-energy parameters [29]
values as if they resulted from data. In Fig. 13, we show a toy
Monte-Carlo Dalitz plot based on the Triple-M, where it is
possible to see a destructive interference between the S- and
P-waves on the low-energy sector of the ¢(1020). One of
the ¢(1020) lobes is depleted with respect to the other,
resulting in a peak and a dip, a behavior similar to that
observed in LHCb preliminary data [15].

In our one-dimensional toy studies, Figs. 7-8, we show
that the Triple-M can track the hidden isospin signatures of
two-body interactions in three-body data, allowing one
to disentangle the relative contributions of resonances
ap(980) and f((980). By comparing results for the
three-body amplitudes 77 and the scattering amplitudes
AVD it becomes clear that even though the latter are
present in the former, they cannot be extracted directly.
However, with a model departing from a Lagrangian that
includes a full two-body coupled channel dynamics, such
as our Triple-M, fits to decay data can give rise to
predictions for the KK scattering amplitudes A1),
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APPENDIX A: KINEMATICS

Momenta are defined by D(P) — K~ (p;)K"(p,) x
K" (p3), with P = p; + p> + p3. The invariant masses
read

miy = (p1 + p2)* = (P = p3)*, (A1)
miy = (py + p3)* = (P = pa)*, (A2)
miy = (p2+ p3)* = (P=p1)* (A3)
and satisfy the constraint
M? =m?, +miy +mdy —m? —m3 —m3.  (A4)

Their values are also limited by the boundaries of the Dalitz
plot, by
(my +my)* <miy < (M —m3)?, (A5)

(my +m3)* <miy < (M —mjy)?, (A6)
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(ma + m3)? <m3y < (M —my). (A7)

APPENDIX B: TWO-MESON PROPAGATORS
AND FUNCTIONS Q

Expressions presented here are conventional. They are
displayed for the sake of completeness and rely on the results
of Ref. [28]. These integrals do not include symmetry
factors, which are accounted for in the main text. One deals
with both S- and P-waves and the corresponding two-meson
propagators are associated with the integrals

d'¢ {100}
1, 1" ,
{ ab ab} / 4 D Db

(B1)

=(¢+p/2?-M:  D,=(¢-p/2)?-M;,

(B2)

with p? = 5. Both integrals 1, and I are evaluated using
dimensional techniques [28]. For s > (M, + M,)?, the
function 7, has the structure

Aah + Hab]» (B3)

I ;L

ab — l@ [
where A, is a divergent function of the renormalization
scale u and of the number of dimensions 7, which diverges in
the limit n — 4, whereas Il is regular component,
given by

m2 +mbl m, mi—m; m,

II =1 —— In—
b (5) + ms—mi  my, s nmb
VA, {S_’"“ mb+q SACRN
s 2m,my s
A=s2=2s(m2 +m?) + (m2 —m3)?%, (BS)
which, for a = b, reduces to
A 2
M, (s) =2 _£1 {miw—} + ﬂ£ (B6)
s 2m? s

The tensor integral is needed for a = b only, and one has
LI
i
167% | s
1
- g" AZLZ - 4 >
7 Mt g5l = amin| |

where ALY and Aj, are divergent quantities.

In the K-matrix approximation, one keeps only the
imaginary parts of the loop integrals, which are contained
in the function II and has

o __
Iaa -

1
[Agﬁ s — 4m2]I1, ]

12[

(B7)

1 Va
Ly — " 16r s (B8)
1 pﬂpl/ /13/2
L, v — —. B
192z {gﬂ s ] 5? (B9)

In the decay calculation, it is more convenient to use the
functions Q, defined by

Hab - _Qib’ (BIO)
1 HpYl <
e ——— [g"” M] ar,. (B11)
4 s
These results are related with CM momenta by
~ [ Qab
ng = 871’ \/— Q(S - (Ma + Mb)z)’ (B]Z)
_ i Q
QfF, = —4M?), B13
= O —4ME). (BIY

Qup =5/ = 2(MZ + M) + (M3~ M} /s, (BI4)

where 6 is the Heaviside step function.

APPENDIX C: PARTIALLY DRESSED ¢
PROPAGATOR

The bare ¢ propagator, G s, is given by Eq. (A.10) of
Ref. [29]. It is dressed by both zp and KK intermediate
states and the corresponding self-energies are denoted,
respectively, by ¥, and Zg. In this section, we consider
just the contributions of the former kind, since they
correspond to next-to-next-to-leading order corrections
not accounted by our coupled channel formulation. The
latter is NLO and included by means of the function M(19),
Eq. (7). The full propagator is represented in Fig. 14 and
given by

iBagys = i 5+ B 5 +iAG  +iAG  +--- (C1)
iAY)s = Gupys (C2)

i85 = Gupas|=1Z")G ey (C3)

i Afxzﬂ)yé = Gopap[—1Z]G gy [-1Z) G 5. (C4)

The ¢zp interaction is extracted from the Lagrangian

LN = igleﬂypgaiwlﬂﬂ [avﬂ_p;_a + 8Dﬂ+p;ﬂ =+ Qﬂoﬂga],
(C5)
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where w; = cos f¢ — sin Ow is the singlet component. In
the sequence, we write g, = g; cos 6.
The self energy is given by

aped (KAgP = gk kg™ — g7k
—ixabed — ( ) H,] ( ), (Co)
2 2
H [ 3g€ M] <C7)
‘¢ ptp
Lo =7 Wm%m@mg(q)emp (C8)

with p=k/2—7¢, g=k/2+ ¢ and k* =s. Using the
explicit form of G, and the definitions D, = p* — M2,
D,=q’

LA / de 11
N A
“ " m2 ) (2z)*D,D,

(s — M2 —mlz, —D,,—Dp)ﬂ +fﬂf,1[k2 —Dp]},

m , we find

S {gﬂ/l |:_m/2)(M72r + D}‘[)

FNYI

+
(©9)

where we have used the fact that terms proportional to &,
and k; do not contribute to Eq. (C6). This integral is highly
divergent, but the part regarding the Kp cut is not. Terms
containing factors D, and D, in the numerator do not
contribute to the cut function and the relevant integral is

1 a1
I/M, nd m_g/WD”DP {[52 - 2S(M727 + mg)
+ (M,z,—m/z,)z]gﬂ/1+4sfﬂfj}. (C10)
Using the definition
at¢ 1
1, = / . (1)
(2z)*D,D,

and the result
/ d*¢ fﬂf,l
(27)*D,D,
1
= {12](2 [S _25(M2+m )+(M721_m/2))2]]7[/)}g/4/1

+ term proportional to k&, (C12)

the relevant component of /,, becomes

2
L, — {3 5 [s2 = 2s(M2 + m2) + (M% — mﬁ)z]lﬂl,}gﬂi.
(C13)

The on-shell contribution to Eq. (C11) is given by

1 /g
I p
= " 16r s

(C14)

with 1, = [s? — 2s(M2 + mg) + (M2 - mg)z] = 4sQ,2,,,,
where Q,, is the CM three-momentum. We then have

H, = gﬂz—rlm( 5), (C15)

(C16)

Numerically, I}’ =0.1532x T, =0.1532x0.004247 GeV
[32]. Using this result into Eq. (C1) and resumming the
series, we get the partially dressed propagator

im(/)F(/) (s)/s71

iAZZ}/& = Ga/}y(‘} + |: D;/)(S) :| 2[ kﬁkC + gﬂk k4

- g(leﬁkd ;;’lkak ]chyé’ (C17)
where the denominator D7 (s) is given by
DY = s —mg +imy[(s). (C18)

In the evaluation of amplitudes involving a K(p,)K(p,)
vertex, one encounters the product
- pip) =

. 2i
iDgp5(P S D70y (P1aP2p = P2aP1p)-

D,
(C19)
APPENDIX D: SU(3) INTERMEDIATE STATES

In the treatment of intermediate states, it is convenient to
work with Cartesian SU(3) states, which are related to
charged states by

Izt = |1 +i2)/V2, |z7)=[1-i2)/v2, (DIl)
) =13).  Ins) =18). (D2)

K+) = [4+i5)/V2,  |K")=-[4—i5)/V2, (D3)
K% =16+i7)/vV2,  |K%) =16-i7)/vV2. (D4)

We need just two-meson intermediate states |ab), with the
same quantum numbers as the K~ K™ system, which are
given by

VaT) =(1/v2)[12 - 21), (D5)
[VEKY = (1/2)[45 — 54 — 67 + 76), (D6)
[VEKY = (1/2)]45 — 54 4 67 — 76), (D7)
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|Uz) = (1/V/2)|38 + 83), (D8)
|UKKY = (1/2)]44 + 55 — 66 — 77), (D9)
|S77) = (1/+/3)|11 + 22 + 33), (D10)
|SKKY = (1/2)|44 4 55 4+ 66 + 77), (D11)
|588) = [88). (D12)

The state |[K~K™) includes a conventional phase and
reads

|K-KT) = —(1/2)|(4 —i5)(4 + i5))

= —(1/2)|44 +55) —i(1/2)]45 — 54), (D13)

and, therefore,

(K=K*| =(i/2)(Vi¥ + VER| = (1/2)(UFF + S*E|.
(D14)

APPENDIX E: THREE-BODY DECAY SUB
AMPLITUDES

In the evaluation of intermediate state contributions
shown in diagrams of Fig. 5, we need tree level contribution
for the process D — abK™, denoted by T(é‘l), for spin J
and isospin /. In the results displayed below, the first terms
correspond to resonances in diagrams (3A + 3B), whereas
those within square brackets, labeled by c, represent contact
interactions in the top vertices of diagrams 2A and 2B.
Using the constant C defined in Eq. (22), we have
i

a 1,1 o 1,1
V.1 =1.1] = (VKT |D) = 5 (m}, — m3,)Tg) )

2 (0)ab®
(E1)
(1,1) \/EG%/} mi [ 1 ] }
r =C + |—-—= , E2

2 2

(1,1) Gy mi, 1

rith —cd |2 22y |—2| b (B3
QL {[F]m—nﬁ{ |y

1,0 i
.1 =1.0] > (VEKK (T4 |D) =

10 _ A BGY . 5] mi 3
F(O)KK = C{ |:FSIH 9 W+ 5 ) . (ES)

Here, the function Df/‘,” is a partially dressed ¢ propagator,

discussed in Appendix C, Eq. (C18), associated with the
partial width of the decay ¢ — (pz + nzx).

.1=0.1] = (UK T D) = TG

(0)ab’ (E6)

N _ { [2\/5] [—caP - p3 + c,uM3)
(O V3F? m%z - mgo
x [cy(miy — Mz — Mg) + 2¢,,M7]
V3
+ [—\/E[M%/3—P'P3]} }

01 27 [=c4P - p3 + cuM3)
ke =<{ 7]

(0)K 2 2 _ 2
F mi, — Ny,

x [cq(miy = 2M%) + 2¢, Mi]

+ {—;[M% —P-pa]L},

(E7)

B » (0.0); 4y _ 1(0.0)
[J,1=0,0] = (S "K+|T(0) D) =Tg)up:

(0.0) 8vV/3] [=&4P - p3 + &, M)
F(o);m =C 2 2 2
F= mi, — Mg,

x [E4(m3, — 2M3) + 2¢,,M3]

_ [ 2 1 [-c4P- p3+ c,,Mp)
\/§F2_ m%z - mgo

X [cg(m}, = 2M2) + 2¢,,M?]

+ [—?[M%—P‘ps]]c},

_ C{ {& [=¢4P - p3 + EuMp)
F2l o miy—m§

(E10)

X [Ed(m%Z - ZM%() + ZEmM%(]
i_ [_ch - p3+ cmM%]
_3F2_ m%Z - mgo

X [ca(miy = 2M%) + 2¢,M§]

wgrn] )

(E11)

0o _ - 81 [=¢uP - p3 + ¢,,M})]
(0)88 — i3 m2. — m2
12 s1
x [¢q(miy — 2M3) + 22,,M3]
[ 2 ] [=caP - p3 + cuMp)]
_3F2_ m%Z - m%o

X [cg(m?y —2M3) + ¢, (—10M2 + 16M%) /3]

[5M%/3—3P-P3]]C},

(E12)

1
| 2
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with

1
P-py == [M} + M3 —mi,).

5 (E13)

APPENDIX F: SCATTERING KERNELS

The intermediate scattering amplitudes depend on inter-
action kernels in the four channels considered, associated
with J, I = 1, 0. The kernel matrix elements for the reaction
cd — ab are written as (cd|K’|ab), in terms of the states
defined in Appendix D, and displayed below. All kernels
are written as sums of NLO resonance contributions and
chiral polynomials, involving both LO and NLO terms. The
NLO polynomials are derived by assuming that the Low
Energy Constants (LECs) are saturated by intermediate
vector and scalar resonances, with masses My and Mg,
respectively. The kernel matrix elements read

felglfl, @

ICEII:;IIRKK) = _\/E{G_q L2 + [ﬁ} ) (F3)

F*ls—ml  [2F?
gy o _[Gv] s [ L (F4)
(KK|KK) F*ls—m2  |2F%].
. . 1.0
[J.1=1,0] - (V&KL |vedy = (1 - u>’C§ab\ld) (F5)
2 oin2
o Gysin“0] s 3
Kikkixx) = _3[ e }D—gﬁ_ {F] - (F9)

The function Dgp in this expression represents a par-

tially dressed ¢ propagator, discussed in Appendix C,
Eq. (C18), and accounts for the partial width of the

V.1 =1,1] = (V§ KD V) = (1 - ”)KEL}:RM) (F1) decay ¢ — (pr + nnx).
|

U1 =0.1] = (ULIKOD|USY) = Ko (F7)
Kt = =i [t = 2 0) + ca2ai + 2 (F8)
Kb = =5 o [ ] s = 2= 8+ cobBes = (ca= empi + 22288 o)
’CE%}()V(/() = _s%mlzl“ [%} [cas = (cq = c)2ME]* + {%} . (F10)
[J.1=0,0] > (SP[KOI|s) = Ky) (F11)

K09, = —j [% (G5 — (64— &,)2M2]2
_ ﬁ {%] [egs — (g — ) 2M22 + [2s ;fﬂ C (F12)

ICEg’:l)KK) = —S_ilmgl [SF#] [Cas = (2q = T)2M3][Cas — (€4 — € ) 2MK]

+ S%m%o {ﬁ} [cas = (ca = cm)2MZ)[cas = (ca = c)2ME] + [%] . (F13)

KO0 = _s—limél [4#] [€as = (€4 = €,)2M7][Eqs — (24 — &) 2M3]
b [ 2 e - (o anntlests -2+ cptioari - vousyyal + 2N g
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00)  _ 1 16 ~
IC(KK\KK) = _m [F“ (45 — (Cq — ) 2M% )
1 2 3s
- o 37l = Ceam ca2mip + 3] (F15)
KO0 = L3 s — (24 = 2)2MR 5 — (24— £)2M2
(KK|88) — _m Iz 45 = (€q = Cn)2M¥][Cys — (€4 — €,)2M]
1 2 95 — 8M?>
e [W} [cas = (cq = c)2M¥][ca(s = 2M3) + ¢, (16M% — 10M2)/3] + [76F2 ’(} c (F16)
1 4
(00 1 (e s AP
(88188) — —n, | [Cqs — (Eq — €)2M5]
1 [2 —TM? + 16M2
- 5 — m%p [3?:| [cd(s - 2M§) + Cm(16M%( - 10M72r)/3]2 + {T] C. (F17)

APPENDIX G: CHANNEL DEPENDENT DECAY
AMPLITUDES—FULL RESULTS

The tree level decay amplitudes for channel with spin J
and isospin /, given in Appendix E, are written as

a 1.1
(XK1 |D) = E(m%3 m3 )Ty, = (X = V3. Vy)
0,/
= Tgn, = (X = Us.5) (G1)

The full amplitudes are obtained by including all
possible final state interactions, as indicated in Figs. 5
and 6. The terms involving a single meson-meson inter-
action read

a 1.1
(xe KT ID) = 5 (miy = m3)T50, = (X = Vi, V)
= FE(]),)la)b - (X - U% S)9 (GZ)

with

ZMuh|cd Ld’ (GS)

J.0) (J.0) =
MEzb|cd _Kab\cd[SFdi]’ (G4)
where KU are the scattering kernels displayed in

b| d
Appendix F, Q/, are the two-meson propagators given
in Appendix B, and the symmetry factor Sp =1 = ¢ #d

and Sy = 1/2 - ¢ = d. The terms Fgﬂ), containing two

meson-meson interactions are constructed in a similar way

(J.0)

from F(1jah’ and so on.

The inclusion of all possible meson-meson interactions
leads to the infinite geometric series

R T (Gs)
oy = {1+ MUD 4 MU 3 (G6)
where /") is its sum, given by
oD =1 = MUD)L, (G7)
Thus, decay amplitude reads formally
rv.n — - M(J,I)]—lrgéjl)’ (G8)

and encompasses a coupled channel structure, which
depends on the spin-isospin considered.

In order to display the meaning of the indices used in this
structure, we label informally each (J,I) channel by its
most prominent resonance and recall that p-channel:

(L1) _ (1) (L) (1.0) _ ~(1.0)
Loyt =l 0)ee L2 =T KK’ ¢-channel: ' )" =T g5
ag-cannel: Fgg)l) = FE )”)8, Fgg)l) = FE )121(’ fo-channel:
rioo =rl? 100 =0, 0% = {0 The mean-

(0)11 (0)zz> = (0)22 (0OKK> = (0)33 (0)88
ings of the indices used in the matrices M), Eq. (G4), are
similar.
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In this work, we need at most three coupled channels, which corresponds to

1 [1 = My][1 — M33] — M3 M, M 5[l = M33] + M 3M3, M5[1 = My| + M, Mo
:mx Mo [1 = M33] + M3 M3, (1= My][1 = Ms3] — Mi3M3 Mo[1 = My + M3My,
M3 [1 = My] + My My, Mx[1 =My ]+ MM, (1 =Myl = My] — MMy,
xdet(1=M) = [1 = M;][1 = Myp][l = M33] = [1 = My |My3Ms, — [1 — My ]M3M5,
= [1 = MM ;Myy — M ;MyzsMsy — My M3 M. (G9)

In the K-matrix approximation, the matrix elements M
are purely imaginary, owing to the presence of the two-
meson propagator. The explicit functions to be used in the
calculation are displayed below.

1.1 (1.1)
M<11 ) = Im\lm[ /2] M(12 _K:mr\KK[QgK/Z]’
(1.1) .
MY = K082, MY = K9k /2),
(G10)
(1,0)
M0 = _,CKK|KK [Qik/z]v (G11)

Mﬁ'l) _ _jcon

0,1
Csl95/2. MY = K519k,

0.1) (0,1) 0.1) (0.1)
MY _ICﬂS\KK[ 352, MY _ICKK\KK Q% /2],
(G12)
0.0) (0.0) 0.0
Mgl _K”ﬂ\””[ggn/z]v Mgz )= —ICEM‘KK[QSK/2]
0.0) 0.0)
M<13 ]Clm\88[928/2]’ Mgl Kﬂ/r\KK[ 2”/2]’

0.0 0.0
M<22 = ]C(KK\)KK[Q%KM] M(zs = K%K\ss[ggsm]

(0,0 0,0
Mgl = _Km\gg[gzsm/z]’ Méz )= K&g\ss[gfm/z]
0,0) (0,0)
M’(B _Kgg\gg [QSS/Z]- (G13)

The factor 1/2 accounts for the symmetry of intermediate

states. It is also present in the functions M ﬁ’l) and Mgi’l)
because one is using the symmetrized z8 intermediate state
given by Eq. (D8S).

In the evaluation of the channel dependent decay
amplitudes, one subtracts contributions already included
in the nonresonant term, so as to avoid double counting.
These terms are denoted by I'; KI?( and correspond to the
contributions denoted by [---]. in Appendix E. Explicit
expressions for the vector channel read

| R 11
T = _Z[FE(K) _FE-\K}(](’”% —m3y), (G14)
=(1.1) 1 (1) ~(L1) MDD
b — 17255 WSS G B VASSl) et )
KK Dp( %2) 21 4 (0)an (0)KK
(G15)

1.1 1.1) 4,011
= (1= My = m") - M (Gre)
I =10 1,0
710 = ~a M) - F£|k1)(](m%3 = ms), (G17)
=(1.0) _ ; (1,0)
R D)0 o
D, = {1- M1}, (G19)

The function D} in these results is given by Eq. (C18) and
corresponds to the part of the ¢ propagator involving zp
intermediate states.

The scalar sector yields

| 0.1
70D = =Sk’ = Tl (G20)
=0.1) 1 (0.1) 0 1)\ (0.1)
Ugx™ = D, (%) (M5, F + (1- okl
(G21)
D, =1 =M (1= MGy - MBMEY), (G22)
I =00 0,0
709 = — [Ty’ =T (G23)
=(0,0 0,0 0,0 0,0 0,0 0,0
T = gy (7 (1= M) M MO
0,0 0,0 0,0 0,0 0,0
+1(1= M3 = ME) - MM
0,0 0,0 0,0
+[M§3 ‘(1 - ( ))+M(13 )M( )]Fgo)z;)z; ,
(G24)
Dg = det [l — M(©9)], (G25)
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APPENDIX H: CHANNEL DEPENDENT
SCATTERING AMPLITUDES—FULL RESULTS

The scattering amplitudes for channels with spin J and
isospin I are given by

a c LI
(XPAIX) = (1= u)Alyl) — (X = V5. V),
(X[A|xd) = AU~ (X = U3, ), (H1)
whereas the tree approximation reads

a C 1,1
(XP[A0)|X“Y) = (1= u)Kly0, = (X = V3, Vs),
(XA X°) = K5, = (X = U3, 9), (H2)

with the /C given in Appendix F. The full amplitudes are
obtained by including all loop contributions, as indicated in
Fig. 6. The terms involving a single loop read

ab\cd ZMab\ef ef|cd (H3)
(J.0) (.1)
Mab\ef Ko ablef [SFQ ] (H4)

where the Q/,
Appendix B, with the symmetry factor Sp =1 — e # f
and Sy =1/2— e = f. The inclusion of all possible
intermediate loops gives rise to the infinite geometric series

are the two-meson propagators given in

U (D) (D)
Aubled = Oablef (0)eflcd’ (H5)
ih\ef {1+ MU0 4 MU .. Yabless (H6)

which is very similar to that discussed in Eq. (GS5). In

particular, the function o(él ) of is the same as Eq. (G6) and

therefore we may rely on all the developments made in
Appendix G. Explicit expressions for the vector scattering
amplitudes read

(1.1) 1 (1,1) (1,1 A0y D)
ALY M (= m Dyl
KK|KK Dp(m%Q) 21 |KK 11 KK|KK
(H7)

1,1 1,1 1,1
= [0 =M (1= M50y — M M) (Hs)
(1,0) 1 (1,0)

A - K , H9
KK|KK D,,,(m%z) KK|KK (H9)
D, ={1-M19}, (H10)

where the function D} is given by Eq. (C18).

The scalar sector yields

o1 1 (0,1) 1-(0,1) (01) ©0.1)
AKK\KK_D (mz)[le Kn:8|l(l( (1-M )ICKK\KK]’
a 12
(HI1)
Dy, = (1= M) (1 = My") = My M),
(H12)
(0.0)
Akkikk
1 0.0) 0.0) (0.0) 3 7(0.0)7 ~(0.0)
:m{[ﬁ/]zl (1=M357) + My My, Kk
0.0 0.0) 5 7(0.0)7,~(0.0
1= M) (1= M) = M5 MU
+ (M5 (1= M) + MET MG (HI3)
Dg = det (1 — M©0)), (H14)

with det (1 — M(©9)) given by Eq. (G9).

APPENDIX I: PHASE SHIFTS

The partial wave expansion of the amplitude, for each
isospin channel, reads

32 > 7.1
Abigx = 7Z(zJ +1)P;(cos 0) iy e (s).  (I1)
J=0
where fS(J,’;)KK is the nonrelativistic scattering amplitude
and p = /1 —4M%/s. Our amplitudes are written as
(0.1 AL
A%K\KK A1<K|1<1< + (t ) KK|KK +o (12)

In the CM, one has (t — u) = (s —4M%) cos @ and writes

(0.1)
A%K\KK AKK|KK + [(s —4M?%) cos 9} KKlKK N
327r "
p [fmqm(( s) + 30059f§<k\1<1<(s) + -,
(13)
with
; P 0.0)
Fxkikk = 30, Akkixre (14)
3
() _ P ()
Txkixx = 9% SAkkikk: (I5)

In nonrelativistic Quantum Mechanics, the amplitude f is
usually expressed [10] in terms of phase shifts 6 and
inelasticity parameters # as

, L oun 2
Txikx = 2 [’YKK\KKe Kir —1]. (16)

056021-20



MULTIMESON MODEL FOR THE ...

PHYS. REV. D 98, 056021 (2018)

In order to obtain [5%}(1‘)1{1(,175(][’{1')[(](] from A%QKK,

one drops all subscripts and superscripts and writes
f =a+ib, with a = Rel[f], b = Im[f]. Using Eq. (I6),
one has

1 4 2if =[1 —2b] + 2ia = n[cos26 + isin25],  (17)

and thus

n=/[1 —2b]* + 4a> (I8)
2a

tand = ———. 19

M= =2 (19)

As (1 +n—2b) >0, the sign of § is determined by the
factor a.
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